IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 11, 2021, accepted September 2, 2021, date of publication September 16, 2021, date of current version October 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3113010

On the Intercept Probability and Secure Outage
Analysis of Mixed (¢ — « — )-Shadowed and
Malaga Turbulent Models

NOOR AHMAD SARKER“'*, A. S. M. BADRUDDUZA 1", (Member, IEEE),

S. M. RIAZUL ISLAM 727, (Member, IEEE), SHEIKH HABIBUL ISLAM 3,

MILTON KUMAR KUNDU “4, (Member, IEEE), IMRAN SHAFIQUE ANSARI “>, (Member, IEEE),
AND KYUNG-SUP KWAK ', (Life Senior Member, IEEE)

! Department of Electronics and Telecommunication Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi 6204, Bangladesh
2Department of Computer Science and Engineering, Sejong University, Seoul 05006, South Korea

3Department of Electrical and Electronic Engineering, RUET, Rajshahi 6204, Bangladesh

4Department of Electrical and Computer Engineering, RUET, Rajshahi 6204, Bangladesh

3 James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.

6School of Information and Communication Engineering, Inha University, Incheon 22212, South Korea

Corresponding authors: Milton Kumar Kundu (milton.kundu@ece.ruet.ac.bd) and Kyung-Sup Kwak (kskwak @inha.ac.kr)
This work was supported in part by the National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of

Science and ICT) under Grant NRF-2020R1A2B5B02002478, and in part by Sejong University through its Faculty Research
Program under Grant 20212023.

*Noor Ahmad Sarker, A. S. M. Badrudduza, and S. M. Riazul Islam are co-first authors.

ABSTRACT This work deals with the secrecy performance analysis of a dual-hop RF-FSO DF relaying
network composed of a source, a relay, a destination, and an eavesdropper. We assume the eavesdropper
is located close to the destination and overhears the relay’s transmitted optical signal. The RF and FSO
links undergo (o — k — )-shadowed fading and unified Mdlaga turbulence with pointing error. The secrecy
performance of the mixed system is studied by deriving closed-form analytical expressions of secure outage
probability (SOP), strictly positive secrecy capacity (SPSC), and intercept probability (IP). Besides, we also
derive the asymptotic SOP, SPSC, and IP upon utilizing the unfolding of Meijer’s G function where the
electrical SNR of the FSO link tends to infinity. Finally, the Monte-Carlo simulation is performed to
corroborate the analytical expressions. Our results illustrate that fading, shadowing, detection techniques
(i.e. heterodyne detection (HD) and intensity modulation and direct detection (IM/DD)), atmospheric
turbulence, and pointing error significantly affect the secrecy performance. In addition, better performance
is obtained exploiting the HD technique at the destination relative to IM/DD technique.

INDEX TERMS Intercept probability, Malaga turbulence, physical layer security, secure outage probability.

I. INTRODUCTION

A. BACKGROUND

Free space optical (FSO) technology has drawn significant
attention of the research communities compared to tradi-
tional radio frequency (RF) technologies in wireless com-
munication applications due to advantages of high-frequency
bandwidth, high speed, high security, large transmission
capacity, disaster recovery, fast deployment, unlicensed spec-
trum, back-haul for wireless cellular networks, solution
for the last-mile access problem, fiber backup, and no
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interference, among many others [1]. However, pointing error
and atmospheric turbulence highly impact the system per-
formance of FSO schemes [2]-[5] that can be mitigated by
utilizing a dual-hop mixed RF-FSO relaying system.

B. LITERATURE SURVEY

Since the wireless medium is time-varying in nature, recently,
researchers are devoting their concentrations to composite
fading models that can unify the characteristics of a wide
range of classical multipath / generalized fading models,
thereby applicable to more practical / real-life scenarios [6].
o — i [7], (¢ — p)-shadowed [8], «k — u [9], (k — w)-
shadowed [10], and n — w [11], [12] are widely used as
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generalized models in the literature. To obtain further gen-
eralization, authors in [13] proposed ¢ — k — w and @ —
n — p distributions that were further generalized by o —
k — n — p model [14]. It can be noted that the authors
considered randomly fluctuated dominant specular compo-
nents, non-linearity of the propagation medium, non-line-
of-sight (NLOS), line-of-sight (LOS) propagation link, etc.,
criterion for channel modeling. Considering all of those chan-
nel effects, (@ — k — w)-shadowed (AKM-shadowed) model
was formulated in [15] that possesses a good mathematical
tractability and offers a natural generalization to all the afore-
mentioned channel models.

In recent years, researchers have carried out a mesmer-
izing amount of works on FSO communication systems
[16]-[21]. The analysis of the system performance consid-
ering the FSO scheme was first performed in [22] focusing
on the impact of turbulence-induced fading. This model was
further upgraded with multiple receive and transmit apertures
in the existence of both background and shot noises [23].
Data transmission using series and parallel relays in FSO
communication scheme was introduced in [24]. The authors
in [25], [26] performed the error control coding for two differ-
ent FSO models. A Unique multi-input multi-output (MIMO)
model was proposed in [27] with multiple transmitters and
receivers considering the effect of fading and pointing error.
The adverse effect of boresight pointing error on a FSO link
for both intensity modulation / direct detection (IM/DD) and
heterodyne detection (HD) techniques was analyzed in [28].
The unification of the existing FSO models was done by
introducing the Mélaga turbulence model in [29].

Recently, mixed RF-FSO systems have been investigated
thoroughly to eliminate atmospheric turbulence dependency
of the FSO links. In such types of scenarios, long-distance
communication is performed over the RF hop whereas shorter
distance is accomplished over the FSO hop. The authors
in [30] studied the performance of amplify-and-forward (AF)
fixed gain relaying technique in terms of outage probabil-
ity (OP) considering Rayleigh-I'T" fading scenario. The per-
formance of a nearly similar model was analyzed [31] for
both HD and IM/DD techniques. Authors in [32] investi-
gated the impact of aperture averaging of the FSO link.
In [33]-[35], authors considered both decode-and-forward
(DF) and AF relaying methods for dual-hop RF-FSO net-
work and derived closed-form expressions (CFE) for OP,
ergodic capacity (EC), and bit error rate (BER). Similar per-
formance parameters were also investigated [36] where the
authors choose different fading models as for both RF and
FSO link. The increment in atmospheric temperature causes
the thermal expansion in the buildings around us which in
turn produces non-zero boresight pointing error. Authors
in [37] modeled a RF-FSO system to analyze the impact of
such error.

With the rapid growth of wireless networks, secret
information transmission in presence of adversaries is an
extremely critical issue. The traditional security methods
depend on cryptographic techniques at upper layers of
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wireless networks that are difficult to utilize [38], [39]. In this
perspective, physical layer security (PLS) is the only solu-
tion that utilizes the randomness of the propagation chan-
nel to enhance the secrecy level [40]-[43]. The effect of
imperfect channel state information was considered in [44]
and the performance analysis was carried out in terms of
secrecy outage probability (SOP) adopting the fixed gain
relaying technique. In [45], the authors observed that RF
hop has a little impact on SOP and average secrecy capac-
ity (ASC) performances relative to FSO hop. The position
of eavesdropper was considered close to the destination
in [46], [47] where the authors presented the expressions
of SOP and strictly positive secrecy capacity (SPSC) with
DF relaying system. A passive RF eavesdropping scheme
was used in mixed RF-FSO systems over I'T" [39], [48],
Malaga [49]-[51], exponentiate-Weibull [44], [52], etc., sce-
narios to obtain ASC, SOP, and SPSC. The effects of transmit
antenna selection (TAS) scheme over the RF hop in a RF-FSO
mixed system was examined by [53]. In [54], [55], authors
compared the performance between RF and FSO eavesdrop-
ping over Mdlaga and double generalized Gamma (DGG)
models and demonstrated that FSO technology is more secure
than RF technology.

C. MOTIVATION AND CONTRIBUTIONS

Based on aforecited literature,it is seen that among the
existing PLS works on RF-FSO schemes, RF hop is typi-
cally assumed to experience multipath / generalized fading
while none of these works considered the impact of shad-
owing on the RF hop. In this work, we consider a mixed
RF-FSO dual-hop DF relaying system where the RF and FSO
links, respectively, experience AKM-shadowed fading and
Malaga turbulence fading model included with pointing error.
We consider the position of the eavesdropper is very close
to the destination and can decipher the transmitted optical
signals from the relay. Our main contributions in this work
are pointed as follows.

o We first realize the probability density functions (PDFs)
and cumulative distribution functions (CDFs) of the
AKM-Shadowed link and Malaga turbulence link for
the individual hops of the considered dual-hop system.
Since our considered RF and FSO models account for
a high form of generality, our obtained results can be
ascertained as a generalization of the existing results
in [46], [50].

o To analyze the secrecy performance, we derive the
CFEs for the SOP, SPSC, and intercept probability (IP).
To obtain more practical insights, the asymptotic expres-
sions for these performance parameters are also pro-
vided. Finally, we present Monte-Carlo simulations to
verify the accuracy of the CFEs.

« Capitalizing on the final expressions of the secrecy per-
formance parameters, we observe impacts of fading,
shadowing, atmospheric turbulence, pointing error, etc.,
on the secrecy of the proposed scenario. Additionally,
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we also present a comparison between the performance
of two detection techniques i.e. HD and IM/DD
techniques.

D. ORGANIZATION

The rest of the paper is arranged in the following manner.
The system model is described in Section II including formu-
lations of the fading channels. In Section III, expressions for
SOP, SPSC, and IP are derived in both exact and asymptotic
forms. Analytical and simulation results are presented in
Section IV, and finally, the concluding remarks are provided
in Section V.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a combined RF-FSO DF-based relaying system
as demonstrated in Fig. 1. Here, information is transferred
from a stable source S to a destination D via a relay R
that works as an intermediate medium between S and D.
It is considered that an unexpected eavesdropper E tries to
hijack the classified information from R that is supposed to
reach D. Similar to [56], we presume that E is firmly located
around D. § with a single antenna transmits information to
R through an independent and identically distributed (i.i.d.)
AKM-shadowed RF fading link where R consists of one
receiving antenna and one transmit aperture. After receiving
the RF signal, R converts the same to an optical signal and
then re-transmits it. Both R — D and R — E links are con-
nected linked via FSO technology experiencing Mélaga (M)
turbulence with pointing error. Here, D and E both contain
one receive aperture for receiving the optical signals.

Eavesdropper (E)

Wy ———p — — — ()
(‘)— > -(‘

Source (S) Relay (R)

Destination (D)

FIGURE 1. The dual-hop mixed RF-FSO system.

A. SNRs OF EACH LINK

As for the considered communication scenario in Fig. 1,
the instantaneous signal-to-noise ratios (SNRs) denoted by
S —R,R— D, and R — E links are y;, y4, and y,, respectively.
These terms take arithmetic forms such as y, = ¢,| 1%,

va = ¢allBall’ and ye = ¢ellBell’, where By, fa, and Be
represent channel gains, and ¢,, ¢4, and ¢, represent average
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SNRs of the S — R, R — D, and R — E links, respectively.
As relay R employs DF relaying scheme, end-to-end SNRs
for both main S — R — D receiver link and eavesdropper
S — R — E receiver link are formulated as [57, Eq. (5)]

min{yy, va} (1a)
min {yr, ve}. (1b)

Vsd
Vse

B. RF CHANNEL
As the link between S and R experiences AKM-shadowed
distribution, the PDF can be expressed as [15, Eq. (4)]

o1 a/2
Fr )= A1y T e Bl s Ay D), Q)

h xxaqbfa“/z 1 d
where A] = AT GGk E Az = m, an A3 =
K

r
— . The terms x, @, o, and « are all real shape
d(pi+x)¢y . . . .
parameters with non-negative values i.e. o is a power term

indicating non-linearity nature of signal envelop [7], ¥ defines
the ratio of total amount of powers between dominant and
scattered waves [10], and n and x denote number of cluster
and fading severity parameters, respectively, [15]. I'(.) repre-
sents Gamma function [58, Eq. (8.310)]. The function | F(.)
is the confluent hypergeometric function as defined in [59,
Eq. (13.1.2)]. The constant term d is described as

i [ (K + 2T (W) }“/2
T+ 2)2F 1, 1+ 25 1 250)

Here, the function ,Fj(.) is the Gauss hypergeometric
function as defined in [59, Eq. (15.1.1)]. AKM-shadowed is
a composite fading model that houses many multipath and
generalized fading channel models. Such a model promises
to provide more insights over a wide range of variations of
channel conditions that is treated as more practical propaga-
tion environment by the wireless communication researchers
[60], [61]. Table 1 lists some familiar RF fading channels that
can be obtained as special cases of AKM-shadowed fading
channel.

TABLE 1. Special cases of AKM-shadowed composite fading channel [15,
Table 1].

[ Channels | AKM-Shadowed Fading Parameters ]
Rayleigh a=2,k=0pu=1
Nakagami-m a=2,k=0,pu=m
K— a=2,K=K, L = U, T — OO
n—p a=2rk=0-n)/Cn),p=2pz=np
Weibull a=oa,k=0pu=1
a—K— U A=, K=K, L=, T —> 00

Utilizing [58, Eq. (9.14.1)], (2) is alternatively expressed
as

Frr) = ALY Agy T e 3)

i=0

133851



IEEE Access

N. A. Sarker et al.: On Intercept Probability and Secure Outage Analysis

where A4 = Xl;—f‘},g The CDF of this channel can be found by
utilizing
¥
Fy(y) = /O Sy ()dy. “4)

Placing (3) into (4), utilizing [58, Egs. (3.381.8) and
(8.352.6)], and performing integration, (4) is obtained as

oo pti—1

2A1 o 5
Fp=1-""23" 3 Asyze ™’ ()
i=0 j=0
_ AT
where As = j'A‘z‘—ﬁ”’I

C. FSO CHANNEL
Now, PDF of FSO link, formulated by unified M turbulence
model, is expressed as [29, Eq. (9)]

b 1
Z m
fm(¥) = — § hqu?:g |:Z2 ( 4 >
Y Un

2
€7,a
l]m:O k) ) CIm

2
e +1 j|’ )

where m € {d, e} correspond to R — D and R — E links,
respectively,

2l=sm24a/2 b b+5
zZ = Z ( ) ;
rrln-i-ir(a) rmb—l-{‘,m

e2ab(rm + &,,)

2T @ Db+ ¢,
_atgm

o)
qm = Jam rmb+§tm ’

. (b— 1 )(rmb+;,,,,)1—‘”z" (g,,,)'f'"—l(a)q%”
Jan qm — 1 (gm — D! Im b

Z € {B, C} correspond to R — D and R — E links, respec-
tively, a and b both are related to the turbulence conditions
in atmosphere with a being firmly related to the effective
number that is followed by the large-scale cells and b being
related to the scattering process [62], € is identified as a ratio
between the tantamount beam radius signal beam and the
standard deviation (jitter) due to pointing error misalignment,
s, represents detection type at the receiver (i.e. s, = 1
for HD technique and s,, = 2 for IM/DD technique), Uy,
represents the electrical SNR of FSO link that is expressed
dependent on the detection technique s, such that Uy = ¢,

. _ a4 A EF)mtby)
for HD technique and U, = @ D2 28 442, (14 1/5)] m

for IM/DD technique [29], r,, represents the average power
of scattering components that is received by the off-axis
eddies subjected to the FSO link [63], &, = &n + 2homo +
2homomecos(by,, — 6y,,) i.e. average power subjected to the
coherent contributions in the FSO link, &, = 2ho,(1 — 0)
represents the average power of LOS component, 2hg,, is
the average power of all scattered components, ¢ denotes
the total amount of scattering coupled power placed at LOS
component with the limit 0 < ¢ < 1, 6, and 6y, both are
the LOS deterministic phases [63], and G[.] symbolizes the
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Meijer’s G function as defined in [58, Eq. (9.301)]. Mdlaga
distribution is one of the most popular FSO fading models
among optical wireless communication researchers due to its
outstanding generic characteristics. Table 2 lists some classi-
cal FSO fading channels that can be obtained from the unified
M turbulence model via tuning some of its parameters.

TABLE 2. Some special cases of M turbulence fading channel [63,
Table 1].

[ Channels | M Turbulence Fading Parameters |
IT o=1,71r7%m=0,0,, =1
Rice-Nakagami 0=0
Lognormal o=0,rm — 0
K distribution 0=0,b=1

The CDF for this link is expressed as [29, Eq. (11)]

b
35m, 1 Z4 1, lm
Fy(y) =23 E Wa, GO —V X @)
Ym P qm s, +1,3s5,+1 Um lm27 01’
qm:0
__ 2 _p atan—] _ "
where Z3 = W, Wq, = hqmsm . Z4 = e Both
. . om
Iy and In are series, described as
1 2
2 2 . .
Iy, = ﬁ, e, ﬂ} containing s, terms and /,, =
Sm Sm
2 2
€ € +s,;—1 a a+s,—1 qm qmtSm—1 _
Sy e g oy s e, S E— 1 CON

taining 3s,, terms.

D. SECRECY CAPACITY

For secured transmission between S to D via intermediate
relay R, we have to find out the secrecy rate of the system
wherein confidential and secrete information can be trans-
mitted by dumping the unwanted effects of the eavesdropper.
For the considered dual-hop system in Fig. 1, secrecy capac-
ity (SC) must be defined for both hops (i.e. S —R and R — D).
The network in Fig. 1 demonstrates first hop is independent
of the effects of eavesdropper, so instantaneous SC for the RF
hop is defined as

1
Tsr = 5 loga(1 + y). ®)

For main FSO link that is largely affected by the eaves-
dropper, instantaneous SC for FSO hop is defined as

: +
Trp = [E{logQ(l + ya) — log,(1 + ye)H , 9

where [z]T = max {z, 0}. For DF-based relaying network,
the system considered in Fig. 1 can be described as a series
system where such dual-hop network will usually be domi-
nated by worst hop and the instantaneous SC is expressed as
[64, Eq. (13)]

Tsp = min(Tsr, Trp). (10)

lll. PERFORMANCE ANALYSIS
In this section, we derive closed-form expressions for SOP,
SPSC, and IP in both exact and asymptotic forms.
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A. SECRECY OUTAGE PROBABILITY

SOP is an important and crucial performance metric for
secrecy measurement in wireless systems. It is basically a
parameter that indicates the probability of the instantaneous
SC falling below the target SC (7). For the proposed RF-FSO
relaying system, SOP can be defined as [65]

SOP = Pr{Tsp < T.}. (11D
We can rewrite (11) by using (10) as

SOP = Pr{min(Tsr, Trp) < Tc}
= 1 — Pr{min(7sg, Trp) = Tc}
=1—-Pr{Tsg = T} Pr{Trp = T¢}. (12)

Substituting (5)-(7) into (12), we have

SOP = fo Fy(oy +¢ — 1)f, (y)dy
x(1 =Fy(@—1D)+F,(@—1), (13)

where ¢ = 227¢. Due to mathematical complexities,
we derive the SOP at lower bound. Letting the condition
Ye — 00, the lower bound of SOP can be evaluated from
(13) as [66]

SOP > SOP, = /0 Fyaon )y
x(1=Fy (g —1)+Fy,(p—1). (14)

Plugging (5)-(7) into (14) and integrating utilizing [67,
Eq. (2.24.1.1)] by means of some mathematical simplifi-
cations, actual expression of the lower bound of SOP is
obtained as in (15), as shown at the bottom of the page,
where spq = Se + 3sq4, S¢ = 3s. + 54, and R =
2A1 As(p — 1)%exp(—A2(go - 1)%)/01. It is noted the expres-
sion in (15) can be reduced to [46, Eq. (19)] for Rayleigh-
I'T" considering the conditions (¢ = 2,k = ry = r., = 0,
W =0 =&, = & = 1) and to (Nakagami-m)-Mdlaga
of [50, Eq. (35)] considering the conditions (¢ = © = 2,
Kk =0).

1) ASYMPTOTIC EXPRESSION

To get better analytical and tractable understanding on
secrecy performance, we derive asymptotic expressions of
our secrecy performance metrics by considering the condition
U, — oo. Applying the formula given in [50, Eq. (29)]
and performing some mathematical manipulations on the

Meijer’s G function in (15), the asymptotic expression of
lower bound SOP is obtained as (16), shown at the bottom of
the page, where L1 = (1—1g,, 1, le;)and Ly = (I,,, 0, 1 —=1g,).

The asymptotic expression in [50, Eq. (36)] can be obtained
from (16) witha = 4 =2 and k = 0.

B. STRICTLY POSITIVE SECRECY CAPACITY

For ensuring a secure communication, SPSC is one of the
fundamental parameters that is used to place importance to
the existence of the SC. According to [68], the probability of
SPSC can be defined as

SPSC = Pr{min(Tsg, Trp) > 0}
= Pr{7sg > O} Pr{Tgp > 0}. 17)

The two probability terms defined in (17) can be evaluated
as

Pr(Tsr > 0) = Pf{%logz(l ) > 0}
=Pr{y, >0} =1, (18)
and
Pr{7rp > 0}
= Pr{%{logZ(l + va) —logy(1 + )/e)}> 0}

—Priyg >y =1 /0 (0 (00dy. (19)

Plugging (18) and (19) into (17), we get

SPSC =1 —fo Fy, Wy (y)dy. (20)

Placing the values of (6) and (7) into (20), performing inte-
gration utilizing [67, Eq. (2.24.1.1)], and employing mathe-
matical simplifications, the exact form of (20) is evaluated to

SPSC:I—ZG3S€+1’3S‘1 |:C4Ud 1 —1Ig,1,1,

sp+1se+1 BalU, |10y, 0.1 — I, ] . 2D

qdd.e
The expression of SPSC as given in (21) can be reduced
to the Rayleigh-I'T" scenario [46, Eq. (23)] witha = 2,k =
ra=re=0pu=0=%,=64, =1

1) ASYMPTOTIC EXPRESSION

Utilizing similar process to (16), the asymptotic expression
of SPSC in (21) is derived as (22), shown at the bottom of the
next page.

sop, = 1 oou+t—1gﬁ 1 - BsC oy Gt | Gl |1=lp, 1, Ly 15
L= _ZZ - 33ZZW%W‘M smAlse+l | B,oU. | 1,,,0,1 =1 : (15)
i=0 j=0 ge=1qq=1 4P Ue | bers Ys 1
éz:qde
SOPoo = l_iuilgﬁ 1—2% [T Tap = LD T TA + Loy — L) <C4Ud )L”"l (16)
- =0 j=0 dde p=1 [T;2 Dsgr1 TA+ Ly _Ll,p)l_[1=3se+2 I(Lip — L) \BapU,
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C. INTERCEPT PROBABILITY

The probability at which the eavesdropper succeeds in inter-
cepting the data upheld at the actual receiving device is
addressed as intercept probability (IP). It basically indicates
the probability that SC is less than zero. For the proposed
communication scenario, IP can be mathematically defined
as [69, Eq. (31)]

IP = Pr{Trp < 0} =Pr{ys < v}
o

_ /0 Fy (0. 23)

Plugging (6) and (7) into (23), performing integration uti-
lizing [67, Eq. (2.24.1.1)], and simplifying the expression,
IP is evaluated to

IP — ZG3se+1,3sd |:C4Ud 1- ldz» I, lel
qd

sm+1se+1 B4Ue lez’ 0,1— ldl :| . (24

1) ASYMPTOTIC EXPRESSION

Applying identical process as was performed for (16) and
(22), the asymptotic expression of IP in (24) is expressed
as (25), shown at the bottom of the page.

IV. NUMERICAL RESULTS

In this section, we present the numerical results utilizing the
deduced expressions of secrecy parameters i.e. SOP, SPSC,
and IP. Besides, we also plot Monte-Carlo simulation results
to validate our analysis." The whole analysis is performed
considering > 0, « > 0, u > 0,7sp = 1, 7. = 0.5
bits/sec/Hz, x > 0, (a, b) = (2.296, 2) for strong turbulence,
(4.2, 3) for moderate turbulence, and (8, 4) for weak turbu-
lence, sy = s, = (1,2),and € = 1.1 and 6.7.

Figures 2 and 3 depict the impact of channel parameters
of AKM-shadowed fading channel (i.e. x, o, «, and ®) on
secrecy performance of the proposed system. For this pur-
pose, the SOP is plotted against ¢, in both figures. It can
clearly be seen that with the increase in x, «, k, and p, the SOP
significantly decreases as testified in [15]. In fact, an increase
in «, k, and u decreases the overall fading thereby improv-
ing the secrecy performance. Additionally, higher values of
x denotes lower amount of shadowing and hence the SOP
decreases with x.

IThe AKM-shadowed and M random variables are generated in
MATLAB environment using gamrnd(.,.) command, where we consider
100,000 average independent trials to obtain each value of the secrecy
parameters [49], [70]. Similar to [38], [49], we can observe a clear agreement
between the analytical and simulation results which justifies the validity of
the mathematical expressions.

—Analysis

© k =1 (Simulation)
X K = 4 (Simulation)
O k = 8 (Simulation)

10"

Secrecy Outage Probability (SOP)

102

-5 5 15 25
¢, (dB)
FIGURE 2. SOP versus ¢, for selected values of « and « with u =1,

X = 100,a=4.2,b=3,sd =se=1Uq = 15dB, Ue = —5dB, ¢ = 1.1,
rq =re =0.1,and Gty =lte = 1.

100

—Analysis

© x = 2 (Simulation)

X x =10 (Simulation)

0 x = 1000 (Simulation)

10"

Secrecy Outage Probability (SOP)

102

-5 5 15 25
¢ (dB)

FIGURE 3. SOP versus ¢, for selected values of 1 and x with o =« =2,
a=4.2,b = 3,$d =Se=1, Ud = lOdB, Ue = —IOdB,e =1.1,
rq =re =0.1,and bty =l =1

Impact of two types of detection techniques (HD and
IM/DD) at the receiver and eavesdropper on secrecy perfor-
mance are demonstrated in Figs. 4-6. Results demonstrate

SPSCwo

qd,e p=1

3>

qd.e [7:1
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that better secrecy performance can be achieved while
employing HD technique (s; = s, = 1) at both D and E
relative to IM/DD technique (s4 = s, = 2). The reason
behind this outcome is due to the fact of obtaining a bet-
ter SNR at the destination with HD technique compared to
IM/DD technique. Our exhibited results also match with the
results exhibited in [46], [50].

The influence of pointing error on the secrecy perfor-
mance is analyzed in Figs. 7-9 by depicting SOP, SPSC,
and IP against U;. Results reveal that when the FSO link
experiences severe (¢ = 1.1) to negligible pointing error
(e = 6.7), secrecy performance improves dramatically. This
is because a lower pointing error indicates better pointing

VOLUME 9, 2021

100
Sq =S, = 2 (IM/DD)
10
a
z
= 102
e
®©
Qo
<}
o
g 103
<
L
£
104 | —Analysis
0 a=2.296, b=2 (Simulation)
X a=4.2, b=3 (Simulation)
105 0 a=8, b=4 (Simulation)
0 10 20 30 40
Uy (dB)

FIGURE 6. IP versus Uy for selected values of a, b, s4, and se with
Ue =—-1dB, e = 1.1, rg =re=0.1, and ;td = Cte =1.

0
10 —Analysis
- - Asymptotic
O a=2.296, b=2 (Simulation)

~ 101 X a=4.2, b=3 (Simulation)
3 © a=8, b=4 (Simulation)
Q
2
% 102
Ko}
<l
o
(0]
(o))
g 108
>
(@)
>
(8]
o
S 104

105

-20 0 20 40 60
Uy (dB)

FIGURE 7. SOP versus Uy for selected values of a, b, and ¢ with « = 3,
K =pn=2,Xx=1000, ¢, = 12dB, sqg=Se=1Ue= —10dB, rqg =re=0.1,
and Ctd =Cte =1.

accuracy. Similar impacts of pointing error were also expe-
rienced in [46], [50] that proves our analytical and simulation
results are accurate. To gain further insights, we also provide
asymptotic analysis and it is noteworthy that in a high SNR
regime, the simulation, asymptotic, and analytical results
match tightly with each other.

Besides the detection types and pointing error, atmospheric
turbulence also affects secrecy performance as demonstrated
in Figs. 4-9. Analytical and simulation results indicate that
similar to results in [46] and [50], our secrecy performance is
the best at weaker turbulence scenarios and vice versa holds
true too. These outcomes are obvious as severe turbulence
affects the received SNR at the destination quite drastically
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relative to weaker turbulence. The asymptotic curves also
shows a close tightness with the analytical results at high SNR
regime and the figures indicate that the asymptotes require
time to stabilize.

We observe the impact of electrical SNR U, of the R — E
link in Fig. 10 with respect to SPSC. Our results demonstrate
the expected outcome as SPSC decreases when U, increases
from a lower to a higher value. This occurs since higher U,
signifies a stronger R — E link. A similar type of result was
also exhibited in [50] that strongly justifies our results.

The generic characteristics of AKM-shadowed fading is
demonstrated in Fig. 11 following Table 1. It is observed
from Fig. 11 that not only multipath fading channels
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(e.g. Rayleigh, Nakagami-m, and Weibull), but also general-
ized fading channels (e.g. n — i, k — i, and @ — Kk — ) can be
obtained as special cases to our proposed RF model. Figure 12
demonstrates the generic characteristics of M distribution by
utilizing the parameter values as presented in Table 2. It can
clearly be observed that K distribution, Rice-Nakagami, I'T",
Lognormal, etc., models can easily be obtained as special
cases to our work.

A. COMPARATIVE ANALYSIS WITH EXISTING
RELATED LITERATURE

We assume our RF link experiences the AKM-shadowed fad-
ing model whereas the FSO link experiences the unified M
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TABLE 3. Special cases of our proposed model.

[ Reference Model | RF link

FSO link

- Nakagami-m (o =2,k =0, p = & = 2)

Lognormal (¢t,,, = 2, rm = 0.0001, b = 3)

- Weibull (¢ =3,k =0, u=2=1)

K distribution ((¢,, = 2, rm = 0.1,b=1)

- n—pla=2rk=0p=4x=2)

Log-normal ((¢,, = 2, 7, = 0.0001, b = 3)

K—pla=2,k=1,p=22=100)

Rice-Nakagami ((t,, = 2, 7m = 0.1,b = 3)

[46] Rayleigh(a =2,k =0, u = = 1)

IT ((t,, =1, rm =0,b=2)

[50, (Scenario-2)] Nakagami-m (o =2,k =0, u = = = 2)

Malaga (Ct,, = L 7 = 0.1, b = 3)
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FIGURE 12. SOP versus Uy for selected values of ry, re, & " and g, with
a=3,k=1,p=2,x=1000, ¢ =5dB,a=4.2,b=3,sd =Se=1,
Ue = -5dB,and e = 1.1.
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turbulence with pointing error impairment. AKM-shadowed
is a composite fading model that comprises a large number of
multipath and generalized fading models as listed in Table 1.
On the other hand, the M turbulence model also houses

VOLUME 9, 2021

immense generic characteristics (Table 2) that make it one of
the most popular FSO turbulence models among optical wire-
less communication researchers. Hence, our hybrid RF-FSO
system model can unify a wide range of both existing and
non-existing RF-FSO hybrid scenarios for which a summary
is deduced in Table 3. Subsequently, Fig. 13 demonstrates this
generalization graphically wherein we can clearly observe the
proposed model exhibits significant generality and novelty
relative to the open literature.

V. CONCLUSION

This work focuses on the protection of secret informa-
tion against FSO eavesdropping over a RF-FSO mixed
system where the RF and FSO links are assumed to fol-
low AKM-shadowed and Malaga turbulence fading models.
Secrecy analysis was carried out in terms of closed-form
expressions for three secrecy metrics i.e. SOP, SPSC, and
IP that were validated via Monte-Carlo simulations. Addi-
tionally, we also investigated the asymptotic expressions
for each metric to demonstrate more useful insights and
tractability, and it is observed the asymptotic expressions
exhibit appropriate tightness in high SNR regimes. Numer-
ical results reveal that fading, shadowing, atmospheric tur-
bulence, and pointing misalignment error have tremendous
detrimental impacts on the secrecy performance. Moreover,
the HD technique always outperforms IM/DD technique.
Since, in our considered scenario, both RF and FSO links
are generalized, our demonstrated results exhibit superiority
over the existing literature via providing these results to the
design engineers while working on more real-life systems
considering higher order of randomness in the propagation
channel.
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