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Abstract: The tire bead, as the most important load-bearing component at the bead area, is closely related to the 
durability of the tire, but its structure is developing slowly. For this reason, the topological whole bead design was 
proposed, although it performs well, many defects existed due to the design based on traditional experience. Therefore, 
this paper studies the topology shape optimization algorithm, delves into the main criterion based on von Mises and the 
interlaminar shear stress, and provides guidance for the structurally optimal design of the 265/35R18 radial tire whole 
bead. The finite element simulation results show that the von Mises of the inner end of the chafer and the end of the 
carcass cord are reduced by 14.48% and 24.12%, respectively. The interlaminar shear stress decreased by 28.96% and 
49.51%, respectively. The von Mises of chafer and carcass cord decreased by 13.17% to 40.36% and 7.71% to 20.51%, 
respectively. The optimization design is of great significance to further improve the safety performance of tires. 

Keywords: Radial tire, topological whole bead, finite element simulation, topology shape optimization, interlaminar 
shear stress criterion. 

1. INTRODUCTION 

Because the structure of a tire is primarily made up 
of flexible composite materials combined with rubber 
and steel cord [1], under the combined action of 
periodic load, ground friction, and mutual friction of 
materials inside the structure, it will cause deformation 
and hysteresis damage of the rubber and skeleton, 
followed by temperature rise, resulting in slow damage 
of the rubber materials within the tire and fatigue 
damage of the internal skeleton. Experts, 
academicians, and companies are therefore focusing 
their tire research efforts on how to improve and 
enhance tire durability and damage resistance, thereby 
reducing tire faults, extending tire life, and enhancing 
safety. 

Figure 1 depicts the symptoms of a damaged tire, 
which are primarily localized in the crown, shoulder, 
sidewall, and bead regions. During the manufacturing 
process, oxygen from the steel cord inside the structure 
will travel to the ends of the cord, resulting in thermal 
oxygen aging. The elevated shear stress at the end of 
the steel cord causes a significant increase in 
temperature, and the intersection of various rubber  
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interfaces causes a step in the stress field. 
Consequently, tire fatigue damage is most prevalent in 
cord-and-rubber composites. As depicted in Figure 2, 
nearly half of all annual tire quality issues are 
attributable to bonding defects such as lack of adhesive 
and delamination in the tire bead area [2], the most 
complex area of the tire structure. Once a macroscopic 
fracture forms in this region, it rapidly enlarges under 
the influence of thermal oxygen aging and shear, 
resulting in instantaneous air leaks and even tire 
rupture. Therefore, the safety performance of the bead 
area part is crucial to the vehicle's protection [3]. 

In practice, the tire bead is the primary load-bearing 
component of the bead area, and it also makes contact 
with a number of other components. The bead 
structure has a significant impact on the distribution of 
stresses in the bead region. Therefore, it is of utmost 
significance to improve the safe working life of tires by 
studying the problem of tire bead area damage and 
optimizing the bead structure of the tire bead area. 

As a region with a high incidence of tire disease, the 
bead area's quality has a significant impact on the 
efficacy of the tire. Linden et al. [4] noted that changing 
the material and optimizing the structure of the tire can 
enhance the pressure distribution of the contact 
between the tire and the rim. This study offers 
recommendations for optimizing tire structure. Zhang et 
al. [5] focused primarily on the crack expansion trend 
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Figure 1: The diseases of tire bead area, sidewall and shoulder parts. 

 

 
Figure 2: Distribution ratio of various diseases of radial tire [2]. 

and growth angle of radial tire bead under inflation 
conditions and contemplated using more durable bead 
materials or altering bead structure to mitigate the risk 
of crack expansion. Pawel et al. [6] investigated the 
relationship between the tire fiber structure and the 
energy absorbed by the tire through a comparative 
analysis of the basic tire model and the optimized tire 
model's tire components. This study demonstrates that 
optimizing the cord angle configuration can reduce 
local tire damage and enhance its anti-explosion 

performance. Yu et al. [7] examined the tire 
deterioration mechanism. By redesigning the structure 
of the airtight layer and the cord layer, it is possible to 
effectively enhance the stress concentration in the 
bead area as well as the durability and damage 
resistance of tires. The triangle elastomer is in direct 
contact with the bead, and the modification of its 
structure also affects the bead's performance. Peter et 
al. [8] investigated the relationship between the 
structural form of the bead component and the 
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performance of the tire and rim assembly. By 
optimizing the geometry of the apex rubber in contact 
with the bead, the problem of residual air on the 
contact surface is reduced during assembly of the apex 
rubber and bead in the bead area. 

The aforementioned academics have devised ideas 
for optimizing the bead structure in order to enhance 
the tire's performance. Although they have not yet 
proposed a practicable optimization scheme, they have 
indicated how the bead structure can be optimized. 
Sanjeev et al. [10] used a numerical method to 
optimize the bead design of a gas-free tire. Instead of 
engineering elastic materials, ordinary elastic materials 
and polyester materials are used. Comparative studies 
indicate that tires with circular structures and 
engineering materials have less torsion. This study 
proposes bead structure optimization strategies that 
can effectively enhance tire performance and service 
life. 

The bead is a complex tension concentration area 
that has a significant impact on the tire's safety and 
durability. As shown in Figure 4, numerous institutions 
have conducted extensive research and investigations 
based on the traditional tire bead. Pirelli has 
investigated several designs for enhanced tire rings: 
Multiple annular tensile reinforcing elements comprise 
a shape memory alloy bead capable of producing an 
elastic clamping force at a predetermined temperature 
and progressively increasing the contraction force with 
increasing temperature. A composite tire bead 
constructed from steel wire and carbon fiber to 
increase clamping force and torsional rigidity while 
decreasing tire weight. (e) improve the bead structure 
and permit the neutral profile of the cord layer to travel 
through the ring, thereby reducing the torque of the 
carcass cord acting on the ring and decreasing the risk 
of ring fatigue failure. Michelin devised (b) the tire bead 
with geometric roll structure characteristics, wherein 
the tire cord layer is wound on the outside of the tire 

 
Figure 3: The optimization design of the tire bead area: (a) the contour modification in the bead area; (b) comparison of the 
contours in the bead area before and after optimization [9]. 

 
Figure 4: Various new steel bead structures: (a) Pirelli shape memory alloy bead; (b) Michelin rolled bead; (c) Michelin buffer 
rubber bead; (d) Compound bead of Pirelli Company; (e) Endurance enhances bead structure [11]. 
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ring coated layer to enhance the tire cord layer's 
stability in the bead area. (c) buffer rubber tire bead: 
the tire ring is set between the tire ring and the tire cord 
layer of the rubber material buffer layer in order to 
reduce the relative slip of the original contact surface 
and enhance the tension concentration of the carcass 
cord. 

These techniques illustrate the development trend 
of tire bead structure, which is to decrease the tension 
concentration on the tire cord and increase the tire's 
durability. Increase the torsional and bending rigidity of 
the bead to reduce relative displacement in the bead 
area and enhance the performance of the tire and rim 
assembly. Despite the fact that the aforementioned 
scholars have attempted to optimize the structure of 
the bead and that various institutions have proposed 
new bead structures, the research on the optimization 
design of the bead structure has yet to break out of the 
limitations of the bead wire, and various schemes 
continue to use the traditional wire bead, which has a 
number of limitations and flaws, and no new bead 
structure form has been proposed. Due to the 
traditional steel wire bead's composition of composite 
materials, its stress distribution is complex, it is prone 
to aging, and it is difficult to acquire the tire bead's fine 
shape due to the steel wire's geometric parameters. In 
order to further enhance the performance of the tire, 
the existing tire bead structure was optimized, and a 
new type of tire bead structure was proposed, which is 
anticipated to become the standard in the future. 

In response to the geometrical limitation of steel 
wire beads for fine structural optimization, Li et al. [12] 
designed a whole bead structure as depicted in Figure 
5. The von Mises stress with this structure is 
significantly lower at the outer end point of the chafer 
and the end point of the carcass cord than with the 
steel wire bead, and the face contact shape of the 
whole bead is more regular and the pressure 
distribution is more uniform. On the basis of the 
foregoing, the entire bead structure can provide 
enhanced performance and has vast application 
potential for ensuring tire availability and vehicle safety. 

This novel structure has broad application potential 
for enhancing tire performance and vehicle security. 
However, the whole bead proposed based on 
experience lacks theoretical guidance and a scientific 
method of optimization. As a result, there are 
numerous stress concentrations in the inner side of the 
bead area, and it is crucial to find a scientific and 
reasonable method to optimize the design of the whole 
bead, which can effectively compensate for the flaws of 
the empirical design and further improve the 
performance of the tire under the load. It is essential to 
further enhance the performance of the tire under 
actual operating conditions, enhance the vehicle's 
driving performance, and ensure the driver's safety. 
The purpose of this paper is to optimize the topology of 
the traditional 265/35R18 semi-steel radial tire bead 
structure after its integration in order to further enhance 

 
Figure 5: Concept design of the whole bead: (a) finite element model of steel wire bead; (b) finite element model of whole bead; 
(c) Schematic diagram of the structure of the wire bead; (d) Schematic diagram of the whole bead structure [12]. 
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the tire's performance under actual charging 
conditions. 

2. FAILURE MECHANISM OF TIRE COMPOSITE 
MATERIALS 

2.1. Progressive Failure Model of Composite 
Materials 

In 1980, Hashin studied the damage of fiber 
reinforced composites, and proposed a failure criterion 
to predict the failure state of composites in three-
dimensional state. According to the geometric 
characteristics of the two-dimensional axisymmetric tire 
cross-section model, the Hashin failure model in three-
dimensional state is transformed into a two-
dimensional failure model, which is expressed as 
follows [13]: 

(1) Failure mode of matrix compression morphology, 
when   ! 22 < 0 :  
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(2) Failure mode of matrix tensile morphology, when 
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(3) Fiber compression morphology failure mode, 
when  !11 < 0 :  
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(4) Fiber tensile morphology failure mode, when 
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The main function of the Hashin failure model in the 
two-dimensional state is to judge the starting point of 
material damage. In the failure mode of fiber tensile 
morphology, when the value is 1, it means that the 
composite material has a damage point in the tensile 
direction of the fiber. The failure model can be used as 
a more accurate failure criterion in finite element simu-
lation to predict the damage failure of composite mat-
erials in the two-dimensional axisymmetric tire model. 

2.2. Principle of Energy Damage Evolution of 
Composite Materials 

In the process of failure assessment of laminated 
composite materials, there are generally five single 
stress states, as shown in Figure 6, namely: 
longitudinal tensile stress when fiber breaks; 
longitudinal compressive stress during fiber kink or 
instability; transverse tensile stress when the matrix is 
broken; transverse compressive stress during matrix 
shearing; and shear stress at macroscopic shear 
failure. These five stress states, longitudinal elastic 
modulus   E1 , transverse elastic modulus   E2 , shear 

modulus   G12  and Poisson 's ratio of composite 

materials  !12  are nine constants commonly used in 
engineering calculations [14]. 

After the structure is damaged, the stiffness of the 
composite material will gradually degrade with the 
increase of damage. At this time, the composite 
material is in the stage of damage evolution. In the 
following relationship, a variable  d  is used to describe 
the degradation state of the stiffness of the composite 
material in this stage of damage: 
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Where  ds  is shear damage variable; 
 
d f  is 

longitudinal fiber variable damage;  dm  is the transverse 
matrix damage variable. 

 
Figure 6: Stress state diagram of laminated composite structure. 
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Under normal conditions, in the damage evolution 
stage, the laminated composite material undergoes 
tensile or compressive damage in the longitudinal or 
transverse direction. When the longitudinal stress 

 !11 " 0 , the material is in the tensile state 
 
d f = d ft , 

 !11 " 0 , and the material is in the compressive state 

 
d f = d fc . The damage degree of the material 

 
d f  is 

described by a specific value between 0-1. Figure 7 
shows the relationship between damage variables. 

 
Figure 7: Principle of damage state variable. 

After the tensile or compressive damage of the 
composite material, whether it is fiber damage or matrix 
damage, the shear capacity of the material in the 
damaged state is almost zero, which means that the 
shear damage variable  ds  is closely related to the four 

damage variables 
 
d ft , 

 
d fc ,  dmt  and  dmc , in the 

horizontal and vertical directions. When any of these 
four variables is 1, that is, when the material completely 
fails in the state described by the variable,  ds  is also 
[15]. 
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Where 
 
!eq  is equivalent displacement; 

 
! eq  is 

equivalent stress; 
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0  is the initial equivalent 

displacement of composite material damage; 
  
! eq

0  is the 
initial equivalent stress when the composite material is 
damaged; 

 
!eq

f  is the equivalent displacement when the 
composite material is completely damaged. 

In the process of finite element analysis and 
calculation, the relationship between equivalent stress 
and displacement under four failure modes can be 
described by the following relationship. Fiber tensile 
mode (8); Fiber compression mode (9); Matrix tensile 
mode (10); Matrix compression mode (11): 

  
!eq

ft = LC "11

2
+#"12

2     $ eq
ft =

$11 "11 +#%12"12

!eq
ft / LC

      $11 & 0   (8) 

  
!eq

fc = LC "#11           $ eq
fc =

"$11 "#11

!eq
fc / LC

             $11 < 0     (9) 

  
!eq

mt = LC "22

2
+"12

2    # eq
mt =

# 22 "22 + $12"12

!eq
mt / LC

     # 22 % 0 (10) 

  
!eq

mc = LC "#22

2
+#12

2  $ eq
mc =

"$ 22 "#22 + %12#12

!eq
mc / LC

  $ 22 < 0 (11) 

Where  LC  is the characteristic length of the 
composite material analysis unit. 

According to the formula (8), (9), (10), (11), 
combined with the failure criterion of composite 
materials (4), (2), (1), with the increase of load, the 
damage initial displacement and equivalent stress 
expression of each material point under each failure 
mode can be obtained: 
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Combined with the failure displacement expression: 
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Where  Gc  is critical strain energy release rate, that 
is, the fracture energy in the damage evolution stage, 
which describes the energy required for crack 
expansion per unit area during crack propagation. It 
can be divided into four types: longitudinal fiber tensile 
direction fracture energy 

 
G ftc ; fracture energy in tensile 

direction of transverse matrix  Gmtc ; longitudinal fiber 

compression direction fracture energy 
 
G fcc ; fracture 

energy in transverse matrix compression direction 

 Gmcc . 

The damage variables of composite materials in 
four independent states can be obtained: 
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According to the obtained damage state variable 
back to formula (5), the stress-strain relationship under 
the damage state can be obtained. 

3. TOPOLOGY SHAPE OPTIMIZATION PRINCIPLE 

3.1. Shape Optimization Method 

As an optimization method to meet the structural 
performance requirements by adjusting the stress 
distribution, in most cases, the shape optimization is 
used for the final improvement of the determined 
structure in the design process, and the structure 
obtained by other design methods is further improved. 
On the basis of maintaining the overall layout of the 
structural components, according to the stress 
distribution obtained by the finite element analysis, the 
surface element nodes in the design area are adjusted 
by a small displacement to improve the effect of stress 
concentration and obtain a better structural design 
scheme. Based on the general description of the shape 
optimization problem, the boundary change problem 
can be described by the following formula [16]: 
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The shape optimization can be expressed as 
follows [17]: 
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Where   F *  is the best shape design;  F  is design 
for shape;  x  is the design variables;  xi  is a single 
design variable;  !  is the design area;   X (x)  is the 

objective function; 
 
!var x( )  is design the structural 

boundary; 
 
!var
" x( )  is the best structural boundary; 

 
g j x( )  and 

  
 hk x( )  is the design response limited by 

added constraints. 

3.2. Topology Optimization Method 

It is assumed that in the process of topology 
optimization design, the bead structure of the tire is 
regarded as a static linear elastic structure with 
minimum stiffness topology design under a single load 
condition. This design is equivalent to the minimum 
flexibility design. The minimum flexibility is defined as 
the work done by a set of given loads on the 
equilibrium displacement. Then the design process can 
be regarded as minimizing the total elastic energy in 
the equilibrium state of the structure [18]. The topology 
optimization problem in this process can be described 
as a problem of designing distributed discrete values, 
that is, 0-1 problem. In order to solve this problem, a 
density variable is introduced, whose value varies 
between 0 and 1, representing the degree of existence 
of the material. When the density value is 0, the 
corresponding material does not exist; when the 
density value is 1, it means that the material exists 
completely. Then assuming that the objective of 
topology optimization is to minimize the volume of the 
structure, the density properties of the material and the 
elastic modulus values have the following relationship 
[19]: 

  
E xi( ) = Emin + xi E0 ! Emin( )        xi " 0,1#$ %&       (17)	  

Where	    xi  is a single design variable, namely the 

density of the  i  unit; 
 
E xi( )  is the elastic modulus of 

the material for the  i  element;	     E0  is the elastic 

modulus of the unit material;	     Emin  is the elastic 
modulus when the unit material does not exist. 

In order to prevent the singular problem of the 
stiffness matrix from being solved, it can be made 

  Emin = E0 / 1000 . At the same time, in order to avoid the 
problem that there is no non-0 or 1 density elements in 
the structure during the optimization process, a penalty 
interpolation function can be set. In this method, a 
power function is used as the penalty function, and the 
density penalty of all elements is classified to 0 or 1, so 
as to eliminate the intermediate density element and 
solve the problem that the actual structure has no 
intermediate density element. The SIMP method can 
be described by the following expression [20]: 
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Where   p
*  is the penalty factor. 

The introduced structural stiffness and strain energy 
are as follows: 
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Where   d
*  is the displacement vector;  K  is the 

stiffness matrix;   r*  is a load vector; Ue  is strain 
energy;  ki  is element stiffness;  xi  is design variables, 
represents the unit density. 

The initial bead structure often does not conform to 
the processing technology specification, and 
considering the actual working conditions and safety 
problems of the tire, the initial structure often has 
unreasonable concave and convex boundaries or 
sharp corners. Therefore, the whole bead structure 
needs to be further refined and smoothed after the 
topology and initial boundary shape are determined. 
The local gradient mesh smoothing algorithm is 
selected, which will identify the elements with the worst 
quality and improve by replacing the nodes. Finally, the 
mathematical model of variable density topology shape 
optimization based on the SIMP interpolation model is 
as follows: 
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Where  B  is best topology design;   F *  is the design 
for the best shape;  F  is the design for shape;   p

*  is 
the penalty factor;  xi  is the design variable, 

representing the unit density;  di  is the unit 

displacement;  ki  is the element stiffness;  vi  is the 
initial volume of each unit;   V *  is the overall volume 
constraint of the structure; 

 
!var x( )  is the structure 

boundary is the bead boundary; 
 
!var
" x( )  is the best 

structural boundary. 

4. TOPOLOGY SHAPE OPTIMIZATION CRITERIA 

4.1. Von Mises Optimization Criterion 

At present, the optimization of tires [21, 22] mostly 
uses Von-Mises stress as the main optimization 
criterion. The criterion mainly considers the yield effect 
of principal stress on the material, and the damage 
occurs when the deformation energy reaches the 
energy required for the material yield failure. The tire 
cord layer is a composite material of rubber and cord, 
which will inevitably produce interlaminar shear stress 
when subjected to the transverse load. Only 
considering the Von-Mises stress has certain 
limitations, but as a commonly used material yield 
criterion, it considers the influence of intermediate 
principal stress on the material. The von-Mises criterion 
requires fewer material parameters, which can be 
measured experimentally. The expression is [23]: 

  J2 ! k2
2 = 0          (21) 

Where  ! s  is the initial yield stress of the material; 

  J2  is the second invariant of stress partial tensor;   k2  is 
the material constants for the von-Mises yield criterion 
can be determined by tensile or pure shear tests: 

  
k2 =

! s

3
=" s          (22) 

This means that when the von Mises criterion is 
used, the yield condition of the default material satisfies 

  ! s = 3" s . In the principal stress space, the yield 
surface of the Mises criterion is a cylindrical surface 
and is perpendicular to the !  plane. The expression is: 

  
J2 !

1+"
E

c = 0          (23)  

Where  E  is the elastic modulus; !  is the Poisson 's 
ratio of the material; C  is the cohesion of the material. 

The von-Mises equivalent stress in the finite 
element analysis software can be expressed as follows 
[24]: 



Topological Shape Optimization Design of the Whole Bead Journal of Research Updates in Polymer Science, 2023, Vol. 12      55 

   

Sij =! ij +p"ij

p=- 1
3
! ij

#

$
%

&
%

         (24) 

Where 
  
Sij  is the deviatoric stress tensor;  p  is 

equivalent compressive stress; 
 
!ij  is the deviatoric 

stress tensor reflecting the change of plastic 
deformation shape. 

4.2. Generalized Drucker-Prager Optimization 
Criterion 

In 1952, Drucker and Prager proposed a yield 
criterion suitable for geotechnical materials. The 
supplementary von-Mises criterion cannot consider the 
influence of hydrostatic pressure on material failure, 
namely the D-P strength criterion. The expression of 
the criterion is as follows [25]: 

  
J2 !" I1 = k          (25) 

Usually, the above formula is called the D-P series 
yield criterion. When ! = 0, it is the von-Mises criterion. 
Since the D-P strength criterion has some defects from 
the energy point of view, Guo Jianqiang et al. proposed 
the generalized D-P strength criterion. Its physical 
meaning is: according to the energy conservation in the 
physical process, where  U  is the total energy, Ue  is 
the elastic strain energy, and Ud  is the dissipation 
energy, which satisfies the law of thermodynamics. 
Without defining the Poisson 's ratio of 0.5, when the 
elastic strain energy Ue  is critical, the material begins 
to yield and fail [26]: 
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According to the D-P criterion expression (25): 
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Because  ! = 0.5  is defined in the generalized D-P 
strength assumption, that is, the ultimate Poisson 's 
ratio of elastic-plastic materials in the ideal state, then 
Eq. (27) can be expressed as : 
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The generalized D-P strength criterion is described 
by elastic strain energy: 
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Introducing the D-P criterion in the optimization 
design: 
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In the form of the first stress invariant and the 
second stress invariant of the stress deviation (30), the 
stress invariant expression using the D-P hypothesis in 
the optimization process is obtained: 
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In the process of optimization iteration, the 
generalized D-P strength criterion expressed by elastic 
strain energy is corresponding to the D-P criterion in 
optimization design. In the process of optimization 
design, not only the influence of structural form on 
stress is considered, but also the influence of the 
change of structural properties of the whole composite 
material in the process of damage evolution is 
considered. 

4.3. Tresca Optimization Criterion 

In the process of damage evolution of composite 
materials [27], although the engineering constants of 
rubber and steel cord will not change, the properties of 
the composite structure will change with the damage. 
Therefore, the structural properties of composite 
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materials should be considered in the optimization 
process. The Von-Mises stress and interlaminar shear 
stress of the rubber element near the end of the cord 
are selected as the main criteria for structural 
optimization, and the Tresca hypothesis is introduced 
to explain the specific application of interlaminar shear 
stress in the finite element analysis process. 

The Tresca hypothesis [28] means that the material 
satisfies the following conditions: 

  ! s = 2" s          (33) 

When the magnitude of the principal stress is 
unknown, the Tresca yield condition is not easy to 
apply. In addition, the Tresca yield condition ignores 
the influence of intermediate principal stress, and there 
is a corner on the yield line, which brings difficulties to 
mathematical processing. In general, it is impossible to 
determine the magnitude of the three principal stresses 
at each point in the solid in advance [29]. Therefore, 
the condition should be expressed by the following 
function in finite element analysis: 

  
MAX[!1 "! 2 , ! 2 "! 3 , !1 "! 3 ] / 2 = # s       (34) 

Combined with interlaminar shear stress based on 
composite materials [30]: 
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It can be concluded that the composite material of 
rubber and cord in the carcass cord layer can be 
expressed by the following formula, that is, the reason 
for the failure of the tire under the assumption of 
maximum shear stress is only related to the ratio of the 
thickness of the rubber material to the thickness of the 
cord material in the composite unit and the thickness-
width ratio of the unit on the compression surface 
under the condition that the material property constant 
is constant. 
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Where   Ea  and   Eb 	   are rubber and cord elastic 

modulus;  !a  and  !b are free strain caused by Poisson 

's ratio effect is not considered;   va 	  is poisson 's ratio of 

rubber material;   vb 	   is poisson 's ratio of cord material; 
!  is interlaminar shear stress;  k  is the ratio of rubber 
material thickness to cord material thickness in 
composite material unit; !  is thickness-width ratio of 
the element on the compression surface. 

5. ESTABLISHMENT OF FINITE ELEMENT 
ANALYSIS MODEL 

5.1. Material Constitutive Model 

Yeoh model is a subtype of reduced polynomial with 
N equal to 3. Since rubber cannot be compressed 
under normal conditions, it is presumed that the 
rubber's volume does not change during deformation 
and that only its geometric shape changes; therefore, 
Yeoh can be expressed as [31]: 

  
U e = Ci0

i=1

3

! I1 " 3( )i
        (37) 

Where  Ci  is Yeoh model material parameters. 

Yeoh model is a common strain energy function 
applicable to a wide range of deformations and capable 
of precisely describing the material's behavior under 
complex conditions. The coefficient of the Yeoh model 
can be determined by a uniaxial tensile test, which is 
characterized by a straightforward experiment and high 
calculation accuracy [32]. Taking into account the 
experiment and calculation precision requirements, this 
paper intends to employ the Yeoh model. The Yeoh 
model parameters of each rubber part in the tire are 
shown in Table 1. 

5.2. Cord Reinforcement Model 

For modeling purposes in finite element simulation 
analysis, the vulcanized tire shape is typically 
employed. Figure 8 depicts how the angle of the steel 
cord will shift slightly during the vulcanization process. 
This modification is most apparent on the semi-steel 
tire. During the calendering operation of the belt or cord 
layer, the angle of the steel cord before vulcanization 
can be determined. To achieve a more precise setting 
of the steel cord's geometric structure, the 
vulcanization mapping equation is used to realize the 
geometric mapping from the structure to the vulcanized 
structure. 

By specifying the spacing and angle of the steel 
cord before vulcanization, the cord spacing  s  and the 
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cord arrangement angle orientation  !v  in the 
vulcanized tire can be mapped using the following 
equation: 

  

sin!v =
r sin!0
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r cos!v
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where  r  is the radial position of steel cord in the 
structure after vulcanization;  s  is the spacing of the 
cord after vulcanization;   r0  is the radial position of the 

steel cord in the unvulcanized structure;   s0  is the 

spacing in the unvulcanized structure;  !0  is the angle 

projected in the local coordinate system relative to the 
unvulcanized structure;  er  is the angle of the 
vulcanization structure in the local coordinate system; 
for steel cord elongation, in the tire  er  = 1 represents 

100 % extension. When  !0  equal to 90°, it is assumed 

that the reinforcement has a constant spacing   s0 . 

5.3. Finite Element Modeling 

Based on the optimization design of a 263-35R18 
car tire with a traditional steel wire bead structure, the 
plane material structure drawing of the tire is drawn 
using two-dimensional drawing software, and the non-
essential geometric structure is processed to reduce 
the complexity of model meshing at a later stage and 

Table 1: Material Parameters of 265/35R18 Steel-belted Radial Tire Rubber 

Yoeh model parameters of hyperelastic materials 
Material name Density (kg/m3)  

C10 C20 C30 D1 

Cap layer MRBT01 1137 0.8963 -0.4151 0.1684 0.02 

Belt ply MRBT1/2 1191 1.0814 -0.4980 0.2282 0.02 

Gas-tight layer MRNC 1254 0.5823 -0.3144 0.1209 0.02 

Sidewall rubber MRNM 1175 1.3968 -1.6681 1.6213 0.02 

Apex MRTA 1159 2.6813 -3.4637 3.5962 0.02 

Shoulder rubber MRTC 1099 0.5991 -0.3146 0.1166 0.02 

Tread rubber MRTM 1172 0.6556 -0.3457 0.1635 0.02 

Somatogel MRTT1/2 1134 0.7206 -0.3381 0.1422 0.02 

 

 
Figure 8: Geometric mapping of tire structure before and after vulcanization. 

Table 2: Material Parameters of Steel Cord for 265/35R18 Radial Tire 

Wire material Density (kg/m3) Demperature (˚C) Young's modulus (MPa) Poisson's ratio 

MSBD 7800 25 110000 0.33 

MSBT1 3960 25 93120 0.33 

MSBT2 3960 25 93120 0.33 
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improve the convergence and calculation accuracy of 
finite element calculations. The cmd restart command 
can be used to transform a two-dimensional finite 
element analysis model into a three-dimensional model 
based on a two-dimensional finite element model. The 
finished model is depicted in Figure 9: 

5.4. Accuracy Analysis of Finite Element Simulation 
Model 

For the same purpose, the simulation and the actual 
experiment are investigated from the perspectives of 
virtuality and actuality. Due to the need to examine the 
same problem from two different perspectives, the two 
must complement one another, making the simulation 
model's precision crucial. To ensure the accuracy and 
dependability of the simulation optimization experiment, 
the company DOUBLESTAR assisted in carrying out 
the experiment depicted in Figure 10 involving the 
8590.625 N radial load of a 265/35R18 tire. 
Simultaneously, the simulation experiment was 
conducted with the same radial load, and the radial 
rigidity data for both are displayed in Figure 11. 

According to the tire load index (265/35R18:103/97-
875kg/730kg), the specific working conditions are set 
as follows: 

(1) No-load conditions under the two-dimensional 
model: standard tire pressure P=0.29MPa, 
assembly pressure P=0.01MPa, and then the 
appearance size of inflation, cord stress at the 
bead area, rubber stress at the end of cord, and 
rim contact stress were compared and analyzed. 

(2) Load conditions under the three-dimensional 
model: the standard tire pressure P=0.29MPa 
and the load F=8600N. Then, the cord stress at 
the bead area and the rubber stress at the end of 
the cord were compared and analyzed. 

(3) The torsion condition under the three-
dimensional model: the standard pressure in the 
tire P=0.29MPa, the load F=8600N, and the 
static torsion Angle of 15°. On this basis, the 
impression analysis was carried out. 

The radial load was gradually loaded from 0 to 
8590.625N, and the 3D simulation experiment was 

 
Figure 9: Original three-dimensional 265-35R18 model. 

 
Figure 10: 265/32R18 tire footprint and tire surface scanning. 
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conducted and compared with the actual experimental 
data, aiming to verify the accuracy of the 3D model in 
the simulation experiment. By comparing the 
experimental stiffness and simulation stiffness under 
the load conditions of 5500N, 7100N, and 8600N, the 
simulation errors were as follows: 10.22%, 8.61%, and 
7.3%, verifying that the simulation model can more truly 
reflect the actual tire operation. 

6. OPTIMIZATION DESIGN OF THE OVERALL BEAD 
TOPOLOGICAL SHAPE OF 265/35R18 SEMI-STEEL 
RADIAL TIRE 

6.1. Empirical Design 

In accordance with the development trend of steel 
wire bead and in pursuit of the quadrilateral bead 

structure of the original 265/35R18 semi-steel radial 
automobile tire, an empirically designed hexagonal 
structure, as depicted in Figure 12, is proposed. After 
modeling with finite elements, a simulation experiment 
is conducted to determine whether the hexagonal 
structure's design is reasonable and practicable. 

Based on the experience-designed hexagonal bead 
structure, Table 3 displays the simulation verification 
analysis data. Although the von Mises stress at the 
inner end of the chafer within the bead area increases, 
the von Mises stress at the outer end of the chafer at 
the bead part decreases by 31.55%, and the von Mises 
stress at the outer end of the carcass cord at the sub-
mouth part decreases by 12.32%. Because the risk 

 
Figure 11: Comparison of 265/32R18 tire stiffness experiment and simulation. 

 
Figure 12: Comparison of von Mises stress between the inner and outer ends of the chafer cord and the outer end of the 
carcass cord in the bead area of the original 265/35R18 steel-belted radial tire structure A and hexagonal bead structure B. 



60     Journal of Research Updates in Polymer Science, 2023, Vol. 12 Li et al. 

outside the bead area is significantly greater than that 
inside the bead area, the analysis demonstrates that 
the above empirical design can effectively improve the 
stress distribution at the bead area and reduce the 
harm at the bead area's outer end. 

6.2. The Von Mises Stress of Cord and Cord End 
Points in the Subport Area Was Optimized in A 
Single Design 

Due to the absence of theoretical optimization, the 
singular empirical design lacks broad applicability and 
optimization capability. Consequently, based on the 
empirical design, the bead structure of 265-35R18 was 
optimized to enhance the tire's performance under 
actual working conditions. The initial objective of 
optimization is to minimize the von-Mises maximal 
value at the cord end and in the bead region. Without 
specifying boundary constraints, the von-Mises 
hypothesis is used as the primary optimization criterion 
to optimize the topological shape of the bead profile. A 
is the original 265/35R18 quadrilateral bead, B is the 

empirically designed hexagonal bead, C is the direct 
optimization design of the original quadrilateral bead, 
and D is the optimization design of the empirically 
treated hexagonal bead, as illustrated in Figure 13. 

6.2.1. Von Mises Optimization Check of Curtain End 
Points in the Bead Area 

In the disease associated with the bead area, the 
proportion of damage occurring outside the bead is 
significantly greater than that occurring inside the bead, 
and the maximal stress at the end of the cord inside the 
bead is also significantly lower than that occurring 
outside the bead. Figure 13 depicts a comparison 
between the optimization result D based on the 
hexagonal bead B designed through experience and 
the direct optimization result C. Although the stress 
value within the bead area has increased, the von 
Mises stress outside the bead area, i.e., the outer end 
of the chafer and the outer end of the cadaver cord, 
has a positive effect on performance. Consequently, 
empirical design is utilized for the optimization design. 

Table 3: The Von Mises Optimization Value of Cord Endpoints at the Bead Area 

von Mises A/MPa B/MPa A-B/MPa PCT 

Chafer-in 0.0693 0.1493 -0.0800 -115.53% 

Chafer-out 0.2368 0.2076 0.0292 12.32% 

Carcass 0.5660 0.3874 0.1786 31.55% 

 

 
Figure 13: The von Mises stress analysis and comparison of the original quadrilateral bead A, hexagonal design bead B, 
optimized based on quadrilateral bead structure C, optimized based on hexagonal bead structure D at the cord endpoint in the 
bead area. 
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It can shorten the optimization design cycle and 
improve optimization outcomes. The specific 
optimization outcomes are displayed in Tables 4 and 5 
above. 

The optimization results show a relatively excellent 
optimization effect. After the optimization of the bead 
structure of the hexagonal design, compared with the 
original quadrilateral structure, the von Mises stress at 

the outer end of the carcass cord is reduced by 
40.43%, and the von Mises stress at the outer end of 
the chafer is reduced by 3.89%. 

6.2.2. Von Mises Optimization Check on Chafer 
Cord 

The tire usually needs to set a chafer as a 
reinforcing and transition structure in the bead area to 
ensure that the tire is running in the vehicle, that is, in 

Table 4: Comparison of Von Mises Stress Between Empirical Design and Direct Optimization Design at the End of The 
Cord in the Bead Area 

von Mises A-B(MPa) PCT A-C(MPa) PCT 

Chafer-in -0.0800 -115.53% -0.0061 -8.87% 

Chafer-out 0.0292 12.32% -0.0218 -9.20% 

Carcass-out 0.1786 31.55% 0.1270 22.44% 

 
Table 5: After Optimized, the Comparison of Von Mises Stress of the Cord Endpoints in the Bead Area 

von Mises B-D(MPa) PCT A-D(MPa) PCT 

Chafer-in 0.0080 5.35% -0.0720 -104.00% 

Chafer-out -0.0200 -9.62% 0.0092 3.89% 

Carcass-out 0.0502 12.97% 0.2288 40.43% 

 
Figure 14: The von Mises stress analysis and comparison of the original quadrilateral bead A, hexagonal design bead B, 
optimized based on quadrilateral bead structure C, optimized based on hexagonal bead structure D on the chafer cord in the 
bead area. 
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the actual working process of the bead area, the 
stability of the tire is maintained under a large load. 
Therefore, in the optimization process, it is necessary 
to pay attention to the stress concentration of the 
chafer cord. The von Mises stress on the chafer cord 
after one optimization is analyzed to verify the 
optimization effect, as shown in Figure 14. 

As shown in Table 6, compared with the original 
structure A, the bead structure B has a good 
optimization effect on the two stress peaks at the 
contact position between the chafer and the rim and 
the outer position of the bead area, which proves that 
the empirical structure meets the design requirements. 
As shown in Tables 7 and 8, the first peak value of the 
optimized bead structure D is 4.09% higher than that of 
the B structure. Compared with the original bead 
structure A, the optimization effect of the first peak in 
the chafer reaches 24.74%, and the optimization effect 
of the second peak reaches 16.20%. 

Since the single von Mises assumption is used as 
the criterion, the design response is the von Mises 
stress at the end of the cord and on the cord, and the 
objective function is to minimize the maximum stress. 
In this process, the main task of optimization is to 
reduce the maximum von Mises stress in the bead 
area. It is difficult to take into account that all the design 
response areas are positive optimization, so it will 
appear on the second peak. The direct optimization 
processes A to C and B to D are reverse negative 

optimization. This process also reflects the importance 
of empirical design before using algorithm optimization. 

6.2.3. Von Mises Optimization Check on Carcass 
Curtain Line 

As the skeleton structure of the tire, the carcass 
cord has the risk of fracture due to stress 
concentration. Figure 15 below is the von Mises stress 
distribution of the carcass cord around each bead 
structure during the initial optimization process. 

As shown in Tables 9 and 10, the structure B, in the 
position of the contact between the bead area and the 
rim (20-30mm), there is a stress concentration 
phenomenon that is not present. Structure C caused 
more obvious stress concentration in the outer region 
of the bead area. The above two designs have not 
reached the ideal design expectations. After 
considering other optimization evaluation indicators, 
when selecting an optimized design for the bead 
structure designed for experience, the purpose of 
reducing the carcass cord is to eliminate the von Mises 
stress concentration on the carcass cord at the contact 
position between the bead area and the rim. The von 
Mises stress on the carcass cord of the optimized bead 
structure D is shown in Figure 16. 

As shown in Table 11, although the von Mises 
values of the optimized structures D and A at 34 mm of 
the data path increased by 1.36 MPa and the increase 
ratio reached 52.99%, they were still lower than the 
overall stress values on the cord. The final optimization 

Table 6: The Two Stress Peaks of Each Structure on the Chafer Cord at the Bead Area 

Chafer cord A(MPa) B(MPa) C(MPa) D(MPa) 

First peak 13.8691 10.8822 12.097 10.4374 

Second peak 11.0424 9.17178 11.7221 9.25402 

Table 7: Comparison of Von Mises Stress Between Empirical Design and Direct Optimization Design on the Chafer 
Cord in the Bead Area 

Chafer cord A-B(MPa) PCT A-C(MPa) PCT 

First peak 2.9869 21.54% 1.7721 12.78% 

Second peak 1.8706 16.94% -0.6797 -6.16% 

 

Table 8: After Optimized, the Comparison of Von Mises Stress on the Chafer Cord in the Bead Area 

Chafer cord B-D(MPa) PCT A-D(MPa) PCT 

First peak 0.4448 4.09% 3.4317 24.74% 

Second peak -0.0822 -0.90% 1.7884 16.20% 
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Figure 15: Comparison of von Mises stress concentration of each structure on the inner and outer carcass cords in the bead 
area. 

 

Table 9: The Von Mises Stress Concentration on the Inner Carcass Cord in the Bead Area 

Inner-path/mm A(MPa) B(MPa) C(MPa) D(MPa) 

3 9.9102  9.3730  9.3406  9.3250  

6 9.7311  9.0294  9.1887  8.9523  

9 10.0439  9.4376  9.2702  9.3352  

12 10.7251  10.3699  9.7309  10.1238  

15 11.0353  10.7648  9.7714  10.5355  

 
Table 10: The Von Mises Stress Concentration on the Outer Carcass Cord in the Bead Area 

Outer-path/mm A(MPa) B(MPa) C(MPa) D(MPa) 

34 2.5668  2.8827  3.1995  3.9269  

36 4.4145  3.7507  4.6630  3.9993  

38 5.3160  4.7942  6.0951  4.6683  

40 5.1815  4.9923  7.1024  4.7926  

42 4.5376  4.4281  6.7725  4.3852  

 

effect, the original quadrilateral bead structure A and 
the structure D optimized based on empirical design, 
the optimization effect on the inner carcass cord of the 
bead area is 4.53% to 8%, and the optimization effect 
on the outer carcass cord of the bead area is 3.36% to 
12.18%. 

6.3. The Interlaminar Shear Stress of Cord Ends in 
the Bead Area Was Optimized For the Second Time 

During the use of tires, under the action of thermal 
oxygen aging and interlaminar shear stress, the 
damage usually begins at the cord end point. In order 
to further improve the optimization effect, the D-P 

hypothesis is used as the optimization criterion, and the 
von Mises of the cord end point is used as the 
evaluation index. The stress concentration of the cord 
end point at the bead is further optimized, and the von 
Mises of the main target cord end point is further 
optimized. At the same time, the interlaminar shear 
stress of the optimized cord end point is analyzed. The 
optimization results are shown in Figure 17. 

First, the S12 shear stress was verified when 
equivalent stress was used as the optimization 
evaluation criterion and von Mises hypothesis was 
used as the optimization criterion in the initial 
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Figure 16: The von Mises stress analysis and comparison of the original quadrilateral bead A, hexagonal design bead B, 
optimized based on quadrilateral bead structure C, optimized based on hexagonal bead structure D on the carcass cord in the 
bead area. 

 

Table 11: Optimization Results of Von Mises on the Inner and Outer Carcass Cords 

Inner/mm A-D/MPa Pct Outer/mm A-D/MPa Pct 

3 0.5852 5.90% 34 -1.3600 -52.99% 

6 0.7788 8.00% 36 0.4153 9.41% 

9 0.7087 7.06% 38 0.6477 12.18% 

12 0.6013 5.61% 40 0.3889 7.50% 

15 0.4998 4.53% 42 0.1524 3.36% 

 

optimization process. It can be intuitively seen from Fig. 
4.27 that although the bead designed based on 
experience effectively reduces the shear stress value 
of the cord end of the outer bead, it increases the shear 
stress of the cord end of the inner bead. The 
subsequent optimization aims to reduce the shear 
stress of the cord end of the inner bead, and focuses 
on the shear stress of the cord end of the inner 
reinforcing layer of the bead. At the same time, it 
should be noted that the concave structure of the bead 
profile cannot be actually installed and used on the tire. 
The final optimization results are shown in Table 12 
below: 

On the basis of maintaining the von Mises stress at 
the end point of the carcass ply at the outer side of the 
bead area almost unchanged, the von Mises stress 
values at the end point of the cord at the inner and 
outer chafers of the bead area were optimized by 
4.92% and 2.81%, respectively. On the basis of 
maintaining the S12 shear stress of the outer carcass 
ply and the end point of the chafer almost unchanged, 
the S12 shear stress value of the end point of the inner 
chafer of the bead area is optimized by 6.64%, which 
alleviates the stress increase caused by the end point 
of the inner chafer of the bead area in the previous 
optimization process. This optimization has made 
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Figure 17: The effect analysis of secondary optimization: (a) the interlaminar shear stress S12 comparison after the first 
optimization of the cord endpoints in each structural bead area; (b) von Mises contrast after secondary optimization; (c) 
comparison of interlaminar shear stress S12 after secondary optimization. 

 

Table 12: The Optimization Value and Optimization Effect of Von Mises and Interlaminar Shear Stress S12 at the End of 
the Cord in the Bead Area After the Secondary Optimization 

von Mises D-E(MPa) PCT S12 D-E(MPa) PCT 

Chafer-in 0.0070 4.92% Chafer-in 0.0038 6.64% 

Chafer-out 0.0064 2.81% Chafer-out -0.0007 -1.56% 

Carcass -0.0026 -0.76% Carcass 0.0010 1.11% 

 

constraints on the concave phenomenon of the bead 
profile, so that it meets the requirements of the 
production process, and effectively alleviates the 
increase of S12 shear stress at the end of the inner 
chafer of the bead area during the previous 
optimization process. 

6.4. The Interlaminar Shear Stress of Cord Ends in 
the Bead Area Was Optimized For The Third Time 

In order to obtain a better and more reasonable 
bead structure, the Tresca criterion is used as the 
optimization criterion in this optimization iteration 
process. The optimization objective is the S12 shear 
stress at the end of the bead area cord. Since S23 and 

S13 are not the main interlaminar shear stresses of the 
tire, S23 and S13 are no longer redundantly analyzed 
and verified in this optimization design process. The 
optimization effect is shown in Figure 18. 

As shown in Table 13, the final optimized structure 
F is compared with the secondary optimized structure 
E, and the von Mises and Tresca stresses at the ends 
of the bead area are optimized to be 4.17% and 4.45%, 
respectively. The S12 shear stress optimization of the 
inner and outer ends of the chafer is 12.65% and 
9.86%, respectively, and other indicators are basically 
unchanged, and the ideal optimization results are 
obtained. 
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Figure 18: Analysis and comparison of (a) von Mises, (b) Tresca and (c) interlaminar shear stress S12 after third optimization. 

 

Table 13: The Optimization Values and Effects of Von Mises, Tresca and Interlaminar Shear Stress S12 After Third 
optimization 

E-F von Mises (MPa) PCT Tresca (MPa) PCT S12 (MPa) PCT 

Chafer-in 0.0058 4.17% 0.0070 4.45% 0.0068 12.65% 

Chafer-out 0.0022 0.99% 0.0026 1.00% 0.0046 9.86% 

Carcass-out -0.0013 -0.39% -0.0015 -0.39% -0.0029 -3.22% 

 
On the basis of maintaining the optimization effect 

of reducing the von Mises stress concentration at the 
end point of the carcass cord at the outer side of the 
bead area during the previous optimization process, 
the optimized structure finally obtained further improves 
the interlaminar shear stress at the end point of the 
inner and outer chafer of the bead area. The main goal 
of this optimization design is to reduce the S12 
interlaminar shear stress at the end point of the 
carcass cord in the bead area. The improvement of the 
S12 at the inner and outer ends of the chafer helps to 
further improve the ability of the bead area to resist 
shear damage. At the same time, it also proves that a 
variety of optimization evaluation criteria complement 
each other and can obtain a more ideal bead structure. 

6.5. Optimization Design Has Effect Verification 

In the optimization design of the bead, it is 
necessary to go through multiple rounds of optimization 

design to get the final design scheme that meets the 
requirements. In the process of optimization design. 
Although the two-dimensional graphics can reflect the 
design of the solid model to a large extent, the solid 
model has the characteristics of three-dimensional 
space. The two-dimensional model cannot fully express 
all its information, and the two-dimensional model 
cannot simulate the contact process between the tire 
and the road surface. Therefore, in the optimization 
design, it is necessary to verify the design results 
obtained in the two-dimensional model in the three-
dimensional solid model to ensure that its performance 
in the actual working conditions meets the 
requirements. 

As shown in Figure 19, the two-dimensional 
axisymmetric cross-section model of the tire of 
structure F and the original structure A are finally 
compared and simulated. The optimized structure is 
reconstructed into a two-dimensional model to avoid 
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the analysis error caused by the mesh deformation of 
other structures at the tire bead area during the 
optimization process. Under the inflation condition of 
0.29 MPa internal pressure, the results of analysis and 
verification in the two-dimensional axisymmetric 
265/35R18 tire cross-section model are as follows: the 
von Mises at the cord end of the outer chafer of the 
bead area is reduced by 6.59%, Tresca is reduced by 
12.27%, and S12 shear stress is reduced by 26.35%; 
the von Mises, Tresca and S12 shear stress at the end 
of carcass ply decreased by 39.98%, 42.01 %, and 
25.62%, respectively. The von Mises, Tresca and S12 
shear stress at the end of the inner chafer of the bead 
area increased by 0.0651 MPa (93.96%), 0.0468 MPa 
(45.51%) and 0.0143 MPa (43.53%), respectively. The 

von Mises on the inner carcass cord decreased by 
4.55% to 7.96%, and the von Mises on the outer 
carcass cord decreased by 2.27% -12.03%. The von 
Mises on the inner chafer cord decreased by 26.70%, 
and the von Mises on the outer chafer cord decreased 
by 15.66%. 

As shown in Figure 20, because the two-
dimensional model only simulates the inflation state of 
the tire, the optimization analysis results under the 
plane inflation cannot represent the same performance 
improvement of the optimized structure in the actual 
working process. Therefore, after the reconstruction of 
the three-dimensional model, after the inflation is 
completed, the radial load of 8590.6250 N is loaded 

 
Figure 19: 265/25R18 tire whole bead optimization in 2D axisymmetric model simulation analysis: (a) von Mises stress of the 
rubber at the endpoints of the cord; (b) von Mises stress on the chafer cord; (c) von Mises stress on the carcass cord; (d) 
Tresca stress of the rubber at the endpoints of the cord; (e) S12 interlaminar shear stress of the rubber at the endpoints of the 
cord. 
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and the torsion is 15. Under the simulation conditions, 
the results of analysis and verification in the three-
dimensional solid tire model are as follows: the von 
Mises of the cord end point of the outer chafer of the 
port is reduced by 18.52 %, and the Tresca is reduced 
by 18.56 %; the von Mises, Tresca and S12 shear 
stress at the end of the carcass ply layer on the outer 
side of the trochanter decreased by 24.12 %, 23.87 % 
and 49.51 %, respectively. The von Mises, Tresca and 
S12 shear stress at the end of the inner chafer cord of 
the bead area decreased by 14.48 %, 16.69 % and 
28.96 %, respectively. The von Mises on the inner 
carcass cord decreased by 7.71 % to 14.66 %, and the 
von Mises on the outer carcass cord decreased by 
15.48 % to 20.51 %. The von Mises on the inner chafer 
cord decreased by 13.17 %, and the von Mises on the 
outer chafer cord decreased by 40.36 %. 

7. SUMMARY  

The majority of radial tire disease occurs in the 
shoulder, sidewall, and bead areas, with the bead area 
accounting for approximately 30% of the damage. As 
the most significant load-bearing component of the 
bead area, the structural change of the bead is closely 
related to the bead's stress distribution. This paper 
analyzes the damage failure mechanism of the cord-
reinforced composite structure in the tire from the 
common damage phenomenon of the cord end point in 
the tire bead area, establishes the composite material 
analysis model describing the end point of the carcass 
cord, and proposes an empirical design for a 
265/35R18 truck and bus radial tire. The appropriate 
optimization criteria for the structural design of carcass 
cord-reinforced composites are investigated. The von 

 
Figure 20: 265/25R18 tire whole bead optimization in 3D model simulation analysis: (a) von Mises stress of the rubber at the 
endpoints of the cord; (b) von Mises stress on the chafer cord; (c) von Mises stress on the carcass cord; (d) Tresca stress of the 
rubber at the endpoints of the cord; (e) S12 interlaminar shear stress of the rubber at the endpoints of the cord. 
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Mises criterion and the interlaminar shear stress 
criterion serve as the primary optimization criteria, with 
the D-P criterion added to increase the number of 
design iterations for optimization. Before and after 
vulcanization, the geometric mapping of tire structure 
was examined. The simulation model of a tire was 
developed, and its accuracy was validated by 
comparing the model to a stiffness experiment. The 
proposed experience-based overall bead structure 
performs well, but the experience-based design is 
insufficient. The proposed experience-based overall 
bead structure is designed to address the difficulty of 
obtaining a precise bead structure. The empirical 
design bead is topologically optimized on a two-
dimensional axisymmetric cross-section model 
following a simulation-based analysis of the design's 
specific defects. For verification and analysis, the 
optimization results are reconstructed into a three-
dimensional solid tire model. The ultimate effect of 
optimization is summarized as follows: 

(1) The von Mises of the inner and outer ends of the 
cord of the chafer decreased by 14.48% and 
18.52%, respectively. The shear stress between 
the inner ends is reduced by 28.96%.  

(2) The von Mises on the inner and outer sides of 
the cord of the chafer decreased by 13.17% and 
40.36%.  

(3) The von Mises of the end point of the carcass 
cord decreased by 24.12%, and the interlaminar 
shear stress decreased by 49.51%.  

(4) The von Mises on the inner and outer sides of 
the carcass cord decreased by 7.71% to 14.66% 
and 15.48% to 20.51%, respectively. 

The optimization design effectively alleviates the 
stress concentration on the cord in the tire bead region, 
improves the fracture resistance of the cord, reduces 
the von Mises and interlaminar shear stress levels at 
the end of the vulnerable cord, and prevents the 
damage cracks of the cord-reinforced composite 
material caused by the interlaminar deformation 
coordination effect. The optimized overall bead 
structure can smooth the stress distribution on the 
carcass cord, reduce the stress concentration of the 
carcass cord, make the stress distribution of the 
material around the cord end more reasonable, and 
provide a more uniform stress distribution, thereby 
decreasing the chance of steel cord damage. This 
optimization can enhance the tire's bearing capacity 

under working conditions, the tire's strength and 
durability, the tire's resistance to early damage, and the 
tire's performance and safety performance during use. 
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