1	SUBMITTED 7 AUG 23
2	REVISION REQ. 10 SEP 23; REVISION RECD. 28 SEP 23
3	ACCEPTED 12 OCT 23
4	ONLINE-FIRST: OCTOBER 2023
5	DOI: https://doi.org/10.18295/squmj.10.2023.062
6	
7	Correlation between Vascularity and Advancing Histological Grades of Oral
8	Submucous Fibrosis with a Plausible Role in Malignisation
9	Systematic review of a persisting matter of conflict
10	*Deepak Pandiar, ¹ Suvarna K. Nair, ¹ Ronell Bologna-Molina, ²
11	Reshma P. Krishnan, ¹ Naina Sivakumar, ³ Rahul Anand, ⁴
12	Sahil Chaudhari, ⁵ Pooja Sharma ⁶
13	
14	¹ Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha
15	Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; ² Department in
16	Diagnostics in Oral Pathology and Oral Medicine, University of the Republic, Montevideo, Uruguay;
17	³ Division of Oral Pathology & Microbiology and Forensic Odontolog, All India Institute Of Medical
18	Sciences, New Delhi, India; ⁴ Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental
19	College and Hospital, Pune, India; ⁵ Department of Conservative Dentistry and Endodontics, Saveetha
20	Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University,
21	Chennai, India; ⁶ Department of Oral and Maxillofacial Pathology, King George's Medical University,
22	Lucknow, India.
23	*Corresponding Author's e-mail: deepakpandiar1923@yahoo.com
24	
25	Abstract
26	Objectives: Recent studies showed that as the stage advances there is no significant change in the
27	vascularity as opposed to the conventional concept, thus, the present was designed to quantify
28	the vascularity in histological grades of OSMF and to assess if there is any connection between
29	vasculogenesis and malignisation. Methods: A comprehensive database search was done for
30	published articles on vascularity in oral submucous fibrosis following PRISMA guidelines
31	without date constrains; the search was done till December 2022. The review was registered in

32 Prospero. After screening 607 articles, a total of 13 studies were finally included for systematic

evaluation. *Results:* A total of 607 cases were included, with a definite predilection for the male

34 gender. 11/13 studies evaluated mean vascular density; in more than half, the vascularity

decreased as the stage advanced. Similar results were obtained for endothelial cells /square μm ,

36 mean vascular area percentage & mean vascular area. *Conclusion:* The present review supports

the prevailing concept that vascularity decreases with advancement of the stage of OSMF,

denying systemic absorption of carcinogens into the circulation with resultant longer exposure of

39 compromised epithelium and malignisation.

40 *Keywords:* Malignisation; Mean Vascular Density; Oral Submucous Fibrosis; OSMF;

41 Vascularity.

42

43 Introduction

The earliest mention of oral submucous fibrosis (OSMF) probably dates back to ancient Indian 44 medical literature by 'Sushruta' as Vidari showing features such as reduced mouth opening, pain 45 on eating food and depigmentation of the oral mucosa.¹ OSMF is usually a habit-related 46 47 enigmatic, insidious, chronic yet potentially malignant oral, oropharyngeal and esophageal condition seen mainly in natives of Southeast Asian countries particularly the Indian 48 49 subcontinent, which is always associated with juxta-epithelial inflammatory reaction followed by progressive stromal fibro-elastic changes such as hyalinization and homogenization of collagen 50 51 bundles, altered vascularity and epithelial atrophy resulting in varied degrees of mucosal stiffness and compromised functional activities.¹⁻³ It has been estimated that OSMF affects 52 53 around 0.5 million people in the Indian subcontinent and the highest prevalence is noted in the Kerala state of South India. It has also been reported among people of Indian origin across the 54 world.^{2,4,5} 55

56

Vasculature in OSMF has always been a debatable territory with highly variable results yielded from case-control studies.^{3,6,7} The prevailing concept being that there is hyperplasia of blood vessels in the very early/early histological grades of OSMF and blood vessels and luminal diameter reduce as the disease progresses.² But few recent studies have challenged this concept and have shown that there is either vascularity remains unaltered as the stage advances or there is a significant increase in the number of blood vessels.⁶⁻⁸ In a morphometric analysis Rajendran et

al were the pioneers to demonstrate that mean vascular density does not alter as the stage 63 advances; also the luminal diameter and area percentage showed an increasing trend.⁶ these 64 finding were confirmed individually by Desai et al, immunohistochemically⁷ and Fang et al, 65 morphometrically.⁸The varied results are further complicated by variegated methods of assessing 66 vascularity or angiogenesis. While morphometry is used in some studies on H&E-stained 67 sections, vascularity was else-wise assessed by various immunohistochemical markers in the 68 other studies. Further, studies have demonstrated that as OSMF turns malignant through 69 dysplastic changes in epithelium, the vascular density increases, depicting a temporal shift in the 70 microenviroment.³ 71

72

Irrespective of all, angiogenesis and vascularity are indeed the key factors in the malignant transformation and progression of the disease. As there is conflict of information in the existing literature regarding vascularity with advancement of stage in OSMF and if there is any connection between vasculogenesis and malignisation, the present systematic review was planned to systematically gather and abridge the available data on vascularity and angiogenesis in oral submucous fibrosis to update the current cognizance of the disease progression and malignant transformation in a nutshell.

80

81 Material and Methods

82 Protocol and registration

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines 83 were used to design the present systematic review. It was registered at the International 84 Prospective Register of Systematic Reviews (PROSPERO) database CRD42021226351. The 85 86 research question was 'Does vascularity changes with increasing histological grades of oral 87 submucous fibrosis and if it has any correlation with malignant transformation?' The PICO for the present review are as follows: Population: Oral submucous fibrosis; Comparison: Assessment 88 89 of vascularity in OSMF with normal healthy controls; Outcome: Evaluation of vascularity in histological grades of OSMF and its correlation in malignant transformation. 90

91

92 Eligibility Criteria

All the papers were included in the review if they met the following criteria: (a) Full-length

original articles published in the English language only, (b) Studies that included a quantitative

- assessment of vascularity and/or angiogenesis in oral submucous fibrosis irrespective of the
 method employed for quantification.
- 97

98 Information sources and search strategy

99 Two authors independently searched the electronic databases namely, MEDLINE by PubMed,

100 SCOPUS, Web of Science, EMBASE and Google Scholar for the following keywords singly or

101 in combination: (ALL ("oral submucous fibrosis"/"OSMF") AND ALL

102 ("vascularity/angiogenesis", "morphometric", "CD31", "CD34", "bFGF", "mast cells",

103 "CD105", "VEGF", "von Willebrand factor", "angiogenic markers")). Articles that ascertained

- 104 the aforementioned eligibility criteria were included and appraised further to obtain the data.
- 105

106 Selection and data collection process

DP and SKN individually screened the titles and abstracts of all the articles. The papers which 107 108 did not meet the eligibility criteria were excluded followed by eligibility evaluation by reading the complete articles and the reasons for exclusions were recorded. Any disagreements were 109 resolved by discussion in a consensus meeting with other authors. The following information 110 was extracted from the included articles: country of origin, author(s), year of publication, number 111 112 of cases and controls, histological classification followed and the method used to assess vascularity/angiogenesis. The parameters were mean vascular density (MVD), mean vessel 113 luminal diameter (MVLD), mean vessel area percentage (MVAP), mean vascular perimeter 114 (MVP) and total vascular area (TVA). Briefly, MVD is defined as the mean of the vessel count 115 116 in the most vascularized areas from three to five high power fields. MVLD and MVP are 117 estimated in a similar way utilizing an image software, where cursor is used to draw the outline of blood vessels at high magnification and mean is estimated. MVAP signifies evaluation of the 118 area occupied by blood vessels in the entire field and finally TVA is the total of areas of all 119 traced vessels at 400X magnification. Additionally, studies were recorded where oral squamous 120 121 cell carcinoma arising from OSMF were included for comparative evaluation.

122

123 Summary Measures

124 The main outcome was the quantification of vascularity/angiogenesis in histological grades of

125 oral submucous fibrosis

126

127 Data synthesis and statistical analysis

128 The quantitative data were tabulated and processed in Microsoft Excel (Microsoft Corporation.

2013). IBM SPSS statistics software version 25 (IBM Analytics, Armonk, New York, U.S.) was
used to analyze the data.

131

132 **Risk of bias analysis**

The Joanna Briggs Institute (JBI) critical appraisal checklist for analytical cross-sectional studies was used to assess the quality of the included studies where eight questions were evaluated and answered for various points with "Yes", "Not clear," and "No".⁹ Finally the studies are categorized into three groups: a) low risk of bias (at least 70% of the quality criteria are fulfilled) b) moderate risk of bias (between 50% and 70% of the quality criteria are fulfilled), and c) high risk of bias (< 50% of the quality criteria are fulfilled). Two authors judged the risk of bias on each domain of the tool independently. Any discordance was resolved by a consensus meeting.</p>

140

141 **Results**

The search strategy identified 98 articles published until 2022 from various electronic databases 142 143 as aforementioned. After the removal of 21 duplicate articles, the remaining 77 articles were reviewed through the titles and abstract. Forty-three articles were excluded with appropriate 144 reasoning, resulting in 34 articles. These 34 articles were selected for the eligibility evaluation, 145 which was carried out by reading the full text by the authors (DP&SKN). At this stage, 21 146 147 articles were further excluded due to the lack of quantification of vascularization in different grades of OSMF. Finally, thirteen articles were selected for the present review.^{3,6,7,10-19} The 148 PRISMA flowchart is given in Figure 1. 149

150

151 Characteristics of the selected studies

152 Data extracted from all 13 studies including the details of the country of origin, authors, number

- 153 of cases and controls incorporated, classification system followed, methodology used,
- parameters assessed, and results are provided in Table 1.^{3, 6, 7,10-19}

- 155 The included studies were conducted in India between 2005 and 2022. A total of 607 OSMF
- cases and 110 controls were included, along with 5 cases of OSMF with dysplasia, 2 OSMF
- turning to oral squamous cell carcinoma (OSCC) and 30 OSCC (well differentiated, WDSCC)
- 158 were included as comparison groups. 53.8% of the selected studies used immunohistochemical
- markers such as CD34, factor VIII, VEGF for quantitative assessment of the vascularity at varied
- stages of OSMF. 46.2% of the studies used hematoxylin and eosin-stained slides for the same.
- 161 Among the included studies, 3(23.1%) did not use any control groups ^{10,12,18} and only 2(15.4%)
- 162 studies added comparison groups other than control groups.^{3,13}
- 163

164 Demographic data

165 The demographic details of cases and controls were retrieved from 8 studies;^{3,11,12,14,15,17-19} while

- 166 five studies did not provide any such details.^{6,7,10,13,16} Thirteen selected studies included a total
- sample size of 607 OSMF cases and 110 controls. However, the demographic details were
- specified only for 368 cases, out of which 285 (77.4%) were males and 83 (22.6%) were females
- (M:F::3.44:1). Of the included 13 studies, only 4 mentioned the habit history and duration of the
 habits.^{3,11,14,15}
- 171

172 Mean Vascular Density of different grades of OSMF

Eleven of thirteen studies (84.6%) evaluated the Mean Vascular Density (MVD) in different 173 grades of OSMF.^{3,6,7,11-17,19} Six of the 11 included studies (54.5%) reported a decrease in MVD 174 as the grades of oral submucous fibrosis (OSMF) advanced.^{3,12-14,17,19} Pandiar et al³ proposed 175 176 that MVD reduced from normal mucosa to advanced OSMF and further increased to OSMF with dysplasia and OSMF with OSCC (N (Normal-40.08)>E (Early OSMF-20.48)>MA (Moderately 177 178 advanced OSMF-17.40)>A (Advanced OSMF-14.85)<OSMF-D (OSMF with dysplasia-22.04)<OSMF-OSCC (OSMF turning malignant-42.30), however, the other 4 studies showed an 179 increase of MVD from normal mucosa to early OSMF and then decreased to Advanced OSMF 180 (N<E>MA>A).^{13,14,17,19} Four studies failed to establish a statistically significant variation in 181 MVD between different grades of OSMF and the control group.^{6,7,11,16} One out of eleven 182 included studies showed a discordant data set, hence categorized separately in this review.¹⁵ 183 184

185 Endothelial cells /square µm

Two studies specifically computed the number of endothelial cells /square μm and thus were
categorized separately.^{10,18} Irrespective of the parameter used both articles reported that the
number of endothelial cells decreased from very early to advanced OSMF similar to MVD
reported in other studies.

190

191 Mean vascular area percentage (MVAP) & mean vascular area (MVA)

- 192 In total, 7 studies evaluated MVA/MVAP in different grades of OSMF.^{6,7,10,11,13,18,19} Four studies
- showed a decrease in MVA/MVAP from early to advanced OSMF.^{10,13,18,19} Murgod *et al*¹³
- included WDSCC as a comparison group, and demonstrated that MVA/MVAP gradually
- declined from early to advanced OSMF and further increased to WDSCC. On the contrary,
- increased MVAP in advanced OSMF cases when compared to early OSMF was reported by
- 197 Rajendran R et al (Control-0.16; Early OSMF-0.32 and advanced OSMF-1.02).⁶ Two studies did
- 198 not find any significant difference in MVAP between different grades of OSMF.^{7,11}
- 199

200 Mean Vascular Luminal Diameter (MVLD)

- Seven of 13 studies evaluated MVLD.^{6,7,10,11,13,14,18} Four studies concluded that as the grades of OSMF advanced, the MVLD also reduced.^{10,13,14,18} Further, among these four studies, Nitheash *et al* ¹⁴ reported maximum MVLD in moderately advanced OSMF (2.38 ± 1.10) but rest 3 studies reported maximum MVLD in early OSMF. Conversely, 1 study group showed an increase in MVLD along with the advancing grades of OSMF,⁶ and 2 studies could not put forth any statistically significant difference in MVLD as the advancing grades of OSMF.^{7,11}
- 207

208 Mean Vascular Perimeter (MVP)

209 Two studies (2 of 13) evaluated the MVP and its variability among different grades of OSMF

- and normal tissue.^{11,14} One of these studies proposed a significant reduction of MVP in advanced
- 211 OSMF when compared to early OSMF (maximum in Moderately advanced OSMF)¹⁴ while the
- other research failed to establish any statistically significant variation in different grades of
- 213 OSMF.¹¹
- 214

215 Total Vascular Area

- Only one study assessed this parameter and showed that more total vascular area is found in
- early OSMF when compared to advanced OSMF.¹⁹ The studies which have included normal
- tissue samples as comparison groups, all of them showed an increase in MVD in Early OSMF
- 219 when compared to normal mucosa, except one study which showed higher MVD in normal
- 220 tissue than Early OSMF.³
- 221

222 **Risk of bias within the studies**

- The results of the quality assessment of all the included studies are displayed in Figure 2. Except three studies, all the included studies showed high quality of estimation and a low risk of bias in which unclear risk was estimated in two domains.^{12,17,18}
- 226

227 Discussion

- 228 Oral submucous fibrosis is one of the most common oral potentially malignant diseases in
- 229 Southeast Asia, especially in the Indian subcontinent. The vascularity of OSMF has always been
- a conjecture. The vascularity of OSMF varies according to the advancement of grades.
- According to the conventional concepts, the increased and altered fibroblast proliferation in oral
- submucous fibrosis results in extensive fibrosis in the connective tissue stroma causing the blood
- vessels to obliterate, resulting in claudication of the vascularity and tissue hypoxia.²⁰ However,
- recent studies challenge the prevailing concept and suggest there is no significant decrease in
- vascularity with the advancement of OSMF. The present review was orchestrated to shed light
- on equivocality of vascularity with the advancement of stages.
- 237

The present study confirmed the fact that OSMF is a habit related progressive disease. Wherever available the most common habits included areca nut chewing, betel quid with tobacco, *paan*, or commercially available products. It has been previously found that the severity and duration of the habits correlated with increased histopathological grades of oral submucous fibrosis.²¹ In line with the literature, the present review reiterates a preponderance in male gender. Interestingly, all the studies were from India.

In the present review 54.5% of the included studies supported that the mean vascular density 245 decreases as the advancement of oral submucous fibrosis.^{3,12-14,17,19} This reinforces the 246 conventional theory that the increase in fibrosis is the result of increased TGF-B mediated 247 fibroblastic proliferation.^{22,23} One research group confirmed that arecoline promotes CD147 248 expression in oral keratinocytes via the TGF- β 1 signaling pathway²², who also opined that 249 CD147 overexpression in OSMF is responsible for the progression of disease. TGF-β1 appears 250 to play the major role in the fibrotic pathway while cytokine TGF- β 2 acts as the contributor.²³ 251 252 Areca nut chewing with or without slaked lime through various pathways activates tissue inhibitors of matrix metalloproteinases and induces copper-mediated activation of lysyl oxidases 253 altogether contributing to the increased cross linking of collagen and further proliferation of 254 fibroblasts. This further increases the fibrosis and results in hyalinization leading to obliteration 255 256 of the blood vessels, thus reducing vascularity as the grade advances.³ Four studies included in 257 the present review did not find any statistically significant variation of MVD between the groups of OSMF.^{6,7,11,16} This lack of significant variation could be attributed to hypoxia induced 258 259 neovascularization in advanced OSMF cases. Hypoxia activates HIF-1 which further leads to VEGF mRNA, resulting in angiogenesis.⁶ Another reason for such equivocal results could be 260 number of samples included in the study, type of method used for quantification and variation in 261 classification for grading of OSMF. It must be noted that two of these studies used clinical 262 staging.^{6,7} It must be mentioned here that previous studies have found no significant correlation 263 between clinical and histopathological grading explaining the discordance regarding vascularity. 264 21,24,25 265

266

267 The present systematic review of existing data depicts that the sequence of vascularity with advancing stages of OSMF is mostly consistent with increased angiogenesis in very early and 268 early stages and reduction as the stage advances with a temporal shift in the nature of the 269 270 inflammatory reaction. The view put forwarded by Tilakratne *et al* holds true here that 271 desmoplasia and reduced vascularity of the corium, in the presence of altered cytokine activity, generates a microenvironment for carcinogens of areca nut such as arecoline and arsenic and/or 272 tobacco.²⁶ The role of cytokines in fibrosis is well established in other body parts. It has been 273 previously reported that mRNA expression of collagen (I&III) and fibronectin is upregulated in 274 cultured lung fibroblasts through IL-1 β and TNF- α .²⁷ Few studies have shown contrasting results 275

however, later research demonstrated that TNF- α inhibits adherence and phagocytosis of

277 collagen.²⁸⁻³⁰ Role of these cytokines is also demonstrated in OSMF.³¹⁻³³ As the fibrosis increases

with concomitant spatial shift in nature of the inflammatory reaction and reduced vascularity, an

important query arises regarding increased vascularity in OSMF with dysplasia and in malignant

- transformation which is discussed in subsequent section.
- 281

In the most recent systematic review and meta-analysis, malignant transformation rate (MTR) in 282 283 OSMF has been reported to be 6% with wide heterogeneity among the different nations and ethnic groups.³⁴ Indian and Pakistani cohort showed the highest MTR as compared to Chinese 284 and Taiwanese population.³⁴ As OSMF is a progressive condition, all the cases should be 285 speculated as a potential candidate for malignisation. Further, most if not all cases undergoing 286 transformation have been reported as well differentiated with low incidence of nodal 287 dissemination.³⁵⁻³⁶ In a recent paper we reported 21 cases of OSCC arising in a background of 288 OSMF and hypothesized a putative role of copper in fibroplasia and vasculogenesis, a 289 phenomenon reported as 'cuproplasia'.¹ As the disease advances the fibroblastic activity is 290 stabilized resulting in fibrosis along with collapsed blood vessels explaining the reduced 291 vascularity and decreased systemic absorption of known carcinogens compromising the 292 atrophied epithelium. Few studies have however, shown no significant change in mean vascular 293 density in the advanced stages with extreme contrasting results from other studies.^{6,7} As 294 295 aforementioned, this may be attributed to the methodology, type of assessment tool employed to quantify vasculature and sample size. However, when there is malignant transformation, the role 296 of copper gets reversed, and has been hypothesized to be more protective through copper 297 298 mediated autophagy, cuproptosis. This opens possibilities of application of copper in therapeutics in the early stages of OSMF where it bears a role in fibroplasia and vasculogenesis. 299 300

301 Conclusion

302 In conclusion, the present review of existing data supports the prevailing concept regarding

vasculature of OSMF that with advancement of stage of OSMF the vascularity decreases,

304 denying systemic absorption of carcinogens into the circulation with resultant longer exposure of

305 compromised epithelium and malignisation.

307 Conflict of Interest

308 No conflict to disclose

309

310 Funding

311 This research did not receive any specific grant from funding agencies in the public, commercial,

312 or not-for-profit sectors.

313

314 Authors' Contribution

- 315 DP: Acquisition of data, Conception and design, analysis and interpretation of data, and drafting
- of the manuscript; SKN: Acquisition of data, literature review, interpretation of data; RBM &
- 317 RPK: Article screening, interpretation of data, final revision of the article; NS & RA: assessment
- of risk bias and preparation of images, review of manuscript and language editing; SC & PS:
- preparation of PRISMA flow chart and final revision. All the authors approved the final version.
- 320

321 **References**

322 1. Pandiar D, Krishnan RP, Ramani P, Anand R, Sarode S. Oral submucous fibrosis and the malignancy arising from it, could best exemplify the concepts of cuproplasia and 323 324 cuproptosis. J Stomatol Oral Maxillofac Surg. 2023 Feb;124(1S):101368. https://doi.org/10.1016/j.jormas.2022.101368 325 326 2. Pindborg JJ, Sirsat SM. Oral submucous fibrosis. Oral Surg Oral Med Oral Pathol. 1966 Dec;22(6):764-79. https://doi.org/10.1016/0030-4220(66)90367-7 327 3. Pandiar D, Shameena P. Immunohistochemical expression of CD34 and basic fibroblast 328 growth factor (bFGF) in oral submucous fibrosis. J Oral Maxillofac Pathol. 2014 329 330 May;18(2):155-61. doi: 10.4103/0973-029X.140718 331 4. Chiu CJ, Chiang CP, Chang ML, Chen HM, Hahn LJ, Hsieh LL, et al. Association between genetic polymorphism of tumor necrosis factor-alpha and risk of oral submucous 332 fibrosis, a pre-cancerous condition of oral cancer. J Dent Res. 2001 Dec;80(12):2055-333 9. https://doi.org/10.1177/00220345010800120601 334 335 5. Misra SP, Misra V, Dwivedi M, Gupta SC. Oesophageal subepithelial fibrosis: an extension of oral submucosal fibrosis. Postgrad Med J. 1998 Dec;74(878):733-6. 336 https://doi.org/10.1136/pgmj.74.878.733 337

338	6.	Rajendran R, Paul S, Mathews PP, Raghul J, Mohanty M. Characterisation and
339		quantification of mucosal vasculature in oral submucous fibrosis. Indian J Dent Res. 2005
340		Jul-Sep;16(3):83-91.
341	7.	Desai RS, Mamatha GS, Khatri MJ, Shetty SJ. Immunohistochemical expression of
342		CD34 for characterization and quantification of mucosal vasculature and its probable role
343		in malignant transformation of atrophic epithelium in oral submucous fibrosis. Oral
344		Oncol. 2010 Jul;46(7):553-8. https://doi.org/10.1016/j.oraloncology.2010.04.004
345	8.	Fang CY, Han WN, Fong DY. A morphometric study on the microvessel in oral
346		submucous fibrosis. Hunan Yi Ke Da Xue Xue Bao. 2000 Feb 28;25(1):55-7.
347	9.	Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, et al. Chapter 7:
348		Systematic reviews of etiology and risk. JBI Manual for Evidence Synthesis for
349		analytical cross-sectional studies. JBI, 2020. <u>https://doi.org/10.46658/JBIMES-20-08</u>
350	10	. Debnath S, Mitra B, Paul B, Saha TN, Maity A. Morphometric analysis of oral
351		submucous fibrosis and its correlation with histological staging and clinical severity of
352		trismus. Egypt J Ear Nose Throat Allied Sci 2013;14:85-90.
353		https://doi.org/10.1016/j.ejenta.2013.04.005
354	11	. Garg N, Mehrotra R R. Morphometric analysis of epithelial thickness and blood vessels
355		in different grades of oral submucous fibrosis. Malays J Pathol. 2014 Dec;36(3):189-93.
356	12	. Thakkannavar SS, Naik VV. Histochemical and Immunohistochemical Analysis of
357		Collagen Fibers and Microvascular Density in Various Grades of Oral Submucous
358		Fibrosis. Iran J Pathol. 2019 Spring;14(2):127-134. <u>https://doi.org/10.30699/ijp.14.2.127</u>
359	13	. Murgod VV, Kale AD, Angadi PV, Hallikerimath S. Morphometric analysis of the
360		mucosal vasculature in oral submucous fibrosis and its comparison with oral squamous
361	1	cell carcinoma. J Oral Sci. 2014 Jun;56(2):173-8. <u>https://doi.org/10.2334/josnusd.56.173</u>
362	14	Nitheash P, Bastian TS, Cyriac MB, Selvamani M, Malini P. Epithelial and Connective
363		Tissue Changes in Oral Submucous Fibrosis – A Morphometric Analysis. Ann Clin Lab
364		Res. 2021; Vol.9 No.9:370.
365	15	. Pammar C, Nayak RS, Kotrashetti VS, Hosmani J. Comparison of microvessel density
366		using CD34 and CD105 in oral submucous fibrosis and its correlation with
367		clinicopathological features: An immunohistochemical study. J Cancer Res Ther. 2018
368		Jul-Sep;14(5):983-988. doi: 10.4103/0973-1482.181186

369	16. Sabarinath B, Sriram G, Saraswathi TR, Sivapathasundharam B. Immunohistochemical
370	evaluation of mast cells and vascular endothelial proliferation in oral submucous fibrosis.
371	Indian J Dent Res. 2011 Jan-Feb;22(1):116-21. doi: 10.4103/0970-9290.80009.
372	17. Sharma E, Tyagi N, Gupta V, Narwal A, Vij H, Lakhnotra D. Role of angiogenesis in
373	oral submucous fibrosis using vascular endothelial growth factor and CD34: An
374	immunohistochemical study. Indian J Dent Res. 2019 Sep-Oct;30(5):755-762. doi:
375	10.4103/ijdr.IJDR_186_17
376	18. Singh M, Chaudhary AK, Pandya S, Debnath S, Singh M, Singh PA, Mehrotra R.
377	Morphometric analysis in potentially malignant head and neck lesions: oral submucous
378	fibrosis. Asian Pac J Cancer Prev. 2010;11(1):257-60.
379	19. Tekade SA, Chaudhary MS, Tekade SS, Sarode SC, Wanjari SP, Gadbail AR, et al. Early
380	Stage Oral Submucous Fibrosis is Characterized by Increased Vascularity as Opposed to
381	Advanced Stages. J Clin Diagn Res. 2017 May;11(5):ZC92-ZC96. doi:
382	10.7860/JCDR/2017/25800.9948
383	20. Sirsat SM, Pindborg JJ. The vascular response in early and advanced oral submucous
384	fibrosis. Acta Pathol Microbiol Scand. 1967;70(2):179-84. doi: 10.1111/j.1699-
385	0463.1967.tb01280.x
386	21. Pandya S, Chaudhary AK, Singh M, Singh M, Mehrotra R. Correlation of
387	histopathological diagnosis with habits and clinical findings in oral submucous fibrosis.
388	Head Neck Oncol. 2009 May 2;1:10. https://doi.org/10.1186/1758-3284-1-10
389	22. Wang W, Xiong H, Hu Z, Zhao R, Hu Y, Chen W, Han Y, Yang L, Hu X, Wang C, Mao
390	T, Xia K, Su T. Experimental study on TGF- β 1-mediated CD147 expression in oral
391	submucous fibrosis. Oral Dis. 2018 Sep;24(6):993-
392	1000. https://doi.org/10.1111/odi.12845
393	23. Kamath VV, Krishnamurthy S, Satelur KP, Rajkumar K. Transforming growth factor- $\beta 1$
394	and TGF- β 2 act synergistically in the fibrotic pathway in oral submucous fibrosis: An
395	immunohistochemical observation. Indian J Med Paediatr Oncol. 2015 Apr-
396	Jun;36(2):111-6. doi: 10.4103/0971-5851.158842
397	24. Motgi AA, Shete MV, Chavan MS, Diwaan NN, Sapkal R, Channe P. Assessment of
398	correlation between clinical staging, functional staging, and histopathological grading of
399	oral submucous fibrosis. J Carcinog. 2021 Oct 7;20:16. doi: 10.4103/jcar.jcar_8_21

400	25. Kanneganti S, Kattappagari KK, Tanuja K, Chandra K L, Poosarla C, Baddam VR. Oral
401	submucous fibrosis: Clinical and histopathological correlation of collagen fibers using
402	Masson's trichrome and Van Gieson stains. J NTR Univ Health Sci 2018;7:181-4.
403	doi: 10.4103/JDRNTRUHS.JDRNTRUHS_78_17
404	26. Tilakaratne WM, Klinikowski MF, Saku T, Peters TJ, Warnakulasuriya S. Oral
405	submucous fibrosis: Review on aetiology and pathogenesis. Oral Oncol 2006;42:561-8.
406	https://doi.org/10.1016/j.oraloncology.2005.08.005
407	27. Zhang Y, Lee TC, Guillemin B, Yu MC, Rom WN. Enhanced IL-1-beta and tumour-
408	necrosis-factor-alpha release and messenger-RNA expression in macrophages from
409	idiopathic pulmonary fibrosis or after asbestos exposure. J Immunol 1993; 150: 4188–96.
410	28. Dayer JM, de Rochemonteix B, Burrus B, Demczuk S, Dinarello CA. Human
411	recombinant interleukin 1 stimulates collagenase and prostaglandin E2 production by
412	human synovial cells. J Clin Invest. 1986 Feb;77(2):645-8. doi: 10.1172/JCI112350
413	29. Mauviel A, Heino J, Kähäri VM, Hartmann DJ, Loyau G, Pujol JP, et al. Comparative
414	effects of interleukin-1 and tumor necrosis factor-alpha on collagen production and
415	corresponding procollagen mRNA levels in human dermal fibroblasts. J Invest Dermatol.
416	1991 Feb;96(2):243-9. https://doi.org/10.1111/1523-1747.ep12462185
417	30. Chou DH, Lee W, McCulloch CA. TNF-alpha inactivation of collagen receptors:
418	implications for fibroblast function and fibrosis. J Immunol. 1996 Jun 1;156(11):4354-62.
419	https://doi.org/10.4049/jimmunol.156.11.4354
420	31. Haque MF, Meghji S, Khitab U, Harris M. Oral submucous fibrosis patients have altered
421	levels of cytokine production. J Oral Pathol Med. 2000 Mar;29(3):123-8.
422	https://doi.org/10.1034/j.1600-0714.2000.290304.x
423	32. Haque MF, Harris M, Meghji S, Barrett AW. Immunolocalization of cytokines and
424	growth factors in oral submucous fibrosis. Cytokine. 1998 Sep;10(9):713-9.
425	https://doi.org/10.1006/cyto.1997.0342
426	33. Kaur J, Jacobs R. Proinflammatory cytokine levels in oral lichen planus, oral leukoplakia,
427	and oral submucous fibrosis. J Korean Assoc Oral Maxillofac Surg. 2015 Aug;41(4):171-
428	5. doi: 10.5125/jkaoms.2015.41.4.171.

429	34. Murthy V, Mylonas P, Carey B, Yogarajah S, Farnell D, Addison O, et al. Malignant
430	Transformation Rate of Oral Submucous Fibrosis: A Systematic Review and Meta-
431	Analysis. J Clin Med. 2022 Mar 24;11(7):1793. doi: 10.3390/jcm11071793
432	35. Sarode SC, Sarode GS. Better grade of tumor differentiation of oral squamous cell
433	carcinoma arising in background of oral submucous fibrosis. Med Hypotheses. 2013
434	Oct;81(4):540-3. doi: 10.1016/j.mehy.2013.07.001
435	36. Chaturvedi P, Vaishampayan SS, Nair S, Nair D, Agarwal JP, Kane SV, et al. Oral
436	squamous cell carcinoma arising in background of oral submucous fibrosis: a
437	clinicopathologically distinct disease. Head Neck. 2013 Oct;35(10):1404-
438	9. <u>https://doi.org/10.1002/hed.23143</u>
439	
440	Table 1: Clinicopathological details and data pertaining to quantitative assessment of vascularity

in OSMF cases retrieved from 13 included studies; NOM- normal oral mucosa, IHC-

442 immunohistochemistry, H&E- haematoxylin and eosin, MVAP- Mean vascular area percentage,

443 MVA -mean vascular area, MVLD- Mean Vascular Luminal Diameter, MVP- Mean Vascular

444 Perimeter

Sl No	Author & year	Cou ntry	Classifi cation	Cases	Control	Comp arison	Method	Parameter	Statistica l test used	Results
1	Rajendra n et al 2005 ⁶	India	Haider Et Al (2000) Clinical	20 Early- 8 Advan ced- 12	10 NOM	Nil	H&E	MVD, MVAP, MVLD	ANOVA	MVD: No significant difference between groups (P>0.05) MVAP:Normal < Early < Advanced (P<0.001) MVLD-Normal < Early < Advanced (P<0.01)
2	Desai et al 2010 ⁷	India	Lai Dr (1995) Clinical	30 Stage 2-4 Stage	10 NOM	Nil	IHC (CD34)	MVD, MVAP, MVLD	ANOVA	MVD- No significant difference between

				3- 17 Stage 4- 9						groups(P>0.05) MVAP-No Significant difference between groups(P>0.05) MVLD- No Significant difference between groups(P>0.05)
3	Singh et al 2010 ¹⁸	India	Sirsat And Pindbor g (1967)	83 Very Early- 9, Early- 32, Moder ately Advan ce-39 Advan ced -3	None	Nil	H&E Van Gieson' s picric acid, acid fuchsin stain, Masson 's Trichro me	No of endothelial cells/LPF, MVAP, MVLD	CHI- SQUAR È	1) No of endothelial cells/LPF: Very Early> Early> Moderately Advanced> advanced (VE &E P=0.051) (MA & A P=0.000) 2) MVA: Very Early< Early> Moderately Advanced> advanced (VE &E P=0.051) (MA & A P=0.000) 3) MVLD:Very Early< Early> Moderately Advanced> advanced (VE &E P=0.051) (MA & A P=0.000)
4	Sabrinath et al 2011 ¹⁶	India	Sirsat And Pindbor g (1967)	30 Very Early- 9, Early- 14, Moder	10 NOM		IHC (Factor VIII)	MVD	ANOVA, T test	1. MVD:Normal < Very Early< Early< Moderately Advanced (P>0.05 between the groups)

				ately Advan ced-7						2. MVD: Normal <osmf (P<0.05)</osmf
5	Debnath et al 2013 ¹⁰	India	Sirsat And Pindbor g (1967)	100 Very Early- 36, Early- 29, Moder ately Advan ced- 28, Advan ced-7	None	Nil	H&E	No Of Endo Cells/Sq um, MVAP, MVLD	ANOVA	1. No of endothelial cells/sq um: Very Early> Early> Moderately Advanced> Advanced (P<0.001) 2. MVAP: Very Early< Early> Moderately Advanced (P<0.001) 3. MVLD: Very Early< Early> Moderately Advanced (P<0.001) 3. MVLD: Very Early< Early> Moderately Advanced (P<0.001) 3. MVLD: Very Early< Early>
6	Garg et al 2014 ¹¹	India	Sirsat And Pindbor g (1967)	35 Very Early- 7, Early- 14, Moder ately Advan ced-9, Advan ced-5	10 NOM		H&E	MVAP, MVLD MVP	ANOVA	1. MVAP: No significant difference between groups (P=0.55) 2. MVD: No significant difference between groups(P=0.83) 3. MVP: No significant difference between groups (P=0.90)

7	Pandiar et al 2014 ³	India	Sirsat And Pindbor g (1967)	30 Early- 11, Moder ately Advan ced- 17, Advan ced-2	10 NOM	OSM F- dyspla sia- 5, OSM F- OSCC -2	IHC (CD34)	MVD	ANOVA	1. MVD: Normal > OSMF (P=0.000 2.Normal> Early> Moderately Advanced (P=0.000) 3. Normal> Early> Moderately Advanced Advanced <osmf- D<osmf-m (P=0.000)</osmf-m </osmf-
8	Murgod et al 2014 ¹³	India	Sirsat And Pindbor g (1967)	60 30 Early, 30 Advan ced	10 NOM	30 WDS CC	H&E	MVD, MVA, MVAP, MVLD		1. MVD: Normal< Early>Advanced < WDSCC (P<0.001) 2. MVA: Normal< Early>Advanced < WDSCC (P<0.001) 3. MVAP: Normal< Early>Advanced < WDSCC (P<0.001) 4. MVLD: Normal< Early>Advanced < WDSCC (P<0.001) 4. MVLD: Normal< Early>Advanced < WDSCC (P<0.001)
9	Tekade et al 2017 ¹⁹	India	Lai Dr (1995) Clinical	45 15- Stage 1, 15- Stage	15 NOM	Nil	IHC (CD34)	MVD, MVA, TVA	Kruskal wallis	1. MVD: Normal< Stage 1> Stage 2> Stage 3 (P<0.00) 2. MVA: Normal>Stage

				2, 15- Stage 3						1> Stage 2> Stage 3 (P<0.00) 3.TVA: Normal <stage 1> Stage 2> Stage 3 (P<0.00)</stage
10	Pammar et al 2018	India	Lai Dr (1995) Clinical Sirsat And Pindbor g (1967)	30 Stage 2-23, Stage 3-6, Stage 4-1 (CLIN ICAL) Early- 3, Moder ately advan ced- 18, Advan ced-3	15 NOM	Nil	IHC (CD34 CD 105)	MVD	Chi- Square	1. MVD: Early > Moderately Advanced > Advanced (P value - not mentioned) 2. MVD: Normal> OSMF (P value not mentioned)
11	Sharma et al 2019 ¹⁷	India	Sirsat And Pindbor g (1967)	30 Very Early- 0, Early- 10, Moder ately Advan ced- 10, Advan ced- 10	10 NOM	Nil	IHC (VEGF , CD34)	MVD	ANOVA, Independ ent t test	1. MVD: Very Early < Early > moderately Advanced >Advanced (P<0.001) 2. MVD: Normal < OSMF (P<0.001)
12	Thakkann avar et al 2019 ¹²	India	Sirsat And Pindbor g	40 Early- 20, Advan	None	Nil	IHC (Factor VIII)	MVD	Fischers exact test	1. MVD- Early > Advanced (p= 0.00)

			(1967)	ced- 20						
13	Nitheash et al 2021 ¹⁴	India	Sirsat And Pindbor g (1967)	75 Very Early- 0, Early- 25, Moder ately Advan ced- 25, Advan ced- 25	10 NOM	Nil	H/E	MVD, MVLD, MVP	ANOVA	1. MVD: Normal < Early > Moderately advanced > Advanced (p<0.05) 2. MVLD: Normal > Early < Moderately advanced (p<0.05) 3. MVP: Normal < Very early, < Moderately advanced Advanced (p<0.05)
445										

446

- **Figure 1:** Flow chart of study selection adapted from PRISMA 2020 (Preferred Reporting Items
- 448 for Systematic Reviews and meta-Analysis)

450

451 Figure 2: Risk of bias summary and graph (assessed by JBI critical appraisal checklist for

452 analytical cross-sectional studies)