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Abstract: Airborne hyperspectral data has high spectral-spatial information. However, how to
mine and use this information effectively is still a great challenge. Recently, a three-dimensional
convolutional neural network (3D-CNN) provides a new effective way of hyperspectral classification.
However, its capability of data mining in complex urban areas, especially in cloud shadow areas
has not been validated. Therefore, a 3D-1D-CNN model was proposed for feature extraction in
complex urban with hyperspectral images affected by cloud shadows. Firstly, spectral composition
parameters, vegetation index, and texture characteristics were extracted from hyperspectral data.
Secondly, the parameters were fused and segmented into many S × S × B patches which would
be input into a 3D-CNN classifier for feature extraction in complex urban areas. Thirdly, Support
Vector Machine (SVM), Random Forest (RF),1D-CNN, 3D-CNN, and 3D-2D-CNN classifiers were
also carried out for comparison. Finally, a confusion matrix and Kappa coefficient were calculated for
accuracy assessment. The overall accuracy of the proposed 3D-1D-CNN is 96.32%, which is 23.96%,
11.02%, 5.22%, and 0.42%, much higher than that of SVM, RF, 1D-CNN, or 3D-CNN, respectively.
The results indicated that 3D-1D-CNN could mine spatial-spectral information from hyperspectral
data effectively, especially that of grass and highway in cloud shadow areas with missing spectral
information. In the future, 3D-1D-CNN could also be used for the extraction of urban green spaces.

Keywords: airborne hyperspectral image; deep learning; 3D-CNN; pixel-based; 3D-1D-CNN

1. Introduction

Urban feature extraction based on hyperspectral data plays an important role in
many applications, such as urban planning, change detection, and urban environmental
monitoring [1–4]. Hyperspectral images (HSI) can provide tens or hundreds of high
spectral resolution images covering the visible to the infrared region [5], which gives
the possibility of fine classification of classes with spectral similarity [6]. However, the
numerous bands [7] and the presence of cloud shadows [8] could reduce the classification
accuracy significantly. Therefore, it is necessary and meaningful to fully exploit and utilize
spatial-spectral information from a hyperspectral image in complex urban areas, especially
in cloud shadow areas.

Urban feature extraction has always been a difficult and hot issue due to the prob-
lems of different things with the same spectrum patterns, the same things with different
spectrums, shadows [9], and spatial heterogeneity [10]. Through high-resolution hyper-
spectral data to provide detailed structural information and spectral information, Chen
et al. [11] drew an urban land cover map, and the overall classification accuracy reached
97.24%. Clarks et al. [12] compared the effect of hyperspectral characteristics in different
seasons on the mapping of land cover. Compared with the summer hyperspectral index,
the overall accuracy of the multitemporal hyperspectral index is improved by 0.9~3.1%.
The appearance of hyperspectral images at different times with high resolution makes it
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possible to overcome those problems with more details and improve the accuracy. Chen
et al. [13] used hyperspectral data for urban feature extraction using SVM [14], and the
overall accuracy is 90.02%. Zhang et al. [15] utilized hyperspectral data and LiDAR data
for the extraction of urban tree species using RF and achieved an overall accuracy of
87.00%. Tamilarasi and Prabu [16] have extracted roads and buildings in urban areas using
SVM, and the achieved accuracy is 78.34% and 92.47%, respectively. As for the shadowing
problem, Qiao et al. [17] used hyperspectral data to classify all shaded pixels in urban
areas with different land cover types using a maximum likelihood classifier (MLC) and
SVM classifier. Luo et al. [18] separately classified the shaded and the unshaded areas and
acquired the formal results by decision fusion with an overall accuracy of 95.92%. Man
et al. [19] employed pixel-based support vector machines and object-based classifiers to
extract urban objects in cloud shadows. Rasti et al. [20] applied orthogonal total variation
component analysis (OTVCA) to urban hyperspectral images with high spatial resolution.
Compared with random forests and support vector machines, the features extracted by
OTVCA show considerable improvement in classification accuracy. To better explore the
spectral characteristics of HSI, Zhang et al. [21] improved the simple linear iterative cluster
(SLIC) method, which showed better classification performance on three HIS compared
with SVM. However, these studies shown that traditional classification methods could
not make full use of the rich spatial-spectral information of hyperspectral data. However,
these studies shown that traditional classification methods could not make full use of the
rich spatial-spectral information of hyperspectral data. Additionally, most of the studies
classified the urban objects in shadow areas separately. Therefore, there is an urgent need
for a method that could fully mine the spectral-spatial information of hyperspectral data,
especially including the shadow areas.

With the development of remote sensing technology, the spatial and spectral resolution
of hyperspectral data is getting higher and higher. How to make full use of spatial-
spectral information is particularly important. Recently, the 3D-CNN algorithm could
take the spectrum as the third dimension to fully utilize the spatial-spectral information
of hyperspectral data. Chen et al. [22] extracted spectral features from one-dimensional
CNN extracted local spatial features of each pixel from two-dimensional CNN, and further
developed 3-D CNN to learn the spatial and spectral features of his. Many types of research
have proved that 3D-CNN has good performance in handling hyperspectral data. Ying
et al. [23] verified the performance of 3D-CNN on three hyperspectral datasets and achieved
an accuracy of 95.00%. Nezami et al. [24] used 3D-CNN to classify tree species in the boreal
forest and achieved 98.30%. However, as the dimensionality of the convolution kernel
increases, the time cost also increases. Therefore, many researchers have improved 3D-
CNNs and tested their performance in hyperspectral classification. Liu et al. [25] have
proved that the 2D-3D-CNN hyperspectral classification method is better than that of
3D-CNN on three popular datasets. The main limitation of this method is the model is very
complicated and has a lot of training parameters. The 3D-1D-CNN proposed by Zhang
et al. [26] achieved 93.86% accuracy in classifying tree species in the artificial forest using
all hyperspectral bands. This method could effectively reduce the complexity of the model
while obtaining high classification accuracy. The 3D-1D-CNN not only overcomes the
problem of spectral similarity between tree species, but also reduces the time through the
structure improvement of the model. This timely, accurate, and lightweight deep learning
model provides support for classification of complex and spectrally similar urban objects.
However, these studies have been only experimented in artificial forests or agricultural
fields, and has not been widely used in other land cover types.

Different from natural forests, urban objects have spectral and structural diversity.
How about the performance of 3D-1D-CNN in complex urban areas? It is necessary to
conduct tests in complex urban areas to validate the performance in previously poorly
performed situations such as shadowed areas, hard-to-distinguish objects, and the varying
spectrum patterns at different scenarios of 3D-1D-CNN. The main objective of this paper
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is to evaluate the ability of the 3D-1D-CNN model in mining spectral-spatial information
from hyperspectral data in complex urban areas, especially in cloud-shaded areas.

2. Datasets
2.1. Houston Dataset

The dataset includes an airborne hyperspectral image and ground truth data, which
are available from the 2013 IEEE GRSS Data Fusion Contest (https://hyperspectral.ee.uh.
edu/?page_id=459, (accessed on 16 March 2022). The reference data and the false color
image of the dataset are presented in Figure 1.
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Figure 1. (a) The false-color image of the Houston dataset. (b) The ground truth of the Hous-
ton dataset.

The hyperspectral image was acquired by a CASI sensor on 23 June 2013, between the
times 17:37:10 UTC and 17:39:50 UTC (Figure 1a). The data consists of 144 bands, and its
spatial resolution and spectral resolution are 2.5 m and 4.8 nm, respectively. The spatial
dimensions of the hyperspectral image are 1895 by 349 pixels.

There are great challenges in urban feature extraction using hyperspectral data in this
area due to the following reasons: (1) Part of the dataset is seriously affected by cloud
shadow, which will cause spectral loss of urban objects; (2) There is a problem with urban
feature extraction caused by objects with different spectrums and objects with the similar
spectrum; (3) Spectral-spatial information of hyperspectral data has not been fully mined;
(4) Insufficient training sample or too much noise interference in the training data might
cause the overfitting of the classification methods.

In this paper, 15 classes will be classified, including grass_healthy, grass_stressed,
grass_synthetic, tree, soil, water, residential, commercial, road, highway, railway, park-
ing_lot1, parking_lot2, tennis_court, and running_track. The number of training and
validation samples is shown in Table 1, and Figure 1b demonstrates their distribution.

https://hyperspectral.ee.uh.edu/?page_id=459
https://hyperspectral.ee.uh.edu/?page_id=459
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Table 1. Summary of training and validation samples of Houston dataset.

Class
Sample

Train Validation

commercial 83 77
grass_healthy 84 28
grass_stressed 90 72
grass_synthetic 40 2

highway 88 50
parking_lot1 88 54
parking_lot2 28 28

railway 94 14
residential 91 122

road 98 84
running_track 41 10

soil 80 40
tennis_court 21 6

tree 77 106
water 10 14
Total 1013 707

2.2. Surrey Dataset

A hyperspectral image was acquired by a CASI sensor on 30 April 2013. The data
consists of 72 bands with spatial and spectral resolutions of 1 m and 9.6 nm, respectively.
The spatial dimension of the hyperspectral image is 1655 by 988 pixels. The false color
image of the dataset is presented in Figure 2. The information of data sets is shown in
Table 2
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Table 2. Experimental dataset information.

Dataset Houston Dataset Surrey Dataset

Sensor CASI CASI
Acquisition time 2013/6/23 2013/4/30
Number of Bands 144 72

Size 1895 × 349 1655 × 988
Number of Classes 15 7
Spatial resolution 2.5 m 1 m

Spectral resolution 4.8 nm 9.6 nm

3. Methodology
3.1. Data Pre-Processing

For atmospheric correction, FLAASH is used to remove the influence of the atmo-
sphere. Furthermore, the minimum noise fraction (MNF) [27] is employed to reduce or
eliminate the Hughes phenomenon of hyperspectral data. The purpose of principal com-
ponent analysis (PCA) [28] is to obtain the first principal component used to generate the
texture characteristics. Additionally, the Gray-level Co-occurrence Matrix (GLCM) [29]
and Normalized Difference Vegetation Index (NDVI) [30] are used to obtain texture char-
acteristics as well as vegetation feature information. Table 3 shows the details of these
variables.

Table 3. Variable and their respective descriptions and reference.

Variable Description Reference

Spectral composition parameters

MNF22 First 22 components of minimum noise
fraction [22]

Vegetation Index
Normalized Difference Vegetation

Index (NDVI) NDVI = (IR−R)
(IR+R)

[25]

Texture characteristics

Mean N−1
∑

i,j=0
i
(

Pi,i
) [24]

Variance N−1
∑

i,i=0
Pi,i(i− µi)

2σ2
j =

N−1
∑

i,i=0
Pi,i(j− µi)

2 [24]

Homogeneity N−1
∑

i,j=0

Pi,j

1+(i−j)2
[24]

Contrast N−1
∑

k=0

k
∑

i=−1
Pi,j × k× k [24]

Dissimilarity N−1
∑

k=0

k
∑
|i−j|

Pi,j × k [24]

Entropy N−1
∑

i,j=0
Pi,j
(
− ln Pi,i

) [24]

Second Moment N−1
∑

i,j=0
Pi,j

2 [24]

Correlation N−1
∑

i,j=0
Pi,j

 (i−µi)(j−µj)√
(σ2

i )
(

σ2
j

)
 [24]

Where IR represents the pixel value of the infrared band, R represents the pixel value of the red-light band.
Where i represents the gray value of the reference pixel, j represents the gray value of adjacent pixels, Pi,j is the
normalized gray level co-occurrence matrix, which represents the probability that the gray level is the occurrence
of a certain relationship between i and j pixels, Pi,i is the normalized gray level co-occurrence matrix, which
represents the probability that the gray level is the occurrence of a certain relationship between i and i pixels, µi
represents the mean value, σi , σj represent the standard deviation of rows and columns respectively, and µi , µj
represent the mean value of rows and columns respectively.
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3.2. Classification Algorithms
3.2.1. 3D-CNN

The 2D-CNN only convolves the spatial information, and two-dimensional feature
maps are produced regardless of whether the input data is two-dimensional or three-
dimensional. Therefore, for the classification of a three-dimensional hyperspectral image,
2D-CNN could lose the most spectral information. The 3D-CNN incorporates both spatial
and spectral information, unlike the 2D-CNN. In this way, hyperspectral images can be
captured more effectively from a spectral and spatial perspective.

The 3D-CNN is firstly proposed for integrating the spatial and temporal information
of video data [31]. As part of a 3D convolution algorithm, a 3D kernel is applied to a cube
composed of frames with some columns stacked. The 3D convolution can be expressed as
Equation (1).

vxyz
lj = f

(
∑
m

Hl−1

∑
h=0

Wl−1

∑
w=0

Rl−1

∑
r=0

khwr
ljm v(x+h)(y+w)(z+r)

(l−1)m + bl j

)
(1)

where Hl , W l are the kernel size (height and width), Rl is the size of the 3D kernel along
the temporal axis, l identifies the layer considered, vxyz

lj stands for the output at position
(x, y, z) on the jth feature map in the lth layer, b is the bias, and f (·) is the activation
function, m indexes over the set of feature maps in the ( l − 1)th layer connected to the
current feature map, and finally, khwr

ljm contains the (x, y, z) value of the kernel associated
with the mth feature cube.

The 3D convolution algorithm applied to HIS classification can be expressed as
Equation (2).

vxyz
lji = f

(
Hi−1

∑
h=0

Wi−1

∑
w=0

Si−1

∑
s=0

khws
ijm V(x+h)(y+w)(z+s)

(i−1)j + bij

)
(2)

A 3D convolution kernel is defined as Si with i representing the number of feature
blocks, and j being the number of convolution kernels. In turn, the three-dimensional
feature volume output from the layer ith includes l × j.

Different from other 3D-CNN classification models, the proposed model is pixel-level,
which is a joint spectral-spatial CNN classification framework. Furthermore, the input data
is not the whole image, but the neighbouring spectral-spatial cubes around the pixels. The
model, referring to many well-known CNN structures, sets up five convolutional layers,
where the next layer contains twice the number of convolutional kernels as the previous
one. According to the related study, a 3 × 3 convolutional kernel is shown to perform best
in spatial feature learning [32]. The convolution kernel is mostly set to 3 × 3 × 6. The
processing flow is shown in Figure 3.

1. Sample phrasing: The original image is cut as a series of spectral-spatial cubes with
labels of size S × S × B, and the geometric center pixel of the sample is used as the
center. The S × S refers to the size of the neighborhood, while B refers to the number
of bands. The cropped S × S × B spectral-spatial cubes are input to the model.

2. Feature extraction: As shown in Figure 4, there are five convolutional layers and two
fully connected layers in the network. First, the S × S × B spectral-spatial cubes are
used as input data. In the first convolutional layer (C1), the size of 1 × N convo-
lutional kernels is KS

1 × KS
1 × KD

1, where N means the number of convolutional
kernels in the C1 layer, KS

1, and KD
1 is the mean size of the convolutional kernel

in the spatial-spectral dimension. The size of the four-3D cube output in the layer
is
(
S− K1

S + 1
)
×
(
S− K1

S + 1
)
×
(

B− K1
D + 1

)
. After the first convolution layer (C1)

is applied, the generated data is applied to the second convolution layer (C2) to get
a 2 × N 3D feature cube. The output data of each convolutional layer is the input
data of the next convolutional layer. Finally, 16 × N 3D feature cubes with dimen-
sions of

(
S− K1

S − K2
S − K3

S − K4
S − K5

S + 5
)
×
(
S− K1

S − K2
S − K3

S − K4
S − K5

S + 5
)
×(

BS− K1
D − K2

D − K3
D − K4

D − K5
D + 5

)
is output.
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3. The last 3D convolutional layer is flattened. The 3D cubes are converted into a 1× 128-
dimensional feature vector via the fully connected layer (F1). In the multi-classification
task, logistic regression is added behind the fully connected layer. Equation (3) shows
the probability that the input characteristics belong to class i.

P(Y = i | V, W, b) = s(WV + b) =
eWiV+bi

∑j eWiV+bi
(3)

In this equation, W is the weight, Y is the classification result, b is the bias, i represents
the ith output unit, and s is the SoftMax function.

4. Afterward, the gradient of the backpropagation loss function is used for convolution
kernel parameters to be updated.

5. Due to the small sample, stochastic gradient descent is used to complete the process.
The linear rectification function [33] is used as the activation function.

6. For overfitting to be avoided, dropout is applied to the model, while the output
probability of neurons is set to 0.5 for reducing the interaction of neurons. The
learning rate determines when and if the objective function is converged to the local
minimum. The epoch is 150. The suitable learning rate can achieve the local minimum
during the suitable time. Otherwise, the gradient is discrete or converges slowly. In
other words, the learning rate decides the process of each learning iteration. The
learning rate of 0.001 is chosen according to the actual test as well as the experience
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of scholars [26]. According to the result in the model, the well-performing 3D-CNN
structure performance is shown in Table 4.

Table 4. 3D-CNN model structure.

Layer Output Shape for 3D Data Training Parameter Number

conv3d (9, 9, 26, 4) 220
conv3d_1 (7, 7, 21, 8) 1736
conv3d_2 (5, 5, 16, 16) 6928
conv3d_3 (3, 3, 11, 32) 27,680
conv3d_4 (1, 1, 6, 64) 110,656
dropout (1, 1, 6, 64) 0
flatten (384) 0
dense (128) 49,280

dropout_1 (128) 0
dense_1 (15) 1935

3.2.2. Improved 3D-CNN

In attempts to reduce the amount of training parameters and training time, a lightweight
3D-1D-CNN is proposed by Zhang et al. [26]. The 3D-CNN mentioned above is used for
feature extraction. To generate a one-dimensional feature representing the high-level
semantic concepts captured by the model, a series of 3D cubes are transformed into
several 3D convolutional layers. Then, one-dimensional features are used as input for
the next stage. Meanwhile, the dense layer is changed in order to represent the fea-
tures. By reshaping the layers, the 16 N 3D cubes of

(
S− K1

S − K2
S − K3

S − K4
S − K5

S + 5
)
×(

S− K1
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S + 5

)
×
(
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D − K2

D − K3
D − K4

D − K5
D + 5

)
is transformed

by five 3D convolution layers into a 16 N dimensional vectors of length (S− K1
S − K2

S − K3
S

−K4
S − K5

S + 5)× (S− K1
S − K2

S − K3
S − K4

S − K5
S + 5)× (BS− K1

D − K2
D − K3

D − K4
D − K5

D+
5 + 5) and labels its dimension as D. In the first layer of the 1D CNN, H is treated as the
same as 6 in the third layer of convolution. The n1 filters are defined to learn a single
feature. The input data of the first layer are n1, the one-dimensional vectors (D− H + 1),
and one-dimensional convolution is performed by a convolutional kernel of height H and
number n2. Then, n2 one-dimensional vectors of length (D− 2H + 2) are gotten. Using a
3D-1D-CNN network structure, Table 5 illustrates the optimal configuration.

Table 5. 3D-1D-CNN model structure.

Layer Output Shape for 3D Data Training Parameter Number

conv3d (9, 9, 26, 4) 220
conv3d_1 (7, 7, 21, 8) 1736
conv3d_2 (5, 5, 16, 16) 6928
conv3d_3 (3, 3, 11, 32) 27,680
conv3d_4 (1, 1, 6, 64) 110,656
dropout (1, 1, 6, 64) 0
Reshape (6, 64) 0
conv1d (4, 48) 9264

conv1d_1 (4, 24) 1176
flatten (96) 0
dense (128) 12,416

dropout_1 (128) 0
dense_1 (15) 1935

3.2.3. Random Forest and Support Vector Machine

Random Forest (RF) [34] is a classifier containing multiple decision trees, and its
output categories are determined by the mode of the classes output by individual trees.
Unlike CART, the introduction of random features and random data in random forests is
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crucial to the classification performance. Figure 5 shows schematic diagram of Random
Forest principle.
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Support Vector Machine (SVM) is a supervised classification method derived from
statistical learning theory that often yields good classification results from complex and
noisy data. It separates the classes with a decision surface that maximizes the margin
between the classes. The surface is often called the optimal hyperplane, and the data points
closest to the hyperplane are called support vectors. The support vectors are the critical
elements of the training set. Figure 6 shows schematic diagram of support vector machine.
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While SVM is a binary classifier in its simplest form, it can function as a multiclass
classifier by combining several binary SVM classifiers (creating a binary classifier for each
possible pair of classes). The implementation of SVM uses the pairwise classification
strategy [35] for multiclass classification in this paper.

The paired classification method is based on the binary SVM, also called one-against-
one [36]. Let the training set data total M classes, one-against-one method is to construct
a binary SVM between each two classes. Taking Figure 7a as an example, there are three
types of (two-dimensional) data. The dashed line d12 represents the decision boundary
of binary SVM between Class 1 and Class 2 data; d13 represents the decision boundary
between Class 1 and Class 3 data; d23 represents the decision boundary between Class 2
and Class 3 data. For new data, voting strategy [35] is used for classification. Figure 7b
shows the decision boundary drawn according to the voting strategy.
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3.3. Accuracy Assessment

Using the confusion matrix and the Kappa coefficient (Kappa), how effective the model
is in extracting urban fine features can be evaluated. The confusion matrix is calculated by
comparing the position and classification of each real image element with the corresponding
position and classification in the classified image. The function of the Kappa coefficient is
shown in Equation (5):

Q =
(TP + FN)(TP + FP) + (TN + FN)(TN + FP)

TP + TN + FP + FN
(4)

Kappa =
TP + TN −Q

TP + TN + FP + FN −Q
(5)

In this equation, TP represents the number of classes that are positively predicted, TN
represents the number of negatively predicted classes, FP is that wrongly predicts negative
classes as positive, FN indicates how many positive classes are predicted to be negative,
and Q represents the intermediate variable in the Kappa calculation.



Remote Sens. 2023, 15, 992 11 of 24

Overall accuracy (OA) is used to assess the overall quality of the results. When the
values of these indicators are high, then the predicted results and actual results are more in
agreement. The calculation of these indicators is shown in Equation (6):

OA =
TP + TN

TP + TN + FP + FN
(6)

Evaluation of the network performance is based on Precision (P), recall (R), and F1-
score (F1). In feature extraction tasks, the higher the precision, recall, and F1-score, the
lower the false detections and omission of the changed pixels.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 =
2PR

P + R
(9)

4. Results

The Support Vector Machine (SVM) and Random Forest (RF) are also employed for
comparison. The 3D-CNN and 3D-1D-CNN are programmed in Pycharm and Jupyter
Notebook of Anaconda3, based on the TensorFlow and Keras frameworks. AMD Ryzen
7 5800H with Radeon Graphics @ 3.20 GHz CPU and NVIDIA GeForce GTX 3060 GPU
comprise the operating platform hardware configuration.

4.1. Houston Dataset

Compared with 3D-CNN, the overall accuracy (OA) of 3D-1D-CNN is improved by
0.42% (from 95.90% to 96.32%). Compared with 3D-CNN and 3D-2D-CNN, the training
parameters of 3D-1D-CNN are shortened by 13.32% (from 198,435 to 172,707) and 71.46%
(from 602,743 to 172,707), the training time is shortened by 37.95% (from 5.77 min to
3.58 min) and 54.91% (from 7.94 min to 3.58 min). Table 6 and Figure 8 also indicate that
the results of 3D-CNN and 3D-1D-CNN are better than that of the SVM and RF classifiers.

Table 6. Performance comparison of different classification methods on the Houston dataset.

SVM RF 1D-CNN 3D-CNN 3D-2D-CNN 3D-1D-CNN

commercial 0.56 0.72 0.98 1.00 1.00 0.99
grass_healthy 0.88 0.88 0.90 0.93 0.93 0.88
grass_stressed 0.89 0.96 0.98 1.00 0.99 1.00
grass_synthetic 0.92 1.00 0.57 1.00 1.00 1.00

highway 0.56 0.73 0.91 1.00 1.00 1.00
parking_lot1 0.47 0.84 0.67 1.00 0.83 1.00
parking_lot2 0.70 0.81 0.83 1.00 1.00 0.97

railway 0.59 0.80 0.54 0.42 0.62 0.44
residential 0.63 0.77 0.94 1.00 0.98 1.00

road 0.58 0.82 0.90 0.98 0.98 1.00
running_track 0.98 0.98 0.95 1.00 1.00 1.00

soil 0.97 0.97 0.99 1.00 1.00 1.00
tennis_court 0.93 0.94 0.83 0.75 1.00 1.00

tree 0.93 0.90 0.99 0.96 0.98 0.98
water 0.95 0.97 0.92 1.00 0.96 1.00

AA (%) 77.71 80.62 85.67 93.64 95.15 94.97
OA (%) 72.36 85.30 91.10 95.90 96.32 96.32

Kappa × 100 70.01 84.04 90.08 95.42 95.89 95.89
Training parameters - - - 198,435 602,743 172,011

Training time(minute) - - - 5.77 7.94 3.58
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following four classes: highway, commercial, road. The performance of 1D-CNN in 
grass_synthetic, parking_lot2, and railway is poor. However, the precision and recall of 
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Figure 8. Recall, Precision, and F1-score of each class in different classifiers on the Houston dataset,
where A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, represent commercial, grass_healthy, grass_stressed,
grass_synthetic, highway, parking_lot1, parking_lot2, railway, residential, road, running_track, soil,
tennis_court, tree, water, respectively.

Figure 8 shows that the performance of SVM and RF is relatively low in precision
(below 80%) in the following four classes: highway, parking_lot2, railway, and residential,
and the performance of SVM and RF is relatively low in the recall (below 79%) in the
following four classes: highway, commercial, road. The performance of 1D-CNN in
grass_synthetic, parking_lot2, and railway is poor. However, the precision and recall of the
fifteen classes in 3D-CNN and 3D-1D-CNN are rarely below 80%. The results of 3D-2D-
CNN and 3D-1D-CNN are similar. Therefore, they have higher classification accuracy than
SVM and RF.

In 3D-CNN, the precision of the railway is extremely low, which means that other
classes are misclassified as a railway. The 3D-1D-CNN is confused for recognition on
parking_lot1 and railway. As Figure 9 shows, spectral similarity may be the main reason
for misclassification. Meanwhile, the possibility of commission and omission errors in
3D-1D-CNN is lower than that of 3D-CNN.
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Due to the loss of spectra, urban feature extraction is extremely challenging in cloud
shadow areas. Figure 10 shows the difference in the spectral curve in the shadow and
non-shadow areas. Furthermore, feature extraction is limited by various building types,
irregular boundaries, and spectral similarities. Therefore, the classification results of the
traditional classifiers (SVM and RF) are not ideal in the cloud shadow area. However,
the results of 3D-CNN, 3D-2D-CNN, and 3D-1D-CNN in cloud shadow areas are much
superior to that of SVM and RF classifiers (Figure 11), especially in the following classes:
residential, commercial, grass_synthetic, grass_stressed, water, tennis_court, road, soil, and
grass_healthy. It can be concluded that even if the spectrum is missing in the cloud shadow
area, the 3D-1D-CNN can still have a good performance in training and predicting.

Networks with fewer convolutional layers usually have lower semantics and more
noise due to less convolutional processing. The target method sets five 3D convolution
layers and two 1D convolution layers. Through multiple convolutional processing, the
variation of deep features in the image becomes larger, the semantics is improved, and
the noise is reduced, to highlight the discrimination between images. In addition to the
above reasons, the features of the ground objects cannot be ignored. NDVI has a high
sensitivity for vegetation detection. It is a comprehensive reflection of vegetation types,
cover forms, and growth conditions in a unit pixel, and is often applied to the monitoring of
surface vegetation. In this study, NDVI, as part of the input data, highlights the distinction
between vegetation and between vegetation and non-vegetation. This is also a reason why
the target method is better for vegetation classification. Parking_lot1 is a parking lot with
no cars, and parking_lot2 is a parking lot with cars. The presence of cars intensifies the
reflection of the sun’s rays, making the reflectivity of parking_lot2 different from that of
parking_lot1 (Figure 9). In addition, the presence of cars distinguishes parking_lot2 from
other ground objects (such as railway) that are composed of concrete, gravel, and other
components. Parking_lot1 is misclassified as railway, since both have the same composition
and both have no vehicle distribution. These may be the reasons for the good performance
of 3D-1D-CNN in parking_lot2, grass_healthy, grass_stressed, grass_synthetic extraction.
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Figure 11. Classification results of different methods for Houston dataset with 15 classes. (a) False
color image. (b) The classification map of SVM classifier, OA = 72.36%. (c) The classification map of
RF classifier, OA = 85.30%. (d) The classification map of 1D-CNN classifier, OA = 91.10%. (e) The
classification map of 3D-CNN classifier, OA = 95.90%. (f) The classification map of 3D-2D-CNN
classifier, OA = 96.32%. (g) The classification map of 3D-1D-CNN classifier, OA = 96.32%.
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4.2. Surrey Dataset

Compared with SVM and RF classifier, the overall accuracy (OA) of 3D-1D-CNN
is increased by 7.63% and 3.61%, respectively. Compared with 3D-CNN, the training
parameters of 3D-1D-CNN are shortened by 13.27% (from 199,131 to 172,707), the training
time is shortened by 6.89% (from 10.16 min to 9.46 min). Table 7 also shows that the
results of 3D-CNN and 3D-1D-CNN are better than those of SVM and RF classifiers. As
Zhang et al. [26] said, 3D-1D-CNN reduces the training time and training parameters
while maintaining a high accuracy. It can be seen from Table 7 that 3D-1D-CNN has high
classification accuracy on the four classes of tree, grass, soil and water, and low accuracy
(less than 80%) in the parking_lot.

Table 7. Accuracy of each class with different classification methods for Surrey dataset.

SVM RF 1D-CNN 3D-CNN 3D-2D-CNN 3D-1D-CNN

tree 0.94 0.94 0.85 0.95 0.91 1.00
grass 1.00 0.99 0.97 0.76 0.97 1.00
soil 0.92 0.80 0.50 0.29 0.60 1.00

water 0.96 0.98 0.90 0.78 0.86 1.00
parking_lot 0.75 0.86 0.80 0.58 0.78 0.75

road 0.66 0.74 0.93 0.97 0.94 0.82
building 0.81 0.90 1.00 1.00 0.92 0.88
OA (%) 82.81 86.83 88.20 82.58 89.33 90.44

Kappa × 100 78.96 83.78 84.95 78.05 86.29 87.72
Training parameters - - - 199,131 601,711 172,707

Training time (minute) - - - 10.16 11.30 9.46

Comparison of the spectral reflection curves of the classes with lower classification
accuracy is shown in Figure 12. The spectral reflection curves of road, parking _lot and
building are very similar, which may be the main reason for the lower classification accuracy.
Additionally, the presence of cars in the parking_lot also affects the correct identification of
the parking_lot by 3D-1D-CNN. However, the accuracy of tree and grass is relatively high
with 3D-1D-CNN. The use of vegetation index might be the reason.
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5. Discussion
5.1. Impact of Hyperspectral Datasets on 3D-1D-CNN

Since this paper is mainly based on the Houston dataset, which is a public popular
dataset, in order to verify the transferability of 3D-1D-CNN, we choose another study area
(Surrey dataset) to verify the performance of the target model. The new study area is in city
of Surrey.

The overall accuracy of Surrey dataset is slightly worse than the overall accuracy of
the Houston dataset. The difference may be caused by different spatial spectral resolution
or different seasons [37]. Yan, Y. et al. [38] improved the spectral resolution of hyperspec-
tral images to improve the classification accuracy of convolutional neural networks for
large hyperspectral datasets. Therefore, spectral resolution plays an important role in the
classification performance of convolutional neural networks. The different resolutions as
well as the seasons also validate the transferability of the target method. In the near future,
the effects of season and resolution on the classification of 3D-1D-CNN models will be
discussed. In a nutshell, 3D-1D-CNN has certain transferability.

5.2. Impact of Hyperspectral Parameters on 3D-1D-CNN for Houston Dataset

To investigate the effect of hyperspectral parameters on the model, we compared the
model results for different combinations of spectral composition parameters, vegetation
index and texture characteristics used in this paper. Adding texture characteristics is not as
effective as adding vegetation index. This phenomenon may occur because after principal
component analysis, for texture characteristics, they only contain less information about
the original data. As Table 8 shows, the combination of spectral composition parameters
with either the texture characteristics or vegetation index gives good classification results.
The addition of vegetation index also improves the effect of using spectral composition
parameters alone. Li et al. [39] demonstrated the combination of vegetation index as well
as texture characteristics to improve the accuracy of tree species classification in clouds.
Therefore, the combinations of spectral composition parameters, texture characteristics
and vegetation index can improve the ability of 3D-1D-CNN to mine spatial-spectral
information in hyperspectral data.

Table 8. Comparison of the performance of different hyperspectral parameters on Houston dataset
(input size = 9).

MNF22 MNF22 + NDVI MNF22 +
GLCM

MNF22 +
GLCM + NDVI

commercial 1.00 1.00 0.99 0.99
grass_healthy 0.89 0.85 0.79 0.88
grass_stressed 0.97 1.00 0.99 1.00
grass_synthetic 1.00 1.00 0.67 1.00

highway 0.96 0.96 0.91 1.00
parking_lot1 0.95 0.86 0.88 1.00
parking_lot2 1.00 1.00 1.00 0.97

railway 0.44 0.41 0.44 0.44
residential 1.00 1.00 0.97 1.00

road 0.98 0.99 0.94 1.00
running track 1.00 1.00 1.00 1.00

soil 1.00 1.00 1.00 1.00
tennis court 0.75 0.86 0.86 1.00

tree 0.93 0.93 0.98 0.98
water 1.00 1.00 1.00 1.00

AA (%) 92.44 92.39 89.33 94.97
OA (%) 94.48 93.92 93.07 96.32

Kappa × 100 93.84 93.22 92.27 95.89
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5.3. Impact of Different Input Sizes (Window Sizes) on 3D-1D-CNN for Houston Dataset

In this paper, training samples with different input sizes (7× 7, 9× 9, 11× 11, 13 × 13,
and 15 × 15) were input into 3D-1D-CNN to analyse the effects of different input sizes on
classification accuracy. The results of the classifications are shown in Figure 13.
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The results show that the overall trend of the mean value of accuracy is upward with
the increasing spatial size of the input data (pixel × pixel). Each time the parameters
and weights of the neural network are random. When training a neural network, it may
search for the local optimal solution instead of the global optimal solution. Because of
this, even when the center pixel and its neighboring pixels belong to the same class, the
accuracy of the 11 × 11 input size may suddenly decrease. Usually, the spectral-spatial
features extracted from the neighborhood pixels could help reduce the intraclass variance
and improve the classification performance. However, the larger the input size, the more
noise it may contain, especially the pixels which are located at the corner or edge of a class
(Figure 14). Therefore, the Kappa and overall accuracy of 15 × 15 input size are uneven.
Through many experiments, an input size of 9× 9 and 15× 15 seems to be the best window
size in spectral-spatial extraction. Figure 13 demonstrates that the mean of OA, AA, and
Kappa for the 15 × 15 input size are all higher than the other input sizes. However, the
best results of several experiments appeared in an input size of 9 × 9, and the training time
under this input size is the shortest. Therefore, the input size of 9 × 9 is chosen for the final
experiment in this paper.

5.4. Impact of 3D-1D-CNN on Cloud Shadows for Houston Dataset

Aiming for exploring the impact of 3D-1D-CNN in the cloud shadow area, the
results of RF, SVM, 1D-CNN, 3D-CNN, 3D-2D-CNN, and 3D-1D-CNN in the cloud
shadow region were intercepted. The hyperspectral parameters used for all classifiers
were MNF22+GLCM+NDVI. In addition, the results of different classifiers in cloud shadow
areas are shown in Figure 15.
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As Figure 15 shows, the RF classifier and 1D-CNN could extract buildings (commercial
and residential) accurately. Whereas the SVM classifier hardly extracts urban features with
cloud shadow areas. This result is consistent with the results of Man et al. [19]. However,
these three methods that only use spectral information have the salt and pepper effect.
On the contrary, 3D-CNN, 3D-2D-CNN, and 3D-1D-CNN perform well in this regard,
especially in the following classes, such as grass, tree, highway, commercial and residential.
The 3D-1D-CNN is the best algorithm among the four algorithms to identify highways
in cloud shadow areas. There are two reasons why the cloud shadow region restricts the
feature extraction of the classifier. One is the loss of some spectra, and the other one is
spectral similarity (Figure 16). Under such circumstances, the result of 3D-1D-CNN is much
better than that of traditional classification methods in spectral-spatial information mining
in the cloud shadow area. However, the resulting graph is not continuous and regular. This
problem has also arisen in other studies [40]. Li et al. [40] believed that the dimensionality
reduction process resulted in the loss of the external contour of classes. A large number of
continuous regular training samples will also affect the model’s ability to identify classes.
Up to now, there has been less research on urban feature extraction in cloud shadow areas
using 3D-1D-CNN.

To exclude the effect of atmospheric correction on the recognition ability of features in
cloud-shaded areas, the classification effects of different methods in the cloud shadow re-
gions with and without atmospheric correction are compared in Figure 16. The 3D-1D-CNN
also has good recognition ability for classes in cloud-shaded areas without atmospheric
correction. Therefore, the perfect recognition ability for classes in cloud shadow areas
comes from the 3D-1D-CNN model itself.



Remote Sens. 2023, 15, 992 19 of 24

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 25 
 

 

CNN also has good recognition ability for classes in cloud-shaded areas without atmos-

pheric correction. Therefore, the perfect recognition ability for classes in cloud shadow 

areas comes from the 3D-1D-CNN model itself. 

 

 

Figure 15. Classification results in the cloud shadow area of the Houston dataset. 

 with atmospheric correction without atmospheric correction 

RF 

  

SVM 

  

1D-CNN 

  

3D-CNN 

  

3D-2D-CNN 

  

3D-1D-CNN 

  

 1 

Figure 15. Classification results in the cloud shadow area of the Houston dataset.



Remote Sens. 2023, 15, 992 20 of 24Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 25 
 

 

 

Figure 16. Spectral curves of classes in the cloud shadow area. 

5.5. Impact of 3D-1D-CNN on the Mining Hyperspectral Spatial-Spectral Information 

Aiming for exploring the performance of 3D-1D-CNN on the mining hyperspectral 

spatial-spectral information, the performance of different deep learning models on the 

Houston dataset were compared. The confusion matrix, loss and accuracy curves of 3D-

CNN, and 3D-1D-CNN in the Houston dataset were compared (Figures 17 and 18). 

As Figure 17 shows, the number of true positives of parking_lot2, grass_healthy, and 

residential in 3D-1D-CNN is more than that in 3D-CNN. It means that 3D-1D-CNN is 

much more effective in hyperspectral classifications. However, whether 3D-CNN or 3D-

1D-CNN, the classification result between parking_lot1 and railway is still terrible. The 

reason is that parking_lot1 and railway have similar spectral characteristics. Therefore, 

parking_lot1 is misclassified as a railway in the models. As Figure 18 shows, the conver-

gence time of the accuracy curve is roughly the same, which is 50 epochs. In addition, 

increasing the number of epochs can slightly improve accuracy. After 150 epochs, all 

curves converge of 3D-1D-CNN. The slight fluctuation of the loss function in the valida-

tion dataset is due to the small number of training samples. Compared with 3D-CNN, the 

overall accuracy (OA) of 3D-1D-CNN is improved by 0.42% (from 95.90% to 96.32%). Ta-

ble 6 and Figure 8 also indicate that the results of 3D-CNN and 3D-1D-CNN are better 

than that of the SVM and RF classifiers. It can be seen from Table 6 that 3D-1D-CNN uses 

fewer training parameters to achieve higher accuracy in a short time. Therefore, 3D-1D-

CNN model can well extract the features of classes in the complex urban area. As Zhang 

et al. [26] mentioned that 3D-1D-CNN requires fewer training parameters and time, with 

lower misclassification probability, compared with 3D-CNN. Although 3D-1D-CNN sim-

plifies the structure of 3D-CNN, it is still good at mining spatial-spectral information of 

classes. 

Figure 16. Spectral curves of classes in the cloud shadow area.

5.5. Impact of 3D-1D-CNN on the Mining Hyperspectral Spatial-Spectral Information

Aiming for exploring the performance of 3D-1D-CNN on the mining hyperspectral
spatial-spectral information, the performance of different deep learning models on the
Houston dataset were compared. The confusion matrix, loss and accuracy curves of
3D-CNN, and 3D-1D-CNN in the Houston dataset were compared (Figures 17 and 18).

As Figure 17 shows, the number of true positives of parking_lot2, grass_healthy, and
residential in 3D-1D-CNN is more than that in 3D-CNN. It means that 3D-1D-CNN is much
more effective in hyperspectral classifications. However, whether 3D-CNN or 3D-1D-CNN,
the classification result between parking_lot1 and railway is still terrible. The reason is
that parking_lot1 and railway have similar spectral characteristics. Therefore, parking_lot1
is misclassified as a railway in the models. As Figure 18 shows, the convergence time of
the accuracy curve is roughly the same, which is 50 epochs. In addition, increasing the
number of epochs can slightly improve accuracy. After 150 epochs, all curves converge of
3D-1D-CNN. The slight fluctuation of the loss function in the validation dataset is due to
the small number of training samples. Compared with 3D-CNN, the overall accuracy (OA)
of 3D-1D-CNN is improved by 0.42% (from 95.90% to 96.32%). Table 6 and Figure 8 also
indicate that the results of 3D-CNN and 3D-1D-CNN are better than that of the SVM and
RF classifiers. It can be seen from Table 6 that 3D-1D-CNN uses fewer training parameters
to achieve higher accuracy in a short time. Therefore, 3D-1D-CNN model can well extract
the features of classes in the complex urban area. As Zhang et al. [26] mentioned that
3D-1D-CNN requires fewer training parameters and time, with lower misclassification
probability, compared with 3D-CNN. Although 3D-1D-CNN simplifies the structure of
3D-CNN, it is still good at mining spatial-spectral information of classes.
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In addition, examples of classification performed by different deep learning models
on the Houston dataset are compared. Zhang et al. [41] achieved 88.80% overall accuracy
using 2832 training samples, which is 7.52% less than our results. Feng et al. [42] achieved
96.31% of overall accuracy, which is 0.01% less than our results. The samples used in other
studies are all the pixels of the region of interest (ROI), while the samples used in this
paper are the central pixel and a few random pixels within the shape of ROI. Therefore, the
samples used in other studies contain more pixels, which makes classification easier. It is
widely known that if the used training images are different, it is meaningless to compare the
overall accuracy across two different experiments because they are not calculated against
the same benchmark. Therefore, Li et al. [40] achievement of 97.22% on 15030 samples does
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not mean the method can achieve 97.22% on this image. Shi et al. [43] proposed 3DCAM,
which achieved 97.69% of overall accuracy. Because there are many other 3D-CNN-derived
models out there and still being developed, it is good enough to use RF, SVM, 1D-CNN,
3D-CNN, and 3D-2D-CNN as benchmarks. It is impossible to keep up with all of them.

We depend on the accurately manually labelled samples to calculate the error matrix
accuracy as the globally-comparable metrics to evaluate the effectiveness of this study
compared to other recent research. However, even though the other papers are using
the same dataset (e.g., the Houston dataset), due to the differences in the spatial/spectral
pattern and feature distribution of the chosen areas and image subsets, the reported higher
overall accuracy in other papers cannot guarantee their approaches will still hold the
advance in this use case. One of the major contributions of this paper is providing another
data point on the performance of 3D-1D-CNN in the new combination of train-test sub-
dataset for researchers to refer to in the future. Furthermore, the cost of each approach is
different, and in many situations, accuracy is not the only metric the users consider. Other
factors such as computing time, workflow robustness, effectiveness, stability, and reusability
are all important in the approach selection processes in the real world. Each approach
(the full-stack workflow rather than the chosen AI model) should be comprehensively
considered before tossing it out and the difference of 1~5% in overall accuracy sometimes
is acceptable by the eventual users. The full-stack workflow described in Section 3 has
greatly helped us achieve the clean and reliable results, and we expect it to help clarify the
mechanism and assist users to adopt this approach in vegetation mapping production.

Furthermore, 3D-1D-CNN has been already tested in another study with higher per-
formance in handling hard-to-distinguish objects [26]. So, this paper serves as a validation
experiment to prove that 3D-1D-CNN applies to the more general urban area classification,
rather than only tree classifications. In conclusion, the 3D-1D-CNN model can still well
mine spatial spectral information in a short time under the condition of small samples.

6. Conclusions

In this study, the 3D-1D-CNN was proposed to evaluate its performance in spectral-
spatial information mining from hyperspectral data in a complex urban area, especially in
the cloud shadow areas, and the following conclusions can be obtained.

1. The overall accuracy of the proposed 3D-1D-CNN is 96.32%, which is 23.96%, 11.02%,
5.22%, and 0.42% much higher than that of SVM, RF, 1D-CNN, and 3D-CNN, respec-
tively. Although the results of 3D-2D-CNN and 3D-1D-CNN are similar, the time
required for 3D-1D-CNN is shorter. The 3D-1D-CNN model can still well mine spatial
spectral information in a short time under the condition of small samples.

2. 3D-1D-CNN has a strong ability to mine spectral-spatial information of cloud shadow
areas, especially highway, commercial, grass_healthy, and grass_synthetic.

3. The combinations of spectral composition parameters, texture characteristics, and
vegetation index can improve the classification accuracy. The optimal input size for
training samples is 9 × 9 which achieved the highest overall accuracy of 96.32%.

In conclusion, 3D-1D-CNN, which achieves higher accuracy in a short time using
small samples and fewer training parameters, is much better than 3D-CNN, RF, and SVM in
complex urban areas, especially commercial, grass_healthy, grass_synthetic, and highway
in the cloud shadow areas. Therefore, the 3D-1D-CNN can also be used in urban green
space extraction using hyperspectral data.
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