
Processing Massive Graphs under
Limited Visibility

Chhaya Trehan
A thesis submitted for the degree of

Doctor of Philosophy

Department of Mathematics

London School of Economics
and Political Science

February 2023

1

Declaration

I certify that the thesis I have presented for examination for the MPhil/PhD degree

of the London School of Economics and Political Science is solely my own work,

apart from Chapters 2 to 7 which are joint works with collaborators from England

and Israel. Chapters 2 to 5 are joint work with Michael Elkin from Ben-Gurion

University of the Negev, Beer-Sheba, Israel. Chapter 6 is joint work with Oded

Lachish and Felix Reidl from Birkbek College, University of London and Chapter 7

is joint work with Tugkan Batu from the London School of Economics & Political

Science.

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. This thesis may not be reproduced

without the prior written consent of the author. I warrant that this authorization

does not, to the best of my belief, infringe the rights of any third party.

2

Abstract

Graphs are one of the most important and widely used combinatorial structures

in mathematics. Their ability to model many real world scenarios which involve

a large network of related entities make them useful across disciplines. They are

useful as an abstraction in the analysis of networked structures such as the Internet,

social networks, road networks, biological networks and many more. The graphs

arising out of many real world phenomenon can be very large and they keep evolv-

ing over time. For example, Facebook reported over 2.9 billion monthly active

users in 2022. Another very large and dynamic network is the human brain consist-

ing of around 1011 nodes and many more edges. These large and evolving graphs

present new challenges for algorithm designers. Traditional graph algorithms de-

signed to work with centralised and sequential computing models are rendered use-

less due to their prohibitively high resource usage. In fact one needs huge amounts

of resources just to read the entire graph. A number of new theoretical models have

been devised over the years to keep up with the trends in the modern computing

systems capable of handing massive input datasets. Some of these models such

as streaming model and the query model allow the algorithm to view the graph

piecemeal. In some cases, the model allows the graph to be processed by a set of

interconnected computing elements such as in distributed computing. In this thesis

we address some graph problems in these non-centralised, non-sequential models

of computing with a limited access to the input graph.

Specifically, we address three different graph problems, each in a different com-

puting model. The first problem we look at is the computation of approximate

shortest paths in dynamic streams. The second problem deals with finding kings in

tournament graphs, given query access to the arcs of the tournament. The third and

the final problem we investigate is a local test criteria for testing the expansion of

a graph in the distributed CONGEST model.

3

Acknowledgements

First and foremost, I would like to thank my supervisor, Tugkan Batu, for his sup-

port and enthusiasm. Working with him has been an insightful and rewarding expe-

rience. I would also like to thank my co-authors Michael Elkin, Oded Lachish and

Felix Reidl. My special thanks to Michael Elkin for offering me a summer intern-

ship with him. I wrote the first paper of my PhD with him and I enjoyed every bit

of it. I thank him for answering my numerous emails even in the busiest of times

and reading and improving my drafts, time and again. I cannot thank Oded enough

for taking time for endless discussions on Zoom and answering all my questions

patiently.

Thanks should also go to my family and friends for their constant support and en-

couragement. I thank my late father every single day for instilling a love of reading

and learning in me. Many thanks to my mother for always being my source of so-

lace. I am immensely grateful to my husband for his moral support and confidence

in me. Thanks to him for all the wonderful meals he cooked for me while I was

busy chasing deadlines. Finally, I would be remiss in not mentioning my little dog

who always stayed put by my side and spent as many sleepless nights as I did while

writing this thesis.

4

Contents

1 Introduction 8
1.1 Graph Processing with Limited Visibility 8

1.2 Thesis outline . 9

1.3 Approximate Shortest Paths in Dynamic Streams (Part I) 9

1.4 Query Strategies for Tournaments (Part II) 11

1.5 Graph Expansion Testing in Distributed Computing Model (Part III) 12

1.6 Preliminaries . 14

I A Graph Processing Problem in Dynamic Streaming Model 15

2 Approximate Shortest Paths-Nuts and Bolts 16
2.1 Introduction . 17

2.1.1 Graph Streaming Algorithms 17

2.1.2 Distances in the Streaming Model 18

2.1.3 Our Results . 22

2.1.4 Technical Overview . 23

2.1.5 Outline . 26

2.2 Preliminaries . 26

2.2.1 Streaming Model . 26

2.2.2 Samplers . 27

2.2.3 Hash Functions . 29

2.2.4 Vertex Encodings . 31

2.3 BFS Forest . 32

2.3.1 General Outline . 32

2.3.2 Procedure FindParent . 34

2.4 Approximate Bellman-Ford Explorations 39

5

Contents

2.4.1 General Outline . 39

2.4.2 Procedure GuessDistance 42

3 Approximate Shortest Paths in Unweighted Graphs 49
3.1 Construction of Near-Additive Spanners 49

3.1.1 Superclustering . 52

3.1.2 Interconnection . 53

3.1.3 Putting Everything Together 66

3.2 (1+ ε)-Approximate Shortest Paths in Unweighted Graphs 66

4 Approximate Shortest Paths in Weighted Graphs 68
4.1 Construction of Near-Exact Hopsets 68

4.1.1 Overview . 69

4.1.2 Constructing Hk . 71

4.1.3 Putting Everything Together 88

4.1.4 Path-Reporting Hopsets 90

4.2 Eliminating Dependence on the Aspect Ratio 91

4.2.1 Overview . 92

4.2.2 Implementation in Dynamic Streaming model 95

4.3 (1+ ε)-Approximate Shortest Paths in Weighted Graphs 100

5 New Sparse Recovery and `0-Sampling Algorithms 103
5.1 1-Sparse Recovery . 104

5.2 `0-Sampling . 106

II A Graph Processing Problem in Query Model 108

6 An improved query strategy for finding a king 109
6.1 Introduction . 109

6.2 Preliminaries . 113

6.3 Constructing the template-graph 115

6.4 The seeker strategy . 116

6.5 Conclusion . 125

6

Contents

III A Graph Processing Problem in Distributed Computing Model
126

7 Distributed Expansion Testing with Local Test Criteria 127
7.1 Introduction . 127

7.1.1 Distributed Property Testing 128

7.1.2 Expansion Testing . 129

7.1.3 Our Results . 132

7.1.4 Technical Overview . 132

7.1.5 Organisation . 133

7.2 Preliminaries . 134

7.3 A Distributed Algorithm for Expansion Testing 135

7.3.1 Analysis of the Algorithm 138

Bibliography 150

7

1
Introduction

1.1 Graph Processing with Limited Visibility

Ever growing (large), ever changing (dynamic) - these are some of the defining

characteristics of the data that modern day computing systems have to process.

The data produced by many real world applications contains valuable information,

but its sheer size, dynamicity and susceptibility to errors makes it hard to analyze.

Often, one is required to compute or test certain properties of the input without

the ability to read it in its entirety due to resource constraints. Furthermore, the

data to be processed may be distributed among loosely interacting computing units

with limited resources and possibly faulty components. Various theoretical frame-

works (such as query model of property testing) and models of computing (such as

distributed, parallel, streaming etc.) have been devised to address the challenges

involved in modern day computing. Each of these frameworks and models define

their own cost metrics for analyzing the algorithms designed to work with them.

This thesis is concerned with the design and analysis of efficient algorithms for

processing large (or large and dynamic) graphs in non-sequential, non-centralized

frameworks and models of computing. One can think of a graph as a representation

of relationships among a set of objects. The set of objects is represented by the

vertices of the graph and the relationships between these objects are represented by

the edges of the graph. Note that one needs to invest resources (storage capacity,

computation time or communication; depending on the model) linear in the size of

the underlying input graph to even read it fully. For massive graphs with billions

8

Chapter 1. Introduction

of vertices and trillions of edges, this cost may be prohibitively large. In all the

frameworks and models we deal with in this thesis, at any given time, any single

computing unit involved has only a limited view of the underlying input graph, due

to resource constraints, i.e., it can only see a part of the input graph but not the

entire graph. We use the umbrella term limited visibility models to refer to such

frameworks and models. It is natural to expect algorithms designed to work in

these models to solve the problem at hand with cost sub-linear in the size of the

input graph. Often one can only hope to solve the problem approximately given

the resource constraints.

Specifically, we address three graph processing problems, each in a different lim-

ited visibility model. In the subsequent sections, we describe each of these prob-

lems along with the description of the corresponding limited visibility model and

its associated cost metrics. To start with, we first give an outline of the thesis in the

following section and a short overview of specific problems follows after that.

1.2 Thesis outline

The contribution of this thesis consists of three parts: As a first result (Part I), we

present algorithms for computing approximate shortest paths in graphs in dynamic

streaming model. In the second part (Part II), we give a new query strategy for

finding a king (see Section 6.1 for definition) in a tournament. In the last part

(Part III), we present a distributed algorithm for testing the expansion of a graph.

1.3 Approximate Shortest Paths in Dynamic Streams (Part I)

In the streaming model of computation, the vertices of the graph are known to

the algorithm and the edges are revealed one at a time. The model comes in two

variations. In the insertion-only streaming model, the edges can only arrive and

never get deleted. In the more general dynamic (also known as turnstile) streaming

model, the edges can either arrive or get deleted as the stream progresses. The

main challenge in these settings is that the storage capacity of the algorithm is

limited. Typically it should be close to linear in the number of vertices, n (as op-

9

Chapter 1. Introduction

posed to being linear in the number of edges m = |E|). In particular, one usually

allows space of Õ(n), though it is often relaxed to n1+o(1), sometimes to O(n1+ρ),

for an arbitrarily small constant parameter ρ > 0, or even to O(n1+η0), for some

fixed constant η0, 0 < η0 < 1. Generally, the model allows several passes over

the stream, and the objective is to keep both the number of passes and the space

complexity of the algorithm in check. In Chapters 2 to 4, we present algorithms

for finding (1+ ε)-approximate shortest paths in an input graph in the dynamic

streaming model. Here (1+ ε) is a multiplicative approximation factor. We some-

times refer to the approximation factor of an algorithm for computing approximate

shortest paths as its stretch.

A lot of work has been done on the problem of computing approximate short-

est paths in the dynamic streaming model (7; 31; 32; 40). However, all the existing

solutions are doomed to incur a stretch-space tradeoff (due to an existing lower

bound) of 2κ − 1 versus n1+1/κ , for an integer parameter κ . (In fact, existing so-

lutions also incur an extra factor of 1+ ε in the stretch for weighted graphs, and

an additional factor of logO(1) n in the space.) In Chapters 2 to 4, we show that

(1+ ε)-approximate single-source shortest paths can be computed in this setting

with Õ(n1+1/κ) space using just constantly many passes in unweighted graphs, and

polylogarithmically many passes in weighted graphs (assuming ε and κ are con-

stant). Moreover, in fact, the same result applies for multi-source shortest paths, as

long as the number of sources is O(n1/κ).

We achieve these results by devising efficient dynamic streaming construc-

tions of combinatorial structures called (1+ ε,β)-spanners and hopsets. These

structures will be described in detail in the relevant chapters. For now it suffices to

note that these structures are useful in computing approximate shortest distances

and paths in graphs. We believe that the dynamic streaming constructions of these

structures are of independent interest.

Chapter 2 provides an overview of the problem and presents necessary

technical concepts and tools required to understand the rest of the chapters in

Part I. Chapter 3 presents an algorithm for constructing near-additive spanners,

and shows how we use this algorithm to compute (1+ ε)-approximate shortest

paths in unweighted graphs. Chapter 4 presents an algorithm for constructing

10

Chapter 1. Introduction

hopsets with constant hopbound and shows how we use this algorithm to compute

(1+ ε)-approximate shortest paths in weighted graphs.

We also devise a space efficient sampling technique as a sub-routine of our

algorithms for (1 + ε,β)-spanners and hopsets. This technique is described in

detail in Chapter 5.

A short version of Chapters 2 to 5 has been published as a brief announcement in

PODC 2022 (1) and a more complete version has been published as a full paper in

Approx 2022 (2).

1.4 Query Strategies for Tournaments (Part II)

When a graph is prohibitively large, one can assume query access to the edges of

the graph. Each query reveals an edge between a pair of objects and incurs a fixed

cost. A natural question to ask in this setting is the number of queries required to

identify certain structures in the input graph. This is the perspective we took in

Chapter 6 on finding a king in a tournament graph.

A tournament is an orientation of a complete graph on n vertices. A query

in this setting reveals the direction of the arc between a given pair of vertices. We

say that a vertex x in a tournament controls another vertex y if there exists a di-

rected path of length at most two from x to y. A vertex is called a king if it controls

every vertex of the tournament. Shen Sehng and Wu (67) showed that Ω(n4/3)

queries are always necessary and provided an algorithm which reveals a king us-

ing O(n3/2) queries. Despite the large gap between the upper and lower bound,

not much progress has been made on the original question since 2003. The diffi-

culty of this problem lies in its game-theoretic nature: we can alternatively think

of it as an adversarial game where one player wants to identify a king by querying

the arcs of the tournament while an adversary, who tries to delay the first player

for as long as possible, can choose the orientation of queried arcs. The state of

the art algorithm by Biswas et al. (62) proved that with O(n4/3) queries, one can

identify a semi-king, meaning a vertex which controls at least half of all vertices.

We present a novel strategy which improves upon the number of controlled ver-

tices: using Õ(n4/3) queries we can identify a (1
2 +

2
17)-king. We do so by showing

11

Chapter 1. Introduction

the existence of a sparse yet well-connected (with good expansion) query graph,

which forces the adversary to give us a (1
2 +

2
17)-king. The sparsity of the query

graph keeps the query complexity in check and connectivity ensures that we do not

miss the information required to identify the desired (1
2 +

2
17)-king.

A version of Chapter 6 has been published in FSTTCS 2022 (3).

1.5 Graph Expansion Testing in Distributed Computing
Model (Part III)

In the distributed model of computing, each vertex of the input graph is a process-

ing unit itself and the edges of the graph represent communication links between

the vertices. The processing proceeds in synchronous rounds. In each round, each

vertex receives messages from its neighbours in the graph, performs some com-

putation and sends messages to its neighbours. The messages sent by a vertex in

a given round are received by its neighbours in the subsequent round. In the dis-

tributed CONGEST model, the size of each message is limited to O(logn) bits.

The model allows processing to continue for several rounds and the objective is to

keep the number of rounds in check without violating the constraint on the message

size. In Chapter 7 we present a distributed property testing algorithm for testing

the expansion of a graph.

Given a graph G with vertex set V and edge set E, we say that G has expansion

α , if every U ⊆V such that size of |U | ≤ |V |/2 has at least α|U | neighbours. Here

a vertex v ∈ V \U is a neighbour of U if it has at least one edge incident to some

u ∈U . For a given graph G and an expansion parameter α , the problem of testing

whether G has expansion at least α or is far from having expansion at least Ω(α2)

has been extensively studied (see (84; 74; 85; 88)) in the classic property testing

model. The only existing distributed algorithm for this problem (78) first tries to

build a rooted BFS spanning tree of the input graph. Having built a spanning tree,

the algorithm performs a certain number of short random walks from a randomly

chosen source vertex. When the walks end, each vertex collects some information

about the walks and sends it to the root of the spanning tree. This whole process

ultimately collects enough information at the root of the spanning tree for it to

12

Chapter 1. Introduction

decide whether the input graph has the desired expansion or not. If the input graph

indeed has the desired expansion, the root vertex outputs Accept with sufficiently

high probability. If the graph is far from having the desired expansion, it outputs

Reject with sufficiently high probability.

This process of building a spanning tree and collecting information at the root

to decide if the property holds or not takes a global and centralized view of the

testing process. This motivates us to enquire if one can devise a local test criteria

for expansion testing. The question of local verification of global properties has

been well studied in the area of distributed verification and self-stabilization. Afek,

Kutten and Young (68) and Awerbuch and Varghesh (71) suggested that one can

check certain global predicates on a distributed network by using local means, i.e.,

by having each vertex check the state of all its neighbours. Sometimes one allows

each vertex to check the local state of all the vertices within a constant distance

from itself. This is the perspective we take in our work on distributed expansion

testing. We run short random walks from a randomly selected vertex. After that

every vertex in the graph acts as our designated tester (in contrast to having just

the root of a spanning tree as our designated tester). Every designated distributed

tester examines the information it collected from the random walks. If the graph

has the desired expansion, all the designated testers output Accept with sufficiently

high probability. If the graph is far from having the desired expansion, at least

one of the designated testers outputs Reject. Avoiding the construction of a rooted

spanning tree and information accumulation at the root has its advantages. It makes

our algorithm time and communication efficient and avoids a single point of failure.

A version of Chapter 7 is currently under submission to a peer-reviewed confer-

ence.

In the remainder of this chapter, we summarize relevant prerequisites and

notational conventions which we use throughout this thesis.

13

Chapter 1. Introduction

1.6 Preliminaries

The terminology and notational conventions we describe in this section apply to all

the remaining chapters. In addition, each chapter has its own preliminary section

with concepts and definitions specific to the problem at hand.

We denote by G = (V,E) (or G(V,E)) an undirected, unweighted graph G with

vertex set V and edge set E. An orientation of a graph G is a directed graph ~G

obtained from G by replacing every one of its edges by a directed arc.

We denote by G = (V,E,ω) (or G(V,E,ω)) an undirected, weighted graph with

vertex set V , edge set E and weight function ω which maps every v ∈ V to a real

number.

We assume that the vertices of an n-vertex graph G have unique identifiers from

the set {1,2, . . . ,n}.

All vectors~x ∈ Rn are column vectors (although for reasons of space, in examples

we often write vectors as row vectors). For a vector ~x ∈ Rn, we denote by ~xT the

transpose of~x. For two vectors~x and~y in Rn, 〈~x,~y〉 denotes their inner product.

Inequalities between vectors hold component-wise. As usual, ei denotes the ith unit

vector, and 0 and 1 the all-zero- and all-one-vector, respectively, with dimension

understood from context. For a matrix A, we denote by AT its transpose. We write

I for the identity matrix.

For a set X , we denote by |X | its cardinality.

We denote by Z the set of all integer numbers. For integers q,r, q ≤ r, the no-

tation [q,r] stands for {q,q+ 1, · · · ,r}. For an integer k ≥ 1, [k] denotes the set

{1, . . . ,k}= [1,k].

Note that all logarithms are to the base 2 unless explicitly stated otherwise. We use

Õ(f (n)) as a shorthand for O(f (n) · polylogn).

We have now collected all the prerequisites that we require for the following chap-

ters. Any additional concepts and definitions we need will be introduced as we go

along.

14

Part I

A Graph Processing Problem in
Dynamic Streaming Model

15

2
Approximate Shortest Paths-Nuts and
Bolts

Computing approximate shortest paths in the dynamic streaming setting is a funda-

mental challenge that has been intensively studied during the last decade. Currently

existing solutions for this problem either build a sparse multiplicative spanner of

the input graph and compute shortest paths in the spanner offline, or compute an

exact single source BFS tree.

Solutions of the first type are doomed to incur a stretch-space tradeoff of 2κ − 1

versus n1+1/κ , for an integer parameter κ . (In fact, existing solutions also incur

an extra factor of 1+ ε in the stretch for weighted graphs, and an additional fac-

tor of logO(1) n in the space.) The only existing solution of the second type uses

n1/2−O(1/κ) passes over the stream (for space O(n1+1/κ)), and applies only to un-

weighted graphs.

In chapters 2 to 4 we show that (1+ ε)-approximate single-source shortest paths

can be computed in this setting with Õ(n1+1/κ) space using just constantly many

passes in unweighted graphs, and polylogarithmically many passes in weighted

graphs (assuming ε and κ are constant). Moreover, in fact, the same result applies

for multi-source shortest paths, as long as the number of sources is O(n1/κ).

We achieve these results by devising efficient dynamic streaming constructions of

(1+ ε,β)-spanners and hopsets. We believe that these constructions are of inde-

pendent interest.

16

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

On our way to these results, we also devise a new dynamic streaming algorithm

for the 1-sparse recovery problem which can be used to implement an `0-sampler.

Even though our algorithm for this task is slightly inferior to the existing algorithms

of (33; 17), we believe that it is of independent interest.

2.1 Introduction

2.1.1 Graph Streaming Algorithms

One of the most common theoretical models for addressing the challenge of pro-

cessing massive graphs is the semi-streaming model of computation (29; 6; 44). In

this model, edges of an input n-vertex graph G = (V,E) arrive one after another,

while the storage capacity of the algorithm is limited. Typically it should be close

to linear in the number of vertices, n (as opposed to being linear in the number of

edges m = |E|). In particular, one usually allows space of Õ(n), though it is often

relaxed to n1+o(1), sometimes to O(n1+ρ), for an arbitrarily small constant parame-

ter ρ > 0, or even to O(n1+η0), for some fixed constant η0, 0 < η0 < 1. Generally,

the model allows several passes over the stream, and the objective is to keep both

the number of passes and the space complexity of the algorithm in check.

The model comes in two main variations. In the first one, called static or insertion-

only model (29), the edges can only arrive, and never get deleted. If the algorithm

employs multiple passes, then the streams of edges observed on these passes may

be permutations of one another, but are otherwise identical. In the more general

dynamic (also known as turnstile) streaming setting (6), edges may either arrive or

get deleted.

The study of graph problems in the dynamic streaming model has been blossom-

ing in the last decade. A lot of research is devoted to building spectral and cut

sparsifiers (59; 7; 51; 52; 53; 40). Numerous other graph problems such as connec-

tivity and k-connectivity, MST, maximum matching, set cover, and counting small

subgraphs were studied in (7; 6; 54; 55; 56; 57; 58).

17

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

2.1.2 Distances in the Streaming Model

An important thread of the literature on dynamic streaming algorithms for graph

problems is concerned with computing distances and constructing spanners and

hopsets. This is also the topic of the current part (part I) of this thesis. For a pair

of parameters α ≥ 1, β ≥ 0, given an undirected graph G = (V,E), a subgraph

G′ = (V,H) of G is said to be an (α,β)-spanner of G, if for every pair u,v ∈
V of vertices, it holds that dG′(u,v) ≤ α · dG(u.v)+ β , where dG and dG′ are the

distance functions of G and G′, respectively. A spanner with β = 0 is called a

multiplicative spanner and one with α = 1 is called an additive spanner. There

is another important variety of spanners called near-additive spanners for which

β ≥ 0 and α = 1+ε , for an arbitrarily small ε > 0. The near-additive spanners are

mostly applicable to unweighted graphs, even though there are some recent results

about weighted near-additive spanners (20).

Spanners are very well-studied from both combinatorial and algorithmic view-

points. It is well-known that for any parameter κ = 1,2, . . . , and for any n-vertex

graph G = (V,E), there exists a (2κ − 1)-spanner with O(n1+1/κ) edges, and this

bound is nearly-tight unconditionally, and completely tight under Erdos-Simonovits

girth conjecture (47; 8). The parameter 2κ − 1 is called the stretch parameter of

the spanner. Also, for any pair of parameters, ε > 0 and κ = 1,2, . . . , there ex-

ists β = βEP = β (κ,ε), so that for every n-vertex undirected graph G = (V,E),

there exists a (1+ ε,β)-spanner with Oκ,ε(n1+1/κ) edges (26). The additive term

β = βEP in (26) behaves as β (κ,ε) ≈
(

logκ

ε

)logκ

, and this bound is the state-of-

the-art. A lower bound of Ω(1
ε·logκ

)logκ for it was shown by Abboud et al. (5).

Given an n-vertex weighted undirected graph G = (V,E,ω) and two parameters

ε > 0 and β = 1,2, . . ., a graph G′ = (V,H,ω ′) is called a (1+ ε,β)-hopset of G,

if for every pair of vertices u,v ∈V , we have

dG(u,v)≤ d(β)
G∪G′(u,v)≤ (1+ ε) ·dG(u,v) (2.1)

Here d(β)
G∪G′(u,v) stands for β -bounded distance (See Definition 2.5) between u and

v in G∪G′. (Note that for a weighted graph G = (V,E,ω), the weight of a non-

edge (u,v) /∈ E is defined as ω((u,v)) = ∞, and the weight of an edge (x,y) in

the edge set of G∪G′ is given by min{ω(x,y), ω ′(x,y)}.) The parameter β is

called the hopbound of the hopset G′. We often refer to the edge set H of G′ as the

18

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

hopset. Just like spanners, hopsets are a fundamental graph-algorithmic construct.

They are extremely useful for computing approximate shortest distances and paths

in various computational settings, in which computing shortest paths with a limited

number of hops is significantly easier than computing them with no limitation on

the number of hops. A partial list of these settings includes streaming, distributed,

parallel and centralized dynamic models. Recently, hopsets were also shown to be

useful for computing approximate shortest paths in the standard centralized model

of computation as well (24).

Cohen (15) showed that for any undirected weighted n-vertex graph G, and parame-

ters ε > 0, ρ > 0, and κ = 1,2, . . . , there exists a (1+ε,βC)-hopset with Õ(n1+1/κ)

edges, where βc =
(

logn
ε

)O
(

logκ

ρ

)
. Elkin and Neiman (23) improved Cohen’s result,

and constructed hopsets with constant hopbound. Specifically, they showed that for

any ε > 0, κ = 1,2, . . ., and any n-vertex weighted undirected graph, there exists a

(1+ε,βEN)-hopset with Õ(n1+1/κ) edges, and βEN = βEP ≈ (logκ

ε
)logκ . The lower

bound of Abbound et al. (5), β = Ω(1
ε·logκ

)logκ is applicable to hopsets as well.

Generally, hopsets (see (15; 36; 23)) are closely related to near-additive spanners.

See a recent survey (25) for an extensive discussion on this relationship.

Most of the algorithms for computing (approximate) distances and shortest paths in

the streaming setting compute a sparse spanner, and then employ it for computing

exact shortest paths and distances in it offline, i.e., in the post-processing, after the

stream is over (30; 18; 11; 28; 22; 7; 40; 31; 32). Feigenbaum et al. (30) devised the

first efficient static streaming algorithm for building multiplicative spanners. Their

algorithm produces a (2κ +1)-spanner with O(n1+1/κκ2 log2 n) edges (and this is

also the space complexity of the algorithm) in a single pass, and its processing time

per edge is Õ(n1/κ), for a parameter κ = 1,2, More efficient static streaming

algorithms for this problem, that also provide spanners with a better stretch-size

tradeoff, were devised in (18; 11). Specifically, these static streaming algorithms

construct (2κ − 1)-spanners of size Õ(n1+1/κ) (and using this space), and as a

result produce (2κ−1)-approximate all pairs shortest paths (henceforth, (2κ−1)-

APASP) using space Õ(n1+1/κ) in a single pass over the stream.

The algorithms of (30; 18; 11) apply to unweighted graphs, but they can be ex-

tended to weighted graphs by running many copies of them in parallel, one for

each weight scale. Let Λ = Λ(G) denote the aspect ratio of the graph, i.e., the ratio

19

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

between the maximum distance between some pair of vertices in G and the mini-

mum distance between a pair of distinct vertices in G. Also, let ε ≥ 0 be a slack

parameter. Then by running O(logΛ

ε
) copies of the algorithm for unweighted graphs

and taking the union of their outputs as the ultimate spanner, one obtains a one-pass

static streaming algorithm for 2(1+ ε)κ-spanner with Õ(n1+ 1
κ · (logΛ)/ε) edges.

See, for example, (27) for more details.

Elkin and Zhang (28) devised a static streaming algorithm for building (1+ε,βEZ)-

spanners with Õ(n1+1/κ) edges using βEZ passes over the stream and space Õ(n1+ρ),

where βEZ = βEZ(ε,ρ,κ) =
(

logκ

ε·ρ

)O(logκ

ρ
)
, for any parameters ε,ρ > 0 and κ =

1,2, This result was improved in (22), where a static streaming algorithm

with similar properties, but with β = βEN =
(

logκρ+1/ρ

ε

)logκρ+1/ρ

was devised.

The algorithms of (28; 22) directly give rise to β -pass static streaming algorithms

with space Õ(n1+ρ) for (1+ ε,β)-APASP in unweighted graphs where β (ρ) ≈
(1/ρ)(1/ρ)(1+o(1)). They can also be used for producing purely multiplicative (1+

ε)-approximate shortest paths and distances in O(β/ε) passes and Õ(n1+ρ) space

from up to nρ(1−o(1)) designated sources to all other vertices.

There are also a number of additional not spanner-based static streaming algo-

rithms for approximate shortest paths. Henzinger, Krinninger and Nanongkai (37)

and Elkin and Neiman (23) devised (1 + ε)-approximate single-source shortest

paths (henceforth, SSSP) algorithms for weighted graphs, that are based on hopsets.

The (1+ ε)-SSSP algorithm of (36) employs 2O(
√

logn log logn) = no(1) passes and

space n · 2O(
√

logn·log logn) ·O(logΛ

ε
) = n1+o(1) ·O(logΛ

ε
). Elkin and Neiman (23)

generalized and improved this result. For any parameters ε,ρ > 0, their static

streaming algorithm computes (1+ε)-approximate SSSP using Õ(n1+ρ) space and(
logn
ε·ρ

) 1
ρ
(1+o(1))

passes. Moreover, in fact the same bound for number of passes and

space applies in the algorithm of (23) for computing S×V (1+ ε)-approximately

shortest paths, for any subset S ⊆ V of up to nρ designated sources. Yet more

efficient static streaming algorithm for (1+ ε)-approximate SSSP was devised by

Becker et al. (12) using techniques from the field of continuous optimization. Their

static streaming algorithm uses polylogarithmically many passes over the stream

and space O(n · polylog(n)). Finally, an exact static streaming SSSP algorithm

was devised in (19). For any parameter 1 ≤ p ≤ n, it requires O(n/p) passes and

O(n · p) space, and applies to weighted undirected graphs. The algorithm of (19)

20

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

also applies to the problem of computing S×V approximately shortest paths for

|S| ≤ p, and requires the same pass and space complexities as in the single-source

case.

Recently Chang et al. (14) devised a dynamic streaming algorithm for this problem

in unweighted graphs. Their algorithm uses Õ(n/p) passes (for parameter 1≤ p≤
n as above) and space Õ(n+ p2) for the SSSP problem, and space Õ(|S|n+ p2) for

the S×V approximate shortest path computation. Ahn, Guha and McGregor (7) de-

vised the first dynamic streaming algorithm for computing approximate distances.

Their algorithm computes a (2κ−1)-spanner (for any κ = 1,2, . . .) with Õ(n1+1/κ)

edges (and the same space complexity) in κ passes over the stream. This bound

was recently improved by Fernandez, Woodruff and Yasuda (31). Their algorithm

computes a spanner with the same properties using bκ/2c+1 passes. Ahn et al. (7)

also devised an O(logκ)-pass algorithm for building O(κ log2 5)-spanner with size

and space complexity Õ(n1+1/κ). This bound was recently improved by Filtser,

Kapralov and Nouri (32), whose algorithm produces O(κ log2 3)-spanner with the

same pass and space complexities, and the same size. Another dynamic streaming

algorithm was devised by Kapralov and Woodruff (40). It produces a (2κ − 1)-

spanner with Õ(n1+1/κ) edges (and space usage) in two passes. Filtser et al. (32)

improved the stretch parameter of the spanner to 2
κ+3

2 −3, with all other parameters

the same as in the results of (40). Filtser et al. (32) also devised a general tradeoff

in which the number of passes can be between 2 and κ , and the stretch of the span-

ner decreases gradually from exponential in κ (where the number of passes is 2) to

2κ−1 (when the number of passes is κ). They have also devised a single pass algo-

rithm with stretch Õ(n
2
3 (1−1/κ)). As was mentioned above, all these spanner-based

algorithms provide a solution for (2κ − 1)-approximate all pairs almost shortest

paths (henceforth, (2κ−1)-APASP) for unweighted graphs with space Õ(n1+1/κ)

and the number of passes equal to that of the spanner-construction algorithm. Like

their static streaming counterparts (30; 18; 11), they can be extended to weighted

graphs, at the price of increasing their stretch by a factor of 1+ε (for an arbitrarily

small parameter ε > 0), and their space usage by a factor of O
(

logΛ

ε

)
.

Table 2.1 provides a detailed overview of the prior works and their comparison to

our results. To summarize, all known dynamic streaming algorithms for computing

approximately shortest paths (with space Õ(n1+1/κ), for a parameter κ = 1,2, . . .),

21

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

Table 2.1: Prior Work on the Problem

Citation Model Stretch Space No. of Passes Technique

(30) Static (2κ +1) Õ(n1+1/κ) 1 Multiplicative Spanner

(18; 11) Static (2κ−1) Õ(n1+1/κ) 1 Multiplicative Spanner

(28; 22) Static (1+ ε,βEN) Õ(n1+1/κ) βEN Near-Additive Spanner

(37) Static (1+ ε) n1+o(1) ·O(logΛ

ε
) 2O(

√
logn log logn) = no(1) Hopsets

(23) Static (1+ ε) Õ(n1+ρ), for ρ > 0
(

logn
ε·ρ

) 1
ρ
(1+o(1))

Hopsets

(19) Static Exact O(n · p), for 1≤ p≤ n O(n/p) Hopsets

(7) Dynamic (2κ−1) Õ(n1+1/κ) κ Multiplicative Spanner

(31) Dynamic (2κ−1) Õ(n1+1/κ) bκ/2c+1 Multiplicative Spanner

(7) Dynamic O(κ log2 5) Õ(n1+1/κ) O(logκ) Multiplicative Spanner

(32) Dynamic O(κ log2 3) Õ(n1+1/κ) O(logκ) Multiplicative Spanner

(14) Dynamic Exact Õ(n+ p2), for 1≤ p≤ n Õ(n/p) Exact BFS

(This Paper) Dynamic (1+ ε) Õ(n1+1/κ) Constant (unweighted Graphs) Near-Additive Spanners

polylog(n) (weighted graphs) and Hopsets

can be divided into two categories. The algorithms in the first category build a

sparse multiplicative (2κ − 1)-spanner, and they provide a multiplicative stretch

of at least 2κ − 1 (7; 40; 31; 32). Moreover, due to existential lower bounds for

spanners, this approach is doomed to provide stretch of at least 4
3 κ (43). The

algorithms in the second category compute exact single source shortest paths in

unweighted graphs, but they employ n1/2−O(1/κ) passes (14; 19).

2.1.3 Our Results

We present the first dynamic streaming algorithm for SSSP with stretch 1+ε , space

Õ(n1+1/κ), and constant (as long as ε and κ are constant) number of passes for un-

weighted graphs. For weighted graphs, our number of passes is polylogarithmic

in n. Specifically, the number of passes of our SSSP algorithm is (κ

ε
)κ(1+o(1)) for

unweighted graphs, and
(
(logn)κ

ε

)κ(1+o(1))
for weighted ones. Moreover, within

the same complexity bounds, our algorithm can compute (1+ ε)-approximate S×
V shortest paths from |S| = n1/κ designated sources. Moreover, in unweighted

graphs, all pairs almost shortest paths with stretch (1+ ε,
(

κ

ε

)κ
) can also be com-

puted within the same space and number of passes. (That is, paths and distances

with multiplicative stretch 1+ ε and additive stretch
(

κ

ε

)κ .) Note that our mul-

tiplicative stretch (1+ ε) is dramatically better than (2κ − 1), exhibited by algo-

rithms based on multiplicative spanners (7; 40; 31; 32), but this comes at a price of

at least exponential increase in the number of passes. Nevertheless, our number of

22

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

passes is independent of n, for unweighted graphs, and depends only polylogarith-

mically on n for weighted ones.

2.1.4 Technical Overview

We devise two algorithms which build structures that help us compute approximate

shortest paths. One of them builds a near-additive spanner (Chapter 3) and the other

builds a near-exact hopset (Chapter 4). The following two theorems summarize the

results of our spanner and hopset constructions.
Theorem 2.1. (Theorem 3.12 in Section 3.1.3) For any unweighted graph G(V,E)

on n vertices, parameters 0 < ε < 1, κ ≥ 2, and ρ > 0, our dynamic streaming al-

gorithm computes a (1+ ε,β)-spanner with Oε,κ,ρ(n1+1/κ) edges, in O(β) passes

using O(n1+ρ log4 n) space with high probability, where β is given by:

β =

(
logκρ +1/ρ

ε

)logκρ+1/ρ

.

Theorem 2.2. (Theorem 4.20 in Section 4.2) For any n-vertex graph G(V,E,ω)

with aspect ratio Λ, 2 ≤ κ ≤ (logn)/4, 1/κ ≤ ρ ≤ 1/2 and 0 < ε ′ < 1, our dy-

namic streaming algorithm computes whp, a (1+ ε ′,β ′) hopset H with expected

size O(n1+1/κ · logn) and the hopbound β ′ given by

β
′ = O

(
(logκρ +1/ρ) logn

ε ′

)logκρ+1/ρ

It does so by making O(β ′ · (logκρ + 1/ρ)) passes through the stream and using

O(n · log3 n · logΛ) bits of space in the first pass and O(β ′2

ε ′ · log2 1/ε ′ ·n1+ρ · log5 n)

bits of space in each of the subsequent passes.

The spanner is then used (in Section 3.2 of Chapter 3) to compute approximate

shortest paths in unweighted graphs and the hopset is used (in Section 4.3 of Chap-

ter 4) to compute approximate shortest paths in weighted graphs.

Our algorithms for spanner and hopset construction extend the results of (22; 23)

from the static streaming setting to dynamic streaming one. The algorithms of (22;

23), like their predecessor, the algorithm of (26), are based on the superclustering-

and-interconnection (henceforth, SAI) approach. Our algorithms in the current

work also fall into this framework. Algorithms that follow the SAI approach pro-

ceed in phases, and in each phase they maintain a partial partition of the vertex

23

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

set V of the graph. Some of the clusters of G are selected to create superclusters

around them. This is the superclustering step. Clusters that are not superclus-

tered into these superclusters are then interconnected with their nearby clusters.

The main challenge in implementing this scheme in the dynamic streaming setting

is in the interconnection step. Indeed, the superclustering step requires a single

and rather shallow BFS exploration (or a Bellman-Ford Exploration for weighted

graphs), and implementing depth-d BFS in unweighted graphs in d passes over

the dynamic stream can be done in near-linear space (See, e.g., (7; 14)). For the

weighted graphs, we devise a routine for performing an approximate Bellman-Ford

exploration up to a given hop-depth d, using d passes and Õ(n) space.

On the other hand, the interconnection step requires implementing simultaneous

BFS explorations (or Bellman-Ford Explorations for weighted graphs) originated

at multiple sources. A crucial property that enabled (22; 23) to implement it in

the static streaming setting is that one can argue that with high probability, not

too many BFS explorations traverse any particular vertex. Let us denote by N, an

upper bound on the number of explorations (traversing any particular vertex). In

the dynamic streaming setting, however, at any point of the stream, there may well

be much more than N explorations that traverse a specific vertex v ∈ V , based on

the stream of updates observed so far. Storing data about all these explorations

would make the space requirement of the algorithm prohibitively large.

To resolve this issue (and a number of related similar issues), we incorporate a

sparse recovery routine into our algorithms. Sparse recovery is a fundamental

and well-studied primitive in the dynamic streaming setting (33; 17; 38; 9). It is

defined for an input which is a stream of (positive and negative) updates to an

n-dimensional vector
→
a = (a1,a2, . . . ,an). In the strict turnstile setting, which is

sufficient for our application, ultimately each coordinate ai (i.e., at the end of the

stream) is non-negative, even though negative updates are allowed and intermediate

values of coordinates may be negative. In the general turnstile model coordinates

of the vector
→
a may be negative at the end of the stream as well. The support of

→
a ,

denoted supp(
→
a), is defined as the set of its non-zero coordinates. For a parameter

s, an s-sparse recovery routine returns the vector
→
a , if |supp(

→
a)| ≤ s, and returns

failure otherwise. (It is typically also allowed to return failure with some small

probability δ > 0, given to the routine as a parameter, even if |supp(
→
a)| ≤ s.)

24

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

Most of sparse recovery routines are based on 1-sparse recovery, i.e., the case s= 1.

The first 1-sparse recovery algorithm was devised by Ganguly (33), and it applies

to the strict turnstile setting. The space requirement of the algorithm of (33) is

O(logn). The result was later extended to the general turnstile setting by Cormode

and Fermini (17) (See also, (45)). We devise an alternative streaming algorithm for

this basic task in the strict turnstile setting. The space complexity of our algorithm

is O(logn), like that of (33). The processing time-per-item of Ganguly’s algorithm

is however O(1), instead of polylog(n) of our algorithm. 1 Nevertheless, we be-

lieve that our new algorithm for this task is of independent interest. Chapter 5 is

devoted to our new sparse recovery procedure, and its applications to `0-sampling.

In Section 5.1, we describe this procedure, and in Section 5.2, we show how it can

be used to build `0-samplers, (See Section 5.2 for their definition) with complexity

that matches the state-of-the-art bounds for `0-samplers due to Jowhari, Sağlam

and Tardos (39), but are arguably somewhat simpler.

For the greater part of the paper we analyze our algorithm in terms of the aspect

ratio Λ of the input graph, given by Λ =
maxu,v∈V dG(u,v)
minu,v∈V dG(u,v)

. (All dependencies are

polylogarithmic in Λ.) In Section 4.2, however, we show that Klein-Subramania’s

weight reduction (42) (see also (23)) can be implemented in the dynamic stream-

ing model. As a result, we replace all appearances of logΛ in the hopset’s size,

hopbound and number of passes of our construction by O(logn). However, the

space complexity of our algorithm still mildly depends on logΛ. Specifically, it is

Õ(n1+ρ)+ Õ(n) · logΛ. In all existing dynamic streaming algorithms for comput-

ing multiplicative spanners or computing approximate shortest paths in weighted

graphs (7; 40; 31; 32), both the spanner’s size and the space requirements are

Õ(n1+1/κ · logΛ). Completely eliminating the dependence on logΛ from these

results is left as an open problem.

1If the algorithm knows in advance the dimension n of the vector
→
a and is allowed to compute

during preprocessing, before seeing the stream, a table of size n, then our algorithm can also have

O(1) processing time per update. This scenario occurs in dynamic streaming graph algorithms,

including those discussed in the current paper.

25

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

2.1.5 Outline

The rest of the chapter is organized as follows. Section 2.2 provides necessary

definitions and concepts that apply to Part I of this thesis (this chapter as well

as Chapter 3, 4 and 5). Sections 2.3 and 2.4 provide the sub-routines required

for our main algorithms presented in Chapters 3 and 4. Section 2.3 describes an

algorithm for building a BFS forest of a given depth rooted at a subset of vertices of

an unweighted input graph. Section 2.4 describes an algorithm for performing an

approximate Bellman-Ford exploration rooted at a subset of vertices of a weighted

input graph.

2.2 Preliminaries

2.2.1 Streaming Model

In the streaming model of computation, the set of vertices V of the input graph is

known in advance and the edge set E is revealed one at a time. In an insertion-

only stream the edges can only be inserted, and once inserted an edge remains

in the graph forever. In a dynamic stream, on the other hand, the edges can be

added as well as removed. We will consider unweighted graphs for our span-

ner construction algorithm and weighted graphs for our hopset construction al-

gorithm. For an unweighted input graph, the stream S arrives as a sequence of

edge updates S = 〈s1,s2, · · · 〉, where st = (et ,eSignt), where et is the edge being

updated. For a weighted input graph, the stream S arrives as a sequence of edge

updates S = 〈s1,s2, · · · 〉, where st = (et ,eSignt ,eWeightt), where et is the edge be-

ing updated and eWeightt is its weight. In unweighted as well weighted case, the

eSignt ∈ {+1,−1} value of an update indicates whether the edge et is to be added

or removed. A value of +1 indicates addition and a value of−1 indicates removal.

There is no restriction on the order in which the eSign value of a specific edge e

changes. The multiplicity of an edge e is defined as fe = ∑t,et=e eSignt . We assume

that for every edge e, fe ∈ {0,1} at that at the end of the stream. The order in

which updates arrive may change from one pass of the stream to the other, while

the final adjacency matrix of the graph at the end of every pass remains the same.

We assume that the length of the stream or the number of updates we receive is

26

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

poly(n). For more details on the streaming model of computation for graphs, we

refer the reader to the survey (44) on graph streaming algorithms.

Definition 2.3. For a vertex v ∈ V and a vertex set U ⊆ V , the degree of v with
respect to U is the number of edges connecting v to the vertices in U .

For a weighted undirected graph G = (V,E,ω), we assume that the edge weights

are scaled so that the minimum edge weight is 1. Let maxW denote the maximum

edge weight ω(e), e ∈ E. For a non-edge (u,v) /∈ E, we define ω((u,v)) = ∞.

Denote also by Λ the aspect ratio of the graph, i.e., the maximum finite distance

between some pair u,v of vertices (assuming that the minimum edge weight is 1).

Definition 2.4. Given a weighted graph G(V,E,ω), a positive integer parameter t,

and a pair u,v∈V of distinct vertices, a t-bounded u-v path in G is a path between

u and v that contains no more than t edges (also known as hops).

Definition 2.5. Given a weighted graph G(V,E,ω), a positive integer parameter

t, and a pair u,v ∈ V of distinct vertices, t-bounded distance between u and v in

G denoted d(t)
G (u,v) is the length of the shortest t-bounded u-v path in G.

2.2.2 Samplers

The main technical tool in our algorithms is a space-efficient sampling technique

which enables us to sample a single vertex or a single edge from an appropriate

subset of the vertex set or the edge set of the input graph, respectively. Most graph

streaming algorithms use standard `0-sampler due to Jowhari et al. (39) as a black-

box to sample edges or vertices from a graph. An `0-sampler enables one to sample

almost uniformly from the support of a vector. We present an explicit construction

of a sampling technique inspired by ideas from (41; 34; 16). Our construction is

arguably simpler than the standard `0-sampler due to Jowhari et al. (39) and its

space cost is at par with their sampler. In contrast to (39) which can handle posi-

tive as well as negative updates and final multiplicities (also referred to as general

turnstile stream), our sampling technique works on streams with positive as well

as negative updates provided the final multiplicity of each element is non-negative

(also referred to as strict turnstile stream). This is a reasonable assumption for

graph streaming algorithms.

27

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

For our spanner construction algorithm, we devise two samplers: FindParent and

FindNewVisitor for unweighted graphs. For our hopset construction algorithm we

devise two more samplers: GuessDistance and FindNewCandidate, which are es-

sentially weighted graph counterparts of FindParent and FindNewVisitror, respec-

tively. We will describe each of these samplers in detail in the sequel. The proce-

dure FindParent works on unweighted graphs and enables us to find the parent of

a given input vertex in a Breadth First Search (henceforth, BFS) forest rooted at a

subset of the vertex set V of the input graph. The procedure GuessDistance works

on weighted graphs and enables us to find the parent of a given vertex in a forest

spanned by an approximate Bellman-Ford exploration. It also returns the approxi-

mate distance of the input vertex to the set of roots of the exploration. The proce-

dure FindNewVisitor helps us to implement multiple simultaneous BFS traversals,

each rooted at a different vertex in a subset S of the vertices of an unweighted input

graph. The procedure FindNewVisitor enables us to sample, for a given v ∈V , the

root of one of the BFS explorations that v belongs to. The procedure FindNew-

Candidate is a counterpart of procedure FindNewVisitor Although our samplers

FindParent and FindNewVisitor (and their counterparts for weighted graphs) are

used in a specific context in our algorithm, they can be adapted to work in general

to sample elements of any type from a dynamic stream with non-negative multiplic-

ities. A variant of FindParent was described in (34; 41) in the context of dynamic

and low-communication distributed graph algorithms. In the context of dynamic

graph streams, we have adapted it to work as a sampler for sampling elements (in

our case edges of a graph) whose multiplicity at the end of the stream is either 0

or 1. On the other hand, our second sampler, FindNewVisitor is more general and

to the best of our knowledge, new. It can sample elements with non-negative mul-

tiplicities. As an example, FindNewVisitor can be adapted to sample edges from a

multigraph in distributed, dynamic and dynamic streaming models.

The sampler FindNewVisitor (and also its weighted counterpart FindNewCandi-

date) is based on Jarnik’s construction of convexly independent sets (50), and is

related to constructions of lower bounds for distance preservers due to Copper-

smith and Elkin (16).

28

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

2.2.3 Hash Functions

Algorithms for sampling from a dynamic stream are inherently randomized and

often use hash functions as a source of randomness. A hash function h maps el-

ements from a given input domain to an output domain of bounded size. Ideally,

we would like to draw our hash function randomly from the space of all possi-

ble functions on the given input/output domain. However, since we are concerned

about the space used by our algorithm, we will rely on hash functions with lim-

ited independence. A family of functions H = {h : U → [m]}, from a universe

U to [m], for some positive integer m, is said to be k-wise independent, if it holds

that, when h is chosen uniformly at random from H then for any k distinct elements

x1,x2, · · · ,xk ∈U , and any k elements z1,z2, · · · ,zk ∈ [m], x1,x2, · · · ,xk and mapped

by h to z1,z2, · · · ,zk with probability 1/mk, i.e., as if they were perfectly random.

Such functions can be described more compactly, but are sufficiently random to

allow formal guarantees to be proven.

The following lemma summarizes the space requirement of limited independence

hash functions:

Lemma 2.6 ((13)). A function drawn from a family of k-wise independent hash

functions can be encoded in O(k logn) bits.

Specifically, we will be using pairwise independent hash functions.

The following lemma, a variant of which has also been proved in (34; 41) in a

different context, is proved here for the sake of completeness.

Lemma 2.7. Let h : U → [2λ] be a hash function sampled uniformly at random

from a family of pairwise independent hash functions H . If we use h to hash

elements of a given set S ⊆U such that |S |= s, then a specific element d ∈S

hashes to the set [2λ−dlogse−1] and no other element of S does so with probability

at least 1
8s .

Proof. Denote t = λ −dlogse− 1. Let dOnly be the event that only the element

d ∈ S and no other element d′ ∈ S hashes to the set [2λ−dlogse−1] = [2t]. Note

that 1
4s ≤

2t

2λ
≤ 1

2s . It follows that

29

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

Pr
h∼H

[dOnly] = Pr
h∼H

[
h(d) ∈ [2t]

∧
d′∈S \{d}

h(d′) /∈ [2t]

]

= Pr
h∼H

[
h(d) ∈ [2t]

]
· Pr

h∼H

[∧
d′∈S \{d}

h(d′) /∈ [2t] | h(d) ∈ [2t]

]

≥ Pr
h∼H

[
h(d) ∈ [2t]

]
·
(

1− ∑
d′∈S \{d}

Pr
h∼H

[
h(d′) ∈ [2t] | h(d) ∈ [2t]

])

By pairwise independence,

Pr
h∼H

[
h(d′) ∈ [2t] | h(d) ∈ [2t]

]
= Pr

h∼H

[
h(d′) ∈ [2t]

]
Hence, Pr

h∼H
[dOnly]≥ Pr

h∼H

[
h(d) ∈ [2t]

]
·
(

1− ∑
d′∈S \{d}

Pr
h∼H

[
h(d′) ∈ [2t]

])
=

2t

2λ
.

(
1− ∑

d′∈S \{d}

2t

2λ

)
≥ 1

4s
.

(
1− ∑

d′∈S \{d}

1
2s

)
=

1
4s
.
(
1− (s−1)

1
2s

)
>

1
4s
· 1

2
=

1
8s

Lemma 2.7 implies the following corollary:

Corollary 2.8. Let h : U → [2λ] be a hash function sampled uniformly at random

from a family of pairwise independent hash functions H . If we use h to hash

elements of a given set S ⊆ U with |S | = s, then exactly one element in S

hashes to the set [2t], t = λ −dlogse−1, with probability at least 1
8 .

Proof. Let OneElement be the event that exactly one of the s elements in the set

S hashes to the set [2t]. The event OneElement can be described as the event dOnly

from Lemma 2.7 occurring for one of the elements d ∈S , i.e.,

Pr
h∼H

[OneElement] = ∑
d∈S

Pr
h∼H

[
dOnly]

≥ ∑
d∈S

1
8s

= 1/8

30

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

2.2.4 Vertex Encodings

We assume that the vertices have unique IDs from the set {1, . . . ,n}. The maximum

possible ID (which is n) of a vertex in the graph is denoted by maxV ID. The

binary representation of the ID of a vertex v can be obtained by performing a name

operation name(v).

We also need the following standard definitions of convex combination, convex

hull and a convexly independent set.

Definition 2.9. Given a finite number of vectors x1,x2, · · · ,xk in Rd , a convex
combination of these vectors is a vector of the form α1x1 + α2x2 + · · ·+ αkxk,

where the real numbers αi satisfy αi ≥ 0 and α1 +α2 + · · ·αk = 1.

Definition 2.10. The convex hull of a set X of vectors in Rd is the set of all convex

combinations of elements of X .

Definition 2.11. A set of vectors x1,x2, · · · ,xk ∈ Rd is called a convexly inde-
pendent set (CIS henceforth), if for every index i ∈ [n], the vector xi cannot be

expressed as a convex combination of the vectors x1, ...,xi−1,xi+1, ...,xk.

We will use the following CIS-based encoding for the vertices of the graph:

CIS Encoding Scheme ν : We assign a unique code in Z2 to every vertex v ∈ V .

The encoding scheme works by generating a set of n convexly independent (See

Definition 2.11) integer vectors in Z2. Specifically, our encoding scheme uses as its

range, the extremal points of the convex hull (See Definition 2.10) of Ball2(R)∩Z2,

where Ball2(R) is a two-dimensional disc of radius R centered at origin. A classical

result by Jarnı́k (50), later refined by Balog and Bárány (10), states that the number

of extremal points of the convex hull of a set of integer points of a disc of radius R

is Θ(R2/3). We set R = Θ(n3/2) to allow for all the possible n = Θ(R2/3) vertices

to be encoded in O(logn) bits. The encoding of any vertex v can be obtained by

performing an encoding operation denoted by ν(v).

The following lemma will be useful later in Section 3.1.2 and Section 4.1.2 to

detect if the sampling procedure succeeded in sampling exactly one vertex from a

desired subset of the set V .

31

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

Lemma 2.12. Let c1,c2, · · · ,cn be non-negative integer coefficients of a linear

combination of a set P = {p1, p2, · · · pn} of n convexly independent points in Z2

such that ∑
n
j=1 c j·p j

∑
n
j=1 c j

= pi, for some pi ∈ P. Then c j = 0 for every j 6= i.

Proof. The expression ∑
n
j=1 c j·p j

∑
n
j=1 c j

is a convex combination of points p1, p2, . . . , pn ,

since for every j, we have, 0 ≤ c j

∑
n
j=1 c j
≤ 1 and

n

∑
j=1

c j

∑
n
j=1 c j

= 1. Since P is a CIS,

by Definition 2.11, no point pi ∈ P can be represented as a convex combination of

other points in P. Therefore, c j = 0 for every j 6= i.

2.3 BFS Forest

In this section, we describe an algorithm that generates a BFS forest rooted at a

given set of source vertices of an input unweighted graph in dynamic streaming

model.

2.3.1 General Outline

Given a graph G(V,E), a set of source vertices S⊆V and a depth parameter η , the

algorithm outputs a set of edges Eη

S ⊆ E of non-overlapping BFS explorations up

to depth η , each rooted at a specific member of S. Initially, Eη

S is set to /0. The

algorithm proceeds in phases 1 to η , where for each p ∈ [η], we discover the edges

belonging to the layer p of the BFS forest in phase p. The layer p of the BFS forest

is the set of vertices of G that are at distance p from S.

In each phase, we make one pass through the stream. Let Vp ⊆V denote the set of

vertices belonging to the pth layer of the forest. The set V unc
p =V \

⋃
k∈[0,p]Vk is the

set of vertices that do not belong to any of the first p layers. The set V0 is initialized

to the set S and the set V unc
0 is set to V \V0 =V \S.

Phase p starts by receiving as input, the sets Vp−1 and V unc
p−1 computed in the pre-

vious phase. We invoke for each vertex x ∈ V unc
p−1, a randomized procedure called

FindParent to sample an edge (if exists) between x and some vertex y ∈Vp−1.

The pseudocode for procedure FindParent is given in Algorithm 1. Its verbal de-

scription is provided right after that.

32

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

Algorithm 1 Pseudocode for Procedure FindParent

1: Procedure FindParent(x,h)
. Initialization

2: slots← /0 . An array with λ elements indexed from 1 to λ , where λ = dlogne.
. Each element of slots is a tuple (xCount,xName). For a given index 1 ≤
k ≤ λ , xCount and xName of slots[k] can be accessed as slots[k].xCount and

slots[k].xName, respectively.

3:

. slots[k].xCount is number of sampled edges (x,y) with h(y) ∈ [2k]. It is

initialized as 0.

4:

. slots[k].xName is encoding of the (binary) names of the endpoints y of the

sampled edges (x,y) with h(y) ∈ [2k]. It is initialized as φ .

. Update Stage

5: while (there is some update (et , eSignt) in the stream) do
6: if (et is incident on x and some y ∈Vp−1) then
7: k← dlogh(y)e
8: repeat
9: slots[k].xCount← slots[k].xCount + eSignt

10: slots[k].xName← slots[k].xName
⊕

name(y)

11: k = k+1

12: until k > λ

. Recovery Stage

13: if (slots vector is empty) then
14: return φ

15: else if (∃ index k | slots[k].xCount = 1) then
16: return slots[k].xName

17: else
18: return ⊥

The procedure FindParent takes as input the ID of a vertex and a hash function h

chosen at random from a family of pairwise independent hash functions. A suc-

cessful invocation of FindParent for an input vertex x in phase p returns an edge

that connects x to some vertex in Vp−1, if there is at least one such edge in E, and φ

33

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

otherwise. Note that FindParent is a randomized procedure and may fail to sample

an edge (with a constant probability) between x and Vp−1, even when such an edge

exists. It returns an error ⊥ in that case.

Before we start making calls to procedure FindParent, we sample uniformly at

random a set of functions Hp from a family of pairwise independent hash functions

h : {1,2, . . . ,maxV ID}→ {1, . . . ,2λ}, where λ = dlogmaxV IDe= dlogne. Recall

that maxV ID is the maximum possible vertex identity. The size of the set Hp will be

specified later in the sequel. For every vertex x ∈V unc
p−1, we make |Hp| parallel calls

to procedure FindParent, one for each h∈Hp. As shown in the sequel, a single call

to procedure FindParent succeeds only with a constant probability. Hence multiple

parallel calls are required to boost the probability of successfully finding a parent

for a given vertex. The set Vp−1 computed in phase p−1 is made available in the

global storage for all the calls to procedure FindParent in the phase p to access.

In the following section, we describe in detail the concepts used to implement the

procedure FindParent.

2.3.2 Procedure FindParent

For a given vertex x ∈ V unc
p−1, let d(p−1)

x be the degree of x with respect to set Vp−1.

In what follows, we will refer to an edge between x and some y ∈Vp−1 as a candi-

date edge. A simple randomized technique to find a parent for x is by sampling its

incident edges that connect it to the set Vp−1 with probability 1
d(p−1)

x
(by flipping a bi-

ased coin) and keeping track of all the updates to the sampled edges. A given edge

can appear or disappear multiple times in the stream and one needs to remember

the random bit for every candidate edge (the result of coin flip for the edge when

it appeared for the first time). Remembering random bits is required in order to

treat every update to a given candidate edge consistently as the stream progresses.

This requires remembering O(n) bits per vertex. Instead, we use a pairwise inde-

pendent hash function to assign hash values to the candidate edges in the range

{1,2, . . . ,2λ}, where λ = dlogmaxV IDe. If we knew the exact value of d(p−1)
x , we

could sample every new candidate edge witnessed by x with probability 1/d(p−1)
x

to extract exactly one of them in expectation. However, all we know about d(p−1)
x

is that it is at most n. We therefore sample every new candidate edge on a range of

34

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

probabilities. We use an array slots of λ elements (the structure of each element

will be described later in the sequel) indexed by slot-levels from 1 to λ = dlogne to

implement sampling on a range of probabilities. We want a given candidate edge

(x,y) to be sampled into slot-level k with probability 1/2λ−k. When d(p−1)
x ≈ 2λ−k,

with a constant probability there is exactly one candidate edge that gets mapped to

slots[k]. Every new candidate edge e = (x,y) witnessed by x with y ∈ Vp−1 is as-

signed a hash value h(y) by h. A given edge e = (x,y) gets mapped into slots[k],

if h(y) ∈ [2k]. Note that a given candidate edge may be assigned to multiple slot-

levels. In every element of slots, we maintain a tuple (xCount,xName), and xCount

and xName of slots[k] can be accessed as slots[k].xCount and slots[k].xName, re-

spectively.

The field xCount ∈ Z at slot-level k maintains the number of candidate edges with

hash values in [2k]. It is initialized to 0 at the start of the stream. Every time

an update to a candidate edge e = (x,y) with h(y) ∈ [2k] appears on the stream,

slots[k].xCount is updated by adding the eSign value of e to its current value. The

final value of the xCount field is thus given by the following expression:

slots[k].xCount = ∑
(et , eSignt)|et=(x,y) for some y∈Vp−1 and h(y)∈[2k]

eSignt

The field xName at slot-level k is a bit string which maintains the bitwise XOR of

the binary names of all the candidate edges sampled at slot-level k. It is initalized

as an empty string at the start of the stream. Every time an update to a candidate

edge e = (x,y) with h(y) ∈ [2k], y ∈Vp−1, appears on the stream, slots[k].xName is

updated by performing a bitwise XOR of its current value with name(y). The final

value of the xName field is thus given by the following expression:

slots[k].xName =
⊕

(et , eSignt)|et=(x,y) for some y∈Vp−1 and h(y)∈[2k]

name(y)

At the end of the stream, if the slots array is empty, then there are no edges incident

on x that connect it to the set Vp−1 and the FindParent procedure returns φ . (Note

that slots[λ] is an encoding of all the candidate edges incident on x.) If there is a

slot-level k such that slots[k].xCount = 1, then only one candidate edge is mapped

to slot-level k and slots[k].xName gives us the name of the other endpoint of this

edge. The procedure FindParent returns slots[k].xName as a parent of x. If the slots

35

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

array is not empty but there is no slot level with its xCount = 1, then the procedure

FindParent has failed to find a parent for x and returns an error ⊥.

If the input vertex x has a non-zero degree with respect to the set Vp−1, we need

to make sure that for some 1 ≤ k ≤ λ , only one candidate edge will get mapped

to slots[k]. By Corollary 2.8, only one of the d(p−1)
x candidate edge gets mapped

to the set [2k], for k = λ −dlogd(p−1)
x e− 1, with at least a constant probability.

Therefore, a single invocation of FindParent succeeds with at least a constant prob-

ability. Since we are running |Hp| parallel invocations of FindParent, we pick the

output of a successful invocation of procedure FindParent as the parent. (See Sec-

tion 2.3.1; Hp is a set of randomly sampled hash functions.) If multiple invocations

are successful, we use the output of one of them arbitrarily. In the case that all the

invocations of FindParent return an error, the algorithm terminates with an error.

In the sequel we show that when the set Hp is appropriately sized, the event of

all the invocations of procedure FindParent for a given vertex failing has very low

probability.

At the end of phase p, if the algorithm has not terminated with an error, every

vertex x ∈ V unc
p−1 for which we have sampled an edge to the set Vp−1, is added to

the set Vp. Every sampled edge is added to the set Eη

S . The set V unc
p is updated as

V unc
p =V unc

p−1 \Vp.

Lemma 2.13. For |Hp| = c1 log8/7 n for some c1 ≥ 1, at least one of the |Hp| in-

vocations of procedure FindParent for a given vertex in phase p succeeds with

probability at least 1− 1
nc1 .

Proof. The procedure FindParent relies on the ability of the random pairwise hash

function to hash exactly one edge in the target range of [2λ−
⌈

logd(p−1)
x

⌉
−1
]. By Corol-

lary 2.8, this happens with at least a constant probability of 1/8. If we invoke proce-

dure FindParent c1 log8/7 n times in parallel using independently chosen at random

hash functions, then all of them fail with a probability at most (7/8)c1 log8/7 n = 1
nc1 .

Therefore, at least one of the |Hp| invocations succeeds with probability at least

1− 1
nc1 .

Next, we analyze the space requirements of procedure FindParent.

Lemma 2.14. The procedure FindParent uses O(log2 n) bits of memory.

36

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

Proof. The input to this procedure is the ID of a vertex x and a pairwise inde-

pendent hash function h. This consumes O(logn) bits. The procedure also needs

access to the set of vertices Vp−1 of the previous layer. We will not charge this pro-

cedure for the space required for storing Vp−1, since it is output by the phase p−1

and is passed on to phase p as an input. We instead charge phase p−1 globally for

its storage. Similarly, we do not charge each invocation of FindParent in phase p

for the storage of the hash function h. Rather it is charged to phase p globally. In-

side the procedure, the slots vector is an array of length λ and λ = O(logn). Every

element of slots stores two variables xCount and xName each of which consumes

O(logn) bits. Thus the overall space required by this procedure is O(log2 n) bits.

We now proceed to analyzing the space requirements of the entire algorithm.

Lemma 2.15. In each of the η phases, our BFS forest construction algorithm uses

O(n log3 n) memory.

Proof. In any phase p ≥ 1, we try to find a parent for every vertex in the set

V unc
p−1. This requires making multiple simultaneous calls to procedure FindParent.

By Lemma 2.13, we need to make O(logn) parallel calls to procedure FindParent

per vertex. For this we sample O(logn) pairwise independent hash functions. Ev-

ery single pairwise independent hash function requires O(logn) bits of storage

(Lemma 2.6) and thus the set Hp requires O(log2 n) bits of storage. By Lemma 2.14,

a single call to procedure FindParent uses O(log2 n) bits. Thus making O(logn)

parallel calls (by Lemma 2.13) needs O(log3 n) bits per vertex. The set V unc
p−1

has size O(n). Thus the overall cost of all the calls to procedure FindParent is

O(n log3 n). As an output, phase p generates the set Vp and the set of edges belong-

ing to the layer p of the BFS which is then added to the final output set Eη

S . Both

these sets are of size O(n) and each element of these sets requires O(logn) bits.

Thus the cost of maintaining the output of phase p is bounded by O(n logn) bits.

Hence the overall storage cost of phase p is dominated by the calls to procedure

FindParent. The overall storage cost of any phase is therefore O(n log3 n) bits.

In the following lemma, we provide an inductive proof of the correctness of our

algorithm. Recall that |Hp|= c1 log8/7 n, where, c1 > 0 is a positive constant.

37

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

Lemma 2.16. After p phases of the algorithm described in Section 2.3.1, the algo-

rithm has constructed a BFS forest to depth p rooted at S ⊆ V with probability at

least 1− p/nc1−1.

Proof. The proof follows by induction on the number of phases, p, of the algo-

rithm. The base case for p = 0 holds trivially. For the inductive step, we assume

that after k phases of our algorithm, the set of output edges Eη

S forms a BFS forest

to depth k with probability at least 1− k/nc1−1. This implies that all the vertices

within distance k from S have found a parent in the BFS forest with probability

at least 1− k/nc1−1. In phase k + 1, we make |Hk+1| parallel calls to procedure

FindParent for every vertex not yet in the forest. For all the vertices at a distance

more than k+ 1 from the set S, all the calls to procedure FindParent return φ in

phase k+ 1. Let x be a vertex at distance k+ 1 from the set S. By Lemma 2.13,

at least one of the |Hk+1| independent calls to procedure FindParent made for x in

phase k+1 succeeds in finding a parent for x with probability at least 1− 1
nc1 . Since

there can be at most O(n) vertices at distance k+ 1 from set S, by union bound,

phase k+1 fails to find a parent for one of these vertices with probability at most

1/nc1−1. Taking a union bound over the failure probability of first k phases from

induction hypothesis with the failure probability of phase k+1, we get that all the

vertices within distance k+1 from the set S successfully add their parent edges in

the BFS forest to the output set Eη

S with probability at least 1− (k+1)/nc1−1.

Lemmas 2.15 and 2.16 imply the following theorem:

Theorem 2.17. For a sufficiently large positive constant c, given a depth param-

eter η , an input graph G(V,E), and a subset S ⊆ V , the algorithm described in

Section 2.3.1 generates with probability at least 1− 1
nc , a BFS forest of G of depth

η rooted at vertices in the set S in η passes through the dynamic stream using

Oc(n log3 n) space in every pass.

Note also that the space used by the algorithm on different passes can be reused,

i.e., the total space used by the algorithm is Oc(n log3 n).

38

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

2.4 Approximate Bellman-Ford Explorations

In this section, we describe an algorithm for performing a given number of it-

erations of an approximate Bellman-Ford exploration from a given subset S ⊆ V

of source vertices in a weighted undirected graph G(V,E,ω) with aspect ratio Λ.

We assume throughout that the edge weights are positive numbers between 1 and

maxW . Note that Λ ≤ (n− 1) ·maxW . Recall that for a pair u,v ∈ V of distinct

vertices and an integer t ≥ 0, the t-bounded distance between u and v in G, denoted

d(t)
G (u,v), is the length of a shortest t-bounded u-v path in G. (See Definitions 2.4

and 2.5.) For a given vertex v ∈V and a set S⊆V , the t-bounded distance between

v and S in G, denoted d(t)
G (v,S), is the length of a shortest t-bounded path between

v and some s ∈ S such that d(t)
G (v,s) = min{d(t)

G (s′,v) | s′ ∈ S}.

2.4.1 General Outline

Given an n-vertex weighted graph G(V,E,ω), a set S ⊆ V of vertices, an integer

parameter η > 0 and an error parameter ζ ≥ 0, an (η ,ζ)-Bellman-Ford exploration

(henceforth, BFE) of G rooted at S outputs for every vertex v ∈ V , a (1 + ζ)-

approximation of its η-bounded distance to to the set S. Throughout the execution

of our algorithm, we maintain two variables for each vertex v ∈V . One of them is

a current estimate of v’s η-bounded distance to set S, denoted d̂(v), and the other

is the ID of v’s neighbour through which it gets its current estimate, denoted p̂(v),

and called the parent of v.

We start by initializing d̂(s) = 0, p̂(s) =⊥, for each s ∈ S and d̂(v) = ∞, d̂(v) =⊥
for each v ∈V \S. As the algorithm proceeds, d̂(v) and p̂(v) values of every vertex

v ∈V \S are updated to reflect the current best estimate of v’s η-bounded distance

to the set S. The final value of d̂(v) for each v ∈ V is such that d(t)
G (v,S) ≤ d̂(v) ≤

(1+ζ) ·d(t)
G (v,S), and the final value of p̂(v) for each v ∈V contains the ID of v’s

parent on the forest spanned by (η ,ζ)-BFE of G rooted at the set S.

The algorithm proceeds in phases, indexed by p, 1 ≤ p ≤ η . We make one pass

through the stream in each phase.

Phase p: In every phase, we search for every vertex v ∈ V \ S, a better (smaller

than the current value of d̂(v)) estimate (if exists) of its η-bounded distance to the

39

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

set S, by keeping track of updates to edges e = (v,u) incident to v. Specifically,

we divide the search space of potential better estimates, [1,2 ·Λ], into sub-ranges

I j =
(
(1+ζ ′) j, (1+ζ ′) j+1

]
, for j ∈ {0,1, . . . ,γ}, where γ = dlog1+ζ ′ 2 ·Λe− 1

and ζ ′ is set to ζ/2η for technical reasons to be expounded later in the sequel.

For j = 0, we make the sub-range I0 =
[
(1+ζ ′)0,(1+ζ ′)1

]
closed to include the

value 1. Recall that we are doing a (1+ζ)-approximate Bellman-Ford exploration

(and not an exact one). Due to this, some of the better estimates we get in a given

phase may be between Λ and (1+ζ) ·Λ≤ 2 ·Λ, where Λ is the aspect ratio of the

input graph. We therefore keep our search space from 1 to 2Λ instead of Λ.

In more detail, we make for for each v∈V \S, γ guesses, one for each sub-range. In

a specific guess for a vertex v corresponding to sub-range
(
(1+ζ ′) j, (1+ζ ′) j+1

]
for some j, we make multiple simultaneous calls to a randomized procedure called

GuessDistance which samples an edge (if exists) between v and some vertex u such

that

d̂(u)+ω(v,u) ∈ I j.

The exact number of calls we make to procedure GuessDistance in each guess will

be specified later in the sequel.

The smallest index j ∈ [0,γ], for which the corresponding guess denoted Guess(j)
v

successfully samples an edge which gives a distance estimate better than the current

estimate of v, is chosen to update d̂(v).

The pseudocode for procedure GuessDistance is given in Algorithm 2. Its verbal

description is provided right after that.

The procedure GuessDistance can be viewed as an adaptation of procedure Find-

Parent from Section 2.3.2 for weighted graphs. It enables us to find an estimate of

η-bounded distance of an input vertex x to the set S in a given range of distances. It

takes as input the ID of a vertex, a hash function h chosen at random from a family

of pairwise independent hash functions and an input range I = (low,high]. (The

input range may be closed as well.) A successful invocation of procedure Guess-

Distance for an input vertex x and input range I, returns a tuple (dist, parent), (if

there is at least one edge (x,y) in G such that d̂(y)+ω(x,y) ∈ I, and φ otherwise),

where dist is an estimate of x’s η-bounded distance to the set S in the range I, and

parent is the parent of x in the forest spanned by (η ,ζ)-BFE of G rooted at set S.

40

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

Algorithm 2 Pseudocode for Procedure GuessDistance

1: Procedure GuessDistance(x,h, I)
. Initialization

2: slots← /0 . An array with λ elements indexed from 1 to λ , where λ = dlogne.
. Each element of slots is a tuple (xCount,xDist,xName). For a given index

1 ≤ k ≤ λ , fields xCount, xDist and xName of slots[k] can be accessed as

slots[k].xCount, slots[k].xDist and slots[k].xName, respectively.

3:

. slots[k].xCount is the number of sampled edges (x,y) with h(y) ∈ [2k]. Ini-

tially, it is set to 0.

. slots[k].xDist is the distance estimate for x provided by an edge (x,y) with

h(y) ∈ [2k]. initially, it is set to 0.

. slots[k].xName is encoding of the names of the endpoints y of sampled edges

(x,y) with h(y) ∈ [2k]. Initially, it is set to φ .

. Update Stage

4: while (there is some update (et , eSignt , eWeightt) in the stream) do
5: if (et is incident on x and some y such that d̂(y)+ eWeightt ∈ I) then
6: k← dlogh(y)e
7: repeat
8: slots[k].xCount← slots[k].xCount + eSignt

9: slots[k].xDist← slots[k].xDist +(d̂(y)+ eWeightt) · eSignt

10: slots[k].xName← slots[k].xName
⊕

name(y)

11: k = k+1

12: until k > λ

. Recovery Stage

13: if (slots array is empty) then
14: return (φ ,φ)

15: else if (∃ index k | slots[k].xCount = 1) then
16: return (slots[k].xDist,slots[k].xName)

17: else
18: return (⊥,⊥)

The procedure GuessDistance may fail to return (with a constant probability) a

distance estimate in the desired range, even when such an estimate exists. It returns

an error, denoted by (⊥,⊥), in that case.
41

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

As we did for procedure FindParent in Section 2.3, before we start making calls

to procedure GuessDistance, we sample uniformly at random a set of functions

Hp of size c1 log8/7 n from a family of pairwise independent hash functions h :

{1, . . . ,maxV ID} → {1, . . . ,2λ}, where λ = dlogne and c1 is an appropriate con-

stant. For every guess for a given vertex x∈V \S and a given subrange I j, we make

|Hp| parallel calls to procedure GuessDistance, one for each h ∈ Hp, to get an es-

timate of d(η)
G (x,S) in the given subrange. The multiple parallel calls are required

since a single call to procedure GuessDistance succeeds only with a constant prob-

ability, while we need to succeed with high probability.

Additionally, before we start the phase p, we create for each v ∈V \S, a copy d̂′(v)

of its current distance estimate d̂(v). Any update to the distance estimate of a vertex

v during phase p is made to its shadow distance estimate d̂′(v). On the other hand,

the variable d̂(v) for vertex v ∈ V \ S remains unchanged during the execution of

phase p. At the end of phase p, we update d̂(v) as d̂(v) = d̂′(v). The purpose of

using the shadow variable is to avoid any issues arising due to simultaneous reading

from and writing to the distance estimate variable of a vertex by multiple parallel

calls to procedure GuessDistance.

2.4.2 Procedure GuessDistance

The overall structure and technique of procedure GuessDistance is similar to that

of procedure FindParent. (See Section 2.3.2.) For a given vertex x, and a given

distance range I, let y ∈ ΓG(x) be such that

d̂(y)+ω(x,y) ∈ I (2.2)

In what follows, we will refer to a vertex y ∈ ΓG(x) for which Equation 2.2 holds

as a candidate neighbour and the corresponding edge (x,y) as a candidate edge in

the range I. For a given vertex x, let c(p, j)
x be the number of candidate neighbours

of x in the sub-range I j. A call to procedure GuessDistance for vertex x with input

range I = I j works by sampling a candidate neighbour with probability 1
c(p, j)

x
. As

described in Section 2.3.2, one of the ways to sample with a given probability in

a dynamic streaming setting is to use hash functions. We therefore use a pairwise

independent hash function as in Section 2.3.2 to assign hash values to the candidate

edges in the range {1, . . . ,2λ}, where λ = dlogne. As in the case of FindParent,

42

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

we only know an upper bound of n and not the exact value of c(p, j)
x . Therefore, we

try to guess c(p, j)
x on a geometric scale of values 2λ−k, k = 1,2, . . . ,λ , and sample

every candidate neighbour on a range of probabilities corresponding to our guesses

of c(p, j)
x . To implement sampling on a range of probabilities, we use an array slots

of λ elements indexed by slot-levels from 1 to λ . Every new candidate neighbour

y witnessed by x is assigned a hash value h(y) by h.

In every element of slots, we maintain a tuple (xCount,xDist,xName), and xCount,

xDist and xName of slots[k] can be accessed as slots[k].xCount, slots[k].xDist and

slots[k].xName, respectively.

The variable xCount ∈ Z at slot-level k maintains the number of candidate neigh-

bours with hash values in [2k]. It is initialized to 0 at the beginning of the stream.

Every time an update to a candidate edge et = (x,y) with h(y) ∈ [2k] appears on

the stream, slots[k].xCount is updated by adding the eSignt value of et to its cur-

rent value. The variable xDist at slot-level k is an estimate of η-bounded distance

of x limited to the input distance range I provided by edge (x,y) with h(y) ∈ [2k].

Initially, it is set to 0. Every time an update to a candidate edge et = (x,y) with

h(y) ∈ [2k] appears on the stream, slots[k].xDist is updated by adding the value of

the expression (d̂(y)+ eWeightt) · eSignt to its current value. (Recall that it is ini-

tialized as 0.) The variable xName is encoding of the names of endpoints y of the

sampled edges (x,y) with h(y)∈ [2k]. It is set to φ initially. Every time an update to

a candidate edge et = (x,y) with h(y) ∈ [2k] appears on the stream, slots[k].xName

is updated by performing a bitwise XOR of its current value with name(y).

At the end of the stream, if the slots array is empty, then there are no candidate

neighbours in ΓG(x) and the procedure GuessDistance returns (φ ,φ) (see lines 13

and 14 of Algprothm 2.). If there is a slot-level k such that slots[k].xCount = 1

(Line 15 of Algorithm 2), then only one candidate neighbour is mapped to slot-

level k. In this case, slots[k].xDist gives us an estimate of x’s η-bounded distance

to the set S in the input distance range I, and slots[k].xName gives us the name of

x’s parent on the forest spanned by the (η ,ζ)-BFE of G rooted at set S. Indeed, if

no smaller scale estimate will be discovered, the vertex recorded in slots[k].xName

will become the parent of x in the forest. The procedure GuessDistance returns

(slots[k].xDist,slots[k].xName). If the slots vector is not empty but there is no

43

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

slot level with xCount = 1, then the procedure GuessDistance has failed to find a

distance estimate in the input range I for x, and thus it returns an error (⊥,⊥).

If the input vertex x has some candidate neighbours in the input distance range, we

need to make sure that for some 1≤ k ≤ λ , only one candidate neighbour will get

mapped to slots[k]. By Corollary 2.8, only one of the c(p, j)
x candidate neighbours

gets mapped to the set [2k], for k = λ −dlogc(p, j)
x e− 1, with at least a constant

probability. Therefore, a single invocation of procedure GuessDistance for a given

vertex x and a given distance range succeeds with at least a constant probability.

Since we are running |Hp| parallel invocations of procedure GuessDistance for a

given input vertex x and a given distance range I, we pick the output of a successful

invocation of procedure GuessDistance as an estimate for x in the input range. If

multiple invocations in a guess are successful, we use the output of the one with

the smallest return value. In the case that all the invocations of GuessDistance in

a guess return an error, the algorithm terminates with an error. In the sequel we

show that when the set Hp is appropriately sized, the event of all the invocations of

procedure GuessDistance in a given guess failing has a very low probability.

Once all the γ = O(logΛ

ζ ′) guesses for a given vertex x have completed their execu-

tion without failure, we pick the smallest index j for which the corresponding guess

guess(j)
x has returned a finite (non-failure) value, and compare this value with d̂(x).

If this value gives a better estimate than the current value of d̂(x), we update the

corresponding shadow variable d̂′(x), and the parent variable p̂(x). At the end of

phase p, if the algorithm has not terminated with an error, for every vertex x∈V \S,

we update its current distance estimate variable with the value in the corresponding

shadow variable as d̂(x) = d̂′(x).

In the following lemma, we analyze the success probability of guessing the η-

bounded distance of a specific vertex in a given distance range in phase p.

Lemma 2.18. For |Hp|= c1 log8/7 n for some c1 ≥ 1, at least one of the |Hp| invo-

cations of procedure GuessDistance in a given guess for a vertex x, and distance

sub-range I j =
(
(1+ζ ′) j, (1+ζ ′) j+1

]
for some j, in a specific phase p succeeds

with probability at least 1− 1
nc1 .

Proof. The procedure GuessDistance relies on the ability of the random pair-

wise independent hash function to hash exactly one edge in the target range of

44

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

[2λ−
⌈

logc(p, j)
x

⌉
−1
]. By Corollary 2.8, this happens with at least a constant probability

of 1/8. If we invoke procedure GuessDistance c1 log8/7 n times in parallel using

independently chosen at random hash functions, then all of them fail with a prob-

ability at most (7/8)c1 log8/7 n = 1
nc1 . Therefore, at least one of the |Hp| invocations

succeeds with probability at least 1− 1
nc1 .

Next, we analyze the space requirements of procedure GuessDistance.

Lemma 2.19. The procedure GuessDistance uses O(logn(logn+ logΛ)) bits of

memory.

Proof. The input to this procedure is the ID of a vertex x, a pairwise independent

hash function h and variables low and high, that define the input range I. The

ID of the vertex and the representation of the hash function h consume O(logn)

bits. The variables low and high correspond to distances in the input graph and are

upper bounded by the aspect ratio Λ of the graph. Therefore both these variables

consume O(logΛ) bits each. We do not charge each invocation of GuessDistance

in phase p for the storage of the hash function h. Rather it is charged to phase p

globally. Inside the procedure, the slots vector is an array of length λ and λ =

O(logn). Every element of slots stores three variables xCount, xDist and xName.

The variables xCount and xName consume O(logn) bits. The variable xDist is a

distance estimate and thus consumes O(logΛ) bits. Thus the overall space required

by this procedure is O(logn(logn+ logΛ)) bits.

We now proceed to analyzing the space requirements of the entire algorithm.

Lemma 2.20. In each of the η phases, our approximate Bellman-Ford exploration

algorithm uses O(n · log2 n logΛ

ζ ′ (logn+ logΛ)) bits of memory.

Proof. In any phase p ≥ 1, we search for a possible better estimate (if exists) of

dη

G(v,S) for every vertex v ∈ V \ S. This requires making γ = dlog(1+ζ ′) 2 ·Λe− 1

guesses. Each guess in turn makes |Hp| = c1 log8/7 n simultaneous calls to proce-

dure GuessDistance. Therefore, in total, we make O(log1+ζ ′ Λ · log8/7 n) parallel

calls to procedure GuessDistance for each v ∈ V \ S. By Lemma 2.19, a single

call to procedure GuessDistance uses O(logn(logn+ logΛ)) bits. Thus making

O(log1+ζ ′ Λ · log8/7 n) parallel calls needs O(log2 n log1+ζ ′ Λ(logn + logΛ)) bits

per vertex.

45

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

We sample O(log8/7 n) pairwise independent hash functions. Every single pairwise

independent hash function requires O(logn) bits of storage (Lemma 2.6) and thus

the set Hp requires O(log2 n) bits of storage. We also store three variables d̂(v),

d̂′(v) and p̂(v) for every vertex v ∈ V \ S. Each of the distance variables d̂(v)

and d̂′(v) uses O(logΛ) bits, making the overall cost of their storage O(n logΛ).

Each of the parent variables p̂(v) uses O(logn) bits, making the overall cost of

their storage O(n logn). Hence the overall storage cost of phase p is dominated

by the calls to procedure GuessDistance. The overall storage cost of any phase is

therefore O(n · log2 n · log1+ζ ′ Λ(logn+ logΛ)) bits.

Observe that the space used in one phase can be reused in the next phase, and this

bound is the total space complexity of the algorithm.

In the following lemma, we provide an inductive proof of the correctness of our

algorithm. Recall that |Hp| = c1 log8/7 n, where c1 > 0 is a positive constant, and

that ζ ′ = ζ/2η .

Lemma 2.21. After p phases of our approximate Bellman-Ford exploration algo-

rithm, the following holds for every vertex v within p hops from the set S of source

vertices:

d(p)
G (v,S)≤ d̂(v)≤ (1+ζ

′)p ·d(p)
G (v,S),

with probability at least 1− p/nc1−1. (The left-hand inequality holds with proba-

bility 1, and the right-hand inequality holds with probability at least 1− p/nc1−1.)

Proof. The proof follows by induction on the number of phases, p, of the algo-

rithm. The base case for p = 0 holds trivially. For the inductive step, we assume

that after k phases of our algorithm, with probability at least 1− k/nc1−1, the fol-

lowing holds: For every vertex v within k hops from the set S,

d(k)
G (v,S)≤ d̂(v)≤ (1+ζ

′)k ·d(k)
G (v,S).

In phase k+1, we make γ guesses of a new (better) estimate for every v∈V \S. We

then update the current estimate d̂(v) of v with the smallest guessed value which is

better (if any) than the current estimate. Denote by u∈ ΓG(v) the neighbour of v on

a shortest (k+1)-bounded path from v to the set S. By inductive hypothesis, with

probability at least 1− k/nc1−1, all k-bounded estimates provide stretch at most

46

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

(1+ζ ′)k. In particular, d(k)
G (u,S)≤ d̂(u)≤ (1+ζ ′)k ·d(k)

G (u,S). Denote by j = jv,

the index of a sub-range such that

d̂(u)+ω(u,v) ∈ I j.

During the execution of the jth guess for vertex v in phase k+1, we sample a can-

didate neighbour u′ ∈ ΓG(v) such that d̂(u′)+ω(u′,v) ∈ I j. Note that u is also a

candidate neighbour. By Lemma 2.18, the probability that the procedure Guess-

Distance fails to find a distance estimate for vertex v in this sub-range is at most

1/nc1 . By union-bound, the probability that for for some vertex v ∈ V \ S, we fail

to find an estimate for d(k+1)
G (v,S) in the appropriate sub-range is at most 1/nc1−1.

(Our overall probability of failing to find an estimate of d(k+1)
G (v,S) for some vertex

v in the appropriate sub-range is therefore at most 1/nc1−1 plus k/nc1−1 from the

inductive hypothesis. In total, the failure probability is at most k+1
nc1−1 , as required.)

We assume henceforth that the jth guess for vertex v is successful.

By induction hypothesis, d̂(u)≤ (1+ζ ′)k ·d(k)
G (u,S). Therefore,

d̂(u)+ω(u,v)≤ (1+ζ
′)k ·d(k)

G (u,S)+ω(u,v)

≤ (1+ζ
′)k · (d(k)

G (u,S)+ω(u,v))

= (1+ζ
′)k ·d(k+1)

G (v,S).

Moreover, (d̂(u′)+ω(u′,v)) and (d̂(u)+ω(u,v)) belong to the same sub-range I j,

and thus,

d̂(u′)+ω(u′,v)≤ (1+ζ
′) · (d̂(u)+ω(u,v))≤ (1+ζ

′)k+1 ·d(k+1)
G (v,S).

For the lower bound, let i ≤ j be the minimum index such that procedure Guess-

Distance succeeds in finding a neighbour u′i of v with (d̂(u′i)+ω(u′i,v)) ∈ Ii. Then,

with probability 1 we have, d̂(u′i)≥ d(k)
G (u′i,S), and thus,

d̂(v) = d̂(u′i)+ω(u′i,v)≥ d(k)
G (u′i,S)+ω(u′i,v)≥ d(k+1)

G (v,S).

Lemmas 2.20 and 2.21 imply the following Theorem:

Theorem 2.22. For a sufficiently large positive constant c, given an integer pa-

rameter η , an error parameter ζ , an input graph G(V,E,ω), and a subset S ⊆V ,

47

Chapter 2. Approximate Shortest Paths-Nuts and Bolts

the algorithm described in Section 2.4.1 performs, with probability at least 1− 1
nc ,

a (1+ζ)-approximate Bellman-Ford exploration of G rooted at the set S to depth

η , and outputs for every v ∈ V , an estimate d̂(v) of its distance to set S and v’s

parent p̂(v) on the forest spanned by this exploration such that

d(η)
G (v,S)≤ d̂(v)≤ (1+ζ) ·d(η)

G (v,S)

in η passes through the dynamic stream using

Oc(η/ζ · log2 n · logΛ(logn+ logΛ)) space in every pass.

The stretch and the space bound follow from Lemmas 2.20 and 2.21 by substituting

ζ ′ = ζ

2η
. Note also that the space used by the algorithm on different passes can be

reused, i.e., the total space used by the algorithm is Oc(η/ζ · log2 n · logΛ(logn+

logΛ)) .

48

3
Approximate Shortest Paths in
Unweighted Graphs

In this chapter, we present an algorithm for constructing near-additive spanners in

dynamic streams and show how a near-additive spanner can be used to compute

approximate shortest paths from a set S⊂V of source vertices.

3.1 Construction of Near-Additive Spanners

We use the superclustering and interconnection approach introduced by Elkin and

Peleg in (26), which was later refined by Elkin and Neiman (22) (randomized ver-

sion) and Elkin and Matar (21) (deterministic version). Specifically, we adapt the

randomized algorithm of (22) to work in the dynamic streaming setting. The main

ingredient of both the superclustering and interconnection steps is a set of BFS ex-

plorations up to a given depth in the input graph from a set of chosen vertices. As

was shown in (22), their algorithm for constructing near-additive spanners can be

easily modified to work with the insertion-only streaming model. This is done by

identifying the edges spanned by each of the BFS explorations of depth δ (for an

integer parameter δ ≥ 1) by making δ passes through the stream. Other parts of

the spanner construction, such as identifying the vertices of the graph from which

to perform BFS explorations and subsequently adding a subset of edges spanned

by these explorations to the spanner, can be performed offline. Given parameters

ε > 0, κ = 1,2, . . . and 1/κ ≤ ρ < 1/2, the basic version of their streaming algo-

49

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

rithm constructs a spanner with the same stretch and size as their centralized algo-

rithm, using O(n1+ρ · logn) space whp and O(β) passes through the stream. Recall

that β = β (ε,κ) is defined as β = O(logκ

ε
)logκ (See also Section 2.1). They also

provide a slightly different variant of their streaming algorithm which allows one

to trade space for the number of passes. This variant uses only O(n logn+ n1+ 1
κ)

expected space, but it requires O((nρ/ρ) · logn ·β) passes.

We devise a technique to perform BFS traversals up to a given depth from a set

of chosen vertices in the graph in the dynamic streaming setting, and as in (22),

perform the rest of the work offline. The algorithm for creating a BFS forest start-

ing from a subset of vertices in the graph is described in Section 2.3. We use the

algorithm for creating a BFS forest from a subset of vertices as a subroutine in the

superclustering step of our main algorithm. An even bigger challenge we face is

during the interconnection step, where each vertex in the graph needs to identify

all the BFS explorations it is a part of, and find its path to the source of each such

exploration. Due to the dynamic nature of the stream, a given vertex may find it-

self on a lot more explorations than it finally ends up belonging to. We deal with

this problem by combining a delicate encoding/decoding scheme for the IDs of

exploration sources with a space-efficient sampling technique.

We first provide a high-level overview of the algorithm for constructing the span-

ner (26; 22; 21).

Let G = (V,E) be an unweighted, undirected graph on n vertices and let ε >

0, κ = 2,3, . . . and 1/κ ≤ ρ < 1/2 be parameters. The algorithm constructs

a sparse (1+ ε,β) spanner H = (V,EH), where β =
(

logκρ+1/ρ

ε

)logκρ+1/ρ

and

|EH |= Oε,κ

(
n1+1/κ

)
.

The algorithm begins by initializing EH as an empty set and proceeds in phases. It

starts by partitioning the vertex set V into singleton clusters P0 = {{v} | v ∈ V}.
Each phase i for i= 0, . . . , `, receives as input a collection of clusters Pi, the distance

threshold parameter δi and the degree parameter degi. The maximum phase index

` is set as `= blogκρc+ dκ+1
κρ
e−1. The values of δi and di for i = 0,1, . . . , `, will

be specified later in the sequel.

In each phase, the algorithm samples a set of clusters from Pi and these sam-

pled clusters join the nearby unsampled clusters to create bigger clusters called

50

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

superclusters. Every cluster created by our algorithm has a designated center ver-

tex. We denote by rC the center of cluster C and say that C is centered around

rC. In particular, each singleton cluster C = {v} is centered around v. For a

cluster C, we define Rad(C) = max{dH(rC,v) | v ∈ C}. For a set of clusters Pi,

Rad(Pi) = max
C∈Pi
{Rad(C)}. For a collection Pi, we denote by CPi the set of centers

of clusters in Pi, i.e., CPi = {rC | C ∈ Pi}. A cluster C ∈ Pi centered around rC is

considered close to another cluster C′ ∈ Pi centered around rC′ , if dG(rC,rC′)≤ δi.

Each phase i, except for the last one, consists of two steps, the superclustering

step and the interconnection step. For a given set of clusters, interconnecting every

pair of clusters within a specific distance from each other by adding shortest paths

between their respective centers to the spanner guarantees a pretty good stretch

for all the vertices in these clusters. However, if a center is close to a lot of other

centers, i.e., it is popular, interconnecting it to all the nearby centers can add a lot

of edges to the spanner. In order to avoid adding too many edges to the spanner

while maintaining a good stretch, the process of interconnecting nearby clusters is

preceded by the process of superclustering.

The superclustering step of phase i randomly samples a set of clusters in Pi and

builds larger clusters around them. The sampling probabilities will be specified in

the sequel. For each new cluster C, a BFS tree of C is added to the spanner H. The

collection of the new larger clusters is passed on as input to phase i+1.

In the interconnection step of phase i, the clusters that were not superclustered in

this phase are connected to their nearby clusters. For each cluster center rC that was

not superclustered, paths to all the nearby centers in CPi (whether superclustered

or not) are added to the spanner H. Since rC was not superclustered, it does not

have any sampled cluster centers nearby, as otherwise such a center would have

superclustered it. This ensures that, with high probability, we do not add too many

edges to the spanner during the interconnection step.

In the last phase ` the superclustering step in skipped and we go directly to the

interconnection step. As is shown in (22), the input set of clusters to the last phase

P̀ is sufficiently small to allow us to interconnect all the centers in P̀ to one another

using few edges.

51

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

Next we describe the input parameters, the degree parameter di and the distance

threshold parameter δi of the phase i, for each i = 0,1, . . . , `. The distance thresh-

old parameter δi is defined as δi = (1/ε)i + 4Ri, where Ri is determined by the

following recurrence relation: R0 = 0, Ri+1 = Ri + δi. As is shown in (22), Ri is

an upper bound on the radius of the clusters in Pi. The distance threshold param-

eter δi determines the radii of superclusters, and it also affects the definition of

nearby clusters for the interconnection step. The degree threshold parameter degi

of phase i is used to define the sampling probability with which the centers of clus-

ters in Pi are selected to grow superclusters around them. Specifically, in phase i,

i = 0,1, . . . `−1, each cluster center rC ∈CPi is sampled independently at random

with probability 1/degi. The sampling probability affects the number of superclus-

ters created in each phase and hence the number of phases of the algorithm. It also

affects the number of edges added to the spanner during the interconnection step.

We partition the first `−1 phases into two stages based on how the degree parame-

ter grows in each stage. The two stages of the algorithm are the exponential growth

stage and the fixed grown stage. In the exponential growth stage, which consists of

phases 0,1, . . . , i0 = logbκρc, we set degi = n
2i
κ . In the fixed growth stage, which

consists of phases i0+1, i0+2, . . . , i1 = i0+dκ+1
κρ
e, we set degi = nρ . Observe that

for every index i, we have degi ≤ nρ .

3.1.1 Superclustering

In this section, we describe how the superclustering step of each phase i∈{0,1, . . . , `−
1} is executed. The input to phase i is a set of clusters Pi. The phase i begins by

sampling each cluster C ∈ Pi independently at random (henceforth, i.a.r.) with

probability 1/degi. Let Si denote the set of sampled clusters. We now have to

conduct a BFS exploration to depth δi in G rooted at the set CSi =
⋃

C∈Si

{rC}. At

this point, we need to move to the dynamic stream to extract the edges of our BFS

exploration. To do so, we invoke the BFS construction algorithm described in Sec-

tion 2.3.1 with η = δi and the set S =CSi as input. As a result a forest Fi rooted at

the centers of the clusters in Si is constructed. By Theorem 2.17, the construction

fo Fi requires δi passes and O(n log3 n) space whp.

52

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

For an unsampled cluster center rC′ of a cluster C′ ∈ Pi \Si such that rC′ is spanned

by Fi, let rC be the root of the forest tree in Fi to which rC′ belongs. The cluster

C′ now gets superclustered into a cluster Ĉ centered around rC. The center rC of

C becomes the new cluster center of Ĉ, i.e., rĈ = rC. The vertex set of the new

supercluster Ĉ is the union of the vertex set of the original cluster C, with the

vertex sets of all clusters C′ which are superclustered into Ĉ. We denote by V (C)

the vertex set of a cluster C. For every cluster center rC′ that is spanned by the tree

in Fi rooted at rC, the path in Fi from rC to rC′ is added to the edge set EH of our

spanner H. Recall that EH is initialized as an empty set (See Section 3.1.).

Let P̂i denote the set of new superclusters Ĉ, that were created by the supercluster-

ing step of phase i. We set Pi+1 = P̂i. By Theorem 2.17, the superclustering step of

phase i generates whp, a forest of the input graph G(V,E), rooted at the set CSi ⊆V

in δi passes. We conclude that:

Lemma 3.1. For a given set of sampled cluster centers CSi ⊆V and a sufficiently

large constant c, the superclustering step of phase i builds with probability at least

1− 1/nc, disjoint superclusters that contain all the clusters with centers within

distance δi from the set of centers CSi. It does so in δi passes through the stream,

using Oc(n log3 n) space in every pass.

3.1.2 Interconnection

Next we describe the interconnection step of each phase i ∈ {0,1, . . . , `}. Let Ui

denote the set of clusters of Pi that were not superclustered into clusters of P̂i. For

the phase `, the superclustering step is skipped and we set U` = P̀ .

In the interconnection step of phase i≥ 1, we want to connect every cluster C ∈Ui

to every other cluster C′ ∈ Pi that is close to it. To do this, every cluster center rC of

a cluster C ∈Ui performs a BFS exploration up to depth 1
2 δi, i.e., half the depth of

BFS exploration which took place in the superclustering step, as in (22). For each

cluster center rC′ of some cluster C′ ∈ Pi which is discovered by the exploration

initiated in rC, the shortest path between rC and rC′ is inserted into the edge set EH

of our spanner. In the first phase i = 0, however, we set the exploration depth δ0 to

1, i.e., to the same value as in the superclustering step. Essentially, for every vertex

v ∈U0, we add edges to all its neighbours to H.

53

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

Having identified the members of Ui, we turn to the stream to find the edges be-

longing to the BFS explorations performed by the centers of clusters in Ui. The

problem here is that we need to perform many BFS explorations in parallel. More

precisely, there are up to |Pi| explorations in phase i. By Lemma 3.5 of (22),

|Pi| = n1− 2i−1
κ in expectation for i ∈ {0,1, . . . , i0} and |Pi| ≤ n1+1/κ−(i−i0)ρ in ex-

pectation for i ∈ {i0 + 1, i0 + 2, . . . , `}. Recall that i0 = blogκρc. Invoking Theo-

rem 2.17 for η = δi/2, S = {rC}, for some cluster center rC of a cluster in Ui, a BFS

exploration of depth δi/2, rooted at rC requires O(n log3 n) space and δi/2 passes.

Running |Pi| explorations in G requires either O(|Pi| · n log3 n) space or |Pi| · δi/2

passes. Both these resource requirements are prohibitively large.

We state the following Lemma from (22) here for completeness.

We refer the reader to (22) for the proof.

Lemma 3.2 ((22)). For any vertex v ∈V , the expected number of explorations that

visit v in the interconnection step of phase i is at most degi. Moreover, for any

constant c′1, with probability at least 1− 1/nc′1−1, no vertex v is explored by more

than c′1 · lnn ·di explorations in phase i.

In (22), Lemma 3.2 is used to argue that the overall space used by their streaming

algorithm in phase i is O(n ·degi logn) in expectation. Furthermore, since degi≤ nρ

for all i∈ {0,1, . . . , `}, the space used by their streaming algorithm is O(n1+ρ logn)

in expectation in every pass. Unfortunately, this argument does not help us to

bound the space usage of our algorithm in the dynamic setting. When edges may

appear as well as disappear, a given vertex v may appear on a lot more explorations

than degi as the stream progresses. Lemma 3.2 only guarantees that ultimately

paths to at most degi centers in Ui will survive for v in expectation. If we record for

every v ∈V , all the explorations passing through v to identify the ones that finally

survive, we incur a cost of O(|Pi| ·n log3 n) space for interconnection during phase

i, which is prohibitively large.

To tackle this problem, we devise a randomized technique for every vertex to ef-

ficiently identify all the (surviving) explorations that it gets visited by in phase i.

For every vertex v ∈ V with a non-empty subset Uv
i ⊆Ui of explorations that visit

v, we find for every cluster C ∈Uv
i , a neighbour of v on a shortest path between v

and the center rC of C. (See Figure 3.1.)

54

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

Figure 3.1: A cluster C ∈Uv
i . The algorithm finds the neighbour u of v on the

shortest rC− v path.

Throughout the interconnection step of phase i, we maintain for each vertex v ∈V ,

a running set Lv of exploration sources that visited v. Each vertex s in Lv is a center

of a cluster C ∈Ui. We will call the set Lv the visitor list of v. Initially the visitor

lists of all the vertices are empty, except for the centers of clusters in Ui. The center

rC of every C ∈Ui is initialized with a single element rC in its visitor list.

The interconnection step of phase i is carried out in bδi/2c sub-phases. Each sub-

phase of the interconnection step makes two passes through the stream. In the

following section, we describe the purpose of each of the bδi/2c sub-phases of the

interconnection step and the way they are carried out.

Sub-phase j of interconnection step

We discover the edges belonging to the layer j of interconnection in the sub-phase

j. By layer j of interconnection, we mean the set containing every vertex v in V ,

whose distance to one or more cluster centers in Ui is exactly j. Note that a given

vertex v may belong to more than one layer of interconnection since it may be at

different distances from different exploration sources, and we need to identify all

the exploration sources in Ui that are within distance bδi/2c from v.

The information regarding the jth layer of interconnection is stored in a set called

S j. Formally, the set S j consists of tuples of the form (v,s,k), where s is an ex-

ploration source at distance j from v, and k is the number of neighbours of v at

a distance j− 1 from s. While the visitor list Lv of a specific vertex v ∈ V main-

tains a list of all the exploration sources that visit v in all the sub-phases of the

interconnection step, the set S j is a global list that stores for each vertex v ∈V , the

information about the exploration sources that visited v during sub-phase j.

55

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

Before we start the sub-phase j, we create for each v ∈V , a copy L′v of its running

visitor list Lv. Any new explorations discovered during the sub-phase j are added

to the shadow visitor list L′v. Specifically, Lv is the list of those cluster centers from

Ui whose explorations visited v before sub-phase j started, and L′v is the list of those

centers that visited v on one of the first j sub-phases.

In each of the bδi/2c sub-phases, we make two passes through the stream. In

the first pass of sub-phase j, we construct the set S j. In more detail, for each

vertex v ∈V , we use a sampler repeatedly in parallel (the exact number of parallel

repetitions will be specified later in the sequel) to extract whp all the exploration

sources (if there are any) at a distance j from v. A tuple (v,s,kv), for some kv ≥ 1,

is added to the set S j for every source s extracted by the sampler. The visitor list

Lv of v is also updated with the new exploration sources that were observed in this

sub-phase. Specifically, all newly observed exploration sources are added to L′v. At

the end of the sub-phase we set Lv← L′v.

The second pass of sub-phase j uses the sets S j and S j−1 to find for every v ∈ S j,

its parent on every exploration whose source is at distance j from v. Note that a

parent of v on an exploration rooted at the source s is a vertex at distance j−1 from

s. Therefore, we need the set S j−1 to extract an edge between v and some vertex u

such that a tuple (u,s,ku), for some ku ≥ 1, belongs to the set S j−1.

The set S j−1, which is constructed during the first pass of phase j− 1, is used as

an input for the second pass of phases j− 1 and j. It is therefore kept in global

storage until the end of phase j.

We next describe how we construct the set S j during the first pass of sub-phase j.

First pass of sub-phase j of phase i: Let c′1 be a sufficiently large positive con-

stant (See Lemma 3.2.), and let Ni = c′1 · degi · lnn. For each v ∈ V , we make

µi = 16 ·c4 ·Ni · lnn attempts in parallel, for some sufficiently large constant c4≥ 1.

In each attempt, we invoke a randomized procedure FindNewVisitor to find an

exploration source in Ui at a distance j from v. The pseudocode for procedure

FindNewVisitor is given in Algorithm 3. The procedure FindNewVisitor takes as

input the ID of a vertex v and a hash function h, chosen at random from a family of

pairwise independent hash functions. It returns a tuple (s,ds), where s is the ID of

an exploration source at distance j from v, and ds is the number of neighbours of v

56

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

that are at distance j−1 to s. This source s is then added to the shadow visitor list

L′v of the vertex v. If there are no exploration sources at distance j from v, proce-

dure FindNewVisitor returns a tuple (φ ,φ). If there are some exploration sources

at distance j from v but procedure FindNewVisitor fails to isolate an ID of such a

source, it returns (⊥,⊥).

Before we start making our attempts in parallel, we sample uniformly at random

a set H j of µi functions from a family of pairwise independent hash functions

h : {1,2, . . . ,maxV ID}→{1, . . . ,2λ}, where λ = dlogmaxV IDe= dlogne. Having

sampled the set H j of hash functions, for every vertex v ∈ V , we make µi = |H j|
parallel calls to procedure FindNewVisitor(v,h), one call for each function h ∈ H j.

Note that the visitor lists of all the vertices in V are visible to all the calls to proce-

dure FindNewVisitor, which are made in parallel.

Procedure FindNewVisitor: A call to procedure FindNewVisitor for a vertex v

tracks the edges between v and every vertex u with some explorations in its visitor

list Lu that v has not seen so far. Let d(j)
v be the number of exploration sources

at distance j from v. For every pair of vertices {v,u}, ultimately either the edge

e = (v,u) belongs to G and then fe = 1, or it does not, i.e., fe = 0. (Recall that

fe = ∑t,et=e eSignt is the multiplicity of edge e in the stream.) If we knew the exact

value of d(j)
v , we could sample every new exploration source witnessed by v with

probability 1/d(j)
v to extract exactly one of them in expectation. However, all we

know about d(j)
v is that it is at most degi in expectation (Lemma 3.2) and at most

O(degi · lnn) whp. We therefore sample every new exploration source seen by v on

a range of probabilities, as we did for procedure FindParent in Section 2.3.2. We

use an array slots of λ elements (the structure of each element will be described

later in the sequel), indexed by slot-levels from 1 to λ = dlogne, to implement

sampling on a range of probabilities. We want a given source s to be sampled into

slot-level k with probability 1/2λ−k. When d(j)
v ≈ 2λ−k, with a constant probability

there is exactly one exploration source that gets mapped to slots[k].

One way to sample every exploration seen by v with a given probability is to flip

a biased coin. As was discussed in Section 2.3.2 in the description of procedure

FindParent, naively, this requires remembering the random bits for every new ex-

ploration source seen by v. To avoid storing that much information while still

treating all the updates (additions/deletions) to a given exploration source con-

57

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

Algorithm 3 Pseudocode for procedure FindNewVisitor

1: Procedure FindNewVisitor(v,h) . Initialization

2: slots← /0

. An array with λ = dlogne elements indexed from 1 to λ .

3:

. Each element of slots is a tuple (sCount,sNames). For a given index 1≤ k≤
λ , fields sCount and sNames of slots[k] can be accessed as slots[k].sCount and

slots[k].sNames, respectively.

4:

. slots[k].sCount counts the new exploration sources seen by v with hash values

in [2k].

. slots[k].sNames is an encoding of the names of new exploration sources seen

by v with hash values in [2k].

. Update Stage

5: while (there is some update (ep, eSignp) in the stream) do
6: if (ep = (v,u) satisfies Lu \Lv 6= /0) then
7: for each s ∈ Lu \Lv do
8: k← dlogh(s)e
9: repeat . Update slots[k] for all dlogh(s)e ≤ k ≤ λ

10: slots[k].sCount← slots[k].sCount + eSignp

11: slots[k].sNames← slots[k].sNames+ν(s) · eSignp

12: . The function ν is described in Section 2.2.4.

13: . The addition in line 11 is a vector addition.

14: k = k+1

15: until k > λ

. Recovery Stage

16: if (slots vector is empty) then
17: return (φ ,φ)

18: else if (∃ index k s.t. slots[k].sName
slots[k].sCount = ν(s) for some s in V) then

19: return (s,slots[k].sCount)

20: else
21: return (⊥,⊥)

58

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

sistently, we use pairwise independent hash functions for sampling explorations.

Given a hash function h : {1,2, . . . ,maxV ID}→{1, . . . ,2λ}, every new exploration

source s witnessed by v is assigned a hash value h(s) by h. A given source s gets

mapped into slots[k] if h(s) ∈ [2k], i.e., this happens with probability 1/2λ−k. The

description of procedure FindNewVisitor is similar to procedure FindParent from

Section 2.3.2 up to this point. The major difference between procedure FindParent

and procedure FindNewVisitor is in the information that we store about every sam-

ple in a given slot. We cannot afford storing the IDs of all the sampled exploration

sources as v may appear on many more explorations than it ends up on. Every new

exploration source s assigned to slots[k] is first encoded using the CIS encoding

scheme ν described in Section 2.2.4. In every element of slots, we maintain a tuple

(sCount,sNames), where sCount ∈ Z at slot-level k maintains the number of new

exploration sources seen by v with hash values in [2k], and sNames ∈ Z2 maintains

the vector sum of encodings of the IDs of new exploration sources seen by v with

hash values in [2k]. This will be discussed in detail in the sequel. The fileds sCount

and sName of slots[k] can be accessed as slots[k].sCount and slots[k].sName, re-

spectively.

As the stream progresses, every time we encounter an exploration source s with

h(s) ∈ [2k], we update the sCount value of slots[k] with the eSign value of the edge

from which s was extracted. (See line 10 of Algorithm 3.) Also, we update the

sNames of slots[k] by adding ν(s) ·eSignp to it (see line 11 of Algorithm 3), where

ν(s) is the encoding of the source s and eSignp is the eSign value of the edge

from which s was extracted. (This addition sums up vectors in Z2.) In line 18

of Algorithm 3, we use Lemma 2.12 to determine if there is a slot-level k such

that only one exploration source was sampled at that level. Note that the CIS

encoding scheme that we use here is more general and can also be used in the

implementation of procedure FindParent. The bitwise XOR-based technique that

we use in procedure FindParent is an existing technique based on (34) and (41)

that works for sampling a non-zero element from a Boolean vector. The CIS-based

technique, on the other hand, allows one to sample a non-zero element from a

vector with non-negative entries.

If there is a slot-level k for which slots[k].sName
slots[k].sCount = ν(s) for some s ∈ V , then by

Lemma 2.12, s is the only exploration source sampled at slot-level k. The value of

59

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

sCount at slot-level k will then be the number of neighbours of v at distance j−1

from s.

We need to make sure that for some 1 ≤ k ≤ λ , exactly one exploration source

will get mapped to slots[k]. By Corollary 2.8, exactly one exploration source gets

mapped to slots[k] for k = λ −dlogd(j)
v e− 1, with at least a constant probability.

(Here S is the set of exploration sources at distance j from v and s = |S | =
d(j)

v .) Therefore, a single call to procedure FindNewVisitor succeeds with at least a

constant probability.

Analysis of first pass: We now analyze the success probability and space require-

ments of the first pass of sub-phase j of interconnection step.

Recall that, for every vertex v∈V , we make µi = 16 ·c4 ·Ni · lnn parallel attempts to

isolate the exploration sources that visit v during sub-phase j of the interconnection

step of phase i.

Lemma 3.3. On any single attempt for a vertex v ∈V , a given exploration source

s at distance j from v is discovered with probability at least 1
16Ni

.

Proof. Recall that by Lemma 3.2, with probability at least 1− 1
nc′1−1 , the number

d(j)
v of the exploration sources that visit v is at most Ni. For a specific exploration

source s that visits v during sub-phase j, let DISC(s) denote the event that it is

discovered in a specific attempt. Then:

Pr
[
DISC(s)

]
≥ Pr

[
DISC(s) | d(j)

v ≤Ni

]
·Pr
[
d(j)

v ≤Ni

]
≥ Pr

[
DISC(s) | d(j)

v ≤Ni

]
·
(

1− 1
nc′1−1

)
≥ 1

8Ni

(
1− 1

nc′1−1

)
≥ 1

16Ni

Note that the third inequality follows by applying Lemma 2.7 to the event {DISC(s) | d(j)
v ≤

Ni}.

In the next lemma we argue that procedure FindNewVisitor does not require too

much space.

Lemma 3.4. The procedure FindNewVisitor uses O(log2 n) bits of memory.

60

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

Proof. Procedure FindNewVisitor receives as input two variables: the ID of a

vertex v and a pairwise independent hash function h. The ID of any vertex requires

O(logn) bits of space and by Lemma 2.6, a pairwise independent hash function can

be encoded in O(logn) bits too. The visitors lists of all the vertices are available

in global storage. The internal variable slots is an array of size dlogne. Each

element of the array slots stores an integer counter sCounter of size O(logn) bits

and an integer vector sNames in Z2, which also requires O(logn) bits of space (See

Section 2.2.4). The space usage of slots array is therefore O(log2 n) bits. It follows

thus that procedure FindNewVisitor uses O(log2 n) bits of memory.

For a vertex v ∈V , if there are no exploration sources at a distance j from v, all the

calls to procedure FindNewVisitor in all the attempts return (φ ,φ). For all those

vertices, we do not need to update their visitor lists. For every other vertex v ∈ V ,

each attempt yields the name of an exploration source at a distance j from v with

at least a constant probability. We extract the names of all the distinct exploration

sources from the results of successful attempts and add tuples (v,s,sCount) to the

set S j. Recall that the set S j contains tuples (v,s,kv), where s is an exploration

source at distance j from v and kv is the number of neighbours of v that are at

distance j− 1 from s. In addition, the source s is added to the visitor list L′v of

vertex v.

We next show that making µi = 16 ·c4 ·Ni · lnn attempts in parallel for every vertex

v∈V ensures that all the relevant exploration sources for every vertex are extracted

whp.

Lemma 3.5. Let c3 be a sufficiently large constant. For a given vertex v ∈V , with

probability at least 1−1/nc3 , all the exploration sources at a distance j from v will

be successfully extracted in µi = 16 · c4 · lnn ·Ni attempts made in parallel for v in

the first pass of sub-phase j.

Proof. For a given vertex v, let d(j)
v be the number of explorations that are at a

distance j from v. By Lemma 3.3, on each single attempt (out of µi attempts) for

a vertex v, a specific exploration source that visits v is isolated with probability at

least 1/16Ni, independently of other attempts. Thus, for a given exploration source

s, the probability that no attempt will isolate it is at most
(

1− 1
16Ni

)16·c4·lnn·Ni
≤

1/nc4 . Hence, by union-bound over all the exploration sources at distance j from

61

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

v, all the exploration sources will be isolated during 16 · c4 · lnn ·Ni attempts,

with probability at least 1− 1
nc4−1 . Thus, for c3 = c4− 1, with probability at least

1− 1/nc3 , all the exploration sources at a distance j from v will be successfully

extracted.

We next provide an upper bound on the space usage of the first pass of the inter-

connection step.

Lemma 3.6. The overall space usage of the first pass of every sub-phase of inter-

connection is O(n1+ρ log4 n) bits.

Proof. The first pass of every sub-phase makes µi = O(degi · log2 n) attempts

in parallel for every v ∈ V . Recall that for all i, degi ≤ nρ (See Section 3.1).

Combining this fact with Lemma 3.4, we get that the space usage of all the in-

vocations of procedure FindNewVisitor for all the n vertices during the first pass is

O(n1+ρ log4 n). In addition, we use a set of O(degi · log2 n) = O(nρ · log2 n) ran-

domly sampled hash functions, one hash function per attempt. Each hash function

can be encoded using O(logn) bits. The overall space used by the storage of hash

functions during the first phase is thus O(nρ log3 n). As an output, we produce the

set S j, which consists of tuples (v,s,k) of O(logn) bits each. By Lemma 3.2, a

vertex v is visited by at most O(degi logn) ≤ O(nρ logn) explorations whp in the

phase i. In any case, we record just O(nρ · logn) of them, even if v is visited by

more explorations. Hence, the storage of S j requires O(n1+ρ log2 n) bits. Finally,

we need to store the visitor lists of all v ∈ V . By Lemma 3.2, no vertex is visited

by more than O(degi logn) = O(nρ logn) explorations whp. As above, we record

just O(nρ · logn) of the visitors for v. We need to store O(logn) bits of information

for every exploration source that visited a given vertex. The overall storage cost

of all the visitor lists of all the vertices is therefore O(n1+ρ log2 n) bits. Thus, the

storage cost of first pass of every sub-phase is dominated by the cost of parallel

invocations of procedure FindNewVisitor. This makes the overall cost of first pass

of every sub-phase O(n1+ρ log4 n).

Second pass of sub-phase j of Phase i: The second pass of sub-phase j starts

with the sets S j−1 and S j as input. Recall that the set S j consists of tuples for all

the vertices in V that are at distance j from one or more exploration sources in Ui.

The algorithm also maintains an additional intermediate edge set Ĥi, which will

62

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

contain all the BFS trees rooted at cluster centres rC, C ∈Ui, constructed to depth

δi/2. Inductively, we assume that before sub-phase j starts, the edge set Ĥi contains

the first j−1 levels of these trees. Note that since by Lemma 3.2, whp, every vertex

v is visited by O(degi · logn) explorations rooted at {rC}C∈Ui , it follows that, whp,

|Ĥi| = Õ(n · degi) = O(n1+ρ · logn). Thus our algorithm can store the set Ĥi. We

find for every tuple (v,s,k) in S j, v’s parent ps on the exploration rooted at s by

invoking procedure FindParent (described in Section 2.3.2) O(logn) times. As a

result, an edge (v, ps) between v and ps is added to the edge set Ĥi.

We sample uniformly at random a set of pairwise independent hash functions

H ′j, |H ′j| = c1 · log8/7 n, from the family of functions h : {1,2, . . . ,maxVID} →
{1,2, . . . ,2λ}, λ = dlogne. These functions will be used by invocations of pro-

cedure FindParent.

We need to change slightly the original procedure FindParent (Section 2.3.2) to

work here. Specifically, we change the part where we decide whether to sample an

incoming edge update or not (Line 15 of Algorithm 1). It is updated to check if

the edge ep is incident between the input vertex v and some vertex u such that for

some k, the tuple (u,s,k) belongs to the set S j−1. Recall that for a tuple (v,s,k) ∈
S j, k is the number of neighbours of v that are at a distance j− 1 from s. This

information can be used to optimize the space usage of procedure FindParent by a

factor of O(logn). Since we know the probability (≈ 1/k) with which to sample

every candidate edge for v, we can get rid of the array slots and maintain only two

running variables xCount and xName corresponding to slot-level λ −dlogke−1.

Finally, after all the δi/2 sub-phases are over, we extract from Ĥi edges that need to

be added to the spanner H offline, during post-processing. Specifically, for every

cluster center rC, C ∈ Ui, we consider the BFS tree T (rC) rooted at rC of depth

δi/2, which is stored in Ĥi. For any leaf z of T (rC) which is not a center of a

cluster C′ ∈ Pi, the leaf z and the the edge connecting z to its parent pz in T (rC)

are removed from T (rC) (and thus from Ĥi). This process is then iterated, until all

leaves of T (rC) are cluster centers. This is done for all cluster centers rC, C ∈Ui,

one after another. The resulting edge set H ′i (a subset of Ĥi) is then added to the

spanner H.

Observe that this edge set H ′i is precisely the union of all shortest paths rC− r′C, for

C ∈Ui and C′ ∈ Pi, such that dG(rc,r′C) ≤ δi/2. It follows that, (see (22)), its size

63

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

is at most δi/2 · |Ui| · degi = Õ(δi · n1+1/κ). This bound can be further refined by

optimizing the degree sequence (degi)
`
i=1. (See (22) for details.)

Analysis of Second Pass: We now analyze the space requirements of the second

pass of sub-phase j of interconnection step.

Lemma 3.7. The overall space usage of the second pass of every sub-phase of

interconnection is O(n1+ρ log4 n).

Proof. The second pass of every sub-phase invokes procedure FindParent O(logn)

times in parallel for every tuple in the set S j. By Lemma 2.14, each invocation of

procedure FindParent uses O(log2 n) bits of space. The number of elements in S j

is at most O(n1+ρ logn). (Recall that by Lemma 3.2, whp there are at most Õ(nρ)

explorations per vertex. But even if there are more explorations, our algorithm

records just Õ(nρ) explorations per vertex.) Therefore the overall cost of all the

invocations of procedure FindParent is O(n1+ρ log4 n). In addition, we need to

store a set of O(logn) hash functions of size O(logn) each in global storage. This

requires O(log2 n) bits of space. Therefore, the overall storage cost of the second

pass of any sub-phase is dominated by the space required for invocations of Find-

Parent. Hence the overall space requirement of second pass of interconnection is

O(n1+ρ log4 n).

In the following lemma we prove the correctness of the interconnection step.

Lemma 3.8. For a sufficiently large constant c′, after j sub-phases of phase i of the

interconnection step, with probability at least 1− j/nc′ , for every cluster C∈Ui and

for every vertex v within distance j from the center rC of C, a shortest path between

rC and v is added to the edge set Ĥi.

Proof. The proof follows by induction on the number of sub-phases, j, of the

interconnection step of phase i. The base case for j = 0 holds trivially. For the

inductive step, we assume that after j = t sub-phases of interconnection step (Sec-

tion 3.1.2), for every cluster C ∈Ui and for every vertex v within distance t from

the center rC of C, a shortest path between rC and v has been added to Ĥi with

probability at least 1− t/nc′ . Given this assumption, we only need to prove that

in the sub-phase t + 1, we find for every cluster C ∈Ui and for every vertex v at

distance t +1 from the center rc of C, a parent for v on the BFS exploration rooted

64

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

at rC with probability at least 1− 1/nc′ . In the first pass of sub-phase t + 1, for

every vertex v ∈V , we make µi = 16 ·c4 · lnn ·Ni attempts to extract all the cluster

centers at distance t + 1 from v. By Lemma 3.5, each such center gets extracted

with probability at least 1−1/nc3 . There are no more than n clusters in Ui. Apply-

ing union bound over all the clusters in Ui and over all the vertices at distance t +1

from one or more centers in Ui, we successfully extract all the exploration sources

at distance t + 1 from every vertex in the sub-phase t + 1 with probability at least

1−1/n(c3−2). In the second pass of sub-phase t +1, we try to find a parent for v on

every exploration at distance t + 1 by making multiple parallel calls to procedure

FindParent. By Lemma 2.13, we succeed in finding a parent for v on a single BFS

exploration with probability at least 1−1/nc1 . By union bound over all the clusters

in Ui and all the vertices at distance t+1 from one or more centers, the second pass

of sub-phase t + 1 succeeds with probability at least 1− 1/nc1−2. Taking a union

bound on both the passes of sub-phase t+1, we get that for an appropriate constant

c′, in the sub-phase t +1, for every cluster C ∈Ui and for every vertex v at distance

t +1 from the center rc of C, we find a parent for v on the BFS exploration rooted

at rC with probability at least 1−1/nc′ .

Lemmas 3.6, 3.7 and 3.8 together imply the following corollary about the intercon-

nection step of phase i:

Corollary 3.9. For a sufficiently large constant c′′, after bδi/2c sub-phases of

phase i of the interconnection step, the following holds with probability at least

1−1/nc′′:

1. The interconnection step of phase i makes δi passes through the stream, and

the total required space is O(n1+ρ log4 n) bits.

2. For every cluster C ∈Ui and every other cluster C′ ∈ Pi such that the centers

r′C of C′ is within distance bδi/2c from center rC of C, a shortest rC−rC′ path

between them is added to the spanner.

65

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

3.1.3 Putting Everything Together

Lemma 3.1 and Corollary 3.9 imply that, whp, our algorithm simulates phase i

of (22). The following lemma follows by induction on the number of phases of our

algorithm.

Lemma 3.10. After ` phases, whp, our spanner construction algorithm simulates

the algorithm of (22) in the dynamic streaming setting.

Next, we provide a bound on the number of passes of our algorithm.

Lemma 3.11. Our spanner construction algorithm makes O(β) passes in total.

Proof. In a given phase i of our construction algorithm, the superclustering step

makes δi passes and the interconnection step makes 2bδi/2c passes. The number of

passes of phase i is therefore bounded by O(δi). Note that ∑
`
i=1 δi = O(β), where

β is the additive term in the stretch of our construction (See (22)). The number of

passes made altogether is thus bounded by O(β).

The stretch and sparsity analysis of our dynamic streaming algorithm remains the

same as that of the centralized algorithm of (22). Hence we obtain the following

analogue of Corollary 3.2 of (22) for the dynamic streaming setting.

Theorem 3.12. For any unweighted graph G(V,E) on n vertices, parameters 0 <

ε < 1, κ ≥ 2, and ρ > 0, our dynamic streaming algorithm computes a (1+ ε,β)-

spanner with Oε,κ,ρ(n1+1/κ) edges, in O(β) passes using O(n1+ρ log4 n) space with

high probability, where β is given by:

β =

(
logκρ +1/ρ

ε

)logκρ+1/ρ

.

In the following section, we show some applications of our construction of near-

additive spanners.

3.2 (1+ε)-Approximate Shortest Paths in Unweighted Graphs

An immediate application of our dynamic streaming algorithm for constructing

(1+ ε,β)-spanners is a dynamic streaming algorithm for computing all pairs al-

most shortest paths (APASP) with multiplicative stretch 1+ ε and additive stretch

66

Chapter 3. Approximate Shortest Paths in Unweighted Graphs

β (henceforth, (1+ε,β)-APASP) in unweighted undirected graphs. The algorithm

uses O(β) passes over dynamic stream and Õ(n1+ρ) space. Our (1+ε,β)-APASP

algorithm computes a (1+ε,β)-spanner with Oε,κ,ρ(n1+1/κ) using Theorem 3.12,

and then computes offline all pairs exact shortest paths in the spanner.

We note also that within almost the same complexity bounds, the algorithm can also

compute (1+ε)-approximate shortest paths S×V (henceforth, (1+ε)-ASP), for a

subset S of size nρ of designated sources. Specifically, the algorithm computes the

(1+ε,β)-APASP in the way described above. It then uses O(β/ε) more passes to

compute BFS trees rooted in each of the sources s ∈ S to depth β/ε in the original

graph G. The space usage of this step is Õ(|S| ·n) = Õ(n1+ρ). (see Theorem 2.17)

As a result, for every pair (s,v) ∈ S×V such that dG(s,v) ≤ β/ε , our algorithm

returns an exact distance. For each pair (s,v) ∈ S×V with dG(s,v)> β/ε , the esti-

mate computed using (1+ε,β)-APASP algorithm provides a purely multiplicative

stretch of 1+O(ε). The algorithm returns the minimum of these two estimates.

By setting κ = 1/ρ we obtain:

Theorem 3.13. For any undirected n-vertex graph G = (V,E), and any ε > 0,

ρ > 0, our dynamic streaming algorithm computes (1+ ε,β)-APASP and (1+ ε)-

ASP for a set S of |S|= nρ sources using β = O(1
ρε
)

1
ρ
(1+o(1)) passes and Õ(n1+ρ)

memory.

One noteable point on the tradeoff curve is ρ =
√

log logn
logn . Then we get 2O(

√
logn·log logn)

passes and n ·2O(
√

logn·log logn) space. Also using ρ = (log logn)c

logn for sufficiently large

constant c, we get no(1) passes and Õ(n) space.

67

4
Approximate Shortest Paths in
Weighted Graphs

In this chapter we present an algorithm for constructing hopsets with stretch (1+

ε) (for some constant precision parameter ε > 0), size Õ(n1+1/κ) (for a constant

integer parameter κ) and constant hopbound β = β (ε,κ), in dynamic streaming

model. We call these hopsets near-exact hopsets. We then use our near-exact

hopsets to compute approximate shortest paths.

4.1 Construction of Near-Exact Hopsets

Our hopset construction algorithm is based on superclustering and interconnection

approach that was originally devised for the construction of near-additive span-

ners (26). (See Chapter 3 for more details.) Elkin and Neiman (23) used the su-

perclustering and interconnection approach for the construction of hopsets with

constant hopbound in various models of computation including the insertion-only

streaming model. We adapt here the insertion-only streaming algorithm of (23) to

work in the dynamic streaming setting.

The main ingredient of both the superclustering and interconnection steps is a set

of Bellman-Ford explorations (BF explorations henceforth) up to a given distance

in the input graph from a set of chosen vertices. The insertion-only streaming algo-

rithm of (23) identifies all the edges spanned by Θ(β) iterations of certain BF ex-

plorations up to a distance δ from a set of chosen vertices, by making Θ(β) passes

68

Chapter 4. Approximate Shortest Paths in Weighted Graphs

through the stream. Other parts of the hopset construction, such as identifying

the vertices of the graph from which to perform BF explorations and subsequently

adding edges corresponding to certain paths traversed by these explorations to the

hopset, are performed offline.

We devise a technique to perform a given number of iterations of a BF exploration

from a set of chosen vertices and up to a given distance in the graph in the dy-

namic streaming setting, and as in (23), perform the rest of the work offline. The

difference however is that in the dynamic streaming setting, we do not perform an

exact and deterministic BF exploration (as in (23)). A randomized algorithm for

performing an approximate BF exploration originated at a subset of source vertices

in a weighted graph, that succeeds whp, is described in Section 2.4. We use this

algorithm as a subroutine in the superclustering step of our main algorithm.

The interconnection step is more challenging and involves performing multiple

simultaneous BF explorations in a weighted graph, each from a separate source

vertex. Here, each vertex in the graph needs to identify all the BF explorations

it is a part of, and to find its (approximate) distance to the source of each such

exploration. Due to the dynamic nature of the stream, a given vertex may find

itself on a lot more explorations than it finally ends up belonging to. As shown in

Section 3.1.2 in the context of near-additive spanner construction, this can be dealt

with by combining a delicate encoding/decoding scheme for the IDs of exploration

sources with a space-efficient sampling technique. We adapt here the technique

used in Section 3.1.2 to work in weighted graphs.

In the following section, we provide an overview of our hopset construction algo-

rithm.

4.1.1 Overview

Our hopset construction algorithm takes as input an n-vertex weighted undirected

graph G = (V,E,ω), and parameters 0 < ε ′ < 1/10, κ = 1,2, . . . and 1/κ < ρ <

1/2, and produces as output a (1+ ε ′,β ′)-hopset of G. The hopbound parameter

β ′ is a function of ε ′, Λ, κ , ρ and is given by

69

Chapter 4. Approximate Shortest Paths in Weighted Graphs

β
′ = O

(
logΛ

ε ′
· (logκρ +1/ρ)

)logκρ+1/ρ

(4.1)

Let k = 0,1, . . . ,dlogΛe−1. Given two parameters ε > 0 and β = 1,2, . . ., a set of

weighted edges Hk on the vertex set V of the input graph is said to be a (1+ ε,β)-

hopset for the scale k or a single-scale hopset, if for every pair of vertices u,v ∈V

with dG(u,v) ∈ (2k,2k+1] we have that:

dG(u,v)≤ d(β)
Gk

(u,v)≤ (1+ ε) ·dG(u,v),

where Gk = (V,E ∪Hk,ωk) and ωk(u,v) = min{ω(u,v),ωHk(u,v)}, for every edge

(u,v) ∈ E ∪Hk.

Let ε > 0 be a parameter that will be determined later in the sequel. Set also

`= blogκρc+ dκ+1
κρ
e−1. Let β = (1/ε)`.

The algorithm constructs a separate (1+ ε,β)-hopset Hk for every scale

(20,21],(21,22], . . . ,(2dlogΛe−1,2dlogΛe] one after another. For k ≤ blogβc− 1, we

set Hk = φ . We can do so because for such a k, it holds that 2k+1 ≤ β , and for

every pair of vertices u,v with dG(u,v)≤ 2k+1, the original graph G itself contains

a shortest path between u and v that contains at most β edges. (We remark that

after rescaling, we will have β ′ = β . See Section 4.1.3.) In other words, dG(u,v) =

d(β)
G (u,v). Denote k0 = blogβc and kλ = dlogΛe−1. We construct a hopset Hk for

every k ∈ [k0,kλ].

During the construction of the hopset Hk for some k ≥ k0, we need to perform

explorations from certain vertices in V up to distance δ ≤ 2k+1 in G. An explo-

ration up to a given distance from a certain vertex in G may involve some paths

with up to n− 1 hops. This can take up to O(n) passes through the stream. We

overcome this problem by using the hopset edges H(k−1) =
⋃

k0≤ j ≤k−1 H j for con-

structing hopset Hk. The hopset Hk has to take care of all pairs of vertices u,v

with dG(u,v) ∈ (2k,2k+1], whereas the edges in E ∪H(k−1) provide a (1+ εk−1)-

approximate shortest path with up to β hops, for every pair u,v with dG(u,v)≤ 2k.

The value of εk−1 will be specified later in the sequel. Denote by G(k−1) the graph

obtained by adding the edge set H(k−1) to the input graph G. Instead of conducting

70

Chapter 4. Approximate Shortest Paths in Weighted Graphs

explorations from a subset S ⊆ V up to distance δ ≤ 2k+1 in the input graph G,

we perform 2β + 1 iterations of BF algorithm on the graph G(k−1) up to distance

(1+ εk−1) ·δ . The following lemma from (23) shows that 2β +1 iterations of BF

algorithm on G(k−1) up to distance (1+ εk−1) · δ suffice to reach all the vertices

within distance δ from set S in the original graph G. We refer the reader to Lemma

3.9 (and its preamble) of (23) for the proof.

Lemma 4.1. (23) For u,v ∈V with dG(u,v)≤ 2k+1, the following holds:

d(2β+1)
G(k−1) (u,v)≤ (1+ εk−1) ·dG(u,v) (4.2)

4.1.2 Constructing Hk

We now proceed to the construction of the hopset Hk for the scale (2k,2k+1], for

some k ∈ [k0,kλ]. The algorithm is based on the superclustering and interconnec-

tion approach. The overall structure and technique of the construction of a single

scale hopset is similar to that of the construction of a near-additive sparse span-

ner. (See Section 3.1.) The spanner construction algorithm of Section 3.1 works

on an unweighted input graph and selects a subset of edges of the input graph as

output. On the other hand, the hopset construction algorithm presented here works

on a weighted input graph and produces as output a set of new weighted edges that

need to be added to the input graph.

The algorithm starts by initializing the hopset Hk as an empty set. As in the con-

struction of near-additive spanners (See Section 3.1.), the algorithm proceeds in

phases 0,1, . . . , `. The maximum phase index ` is set as `= blogκρc+ dκ+1
κρ
e−1.

Throughout the algorithm, we build clusters of nearby vertices. The input to phase

i∈ [0, `] is a set of clusters Pi, a distance threshold parameter δi and a degree param-

eter degi. For phase 0, the input P0 is a partition of the vertex set V into singleton

clusters. The definitions of the center rC of a cluster C, its radius Rad(C) and the

radius of a partition Rad(Pi) remain the same as in the case of spanner construction.

(See Section 3.1 for more details.) Note, however that in the current context, the

distances are in a weighted graph, G(k−1), rather than in the the unweighted input

graph G, as it was the case in the construction of spanners.

71

Chapter 4. Approximate Shortest Paths in Weighted Graphs

The degree parameter degi follows the same sequence as in the construction of

near-additive spanners. The set of phases [0, `] is partitioned into two stages based

on how the degree parameter changes from one phase to the next. (See Section 3.1

for more details.) The distance threshold parameter grows at the same steady rate

(increases by a factor of 1/ε) in every phase.

For clarity of presentation, we first define the sequence of the distance threshold

parameters for hopset Hk as if all the explorations during the construction of Hk are

exact and are performed on the input graph G (as in the centralised setting) itself.

Then we modify this sequence to account for the fact that the explorations during

the construction of Hk are actually conducted on the graph G(k−1) and not on the in-

put graph G. The sequence of the distance threshold parameters for the centralized

construction as defined in (23) is given by α = α(k) = ε` ·2k+1, δi = α(1/ε)i+4Ri,

where R0 = 0 and Ri+1 =Ri+δi =α(1/ε)i+5Ri for i≥ 0. Here α can be perceived

as a unit of distance. To adjust for the fact that explorations are performed on the

graph G(k−1), we multiply all the distance thresholds δi by a factor of 1+ εk−1,

the stretch guarantee of the graph G(k−1). We further modify this sequence to

account for the fact that our BF explorations (during superclustering as well as in-

terconnection) in the dynamic stream are not exact and incur a multiplicative error.

Throughout the construction of Hk, we set the multiplicative error of every approx-

imate BF Exploration we perform to 1+ χ , for a parameter χ > 0 which will be

determined later. Therefore we multiply all the distance thresholds by a factor of

1+ χ . We define R′i = (1+ χ) · (1+ εk−1)Ri and δ ′i = (1+ χ) · (1+ εk−1)δi for

every i ∈ [0, `]. In the centralized setting, Ri serves as an upper bound on the radii

of the input clusters of phase i. As a result of rescaling, R′i becomes the new upper

bound on the radii of input clusters of phase i.

All phases of our algorithm except for the last one consist of two steps, a super-

clustering step and an interconnection step. In the last phase, the superclustering

step is skipped and we go directly to the interconnection step. The last phase is

called the concluding phase.

The superclustering step of phase i randomly samples a set of clusters in Pi and

builds larger clusters around them. The sampling probability for phase i is 1/degi.

In the insertion-only algorithm of (23), for every unsampled cluster center r′C within

distance δi (in G) from the set of sampled centers, an edge (rC,r′C) between r′C and

72

Chapter 4. Approximate Shortest Paths in Weighted Graphs

a nearest sampled center rC of weight ωHk(rC,r′C) = d(2β+1)
G(k−1) (rC,r′C) is added into

the hopset Hk. In the dynamic stream, the distance exploration we do in G(k−1) is

not exact and we have an estimate of d(2β+1)
G(k−1) (rC,r′C) which is stretched at most by

a multiplicative factor of 1+ χ . Hence in our algorithm, ωHk(rC,r′C) ≤ (1+ χ) ·
d(2β+1)

G(k−1) (rC,r′C). The collection of the new larger clusters P̂i is passed on as input

to phase i+ 1. In the interconnection step of phase i, the clusters that were not

superclustered in this phase are connected to their nearby clusters. In the insertion-

only algorithm of (23), 2β +1 iterations of a BF exploration from the center rC of

every cluster in Ui = Pi \Pi+1 are used to identify every other cluster in Ui whose

center is within distance δi/2 (in G) from rC. For every center r′C within distance

δi/2 (in G) from the center rC of C ∈Ui, an edge (rC,r′C) of weight ωHk(rC,r′C) =

d(2β+1)
G(k−1) (rC,r′C) is added into the hopset Hk. In the dynamic stream, we do 2β + 1

iterations of a (1+χ)-approximate BF exploration from every center. Therefore as

in superclustering step, the weights of hopset edges added during interconnection

step are stretched at most by a factor of 1+ χ . In the concluding step `, we skip

the superclustering step. As was shown in (23), the input set of clusters to the last

phase P̀ is sufficiently small to allow us to interconnect all the centers in P̀ to one

another using few hopset edges.

We are now ready to describe in detail, the execution of superclustering step. The

interconnection step will be described after that.

Superclustering: The phase i begins by sampling each cluster C ∈ Pi indepen-

dently at random with probability 1/degi. Let Si denote the set of sampled clus-

ters. We now have to conduct (approximate) distance exploration up to depth δ ′i

in G(k−1) rooted at the set CSi =
⋃

C∈Si
{rC}. By Lemma 4.1, this can be achieved

by 2β +1 iterations of BF algorithm on the graph G(k−1). For this, we invoke the

approximate BF exploration algorithm of Section 2.4 on graph G(k−1) with set CSi

as the set S of source vertices and parameters η = 2β +1, ζ = χ .

One issue with invoking the Algorithm of Section 2.4 as a blackbox for graph

G(k−1) is that only the edges of the input graph G appear on the stream and the

edge set H(k−1) of all the lower level hopsets is available offline. We therefore

slightly modify the algorithm of Section 2.4 and then invoke the modified version

with S = CSi, η = 2β + 1 and ζ = χ . In the modified version, at the end of each

pass through the stream, for every vertex v∈V , we scan through the edges incident

73

Chapter 4. Approximate Shortest Paths in Weighted Graphs

to v in the set H(k−1) and update its distance estimate d̂(v) as:

d̂(v) = min{d̂(v), min
(v,w)∈H(k−1)

{d̂(w)+ωH(k−1)(v,w)}}.

The parent of v, p̂(v) is also updated accordingly. Note that this modification does

not affect the space complexity, stretch guarantee or the success probability of the

algorithm of Section 2.4. The upper bound on the stretch guarantee still applies

since we update the distance estimate of a given vertex v only if the estimate pro-

vided by the edges in the set H(k−1) is better than v’s estimate from the stream. The

success probability and space complexity are unaffected since the modification de-

terministically updates the distance estimates and does not use any new variables.

This provides us with a (1+χ)-approximation of d(2β+1)
G(k−1) (v,CSi), for all v ∈V .

Hence, by Theorem 2.22, an invocation of modified version of approximate BF

algorithm of Section 2.4 during the the superclustering step of phase i generates

whp, an approximate BF exploration of the graph G(k−1), rooted at the set CSi ⊆V

in 2β + 1 passes. It outputs for every v ∈ V an estimate d̂(v) of its distance to set

CSi such that:

d(2β+1)
G(k−1) (v,CSi)≤ d̂(v)≤ (1+χ) ·d(2β+1)

G(k−1) (v,CSi). (4.3)

Moreover, the set of parent variables p̂(v) of every v ∈ V with d̂(v) < ∞ span a

forest F of G(k−1) rooted at the set of sampled centers CSi. For every vertex v,

one can compute its path to the root rC of the tree in forest F , to which v belongs,

through a chain of parent pointers. For every cluster center rC′ , C′ ∈ Pi \ Si, such

that d̂(rC′)≤ δ ′i , the algorithm adds an edge (rC,rC′) of weight d̂(rC′) to the hopset

Hk, where rC is the root of the tree in F to which rC′ belongs. We also create

a supercluster rooted at rC which contains all the vertices of C′ as above. Note

that if dG(rC,rC′) ≤ δi, then by equations (4.2) and (4.3), d̂(rC′) ≤ (1+ χ) · (1+
εk−1)dG(rC,rC′) = δ ′i . Therefore, the edge (rC,rC′) will be added in to the hopset

and the cluster C′ will be superclustered into a supercluster centered at rC.

We conclude that:

Lemma 4.2. For a given set of sampled cluster centers CSi ⊆V and a sufficiently

large constant c, the following holds with probability at least least 1−1/nc:

1. The superclustering step of phase i creates disjoint superclusters that contain

all the clusters with centers within distance δi (in G) from the set of centers

74

Chapter 4. Approximate Shortest Paths in Weighted Graphs

CSi. It does so in 2β +1 passes through the stream, using Oc(β/χ · log2 n ·
logΛ(logn+ logΛ)) space.

2. For every unsampled cluster center rC within distance δi (in G) from the set

CSi, an edge to the nearest center r′C ∈CSi of weight ωHk(rC,r′C)≤ (1+χ) ·
d(2β+1)

G(k−1) (rC,r′C)≤ (1+χ) · (1+ εk−1)dG(rC,r′C) is added into the hopset Hk,

where εk−1 is the stretch guarantee of the graph G(k−1).

Interconnection: Next we describe the interconnection step of each phase i ∈
{0,1, . . . , `}. Recall that Ui is the set of clusters of Pi that were not superclustered

in phase i. Let CUi be the set of centers of clusters in Ui, i.e., CUi =
⋃

C∈Ui
{rC}.

For the phase `, the superclustering step is skipped and we set U` = P̀ .

In the interconnection step of phase i≥ 0, we want to connect every cluster C ∈Ui

to every other cluster C′ ∈ Ui that is close to it. To do this, we want to perform

2β + 1 iterations of a (1+ χ)-approximate Bellman-Ford exploration from every

cluster center rC ∈CUi separately in G(k−1). These explorations are, however, con-

ducted to a bounded depth (in terms of number of hops), and to bounded distance.

Specifically, the hop-depth of these explorations will be at most 2β +1, while the

distance to which they are conducted is roughly δi/2. For every cluster center rC′ ,

C′ ∈Ui within distance δi/2 from rC in G, we want to add an edge e = (rC,rC′)

of weight at most (1+ χ) · d(2β+1)
G(k−1) (rC,r′C) to the hopset Hk. To do so, we turn to

the stream to find an estimate of d(2β+1)
G(k−1) (v,rC) for every v ∈ V and every center

rC ∈Ui. As discussed in the construction of spanners, we cannot afford to invoke

the algorithm of Section 2.4 multiple times in parallel to conduct a separate explo-

ration from every center rC in CUi, due to space constraints. (See Section 3.1.2 for

more details.) As shown in (23) (See Lemmas 3.2 and 3.3 of (23)), Lemma 3.2

holds in the interconnection step of (a single-scale) hopset construction as well.

Specifically, if one conducts Bellman-Ford explorations to depth at most δ ′i /2 in

G(k−1) to hop-depth at most 2β + 1, then, with high probability, every vertex is

traversed by at most O(degi lnn) explorations.

Therefore, we adapt the randomized technique of Section 3.1.2 to efficiently iden-

tify for every v ∈V , the sources of all the explorations it gets visited by in phase i.

Moreover, for every vertex v ∈V with a non-empty subset Uv
i ⊆Ui of explorations

that visit v, we find for every cluster C ∈Uv
i , an estimate of d(2β+1)

G(k−1) (v,rC). Note,

75

Chapter 4. Approximate Shortest Paths in Weighted Graphs

however, that not all the edges of the graph G(k−1) on which we have to perform

our Bellman-Ford explorations are presented on the stream. We show in the sequel,

how we adjust the distance estimates of every vertex v ∈ V by going through the

edges of the lower level hopsets H(k−1) offline.

Throughout the interconnection step of phase i, we maintain for every vertex v∈V ,

a set LCurrentv (called estimates list of v) of sources of Bellman-Ford explorations

that visited v so far. Each element of LCurrentv is a tuple (s, d̂(v,s)), where s is the

center of some cluster in Ui, and d̂(v,s) is the current estimate of d(2β+1)
G(k−1) (v,s). For

any center s′ ∈CUi, for which we do not yet have a tuple in LCurrentv, d̂(v,s′) is

implicitly defined as ∞. Initially, the estimates lists of all the vertices are empty,

except for the centers of clusters in Ui. The estimates list of every center rC ∈CUi

is initialized with a single element (rC,0) in it. The interconnection step of phase

i is carried out in 2β + 1 sub-phases. In the following section, we describe the

purpose of each of the 2β +1 sub-phases of the interconnection step and the way

they are carried out.

Sub-phase p of interconnection step: Denote ζ ′ = χ

2·(2β+1) . Our goal is to ensure

that by the end of sub-phase p, for every vertex v ∈V and every exploration source

s ∈ CUi with a p-bounded path to v in G(k−1) , there is a tuple (s, d̂(v,s)) in the

estimates list LCurrentv such that:

d(p)
G(k−1)(v,s)≤ d̂(v,s)≤ (1+ζ

′)p ·d(p)
G(k−1)(v,s).

To accomplish this, in every sub-phase p, we search for every vertex v ∈ V , a

better (smaller than the current value of d̂(v,s)) estimate (if exists) of its (2β +1)-

bounded distance to every source s ∈ CUi, by keeping track of edges e = (u,v)

incident to v in G(k−1). In each of the 2β + 1 sub-phases, we make two passes

through the stream. For a given vertex v ∈ V , an exploration source s ∈ CUi is

called an update candidate of v in sub-phase p, if a better estimate of d(2β+1)
G(k−1) (v,s)

is available in sub-phase p through some edge e = (u,v) on the stream. (Recall that

the current estimate of d(2β+1)
G(k−1) (v,s′) for some source s′ ∈CUi for which we do not

yet have an entry in LCurrentv is ∞.) Note that a better estimate of d(2β+1)
G(k−1) (v,s),

for some vertex v and some source s in sub-phase p, may also be available through

some edges in H(k−1). We therefore go through the edge set H(k−1) offline at the

76

Chapter 4. Approximate Shortest Paths in Weighted Graphs

end of every sub-phase and update all our estimates lists with the best available

estimates in H(k−1).

In the first pass of sub-phase p, we identify for every v ∈ V , all of v’s update

candidates in sub-phase p. All of these update candidates are added to a list called

the update list of v, denoted LU pdatev. Each element of LU pdatev is a tuple

(s,range,r), where s is the ID of an exploration source in CUi for which a better

estimate of d(2β+1)
G(k−1) (v,s) is available, range is the distance range I = (low,high] in

which the better estimate is available, and r is the number of vertices u ∈ ΓG(v),

such that d̂(u,s)+ω(u,v) ∈ range.

The second pass of sub-phase p uses the update list of every vertex v ∈ V to find

a better estimate of d(2β+1)
G(k−1) (v,s), for every update candidate s in LU pdatev. The

new better estimate of d(2β+1)
G(k−1) (v,s) for every source s in LU pdatev is then used to

update the estimates list LCurrentv of v.

First pass of sub-phase p of phase i: By Lemma 3.2, the number of explorations

that visit a vertex v ∈ V during the interconnection step of phase i is at most di

in expectation and at most c′1 · lnn · degi whp, where c′1 is a sufficiently large pos-

itive constant. Hence, the number of update candidates of v in any sub-phase of

interconnection step of phase i is at most c′1 · lnn · degi whp. (Recall that all the

explorations are restricted to distance at most δ ′i /2.)

As in Section 3.1.2, we denote Ni = c′1 · lnn ·degi and µi = 16 · c4 ·Ni · lnn, where

c4 ≥ 1 is a sufficiently large positive constant.

At a high level, in the first pass of every sub-phase, we want to recover, for every

vertex v ∈V , a vector (containing sources of explorations that visit v in sub-phase

p) with at most Ni elements in its support. In other words, we want to perform an

s-sparse recovery for every vertex v ∈ V , where s = Ni. In the unweighted case

in Section 3.1.2, we perform Ni-sparse recovery for a given vertex v by multiple

simultaneous invocations of a sampler FindNewVisitor that samples (with at least a

constant probability) one exploration source out of at most Ni sources that visit v.

In the weighted case, we do something similar but with a more involved sampling

procedure called FindNewCandidate. The pseudocode for procedure FindNew-

Candidate is given in Algorithm 4. The procedure FindNewCandidate enables us

77

Chapter 4. Approximate Shortest Paths in Weighted Graphs

to sample an update candidate s of v (if exists), with a better (than the current)

estimate of d(2β+1)
G(k−1) (v,s) in a a specific distance range.

For every vertex v ∈ V , we divide the possible range of better estimates of v’s

(2β + 1)-bounded distances to its update candidates, into sub-ranges on a ge-

ometric scale. We then invoke the procedure FindNewCandidate repeatedly in

parallel to perform an Ni-sparse recovery for v on every sub-range. Specifically,

we divide the search space of potential better estimates, [1,δ ′i /2], into sub-ranges

I j =
(
(1+ζ ′) j, (1+ζ ′) j+1

]
, for j ∈ {0,1, . . . ,γ}, where γ = dlog1+ζ ′ δ

′
i /2e− 1.

For j = 0, we make the sub-range I0 =
[
(1+ζ ′)0,(1+ζ ′)1

]
closed to include the

value 1. Note that we are only interested in distances at most δ ′i /2. Therefore we

restrict our search for distance estimates to the range [1,δ ′i /2], as opposed to the

search range [1,Λ] that we had in Section 2.4.1.

In more detail, we make for for each v ∈ V and for each sub-range I j, µi attempts

in parallel. In a specific attempt for a given vertex v and a given sub-range I j,

we make a single call to procedure FindNewCandidate which samples an update

candidate s (if exists) of v with a better estimate of d(2β+1)
G(k−1) (v,s) in the sub-range

I j. Henceforth, we will refer to an update candidate s of a vertex v with a better

estimate of d(2β+1)
G(k−1) (v,s) in a given distance range I, as the update candidate of v

in the range I.

The procedure FindNewCandidate can be viewed as an adaptation of procedure

FindNewVisitor from Section 3.1.2 for weighted graphs. It takes as input the ID of

a vertex, a hash function h chosen at random from a family of pairwise independent

hash functions and an input range I = (low,high]. (The input range may be closed

as well.) A successful invocation of FindNewCandidate for an input vertex v and

a distance range I returns a tuple (s,cs), where s is the ID of an update candidate

of v in the range I, and cs is the number of edges (v,u) ∈ E such that d̂(u,s)+

ω(v,u) ∈ I. If there is no update candidate of v in the input range I, procedure

FindNewCandidate returns a tuple (φ ,φ). If there are update candidates of v in

the input range, but procedure FindNewCandidate fails to isolate an ID of such a

candidate, it returns (⊥,⊥).

Before we start making our attempts in parallel, we sample uniformly at random

a set of functions Hp (|Hp| = µi) from a family of pairwise independent hash

78

Chapter 4. Approximate Shortest Paths in Weighted Graphs

functions h : {1, . . . ,maxV ID}→ {1, . . . ,2λ}, where λ = dlogmaxV IDe= dlogne.
Then, for every vertex v ∈V and every distance sub-range I j, j ∈ {0,1, . . . ,γ}, we

make µi parallel calls to procedure FindNewCandidate(v,h, I j), one call for each

h ∈ Hp.

Procedure FindNewCandidate: As mentioned above, the procedure FindNew-

Candidate is similar to procedure FindNewVisitor (See Algorithm 3) of Section 3.1.2.

It uses a function h chosen uniformly at random from a family of pairwise indepen-

dent hash functions to sample for the input vertex v, an update candidate of v in the

input range I. Just like procedure FindNewVisitor, it also uses the CIS-based en-

coding scheme ν described in Section 2.2.4 to encode the names of the exploration

sources it samples, and uses Lemma 2.12 to check (See line 21 of Algorithm 4),

if it has successfully isolated the ID of a single update candidate in the desired

distance range. We will mainly focus here on the details of Algorithm 4 which are

different from that of Algorithm 3. We refer the reader to Sections 3.1.2 and 2.2.4

for a detailed exposition of our sampling technique and the CIS-based encoding

scheme.

The procedure FindNewCandidate (Algorithm 4) differs from procedure Find-

NewVisitor (Algorithm 3) mainly in its input parameters and its handling of the

incoming edges during the Update Stage. (See lines 6 to 18.) Specifically, pro-

cedure FindNewCandidate takes an additional input parameter I corresponding to

a range of distances. It looks for an update candidate of input vertex v in the in-

put range I. The update stage of a call to procedure FindNewCandidate for an

input vertex v and an input distance range I proceeds as follows. For every update

(et , eSignt , eWeightt) to an edge et incident to v and some vertex u, we look at

every exploration source s in the estimates list LCurrentu of u, (see line 8 of Al-

gorithm 4) and check whether the distance estimate of v to s via edge et = (v,u)

is better than the current value of d̂(v,s), and whether it falls in the input distance

range I. (See line 10 of Algorithm 4.) If this is the case, then, we sample s just

like we sample new exploration sources in FindNewVisitor. This completes the

description of procedure FindNewCadidate.

As in procedure FindNewVisitor, by Corollary 2.8, a single call to procedure Find-

NewCandidate succeeds with at least a constant probability.

79

Chapter 4. Approximate Shortest Paths in Weighted Graphs

For a vertex v ∈ V , if there are no update candidates of v in sub-phase p, all the

calls to procedure FindNewCandidate in all the attempts return (φ ,φ). For every

such vertex, we do not need to add anything to its update list LU pdatev. At the end

of the first pass, if no invocation of procedure FindNewCandidate returns as error,

we extract for every vertex v ∈ V and every distance range I j (j ∈ {0,1, . . . ,γ}),
all the distinct update candidates of v in the range I j sampled by µi attempts made

for v and sub-range I j. For a given update candidate s of v, let j = jv,s be the

smallest index in {0,1, . . . ,γ}, such that a tuple (s,cs) (for some cs > 0) is returned

by a call to procedure FindNewCandidate(v,h, I j). We add a tuple (s, I j,cs) to the

list of update candidates LU pdatev of v. Recall that the set LU pdatev of vertex v

contains tuples (s,range,rs), where s is the ID of an update candidate of v, range

is the distance range in which a better estimate of d(2β+1)
G(k−1) (v,s) lies, and r is the

number of edges (u,v) ∈ ΓG(v) such that d̂(u,s)+ω(u,v) ∈ range.

Analysis of first pass: We now analyze the success probability and space require-

ments of the first pass of sub-phase p of interconnection step. Recall that, in sub-

phase p, for every vertex v ∈V and every distance sub-range

I j =
(
(1+ζ ′) j, (1+ζ ′) j+1

]
(j ∈ {0,1, . . . ,γ}, where γ = dlog1+ζ ′ δ

′
i /2e−1), we

make µi = 16 · c4 ·Ni · lnn parallel attempts or calls to procedure FindNewCandi-

date to isolate all the update candidates of v in the range I j.

We first show that making µi = 16 ·c4 ·Ni · lnn attempts in parallel for a given vertex

v ∈V and a given distance range I j, j ∈ {0,1, . . . ,γ}, ensures that a specific update

candidate of vertex v in a specific distance range I in sub-phase p is extracted whp.

Lemma 4.3. For a given vertex v ∈V and a specific distance sub-range I j, during

sub-phase p, a given update candidate s of v in the range I j is discovered with

probability at least 1−1/nc4 .

Proof. Let d(p, j)
v be the number of update candidates of v in the range I j in sub-

phase p. By Lemma 3.2, with probability at least 1− 1
nc′1−1 , the number of the

exploration sources that visit v during interconnection step of phase i is at most

Ni. Observe that Ni is an upper bound on the number of update candidates of v

(over the entire distance range [1,δ ′i /2]) during sub-phase p. It follows therefore

that d(p, j)
v ≤Ni. For a specific update candidate s of v in the range I j in sub-phase

p, let DISC(s) denote the event that it is discovered in a specific attempt. Then:

80

Chapter 4. Approximate Shortest Paths in Weighted Graphs

Pr
[
DISC(s)

]
≥ Pr

[
DISC(s) | d(p, j)

v ≤Ni

]
·Pr
[
d(p, j)

v ≤Ni

]
≥ Pr

[
DISC(s) | d(p, j)

v ≤Ni

]
·
(

1− 1
nc1−1

)
≥ 1

8Ni

(
1− 1

nc′1−1

)
≥ 1

16Ni

Note that the third inequality follows by applying Lemma 2.7 to the event {DISC(s) | d(j)
v ≤

Ni}.

Thus, for a given update candidate of v in the sub-range I j, the probability that none

of the µi = 16 ·c4 ·Ni · lnn attempts will isolate it is at most
(

1− 1
16Ni

)16·c4·lnn·Ni
≤

1/nc4 .

Next, we analyze the space requirements of procedure FindNewCandidate. Proce-

dure FindNewCandidate is similar to procedure FindNewVisitor of Section 3.1.2

in terms of its sampling technique. In addition to all the variables that procedure

FindNewVisitor uses, procedure FindNewCandidate also uses distance variables

low and high, that define the input range I = (low,high], in which it looks for an

update candidate of its input vertex. Each of these distance variables consume

O(logΛ) bits. Adding the cost of additional variables used in procedure FindNew-

Candidate to the space usage of procedure FindNewVisitor (Lemma 3.4), we get

the following lemma:

Lemma 4.4. The procedure FindNewCandidate uses O(log2 n+logΛ) bits of mem-

ory.

We next provide an upper bound on the space usage of the first pass of the inter-

connection step.

Lemma 4.5. The overall space usage of the first pass of every sub-phase of inter-

connection is

O(n1+ρ · logΛ

ζ ′
· log2 n · (log2 n+ logΛ)) bits.

Proof. The first pass of every sub-phase makes

γ ·µi = (dlog1+ζ ′ δ
′
i /2e−1) ·µi = O(log1+ζ ′ Λ ·degi · log2 n) attempts in parallel for

81

Chapter 4. Approximate Shortest Paths in Weighted Graphs

every v ∈V . Recall that for all i, degi ≤ nρ (See Section 3.1). Combining this fact

with Lemma 4.4, we get that the space usage of all the invocations of procedure

FindNewCandidate for all the n vertices during the first pass is O(n1+ρ · log1+ζ ′ Λ ·
log2 n · (log2 n+ logΛ)). We use |Hp| = µi hash functions during the first pass.

Each hash function can be encoded using O(logn) bits. The overall space used by

the storage of hash functions during the first phase is thus O(nρ · log3 n). As an

output, we produce an update list LU pdatev for every v ∈V . Each of these update

lists consists of tuples (s,range,r) of O(logn+ logλ) bits each. By Lemma 3.2, a

vertex v is visited by at most O(degi logn) ≤ O(nρ logn) explorations whp in the

phase i. In any case, we record just O(nρ · logn) of them, even if v is visited by more

explorations. Hence, the storage of all the update lists during a given sub-phase

requires O(n1+ρ logn(logn+ logλ)) bits. Finally, we need to store the estimates

lists LCurrentv of all v ∈V . This requires at most O(n1+ρ logn(logn+ logΛ)) bits

of space. Thus, the storage cost of first pass of every sub-phase is dominated by

the cost of parallel invocations of procedure FindNewCandidate. This makes the

overall cost of first pass of every sub-phase

O(n1+ρ · logΛ

ζ ′
· log2 n · (log2 n+ logΛ)) bits.

Second pass of sub-phase j of phase i: The second pass of sub-phase p starts

with the update lists LU pdatev of every v∈V . Recall that the update list LU pdatev

of a given vertex v ∈ V consists of tuples of the form (s,range,r), where s is an

exploration source in CUi for which a better estimate of d(2β+1)
G(k−1) (v,s) is available in

the distance sub-range range, and r is the number of edges in the edge set E of the

original graph G through which the better estimate is available. We find for every

tuple (s,range,r) in LU pdatev, a better estimate of d(2β+1)
G(k−1) (v,s) in the sub-range

range, by invoking procedure GuessDistance (described in Section 2.4.2) O(logn)

times.

We sample uniformly at random a set of c1 log7/8 n pairwise independent hash func-

tions H ′p from the family h : {1, . . . ,maxVID}→ {1,2, . . . ,2λ} (λ = dlogne), to be

used by invocations of procedure GuessDistance.

We need to change the original procedure GuessDistance (Section 2.4.2) slightly

to work here. Specifically, we need to change the part where we decide whether

82

Chapter 4. Approximate Shortest Paths in Weighted Graphs

to sample an incoming edge update or not (Line 5 of Algorithm 2). It should be

updated to check if the edge et is incident between the input vertex v and some

vertex u such that there is a tuple (s, d̂(u,s)) in the estimates list of u and that

(d̂(u,s)+eWeightt) ∈ range and d̂(u,s)+eWeightt < d̂(v,s). Note that the current

estimate d̂(v,s) of input vertex v’s distance to its update candidate s is either avail-

able in its estimates list LCurrentv or is implicitly set to ∞. The latter happens if v

has not yet been visited by the exploration rooted at source s.

At the end of the second pass, we have the results of all the invocations of proce-

dure GuessDistance, for a given vertex v corresponding to the tuple (s,range,r) ∈
LU pdatev. We update the corresponding tuple (s, d̂(v,s)) in the estimates list

LCurrentv of v with the minimum value returned by any invocation of GuessDis-

tance for vertex v. If an entry corresponding to s is not present in the estimates

list LCurrentv at this stage (i.e., d̂(v,s) = ∞ as above), then we add a new tuple

to the estimates list of v. Finally, the updates lists of all the vertices are cleared

to be re-used in the next sub-phase. So far, we have only looked at the edges of

the original graph presented to us in the stream while looking for better estimates

of d(2β+1)
G(k−1) (v,s). Recall that we need to perform 2β + 1 iterations of the Bellman-

Ford algorithm in the graph G(k−1) which is a union of the original graph G and

H(k−1) =
⋃
blogβc≤ j ≤k−1 H j of all the lower level hopsets. Having updated the es-

timates lists of all the vertices with the best estimate available from the stream, at

the end of second pass of sub-phase p we go through the edges of the lower level

hopsets and check for each v ∈V whether a better estimate of d(2β+1)
G(k−1) (v,s) for any

source s ∈CUi is available through one of the hopset edges. If this is the case, then

we update the estimates lists accordingly.

Analysis of Second Pass: We now analyze the space requirements of the second

pass of sub-phase j of interconnection step.

Lemma 4.6. The overall space usage of the second pass of every sub-phase of the

interconnection step is O(n1+ρ · log3 n · (logn+ logΛ)).

Proof. The second pass of every sub-phase invokes procedure GuessDistance

O(logn) times in parallel for every tuple in the update list LU pdatev of every v∈V .

The number of elements in the update list Lupdatev of a given vertex v is at most

O(nρ logn). (Recall that by Lemma 3.2, whp there are at most Õ(nρ) explorations

83

Chapter 4. Approximate Shortest Paths in Weighted Graphs

per vertex. But even if there are more explorations, our algorithm records just

Õ(nρ) explorations per vertex.) Therefore, we make a total of O(n1+ρ · log2 n)

calls to procedure GuessDistance during the second pass of any sub-phase. By

Lemma 2.19, each invocation of procedure GuessDistance uses O(logn · (logn+

logΛ)) bits of space. Therefore the overall cost of all the invocations of procedure

GuessDistance is O(n1+ρ · log3 n · (logn+ logΛ)). In addition, we need to store a

set of O(logn) hash functions of size O(logn) each in global storage. This requires

O(log2 n) bits of space. Therefore, the overall storage cost of the second pass of any

sub-phase is dominated by the space required for invocations of GuessDistance.

Hence the overall space requirement of second pass of interconnection is O(n1+ρ ·
log3 n · (logn+ logΛ)).

Recall that ζ ′ = χ

2·(2β+1) , |H
′
p| = c1 log8/7 n and µi = c4 · lnn · di, where c1,c4 > 0

are positive constants.

Lemma 4.7. For a sufficiently large constant c′, with probability at least 1−
p/nc′−1, after p sub-phases of the interconnection step of phase i, the following

holds for a given cluster C ∈ Ui and for every vertex v within p hops from the

center rC of C in G(k−1) :

There is a tuple (rC, d̂(v,rC)) in the estimates list LCurrentv of v such that

d(p)
G(k−1)(v,rC)≤ d̂(v,rC)≤ (1+ζ

′)p ·d(p)
G(k−1)(v,rC)

(The left-hand inequality holds with probability 1, and the right-hand inequality

holds with probability at least 1− p/nc′−1.)

Proof. The proof follows by induction on the number of phases, p, of the algo-

rithm. The base case for p = 0 holds trivially. For the inductive step, we assume

that the statement of the lemma holds for p = t, for some 0 ≤ t < 2β + 1, and

prove it for p = t + 1. Let v be a vertex with a (t + 1)-bounded shortest path

to rC in G(k−1). Denote by u ∈ ΓG(v), the neighbour of v on a shortest (t + 1)-

bounded path between v and rC. By inductive hypothesis, with probability at least

1−t/nc′−1, every vertex with a t-bounded shortest path to rC has a tuple for rC in its

estimates list and the corresponding estimate provides a stretch at most (1+ ζ ′)t .

In particular, there is a tuple (rC, d̂(u,rC)) in the estimates list LCurrentu of u such

84

Chapter 4. Approximate Shortest Paths in Weighted Graphs

that d(t)
G (u,rC) ≤ d̂(u,rC) ≤ (1+ ζ ′)t · d(t)

G (u,rC). Denote by j = jv the index of a

sub-range such that

d̂(u,rC)+ω(u,v) ∈ I j.

In the first pass of sub-phase t+1, we make µi attempts in parallel to identify all the

update candidates of v in the distance range I j. By Lemma 4.3, rC will be sampled

in one of the µi attempts, with probability at least at least 1−1/nc4 . In the second

pass of sub-phase t + 1, we make O(logn) calls to procedure GuessDistance to

find an estimate of v’s (t + 1)-bounded distance to the center rC in the sub-range

I j. By Lemma 2.18, with probability at least 1−1/nc1 , at least one of the calls to

procedure GuessDistance will successfully return an estimate of d(t+1)
G (v,rC) in the

sub-range I j. By a union bound over the failure probability of the first two passes

for vertex v, we get that for an appropriate constant c′, with probability at least,

1−1/nc′ , vertex v will be able to find an estimate of d(t+1)
G (v,rC) in the sub-range

I j. By union bound over all the vertices with a (t + 1)-bounded shortest path to

rC, we get that with probability at least 1−1/nc′−1, all the vertices with a (t +1)-

bounded shortest path to rC will be able to find an estimate of their (t+1)-bounded

distance to rC in the appropriate sub-range. The overall failure probability of phase

t + 1 is therefore at most 1/nc′−1 plus t/nc′−1 from the inductive hypothesis. In

total, the failure probability is at most t+1
nc′−1 , as required. We assume henceforth

that every vertex will successfully find an estimate of its (t +1)-bounded distance

to rC in the appropriate sub-range.

For a given vertex v, during the second pass of sub-phase t +1, we sample a can-

didate neighbour u′ ∈ ΓG(v) such that d̂(u′)+ω(u′,v) ∈ I j.

By induction hypothesis, vertex u has a tuple (rC, d̂(u,rC)) in its estimates list such

that, d̂(u,rC)≤ (1+ζ ′)t ·d(t)
G (u,rC). Therefore,

d̂(u,rC)+ω(u,v)≤ (1+ζ
′)t ·d(t)

G (u,rC)+ω(u,v)

≤ (1+ζ
′)t · (d(t)

G (u,rC)+ω(u,v))

= (1+ζ
′)t ·d(t+1)

G (v,rC).

85

Chapter 4. Approximate Shortest Paths in Weighted Graphs

Moreover, (d̂(u′,rC)+ω(u′,v)) and (d̂(u,rC)+ω(u,v)) belong to the same sub-

range I j, and thus,

d̂(u′,rC)+ω(u′,v)≤ (1+ζ
′) · (d̂(u,rC)+ω(u,v))

≤ (1+ζ
′)t+1 ·d(t+1)

G (v,rC).

Finally, any update made to d̂(v,rC) offline at the end of the sub-phase t + 1 does

not increase the stretch, since we update d̂(v,rC) only if there is a smaller estimate

available through some edges in H(k−1).

For the lower bound, let i ≤ j be the minimum index such that we succeed in

finding a neighbour u′i of v with (d̂(u′i,rC)+ω(u′i,v)) ∈ Ii. Then, with probability

1, d̂(u′i,rC)≥ d(t)
G (u′i,v) and thus,

d̂(v,rC) = d̂(u′i,rC)+ω(u′i,v)≥ d(t)
G (u′i,rC)+ω(u′i,v)≥ d(t+1)

G (v,rC).

Observe that Lemma 4.7 implies that for some p≥ 1, a single (1+χ)-approximate

Bellman-Ford exploration to hop-depth p, rooted at a specific center rC ∈CUi (con-

ducted during the interconnection step of phase i) succeeds with probability at least

1− p/nc′−1. There are at most di ≤ nρ < n centers in CUi. Taking a union bound

over all the centers in CUi, we get the following lemma:

Lemma 4.8. For a sufficiently large constant c′, with probability at least 1−
p/nc′−2, after p sub-phases of the interconnection step of phase i, the following

holds for any cluster C ∈Ui and for every vertex v within p hops from the center

rC of C in G(k−1):

There is a tuple (rC, d̂(v,rC)) in the estimates list LCurrentv of v such that

d(p)
G(k−1)(v,rC)≤ d̂(v,rC)≤ (1+ζ

′)p ·d(p)
G(k−1)(v,rC)

Recall that ζ ′ = χ

2·(2β+1) . Invoking Lemma 4.8 with p = 2β +1 and ζ ′ = χ

2·(2β+1) ,

implies the following corollary about the interconnection step of phase i:

Corollary 4.9. For a sufficiently large constant c′′, with probability at least 1−
1/nc′′ , after 2β +1 sub-phases of the interconnection step of phase i, the following

86

Chapter 4. Approximate Shortest Paths in Weighted Graphs

holds for any cluster C ∈ Ui and for every vertex v within 2β + 1 hops from the

center rC of C in G(k−1):

There is a tuple (rC, d̂(v,rC)) in the estimates list LCurrentv of v such that

d(2β+1)
G(k−1) (v,rC)≤ d̂(v,rC)≤ (1+χ) ·d(2β+1)

G(k−1) (v,rC) (4.4)

Finally, after 2β + 1 sub-phases of the interconnection step of phase i, we go

through the estimates list of every center rC ∈CUi to check for every center r′C ∈
CUi, whether, there is a tuple (r′C, d̂(rC,r′C)) ∈ LCurrentrC and d̂(rC,r′C) ≤ δ ′i /2.

Then, for every such center r′C found, we add an edge (rC,r′C) of weight d̂(rC,r′C)

into hopset Hk. Note that if dG(rC,rC′) ≤ δi/2, then by equations (4.2) and (4.4),

d̂(rC,rC′)≤ (1+χ) ·(1+εk−1)dG(rC,rC′) = δ ′i /2. Therefore, the edge (rC,rC′) will

be added in to the hopset.

Lemmas 4.5, 4.6 and Corollary 4.9 together imply the following corollary about

the interconnection step of phase i:

Lemma 4.10. For a sufficiently large constant c′′, after 2β + 1 sub-phases of the

interconnection step of phase i during the construction of hopset Hk, k ∈ [k0,kλ],

the following holds with probability at least 1−1/nc′′:

1. The interconnection step of phase i makes 2β +1 passes through the stream,

and the total required space is O(β

χ
· n1+ρ · logΛ · log2 n · (log2 n+ logΛ))

bits.

2. For every cluster C ∈Ui and every other cluster C′ ∈Ui such that the center

r′C of C′ is within distance δi/2 in G from center rC of C, an edge (rC,rC′) of

weight at most (1+χ) · (1+ εk−1) ·dG(rC,r′C) is added into hopset Hk,

where εk−1 is the stretch guarantee of the graph G(k−1).

Lemmas 4.2 and 4.10 imply that our algorithm simulates phase i of insertion-only

streaming algorithm (of (23)) for the construction of a single scale hopset Hk whp.

Note, however, that the edges added to the hopset Hk by our algorithm during any

phase i (0 ≤ i ≤ `), incur an extra stretch of (1+ χ) compared to the insertion-

only algorithm. The reason is that in the insertion-only algorithm, every pair of

sufficiently close cluster centres are connected via an edge of weight exactly equal

to the length of the path between them in G(k−1), while in our algorithm, the weight

87

Chapter 4. Approximate Shortest Paths in Weighted Graphs

of the connecting edge is a (1+χ)-approximation of the length of the path between

them in G(k−1).

The following lemma follows by induction on the number of phases of our algo-

rithm.

Lemma 4.11. After ` phases, our single-scale hopset construction algorithm simu-

lates the insertion-only streaming algorithm of (23) for constructing a single-scale

hopset Hk for scale (2k,2k+1], k0 ≤ k ≤ kλ , in the dynamic streaming setting whp

such that

any edge e added to the hopset Hk by our algorithm is stretched at most by a factor

of (1+χ) compared to the insertion-only algorithm.

We return the edges of the set H =
⋃

k0≤ j≤kλ
H j as our final hopset.

Next, we analyze the properties of our final hopset H.

4.1.3 Putting Everything Together

Size: The size of our hopset H is the same as that of the insertion-only algorithm

of (23), since we follow the same criteria (as in (23)), when deciding which cluster

centres to connect via a hopset edge during our construction. Thus, the overall size

of the hopset produced by our construction is O(n1+1/κ · logΛ) in expectation.

Stretch and Hopbound: Recall that εk is the value such that the graph G(k) (which

is a graph obtained by adding the edges of hopset H(k) =
⋃

k0≤ j≤k H j to the input

graph G) provides stretch at most 1+ εk. Also, recall that k0 = blogβc and kλ =

dlogΛe.

Write c5 = 2. We need the following lemma from (23) regarding the stretch of a

single scale hopset Hk, k ∈ [k0,kλ] produced by the insertion-only algorithm. We

refer the reader to Lemma 3.10 and preamble of Theorem 3.11 of (23) for the proof.

(Note that Lemma 3.10 and Theorem 3.11 of (23) are proved for the construction

of a single scale hopset in the congested clique model. These also apply to their

insertion-only construction.(See Section 3.5 of (23).))

Lemma 4.12. (23) Let x,y ∈ V be such that 2k ≤ dG(x,y) ≤ 2k+1, then it holds

that

d(h`)
G∪Hk

(x,y)≤ (1+ εk−1)(1+16 · c5 · ` · ε)dG(x,y), (4.5)

88

Chapter 4. Approximate Shortest Paths in Weighted Graphs

and h` = O(1
ε
)` is the hopbound.

Rescaling: Define ε ′′ = 16 ·c5 · ` · ε . Therefore, the stretch of a single scale hopset

Hk, k ∈ [k0,kλ], produced by the insertion-only algorithm of (23) becomes (1+

εk−1)(1+ ε ′′).

After rescaling, the hopbound h` becomes O(`
ε ′′)

`. Recall that ` = `(κ,ρ) =

blog(κρ)c+dκ+1
ρκ
e−1≤ log(κρ)+d1/ρe, is the number of phases of our single-

scale hopset construction. It follows that the hopbound of the insertion-only algo-

rithm is

βEN = O
(

logκρ +1/ρ

ε ′′

)logκρ+1/ρ

. (4.6)

Observe that for k = k0, graph G(k−1) is the input graph G itself, since Hk for all

k < k0 is φ . (See Section 4.1.1 for details.) Therefore, 1+ εk−1 for k = k0 is equal

to 1. It follows therefore that

the stretch 1+ εk = 1+ εkEN , of the insertion-only algorithm follows the following

sequence: 1+ εk0EN = (1+ ε ′′) and for the higher scales, 1+ εk+1EN = (1+ ε ′′) ·
(1+ εkEN).

By Lemma 4.11, the stretch of our single scale hopset construction (Section 4.1.2)

for any scale (2k,2k+1], k0≤ k≤ kλ is (1+χ) times the stretch of the corresponding

hopset produced by the insertion-only algorithm. We set χ = ε ′′. Incorporating the

additional stretch incurred by our algorithm into the stretch analysis of (23), we get

the following lemma about the stretch of our dynamic streaming algorithm

Lemma 4.13. For k ∈ [k0,kλ], we have

1+ εk0 = (1+ ε
′′)2

1+ εk = (1+ ε
′′)2(1+ εk−1) for k > k0

Observe that Lemma 4.13 implies that the overall stretch of our hopset H is at most

(1+ ε ′′)2logΛ.

Recall that the desired stretch of our hopset construction is 1+ε ′ (see Section 4.1.1),

where ε ′ > 0 is an input parameter of our algorithm.

We set ε ′′ = ε ′

4·logΛ
, and it follows that our overall stretch is

(
1+

ε ′

4logΛ

)2logΛ

≤ 1+ ε
′

89

Chapter 4. Approximate Shortest Paths in Weighted Graphs

.

Plugging in ε ′′ = ε ′

4·logΛ
in (4.6), we get the following expression for the hopbound

of our dynamic streaming hopset:

β
′ = O

(
logΛ

ε ′
(logκρ +1/ρ)

)logκρ+1/ρ

. (4.7)

(See also (4.1).)

Also recall that we had defined β = (1
ε
)` for using 2β +1 as the hop-depth of our

explorations. After the two rescaling steps as above, we get that β = β ′.

Next we analyze the pass complexity of our overall construction.

Lemma 4.14. Our dynamic streaming algorithm makes O(β ′ logΛ ·(logκρ+1/ρ))

passes through the stream.

Proof. In our single scale hopset construction (See Section 4.1.2), we make O(β ′)

passes during the superclustering step and O(β ′) passes during the interconnection

step of any phase. (Note that β ′ = β and β ′ = β ′(ε,κ,ρ) is given by (4.7).) There

are ` ≤ log(κρ)+ d1/ρe phases in total. Thus, we make O(β ′ · (logκρ + 1/ρ))

passes through the stream during the construction of a single scale hopset. We

build at most logΛ single scale hopsets one after the other. Therefore, the overall

pass complexity of our hopset construction is O(β ′ · logΛ · (logκρ +1/ρ)).

To summarize, we get the following equivalent of Theorem 3.16 of (23) summa-

rizing our results:

Theorem 4.15. For any n-vertex graph G(V,E,ω) with aspect ratio Λ, 2 ≤ κ ≤
(logn)/4, 1/κ ≤ ρ ≤ 1/2 and 0 < ε ′ < 1, our dynamic streaming algorithm com-

putes a (1+ε ′,β ′) hopset H with expected size O(n1+1/κ · logΛ) and the hopbound

β ′ given by (4.7) whp.

It does so by making O(β ′ · logΛ · (logκρ +1/ρ)) passes through the stream and

using O(β ′

ε ′ ·n
1+ρ · logΛ · log2 n · (log2 n+ logΛ)) bits of space.

4.1.4 Path-Reporting Hopsets

In certain applications of hopsets in the streaming model such as in the computation

of approximate shortest paths, knowing all the hopset edges is not sufficient. For

90

Chapter 4. Approximate Shortest Paths in Weighted Graphs

every hopset edge e=(u,v), one also needs to know the actual path π(u,v) in G that

implements e. We say that a hopset H is path-reporting, if for every hopset edge

(u,v) ∈H, there exists a path π(u,v) between u and v in G such that ωG(π(u,v)) =

ωH(u,v) and H has enough enough information to compute π(u,v). (See (23) for

more information on path-reporting hopsets.) Recall that for a given vertex v ∈V ,

the procedure GuessDistance executed as part of the (2β ′+ 1)-limited Bellman-

Ford explorations conducted during our hopset construction gives us an estimate

of v’s distance to a source s. In addition, it also gives us the name of a neighbour

u of v such that u is v’s parent on the exploration tree rooted at s. When adding an

edge (rC,r′C) between two nearby cluster centres to some hopset Hk, k ∈ [k0,kλ],

the path π(rC,r′C) between rC and r′C in G(k−1) can be deduced from the parent

pointers returned by calls to procedure GuessDistance. For every hopset edge e

added to the hopset Hk for scale index k ∈ [k0,kλ], we can store the corresponding

path between its endpoints in G(k−1) to the hopset. Note that some of the edges

on this path may themselves by hopset edges from a lower level hopset. This

is not a problem, since the path corresponding to such an edge e′ should have

been stored during the construction of the hopset in which e′ was added. Since all

the explorations conducted during the construction of Hk are (2β ′+ 1)-limited, it

increases the space usage of the hopset construction by a factor of O(β ′).

To summarize, we get the following equivalent of Theorem 4.15 for path-reporting

hopsets:

Theorem 4.16. For any n-vertex graph G(V,E,ω) with aspect ratio Λ, 2 ≤ κ ≤
(logn)/4, 1/κ ≤ ρ ≤ 1/2 and 0 < ε ′ < 1, our dynamic streaming algorithm com-

putes a (1+ε ′,β ′) hopset H with expected size O(n1+1/κ · logΛ) and the hopbound

β ′ given by (4.7) whp.

It does so by making O(β ′ · logΛ · (logκρ +1/ρ)) passes through the stream and

using O(β ′2

ε ′ ·n
1+ρ · logΛ · log2 n · (log2 n+ logΛ)) bits of space.

4.2 Eliminating Dependence on the Aspect Ratio

In this section, we devise a reduction that eliminates the dependence on the aspect

ratio Λ of the graph from the hopbound, size and the overall pass complexity of our

hopset construction. We note, however, that the space complexity of our algorithm

91

Chapter 4. Approximate Shortest Paths in Weighted Graphs

is still linear in logΛ. The result of applying the reduction to our algorithm is

summarized in Theorem 4.20.

4.2.1 Overview

In this sub-section, we give a general overview of the reduction for a weighted

input graph G = (V,E,ω), and then describe its implementation in the dynamic

streaming model in the subsequent sub-section. Fix a parameter 0 < ε < 1/2.

Recall that k0 = blogβc and kλ = dlogΛe− 1. For every scale index k ∈ [k0,kλ],

we build a graph Gk that contains edges with weights in the range ((ε/n) ·2k,(1+

ε/2) ·2k+1]. This graph can be constructed by deleting the heavy edges (of weight

more than 2k+1) and contracting the light edges (of weight less than (ε/n) · 2k)

from G. By contraction, we mean grouping vertices with light edges between them

into supervertices which we call nodes. Each node of graph Gk is a subset of V .

Observe that the nodes of Gk are connected components of the graph obtained by

deleting all the edges of weight more that (ε/n) ·2k from G. The weight of an edge

(X ,Y) ∈ E(Gk) is set to be

W (X ,Y) = ω(x,y)+(ε/n) ·2k · (|X |+ |Y |), (4.8)

where x ∈ X and y ∈Y and edge (x,y) ∈ E is the shortest edge between a vertex of

X and a vertex of Y .

Observe that the minimal weight of an edge in Gk is at least (ε/n) ·2k+2(ε/n) ·2k >

(ε/n) · 2k+1 and the maximal weight is at most 2k+1 + ε · 2k = (1+ ε/2) · 2k+1.

Therefore, for every scale index k ∈ [k0,kλ], the corresponding graph Gk has aspect

ratio O(n/ε).

Every node U in Gk is assigned a designated center u and we add edges from u to

every other vertex in U . These edges are called the star edges. Let Sk denote the set

of all the star edges of Gk. Consider a contraction of an edge (x′,y′), x′ ∈ X , y′ ∈Y ,

connecting nodes X , Y with centers x∗ ∈ X and y∗ ∈ Y . Assuming that |X | ≥ |Y |,
the vertex x∗ is declared the center of U = X ∪Y , and we add to Sk edges from x∗

to every vertex of Y . The weight of the edge (x,z) for each z ∈ Y is set as

W (x,z) = (ε/n) ·2k · |U |. (4.9)

92

Chapter 4. Approximate Shortest Paths in Weighted Graphs

Observe that the weight of the star edge (x,z) dominates the value of dG(x,z), since

there exists a path between x and z in G consisting of at most |U |−1 edges each of

weight at most ε/n ·2k.

For every k ∈ [k0,kλ], a separate single-scale (1+ ε,β)-hopset Hk for the scale

(2k,2k+1] is computed on the graph Gk. This is done in parallel for all k ∈ [k0,kλ].

The ultimate hopset H is computed as follows. For every scale index k ∈ [k0,kλ],

and for every edge (X ,Y) of weight d in the hopset Hk, a corresponding edge

(x∗,y∗) of weight d between the centers x∗ and y∗ of X and Y respectively is added

to the final hopset H . To ensure that the number of hops within each node is also

small, we also add to H the set S =
⋃

k∈[k0,kλ]
Sk of all the star edges.

Analysis

In this section, we analyze the properties of the graphs Gk for k ∈ [k0,kλ] and of the

corresponding hopset Sk∪Hk. Let Vk be the set of nodes of Gk. For a node U ∈ Vk,

let S(U) denote the set of star edges of the node U , i.e., S(U)= {(x,y)∈ S|x,y∈U}.

Lemma 4.17. |S| ≤ n logn.

Proof. The proof follows by induction on the scale index k. For k = k0, a node

U ∈ Vk0 contains |U |−1≤ |U | · log |U | edges.

We assume that the claim holds for some scale index k ∈ [k0+1,kλ] and prove that

it also holds for k+ 1. Let U be a node in Vk+1 and X1,X2, . . . ,Xt be nodes in Vk

such that U =
⋃

j∈[1,t] X j and |X1| ≥ |X2| ≥ . . . ≥ |Xt |. Let s denote the size of U

and s j denote the size of the node X j for j ∈ [1, t]. By induction hypothesis, X j

(for j ∈ [1, t]) contains at most s j · logs j star edges. When we merge X1,X2, . . .Xt

to form U , the center x1 of X1 becomes the center of U and we add edges from x1

93

Chapter 4. Approximate Shortest Paths in Weighted Graphs

to all the vertices in
⋃

j∈[2,t] X j. It follows that

s≤ ∑
j∈[2,t]

s j + ∑
j∈[1,t]

s j · logs j

= s1 logs1 + ∑
j∈[2,t]

s j(1+ logs j) = s1 logs1 + ∑
j∈[2,t]

s j log(2s j)

≤ s1 log(s1 + s2)+ ∑
j∈[2,t]

s j log(s1 + s j)≤ s1 log(s1 + s2)+ ∑
j∈[2,t]

s j log(s1 + s2)

= log(s1 + s2) · ∑
j∈[1,t]

s j = s log(s1 + s2)≤ s logs.

Observe that at a certain point when the scale index is sufficiently large, we have

a graph with a single node containing all the vertices of the input graph. At this

point, we have added at most n logn star edges to the hopset H .

Relevant Scales: Recall that we build a separate hopset Hk for every scale index

k ∈ [k0,kλ]. Specifically, hopset Hk is used to approximate distances in the range

(2k,2k+1]. If no edge in G has weight in the range (2k/n,2k+1], then there is no

pair of vertices in V with distance in the range (2k,2k+1]. In this case, the hopset

Hk is redundant. We call a scale index k ∈ [k0,kλ] relevant if there exists an edge

(u,v) ∈ E such that ω(u,v) ∈ (2k/n,2k+1], and redundant otherwise. Let K be the

set of relevant scale indices from [k0,kλ]. Observe that a given edge can induce at

most logn relevant scales and hence |K|= O(|E| · logn). We construct a hopset Hk

only for a graph Gk with k ∈ K.

Active Nodes: The nodes of the graphs {Gk}k∈K induce a laminar family L on V

which contains at most 2n−1 distinct sets. We say that a node U in the graph Gk is

active if it has degree at least 1. Denote by nk the number of active nodes in Gk. By

arguments similar to those used in (23; 15), one can bound the number of active

nodes in graphs {Gk}k∈K and get that

∑
k∈K

nk = O(n logn) (4.10)

Hopset Size: Recall that for every hopset edge (X ,Y) of a single-scale hopset Hk

of weight d, we add to the ultimate hopset H , an edge of the same weight between

the centers of X and Y . In addition, we add all the star edges of hopsets {Hk}k∈K to

H . Also, recall from Section 4.1.3 that the expected size of a single-scale hopset

Hk on a graph on n vertices is O(n1+1/κ). For every k ∈ [k0,kλ], only active nodes

94

Chapter 4. Approximate Shortest Paths in Weighted Graphs

of Gk take part in the construction of hopset Hk. Therefore, Lemma 4.17 and

equation (4.10) together imply that

|H |= |S|+ ∑
k∈K
|Hk| ≤ n logn+ ∑

k∈K
O(n1+1/κ

k)

≤ n logn+n1/κ
∑
k∈K

O(nk) = O(n1+1/κ logn)
(4.11)

4.2.2 Implementation in Dynamic Streaming model

The algorithm proceeds in two phases. In the first phase, we make one pass through

the stream and compute all the nodes of {Gk}k∈K . In the second phase, we compute

in parallel a single-scale hopset Hk for every k ∈ K. The details of the two phases

are provided below.

Recall that each node U of {Gk}k∈K is a subset of the vertex set V of G and has a

designated center u∗. Whenever we contract an edge between nodes X and Y with

|X | ≥ |Y |, the vertices of Y get a new center but the size of the node containing

them is at least doubled. This implies that each vertex changes the center of the

node containing it at most logn times. For every vertex v∈V , we store a list L(v) of

pairs (i,c). Each pair (i,c∗)∈ L(v) indicates that at scale i∈K, the node containing

v was merged into a larger node centred at c∗. Initially, L(v) for every v ∈ V is

empty. The set Lists = {L(v)|v ∈V} encodes the laminar family L induced by the

nodes of {Gk}k∈K . The description of first phase up to this point is similar to that

of the insertion-only streaming implementation of (23). (See Section 4.2 of (23)

for more details.) In (23), the Lists data structure and the set S of star edges are

recomputed upon arrival of every edge on the stream. In the dynamic streaming

setting, this approach is not applicable, because a removal of an edge e = (x,y)

from the stream may cause a split of an existing node U that contains both x and y.

On the other hand, if there is an alternative x− y path in G(U), the node will stay

intact. To be able to distinguish between these two scenarios, one needs to take a

different approach.

For each v ∈ V , we update a data structure XORSlots(v) (described in the sequel)

upon arrival of edge updates, and later use these data structures to compute Lists

and star edges offline. The data structure XORSlots(v) for vertex v consists of

95

Chapter 4. Approximate Shortest Paths in Weighted Graphs

λ +1 = O(logΛ) arrays, Slots(v,k) for k ∈ [k0,kλ]. Each Slots(v,k) array is similar

to the Slots array used in procedure GuessDistance. (See Section 2.4.2 for more

details.) It enables us to sample from the edges incident on v, an edge with weight

in the range (ε/n) · (2k−1,2k] for k ∈ [k0 + 1,kλ] and (0,(ε/n) · 2k] for k = k0. As

in Slots array (Section 2.4.2), elements of Slots(v,k) array are used to sample cer-

tain edges incident on v on a range of probabilities and we use a function chosen

uniformly at random from a family of pairwise independent hash functions for sam-

pling. Note that we use the same hash function for computing the Slots(v,k) arrays

for every v ∈ V and every k ∈ K. Specifically, the element at index i of Slots(v,k)

maintains the bitwise XOR of the binary names of the edges sampled with proba-

bility corresponding to the index i. For a given edge e = (u,v), its binary name is

a concatenation of the binary representation of the IDs of its endpoints, with the

smaller of the two IDs appearing first. Upon arrival of an update to some edge

(u,v) on the stream with weight ω(u,v) ∈ (ε/n) · (2k−1,2k] for some k ∈ [k0,kλ],

the slots array of both u and v for the scale k are updated. Note that for some v ∈V

and k ∈ [k0,kλ], the slots array Slots(v,k) enables us to sample with constant proba-

bility (See Section 2.4.2.) an edge e = (u,v)∈ E with ω(u,v)∈ (ε/n) ·(2k−1,2k], if

such an edge exists. We maintain O(logn) copies of Slots(v,k) for each k ∈ [k0,kλ]

in our data structure XORSlots(v) to increase the success probability of our sam-

pling procedure. Each of these O(logn) copies is generated using a different hash

function.

For a set U ⊆ V , an edge e = (u,v) is called an outgoing edge of U , if u ∈
Uand v /∈ U . An important property of the XORSlots(v) data structures is that

for a given set U = {u1,u2, . . . ,um} ⊆ V , and a scale index k ∈ [k0,kλ], we can

build an array Slots(U,k) (similar to the Slots(v,k) array for a single vertex v)

from {Slots(u j,k)} j∈[1,m], provided all these arrays are generated using the same

hash function. In sketching literature, this property is called linearity of sketches.

(See (6; 17) for more details.) The Slots array Slots(U,k) for set U enables us to

sample an outgoing edge of U with weight in the range (ε/n) ·(2k−1,2k]. The value

of the element at index i of Slots(U,k) is given by

Slots(U,k)[i] = Slots(u1,k)[i]
⊕

Slots(u2,k)[i]
⊕

. . .
⊕

Slots(um,k)[i].

96

Chapter 4. Approximate Shortest Paths in Weighted Graphs

Recall that
⊕

stands for bitwise XOR and all the Slots arrays in {Slots(u j,k)} j∈[1,m]

are generated using the same hash function. A given edge e = (x,y) with ω(x,y) ∈
(ε/n) · (2k−1,2k] will be added to the same index elements in both Slots(x,k) and

Slots(y,k). This ensures that every element of Slots(U,k) contains a bitwise XOR

of only the outgoing edges of U . As with the Slots arrays for individual vertices,

for some appropriate index i, the element Slots(U,k)[i] will contain only one edge

with at least a constant probability. If we fail to sample an outgoing edge for U , we

use a different set of Slots arrays generated using a different hash function. Recall

that for each vertex v ∈ V and k ∈ K, we maintain O(logn) copies of Slots(v,k),

each generated using a different hash function.

After the first pass, we go offline to compute the nodes of graphs {Gk}k∈K . We com-

pute the nodes of graphs Gk for k = k0,k0 +1,k0 +2, . . ., sequentially, in that order.

In the following, we describe a procedure called ComputeCC which computes the

nodes of Gk from the nodes of {G j} j<k. For k = k0, the procedure ComputeCC

computes the nodes of Gk0 from the vertex set V of the input graph G. We make

O(logn) iterations. Each iteration starts with a set CC consisting of all the con-

nected components of Gk identified so far. Note that each connected component

C ∈ CC is a subset of the vertex set V . Initially, set CC contains all the nodes of

{G j} j<k. For k = k0, CC contains singleton sets {v}, for every v ∈ V . In every

iteration, for every component C ∈ CC, we find an outgoing edge with weight in

the range (ε/n) · (2k−1,2k], for k > k0 and (0,(ε/n) ·2k0], for k = k0 (if there exists

such an edge). For this, we can compute (offline) and use the Slots array of every

component, as described in the last paragraph. For a component C1 ∈CC with an

outgoing edge in the appropriate weight range to another component C2 ∈CC, we

merge the two components, and add C1 ∪C2 to CC, and remove C1 and C2 from

CC. We stop when none of the connected components in CC have an outgoing

edge with weight in the appropriate range. Note that each of these connected com-

ponents corresponds to a node of Gk. For computing the nodes of Gk from those of

{G j} j<k, we only need to consider edges e = (x,y) with ω(x,y) ∈ (ε/n) · (2k−1,2k]

such that x ∈ X and y /∈ X , for every node X . For every such node X , we merge

X with the node Y containing y. Note that while merging the nodes X and Y , the

edge (x,y) that causes the merge and its exact weight do not matter as long as such

an edge exists. Therefore, we do not need to consider every edge incident on every

97

Chapter 4. Approximate Shortest Paths in Weighted Graphs

vertex of a node X as long as we can find an outgoing edge (if exists) with weight

in the range (ε/n) · (2k−1,2k]. This can be easily done by considering only the

Slots array Slots(X ,k), which can be computed offline from the Slots arrays of the

vertices contained in X .

At the end of the execution of procedure ComputeCC, we assign centers to the

newly formed nodes and add star edges to the set S as follows. For k = k0, we

assign an arbitrary vertex of each node as its center and add its star edges with

weight given by equation (4.9) to the set S. We also add a pair (k0,u∗) to the list

L(v) of every vertex v in the node centred at u∗. For k > k0, let U ∈CC be a node

of Gk and let U be formed by merging nodes X1,X2, . . . ,Xt (each from {G j} j<k).

Let further X1 be the largest node among X1,X2, . . . ,Xt , we assign the center x∗ of

X1 as the center of new node U . We update the list L(x) for every x ∈U \X1 with

a pair (k,x∗), and add a star edge (x∗,x) with weight given by equation (4.9) to the

set S.

Having computed the nodes of graphs {Gk}k∈K , we turn to the stream again to

compute our hopsets. We compute a separate hopset Hk for all k ∈ K in paral-

lel. For each k ∈ K, we run our hopset construction algorithm from Section 4.1.2.

Initially, the vertices of Gk can be derived from the Lists data structure that we

populated after the first pass. We identify each vertex of Gk by its center. When-

ever some update to an edge (x,y) of weight ω(x,y) is read from the stream, we

know that it is active in at most O(logn/ε) scales. For each scale k ∈ K such

that (ε/n) ·2k ≤ ω(x,y) ≤ 2k+1, we use the Lists data structure to find the centres

of nodes containing x,y in Gk, and execute the algorithm from Section 4.1.2 as if

an edge between these centres (of weight given by (4.8)) was just read from the

stream. Recall that the construction of a single-scale hopset involves performing

approximate Bellman-Ford explorations of the input graph from a set of starting

vertices. In our approximate Bellman-Ford exploration algorithm (Section 2.4),

we use a procedure GuessDistance (Section 2.4.2) to estimate the distance of a

vertex to the set of starting vertices. We need to slightly tweak this procedure to

take care of the fact that the graph Gk is a multigraph. We can do this by maintain-

ing a running sum of the CIS-based encoding (see Section 2.2.4 for more details)

of the sampled edges instead of bitwise XOR of their binary names in the proce-

98

Chapter 4. Approximate Shortest Paths in Weighted Graphs

dure GuessDistance. Note that this change does not affect the space usage of the

procedure GuessDistance.

Elkin and Neiman (23) provide a detailed stretch analysis of the reduction in the

centralized model which also applies to their insertion-only implementation. (See

Section 4 of (23).) In particular, they show that the ultimate hopset H produced

by this reduction is a (1+ 6ε,6β + 5)-hopset of the input graph G. See Lemma

4.3 of (23). By Lemma 4.11, every hopset edge of our single-scale hopset Hk

(k ∈ K) construction is stretched at most by a factor of (1+ χ) compared to the

insertion-only algorithm of (23). We set χ = 6ε . It follows that the stretch of our

dynamic streaming construction is (1+ 6ε)2. Let ε ′ > 0 be the desired stretch of

our overall construction. We set 6ε = ε ′/4. Therefore, the overall stretch of our

ultimate hopset is

(1+ ε
′/4)2 ≤ 1+ ε

′.

Next we analyze the space usage of the reduction. The following lemma summa-

rizes the space requirement of the first phase.

Lemma 4.18. The first phase of our dynamic streaming reduction requires O(n ·
log3 n · logΛ) bits of memory.

Proof. The memory usage of the first phase has two main components, the space

required to maintain XORSlots(v) data structures, and the space required to store

the O(logn) hash functions of O(logn) bits each. The storage of XORSlots(v) data

structures involves storing for every vertex v∈V , O(logn) copies of O(logΛ) Slots

arrays, each of size O(log2 n) bits. The total space required is therefore O(n · log3 n ·
logΛ) bits.

As an output of the first phase, we produce the Lists data structure which is used

throughout the second phase of the reduction. The Lists data structure requires

O(n · log2 n) bits of memory. By equation (4.11), the size of hopset H is O(n1+1/κ ·
logn) which implies that the space required to store the hopset edges is O(n1+1/κ ·
log2 n) bits. In the second phase, we invoke our dynamic streaming algorithm from

Section 4.1.2 to construct all the relevant hopsets in parallel. Lemmas 4.2 and 4.10

summarize the resource requirements of the two main steps of the algorithm from

Section 4.1.2. Using the fact that every graph in {Gk}k∈K has aspect ratio O(n/ε),

99

Chapter 4. Approximate Shortest Paths in Weighted Graphs

we can essentially replace logΛ by log(n/ε) in the space requirements in Lem-

mas 4.2 and 4.10. We get the following lemma summarizing the space requirement

of the second phase of our reduction

Lemma 4.19. The second phase of our dynamic streaming reduction requires

O(β ′

ε ′ · log2 1/ε ′ ·n1+ρ · log5 n) bits of space.

The first phase of our reduction requires only one pass through the stream. Since

we build all the relevant hopsets in parallel, we can drop the logΛ factor from the

pass complexity of hopset construction given by Lemma 4.14.

Formally, we get the following equivalent of Theorem 4.15.

Theorem 4.20. For any n-vertex graph G(V,E,ω) with aspect ratio Λ, 2 ≤ κ ≤
(logn)/4, 1/κ ≤ ρ ≤ 1/2 and 0 < ε ′ < 1, our dynamic streaming algorithm com-

putes a (1+ε ′,β ′) hopset H with expected size O(n1+1/κ · logn) and the hopbound

β ′ given by

β
′ = O

(
(logκρ +1/ρ) logn

ε ′

)logκρ+1/ρ

(4.12)

whp.

It does so by making O(β ′ · (logκρ + 1/ρ)) passes through the stream and using

O(n · log3 n · logΛ) bits of space in the first pass and O(β ′

ε ′ · log2 1/ε ′ ·n1+ρ · log5 n)

bits of space (respectively O(β ′2

ε ′ · log2 1/ε ′ · n1+ρ · log5 n) bits of space for path-

reporting hopset) in each of the subsequent passes.

4.3 (1+ε)-Approximate Shortest Paths in Weighted Graphs

Consider the problem of computing (1+ε)-approximate shortest paths (henceforth

(1+ ε)-ASP) for all pairs in S×V , for a subset S, |S| = s, of designated source

vertices, in a weighted undirected n-vertex graph G = (V,E,ω) with aspect ratio

Λ.

Let ε,ρ > 0 be parameters, and assume that s = O(nρ). Our dynamic streaming

algorithm for this problem computes a path-reporting (1+ε,β)-hopset H of G with

β = O(logn
ερ

)1/ρ using the algorithm described in Section 4.2, with κ = 1/ρ . By

Theorem 4.20, |H| = O(logn · n1+ρ), the space complexity of this computation is

100

Chapter 4. Approximate Shortest Paths in Weighted Graphs

O(n · log3 n · logΛ) for the first pass and O(n1+ρ) · logO(1) n for subsequent passes,

and the number of passes is O(β) = poly(logn).

Once the hopset H has been computed, we conduct (1+ ε)-approximate Bellman-

Ford explorations in G∪H to depth β from all the sources of S. (See the algorithm

from Section 2.4.) By Theorem 2.22, this requires O(β) passes of the stream, and

space O(|S| · n · poly(logn, logΛ)), and results in (1+ ε)-approximate distances

d(β)
G∪H(s,v), for all (s,v) ∈ S×V . (Note that following every pass over G, we do

an iteration of Bellman-Ford over the hopset H offline, as H is stored by the al-

gorithm.) In addition, for every pair (s,v) ∈ S×V , we also get the parent of v

on the exploration rooted at source s. We compute the path πG∪H(s,v) between s

and v in graph G∪H from these parent pointers. As described in Section 4.1.4,

the path-reporting property of our hopset H enables us to replace any hopset edge

e = (x,y) ∈ H on the path πG∪H(s,v) with a corresponding path πG(x,y) in G. By

definition of the hopset, we have

dG(s,v)≤ d(β)
G∪H(s,v)≤ (1+ ε) ·dG(s,v),

and the estimates d̂(s,v) computed by our approximate Bellman-Ford algorithm

satisfy

d(β)
G∪H(s,v)≤ d̂(s,v)≤ (1+ ε) ·d(β)

G∪H(s,v).

Thus, we have

dG(s,v)≤ d̂(s,v)≤ (1+ ε)2 ·dG(s,v).

By rescaling ε ′ = 3ε , we obtain (1+ ε)-approximate S×V paths, the total space

complexity of the algorithm is O(n1+ρ · poly(logn, logΛ)), and the number of

passes is poly(logn). We derive the following theorem:

Theorem 4.21. For any parameters ε,ρ > 0, and any n-vertex undirected weighted

graph G = (V,E,ω) with polynomial in n aspect ratio, and any set S⊆V of nρ dis-

tinguished sources, (1+ ε)-ASP for S×V can be computed in dynamic streaming

setting in Õ(n1+ρ) space and log
1
ρ
+O(1) n = polylog(n) passes.

101

Chapter 4. Approximate Shortest Paths in Weighted Graphs

Algorithm 4 Pseudocode for procedure FindNewCandidate

1: Procedure FindNewCandidate(v,h, I)
2: . Initialization

3: slots← /0 . An array with λ = dlog ne elements indexed

4: from 1 to λ .

. Each element of slots is a tuple (sCount,sNames). For a given index 1≤ k≤
λ , fields sCount and sNames of slots[k] can be accessed as slots[k].sCount and

slots[k].sNames, respectively.

5:

. slots[k].sCount counts the new update candidates seen by v with hash values

in [2k]. It is set to 0 initially.

. slots[k].sNames is an encoding of the names of candidate sources seen by v

with hash values in [2k]. It is set to φ initially.

. Update Stage

6: while (there is some update (et , eSignt , eWeightt) in the stream) do
7: if (et is incident on v and some u ∈V) then
8: for each (s, d̂(u,s)) ∈ LCurrentu do
9: if ((d̂(u,s)+ eWeightt) ∈ I and

10: d̂(u,s)+ eWeightt < d̂(v,s)) then
11: k← dlogh(s)e
12: repeat . Update slots[k] for all dlogh(s)e ≤ k ≤ λ

13: slots[k].sCount← slots[k].sCount + eSignt

14: slots[k].sNames← slots[k].sNames+ν(s) · eSignt

15: . The function ν is described in Section 2.2.4.

16: . The addition in line 14 is a vector addition.

17: k = k+1

18: until k > λ

. Recovery Stage

19: if (slots vector is empty) then
20: return (φ ,φ)

21: else if (∃ index k s.t. slots[k].sNames
slots[k].sCount = ν(s) for some s in V) then

22: return (s,slots[k].sCount)

23: else
24: return (⊥,⊥)

102

5
New Sparse Recovery and `0-Sampling
Algorithms

In this chapter, we show that our sampler FindNewVisitor or its weighted counter-

part FindNewCandidate (See Algorithms 3 and 4) in the dynamic streaming setting

can also be used to provide a general purpose 1-sparse recovery and `0-sampler in

the strict turnstile model. (Recall that a dynamic streaming setting is called strict

turnstile model, if ultimate values of all elements at the end of the stream are non-

negative, even though individual updates may be both positive or negative.) We

consider a vector
→
a = (a1,a2, . . . ,an), which comes in the form of a stream of up-

dates. Each update is of the form 〈i,∆ai〉, and it means that one needs to add the

quantity ∆ai to the ith coordinate of the vector
→
a . As was mentioned above, we

assume that for each i, the ultimate sum of all the update values ∆ai that refer to

the ith coordinate is non-negative.

We say that the vector
→
a is 1-sparse, if it contains exactly one element in its sup-

port. The support of
→
a denoted supp(

→
a) is the set of coordinates ai 6= 0.

In the 1-sparse recovery problem, if the input vector
→
a is 1-sparse, the algorithm

needs to return the (only) coordinate i in the support of
→
a and its ultimate value

ai. Otherwise, the algorithm returns ⊥ (indicating a failure). Ganguly (33) devised

an algorithm for this problem in the strict turnstile setting, which occupies space

O(logM + logn), where M is the maximum value of any coordinate a j for any

j ∈ [n] during the stream. Cormode and Firmani (17) devised an algorithm with the

same space complexity which applies for integer update values in general turnstile

103

Chapter 5. New Sparse Recovery and `0-Sampling Algorithms

model (in which ultimate negative multiplicities of the coordinates, also known as

frequencies, are allowed). (See Section 5.1.) We show an alternative solution to

that of Ganguly (33) with the same space complexity.

5.1 1-Sparse Recovery

The basic idea is to use CIS-based encodings ν described in Section 2.2.4. Through-

out the execution of our algorithm, we maintain a sketch L which is a two-

dimensional vector in R2 and a counter ctr. Initially, L =
→
0 and ctr = 0. Every

time we receive an update 〈i,∆ai〉, we update L as L =L +ν(i) ·∆ai and update

ctr as ctr = ctr+∆ai. At the end of the stream, if ctr 6= 0, we compute L ′ = L
ctr .

(If ctr = 0 , we return φ , indicating that the input vector is empty.) The algorithm

then tests if L ′ ∈ {ν(1),ν(2), . . . ,ν(n)}, and if it is the case, i.e., L ′ = ν(i) for

some i ∈ [n], then it returns (i,ctr), and ⊥ otherwise.

For the analysis, observe that L = ∑
n
i=1 ν(i) ·ai and ctr = ∑

n
i=1 ai. If |supp(

→
a)|=

1, then let {i} = supp(
→
a). In this case, L = ν(i) ·ai and ctr = ai and thus L ′ =

L ′

ctr = ν(i). We can therefore retrieve i from ν(i). On the other hand, if |supp(
→
a)|=

0, then the algorithm obviously returns⊥. Finally, by Lemma 2.12, if |supp(
→
a)| ≥

2, then L ′ /∈ {ν(1),ν(2), . . . ,ν(n)}, and in this case algorithm returns a message

too dense.

In the context of our application of the above algorithm to computing near-additive

spanners, one can just keep an encoding table which records ν(i) for every i ∈ [n].

However, for a general-purpose 1-sparse recovery, one needs to be able to com-

pute ν(i) (given an index i ∈ [n]) using polylog(n) space. One also needs to

compute i from ν(i) using small space. Recall that we define R = Θ(n3/2) and

ν(1),ν(2), . . . ,ν(n), n = Θ(R2/3) are the n vertices of the convex hull of the set

of integer points within a radius-R disc, centered at the origin, ordered clockwise.

These vectors can be computed by Jarnı́k’s constriction (See (50; 16)). The latter

can be computed in O(log2 n) space, but the fastest log-space algorithms that we

know for this task retrieve all vertices one after another and thus require time at

least linear in n.

104

Chapter 5. New Sparse Recovery and `0-Sampling Algorithms

To speed up this computation, we next describe another encoding σ which maps

[n] into Z5. As a result, each encoding σ(i) uses by constant factor more space than

ν(i). On the other hand, we argue below that σ(i) and σ−1(L) can be efficiently

computed using log-space, for any i ∈ [n] and any feasible vector L ∈ Z5. (By a

feasible vector, we mean here that L is in the range of the mapping defined by σ .)

Let R = n and consider a 5-dimensional sphere S, centered at origin. The sphere

contains Θ(R3) integer points, but we will use just R of them. Specifically, for any

i ∈ [n], let (pi,qi,ri,si) be a fixed four-square representation of R2− i2, i.e., R2−
i2 = p2

i +q2
i + r2

i + s2
i , where pi,qi,ri,si ∈ N. Then we define σ(i) = (pi,qi,ri,si).

(Such a representation exists for every natural number by Lagrange’s four-square

theorem, see, e.g., (48).)

There exist a number of efficient randomized (Las Vegas) algorithms (48; 49) for

computing a four-square representation of a given integer. One of these algorithms

is deterministic. It is known to require time polynomial in O(logn), assuming

Heath-Brown’s conjecture (35) that the least prime congruent to a (mod q), when

gcd(a,q) = 1, is at most q · (logq)2. (See Section (48))

Another alternative is to use a randomized algorithm of Rabin and Shalit (49) which

has been recently improved by Pollack and Treviño (48) and requires expected time

O(log2 n/ log logn).

The problem with it is, however, that it may return different representations σ(i),

when invoked several times on the same number R2− i2, for some i ∈ [n]. To re-

solve this issue, one may use Nisan’s pseudorandom generator (46) to generate the

random string used by all the invocations of Pollack and Enrique’s algorithm (48)

from a seed of polylogarithmic (O(log2 n)) length. The latter seed can be stored

by our algorithm. This ensures consistent computations of four-square representa-

tions of different integers by our algorithm.The resulting random string (produced

by Nisan’s generator) is indistinguishable from a truly random one from the per-

spective of any polylog(n)-space bounded algorithm. Since both our algorithm and

that of Pollack and Treviño (48) are polylog(n)-space bounded, this guarantees the

correctness of the overall computation.

105

Chapter 5. New Sparse Recovery and `0-Sampling Algorithms

5.2 `0-Sampling

To demonstrate the utility of our new 1-sparse recovery algorithm, we point out

that this routine directly gives rise to an s-sparse recovery algorithm, for an arbi-

trarily large s. (For example, see the description of the first pass of sub-phase j of

interconnection step in Section 3.1.2.)

A vector
→
a is said to be s-sparse if |supp(

→
a)| ≤ s. In the s-sparse recovery problem,

the algorithm accepts as input a vector
→
a . If the vector

→
a is not s-sparse or

→
a =

→
0 ,

the algorithm needs to report ⊥. Otherwise, with probability at least δ > 0, for

a parameter δ > 0, the algorithm needs to return the original vector
→
a . A direct

approach to s-sparse recovery via 1-sparse recovery is described in (33) and in

Section 2.3.2 of (17). It produces an algorithm whose space is O(s log 1
δ
) times

the space of the 1-sparse recovery algorithm. One can use our 1-sparse recovery

algorithm instead of those of (33) or (17) in it.

Yet another application of our 1-sparse recovery algorithm is `0-samplers. An `0-

sampler may return a ⊥ (a failure) with probability at most δ . But if it succeeds,

it returns a uniform (up to an additive error of n−c, for a sufficiently large c) coor-

dinate i and the corresponding value ai in the support of the input vector
→
a . The

scheme we describe next is close to Jowhari et al (39), and has a similar space

complexity to it. It however uses 1-sparse recovery directly, while the scheme

of (39) employs s-sparse recovery (which, in turn, invokes 1-sparse recovery). Like

Jowhari et al (39), we first describe the algorithm assuming a truly random bit string

of length O(m logn), where m is the length of the stream and n is the length of the

input vector
→
a . We then replace it by string produced by Nisan’s pseudorandom

generator out of a short random seed. This seed is stored by the algorithm. (Its

length is O(log2 n) like in (39).)

The algorithm tries logn scales j = 1,2, . . . , logn, and each scale j corresponds

to a guess of s = |supp(
→
a)| being in the range 2 j−1 ≤ s ≤ 2 j. On scale j each

coordinate i is consistently sampled with probability 2− j, and a 1-sparse recovery

algorithm attempts to recover the subsampled vector.

For a fixed coordinate i, and for j such that 2 j−1 < s≤ 2 j, the probability that only

i will be sampled is 1
2 j · (1− 1

2 j)
j−1 ≥ 1

2s(1−
1
s)

s−1 ≥ e−1

2s .

106

Chapter 5. New Sparse Recovery and `0-Sampling Algorithms

Since the event of two fixed distinct coordinates to be discovered are disjoint, it fol-

lows that the probability of the sampler to recover some coordinate is at least e−1

2 .

Conditioned on its success to retrieve an element, by symmetry, it follows that the

probabilities of different coordinates in supp(
→
a) to be recovered are equal. Once

the truly random source is replaced by the string produced by Nisan’s pseudoran-

dom number generator, the probabilities, however, will be skewed by an additive

term of n−c, for a sufficiently large constant c > 0.

Similarly to the argument in (39), no polylog(n)-space tester is able to distinguish

between the truly random string and the one produced by Nisan’s pseudorandom

generator. Thus, in particular, they are indistinguishable for our (polylog(n)-space

bounded) algorithm.

Viewed as a tester, our algorithm may be fed with a specific set of non-zero coordi-

nates in the support of its input vector and any specific coordinate i in the support

that the algorithm can test whether it is returned. (This tester is polylog(n)-space

bounded.)

The overall space requirement of the algorithm in O(logn) times the space require-

ment of the 1-sparse recovery routine. The latter is O(logn) as well. In addition to

this space of O(log2 n), the algorithm also needs to remember the random seed of

Nisan’ generator which is of length O(log2 n) as well.

The failure probability of the algorithm is, as was shown above e−1/2. If we want

to decrease it to δ , we can run O(log1/δ copies of this algorithm in parallel, and

pick an arbitrary copy in which the algorithm succeeded. (If there exists such a

copy, otherwise the algorithm returns a failure.) The overall space of the resulting

algorithm becomes O(log2 n log1/δ), To summarize:

Theorem 5.1. Our algorithm provides an L0-sampler with failure probability at

most δ > 0, for a parameter δ , and additive error n−c, for an arbitrarily large

constant c which affects the constant hidden in the O-notation of space. Its space

requirement is O(log2 n · log1/δ).

107

Part II

A Graph Processing Problem in
Query Model

108

6
An improved query strategy for finding
a king

A tournament is an orientation of a complete graph. We say that a vertex x in a

tournament ~T controls another vertex y if there exists a directed path of length at

most two from x to y. A vertex is called a king if it controls every vertex of the

tournament. It is well known that every tournament has a king. We follow Shen,

Sheng, and Wu (67) in investigating the query complexity of finding a king, that

is, the number of arcs in ~T one has to know in order to surely identify at least one

vertex as a king.

The aforementioned authors showed that one always has to query at least Ω(n4/3)

arcs and provided a strategy that queries at most O(n3/2). While this upper bound

has not yet been improved for the original problem, Biswas et al. (62) proved that

with O(n4/3) queries one can identify a semi-king, meaning a vertex which controls

at least half of all vertices.

Our contribution is a novel strategy which improves upon the number of controlled

vertices: using O(n4/3 polylogn) queries, we can identify a (1
2 + 2

17)-king. To

achieve this goal we use a novel structural result for tournaments.

6.1 Introduction

A tournament is a directed graph in which there is exactly one directed edge be-

tween every pair of vertices. Due to their usefulness in modelling many real world

109

Chapter 6. An improved query strategy for finding a king

scenarios such as game tournaments, voting strategies and many more, tournaments

are a very well studied concept in structural as well as algorithmic graph theory.

The early monograph of Moon (66) has been followed by extensive research on

the topic. For example, Dey (63) studied the identification of the ‘best subset of

vertices’ in a tournament motivated by the high cost of comparing a pair of drugs

for a specific disease. Goyal et al. (64) studied the identification of vertices with

specific in- or out-degrees.

In this work we investigate the query complexity of finding a king in a tourna-

ment graph, that is, a vertex from which we can reach every other vertex of the

tournament via a directed path of length at most two. It is well known that every

tournament has such a vertex.

The study of query complexity problems in tournaments has the following general

shape: Initially, we are only given the vertex set of the tournament while the direc-

tions of its arcs are hidden from us. For each pair of vertices u, v we can, at unit

cost, learn whether the arc uv or vu is in the tournament. Our goal is to use the

fewest possible queries in order to reveal some combinatorial object in the tourna-

ment. The motivation for our work is found in Shen, Sheng, and Wu’s work (67)

on the query complexity of identifying a king. They showed that Ω(n4/3) queries

are always necessary and provided an algorithm which reveals a king using O(n3/2)

queries. Ajtai et al. (60) independently proved the same upper bound in the context

of imprecise comparison.

One of the enticing aspects of this setting is its game-theoretic nature: we can

alternatively think of it as an adversarial game where one player, the seeker, wants

to identify a combinatorial structure by querying arcs of the tournament while an

adversary, the obscurer, tries to delay the seeker for as long as possible by choosing

the orientation of queried arcs.

When reading Shen, Sheng, and Wu (67), one may be tempted to conjecture that

a better analysis of their obscurer-strategy for finding a king can lead to a better

lower bound. However, Biswas et al. (62) showed that against this strategy, the

seeker can find a king with O(n4/3) queries. They also showed that there exists a

seeker strategy with O(n4/3) queries for identifying a semi-king, that is, a vertex

which controls at least half of all vertices. This result is optimal by Lemma 6,

Biswas et al. (62). In fact, one needs to make Ω(t4/3) queries for identifying a

110

Chapter 6. An improved query strategy for finding a king

vertex which controls at least t ≤ n vertices against the obscurer-strategy of Shen,

Sheng and Wu. (See Lemma 6 of Biswas et al. (62) and Ajtai et al. (60) for more

details.) Therefore, if there exists an obscurer-strategy that proves a stronger than

Ω(n4/3) lower bound for the king problem, then this strategy must rely on some

factors which distinguish the king problem from the semi-king problem. In our

eyes, this means that such a lower bound is much more difficult to find than one

might think at first.

Proceeding from the above, it is tempting to try to improve the upper bound by

using a variation of the seeker-strategy from Shen, Sheng, and Wu (67) and we can

interpret the Biswas et al. (62)’s seeker-strategy for finding a semi-king as such an

attempt. These strategies both rely on repeatedly selecting a set of vertices and then

querying all the edges between them to find a maximum out-degree (MOD) ver-

tex in this sub-tournament1. Balasubramanian, Raman and Srinivasaragavan (61)

showed that identifying an MOD vertex in a tournament of size k requires Ω(k2)

queries in the worst case, which may explain the limits of the existing seeker strate-

gies.

Our Result

In this work, we proceed along the line of research just described. On the one

hand, we show that with Õ(n4/3) queries2, it is possible to identify a (1
2 +

2
17)-king,

which indicates that improving upon the Ω(n4/3) lower bound is probably even

harder than indicated by the semi-king results. On the other hand, our technique

does not rely on finding MOD vertices of sub-tournaments which circumvents the

inherent high cost of this operation.

Technical Overview

Our result is based on the combinatorial structure of tournaments, which may be

of independent interest. We believe that this work provides a novel toolkit which

could lead towards resolving the query complexity of finding a king. Specifically,

we design a seeker-strategy which consists of two main stages:

1The relationship between MOD vertices and kings is well-established: Landau (65), while study-

ing the structure of animal societies, showed that every MOD vertex is a king, but non-MOD kings

can exist as well.
2The big-Õ notation hides constants and polylogarithmic factors

111

Chapter 6. An improved query strategy for finding a king

(i) The seeker queries the orientation of a set of edges defined by a so-called

template-graph. These queries are non-adaptive in the sense that the queries

do not change as a result of the answers provided by the obscurer.

(ii) The seeker analyses the answer to the queries of (i) in order to select queries

that lead to the revelation of a (1
2 +

2
17)-king.

The template-graph is an undirected graph over the tournament’s vertices that has

Õ(n4/3) edges, with the property that every set of vertices of size around n2/3 or

more has edges to almost all the graph. In Section 6.3, we use the probabilistic

method to prove that such a graph exists. Given the template-graph, the seeker’s

queries in the first stage are simply given by its edges, i.e. if there exists an edge

uv in the template-graph, then the seeker asks the obscurer about the orientation of

the edge uv in the tournament. The sparsity of the template-graph ensures that the

seeker does not make too many queries and the connectivity of every sufficiently

large set ensures that we do not miss any relevant information.

The second stage of the seeker-strategy is built on showing that when the obscurer

chooses how the edges of the template graph are oriented they have a trade-off.

The trade-off is either to reveal an ultra-set or not. We show that if the obscurer

reveals an ultra-set, then the seeker can identify a (1
2 +

2
17)-king with Õ(n4/3) extra

queries. If the obscurer does not do this, then the seeker can use this to find a

partition of the vertex set of the tournament into sets of size O(n2/3) each (which

we refer to as tiles), so that the edges of the template-graph that are incident to

the tiles satisfy a certain property. We obtain this combinatorial object by showing

that if such a partition does not exist, then a simple set of queries already reveals a

(1
2 +

2
17)-king.

The tiles are analysed by the construction of what we refer to as the free matrix

which contains a row for every tile and a column for every vertex of the tournament.

An entry of the matrix indexed by a given tile-vertex pair is 1 if every edge between

the vertex and a vertex in the tile is directed towards the tile, otherwise the entry

is 0. We then use this free matrix to guide the seeker-strategy.

Given that the first part of the seeker-strategy is non-adaptive and against any ad-

versary, this approach also reveals a combinatorial property of tournaments: for

any fixed tournament and template graph with the same set of vertices, knowing

112

Chapter 6. An improved query strategy for finding a king

only the direction of the arcs of the tournament that correspond to the arcs of the

template graph is sufficient for finding a set of vertices S of size O(n2/3) such that

querying all edges inside of S necessarily reveals a (1
2 +

2
17)-king. We note that

fraction 2
17 is the result of balancing the various trade-offs in the seeker strategy.

The rest of the chapter is organised as follows. In Section 6.2, we provide necessary

definitions and prove some basic lemmas about tournaments that are used in the

rest of the chapter. Section 6.3 is dedicated to the formal definition and the proof

of existence of template graphs. In Section 6.4, we describe our seeker-strategy

and prove that it leads to the discovery of a (1
2 +

2
17)-king. In Section 6.5, we give

concluding remarks and open problems.

6.2 Preliminaries

Given an undirected graph G, a vertex v ∈ V (G), and a vertex set X ⊆ V (G) we

define the relative degree d(v,X) := |N(v)∩X |, where N(v) is the neighbourhood

of v in G.

For a vertex v in a directed graph ~G, a vertex u in ~G is an out-neighbour of v, if the

edge between u and v is oriented from v to u. For a directed graph ~G, we denote the

out-neighbourhood of a vertex v ∈ ~G by N+(v) and its out-degree by d+(v). For a

vertex set X ⊆ V (~G), we let d+(X) be the number of arcs from a vertex in X to a

vertex not in X .

Given additionally a vertex subset X ⊆ V (G), we define the relative out-degree

d+(v,X) := |N+(v)∩X |.

The (closed) second-out-neighbourhood N++[v] of v is the set of vertices u∈V (~G)

for which there exists a directed path from v to u of length at most two.

For simplicity we will adopt the following vocabulary for digraphs. We say that a

vertex x controls a vertex y if y ∈ N++[x]. We say that x directly controls a vertex y

if y ∈ N+(x)∪{x}. We extend both of these terms to vertex sets U , for example,

we will often write statements like ‘x controls at least half of the vertices in U’.

A tournament is a digraph ~T obtained from a complete graph by replacing each

edge with a directed arc. As done usually, we denote the subgraph induced by a

vertex set S ⊆ V (~T), with ~T [S]. Note that an induced subgraph of a tournament

113

Chapter 6. An improved query strategy for finding a king

is necessarily also a tournament. We will need the following basics facts about

tournaments in the following.

Lemma 6.1. Let ~T be a tournament with m vertices and α ∈ [0,1] such that αm is

even. Then ~T has at least (1−α)m vertices of out-degree at least αm/2.

Proof. Let S initially be the vertices of ~T and proceed according to the following

process: find a vertex of out-degree at least αm/2 and remove it from S; and repeat

until no such vertex exists in S. From here on we focus on set S after the vertex

removal process ended.

Let r = |S| be the size of the final set and consider the sub-tournament ~T [S]. We

know that by averaging considerations, every tournament of size r has at least one

vertex of out-degree at least r/2−1/2. We also know that S does not contain any

vertex of out-degree at least αm/2. Hence, we conclude that r ≤ αm.

Consequently, our process discovered m− r ≥ (1−α)m vertices of out-degree at

least αm/2 in ~T .

Lemma 6.2. Let ~G be an orientation of a complete bipartite graph (V0,V1,E),

where |V0| = |V1| = m, and m is divisible by 4 . Then, there exists i ∈ {0,1}, such

that Vi has at least m/2+1 vertices v, where d+(v,V1−i)≥ m/4.

Proof. Let S initially contain all the vertices in V0∪V1 and proceed according to

the following process: We find a vertex of out-degree at least m/4 and remove it

from S. Repeat until no such vertex exists and we are left with S′ ⊆ S.

Every orientation of the complete bipartite graph Kt,t must contain, by a simple

averaging argument, a vertex of out-degree at least t/2. Therefore the induced

subgraph ~G[S′] must have at least one partite set of size strictly less than m/2 or we

could continue the process. Consequently, our process discovered at least m/2+1

vertices of out-degree at least m/4 in that partite set.

Lemma 6.3. Let ~T be a tournament on 2m vertices, where m is divisible by 4. Let

further sets S0,S1 be a partition of the vertices of ~T into sets of equal size. Then

there exists a vertex v such that both d+(v,S0)≥ m/4 and d+(v,S1)≥ m/4.

Proof. By Lemma 6.1, for both i ∈ {0,1}, there exist m/2 vertices v in Si such

that |N+(v)∩Si| ≥ m/4. By Lemma 6.2 for one of i ∈ {0,1}, there exist m/2+1

114

Chapter 6. An improved query strategy for finding a king

vertices v such that |N+(v)∩S1−i| ≥ m/4. Then by the pigeonhole principle, there

exists i ∈ {0,1} and a vertex v ∈ Si, such that |N+(v)∩ Si| ≥ m/4, for every i ∈
{0,1}, as claimed.

6.3 Constructing the template-graph

Definition 6.4 (κ-template-graph). Let κ ∈ (0,1) and G be an undirected graph

over the vertex set [n]. The graph G is a κ-template-graph, if for every pair of

disjoint sets H1,H2 ⊆ [n] both of size at least κn2/3, there exists at least one edge

between them, that is, |E(H1,H2)| ≥ 1.

For the remainder of this section, we fix κ ∈ (0,1) and set p = 2logn+2
κn2/3 . We next

show that with strictly positive probability the Erdős–Renyi random graph G(n, p)

is a κ-template-graph, with O(n4/3 logn) edges, where the O notation hides a de-

pendence on κ . By the probabilistic method, this implies that there actually exists

such a graph.

All probabilities in the following are with respect to the probability space of this

random graph.

Lemma 6.5. Let κ ∈ (0,1). With probability at least 3/4, the graph G(n, p), where

p is defined as above, is a κ-template-graph.

Proof. Note that if we prove the statement of the lemma for sets of size exactly

(up to rounding errors) κn2/3, then the claim follows for all larger sets as well. To

prove this, we next show, with the help of the union bound, that the probability

that G(n, p) has two disjoint subsets of vertices, each of size κn2/3, with no edge

between them is strictly less than 1/4.

Let H1 and H2 be any pair of disjoint subsets of [n] of size κn2/3, then the total

number of vertex pairs between them is (κn2/3)2. The probability that none of

these pairs is an edge in the template-graph G is accordingly (1− p)(κn2/3)2
.

115

Chapter 6. An improved query strategy for finding a king

We apply the exponential bound (1− p)k ≤ e−pk for a k-round Bernoulli trial and

obtain

(1− p)(κn
2
3)2 ≤ e−p(κn2/3)2

= e−(2logn+2)κn2/3

= n−2κn2/3
e−2κn2/3 ≤ 1

4
n−2κn2/3

,

where the last inequality holds when n is large enough so that κn
2
3 ≥ 1 and hence

e−2κn2/3
< 1

4 . Since the total number of pairs of sets H1,H2 of size κn2/3 is bounded

above by n2κn2/3
, the claim now follows from the union bound.

Theorem 6.6. Let κ ∈ (0,1), there exists a κ-template-graph G with at most

O(n4/3 logn/κ) edges.

Proof. The expected number of edges of G(n, p) for our choice of p = (2logn+

2)/(κn2/3) is less than m := (2logn+2)n4/3/κ . Since every edge of the graph is

selected independently, by the Chernoff bound the probability that the number of

edges in G(n, p) exceeds 2m is at most

e−p(n
2)/3 ≤ e−

(2logn+2)

κn2/3
n(n−1)

6 ≤ e−(2logn+2)n/6 ≤ 1
4

where the last inequality holds for n≥ 4.

Together with Lemma 6.5 this implies that with probability at least 1/2, G(n, p) is

a κ-template-graph G with at most O(n4/3 logn/κ) edges. The claim follows by

the probabilistic method.

6.4 The seeker strategy

Having proved the existence of a κ-template-graph, we next examine the properties

of an arbitrary orientation of such a graph. Given a κ-template-graph Gκ on a

vertex set [n], we use ~Gκ (henceforth) to refer to a directed graph obtained by

replacing every edge of Gκ by a directed arc. Note that we assume nothing about
~Gκ and analyze as if its arcs were arbitrarily oriented by an adversary.

Definition 6.7 (η-weak, η-strong, η-ultra). For an oriented template-graph ~Gκ

and any η > 0, a set H ⊆ [n] is η-weak if d+(H) < (1/2+η)n, is η-strong if

116

Chapter 6. An improved query strategy for finding a king

d+(H)≥ (1/2+η)n. We call a set η-ultra if every subset H ′ ⊂ H, of size at least

|H|/2 is η-strong.

To understand why η-ultra sets are important, it is useful to think of the seeker

as trying to force the obscurer to reveal enough information (in the form of query

answers) so that the seeker can achieve their goal. This is done by first querying the

orientation of all the edges of a template graph and nothing else. The observation

below implies that if the orientation of the edges of the template graphs reveals an

eta-ultra set, of size Õ(n2/3), then the seeker can achieve its goal with an additional

Õ(n4/3) queries. Thus, the obscurer cannot reveal such an ultra-set. However, as

we show further on, by doing this the obscurer reveals enough information for the

seeker to achieve their goal.

Observation 6.8. Let H ⊆V (~Gκ) be an η-ultra set. Then we can find a (1/2+η)-

king using ≤ |H|2 additional queries.

Proof. Query all≤ |H|2 edges inside H. Let v∈H be a vertex such that d+(v,H)≥
|H|/2. Since H is η-ultra, the set H ′ := N+(v)∩H is η-strong, meaning d+(H ′)≥
(1/2+η)n. Therefore |N++[v]| ≥ (1/2+η)n and v is a (1/2+η)-king.

Definition 6.9 (Free set). Let W ⊆V (~Gκ) be an η-weak set. Then the free set of W

is the vertex set F(W) :=V (~Gκ)\(N+(W)∪W), that is, all vertices that lie neither

in W nor in N+(W).

Observation 6.10. Let W be an η-weak set. Then |F(W)|> (1
2 −η)n−|W |.

By the properties of template-graphs, namely that each pair of large enough sets

must have an edge between them, and by the definition of free sets it follows that

all the arcs of ~Gκ between a sufficiently large set W and its free set F(W) must

point towards W . Let us formalize this intuition:

Definition 6.11 (α-covers). For α ∈ [0,1] we say that a set S α-covers a set W if

|N+(S)∩W | ≥ α|W |.

Lemma 6.12. In the template graph, for every set W ⊂ [n] of size n2/3 and every

subset S⊆ F(W) of size at least κn2/3, it holds that S (1−κ)-covers W.

117

Chapter 6. An improved query strategy for finding a king

Proof. Consider a set S ⊆ F(W) of size κn2/3. Then, by Lemma 6.5, there is

at least one edge s1w1 between some s1 ∈ S and w1 ∈W . Remove w1 from W

and apply the argument to the remainder. In this way, we construct a sequence

w1, . . . ,wt such that each wi has at least one neighbour in S.

The application of Lemma 6.5 is possible until the remainder of W has size less

than κn2/3, hence the process works for at least t = n2/3− κn2/3 = (1− κ)n2/3

steps. Now simply note that each edge swi for s ∈ S must be oriented from s to wi

since S is a subset of F(W). It follows that |N+(S)∩W | ≥ (1−κ)|W |, as claimed.

In the previous lemma lies the inherent usefulness of free sets. If, for some set W

of size n2/3, we find a vertex v that has at least κn2/3 out-neighbours in the free

set F(W), then v controls almost all of W . As observed above, η-weak sets have

necessarily large free sets which makes them ‘easy targets’ for our strategy.

We now show that in case no η-ultra set exists (in which case we already win as

per Observation 6.8), we can instead partition most of the vertices of V (~Gκ) into

weak sets.

Definition 6.13. An η-weak tiling of ~Gκ is a vertex partition W1, . . . ,Wm,R where

|Wi| = n2/3, |R| < 2n2/3 and every set Wi is η-weak. We call the sets Wi the tiles

and R the remainder.

By definition, the number of tiles m in an η-weak tiling is at least n1/3−2.

Lemma 6.14. Fix η > 0. For large enough n, ~Gκ either contains an η-ultra set of

size 2n2/3 or an η-weak tiling.

Proof. We construct the tiling iteratively. Assume we have constructed W1, . . . ,Wj

so far. Let R := V (~Gκ) \
⋃

i≤ j Wi be all the vertices of ~Gκ which are not yet part

of the tiling. If |R| < 2n2/3 we are done, so assume otherwise. Let H ⊆ R be an

arbitrary vertex set of size 2n2/3. If H is η-ultra, then by Observation 6.8, we are

done. Otherwise there exists an η-weak set Wj+1 ⊆ H, |Wj+1| = |H|/2. Add this

set to the tiling and repeat the construction. At the end of this procedure, we will

either find an η-ultra set or an η-weak tiling.

118

Chapter 6. An improved query strategy for finding a king

Our goal is now to find a vertex whose out-neighbourhood has large intersections

with many free sets. To organise this search, we define the following auxiliary

structure:

Definition 6.15 (Free matrix). Let W1, . . . ,Wm,R be an η-weak tiling of ~Gκ and

let W = {W1, . . . ,Wm}. The free matrix M of the tiling W ,R is a binary matrix

with m rows indexed by W and n columns indexed by [n]. The entry at position

(Wi,v) ∈W ×V is 1 if v ∈ F(Wi) and 0 otherwise.

We will use the following notation in the rest of this section. Given a free matrix M

of an η-weak tiling W ,R let M[W ′,U] denote a sub-matrix of M induced by a

subset W ′ ⊆W of the tile set and a subset U ⊆ [n] of the vertex set. For example, a

column of M corresponding to a vertex v ∈ [n] can be written as M[W ,{v}] in this

notation. Analogously a row of M corresponding to a tile Wi ∈ W can be written

as M[{Wi}, [n]]. Given a sub-matrix M′ of the free matrix M, we call the number of

1’s in M′ the weight of M′ and denote it by ∑M′.

The following is a direct consequence of the construction of the free matrix and

Observation 6.10.

Observation 6.16. Every row of the free matrix M has a weight of at least (1
2 −

η−n−1/3)n.

Definition 6.17 (Good Sub-Matrix). A sub-matrix M[W ,U], for some U ⊂ [n], is

η-good if, each one of its rows has weight at least (1
2 −η−2n−1/3 log1/2 n)|U |.

We next show that a good sub-matrix with 2n2/3 columns exists, by using the prob-

abilistic method. Specifically, we show that if we randomly pick 2n2/3 columns

from the matrix M[W , [n]] then with strictly positive probability the matrix that

includes exactly these columns is good.

Lemma 6.18. Let η ∈ (0, 1
2). For large enough n the free matrix M has an η-good

sub-matrix with 2n2/3 columns.

Proof. Select K ⊂ [n] of size 2n2/3 uniformly at random. Let M′ = M[W ,K].

We set p = 1/2−η − n−1/3 and t = n−1/3 log1/2 n. By Observation 6.16, every

row of M has weight at least pn. By the Hypergeometric tail bound the probability

119

Chapter 6. An improved query strategy for finding a king

that a specific row of M′ has weight less than (p− t)n is at most e−2t22n2/3 ≤ 1/n,

where the inequality follows from our choice of t. Then by the union bound the

probability that every row of M′ has weight at least (p− t)n is strictly positive.

Note that by our choice of p and t, we get that (p− t)n , for large enough n, is at

least as large as (1/2−η−2n−1/3 log1/2 n)n, therefore a good sub-matrix M′ exists

with strictly positive probability. By the probabilistic methods the claim therefore

holds.

Next we show that the only way that the adversary does not provide us with a

(1/2+ δ)-king once we have identified a δ -good sub-matrix is if the distribution

of 1’s in that matrix is very restricted. We will use this additional structure to find

a (1/2+δ)-king in the sequel. For simplicity, we first query all the edges between

the vertices associated with the columns of the δ -good sub-matrix, but note that

this is not strictly necessary: we can instead inspect all potential partitions (with

properties as stated in the lemma) and only if no such partition exists query said

edges which then surely identifies a (1/2+ δ)-king. With this change the lemma

is consistent with the structural claim from the introduction.

Lemma 6.19. Let M′=M[W ,V] be a δ -good sub-matrix of M with 2n2/3 columns.

Let further κ+δ ≤ 1/2. If we query each one of the O(n4/3) edges in V , then either

we find a (1
2 + δ)-king, or we find partitions V1]V2 = V and W1]W2 = W with

the following properties:

• |V1|= |V2|= n2/3

• |W1| ≥ (1
2 −δ −κ)n1/3−2 and |W2|< (1

2 +δ +κ)n1/3

• Every row in M′[W1,V1] has weight at most κn2/3

• Every row in M′[W2,V1] has weight at least κn2/3

Proof. We query all the edges in V ×V and select a vertex y ∈ V such that

d+(y,V) ≥ n2/3. Let V1 be an arbitrary subset of N+(y)∩V of size n2/3 and let

V2 =V \V1. Partition the rows of M′ into W1∪W2 so that W1 contains all rows with

weight less than κn2/3 in the sub-matrix M′[W ,V1].

We claim that if |W1|< (1
2 −δ −κ)n1/3−2 then y is a (1

2 +δ)-king. By construc-

tion, every row in W2 has weight at least κn2/3 in M′[W ,V1] and if the condition

120

Chapter 6. An improved query strategy for finding a king

of the claim holds then |W2| ≥ (1
2 + δ +κ)n1/3. By Lemma 6.12, the set V1 must

(1−κ)-cover every tile in W2. It follows that

|N++[y]| ≥ (1−κ)
∣∣⋃W2

∣∣≥ (1−κ)

((1
2
+δ +κ

)
n1/3

)
n2/3

= (1−κ)
(1

2
+δ +κ

)
n =

(1
2
+δ +

κ

2
−κδ −κ

2
)

n

=

(
1
2
+δ +κ

(1
2
−δ −κ

))
n

≥
(1

2
+δ

)
n

where the last inequality holds since δ +κ ≤ 1/2.

Lemma 6.19 implies the following about good sub-matrices.

Lemma 6.20. Let M′ = M[W ,V] be a δ -good sub-matrix with |V | = 2n2/3 and

W1]W2, V1]V2 be partitions as in Lemma 6.19. Then every row in M′[W1,V2] has

weight at least (1−2δ −2κ)n2/3.

Proof. Since M′ is a δ -good sub-matrix, by Definition 6.17, every row in M′[W1,V]

has weight at least (1/2− δ − 2n−1/3 log1/2 n)2n2/3. By Lemma 6.19, every row

in M′[W1,V1] has weight at most κn2/3. Therefore, the weight of every row in

M′[W1,V2] is

≥ (1/2−δ −2n−1/3 log1/2 n)2n2/3−κn2/3

= (1−2δ −4
log1/2 n

n1/3 −κ)n2/3

≥ (1−2δ −2κ)n2/3

where we assume that n is large enough so that 4 log1/2 n
n1/3 ≤ κ .

Our final technical lemma lets us, for a given set of rows of M, identify a set of

columns with high enough weight when restricted to those rows.

Lemma 6.21. Let U ⊂ [n] be of size 2n2/3 and W ′ ⊂ W . Then there exists a set

V ′ ⊂ [n] \U, of size n2/3 such that every column in M[W ′,V ′] has weight at least

(1/2−δ −3n−1/3)|W ′|.

Proof. Let Ū := [n] \U and let V ′ be an arbitrary subset of n2/3 columns in

M[W ′,Ū] with the largest column-weight. Let t be the smallest weight among

121

Chapter 6. An improved query strategy for finding a king

these columns when restricted to M[W ′,V ′]. We bound the weight of M[W ′,Ū]

first from below and then from above, then we use these bounds to show that

t > (1
2 −δ −3n−1/3) · |W ′|, which implies that V ′ is the claimed set.

For the lower bound on the weight of M[W ′,Ū], we use the simple fact that

∑M[W ′,Ū] = ∑M[W ′, [n]]−∑M[W ′,U]. (6.1)

By Observation 6.16, every row of the matrix M has weight least (1
2−δ−n−1/3) ·n.

It follows that ∑M[W ′, [n]] is at least (1
2−δ−n−1/3) ·n · |W ′|. For the second term,

we have the trivial bound ∑M[W ′,U] ≤ |U | · |W ′| = 2n2/3 · |W ′|. Plugging these

values into (6.1) we obtain

∑M[W ′,Ū]≥ (
1
2
−δ −n−1/3) ·n · |W ′|−2n2/3 · |W ′|

= (
1
2
−δ −3n−1/3) ·n · |W ′|.

(6.2)

For the upper bound on the total weight of M[W ′,Ū] we use that

∑M[W ′,Ū] = ∑M[W ′,V ′]+∑M[W ′,Ū \V ′]. (6.3)

We use the trivial bound ∑M[W ′,V ′] ≤ |V ′| · |W ′| = n2/3 · |W ′| for the first term.

By definition of the value t, we have that every column in M[W ′,Ū \V ′] has weight

at most t. Accordingly, ∑M[W ′,Ū \V ′]≤ t · |Ū \V ′|= t · (n−3n2/3). Plugging in

these values into (6.3) we obtain

∑M[W ′,Ū]≤ n2/3 · |W ′|+ t · (n−3n2/3). (6.4)

Finally, (6.2) and (6.4) taken together give us that

t · (n−3n2/3)+n2/3 · |W ′| ≥ (
1
2
−δ −2n−1/3) ·n · |W ′|.

Consequently, t > (1
2 −δ −3n−1/3) · |W ′| and we conclude that V ′ has the claimed

property.

We are finally ready to prove our seeker-strategy for finding a 1/2+δ -king using

Õ(n4/3) queries. For readability, we will state our main result in terms of concrete

and simple values for κ and δ , however, note that smaller values of κ allow δ to

be slightly larger than the stated bound of 2
17 .

122

Chapter 6. An improved query strategy for finding a king

Theorem 6.22. Fix δ = 2
17 , let κ = 1

4000 . For larger enough n, there exists a seeker

strategy for finding a (1/2+δ)-king using Õ(n4/3) edge queries.

Proof. We construct the template-graph Gκ and query all Õ(n4/3) of its edges to

obtain ~Gκ .

By Lemma 6.14, we either obtain a δ -ultra set of size 2 · n2/3 or a δ -weak tiling

of ~Gκ . If we find the former, by Observation 6.8 we can find a (1
2 +δ)-king using

O(n4/3) additional queries. Therefore assume that we obtained a δ -weak tiling

W ,R of ~Gκ .

Let M be the free matrix of W ,R. By Lemma 6.18, M has a δ -good sub-matrix

M[W ,V] with |V |= 2n2/3. We query all O(n4/3) edges in V×V and by Lemma 6.19

either identify a (1
2 +δ)-king, or obtain partitions V1]V2 =V , W1]W2 with prop-

erties as listed in Lemma 6.19. Importantly, by Lemma 6.20, every row in the

sub-matrix M[W1,V2] has weight at least (1−2δ −2κ)n2/3.

We now apply Lemma 6.21 with W ′ = W2 and find a set of columns V3 ⊆ [n] \
V of size n2/3 such that every column in M[W2,V3] has weight at least (1

2 − δ −
3n−1/3)|W2|. We now query all edges in V3×V3 and V2×V3, since |V2|= |V3|= n2/3

this amounts to O(n4/3) additional queries.

Since ~G[V2 ∪V3] is completely revealed, it is a tournament of size 2n2/3 and we

apply Lemma 6.3 using the bipartition (V2,V3) to find a vertex v ∈ V2 ∪V3 such

that d+(v,V2) and d+(v,V3) are both at least n2/3/4. We claim that v is a (1
2 + δ)-

king. Let in the following V ′2 = N+(v)∩V2 and V ′3 = N+(v)∩V3. We first prove the

following two claims about these two sets:

Claim 6.23. Every row in M[W1,V ′2] has weight at least κn2/3.

Proof. [Proof of the claim] According to Lemma 6.20, every row in M[W1,V2] has

weight at least (1−2δ −2κ)n2/3. Since |V ′2|= |V2|/4 = n2/3/4, we have that each

row in M[W1,V ′2] has weight at least

(1−2δ −2κ)n2/3− 3
4

n2/3

which is larger than κn2/3 for δ ≤ 1
8 −

3κ

2 which holds true for our choices of δ

and κ .

123

Chapter 6. An improved query strategy for finding a king

Claim 6.24. At least (1
2 −δ −4κ−3n−1/3) |W2|

1−4κ
rows in M[W2,V ′3] have weight at

least κn2/3.

Proof. [Proof of the claim] Recall that by choice of V3, every column in M[W2,V3]

and therefore also M[W2,V ′3] has weight at least (1
2−δ−3n−1/3)|W2|. Accordingly,

∑M[W2,V ′3]≥ (
1
2
−δ −3n−1/3)|W2| · |V ′3|

≥ (
1
2
−δ −3n−1/3)|W2| ·

1
4

n2/3.

(6.5)

Let t denote the number of rows in M[W2,V ′3] with weight at least κn2/3. Our goal

is to find a lower bound for t. Since t is minimized if every row that has weigth at

least κn2/3 has in fact the maximum possible weight |V ′3|= n2/3/4, we can lower-

bound t using

t
4

n2/3 +(|W2|− t)κn2/3 ≥∑M[W2,V ′3].

Combining this inequality with (6.5), we obtain

t
n2/3

4
+(|W2|− t)κn2/3 ≥ (

1
2
−δ −3n−1/3)|W2| ·

1
4

n2/3

⇐⇒ t(1−4κ)≥ (
1
2
−δ −4κ−3n−1/3)|W2|

⇐⇒ t ≥ (
1
2
−δ −4κ−3n−1/3)

|W2|
1−4κ

Now note that for every tile W ∈W for which the row M[{W},V ′2∪V ′3] has weight

at least κn2/3 we have that d+(v,F(W))≥ κn2/3, therefore by Lemma 6.12 the set

N+(v)∩F(W) (1−κ)-covers W . In other words, v controls at least (1−κ)n2/3

vertices in W .

Our goal is now to lower-bound the total number of such tiles, hence let s denote the

total number of rows in M[W ,V ′2∪V ′3] with weight at least κn2/3. By the previous

two observations and by plugging in the concrete values of δ = 2
17 and κ = 1

4000 ,

we have that

s≥ |W1|+(
1
2
−δ −4κ−3n−1/3)

|W2|
1−4κ

= |W1|+(
6483

17000
−3n−1/3)|W2|

1000
999

124

Chapter 6. An improved query strategy for finding a king

Again we are aiming to prove a lower-bound, thus we assume that W1 is as small

as possible. By Lemma 6.19, this means that

|W1|= (
1
2
−δ −κ)n1/3−2 =

25983
68000

n1/3−2 and

|W2|= (
1
2
+δ +κ)n1/3 =

42017
68000

n1/3.

Plugging in the sizes of W1,W2 we obtain

s≥ |W1|+(
6483
17000

−3n−1/3)|W2|
1000
999

≥ 25983
68000

n1/3 +(
6483

17000
−3n−1/3)

42017
67932

n1/3−2

≥ 475777
769896

n1/3−4.

Since v controls a (1−κ) = 3999
4000 fraction of each tile counted by s and each tile

has a size of n2/3, we finally have the following lower bound on the second out-

neighbourhood of v:

|N++[v]| ≥ 3999
4000

sn2/3 ≥ 3999
4000

· 475777
769896

n−4n2/3

= 0.61782 . . .n−4n2/3.

This value lies, for large enough n, above our target value of (1
2 +δ)n= 0.61764 . . .n.

6.5 Conclusion

We have shown how the usage of a template-graph helped us devise a seeker strat-

egy that reveals a (1
2 +

2
17)-king in a tournament using Õ(n4/3) queries, shedding

light on a long-standing open problem. Our approach begins with a non-adaptive

querying strategy based on what we called a template graph, which then helps to

guide the seeker to identify a small set of queries which necessarily lead to the

discovery of a (1
2 +

2
17)-king.

Naturally, we ask whether it is possible to find an improved strategy which reveals

a (1
2 +δ)-king with δ substantially larger than 2

17 using a similar amount of queries.

125

Part III

A Graph Processing Problem in
Distributed Computing Model

126

7
Distributed Expansion Testing with
Local Test Criteria

Given an n-vertex graph G and an expansion parameter α , the problem of testing

whether G has expansion at least α or is far from having expansion at least Ω(α2)

has been extensively studied (see (84; 74; 85; 88)) in the classic property testing

model.

In the last few years, the same problem has also been addressed in non-sequential

models of computing such as MPC and distributed CONGEST. However, all the

algorithms in these models like their classic counterparts rely on some global in-

formation pertaining to the entire graph as a test criteria. We propose a new dis-

tributed algorithm with a local test criteria. The only distributed algorithm for the

problem (78) tests conductance of the underlying network. Unlike the algorithm

of (78), our algorithm does not rely on the wasteful construction of a spanning

tree and information accumulation at its root. This makes our algorithm time and

communication efficient and avoids a central point of failure.

7.1 Introduction

Many distributed algorithms are known to perform better provided that the un-

derlying distributed network satisfies a certain property. For example, the ran-

domised leader election algorithm by (86) works better on graphs that are good ex-

panders. Similarly, (90) presents fast distributed coloring algorithms for triangle-

127

Chapter 7. Distributed Expansion Testing with Local Test Criteria

free graphs. Therefore, it makes sense to check if the graph of the underlying

network satisfies a certain property or not. However, it may be hard to efficiently

verify certain global graph properties in the CONGEST model of distributed com-

puting. In this model, each vertex of the input graph acts as a processing unit and

works in conjunction with other vertices to solve a computational problem. The

computation proceeds in synchronous rounds, in each of which every vertex can

send an O(logn)-bits message to each of its neighbours, do some local computa-

tions and receive messages from its neighbours. (See (89) for more details.)

Distributed decision problems are tasks in which the vertices of the underlying

network have to collectively decide whether the network satisfies a global property

P or not. If the network indeed satisfies the property, then all vertices must accept

and, if not, then at least one vertex in the network must reject. For many global

properties, lower bounds on the number of rounds of computation of the form

Ω̃(
√

n+D) are known for distributed decision, where n is the number of vertices

and D is the diameter of the network. (See (75) for more details.) It makes sense to

relax the decision question and settle for an approximate answer in these scenarios

as is done in the field of property testing (see (80; 83)) in the sequential setting.

A property testing algorithm in the sequential setting arrives at an approximate

decision about a certain property of the input by querying only a small portion of

it. Specifically, an ε-tester for a graph property P is a randomised algorithm that

can distinguish between graphs that satisfy P and the graphs that are ε-far from

satisfying P with high constant probability. An m-edge graph G is considered

ε-far from satisfying P if one has to modify (add or delete) more than ε ·m edges

of G for it to satisfy P . Two-sided error testers may err on all graphs, while one-

sided error testers have to present a witness when rejecting a graph. The cost of the

algorithm is measured in the number of queries made. (See (80; 83; 82; 81) for a

detailed exposition of the subject.)

7.1.1 Distributed Property Testing

A distributed property testing problem is a relaxed variant of the corresponding

distributed decision problem, where if the input network satisfies a property, then,

with high constant probability, all the vertices must accept and, if the input net-

128

Chapter 7. Distributed Expansion Testing with Local Test Criteria

work is ε-far from satisfying the property, then at least one vertex must reject.

The definition of “farness” in distributed setting remains the same as in the classi-

cal setting. The complexity measure is the number of rounds required to test the

property. Distributed property testing has been an active area of research recently.

The work of (72) was the first to present a distributed algorithm (for finding near-

cliques) with a property testing flavour. Later Censor-Hillel, Fischer, Schwartzman

and Vasudev (86) did a more detailed study of distributed property testing. There

has been further study on the topic (see (77) and (79)) in the specific context of

subgraph freeness.

7.1.2 Expansion Testing

We address the problem of testing the expansion of a graph in the distributed CON-

GEST model of computing. A distributed expansion tester can be a useful pre-

processing step for some distributed algorithms (such as (86)) which perform bet-

ter on expander graphs. Focusing on vertex expansion, we call a graph G = (V,E)

an α-expander if every U ⊆V such that |U | ≤ |V |/2 has at least α|U | neighbours.

Here a vertex v ∈ V \U is a neighbour of U if it has at least one edge incident

to some u ∈ U . Expansion testing for bounded degree graphs has been exten-

sively studied in the classic property testing model. For a constant d, A graph

G = (V,E) is called a bounded degree graph with degree bound d if every v ∈ V

has degree at most d. In the classic setting, this problem was first studied by (84)

and later by (74). Their work was followed by the state of the art results by (85)

and (88). Both these papers present Õ(
√

n/α2)-query testers for distinguishing

between graphs that have expansion at least α and graphs that are ε-far from hav-

ing expansion at least Ω(α2). In the last few years, the same problem has also

been addressed in non-sequential models of computing such as MPC by (87) and

distributed CONGEST by (78). The distributed algorithm by Fichtenberger and

Vasudev (78) tests the conductance of the input network in the unbounded degree

graph model.

A typical algorithm for the problem in the sequential, as well as non-sequential,

models can be thought of as running in two phases. In the first phase, the algo-

rithm performs a certain number of short (O(logn)-length) random walks from a

129

Chapter 7. Distributed Expansion Testing with Local Test Criteria

randomly chosen starting vertex. The walks should mix well on a graph with high

expansion and should take longer to mix on a graph which is far from having high

expansion (at least from some fraction of starting vertices). In the second phase,

the algorithm then checks whether those walks mixed well or not. For that, the

algorithm gleans some information from every vertex in the graph and computes

some aggregate function. Specifically in the classic and MPC settings, the algo-

rithms count the total number of pairwise collisions between the endpoints of the

walks. The only known distributed algorithm for the problem by (78) precedes the

first phase by building a rooted BFS spanning tree of the input graph.1 This span-

ning tree is used for collecting information from the endpoints of the random walks

in the second phase. Specifically, their algorithm estimates the discrepancy of the

endpoint probability distribution from the stationary distribution by going over the

discrepancy on each endpoint individually. If the discrepancy is above a certain

threshold, the algorithm rejects the graph. This process of building a spanning tree

and collecting information at the root to decide if the property holds or not takes a

global and centralized view of the testing process.

The following natural question arises in the context of the second phase:

Question 7.1. Is it possible to execute the second phase without computing a

global aggregate function?

In the classic setting, one strives for testers that make a sublinear (in n) number of

queries which translates to running a sublinear number of walks. With only a sub-

linear (O(
√

n)) number of walks, one hardly expects to see any useful information

by itself on any individual vertex or in a small constant neighbourhood around it

to know if the walks mixed well or not. Therefore, one has to rely on an aggregate

function such as the total number of pairwise collisions between the endpoints of

the walks.

In the non-sequential settings such as distributed CONGEST, one can utilize the

parallelism to run a superlinear number of short walks while keeping the run time

proportional to the length of the walks. This inspires us to stick to Question 7.1 in
1If the construction of BFS tree takes longer than O(logn) rounds the algorithm rejects without

proceeding to the first phase since all good expanders have small diameter. However, a bad expander

such as a dumbbell graph may also have small diameter, so their algorithm still need to proceed with

the test after the successful construction of the spanning tree.

130

Chapter 7. Distributed Expansion Testing with Local Test Criteria

distributed setting and investigate what information one should store at each vertex

during phase 1 and how it should be processed locally in phase 2 to allow each

node to decide locally whether it is part of a good expander or not. This leads us to

answer the following question in affirmative for bounded-degree graphs.

Question 7.2. Can we test the expansion in distributed CONGEST model with-

out collecting global information at a central point and come up with a local test

criteria at each node?

We believe that our analysis for bounded-degree graphs can be extended to the

unbounded case by modifying the definition of our walk matrix appropriately and

resolve Question 7.2 for the general case.

The advantage of a local test criteria is that it lets us do away with the wasteful

construction of a spanning tree and information accumulation at the root. Note

that we do not need to do any pre-processing for the construction of the spanning

tree before phase 1. After phase 1, each node can compute its output bit without

any information exchange. This saves us O(logn) rounds of communication and

O(n) messages in phase 2. All these savings make our algorithm more time and

communication efficient and, perhaps more importantly, avoids a central point of

failure. Moreover, our algorithm can tolerate any number of edge deletions during

phase 2. Any implementation of parallel random walks in dynamic networks (with

edge deletions) during phase 1 opens up the possibility of a fully-fault-tolerant

tester for dynamic networks.

Finally, we believe that our approach to distributed property testing for expansion

with emphasis on a local test criteria gives a new perspective for distributed prop-

erty testing in general. The question of local verification of global properties has

been well studied in the area of distributed verification and self-stabilization. The

authors of (68) and (71) suggested that one can check certain global predicates on

a distributed network by using local means: i.e., by having each vertex check the

state of all its neighbours. It makes sense to look at the distributed property testing

through a similar lens.

131

Chapter 7. Distributed Expansion Testing with Local Test Criteria

7.1.3 Our Results

We study the problem of testing the expansion of undirected graphs in the CON-

GEST model. We present a two-sided error distributed test algorithm with a local

test criteria in the CONGEST model for testing vertex expansion.

Theorem 7.3. For an input graph G = (V,E) with degree bound d, and parame-

ters 0 < α < 1 and ε > 0, there exists an O(logn/α2)-round distributed algorithm

with a local test criteria for testing with high constant probability whether G is an

α-expander or is ε-far from being an Ω(α2)-expander.

A related notion of expansion considers the number of edges coming out of a set

of vertices, instead of the number of neighbours. A graph is said to be an α-edge-

expander if, for every U ⊆ V that satisfies |U | ≤ |V |/2, we have E(U,V \U) ≥
α|U |. It follows that every α-edge-expander of bounded degree d is also an (α/d)-

expander. The following corollary follows from the definition of edge expansion

for bounded-degree graphs.

Corollary 7.4. Let β ∈ (0,1) and consider the algorithm of Theorem 7.3 with α =

β/d. Then, this algorithm distinguishes with high constant probability between β -

edge-expanders and graphs that are from being ε-far an Ω(β 2/d2)-edge-expander.

7.1.4 Technical Overview

In this section, we give a general overview of our algorithm and the concepts used

in arriving at a local test criteria. Like all the previous algorithms for expansion

testing, our algorithm proceeds in two phases. In the first phase, we perform a cer-

tain number of random walks from a randomly selected starting vertex. To boost

the success probability of the process, we repeat this process in parallel from a con-

stant number of randomly selected starting vertices. The main technical challenge

in running random walks in parallel from different starting vertices is the conges-

tion on the edges. As done by (78), we overcome this problem by not sending the

entire trace of the walk from its current endpoint to the next. For each starting

point q and for all the walks going from u to v, we simply send the ID of q and the

number of walks destined for v to v. At the end of this process, for each starting

point q, we simply store at each vertex v, the number of walks that ended at v. In

132

Chapter 7. Distributed Expansion Testing with Local Test Criteria

phase 2, each vertex v ∈V looks at the information stored at v at the end of phase 1

to check if the number of walks received from any starting vertex is than a certain

threshold. If so, it outputs Reject and, otherwise, it outputs Accept.

To show that the number of walks a vertex v receives is sufficient to decide whether

v is part of a good expander or not, we proceed as follows. A technical lemma

from (74) implies that if a graph is ε-far from being an α-expander, then there

exists a large enough set S ∈V of sufficiently low conductance (see Definition 7.6)

in G. It follows intuitively that it is likely that a short random walk starting from

a randomly selected starting vertex in S should not go very far and end in S. Not

only that, we show that there exist a lot of vertices v ∈ S such that short walks

starting from v end in a large enough region T (subset of S) around v. We make

this notion precise by using spectral graph theory to show that the low-conductance

set S (as described above) contains a lot of sticky vertices. We call a vertex v ∈ S

sticky if there exists a set T ⊆ S such that v ∈ T and short random walks starting

from v end in T with a sufficiently high probability. We define trap(v,T, `) as the

probability that an ` length walk starting from v ∈ T ⊆ S ends in T . We show that

a sufficiently large fraction of all vertices are sticky: that is, each has a high trap

probability with respect to a set T , where T is a subset of a low-conductance set S

in the graph. Thus, if we run sufficiently many walks from one of these vertices,

then a lot of them will end in a subset T of S and some vertex in T will see a lot

more walks than any vertex in a good expander should. To ensure that we pick one

of the sticky vertices as a starting vertex, we sample each vertex to be a starting

vertex with appropriate probability.

7.1.5 Organisation

The rest of the chapter is organised as follows. In Section 7.2, we provide necessary

definitions and state some basic lemmas that are used in rest of the chapter. In

Section 7.3, we provide the pseudocode and a detailed description of our testing

algorithm. Section 7.3.1 is dedicated to the proof of our main theorem.

133

Chapter 7. Distributed Expansion Testing with Local Test Criteria

7.2 Preliminaries

Let G = (V,E) be an unweighted, undirected graph on n vertices representing a

distributed network. Each vertex v ∈ V is a processing unit and can communicate

with its neighbours, N(v), using their identifiers. For a given vertex v ∈V , deg(v)

denotes the degree of v. In a bounded-degree graph with degree bound d, for

all v ∈V , deg(v)≤ d.

A graph of bounded-degree d is said to be ε-far from satisfying a graph property

P (or, in other words, being a member of a certain family of graphs closed under

graph isomorphism), if one needs to add and/or delete more than εdn edges to G

in order to turn it into a graph satisfying P .

For sets A,B⊆V , we denote by E(A,B) the number of edges that have one endpoint

in A and the other endpoint in B.

Definition 7.5. We say that a graph G = (V,E) is an α-vertex-expander (or α-

expander, for short) if, for every U ⊆V that satisfies |U | ≤ |V |/2, we have N(U)≥
α|U |.

A cut in a graph is a partition of the vertices of the graph into two disjoint subsets.

Given a graph G = (V,E) any subset S ⊆V defines a cut denoted by (S,S), where

S =V \S.

Definition 7.6. Given a cut (S,S) in G, the conductance of (S,S) is defined as

E(S,S)
min{vol(S),vol(S)}

,

where vol(A) = ∑v∈A deg(v). Alternatively, we also refer to the conductance of a

cut (S,S) as the conductance of set S. The conductance of a graph is the minimum

conductance of any cut in the graph.

The main technical tool in our analysis will be random walks on the input graph G.

We denote a random walk by its transition matrix M. For a pair of vertices u,v∈V ,

we let Muv denote the probability of going from from u to v in one step of M. In

the standard definition of a random walk, Muv is defined as 1/deg(u).

We will use a slightly modified version of the standard random walk called a lazy

random walk in our work. In a lazy random walk, we transform the input graph

134

Chapter 7. Distributed Expansion Testing with Local Test Criteria

G with degree bound d to be 2d-regular by adding 2d−deg(v) self loops to each

v ∈ V . Note that this change reflects only in the transition probabilities and does

not involve any actual physical changes to the input network. Let M be a lazy

random walk on G, the transition probabilities for M are defined as follows, For a

pair v,w∈V such that v 6=w, Mvw = 1
2d , if (v,w)∈E and 0, otherwise. Furthermore,

for v ∈V , we define Mvv = 1− deg(v)
2d .

On a 2d-regular, connected, graph, a lazy random walk M can be viewed as a

reversible, aperiodic Markov chain MG with state space V and transition matrix

M. Moreover, the stationary distribution of such a chain is uniform over the state

space.

Definition 7.7. Let M be a reversible, aperiodic Markov chain on a finite state

space V with stationary distribution π . Furthermore, let π(S) = ∑v∈S π(v). The

Cheeger constant or conductance φ(M) of the chain is defined as

φ(M) = min
S⊂V :π(S)≤1/2

∑x∈S,y∈V\S π(x)M (x,y)
π(S)

.

The definition of transition probabilities of M and the the fact that the stationary

distribution π of our lazy random walk is uniform together imply that the Cheeger

constant φ(M) (henceforth, φ∗) of the walk M is

φ∗ = min
U∈V,|U |≤|V |/2

N(U)

2d · |U |
.

For an α-vertex-expander with bounded degree d, we get that

φ∗ ≥
α

2d
. (7.1)

We use the asymptotic notation Od() to indicate the dependency of a quantity on

the parameters other than the degree bound d.

7.3 A Distributed Algorithm for Expansion Testing

Given an expansion parameter α , a distance parameter ε and an input graph G =

(V,E), with n vertices and degree bound d, our distributed expansion tester algo-

rithm tests whether G is an α-vertex expander or is ε-far from being an Ω(α2)-

vertex expander. A key technical lemma from (74) implies that, if G is ε-far from

135

Chapter 7. Distributed Expansion Testing with Local Test Criteria

being an Ω(α2)-expander, then there exists a low-conductance cut (S,S) such that

εn/12 ≤ |S| ≤ n/2. We build on this lemma to show, using spectral methods (see

Lemma 7.14 and Corollary 7.15), that there exist a constant fraction of sticky ver-

tices in S. Recall that a vertex x in a low-conductance set S is sticky if there exists

a large enough subset T ⊂ S such that x ∈ T and a short random walk starting from

x ends in T with a sufficiently high probability. Intuitively, random walks starting

from sticky vertices tend to stick to a small region around them. This leads to some

vertex in the graph receive more than their fair share of number of walks. On the

other, hand if a graph is a good expander, then the random walks from anywhere in

the graph mix very quickly. This ensures that all the vertices in the graph receive

roughly the same number of walks.

In our algorithm, we uniformly sample a set Q of Ω(1/ε) source vertices in the

input graph and run random walks from each of them separately. Since a constant

fraction of vertices of our large low-conductance set S in a bad expander are sticky,

some vertex in Q will be sticky with sufficiently large probability. We exploit the

fact that some vertex near a sticky vertex will see more number of walks than a pre-

defined threshold and we use the number of walks received by each vertex from a

specific source as a test criteria.

We implement sampling of the set Q by having each vertex v sample itself by

flipping a biased coin with probability 48/(εn). It follows from Chernoff bound

that the probability of Q having more than 96/ε vertices is at most e−16/ε ≤ e−16.

Then, we perform K random walks of length ` starting from each of the chosen

vertices in Q. The exact values of these parameters are specified later in the sequel.

The entire algorithm is summarized in Algorithm 5. At any point before the last

step of random walks, each vertex v ∈ V contains a set W of tuples (q,count, i),

where count is the number of walks of length i originating from source q currently

stationed at v. All these walks are advanced by one step (for ` times) by invoking

Algorithm 6. At the end of the last step of the walks, Algorithm 6 outputs a set of

tuples Cv. Each tuple in Cv is of the form (q,count), where count is the total number

of `-step walks starting at q that ended at v. Then, in Algorithm 5, processor at

vertex v goes over every tuple (q,count) in Cv (see Lines 11 to 15 of Algorithm 5),

and if the count value of any of them is above a pre-defined threshold τ , it outputs

136

Chapter 7. Distributed Expansion Testing with Local Test Criteria

Reject. If none of the tuples have their count value above threshold, it outputs

Accept. The exact value of τ is specified later in the sequel.

The implementation of (one step) of a separate set of random walks from each of

the starting points in Q is described in Algorithm 6. when advancing the walks

originating at a source q ∈ Q by one step, we do not send the full trace of every

random walk. Instead, for every source q ∈ Q, every vertex v ∈ V only sends a

tuple (q,k, i) to its neighbour w indicating that k random walks originating at q

have chosen w as their destination in their ith step. Since the size of Q is constant

with high enough probability, we will not have to send more than a constant number

of such tuples on each edge. Moreover, each tuple can be encoded using O(logn)

bits (given the values of parameters ` and K specified in the sequel). Hence, we

only communicate O(logn) bits per edge in any round with high probability. To

make sure we do not congest any edge, we check the length of every message (see

lines 13 to 15 of Algorithm 6) before we send it. If a message appears too large

to send, we simply output Reject on the host vertex and abort the algorithm. Note

that the number of tuples we ever have to send along any edge is upper bounded

by |Q| and |Q| ≤ 96ε , with probability at least 1− e−16. Therefore, we may rarely

abort the algorithm before completing the execution of the random walks. If that

happens, then the probability of accepting an α-vertex expander is slightly reduced.

Hence the following observation follows:

Observation 7.8. Algorithm 5 rejects an α-expander due to congestion with prob-

ability at most e−16.

For some 0 < µ ≤ 1, we set the required parameters of Algorithm 5 as follows:

• the number of walks K = n1+µ ,

• the length of each walk `= 16d2

α2 logn

• the rejection threshold τ = nµ +n2µ/3 +2.

Note that the choice of the parameter µ affects the number walks started by each

source vertex. Additionally, the smaller value of µ reduces the size of the class

of non-expander graphs that will rejected by the algorithm with high probability.

Therefore, one can slightly reduce the number of walks at the cost of a slight sac-

rifice in the precision.

137

Chapter 7. Distributed Expansion Testing with Local Test Criteria

Algorithm 5 Distributed algorithm running at vertex v for testing graph expansion.
1: Algorithm DISTRIBUTED-GRAPH-EXPANSION-TEST(G,ε,α, `,K)

2: . The algorithm performs K random walks of length ` from a set Q of Θ(1/ε)

starting vertices, where every starting vertex is sampled randomly from V .

3: ` : The length of each random walk

4: K : The number of walks

5: Wv : Set of tuples (q,count, i) . where count is the number of walks originating at

source q currently stationed at v

6: Cv : Set of tuples (q,count) . where count is the total number of ` step walks

starting at q that ended at v

7: τ : maximum number of `-length walks v should see from a given source on an

α-expander.

8: Flip a biased coin with probability p = 48/εn to decide whether to start K lazy

random walks.

9: If chosen, initialise Wv as Wv←{(v,K,0)}.
10: Call Algorithm 6 for ` synchronous rounds.

11: while there is some tuple (q,count) in Cv do
12: if count > τ then . Received too many walks from q.

13: Output Reject and stop all operations.

14: else
15: Remove (q,count) from Cv

16: Output Accept

7.3.1 Analysis of the Algorithm

In this section, we show that Algorithm 5 accepts every α-expander with bounded

degree d, with probability at least 2/3, and rejects every graph with bounded de-

gree d that is ε-far from being an α∗-expander, where α∗ = Θ(α2/d2), with prob-

ability at least 2/3.

The main idea behind our algorithm is that, in a bad expander, a random walk

would converge to the stationary distribution more slowly and would initially get

trapped within sets of vertices with small conductance. We use the following com-

binatorial lemma from (74) that shows the existence of a large low-conductance set

in a graph which is far from being a good expander.

Lemma 7.9 (Corollary 4.6 of (74)). Let G = (V,E) be a bounded-degree graph,

with |V |= n and degree bound d. There exists a constant C =C(d)> 0 such that,

138

Chapter 7. Distributed Expansion Testing with Local Test Criteria

Algorithm 6 Algorithm for moving random walks stationed at v by one step.
1: Algorithm MOVE-WALKS-AT-v

2: Wv : Set of tuples (q,count, i) . where count is the number of walks originating at

source q currently stationed at v just after their ith step..

3: Dv : Set of tuples (q,count,dest) . where count is the number of walks starting at

q that are to be forwarded to dest.

4: Cv : Set of tuples (q,count) . where count is the total number of walks starting at

q that have v as their final destination or endpoint.

5: Dv← /0.

6: while there is some tuple (q,k, i) in Wv do
7: if i 6= L then . If not the last step, process the next set of destinations.

8: Draw the next set of destinations for the k walks and update the set Dv.

9: Remove (q,k, i) from Wv

. If last step of the walks, update how many ended at v.

10: Update Cv to reflect the k walks that ended in v.

. Prepare the messages to be sent

11: while there is some tuple (q,count,dest) in Dv do
12: Add tuple (q,count, i+1〉 to the message to be sent to dest

. Check each message for length

13: For each message M to be sent

14: if the number of tuples in M > 96/ε then
15: Output Reject and stop all operations.

16: Send all the messages to their respective destinations.

. Process the messages received

17: For each source s from which a total of scount walks are received,

18: add tuple (s,scount , i+1) to Wv

for 0 < ε < 1 and α∗≤ 1/10, if G is ε-far from any α∗-expander, then there is a

subset A⊂V , such that εn/12≤ |A| ≤ (1+ ε)n/2, such that |N(A)| ≤Cα∗|A|.

Lemma 7.9 implies the following corollary.

Corollary 7.10. For 0 < ε < 1 and α∗≤ 1/10, if G is ε-far from any α∗-expander,

then there exists a set B ⊂ V with εn/12 ≤ |B| ≤ n/2 and a constant C = C(d,ε)

such that E(B,V \B)≤Cdα∗|B|, i.e., the conductance of cut (B,B) is at most Cα∗.

Proof. By Lemma 7.9, there exists a subset A⊂V , with εn/12≤ |A| ≤ (1+ε)n/2,

such that we have |NG(A)| ≤Cα∗|A|. Furthermore, the degree bound d of G implies

139

Chapter 7. Distributed Expansion Testing with Local Test Criteria

that

E(A,V \A) = E(V \A,A)≤ dNG(A)≤ dCα
∗|A|.

If |A| ≤ n/2, then the claim follows simply by taking B = A. If |A|> n/2, we take

B =V \A, so that |A| ≤ (1+ ε)n/2 and |B| ≥ (1− ε)n/2. It follows that

E(B,V \B)≤Cdα
∗|A|=Cdα

∗ |A|
|B|
|B| ≤C

1+ ε

1− ε
dα
∗|B|,

where the last inequality follows by bounding |A| from above and |B| from below.

Next we provide a lower bound for the probability of an `-step random walk start-

ing from a vertex chosen uniformly at random from a subset T of a low conductance

set S finishing at some vertex in T .

Definition 7.11. For a set T ⊆ V , and a vertex u ∈ T , let trap(u,T, `) (henceforth

trap probability) denote the probability of an `-step random walk starting from

u ∈ T finishing at some vertex in T . When the starting vertex is chosen uniformly

at random from T , we denote by trap(T, `) the average trap probability over set T :

trap(T, `) =
1
|T | ∑u∈T

trap(u,T, `).

Given a set S (with |S| = s) of conductance at most δ and T ⊆ S (with |T | =
t), we establish a relationship between the average trap probability trap(T, `) and

conductance bound δ of S in the next two lemmas. We first consider the case

T = S in Lemma 7.12, and then obtain a bound when T is a large subset of S in

Lemma 7.14.

Lemma 7.12. Consider a set S ⊆ V , such that |S| = s and the cut (S,S) has con-

ductance at most δ . Then, for any integer ` > 0, the following holds

trap(S, `)≥ s
n
+

(
7
8
− s

n

)
(1−8δ)`.

Proof. Let 1S denote the n-dimensional indicator vector of set S. Denote by

M the transition matrix of a lazy random walk on G. The endpoint probability

distribution ~p`
S of an `-step lazy random walk on G staring from a vertex chosen

uniformly at random from S is given by

~p`
S =

1
s
1
T
S M`.

140

Chapter 7. Distributed Expansion Testing with Local Test Criteria

The trap probability trap(S, `) of an `-step lazy random walk starting from a random

vertex in S can be expressed as the inner product of vectors ~p`
S and 1S:

trap(S, `) =
1
s
1
T
S M`

1S.

Let 1 = λ1 ≥ λ2 ≥ . . . ≥ λn > 0 be the eigenvalues of M and let ~e1,~e2, . . . ,~en be

the corresponding orthogonal unit eigenvectors. We express 1S in the orthonormal

basis defined by the eigenvectors of M as 1S = ∑i αi~ei. It follows that

∑
i

α
2
i = 〈1S,1S〉= s.

Next, we will consider the normalized Laplacian of the input graph G, which is

given by L = I−M, where I is the identity matrix. (See Chapter 1 of (73) for more

details.) Taking the quadratic form of L for vector 1S, we get

1
T
S L1S = 1

T
S I1S−1TS M1S = 〈1S,1S〉−∑

i
α

2
i λi = s−∑

i
α

2
i λi. (7.2)

By definition of L in terms of M (see Chapter 1 of (73)), it follows that

1
T
S L1S = ∑

i< j
Mi j · (1S(i)−1S(j))2 . (7.3)

Here 1S(i) and 1S(j) denote the ith and jth entries, respectively of vector 1S . Note

that the term (1S(i)−1S(j))2 in (7.3) is non-zero only for pairs i, j corresponding

to the cut edges (i, j) ∈ E(S,S). Since the conductance of the cut (S,S) is less than

δ and the volume of the set S in G with degree bound d is at most ds, it follows

that

E(S,S)≤ dδ s < 2dδ s.

Also, Mi j = 1/2d for every edge (i, j) ∈ E. It follows that

1
T
S L1S ≤

1
2d
·2dδ s = δ s. (7.4)

Combining Eq.s (7.2) and (7.4) above, we get that

∑
i

α
2
i λi ≥ s−δ s. (7.5)

Recall that 1 = λ1 ≥ λ2 ≥ . . . ,λn are the eigenvalues of the random walk matrix

M. We call the quantity ∑i α2
i the coefficient sum of the eigenvalue set. We also

141

Chapter 7. Distributed Expansion Testing with Local Test Criteria

call an eigenvalue λi (and the corresponding eigenvector ~ei) heavy if λi ≥ 1− 8δ .

We denote by H the index set of the heavy eigenvalues and let H be the index set

of the rest. Since ∑i α2
i λi ≥ s− δ s is large for a set with small conductance, we

expect many of the coefficients α2
i corresponding to heavy eigenvalues to be large.

This would slow down the convergence of the random walk and make the trap

probability for our low-conductance set S large. The following claim establishes a

lower bound on the contribution of the index set H to the coefficient sum.

Claim 7.13. For {αi}i,H, and s as defined above,

∑
i∈H

α
2
i ≥

7
8

s.

Proof. Let x denote the coefficient sum of the set H of heavy eigenvalues: that is,

x := ∑
i∈H

α
2
i .

The following expression follows by the definition of the set H and its coefficient

sum x:

∑
i

α
2
i λi = ∑

i∈H
α

2
i λi + ∑

i∈H

α
2
i λi ≤ x+(∑

i
α

2
i − x)(1−8δ).

The second inequality above follows by upper bounding every λi with i ∈ H by 1

and every λi with i ∈ H by 1− 8δ . Recall that ∑i α2
i = 〈1S,1S〉 = s and we just

proved that ∑i α2
i λi ≥ s−δ s in (7.5). It follows that

s−δ s≤∑
i

α
2
i λi ≤ x+(s− x)(1−8δ).

Rearranging the inequality above, we get that x≥ 7s/8.

Next, we use Claim 7.13 to get a lower bound on the average trap probability of set

S in terms of the conductance of the cut (S,S).

trap(S, `)=
1
s
1
T
S M`

1S =
1
s
(∑

i
αi~ei)

TM`(∑
i

αi~ei)=
1
s
(∑

i
αi~ei)

T
(∑

i
αiλ

`
i~ei)=

1
s ∑

i
α

2
i λ

`
i .

142

Chapter 7. Distributed Expansion Testing with Local Test Criteria

Furthermore, focusing on the contribution of the index set H to the trap probability,

trap(S, `) =
1
s ∑

i
α

2
i λ

`
i

≥ 1
s ∑

i∈H
α

2
i λ

`
i

=
1
s

(
α

2
1 λ1 + ∑

i∈H\{1}
α

2
i λ

`
i

)

≥ 1
s

(
α

2
1 +

(
7s
8
−α

2
1

)
(1−8δ)`

)
. (7.6)

The last inequality follows by the definition of a heavy eigenvalue and by Claim 7.13

(we have that ∑i∈H αiβi≥ 7s/8). By definition, λ1 = 1 and~e1 = [1/
√

n,1/
√

n, . . . ,1/
√

n]T.

It follows that

α1 = 〈1S,~e1〉= s/
√

n.

Plugging in the values of α1 in (7.6), we get

trap(S, `)≥ 1
s

(
s2

n
+

(
7s
8
− s2

n

)
(1−8δ)`

)
=

s
n
+

(
7
8
− s

n

)
(1−8δ)`.

Therefore, we can conclude that there exists a vertex v ∈ S such that

trap(v,S, `)≥ s
n
+

(
7
8
− s

n

)
(1−8δ)`.

Next, we prove that every large enough subset T ⊂ S has high trap probability.

More specifically, we prove a lower bound on the probability of an `-step random

walk starting from a vertex chosen uniformly at random from T finishing at some

vertex in T .

Lemma 7.14. Consider sets T ⊆ S ⊆ V , |S| = s, |T | = t, such that the cut (S,S)

has conductance at most δ and that t = (1−η)s for some 0 < η < 7/8, then for

any integer ` > 0, the following holds

trap(T, `)≥ t
n
+

7
8

(
1−
√

8η

7

)2

− t
n

(1−8δ)`.

143

Chapter 7. Distributed Expansion Testing with Local Test Criteria

Proof. Let 1S and 1T denote the n-dimensional indicator vectors of sets S and

T , respectively. As in Lemma 7.12, we express 1S and 1T in the orthonormal

basis defined by the eigenvectors of the random walk matrix M as 1S = ∑i αi~ei and

1T = ∑i βi~ei.

Since the conductance of the cut (S,S) is at most δ , Claim 7.13 from Lemma 7.12

holds. We have that

∑
i

α
2
i ≥ ∑

i∈H
α

2
i ≥

7
8

s.

By the definition of 1S and 1T , we have

‖1S−1T‖2
2 = s− t = s− (1−η)s = ηs.

Furthermore, the following follows from the expression of 1S and 1T in terms of

the eigenvectors of the random walk matrix M

‖1S−1T‖2
2 = ∑

i
(αi−βi)

2 = ηs

Applying the triangle inequality, ‖~a−~b‖≥‖~a‖−‖~b‖ and upper bounding
√

∑i∈H(αi−βi)2

by
√

∑i(αi−βi)2 =
√

ηs, we get that

∑
i∈H

β
2
i ≥

(√
∑
i∈H

α2
i −
√

∑
i∈H

(αi−βi)
2

)2

≥

(√
7
8

s−
√

ηs

)2

=
7
8

s

(
1−
√

8η

7

)2

.

Reasoning as in Lemma 7.12 and applying λi ≥ (1− 8δ), for all i ∈ H, we can

bound the average trap probability over set T as

trap(T, `)≥1
t ∑

i∈H
β

2
i λ

`
i =

1
t

(
β

2
1 λ1 + ∑

i∈H\{1}
β

2
i λ

`
i

)

≥1
t

 t2

n
+

7s
8

(
1−
√

8η

7

)2

− t2

n

 .(1−8δ)`

=

t
n
+

7
8
· s

t

(
1−
√

8η

7

)2

− t
n

(1−8δ)`.

(7.7)

The second-to-last inequality follows from the definition of the first eigenvalue,

eigenvector pair of the random walk matrix. By definition, λ1 = 1 and ~e1 =

144

Chapter 7. Distributed Expansion Testing with Local Test Criteria

[1/
√

n,1/
√

n, . . . ,1/
√

n]T. Therefore, we have that β1 = 〈1T ,~e1〉= t. Since T ⊆ S,

it follows that s/t ≥ 1, the claim of the lemma follows by substituting s/t by its

lower bound 1 in (7.7).

Lemma 7.14 implies that any sufficiently large subset T of a low conductance set

S ⊆ V contains at least one vertex v ∈ T such that a random walk starting from v

ends in T with sufficiently high probability, i.e., v is sticky. More precisely, there

exists a sticky vertex v ∈ T such that

trap(v,T, `)≥ t
n
+

7
8

(
1−
√

8η

7

)2

− t
n

(1−8δ)`. (7.8)

This leads to the following corollary as a result:

Corollary 7.15. Consider a set S⊂V , |S|= s, such that the cut (S,S) has conduc-

tance at most δ . Given any 0 < η ≤ 7/8 and integer ` > 0, there exist at least ηs

sticky vertices v ∈ S for which there exists T ⊆ S of size t = (1−η)s such that

trap(v,T, `)≥ t
n
+

7
8

(
1−
√

8η

7

)2

− t
n

(1−8δ)`.

Proof. Let P ⊆ S denote the set of all the vertices for which eq (7.8) holds for

some set T . One can extract P using the following iterative procedure. To begin

with, we pick an arbitrary subset T of size (1−η)s from S. By Lemma 7.14, there

exists a vertex v in T with the desired trap probability. We remove v from S and

add it to P. Let R be the set of remaining vertices of S. We then extract another

subset T of size (1−η)s from R and this process continues until we do not have

sufficient number of vertices left in R. It is easy to see that |R| ≤ (1−η)s when

this process ends. This implies that we have at least ηs vertices in P.

Finally, we need the following classical relation between the conductance or Cheeger

constant of a Markov chain and its second largest eigenvalue.

Theorem 7.16 ((70; 69; 76)). Let P be a reversible lazy chain (i.e., for all x,

P(x,x) ≥ 1/2) with Cheeger constant φ∗. Let λ2 be the second largest eigenvalue

of P. Then,
φ 2
∗
2
≤ 1−λ2 ≤ 2φ∗.

145

Chapter 7. Distributed Expansion Testing with Local Test Criteria

We can now state our main theorem.

Theorem 7.17. For an input graph G = (V,E) with degree bound d, and param-

eters 0 < α < 1 and ε > 0, there exists a constant C = C(d,ε) > 0 such that

DISTRIBUTED-GRAPH-EXPANSION-TEST in Algorithm 5

• outputs Accept, with high probability at least 2/3, on every vertex of G if G

is an α- vertex expander.

• outputs Reject, with probability at least 2/3, on at least one vertex of G if G

is ε-far from any (Cα2)-expander.

The algorithm uses Od(logn) communication rounds.

Proof. Let us start by showing that, with high probability, the algorithm outputs

accept on every vertex if G is an α-expander. By Observation 7.8, we may reject

G and abort the algorithm due to congestion with probability at most e−16. For

now, let us assume that this event did not occur. Denote by λ2 the second largest

eigenvalue of the lazy random walk M on G. It is well known (see, e.g., (91)) that,

for a pair u,v ∈V , ∣∣∣∣M`(u,v)− 1
n

∣∣∣∣≤ λ
`
2 ≤ e−`(1−λ2).

Furthermore, it follows from Theorem 7.16 that

|M`(u,v)− 1
n
| ≤ e−`φ

2
∗ /2 ≤ e−

`α2

8d2 ,

where the second inequality above follows from the fact that for an α-expander,

φ∗ ≥ α/2d (see (7.1) in Section 7.2). Thus, for ` = (16d2/α2) logn, any starting

vertex u ∈V and a fixed vertex v ∈V , in an α-expander, we have that

1
n
− 1

n2 ≤M`(u,v)≤ 1
n
+

1
n2 .

We fix K = n1+µ , for some 0 < µ < 1, as the number of the random walks from

each starting vertex u. Let Xu,v denote the number of random walks starting from u

that ended in v. It follows that

EXu,v = K ·M`(u,v)≤ nµ +nµ−1.

146

Chapter 7. Distributed Expansion Testing with Local Test Criteria

We also fix the rejection threshold τ in the algorithm to be nµ + n2µ/3 + 2. The

random variable Xu,v is the sum of K independent Bernoulli trials with success

probability M`(u,v). Applying multiplicative Chernoff bounds, we get

Pr[Xu,v > (1+n−µ/3) ·E[Xu,v]]< exp(−n−2µ/3 · (nµ +nµ−1)/3)

= exp(−nµ/3(1+n−1)/3)≤ 1
4n

,

for large enough n. Thus, each vertex y receives at most

(1+n−µ/3) ·E[Xu,v]≤ (1+n−µ/3) · (nµ +nµ−1)

≤ nµ +nµ−1 +n2µ/3 +n2µ/3−1

< nµ +n2µ/3 +2,

with probability at least 1− (1/4n), where last inequality follows from that µ ≤ 1.

Taking union bound over all y ∈ V and all starting vertices u, we get that, condi-

tioned on the event that we did not abort due to congestion, with high probability,

our algorithm outputs Accept on every vertex of G for every starting point if G

is an α-expander. Further union bounding over the events that we rejected due to

congestion or due to receiving too many walks at some endpoint, the claim follows.

Next, we show that our algorithm rejects, with high probability, any graph G that is

ε-far from being an α∗-expander, for α∗ = Θd(α
2). By Corollary 7.10, there exists

a set S⊂V , with s = |S| ≥ εn/12, such that the conductance of S is less than Cα∗,

for some C > 0. Applying Corollary 7.15 with η = 7
8 ·

1
92 on S as above, we get

that there exists a set P containing at least 7s/648 vertices v for which there exists

a set T ⊆ S, |T |= t = 641
648 s, such that

trap(v,T, `)≥ t
n
+

(
56
81
− t

n

)
· (1−8Cα

∗)` ≥ t
n
+(

56
81
− t

n
) · e−16Cα∗`,

where the last inequality follows from that 1−x > e−2x, for 0≤ x < 1/2, provided

that 8Cα∗ ≤ 1/2. For ` = (16d2/α2) logn and t ≤ s ≤ n/2, we get that, for every

v ∈ P,

trap(v,T, `)≥ t
n
+

31
162
·
(

1
n

)256Cα∗ d2

α2

.

For α∗ ≤ α2µ/(1024 ·Cd2), it holds that

trap(v,T, `)≥ t
n
+

31
162
·n−µ/4.

147

Chapter 7. Distributed Expansion Testing with Local Test Criteria

Let us assume that a vertex u ∈ P⊂ S is picked as the starting vertex of K = n1+µ

random walks in G. By Corollary 7.15 and above exposition, a set T with t =

(1−η)s with trap(v,T, `)≥ t
n +

31
162 ·n

−µ/4 will exist for every v ∈ P. Furthermore,

let Yu,T be the number of walks that ended in the set T (corresponding to u as in

Corollary 7.15) after ` steps. It follows that

EYu,T ≥ n1+µ ·
(

t
n
+

31
162

n−µ/4
)
≥ t ·nµ +

31
162
·n1+3µ/4.

Note that the random variable Yu,T is the sum of K Bernoulli trials with success

probability at least (t/n)+(31/162) ·n−µ/4). By an application of Chernoff bounds

and using t ≤ n/2, we get

Pr
[
Yu,T <

(
1−3

√
n−µt−1

)
E[Yu,T]

]
< exp

(
−4n−µt−1E[Yu,T]

)
≤ exp

(
−4n−µt−1 ·

(
t ·nµ +

31
162
·n1+3µ/4

))
≤ exp

(
−4(1+

31
81

n−µ/4)

)
<

1
10

.

Again using t ≤ n/2, it follows that, on average, a vertex in T receives at least

(1−3
√

n−µt−1) ·E[Yu,T]

t
≥ (1−3

√
n−µt−1)(nµ +

31
81

n3µ/4)≥ nµ +
31
81

n3µ/4− 5nµ/2
√

t
,

with probability at least 9/10. In that case, the average number of walks received

by vertices in T is at least nµ + 31
81 n3µ/4−O(1), which is above the threshold τ =

nµ +n2µ/3 +2 for large enough n. Thus, some vertex in S will receive more than t

walks and it will output reject.

Let E be the event that none of the vertices in P is sampled to be one of the starting

points in Q. Since each vertex u∈V is sampled with probability 48/(εn) and |P′| ≥
εn/24, it follows that

Pr[E]≤
(

1− 48
εn

) 1
24 ·εn

≤ e−2 = 0.14

Taking a union bound over the probability of the event E and the probability of

set T around a starting vertex v ∈ P not receiving enough walks, we get that with

probability at most 0.1 + 0.14 = 0.24, no vertex will output Reject. Thus, our

148

Chapter 7. Distributed Expansion Testing with Local Test Criteria

distributed algorithm will output Reject with probability at least 2/3, on at least

one vertex of G.

Finally, the upper bound on the number of communication rounds follows from the

length `= 16d2

α2 logn of each random walk.

149

Bibliography

[1] Michael Elkin and Chhaya Trehan. Brief Announcement:(1+ε)-Approximate

Shortest Paths in Dynamic Streams, In proceedings of the ACM Symposium

on Principles of Distributed Computing, PODC 2022.

[2] Michael Elkin and Chhaya Trehan. (1+ε)-Approximate Shortest Paths in Dy-

namic Streams. In proceedings of Approximation, Randomization, and Com-

binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM

2022.

[3] Oded Lachish, Felix Reidl, and Chhaya Trehan. When You Come at the King

You Best Not Miss. In proceedings of the Conference on Foundations of

Software Technology and Theoretical Computer Science, FSTTCS 2022.

[4] Tugkan Batu and Chhaya Trehan. A Distributed Conductance Tester Without

Global Information Collection. CoRR, 2023. CoRR, abs/2305.14178, 2013.

[5] Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight.

In proceedings of the ACM Symposium on Theory of Computing, STOC 2016.

[6] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph struc-

ture via linear measurements. In proceedings of the ACM-SIAM Symposium

on Discrete Algorithms, SODA 2012.

[7] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: Spar-

sification, spanners, and subgraphs. In Proceedings of the ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2012.

150

Bibliography

[8] Ingo Althofer, Gautam Das, David Dobkin, and Deborah A Joseph. Gener-

ating sparse spanners for weighted graphs. In proceedings of Scandinavian

Workshop on Algorithm Theory, SWAT 1990.

[9] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds

for sparse recovery. In proceedings of the ACM-SIAM Symposium on Discrete

Algorithms SODA 2010.

[10] Antal Balog and Imre Bárány. On the convex hull of the integer points in a

disc. In proceedings of the Symposium on Computational Geometry, SoCG

1991.

[11] Surender Baswana. Streaming algorithm for graph spanners - single pass and

constant processing time per edge. Information Processing Letters, 2008.

[12] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph

Lenzen. Near-Optimal Approximate Shortest Paths and Transshipment in

Distributed and Streaming Models. In proceedings of the International Sym-

posium on Distributed Computing, DISC 2017.

[13] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 1979.

[14] Yi-Jun Chang, Martin Farach-Colton, Tsan-sheng Hsu, and Meng-Tsung

Tsai. Streaming complexity of spanning tree computation. In proceedings

of the International Symposium on Theoretical Aspects of Computer Science,

STACS 2020.

[15] Edith Cohen. Polylog-time and near-linear work approximation scheme for

undirected shortest paths. In proceedings of the Symposium on Theory of

Computing, STOC 1994.

[16] Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise dis-

tance preservers. SIAM Journal on Discrete Mathematics, 2006.

[17] Graham Cormode and D. Firmani. A unifying framework for `-0-sampling

algorithms. Distributed and Parallel Databases, 2013.

151

Bibliography

[18] Michael Elkin. Streaming and fully dynamic centralized algorithms for con-

structing and maintaining sparse spanners. ACM Transactions on Algorithms,

2011.

[19] Michael Elkin. Distributed exact shortest paths in sublinear time. In proceed-

ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2017.

[20] Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Improved weighted additive

spanners. Distributed Computing, 2023.

[21] Michael Elkin and Shaked Matar. Near-additive spanners in low polynomial

deterministic congest time. In Proceedings of the ACM Symposium on Prin-

ciples of Distributed Computing, PODC 2019.

[22] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very

sparse spanners and emulators. ACM Transactions on Algorithms, 2018.

[23] Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and ap-

plications to approximate shortest paths. SIAM Journal on Computing, 2019.

[24] Michael Elkin and Ofer Neiman. Centralized and parallel multi-source short-

est paths via hopsets and fast matrix multiplication. In proceedings of In-

ternational Symposium on Theoretical Aspects of Computer Science, STACS

2022.

[25] Michael Elkin and Ofer Neiman. Near-additive spanners and near-exact

hopsets, A unified view. Bulletin of EATCS, 2020.

[26] Michael Elkin and David Peleg. (1+ ε,β)-spanner constructions for general

graphs. In proceedings of the ACM Symposium on Theory of Computing,

STOC 2001.

[27] Michael Elkin and Shay Solomon. Fast constructions of light-weight spanners

for general graphs. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms, SODA 2013.

[28] Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1+

ε,β)-spanners in the distributed and streaming models. Distributed Comput-

ing, 2006.

152

Bibliography

[29] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. On graph problems in a semi-streaming model. In proceedings

of the International Colloquium on Automata, Languages and Programming,

ICALP 2004.

[30] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. Graph distances in the data-stream model. SIAM Journal on

Computing, 2009.

[31] Manuel Fernandez, David P. Woodruff, and Taisuke Yasuda. Graph spanners

in the message-passing model. In proceedings of the ACM conference on

Innovations in Theoretical Computer Science Conference, ITCS 2020.

[32] Arnold Filtser, Michael Kapralov, and Navid Nouri. Graph Spanners by

Sketching in Dynamic Streams and the Simultaneous Communication Model.

In proceedings of the ACM-SIAM Symposium on Discrete Algorithms,

SODA 2021.

[33] S. Ganguly. Counting distinct items over update streams. Theoretical Com-

puter Science, 2007.

[34] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic

graph connectivity with improved worst case update time and sublinear

space. In proceeding of the ACM-SIAM Symposium on Discrete Algorithms,

SODA 2013.

[35] D. R. Heath-Brown. Almost-primes in arithmetic progressions and short

intervals. Mathematical Proceedings of the Cambridge Philosophical Soci-

ety,1978.

[36] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Im-

proved algorithms for decremental single-source reachability on directed

graphs. In proceedings of the International Colloquium on Automata, Lan-

guages, and Programming, ICALP 2015.

[37] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deter-

ministic almost-tight distributed algorithm for approximating single-source

153

Bibliography

shortest paths. In Proceedings of the ACM Symposium on Theory of Com-

puting, STOC 201616.

[38] Piotr Indyk, Eric Price, and David P. Woodruff. On the power of adaptivity in

sparse recovery. In IEEE Symposium on Foundations of Computer Science,

FOCS 2011.

[39] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp sam-

plers, finding duplicates in streams, and related problems. In proceedings of

the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems , PODS 2011

[40] Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic

streams. In Proceedings of the Symposium on Principles of Distributed Com-

puting, PODC 2014.

[41] Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu

repair of an MST in a distributed network with o(m) communication. In

proceedings of the ACM Symposium on Principles of Distributed Computing,

PODC 2015.

[42] Philip N Klein and Sairam Subramanian. A randomized parallel algorithm

for single-source shortest paths. Journal of Algorithms, 1997.

[43] Felix Lazebnik and Vasiliy A. Ustimenko. Some algebraic constructions of

dense graphs of large girth and of large size. In Expanding Graphs, Pro-

ceedings of a DIMACS Workshop, volume 10 of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, DIMACS/AMS, 1992.

[44] Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Record,

2014.

[45] Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-

sampling with applications. In Proceedings of the ACM-SIAM Symposium

on Discrete Algorithms, SODA 2010.

[46] Noam Nisan. Pseudorandom generators for space-bounded computation.

Combinatorica, 1992.

154

Bibliography

[47] David Peleg and Alejandro A. Schaffer. Graph spanners. Journal of Graph

Theory, 1989.

[48] P. Pollack and Enrique Treviño. Finding the four squares in lagrange’s theo-

rem. Integers, 2018.

[49] Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number

theory. Communications on Pure and Applied Mathematics, 1986.

[50] Vojuch Jarnik. Mathematische Zeitschrift. Uber die gitterpunkte auf konvexen

kurven, 1926.

[51] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsifica-

tion in dynamic graph streams. In proceedings of the International Workshop

on Approximation, Randomization, and Combinatorial Optimization. Algo-

rithms and Techniques , RAMDOM/APPROX, 2013.

[52] Ashish Goel, Michael Kapralov, and Ian Post. Single pass sparsification in

the streaming model with edge deletions. CoRR, abs/1203.4900, 2012.

[53] Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-

streaming setting. In proceedings of the International Symposium on The-

oretical Aspects of Computer Science, STACS 2011.

[54] Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass

streaming complexity of the set cover problem. In proceedings of the ACM

Symposium on Theory of Computing, STOC 2016.

[55] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum

matching size in graph streams. In proceedings of the ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2017.

[56] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Max-

imum matchings in dynamic graph streams and the simultaneous communi-

cation model. In proceedings of the ACM-SIAM Symposium on Discrete

Algorithms, SODA 2016.

[57] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi

Hajiaghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorot-

nikova. Kernelization via Sampling with Applications to Finding Matchings

155

Bibliography

and Related Problems in Dynamic Graph Streams. In proceedings of the

ACM-SIAM Symposium on Discrete Algorithms, SODA 2016.

[58] Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and

streaming spanning forest computation. In proceedings of the ACM-SIAM

Symposium on Discrete Algorithms, SODA 2019.

[59] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming

model. In proceedings of the International Colloquium on Automata, Lan-

guages and Programming, ICALP 2009.

[60] Miklós Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. Sorting

and selection with imprecise comparisons. In proceedings of International

Colloquium on Automata, Languages and Programming , ICALP 2009 .

[61] Ramachandran Balasubramanian, Venkatesh Raman, and G Srinivasaraga-

van. Finding scores in tournaments. Journal of Algorithms,1997.

[62] Arindam Biswas, Varunkumar Jayapaul, Venkatesh Raman, and Srini-

vasa Rao Satti. The complexity of finding (approximate sized) distance-d

dominating set in tournaments. In proceedings of International Workshop on

Frontiers in Algorithmics, FAW 2017.

[63] Palash Dey. Query complexity of tournament solutions. In Proceedings of

the AAAI Conference on Artificial Intelligence, AAAI 2017.

[64] Dishant Goyal, Varunkumar Jayapaul, and Venkatesh Raman. Elusiveness of

finding degrees. Discrete Applied Mathematics, 2020.

[65] HG Landau. On dominance relations and the structure of animal societies:

III the condition for a score structure. The bulletin of mathematical bio-

physics,1953.

[66] John W Moon. Topics on tournaments in graph theory. Courier Dover Pub-

lications, 2015.

[67] Jian Shen, Li Sheng, and Jie Wu. Searching for sorted sequences of kings in

tournaments. SIAM Journal of Computing, 2003.

156

Bibliography

[68] Yehuda Afek, Shay Kutten, and Moti Yung. The local detection paradigm and

its application to self-stabilization. Theoretical Computer Science, 1997.

[69] Noga Alon. Eigenvalues and expanders. Combinatorica, 1986

[70] Noga Alon and V. D. Milman. Eigenvalues, expanders and superconcentra-

tors (extended abstract). In proceedings of Symposium on Foundations of

Computer Science , IEEE, FOCS 1984.

[71] Baruch Awerbuch and George Varghese. Distributed program checking:

A paradigm for building self-stabilizing distributed protocols (extended ab-

stract). In proceedings of Symposium on Foundations of Computer Science ,

IEEE, FOCS 1991.

[72] Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-

cliques. Distributed Computing, 2009.

[73] Fan R. K. Chung. Spectral Graph Theory. Providence, RI, 1997.

[74] Artur Czumaj and Christian Sohler. Testing Expansion in Bounded-Degree

Graphs. Combinatorics, Probability & Computing, 2010.

[75] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon

Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Dis-

tributed verification and hardness of distributed approximation. In Proceed-

ings of the Annual Symposium on Theory of Computing, STOC 2011.

[76] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience

of certain random walks. Transactions of the American Mathematical Soci-

ety, 1984.

[77] Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Med-

ina, Pedro Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and

Ioan Todinca. Three Notes on Distributed Property Testing. In International

Symposium on Distributed Computing, DISC 2017.

[78] Hendrik Fichtenberger and Yadu Vasudev. A two-sided error distributed

property tester for conductance. In International Symposium on Mathemati-

cal Foundations of Computer Science , MFCS 2018.

157

Bibliography

[79] Orr Fischer, Tzlil Gonen, and Rotem Oshman. Distributed Property Testing

for Subgraph-Freeness Revisited. CoRR, abs/1705.04033, 2017.

[80] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection

to learning and approximation. In Proceedings of Conference on Foundations

of Computer Science, SFCS 1996.

[81] Oded Goldreich. Introduction to Testing Graph Properties, pages 105–141.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[82] Oded Goldreich. Introduction to Property Testing. Cambridge University

Press, 2017.

[83] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs.

In Proceedings of the ACM Symposium on Theory of Computing, STOC

1997.

[84] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree

graphs. Electronic Colloquium on Computational Complexity, 2000.

[85] Satyen Kale and C. Seshadhri. An expansion tester for bounded degree

graphs. SIAM Journal of Computing, 2011.

[86] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh

Trehan. Sublinear bounds for randomized leader election. Distributed Com-

puting and Networking, 2013.

[87] Jakub Łkacki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski.

Walking randomly, massively, and efficiently. In Proceedings of ACM Sym-

posium on Theory of Computing, STOC 2020.

[88] Asaf Nachmias and Asaf Shapira. Testing the expansion of a graph. Infor-

mation and Computation, 2010.

[89] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Soci-

ety for Industrial and Applied Mathematics, 2000.

[90] Seth Pettie and Hsin-Hao Su. Distributed coloring algorithms for triangle-

free graphs. In proceedings of International Colloquium on Automata, Lan-

guages, and Programming, ICALP 2013.

158

Bibliography

[91] Alistair Sinclair. Algorithms for Random Generation and Counting: A

Markov Chain Approach. Birkhauser Verlag, CHE, 1993.

159

	Introduction
	Graph Processing with Limited Visibility
	Thesis outline
	Approximate Shortest Paths in Dynamic Streams (Part I)
	Query Strategies for Tournaments (Part II)
	Graph Expansion Testing in Distributed Computing Model (Part III)
	Preliminaries

	I A Graph Processing Problem in Dynamic Streaming Model
	Approximate Shortest Paths-Nuts and Bolts
	Introduction
	Graph Streaming Algorithms
	Distances in the Streaming Model
	Our Results
	Technical Overview
	Outline

	Preliminaries
	Streaming Model
	Samplers
	Hash Functions
	Vertex Encodings

	BFS Forest
	General Outline
	Procedure FindParent

	Approximate Bellman-Ford Explorations
	General Outline
	Procedure GuessDistance

	Approximate Shortest Paths in Unweighted Graphs
	Construction of Near-Additive Spanners
	Superclustering
	Interconnection
	Putting Everything Together

	(1+)-Approximate Shortest Paths in Unweighted Graphs

	Approximate Shortest Paths in Weighted Graphs
	Construction of Near-Exact Hopsets
	Overview
	Constructing Hk
	Putting Everything Together
	Path-Reporting Hopsets

	Eliminating Dependence on the Aspect Ratio
	Overview
	Implementation in Dynamic Streaming model

	(1+)-Approximate Shortest Paths in Weighted Graphs

	New Sparse Recovery and 0-Sampling Algorithms
	1-Sparse Recovery
	0-Sampling

	II A Graph Processing Problem in Query Model
	An improved query strategy for finding a king
	Introduction
	Preliminaries
	Constructing the template-graph
	The seeker strategy
	Conclusion

	III A Graph Processing Problem in Distributed Computing Model
	Distributed Expansion Testing with Local Test Criteria
	Introduction
	Distributed Property Testing
	Expansion Testing
	Our Results
	Technical Overview
	Organisation

	Preliminaries
	A Distributed Algorithm for Expansion Testing
	Analysis of the Algorithm

	Bibliography

