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Abstract
Standard likelihood penalties to learn Gaussian graph-
ical models are based on regularizing the off-diagonal
entries of the precision matrix. Such methods, and their
Bayesian counterparts, are not invariant to scalar mul-
tiplication of the variables, unless one standardizes the
observed data to unit sample variances. We show that
such standardization can have a strong effect on infer-
ence and introduce a new family of penalties based on
partial correlations. We show that the latter, as well as
the maximum likelihood, L0 and logarithmic penalties
are scale invariant. We illustrate the use of one such
penalty, the partial correlation graphical LASSO, which
sets an L1 penalty on partial correlations. The associated
optimization problem is no longer convex, but is condi-
tionally convex. We show via simulated examples and
in two real datasets that, besides being scale invariant,
there can be important gains in terms of inference.
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1 INTRODUCTION

In Gaussian graphical models, most popular frequentist approaches to sparse estimation of the
precision matrix penalize the absolute value of the entries of the precision matrix. Gaussian graph-
ical models are invariant to scalar multiplication of the variables; however, it is well-known that
such penalization approaches do not share this property. We show that the only scale-invariant
strategies, within a large class of precision matrix penalties, are the logarithmic and L0 penalties.
It is possible to address this issue via a data preprocessing step of standardizing the data to have
unit sample variances. However, as we illustrate next, this standardization can adversely affect
inference. In this paper, we propose a family of methods based on partial correlations and show
that they ensure scale invariance without requiring this standardization step.

As motivation we present a simple example where the goal is to estimate the entries in a
p × p precision matrix Θ. We set p = 50 and generate n = 100 independent Gaussian draws with
zero mean and covariance Θ−1, where Θ follows the so-called star pattern, with 𝜃ii = 1 and
𝜃i1 = 𝜃1i = −1∕

√
p for i = 2,…, p, and 𝜃ij = 0 otherwise. This is a setting in which recovering the

graphical model is relatively straightforward, for example in Yuan and Lin (2007). The top left
panel in Figure 1 shows the regularization path for the estimated partial correlations when apply-
ing GLASSO (Friedman et al., 2008) to the unstandardized data. For a large range of values for
the regularization parameter 𝜌 the truly zero 𝜃ij’s are completely separated from the nonzeroes.
However, the top right panel shows that when standardizing the data to unit sample variances

F I G U R E 1 Top: partial correlation regularization paths for GLASSO in the p = 50 star graph example on
the original data (left), and standardized data (right). Estimates of truly nonzero 𝜃ij are in black. Bottom: Partial
correlation regularization paths for PCGLASSO in the p = 50 star graph example (left) and Kullback–Leibler
(KL) loss over the regularization paths for different penalties applied to standardized data (right).
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CARTER et al. 3

the quality of the inference suffers. In particular the true graphical model is not recovered for any
𝜌. The bottom left panel shows the results obtained by applying a LASSO penalty to the partial
correlations, our proposed PCGLASSO, which as we show is scale invariant. The bottom right
panel demonstrates how the estimation accuracy measured by Kullback–Leibler (KL) loss (see
Section 8) of GLASSO and two other methods reviewed below suffer in comparison to PCGLASSO
when using standardized data.

Lack of invariance is not restricted to the GLASSO, but, as we show later, affects essentially all
continuous penalties on the precision matrix, as well as standard prior distributions in Bayesian
settings.

The paper is organized as follows. Section 2 sets notation and reviews popular classes of likeli-
hood penalties which we refer to as regular penalty functions, and their Bayesian equivalents, reg-
ular prior distributions. Section 3 introduces a class of penalties and prior distributions on partial
correlations, and the PCGLASSO as a particular case. Section 4 shows that the PCGLASSO, as well
as the logarithmic and L0 penalties are scale invariant, while other regular penalty functions are
not. Section 5 offers an alternative argument for standardizing the data when using regular penal-
ties, related to situations where the likelihood function is exchangeable in two partial correlations,
hence one may wish for inference to be exchangeable as well. Section 6 compares the related
prior distributions of GLASSO and PCGLASSO and Section 7 discusses computational issues for
the PCGLASSO and gives a certain conditional convexity result. Section 8 shows examples on
simulated, gene expression and stock market datasets. We end the paper with a short discussion.

2 PENALIZED LIKELIHOOD IN GAUSSIAN GRAPHICAL
MODELS

Let X = (X (1)
, ...,X (p)) ∼ N(𝜇,Σ) be a p-dimensional multivariate Gaussian random vector with

unknown mean 𝜇 ∈ Rp and p × p positive-definite covariance Σ = (𝜎ij)i≤i,j≤p. Suppose we observe
n independent samples (X1,…,Xn) of X and denote their sample covariance by S (note that this is
the biased sample covairance with denominator n). Our goal is to estimate the precision matrix
Θ = (𝜃ij)1≤i,j≤p = Σ−1.

A common assumption in Gaussian graphical models is that the data generating process is
governed by a sparse undirected graph so thatΘ is a sparse matrix with many zero entries, and we
have a particular interest in the location of its zero entries. This is due to the equivalence between
zero partial covariances and conditional independencies in Gaussian graphical models. The most
common frequentist approach to sparse estimation is to maximize a penalized likelihood function
of the form l(Θ|S) − Pen(Θ), where

l(Θ|S) = n
2
[
log(det(Θ)) − tr(SΘ) − p log(2𝜋)

]
, (1)

is the log-likelihood function, Pen(Θ) some penalty function and tr(A) the trace of A. Most popular
choices (discussed below) consider penalties that are additive and monotone in |𝜃ij|, which we
refer to as separable penalties, and in particular the subclass of penalties differentiable everywhere
other than zero, which we refer to as regular penalties.

Definition 1. A penalty function Pen(Θ) is separable if

Pen(Θ) =
∑

i≤j
penij(𝜃ij),
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4 CARTER et al.

where penii ∶ (0,∞)→ R and penij ∶ R → R are non-decreasing in 𝜃ii and |𝜃ij| respec-
tively for all i and i < j.

A separable penalty is regular if penii = penjj for all (i, j) and, for all i < j, penij does
not depend on (i, j), is symmetric about 0 and differentiable away from 0.

Most popular penalty functions used for Gaussian graphical models are regular. The GLASSO
is a prominent example using an L1 penalty to produce the point estimate

Θ𝜌GLASSO(S) = arg max log(det(Θ)) − tr(SΘ) − 𝜌
p∑

i=1

p∑

j=1
|𝜃ij| (2)

for some given regularization parameter 𝜌 ≥ 0. Meinshausen and Bühlmann (2006) proposed an
alternative that places L1 penalties on the full conditional regression of each X (i) given X−(i), Baner-
jee et al. (2008) for computational methods based on parameterizing (2) in terms of Σ and Yuan
and Lin (2007) for a variation that omits the diagonal ofΘ from the penalty. Other popular regular
penalties include the smoothly clipped absolute deviation (SCAD) penalty (Fan et al., 2009; Fan &
Li, 2001) and the minimax concave penalty (MCP) (Wang et al., 2016; Zhang, 2010), which were
proposed to reduce bias in the estimation of large entries in Θ relative to the L1 penalty. Another
notable regular penalty is the L0 penalty Pen(Θ) = 𝜌

∑
i<j I(𝜃ij ≠ 0).

The adaptive LASSO (Fan et al., 2009; Zhou et al., 2009) is an important example of a non-
regular penalty. It uses an L1 penalty where weights depend on the data via some initial estimate
of Θ, and hence does not satisfy Definition 1. However, as noted by Bühlmann et al. (2008) and
Candes et al. (2008), the adaptive LASSO can be seen as a first-order approximation of the loga-
rithmic penalty where penij(𝜃ij) = 𝜌 log(|𝜃ij|), which is regular. Both papers propose an iterative
version of adaptive LASSO that formally targets this logarithmic penalty.

There is a well known equivalence between penalized likelihood and maximum a posteriori
estimates in Bayesian frameworks. In particular, the estimate under a penalty (Pen) is equal to the
mode of the posterior distribution under the prior density 𝜋(Θ) ∝ exp(−Pen(Θ))I(Θ ∈ ) where
 is the set of symmetric, positive definite matrices. With this in mind we define separable and
regular prior distributions.

Definition 2. A prior distribution with density 𝜋 on Θ is separable if

𝜋(Θ) ∝
∏

i≤j
𝜋ij(𝜃ij)I(Θ ∈ ),

where 𝜋ii is a density function with support (0,∞) and 𝜋ij is a density function with
support R which are nonincreasing in 𝜃ii and |𝜃ij|, respectively, for all i and i < j.

A separable prior distribution is regular if 𝜋ii = 𝜋jj for all (i, j) and for all i < j, 𝜋ij
does not depend on (i, j), is symmetric about 0 and differentiable away from 0.

The correspondence between penalized likelihoods and prior distributions has been utilized
by the Bayesian LASSO regression of Park and Casella (2008) and Hans (2009) and in Gaussian
graphical models by Wang (2012) and Khondker et al. (2013). Of particular interest to this paper,
Wang (2012) showed that under the GLASSO prior the marginal prior distribution of partial cor-
relations does not depend on the regularization parameter. We explore this further in Section 6.
The Bayesian interpretation has also been used to create new penalties functions, for example, by
Banerjee and Ghosal (2015) and Gan et al. (2019), both of whom set mixture priors on the entries
of Θ.
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CARTER et al. 5

3 PARTIAL CORRELATION GRAPHICAL LASSO

We propose basing penalties on a reparameterization of Θ in terms of the (negative) partial
correlations

Δij ∶=
𝜃ij

√
𝜃ii𝜃jj

= −corr
(

X (i)
,X (j)|X−(ij))

.

where X−(ij) denotes the vector X after removing X (i) and X (j).
The precision matrix can be decomposed asΘ = 𝜃

1
2Δ𝜃

1
2 , where 𝜃 = diag(Θ) andΔ is the matrix

with unit diagonal and off-diagonal entries Δij. The penalized likelihood function then becomes

n
2

[

log(det(Δ)) +
∑

i
log(𝜃ii) − tr(S𝜃

1
2Δ𝜃

1
2 )

]

− Pen(𝜃,Δ). (3)

We believe that partial correlations are a better measure of dependence than the precision
matrix entries 𝜃ij, in that they are easier to interpret and invariant to scalar multiplication of the
variables. We now introduce a class of additive penalties in this parameterization, a corresponding
prior class, and subsequently state our PCGLASSO as a particular case.

Definition 3. A penalty (Pen) is partial correlation separable (PC-separable) if it is of
the form

Pen(𝜃,Δ) =
∑

i
penii(𝜃ii) +

∑

i<j
penij(Δij),

where penii ∶ (0,∞)→ R and penij ∶ [−1, 1]→ R are nondecreasing in 𝜃ii and |Δij|,
respectively, for all i and i < j.

A PC-separable penalty function is symmetric if penii = penjj for all (i, j) and, for
all i < j, penij does not depend on (i, j) and is symmetric about 0.

Note that Definition 3 includes formulations that do not penalize the diagonal entries, that is,
penii(𝜃ii) = 0. Note also that the L0 and logarithmic penalties are PC-separable since 𝜃ij = 0 if and
only if Δij = 0 and log(|𝜃ij|) = log(|Δij|) + 1

2
log(𝜃ii) + 1

2
log(𝜃jj).

Definition 4. A prior 𝜋(𝜃,Δ) is (symmetric) PC-separable if the penalty function
Pen(𝜃,Δ) = −log(𝜋(𝜃,Δ)) is (symmetric) PC-separable.

Any PC-separable prior can be written as

𝜋(𝜃,Δ) ∝
∏

i
𝜋ii(𝜃ii)

∏

i<j
𝜋ij(Δij)I(Δ ∈ 1), (4)

where 1 is the set of symmetric, positive definite matrices with unit diagonal.
PCGLASSO is a symmetric PC-separable penalty applying the L1 norm to the partial corre-

lations penij(Δij) = n𝜌|Δij|, and a logarithmic penalty to the diagonal penii(𝜃ii) = 2 log(𝜃ii). The
penalized likelihood function, after removing constants, is given by

log(det(Δ)) +
(

1 − 4
n

)∑

i
log(𝜃ii) − tr

(
S𝜃

1
2Δ𝜃

1
2

)
− 𝜌
∑

i≠j
|Δij|. (5)
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6 CARTER et al.

The logarithmic penalty on the diagonal entries ensures scale invariance of the PCGLASSO
(Section 4). A coefficient of 2 is used since in the univariate p = 1 case this minimizes the
mean squared error of the estimated precision amongst logarithmic penalties (see Appendix
A). Although many methods use the same penalty forms for diagonal and off-diagonal entries,
it seems natural to use different forms since the former do not aim to induce sparsity. For
example, Yuan and Lin (2007) argued for a GLASSO framework where one does not penalize the
diagonal.

As is common for LASSO-type penalties, one may choose a sequence of regularization param-
eters 𝜌 for which to calculate the PCGLASSO estimate Θ̂(𝜌) and select the solution that maximizes
some suitable criterion. In Section 8 we used a Bayesian information like criterion (BIC), which
selects the estimate minimizing

BIC(Θ̂(𝜌), S) = log(n)
∑

i<j
I(�̂�ij(𝜌) ≠ 0) − 2 l(Θ̂(𝜌)|S). (6)

Parameter selection via such a BIC is common within penalized likelihoods and has been used in
Gaussian graphical models by, for example, Yuan and Lin (2007) and Lian (2011). It has also been
shown to provide consistent graphical model selection when used with the SCAD penalty (Gao
et al., 2012). Other potential criteria that have been explored for GLASSO are cross validation
and the extended Bayesian information criterion (EBIC, Foygel & Drton, 2010), which we also
consider in our real data applications. Further discussion is available in, for example, Vujačić
et al. (2015).

There are some examples of penalty functions for Gaussian graphical models based on partial
correlations. Ha and Sun (2014) utilized a ridge penalty. The space method of Peng et al. (2009),
similarly to PCGLASSO, uses an L1 penalty on the partial correlations, but in combination with
a function other than the log-likelihood. Azose and Raftery (2018) introduced a separable prior
on the marginal correlations. They argued that a key benefit of their prior is the ability to specify
beliefs about correlations. A similar argument can be made for PC-separable priors allowing one
to specify prior beliefs on partial correlations.

4 SCALE INVARIANCE

A key property of graphical models is invariance to scalar multiplication. In the Gaussian case, if
we consider the transformation DX for some fixed diagonal p × p matrix D with nonzero diagonal,
then DX is also Gaussian with precision matrix

ΘD = D−1ΘD−1
. (7)

In particular, the zero entries of ΘD are identical to those of Θ.
We argue that it is desirable for an estimator ofΘ to mirror the relationship in (7) under scalar

multiplication of the data, a property we call scale invariance. We now show that, among regular
penalty functions, only the L0 and logarithmic penalties are scale invariant, whereas PC-separable
penalties more generally are. Recall that any estimator can be made scale invariant by standard-
izing the data to unit sample variances prior to obtaining the estimate, but as discussed this has
an effect on inference. We start by defining two notions of scale invariance related to the point
estimate and to the recovered graphical structure.
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CARTER et al. 7

Definition 5. An estimator Θ̂ is scale invariant if for any sample covariance matrix
S and any diagonal p × p matrix D with nonzero diagonal entries,

Θ̂(DSD) = D−1Θ̂(S)D−1
.

Θ̂ is selection scale invariant if Θ̂(S) and Θ̂(DSD) have identical zero entries for any S
and D.

Scale invariance ensures that the estimate under the scaled data corresponds to that under the
original data as in (7). Meanwhile selection scale invariance ensures that one recovers the same
graphical structure under scalar multiplications. It is clear that scale invariance implies selection
scale invariance.

We now present results on the scale invariance of different penalties. Note that the results
could equivalently be written in terms of the maximum a posteriori estimate under corresponding
prior distributions. All proofs are in Appendix B.

Proposition 1. Let Θ̂ be an estimator based on a regular penalty, and suppose that
there exists a sample covariance matrix S such that Θ̂(S) is not a diagonal matrix. Then
Θ̂ is scale invariant if and only if penij is either an L0 or logarithmic penalty, and penii
is either a constant or a logarithmic penalty.

In particular, the GLASSO, SCAD, and MCP estimators are not scale invariant. Further, as
illustrated in Figure 1 these estimators are also not selection scale invariant. We conjecture that
lack of selection scale invariance holds more widely for regular penalty functions, but settle with
the counterexample for these three cases provided by Figure 1.

We present an example to further illustrate how scaling can affect the inferred conditional
independence structure. Suppose we observe the inverse sample covariance matrix

S−1 =
⎛
⎜
⎜
⎜
⎝

1 0.5 0
0.5 1 0.25
0 0.25 1

⎞
⎟
⎟
⎟
⎠

.

The left panel in Figure 2 shows the associated GLASSO estimates Θ𝜌GLASSO(S). The right panel
considers the situation where the data were given on a different scale, specifically the sam-
ple covariance is DSD where D has diagonal entries 1, 1 and 10, and provides the estimates
DΘ𝜌GLASSO(DSD)D. The estimates set to zero, as well as their relative magnitudes, differ signifi-
cantly depending on the scale of the data. We observed similar results for the SCAD and MCP
penalties (not shown, for brevity).

As shown in Proposition 1, the only scale invariant regular penalties are the L0 and logarith-
mic penalties, both of which are also PC-separable. In fact scale invariance holds more widely in
PC-separable penalties, from which it follows that PCGLASSO is scale invariant.

Proposition 2. Any estimator based on a symmetric PC-separable penalty is scale
invariant, provided penii(𝜃ii) = c log(|𝜃ii|) for some constant c ≥ 0.

In the Bayesian framework, Proposition 2 implies scale invariance of the a posteriori mode
under symmetric PC-separable priors. That is, let Θ̃ = Θ̂(DSD) be the posterior mode under the
scaled sample covariance, then the mode under the original sample covariance is Θ̂(S) = DΘ̃D.
Hence, the maxima of the two posterior densities are 𝜋

(
Θ̃|DSD

)
and 𝜋

(
DΘ̃D|S

)
.
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8 CARTER et al.

F I G U R E 2 Estimated off-diagonal entries Θ𝜌GLASSO(S) (left) and DΘ𝜌GLASSO(DSD)D (right) for regularization
parameter 𝜌 ∈ [0, 1].

In fact a stronger property holds for the entire posterior distribution, that PC-separable priors
lead to scale-invariant posterior inference, as defined below.

Definition 6. Let 𝜋(Θ) be a prior density, S a sample covariance and D a diagonal
matrix with nonzero diagonal. Let the posterior density associated to S be 𝜋(Θ|S) ∝
L(Θ|S)𝜋(Θ), and that associated to DSD be 𝜋(Θ|DSD) ∝ L(Θ|DSD)𝜋(Θ)where L is the
Gaussian likelihood function.

The prior 𝜋(Θ) leads to scale-invariant posterior inference if for any (S,D)

P𝜋(Θ ∈ A|DSD) = P𝜋(Θ ∈ AD|S), (8)

for all measurable sets A where AD = {Θ ∶ D−1ΘD−1 ∈ A}.

In particular, (8) implies that the two posterior distributions on the partial correlations Δ are
equal up to appropriate sign changes, that is, when D has all positive entries, 𝜋(Δ|S) = 𝜋(Δ|DSD)
(since Δ associated to Θ is equal to that associated to DΘD).

Proposition 3. Any symmetric PC-separable prior distribution with 𝜋ii(𝜃ii) ∝ 𝜃−c
ii for

some constant c ≥ 0 leads to scale-invariant posterior inference.

We note that the proof of Proposition 3 does not depend on 𝜋ij(Δij) being nonincreasing or 𝜋ij
being the same for all i ≠ j. Hence the result extends to any prior of the form (4) for which 𝜋ii(𝜃ii) ∝
𝜃
−c
ii for all i and 𝜋ij(Δij) is symmetric for all i ≠ j. The symmetry condition for 𝜋ij is required for

negative scalar multiplications—that is, when D includes negative entries—so that 𝜋ij(−Δij) =
𝜋ij(Δij). If we only consider positive scalar multiplications—D with all positive entries—then the
symmetry condition can also be relaxed.

5 EXCHANGEABLE INFERENCE

We now discuss an alternative view on the desirability of standardizing the data when using
regular penalties, based on notions of exchangeable inference. The simplest situation occurs when
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CARTER et al. 9

the likelihood function is exchangeable in two or more Δij’s, for example when two rows in the
sample correlation matrix R = diag(S)−1∕2Sdiag(S)−1∕2 are equal (up to the necessary index per-
mutations). In such a situation the likelihood provides the same information on theseΔij’s, hence
it seems desirable to obtain the same inference for all of them. If the log-likelihood is exchange-
able in some parameters, then any symmetric PC-separable penalty and prior trivially leads to
exchangeable inference on those parameters. Yet, as illustrated in Example 1, regular penalties
can lead to significantly different inference (unless one standardizes the data).

Example 1. Consider a p = 4 setting where the data-generating truth follows a star
graph, featuring an edge between X (1) and each of X (2)

,X (3)
,X (4), and no other edges.

Specifically, suppose that truly 𝜃11 = 𝜃22 = 𝜃44 = 1, 𝜃33 = 4, 𝜃12 = 𝜃14 = −0.5 and 𝜃13 =
−1, so that the data-generating partial correlations are Δ12 = Δ13 = Δ14 = 0.5, and
Δij = 0 for all remaining (i, j). Consider an ideal scenario where the sample covariance
S matches the data-generating truth. That is,

S−1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 −0.5 −1 −0.5
−0.5 1 0 0
−1 0 4 0
−0.5 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

; S =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

4 2 1 2
2 2 0.5 1
1 0.5 0.5 0.5
2 1 0.5 2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

;

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 1∕
√

2 1∕
√

2 1∕
√

2
1∕
√

2 1 0.5 0.5
1∕
√

2 0.5 1 0.5
1∕
√

2 0.5 0.5 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

In this example, the likelihood is exchangeable in (Δ12,Δ13,Δ14), hence it seems desir-
able that Δ̂12 = Δ̂13 = Δ̂14. The likelihood is also exchangeable in the remaining Δij
and their estimates should ideally be close to 0, their true value.

The left panel of Figure 3 shows the GLASSO path for the partial correlations.
The estimate for Δ13 is fairly different than for Δ12 and Δ14, and so is the range of
𝜌’s for which they are set to 0. Note, however, that the estimates for the remaining
Δij’s are close to 0. To address this issue, one may note that the diagonal of S is not
equal to 1. Indeed, if one standardizes the data, so that the sample covariance is equal
to R, one obtains the center panel of Figure 3. Now Δ̂12 = Δ̂13 = Δ̂14 for any regular-
ization parameter 𝜌, as we argued is desirable. However, the estimates for truly zero
parameters are somewhat magnified for 𝜌 ∈ [0.05, 0.35].

The PCGLASSO estimates (on either the original or standardized data, due to scale
invariance) in the right panel of Figure 3 satisfy Δ̂12 = Δ̂13 = Δ̂14, and the truly zero
parameters are clearly distinguished.

We remark that the notion can be extended to conditional exchangeability, that is, the like-
lihood being symmetric in (Δij,Δkl) given the remaining parameters in Δ and 𝜃. For example,
the likelihood is conditionally exchangeable in (Δij,Δik) when the sample covariances and pre-
cisions are related by the same constant, that is, Sij = cSik and 𝜃1∕2

kk = c𝜃1∕2
jj for some c > 0, and

the partial correlations with other variables are equal, that is, Δjl = Δkl for all l ∉ {i, j, k}. See
Appendix E for additional details and supplementary results. Conditional exchangeability would
be relevant in situations where two variables (j, k) have the same estimated partial correlations
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10 CARTER et al.

F I G U R E 3 Partial correlation regularization paths in p = 4 star graph example for GLASSO on the original
S (left), standardized S (center) and PCGLASSO (right).

with all other variables (e.g., zero), as well as the same sample covariances with a third vari-
able i. In such situations, one may wish for equal inference, in particular equal point estimates
Δ̂ij = Δ̂ik.

6 GLASSO AND PCGLASSO PRIOR DISTRIBUTIONS

In this section we provide further insights into the shrinkage induced by GLASSO and
PCGLASSO, by comparing their implied prior distributions in a Bayesian framework.

The GLASSO prior (Wang, 2012) can be written as

𝜋G(Θ) ∝
∏

i
Exp(𝜃ii; 𝜆∕2)

∏

i<j
Laplace(𝜃ij; 0, 𝜆−1)I(Θ ∈ ),

where 𝜆 = n𝜌, whereas the PCGLASSO prior is given by

𝜋PC(𝜃,Δ) ∝
∏

i
𝜃
−2
ii

∏

i<j
Laplace(Δij; 0, 𝜆−1)I(Δ ∈ 1).

To illustrate the effect of increasing the parameter 𝜆 for fixed p = 5 (Wang (2012) provides results
for growing p with fixed 𝜆), we sampled from each prior via rejection sampling for 𝜆 = 1, 2, and
4. Figure 4 plots the marginal densities of Δ12 and 𝜃11. The top left panel verifies the claim of
Wang (2012) that the GLASSO prior on partial correlations 𝜋G(Δij) does not depend on 𝜆, whereas
the bottom panel shows that 𝜋G(𝜃ii) is shrunk toward 0 as 𝜆 increases. In contrast, the PCGLASSO
prior (top-right panel) on partial correlations 𝜋PG(Δij) concentrates around zero as 𝜆 grows. The
marginals on the diagonal entries are given by 𝜋PG(𝜃ii) ∝ 𝜃−2

ii regardless of 𝜆.
This demonstrates a fundamental difference in how GLASSO and PCGLASSO induce spar-

sity in the 𝜃ij = Δij
√
𝜃ii𝜃jj. PCGLASSO achieves sparsity through regularization of the partial

correlations, while GLASSO does so by shrinking the diagonal 𝜃ii.

7 COMPUTATION

An important feature of GLASSO is its defining of a convex problem that significantly facilitates
computation and its theoretical study. For example, Friedman et al. (2008) related GLASSO to a
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CARTER et al. 11

F I G U R E 4 Marginal prior densities for the partial correlations under GLASSO prior (left) and PCGLASSO
prior (centre) and for the diagonal entries under the GLASSO prior (right).

sequence of LASSO problems, and Sustik and Calderhead (2012) provided improved algorithms.
Computation for nonconvex penalties such as SCAD and MCP poses a harder challenge, but the
Local Linear Approximation of Zou (2008) and Fan et al. (2009) greatly facilitates this task. The
PCGLASSO optimization problem is nonconvex, however, it is conditionally convex given 𝜃 =
diag(Θ).

Proposition 4. The penalized likelihood function (5) is concave in Δ, for any fixed
value of 𝜃.

Proposition 4 (proof in Appendix C) opens the possibility to consider block optimization algo-
rithms of the form described in Algorithm 1, where �̂� and Δ̂ are updated sequentially. This takes
advantage of the conditional convexity of the problem, allowing for convex optimization methods
to be exploited in Step 3 of Algorithm 1. In fact, the optimization in Step 3 is very similar to the
GLASSO optimization problem, however, it is not completely analogous due to Δ having fixed
unit diagonal.

In our examples, we took an even simpler strategy and used a coordinate descent algorithm.
Despite its conceptual simplicity, the algorithm requires careful updating of each parameter to
ensure positive definiteness of Δ̂. For brevity we defer details to Appendix D. For the scale of prob-
lems addressed in this paper, provided the starting point is close to the optimum, the algorithm
typically converges in a few iterations.

Algorithm 1. Blockwise optimization algorithm

1. Choose start points Δ(0), 𝜃(0).
2. Let 𝜃(1) maximize

f (Δ, 𝜃) = log(det(Δ)) +
(

1 − 4
n

)∑

i
log(𝜃ii) − tr

(
S𝜃1∕2Δ𝜃1∕2) − 𝜌‖Δ‖1,

for fixed Δ = Δ(0).
3. Let Δ(1) maximize f (Δ, 𝜃) for fixed 𝜃 = 𝜃(1).
4. Update Δ(0) = Δ(1), 𝜃(0) = 𝜃(1).
5. Repeat Steps 2–4 until some stopping condition is achieved and then output
Δ = Δ(1), 𝜃 = 𝜃(1).
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12 CARTER et al.

8 APPLICATIONS

We now assess the performance of PCGLASSO against GLASSO, SCAD, and MCP, setting
the regularization parameters via the BIC in (6). For GLASSO we use the version with no
penalization on the diagonal entries as this generally has improved performance. SCAD and
MCP have an additional regularization parameter, which we set to the default proposed
in Fan and Li (2001) and Zhang (2010), respectively. For all methods we standardized
data to unit sample variances, and rescaled the estimates via (7). GLASSO was imple-
mented using the R package glasso and SCAD and MCP using the package GGMncv
(Williams, 2020).

Our primary interest is studying PCGLASSO versus GLASSO, as they are directly comparable
in the sense of using the same L1 penalty structure. We consider SCAD and MCP as benchmarks
designed to ameliorate the estimation bias associated to the L1 penalty. Although not considered
here for brevity, it would also be interesting to study the use of SCAD and MCP penalties on partial
correlations.

8.1 Simulations

When choosing a simulation setting for Gaussian graphical models, it can be challenging to tune
the data generatingΘ to achieve a desired difficulty of the inference problem. The fact that meth-
ods, such as the PCGLASSO, exist that are invariant to scalar multiplications suggests that the
difficulty of estimating Θ and detecting non-zero 𝜃ij is also invariant to such rescalings. In the
𝜃,Δ parameterization, this would mean that the problem’s difficulty depends only on Δ and not
on 𝜃. Furthermore, it suggests that it is the magnitude of the partial correlations Δij rather than
the off-diagonal 𝜃ij that drive the difficulty of the inference. Further empirical evidence for this
is provided in Appendix F where we consider two simulation exercises. First is a simple p = 2
dimensional setting where the diagonals 𝜃ii grow but the partial correlation stays constant, and
we observe that the mean squared error of the maximum likelihood estimator (MLE) remains
constant. The second exercise is a star graph simulation where we observe that model selec-
tion performance deteriorates as the nonzero partial correlations decrease; however, the model
selection remains constant for varying diagonal entries when the partial correlations are fixed.
This supports the claim that it is the magnitude of the partial correlations rather than of the
partial variances or covariances that drive the problem’s hardness. Of course there are addi-
tional factors that effect the problem difficulty such as the graphical model structure (if it is
decomposable and, if so, the clique sizes) and the eigenvalues of Δ which is an area for further
investigation.

We considered four simulation scenarios with Gaussian data, truly zero mean and precision
matrix Θ with unit diagonal (so that the off-diagonals are equal to the partial correlations) and
off-diagonal entries as follows.

Scenario 1: Star graph - 𝜃ij =

{
− 1√

p
, i = 1 or j = 1

0, otherwise.
Scenario 2: Hub graph - Partition variables into four groups of equal size, with each group asso-

ciated to a “hub” variable i. For any j ≠ i in the same group as i we set 𝜃ij = 𝜃ji = −2
√

p
and otherwise 𝜃ij = 0.
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CARTER et al. 13

Scenario 3: AR2 model - 𝜃ij =
⎧
⎪
⎨
⎪
⎩

1
2
, j = i − 1, i + 1

1
4
, j = i − 2, i + 2

0, otherwise

.

Scenario 4: Random graph - randomly select 3
2

p of the 𝜃ij and set their values to be uniform on
[−1,−0.4] ∪ [0.4, 1], and the remaining 𝜃ij = 0. Calculate the sum of absolute values
of off-diagonal entries for each column. Divide each off-diagonal entry by 1.1 times
the corresponding column sum and average this rescaled matrix with its transpose
to obtain a symmetric, positive definite matrix.

For each setting we used p = 20 variables, considered sample sizes n ∈ {30, 100} and we per-
formed 100 independent simulations. We also investigated p = 50 variables with n = 100 samples
performing 50 independent simulations. To assess estimation accuracy we used the KL loss

KL(Θ, Θ̂) = −log(det(Θ̂)) + tr(Θ̂Θ−1) + log(det(Θ)) − p,

and the Frobenius norm (F-norm)

||Θ − Θ̂||F =
√∑

i,j
(𝜃ij − �̂�ij)2.

To assess model selection accuracy we considered the Matthews correlation coefficient (MCC)

MCC = TP × TN − FP × FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TP, TN, FP, and FN stand for the number of true positives, true negatives, false positives and
false negatives, respectively, and measure the ability to recover the true edges in the graph corre-
sponding toΘ. The MCC combines specificity and sensitivity into a single assessment and ranges
between −1 and 1, where 1 indicates perfect model selection. More information on the MCC can
be found in, for example, Chicco and Jurman (2020). We report the mean of these metrics over
the independent simulations as well as the SE.

The results of the simulations are summarized in Tables 1–4, also including sensitivity and
specificity. PCGLASSO generally outperformed GLASSO in all scenarios, and either outper-
formed or was competitive to SCAD and MCP. More specifically, PCGLASSO strongly outper-
formed other methods in the Star graph setting in estimation and model selection. The Star graph
is an example where there is a large range in the node degrees, suggesting that penalizing partial
correlations can be particularly beneficial in such situations. The AR2 model is the opposite situ-
ation where every node has either one or two edges. Here PCGLASSO still improved significantly
over GLASSO, and to a lesser extent over SCAD or MCP in the n = 30 case, but for n = 100 the
latter two provided better estimation and model selection recovery. PCGLASSO was also gener-
ally better in the Hub and Random graph settings, particularly for n = 30, although SCAD and
MCP offered slight improvements for n = 100. The p = 50 case demonstrates that these results
also hold in higher dimensions.

Figure 5 shows the proportion of the 100 simulations in which each edge was selected, illus-
trating that PCGLASSO generally selected sparser models than GLASSO, particularly in the Star
and Hub scenarios.
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14 CARTER et al.

T A B L E 1 Star results.

p = 20,n = 30 FNorm KL MCC Sensitivity Specificity
PCGLASSO 1.42 (0.35) 1.69 (0.58) 0.978 (0.043) 0.999 (0.008) 0.995 (0.010)

GLASSO 2.59 (0.36) 3.36 (1.42) 0.270 (0.044) 0.866 (0.105) 0.578 (0.057)

SCAD 8.07 (3.78) 10.87 (4.76) 0.344 (0.136) 0.738 (0.143) 0.764 (0.079)

MCP 8.58 (4.11) 11.60 (5.17) 0.335 (0.126) 0.737 (0.138) 0.756 (0.079)

p = 20,n = 100 FNorm KL MCC Sensitivity Specificity

PCGLASSO 0.70 (0.11) 0.46 (0.12) 0.993 (0.017) 1 (0) 0.999 (0.004)

GLASSO 1.66 (0.09) 1.20 (0.13) 0.304 (0.019) 0.996 (0.014) 0.508 (0.031)

SCAD 1.33 (0.38) 1.01 (0.38) 0.739 (0.135) 0.958 (0.046) 0.926 (0.049)

MCP 1.39 (0.40) 1.09 (0.41) 0.737 (0.128) 0.952 (0.050) 0.928 (0.043)

p = 50,n = 100 FNorm KL MCC Sensitivity Specificity

PCGLASSO 1.07 (0.11) 1.10 (0.21) 0.998 (0.006) 1 (0) 1 (0)

GLASSO 2.65 (0.08) 3.66 (0.19) 0.240 (0.015) 0.911 (0.033) 0.674 (0.011)

SCAD 3.01 (0.43) 4.68 (0.81) 0.529 (0.071) 0.851 (0.051) 0.935 (0.017)

MCP 3.26 (0.46) 5.17 (0.88) 0.515 (0.070) 0.843 (0.052) 0.932 (0.018)

Abbreviations: KL, Kullback–Leibler; MCC, Matthews correlation coefficient.

T A B L E 2 Hub results.

p = 20,n = 30 FNorm KL MCC Sensitivity Specificity
PCGLASSO 1.85 (0.29) 2.83 (0.74) 0.696 (0.081) 0.988 (0.043) 0.917 (0.034)

GLASSO 2.26 (0.21) 3.11 (0.64) 0.469 (0.071) 0.998 (0.012) 0.763 (0.066)

SCAD 7.80 (4.43) 11.55 (6.33) 0.339 (0.110) 0.830 (0.108) 0.715 (0.115)

MCP 8.22 (4.68) 12.30 (6.64) 0.329 (0.111) 0.821 (0.112) 0.707 (0.125)

p = 20,n = 100 FNorm KL MCC Sensitivity Specificity

PCGLASSO 0.91 (0.15) 0.70 (0.20) 0.858 (0.069) 1 (0) 0.969 (0.019)

GLASSO 1.63 (0.19) 1.11 (0.22) 0.483 (0.054) 1 (0) 0.778 (0.048)

SCAD 0.91 (0.21) 0.55 (0.20) 0.918 (0.062) 0.998 (0.012) 0.984 (0.014)

MCP 0.91 (0.22) 0.55 (0.22) 0.920 (0.066) 0.997 (0.014) 0.984 (0.015)

p = 50,n = 100 FNorm KL MCC Sensitivity Specificity

PCGLASSO 1.56 (0.14) 2.15 (0.39) 0.796 (0.053) 1 (0) 0.981 (0.007)

GLASSO 3.34 (0.15) 4.48 (0.47) 0.508 (0.037) 1 (0) 0.913 (0.015)

SCAD 1.92 (0.24) 2.62 (0.60) 0.724 (0.074) 0.989 (0.018) 0.971 (0.012)

MCP 1.93 (0.26) 2.76 (0.68) 0.693 (0.069) 0.983 (0.019) 0.966 (0.013)

Abbreviations: KL, Kullback–Leibler; MCC, Matthews correlation coefficient.
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CARTER et al. 15

T A B L E 3 AR2 results.

p = 20,n = 30 FNorm KL MCC Sensitivity Specificity
PCGLASSO 3.64 (0.31) 5.26 (0.62) 0.283 (0.093) 0.301 (0.194) 0.922 (0.077)

GLASSO 3.83 (0.15) 5.77 (0.55) 0.219 (0.128) 0.126 (0.140) 0.984 (0.032)

SCAD 5.98 (4.47) 9.17 (5.56) 0.290 (0.105) 0.444 (0.162) 0.837 (0.114)

MCP 6.09 (4.61) 9.48 (5.87) 0.270 (0.105) 0.432 (0.159) 0.832 (0.110)

p = 20,n = 100 FNorm KL MCC Sensitivity Specificity

PCGLASSO 2.30 (0.33) 2.00 (0.38) 0.530 (0.052) 0.855 (0.094) 0.774 (0.069)

GLASSO 2.72 (0.36) 2.22 (0.49) 0.520 (0.057) 0.818 (0.122) 0.785 (0.092)

SCAD 1.60 (0.23) 1.33 (0.29) 0.767 (0.065) 0.908 (0.059) 0.918 (0.039)

MCP 1.60 (0.23) 1.37 (0.31) 0.785 (0.065) 0.895 (0.062) 0.932 (0.035)

p = 50,n = 100 FNorm KL MCC Sensitivity Specificity

PCGLASSO 4.78 (0.29) 7.80 (0.82) 0.502 (0.029) 0.673 (0.071) 0.926 (0.024)

GLASSO 5.47 (0.15) 9.04 (0.69) 0.535 (0.033) 0.598 (0.059) 0.956 (0.017)

SCAD 3.30 (0.29) 5.50 (0.73) 0.664 (0.049) 0.790 (0.067) 0.955 (0.016)

MCP 3.35 (0.29) 5.78 (0.73) 0.650 (0.050) 0.760 (0.061) 0.957 (0.016)

Abbreviations: KL, Kullback–Leibler; MCC, Matthews correlation coefficient.

T A B L E 4 Random graph results.

p = 20,n = 30 FNorm KL MCC Sensitivity Specificity
PCGLASSO 2.30 (0.25) 3.07 (0.51) 0.336 (0.091) 0.310 (0.153) 0.951 (0.041)

GLASSO 2.38 (0.18) 3.49 (0.61) 0.311 (0.118) 0.205 (0.158) 0.978 (0.040)

SCAD 4.87 (4.31) 6.56 (4.81) 0.206 (0.094) 0.318 (0.113) 0.876 (0.078)

MCP 5.12 (3.83) 6.98 (4.47) 0.194 (0.092) 0.320 (0.112) 0.868 (0.078)

p = 20,n = 100 FNorm KL MCC Sensitivity Specificity

PCGLASSO 1.43 (0.16) 1.23 (0.25) 0.572 (0.059) 0.614 (0.110) 0.941 (0.029)

GLASSO 1.62 (0.15) 1.37 (0.27) 0.581 (0.061) 0.641 (0.102) 0.941 (0.030)

SCAD 1.32 (0.15) 1.08 (0.23) 0.598 (0.070) 0.610 (0.105) 0.952 (0.029)

MCP 1.32 (0.14) 1.09 (0.22) 0.594 (0.070) 0.587 (0.110) 0.957 (0.027)

p = 50,n = 100 FNorm KL MCC Sensitivity Specificity

PCGLASSO 2.53 (0.16) 4.52 (0.49) 0.536 (0.038) 0.713 (0.048) 0.944 (0.014)

GLASSO 3.45 (0.19) 5.43 (0.69) 0.588 (0.048) 0.823 (0.044) 0.936 (0.020)

SCAD 2.79 (0.20) 5.23 (0.54) 0.509 (0.048) 0.627 (0.059) 0.952 (0.017)

MCP 2.89 (0.21) 5.62 (0.57) 0.471 (0.050) 0.594 (0.064) 0.948 (0.019)

Abbreviations: KL, Kullback–Leibler; MCC, Matthews correlation coefficient.
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16 CARTER et al.

F I G U R E 5 Proportion of simulations in which each edge was selected.

8.2 Gene expression data

We assessed the predictive performance of the four penalized likelihood methods in the gene
expression data of Calon et al. (2012). The data contain 262 observations of p = 173 genes related
to colon cancer progression. We took n = 200 of the samples as training data, left the remaining
62 observations as test data, and assessed the predictive accuracy of each method by evaluating
the log-likelihood on the test data.

Figure 6 (left) plots the model size versus test sample log-likelihood, and indicates the models
chosen by the BIC and EBIC. For both these solutions, PCGLASSO achieved a significantly higher
log-likelihood than the other three methods, and selected a model of roughly comparable size.

8.3 Stock market data

We analyzed the stock market data in the R package huge, investigated in the graphical model
context by Banerjee and Ghosal (2015). The data contain daily closing stock prices of companies
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CARTER et al. 17

–14,

–15,

–16,

F I G U R E 6 Model size versus predictive ability in the gene expression (left) and stock market (right) data.
Estimates selected via Bayesian information like criterion and extended Bayesian information criterion with
𝛾 = 0.5 are shown by dots and squares, respectively.

in the S&P 500 index between January 1, 2003 and January 1, 2008. We consider de-trended
stock-market log-returns, to study the dependence structure after accounting for the overall mean
market behavior. Specifically, let Yjt be the closing price of company j at time t, X̃jt = log

(
Yj,t+1∕Yjt

)

the log-returns, and Xjt = X̃ jt − Xt the de-trended returns, where Xt =
∑p

j=1X̃ jt. We randomly
selected p = 30 companies and, to avoid issues with stock market data exhibiting thicker tails
than the assumed Gaussian model, we removed outlying observations more than five-sample SDs
away from the mean in any of the p variables. There remained 1121 observations of which we
randomly selected 1000 for the training and 121 for the test data.

Figure 6 (right) shows the results, which highlight interesting trade-offs in sparsity versus
predictive accuracy. PCGLASSO selected a smaller model than GLASSO for BIC and EBIC, and
achieved a higher log-likelihood in the test data for any model with<200 edges, whereas GLASSO
attained a higher log-likelihood at the selected model. Interestingly, the SCAD and MCP penalties
provided a similar accuracy to PCGLASSO, albeit slightly higher for models with <150 edges and
slightly lower for larger models.

9 DISCUSSION

Penalized likelihood methods based on regular penalty functions are a staple of Gaussian graphi-
cal model selection and precision matrix estimation. They provide a conceptually easy strategy to
obtain sparse estimates ofΘ and, particularly in the case of GLASSO, fairly efficient computation,
even for moderately large dimensions. However, in this paper we demonstrated that estimates
obtained from regular penalties depend on the scale of the variables. This gives a situation where a
simple change of units (measuring a distance in miles rather than kilometers) can result in differ-
ent graphical model selection. Further, we showed that notions of exchangeability also motivate
the need for standardizing the data when using regular penalties.

Standardizing the data is not innocuous. First, even when the variables follow a Gaussian
distribution, that is no longer the case for the scaled variables, which exhibit thicker tails. Second,
as demonstrated in several of our examples, applying regular penalties to scaled data can adversely
affect inference. This effect was particularly detrimental in examples where the true underlying
graph has a large range in node degrees, as in the Star graph setting.
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18 CARTER et al.

A wide class of PC-separable penalties, including the PCGLASSO, overcome these issues as
they are scale invariant and do not require standardization. Using a Bayesian viewpoint, we illus-
trated that PCGLASSO induces a different shrinkage than standard penalties, in that the former
induces shrinkage on partial correlations, whereas the latter do not. Our examples showed that
such differential shrinkage can offer significant improvements both in estimation and model
selection.

A limitation of our work lies in the computation. While the efficiency of the coordinate descent
algorithm is reasonable in lower dimensions, the computations become impractical for larger p.
However, the conditional convexity of the PCGLASSO problem opens interesting strategies for
future improvements.

Further interesting future work is to investigate the theoretical properties of PCGLASSO, for
example model selection consistency, which holds for GLASSO only under certain nontrivial
conditions (Raskutti et al., 2008). The wider set of PC-separable penalties also warrant further
exploration, most obviously PC-separable versions of the SCAD and MCP penalties. On the
Bayesian side, a PC-separable version of the spike and slab penalty of Gan et al. (2019) may also be
of interest. Beyond the Gaussian case, penalization of partial correlations also seems natural for
partial correlation graphs in elliptical and transelliptical distributions (Rossell & Zwiernik, 2021).
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APPENDIX A. MEAN SQUARED ERROR OF LOGARITHMIC PENALTY

Section D outlines the derivation of the coordinate descent algorithm, and presents Algorithms
SD.2–SD.2 to obtain the PCGLASSO solution for a sequence of penalization parameters and
a given penalization parameter value, respectively. Section E provides supplementary results
related to exchangeable inference. Section F provides empirical evidence that the difficulty of the
inference problem depends only on Δ and not on 𝜃.

Here we address the claim of Section 3 related to the mean squared error of logarithmic penal-
ties in the p = 1 case. Specifically, we show that among penalty functions of the form c log(x) for
constant c ≥ 0 on the precision, choosing c = 2 minimizes the mean squared error of the estimate
of the precision.

Suppose we have n observations of X ∼ N(𝜇, 𝜃−1) with (biased) sample variance s. Note that

n𝜃s ∼ 𝜒2
n ,

and so

(n𝜃s)−1 ∼ Inv − 𝜒2
n .

From this we get that

E[s−1] = n
n − 2

𝜃,

Var(s−1) = 2n2

(n − 2)2(n − 4)
𝜃

2
.

Consider estimating 𝜃 via a penalized likelihood of the form

l(𝜃|s) − c log(𝜃).

This can easily be shown to be maximized at

�̂� =
(

1 − 2c
n

)
s−1
.

It follows that

E[�̂�] =
(

1 − 2c
n

)( n
n − 2

)
𝜃,

Var(�̂�) =
2(1 − 2c

n
)2n2

(n − 2)2(n − 4)
𝜃

2
,

and so

MSE(�̂�) = Var(�̂�) +
(
E[�̂�] − 𝜃

)2

= 𝜃2

(
2(1 − 2c

n
)2n2

(n − 2)2(n − 4)
+
((

1 − 2c
n

)( n
n − 2

)
− 1
)2
)

.
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It can be shown that, for fixed 𝜃 and n, this function is minimized at c = 2, with the MSE at c = 2
being equal to 2𝜃2

n−2
.

APPENDIX B. PROOFS FOR SECTION 3

Proof of Proposition 1. Let S be some sample covariance matrix for which Θ̂(S) is not
diagonal and D be some diagonal matrix with nonzero diagonal entries di, i = 1,…, p.
Suppose that Θ̂ is scale invariant. Let �̂�ij = Θ̂(S)ij be some nonzero off-diagonal entry
of Θ̂(S), and 𝜃ij = Θ̂(DSD)ij be the corresponding entry in Θ̂(DSD). By scale invariance

we must have 𝜃ij =
�̂�ij

didj
.

For these to maximize their corresponding penalized likelihoods, the derivatives of
the penalized likelihood function (1) with respect to 𝜃ij must be equal to 0 at �̂�ij and 𝜃ij,
respectively (note that the derivative exists because Pen is regular and �̂�ij ≠ 0, 𝜃ij ≠ 0).
Therefore

(Θ̂(S)−1)ij − 2sij −
4
n

pen′ij(�̂�ij) = 0,

(Θ̂(DSD)−1)ij − 2didjsij −
4
n

pen′ij(𝜃ij) = didj

(
(Θ̂(S)−1)ij − 2sij

)
− 4

n
pen′ij

(
�̂�ij

didj

)

= 0,

where we used that, since Θ̂ is scale invariant then Θ̂(DSD) = D−1Θ̂(S)D−1 and hence
(Θ̂(DSD)−1)ij = (DΘ̂(S)−1D)ij = didj(Θ̂(S)−1)ij.

It follows that

pen′ij

(
�̂�ij

didj

)

= didjpen′ij(�̂�ij). (B1)

That is, for scale invariance to hold the penalty must satisfy pen′ij
(
�̂�ij

d

)
= dpen′ij(�̂�ij)

for any d ≠ 0. The latter requirement can only hold in two scenarios. First, there is
the trivial scenario where pen′ij(𝜃ij) = 0 for all 𝜃ij ≠ 0, that is penij is an L0 penalty.

Second, if pen′ij(�̂�ij) = k ≠ 0, then pen′ij
(
�̂�ij

d

)
= dk. Treating �̂�ij, and therefore also

k, as fixed, we denote by x = �̂�ij

d
. Then we have pen′ij(x) =

�̂�ijk
x

. It follows that penij(x) =
�̂�ijk log(|x|) + c for some constant c and x ≠ 0, that is penij is a logarithmic penalty.

This proves that for a regular penalty to be scale invariant it must have L0 or
logarithmic penij. We now turn our attention to the diagonal penalty.

Let S be some diagonal covariance matrix, and D some diagonal matrix as before.
Let �̂�ii = Θ̂(S)ii and 𝜃ii = Θ̂(DSD)ii. By scale invariance we must have 𝜃ij =

�̂�ij

d2
i
.

Since S is diagonal, it is easy to see that both Θ̂(S) and Θ̂(DSD) must also be
diagonal, and that �̂�ii maximizes the function:

log(𝜃ii) − Sii𝜃ii −
2
n

penii(𝜃ii),
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while 𝜃ii maximizes the same function but with Sii replaced by d2
i Sii. It follows that the

corresponding derivatives must both be equal to zero at �̂�ii and 𝜃ii, respectively (Pen
is regular so penii is differentiable). Using this along with 𝜃ij =

�̂�ij

d2
i

we obtain:

pen′ii

(
�̂�ii

d2
i

)

= d2
i pen′ii

(
�̂�ii
)
.

As before, it follows that penii must be either constant or logarithmic. This proves
that for a regular penalty function to be scale invariant it must have either constant
or logarithmic penalty on the diagonal entries.

To complete the proof we must show that such penalty functions (L0 or logarithmic
off-diagonal penalty and constant or logarithmic diagonal penalty) are always scale
invariant. This follows from Proposition 2 since the L0 and logarithmic penalties are
also symmetric PC-separable. ▪

Proof of Proposition 2. Let S be a sample covariance matrix and D be a diagonal matrix
with non-zero entries di. Suppose that the estimate Θ̂(S) decomposes as 𝜃

1∕2
Δ𝜃

1∕2
and

that the estimate Θ̂(DSD) decomposes as 𝜃1∕2Δ̃𝜃1∕2. To prove scale invariance we need
that Δ = sign(D)Δ̃sign(D) and 𝜃 = D2

𝜃.
Since Θ̂(S) maximizes the penalized likelihood at S, 𝜃,Δ must maximize

log(det(Θ)) +
∑

i

((
1 − 2c

n

)
log(𝜃ii) − sii𝜃ii

)
−
∑

i≠j

(
sij
√
𝜃ii𝜃jjΔij +

2
n

penij(Δij)
)
, (B2)

and similarly, 𝜃, Δ̃ must maximize

log(det(Θ)) +
∑

i

((
1 − 2c

n

)
log(𝜃ii) − d2

i sii𝜃ii

)
−
∑

i≠j

(
didjsij

√
𝜃ii𝜃jjΔij +

2
n

penij(Δij)
)
. (B3)

By substituting 𝜃′ii = d2
i 𝜃ii and Δ′ij = sign(didj)Δij into (B3), and noting that penij is

symmetric about 0, we get

log(det(Θ)) +
∑

i

((
1 − 2c

n

)(
log(𝜃′ii) − log(d2

i )
)
− sii𝜃

′
ii

)
−
∑

i≠j

(
sij

√
𝜃
′
ii 𝜃

′
jjΔ

′
ij +

2
n

penij(Δ′ij)
)
. (B4)

Since log(d2
i ) is a constant, (B4) is of the same form as (B2) and they are maximized

at the same point. Hence we have that Δ = sign(D)Δ̃sign(D) and 𝜃 = D2
𝜃. ▪

Proof of Proposition 3. Let 𝜋 be a prior density as given in Proposition 3, S be some
sample covariance and D some diagonal matrix with nonzero entries. Writing L(Θ|S)
as the likelihood function, Θ = 𝜃1∕2Δ𝜃1∕2 and treating D as a constant, the posteriors
given S and DSD are

𝜋(DΘD|S) ∝ L(DΘD|S)𝜋(DΘD)

∝ det (Δ)n∕2
∏

i
(d2

i 𝜃ii)
n
2 exp

(

−n
2
∑

i,j
Sij

√
d2

i 𝜃iid2
j 𝜃jjΔij

)
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∏

i
(d2

i 𝜃ii)−c
∏

ij
𝜋ij(Δij)I(Δ ∈ 1)

= det (Δ)n∕2
∏

i
(d2

i 𝜃ii)
n
2
−c exp

(

−n
2
∑

i,j
didjSij

√
𝜃ii𝜃jjΔij

)
∏

ij
𝜋ij(Δij)I(Δ ∈ 1), (B5)

𝜋(Θ|DSD) ∝ L(Θ|DSD)𝜋(Θ)

∝ det (Δ)n∕2
∏

i
𝜃

n
2

ii exp

(

−n
2
∑

i,j
didjSij

√
𝜃ii𝜃jjΔij

)
∏

i
(𝜃ii)−c

∏

ij
𝜋ij(Δij)I(Δ ∈ 1)

= det (Δ)n∕2
∏

i
𝜃

n
2
−c

ii exp

(

−n
2
∑

i,j
didjSij

√
𝜃ii𝜃jjΔij

)
∏

ij
𝜋ij(Δij)I(Δ ∈ 1). (B6)

For any measurable set A and AD = {Θ ∶ D−1ΘD−1 ∈ A} the probabilities in
Definition 6 can be written as

P𝜋(Θ ∈ A|DSD) =
∫A
𝜋(Θ|DSD) dΘ

=
∫A L(Θ|DSD)𝜋(Θ) dΘ
∫


L(Θ|DSD)𝜋(Θ) dΘ
,

and, noting that Θ ∈ A ⇔ DΘD ∈ AD,

P𝜋(Θ ∈ AD|S) =
∫AD

𝜋(Θ|S) dΘ

=
∫A
𝜋(DΘD|S) dΘ

=
∫A L(DΘD|S)𝜋(DΘD) dΘ
∫


L(DΘD|S)𝜋(DΘD) dΘ
.

The result follows by noting that expression (B5) can be obtained by multiplying (B6)
by the constant

∏
i (d2

i )
n
2
−c. ▪

APPENDIX C. PROOFS FOR SECTION 6

Proof of Proposition 4. For a fixed 𝜃, optimization of the penalized likelihood function
(5) is equivalent to optimization of the following function

log(det(Δ)) −
∑

i≠j
Sij
√
𝜃ii𝜃jjΔij − 𝜌

∑

i≠j
|Δij|.

The log-determinant function is known to be concave over the space of positive def-
inite matrices. For fixed 𝜃 the second term is simply a sum of linear functions. The
third term is a sum of clearly concave functions. Hence the objective function is a sum
of concave functions and is therefore concave. ▪

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12675 by T

est, W
iley O

nline L
ibrary on [18/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 CARTER et al.

APPENDIX D. COORDINATE DESCENT ALGORITHM

We present the coordinate descent algorithm we used to calculate PCGLASSO estimates in the
simulated examples of this paper. Our aim is to find the values of Θ that maximize the objective
function (5) for a sequence of penalty parameters 0 = 𝜌0 < 𝜌1 < · · · < 𝜌k, that is, the regulariza-
tion path. Algorithm 2, for which the coordinate descent algorithm D.2 is embedded, uses the
previous estimate related to 𝜌i−1 as a starting point for the coordinate descent for 𝜌i. This ensures
that the coordinate descent is initialized at a point close to the maximum and aids convergence.
For 𝜌0 = 0 the algorithm is initialized at S−1, or at (S + 𝛼I)−1 where I is the identity matrix if
n ≤ p. The matrix S + 𝛼I is guaranteed to be invertible and positive definite for any 𝛼. We also
standardize the sample covariance S to have unit diagonals, before returning the estimates to the
original scale. This has no effect on the estimated values due to the scale invariance of PCGLASSO,
however it helps with the numerics of the coordinate descent.

Algorithm 3 is a standard blockwise coordinate descent algorithm which randomly cycles
through the entries ofΔ and maximizes the objective function with respect toΔij,Δji, 𝜃ii, 𝜃jj while
holding all other entries fixed. Once the algorithm has cycled through each of the entries of Δ
exactly once, a stopping rule is tested. The stopping rule we choose is based on the increase in the
value of the objective function brought about by the updates. If the increase in the objective func-
tion is less than a particular threshold then the algorithm is terminated and the current estimate

is returned. Note that the threshold here is scaled by q = max
{

2|{Δ(0)ij ≠0∶i<j}|

p(p−1)
,

2
p(p−1)

}
, the propor-

tion of nonzero entries in the previous estimate Δ(0). This is because once an entry is shrunk to
zero, it is likely that it will remain zero in future estimates. Therefore, the number of entries that
are actively being updated is proportional to q. If only a small number of entries are being actively
updated then one would expect the increase in the objective function to be smaller. Hence, scaling
the threshold by q helps to prevent the algorithm from terminating too early in situations where
the current estimate is sparse.

Although no guarantees are made about the convergence of Algorithm 3, results in Patrascu
and Necoara (2015) and Wright (2015) suggest that convergence toward a local maximum is guar-
anteed and give reasonable assurance of convergence towards the global maximum. Their results
focus on a coordinate descent algorithm that cycles randomly through the indices with replace-
ment and so are not directly applicable to Algorithm 3. However, we prefer cycling through the
indices without replacement since this provides a more simple and clear stopping rule for the
algorithm. Algorithm 3 assesses the convergence after updating each entry of Δ exactly once, so

Algorithm 2. PCGLASSO regularization path

Input : Sample covariance S, sequence of regularization parameters
0 = 𝜌0 < 𝜌1 < · · · < 𝜌k and optimization convergence threshold 𝜖.

Output: Sequence of estimates Θ0,… ,Θk corresponding to 𝜌0,… , 𝜌k.
1. standardize the sample covariance S̃ = diag(S)−1∕2Sdiag(S)−1∕2.
2. Run Algorithm 2 on S̃ for 𝜌 = 0, with starting point Θ(0)0 = S̃−1 (or Θ(0)0 = (S̃ + 𝛼I)−1

for some 𝛼 > 0 if n < p), and threshold 𝜖 to obtain an estimate Θ̃0.
3. For i = 1,… , k, run Algorithm 3 on S̃ for penalty parameter 𝜌 = 𝜌i, with starting point
Θ(0)i = Θ̃(i−1), and threshold 𝜖 to obtain an estimate Θ̃i.

4. Return the sequence of estimates Θi = diag(S)−1∕2Θ̃idiag(S)−1∕2 for i = 0, 1,… , k.
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CARTER et al. 25

Algorithm 3. Blockwise coordinate descent

Input : Sample covariance S with unit diagonal, penalty parameter 𝜌, start point Θ(0)
and optimization convergence threshold 𝜖.

Output: A matrix Θ providing a local maximum of (5) for penalty 𝜌.
1. Let Θ(1) = Θ(0) and decompose Θ(1) to get 𝜃(1) and Δ(1).
2. Cycling randomly without replacement through the set of indices
{(i, j) ∶ i < j; i, j ∈ {1,… , p}}, let Δij, 𝜃ii, 𝜃jj maximize

f (Δ, 𝜃) = log(det(Δ)) +
(

1 − 4
n

)∑

i
log(𝜃ii) − tr

(
S𝜃1∕2Δ𝜃1∕2) − 𝜌‖Δ‖1,

subject to
Δ ∈ 1,

Δk1k2 = Δ
(1)
k1k2

, for all (k1, k2) ≠ (i, j),

𝜃ii, 𝜃jj ≥ 0,

𝜃kk = 𝜃(1)kk , for all k ≠ i, j,

and update Δ(1)ij = Δij, Δ(1)ji = Δji, 𝜃(1)ii = 𝜃ii, 𝜃(1)jj = 𝜃jj.

3. Let q = max
{

2|{Δ(0)ij ≠0∶i<j}|

p(p−1)
,

2
p(p−1)

}
be the proportion of nonzero off-diagonal entries.

4. If f (Δ(1), 𝜃(1)) − f (Δ(0), 𝜃(0)) < q𝜖, set Δ = Δ(1), 𝜃 = 𝜃(1) and return Θ = 𝜃1∕2Δ𝜃1∕2.
Otherwise, set Δ(0) = Δ(1), 𝜃(0) = 𝜃(1) and return to Step 2.

that the stopping rule at the end of each iteration is made on the same grounds. For an algorithm
which selects indices with replacement it is less clear when to enact the stopping rule.

As a final note about Algorithm 3, Step 2 maximizing (5) with respect to Δij, 𝜃ii, 𝜃jj while all
other variables are held fixed is nontrivial due to the nonsmoothness of the objective function.
The remainder of this section will focus on solving this maximization problem. To ease notation
let x = Δij, y1 =

√
𝜃ii and y2 =

√
𝜃jj. The objective function is

f (x, y1, y2) = log(ax2 + bx + c) + 2cn(log(y1) + log(y2)) − y2
1 − y2

2 − 2c12xy1y2

− 2c1y1 − 2c2y2 − 2𝜌|x|,

where

cn = 1 − 4
n
,

c12 = Sij,

c1 =
∑

k≠i,j
SikΔik

√
𝜃kk,

c2 =
∑

k≠i,j
SjkΔjk

√
𝜃kk.
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26 CARTER et al.

The log(ax2 + bx + c) term comes from the log det(Δ), since the determinant of a symmetric
matrix is quadratic in the off-diagonal entries. The coefficients (a, b, c) do not have a simple
closed-form, as they depend on the matrix determinant, but they can be easily obtained by
evaluating the determinant of Δ for three different values of Δij (faster methods for computing
these determinants are possible since they only involve changing a single entry) and solving the
resulting system of equations. The range of values that x is can take given by

(l,u) ∶= {x ∶ ax2 + bx + c > 0} ∩ (−1, 1).

Any value of x in this set ensures positive definiteness of Δ. This is because Δ is positive definite
if and only if all its leading principal minors are positive. WLOG, letting Δij be in the bottom row
of Δ, if the previous estimate is positive definite then the first p − 1 leading principal minors are
positive. The condition ax2 + bx + c > 0 ensures that the final leading principal minor, det(Δ), is
also positive. The maximization problem can then be expressed as

max
x,y1,y2

f (x, y1, y2)

s.t. x ∈ (l,u)
y1, y2 > 0.

(D1)

We denote the partial derivatives of f by

fx(x, y1, y2) =
2ax + b

ax2 + bx + c
− 2c12y1y2 − 2𝜌sign(x), x ≠ 0,

fy1(x, y1, y2) = 2cny−1
1 − 2y1 − 2c12xy2 − 2c1,

fy2(x, y1, y2) = 2cny−1
2 − 2y2 − 2c12xy1 − 2c2,

To solve this problem we consider separately the cases c > 0 and c ≤ 0.

D.1 Case c > 0.
We begin by looking at the case c > 0, which implies that 0 ∈ (l,u). We split the problem into
three sections, finding local maxima in x = 0, x ∈ (0,u), x ∈ (l, 0) separately and then selecting
from these the global maximum.

Optimization for x = 0
Let x = 0. By setting fy1(x, y1, y2) = 0 and fy2(x, y1, y2) = 0 we get that the optimal values of (y1, y2)
are

y1 =
1
2

(√
c2

1 + 4cn − c1

)
,

y2 =
1
2

(√
c2

2 + 4cn − c2

)
.

Optimization over x > 0
Let x ∈ (0,u). Setting fy1(x, y1, y2) = 0 gives

x =
cny−1

1 − y1 − c1

c12y2
, (D2)
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CARTER et al. 27

and setting fy2(x, y1, y2) = 0 along with (D2) gives

y2 =
1
2

(
−c2 ±

√
c2

2 + 4(y2
1 + c1y1)

)
. (D3)

Using (D2) and (D3) one can write fx(x, y1, y2) in terms of only y1 and solve fx(x, y1, y2) = 0 numer-
ically to obtain the stationary points. The range of y1 values to search in the numerical solving
of fx(x, y1, y2) = 0 can be found by considering the constraints x ∈ (0,u), y1, y2 > 0 as well as (D2)
and (D3).

The constraint x < u results in some condition on the following quartic which we refer
to as q(y1)

(

1 − 1
u2c2

12

)

y4
1 +

(

c1 −
2c1

u2c2
12
+ c2

uc12

)

y3
1

+

(
2cn

u2c2
12
−

c2
1

u2c2
12
+ c1c2

uc12

)

y2
1

+

(
2c1cn

u2c2
12
− c2cn

uc12

)

y1 −
c2

n

u2c2
12
. (D4)

We first summarize the range of y1 values that needs to be considered, depending on the values of
(c12, c2), and subsequently outline their derivation. If the positive root is taken in (D3) for y2 then
the following constraints are required

1. y1 <
1
2

(
−c1 +

√
c2

1 + 4cn

)
, if c12 > 0

2. y1 >
1
2

(
−c1 +

√
c2

1 + 4cn

)
, if c12 < 0

3. y1 ≥
1
2

(
−c1 +

√
c2

1 − c2
2

)
or y1 ≤

1
2

(
−c1 −

√
c2

1 − c2
2

)

4. y1 > −c1, if c2 > 0

5. If c12 > 0, either y1 >
1
2

(
1
2

uc12c2 − c1 +
√(

c1 − 1
2

uc12c2

)2
+ 4cn

)

or q(y1) > 0

6. If c12 < 0, either y1 <
1
2

(
1
2

uc12c2 − c1 +
√(

c1 − 1
2

uc12c2

)2
+ 4cn

)

or q(y1) < 0.

The negative root in (D3) must only be considered if c2 < 0 and y1 < −c1 (also implying that
c1 < 0 and, from constraint 1, c12 > 0). In this case the inequalities in constraints 5 and 6 must be
reversed.

We outline how to obtain the above constraints. The constraint x > 0 along with (D2) implies
that

sign(y2
1 + c1y1 − cn) = −sign(c12).

Hence, if c12 > 0 then the range of values to consider can be restricted to

y1 <
1
2

(
−c1 +

√
c2

1 + 4cn

)
,
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28 CARTER et al.

giving constraint 1, while if c12 < 0 then the inequality is reversed giving constraint 2. Note
that if c12 = 0 then the optimization problem is simpler and so the details of this case are
omitted.

For y2 to take a real value in (D3) we must have 4y2
1 + 4c1y1 + c2

2 ≥ 0 which implies that either

y1 ≥
1
2

(√
c2

1 − c2
2 − c1

)
,

or

y1 ≤
1
2

(
−
√

c2
1 − c2

2 − c1

)
.

giving constraint 3.
Combining the constraint y2 > 0 with (D3), if c2 > 0 then we need y1 ≥ −c1 in order for there

to be a solution for y2, giving constraint 4. On the other hand, if c2 < 0 and 0 < y1 < −c1 then there
are two solutions for y2 and one must consider both the positive and negative roots in (D3). For
all other situations one must only consider the positive root.

Now combining the constraint x < u with (D2) and (D3), one obtains the inequality

2
uc12

(
cny−1

1 − y1 − c1
)
+ c2 <

√
c2

2 + 4(y2
1 + c1y1),

from which constraints 5 and 6 follow.
Combining each of these constraints give the range of possible values for y1 to numerically

search for a stationary point. Once y1 is found, (D3) and (D2) give the corresponding (x, y2). Note
that it is possible that there be no stationary points within x > 0.

Optimization over x < 0
Finding stationary points in the interval x ∈ (l, 0) is analogous to the case where x ∈ (0,u), but
with some sign changes and so the details are omitted.

D.2 Case c ≤ 0
Consider the case where c ≤ 0. Then it is easy to see that when b > 0 then (l,u) ⊆ (0, 1), while if
b < 0 then (l,u) ⊆ (−1, 0). Again, solving this is very similar to the previous case, however, one
must pay closer attention to the range of values y1 may take. In particular, when b > 0, (D2) must
still hold at stationary points, but one must restrict this in (l,u) rather than (0,u). This results in
two quartic constraints on y1. Again the details are omitted.

APPENDIX E. SUPPLEMENTARY RESULTS FOR SECTION 4

Suppose the value of an estimator �̂� = diag(Θ̂) and all the entries in Δ̂ are given, except for a pair
of partial correlations (Δk1k2 ,Δk1k3), for some indexes k1, k2, k3 ∈ {1,…, p}. Suppose that S, and
the given elements in Δ̂ and �̂� satisfy the following conditions:

(C1) Sk1k2∕�̂�
−1∕2
k2k2

= Sk1k3∕�̂�
−1∕2
k3k3

.
(C2) Δ̂k2j = Δ̂k3j for all j ∉ {k1, k2, k3}.
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CARTER et al. 29

Proposition 5. Under conditions (C1) and (C2) the likelihood function is symmetric in
(Δk1k2 ,Δk1k3).

Proof. Without loss of generality suppose that the variable indexes are k1 = 1, k2 = 2
and k3 = 3. The MLE maximizes the function

log(det(Θ)) − tr(SΘ) = log(det(𝜃1∕2Δ𝜃1∕2)) − tr(S𝜃1∕2Δ𝜃1∕2).

Consider this as a function h(Δ12,Δ13) that only depends on (Δ12,Δ13), given a value of
the remaining parameters �̂� and Δ̂ij for (i, j) ∉ {(1, 2), (1, 3)} satisfying (C1) and (C2).

We shall show that the two terms log det(Θ) and tr(SΘ) are symmetric in (Δ12,Δ13),
when (C1)–(C3) hold. Using straightforward algebra gives that

tr(SΘ) = tr(S𝜃1∕2Δ𝜃1∕2) = 2s12𝜃
1∕2
11 𝜃

1∕2
22 Δ12 + 2s13𝜃

1∕2
11 𝜃

1∕2
13 Δ13 + c,

where c does not depend on (Δ12,Δ13). Plugging in �̂� and Δ̂ij into this expression and
using (C1) gives that is it equal to

2�̂�1∕2
11 s12�̂�

1∕2
22 (Δ12 + Δ13) + c, (E1)

which is symmetric in (Δ12,Δ13).
Consider now det(Θ). Using basic properties of the matrix determinant,

det(Θ) = det(Δ)
p∏

j=1
𝜃jj = |Δ11 − Δ2∶p,1Δ−1

2∶p,2∶pΔ1,2∶p||Δ2∶p,2∶p|
p∏

j=1
𝜃jj,

whereΔi∶j,k∶l is the submatrix obtained by taking rows i, i + 1,…, j and columns k, k +
1,…, l from Δ. Since �̂�, Δ̂2∶p,2∶p, and Δ̂1j for j ≥ 4 are given, it suffices to show that

(Δ12,Δ13, Δ̂14,…, Δ̂1p)Δ̂
−1
2∶p,2∶p(Δ12,Δ13, Δ̂14,…, Δ̂1p)T , (E2)

is symmetric in (Δ12,Δ13). To ease notation let A = Δ̂−1
2∶p,2∶p. Note that under Condition

(C2),

Δ̂2∶p,2∶p =
⎛
⎜
⎜
⎜
⎝

1 Δ̂23 Δ̂24 … Δ̂2p

Δ̂23 1 Δ̂24 … Δ̂2p

…Δ̂2p Δ̂2p Δ̂4p … 1

⎞
⎟
⎟
⎟
⎠

,

and hence

Δ̂−1
2∶p,2∶p = A =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 a13 … a1p−1

a12 a11 a13 … a1p−1

a13 a23 a33 … a3p−1

…a1p−1 a2p−1 a3p−1 … ap−1p−3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.
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30 CARTER et al.

That is, the first two rows in A are equal, up to permuting the first two elements in
each row. Therefore, (E2) is equal to

a11Δ2
12 + a11Δ2

13 +
p−1∑

j=3
ajjΔ̂

2
j+1j+1

+ 2a12Δ12Δ13 + 2
p−1∑

j=3
a1jΔ12Δ̂1j+1 + 2

p−1∑

j=3
a1jΔ13Δ̂1j+1 + 2

p∑

j=3

p∑

k=j+1
ajkΔ̂j+1k+1

= a11(Δ2
12 + Δ

2
13) + 2a12Δ12Δ13 + 2(Δ12 + Δ13)

p−1∑

j=3
a1jΔ̂1j+1 + c′,

where c′ does not depend on (Δ12,Δ13), which is a symmetric function in (Δ12,Δ13),
as we wished to prove. ▪

Note that because the log-likelihood is a convex function, and therefore has a unique maxi-
mum, symmetry in (Δk1k2 ,Δk1k3) implies that the MLE will estimate these two partial correlations
to be equal.

Corollary 1. Under conditions (C1) and (C2) any penalized likelihood with a symmet-
ric PC-separable penalty is symmetric in (Δk1k2 ,Δk1k3).

Proof. The proof follows immediately from the proof of Proposition 5, noting that
Pen(𝜃,Δ) =

∑
i penii(𝜃ii) +

∑
i≠j pen(Δij) is symmetric in (Δ12,Δ13). ▪

Corollary 2. Under conditions (C1) and (C2) a penalized likelihood with a regular
penalty, other than the L0 or logarithmic, is symmetric in (Δk1k2 ,Δk1k3) if and only if
�̂�k2k2 = �̂�k3k3 .

Proof. From Proposition 5 the penalized likelihood is symmetric if and only

if penk1k2

(√
�̂�k1k1 �̂�k2k2Δk1k2

)
+ penk1k3

(√
�̂�k1k1 �̂�k3k3Δk1k3

)
is symmetric. Since Pen

is regular, this only happens when �̂�k2k2 = �̂�k3k3 or when penij is either L0 or
logarithmic. ▪

APPENDIX F. INFERENCE DIFFICULTY

Consider the p = 2 dimensional case with partial correlation matrix and diagonal entries

Δ =

(
1 −0.5

−0.5 1

)

, 𝜃 =

(
x
x

)

.

Here the partial correlation is fixed but we consider varying (but equal) diagonal entries.
Suppose we use the MLE S−1 as an estimator for the precision matrix (and therefore S−1

12√
S−1

11 S−1
22

as an estimator for the partial correlation Δ12 = −0.5). In Figure F1 we show the mean squared
error (MSE) for the partial correlation estimator when the sample size is n = 10 for various values
of x (here the mean squared error has been approximated by sampling 100,000 times). We see that
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CARTER et al. 31

F I G U R E F1 Mean squared error of the maximum likelihood estimator (MLE) estimator of the partial
correlation when p = 2, n = 10, the partial correlation is fixed Δ12 = −0.5 and the diagonal entries are equal to
𝜃11 = 𝜃22 = x.

the MSE does not depend on x—hence the difficulty of estimating Δ12 or detecting nonzero Δ12
does not depend on the diagonal entries.

Now instead consider the precision matrix

Θ =

(
x −0.5

−0.5 x

)

.

Now the off-diagonals are fixed and again the diagonal entries are allowed to vary (with x > 0.5).
In this case, the MSE of the estimator for the partial correlation increases with x (see left

panel of Figure F2). Furthermore, the MSE of the estimator S−1
12 of 𝜃12 also increases with x, even

though 𝜃12 remains constant (see right panel of Figure F2). This shows that the inference task of
estimating 𝜃ij and detecting nonzero 𝜃ij does depend on the diagonal entries.

This shows that, in the p = 2 case, the difficulty of detecting a nonzero partial correlation
(or equivalently a nonzero off-diagonal) and estimating its value is better expressed in the 𝜃,Δ
parameterization. In particular, the difficulty only depends onΔ and not on 𝜃. On the other hand,
with the Θ parameterization, the difficulty depends on the whole matrix.

Now consider the p = 10 case with a star graph structure—that isΔ1i = Δi1 = −x for all i, while
all other Δij = 0. We also fix 𝜃ii = 1 for all i. For this setting we find the mean MCC of GLASSO
(with penalty parameter chosen to minimize the BIC) over 100 repetitions when the sample size
is n = 50 and for varying x (note that when GLASSO returns a diagonal matrix we assign this an
MCC of 0). The results of this can be found in the left panel of Figure F3. We see that the model
selection deteriorates as the non-zero partial correlations get smaller in magnitude.

Now consider the same setting but with fixed partial correlations Δ1i = Δi1 = −1∕
√

10 for all
i and varying diagonals 𝜃ii = x for all i. In the center panel of Figure F3 we see that the model
selection of GLASSO remains constant for different x. This will also trivially hold for PCGLASSO
due to the scale invariance property of Proposition 2.

Finally consider theΘ parameterization where the off-diagonals are fixed 𝜃1i = 𝜃i1 = −1∕
√

10
for all i and varying diagonals 𝜃ii = x for all i. In this case the model selection deteriorates as x
increases (see the right panel of Figure F3).
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32 CARTER et al.

F I G U R E F2 Mean squared error of the maximum likelihood estimator (MLE) estimator of the partial
correlation (left) and off-diagonal (right) when p = 2, n = 10, the off-diagonal is fixed 𝜃12 = −0.5 and the
diagonal entries are equal to 𝜃11 = 𝜃22 = x.

F I G U R E F3 Matthews correlation coefficient in the star example for varying partial correlation Δij (left),
varying diagonal with fixed Δij (centre) and varying diagonal with fixed 𝜃ij (right).

These three examples demonstrate that the model selection depends on the magnitude of the
Δij and that, for fixed partial correlations, the model selection does not depend on the diagonals
𝜃ii. It also shows that the magnitude of the Δij is a better measure of the problem difficulty than
the magnitude of the 𝜃ij.
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