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Abstract: Introduction: Cognitive composite scales constructed by combining existing neuropsychometric tests are 
seeing wide application as endpoints for clinical trials and cohort studies of Alzheimer’s disease (AD) predementia 
conditions. Preclinical Alzheimer’s Cognitive Composite (PACC) scales are composite scores calculated as the sum of 
the component test scores weighted by the reciprocal of their standard deviations at the baseline visit. Reciprocal 
standard deviation is an arbitrary weighting in this context, and may be an inefficient utilization of the data contained in 
the component measures. Mathematically derived optimal composite weighting is a promising alternative. 

Methods: Sample size projections using standard power calculation formulas were used to describe the relative 
performance of component measures and their composites when used as endpoints for clinical trials. Power calculations 
were informed by (n=1,333) amnestic mild cognitive impaired participants in the National Alzheimer’s Coordinating 
Center (NACC) Uniform Data Set. 

Results: A composite constructed using PACC reciprocal standard deviation weighting was both less sensitive to change 
than one of its component measures and less sensitive to change than its optimally weighted counterpart. In standard 
sample size calculations informed by NACC data, a clinical trial using the PACC weighting would require 38% more 
subjects than a composite calculated using optimal weighting. 

Discussion: These findings illustrate how reciprocal standard deviation weighting can result in inefficient cognitive 
composites, and underscore the importance of component weights to the performance of composite scales. In the future, 
optimal weighting parameters informed by accumulating clinical trial data may improve the efficiency of clinical trials in 
AD. 
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INTRODUCTION 

The Alzheimer’s Disease Cooperative Study 
(ADCS) Preclinical Alzheimer Cognitive Composite 
(PACC) is a neuropsychometric assessment tool 
constructed by combining scores from four well-
validated objective tests of global cognition and verbal 
memory performance [1]. The PACC was developed 
for and was the planned primary outcome measure of 
the Anti-Amyloid Treatment in Asymptomatic 
Alzheimer’s study, a phase 3 randomized clinical trial of 
solanezumab to slow the progression of memory 
problems in those who are cognitively normal but have 
a PET scan indicating brain amyloid pathology [1]. As 
of March 2023, 28 clinical trials listed in 
clinicaltrials.gov report a version of the PACC as a 
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primary or secondary cognitive outcome measure, 
making the PACC one of the favored outcome 
measures used in AD clinical trials in those at risk of 
but not yet diagnosed with dementia. While the PACC 
was calibrated to measure cognitive decline in normal 
participants with brain amyloidopathy, it has also been 
applied to cohort studies and clinical trials of older 
adults with other predementia conditions including 
amnestic mild cognitive impairment (aMCI) [2, 3]. There 
is now an evolving and active literature describing 
variants of the PACC, including PACCs with more than 
four component tests [4-7] and PACCs with different 
component tests than used in the original PACC [4-6, 
8]. A five-item version of the PACC was the planned 
primary endpoint for the “SKYLINE” phase 3 trial of 
gantenerumab in cognitively normal persons with 
biomarker evidence of amyloid accumulation [9]. Hence 
there are now multiple derived versions of the PACC, 
and they are seeing broad application in both small and 
large cohort studies and clinical trials.  
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The originally described PACC [1] and all 
subsequently derived PACC instruments z-score norm 
the component scores on baseline data before 
summing the components to form their composite. This 
introduces two limitations to PACC weighted scores. 
First, dividing each component by its baseline standard 
deviation effectively re-weights the component scores 
in an arbitrary and often extremely inefficient way. A 
second limitation is that meta-analyses of accumulating 
trial data will not be possible with PACC weighted 
composites – the baseline standard deviations of 
component measures vary from study to study, and 
consequently z-score normed PACCs are non-
comparable (different) scales study to study. 

We have shown using computer simulations 
informed by clinical trial data that required sample size 
using PACC weighting can be up to twice that required 
using the same component scales with optimal 
weighting [10]. Here we investigate the performance of 
PACC weighting empirically, using data from the 
National Alzheimer’s Coordinating Center (NACC) 
database. This exercise is intended to provide a more 
heuristic demonstration of PACC performance. 
Findings are that a PACC weighted composite is less 
efficient than the optimal composite, and that PACCs 
can even underperform relative to individual 
component instruments contained within the PACC. 
The latter observation, especially, highlights the 
arbitrary and potentially inefficient nature of composites 
weighted by baseline standard deviations.  

METHODS  

Study Material 

Following Donohue, et al., [1] we investigated the 
performance of cognitive composites using an 
approximation of the PACC constructed from publicly 
available datasets. We examined longitudinal patterns 
of decline in participants in the NACC database [11], 
restricting to participants with a baseline visit diagnosis 
of aMCI. The NACC database contains cumulative 
longitudinal data from participants enrolled in cohort 
studies at 41 NIH funded Alzheimer’s Disease 
Research Centers (ADRC). The NACC Uniform Data 
Set (UDS) was initiated in 2005 and contains annually 
collected clinical diagnostic data and psychometric test 
data from all ADRCs. NACC UDS data were accessed 
in January of 2021. The NACC baseline aMCI sample 
included 1,333 participants who were above 60 years 
old, with a diagnosis of aMCI at their initial UDS visit, 
and at least three complete annual follow-up 
evaluations after their first UDS visit. 

Component Tests of the Cognitive Composites 

The original PACC [1] includes the following four 
test scores: 1) total recall from the Free and Cued 
Selective Reminding Test (FCSRT) (score range = 0-
48 points); 2) delayed recall on the Logical Memory IIA 
(LM-IIA) sub-test from the Wechsler Memory Scale 
(score range = 0-25 points); 3) total correct responses 
on the Digit Symbol Substitution Test (DSST) from the 
Wechsler Adult Intelligence Scale–Revised (score 
range = 0-93 points); and 4) the Mini-Mental Status 
Exam (MMSE) total (score range = 0-30 points).  

The full set of component tests included in the 
PACC is not present in the NACC UDS cognitive test 
batteries. The NACC dataset includes the LM-IIA, 
DSST, and MMSE, but does not include the FCSRT or 
an equivalent. Thus, a “PACC3” was constructed as a 
three-item composite that including the three available 
tests (LM-IIA, DSST, MMSE), but no FCSRT or 
equivalent.  

Statistical Methods 

This analysis evaluates the relative efficiency of 
outcome measures for clinical trials using the mixed 
model repeated measures (MMRM) analysis plan. 
MMRM is the most commonly used statistical analysis 
plan for phase 3 AD clinical trials, and compares the 
mean change from baseline to the last visit in the 
treatment arm versus the placebo arm [12]. To simplify 
presentation, we assumed no loss to follow-up and no 
covariates, so that the MMRM analysis reduces to a 
standard two sample t-test comparing change in 
treatment to change in placebo. This assumption is 
justified because our focus is the relative efficiency of 
different outcome measures rather than actually 
powering a future trial, and relative efficiency is only 
indirectly and modestly affected by missing value 
patterns and covariate terms. Power calculations 
further assumed equal allocation to arms, a type 1 error 
rate of 5%, and equal standard deviation of change in 
treatment and placebo arms. Effect size to be powered 
was set to a 50% reduction in the mean change from 
baseline to year three. The 50% effect size is an 
arbitrary percentage -- relative efficiency is 
independent of effect size when effect size is 
expressed as a percentage reduction in change [13], 
meaning any percentage effect size results in the same 
relative efficiency of outcome measures. Power 
calculations are summarized by reporting the sample 
size required to achieve 80% power. All analyses were 
conducted using R version 4.1.0. Power calculations 
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were performed using the R base package power.t.test 
function.  

PACC3 scores were calculated by dividing each 
component score by its standard deviation at the 
baseline visit and summing the resulting values [1]. 
That is, PACC3 scores are a weighted sum of 
reciprocal standard deviation weighted component 
scales. (Formal z-score norming with subtraction of the 
means could also be performed but is redundant to the 
MMRM analysis. All Tables and results reported here 
are identical with or without subtracting out the mean at 
this stage.) We also calculated composite scores of the 
three component instruments using optimal weighting 
and simple sum weighting. Optimal weighting applies 
weights calculated from the covariance of change 
scores [10]. Simple sum weighting, also called the 
unweighted sum approach, weights each component 
test equally when calculating the composite score.  

Optimal composite weighting was first proposed by 
Xiong et al. in the context of linear mixed effects 
models comparing fixed effect mean slope between 
groups [14]. Xiong et al. used least squares arguments 
to derive a candidate formula for optimal component 
weights that maximizes the sensitivity of the composite 
to longitudinal change. However, in computer 
simulations the Xiong et al. composite performed more 
poorly than the simple sum composite formed by 
adding unweighted component scores, and the authors 
concluded that further research is required [14]. In a 
formal derivation of optimal weights from the 
multivariate distribution of the component scores, Ard 
et al. [15] demonstrated that optimal weights are a 
function of both the parameters of the joint multivariate 
distribution of the component scores and the clinical 
trial design (i.e., the number and interval evaluations 
during the clinical trial). The optimal composite as 
defined by Ard et al. is the weighted sum of component 
measures that maximizes the mean to standard 
deviation ratio (MSDR) of the expected change in the 
outcome measure, thereby minimizing the sample size 
required to power a cohort study or clinical trial using 
the composite as an outcome measure. The Ard et al. 
algorithm generalizes readily to the MMRM analysis 
preferred by clinical trialists [12]. The formula for 
optimal weights for the MMRM analysis can be 
expressed in matrix notation as 

Optimal weights = c ∗ Σ−1µ′ 

given expected change µ and covariance of change Σ 
[13]. The c is an arbitrary constant – any non-zero 

value of c will produce equally optimal weights. We use 
the convention of standardizing c so that the weights 
sum in absolute value to 1. Optimal weights reflect the 
covariance of change of the component scales, and 
result in the linear combination of components that 
maximizes the expected change in the composite in 
units of the standard deviation of change of the 
composite within the placebo arm.  

We also report the mean to standard deviation ratio 
(MSDR) of change scores for each component 
measure and each composite. Because the effect size 
in power calculation formulas is expressed in units of 
MSDR, the MSDR is a useful metric for comparing the 
performance of different outcome measures. The 
MSDR is also known as the signal-to-noise ratio of the 
outcome measure. Outcomes with larger MSDR have a 
higher power and require a smaller sample size, while 
outcomes with smaller MSDR have lower power and 
require a larger sample size. 

Finally, we report descriptive summaries of the 
different weighting schemes expressed on a standard 
scaling. Optimal weights by design are standardized so 
that the weights sum in absolute value to one [10]. We 
likewise standardized the PACC and simple sum 
weights to sum to one to be able to more readily 
compare weighting schemes. This was done by 
multiplying the weights by a constant term equal to one 
over the sum of the component weights [10, 13]. 
Multiplying weights by a constant term in this manner 
shifts the mean and standard deviation of the outcome 
measure but has no effect on its performance in terms 
of statistical testing and power calculations [13, 15]. 
Standardizing the weights in this way serves to create 
weights that are on the same referent scale and 
comparable across weighting approaches. 

RESULTS 

Demographic characteristics of the NACC aMCI 
participants are summarized in Table 1. Mean age at 
enrollment was 74.8 years. Forty-six percent of the 
participants were women. Participants were 
predominantly non-Hispanic White (79.6%), and well 
educated (mean 15.4 years), as is typical of volunteer 
registry cohorts [16]. Mean scores on the component 
neuropsychometric instruments are also summarized 
on Table 1. Graphical summaries of the mean scores 
at baseline and the three annual follow-up evaluations 
are presented in Figure 1. Subjects declined on 
average on each of the PACC3 component measures, 
although there was a slight increase in mean score for 
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the paragraph recall (LM-IIA) instrument from baseline 
to first follow-up visit (Figure 1). Mean change from first 
to last visit was highly statistically significant for the 
MMSE and DSST (p < 0.0001), and less so for the 
LM_IIA (p = 0.007). 

Table 1: Baseline and Year 3 Characteristics of NACC 
aMCI Participants 

(n = 1,333) Baseline Year 3 

Entry Age, mean (SD*)  74.8 (7.3) 

Education, mean (SD) 15.4 (3.2) 

Female Sex, n (%) 613 (46.0%) 

Non-Hispanic White, n (%) 1061 (79.6%) 

Non-Hispanic Black, n (%) 162 (12.2%) 

Non-Hispanic Asian, n (%) 22 (1.7%) 

Hispanic White, n (%) 57 (4.3%) 

Other, n (%) 31 (2.3%) 

 

PACC Components 

 MMSE, mean (SD) 27.3 (2.3) 25.5 (3.9)** 

 DSST, mean (SD) 38.9 (11.7) 34.9 (13.6)** 

 LM-IIA, mean (SD) 6.5 (4.6) 6.2 (5.5)*** 

*SD = standard deviation; **p<0.00001; ***p=0.007. 
 

Table 2 shows the mean change and standard 
deviation of change from baseline to year three for 
each component test and for composite measures 
formed from the component tests. Table 2 also reports 
the MSDR and the sample size required to observe a 
statistically significant 50% reduction in mean change 
in treatment versus placebo with 80% power. Based on 
data from NACC aMCI participants, a clinical trial using 
the PACC3 would require 246 participants per arm in 

this target population. The three-item PACC3 out-
performed the three-item simple sum composite which 
would require 268 participants per arm, but not the 
optimally weighted three-item composite which would 
require 177 participants per arm (Table 2). Compared 
to the optimally weighted composite, the PACC3 would 
requires 38% more subjects for a comparably powered 
trial. We also observe that PACCs can underperform 
relative to individual component instruments contained 
within the PACC (Table 1, comparing MMSE alone 
(N=222/arm) to the PACC3 with PACC weighting 
(N=246/arm)). Stated another way, adding the LM-IIA 
and DSST to the MMSE using reciprocal standard 
deviation resulted in a loss of statistical power for the 
scale when used as an outcome for a clinical trial. 

Weights for calculating the PACC3 scales are 
summarized in Table 3. Standardized weights for the 
PACC weighted and the simple sum and optimally 
weighted scales are also summarized in Table 3. The 
standardized weights (Table 3) in combination with the 
MSDRs (Table 2) help to explain the relative efficiency 
of the different scales. In general, component scales 
with small MSDR contribute little to the composite 
scale, and hence composite scales which give higher 
weight to component scales with small MSDR perform 
poorly. For example, the LM-IIA had the smallest 
MSDR, meaning it is a noisy instrument relative to the 
other component measures, but was substantially up 
weighted by the PACC3 relative to the optimal 
weighting.  

DISCUSSION 

This study presents analyses of reciprocal standard 
deviation weighted composites as outcome measures 

 
Figure 1: Mean (95% confidence intervals) for the component measures, by visit. 

MMSE = Mini-Mental State Exam; LM-IIA = Logical Memory Paragraph Recall; DSST = Digit Symbol Substitution Test. 
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for clinical trials, and compares different weighting 
approaches to scoring a PACC. We found a number of 
results relevant to the construction of cognitive 
composites. We illustrated by counter example that 
adding additional components to a composite does not 
necessarily improve the performance of the composite.  

Table 3:  PACC3 Component Weights and Standardized 
Component Weights vis-à-vis Optimal and 
Simple Sum Weights 

 MMSE LM-IIA DSST 

Baseline SD* 2.28 4.60 11.68 

PACC weights (= 1/SD) 0.44 0.22 0.09 

Standardized weights 

 PACC 0.59 0.29 0.12 

 Optimal composite 0.68 -0.16 0.16 

 Simple sum composite 0.33 0.33 0.33 

*SD = standard deviation. 
 

Our summary also revealed that the LM-IIA 
improved from baseline to first follow-up in the NACC 
aMCI data (Figure 1, panel 3), consistent with practice 
effects on this measure in the aMCI population. 
Composites using component tests with practice 
effects may benefit from a run in period to improve the 
signal-to-noise of the outcome measure and increase 
statistical power [17]. We also note that the LM-IIA is 
not sensitive to change in the population of aMCI 
participants represented in the NACC cohort, and has 
little power to detect treatment effects as a stand-alone 
outcome measure (Table 2).  

A limitation of all attempts to project the statistical 
power of a planned clinical trial is that there are 
typically no a priori data to inform the likely pattern of 
progression under treatment. This is especially true for 

Alzheimer’s disease prevention and treatment trials, 
which have experienced a significant history of 
negative findings and therefore little data to inform the 
effect of treatment on trial outcome variables. The 
standard approach to powering trials in this 
circumstance is to use the covariance pattern of 
representative placebo arm data and assume this 
covariance pattern for both the placebo and treatment 
arms. This is the approach we have taken in this and 
previous [10, 15] papers. The equal covariance 
assumption may not hold in practice. For example, 
response to treatment under the alternative hypothesis 
will be variable, meaning the change from baseline to 
last visit in the treatment arm of a clinical trial will reflect 
both natural background variability in rate of 
progression and variability in response to treatment. 
Under this scenario the equal covariance assumption 
may lead to anticonservative sample size estimates. 
Conversely, an especially effective treatment may 
reduce the variance of change in the treatment arm. In 
the hypothetical extreme, a treatment that stopped 
progression would constrain the variance of change to 
be a function of only the measurement error variance of 
repeated measures. Under this scenario, the equal 
covariance assumption would lead to conservative 
sample size estimates. An alternative to the equal 
covariance assumption approach is to construct a 
comparator sample similar to what might be achieved 
under treatment [1]. This approach can lead to 
anticonservative power projections if the pattern of 
longitudinal change in the comparator group is not 
representative of what will be experienced in future 
clinical trials. We also note that the optimal weighting 
algorithm assumes that treatment effects expressed as 
a percentage slowing of decline are equivalent across 
the component measures [15]. Recent findings suggest 
that this may be a reasonable assumption. Published 
data on recently completed clinical trials of effective 

Table 2: Summary Statistics and Sample Size Estimates for Change Baseline to Year Three 

 Mean Change (SD) MSDR* Sample Size** 

PACC3 components 

MMSE -1.81 (3.40) -0.53 222 

DSST -4.03 (8.99) -0.45 314 

LM-IIA -0.30 (4.03) -0.07 11390 

PACC3 composite scales 

PACC weighting -1.20 (2.38) -0.51 246 

Optimal weighting -1.84 (3.08) -0.60 177 

Simple sum weighting -6.14 (12.67) -0.48 268 

*MSDR = mean to standard deviation ratio; **Sample size per arm required to detect a 50% slowing of decline under treatment with 80% power. 
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monoclonal antibody therapies for the treatment of 
early AD showed remarkably similar treatment effects 
by percentage change across the outcome measures 
used in the trials [18, 19]. For example, in the 
lecanemab monoclonal antibody trial, treatment slowed 
progression by comparable percentages over 18 
months on both the primary global assessment 
outcome measure (27%), and on the planned 
secondary cognitive and functional outcome measures 
(26-37%) [18]. Assessing the assumptions of the 
optimal composite approach is critical. As more trials 
with positive effects read out, we will be able to more 
thoroughly investigate the many assumptions implicit in 
sample size and statistical power calculations by this 
approach.  

Finally, we note that a feature of the optimal 
composite approach is that prior study data from a 
representative completed clinical trial or instrument 
protocol study is required to estimate the parameters 
used to calculate optimal weights [15]. Optimal weights 
estimated from the data to which the composite are 
applied, as reported here, may overstate the power of 
the composite in a future clinical trial [15, 20]. We have 
found that optimal weights estimated from pilot 
samples as small as 200 participants are effective 
approximations of weights that achieve theoretical 
maximal power [10]. The NACC sample reported here 
well exceeds this threshold, but we emphasize that the 
relative performance of the optimal weights may be 
slightly overstated in this analysis. In application, 
optimal weights should be from prior independent 
sample data representative of the planned future trial.  

CONCLUSIONS 

We have demonstrated that composite scales with 
reciprocal standard deviation weighting can be an 
inefficient use of clinical trial data. A practical indication 
of this is that the single component MMSE measure 
was more efficient than the full PACC3. That is, adding 
more information in the form of more tests to a 
reciprocal standard deviation weighted composite can 
actually decrease the efficiency of the scale as an 
outcome measure for clinical trials. These observations 
provide useful guidance to future investigators 
developing composite outcome measures for cohort 
studies and clinical trials. Considering weighting when 
constructing composite scales may improve the 
statistical efficiency of clinical trials moving forward. 
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