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Abstract:
Structural glaucomatous changes occur more frequently in the earlier stages of glaucoma than 
functional defects, so we should give special care to optical coherence tomography (OCT) importance 
as the best current method. The retinal nerve fiber layer (RNFL) change detection is more useful in 
early glaucoma, the ganglion cell complex (GCC) in moderate to advanced glaucoma, while the 
visual field test is more useful in advanced stages, but overall, using a combination of RNFL, optic 
nerve head (ONH), and macular thickness measurement modalities is recommended for glaucoma 
evaluation because each parameter may be affected earlier than the others so, considering the findings 
from the RNFL, ONH, and macula enhances early diagnosis of glaucoma. 
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disc parameters, RNFL, and ganglion cell layer 
simultaneously 11. So, today OCT has replaced 
previous devices for detecting early structural 
glaucomatous damage by evaluating RNFL, 
macular ganglion cell, and ONH changes with 
acceptable reproducibility and reliability 12-15.

The OCT is the main test used for early 
diagnosis of glaucoma and sometimes neuro-
ophthalmic diseases. Because OCT evaluates 
various parameters, such as ONH, RNFL, and 
inner macular area, it has replaced previous 
technologies, such as HRT and GDX, for early 
diagnosis of glaucoma, even years before the 
visual field defects emerge. The OCT is widely 
used by ophthalmologists worldwide in daily 
practice, but the interpretation of OCT print 
out requires enough experience. A wide range 
of artifacts and inter-individual variations lead 
to diagnostic errors if the ophthalmologist is 
not well educated on this technology.

Optical Coherence Tomography (OCT) is a non-
invasive imaging technique that utilizes optical 
interferometry to produce cross-sectional 
images of ocular tissue. It has a penetration 
depth of 2-4 mm and provides images that 
resemble histological sections. Research on 
the applications of light interferometry for 
ocular tissue imaging began in the late 1980s, 
with the introduction of the first commercial 
time-domain OCT platform by Zeiss in 1997. 
The technology has since evolved, with the 
development of spectral-domain OCT (SD-
OCT) technology, which provides faster image 
acquisition, higher resolution, and advanced 
segmentation capabilities software, resulting 
in better performance. Other advances include 
swept-source optical coherence tomography 
(SS-OCT), OCT angiography, and adaptive 
optics optical coherence tomography (AD-
OCT) systems.
Improved software such as adaptive 

Section I: OCT evolution and applications 
in glaucoma

The optic nerve comprising the axons of 
retinal ganglion cells (RGCs), extends from 
the lamina cribrosa to the optic chiasm. It is 
covered by meningeal sheaths so that the 
nerve space is continuous with that of the 
brain. The RNFL near the disc is thicker 
because all the fibers converge there. The 
lamina cribrosa, as a network-like dynamic 
structure located in the posterior scleral canal, 
helps preserve a pressure gradient called the 
translaminar pressure difference (TLPD) 
between the extraocular and intraocular 
spaces, which means the difference between 
intraocular pressure (IOP) and intracranial 
pressure (ICP) in subarachnoid space (SAS). 
The RGC axons at the lamina cribrosa are 
the most vulnerable to IOP-related stress and 
strain 1, 2. The intraocular pressure leads to 
axonal transport blockade and RGC death 3, so 
ganglion cell damage occurs at the level of the 
lamina cribrosa first. The axons and ganglion 
cell bodies disappear through apoptosis, but 
this destructive process cannot be detected 
by clinical examination before exceeding a 
certain critical threshold [4,5]. Also, these 
structural damages frequently precede 
functional damage. For example, standard 
automated perimetry can remain normal until 
about 35 % of the RGCs are destroyed 6-8. So, 
methods identifying the structural changes 
are very important in the early diagnosis of 
glaucoma 5 9, 10.

A confocal scanning laser ophthalmoscopy, 
Heidelberg retina tomograph (HRT), and 
scanning laser polarimetry (GDX nerve fiber 
analyzer) can give us some information about 
optic disc and RNFL, respectively. However, 
OCT provides useful information about optic 
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compensation (AC), enhanced depth imaging 
optical coherence tomography (EDI-
OCT), and swept-source optical coherence 
tomography (SS-OCT), have significantly 
enhanced the evaluation of the lamina cribrosa, 
which includes detection of laminar posterior 
displacement, lamina cribrosa thickness, focal 
defects, and micro-architecture changes. AC 
uses a wavefront sensor to measure ocular 
aberrations induced by the lens or cornea. A 
deformable mirror or a spatial light modulator 
then compensates for aberrations, removes 
blood vessel shadows, increases tissue 
contrast, and improves image quality. EDI-
OCT has allowed for better visualization 
and measurement of choroidal thickness and 
improved cross-sectional lamina cribrosa 
images by placing the OCT closer to the eye 
to obtain an inverted image with focused 
illumination that is more posteriorly located 
at the level of the choroid and inner sclera. 
SS-OCT uses Fourier domain principles and 
combines the advantages of standard TD-OCT 
and SD-OCT. It does not require a moving 
mirror like TD-OCT and does not require a 
spectrometer like SD-OCT. It uses a narrow 
bandwidth light source that changes the 
wavelength sweeps across a narrow band of 
wavelengths in time and frequency variations 
with time and encodes different echo delay 
times in the light beam. SS-OCT measures 
all the light echoes simultaneously, which 
dramatically improves the speed and detection 
sensitivity. It has a scan speed of 100,000 
A-scans/second, deeper tissue penetration, and 
wider imaging field compared to SD-OCTs. 
The diagnostic accuracy of SS-OCT and SD-
OCT for RNFL imaging is similar. The Plex 
Elite 9000 of cirrus OCT, which uses a swept 
source tunable laser with a wavelength of 
1060 nm, can reach a speed scan of 100,000 
A-scans/second 11-38.

Section II: Important OCT parameters for 
glaucoma
Peripapillary RNFL analysis in OCT
The retinal nerve fibers are the ganglion cell 
axons that eventually enter the optic nerve. 
Loss of RNFL can be observed grossly in 
red-free photos and is quantified with OCT. 
Although macular ganglion cell analysis and 
ONH help with glaucoma evaluation 39, 40, 
RNFL is still the most important parameter 
for glaucoma diagnosis, especially in 
preperimetric glaucomatous damage 41 and 
detection of progression by obtaining a 
circular peripapillary B-scan to measure 
RNFL thickness measured circularly or RNFL 
extracted along the circle from a raster cube 
of data centered over the optic nerve 11, 41, 42. 
The RNFL undergoes thinning with age in 
healthy eyes at a mean rate ranging from 

-0.48 to -0.60 µm/year. However, glaucoma 
progression has a faster rate of RNFL thinning 
ranging from -0.98 to -2.12 µm/year 11.  Apart 
from age, the risk of faster loss over time in 
eyes can be associated with thicker baseline 
RNFL. However, the baseline thickness does 
not appear to affect the rates of change in 
GCL + IPL 44.
Previously only a single circumpapillary 
RNFL scan centered on the ONH was applied 
for RNFL thickness evaluation and set to about 
3.4 mm in diameter. However, according to 
recent studies, the most common location 
for RNFL thinning in glaucoma is located at 
the inferotemporal meridians, approximately 
2 mm away from the disc center, which is 
outside of the 3.4 mm diameter circle, so the 
RNFL thickness map cube from four SD-OCT 
devices ( Zeiss Cirrus HD-OCT,  Topcon 3D 
OCT 2000, Optovue ((Fremont, CA), and 
Nidek RS-3000 OCT) and three circle scans 
of 3.5, 4.1, and 4.7 mm by the GMPE software 
of spectralis OCT overcome this defect 11. The 
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segmentation algorithm of OCT identifies 
RNFL and measures the RNFL thickness on 
the circular peripapillary scan. These data 
are then plotted along the scan circle, usually 
starting from the temporal quadrant (9 o’clock 
in a clockwise direction for the right eye, 3 
o’clock in a counterclockwise direction for 
the left eye) as the TSNIT plot. The RNFL 
calculation circle and TSNIT plots can be 
presented in different formats, depending on 
the manufacturer.
OCT devices offer various thickness 
measurements and analysis options, such as 
average, hemifield, quadrant, and clock-hour 
sector measurements. These numeric data can 
be displayed on false color maps or pie graphs. 
Typically, a TSNIT plot displays a double 
hump pattern, with peak RNFL thickness in the 
superior and inferior sections. Comparisons 
are made to the normative database for 
each age group using any OCT device, with 
probability levels for abnormality displayed 
on the TSNIT plot’s six-color scale. This scale 
includes green, yellow, and red in all devices, 
white in Cirrus OCT, and blue and purple in 
the newer version of Spectralis OCT. RNFL 
measurements at or below the 1 % thinnest 
measurement from the normative database of 
the specific OCT device fall into the red area, 
indicating results outside the normal range. 
Measurements within the 1–5 % thinnest 
of the normative database are borderline 
abnormal and displayed in the yellow area. 
RNFL measurements within the 90 % middle 
of the normative database are considered 
within normal limits and marked in green.The 
RNFL thickness measurements beyond 95 % 
of the normative database measurements are 
considered higher than normal. They are seen 
in the white area in cirrus OCT and the blue 
or purple area in the spectralis OCT. The Rim 
Notches match commonly with RNFL defects 

but averaging can hide focal axonal defects 
in the sectorial chart, so it is reasonable 
to evaluate the whole RNFL profile graph 
meticulously 11. The average and inferior 
quadrant peripapillary RNFL thickness values 
have the best diagnostic accuracy, followed 
by the superior quadrant RNFL thickness 
for glaucoma diagnosis 45-47. The test-retest 
variability of SD-OCT systems for the average 
RNFL thickness is below 5 μm 48-53. It is 
important to know that peripapillary RNFL 
may cause changes in diseases, including 
retinal vein occlusion, diabetic macular 
edema, retinitis pigmentosa, after peeling 
the inner limiting membrane, pan-retinal 
photocoagulation, vitrectomy 54-60

Optic disc parameter analysis

The bundled axons pass through the lamina 
cribrosa as the main site of RGC axonal 
injury within the posterior scleral foramen. 
The lamina cribrosa is a mesh-work sieve-
like structure containing astrocyte-covered, 
capillary-containing connective tissue 
beams 61, 62. The prelaminar neuroretinal tissue 
obscures the view of the lamina cribrosa on 
ophthalmoscopy. However, newer types of 
OCT, such as swept-source OCT and EDI OCT, 
have given us the opportunity of evaluating it 
exactly 16, 63, 64. The minimal neuroretinal rim 
measure obtained by spectralis OCT is the 
minimum distance from BMO to ILM, and 
the resulting parameter is BMO-MRW 11. 
Although for more detailed information about 
lamina cribrosa, we can use some special 
techniques, including EDI OCT or SS OCT, 
because glaucomatous eyes have higher mean 
LCD,  greater lamina cribrosa curvature,  
means lamina cribrosa bowing and sliding 
larger pores area. Even higher pore diameter 
standard deviations compared to healthy eyes 
become more prominent with progression and 
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occasionally localized posterior displacement 
of lamina cribrosa (focal lamina cribrosa 
defects) related to localized RNFL loss 
and optic disc hemorrhages SS-OCT and 
adaptive optics technology have made lamina 
cribrosa visualization better than EDI OCT 
alone 18,19,65- 67, 71,73-75. Also, combining adaptive 
optics with SD-OCT has given 3D in vivo 
imaging of the lamina cribrosa 76, 77. Limitations 
of using lamina cribrosa characteristics for 
glaucoma evaluation are its characteristics 
variation in the population, the difficulty of 
visualizing the peripheral lamina due to blood 
vessels, scleral shadow, broken images, media 
opacity or small pupil size, and also the effect 
of age and axial length on it may limit the 
ability of lamina cribrosa measurements for 
glaucoma evaluation 16,28,75,78. The neuroretinal 
rim change analysis is included in cirrus HD-
OCT GPA software and the new Glaucoma 
Module Premium Edition (GMPE) of the 
spectralis OCT 11.

Macular Ganglion cell layer analysis

Macular thickness can be affected in 
glaucomatous eyes, representing an indicator 
of possible RGCs damage, since above 
50 % of the total RGCs are in the macula 
and makes up 30- 35 % of the total retinal 
thickness in the 6-8 layers.49, 85, but the GCC 
thickness measurement of the macula is 
superior to total macular thickness in detecting 
glaucoma 9, 14, 84, 86-90. A macular inner retinal 
layer is more reliable in people with small 
or large optic discs, peripapillary atrophy 
named optic discs, or high myopia situations 
presenting unreliable PPOCT reports 92. Also, 
ganglion cell analysis in advanced glaucoma is 
more helpful than RNFFL because it remains 
above the measurement floor range longer 
than peripapillary RNFL thickness . Although 
there are several advantages to ganglion cell 

analysis, it is necessary to remember that 
retinal pathologies can affect the posterior 
pole thickness map analysis 85, 96, 97. 
Various OCT systems utilize diverse macular 
measurements to assess the diagnosis and 
progression of glaucoma. For instance, 
Cirrus HD-OCT evaluates the GCL + IPL 
(ganglion cell layer + inner plexiform layer), 
whereas RTVue OCT and Nidek OCT 
measure the ganglion cell complex (GCC; 
mRNFL + GCL + IPL). The Topcon OCT 
generates a variety of combination maps 
for these three layers. Spectralis OCT, on 
the other hand, assesses the overall macular 
thickness and the segmentation of each 
individual retina layer, including mRNFL, 
GCL, and IPL 11, 93, 98. The earlier version of 
the Heidelberg Engineering Spectralis OCT 
Posterior Pole Asymmetry analysis could only 
measure the overall thickness of the macula’s 
retinal layer, without the ability to differentiate 
between its various sub-layers. However, a 
newer version of this technology (GMPE) now 
permits the segmentation of these different 
layers for more detailed analysis.99, 100.  Topcon 
DRI-OCT Triton can simultaneously measure 
GCC and GCL + IPL thickness. The inferior 
temporal sector of ganglion cell analysis 
is the most important in the macula for 
glaucoma evaluation, consistent with inferior 
sectors of the peripapillary RNFL area 101-104. 
The GCL + IPL values decrease faster with 
aging than circumpapillary RNFL thickness 
measures 105.
Altogether for evaluating glaucoma, it seems 
that GCC thickness defect is more accompanied 
by paracentral scotoma frequently seen in 
NTG, and pRNFL thickness defect is more 
significant in eyes with advanced or peripheral 
VF defects. The RNFL change detection is 
more useful to show progression in glaucoma 
suspects, preperimetric glaucoma, early 
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glaucoma, and GCC trend analysis in eyes 
with moderate to advanced glaucoma. In 
contrast, functional change is a better indicator 
as the disease progresses to advanced stages . 
Overall, a combination of RNFL, ONH, and 
macular thickness measurement modalities 
is recommended to increase the chance of 
identifying early glaucomatous damage. Each 
of these parameters may be affected earlier 
than the others, so considering the findings 
from RNFL, ONH, and macula enhances early 
diagnosis of glaucoma 11.

Section III: Available OCT devices for 
glaucoma 

Although each OCT device has its advantages 
and disadvantages, their thickness 
measurements are not interchangeable, so 
there is no significant difference between their 
protocols concerning diagnostic value 108-110.

Heidelberg spectral glaucoma scanning 
protocol

Heidelberg Engineering (Heidelberg 
Engineering Inc., Heidelberg, Germany) 
manufactures Spectralis OCT systems that use 
an 870 nm wavelength diode laser as a light 
source with a first-generation scanning speed of 
40,000 scans/second up to 85,000 scans/second 
in new versions with a scan depth of 1.9 mm, 
the axial resolution of 3.87 μm, and transverse 
resolution of 14 μm 11, 111. Two hundred-one 
normal Caucasians (111 men and 90 women) 
were registered in the normative database of 
this device between 18 and 78 years 40. For 
glaucoma, the basic original module was the 
RNFL analysis and Posterior Pole Asymmetry 
analysis software. GMPE software for 
spectralis OCT has allowed some upgrades 
to the RNFL analysis, such as an automated 
anatomic positioning system, detailed ONH 
analysis, and possible evaluation of each level 

of macular thickness separately for ganglion 
cell analysis. Multimodal imaging with 
fundus photographs, fluorescein angiography, 
and OCT images in a single output is another 
capability of the spectralis system 11.

1. RNFL thickness profile

Standard original RNFL imaging algorithm 

A 12 ° diameter peripapillary circular scan, 
equivalent to a 3.46 mm retinal diameter 
in eyes with average corneal curvature and 
axial length, is performed with a 0 ° degrees 
temporal point. For the right eye, the scan is 
counted in a clockwise direction, while for the 
left eye, it is counted in a counterclockwise 
direction. RNFL measurements are taken and 
compared to the normative database for each 
sector, including temporal (90 °), temporal 
superior (45 °), nasal superior (45 °), nasal 
(90 °), nasal inferior (45 °), and temporal 
inferior (45 °). The Glaucoma Module 
Premium Edition
During RNFL analysis with GMPE software, 
three circle scans of 3.5, 4.1, and 4.7 mm 
automatically are centered around the BMO 
centroid 24 radial equidistant scans for ONH 
analysis 11. Also, the automated anatomic 
positioning system is applied to make the 
test more reliable. The angle between the 
fovea-to-BMO centroid (FoBMO) axis and 
the horizontal axis ranges from − 17 ° to + 6 ° 
with a mean of - 7 °112. The OCT databases 
incorrect for the FoBMO alignment have 
wider confidence intervals, and even a slight 
head tilt can change this angle and result 
compared to a normal database with high test-
retest variability. So the automated anatomic 
positioning system is applied for GMPE to 
allow FOD axis to start the scan circle as the 
most temporal point instead of horizontal line 
applied in the previous versions. FoBMO 
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alignment is critical to ensure anatomical 
alignment of all eyes with healthy control 
eyes (normative database), thereby enhancing 
measurement accuracy. The blue line in the 
figure denotes the fovea to Bruch’s membrane 
opening (FoBMO) axis of two eyes with 
different anatomical positions (a and b) of 
the fovea relative to the BMO center. The 
GMPE of Spectralis OCT scan orientation is 
automatically aligned along the FoBMO axis 
of the eye. 11, 97, 112-114 The OCT output shows 
the RNFL thickness classification around the 
papillary with six standard pie charts consisting 
of temporal (90 °), temporal superior (40 °), 
nasal superior (40 °), nasal (110 °), nasal 
inferior (40 °), and temporal inferior (40 °) 40, 
according to structure-function map explained 
in 115.

2. Optic disc parameters analysis 

BMO is a useful landmark in glaucoma 
imaging due to its relative stability under 
various conditions, such as large IOP changes 
caused by glaucoma surgery 11. The previous 
version of spectralis OCT had no analysis 
and presented no information about ONH 
parameters. However, in GMPE, we can analyze 
the optic disc through Bruch’s membrane 
opening-minimum rim width (BMO-MRW) 
and Bruch’s membrane opening-minimum 
rim width area (BMO-MRA) as a neuroretinal 
rim thanks to the ease of identifying the highly 
reflective Bruch membrane and the internal 
limiting membrane. However, we should 
know that these parameters may be affected 
by IOP. For example, it becomes greater 
after lowering IOP while RNFL thickness 
remains constant (reversal of glaucomatous 
optic disc cupping) 116-118. So, BMO-MRW 
is considered in each ONH radial scan as 
alternative measurements for the number of 
axons entering ONH 120-123.

3. Ganglion cells analysis:

Posterior pole analysis software can calculate 
the total retinal thickness of the entire posterior 
pole retinal in a central 8 x 8 grid as a colored 
thickness map with warmer colors for the 
thicker area and visible average total retinal 
thickness area at the center of each pixel. 
Additionally, inter-eye thickness asymmetry 
analysis for comparing the right and left macula 
and intra-eye thickness asymmetry analysis 
for comparing the inferior and superior half of 
the macula are performed 47, 53, 99, 100, 124-129. The 
newer spectralis OCT (GMPE) can segment 
macular layers separately but with no statistical 
analysis 11. The posterior pole vertical-
oriented scan (PPoleV) algorithm in the newer 
spectralis versions is a previous alternative. 
So, 19 vertical B-scans, involving a 30 ° × 15 ° 
scanning area perpendicular to the FoBMO 
axis with clear macular layer segmentation, 
are shown as a heat map on a circular grid 
(an ETDRS grid format), including average 
thickness in µm and average volume in mm 3 
of ganglion cell layer in each sector 11, 130, 131. 

4. Glaucoma Progression Analysis:

Chapter 2:  Carl Zeiss Meditec 

Carl Zeiss Meditec (Dublin, CA) is the 
manufacturer of a diagnostic SD-OCT 
device called ZEISS Cirrus HD-OCT, which 
entered the market in 2007 and made the first 
commercial OCT system as the OCT-1 in 1997. 
FastTrac is an eye-tracking system available 
on the Cirrus 5000 HD-OCT model, which 
tracks the patient’s eye movements to reduce 
motion artifacts compared to the previous 
Cirrus 500 model 11. The normative database of 
the Cirrus HD-OCT involves 282 people equal 
to or older than 18 years with a refractive error 
within −12 to +6 diopters and axial length of 
22- 28 mm without known ocular pathologies. 
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On the RNFL and macular ganglion cell 
deviation maps, at each superpixel, suspect 
data as measurements between 1 % and 5 % 
of the normative database are highlighted 
in yellow, and 1 % of the normal database 
is highlighted in red. The 5 % (largest) of 
measurements is in the white area, and the grey 
color is not applicable because data gained is 
not comparable with normal database due to 
some of its characteristics, such as very large or 
small disc or cup-to-disc ratio of less than 0.25. 
About 90 % of measurements fall in the green 
area (5 % < green ≤ 95 %). The 5 % (worst) of 
measurements fall in the yellow area outside 
the normal limit if the measurement is worse 
than 1 % of the normal database. The 5 % 
(largest) of measurements is in the white area, 
and the grey color is not applicable because 
data gained is not comparable with normal 
database due to some of its characteristics, 
such as very large or small disc or cup-to-disc 
ratio of less than 0.25 11, 40.

1. RNFL thickness profile

The optical disc is evaluated in a 6x6 mm 
cube consisting of 200-B mode scans, each 
consisting of 200-A mode scans, so each 
A-scan corresponds to 30 µ2 of the retina in 
an emmetropic eye.  The device automatically 
detects the center of the optical disk. It forms 
a 3.46 mm circle around the disk, analyzes 
the thickness of RNFL around the disc, and 
compares it with the normative database. The 
signal strength value is between 0 and 10 
for the whole scan, indicating better value in 
higher numbers and unacceptable with a signal 
strength of 5 or less 11. The RNFL thickness 
map is shown on all scanned cube data in 
which cool colors indicate thinner areas.
In comparison, warm colors indicate thicker 
areas, so the RNFL thickness (from 0 as blue 
to 350 µm as white) is visible in all 6x6 mm 

areas 40. In this manner, the observer may 
better detect RNFL loss than a single 3.46 
mm circumpapillary RNFL scan 44, 48, 101. The 
TSNIT thickness profile shows the RNFL 
thickness for each point across the sircle 
around the disc, compares these values with 
the age-matched normative database and 
shows them with color codes (white, green, 
yellow, and red) 40. Through a deviation map, 
patient RNFL thickness in the cube, which 
consists of 2500 superpixels, is compared with 
aged-matched normative data via deviation 
map with the mentioned color coding way 11, 40.

2. Optic disc parameters analysis 

The OCT device automatically measures 
several ONH parameters, including disc area, 
rim area, vertical rim thickness, horizontal rim 
thickness, cup-to-disc area ratio, vertical cup-
to-disc ratio, horizontal cup-to-disc ratio, and 
cup volume. 132.

3. Ganglion cells analysis

To aid in the diagnosis and monitoring of 
glaucoma, it is essential to scan the macular 
region, with a particular focus on ganglion 
cell analysis. The device generates a 6 x 6 
mm macular cube data centered on the fovea. 
The Cirrus HD-OCT offers two scan options 
for the macular cube, including a default 
512 x 128 grid with 128 horizontal B-scans, 
each with 512 A-scans, totaling 65,536 
A-scans. Alternatively, a 200 x 200 macular 
scan algorithm is available, consisting of 
200 horizontal B-scans with 200 A-scans 
each, including 40,000 A-scans with higher 
vertical resolution and shorter acquisition 
time, making it useful for patients with less 
optimal fixation. The ganglion cell analysis 
algorithm calculates the average, minimum, 
and sectoral thicknesses (superotemporal, 
superior, superonasal, inferonasal, inferior, 
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inferotemporal) of the ganglion cell-inner 
plexiform layer (GCIPL) and provides a 
thickness map as a color-coded topographic 
image and deviation map 98, 133, 134.

4. Glaucoma Progression Analysis

To analyze glaucoma progression, Cirrus 
HD-OCTGPA utilizes at least four scans to 
examine two sections of the eye: the RNFL and 
ONH area, as well as the macular region. For 
the event analysis (GPA), the first two scans 
selected by the user serve as baseline data, 
and up to six subsequent scans are compared 
with these baseline images, independent of the 
normative database. In normal subjects, the 
average GCIPL thickness is 82.1 ± 6.2 µm, 
with the superonasal sector being the thickest 
and the inferior sector being the thinnest. The 
thinning rate due to aging is around -0.31 µm/
year. An average GCIPL thickness change 
of more than 4 µm is considered normal 
and typically indicates an arcuate defect on 
the thickness change and progression maps. 
While the floor effect can affect macular 
parameters, this tends to happen later in the 
disease progression than in the RNFL.
For GCIPL progression analysis using GPA, 
a minimum of four high-quality macular 
scans (two baselines and two follow-ups) are 
necessary. If there is a decrease in thickness in 
the first follow-up, the pixel is coded as yellow. 
However, if this decrease is repeated, the pixel 
is coded as red 40. The Cirrus HD-OCT GPA 
evaluates RNFL thickness map progression 
for focal changes, RNFL thickness profile for 
broader focal changes, average and inferior/
superior hemifield RNFL thickness for diffuse 
progression, and average cup-to-disc ratio for 
ONH changes over time 11.

PanoMap Analysis

The PanoMap analysis combines the macular 

cube and the 200 × 200 optic disc cube 
involving RNFL in a single report as a wide-
field view accompanied by a macular full-
thickness map, providing a more precise 
spatial relationship between the parapapillary 
and macular areas to simplify the diagnosis 
making 11.

Chapter 3: Optovue-RTVue 100 

Optovue achieves a scan rate of 70,000 
A-scans/second with a 5 μm axial and 15 μm 
transverse resolution. There are 1,600 eyes 
in the database; 600 are from the United 
States and 1,000 from around the world. For 
comparison with other people in the same 
age group, it uses green (normal), yellow 
(suspicious), and red (abnormal) 40.

1. RNFL thickness profile

The optical disc is calculated using a 6x6 mm 
cube of 101 lines. Nine radial and 13 circular 
scans with a diameter of 1.3-4.9 mm are 
performed around the optic disc defined by 
the pigment epithelium border 40. The average 
RNFL thickness in four 3.45 mm diameter 
circular scans are calculated in 0.16 seconds, 
and the result is compared with normative 
parameters. 

2. Optic disc parameters analysis 

The RTVue-100 puts the cup plane at 150 mm 
above the defined disc plane between RPE tips 
for getting cup-to-disc horizontal and vertical 
ratios, optic disc area, cup area, rim area, cup-
to-disc area ratio, disc volume, cup volume, 
rim volume, and cup-to-disc volume ratio.

3. Ganglion cells analysis

The GCC is defined as the sum of RNFL, GCL, 
and IPL thickness with a scan pattern centered 
0.75 mm temporal to the fovea, as a square 
grid of 7×7 mm consisting of 15 B-scans gives 
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us three color-coded maps, the GCC thickness 
map for a healthy eye on the left side with a 
thick band surrounding the macula, the GCC 
thickness map for a glaucoma patient on the 
right side with a decrease in the thickness of 
this band around the macula, and the deviation 
map 86, 135. The deviation map shows the 
percentage loss from the normal database at 
each pixel in the map, so green and yellow 
are nearly normal areas, blue represents GCC 
thinning from 20-30 % relative to normal, and 
black in the deviation map represents a 50 % 
loss or greater, red represents 20-40 % thicker 
than normal and white represents 50 % increase 
in the GCC thickness or greater relative to 
an age-matched normal. The significance 
map (normal database reference map) shows 
regions where the change from the normal 
database reaches statistical significance, 
so green represents normal (P value 
5 %-95 %), yellow indicates borderline results 
(1 % ≤ p-value < 5 %), and red represents 
a normal outside limit (P value < 1 %). In 
summary, the significance map shows how 
significant the difference of each area of the 
macular ganglion cell complex is compared 
to the normal value. The circular mask in the 
center of the deviation and significance maps 
macula shows impossible calculation because 
of the absence of ganglion cells in this region, 
the thickness, deviation, and significance 
maps for a glaucoma patient 136. Pattern-
based parameters, such as focal loss volume 
(FLV) and global loss volume (GLV), have 
been found to have better diagnostic values 
than mean GCC loss alone. FLV represents 
the average amount of focal ganglion cell 
complex (GCC) loss, while GLV is the sum 
of negative fractional deviation. Mean GCC 
loss alone may overlook focal GCC loss in 
eyes with above-average GCC thickness, 
highlighting the importance of pattern-based 

parameters 39, 40, 86, 135, 137-141.

4. Glaucoma Progression Analysis 

The RTVue progress analysis compares RNFL 
thickness measurements and the GCC map 
over time and determines whether the changes 
are statistically significant 142.

Summary

Following the demographic data quality scan 
of patients, which is important, physicians 
who interpret these reports should review them 
systematically so that they do not miss small 
details that may be important for the final 
decision, as well as for identifying artifacts 
or anatomical changes that could lead to 
misdiagnosis. The physician must determine 
whether the patient’s ocular condition is worthy 
of comparison with a normative database of 
the available type of OCT. 

Conclusion

The OCT is an excellent method for 
diagnosing and following up patients with 
glaucoma, considering nerve fiber layer 
thickness, ganglion cell analysis, and optic 
disc characteristics.
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