Digital Journal of Clinical Medicine

Volume 5 | Issue 3

Article 1

2023

Beyond Breathless: Unravelling The Enigma Of Pulmonary Arteriovenous Malformations

Sri Mounya Jampala JSS Medical College, jsrimounya@gmail.com

Jagadish Kumar K Dr. JSS ACADEMY OF HIGHER EDUCATION AND RESEARCH, jagadish.mandya@gmail.com

Manjunath V G JSS Medical College, vgmanjunath@jssuni.edu.in

Nandish H R JSS Medical College, JSSAHER, nandishhr@jssuni.edu.in

Follow this and additional works at: https://rescon.jssuni.edu.in/djcm

Part of the Diseases Commons, Health Information Technology Commons, Medical Education Commons, Medical Sciences Commons, Mental and Social Health Commons, Pediatrics Commons, Psychiatry and Psychology Commons, and the Public Health Education and Promotion Commons

Recommended Citation

Jampala S, K JK Dr., V G M, H R N. Beyond Breathless: Unravelling The Enigma Of Pulmonary Arteriovenous Malformations. *Digital Journal of Clinical Medicine*. 2023; 5(3): 114-120. doi: https://doi.org/10.55691/2582-3868.1145

This Case Report is brought to you for free and open access by Research Connect. It has been accepted for inclusion in Digital Journal of Clinical Medicine by an authorized editor of Research Connect.

Beyond Breathless: Unravelling The Enigma Of Pulmonary Arteriovenous Malformations

Abstract

Pulmonary Arteriovenous Malformations (AVMs) are abnormal connections between the pulmonary arteries and veins, leading to a direct shunting of blood without passing through the normal capillary bed. These AVMs can be associated with a rare genetic disorder called Hereditary Hemorrhagic Telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome. HHT is an autosomal dominant disorder characterized by the development of fragile telangiectasias in various organs, including the skin and mucous membranes. These telangiectasias are prone to bleeding, leading to recurrent nosebleeds and mucocutaneous bleeding. In patients with HHT, the most common site of AVMs is in the lungs. Pulmonary AVMs can cause significant health risks due to the right-to-left shunting of blood, leading to hypoxemia and possible complications like stroke, cerebral abscesses, and heart failure.

Keywords

Pulmonary Arteriovenous Malformations, Hereditary Hemorrhagic Telangiectasia, CT Pulmonary Angiography, Clubbing

Creative Commons License

<u>©</u>090

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

BEYOND BREATHLESS : UNRAVELLING THE ENIGMA OF PULMONARY ARTERIOVENOUS MALFORMATIONS

A 15-year-old male patient presented with complaints of fever with chills and rigors, malena, coffee-coloured vomitus and epistaxis. Upon further inquiry, the patient disclosed a history of exertional dyspnea (MMRC Grade 1) since childhood. On physical examination, marfanoid habitus, palatal petechiae, central cyanosis and clubbing were noted.

Figure 1.Conjunctival Telangiectasia

Figure 2.Clubbing

Figure 3.Bluish discolouration of tongue

On cardiovascular system examination, visible pulsations were present in the 3rd and 4th intercostal space and apex beat was localized to 4th intercostal space. Auscultation revealed decreased air entry in bilateral axillary and scapular areas. Additionally a bruit detected in the left subscapular region indicating a positive Suman's sign. On abdomen palpation, tenderness noted in the right hypochondriac and lumbar region, and a palpable liver.

INVESTIGATION:

The blood investigations showed polycythemia, blood smear showed microcytic hypochromic cells, reactive lymphocytes and thrombocytopenia. Serology was positive for Dengue NS1 antigen and abdomen ultrasound revealed polyserositis and hepatomegaly.

The Arterial blood gas investigation showed low pCO2 and pO2 and minimally decreased oxygen saturation.

ABL800 BASIC JSS HOS PATIENT REPORT	SPITAL NEW I Syringe - S	NS1 195uL	10:14 PM Sample #	7/6/20 443	22 02
Identifications Patient ID Patient First Name Sex Sample type Q ₁ Department	2720965 Unknown Not specifie L/min	d			
Blood Gas Values					
pН	7.439		[7.350	- 7.450]
↓ pCO,	29.1	mmHg	[35.0	- 48.0	1
↓ pO₂	62.8	mmHg	[83.0	- 108]
Oximetry Values					
ctHb	12.9	g/dL	[12.0	- 17.5]
FO ₂ Hb	87.9	%			
FCOHb	0.5	%			
FMetHb	2.1	%			
FHHb	9.5	%			
↓ sO₂	90.2	%	[95.0	- 99.0	1
Electrolyte Values					
cNa+	138	mmol/L	[136	5 - 146	1
cK*	4.0	mmol/L	[3.4	4 - 4.5	1
cCa ²⁺	1.16	mmol/L	[1.1	5 - 1.29	1
cCl-	104	mmol/L	[9	8 - 106	1
Metabolite Values		and the			
cLac	1.5	mmol/L	[0.	5 - 1.6	1
Calculated Values					
cHCO,-(P)c	19.4	mmol/L			
cHCO(P.st)c	21.6	mmol/L			
cBase(B)c	-3.3	mmol/L			
eBase(Ecf)e	-4.1	mmol/L			
CDase(LCI/C	38.5	Vol%			
CICU2(D)C	16.0	Vol%	1 3	32 - 44	1
T CtO _{2C}	7 254				,
pH(st)c	1.501				
cH*c	36.4	nmoi/L			
Anion Gapc	14.1	mmol/L			

Figure 4. Arterial Blood Gas Report

Chest X-ray had no markedly visible abnormalities and 2D-ECHO was normal. Hence was referred for further investigations.

Figure 5. Chest X- ray

CART SEGMENT	SIZE OF THE HIDOU	FEEDING ARTERT WITH MURAMON	DRAINING VELIV WITH IN BUILDING	
	(APxTRxCC)	CALIBRE	CALIBRE	
ING sterior segment left upper	22x20x26mm	2 in number (COMPLEX) along with their branches, both from left descending pulmonary artery, measuring 6mm & Amm in maximum calibre	Segmental tributaries of left superior pulmonary vein, maximum calibre 6mm	
lingular segment of left upper	8x6x9mm	Segmental branch of descending pulmonary artery. 1.6mm calibre	Segmental tributaries of left superior pulmonary vein. 2.7mm in maximun calibre.	
ingular segment of left upper	10x16x24mm	Segmental branch of descending pulmonary artery 13mm calibre	Segmental tributaries of left Superior pulmonary vein. 11mm in maximun calibre.	
asal segment of left lung	10x15x14mm	Segmental branch of descending pulmonary artery. Smm calibre	Segmental tributaries of left inferior pulmonary vein. 3.2mm in maximum calibre.	
basal segment of left lung	17x7x18mm	Segmental branch of descending pulmonary artery. 2.7mm calibre	Segmental tributaries of left interior pulmonary vein. 3.2mm in maximun calibre.	
encing focus of 3x4mm noted omedial segment of left lung				
LUNG		Commented branch of superior division of	f Noted directly draining into le	
segment of right upper lobe	15x11x22mm	segmentar branch of superior calibre atrium through a separate pulmo right pulmonary artery. 3.7mm calibre vein. 3.9mm in maximum calibre		
segment of right upper lobe	9x13x13mm	Segmental branch of superior division or right pulmonary artery. 3.2mm calibre	pulmonary vein. 3.5mm in maxir calibre.	
egment of right middle lobe	18x15x17mm	Segmental branch of descendin pulmonary artery. 2.1mm calibre	g Segmental tributaries of right supe pulmonary vein. 2.9mm in maxin calibre.	
asal segment of right lower	15x20x19mm	Segmental branch of descendin pulmonary artery. 4mm calibre	ng Segmental tributaries of right int pulmonary vein. 6mm in max calibre.	
basal segment of right lower	13x16x15mm	Segmental branch of descendin pulmonary artery. 4.2mm calibre	ng Segmental tributaries of right int pulmonary vein. 3.1mm in max	
asal segment of right lower	8.5x6x12mm	Segmental branch of descend pulmonary artery. 2.6mm calibre	ing Segmental tributaries of right in pulmonary vein. 3.5mm in ma	

Figure 6. CT Pulmonary Angiography

In CT pulmonary angiography, multiple serpiginous tubular enhancing vascular nidus were noted in bilateral lungs with feeding arteries and draining vessels. This confirmed the presence of bilateral multiple pulmonary arteriovenous malformations(PAVM).

FINAL DIAGNOSIS:

Based on the relevant reports the diagnosis was made as dengue with suspected Hereditary Hemorrhagic Telangiectasia(HHT).

The patient was managed symptomatically for dengue and was referred to interventional cardiology to undergo a percutaneous trancatheter embolization with a follow up request after 6 months.

DISCUSSION:

Pulmonary Arteriovenous Malformation (AVM) is a rare clinical problem with an incidence of 1 in 50,000 individuals. It involves an abnormal communication between a pulmonary artery and a pulmonary vein, bypassing the pulmonary capillary bed. While most cases are congenital, some may also be acquired. Notably, most patients with pulmonary AVMs have hereditary hemorrhagic telangiectasia (HHT), an autosomal dominant disorder characterized by cutaneous telangiectasia, a family history of the disorder, and recurrent epistaxis. These AVMs are typically seen as unilateral lesions in the subpleural space of the lower lobes. The primary defect results in right-to-left shunting, leading to a mixture of deoxygenated and oxygenated blood, causing hypoxemia that persists despite the administration of 100% oxygen. Patients commonly present with epistaxis, dyspnea on exertion, platypnea-orthodeoxia, clubbing, cyanosis, mucocutaneous telangiectasias, and audible murmurs or bruits over the location of large pulmonary AVMs. Radiologically, pulmonary AVMs appear as round masses of uniform density on chest radiographs, usually lobulated and sharply-defined. Additional investigations, such as Contrast-enhanced computed tomography (CT) and pulmonary angiography, are crucial for confirming the diagnosis.

Percutaneous embolization is the primary therapy for pulmonary AVMs, with a success rate of 98%. The prognosis after treatment is generally favorable. However, untreated pulmonary AVMs can lead to significant morbidity and mortality, including cerebral abscess, stroke, and potentially life-threatening pulmonary AVM arterial rupture.

The differential diagnosis for patients with pulmonary AVMs is broad, making the patient's initial presentation essential in guiding the evaluation. Regular follow-up is imperative following treatment to monitor for any recurrence or complications.

CONCLUSION:

Pulmonary arteriovenous malformation is a rare but significant clinical problem associated with hereditary hemorrhagic telangiectasia. This case is of paramount importance to the medical fraternity because of the need for an interprofessional approach in diagnosis of HHT with PAVM. It is often underdiagnosed due to a lot of asymptomatic cases and broader differentials. Early identification and diagnosis can prevent rapid disease progression and higher complication rates, giving a broader horizon of management options to prevent a life-threatening catastrophe.

REFERENCE:

 Gossage JR, Kanj G. Pulmonary arteriovenous malformations. A state of the art review. Am J Respir Crit Care Med. 1998 Aug;158(2):643-61.
 Lacombe P, Lacout A, Marcy PY, Binsse S, Sellier J, Bensalah M, Chinet T, Bourgault-Villada I, Blivet S, Roume J, Lesur G, Blondel JH, Fagnou C, Ozanne A, Chagnon S, El Hajjam M. Diagnosis and treatment of pulmonary arteriovenous malformations in hereditary hemorrhagic telangiectasia: An overview. Diagn Interv Imaging. 2013 Sep;94(9):835-48
3.Biswas D, Dey A, Chakraborty M, Biswas S. Pulmonary arteriovenous malformation: An uncommon disease with common presentation. Lung India. 2010 Oct;27(4):247-9.
4.Meier NM, Foster ML, Battaile JT. Hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations: clinical aspects. Cardiovasc Diagn Ther. 2018 Jun;8(3):316-324 5.Remy J, Remy-Jardin M, Wattinne L, Deffontaines C. Pulmonary arteriovenous malformations: evaluation with CT of the chest before and after treatment. Radiology. 1992 Mar;182(3):809-16