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Abstract 

 Primary Sjogren syndrome (PSS) is one of the most common systemic autoimmune diseases. Lymphocytic 

infiltration of exocrine glands, especially lacrimal and salivary in PSS, causes ocular and oral dryness. Dry mouth 

may lead to difficulty in speaking, chewing, and swallowing and result in reduced quality. The pathogenesis of PSS 

involves multiple factors, such as genetic, environmental, and immunological factors. Despite extensive research 

over the last few decades, the exact etiology and progression of PSS and its inflammatory lesions is still unknown. 

Gene co-expression network analysis (WGCNA) is a system biology method that can be used to describe the 

correlation between different genes and find modules of highly correlated genes and key genes. Also, by using these 

modules, we can get gene ontology information and biological pathways. In this study, we used WGCNA to analyze 

the GSE40611 dataset, which consists of 17 PSS patients and 18 healthy controls. We construct a co-expression 

network for mRNA expression data of patients and control groups and then find the most significant module and hub 

genes that play important roles in PSS. We also identify biological pathways and related miRNA for hub genes. 

Among all the modules, turquoise had the most correlation with PSS and some of the hub genes, including GPR18, 

FCRL1, VNN2 and etc. Also, a large number of pathways were identified in the turquoise module, most of them 

related to immune system activity, like T-cell activation, lymphocyte differentiation, leukocyte and lymphocyte 

activation, regulation of immune system processes, regulation of immune response, and cell-cell adhesion. External 

validation using bulk RNA sequencing data also confirmed the presence of selected hub-genes in pathogenicity of 

PSS. Finally, these results can lead to finding key players in treatment of PSS. 
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1. Introduction 

Primary Sjogren's syndrome (PSS) is one of the 

most common systemic autoimmune diseases; 

its prevalence ranges from 0.1 to 0.6 percent, 

and it affects women more than men [1]. 
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Lymphocytic infiltration of exocrine glands, 

especially lacrimal and salivary in PSS, causes 

ocular and oral dryness. It can also affect extra-

glandular sites like joints, vessels, lungs, 

nerves, and kidneys, and even cause an 

enhanced risk of lymphoma [2-4]. Dry mouth 

may lead to difficulty in speaking, chewing, and 

swallowing and may result in a reduced quality 

of life and unpleasant feelings. Hyposalivation 

also contributes to increased dental caries risk, 

rampant caries and problems in prosthetic 

replacement [5, 6]. 

The pathogenesis of PSS involves multiple 

factors such as genetic predisposition, 

environmental factors, and immunological 

disorders [7]. Both innate and adaptive immune 

responses play a role in PSS. In genetically 

susceptible people, environmental stimuli can 

trigger salivary gland epithelial cells to express 

ligands, receptors, and cytokines and result in 

the activation of many innate immune cells like 

Natural killer cells (NKs), Type 3 innate 

lymphoid cells (ILC3s), Dendritic cells (DCs),  

and macrophages [3]. Hyperactivation of B 

cells has been shown in PSS to lead to the 

production of auto-antibodies such as anti-

Ro/SSA and anti-La/SSB antibodies, which are 

considered as biomarkers for disease 

classification and diagnosis [8, 9]. Evidence 

also shows T cells' activity in PSS. They can be 

involved in a loss of self-tolerance, mediating B 

cell hyperactivity and secreting several pro-

inflammatory cytokines associated with 

inflammation in PSS, including IFN-γ, IL-17, 

and IL-21 [10]. Despite extensive research over 

the last several decades, the exact etiology and 

progression of PSS and its inflammatory 

lesions is still unknown [11, 12]. 

Autoimmunity is a complicated interaction 

between genes and the environment, and using 

system biology to understand this complex and 

multifactorial disease like PSS can be useful 

[13-15]. System biology uses a systematic and 

holistic view and connects molecular 

components on one single scale and also 

different scales, like cells and tissues, to 

functional pathways, so we can understand the 

relationships between different scales better 

[16-18]. Weighted gene co-expression network 

analysis (WGCNA) is a system biology method 

that can be used to describe correlation between 

different genes, find modules of highly 

correlated genes and key genes. Also, by using 

this module, we can get to gene ontology 

information and biological pathways [19-21]. 

Hillen and coworkers used WGCNA analysis to 

study interactions between genes which play 

roles in PSS and also construct gene co-

expression networks and find key pathways 

altered in PSS patient plasmacytoid dendritic 

cells (pDCs). As a result, they found some 

genes with the most interactions known as hub 

genes, which were associated with the IFN-α/β 

receptor, antiviral processes, pDC activation, 

and encoding ribosomal proteins. They also 

showed that genes associated with type-I IFN-

activity and pDC activation had the largest 

changes in PSS patients compared to healthy 

controls [22]. In another study, Yoa and 

teammates also used WGCNA to analyze the 

microarray data of Sjogren patients and healthy 

controls to create a holistic view of Sjogren 

syndrome and identify potential pathways and 

hub genes that may be involved in Sjogren 

syndrome. As a result of the analysis, they 

found some hub genes which were related to the 

immune response, defense response, the 
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response to cytokine stimulus, and the 

inflammatory response [23]. 

Recording to the recent statements using 

WGCNA may help us to understand PSS much 

better, so in this study we use systems biology 

and WGCNA to identify key genes and 

biological interactions that play a role in PSS as 

a unique system. 

2. Materials and Methods 

2.1. Dataset and preprocessing 

In the present study, the GSE40611 dataset was 

procured from the NCBI Gene Expression 

Omnibus (GEO) database and utilized for 

subsequent analysis (https://www.ncbi.nlm. 

nih.gov/geo/query/acc.cgi?acc=GSE40611). 

This particular dataset was predicated upon the 

GPL-570 platform and comprised of mRNA 

expression profiles of 18 healthy individuals as 

controls, 17 patients afflicted with PSS, and 14 

patients with non-PSS sicca. Subsequently, PSS 

patients and the control group were selected for 

further analysis. Thereafter, data correction and 

normalization were carried out using the affy 

package in R studio. Moreover, the called 

package was also employed to annotate the 

probe names and acquire gene IDs and symbols 

for the same. In instances where the IDs were 

not obtainable, they were excluded. Finally, the 

average data of identifiers was computed for 

each sample. 

2.2. WGCNA network construction and 

module extraction 

To ascertain the comparative significance of 

genes and the involvement of potential 

modules, a network analysis was conducted 

utilizing the WGCNA package in R [24]. In a 

nutshell, the GSE40611 dataset was subjected 

to WGCNA. Co-expression networks were 

produced by using a soft threshold power to 

differentiate modules with varied expression 

patterns. The weighted co-expression 

connections contained in the adjacency matrix 

were then evaluated using the Pearson 

correlation coefficient. The co-expression 

relationships between genes were subsequently 

determined using a similarity function for 

topological overlap matrices. The networks 

were developed by clustering genes with 

exceedingly similar co-expression patterns. 

Therefore, the modules were acquired, which 

consisted of the requisite crucial genes and their 

co-expressed modular genes. 

2.3. Identification of key or modules of interest 

The present study entailed an analysis of the 

correlation between module eigengenes and 

clinical traits, with the aim of identifying 

modules that manifested a significant 

association with clinical traits. The correlation 

values were visually represented on a heatmap. 

The modules that were found to be most 

significantly correlated with PSS were deemed 

the key modules of PSS. Gene significance 

(GS) was defined as the correlation between 

gene expression and each trait. Furthermore, 

module membership (MM) was defined as the 

association between gene expression and each 

module eigengene. Thereafter, the correlation 

between GS and MM were examined in order 

to substantiate certain module-trait 

associations. It is noteworthy that the 

correlation analyses in this study were 

performed utilizing the Pearson correlation, as 

outlined in the 'WGCNA' package [19]. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40611
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40611
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2.4. Function and Pathway Enrichment 

Analysis of modules 

To explicate the biological import of the 

differentially expressed genes (DEGs), an 

enrichment analysis predicated on Gene 

Ontology and KEGG pathways [25] was carried 

out. The overrepresented Gene Ontology (GO) 

was delineated using ClueGO (version 2.5.7) 

plugin of Cytoscape (version 3.8.0). ClueGO is 

a Cytoscape plug-in that portrays the non-

repetitive biological terminologies for 

voluminous gene sets. Furthermore, ClueGO 

amalgamates the GO terms to fabricate a 

GO/pathway network [26]. 

2.5. Differential Expression Analysis 

The utilization of the R package 'limma' was 

employed to screen out differentially expressed 

genes (DEGs) within two sets of comparisons 

between PSS and Control. The criteria for 

DEGs were set at a |fold change (FC)|>1.5 and 

P<0.05. The DEGs were visually represented 

using the R package 'ggplot2' (https://cran.r-

project.org/web/packages/ggplot2/) as a 

volcano plot (Fig. S1). Subsequently, the DEGs 

were cross-referenced with the modules of 

interest to identify potential connections. The 

results of this analysis were illustrated as a 

Venn diagram using the R package 'Venn 

Diagram' (https://cran.r-project.org/web/ 

packages/VennDiagram/). 

2.6. External validation on another GEO 

dataset 

The dataset GSE154926, which comprised of 

43 PSS and 7 control minor salivary gland 

samples, was subjected to high-throughput 

sequencing. In order to standardize the data and 

acquire the standardized matrix file, the R 

Bioconductor package DESeq2 was utilized. 

Subsequently, genes with an Adj. p. value of 

less than 0.05 and LogFC exceeding |1| were 

chosen for further analysis. 

2.7. Construction protein-protein interaction 

network  

The integration of targeted hub-gene protein-

protein interaction (PPI) networks is a crucial 

step in understanding the intricate relationships 

between molecules, specifically in the realm of 

organismal and cellular biochemistry. With this 

in mind, our investigation delves into the 

connections of hub-genes using PPI networks, 

which we constructed by including proteins that 

interacted with targeted genes via the reliable 

and widely-used STRING website. 

3. Results and Discussion 

3.1 Network construction and modules 

analysis 

Data preprocessing including quantile-

normalization (Figure 1A), probe ID 

conversion, and averaging of probes was 

performed. Sample clustering identified 12 

outliers which were excluded from downstream 

analysis (Figure 1B). Afterwards, as shown in 

Fig. 2A, a β value equal to 7 was selected as the 

soft-thresholding power. As this power follow 

the powerlaw distribution and the network is 

closer to the true biological network state. 

Then, weighted co-expression network from 

PSS patients and normal samples was 

reconstructed. As a result, the hierarchical 

clustering dendrogram identified 27 modules 

(Fig. 2B). The number of genes in each module 

varied from 141 (purple) to 952 (turquoise). 

https://cran.r-project.org/web/packages/VennDiagram/
https://cran.r-project.org/web/packages/VennDiagram/
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Figure 1: Sample clustering to detect outliers; A. Before removing outliers; B. After removing one outlier.  
 

       

Figure 2: Identification of WGCNA Modules; A. Selection of the soft-thresholding powers. B. Cluster dendrogram and 

module assignment from WGCNA. The branches correspond to highly interconnected groups of genes. Colors in the 

horizontal bar represent the modules.  

 

3.2 Module-trait and module-module 

association 

In order to understand the association of 

modules with the presence of disease in 

samples and also module-module relationships, 

eigengenes for each module were calculated 

and turquoise module (r = 0.97, P-value = 

2.00E-08) was selected for more analysis (Fig. 

3A and Table 1). Indeed, the eigengene 

network contains the clustering tree and 

heatmap that show the relationships between 

modules and the PSS trait (Fig. 3A). This plot 

indicates that the turquoise module and PSS 

trait are the most correlated. 

Table 1: Module colors characteristics. 

Modulecolors Genes Correlation P-value 

Turquoise 952 0.97 0.9 

Purple 141 0.34 0.8 

Black 235 0.25 0.8 

Magenta 174 0.19 0.8 

Green 249 0.041 0.5 

Red 238 -0.062 0.4 

Pink 183 -0.088 0.2 

Grey 282 -0.088 0.2 

Blue 949 -0.36 0.2 

Brown 337 -0.39 0.01 

Yellow 260 -0.65 2.00E-08 

A B 

A B 
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3.3 Enrichment analysis of turquoise module 

We used the ClueGO tool to visualize the 

significant pathways of interested module 

genes with their interactions. There are a large 

number of pathways identified in the Turquoise 

Module related to immune system activity, like 

T-cell migration, G-protein coupled receptor 

signaling, neuropeptide signaling pathways, 

and receptor regulator activity (Fig. 3B).  

3.4 Network analysis of the selected modules 

and Hub genes  

First, genes with the maximum MM (Module 

Membership) and GS (Gene Significance) 

values in turquoise module were compared with 

their DEG list counterparts, and the similar 

genes were then considered the final hub genes. 

We build co-expression networks of selected 

hub genes from the previous step by using the 

GeneMANIA database (https://genemania.org/). 

The selected hub-genes were including: 

CXCL3, UHRF1, ICOS, VNN2, MS4A1, 

GPR18, FCRL1, LINC01215, FCRL4, and 

NLRC3 (Fig. 4A-C). Table 2 shows the 

LogFCs and adjusted p. values of these hub-

genes. 

 

Table 2: Common Hub-genes characteristics. 

Genes Log FC P-value 

CXCL13 5.930151 5.51E-08 

MS4A1 5.3814 2.26E-05 

ICOS 3.258313 5.61E-06 

GPR18 3.118624 7.19E-05 

FCRL1 3.038282 2.70E-08 

VNN2 2.896468 1.87E-06 

UHRF1 2.877767 2.77E-05 

FCRL4 2.756927 2.60E-05 

NLRC3 2.567454 8.37E-05 

LINC01215 2.44512 8.26E-06 

 

 

Figure 3: Module-Trait association analysis; A. Module-trait relationship. Each row corresponds to a module Eigen 

gene, and the column corresponds to Pss status. The numbers in each cell represent the corresponding correlation and 

p-value. B. Functional enrichment analysis of the turquoise module. 

 

https://genemania.org/
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3.5 External validation of hub-genes on bulk 

RNA sequencing data 

In order to validate selected hub-genes in 

previous section, DEG analysis of bulk RNA 

sequencing data of PSS patients was performed. 

Interestingly 5 of 10 hub-genes were common 

between 3 independent lists (Fig. 4A and 4B). 

These genes were including UHRF1, ICOS, 

MS4A1, FCRL4, and NLRC3. 

3.6 Examination of the Protein - Protein 

Interacting Networks 

As evidenced by the PPI analysis, it was 

observed that pre-existing and anticipated 

associations were present among GFR18, 

FCRL1, and VNN2 with an additional 30 

proteins, which are clearly depicted in Figure 

4C. 

 

 

 

Figure 4: Hub-genes detection; A. Turquoise module features of GS and MM, which were significantly correlated with 

pSS status (adjacent normal vs. pSS). Each point represents an individual gene within each module, which was plotted 

by GS on the y-axis and MM on the x-axis. B. Evaluation of similarity between DEGs and hub-genes lists using a Venn 

diagram. C. The similar genes were imported to Gene MANIA to construct a co-expression network. 
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4. Discussion 

PSS is a systemic autoimmune disease that is 

characterized by dryness, widespread pain, and 

severe fatigue in patients and is also considered 

an etiologic factor for lymphoma. Despite the 

progress in understanding the underlying 

mechanisms of PSS, there is a lack of effective 

treatment, and experts agree that we still need 

to identify new biomarkers which may allow 

better diagnosis and treatment of PSS [27-29]. 

The WGCNA algorithm is a novel and popular 

systems biology method that is used to identify 

highly correlated gene modules and hub genes, 

predict gene function, and discover new disease 

biomarkers [30-32]. 

The aim of this study was to reconstruct PSS 

gene co-expression networks and identify key 

genes and biological interactions that play a 

role in PSS by using the WGCNA package. 

Once we found the GSE40611 dataset from the 

GEO database and analyzed it with the 

WGCNA package, we understood that the 

turquoise module is the most correlated module 

with PSS (r = 0.97, P-value = 2.00E-08). Based 

on enrichment analysis on DEGs and this 

module, they play a role in T-cell migration, G-

protein coupled receptor signaling, 

neuropeptide signaling pathways, and receptor 

regulator activity. We also chose three hub 

genes, including GFR18, FCRL1, and VNN2 

based on their LogFC and novelty for further 

evaluation.  

First hub gene we discussed about is GPR18, in 

humans, the GPR18 gene is located on 

chromosomal region 13q32.2 and encodes the 

GPR18 protein  [33]. GPR18 is an orphan G-

protein receptor that was discovered in 1997. It 

highly expressed in different tissues and cells of 

the immune system, like spleen, thymus, lymph 

nodes, and leukocytes, including monocytes, 

polymorphonuclear neutrophils (PMNs) and 

macrophages [34, 35]. Studies have identified 

that regulation of GPR18 is related to physio-

pathological processes like pain, sperm 

physiology, hemodynamic responses, cell 

migration, intraocular pressure, metabolism, 

and immunomodulation, including resolving 

inflammation, leucocyte migration, and 

regulating macrophage apoptosis [34, 36]. 

GPR18 is involved in neurodegenerative 

processes like Alzheimer’s disease and multiple 

sclerosis as well [37, 38]. Yuchen et al. reported 

that GPR18, MS4A1, and TIL-B are reliable 

biomarkers for intratumorally B-cell 

assessments and can be used for prognostic 

purposes in cancers like head and neck cancer. 

They also show significant prognostic power of 

GPR18 mRNA levels in breast and lung cancers 

with microarray expression data [39].  

The FCRL immunoglobulin gene superfamily 

is located in the human chromosome region 

1q21–23 [40]. This gene family encodes six 

transmembrane receptors, including FCRL1-6. 

FCRL1-5 are expressed on B cells' plasma 

membranes in different stages and can regulate 

development, differentiation, activation, 

antibody secretion and isotype switching [41]. 

Among FCRL receptors, in this study we 

focused on FCRL1. Several studies have found 

that this receptor is expressed abnormally in a 

variety of B-cell-related disorders, including 

hematological malignancies, disorders, and 

infection diseases [42, 43]. Rostamzadeh et al.  

reported an overexpression of FCRL1 in some 
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autoimmune diseases like MS, Takayasu’s 

arteritis, lupus anticoagulants, and von 

Willebrand [41]. Liu et al. also suggested the 

usage of FCRL1-5 molecules as biomarkers to 

predict the prognosis of patients with cutaneous 

[44]. 

The Vanin gene family in humans includes 

VNN1, VNN2 and VNN3. VNN1 and VNN2 are 

expressed in several tissues, such as the kidney, 

spleen, and blood leukocytes. VNN2 expression 

increases in neutrophil progenitors during 

differentiation and maturation. 

Glycosylphosphatidylinositol anchored surface 

protein Vanin-2 (VNN2) has an important role 

in leukocyte adhesion and migration to 

inflammatory sites. Although VNN2 is mostly 

found in the plasma membrane, it can be found 

in secretory vesicles as a soluble form [45-47]. 

In addition, the soluble VNN2 is detected in 

synovial fluids of rheumatoid arthritis patients 

and serum derived from the coronary sinus of 

patients with isolated atherosclerotic coronary 

artery disease, suggesting that VNN2 can 

indicate the severity of inflammation [46]. 

Studies also showed that VNN2 is related to 

chemoresistance and relapse in patients with 

acute lymphoblastic leukemia (ALL) [47, 48]. 

5. Conclusion 

In this investigation, an examination of the 

expression profile of PSS disease genes, 

GSE40611, revealed three noteworthy genes, 

namely GFR18, FCRL1, and VNN2. These 

genes are known to have a significant impact on 

inflammatory pathways and the regulation of 

the immune system. Further review of studies 

pertaining to immune system diseases and 

autoimmune disorders has shown that any 

disruption in the gene expression or protein 

function of these aforementioned genes can 

lead to dysfunction in the immune system and 

the development of autoimmune disorders. 
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