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Abstract. We propose a method to track the 6D pose of an object over
time, while the object is under non-prehensile manipulation by a robot.
At any given time during the manipulation of the object, we assume
access to the robot joint controls and an image from a camera. We use
the robot joint controls to perform a physics-based prediction of how
the object might be moving. We then combine this prediction with the
observation coming from the camera, to estimate the object pose as
accurately as possible. We use a particle filtering approach to combine the
control information with the visual information. We compare the proposed
method with two baselines: (i) using only an image-based pose estimation
system at each time-step, and (ii) a particle filter which does not perform
the computationally expensive physics predictions, but assumes the object
moves with constant velocity. Our results show that making physics-based
predictions is worth the computational cost, resulting in more accurate
tracking, and estimating object pose even when the object is not clearly
visible to the camera.
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1 Introduction

The dominant approach in robotic manipulation applications has been estimating
the object pose from RGB(D) camera images [1]. Object pose is estimated using
deep learning (e.g. DOPE [2]) or feature-based [3] methods.

However, during non-prehensile manipulation [4,5,18] in clutter, objects are
often fully or partially obstructed from the camera view, by cluttering objects
(e.g., Fig. 1, top-row) or by the robot hand (e.g., Fig. 1, bottom-row). This
degrades the performance of vision-only pose estimation.

The key insight we have is that, during non-prehensile manipulation, physics-
based predictions about objects’ motion can be used to supplement the visual
information, to better estimate object pose even when there are significant visual
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Fig. 1. Two example scenes. The estimated object pose of our method (PBPF) is shown
as a green wireframe box. The pose from a vision-only system (DOPE) is shown as a
yellow wireframe box. See the attached video or at: https://youtu.be/B9-5iTwgFnk.

occlusions. We propose a particle-filtering method that combines physics-based
predictions (using the available robot joint information and a physics-engine) with
the visual camera information to estimate the pose of manipulated objects. We
show two example scenes in Fig. 1. In the top-row, the robot is pushing a red box.
As the pushed object becomes visually obstructed by the box closer to the camera,
the vision-only system fails to estimate the object’s pose, whereas our method can
generate good estimates. In the bottom-row, two objects are manipulated: a red
box, which then pushes against a red can. As the push progresses, the robot hand
visually obstructs the red box and the red box visually obstructs the can. Our
method uses the physics-based interaction between the red box and the can (in
addition to the robot-red box interaction) to estimate the poses of both objects.

A similar work that combines visual information with physics-based reasoning
for 6D pose estimation in clutter is [11]. However, this work addresses static
scenes (e.g. based on the physical stability of a pile of objects). Instead, our work
uses physics predictions as the robot is manipulating/moving the objects. Other
work also uses physics and combines it with contact/tactile sensing [13,7,12,17],
as robot-object contact forces are tightly related to the pose and motion of the
object. In our work, we do not assume we have contact sensing, but instead, we
use the more commonly available camera sensing.

Other vision-based object tracking systems exist, sometimes using particle
filtering similar to our work [15,16,19,20], but they either assume the object does
not move [6] (but the camera may move as in [14]), or they [10] assume constant
velocity. Recent work from [21] proposes a method to track the pose of a box
undergoing a non-smooth impact with a surface (e.g. a box tossed onto a surface)
using a camera. The work derives and uses a specific impact model for the box-
surface system. The main difference of our work to the above is that, in addition
to visual information, we use robot control information and its physical effects.
To the best of our knowledge, this is the first work that integrates general physics-
based predictions with pose estimation.

https://youtu.be/B9-5iTwgFnk
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2 Problem Formulation

We use xt ∈ SE(3) to represent the full 6D pose of the object at time t. Our
objective is to estimate xt for all times t during manipulation, i.e. to track the
object pose as it is being manipulated. At any time t, we assume we have access to:

– the controls ut, which are the joint-space controls executed by the robot since
the last time-step t− 1;

– the observation zt, which is an image from a camera looking at the scene.

Therefore, our problem can be formalized as: At any time t, given all controls
since the beginning of the manipulation {u0, u1, . . . , ut} and all observations
{z0, z1, . . . , zt}, predict an estimate of the object pose, x̃t.

We use x∗
t to represent the ground truth pose of the object. We define the

positional error as the Euclidean distance between the positional components
of x̃t and x∗

t . We define the rotational error as the (smaller) angle required
to represent the relative rotation of x̃t and x∗

t around a certain axis: Given q̃t
and q∗t as the quaternion components of the estimated and ground truth poses,
respectively, the rotational error is given by the amount of rotation suggested by
q∗t ∗ q̃−1

t . Our goal is to minimize positional and rotational errors.
Below, we discuss three different methods (two baselines and our proposed

method): (i) Repetitive single-snapshot pose estimation (baseline, in Sec. 3), (ii)
Physics-based particle filtering (proposed method, in Sec. 4), and (iii) Constant-
velocity particle filtering (baseline, in Sec. 5).

3 Repetitive Single-Snapshot Pose Estimation

One commonly used method in robotic manipulation is to use a system that
can estimate the pose of the object from a single-snapshot, i.e. using only the
current camera image zt. There are multiple systems developed to perform
object pose estimation given an image, as mentioned in Sec. 1. In this paper, we
use DOPE [2] as a state-of-the-art deep-learning-based pose estimation system.
DOPE has been trained on the YCB objects [8] that we also use, and is publicly
available. Therefore, the repetitive single-snapshot pose estimation method, in
our case, corresponds to running DOPE at every time-step t during manipulation:
x̃t = DOPE(zt). This method treats every new observation as independent from
the previous time steps and therefore does not use temporal continuity. The
performance particularly degrades when the object is partially or fully obstructed
in the camera view. Moreover, it does not use the control information.

4 Physics-Based Particle Filtering (PBPF)

Using a Bayesian approach, we estimate the probability distribution for xt given
all the previous controls and observations, p(xt | z0, z1, ..., zt, u0, u1, ..., ut), i.e.,
the belief state. In particle filtering [22], the belief state is represented using a set
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of particles sampled from this distribution, Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t , where each

particle x
[m]
t (1 ≤ m ≤ M) is an instance of the state at time t. In our setting,

each particle represents a possible pose for all the manipulated objects.
At any time t, if a single estimate x̃t is required (e.g. the estimates shown in

Fig. 1), we use the mean of all the particles in Xt to compute x̃t.
During particle filtering, at each time-step t, the previous set of particles Xt−1

are updated using the current controls, ut, and observation, zt, to generate a new
set of particles Xt. This happens in two stages: the motion update (presented in
Sec. 4.1), and the observation update (in Sec. 4.2).

4.1 Motion Update

During this first stage, for each particle x
[m]
t−1, we generate a new intermediate

particle (shown as x̄
[m]
t ), by sampling x̄

[m]
t ∼ p(xt |x[m]

t−1, ut).
We assume access to a physics engine, fθ, such that: xt = fθ(xt−1, ut). Here,

θ refers to physical parameters, e.g. friction coefficient at the contacts, restitution
of the contacts, and the mass of the object. The physics engine is deterministic,
and therefore cannot directly be used instead of the probabilistic motion model.

Therefore, we approximate sampling from the motion model x̄
[m]
t ∼ p(xt |x[m]

t−1, ut),
by first sampling θ from a distribution representing our uncertainty about the

physical parameters of the objects, θ
[m]
t ∼ N (µθ, σ

2
θ), and then running the

physics engine with the sampled parameter: x̄
[m]
t = f

θ
[m]
t

(x
[m]
t−1, ut) + ϵ, with the

addition of small Gaussian noise ϵ ∼ N (0, σ2
f ).

4.2 Observation Update

During this second stage of particle filtering, for each intermediate particle x̄
[m]
t ,

we calculate an importance factor w
[m]
t using the observation, w

[m]
t = p(zt | x̄[m]

t ).
After the importance factors for all the particles are computed, they are used to
re-sample the new set of particles Xt, completing the particle filter update.

To compute p(zt | x̄[m]
t ), we propose to use the vision-only pose estimation

system (e.g., DOPE) to predict the pose of the object according to zt, and

then to use the distance of x̄
[m]
t to this predicted pose to compute a probability

value, p(zt | x̄[m]
t ) ≃ N (x̄

[m]
t ; DOPE(zt), σ

2
DOPE), where DOPE(zt) is the pose

predicted by DOPE, and the parameter σ2
DOPE represents the variance of DOPE

errors for the object. This can be estimated beforehand for an object by collecting
DOPE estimates for the object and comparing it to a ground truth pose.

4.3 Using Visibility Information

The observation model above assumes that a DOPE detection, DOPE(zt), is
always available. However, for a given camera image zt, DOPE may not output a
pose estimate. At such time points, one option is to skip the observation update.
This is what we do in the basic PBPF algorithm.



Physics-based Object Pose Estimation 5

However, the lack of detection of the object is not a lack of information. The
object is probably partially or fully occluded. Therefore, we also implemented an
extension of our algorithm: PBPF with Visibility (PBPF-V), which is currently
implemented only for single-object manipulation.

For this method, we first compute a visibility score, v
[m]
t , for each particle.

To compute the visibility score, in the physics engine, we shoot R rays from the
camera towards R points uniformly sampled on the manipulated object. Some
of these rays hit the object, but some others may hit other occluding objects
or robot links before hitting the manipulated object. We define the visibility
of a particle as the ratio of rays hitting the particle to the number of all rays:

v
[m]
t = number of rays hitting the particle

R .

A visibility score of 1 implies perfect visibility of the object by the camera,
whereas a score of 0 implies the particle is completely occluded. Then, we can

relate the importance factor of a particle, w
[m]
t , to its visibility v

[m]
t based on

whether a DOPE estimate is available or not at time t. The particular method
to relate these values depends on a model of DOPE behaviour under occlusion.
Our experiments with DOPE did not suggest that DOPE gradually becomes
worse with more occlusion. Instead, after a certain amount of occlusion, DOPE

usually loses the object completely. Therefore, instead of relating w
[m]
t and v

[m]
t

(inversely) proportionally, we implemented a threshold-based model: If DOPE is
not able to detect the object at time t, then we assign a fixed high importance

factor value (WH) to particles that have low visibility scores (i.e. v
[m]
t < VH ,

where VH is a fixed visibility threshold), and a fixed low importance factor value

(WL) to particles that have high visibility scores (i.e. v
[m]
t > VH). Conversely, if

a DOPE estimate is available at time t, then we compute the importance factor
values according to the previous Section 4.2, but penalize the particles with low

visibility (v
[m]
t < VL, where VL is a fixed low visibility threshold) by scaling their

importance factor by αW ∈ [0, 1].

5 Constant-Velocity Particle Filtering (CVPF)

Our first baseline method was presented in Sec. 3, which estimates the object’s
pose from a new image frame at every timestep. Our second baseline method,
presented here, is a particle filter, similar to PBPF presented in Sec. 4, the only
difference being in the motion update stage. While PBPF uses a physics engine
in its motion model, here, instead we use a computationally cheap motion model,
which simply assumes that the object moves with a constant velocity. In other
words, during the motion update, we update a particle at time step t using the
estimated pose of the object from the previous time steps t− 1 and t− 2. We
calculate the “difference” between the estimated pose of the object at the previous
time-steps: dx = x̃t−1 − x̃t−2 and then, we assume the object keeps moving with

the same velocity, and use the motion update rule: x̄
[m]
t = x

[m]
t−1 + dx+ ϵ where ϵ

is an extra noise term, similar to the parameter in 4.1.
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There are no differences between PBPF and CVPF handling the pose infor-
mation from DOPE.

6 Experiments And Results

We evaluated and compared the performance of our methods in eight different
non-prehensile manipulation scenes. (All scenes can be seen in the attached
video.) We used three objects from the YCB dataset [8], the CheezIt box, the
Gelatin Jell-o and the Campbell Soup, a cylinder. DOPE had good performance
of these objects when they were visible.

Cheezit Scene 1 (shown in Fig. 1-first row) and Soup Scene 1 (shown in
Fig. 2-fourth row): The robot pushes the object among the clutter, where the
cluttering object obstructs the view of the camera. The pose of the obstructing
object is fixed and known.

Cheezit Scene 2 (shown in Fig. 2-first row) and Soup Scene 2 (shown in
Fig. 2-fifth row): The robot pushes the object on a clear table. The hand can
obstruct the camera view during pushing.

Cheezit Scene 3 (shown in Fig. 2-second row) and Soup Scene 3 (shown
in Fig. 2-sixth row): The robot pushes the object on a clear table, and the camera
has a clear view of the object.

Cheezit Scene 4 (shown in Fig. 2-third row): The robot tilts the object up
and then brings it down. The camera has a clear view. The pose of the supporting
object is fixed and known.

Scene 5 (shown in Fig. 2-seventh row): The robot pushes multiple objects.
These objects occlude each other during the push. We track all objects’ poses
simultaneously.

In Scenes 1, 2, and 3, obstacles in the clutter do not physically interact with
the robot and the tracked object.

We have implemented our methods as below1.

PBPF: The physics-based particle filtering method (Sec.4). (a) Motion model
parameters. µθ and σθ: Mean friction coefficient of 0.1 and standard deviation
of 0.3, with minimum capped at 0.001. Mean restitution of 0.9 and standard
deviation of 0.2. The mean mass of 0.38 kg and the standard deviation of 0.5 with
a minimum cap of 0.05 kg. σf : For position 0.005 m, for rotation 0.05 rad. As the
physics model, fθ, we used the Pybullet physics engine [9]. A Pybullet environment
was initialized for each particle. The Pybullet environments for particles were
parallelized over the 8 (16 virtual) CPU cores (11th Gen Intel(R) Core(TM) i9-
11900@2.50GHz) of the computer. (b) Observation model parameters. σDOPE :
For position 0.02 m and rotation 0.09 rad. (c) Update frequency. ∆t = 0.16s. (d)
Number of particles. M = 70. (e) Initialization. We use a Gaussian distribution
to initialize 70 particles at t = 0. The mean pose is estimated by DOPE at t = 0.
The standard dev. for initialization is 0.16 m and 0.43 rad.

1 Experiments were performed on CPU: 11th Gen Intel(R) Core(TM) i9-
11900@2.50GHz; GPU: NVIDIA GeForce RTX 3090; RAM: 128580 Mb
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Fig. 2. Experimental Scenes. The images are from the tracking camera. The estimated
object pose of our method (PBPF) is shown as a green wireframe box, while the
estimated object pose from DOPE is shown as a yellow wireframe box.

PBPF-V: An extension of PBPF which also considers visibility (as described
in Sec. 4.3). All parameters are the same with PBPF except that the number of
particles M = 150 in Scene 5. Additional visibility parameters: For Cheezit and
Gelatin, WH = 0.75, WL = 0.25, VH = 0.95, VL = 0.5, αW = 0.33. For Soup,
WH = 0.6, WL = 0.45, VH = 0.8, VL = 0.9, αW = 0.33.

CVPF: The constant-velocity particle filtering method. All parameters were
the same with PBPF, except the number of particles, M . Since CVPF is compu-
tationally cheaper, it could handle more particles M = 150.
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Ground truth: We used a marker-based OptiTrack system to record “ground
truth” poses, x∗

t , during manipulation.

Fig. 3. Positional and rotational errors of different methods in four different scenes
with the Cheezit object and the fifth scene shows the tracking of three different target
objects, each with its own positional and rotational errors in different methods. Plots
show mean values with the shadows indicating the 95% Confidence Interval. In all plots,
the horizontal axes show time, and the vertical axes show the positional/rotational
error. Similar plots for all scenes and all objects can be seen in our repository.

6.1 Experimental Procedure

In Scenes 1-4, we repeated 10 robot runs, and in Scene 5, we repeated 1 robot run
(i.e. a total of 71 real robot executions). During each run, we recorded the robot
controls, ut, and the camera images, zt. Since particle filtering is a sampling-
based method, it can generate different results with the same input. For statistical
accuracy, we evaluated each method 10 times on the data from each of the 10 runs
in Scenes 1-4, giving 100 evaluations of each method for Scenes 1-4. In Scene 5,
we evaluated each method 20 times on the data from the 1 real robot execution.
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Table 1. Mean and standard deviation of the errors of different methods

Scene 1 Scene 2 Scene 3 Scene 4
pos.err(m) rot.err(rad) pos.err(m) rot.err(rad) pos.err(m) rot.err(rad) pos.err(m) rot.err(rad)
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Cheezit
PBPF 0.081 0.020 0.484 0.272 0.070 0.030 0.426 0.309 0.019 0.024 0.367 0.187 0.018 0.008 0.092 0.067
PBPF-V 0.063 0.020 0.396 0.295 0.058 0.021 0.294 0.204 - - - - - - - -
DOPE 0.289 0.218 1.345 1.168 0.293 0.248 1.046 1.027 0.052 0.033 0.375 0.447 0.017 0.002 0.201 0.013
CVPF 2.359 7.421 1.472 0.951 0.407 0.678 0.878 0.952 25.14 152.8 0.879 0.952 0.029 0.012 0.207 0.022

Soup
PBPF 0.043 0.023 1.133 0.364 0.049 0.032 0.851 0.249 0.026 0.021 0.405 0.455 - - - -
PBPF-V 0.045 0.027 1.077 0.395 0.046 0.028 0.724 0.262 - - - - - - - -
DOPE 0.215 0.117 1.174 0.372 0.206 0.112 0.776 0.222 0.071 0.140 0.438 0.482 - - - -
CVPF 0.298 0.153 1.884 0.794 0.240 0.126 1.702 0.845 6.528 52.09 1.174 0.982 - - - -

At each time step of each evaluation, we computed the positional and rota-
tional errors of the mean estimate, against the ground truth. When computing
errors for DOPE, if DOPE did not output any pose at a certain time step (e.g.,
because of occlusions), we used the latest pose reported before that time step.

6.2 Results

We present the overall (averaged over all runs and all time-steps) positional
and rotational errors from Scene 1-4 in Table. 1, and from Scene 5 in Table. 2.
Compared to DOPE and CVPF, PBPF performs significantly better in Scenes 1,
2, and 3. In Scene 4, where DOPE has a good view and overall good detection,
PBPF and DOPE perform similarly. CVPF performs worse out of all the methods.
In Scene 5, we only ran the PBPF-V algorithm used for comparison with DOPE.
PBPF-V performs significantly better than the baseline method.

When there is occlusion (Scenes 1 and 2), PBPF-V performs better than
basic PBPF for the Cheezit object. For the Soup object, the difference between
PBPF and PBPF-V is not significant. This is probably due to the Soup being a
much smaller object, for which DOPE’s behaviour under occlusion is much more
difficult to model accurately.

We also present the positional and rotational errors of each method over the
course of manipulation in Scenes 1-4 for Cheezit in Fig. 3. (Results for Soup are
similar, and are in our repository.) We can see that PBPF and PBPF-V produce
better and more stable estimates of the object position. In Fig. 3, we also show
the results for each object in Scene 5. PBPF-V significantly outperforms DOPE.

It is worth noting that even with a good field of view, DOPE can be noisy,
because it uses a single visual snapshot, which becomes unstable when the light,
angle, and other factors change. This can lead to physically unrealistic poses, e.g.

Table 2. Mean and standard deviation of the errors when tracking multi-object (Scene 5)

Cheezit Gelatin Soup
pos.err(m) rot.err(rad) pos.err(m) rot.err(rad) pos.err(m) rot.err(rad)
µ σ µ σ µ σ µ σ µ σ µ σ

PBPF-V 0.031 0.011 0.126 0.087 0.031 0.023 0.056 0.030 0.027 0.013 0.346 0.139
DOPE 0.058 0.108 0.158 0.337 0.179 0.665 0.272 0.410 0.045 0.029 1.193 1.192
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target object can be inside the robot arm, or two target objects can penetrate.
In contrast, our method (PBPF) outputs physically feasible poses, effectively
avoiding the unrealistic scenarios above.
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