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Abstract

Lower limb disorders are a substantial contributor to both disability and
lower standards of life. The prevalent disorders affecting the lower limbs in-
clude osteoarthritis of the knee, hip, and ankle. The present study focuses on
the use of footwear that incorporates force-sensing resistor sensors to classify
lower limb disorders affecting the knee, hip, and ankle joints. The research
collected data from a sample of 117 participants who wore footwear integrated
with force-sensing resistor sensors while walking on a predetermined walkway
of 9 meters. Extensive preprocessing and feature extraction techniques were
applied to form a structured dataset. Several machine learning classifiers
were trained and evaluated. According to the findings, the Random Forest
model exhibited the highest level of performance on the balanced dataset
with an accuracy rate of 96%, while the Decision Tree model achieved an
accuracy rate of 91%. The accuracy scores of the Logistic Regression, Gaus-
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sian Naive Bayes, and Long Short-Term Memory models were comparatively
lower. K-fold cross-validation was also performed to evaluate the models’ per-
formance. The results indicate that the integration of force-sensing resistor
sensors into footwear, along with the use of machine learning techniques, can
accurately categorize lower limb disorders. This offers valuable information
for developing customized interventions and treatment plans.

Keywords: Lower limb disorder, Hip, Knee, Ankle, Gait Analysis,
Force-sensing resistor sensors, Plantar pressure

1. Introduction

Lower limb disorders are a substantial contributor to both disability and
lower standards of life around the globe Fatima (2022); Grimmer et al. (2019).
At present, osteoarthritis (OA) stands as the second most prevalent cause
of disability Callahan et al. (2021). OA has a global impact, affecting ap-
proximately 500 million individuals and it is projected that by the year 2030
it will affect one-third of the global population Carr et al. (2012); Hunter
et al. (2020). It is also recognized as one of the prevailing types of arthri-
tis on a global scale, constituting approximately 83% of the overall burden
associated with OA Vos et al. (2012). The prevalent disorders affecting the
lower limbs include OA of the knee, hip, and ankle Pirani et al. (2019); Leg-
git et al. (2022). Hip and Knee OA are highly prevalent forms of OA on a
global scale, affecting approximately 12% of the global population Dell’Isola
et al. (2022); Ferreira et al. (2021). According to Vos et al., the worldwide
prevalence of knee osteoarthritis (KOA) exceeds 250 million individuals Vos
et al. (2012). Ankle OA is a persistent condition that impacts roughly 1%
of the global population. It has an estimated occurrence rate of 30 cases
per 100,000 individuals and accounts for approximately 2 to 4% of all pa-
tients diagnosed with OA Herrera-Pérez et al. (2022); Goldberg et al. (2012);
Herrera-Pérez et al. (2021); Valderrabano et al. (2009). These ailments, typi-
cally caused by injury, degenerative illnesses, or biomechanical irregularities,
can cause pain, limited motion, and decreased function. For effective treat-
ment planning, individualized rehabilitation, and prevention of additional
consequences, prompt and precise classification of these conditions is vital.
Clinical tests, subjective patient reports, and diagnostic imaging techniques
such as X-rays and magnetic resonance imaging (MRI) have traditionally
been utilized as the primary methods for determining the presence and sever-
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ity of lower limb problems Khalid et al. (2020); Heidari (2011). Even while
these techniques are useful, they frequently need the use of specialized ap-
paratus, they take a lot of time Hamza et al. (2023); Devereux et al. (1997),
and they may not be able to capture the entire dynamics of joint movement
that occur during normal tasks.

Technological progressions have facilitated novel opportunities for the ob-
jective and uninterrupted monitoring of biomechanics in the lower extremi-
ties in recent times Weygers et al. (2020); Picerno (2017). The integration
of force-sensing resistors (FSRs) into footwear is a technology that shows
tremendous potential Li et al. (2016); Abdelhady et al. (2019). Flexible and
thin sensors known as FSRs are capable of measuring the distribution of
pressure and changes in plantar force while walking Malvade et al.. The
integration of FSR sensors into common footwear facilitates the acquisition
of instantaneous information pertaining to foot pressure, gait patterns, and
joint kinetics Malvade et al.; Abdul Razak et al. (2012). The incorporation
of FSR sensors into footwear presents numerous benefits for the categoriza-
tion of lower extremity disorders. Initially, it facilitates the acquisition of
extensive datasets in authentic environments, thereby furnishing a broader
understanding of individuals’ operational aptitudes and difficulties through-
out their routine tasks. In addition, it enables extended surveillance, thereby
enabling the examination of the advancement of illnesses, reaction to inter-
ventions, and the detection of plausible risk elements. Despite the potential
advantages of using footwear equipped with FSR sensors to measure plantar
pressure, comprehensive study on the classification of lower limb problems
is insufficient. So, the objective of the paper is to investigate the viability
and efficacy of employing footwear integrated with FSR sensors as a means
of categorizing lower limb disorders in the knee, hip, and ankle joints. The
aim of this study is to create a classification model that can effectively dis-
tinguish between different lower limb disorders by utilizing machine learning
techniques in conjunction with sensor data. The model will be based on ana-
lyzing gait patterns and foot-loading properties. The findings of this research
hold promise in enhancing tailored and empirically supported interventions,
ultimately enhancing the management and treatment efficacy for individuals
affected with lower limb disorders. The main contributions of this study are:

• A circuit and graphical user interface (GUI) were devised to acquire and
record data from FSR sensors, thereby furnishing significant insights
into the distribution of foot pressure during locomotion.
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• Data was collected from 117 individuals, including both male and fe-
male participants, wearing FSR sensor-integrated footwear while walk-
ing on a designated walkway at Tehsil Head Quarter (THQ) hospital
Sadiqabad.

• The collected matrix data underwent preprocessing techniques to gener-
ate mesh images. These images were subsequently subjected to grayscale
conversion, wavelet transform, and grey-level co-occurrence matrix anal-
ysis.

• Forty-eight features were extracted from the image analysis, providing
insights into the composition, spatial arrangements, and configurations
of the pressure distribution patterns.

• Several machine learning models, including Random Forest, Decision
Tree, Logistic Regression, Gaussian Naive Bayes, and LSTM, were
trained and evaluated on the dataset.

• K-fold cross-validation with 10 folds was employed to assess model
performance.

The following sections of this article will explore the literature review and
methodology. Furthermore, we will have discussions on the results.

2. Literature Review

Joint abnormalities have a substantial impact on the way humans walk,
resulting in functional limitations and a diminished quality of life. Therefore,
it is essential to promptly identify and accurately classify these abnormalities
to ensure effective treatment and rehabilitation. In recent times, there has
been an increasing interest in harnessing the potential of machine learning
and deep learning techniques to analyze gait data and automatically classify
joint abnormalities. The study Kotti et al. (2017) focuses on the development
of a computer system for the purpose of detecting knee osteoarthritis in an
automated manner. The research gathered walking data from a sample of 47
individuals diagnosed with knee osteoarthritis and 47 individuals without the
condition, with the aim of maintaining an equitable representation of both
groups. The participants walked on a pathway that was outfitted with force
plates that incorporated piezoelectric sensors capable of measuring three-
dimensional forces. Several parameters pertaining to ground reaction forces,
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including mean value, push-off time, and slope, were extracted. The param-
eters were mapped to the degree of knee osteoarthritis using rule induction
through the utilization of random forest regressors. In order to improve the
generalizability of the results, a protocol that is independent of the subjects
was utilized. The accuracy of the system was evaluated using a 5-fold cross-
validation technique, resulting in a mean accuracy of 72.61% with a standard
deviation of 4.24%.

The study Cui et al. attempts to precisely evaluate and diagnose gait
abnormalities in patients with osteoarthritis by employing a supervised clas-
sifier and an RGB-D camera. The research has established a framework for
assessing gait, gathered joint data from both healthy individuals and pa-
tients, and derived a total of fourteen quantitative parameters related to
gait. The investigation incorporates information obtained from a sample of
19 individuals diagnosed with osteoarthritis and 19 individuals who do not
exhibit any symptoms of the condition. The study’s findings indicate that
there are notable variations in gait parameters between individuals diagnosed
with osteoarthritis OA and those who are considered healthy, as determined
through statistical analysis and experimental results. The supervised sup-
port vector machine (SVM) classifier that was developed has demonstrated a
noteworthy mean accuracy of 97% in the classification of gait abnormalities.
The Verlekar et al. (2018) introduces a system designed for the automated
identification and categorization of gait abnormalities, utilizing a solitary 2D
video camera. The system employs biomechanical gait characteristics that
are derived from the video data, encompassing measurements pertaining to
both the feet and the body. The research employed a repository of binary
silhouettes representing ten subjects who were emulating eight distinct types
of gait impairments. The gait cycles were captured in a LABCOM studio,
with multiple sequences recorded at a frame rate of 30 frames per second.
The type of impairment was annotated manually, representing the ground
truth. The classification task was accomplished through the utilization of a
SVM, which yielded a noteworthy accuracy rate of 98.8%.

A system for acquiring and analyzing gait has been developed by Chen
et al. (2020) with the aim of offering an affordable and user-friendly solution
for the quantitative recording and functional identification of patients with
osteoarthritis. Initially, a clinical-oriented automatic gait acquisition plat-
form is devised utilizing an RGB-D camera and bespoke gait data recording
software. Furthermore, an assessment is conducted on the efficacy of the
gait acquisition platform’s operational area for clinical purposes through a
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comparative analysis with the ground-truth data obtained from infrared op-
tical trackers. Subsequently, the obtained gait data is subjected to analysis
utilizing a unique hybrid prediction model in order to evaluate gait abnormal-
ities in a quantitative and objective manner. The hybrid model incorporates
both manually extracted features and automatically extracted features from
a Long Short-Term Memory (LSTM) network in the analysis of gait data.
Empirical findings obtained from actual patients indicate that the suggested
gait analysis framework has the capacity to accurately forecast gait anomalies
in a quantitative manner, achieving a high level of accuracy at 98.77%. The
Jun et al. (2021) introduces an innovative approach to categorize anomalous
gait patterns through the utilization of deep learning (DL) methodologies and
by integrating 3D skeletal information acquired through the employment of
a depth camera with plantar foot pressure measurements. A collection of
gait patterns was obtained, consisting of a single instance of normal gait and
five instances of pathological gait. The pathological gaits included antalgic,
lurching, steppage, stiff-legged, and Trendelenburg. A hybrid model that in-
tegrates multiple modes of data was developed to classify various gaits. In
order to proficiently derive characteristics from the sequential skeleton and
average foot pressure data, encoding layers based on recurrent neural net-
work (RNN) and convolutional neural network (CNN) were employed, cor-
respondingly. The concatenated output features obtained from said layers
were subsequently fed into fully connected layers to facilitate classification.
The classification accuracies of the models that relied exclusively on pressure
or skeleton data were 68.82% and 93.40% respectively. The study findings
indicate that the implementation of the multimodal hybrid model resulted in
enhanced performance, as evidenced by a 95.66% accuracy rate. In order to
optimize the performance, a three-step training approach was implemented
to refine the hybrid model, resulting in a final accuracy rate of 97.60

The objective of the Kwon et al. (2020) was to devise an automated
categorization framework for knee osteoarthritis (KOA), which relied on ra-
diographic imaging and gait analysis data and was based on the Kallgren-
Lawrence (KL) grading system. The study utilized a support vector machine
to classify knee osteoarthritis based on gait features and radiographic image
features extracted from a deep learning network (Inception-ResNet-v2). The
results showed a strong association between gait features and the radiologi-
cal severity of knee osteoarthritis. The AUC values of the receiver operating
characteristic curve for KL Grades 0-4 were 0.93, 0.82, 0.83, 0.88, and 0.97,
in that order. The evaluation metrics of the model included sensitivity, preci-
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sion, and F1-score, which were reported as 0.70, 0.76, and 0.71, respectively.
The objective of Chopra and Crevoisier (2019) was to evaluate the degree of
gait symmetry among individuals affected with unilateral ankle osteoarthro-
sis (AOA) and to identify potential factors contributing to gait asymmetry
subsequent to ankle surgical interventions. The study employed 3-D inertial
sensors and pressure insoles to assess a sample of 20 individuals, comprising
of 10 healthy controls and 10 patients with age-related osteoarthritis (AOA).
The researchers conducted an analysis of 46 distinct parameters related to
gait and examined the relative motions of sub-regions of the foot. The find-
ings indicate notable dissimilarities between the control group and individu-
als with AOA in 23 variables on the impacted side and 20 variables on the
non-impacted side. Differences were observed in 14 parameters, primarily in
the toe region, when conducting bilateral comparisons among patients with
AOA. The investigation additionally recognized inconsistencies in forefoot
relative motion during gait.

The study Slijepcevic et al. (2017) puts forth a comprehensive investi-
gation on the automated categorization of functional gait disorders (GDs)
through the utilizations of ground reaction force (GRF) measurements. The
study aims to achieve two primary objectives. Firstly, it seeks to investi-
gate the efficacy of contemporary ground GRF parameterization techniques
in discerning functional GDs. Secondly, it aims to establish a fundamental
reference point for the automated classification of functional GDs through
the utilization of a comprehensive dataset. The study employed a dataset
comprising of GRF measurements obtained from 279 patients diagnosed with
GDs, alongside data from 161 healthy individuals who were included as con-
trols. The patients were classified into four distinct categories based on the
functional impairments that were associated with the hip, knee, ankle, and
calcaneus. This categorization was performed manually. The study investi-
gated several parameterization techniques, namely GRF parameters, global
principal component analysis (PCA) based representations, and a combined
representation utilizing PCA on GRF parameters. Linear discriminant anal-
ysis was employed to assess the discriminative ability of each parameteriza-
tion. Two classification experiments were carried out based on the analysis.
The primary objective of the initial study was to distinguish between normal
and abnormal walking patterns, specifically comparing the healthy group to
the GD group. The subsequent trial encompassed multiclass classification,
discerning between the normal gait and the four distinct classes of Gait De-
viation. The main aim of the study conducted by Shuzan et al. (2023) was
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to examine the utilization of gait analysis, particularly focusing on GRF,
for the purpose of classifying gait disorders. The researchers utilized two
databases, specifically GaitRec and Gutenberg, which contained data from
individuals who had been diagnosed with gait disorders, as well as a con-
trol group of individuals without such disorders, who were considered to be
in good health. The gait disorders encompassed abnormalities in the hip,
knee, ankle, and calcaneus. The GRF signals underwent preprocessing, and
a variety of feature extraction algorithms were used. Furthermore, the uti-
lization of feature selection algorithms was employed to identify the most rel-
evant features by eliminating highly correlated ones. The K-nearest neighbor
(KNN) model consistently exhibited higher levels of accuracy in comparison
to the alternative machine learning techniques that were assessed. Four ex-
perimental schemes were conducted to classify gait disorders into binary,
three-class, four-class, and five-class categories. Additionally, a comparative
analysis was undertaken to evaluate the performance of vertical GRF and
three-dimensional GRF. The results of this analysis demonstrated that the
latter displayed improved overall performance.

The researchers developed an automated and precise diagnostic system
for knee osteoarthritis (KOA) Zeng et al. (2023). The classification poten-
tial of different dynamical features extracted from gait kinematic signals was
assessed in order to accomplish this task. The research conducted by the
authors Zeng et al. (2023) introduced a comprehensive framework that aims
to extract various features. This framework encompasses a wide range of
dynamical features obtained through the application of recurrence quantifi-
cation analysis (RQA), fuzzy entropy, and statistical analysis. The afore-
mentioned characteristics encompass the recurrence rate, determinism, and
entropy. In this study, a range of shallow classifiers including SVM, KNN,
Näıve Bayes, decision tree (DT), and ensemble learning based Adaboost
(ELA) classifiers were assessed to perform discriminant analysis on different
dynamical gait features. The dataset consisted of tibiofemoral joint angle
and translation waveforms collected from a group of 26 individuals diag-
nosed with KOA and 26 age-matched asymptomatic healthy individuals who
served as the control group. The assessment of classification accuracy was
performed using two-fold and leave-one-subject-out cross-validation method-
ologies. The SVM classifier exhibited the highest degree of accuracy, attain-
ing a 92.31% accuracy rate in differentiating between patients with KOA
and healthy individuals. Furthermore, it achieved a perfect accuracy rate of
100% in accurately distinguishing between the two groups. A novel approach
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for computer-aided diagnosis (CADx) utilizing Deep Siamese convolutional
neural networks and a fine-tuned ResNet-34 architecture was presented by
Cueva et al. (2022). This aims to detect OA lesions in both knees simul-
taneously, following the KL scale. The training phase utilized a publicly
available dataset, while the validation phase was conducted using a privately
held dataset. Transfer learning was employed to address the challenges as-
sociated with imbalanced datasets. The average multi-class accuracy of the
model results is 61%, indicating superior performance in classifying classes
KL-0, KL-3, and KL-4 compared to KL-1 and KL-2.

The primary goal of these studies is to investigate various aspects of
gait analysis, the classification of gait abnormalities, and the identification
of specific joint-related conditions, such as OA and functional gait disorders
GDs. These studies utilize diverse types of data, including gait parameters,
measurements of GRF, signals of gait kinematics, radiographic imaging, and
video data. Various methodologies are employed, such as Machine Learning
(ML), DL, RF, SVM, and KNN algorithms, in order to attain accurate clas-
sification and diagnosis. In contrast, the primary objective of the current
study presented in this manuscript is to examine the identification of lower
limb disorders by utilizing gait data acquired through the implementation
of FSR sensors. The primary aim of this research is to establish a compre-
hensive theoretical structure for the recognition and classification of various
forms of lower limb disorders, including conditions affecting the knee, ankle,
and hip.

3. Proposed Methodology

The analysis of gait is an extremely important component in the process
of diagnosing injuries to the lower limbs, particularly those that involve the
hip, knee, and ankle joints. The methodology being proposed utilizes data
obtained from force-sensing resistor (FSR) sensors for the purpose of cate-
gorizing injuries that occur in the knee, hip, and ankle joints. The diagram
presented in Figure 1 illustrates the methodology diagram, which offers a
comprehensive outline of the various components and flow of the proposed
system. The initial phase encompasses the acquisition of raw data from the
participants utilizing FSR sensors throughout the complete gait cycle. The
gait cycle refers to the sequential patterns of motion exhibited by an individ-
ual’s lower extremities during the act of walking. The raw data comprises
uninterrupted measurements of pressure and force exerted by feet over a pe-
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riod of time, offering significant insights into the individual’s gait patterns
and characteristics. This data is subsequently stored in a cloud to facilitate
subsequent analysis and enhance its accessibility. During the subsequent
phase, the raw data that has been collected underwent pre-processing in or-
der to eliminate any undesired noise or artifacts that may have been captured
during the data collection process. After the data has undergone the process
of cleaning and preparation, appropriate features are derived from the FSR
sensor data. The process of feature extraction plays a vital role in reducing
the complexity of the data while preserving pertinent information that is
pertinent to the diagnosis of disorders. Machine learning (ML) models are
used in the third stage to classify FSR sensor data based on derived features.
ML models are trained on labeled datasets, in which each data instance is
associated with a particular class (e.g., hip, knee and ankle disorder). Dur-
ing the training phase, the ML algorithms discover patterns and connections
between the retrieved features and the labels. In the last stage, the efficacy
of the ML models is tested using a test dataset that the models have not seen
during training. Accuracy, precision, recall and F1 score are the metrics used
for assessment. These metrics offer valuable insights regarding the efficacy
of the models in accurately classifying disorders.

FSR Sensor Attached
to Ardunio

Preprocessing and
Feature Extraction

Training Set

Testing Set

Model Training

Evaluation

Data Stored in
Cloud

Structured
DatasetTrained Model

Figure 1: Proposed methodology diagram.

3.1. Circuit and Graphical user interface designing

A circuit and graphical user interface (GUI) as shown in Figure 2 (a)
and 2 (b) respectively have been developed to capture and log data from
FSR sensors. To simplify the system, a subset of five pressure areas on the
human foot has been chosen based on the findings of reference Malvade et al.;
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Siddiqui (2016); Wertsch et al. (1992); Rana; Shu et al. (2010). The results
of the studies Siddiqui (2016); Wertsch et al. (1992); Rana; Shu et al. (2010)
indicated that the regions of greatest pressure on the plantar surface were
observed at the heel, the first metatarsal head, the third metatarsal head, the
fifth metatarsal head, and the big toe that can be observed in Figure 2 (a).
The captured data provides valuable insights into the distribution of pressure
during locomotion. Arduino Arduino (2018); Ben, a popular microcontroller
platform, is used in this manuscript due to its widespread availability, ease
of use, and interoperability with a large range of sensors and actuators. The
FSR sensors utilized in this investigation operate within the voltage range
of 5V, which is in accordance with the standard voltage supply supported
by Arduino FSR. In addition, the FSR sensors offer analog output, making
them compatible for direct integration with the analog input pins of the
Arduino. This allows the Arduino’s analog input pins to directly read force
or pressure values from the FSR sensors. Arduino interprets sensor data by
converting resistance changes into meaningful force or pressure readings. The
GUI, developed using Python as shown in Figure 2 (b), plays a crucial role
in controlling the data logging process.

The GUI includes two buttons: ”Start” and ”Stop.” When the ”Start”
button is pressed, it triggers the data logging process. However, it is impor-
tant to note that although Arduino continuously sends data to the computer
via the Zigbee module, the actual logging of data to the computer begins only
when the ”Start” button is pressed. This feature provides greater control over
the data collection process, allowing for selective logging during specific pe-
riods of interest i.e., walking. Once the data logging is initiated, the FSR
sensors capture pressure points as the person walks. The collected data is
then logged in separate files on the computer, with each foot’s data recorded
individually. This simultaneous data logging and analysis from both feet offer
comprehensive insights into the pressure distribution during locomotion. To
conclude the data logging session, the ”Stop” button in the GUI is pressed.
This action signals the computer to stop the data logging process. The uti-
lization of Zigbee communication is a key component of this system. Zigbee
enables wireless connectivity Xbee; Brown et al. (2017) between the com-
puter and the Arduino microcontroller. Wireless sensor networks (WSNs)
play a crucial role in the Internet of Things (IoT) landscape. They consist of
distributed nodes interconnected wirelessly with various sensors, such as pol-
lution, temperature, and light sensors. These networks enable non-intrusive
communication systems that can be deployed in diverse environments, from
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homes to large commercial settings Brown et al. (2017); Kabir et al. (2014).
The edge nodes in WSNs are compact and equipped with microprocessors,
memory, and transceivers. In our work, we have designed a wireless network
based on XBee, utilizing the ZigBee protocol Xbee; Brown et al. (2017) ,
and integrated it with the FSR setup to transmit foot pressure data to a
remote server for storage in a CSV file. XBee modules adhere to the IEEE
802.15.4 standard, making them efficient in terms of power consumption,
maintenance, and self-organization Brown et al. (2017); Kabir et al. (2014).
Within the XBee network, a single coordinator device takes charge of net-
work formation, address handling, and network management. The other
XBees connected to the coordinator are known as routers or end devices.
They can join the existing network, send information, and route information
in the case of routers Faludi (2010).”This wireless communication capability
enhances the system’s flexibility and convenience, eliminating the need for
physical connections and allowing for seamless data transmission. For the

(a) (b)

Figure 2: (a) Schematic diagram of the proposed system. (b) GUI designed for the system.

successful data collection, the designed setup is shown in Figure 3.

3.2. Data Collection

To ensure adherence to ethical guidelines, the study received approval
from the Khwaja Fareed University of Engineering and Technology (KFUEIT)
ethics committee. The committee thoroughly evaluated the study’s ethical
implications, taking into account the principles outlined in the Helsinki Dec-
laration. By obtaining ethical approval, the study demonstrated its com-
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Figure 3: Designed setup for data collection.

mitment to upholding the welfare, rights, and privacy of the participants
throughout the research process. Data was collected at the tehsil headquar-
ter hospital Sadiqabad. The data was gathered from 117 individuals aged
between 40 and 60 years, comprising both male and female participants. Ta-
ble 1 presents information on the number of subjects and their respective
genders.

Table 1: Subject distribution among different classes.

Ankle Knee Hip
Gender Male Female Male Female Male Female

No. Of Subjects 21 15 39 20 7 15
Total 36 59 22

The subjects wore footwear that was outfitted with FSR sensors that
were integrated into the soles. The sensors were strategically positioned to
record the manner in which the participants’ feet applied force while walking.
During the experiment, the subjects walked a 9-meter pathway as shown
in Figure 4. while the FSR integrated into their footwear captured and
quantified the magnitude of the pressure applied to the soles of their feet
with each stride. The pressure distribution patterns were captured by the
sensors. Each participant is requested to walk 10 times, interspersed with rest
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periods, to ensure patient comfort and convenience during the study. This
approach facilitated the acquisition of reliable data for further processing,
feature extraction, and subsequent analysis using the FSR sensor technology.

Figure 4: Subject walking while wearing the designed footwear.

The plantar pressure snippets captured during the walk, as depicted in
Figure 5, offer significant insights. The observations reveal that the subject
exerts the highest pressure on the toe of their left foot. Furthermore, there
is noticeable pressure exerted on the metatarsal regions 1, 2, and 3 of the
mentioned foot. Meanwhile, the heel of the left foot is observed to be in the
air during this moment. On the contrary, the distribution of plantar pressure
on the right foot exhibits a distinct pattern. The right foot’s heel maintains
contact with the ground while the toe is elevated from the surface. This
indicates a distinct weight distribution and movement pattern between the
left and right feet during the walking sequence.

Figure 6 displays the mesh image of gait signature of a subject based on
ten walking instances. The graph depicts the frequency of transmitted data
on the Y-axis, reflecting the intensity of foot pressure events. The X-axis
represents different foot pressure regions for the left and right foot. This
visualization allows for the identification of patterns and abnormalities in
pressure distribution throughout the gait cycle.
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Figure 5: Snippets of plantar pressure during walk.

3.3. Preprocessing and Feature Extraction

The process of preprocessing is of utmost importance in enabling the un-
derstanding and assessment of the gathered data. In this study, the prepro-
cessing step involved converting the collected matrix data into mesh images
as shown in Figure 6. Subsequently, the images were stored in distinct di-
rectories denoted as ”knee,” ”ankle,” and ”hip,” which corresponded to the
specific joints under examination. In order to improve the analysis, the mesh
images underwent a conversion to greyscale, followed by the application of a
single level 2D discrete wavelet transform. The conversion led to the extrac-
tion of four distinct groups of coefficients, namely the approximation (LL),
horizontal (LH), vertical (HL), and diagonal (HH) detail coefficients. The
coefficients offer significant insights pertaining to the distinct frequency com-
ponents and directional characteristics exhibited by the images. A grey-level
co-occurrence matrix (GLCM) was carried out for each decomposed matrix,
given that the images were grayscale. The GLCM matrices were generated
with a dimension of 256 rows and 256 columns and obtained at three distinct
angles, namely 0 degrees, 45 degrees, and 135 degrees.

The matrix comprises individual elements, denoted as C (i, j), which cor-
respond to the frequency of a pixel with a value of i followed by a neighboring
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Figure 6: Gait signature of a subject for 10 times walks.

pixel with a value of j in the rightward direction. The procedure was repeat-
edly executed on each constituent of the GLCM matrix. Following that,
a normalization technique was used to limit the values to a predetermined
range, typically 0 to 1. Furthermore, statistical characteristics were obtained
from the normalized GLCM. The statistical characteristics encompassed var-
ious metrics, such as energy, contrast, dissimilarity, and homogeneity. The
features yielded significant observations regarding the composition, spatial
arrangements, and configurations inherent in the visual representations. A
total of forty-eight features were obtained by combining the extracted fea-
tures from each decomposed matrix. The features are stored in a CSV file,
accompanied by their corresponding labels for further analysis. Several suit-
able ML classifiers were trained results are shown in results section.

3.4. Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a crucial step in conducting a com-
prehensive and insightful data analysis. During EDA, data is examined to
uncover patterns, relationships, and anomalies that may exist within the
dataset. This involves the use of various statistical techniques and data vi-
sualization methods to gain valuable insights. The statistical analysis of the
dataset features is illustrated in Figure 7. This analysis encompasses all the
dataset features. We evaluated the count, mean, standard deviation (std),
minimum (min), 25th percentile, 50th percentile, 75th percentile, and max-
imum (max) values for each feature. The results of this statistical analysis
demonstrate that features 1 to 15 exhibit a high frequency for each statistical
parameter, indicating their significant involvement in the prediction task.
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Figure 7: The dataset features statistical analysis.

The pair plot analysis depicted in Figure 8 provides significant insights
into the correlations and interdependencies among the four most prominent
features selected in the dataset. The analysis employs a grid of scatter plots
to visually depict the correlation between each feature and others, as well as
the distribution of data points across various target labels. The pair plots
reveal a notable degree of scattering, indicating that the chosen features
demonstrate substantial variations throughout the dataset and lack strong
correlations with one another. This is helpful for developing a ML model
because it shows that these features are informative and provide distinctive
information for classification. Moreover, the distinct segregation of data
points according to distinct target labels serves as a favorable indication for
the classification task. This implies the presence of a discernible pattern or
arrangement within the data, which can be effectively utilized by a ML model
to precisely categorize samples into their corresponding classes.

4. Results and Discussions

The dataset used in the study contained multiple categories, and the
distribution of labels within each category is shown in Figure 9. To ensure an
unbiased evaluation of the machine learning models, the dataset was divided
into training and testing sets using a 70:30 ratio. This means that 70% of
the available data was used for training the models, while the remaining 30%
was kept aside for evaluating their effectiveness.

17



Figure 8: The pair plot analysis of selected top 4 features.

Several traditional ML models were trained with specific hyperparameters
selected using grid search are given in Table 2. The selection of these mod-
els is based on their comprehensive understanding, extensive research, and
demonstrated efficacy in managing medical data across diverse applications.

The Random Forest (RF) model utilized a maximum depth of 300 and
300 estimators. The Decision Tree (DT) model was trained with a maximum
depth of 300. The Logistic Regression (LR) model had a random state of 0,
a maximum iteration of 1000, and the ’liblinear’ solver. The Gaussian Naive
Bayes (GNB) model used a variance smoothing value of 2. Additionally, an
LSTM model was trained as part of the study. It employed a categorical
cross-entropy loss function, the Adam optimizer, and accuracy as the eval-
uation metric. These hyperparameters were selected using the grid search.
The classification results are shown in Table 3 ans visualized in Figure 10.

It is evident from Table 3 and Figure 10 that the RF model exhibited
superior performance, attaining accuracy, precision, recall, and F1 score of
0.94, thereby indicating its robust predictive ability and capacity to capture
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Figure 9: The distribution analysis of dataset along with the target label.

invisible patterns. The DT model exhibited strong performance, achieving
scores of 0.86 across all metrics. The LR model demonstrated inferior per-
formance, as indicated by accuracy, precision, recall, and an F1 score of 0.65.
The GNB and LSTM models exhibited a performance that was equivalent
to chance, as evidenced by their accuracy scores of 0.50.

4.1. Results of k-fold cross validations

K-fold cross-validation is a widely used technique in machine learning
to evaluate the performance of a model. This method involves partition-

Table 2: Hyperparameter values for different techniques.

Technique Hyperparameter Values
RF max depth=300, n estimators=300
DT max depth=300

LR
random state=0, max iter=1000,

solver=’liblinear’
GNB var smoothing=2

LSTM
loss=’categorical crossentropy’,

optimizer=’adam’, metrics=’accuracy’
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Table 3: Performance metrics of different techniques on unseen data

Technique Accuracy Precision Recall F1 Score
RF 0.94 0.94 0.94 0.94
DT 0.86 0.86 0.86 0.86
LR 0.65 0.65 0.65 0.64
GNB 0.50 0.38 0.50 0.39
LSTM 0.50 0.25 0.50 0.34

Figure 10: Visualization of result of classifiers on unseen data.

ing the GLCM statistical feature dataset extracted from images into k non-
overlapping subsets or folds, where k is a positive integer. The model is then
trained on k-1 folds and tested on the remaining fold. This process is repeated
k times, with each fold serving as the test set once. The results are then av-
eraged to obtain a more reliable estimate of the model’s performance. The
model undergoes k-fold cross-validation, where k iterations are performed.
In each iteration, one of the k folds is designated as the test set, while the
remaining k-1 folds are utilized for training. By adopting this methodology,
a more comprehensive assessment can be achieved as it reduces the influence
of data partitioning on the efficacy of the model. The accuracy values that
were reported offer a mean performance metric across the 10 folds, whereas
the standard deviations reflect the extent of diversity in the outcomes. The
study employed k-fold cross-validation technique with 10 folds to assess the
efficacy of the models. The results are shown in Table 4.
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Table 4: Results of K fold validation.

Technique Accuracy Standard Deviations (+/-)
RF 0.93 0.0271
DT 0.87 0.0402
LR 0.65 0.0334
GNB 0.49 0.0328
LSTM 0.40 0.4671

It is evident from Table 4 that the RF model achieved the highest accuracy
of 0.93 with a low standard deviation of 0.0271, indicating consistent and
reliable performance. The DT model had an accuracy of 0.87 and a slightly
higher standard deviation of 0.0402, showing stable performance but with a
bit more variability. The LR model had an accuracy of 0.65 and a standard
deviation of 0.0334, suggesting some sensitivity to different data splits. The
GNB model performed the poorest with an accuracy of 0.49 and a standard
deviation of 0.0328, indicating both low accuracy and variability. Overall, the
RF model demonstrated the highest and most stable performance, while the
other models showed varying levels of accuracy and consistency. A bar graph
is shown in Figure 11 where the x-axis represents the techniques (RF, DT,
LR, GNB), the y-axis represents the accuracy, and the error bars indicate
the standard deviations.

4.2. Performance analysis with data balancing

A comprehensive assessment of the performance of various methods when
employing the data balancing technique known as Synthetic Minority Over-
sampling Technique (SMOTE) is provided in Table 5 and visulaized in Figure
12(a) and 12(b). The findings indicate that the performance of the GNB and
LSTM methods was poor when the data balancing technique was applied. In
contrast, the RF and DT methods exhibited modest enhancements in their
performance. Based on the analysis conducted, it can be deduced that the
implementation of data balancing techniques does indeed improve the overall
performance. However, it is important to note that the effectiveness of these
techniques varies across the different methods that were examined in this
study. Kfold cross validation results shows that RF and DT have highest
average accuracy with a low standard deviation that can be seen in Figure
12.
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Figure 11: Visualization of cross validation results with error bars.

Table 5: Performance metrics on balanced data with Kfold scores for different techniques

Technique Accuracy Precision Recall F1 Score Kfold score with std
RF 0.96 0.96 0.96 0.96 0.964± 0.0187
DT 0.91 0.91 0.91 0.91 0.924± 0.024
LR 0.69 0.69 0.69 0.69 0.683± 0.029
GNB 0.37 0.27 0.37 0.26 0.369± 0.024
LSTM 0.32 0.11 0.32 0.16 0.409± 0.467

The performance validation of the proposed RF method for male and
female patient data was conducted separately. The findings presented in
Table 6 and visualized in Figure 13 demonstrate that the model exhibited
equivalent scores for male and female patients, suggesting the absence of sub-
stantial gender bias. The observed high values of accuracy, precision, recall,
and F1 score for both groups provide empirical evidence supporting the fair-
ness and impartiality of the proposed approach in managing gender-related
data. The finding holds significant importance in guaranteeing transparency
and reliability in the practical implementation of the model, specifically in
vital sectors such as healthcare.

4.3. Computational complexity analysis
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(a) (b)

Figure 12: (a) Performance metrices on balanced dataset.(b)Cross validation results with
error bars.

Table 6: Performance metrics comparison for male and female patients.

Performance Metrics
Results

Male Patients Female Patients
Accuracy 0.96 0.95
Precision 0.96 0.96
Recall 0.96 0.95

F1 Score 0.96 0.95

In addition to the results and discussions on lower limb disorder (Ankle,
Knee and Hip) classification using the GLCM statistical features extracted
from the mesh images, the research also conducted a computational com-
plexity analysis of various machine learning and deep learning techniques,
as presented in Table 7. An open-source platform Google Collab with a
GPU backend with 13 GB RAM used during the model’s complexity anal-
ysis. This analysis provided insights into the runtime computation costs
associated with each approach. Among the evaluated techniques, the deep
learning-based LSTM model demonstrated the highest runtime computation
cost, with a recorded value of 23.98 seconds. This indicates that the LSTM
model required significant computational resources for training and inference
processes. On the other hand, machine learning techniques such as DT, LR,
and GNB achieved relatively lower computation costs. However, it should be
noted that these techniques also exhibited lower performance accuracy scores
in comparisons. This suggests a trade-off between computational efficiency
and classification accuracy. On the other hand, the proposed RF technique
achieved a moderate computation score of 1.49 seconds while maintaining
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Figure 13: Visualization of performance metrics comparison for male and female patients.

high performance accuracy scores.

Table 7: Runtime computations for different techniques.

Technique Runtime Computations (Seconds)
RF 1.490
DT 0.184
LR 0.169
GNB 0.011
LSTM 23.98

5. Conclusion

This study presented a comprehensive methodology for gait analysis and
injury diagnosis using force-sensing resistor (FSR) sensors. The research
demonstrated the potential of FSR sensors in capturing force distribution
during walking, offering valuable insights into the biomechanics of human
locomotion. By extracting relevant features from the sensor data and em-
ploying machine learning models, the study achieved accurate classification
of disorders in the hip, knee, and ankle joints. The Random Forest (RF)
model exhibited the highest accuracy on the balanced dataset of 96%, high-
lighting its robust predictive ability. The study emphasized the importance
of preprocessing and feature extraction techniques in analyzing the collected
data, ensuring the quality and relevance of the extracted features. Further-
more, the use of k-fold cross-validation with 10 folds provided a comprehen-

24



Figure 14: Visualization of time complexity in seconds.

sive evaluation of the models’ performance and reduced the impact of data
partitioning. Overall, this research contributes to the field of gait analysis
and injury diagnosis, showcasing the potential of FSR sensors and machine
learning techniques for improving the assessment of lower limb injuries. Fu-
ture work in this area could focus on several aspects to further enhance the
methodology for gait analysis and injury diagnosis using FSR sensors. Firstly,
performing comprehensive analysis data and applying deep learning models.
Additionally, expanding the scope of the injury classification to include a
wider range of lower limb injuries, beyond the hip, knee, and ankle joints,
would provide a more comprehensive understanding of the methodology’s
capabilities.
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