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RESEARCH PAPER

Assessing the role of location and scale of Nature Based Solutions for the
enhancement of low flows
Jessica Fennell a,b, Chris Soulsby a, Mark E. Wilkinson b, Ronald Daalmansc and Josie Geris a

aNorthern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, UK; bThe James Hutton Institute, Craigiebuckler, Aberdeen,
UK; cChivas Brothers Ltd., Glasgow, UK

ABSTRACT
Water resources management during drought is a significant challenge worldwide, particularly for
upland areas. Additionally, variations in water availability are becoming more extreme with climate
change. Nature Based Solutions (NBS) e.g. Runoff Attenuation Features (RAFs) could provide an
alternative to hard-engineering. Using more natural processes, flow pathways are intercepted and
attenuated in features during wet periods, increasing infiltration opportunity and thus water
availability for use later. NBS research has primarily focused on flood mitigation, but little is known
about low flow impacts; knowledge is required on where and at what scale to implement NBS. To
explore these questions, we used a physically-based catchment model (MIKE SHE) integrated with
a hydraulic river model (MIKE 11) to evaluate scenarios with varying RAF volumes and locations.
We applied this to an intensively monitored upland Scottish catchment (0.9 km2) where 40 RAFs
(∼2m3 storage each) were installed for low flow enhancement. Model results showed installed
RAFs increase recharge (∼0.1%), groundwater contribution to streamflow (∼4%) and low flows
(∼1%) and reduce high (∼5%) and mean flows (∼2%), suggesting RAFs could be used to mitigate
extreme flows. The scenarios revealed that RAF location (primarily soil type) and scale (total
storage volume and spread of features) were both important. Doubling installed RAF volumes
increased impact on low flows by ∼25% and high flows by ∼40%, although lower additional
benefits were predicted with further storage increases. RAFs had greater impact in freely-draining
soils than poorly-draining, however distributing the same storage volume across many smaller
RAFs over greater areas (both soil types) provided the largest effect. Absolute changes observed
were relatively small, and given model uncertainty, should be treated with caution. Nevertheless,
the direction of change was clear and given ecological systems and water supply rely on small
margins of change, even slight increases in low flows will likely be beneficial.
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1. Introduction

Management of water resources through drought can be a
significant challenge, often with wide-reaching impacts
(Stahl et al., 2016; Svoboda & Fuchs, 2017). Even under rela-
tively humid climate conditions, such as in the UK, many
areas are now considered ‘water-stressed’. Upland rural
areas in particular are forced to balance water supply
between local communities, the environment and food and
drink industries (Visser-Quinn et al., 2021). In 2018 a serious
drought occurred throughout Europe, with river flows
amongst the lowest on record (Fennell et al., 2020; Soulsby
et al., 2021). These conditions suggest water management
solutions are needed (Visser-Quinn et al., 2021) and with cli-
mate projections for increased frequency of extremes (floods
and droughts) and less snow (Spinoni et al., 2018; Stocker
et al., 2013; Werritty & Sugden, 2012), this becomes an
ever more pressing issue.

Historically, a broad range of approaches have been
implemented to improve drought-preparedness and resili-
ence, e.g. through early warning systems (Hund et al., 2018),
reservoirs (Brunner et al., 2019), floodwater harvesting (Kow-
sar, 2008) and as recognized more recently, Nature Based Sol-
utions (NBS) (Cohen-Shacham et al., 2016; Nesshöver et al.,
2017; OECD, 2020; Somers et al., 2018; UNCCD, 2019).

NBS are defined by the International Union for Conservation
of Nature as ‘actions to protect, sustainably manage and
restore natural and modified ecosystems in ways that address
societal challenges effectively and adaptively, to provide both
human well-being and biodiversity benefits (Cohen-Shacham
et al., 2016). There are three key concepts of NBS for flow
management: (1) reducing rapid runoff generation; (2) enhan-
cing storage/retention of water or (3) reducing conveyance
(Lane, 2017). Examples include afforestation, buffer strips,
river restoration, and Runoff Attenuation Features (RAFs)
(Burgess-Gamble et al., 2017). RAFs are soft-engineering
approaches in the landscape, such as leaky barriers, designed
to intercept and attenuate runoff, whilst increasing potential
for infiltration and sub-surface storage, thereby addressing
the three key NBS flow management concepts (Hewett et al.,
2020; Metcalfe et al., 2017a; Wilkinson et al., 2010).

Although the knowledge base has developed in the last
10–20 years, NBS for water resources management is still a
relatively immature research field with many remaining
questions. Consequently, there is an urgent need for more
evidence from empirical, modelling, and integrated studies
in diverse locations (Burgess-Gamble et al., 2017; Cooper,
2020; Whelchel et al., 2018). One key knowledge gap involves
NBS impacts on recharge and low flows (Sahani et al., 2019;
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Simpson et al., 2016). Research on NBS for water manage-
ment has so far primarily focussed on flood mitigation as
Natural Flood Management (NFM), but the application to
low flow management is now increasingly being considered
(Burgess-Gamble et al., 2017; European Commission, 2020;
Sahani et al., 2019; Simpson et al., 2016). Some examples
of drought management approaches exist globally for
water-stressed areas with dry climates, although not always
under the guise of NBS (Standen et al., 2020). These studies
have successfully shown increases in recharge and strea-
mflow from small-scale Rain Water Harvesting (RWH) fea-
tures similar to RAFs, through to large-scale reservoir
recharge approaches (Dashora et al., 2018; Kravčík et al.,
2012; Sisodia, 2009; Van Steenbergen et al., 2011; Wilkinson,
2019). These technologies have evolved over millennia
(Ochoa-Tocachi et al., 2019), are adapted to different settings
and classed as those designed to attenuate or store water at
the ground surface (e.g. RWH), or in the sub-surface (e.g.
Managed Aquifer Recharge) (Dillon, 2005; Pavelic et al.,
2012). Knowledge on applications for wetter climates,
where NBS could potentially address both flood and drought
problems, is lacking.

A second key knowledge gap relates to the optimal place-
ment and scale of implementation (Reaney, 2022; Wilkinson
et al., 2019), i.e. where to locate features and whether it is best
to have many small or few large features. In addition to the
storage potential of features, the spatial scale of NBS also
relates to the spread of implementation within the catchment
and the proportional area affected. Overall, better under-
standing is required on the relative roles of different land-
scape characteristics, and the location, size and distribution
of implementations in relation to their impact on catchment
processes. Such knowledge is both important for cost–benefit
analysis for broader uptake and for optimal performance
(Cohen-Shacham et al., 2019; Nelson et al., 2020). Conse-
quences of poor placement can then be avoided e.g.
increased flood peaks from synchronization in a high flow
mitigation context (Hankin et al., 2017; Wilkinson et al.,
2019), or greater evaporative losses from poor infiltration
in a low flow mitigation context (Kumar et al., 2006; Sha-
nafield & Cook, 2014; Somers et al., 2018).

Geophysics, modelling or tracer-based methods can be
used to locate sites for optimal NBS placement (Shivanna
et al., 2008; von Freyberg et al., 2015), and predict the direction
of change expected (Glendenning & Vervoort, 2008, 2011;
Parimalarenganayaki & Elango, 2015; Stiefel et al., 2009).
There are uncertainties associated with these methods which
must be considered (von Freyberg et al., 2015). Modelling in
particular, can provide answers for different NBS scenarios,
but can also have large uncertainties in parameterization par-
ticularly in data-limited catchments (Beven & Westerberg,
2011). Uncertainty can be reduced by using empirical data
to inform the model, however there are relatively few
examples of this; Nicholson et al. (2020) being one of the
few for NFM. The limitations of each approach need to be
communicated carefully, as often a number of different stake-
holders are involved (Sowińska-Świerkosz & García, 2021).

The potential use of NBS for both high and particularly
low flow management therefore requires further investi-
gation, for application at different scales and in different
locations. Here we used a fully-distributed coupled hydrolo-
gical/hydraulic model, to investigate the impacts of RAFs on
recharge and flows. We applied this to the Blairfindy

catchment, in the Scottish Highlands, where RAFs were
recently installed to increase subsurface recharge and
enhance summer low flows to maintain industrial water
supplies used in a distillery producing ‘The Glenlivet’, a pop-
ular malt whisky worldwide. The site benefits from extensive
empirical data during and after the 2018 drought, which
showed higher resilience of groundwater-fed streams
(which remained flowing throughout) than those fed by sur-
face water (occasionally dried out), and how this related to
the soils and geology (Fennell et al., 2020). This conceptual
understanding was used to inform the modelling, which
then allowed testing of the present and a range of other
NBS scenarios. These were designed to explore the impacts
of location (defined by the hydrological properties of the
soil/vegetation types and placement within the catchment),
and scale of RAFs (defined by the size of RAFs i.e. volume
they can hold, and the number of features i.e. the size of
the total area affected), on groundwater recharge, contri-
butions to streamflow and in particular low flows (indexed
by the Q95) in the Blairfindy catchment.

The overall main aim was to assess the impact of location
and scale on the effectiveness of RAFs in management of low
flows using a locally-informed hydrological model. More
specifically the objectives were: (a) to evaluate the conceptual
understanding of spatial and temporal variations in storage
and flow of water sources in Blairfindy catchment; (b) to
quantify the impact of RAFs on recharge and potential to
mitigate low flows and (c) to assess the importance of location
and scale on the impacts of RAFs for low flow mitigation.

2. Data and methods

2.1. Study site

Blairfindy is a 0.9 km2 sub-catchment of the river Livet, in
Speyside Scotland (Figure 1(a,b)), and one of the main
sites from which a key whisky producer obtains water for dis-
tilling. Detailed descriptions of the site are provided byWilk-
inson et al. (2016) and Fennell et al. (2020); a brief summary
is provided below. The study catchment has a mean elevation
of 438 m.a.s.l. and is mostly north-facing with winter topo-
graphic shading. Mean annual precipitation (P) is
∼900 mm (∼7% as snow), Potential Evapotranspiration
(PET) is relatively low ∼450 mm/year and daily air tempera-
tures (T) average 6.2°C; with maximum average daily T 18.7°
C for July and minimum −1.3°C for December.

The geology is dominated by crystalline bedrock which
offers relatively little groundwater storage, though an inter-
spersed limestone member and faults and fractures in the
bedrock provide sources of deep groundwater. Water storage
is also provided by the periglacial, shallow gravel drift depos-
its and till in the valley bottom (Wilkinson et al., 2016). In the
west of the catchment, the humus-iron/iron podzol soils are
relatively freely-draining, with high infiltration potential and
available storage. These support heather shrubs (Erica spp
and Calluna), grazed acidic grassland and a small coniferous
woodland (Figure 1(d); Wilkinson et al., 2016). The slopes in
the east are dominated by peaty gleys and thicker peats cov-
ered by heather shrubs (Erica spp) and moss. The soils in
these areas are poorly-draining, remain close to saturation
and have lower water storage capacity (Tetzlaff et al., 2014).

The main Blairfindy stream is perennial; long term esti-
mated annual discharge before abstraction is 450 mm
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(Wilkinson et al., 2016). Some smaller streams in the head-
waters are ephemeral, especially in the upper south-west of
the catchment. These become active during or after precipi-
tation events and dry out through periods of low rainfall.
Stream water and groundwater are abstracted by the distil-
lery throughout the year (∼95 mm/year from Blairfindy)
except for a two- to four-week ‘shutdown period’ for
maintenance.

RAFs were installed by the distillery in December 2020 in
the ephemeral stream channels (Figure 1(c,e,f)) with the
intention to intercept flow pathways and create temporary
storage of runoff (Hewett et al., 2020). The rationale for
this was to increase the potential for infiltration and recharge
of groundwater resources and thereby increase resilience to
drought periods by enhancing summer low flows. This is
particularly important in catchments where groundwater
maintains streamflow through summer (Fennell et al.,
2020; Isokangas et al., 2019). Although the installed RAFs
are classed as ‘leaky barriers’, they were designed mainly to
hold water to allow infiltration (leakage) into the subsurface,
with relatively little leakage downstream through the barrier
(Figure 1(e,f)). The RAFs were constructed from local timber
or till overlain with peat. They were installed across soil/veg-
etation types with different properties (Figure 1(d)), which
could affect RAF functioning in terms of those properties
(i.e. freely draining versus poorly draining).

2.2. Data

15-minute meteorological data were collected from the
Blairfindy catchment weather station between 24/05/2018–
17/12/2020 (Figure 1(b)). P was summed, and T and PET

were averaged for 6 hourly model inputs. Prior to 24/05/
2018, hourly T and PET, and daily P were available from
long-term local weather stations (01/01/2000-31/01/2020).
These were scaled for Blairfindy following Fennell et al.
(2020) and averaged (T; PET) or spread evenly (P) for use
on the 6-hourly time-step.

Stream discharge data were obtained from 23/02/2018
onwards for Blairfindy stream at the catchment outlet
(Figure 1(b)) using 15 min stage data recorded by an In-
situ Rugged TROLL100 level-logger in a rated section
(described in Fennell et al. (2020)). Distillery abstractions
were averaged for the period where data were available
(2009–2020). These were added evenly to the discharge
data to estimate streamflow without the abstractions. Soil
volumetric water content data (VWC) in grass, freely-drain-
ing soils were obtained at the location of the weather station
(Figure 1(b)). Daily estimates for groundwater contribution
to discharge were available from Fennell et al. (2020) using
End-Member Mixing Analysis.

2.3. Model set-up

To address our objectives, we required a coupled hydrologi-
cal/hydraulic model and selected MIKE SHE - MIKE 11 for
our approach. MIKE SHE is a physically-based, determinis-
tic, fully-distributed 3D catchment model which simulates
the land-based phase of the hydrological cycle (Abbott
et al., 1986). When dynamically-coupled with the MIKE 11
1D hydraulic model, this enables: detailed river network
modelling with an integrated module for structures (e.g.
RAFs); overland flow to - and out-of-bank flooding from –
the river network; and river – baseflow reservoir exchange

Figure 1. Blairfindy (a) location in Speyside, NE of Scotland (b) schematic of catchment area (0.9 km2) to the river Livet (102 km2), including local monitoring
equipment, (c) Satellite imagery overlain with the river network and 20 m contours show change in elevation (ESRI and Digital Globe, 2012) with red box surround-
ing area of river network into which RAFs installed (d) Vegetation and soils distinguished by drainage properties, and superficial geology (BGS, 2020; Soil Survey of
Scotland Staff, 1987) (e) RAFs installed in ephemeral stream channel (f) Close-up of RAF showing wooden construction, including notch in the centre of the top
plank.
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(Butts & Graham, 2005). Thus overflow from RAFs and their
impact on different flow pathways (Fennell et al., 2020) could
be simulated. MIKE SHE – MIKE 11 has been applied on
scales ranging from <10 km2 to nationwide (Al-Khudhairy
et al., 1999; Henriksen et al., 2003), for varied purposes,
e.g. investigating stream temperatures (Fabris et al., 2018),
water conservation structures (Ramteke et al., 2020), river
and floodplain restoration (Clilverd et al., 2016) and climate
change impacts (Thompson et al., 2017).

First, we set up the model and simulated the baseline (i.e.
before RAF installation) conditions in the Blairfindy catch-
ment, then implemented the recently implemented, and a
range of alternative RAF scenarios to explore the impacts
on recharge and flow. The model structure was informed
by previous conceptual understanding of catchment func-
tioning ((Fennell et al., 2020); Figure 2). The upper layers
of land use and unsaturated soil zones were fully distributed
so that processes most affected by RAFs, such as overland
flow and infiltration, would be modelled in detail. Deeper
interflow and baseflow reservoirs were conceptual, and rep-
resented the saturated soil zones and geology (Wang et al.,
2012). This was appropriate given the level of detail available
from maps and field data, and also reduced model run time
(Butts & Graham, 2005).

The catchment was discretized using a grid cell mesh of
15 × 15 m, which balanced fine enough resolution to capture
small flow paths, and computational time. The Digital Ter-
rain Model (DTM) was input at a 5 m resolution (ESRI
and Digital Globe, 2012), which was then averaged in
MIKE SHE over 15 m grid cells for the model topography.
Four different soil/vegetation types were represented to
account for the impact vegetation types have on soil proper-
ties (Geris et al., 2015). The first three units involved heather,
pine and grass, all on freely-draining soils; and the fourth was
heather on poorly-draining soils (Figure 2). Vegetation types
were based on satellite imagery and land cover maps (ESRI
and Digital Globe, 2012; Rowland et al., 2017). Soils were
grouped using UK Hydrology of Soil Types (HOST) into
those which drain relatively freely (podzols), and those
which drain poorly (gleyed soils or peat) (Boorman et al.,
1995). Soil surveys of the area determined soil depths (Wilk-
inson et al., 2016). The different characteristics of the four
soil/vegetation types were represented in the unsaturated
soil water movement module, and in the upper, interflow
module of the linear reservoirs for saturated soil water move-
ment. Characteristics and depths of the two lower baseflow
reservoirs were obtained from earlier research and geology
maps (BGS, 2020; Ó Dochartaigh et al., 2015; Fennell et al.,
2020). These two distinguished between relatively faster-
moving groundwater associated with shallower glacial till
and the slow-moving groundwater associated with deep,
fractured bedrock.

The river network forMIKE 11was derived from theDTM
using flow direction and accumulation tools in ESRI ArcGIS.
For the ephemeral streams, detailed land survey data were
available, and these were superimposed on the river network
derived from the elevation model. Field measurements of the
channel dimensions were taken at ∼100 m intervals or more
frequently when channel shape notably changed. These cross-
sections were input to MIKE 11 river segments at 1 in 10 m,
replicating those where channel shape was similar and adding
new cross-sections if different. Each river segment rep-
resented a flow pathway so that the ephemeral streams,

hillslope surface flow pathways and the main stream joined
to form the river network (Figure 1(b)).

P, T and PET inputs drove the model, which simulated
processes dependent on model parameterization. Parameter-
ization was based on an initial sensitivity analysis, where par-
ameters were manually varied individually and the most
sensitive model parameters were calibrated (Ma et al.,
2016). This led to 32 out of the total 60 parameters being
fixed and 28 being calibrated (Table 1). Parameter values
were taken from literature and field data (Table 1). P fell as
rainfall or snow based on T data and climatic parameter
values from local catchments. Actual Evapotranspiration
(AET) was simulated using the Kristensen and Jensen
(1975) method and leaf area index, root depth and Man-
ning’s M (proportional to Strickler roughness coefficient)
were set for each vegetation type. Overland flow was mod-
elled using the finite difference method and 2D diffusive
wave approximation. Unsaturated soil processes were simu-
lated using gravity flow and Green and Ampt (1911) infiltra-
tion (as in Fabris et al. 2018). Each soil/vegetation type was
assigned ranges for the van Genuchten (1980) parameters
(α, η), with saturated water content and saturated hydraulic
conductivity ranges verified by field data, all subject to cali-
bration (except residual water content, which was set). For
saturated flow the linear reservoir method was used (concep-
tual alternative to Darcy’s equation described in Wang et al.
2012). For interflow reservoirs, each soil/vegetation type was
assigned a range for specific yield, interflow and percolation
time constant parameters, and for each baseflow reservoir
specific yield and baseflow time constant ranges were
required, all obtained from the literature (Table 1).

MIKE 11 channel flow was simulated by 1D approxi-
mations of Saint-Venant equations (Abbott et al., 1986).
Based on observations through the drought (Fennell et al.,
2020), river segments shown to dry out were assigned a ‘leak-
age coefficient’ in the model (subject to calibration) and lost
water to baseflow reservoirs, whereas those maintained by
groundwater were ‘gaining’ streams and received baseflow
from the baseflow reservoir.

2.4. Model calibration, evaluation and validation

The baseline model was run on a 6 hourly time step with a
spin-up period 01/01/2015–22/02/2018 to ensure that the
soils, interflow and baseflow reservoir levels were stabilized.
The calibration and evaluation period ran from 23/02/2018
to 01/07/2020 and a validation period from 02/07/2020 to
17/12/2020. These time periods were chosen so that, given
the limited available data, the calibration period captured
the relatively extreme conditions experienced (Fennell
et al., 2020), and was as long as possible, whilst ensuring
the validation period was also long enough to capture both
high and low flow periods.

A Latin Hypercube sampling approach was taken to gen-
erate 20,000 parameter sets, which were used in a Monte
Carlo analysis. This approach was taken to achieve a balance
between sampling the full parameter space and maintaining
reasonable model run times (Fabris et al., 2018). The par-
ameters were assumed to have uniform distributions except
for those covering several orders of magnitude, which were
assumed log-transformed uniform distributions (Beven &
Binley, 1992). These 20,000 parameter sets were run and
baseline model performance was calibrated against observed
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stream discharge using a combined objective function (COF)
of equally weighted Kling-Gupta Efficiency (KGE) (Gupta
et al., 2009) and Volumetric Error (VE). KGE was chosen
to capture both high and low flow dynamics, as opposed to
Nash-Sutcliffe efficiency (NSE, Nash & Sutcliffe, 1970),
which often over-emphasizes the high to medium flows
(Krause et al., 2005; Legates & McCabe, 1999). VE assesses
the model ability to accurately represent the overall water
balance, key to our initial objectives (Janssen & Heuberger,
1995; Mizukami et al., 2019). KGE values greater than
−0.41 improve on the mean flow benchmark (Knoben
et al., 2019), but only values between 0.4-0.6 are deemed
acceptable and above 0.6 generally are deemed as ‘good’
(Gupta et al., 2009; Tunaley et al., 2017). VE ranges from 0
to 1, with accepted values from 0.5 and above (Birkel et al.,
2014; Criss & Winston, 2008).

The model was calibrated based on performance relating
to the COF, and the top 5% of parameter sets were selected.
Out of these parameter sets, the top 20 were chosen so that
the internal dynamics of the model were most realistically
representative of the conditions observed in the catchment
(Beven, 2018). This evaluation involved saturated hydraulic
conductivity for heather, freely-draining soils to be greater
than for heather, poorly-draining soils (Kuppel et al., 2018;
Rezanezhad et al., 2016), and average VWC for soils beneath
pines to be less than for heather and grass (Geris et al., 2015).
The final 20 runs from the selected parameter sets were then
assessed for the validation period with COF and if within
similar range to calibration period, used in the NBS scenarios
(Booij & Krol, 2010).

2.5. Nature Based Solution scenarios – RAFs

To explore the potential impact of RAFs on recharge and
mitigation of low flows, and the role of location and scale

within this, we simulated the effects of 12 RAFs scenarios
in Blairfindy catchment (Table 2; Figure 3). Here by scenario,
we mean a unique combination specifying location and scale
of RAFs, with RAF scenarios made up of 4 intervention
zones (A–D) and 3 total volumes (increasing from volumes
1–3). In this context, location is defined by the hydrological
properties of the soil/vegetation types and the orientation of
placement within the catchment; scale is defined by the size
of the RAFs (i.e. volume they can hold, increasing with
height of RAFs) and the number of features (i.e. the size of
the total area affected). The design and placement of RAFs
in the model was initially informed by the existing RAFs in
the catchment (Figure 1(e,f); scenario C1), and realistic scen-
arios were then developed further for our objectives (Table 2;
Figure 3).

To test the role of location, the same number of RAFs
were modelled with the same total potential volumes in
different parts of the catchment, specifically with placement
on freely-draining versus poorly-draining soils (e.g. scenario
A1 vs B1, volume 1 =∼40 m3). To test the role of scale in
terms of storage volume, the same number of RAFs were
modelled with double the storage volume at the same
location (e.g. for intervention zone A, scenario A1 vs A2
and A2 vs A3; volumes 1–3 =∼40, 80, 160 m3). Finally, to
test the impact of scale in terms of total area affected, the
same total storage volume was spread over double the num-
ber of RAFs, so storage was distributed over a wider area on
the same combination of soil types (scenario C2 vs D1,
volumes both ∼160 m3).

RAFs were modelled within the MIKE 11 network as
structures between cross sections, so height (from 0.5 m up
to bank height to increase storage volumes), width (width
of channel) and notch size (1/5th of width) were specified
(see in Figure 1(f)). RAF storage volumes were calculated
using RAF dimensions, river network and elevation data.

Figure 2. Conceptual diagram of the model structure, with orientation facing upstream from catchment outlet. The left-hand side represents the MIKE SHE 3D
catchment model set-up, with a fully distributed surface layer for infiltration, evapotranspiration and overland flow processes, and conceptual lower interflow and
baseflow reservoirs. The outputs of all of MIKE SHE 3D catchment model reservoirs are inputs to the MIKE 11 river network (right). The vertical thickness of reser-
voirs and size of grid cells are not to scale
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Table 1. Calibration parameters, initial and final ranges in brackets for those calibrated, and fixed values without brackets, all based on field data or literature values (references in final row).

Initial Final Refs

P lapse rate (%/100m) 5.4 a
T lapse rate (C/100m) −0.649
Tmelt (deg.C) (−1–1) (−0.94–0.85) b
Degree day (mm/C/d) (1–5) (1.15–4.84)
Detention storage (mm) (0–3) (0.15–2.89)
Losing streams leakage (0.01–1) (0.02–0.92)

Heather, freely draining soils Grass, freely draining soils Scots pine, freely draining soils Heather, poorly draining soils
Land Use Initial Final Initial Final Initial Final Initial Final
Root Depth (mm) 150 50 500 150 c, d
Leaf Area Index 1.7 1 2.5 1.7 e, f
Manning’s M 20 33 10 20 g
Soils
Sat. hydraulic conductivity (m/s) (3.6e−7–1.2e−3) (3e−6–1.1e−3) (3.6e−7–4e−5) (3.8e−7–3.1e−5) (5.6e−8–6.6e−5) (5.1e−7–6e−5) (1e−72.7e−4) (3.5e−7–1.9e−4) c, e, I, h, j, k, l, m
Sat. water content (0.6–0.75) (0.60–0.74) (0.5–0.6) (0.52–0.59) (0.6–0.75) (0.60–0.74) (0.75–0.95) (0.75–0.95)
Residual water content 0.04 0.04 0.04 0.1
alpha (cm−1) (0.02–0.1) (0.02–0.1) (0.02–0.1) (0.02–0.10) (0.02–0.1) (0.03–0.10) (0.04–0.25) (0.06–0.24)
N (1.2–1.8) (1.20–1.78) (1.2–1.9) (1.25–1.81) (1.2–1.8) (1.47–1.78) (1.15–1.69) (1.17–1.49)
Interflow specific yield (0.2–0.35) (0.20–0.35) (0.1–0.2) (0.10–0.20) (0.2–0.3) (0.20–0.29) (0.25–0.35) (0.26–0.34) n, o
Interflow t (days) (0.1–5) (0.26–4.93) (0.1–5) (0.11–4.04) (0.1–5) (0.15–4.70) (0.1–5) (0.32–4.97)
Percolation (days) (0.1–5) (0.13–0.94) (0.1–5) (0.23–4.35) (0.1–5) (0.17–4.64) (0.1–5) (0.21–0.99)

Till Bedrock
Baseflow Initial Final Initial Final
Baseflow specific yield (0.1–0.45) (0.13–0.44) (0.08–0.35) (0.12–0.35) p, q, r, s
Baseflow t (days) (60–730) (180–682) (1850–20,000) (9988–19,234)

Note: (a) (Ala-aho et al., 2017) (b) (Soulsby et al., 2011) (c) (Sprenger et al., 2018) (d) (Humphreys et al., 2018) (e) (Wang et al., 2018) (f) (Byrne et al., 2005) (g) (Te Chow, 1959) (h) (Archer et al., 2016) (i) (Geris et al., 2015) (j) (Kuppel et al., 2018) (k)
(Rezanezhad et al., 2016) (l) (Weiss et al., 1998) (m) (Roberts et al., unpublished data) (n) (Refsgaard et al., 2010) (o) (Wang et al., 2012) (p) (Jie et al., 2011) (q) (Robins & Misstear, 2000) (r) (Ó Dochartaigh et al., 2015) (s) (Johnson, 1967).
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Use of the MIKE 11 structure module ensured the RAFs were
modelled at specific sites, with the in-field geometry well rep-
resented. This ensured the uncertainty around how the struc-
tures were modelled was minimal, as other methods of
modelling NBS often rely on separate models or differences
in parameterization e.g. Manning’s roughness (Nicholson
et al., 2020; Ramteke et al., 2020).

For all of the NBS scenarios, the baseline model with
the RAFs implemented was run with the final 20 parameter
sets. The full spin-up and model time period was used (01/
01/2015–17/12/2020) to run the scenarios. However, a
comparison between the baseline and the scenarios was
made for the period used for calibration and validation
(23/02/2018–17/12/2020), to avoid warm-up issues where
water stores may not have yet been stabilized. Evaluation
of the impact of NBS scenarios was conducted using the
mean percentage changes from the baseline (for 20 par-
ameter sets). These were calculated for the Q10 (high
flows), Q50 (medium flows), Q95 (low flows), groundwater
recharge and groundwater contribution to the stream.

3. Results

3.1. Model performance

The baseline model was considered acceptable given that
performance was evaluated on the combined ability to rep-
resent high and low flows (KGE), as well as overall volumes
(VE). Figure 4(c,d) show top performing parameter sets
simulated discharge on normal and log scale through the
calibration period (KGE max = 0.54; VE max = 0.62; com-
bined objective function (COF) max = 0.5) and validation
period (KGE max = 0.65, VE max = 0.60; COF max = 0.6).
The improved fit in the validation period for KGE and
COF is unusual, but not surprising given that the calibration
period included a number of high flow periods and an
extreme drought in which flows locally reached the lowest
on record (Fennell et al., 2020). This relatively good fit in
this extreme calibration period increased confidence that
the model could simulate both high and low flows, thus an
improved fit in the less extreme validation period.

The model represented the extreme drought period in
2018 quite well with modelled low flows of ∼0.52 mm/day
(Figure 4(c,d)). Post-drought the simulated stream baseflow
increased more rapidly than was observed (October 2018),
however the stream response to rainfall was mostly well-
reproduced. This simulated early increase in baseflow post-
drought was likely due to simulations re-wetting the soils
too quickly (Figure 4(d,e)), which is often an issue in hydro-
logical modelling (Ala-aho et al., 2017). Mean baseflow simu-
lations appeared to be overestimated through summer 2020,
although the uncertainty band in the model still captured this

variation and hydrograph dynamics were well represented.
Peak flows of up to ∼20 mm/day were well or slightly
over-represented, whereas snow melt generated less of a
streamflow response.

The model simulated the dynamics of the observed VWC
in grass freely-draining soils quite well, though again the
post-drought re-wetting period was less successfully repro-
duced (Figure 4(e)). Spatial variation between soil types
was represented with clear differences between the lower
mean VWC for freely-draining and higher mean VWC for
poorly-draining soils.

Catchment average recharge rates ranged from < 0.1 mm/
day during dry periods to up to ∼15 mm/day following pre-
cipitation events (Figure 5(a)). Both this range and the aver-
age recharge rate across the calibration and validation period
(1.3 mm/day) were as expected (Mansour et al., 2018;
Ó Dochartaigh et al., 2015). Baseflow reservoir storage and
flows were well-captured (Figure 5(c)) given that earlier tra-
cer-based research independently showed similar ranges of
between 65-100% groundwater contribution to discharge
through the drier period (Fennell et al., 2020). This suggested
that the model simulated the storage and flows of different
water sources in the catchment reasonably well when evalu-
ating against the observed data and our conceptual under-
standing of catchment functioning could be justified within
the modelling environment (Blöschl, 2017; Fennell et al.,
2020).

3.2. Impacts of RAFs on recharge and potential for
mitigating low and high flows

Time-variable impacts of RAFs are summarized using the
currently implemented scenario C1 as an example. The mod-
elled recharge rate averaged across the catchment increased
with the implementation of RAFs (Figure 5(b)), and was sea-
sonally variable with a greater increase occurring in late sum-
mer (∼3–4%) than winter/spring (∼0%).

Groundwater contribution to discharge also increased
with RAFs, particularly through wetter periods (10–20%
above baseline). This was also the case through dry periods
(3–5% above baseline) suggesting a small increase in
baseflow during drought (Figure 5(d)). This positive impact
was not so obvious in some periods; in scenario C1 ground-
water contribution to streamflow occasionally dropped
below baseline (lowest −0.8%), however this was due to the
simultaneous increase in groundwater outflow and discharge
through these periods as a result of RAF implementation
(Figure 5(d)).

Overall, RAFs reduced mid and high flows (Q50 and
Q10), and increased low flows (Q95) (Figure 6(a–c)). Across
the three year simulation period, total discharge slightly
decreased (average ∼−2.7%) as a result of increased
infiltration to deeper storage zones, and a slower rate of
return to river baseflow. Change from baseline was greater
for high flow mitigation, where scenario C1 resulted in
−5% change in the Q10, compared to changes of −1.6%
for Q50 and +1.3% for Q95. This must be considered along-
side the greater uncertainties associated with modelling of
high flows, more likely to be overestimated (Mizukami
et al., 2019), however, the direction of changes suggests
RAFs could be used to mitigate the impacts of both low
as well as high flows.

Table 2. Location and scale-related variables which, when combined, form the
12 Nature based solutions scenarios A1-3, B1-3, C1-3, D1-3. For example, 20
RAFs placed in intervention zone A, with starting total combined volume of
41m3 gives scenario A1.

Intervention zone (see
Figure 3)

No. of
RAFs Total volume stored (m3)

Volume 1 Volume 2 Volume 3

A 20 41 81 165
B 20 42 76 142
C 40 83 157 307
D 80 143 294 611
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Figure 3. Intervention zones (A–D) and associated soil/vegetation type into which RAFs of increasing total combined volumes (volumes 1–3) were placed to form
12 Nature based solution scenarios. Scenarios A1-3 feature RAFs implemented in (A) ephemeral streams, freely-draining soils of volumes 1–3, scenarios B1-3 fea-
ture RAFs implemented in (B) ephemeral streams, poorly-draining soils of volumes 1–3, scenarios C1-3 feature RAFs implemented in (C) all ephemeral streams of
volumes 1–3 and scenarios D1-3 feature RAFs implemented in (D) throughout river network of volumes 1–3.

Figure 4. (a) Observed precipitation and snowfall (b) observed potential evapotranspiration from weather station, used as model input (c) observed discharge and
top 20 simulations with mean discharge for Blairfindy stream catchment outlet (d) as (c) in Log scale and (e) mean simulated soil volumetric water content in the
four soil/vegetation types.
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3.3. The importance of location and scale on the
impacts of RAFs

The location (primarily via contrasting soil properties) of
RAFs had a clear impact on their effectiveness (Figure 6).
RAFs implemented in freely-draining soils (scenario A1)
resulted in greater percentage change than poorly-draining
soils (scenario B1) for high and low flows (difference =
−2%; +1%, respectively), recharge (+0.001%) and ground-
water contribution to discharge (+0.5%) (Figure 6). Freely-
draining soils with greater available storage and infiltration
rates would allow quicker flow movement to deeper path-
ways, so RAFs would more likely be empty for the next rain-
fall event. The main exception was for mid-range flows (Q50)
where RAFs placed in poorly-draining soils (intervention
zone B) resulted in greater percentage decreases, reducing
the Q50 by 0.5% more than RAFs in freely-draining soils
(intervention zone A) (Figure 6(b)).

Scale of RAFs was also important, both in terms of
volume and total area affected. For currently installed
RAFs (scenario C1), doubling RAF volumes (scenario C2)
increased impact by ∼25% for low flows, ∼40% for high
flows and ∼30% for groundwater contribution to discharge,
however doubling the volume again (scenario C3) only

resulted in an additional ∼10% change in impact (Figure
6). This trend was also observed in the other three
implementation zones.

However, increasing the total area affected by RAFs had a
greater impact than an increase in the local volume of RAFs.
Spread of the same potential volume across double the num-
ber of smaller RAFs over a wider area e.g. Scenario C2 to D1
(both 150 m3), increased impact on Q95, Q50, recharge and
groundwater contribution to discharge two to three times
more than doubling the volume in the same location. The
one exception was the impact on high flows where, similar
to when doubling the RAF volumes, a 40% change was
observed (Figure 6(a)).

4. Discussion

Whereas previous work has mainly focussed on RAFs for
flood management, this study has shown that RAFs have
the potential to contribute to water resources management
challenges associated with low flow (drought) as well as
high flow (flood) conditions. The results also revealed the
relative importance of location (orientation and hydrological
properties based on soil/vegetation type) and scale, both in

Figure 5. Time series for recharge rate and groundwater contribution to discharge with (a) and (c) baseline results including uncertainty band for 20 top par-
ameter sets, and (b) and (d) mean percentage change from baseline for 4 Nature based solution scenarios A1-D1, (so volume 1 in all 4 intervention zones A–D).
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terms of volumes and area over which the RAFs were spread.
Although directly relevant to the context of the distillery at
the study site, the potential use of RAFs for low flowmanage-
ment could apply to a wide range of sites in temperate cli-
mates which experience periods of water-stress, or indeed
those globally more arid. More generally, we’ve demon-
strated the value of our modelling framework informed by
data in providing a decision-support tool for efficient design
and implementation of RAFs, thereby increasing the poten-
tial for wider uptake.

4.1. Simulating spatial and temporal variations in the
storage and flow of water sources

Accurate representation of the physiographical properties
and the spatial and temporal variations in storage and flow
of water sources is key to modelling NBS. Firstly to under-
stand the impacts of these factors on flow and recharge,
and secondly for understanding optimal position of NBS,
as e.g. RAFs depend on interception of flow pathways for
retaining water (Quinn et al., 2013).

Often hydrological models are limited by set-up require-
ments, data availability and runtime demands (Huang
et al., 2019; Huang & Bardossy, 2020). Relatively few are
based on catchment process understanding gained through
drought, which reveals whether flow pathways in a catch-
ment are ephemeral or perennial in nature (Isokangas
et al., 2019). Our baseline model achieved a reasonable bal-
ance between detail, flexibility and runtime; results agreed
with the conceptual model of catchment functioning
based on data collected before, during and after a period
of drought (Blöschl, 2017; Fennell et al., 2020). Surface
water flow pathways responded quickly to rainfall, and
the timing of activation of ephemeral streams and snowfall
was consistent with field-based observations (Fennell et al.,
2020). High groundwater contributions through the drier

periods (65–100%) were consistent with empirically-based
estimates from Blairfindy (Fennell et al., 2020) and other
upland catchments in the same region, particularly those
with peat soils and groundwater-fed streams (Blumstock
et al., 2015).

Although the objective functions were modest, flow
dynamics and the water balance were captured, and key
processes that would affect the impact of RAFs such as
overland flow were represented appropriately and in a
fully distributed manner, an improvement on other con-
ceptual approaches (Beven, 2018; Glendenning & Vervoort,
2011). Use of a conceptual approach for the subsurface was
appropriate given the availability of data, and provided
good representation of baseflow dynamics. This could be
developed into a fully-distributed approach, which would
benefit from the use of geophysics to characterize the sub-
surface of soils and drift deposits in upland catchments
(Soulsby et al., 2016), to identify zones of storage in a
more sophisticated manner than through soil and geology
maps.

Some of the model data inputs were less certain, however
the parameterization is likely to have more of an impact on
the model uncertainty. The relatively high number of cali-
bration parameters, and comparatively low number of
Monte Carlo simulations meant the final calibration ranges
were quite broad (Table 1). Despite this uncertainty, other
modelling studies have successfully used similar approaches
(Fabris et al., 2018). Greater confidence in the model internal
dynamics was also gained from the model evaluation, which
included both discharge-based and soft-calibration through
the use of knowledge of catchment function, soil VWC
and field observation data. It was thus deemed reasonable
to use the model to compare different RAF scenarios, and
recognition of the uncertainty in the baseline meant that
conclusions were made based on the direction of change
rather than absolute values.

Figure 6. Percentage change from baseline values (stated at top of plot; average of 20 parameter sets for model period) for (a) Q10, (b) Q50, (c) Q95, (d) recharge
rate and (e) groundwater contribution to discharge, for 12 Nature based solution scenarios A1-3, B1-3, C1-3 and D1-3, given combined RAF volumes (volumes 1–3
in intervention zones A–D).
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4.2. Investigating the impact of RAFs on recharge and
potential to mitigate low and high flows

The results suggested RAFs could have a positive, albeit
small, impact on the management of low flow periods.
RAFs increased overall recharge by between ∼0.07% for cur-
rently implemented RAFs (scenario C1; Figure 1(e,f)) to
∼0.08% for max number and volume of RAFs (scenario
D3); groundwater contribution to discharge between ∼4%
(C1) and ∼10% (D3) and the Q95 ∼1% (C1) and ∼3% (D3)
from baseline. This direction of change was expected given
reported impacts from other studies of RAFs in temperate
environments (Kravčík et al., 2012; Pavelic et al., 2012; Som-
ers et al., 2018). On the one hand, small percentage changes
to recharge could in fact scale up to larger impacts. Small
margins of change in flows can also affect sediment transport
and in-stream deposition (Baldan et al., 2021) as well as
stream temperatures and volumes of water (Folegot et al.,
2018; Piggott, 2017), so RAFs could make an important
difference in aquatic habitats. On the other hand, reported
projections for climate change suggest more frequent
extremes which could have much greater impacts (Visser-
Quinn et al., 2021). Further research to integrate this
MIKE SHE model with climate change scenarios (as in
Thompson, 2012), would likely help to determine how the
relative impacts compare (Capell et al., 2013).

RAFs also showed potential to mitigate high flows,
decreasing Q50 by ∼2% (C1) to ∼3.5% (D3) and particularly
the Q10 by ∼5% (C1) to ∼13% (D3). A similar magnitude of
change for high flows has been reported elsewhere, albeit
with different volumes of storage at different catchment
scales, ranging from 7.5–11% (Metcalfe et al., 2017b;
Odoni & Lane, 2010) to 27–30% (Nicholson et al., 2020; Nor-
bury et al., 2021), with an increased number of RAFs increas-
ing impact. Flooding processes – the propagation,
synchronization and recession of flood peaks – operate on
much shorter timescales than drought-related impacts (Hän-
sel et al., 2019). This necessitates detailed modelling of over-
land flow/infiltration processes and small time-steps (van
den Bout & Jetten, 2020). To achieve greater detail in our
results, the 6-hour time-step would need to be reduced to
e.g. 5-minute resolution, as in Nicholson et al. (2020). How-
ever, this would then require adjustment of parameters
which are highly dependent on time step resolution
(Ostrowski et al., 2010). Given the primary focus of the
study was on low flows and sub-surface drainage, the 6-
hour time-step was deemed appropriate. A shorter time-
step might also provide further insights into the drainage
rate which affects the storage dynamics of RAFs.

4.3. The importance of location and scale of RAFs

Our results showed that location (determined mainly by soil
type) was important, and increasing the soil surface area over
which volume was stored was more effective than an increase
in volume at the same location for both high and low flow
management. For a similar potential maximum storage
volume across the RAFs, implementing many small RAFs
will likely have more impact than a few larger ones. They
are also best placed at locations where more additional sub-
surface storage is available. Understanding the spatial varia-
bility and properties of soils and geology in a catchment is
therefore important for successful placement of RAFs

(Heilweil & Watt, 2011; Reaney, 2022; Standen et al.,
2020). These factors affect the rate at which water moves to
deeper flow pathways allowing RAFs to drain, or soil or
groundwater stores reach saturation and limit RAF drainage.

The results demonstrate the clear benefit from assessing
the relative importance of both location and scale together
in a modelling framework, which could be transferred to
other sites with different soils, geology and climates globally.
The use of different scenarios revealed that at this site, the
scale in terms of area affected by the RAFs was more impor-
tant than location, and a tailing-off of impact was observed
over a certain volume of storage. This tailing-off of impact
was a result of slow drainage leading to ponding so RAFs
remained full following rainfall events (Ramchunder et al.,
2009; Shanafield & Cook, 2014). Use of a similar modelling
framework at other sites to identify optimal local RAF sto-
rage volume could, as well as make significant savings on
resources and costs, also avoid potential negative impacts.
For example, excessive ponding could lead to evaporative
losses especially in drier climates, and overall decrease in
total streamflow in low flow conditions (Glendenning & Ver-
voort, 2011; Sharda et al., 2006), or reduce the available sto-
rage for multiday storm events, limiting capacity to prevent
primary flood peaks when applied to NFM (Nicholson et al.,
2020; Wilkinson et al., 2019).

Although RAFs in freely-draining soils had greater
impact, increased recharge and managed flows were
observed in all scenarios, even when RAFs were placed in
poorly-draining soils. This suggests that they may still be
beneficial in catchments with soils of limited available sto-
rage. Although this may differ with location (vegetation,
soils and geology) and climate due to different infiltration
and evaporative fluxes, particularly when increasing RAFs
surface area (Neumann et al., 2004; Salem et al., 2012; Stac-
cione et al., 2021), this could be tested in a modelling
environment. The potential hydrological benefits could
then be assessed alongside ecosystem services associated
with NBS such as improvements in biodiversity (European
Commission, 2020), to help form a full cost–benefit analysis.
This in turn, would encourage general uptake of the full
approach and implementation of RAFs or similar NBS.

4.4. Future research

More research over longer time scales is required to under-
stand the effects of RAFs on soil properties, the requirements
in terms of maintenance, and how these factors change over
time (Ramchunder et al., 2009). If the RAFs do not regularly
empty, the soils may be constantly saturated, which would
prevent infiltration and therefore limit their impact on
recharge and potential to mitigate flooding (Hallett et al.,
2016). Alternatively, sediment build-up could limit storage
capacity of RAFs, or river geomorphology could be affected
by alterations in sediment and flow regimes (Baldan et al.,
2021). Understanding how RAFs compare with other NBS
in this context, with the addition of a cost–benefit analysis
would help decision makers determine which solution is
most appropriate, and whether financially feasible for their
site. Although this study has addressed some of the key issues
relating to location and scale, future research could investi-
gate the impact of RAFs over greater scales or in neighbour-
ing catchments (from which the deeper groundwater sources
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are likely also fed), and on what scale monitoring would be
required (Blöschl et al., 2007).

Long-term empirical data collection post-installation of
RAFs in the field would help determine the accuracy of
model predictions. A tracer-based, water quality or hydrologi-
cal analysis of impacts would provide much-needed empirical
data to improve the knowledge base on NBS implementation.
Comparison to similar studies in other locations in the UK
and globally, with different soil types, geology and climates
would also help to determine whether similar conclusions
can be made on location and scale of RAFs.

5. Conclusion

Management of water resources through periods of extremes
(floods and droughts) can be challenging, particularly in
areas where a balance must be obtained between local com-
munities, the environment and industry. This will likely
become more problematic, with climate change projections
for the increased frequency of these extreme periods. Inves-
tigation into the potential for NBS to mitigate the impacts of
floods and droughts, at what scale and where they would be
best placed, and whether implementation of RAFs could
increase recharge and low flows, could be key to ensuring
sustainability of water use e.g. for the distilling industry.

Informed by conceptual understanding of catchment
function based on empirical data, a physically-based model
was set up to simulate variations in storage and flow of con-
trasting water sources. Soil moisture dynamics, high ground-
water contribution to discharge through low flow periods
and hydrograph dynamics were well represented in the
model baseline. A range of scenarios tested how implemen-
tation of RAFs and their location and scale affected ground-
water recharge, contribution to streamflow and low, medium
and high flows.

The results suggested that RAFs could help mitigate the
impacts of low flows through drought and highlighted the
importance of a transferable modelling framework to test
scenarios of different locations and scales before installing
in a catchment. The direction of change for the impact of
RAFs was to reduce mid to high flows, and increase low
flows, recharge and groundwater contribution to streamflow.
Generally, an increase in storage volume at the same location
increased impact to a certain point, after which changes were
less marked. Although location of RAFs (soil type) was
important, increasing the spread of storage over a wider
area was more effective than increasing volumes in the
same location (even if on freely-draining soils). This means
that many small RAFs spread throughout the river network
could be more effective than a few large RAFs.

Future research should aim to collect empirical data on
the impacts of implementations, and how their functioning
changes through time, in varied locations with different
soils and geology. Comparison between different NBS,
their potential to mitigate the impacts of climate change
and cost–benefit analysis would also help to justify
implementation and increase uptake for hydrological and
other wider benefits.
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