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Abstract: The volume of deadwood increases annually because of changes in environmental, climatic,
and hydrological conditions. On the other hand, during the last decade, manufacturers of wood-based
boards have been facing an acute problem of a shortage of conventional raw materials. The purpose
of this study was to evaluate the possibility of using wood particles from deadwood in the production
of particleboards. Three-layer particleboards with different content of deadwood particles (0%, 25%,
50%, 75%, 100%) were produced. Conventional urea-formaldehyde (UF) resin was used for gluing the
particles. The physical and mechanical properties of the boards, as well as the formaldehyde content
in the boards, were determined. In addition, the effect of adding melamine-urea-formaldehyde
(MUF) resin to UF adhesive on the properties of the boards was investigated. Replacing conventional
sound wood particles with deadwood particles leads to deterioration of the physical and mechanical
properties of the boards. The boards from deadwood particles absorb more water and swell more.
The bending strength (MOR), modulus of elasticity in bending (MOE), and internal bonding (IB)
values for boards with 100% deadwood particles are reduced by 26.5%, 23.1%, and 72.4%, respectively,
compared to reference boards from sound wood particles. Despite this, a significant advantage is that
boards made from 100% deadwood particles are characterized by 34.5% less formaldehyde content
than reference boards made from conventional sound wood. Moreover, adding 3% of MUF resin to
UF adhesive increases MOR, MOE, and IB by 44.1%, 43.3%, and 294.4%, respectively.

Keywords: particleboards; deadwood; wood particles; formaldehyde emission; urea-formaldehyde
adhesive; bending strength; internal bond strength; modulus of elasticity; thickness swelling

1. Introduction

An intensive consumption of wood has led to a shortage of wood of industrial value
in many countries of the world. This encourages wood processing firms to search for
additional wood resources suitable for industrial use. Deadwood (dead fallen and standing
trees, as well as felled by a windstorm etc.) (Figure 1) can be such an unused resources
of raw materials. Nowadays, the challenge of tree drying in the forests is one of the
acute ones for the whole of Europe. An increase in the average annual temperature and a
decrease in the average annual precipitation contribute to the rapid reproduction of fungal
diseases, various bacteria and pests and the growth of stocks of deadwood. Millions of
cubic meters of infested trees (beetle-killed trees are very common) are now standing in
Europe forests (Figure 1). With such rapid climate changes observed in recent years, the
area of such deadwood can be expected to increase. Currently, the major European forest
product companies harvest green wood. However, it is possible that in the near future, the
majority of available wood will be infested wood. In unmanaged Central European forests,
deadwood usually comprises up to 25% of the entire volume of wood in the forest [1].
Over the last 25 years, the amount of deadwood has increased in all European regions
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(Figure 2) [2,3]. This could be explained by more frequent disturbances such as storms,
insects’ outbreaks and forest fires caused also by changing climatic conditions. It seems
that temperature and moisture are the driving factors. The average volume of deadwood
in 2015 is above 11 m3/ha, equal to above 7% of the average volume of the growing stock
density of European forests [2,3]. From Figure 2, it can be seen that in countries with
mountain forests, the amount of deadwood is 2–3 times higher than in lowlands.
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We have to remember that deadwood is a crucial component of forest ecosystems and
plays an essential role in sustaining biodiversity as well as in processes such as soil forma-
tion and nutrient cycling [4]. However, we cannot also forget that wood is an important
renewable commercial commodity, irreplaceable in numerous applications necessary for
society’s development [2]. Therefore, considering that deadwood represents a significant
economic resource, economic uses of this resource need to be carefully considered [5].

Over the years, research efforts have focused on the study of how well deadwood is
suited for the manufacture of a range of products (power poles, pallets, round timbers,
lumber, laminated wood, panels, pulp and paper, fuel etc.) and to better understand
how such wood will affect different products. Despite that, the use of deadwood is
currently limited. This is often because certain challenges exist through all phases of the
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production of wood products from deadwood, including harvesting, transportation, log
storage, processing, and end-product marketing [6].

Woo et al. [7] found that infested wood compared to sound wood is characterized by
substantial loss of moisture, lower density, significantly lower concentrations of extractives,
lower lignin and hemicellulose contents and better permeability. Another authors [8] noted
that standing dead trees lost a 50% more of moisture content compared to fallen trees or
trees on the ground. Such excessive dryness of deadwood creates technical problems for
its use [5]. For example, the reduction in the moisture content of the wood makes it prone
to checking and warping. This negatively affects the value of lumber and chip quality for
pulping [7,9], as well as causes problems with the quality of flakes (or strands) used in
composite boards and with maintenance of cutting tools [10]. However, on the other hand,
as deadwood dries, it becomes lighter, which reduces transportation costs, and requires
less drying time, which can save production costs [5].

Increased permeability of deadwood indicates possible irregular absorption or over-
absorption of finishes and glues [11]. Troxell et al. [12] observed an increase of up to three
times in chemical uptake when deadwood is considered.

Wood density decreases significantly over the course of decomposition [7,13–15]. For
example, while wood density of living Norway spruce trees is about 0.43 g/cm3 [13], the
average density of the most decayed Norway spruce deadwood is only 0.138 g/cm3 [14].
Other authors mentioned similar results. At one year after death, the density of beetle-killed
southern pine was 60% of green timber [15].

According to the literature, the influence of different types of pests on the strength of
wood is unclear. Some authors observed a reduction of 30–40% in toughness, of 11% in
stiffness or modulus of elasticity, and of 19% in breaking strength or modulus of rupture in
southern pine beetle-killed timber [16]. Walters [17] pointed out that southern pines had
shown a reduction of 12% in bending strength (MOR) and 13% in modulus of elasticity in
bending (MOE) after one year since death. On the contrary, several authors showed that
infested wood has quite similar properties (including strength characteristics) to those of
green timber [18] or has no effect on wood mechanical properties [19].

In the deadwood, because of the action of biologically active organisms, in addition
to changes in physical and mechanical parameters, there are also changes in the chemical
composition. Seifert [20] found losses of 7% cellulose and 3–4% hemicellulose in blue-
stained timber, which could be related to changes in permeability and/or toughness. Thus,
with a deep degree of mycological destruction, the physical and mechanical properties of
wood deteriorate to such an extent that it becomes unsuitable for use as a construction
material. However, the morphological structure and chemical composition allow its use as
an active filler for the manufacture of wood composite materials.

Several authors [21] concluded that dead pines after an outbreak is a suitable feedstock
for the production of lignocellulose micro-/nanofibrils. They found that the tree with
advanced decay, which has no value for lumber, produced lignocellulose nanofibrils similar
to those from the live tree. Studies also found that the infested trees have great potential
for wood-plastic composites [22,23] and cement-bonded particleboard [24].

Various researchers have studied the possibility of using infested wood to make
veneers and plywood. The most serious problems that were observed when processing
dead wood into veneer were reduced veneer yield and reduction in full-sheet recovery. For
example, Walters and Weldon [25] found a 9% less veneer volume, fewer full sheets and a
higher percentage of random-width veneer, whereas Snellgrove and Ernst [26] found a 30%
reduction in volume recovery and a higher percentage of random-width veneer for wood
after three years since tree death. On the contrary, several authors found that there was no
significant difference in veneer recovery between green and dead timber, especially when
the affected trees are used immediately after the attack [25]. To improve veneer recovery
from beetle-killed logs, some authors recommend proper conditioning of the logs [27].
They also showed that beetle-wood veneer can be dried faster, with a reduction in drying
time by about 35% and a 27% increase in productivity from veneer drying.
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Some authors note that the costs are similar in making particleboards from beetle-killed
timber and from green trees, and significant equipment modifications for the production of
such boards (using deadwood) is not required [28]. Moreover, studies showed an improved
quality of particleboard when adding blue-stained timber into the furnish [29]. However,
on the other hand, the use of beetle-killed wood leads to an increase in the amount of
small fine fraction produced, the need for extra screening capacity and additional extra
maintenance for cutting knives, the decrease in slenderness, and the tendency of the flakes
to become folded [28,30].

A positive aspect regarding the use of deadwood in the production of particleboards
is its significantly lower cost and limited application currently, compared to the traditional
sound wood, which makes such a raw material attractive from an economic point of view.
A negative aspect is the reduction of physical and mechanical properties of wood com-
posites made from deadwood. It would be possible to compensate the loss in mechanical
properties of composites from deadwood by using more reactive adhesive compositions
than those traditionally used. Urea-formaldehyde (UF) resins are the most widely used
adhesives in the manufacture of particleboards. In practice, melamine-urea-formaldehyde
(MUF) resins are often added to UF adhesives to improve its adhesive strength and water
resistance properties [31]. However, the modification of UF adhesives with MUF resin for
the production of particleboards from deadwood requires additional research. Moreover,
the UF adhesives have a major drawback, connected to the hazardous emission of volatile
organic compounds (VOCs) and free formaldehyde from the finished particleboards [32].
As a result, new formaldehyde emission restrictions have been set for wood-based com-
posites in Europe, the United States, and Japan. From the other hand, it was found that
the emission of volatile organic compounds from wood decreases with wood storage
tremendously. The emission of VOC from pine wood decreased by 50% on storage for
14 days [33]. Furthermore, Schäfer and Roffael [34] found that with increasing storage time,
the spruce and pine particles emit less formaldehyde than non-stored wood. Based on this,
we can assume that the addition of deadwood to the traditional wood in the production of
particleboards can reduce the formaldehyde emission of the boards.

As follows from the literature resources, the general strategy would be to use dead-
wood as soon after death as possible, because the longer it’s dead, the more it deteriorates,
and the fewer are the options for its utilization [35]. Increasing amounts of deadwood
and related literature provide insights into the feasibility of converting deadwood into
composite wood panel products including particleboard. However, the use of deadwood
for particleboards will not be possible without a comprehensive knowledge of the physical
and chemical characteristics of this wood and the impact that these characteristics would
have on a manufactured board’s properties [6].

Thus, the objective of the present study was to evaluate the possibility of using wood
particles from deadwood in the production of particleboards and to find out how the
amount of deadwood particles affect the physical and mechanical properties, as well as the
formaldehyde content of the boards.

2. Materials and Methods
2.1. Materials

Factory-produced wood particles from deadwood and traditional (sound) wood com-
prised of coniferous (75%) and deciduous (25%) species (originated from the Ukrainian
Carpathians, Ivano-Frankivsk region) were obtained from the local particleboard plant.
The deadwood was stored in the raw material warehouse for approximately four months
prior to processing. Pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.) woods mostly
prevail among conifers and deciduous species, respectively. The moisture content of the
particles, determined by the drying-weighing method, was approximately 3%. The frac-
tional composition of the particles from deadwood and sound wood for the outer and core
layers of the boards is presented in Table 1.
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Table 1. Fraction analysis (by % weight) of wood particles from deadwood and sound wood.

Outer Layers Core Layer

Screen Hole
Size (mm)

Content (%) Difference
(±)

Screen Hole
Size (mm)

Content (%) Difference
(±)Deadwood Sound Wood Deadwood Sound Wood

1.25 4.42 8.8 −4.38 5.0 9.90 12.0 −2.1
1.0 9.05 1.2 +7.85 3.15 20.69 25.6 −4.91
0.8 12.19 9.4 +2.79 2.0 30.57 31.4 −0.83

0.63 15.24 12.2 +3.04 1.25 24.47 10.6 +13.87
0.4 27.44 26.4 +1.04 0.63 11.78 8.4 +3.38
0.2 19.14 17.6 +1.54 0.32 1.69 1.4 +0.29

Dust 12.52 14.5 −1.98 Dust 0.90 0.6 +0.3

Total 100 100 - Total 100 100 -

UF and MUF resins were used in the experiments. UF adhesive consisted UF resin
grade A (density 1.28 g/cm3, solid content 66%, Ford cup (4 mm, 20 ◦C) viscosity 98 s,
pH = 7.8, gel time 50 s) (producer LLC “Karpatsmoly”, Kalush, Ukraine), paraffin emulsion,
urea, and ammonium sulfate. A 33% aqueous solution of ammonium sulfate [(NH4)2SO4]
was used as a hardener and was mixed with the UF resin before spraying onto the wood
particles. A 43% aqueous solution of urea [CO(NH2)2] and paraffin emulsion were mixed
with UF resin.

MUF resin (density 1.29 g/cm3, solid content 64.3%, viscosity 224 (Brookfield)/41 KF,
pH = 9.32, gel time 83 s), due to its high reactivity towards wood surface and UF resin
molecules, was used as an additional component to UF adhesive to improve water resis-
tance and mechanical properties of particleboards. To find out how the addition of MUF
resin to UF adhesive affects the properties of particleboards manufactured from deadwood,
1% and 3% of MUF were added to UF adhesive.

2.2. Manufacture of Particleboards

Three-layered particleboards of 290 × 290 mm dimensions and a thickness of 16 mm
with a target density of 650 kg/m3 were made. The boards contained particles from
deadwood and sound wood. Particles from deadwood were added to the outer and core
layers of the boards in the amount of 25%, 50%, 75% and 100%. The mass share of the outer
layers was 33%, and the core layer was 67%. The amounts of UF resin, urea, hardener, and
paraffin emulsion that were required for the mixing process were different for the core
layer and the outer layers. This is due to the temperature difference between the surface
and the core caused by heat transfer from the surface to the core of the board. In addition,
the different amount of resin and additives used is related to the difference in the surface
area of the particles used in the core and outer layers of the board. The amount of solid
UF resin was 14 wt.% and 9 wt.% based on the weight of oven-dried wood particles for
the outer and middle layers, respectively. During resin mixing, 2.3% and 0.5% of urea
solution and 0.2% and 0.6% of ammonium sulfate were added, based on the weight of dry
particles, to UF resin for the outer and core layers, respectively. A 0.8% of paraffin emulsion
based on the weight of dry particles was also included in the resin mixture. The MUF resin
was added to the UF adhesive used for the core layer. Wood particles were mixed with
adhesive by hand. After mixing, the resinated particles were evenly distributed by hand
in a 290 mm × 290 mm rectangular wooden mold. Pre-pressing of the formed mat was
carried out manually in the wooden box. Next, the mat (Figure 3a) was subjected to hot
pressing in an automatically controlled hydraulic laboratory press “xoMкo” (LLC “ODEK”
Ukraine, Ukraine) (Figure 3b) at the pressure of 2.5 MPa, temperature of 190 ◦C and the
pressing time of 22.5 s/mm. During the last 30 s of the pressing cycle, the pressure was
continuously reduced to 0 MPa. The experimental design for this study is summarized
in Table 2.
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Table 2. Manufacturing parameters of particleboards.

Board Type
Content (%) of Wood Particles from Amount of MUF

Resin (%)Sound Wood Deadwood

A 100 0 0
B 75 25 0
C 50 50 0
D 25 75 0
E 0 100 0
F 0 100 1
G 0 100 3

2.3. Particleboards Testing

After pressing, the boards were stored in air until reaching room temperature. Then,
before evaluating their properties, the boards were conditioned for one week in a condition-
ing room, where the relative humidity of 65 ± 5% and 20 ◦C were maintained. The moisture
content of the boards was within 6%. Three boards were made for each type of particle-
board in the experimental design (Table 2), i.e., 21 boards. The conditioned boards were
cut into required testing size according to relevant standards. Three samples of each board
were tested according to European standards for density (EN 323) [36], bending strength
(EN 310) [37], modulus of elasticity in bending (EN 310) [37], internal bond (IB) strength
(EN 319) [38], thickness swelling (TS) (EN 317) [39] and water absorption (WA). On the
other hand, for each batch, one board was randomly selected for analysis of formaldehyde
content (FC) based on EN ISO 12460-5 (perforator method) [40].

The effects of wood particles content from deadwood and the amount of MUF resin on
the properties of the laboratory-made boards was evaluated using an analysis of variance
(ANOVA) at a significance level of 0.05. Duncan’s range tests were performed to determine
significant differences between means.

3. Results

In this study, a great difference in the amount of fine fractions of particles between
deadwood and sound wood was not observed (Table 1). However, other authors indicate
that logs dried to an average 50% moisture content produced nearly double the fines
relative to green logs [41]. Fractional analysis of the wood particles (Table 1) used in this
study showed that more fine particles prevailed in the particles obtained from deadwood.
This can be considered as a factor that can significantly affect the properties of the boards. It
is generally known that the quality of wood particles is the key factor in limiting production
of quality particleboard as the geometry of particles affects the board’s physical properties
and internal bond strength characteristics [28,30].
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3.1. Physical Properties of Boards

Table 3 presents mean values of density, WA and TS after 2 and 24 h immersion in the
water for boards manufactured with adding different amount of deadwood particles and
various amount of MUF resin into the UF adhesive. Deviations of the average values of
the densities of the boards from the target density of 650 kg/m3 are caused by the effect of
material loss during the formation of the carpet, the uneven laying of wood particles over
the area of the carpet, as well as the manual formation itself. However, these deviations of
1.2–5.3% were only marginally significant and did not affect significantly the results of the
board’s property values.

Table 3. Physical properties of particleboards.

Board Type Density (kg/m3)
Water Absorption

2 h (%)
Water Absorption

24 h (%)
Thickness

Swelling 2 h (%)
Thickness

Swelling 24 h (%)

Effects of wood particles content
A 630.5 ± 32.1 ab 29.01 ± 8.61 a 90.24 ± 10.05 a 11.03 ± 3.55 a 42.01 ± 6.98 a
B 657.7 ± 28.6 d 1 32.59 ± 10.19 ab 90.33 ± 7.68 a 12.49 ± 4.36 ab 45.08 ± 7.20 ab
C 639.3 ± 27.4 bc 37.57 ± 13.31 bc 97.85 ± 8.20 b 16.14 ± 5.30 c 48.55 ± 8.36 bc
D 615.7 ± 70.5 a 35.68 ± 6.27 c 92.18 ± 10.88 a 13.76 ± 4.27 b 41.36 ± 13.00 a
E 649.3 ± 28.6 cd 38.96 ± 9.00 c 99.76 ± 13.31 b 16.17 ± 4.20 c 50.82 ± 7.32 c

Effects of amount of MUF resin
E 649.3 ± 28.6 ab 38.96 ± 9.00 b 99.76 ± 13.31 b 16.17 ± 4.20 c 50.82 ± 7.32 c
F 656.9 ± 32.7 b 36.39 ± 11.59 b 96.07 ± 9.10 b 12.31 ± 3.34 b 38.63 ± 3.41 b
G 638.4 ±32.8 a 25.29 ± 7.78 a 81.63 ± 7.86 a 7.73 ± 2.25 a 29.00 ± 3.15 a

1 Averages followed by the same letter at the column are statistically equal by the Duncan test at 95% probability.

It was found that wood particles content from deadwood and the amount of MUF
resin added into the UF adhesive have a significant effect on the TS and WA of the boards
after soaking in water for 2 and 24 h. It can be stated that the influence of wood particles
content from deadwood was less pronounced than the influence of the amount of MUF
resin. Replacing sound wood particles with deadwood particles results in increased WA
after 2 and 24 h of soaking in water. The lowest values of WA 2 h (29.01%) and WA 24 h
(90.24%) were observed for boards made from sound wood particles. The highest WA after
2 h (38.96%) and 24 h (99.76%) of soaking in water was observed in the boards made with
100% deadwood particles. In addition, as can be seen (Figure 4a), more than a third of
all the water absorbed by the samples is absorbed by the samples during the first 2 h. In
addition, within the first 2 h, samples from sound wood particles (type A) absorb 32.1% of
water, and samples from deadwood particles (type E) absorb 7% more water (39.1%).
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A similar trend is observed for TS. The presence of deadwood particles in the boards
negatively affects the indicators of its swelling in water (Figure 5a). The samples with the
addition of deadwood particles swell more than samples made from conventional sound
wood particles. The lowest TS 2 h value 11.03% was found for the boards made of sound
wood particles, and the highest value 16.17% for the boards made of deadwood particles.
The lowest TS 24 h values were found for the boards with 75% deadwood particles (41.36%)
and conventional sound wood particles (42.01%), and the highest 48.55% and 50.82%,
respectively, in boards with 50% and 100% deadwood particles.
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The boards with 25% (type B) and 75% (type D) of deadwood particles in terms of WA
2 h, WA 24 h, TS 2 h and TS 24 h do not differ significantly from each other and reference
boards (except WA 2 h) made from conventional sound wood particles (type A). In contrast,
the values of WA 2 h and TS 2 h for the boards D differ significantly from those values
for the reference boards (type A). Likewise, the WA 2 h, WA 24 h, TS 2 h and TS 24 h of
the boards with 50% (C) and 100% (E) deadwood particles do not differ from each other
but differ significantly from the reference boards made from conventional sound wood
particles (type A).

The addition of MUF resin into UF adhesive reduces the WA and TS of board samples
made from deadwood particles. With an increase in the amount of MUF in the adhesive up
to 3%, the values of WA 2 h, WA 24 h, TS 2 h, and TS 24 h compared to the adhesive without
the addition of MUF resin decrease by 35.1%, 18.2%, 52.2%, and 42.9%, respectively.

Similar results were obtained by other authors who indicate that the oriented strand
boards (OSB) derived from 100% mountain pine beetle-killed wood (standing dead for 2 or
for 20 years) had greatly reduced water-resistance properties and dimensional stability [5].
The increase in WA and TS of boards containing deadwood particles is caused by the
fact that the deadwood particles, due to destructive changes in its structure, have a large
number of cracks that are formed during chipping. Water penetrates through the cracks in
the board structure, destroys the UF adhesive joints, causes swelling of not only particles in
outer layers, but also particles in the core layer, and fills additional voids that are formed
because of destructive processes. The obtained results and their explanations are in good
agreement with the results of other authors. For example, several authors found as much
as 14% of the density losses due to decay for white pine with deep checks and no twigs,
which is a sign of the loss of wood substance and the increase of its porosity [30]. In
contrast, other authors mentioned that at one year after death, the density of beetle-killed
southern pine was 60% of green timber [15]. In addition, increased permeability of wood
particles from deadwood allows for greater water penetration [42]. These authors [42]
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suggest that the mechanism for increased permeability is probably the opening up of ray
parenchyma cells by blue-stain fungi, and the microcracking that could be observed on
some lumber samples.

The adding of water-resistant MUF resin into UF adhesive compositions allows re-
ducing the negative impact of water on the values WA and TS of the boards containing
deadwood particles. Adhesive bonds are destroyed less, which makes it difficult for water
to penetrate the core of the board and causes a decrease in the swelling of the particles in
the core layer and the formation of additional voids.

3.2. Mechanical Properties of Boards

Table 4 presents mean values of mechanical properties for boards manufactured with
adding different amount of deadwood particles and various amount of MUF resin into
the UF adhesive. It was found that the content of deadwood particles and the amount
of MUF resin added into UF adhesive significantly affect the mechanical properties of
the boards, including MOR, MOE, and IB. In addition, it was observed that the addition
of MUF resin into the UF adhesive has a significantly stronger effect on the mechanical
properties than the content of deadwood particles. However, all produced boards did
not meet the respective European standard EN-312 requirements [43] (MOR > 11.5 MPa,
IB > 0.24 MPa) for applications in dry conditions. To some extent, the low density
(≈650 kg/m3) of the produced boards can explain this. A graphic representation of the
effect of deadwood particle content and amount of MUF resin on the mechanical properties
of particleboards is shown in Figures 6–8.

Table 4. Mechanical properties of particleboards.

Board Type MOR (MPa) MOE (MPa) IB (MPa)

Effects of wood particles content
A 9.75 ± 0.97 b 1 1978.21 ± 257.63 c 0.19 ± 0.02 e
B 9.33 ± 1.48 b 1928.68 ± 157.98 bc 0.14 ± 0.03 d
C 9.17 ± 1.00 b 1838.84 ± 247.09 bc 0.12 ± 0.03 c
D 8.72 ± 0.96 b 1747.08 ± 189.10 b 0.08 ± 0.02 b
E 7.16 ± 1.49 a 1521.48 ± 341.64 a 0.05 ± 0.01 a

Effects of amount of MUF resin
E 7.16 ± 1.49 a 1521.48 ± 341.64 a 0.05 ± 0.01 a
F 9.25 ± 0.95 b 1329.41 ± 213.61 a 0.12 ± 0.02 b
G 10.32 ± 1.24 c 2180.54 ± 328.35 b 0.21 ± 0.03 c

1 Averages followed by the same letter at the column are statistically equal by the Duncan test at 95% probability.
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It was found that an increase in the deadwood particle content causes a decrease in
MOR (Figure 6a), MOE (Figure 7a) and IB (Figure 8a), while an increase in the amount
MUF resin, on the contrary, leads to an improvement in these properties. The highest MOR,
MOE, and IB values for samples with sound wood particles were 9.75 MPa, 1978.21 MPa,
and 0.19 MPa, respectively. The lowest MOR, MOE, and IB values for samples with 100%
deadwood particle content were 7.16 MPa, 1521.48 MPa, and 0.05 MPa, respectively. Thus,
compared to reference boards made of sound wood particles, the values of MOR, MOE and
IB for boards with 100% of deadwood particles are reduced by 26.5%, 23.1% and 72.4%,
respectively. The addition of deadwood particles has the strongest effect on the quality
of bonding (IB), reducing it by almost four times. The opposite results were obtained by
other authors [12,29,30]. Some authors [30] did not find significant differences between
particleboard produced from beetle-killed wood and those produced from green wood.
Moreover, the composite board made from beetle-killed showed good internal bond test
values, acceptable values for MOR and MOE, and a slight increase in thickness swelling
and water absorption [12,30]. Adjusting the particle mixture to include 25% material from
beetle-killed wood increased both MOR and MOE compared to the 100% green-wood
mixture. The water-soak test results were better as well [29].
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In general, it was observed that the addition of MUF resin into UF adhesive enables to im-
prove the properties of boards made from 100% of deadwood particles (Figures 6b, 7b and 8b).
Already the amount of 1% of MUF resin in the adhesive mix, the MOR of samples made
from deadwood particles was higher than that of samples made from sound wood par-
ticles. The addition of 3% MUF resin increased MOR, MOE and IB by 44.1%, 43.3%, and
294.4%, respectively.

It can be stated that such changes in MOR for boards from deadwood particles are
caused by a greater content of smaller chip fractions (Table 1) in outer layer than for boards
from sound wood particles. Due to the large surface area of fine particles, the percentage of
its coverage with adhesive is smaller than that of particles of larger fractions. This reduces
the total chip bonding area and, as a result, reduces the bending strength of the boards.
It is generally known that acceptable wood-based panels require quality particles and
the smallest amount of fines, because fines consume excess amounts of resin binder and
contribute little to mechanical properties [5].

Significant loss of IB strength (Figure 8a) occurs due to destructive changes in the
structure of deadwood, an increased content of small particles fractions in the core layer
(Table 1), as well as a large number of cracks that are formed during chipping. The existing
adhesive contacts are not enough for strong bonding of particles. One of the reasons for
low IB strength is that the wood particles from dead trees were difficult to glue because
of apparent surface quality damage due to chipping dry wood [28]. In addition, the
presence of a larger number of smaller particles from deadwood (Table 1) also impairs the
mechanical properties of the boards. After all, it is well known that as the amount of fines
increases, board property values decrease [44]. Moreover, the amount of resin required
increases, thereby increasing product manufacturing costs [44]. Study showed that at
least 30% more adhesive would be needed to produce commercially acceptable OSB panel
products from 100% mountain pine beetle wood; however, such increase of adhesive content
is uneconomical [5].

3.3. Formaldehyde Release of Boards

Markedly, the boards (type E) made from deadwood particles like as the control board,
reached the E1 emission class (≤8.0 mg/100 g) but characterized by a much lower FC
than the reference boards (type A) made from conventional sound wood particles. In the
boards made from deadwood particles (type E), the formaldehyde content is lower by
34.5% compared to the reference samples (type A) made from conventional sound wood
particles (Figure 9).
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Addition of 1% or 3% MUF resin to the UF adhesive did not significantly affect the
reduction of formaldehyde content in the boards (F and G). At the maximum added amount
3% of MUF resin, the formaldehyde content in the boards made from deadwood particles
decreased by 38.5% compared to the reference boards made from sound wood. Others [45]
found that the use of MUF resin increases the formaldehyde emission of the boards from
thermo-mechanical and chemo–thermomechanical pulping.

Therefore, we can assume that excessive dryness and low content of extractive sub-
stances, as well as long storage time of deadwood, are the factors that led to a decrease in
formaldehyde release. It is known that the emission levels of formaldehyde depend on
numerous factors such as wood species, moisture content, content of extractives, outside
temperature, and storing time [32,34]. The removal of extractives decreases the formalde-
hyde emitted from the wood. The results reveal that extracted chips release significantly
lower amounts of formaldehyde compared to unextracted chips [34]. The air-dried wood
produces low emissions of formaldehyde [46].

4. Conclusions

This preliminary study confirmed the possibility of manufacturing particleboards
using wood particles from deadwood. However, the findings suggest that replacing con-
ventional sound wood particles with deadwood particles leads to deterioration of the
physical and mechanical properties of the boards with using UF adhesive. The particle-
boards from deadwood particles absorb more water and swell more. The MOR, MOE,
and IB values for boards with 100% deadwood particles are lower by 26.5%, 23.1%, and
72.4%, respectively, compared to reference boards from sound wood particles. However,
the modification of UF adhesive with MUF resin significantly improves the physical and
mechanical properties of the boards. Adding 3% of MUF resin to UF adhesive increases
MOR, MOE, and IB by 44.1%, 43.3%, and 294.4%, respectively whereas decreases WA 24 h
and TS 24 h by 18.2% and 42.9%, respectively. A significant advantage is that boards made
from 100% deadwood particles are characterized by 34.5% less formaldehyde content than
reference boards made from conventional sound wood.

Further studies on the morphological structure and chemical composition of the
deadwood are required, taking into account the age and time since death of trees. These
data will help to find out the gluing mechanism and to choose the appropriate adhesive
and mode parameters for pressing boards using such wood.
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