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analiza, nalazi transtorakalne ehokardiografije sa doplerom, 

kardiopulmonalnog testa fizičkim opterećenjem, elektrokardiograma (EKG) i 

EKG-holter-monitoringa su prikupljeni i korišćeni u daljoj analizi. HCM 

subfenotipi su identifikovani klasterizacijom. Povezanost genotipa i fenotipa 

je evaluirana korišćenjem Python modula Scikit-learn i SHapley Additive 

exPlanation (SHAP). Genotip-specifični nalazi ehokardiograma su 

identifikovani korišćenjem Python biblioteke za duboko učenje i računarski 

vid Fast AI, izradom modela za klasifikaciju ehokardiograma i naknadnom 

analizom regiona koji su najviše doprineli razlikovanju klasa. 

Četiri podtipa HCM su identifikovana na osnovu svih dostupnih podataka o 

fenotipu: klaster 0 (“AHOLD”), koji se razlikuje od ostalih na osnovu 

prečnika korena aorte (AO) i laktat dehidrogenaze (LDH), pri čemu su 

vrednosti AO > 30 mm i LDH > 300 U/L; klaster 1 (“RVSP ASCAOVS”), 

koji se razlikuje od ostalih na osnovu sistolnog pritiska desne komore (RVSP), 

dijametra ascedentne aorte (AscAO), i separacije aortnih kuspisa (AOvs), pri 

čemu su vrednosti AOvs > 27 m/s, AscAO < 31 mm i RVSP < 28 mmHg; 

klaster 2 (“weight”), koji se razlikuje od ostalih na osnovu telesne težine, sa 

vrednošću > 95 kg; i klaster 3 (“AV LVOT PG”) koji se razlikuje od ostalih 

na osnovu srednjeg gradijenta pritisaka nad aortnom valvulom (AV meanPG), 

maksimalnog gradijenta pritisaka nad aortnom valvulom (AV maxPG), i 

maksimalnog gradijenta pritisaka nad izlaznim traktom leve komore (LVOT 

maxPG), pri čemu su vrednosti AV maxPG > 15 mmHg, AV meanPG > 6 

mmHg, i LVOT maxPG > 15 mmHg. Algoritmi mašinskog učenja su potvrdili 

da utvrđivanje povezanosti genotipa i fenotipa HCM nije jednostavan zadatak. 

Predikcija ishoda fenotipa na osnovu informacije o mutiranim genima je 

moguća za prisustvo ili odsustvo sinusnog ritma i prisustvo ili odsustvo 

oštećenja miokarda. Modeli koji vrše predikciju prisustva ili odsustva 

sinusnog ritma su imali slične performanse kada su izrađeni samo na osnovu 

uzročnih gena za HCM i kada su izrađeni na osnovu svih analiziranih gena što 

sugeriše mogući značaj uzročnih gena za HCM i irelevantnost drugih 

analiziranih gena za ovaj ishod. Modeli koji vrše predikciju oštećenja 

miokarda su imali bolje performanse kada su korišćeni podaci o svim 

analiziranim genima (a ne samo o uzročnim genima za HCM), što sugeriše 

moguću važnu ulogu gena koji nisu uzročni, za ovaj ishod. Algoritmi 

mašinskog učenja su izvršili predikciju sledećih ishoda na osnovu podataka o 

genotipu i fenotipu: zamor, dispneja, bol u grudima, palpitacije, sinkopa, šum 

na srcu, pretibijalni edem, pokretanje mitralnog zalistka unapred (SAM), 

abnormalnost papilarnih mišića, hipokinezija, atrijalna fibrilacija, 

atrioventrikularni blok prvog stepena, blok leve grane (LBBB), blok desne 

grane (RBBB), prednji levi hemiblok, abnormalnosti ST segmenta, i negativni 

T talas.  

Prilikom predikcije zamora, najveći doprinos je imala kombinacija mutacije u 

TNNT2 i maksimalnog odnosa disajne razmene (RER). Prilikom predikcije 

dispneje najveći doprinos imala je kombinacija mutacije u MYBPC3 i vršne 

potrošnje kiseonika (peak VO2). Prilikom predikcije bola u grudima, najveći 

doprinos je imala kombinacija mutacije u TNNI3 i koncentracije lipoproteina 

visoke gustine (eng. high-density lipoprotein, HDL). Prilikom predikcije šuma 

na srcu najveći doprinos imala je kombinacija mutacije u MYH7 i podatka o 

implantiranju pejsmejkera/defibrilatora u porodičnoj istoriji, kao i 

kombinacija mutacije u TNNT2 i zapremine leve pretkomore (LAV). Prilikom 

predikcije negativnog T talasa, najveći doprinos imala je kombinacija 

mutacije u MYBPC3 i vrednosti transmitralnog maksimalnog gradijenta 

pritiska (MV maxPG). Identifikovani su genotip-specifični nalazi 

ehokardiograma: za mutaciju u MYH7 genu (nasuprot negativnom rezultatu na 

mutacije u analiziranim genima), strukture koje najviše utiču na raspoznavanje 
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su septum, izlazni trakt leve komore (LVOT), prednji zid, vrh srca, desna 

komora i mitralni aparat; za mutaciju u TNNT2 genu (nasuprot negativnom 

rezultatu na mutacije u analiziranim genima) strukture koje najviše utiču na 

raspoznavanje su septum i desna komora; dok su za mutaciju u MYBPC3 genu 

(nasuprot negativnom rezultatu na mutacije u analiziranim genima) ove 

strukture septum, leva komora i šupljina leve komore.  

Mašinsko učenje je na ovaj način doprinelo u određenoj meri izučavanju 

povezanosti genotipa i fenotipa HCM. 
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Hypertrophic cardiomyopathy (HCM) is the most prevailing heritable 

cardiomyopathy. HCM is diagnosed by the existence of left ventricular 

hypertrophy despite the lack of abnormal loading conditions causing it. HCM 

is a heterogeneous disease regarding genetic mutations. Clinical 

manifestations and prognosis vary widely as well. Some patients are 

completely asymptomatic, in some others, severe heart failure and sudden 

cardiac death may arise. Definitive genotype-phenotype associations are still 

unknown. Machine learning (ML) is a subdiscipline of artificial intelligence, 

wherein computer algorithms are used for learning complex patterns from 

data. The aim of this research was to decipher genotype-phenotype 

associations in HCM using ML. 

The study was multi-centric and retroprospective, and involved 143 adult 

HCM patients. Medical and family history, anthropometric measurements, 

genetic testing, blood markers, transthoracic echocardiography with Doppler, 

cardiopulmonary exercise testing (CPET), ECG and ECG-holter-monitoring 
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data were collected and further analysed. HCM subphenotypes were identified 

using clustering. Associations of genotype and phenotype were evaluated used 

Python modules Scikit-learn and SHapley Additive exPlanation (SHAP). 

Genotype-specific echocardiogram findings were identified using Python deep 

learning (DL) and computer vision library Fast AI, by generation of DL 

models for classification of ultrasonic images, and later analysis of the most 

decisive image regions. 

Four HCM subtypes were identified based on the overall phenotypic 

appearance: cluster 0 (“AHOLD”), distinguishable by aortic root diameter 

(AO) and lactate dehydrogenase (LDH), with values mostly AO > 30 mm, and 

LDH > 300 U/L; cluster 1 (“RVSP ASCAOVS”), distinguishable by right 

ventricle systolic pressure (RVSP), diameter of ascending aorta (AscAO), and 

aortic leaflet separation diameter (AOvs), with the values of RVSP < 28 

mmHg, AscAO < 31 mm, and AOvs > 27 m/s; cluster 2 (“weight”), 

recognizable by weight, wherein values being mostly > 95 kg; and cluster 3 

(“AV LVOT PG”) distinguishable by aortic valve mean pressure gradient (AV 

meanPG), aortic valve peak pressure gradient (AV maxPG), and left 

ventricular outflow tract peak gradient (LVOT maxPG) wherein AV maxPG > 

15 mmHg, AV meanPG > 6 mmHg, and LVOT maxPG > 15 mmHg. ML 

algorithms confirmed that the determination of genotype-phenotype 

associations in HCM is a cumbersome task. Two phenotypic outcomes that 

can be predicted from mutated genes are the absence or presence of sinus 

rhythm and the absence or presence of myocardial injury. Models predicting 

the absence or presence of sinus rhythm had similar performance when they 

were built using only causative genes and when using all analyzed genes, 

indicating potential importance of causative genes and irrelevance of non-

causative genes for that outcome. On the other hand, models predicting 

myocardial injury — infarction had better performance when they were built 

using all analyzed genes (and not just causative ones), indicating a potentially 

significant role of non-causative genes in that outcome. The ML algorithms 

were able to predict phenotypic outcomes — fatigue, dyspnea, chest pain, 

palpitations, syncope, heart murmur, pretibial edema, systolic anterior motion, 

papillary muscle abnormalities, hypokinesia, atrial fibrillation (AF), first-

degree atrioventricular (AV) block, left bundle branch block (LBBB), right 

bundle branch block (RBBB), left anterior hemiblock, ST segment 

abnormalities, and negative T wave — using genotypic and phenotypic data. 

The combination of a mutation in TNNT2 and peak respiratory exchange ratio 

(RER) contributed the most in predicting fatigue. The combination of a 

mutation in MYBPC3 and peak VO2 contributed the most in predicting 

dyspnea. The combination of a mutation in TNNI3 and high-density 

lipoprotein (HDL) level contributed the most in predicting chest pain. The 

combination of a mutation in MYH7 and pacemaker/defibrillator implants in 

family history, as well as the combination of a mutation in TNNT2 and left 

atrial volume (LAV), contributed the most in predicting heart murmur. Lastly, 

the combination of a mutation in MYBPC3 and transmitral maximal pressure 

gradient (MV maxPG) aided the most in predicting negative T wave. 

Genotype-specific echocardiogram findings were identified: for mutations in 

the MYH7 gene (vs. mutation not detected), the most discriminative structures 

are the left ventricular outflow tract, septum, anterior wall, apex, right 

ventricle, and mitral apparatus; for mutations in the TNNT2 gene (vs. mutation 

not detected), the most discriminative structures are septum and right 

ventricle; while for mutations in MYBPC3 gene (vs. mutation not detected) 

these are septum, left ventricle, and left ventricle chamber. 

ML has thus been demonstrated to be useful in deciphering genotype-

phenotype associations in HCM. 
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1. INTRODUCTION 

1.1.  Hypertrophic cardiomyopathy (HCM) 

HCM is the most prevailing heritable cardiomyopathy (1–5), having a recorded 

prevalence of 1 in 500 people among the general population worldwide (3,4,6–11), and 

recent research assessing a prevalence of up to 1 in 200 people (9,11–16). HCM affects 

0.2-0.6% of population (13,17–20), causes disability and mortality across all ages (7), and 

represents a leading cause of sudden cardiac deaths among the young (21–23).  

HCM is primarily considered to be inherited as an autosomal dominant trait 

(1,11,12,24), and to be caused by mutations in cardiac sarcomeric protein genes (1,12,25–

27). However, recent research suggests that the genetic foundation of HCM is much more 

complex than originally postulated (12,28). 

HCM is diagnosed by the existence of left ventricular hypertrophy (LVH) despite 

the lack of abnormal loading conditions causing it (29–31): in adults, left ventricular 

thickness found to be ≥ 15 mm (4,32), as quantified by any medical imaging technology 

— echocardiography (ECHO), cardiac magnetic resonance imaging (CMRI) or computed 

tomography (CT) (3,32). Secondary causes of LVH are systemic hypertension, 

subvalvular and valvular aortic stenosis, as well as infiltrative cardiomyopathies (3), and 

all of them must be excluded in order to diagnose HCM (3). Among first-degree family 

members of subjects with confirmed HCM, an unexplained left ventricular thickness 

found to be ≥ 13 mm is sufficient for HCM diagnosis (32).  

Clinical manifestations and prognosis vary widely. Severe heart failure (HF) and 

sudden cardiac death (SCD) may arise in some HCM subjects (1,10,11). SCD can be the 

first manifestation of HCM (1). Current therapeutic strategies (pharmacological treatment 

and cardiac surgical procedures) provide symptomatic treatment for HCM, leaving the 

causes of the disease unaddressed (19). Treatment is usually individualized (3), and aims 

to alleviate symptoms and impede disease progression (32). 

Research on HCM is complicated by the fact that animal models do not completely 

emulate human HCM (14). 
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1.2.  Cardiomyopathies 

Cardiomyopathies are heterogeneous myocardial diseases characterized by 

structural and functional defects. They can be subdivided into HCM, dilated 

cardiomyopathy (DCM), arrhythmogenic cardiomyopathy (ACM), restrictive 

cardiomyopathy (RCM), and unclassified cardiomyopathies as for example, left 

ventricular non-compaction cardiomyopathy (LVNC). The cardiomyopathies can be 

genetic or acquired (33,34), whereas HCM has a genetic basis (34). 

 

1.3.  Sarcomere 

The myocardium is mainly composed of cardiac muscle cells (cardiomyocytes) (9). 

Cardiomyocytes contain myofibrils, which are positioned across the cell. Myofibrils are 

partitioned into contractile units known as sarcomeres (35,36). Sarcomere is a repeating 

building block and contractile unit of striated (cardiac and skeletal) muscles, and 

coordinates muscle contraction (33,37–40). HCM is sometimes depicted as a “disease of 

the sarcomere” (6,9,16), indicating that it is most often caused by mutations in genes that 

encode proteins associated with the cardiac sarcomere (29,36,41–43).  

There are two principal components within the sarcomere: the thick filament and 

the thin filament. The thick filament is built by approximately 300 molecules of motor 

protein myosin. Each molecule of myosin is made of 2 protein units of α- or β-myosin 

heavy chain (MHC) and 4 myosin light chains (MLC). The thin filament contains 

repeating filamentous actin molecules, associated with the contraction-tuning troponin 

complex [troponin I (TnI), troponin T (TnT), and troponin C (TnC)], α-tropomyosin, and 

cardiac myosin-binding protein C (MyBP-C). MyBP-C links the thick and thin filaments 

and regulates actin-myosin interplay (Figure 1) (33,35,36,40). The striation pattern along 

a myofibril is the result of overlapping sets of actin and myosin filaments within the 

sarcomere (37). 
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Figure 1. Cardiac sarcomere and assembly of myofilaments: A) sarcomere and 

sarcomere-associated proteins, B) thick and thin filament assembly (40). 
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Muscle contraction is a result of the actin-myosin interplay: the globular head of 

the myosin molecule folds towards and thereupon binds to actin, contracts, unbinds actin, 

and subsequently starts a new cycle. These connections between the myosin head and 

actin are termed cross-bridges, and MyBP-C regulates their kinetics (35). When a muscle 

contracts, actin and myosin filament arrays slide past each other, while the filaments 

shorten themselves very slightly (37). 

Cardiomyocyte contraction and cardiac electrical activation are linked by the 

intracellular transport of calcium (35). Depolarization of the cardiomyocyte cell 

membrane activates the L-type voltage-dependent calcium (Ca2+) channels in the T tubule 

of the cell membrane, leading to Ca2+ influx into the cell. This influx triggers the opening 

of ryanodine-receptor channels in the adjacent sarcoplasmic reticulum surrounding 

myofibrils (“calcium-induced calcium release”), with a rapid discharge of stored Ca2+ 

from the sarcoplasmic reticulum and a rise in cytosolic Ca2+. Intracellular Ca2+ binds to 

TnC on the actin filaments, resulting in an allosteric conformational change in TnI and 

TnT, and removing tropomyosin from the myosin-binding sites of actin. Consequently, 

the myosin-binding sites of actin are exposed, allowing the cross-bridges to form (35–

37,44). The globular head of the myosin then binds to actin and the contractile cycle can 

proceed (37). 

After contraction, cytoplasmic Ca2+ levels must be decreased for myofilament 

relaxation to be initiated. Various mechanisms contribute to the removal of the 

cytoplasmic Ca2+ discharged from the myofilaments: in ventricular cardiomyocytes, the 

largest portion of cytoplasmic Ca2+ is returned to the sarcoplasmic reticulum via the 

adenosine triphosphate (ATP)-dependent sarcoplasmic reticulum pump (SR Ca2+-

ATPase (SERCA2a); ~70%), followed by the sodium-calcium exchanger (NCX; ~28%), 

and the sarcolemmal Ca2+-ATPase (~1%). The contribution of mitochondrial Ca2+ uptake 

to the removal of the cytoplasmic Ca2+, is small and plays a regulatory role — it enhances 

ATP production in case of increased workloads (9). 

ATP is synthesized predominately in mitochondria via oxidative phosphorylation 

(44). ATP hydrolysis (ATP + H2O → ADP + Pi) releases energy, which drives myosin 

sliding along the actin filament, resulting in contraction (35,37,44). Uncoupling actin and 

myosin is also an energy consuming process (45). When a new molecule of ATP is bound 
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to myosin, it leads to the release of myosin from actin. TnI, TnT, and tropomyosin bind 

actin again, unexposing the myosin-binding sites. All this cumulatively results in muscle 

relaxation (36). 

The sarcomere is symmetric, it has the M-disc in the center and borders at the Z-

discs (9). In myofibrils, sarcomeres are linked at the protein-dense Z-discs (9,39) — the 

lateral boundaries of a sarcomere (39). Thin, actin-containing filaments are connected to 

the Z-disc. Thick, myosin-containing filaments are linked in the center via the M-band 

(33). “The force of muscle contraction occurs when the myosin motor protein attaches to 

the actin filament and pulls the Z-discs toward the M-band” (39). The elastic filament 

consists of titin, protein extending over half the sarcomere (33) — beginning at the Z-

discs to the M-bands (9). The titin molecules provide a restoring force, when the 

sarcomere is stretched (37). Z-disc was for long considered a passive bond to titin and 

thin filaments. However, Z-discs also take part in various cellular mechanisms (39). 

The sarcomere is dynamic. Apart from being a constant scaffold for structural and 

regulatory proteins, it responds to alterations in muscle load and injury (39). All the 

cytoskeletal elements must be coordinated to produce adequate contraction (33,39), and 

to enable continuous cardiac work and adaptations to the momentary requests of the body 

(33). 

Sarcomeric function is hypersensitive: disruptions in the integrity of any component 

(single dysfunctional sarcomeric protein, changes in structure or dynamics of sarcomere, 

alterations in proteolytic degradation or expression, etc.) can result in cardiomyopathies 

(39). Compensatory mechanisms to overcome the defects are also sometimes activated, 

and some of them may, over time, become pathological too (33). 

 

1.3.1. Proteins involved in sarcomeric function 

1.3.1.1. α-Actinin 

Human α-actinin is a highly conserved protein (46). There are 4 genes encoding α-

actinin (39) and 4 main isoforms (46), which possess overlapping functions: ACTA1 and 

ACTA4 are non-muscle (and non-sarcomeric) isoforms that link actin filaments in 

cytoskeleton, ACTA2 and ACTA3 are skeletal muscle isoforms that are major 

components of the sarcomeric Z disc, and ACTA2 is cardiac muscle isoform (39,46). 
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Deficit of α-actinin-3 isoform is not pathogenic, most probably because individuals with 

this deficiency present high compensatory expression of α-actinin-2 (46,47). On the other 

hand, defects in α-actinin-2 may lead to cardiac and skeletal muscle diseases — including 

HCM and DCM (46,48). 

α-actinin has many binding companions. Each of these interactions plays a different 

role in contraction production. Some of Z-disc proteins which interact with ACTA2 are: 

muscle LIM protein (MLP), N-terminus of titin, actinin-associated LIM protein (ALP), 

myotilin, myopalladin, myopodin, CapZ, cypher/oracle/ZASP, filamin, α-actinin, and 

telethonin-binding protein at the Z-disc (FATZ) (39).  

 

1.3.1.2. Muscle LIM protein 

Muscle LIM protein (MLP) is a protein with a LIM domain serving 

mechanosensing and structural roles (49), a member of the cysteine-rich protein (CRP) 

family (39). CSRP1 is located in smooth muscle, CSRP2 in fibroblasts and arteries, and 

CSRP3 in striated (cardiac or skeletal) muscle. MLP is mainly considered a Z-disc protein; 

however, it also localizes to other regions in myocytes (e.g. M-band). MLP contains 2 

LIM domains and they serve as protein-protein binding sites (39). MLP binds to α-actinin 

to stabilize the Z-disc (39), acts as a stretch sensor (39,50), signaling protein (39), and 

takes part in the remodeling of cardiac myofilaments (50), myogenesis and muscle 

differentiation (39).  

 

1.3.1.3. Muscle ankyrin repeat proteins 

The family of muscle ankyrin repeat proteins (MARPs) is consisted of: cardiac 

ankyrin repeat protein/ankyrin repeat domain 1 (CARP1/Ankrd1), ankyrin repeat protein 

with peptide sequence rich in proline (P), glutamic acid (E), serine (S), and threonine (T) 

and proline rich region (CARP2/Ankrd2/Arpp), and diabetes-related ankyrin repeat 

protein CARP3/DARP/Ankrd23). All of them contain 4 ankyrin repeat domains (39).  

CARP1 (encoded by the gene ANKRD1) is mostly found in cardiomyocytes, and to 

a lower amount in skeletal muscles. CARP1 gene expression is part of the fetal gene 

program, and the expression increases after the induction of pathologic hypertrophy. 

CARP1 interplays with several proteins: calsequestrin, desmin, four-and-a-half LIM 
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domains 2 (FHL2), myopalladin, and talin; as well as numerous nuclear transcription 

factors implicated in cell differentiation, proliferation and apoptosis (39). 

 

1.3.1.4. Titin 

Titin (connectin) is the greatest protein in the human genome (39), a major source 

of passive stiffness in cardiomyocytes (51). It extends over half of the sarcomere (39). It 

is important in regulation of mechanical characteristics of the sarcomere during 

contraction and at rest (52), and in shaping viscoelastic features of myofilaments (53). 

The elastic features of titin change throughout heart development and progression of 

cardiac diseases, which strongly affects the diastolic function of the myocardium (53).  

Titin has a major role in sarcomere formation and stability, as well as in signal 

transduction and mechanosensing (39,52). Titin is a key molecule in the passive 

mechanical properties of the myofilaments (39), because it acts as a molecular spring 

(39,53). Titin has several functionally diverse partners, which interact with it along its 

length (39). Titin is also known as the third filament (9). 

Titin transcripts undergo alternative splicing, and as a result, they can theoretically 

produce more than one million titin isoforms (52). There are two titin isoforms in the 

human adult myocardium: N2B and N2BA (9). The presence of N2A and N2B elements 

is used to classify titin isoforms into major categories (52). N2BA isoform (containing 

N2B and N2A, the longer isoform) is different from N2B (containing only N2B, the 

shorter isoform) (9,54). 

 

1.3.1.4.1. Z-disc titin 

The N-terminal region of titin is fixed in the Z-disc (39) and binds α-actinin (39,46). 

At the I-band and Z-disc junction, titin binds tropomyosin, calpain, and obscurin, and 

simultaneously supports sarcomere stability and mechanosensing (39). 

 

1.3.1.4.2. I-band titin 

The N2B element is found only in heart. In the N2B isoform, part of the PEVK 

region is also missing. The PEVK region (termed so because it contains ~ 70% proline 

(P), glutamic acid (E), valine (V), and lysine (K) residues) enables titin’s elastic features 
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(39). Increased PEVK phosphorylation is associated with increased cardiomyocyte 

passive stiffness in HF (54). Titin’s PEVK region elongates during moderate stretching 

of striated muscle, and as a result, passive tension increases (55). 

Titin’s I-band region is involved in response to hypertrophy and mechanosensing. 

The N2A region interacts with MARPs to evoke a mechanosensory reaction. The N2B 

region interacts with four-and-a-half LIM domain proteins (FHLs) and in response to 

biomechanical stress activates hypertrophy pathways (39). 

 

1.3.1.4.3. A-band titin 

In the A-band, titin interreacts with MyBP-C and the myosin tails, and thus, links 

to the thick filaments (39). 

 

1.3.1.4.4. M-band titin 

M-band is the central part of the sarcomere, and the most dynamic part of the muscle 

(56). M-band titin plays a key role in structural support and signaling. The extreme C-

terminus of titin binds obscurin, thus serving both signaling and structural functions. 

Muscle-RING-finger-proteins (MURF) 1 and 2 label titin for proteosomal degradation 

(39). 

 

1.3.1.5. Actin 

Actin is one of the most abundant (39,57) and preserved proteins (58), one of the 

most dynamic molecules (57) within cells. Actin is involved in protein and cell 

homeostasis (57). It is also the main constituent of the thin filament (39).  

Six genes encode different actin isoforms: α-cardiac-, α-skeletal-, α-smooth-, β-

cytoplasmic-, γ-smooth-, and γ-cytoplasmic-actin. Although they share high sequence 

homology (more than 87%), varied isoforms display tissue-specific expression. α-cardiac 

actin is encoded by ACTA1 gene (9) and represents the main isoform, which forms thin 

filaments in cardiomyocytes (39). 

Individual actin molecules are globular in solution (G-actin) but interreact to 

assembly filamentous polymers (F-actin). F-actin has the appearance of an arrowhead: 
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“barbed” ends are sticked into the Z-disc, and the “pointed” ends extend into the M-band 

(39). 

 

1.3.1.6. Tropomyosin 

Tropomyosin is a key element in the coordinated activation of the thin filament 

(39,59). It acts both as a regulatory protein and a structural support (39) and enables 

proper sarcomeric function by interplay with troponin T and actin (39,59). Tropomyosin 

regulates muscle contraction through a steric-mechanism, which governs myosin-

crossbridge-actin interactions (60). 

The tropomyosin family consists of 4 genes: TPM1 (encoding α-TPM), TPM2 

(encoding β-TPM), TPM3 (encoding γ-TPM), and TPM4 (encoding δ-TPM) (39). 

Mutations in TPM1 are usually studied and found in the context of HCM, but several 

mutations have been reported in DCM as well (61). α- and β-Tropomyosin are ~ 87% 

identical, but the ratio of their expression varies, based on the developmental stage and 

the fiber type (39). α-Tropomyosin is a highly conserved protein mostly found in cardiac 

and skeletal muscles (39,62), whilst β-tropomyosin is seen in slow-twitch muscle fibers 

(39). 

Coiled-coils consist of two tropomyosin α-helical chains assembled in head-to-tail 

fashion, which interact with the groove of actin filaments (positively charged), and form 

dimers spanning 7 actin monomers (39,62). Each tropomyosin molecule is associated 

with single troponin complex and 7 actin monomers (39).  

Ca2+ interacts with tropomyosin and troponin to switch the thin filament on and off; 

however, in myocardium, this regulation is the subject of a more precise control (60). At 

low calcium concentrations, tropomyosin caps the outer domain of actin and obstructs the 

myosin-binding site, causing muscle relaxation (60). This steric inhibition is reversed 

when intracellular calcium concentration is high: TnC binds calcium and intermediates 

the release of TnI, inducing a conformational change in tropomyosin, exposing the 

myosin-binding sites, and thereby enabling the globular myosin heads to interreact 

(39,59,60). This causes thin and thick filaments to move towards each other, causing 

sarcomere shortening and eventually muscle contraction (39,59). 
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1.3.1.7. Troponin complex 

The troponin complex consists of TnT (that binds tropomyosin), TnC (that binds 

calcium), and TnI (that acts as an inhibitor, blocking myosin from binding to actin) (39). 

The troponin complex governs the position of tropomyosin over actin, and thereby their 

motor activity (39,60). It is a key regulator of cross-bridge cycling (39).  

TnC is Ca2+-binding subunit, and has 3 isoforms: cardiac, fast skeletal, and slow 

skeletal. The cardiac and slow skeletal isoforms are alternatively spliced from TNNC1 

(39). When calcium is bound to the EF-motif, troponin C relieves the actin-inhibited 

contraction through conformational changes, which allow the N-terminal domain of TnC 

to interact with TnI (39,63). 

TnI is the inhibitory subunit of the troponin complex. When TnC interacts with TnI, 

it detaches from actin, thus displacing tropomyosin to enable weak binding of myosin to 

actin. Three isoforms of TnI are encoded by different genes: cardiac, fast skeletal, and 

slow skeletal (39). 

The function of TnT, tropomyosin-binding subunit, is to fix the troponin complex 

to tropomyosin. TnT has cardiac, slow, and fast skeletal isoforms. TnT organizes the 

troponin regulatory complex by attaching TnI and TnC to the thin filament. TnT further 

plays a role in muscle contraction through the adjustment of calcium sensitivity, 

actomyosin ATPase activity, and force generation in the sarcomere (39). 

HCM is most often associated with troponin mutations, which cause an increase in 

Ca2+ activation (63). 

 

1.3.1.8. Myosin 

Two proteins are required for contraction: actin and myosin (64). Myosin is the 

molecular engine of muscle contraction, converting the chemical energy of ATP into 

movement (39,64). It is also the predominant constituent of the thick filament. Myosins 

are a group of proteins with structural and functional differences (there exist 11 classes 

in humans). Each myosin is made of several light chains, and 1 or 2 heavy chains and 

molecules. The head region of the MHC binds actin and generates muscle contraction via 

ATP hydrolysis. The neck region of the MHC transduces force, whereas the tail region 

of the MHC mediates interactions with myosin (24). Binding of myosin to actin is a multi-
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phase sequence: the first step is weak binding, followed by the strong binding (9). MLCs 

are either “essential” or “regulatory”. The regulatory light chains are highly regulated by 

phosphorylation and regulate the functioning of MHC (39).  

Multiple MLC and MHC isoforms exist, in order to adapt to the variation in energy 

demands during development and in different muscles — in the heart of large mammals, 

MHC-α (MYH6) is present during development and MHC-β (MYH7) is dominant in the 

adult. MHC can shift to the MHC-α (MYH6) in failing hearts. This fetal gene program is 

triggered during cardiac remodeling by stress signaling, and probably plays a role in 

disease progression (39).  

Outcomes of mutations in myosin usually include myosin protein aggregates under 

sarcolemma, impaired myosin function, and/or muscle fiber degeneration (39). 

Myosin modulators have been recently developed to treat cardiomyopathies. They 

are usually categorized as “myosin inhibitors” (aficamten, mavacamten) or “myosin 

activators” (danicamtiv, omecamtiv). However, this description is oversimplified (65). 

Randomized, double-blind, placebo-controlled EXPLORER-HCM trial has shown the 

benefits of disease-specific treatment using mavacamten (66).  

 

1.3.1.9. Myosin-binding proteins 

Thick filaments contain myosin-binding proteins, which link the thin and thick 

filaments. The myosin-binding protein family includes the myosin-binding protein H 

(MyBP-H, also known as H-protein) and MyBP-C (also known as C-protein). Both are 

located in the C zone of sarcomere (39). 

MyBP-C is a rod-like protein (67), which regulates contraction force in striated 

muscles (68). It exists in 3 different isoforms: a slow skeletal (sMyBP-C, encoded by 

MYBPC1 in humans), a fast skeletal (fMyBP-C, encoded by MYBPC2 in humans), and a 

cardiac isoform, a fundamental structural protein of the heart muscle, (cMyBP-C, 

encoded by MYBPC3 in humans) (39,68). While cardiac isoform is tissue-specific, slow 

skeletal isoform is expressed in the inter-atrial septum and the right atrium as well (39). 

These isoforms are highly conserved, with more than 90% homology (68). 

Myosin-binding proteins are implicated in filament assembly and contraction 

regulation. They support sarcomeric integrity during interplay with thin and thick 
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filaments, as well as with titin. cMyBP-C might act as a regulator of actomyosin 

interaction and as a molecular “ruler,” which coordinates the spacing between thin and 

thick filaments. The phosphorylation of myosin-binding proteins is crucial in their 

regulation (39,69). 

Mutations in the MYBPC3 gene are associated with over 45% of HCM cases, and 

70% of genetic variants in MYBPC3 are nonsense mutations (68). 

 

1.3.1.10. Protein turnover 

The lifetime of a cardiomyocyte spans many years, whereas the lifetime of the 

individual protein molecules is limited to days or weeks. New proteins must be 

continuously incorporated into the sarcomere to replace old ones, in order to preserve 

mechanical functioning. Three different systems are implicated in the removal of old 

proteins: ubiquitin-proteasome system (UPS), calpain system, and autophagy-lysosome 

pathway; the failure of these systems is common in the progression of heart disease. 

Molecular chaperones perform sarcomeric assembly maintenance, and their deficiency is 

linked to cardiomyopathy. Oxidative and mechanical stress predispose sarcomeric protein 

misfolding (40). 

 

1.4. HCM genotype 

Genotype is “the genetic makeup of an organism or of a specific characteristic”, 

“the inherited genetic material coding for all processes in the organism’s life” (70). 

Genotype relates to a particular gene or to a combination of the alleles of individual (70). 

The first HCM-associated mutation was identified in 1989 in the MYH7 gene, which 

encodes MHC, a sarcomeric protein of the thick filament (9,30,36). Thus far > 1400 

HCM-associated mutations have been identified, of which approximately 90% have been 

found in the genes encoding proteins of the thin and thick filaments of the sarcomere 

(MYH7, MYBPC3, and TNNT2, which encode MHC, cMyBP-C, and cTnT) 

(9,14,31,71,72). 

Mutation carriers are usually heterozygous and carry one disease (mutant) allele 

and one normal allele. However, in some rare cases, mutation carriers are homozygous, 

and present early (childhood) onset and severe disease. HCM in heterozygous mutation 
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carriers usually appears between the ages of 20-50 years. For these reasons, the first 

appearance of HCM seems to be predetermined by the dose of mutant protein (9).  

Approximately 60% of HCM patients have an evident familial disease. Autosomal 

recessive and X-linked modes of inheritance have been described but are very uncommon. 

An X-linked inheritance implies the possibility that the case is actually a phenocopy 

condition, like Fabry disease. HCM phenocopies occur in syndromic conditions (e.g. 

Noonan syndrome) and in storage diseases (e.g. Anderson-Fabry disease) (29). 

Pathogenic or likely pathogenic variants in sarcomeric protein genes cause 30-60% 

of HCM cases (depending on diagnostic criteria and approaches to variant classification) 

(73). Mutations in genes MYH7 and MYBPC3 are the 2 most frequent factors, being 

together accountable for more than 50% of HCM cases with pathogenic variants 

(15,25,29,36,69,73). Genetic and clinical studies have also supported the causal, but less 

common, pathogenic variants in other genes encoding sarcomere proteins including 

TNNT2 (encoding cardiac troponin T), TNNI3 (encoding cardiac troponin I), and TPM1 

(encoding α-tropomyosin) (30,36). Mutations in TNNT2, TNNI3, and TPM1 are together 

accountable for < 10% of cases. Mutations in ACTC1 (encoding cardiac α-actin), MYL2 

(encoding myosin regulatory light chain 2), and MYL3 (encoding myosin essential light 

chain 3) are also identified as causes of HCM, though rare (29,30). Therefore, HCM is 

considered to be a disease of the sarcomere, however, it can be caused by other factors as 

well (12,69,71). 

Mutations in other genes have also been described in patients with HCM: TTN 

(titin), ACTN1 (encoding α-actinin), MYH6 (myosin heavy chain or α-MHC), TCAP 

(telethonin), CSRP3 (muscle LIM protein – a Z-disc protein), FHL1 (four-and-a-half LIM 

domains 1), PLN (phospholamban), ACTN2 (alpha-actinin-2, a Z-disc protein), CRYAB 

(crystallin alpha B), FLNC (filamin C), MYOZ2 (myozenin 2, a Z-disc protein), TNNC1 

(cardiac troponin C), TRIM55 (tripartite motif containing 55), and TRIM63 (ubiquitin E3 

ligase tripartite motif protein 63 or MuRF1) (25,29,35,36,73). While some of these genes 

are likely to be causal genes for HCM, others are only associated with HCM (Table 1-3) 

(29). 
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Table 1. Causal genes for HCM, adapted from (15) and (29) 

Gene Frequency 

in HCM 

(%) 

Protein Location in 

sarcomere 
Function 

MYH7 ~40 β-Myosin heavy chain Thick 

myofilament 
ATPase activity, Force 

generation 
MYBPC3 ~40 Myosin binding 

protein-C 
Thick 

myofilament 
Cardiac contraction 

TNNT2 ~10 Cardiac troponin T Thin myofilament Regulator of acto-myosin 

interaction 
TNNI3 < 5 Cardiac troponin I Thin myofilament Inhibitor of acto-myosin 

interaction 
TPM1 < 1 α-tropomyosin Thin myofilament Places the troponin complex 

on cardiac actin 
ACTC1 < 1 Cardiac α-actin Thin myofilament Acto-myosin interaction 
MYL2 < 1 Regulatory myosin 

light chain 
Thick 

myofilament 
Myosin heavy chain 7 binding 

protein 
MYL3 < 1 Essential myosin light 

chain 
Thick 

myofilament 
Myosin heavy chain 7 binding 

protein 
CSRP3 < 1 Cysteine and glycine-

rich protein 3 
Z-disc Muscle LIM protein (MLP), a 

Z disk protein 

 

 

Table 2. Likely causal genes for HCM, adapted from (15) and (29) 

Gene Protein Function 

FHL1 Four-and-a-half LIM domains 1 Muscle development and hypertrophy 

MYOZ2 Myozenin 2 (calsarcin 1) Z disk protein 

PLN Phospholamban Regulator of sarcoplasmic reticulum calcium 

TCAP Tcap (Telethonin) Titin capping protein 

TRIM63 Muscle ring finger protein 1 E3 ligase of proteasome ubiquitin system 

TTN Titin Sarcomere function 

 

 

Table 3. Genes associated with HCM, adapted from (15) and (29) 

Gene Protein Function 

ACTN2 Actinin, alpha 2 Z disk protein 

ANKRD1 Ankyrin repeat domain 1 A negative regulator of cardiac genes 

CASQ2 Calsequestrin 2 Calcium binding protein 

CAV3 Caveolin 3 A caveolae protein 

JPH2 Junctophilin2 Intracellular calcium signaling 

LDB3 Lim domain binding 3 Z disk protein 

MYH6 Myosin heavy chain alpha Sarcomere protein expressed at low levels in the adult 

human heart 

MYLK2 Myosin light chain kinase 2 Phosphorylate myosin light chain 2 

NEXN Nexilin Z disc protein 

TNNC1 Cardiac troponin C Calcium sensitive regulator of myofilament function 

VCL Vinculin Z disk protein 
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Mutations in several other genes: PRKAG2 (γ2-subunit of AMP kinase), GLA (α-

galactosidase A), and LAMP2 (lysosome-associated membrane protein 2), are detected in 

~ 2% of cases misdiagnosed as having HCM. Mutations in these genes implicate disparate 

mechanisms to induce hypertrophy, but also lead to expression of supplementary clinical 

phenotypes that do not appear in HCM (73). There is a mechanistic difference between 

phenocopy conditions and HCM: ventricular hypertrophy in phenocopy conditions results 

at least partly from storage of material (e.g. glycogen) and partly from functional defects 

in myocytes (e.g. impaired contraction) (29). 

For majority of HCM genes, both de novo and familial pathogenic variants have 

been described (36). 

The percentage of novel variant detection is 35-40%, with 56% of variants found in 

a single family and therefore considered “private” variants (74). Haplotype analyses of 

an identical variant in unrelated patients demonstrated that such genetic variants emerge 

independently (36). However, many unrelated MYBPC3 variant carriers possess the same 

haplotype architecture in some homogeneous subpopulations in the Netherlands (75), 

Finland (76), Iceland (77), Japan (78), and India (79), which demonstrate clear founder 

effects in HCM. Due to late-onset and benign presentations, the presence of HCM-

associated founding mutations in these populations demonstrates neutral or mild negative 

selection (36). 

Causality cannot be definitely identified, especially in sporadic cases or small 

families. As a result of great genetic variety, the HCM-causing genes left undefined in ~ 

40% of cases (29). 

A subset of HCM cases (~ 5-7%) is attributable to digenic or oligogenic 

heterozygosity (36,72). Such conclusions not conform to the classic single gene disease 

definition, moreover suggest that a number of variants could jointly cause HCM 

phenotypes and each variant has a mild to moderate effect. Complex genotypes, inclusive 

of compound heterozygous or homozygous variants, have been described (36). 

In general, genetic variants range from clinically negligible to causal. Genetic 

variants with very large effects are considered to be accountable for autosomal dominant 

single gene disorders. They have been detected by robust genetic methods, such as linkage 

and co-segregation analyses. Illustrations related to HCM involve genetic variants in 
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genes MYH7 and MYBPC3. Genetic variants with clinically small or indistinguishable 

effects modestly impact the phenotype, still do not cause monogenic disorders. In the 

middle of the spectrum lies a subset of genetic variants exerting intermediary to large 

effect sizes and exhibiting incomplete penetrance — their effects are affected by other 

non-genetic and genetic factors. Such variants cause HCM with incomplete or low 

penetrance (29). Incomplete penetrance suggests that the majority of HCM mutation 

carriers have a low risk of pathological HCM phenotypes development over their lifetime 

(80). 

The frequency of particular mutations in an HCM population is markedly low: the 

only two exceptions are the p.Arg502Trp mutation in MYBPC3 (identified in ~1.5-3% of 

HCM cases) and the p.Val762Asp mutation in MYBPC3 (occurring in 3.9% of the 

Japanese population) (29) — “p.” stands as label used in standard nomenclature of 

mutations based on the amino acid sequence of the protein (81). Other mutations appear 

at a frequency of < 1% in the HCM population, and around half of them are detected in a 

single family or proband (29). Some other variants reported to be relatively common and 

“hot spots” are: Arg403Gln, Arg453Cys, and Arg663His in MYH7; Arg92Gln, Arg92Trp, 

and Arg104Val in TNNT2; as also Arg495Gln and c.1928-2A>G in MYBPC3 (6) — the 

prefix “c.” stands as label and indicates the use of standard mutation nomenclature based 

on reference coding DNA sequences (81). Therefore, significant “hot spots” for mutations 

in any of the known genes do not exist (29). 

 

1.4.1.  Digenic/oligogenic etiology of HCM 

One mutation is generally sufficient to cause HCM, however, due to variable 

penetrance and expression, not always (23). Around 5% of HCM cases exhibit two 

(digenic) or more (oligogenic) causal mutations in the same or different genes (26,29). 

 

1.4.2. Missense and nonsense mutations in HCM 

The most pathogenic and likely pathogenic sarcomeric gene variants causing HCM 

encode missense residues, leading to a nonsynonymous amino acid substitution, and 

proposing a dominant negative effect. The notable exception is MYBPC3, wherein 

nonsense mutations are most often caused by frameshifts, insertions/deletions, or splice-



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

25 

 

site variants. These create a premature stop codon and hence truncated protein is produced, 

which further leads to haploinsufficiency of the protein (29,35,36,73,82,83). There exist 

over 300 pathogenic HCM-associated mutations in the β-cardiac myosin (83). 

In general, the missense mutations alter structure (e.g. protein misfolding, alteration 

of important kinase domains, amino acid substitution in a highly-conserved residue) and 

function (e.g. change in surface-exposed section of a molecule alters protein-protein 

interreaction), by altering the amino acid constitution of the encoded protein (29,35). 

Missense mutations usually cause the mutant protein to be integrated into sarcomere, 

however, its interactions with the regular proteins hamper normal sarcomeric functioning 

(poison polypeptide hypothesis) (35). 

Missense mutations causing structural alterations in the encoded protein might 

decrease the effectiveness of the sarcomere formation. In the sarcomere of heterozygous 

individual, both alleles of the causal gene (normal and containing missense mutation) are 

transcribed and translated into the matching wild-type and mutant proteins. Effectiveness 

of transcription and translation of the wild-type and mutant alleles may differ (expected 

to be reduced for the mutant allele). Allelic imbalance is partly amended by the wild-type 

allele, but this allelic compensation is often incomplete. As a result, the mutation might 

reduce expression, and cause a moderate insufficiency of the corresponding protein. In 

HCM, there is a myocyte-to-myocyte variation in the expression of transcripts of mutant 

alleles. This heterogeneity may elucidate the varying phenotypic expression of HCM (29). 

As a result of insertion/deletion mutations that induce a frame shift changes, altered 

proteins are produced. They are commonly targeted for degradation, leading to 

haploinsufficiency (29,35). Transcription and translation regulatory mechanisms prevent 

biosynthesis of the truncated proteins (29). 

In line with the variety of HCM-associated mutations, initial defects in HCM are 

also diverse. Initial changes in HCM include altered translation efficiency and 

transcription rates, alterations in the affected protein structure, as well as in the 

functioning of the sarcomere (29). 
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1.4.3.  Allelic imbalance and haploinsufficiency 

Allelic imbalance and haploinsufficiency represent the main mechanisms of many 

Mendelian diseases (84). 

Allelic imbalance represents disturbances in genetic homeostasis. It occurs when a 

higher protein expression is produced from one allele compared to another (deviating 

from the anticipated 1:1 expression proportion). Protein allelic imbalance occurs if the 

mutation cause production of altered protein that interferes with intrinsic protein folding, 

protein-protein interactions, or protein quality control, usually eventually decreasing 

mutant protein stability. Allelic imbalance is displayed by 25% of human genes. In case 

of HCM, allelic imbalance has been reported for several missense mutations in MYBPC3, 

MYH7, TNNT2, and MYL2. The ratio of wild-type to mutant protein differs regarding 

particular mutation (some specimens showed lower and some a higher proportion of 

mutant to the wild-type protein) (84). 

Haploinsufficiency represents disturbances in protein homeostasis (84). 

Haploinsufficiency arises when a heterozygous mutation results in one allele of a gene 

being deleted or inactivated, and when a single functional copy of a gene is insufficient 

to maintain normal level of protein (69,84). The level of the functional protein does not 

have to be less than half of the normal, but it must be below the threshold required for 

proper functioning. This might also happen when a mutant protein is present still non-

functional (as in the case of in-frame mutations) (84). 

 

1.4.4.  Genetic testing 

The HCM prevalence has become higher with the usage of advanced genetic testing 

granting a molecular diagnosis ahead of clinical diagnosis (15). The positive result of 

genetic testing supports the diagnosis of HCM in a proband, but a negative result does 

not exclude it (29). If a proband with a positive genetic test is discovered, testing for the 

existence of the variant in relatives (cascade screening) needs to be executed (29,30). 

Detection of causative mutations in a proband with HCM enables presymptomatic 

diagnosis and clinical surveillance of relatives, as well as appropriate genetic counseling 

(6). 
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Relatives, who are not carriers of the causal mutation, are highly unlikely to develop 

HCM. Relatives of patients identified as HCM mutation carriers should be clinically 

examined. Phenotype-positive relatives might be diagnosed with HCM. Mutation-

positive and phenotype-negative relatives should be clinically evaluated annually, or 

more often, if symptoms occur (29).  

Many mutation-positive and phenotype-negative relatives will ultimately express 

the HCM phenotype. Nevertheless, because of incomplete penetrance, some mutation 

carriers never develop the HCM phenotype. Nonetheless, they need to be aware that they 

can pass the mutated gene to their offspring (29). 

Genetic testing allows differentiation of HCM and the phenocopy conditions (29). 

Genes like TTR, PRKAG2, LAMP2, GLA, and GAA are associated with metabolic 

disorders that resemble HCM, but their clinical profiles, inheritance patterns, and 

treatments differ from one another and from HCM (85). Genetic testing for HCM detects 

phenocopy conditions in ~ 3% of individuals (29). Contemporary genetic testing for HCM 

fails to detect 50-60% of HCM patients (29). 

Only 30-60% of individuals with clinical diagnosis of HCM carry sarcomere gene 

mutations (27,80,86). Up to 40% of the HCM cases are isolated and sporadic, wherein 

the proband does not have any known HCM mutations or a family history of HCM (80). 

Detection of pathogenic mutations is greater in individuals with a positive family history 

and in younger individuals, where it can outreach 50-60%. In other individuals, it is ~ 30-

40% (12). 

Many non-sarcomeric genes linked with HCM have been increasingly added in 

panels for HCM, despite limited evidence of a causal role in HCM. The choice of genes 

included in routinely used diagnostic panels, eventually lies on the spectrum between the 

extremes of adding only the validated genes on one side and the screening of all genes 

linked with HCM (irrespective of the strength of evidence) on the other (85). 

Genetic screening of healthy individuals or patients with moderate hypertrophy is 

not advised. It can be deemed reasonable only in exceptional borderline cases (6). 
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1.4.5.  Animal models and in vitro studies 

Animal models do not completely reproduce human HCM (87). For instance, there 

exist major differences between humans and small rodents in the constitution of 

sarcomeric proteins isoforms, in particular, titin and MHC. On the other hand, 

phosphorylation sites are highly conserved (9). Knock-out, knock-in, and transgenic mice 

models have been used in deciphering pathogenesis mechanisms of HCM. However, 

functional research of HCM mutations in such models are complicated by the differences 

in sarcomere protein contents between them and humans. The MCH isoform encoded by 

MYH7 is predominant in the human heart, whereas the myosin isoform encoded by MYH6 

is predominant in the murine heart. In order to study human mutation in MYH7, it has to 

be first transposed into MYH6 in the mice models. Such transposition is not possible, 

since proteins encoded by MYH6 and MYH7 display major differences in their ATPase 

activities and acto-myosin kinetics (ATPase activity and the velocity of actin 

displacement of the MYH6-encoded protein are several folds higher than those of the 

MYH7-encoded protein). These differences hinder extrapolation of the discoveries in 

model organisms that predominantly express MYH6 to human HCM. Research performed 

on hearts that predominantly express MYH7 rather than MYH6 (e.g. transgenic rabbits) 

propose discoveries that are more relevant to the functional outcomes of HCM mutations 

(29). In small rodents, the stiff (smaller) N2B titin isoform is predominant, whereas in 

pigs and humans, the compliant (long) N2BA titin isoform is predominant (9). 

Single-cell studies stress the importance of considerable myocyte-to-myocyte 

variability of the gene expression and functioning as well as of Ca2+ sensitivity (29). 

Animal and cell studies confirm altered calcium homeostasis to be a key component 

of pathophysiological processes leading to the development of LV hypertrophy (35). 

 

1.5.  HCM phenotype 

Phenotype (from Greek words phainein — to show, and typos — type) is the 

composite of all the organism’s characteristics or traits (70). 

The clinical presentations of HCM are very variable. Some mutation carriers stay 

asymptomatic, while others develop severe HCM, terminal HF, or SCD (9,15,88). 
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HCM is characterized by asymmetric hypertrophy of the ventricle, most often of 

the septum, which sometimes obstructs blood flow to the aorta (obstructive HCM). 

Besides hypertrophy, HCM patients display myofibrillar and cellular disarray, fibrosis, 

and cardiac remodeling. Reduced myocardial efficiency and diastolic dysfunction appear 

even before the development of hypertrophy in asymptomatic mutation carriers. These 

initial changes in structure and functioning might be explained by defects in the sarcomere 

caused by HCM mutations (9). 

 

1.5.1. Effects of mutations in sarcomeric protein-encoding genes 

HCM mutations induce raised myofilament Ca2+ sensitivity. Increased tension 

caused by the HCM mutation initiates hypertrophic signaling via activation of MEK1–

ERK and calcineurin signaling, thereby causing a rise in cardiomyocyte width and cardiac 

mass specific for concentric hypertrophy. Inhibition of MEK1–ERK signaling cause 

cardiomyocyte elongation, which is specific for eccentric hypertrophy. Therefore, it is 

suggested that the tension-based activation of diverse hypertrophic signaling underlies 

the hypertrophy (9). 

Ca2+-sensitizing effects of HCM mutations are potential substrates for ventricular 

arrhythmias. The degree of myofilament Ca2+ sensitization is mutation-specific (9). 

 

1.5.1.1. Increased crossbridge kinetics and ATP utilization 

It is suggested that HCM mutations lead to energy depletion by increasing ATP 

turnover during the crossbridge cycle. In HCM mutation carriers, reduced myocardial 

efficiency already exists at an early stage of HCM before the development of hypertrophy 

(9). 

The HCM mutation-induced sarcomere alterations induce adverse remodeling and 

cause electrophysiological perturbations: action potential is extended, associated with 

CaMKII-mediated alterations in Ca2+ and late sodium (Na+) currents. Cardiomyocytes of 

HCM patients show higher diastolic Ca2+ concentrations and increased occurrence of 

cellular arrhythmias, which is explained by disease-related phosphorylation changes of 

Ca2+-handling proteins and sarcomere (9). 
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1.5.1.2. HCM: A disease of compensatory hypertrophy 

At first, it was suggested that the incorporation of mutant proteins reduces 

contractility, which could lead to compensatory hypertrophy. Some authors find this 

suggestion inconsistent with laboratory and clinical findings. There are 3 arguments 

supporting the above perspective: 1. At first, experimentations with mutant proteins 

showed reduced functioning of mutant proteins, which had been earlier displayed as 

decreased motility of the proteins. However, more recent research has showed that some 

mutations actually cause increased motility in mutant proteins: mutation carriers, which 

do not develop hypertrophy, show increased motility of heart tissue that may be observed 

in an ECHO. Hence, the decrease of function of mutant proteins cannot be the only 

hypertrophy stimulus. 2. Hypertrophy in HCM is assymetric — it is clearly 

distinguishable from concentric hypertrophy observed in hearts with volume overload 

(e.g. in hypertension). 3. Patients usually develop HCM after puberty. This does not 

support hypertrophy as a compensatory mechanism, since mutation is present from the 

very beginning of heart development (89). 

 

1.5.1.3. HCM: A disease of disrupted Ca2+ sensitivity 

Several research studies have proposed that there is a disrupted Ca2+ sensitivity 

underlying HCM. Mutations in various genes encoding myofilament proteins increase the 

Ca2+ sensitivity. This in turn disturbs intracelular Ca2+ homeostasis, sarcoplasmatic 

reticulum Ca2+ uptake, and phosporylation of some proteins, which probably contribute 

to some aspects of HCM (89). 

 

1.5.1.4. HCM: A disease of disturbed myocardial relaxation 

Diastolic dysfunction is one of the prominent characteristics of HCM. It manifests 

in form of low Ca2+ concentrations during diastole, which precedes development of 

hypertrophy in HCM. Mutations could exacerbate the disease through the following: a) 

increase in mutant protein dosis, b) stimulation of mutant protein incorporation into 

sarcomere, c) favoring of fetal isoforms of other (non-mutant) sarcomeric proteins, and 

d) occurrence of post-translation modifications. Diastolic dysfunction could be also 

associated with energetic changes in myocardium, which drive a significant increase in 
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cellular ADP concentration. Rise in ADP concentration is a direct outcome of mutations 

that increase the myofilament’s ATP-ase activity (89). 

 

1.5.1.5. HCM: A disease of disrupted myocardial energy balance 

There exists evidence of decreased phosphocreatin/ATP ratio in HCM, which 

indicates an insufficient energy regeneration in the myocardium. This supports the 

concept of energy deficient hypertrophic myocardium, and suggests that HCM mutations 

cause excessive cellular usage of ATP (which is also in the basis of the hypothesis that 

HF is a “fuel-less engine”). Reduced heart efficacy is present in both asymptomatic 

(mutation carriers) and symptomatic cases of HCM. Decrease of efficacy in 

asymptomatic mutation carriers suggests that energy deficits precede the development of 

myocardial hypertrophy in HCM (89). 

 

1.5.1.6. HCM: A disease of changed concentrations of cellular ADP 

It is well-known that ATP depletion rules the HCM development. However, this 

concept is questioned by reports showing that absolute cellular ATP concentrations never 

decrease to the extent of becoming a limiting factor in cardiomyocyte relaxation. There 

are 2 potential mechanisms that could explain how increased ADP concentrations could 

cause a rise in calcium concentration during diastole: 1. by direct buffering of Ca2+ in 

myofilaments (Ca2+ are captured by “sticky” myofillaments) and 2. by decrease in Ca2+ 

uptake by the sarcoplasmatic reticulum via Ca2+-ATP-ase. Increased concentrations of 

ADP also influence membrane-membrane junctions via connexin 43 (89). 

 

1.5.1.7. Myocardial ADP increase: Result of inefficient energy buffering 

The swift regeneration of ATP from ADP in cardiomyocytes highly depends on the 

synchronization of mitochondrial ATP generation and its consumption in myofilaments. 

Mitochondrial structural and functional derangements in HCM patients may additionaly 

aggravate limited myocardial capacity for ATP regeneration. Reduced reserves of 

myocardial phosphocreatine and reduced creatine-kinase-dependent ATP regeneration 

are observed in HCM. Further, in HCM, increased myosin ATP-ase activity in 
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combination with cellular hypertrophy increases the strain on the ADP-buffering capacity 

of the phosphocreatine-creatine-kinase shuttle (89). 

 

1.5.1.8. Mitochondrial ADP workload, creation of reactive oxygen species 

(ROS), and hypertrophic remodeling 

In a healthy heart, excitation and contraction are closely linked with mitochondrial 

ATP production. During a rise in the cardiac workload, the elevated amplitude of Ca2+ 

concentration increases ATP consumption and thus speeds up ADP delivery to 

mitochondria. A hypertrophied myocardium requires more ATP than a healthy 

myocardium for any given calcium concentration. The resultant oxidative stress promotes 

hypertrophic cardiac remodeling via ERK signaling (89). 

 

1.5.1.9. Inefficient myocardial coronary perfusion in HCM 

The myocardial coronary perfusion is insufficient in case of HCM. In a healthy 

heart, coronary perfusion takes place in the time of diastole, while coronary flow is 

reduced during systole, as a consequence of the coronary vessels narrowing within the 

ventricular wall. Increased Ca2+ sensitivity of the myofilament leads to disrupted 

ventricular relaxation, which eventually restricts the coronary perfusion of the 

hypertrophied myocardium, especially during increased cardiac workload (e.g. during 

exercise). On the other hand, disrupted coronary perfusion results in decreased energy 

regeneration, which elevates ADP (and inorganic phosphate) concentration, decreases the 

phosphocreatine pool, and alters cellular pH. Although initial changes caused by 

mutations in cellular energetics might be reversible, ischemic injury causes irreversible 

myocardial changes (89). 

 

1.5.2. Pathophysiologic features of HCM 

Pathophysiological features of HCM are: cardiomyocyte hypertrophy (90–93) and 

disarray (91–94), myocardial remodeling (92,95,96) and fibrosis (3,23,92,97–99), 

coronary microvascular dysfunction (1,92,93,100,101), myocardial ischemia 

(1,18,92,101,102) and hypercontractility (10,92,103–105), impaired myocardial 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

33 

 

relaxation (10,92,97,106), myocardial stiffness (92,94,97), and diastolic dysfunction 

(92,94,107). 

 

1.5.2.1. Cardiomyocyte hypertrophy 

Cardiac hypertrophy is a compensatory mechanism for managing biomechanical 

stresses, and for the maintenance of proper cardiac homeostasis and output (e.g. during 

exercise, pregnancy, and in hypertension, valvular disease, etc.) (108–110). While the 

fetal heart increases its mass primarily through cardiomyocyte proliferation, postnatal 

heart hypertrophy engages increased cardiomyocyte size (111) — adult cardiac 

hypertrophy involves an increase in the cardiomyocyte size, rather than an increase in the 

cardiomyocyte number. Several regulatory mechanisms are involved in cardiac 

hypertrophy: proliferation, translational regulation, epigenetic modifications, multiple 

signaling pathways, and immune responses (108–110).  

It is not clear if cardiomyocyte hypertrophy is the cause for HCM or the result of 

the adaptive reactions of the heart to HCM (e.g. genetic disorders) (112). 

 

1.5.2.2. Cardiomyocyte disarray 

Extensive cardiomyocyte disarray is the hallmark of HCM, distinguishing it from 

other etiologies of LVH, for instance, those caused by pressure overload alone (80,113). 

The histopathology of endomyocardial biopsy specimens of patients with HCM displays 

enlarged cardiac myocytes in disarray with loss of normal parallel alignment, which gives 

the myocardium a whirl-like appearance (15,29). The cardiac myocytes contain 

pleiotropic nuclei, are enlarged, and have bizarre shapes. The myofibrillar disarray 

usually affects > 10% of the HCM myocardium; it is widely distributed, with a higher 

predisposition of the hypertrophied interventricular septum (29). The degree of 

myofibrillar disarray appears to be associated with the disease progression (113) (severe 

myocyte disarray has been observed in patients in whom SCD has occurred) (29). 

Contractile imbalance — an unequal force generation by neighboring 

cardiomyocytes — might be a cause of myofibrillar disarray. Differences in force 

generation among cardiomyocytes from HCM patients are found to be much larger than 

those in the control group, at the same calcium concentration. It is proposed that this 
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heterogeneity in force generation among cardiomyocytes may disrupt the functional 

syncytium of the myocardium and lead to myocardial disarray (113,114). 

 

1.5.2.3. Myocardial remodeling 

Myocardial remodeling refers to alterations in heart architecture as a result of a 

variety of causes (115,116). It comprises metabolic, morphological, or electrical 

alteration (117). Myocardial remodeling is a multifactorial and complex maladaptive 

response associated with almost all cardiac diseases (118,119), and is also common across 

various types of cardiomyopathy (117). It involves physiological alterations in the mass, 

structure, form, and function of the cardiac cells as also the heart itself (119). In the 

context of cardiac hypertrophy, it represents a compensative response addressing stress 

or volume overload, by maintaining the cardiac output and lowering the increased wall 

tension. On the other hand, persistent overload accelerates interstitial fibrosis, 

cardiomyocytes loss, and cardiac failure (117). 

Significant loss of cardiomyocytes and slower rate of cardiomyocyte regeneration 

represents the starting point for the myocardial remodeling. The main contributors to 

pathological myocardial remodeling are cardiomyocytes injury, cardiac hypertrophy and 

fibrosis, inflammatory response, and angiogenesis (119). Hyperdynamic contraction 

might be an essential mediator of the cardiac remodeling in HCM (120). Cardiac 

fibroblasts contribute to cardiac remodeling, specifically to hypertrophy and fibrosis. 

Their multifactorial contribution to myocardial remodeling makes them an attractive 

prospective therapeutic target (116). 

Cardiac remodeling refers to the rearrangement of normal cardiac structures. It 

represents a chronic maladaptive progressive process characterized by apoptosis, fibrosis, 

necrosis, matrix components remodeling, myocardial hypertrophy, ventricular dilatation, 

and vascular dysfunction. Multiple pathogeneses are implicated in cardiac remodeling: 

genetic mutations, accelerated cell apoptosis, extracellular matrix anomalies, ischemia-

related damage, increased hemodynamic overload, dysregulated neurohumoral 

stimulation, and immunological activation (117). 
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1.5.2.4. Myocardial fibrosis 

Myocardial fibrosis is a common pathological process across several cardiac 

pathologies (121,122) and usually indicates poor prognosis (121). It is an increase in the 

quantity of collagen in the myocardium compared to cardiac myocytes (121–123). 

Myocardial fibrosis is a pathological process, wherein healthy myocardial tissue is 

replaced by fibrotic tissue and lose its normal function (124). 

Myocardial fibrosis may be classified as replacement (‘scarring’) fibrosis and 

interstitial fibrosis. Replacement fibrosis is the result of both non-ischemic and ischemic 

myocyte loss. In such circumstances, collagen replaces injured myocytes. Interstitial 

fibrosis is a scattered distribution of excess collagen in the extracellular matrix, which 

may be reversible and treatable. It is not inevitably associated to myocyte injury. 

Interstitial and replacement fibrosis oftentimes exist together and represent varied 

components of pathologic cardiac remodeling (121–123). They are both major 

independent predictors of adverse cardiac outcomes (121,123). 

Myocardial fibrosis is a result of the complex interplay of pro-fibrotic cell types, 

hormones, growth factors, and pro-inflammatory cytokines (121). It is associated with 

changes in the composition of collagen fibers type (i.e., overabundance of a particular 

collagen type) and their physical, chemical, and mechanical properties (i.e., excessive 

cross-linking) (123). 

Myocardial fibrosis is found in up to 80% of HCM cases. In HCM patients who 

suffer SCD, many foci of myocardial scarring are found. Scarring frequently affects the 

midventricular septum and anterior wall, and is usually associated with severe 

hypertrophy. Besides the diffuse involvement of fibrosis in areas affected by hypertrophy, 

there are also right ventricular fibrosis insertion points, even in minimally symptomatic 

patients. In terminal HCM, over 1/3rd of the LV myocardium is replaced by fibrosis. The 

spatial interrelation between remodeled arterioles and fibrosis proposes ischemia as an 

underlying pathogenesis (123). Myocardial fibrosis is a suitable substrate for the 

maintenance and recurrence of arrhythmias (125). 
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1.5.2.5. Coronary microvascular dysfunction 

HCM patients present coronary microvascular dysfunction (a decrease in coronary 

vasodilator reserve) in non-hypertrophied and hypertrophied LV sections, in the absence 

of epicardial coronary artery stenosis (1,126). Reduction in coronary flow reserve is a 

good predictor of future cardiovascular events (126). 

Coronary microvascular dysfunction is caused by various factors: decreased 

capillary density, vascular remodeling, myocyte disarray, fibrosis, diastolic dysfunction, 

extravascular compression as a result of ventricular hypertrophy, and left ventricular 

outflow tract obstruction (LVOTO) (1,127).  

Potential mechanisms of the coronary microvascular dysfunction are diverse: 

increased coronary vasoconstrictive reactivity at microvascular level [such as coronary 

microvascular spasm — replication of angina symptoms and ischemic electrocardiogram 

(ECG) changes, but without epicardial spasm during intracoronary acetylcholine 

provocation test], impaired endothelium-dependent and endothelium-independent 

coronary vasodilator capacities, and increased coronary microvascular resistance 

secondary to structural factors (such as vascular remodeling, luminal narrowing, vascular 

rarefaction, and external compression) (1,128). Besides the structural and functional 

alterations in small vessels, the hypertrophied myocardium requires more oxygen, and 

diastolic dysfunction contributes to imbalance between the oxygen demand and supply. 

All of this supports further development of myocardial ischemia (1,127).  

Repetitive episodes of ischemia and chronic ischemia resulting from microvascular 

dysfunction progressively cause cardiomyocyte death and replacement fibrosis. These in  

turn lead to left ventricular remodeling with diastolic and, ultimately, systolic dysfunction 

(1,127). 

HCM patients with coronary microvascular dysfunction and ischemia can remain 

asymptomatic, or can present symptoms of angina, atypical chest pain, or dyspnea. 

Atypical chest discomfort during effort or after meals is more often in HCM than in 

typical angina. Adults with HCM may simultaneously have atherosclerotic coronary 

artery disease, which worsens the prognosis (1).  

An abrupt increase in oxygen consumption [like during exercise or atrial fibrillation 

(AF)] can produce ischemia when microvascular dysfunction is present. This could 
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provide explanation for ventricular arrhythmias and abnormal blood pressure during 

physical activity. Degree of microvascular dysfunction is suggested as being important to 

the HF development as well (1). 

In cases of HCM, severe impairment of microvascular function is more frequent in 

individuals with sarcomeric mutations. Coronary vasodilator reserve is lower in 

individuals with obstructive HCM compared to those with non-obstructive HCM. 

Alcohol septal ablation (ASA) results in improvement of the coronary vasodilator reserve 

(126). 

 

1.5.2.6. Myocardial ischemia 

Several mechanisms contribute to myocardial ischemia in HCM (the same as for 

coronary microvascular dysfunction) and may act separately or simultaneously (127): 

systolic anterior motion (SAM) of the mitral valve, abnormal coronary prefusion, and 

microcirculatory resistance (101). 

Normally, nutrients are delivered to tissues and metabolic waste is taken away from 

the tissues through circulating blood. Insufficient blood flow to a tissue (in this case 

myocardium) cause ischemia. Myocardial ischemia is most often caused by obstruction 

of coronary arteries, followed by a drop in oxygen tension within the myocardium. 

Myocardial ischemia markedly hampers the oxidative metabolism, and consequently 

induces energetic stress within cardiomyocytes. It slows down or blocks mitochondrial 

respiration and thereby oxidative phosphorylation. As a result, the production of ATP is 

reduced. In the lack of oxygen, glycolysis is intensified, which causes excessive 

production of lactic acid, and consequently intracellular acidosis (129).  

In the lack of ATP, the Ca2+ pump within cardiomyocytes is not able to efficiently 

remove Ca2+ from the cytoplasm (129). Alterations in extracellular and intracellular Ca2+ 

control cause further Ca2+ overload (93). These abnormal Ca2+ levels numb ventricular 

contraction and promote cardiac dysfunction (129). Excessive contractions of energy-

dependent muscle fibers cause electrophysiological disorders, myocardial structural 

damage, and reduced function (130). 

Myocardial ischemia contributes to atrial and ventricular arrhythmias, sudden death, 

LV remodeling, and systolic dysfunction (1). 
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1.5.2.7. Myocardial hypercontractility 

HCM is associated with hypercontractility (9). Impaired diastolic dysfunction with 

maintained or enhanced systolic function are the earliest presentations of HCM, which 

are caused by genetic mutations (9,83). These are apparent even before hypertrophy is 

detected (83). At the myofilament level, HCM-associated hypercontractility is frequently 

associated with increased Ca2+ sensitivity of the contractile apparatus and accelerated 

cross-bridge cycling (cross-bridges are hypercontractile, irrespective of Ca2+) (131,132). 

Since hypercontractility occurs before hypertrophy, it is suggested that hypercontractility 

at the molecular scale is a direct cause of HCM (133). Increase in Ca2+ sensitivity causes 

hypercontractility, which further promotes hypertrophy (132). 

 

1.5.2.8. Impaired myocardial relaxation 

Myocardial relaxation reflects the activity of sarcomeres returning to precontractile 

condition (100). It is impaired in HCM due to altered calcium sensitivity (98). Myocardial 

relaxation is dependent on nitric oxide (NO) — local administration of NO improves LV 

relaxation. In HCM, a raise in the vascular endothelial growth factor (VEGF) is associated 

with fractional shortening of the LV and impaired ejection fraction (106). 

 

1.5.2.9. Myocardial stiffness 

Myocardial relaxation and myocardial stiffness have an essential role in diastolic 

LV function (134). Myocardial stiffness is affected by aging, because of cellular and 

extracellular matrix alterations and progressive physiological changes (135). Diastolic 

function mostly depends on ventricular compliance, which has a negative relationship 

with myocardial stiffness. Therefore, myocardial stiffness is markedly involved in 

disorders showing impaired cardiac compliance (136). 

Myocardial stiffness mostly originates from cardiomyocyte- and extracellular 

matrix (ECM)-generated passive stiffness, but is also a variable property of the tissue 

(134,136). Diverse pathological alterations are implicated in myocardial stiffness, such 

as increased collagen in ECM, cardiac fibrosis, intrinsic cardiomyocyte stiffness as a 

result of cytoskeleton impairment, along with metabolic disorders (136). 
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As stated earlier, cardiac remodeling is a feature of HCM. Cardiac remodeling 

involves cardiomyocyte hypertrophy, the deposition of extracellular matrix proteins, and 

fibroblast proliferation. All these changes contribute to tissue stiffness and alter the 

extracellular mechanical stimulation of cardiomyocytes (which in turn affects their 

biomechanical properties). Collagens and titin enable cardiomyocytes to preserve their 

physiological stiffness. Proper physiological stiffness is essential to maintain the 

mechanical pressure of the beating heart. Pathological alterations in myocardial stiffness 

impair heart function (137). 

Although actin and myosin play only minor roles in passive myocardial stiffness, 

both extracellular and intracellular components contribute to physiological and 

pathophysiological cardiac stiffness. On the extracellular side, cardiomyocytes are placed 

within an extracellular matrix. It consists of proteoglycans, glycosaminoglycans, 

collagens, laminins, and fibronectins. It is implicated in cell motility, adhesion, and 

signaling of cardiomyocytes. Molecular composition and cross-linking alter during 

development or disease, thereby changing the physiological stiffness of the myocardium. 

Cardiac stiffness changes during the transition from neonatal to adult hearts, due to 

changes in the quantity of collagen and in the collagen type I: collagen type III ratio. 

Collagen type I increases rigidity, whereas collagen type III enables elasticity. Further, 

upregulation of lysyl oxidase and increased collagen-lysyl oxidase crosslinking enhance 

myocardial stiffness, and result in diastolic dysfunction (137). 

The chief regulator of intracellular stiffness in cardiomyocytes is titin. Titin plays 

the main role in the myofibrillar passive tension reaction to stretch in striated muscle cells. 

Mutations in TTN (the gene encoding titin) or its post-translational modifications 

triggered by disease, result in a change in the passive myocardial stiffness (137). The 

proportion of the titin isoforms — N2BA:N2B also influences diastolic dysfunction (136). 

Desmin is the main intermediate filament in the cardiac muscle. It also contributes 

to the passive stiffness of cardiomyocytes. In cardiac diseases, desmin is phosphorylated, 

and its expression levels are modified (137). 
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1.5.2.10. Diastolic dysfunction 

Some level of LV diastolic dysfunction is observed in almost all HCM patients. 

This dysfunction precedes cardiac hypertrophy (29,71,89,138).  

Diastolic dysfunction is caused by the increased interstitial fibrosis, decreased 

relaxation, and increased stiffness of the thickened ventricular wall (29,138). Diastolic 

dysfunction causes a rise in the LV end diastolic pressure, which leads to elevation of left 

atrial, pulmonary venous, and pulmonary capillary pressures. The LV diastolic pressure 

rises strikingly during exertion, which causes exertional dyspnea, orthopnea, exercise 

intolerance, peripheral edema, and HF with preserved ejection fraction (29). 

In the context of HCM, titin plays a critical role in diastolic dysfunction in HCM: 

post-translational modifications of titin (e.g. S-gluthationylation and phosphorylation) 

affect the elasticity of cardiomyocytes and diastolic properties of the LV (139). 

Diastolic dysfunction is also characterized by high myocardial activation at low 

diastolic Ca2+ concentrations. High basal myofilament activation is usually sufficient to 

delay ventricular relaxation onset, and to restrict proper ventricular filling. This high basal 

myofilament activation is either a direct result of changes caused by an HCM mutation, 

or stems from secondary alterations caused by HCM mutations. HCM mutation-induced 

changes might involve: increased doses of mutant protein, increased incorporation of 

mutant protein into sarcomere, isoform switch to fetal isoforms, or post-translational 

modifications (89).  

Additionally, it is proposed that high levels of ADP are the result of disturbed ATP 

regeneration and higher sarcomeric energetic requests, and represent a prominent cause 

of diastolic dysfunction (71,89). Diastolic dysfunction might first be caused by increased 

myofilament Ca2+ sensitivity and consequent great cross-bridge activity during diastole. 

Such dysfunction is likely to be exacerbated by ADP-mediated Ca2+ sensitization, 

decreased β-adrenergic receptor signaling, and oxidative stress (89,140). Severe diastolic 

dysfunction might lead to microvascular dysfunction (since coronary perfusion occur 

during diastole), and eventually to local ischemia as well as replacement fibrosis (140). 

 

 

 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

41 

 

1.5.3. Patterns of left ventricular hypertrophy in HCM 

The distribution of LV hypertrophy in HCM is diverse regarding both location and 

extent. HCM might affect any position within the LV (36), still the most common pattern 

of LV hypertrophy in HCM is asymmetric septal hypertrophy, followed by mid-

ventricular, apical, concentric, and mass-like hypertrophy (Figure 2) (3,4,29,141–143). 

The right ventricle (RV) is rarely affected by hypertrophy (29). Differentiation of 

morphological subtypes of HCM does not contribute much to treatment strategies, except 

in the case of apical HCM. Apical HCM is “more sporadic, sarcomere mutations are 

detected less frequently, there is more AF, and SCD risk factors differ” (142). 

Hypertrophy of any structure adjoining the left ventricular outflow tract (LVOT) results 

in narrowing of the LVOT (144). Based on the extent and severity of the hypertrophy, 

individuals with HCM may develop LVOTO or mitral regurgitation (MR) (4). Other 

frequent pathologic findings are elongation of the mitral valve leaflet(s) and abnormal 

insertion of papillary muscle (29). Severity of LV hypertrophy has an essential role in 

prognosis and SCD risk assessment (3). 

 

 

Figure 2. Most common septal morphologies in HCM (145) 

 

In some patients, only particular segments of ventricular wall or septum are affected; 

in others, non-adjacent hypertrophied segments may be found. In others, hypertrophy 

might involve over half of the chamber (144). 
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1.5.4. Clinical presentations of HCM 

The clinical presentations of HCM are strikingly variable (2,3,8,17,144), which 

sometimes makes HCM diagnosis challenging (3). Some patients are completely 

asymptomatic (3,5,6,93,144) and can be identified incidentally (3), while others manifest 

LVOTO (17,18,31,92,105,144), AF (3,11,17,92), SCD (3,5,8,92,144,146) or HF (3,6–

8,34,92). 

 

1.5.4.1. Symptoms 

Classical symptoms in HCM are usually related to arrhythmias, diastolic 

dysfunction, LVOTO, MR, and myocardial ischemia (147). Most HCM cases remain 

asymptomatic or mildly symptomatic throughout their life (148), whereas others 

experience chest pain, fatigue, (exertional) dyspnea, palpitations, presyncope, and 

syncope (1,3,10,25,101,148–151), with dyspnea being the most common and syncope the 

least common (149). The frequency of dyspnea and palpitations increases with age (148). 

Chest pain may be associated with meals, exertion, or dehydration (152). 

Dyspnea is the consequence of increased LV systolic pressures resulting from 

diastolic dysfunction, outflow tract obstruction, MR, and myocardial ischemia 

(3,153,154).  

Chest pain in HCM is most commonly caused by microvascular coronary 

abnormalities and obstruction. In this regard, cardiac catheterization provides insights 

into the anatomy of the septal arteries and coronary artery bridging. Such insights may be 

useful in case of patients requiring ASA (147). 

Pre-syncope and syncope develop in 25% of HCM cases (3,155). Despite 

comprehensive studies, the precise mechanisms in most of the cases are unknown 

(29,147). Potential mechanisms include LVOTO (3,29,147,155), inappropriate 

vasodilation, diastolic dysfunction-mediated hypotension (3,147,155), supraventricular 

arrhythmia, ventricular arrhythmia, sinus node dysfunction, complete heart block, 

ventricular arrhythmia, and volume depletion (3,147,155).  

Unexplained, non-neurocardiogenic syncope, especially if more recent than 6 

months ago, indicates an increased risk of SCD. Unexplained syncope is included in 

implantable cardioverter-defibrillator (ICD) decision-making (3). 
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Finally, HCM symptoms do not inevitably correlate with the degree of LVH or the 

severeness of LVOTO (36). 

 

1.5.4.2. Left ventricular outflow tract obstruction 

SAM is caused by elongation of the anterior and posterior mitral valve leaflets 

(independent of demographic variables, clinical variables, hypertrophy, LV wall 

thickness, and hemodynamic factors) along with anterior displacement of the papillary 

muscles (1,156). The anterior mitral valve leaflet moves into the LVOT, and in severe 

cases comes into contact with the hypertrophied basal septum during systole. This 

changes blood flow through the LVOT and causes hemodynamic instability. The extent 

of obstruction may differ. LVOTO is dynamic. It can exacerbate in cases of decreased 

preload (e.g. Valsalva), decreased afterload (vasodilators) and positive inotropes. 

Depending upon the obstruction degree, a reduction in cardiac output, exacerbation of 

MR, and diastolic dysfunction may appear inducing a rise in LV end-diastolic pressure 

that may influence coronary blood flow and cause arrhythmia (156). 

LVOTO is found in 70% of HCM cases, either at rest or after physiological 

provocation (Valsalva maneuver) (1,157). LVOTO is a major therapeutic target in HCM, 

because it represents one of the major determinants of symptoms like dyspnea, chest pain, 

or syncope (157–159). LVOTO in HCM patients is associated with poor prognosis (1,160) 

and represents a risk factor for AF (29) and SCD (159).  

Distortion of the mitral valve leaflets often causes secondary MR, a late systolic 

event that might represent a major cause of severe symptoms. The severity of MR is 

determined by the extent of outflow obstruction. The order of pathophysiologic events in 

HCM with obstruction and secondary MR has been defined as eject, obstruct, and leak 

(154). 

 

1.5.4.3. Arrhythmias 

Rhythm disorders in HCM usually consist of supraventricular and ventricular 

ectopic beats, and in rare cases, non-sustained or sustained ventricular tachycardia (VT). 

AF occurs in patients with severe LVOTO, abnormal size and function of LA, or 
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advanced clinical stage, and represents a major risk factor for thromboembolic stroke or 

HF. 

Arrhythmias in HCM are results of mutation effects (e.g. altered calcium handling) 

or secondary processes, such as increased cardiomyocyte automaticity caused by 

hypertrophy, or re-entry caused by myocardial fibrosis. Arrhythmogenicity in HCM is 

also influenced by various pathophysiological factors: myocardial ischemia, altered 

hemodynamics, and maladaptive autonomic responses (15). 

 

1.5.4.3.1. Atrial fibrillation 

AF “manifests as regular and orderly loss of atrial electrical activity, which is 

replaced by rapid and disorderly fibrillation waves on the ECG” (125). It is the most 

frequent sustained arrhythmia in HCM and general population, with rates being 4-6-fold 

greater in HCM than in the general population (11,160–162). In HCM cases, the annual 

AF incidence is 2-3%, whereas lifetime prevalence is ~ 20-30%. AF is paroxysmal in 

2/3rds of HCM patients and permanent or persistent in the remaining 1/3rd (160–162). It 

is more frequent in older individuals and in individuals with LVOTO (157). 

AF is sometimes asymptomatic in patients with HCM (162,163), but can be also 

clinically presented as unspecific: dyspnea, hypotension, pulmonary edema, chest pain, 

palpitations, presyncope, syncope or stroke (160,163). Individuals with HCM are often 

more symptomatic of AF (161). 

AF in HCM is caused by several factors: genetic component, anatomical, 

electrophysiological and hemodynamic abnormalities, abnormal calcium handling 

hypertrophy, as well as coronary microvascular dysfunction cause atrial ischaemia which 

are arrhythmogenic substrate for development of AF (29,157,160–162). However, 

pathophysiological and anatomical changes in HCM and AF are intertwined. AF is both 

the cause and effect of morphological and physiological changes in HCM. Thick left 

ventricular myocardium with reduced diastolic relaxation and filling raise LV pressure, 

causing elevated LA pressure. This process may induce atrial dilatation and remodeling, 

which ultimately leads to atrial enlargement. This in turn reduces the effective atrial 

refractory period, raises the dispersion of repolarization, and raises the capacity of ectopic 

triggers to preserve AF (29,161–163). 
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Atrial myofibril disarray and fibrosis are arrhythmogenic substrates for AF in HCM; 

they impair the conduction of sinus impulses and cause intra-atrial re-entry (157,160,161). 

Diastolic dysfunction in HCM can raise the risk of AF by increased atrial afterload, atrial 

myocyte stretching, and higher wall stress as a consequence of atrial dilation (162). 

Regular atrial contraction is necessary for LV filling (160,163). In individuals with 

HCM, AF causes loss of organized atrial depolarization and contraction during diastole, 

and also reduces LV diastolic filling time. These factors, together with decreased LV 

compliance in a hypertrophic LV, may reduce cardiac output (160,161). The presence of 

atrial arrhythmia impairs myocardial ischemia, diastolic dysfunction, LVOTO, and MR 

(163). For these reasons, AF is usually poorly tolerated by individuals with HCM 

(29,160,161).  

The most important independent predictors of AF in HCM are: LA diameter and 

volume (the strongest predictors), age, and New York Heart Association (NYHA) HF 

functional class (160,162). Varied cutoffs of LA size have been proposed for prediction 

of AF risk in HCM, however, the most accepted size is anteroposterior diameter > 45 mm 

(160). Age at diagnosis threshold, spaning from ≥ 40 years to > 50 years, is independently 

predictive of AF in HCM (160,162). NYHA class III/IV, left ventricular ejection fraction 

(EFLV) < 50%, and moderate to severe MR are associated with a higher risk of AF (160). 

A greater extent of septal hypertrophy is also associated with a higher risk of AF 

(160,161). Some authors also propose hypertension, vascular disease, obstructive sleep 

apnea, P-wave duration, ST-segment changes, premature ventricular contractions, LV 

size, LVOT gradient, LV fibrosis, and N-terminal pro-brain natriuretic peptide as clinical 

variables associated with the occurrence of AF in HCM (162). 

The occurrence of AF is a critical moment in the progress of HCM (162) — the 

development of permanent or persistent AF in individuals with HCM frequently 

announces the beginning of a continual functional decline (161,162). AF is associated 

with high rates of thromboembolic complications, symptomatic HF, and mortality 

(29,157,160–162). AF is an independent predictor of overall mortality in HCM: there is 

up to 4-fold raise in the risk of death in case of AF, compared with sinus rhythm (160,161). 

Individuals who develop AF at a younger age carry poorer prognosis. Individuals with 
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AF have a higher rate of progression to NYHA Class III-IV HF symptoms, compared 

with non-AF HCM individuals (160,161). 

The most important components of AF management involve rate and/or rhythm 

control, thromboembolic prophylaxis, strict risk factor and lifestyle control (160,161).  

 

1.5.4.4. Sudden cardiac death 

SCD is “an unexpected, non-traumatic death within 1 h of symptoms’ onset in a 

patient known to have a potentially fatal cardiac condition, or when autopsy finds a 

cardiac or vascular anomaly as the probable cause, or when no extracardiac causes are 

found in the post-mortem examination, and therefore an arrhythmic event is the likely 

cause of death” (164).  

SCD can be the first presentation of HCM (24,151,165). HCM is the main cause of 

SCD in patients < 35 years of age, but the precise incidence of SCD in this age is not clear 

(159). The risk of SCD in individuals with HCM is < 1% per year (24,36,159). In the U.S. 

National Registry of Sudden Death in Athletes, HCM was accountable for 36% of SCD 

cases, and, in a similar study in the U.K., HCM was diagnosed in 6% of the SCD cases 

(164).  

However, a number of sudden deaths among athletes on sports-courts increased 

awareness about the association between physical activity and SCD in HCM (24,159). 

The overall risk of SCD for actively competing athletes with HCM is probably < 0.1% 

per year (159). The link between physical activity and SCD in HCM is still incompletely 

clear. Exercise involves a number of physiologic changes and some of them have been 

suggested as potential triggers for SCD: myocardial ischemia, sympathetic-vagal 

imbalance, hemodynamic changes, metabolic acidosis, electrolyte imbalance, and 

dehydration (159). 

Myocardial fibrosis represents an arrhythmogenic substrate, and post-mortem SCD 

studies have reported the existence of myocardial scar in HCM patients (166). Individuals 

with HCM usually already present myocardial fibrosis and higher susceptibility towards 

myocardial ischemia, both of which may increase risk of arrhythmogenesis during 

exercise (159). 
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LVOTO provokes SCD, either through precipitation of ventricular arrhythmias 

caused by myocardial ischemia, or through increased left ventricular end-diastolic 

pressure (LVEDP) resulting in severe reduction in cardiac output and leading to 

electromechanical dissociation. Relief in LVOTO (e.g. through surgical myectomy) is 

associated with decreased rates of SCD (167). 

Placement of an ICD is favored in individuals at a high risk for SCD (36,99). ICD 

implantation is an important preventive measure, since pharmacotherapy is generally not 

effective in preventing SCD in HCM (36,167). The 2011 American College of Cardiology 

Foundation (ACCF)/American Heart Association (AHA) guidelines recommend 

consideration of ICD implantation, established on the existence of  ≥ 1 major risk factors 

(SCD family history especially at a young age, LV hypertrophy ≥ 30 mm, or unexplained 

syncope) or possible risk mediators (36,155,167,168). ACCF/AHA guidelines and 

European Society of Cardiology (ESC) guidelines also recommend ICD implantation. 

SCD events among first-degree relatives increase the risk of SCD (3,167).  

Other potential indicators of an increased risk of SCD in HCM are: a history of 

ventricular fibrillation, sustained VT, or the presence of non-sustained VT; an abnormal 

reaction wherein blood pressure falls during physical activity; LVOTO; LV apical 

aneurysm; disease-causing gene mutations; younger age (especially under the age of 35 

years) (3,21,24,36,155,167,169); and LA size (3,24,155,167,169). 

Non-sustained ventricular tachycardia (NSVT) is a major risk factor for SCD, as its 

episodes might lead to ventricular fibrillation, which is the frequent cause of SCD (29). 

Finally, SCD is usually caused by cardiac arrhythmias,  LVOTO, and ventricular diastolic 

dysfunction (36). 

Periodic testing involving ambulatory cardiac monitoring, ECHO, stress testing, 

and CMRI enable identification of HCM patients who may be at high risk for SCD (151). 

 

1.5.4.5. Heart failure 

HF is a clinical condition wherein the heart is unable to meet cardiovascular 

requirements, producing symptoms like fatigue and dyspnea (153,170). Therapy for HF 

has developed significantly over the past decades, but mortality is still high (170). 
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Congestive heart failure (CHF) is a major public health issue, with 45 million 

people affected globally and an annual mortality rate of ~ 10% per year. Conventional 

CHF (heart pump failure) can be the consequence of systemic or pulmonary hypertension, 

ischemic heart disease, or valvular heart disease. CHF cause volume overload, reduced 

cardiac output/stroke volume, pulmonary venous congestion, lower extremity edema, and 

renal dysfunction (153). 

HF in HCM and conventional CHF are very different conditions regarding 

pathophysiology and clinical presentations. HF in HCM represents a much more limited 

public health issue, and HCM mortality associated with HF is lower compared to that in 

CHF. This is a consequence of HCM characteristics, such as lower prevalence, a healthier 

and younger HCM patient population with less comorbidities, and treatments available 

capable of reverting the HF progression. Reversibility of HF is the most distinctive feature 

of HF in HCM — wherein mechanical impedance to LV outflow is relieved by surgical 

myectomy or ASA (153). 

Several factors are involved in the pathophysiology of HF in HCM: diastolic 

dysfunction as a consequence of delayed LV relaxation, vascular remodeling, LVOTO, 

abnormal calcium homeostasis, decreased chamber compliance, myocardial ischemia, 

and abnormal vasomotor response (171). 

In HF among HCM patients, peripheral and pulmonary edema and volume overload 

are not present. Most commonly, HCM patients demonstrate preserved systolic function 

(153). 

ECHO plays an important role in predicting HCM progression to HF. Increased LV 

filling pressure is a negative prognostic factor in HCM patients. Right ventricular 

involvement (found in approximately 50% of HCM patients) increases the risk for 

developing HF symptoms — there is a direct correlation between RV wall thickness and 

HF symptoms (171). 

Intraventricular obstruction raise the myocardial load and decreases the cardiac 

output and blood supply. The simultaneous existence of considerable MR also worsens 

the HF symptoms. LVOTO is a predictor of HF symptoms and HF progression (171). 
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1.6.  Genotype-phenotype associations in HCM 

HCM is a heterogeneous disease regarding both genetic mutations and clinical 

course (6,12,34,86,172). A high variety of involved mutations, the relative rareness of 

each of the individual mutations (private mutations are very common in families) (12,84), 

as well as incomplete penetrance (15,86,173,174) hamper the establishment of  universal 

genotype-phenotype correlations. However, some trends have been identified (84). 

The lack of clear genotype-phenotype associations restrict the use of genetic 

information in clinical management of HCM (85). Moreover, relatives with the same 

mutation often have different clinical presentations, progression and complications (some 

of which may remain completely phenotype negative) (6,15,80,84,168,175). 

Childhood-onset of HCM is seen to occur more often, if there is a family history of 

early-onset HCM (175). 

Similarly, just like the diversity in HCM genotypes, there is a diversity in the HCM 

mechanisms implicated in the pathogenesis of HCM. HCM mechanisms might be 

classified into groups; still, they are intertwined. The fundamental abnormality in HCM 

is the mutation. Proximal phenotypes are direct results of the mutations, specifically, the 

structure and function of the sarcomeric proteins. The secondary or intermediary 

phenotypes involve the molecular alterations, which appear as a response to proximal 

phenotypes (e.g. modified gene expression or activation of the signaling pathways, like 

the TGFB1 and MAPK). The tertiary effects involve resultant histological and 

pathological phenotypes, which are the outcome of intermediary (secondary) phenotypes. 

Tertiary effects eventually lead to the clinical phenotypes of HCM (29). 

 

1.6.1. Genes 

The presence of a mutation in some of genes encoding sarcomeric proteins is 

associated with earlier HCM onset (175,176), more severe LVH (175), and worse clinical 

outcomes (2,84).  

More specifically, HCM patients with identified mutation in some of genes 

encoding sarcomeric proteins have worse microvascular dysfunction, compared to 

genotype-negative individuals (1). HCM patients having likely pathogenic or pathogenic 

mutations in any of the sarcomeric genes have a 2-fold increased risk of unfavorable 
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outcomes (such as death, HF, potentially fatal ventricular arrhythmias, etc.), compared to 

HCM cases with no mutation in sarcomeric genes. Individuals having variants of 

uncertain significance possess an intermediate risk. The lifetime risk of adverse outcomes 

in HCM is inversely associated with age at diagnosis (173). 

 

1.6.1.1. MYH7 

Mutations in the MYH7 are usually associated with a poorer prognosis (e.g. they 

progress more often to end-stage HF), compared to mutations in MYBPC3 or absent 

mutation (24,143,176) and an earlier disease onset (24,29). 

Some critically important regions in the β myosin heavy chain are encoded by 

MYH7, such as the converter domain that have been linked with earlier onset and 

malignant arrhythmias (6). 

HCM patients with mutation in MYH7  present higher C-terminal propeptide of type 

I procollagen (PICP) levels (compared to carriers of mutation in MYBPC3), which 

suggests an increased myocardial collagen synthesis and profibrotic state (176). 

The missense mutation Arg663His in the MHY7 gene is associated with greater risk 

of AF (160,162).  

 

1.6.1.2. MYBPC3 

Mutations in MYBPC3 are associated with a more moderate HCM phenotype 

(168,176), lower penetrance than mutations in MYH7 (6), as well as with elderly onset 

(6,12,175). Because of its delayed onset, the reproductive age is not influenced and 

founder mutations (highly conserved within isolated populations) in MYBPC3 are more 

frequent (6,175). Missense mutations in MYBPC3 are predominant in children, whereas 

truncation mutations are more common in adults (6). No consensus has been identified 

regarding mutations in MYBPC3 and disease severity, progression, and phenotype. The 

locations of truncating mutations in MYBPC3 are not predictive of clinical outcomes 

either (84). 

 

 

 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

51 

 

1.6.1.3. TNNT2 

Mutations in TNNT2 are associated with a moderate phenotype, yet pose a high risk 

of SCD (6,168,176). More recent research has shown that some mutations in TNNT2 

follow this rule, but there are also exceptions like p.Arg278 (because of its low frequency 

among the general population) (6). Hearts with mutations in TNNT2 contain lesser 

fibrosis but more severe myocyte disarray. The increased rate of SCD in patients having 

mutation in TNNT2 might be a consequence of myofilament Ca2+ sensitization or severe 

myocyte disarray (176). 

 

1.6.1.4. Genetic negative HCM patients 

A group of HCM patients, who have no mutation detected regardless of family 

members screening and exhaustive genetic testing, cannot help identifying an affected 

family member. This group has a distinct clinical course compared to sarcomere 

mutation-positive patients: they are diagnosed in older age, typically male, with more 

moderate LVH, and more probably already have a diagnosis of hypertension (88,174). 

 

1.6.1.5. Gene dosage 

Gene dosage also affects prognosis in HCM (6). Among HCM patients who exhibit 

2 (digenic) or several (oligogenic) causal mutations in the same or different genes the 

severity of ventricular hypertrophy appears to be more pronounced. These patients also 

raise the assumption that the “absence” of causal genes can be elucidated by the digenic 

or oligogenic character of mutations in some HCM cases (29). 

Homozygosity or compound heterozygosity is linked with early onset, severe 

clinical manifestations, and poor outcomes (higher incidence of SCD or HF events), but 

is uncommon (82,127,175). Patients with 2 or more sarcomeric HCM-causing mutations 

have an increased risk of lethal arrhythmias and poor outcomes (173). 

 

1.6.1.6. Other 

Thin-filament mutations are associated with an often atypical distribution of 

hypertrophy, prominent diastolic dysfunction, and a higher probability of restrictive 
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progression and SCD in the course of childhood, compared with more frequent thick-

filament gene mutations (173). 

An interesting aspect of sarcomeric mutations is pleiotropy — mutations in the very 

same gene could manifest as either HCM, DCM, RCM, or LVNC. Different mutations in 

genes like MYH7 and TNNT2 lead to varied phenotypes: HCM and DCM. The possible 

explanation might be the different locations of the mutations, which would affect various 

protein domains, causing different interreactions of mutant proteins with sarcomere 

components, and subsequent activation of various intermediary molecular events. 

Similarly, causal mutations might affect Ca2+ sensitivity of ATPase activity and force 

generation (HCM-causing mutations in thin filament proteins generally increase Ca2+ 

sensitivity of ATPase activity and myofibrillar force generation, whereas DCM-causing 

mutations decrease these) (29). 

A tendency involving higher allele frequency of MYBPC3 and TNNI3 variants was 

identified, which could be a result of the reduced expressivity or penetrance of such 

variants (a milder disease progression compared with other sarcomeric disease gene 

variants). HCM cases with mutations in MYH7 and TNNT2 are generally younger at 

diagnosis (34 years), than HCM patients with mutations in MYBPC3, TNNI3, or those 

without mutations (176).  

Early studies on large pedigrees with severe clinical presentations identified several 

“high-risk” mutations (e.g. MYH7-R403Q, MYH7-R453C25, and TNNT2-R92Q/W). 

However, studies on greater populations of unrelated individuals partially validated the 

devastating outcomes of those mutations, and were not able to find genotype-phenotype 

correlations for the most of variants (173). 

 

1.6.2. Clinical courses 

1.6.2.1. Patterns of left ventricular hypertrophy 

Mutations in MYH7 and MYBPC3 are the most frequent in HCM involving basal 

septum (29). Mutations in PRKAG2 and LAMP2 usually lead to atypical distribution of 

hypertrophy, with an increased rate of arrhythmias and HF. Mutations in TNNT2 and 

complex genotypes are associated with right atrial enlargement in HCM, leading to a poor 

prognosis. Mutations in TNNI3 and MYH7 are associated with restrictive phenotype 
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(6,175). Mutations in ACTC1 cause apical hypertrophy and left ventricular non-

compaction (6,175). 

 

1.6.2.2. Ventricular arrhythmias and sudden cardiac death 

HCM patients with mutations in MYH7, TNNT2, or MYBPC3 present ventricular 

arrhythmias more frequently than individuals without sarcomeric mutations. Among 

these, the rate is highest in the MYH7 group (176). The risk of SCD is small among 

patients carrying pathogenic/likely pathogenic variant without hypertrophy. Mutations in 

TNNT2 might represent an exception (12). 

 

1.6.3. Disease modifiers 

HCM is a multifarious disease with diverse mutations, allelic imbalance, penetrance, 

heart contours, as well as disease modifiers, all being partly responsible for the definitive 

outcomes (83). 

Since HCM phenotype involves the contribution and interplay of both genetic 

mutations and other factors (e.g. environmental factors and gene modifiers), definitive 

genotype-phenotype associations are still unknown (29,80,168,174). The etiology of 

HCM appears to be multifactorial. Sarcomeric dysfunction might be a mandatory though 

not necessarily starting point in HCM pathogenesis (80).  

 

1.6.3.1. Molecular disease modifiers 

Lack of clear genotype-phenotype associations in HCM underscores the importance 

of discovering supplementary elements that control the progression of HCM, and 

indicates that molecular mechanisms existing between genotype and clinical 

presentations may be crucial. Despite active research, molecular interactions in HCM are 

poorly understood (36,88,92,176). 

Secondary molecular changes in pathways implicated in HCM pathogenesis, post-

translational protein modifications, as well as epigenetic factors (e.g. microRNAs and 

small noncoding RNAs) affect histological and clinical HCM phenotypes (15,29). HCM 

phenotypes are directed by several factors, each of them undertaking a small effect (29).  
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1.6.3.1.1. Modifier genes 

Genetic aspects beyond causal mutations affect the phenotypes of single gene 

disorders. This is especially the case with autosomal dominant diseases, characterized by 

age-dependent onset and variable expressivity. Mutations in genes encoding contractile 

sarcomeric proteins cause HCM; still, the contribution of the causal mutations to the 

definitive phenotype could be moderate, and other genes (together with the environment) 

could contribute significantly (177). 

Genes involved in the pathophysiology of HCM are not all the same. HCM 

susceptibility genes (e.g. MYBPC3, MYH7, TNNT2, TNNI3 etc.) are directly implicated 

in the pathophysiology of HCM, whereas modifier genes or variants are implicated in the 

adjustment of its phenotypic expression (177,178). Modifier genes are neither sufficient 

nor necessary to cause HCM. They constitute the genetic background of individuals, and 

the presence of DNA polymorphism makes genetic background relatively individual 

(29,177). The ultimate phenotype is the result of the causal mutations, environmental 

factors, and modifier genes (177). 

Several histologic and morphologic HCM phenotypes are compensatory and 

regulated by numerous factors (177). Pathogenic variants of genes involved in regulation 

of cardiac hypertrophy and fibrosis may act as modifier genetic variants (29).  

Gene modifier candidates for HCM are: angiotensin-1 converting enzyme-1 (ACE) 

(2,177,178), angiotensinogen (AGT) (2,177,178), angiotensin II receptor 1 (AGTR1) 

(2,177,178), chymase (CMA1) (177), bradykinin B2 receptor (BDKRB2) (177), 

aldosterone synthase (CYP11B2) (2,177,178), endothelin-1 (EDN1) (177), tumor necrosis 

factor α (TNF) (177), insulin-like growth factor 2 (IGF2) (177), transforming growth 

factor β1 (TGFB1) (177), interleukin 6 (IL6) (177), and platelet activating factor 

acetylhydrolase (PLA2G7) (177) (Table 4).  
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Table 4. Candidate gene modifiers for HCM, adapted from (177) 

Symbol Polymorphism Reported results 

ACE I/D 

DD is associated with higher risk of SCD 

DD is associated with severity of hypertrophy 

DD is more common in HCM patients 

Frequency of DD genotype unchanged 

No association with indices of hypertrophy 

No association with indices of hypertrophy 

AGT −6G/A No association with indices of hypertrophy 

AGT M235T 235T allele more common in HCM 

AGT T174M Frequency of T174M and M235T unchanged 

AGTR1 1166A/C 
No association with indices of hypertrophy 

C allele is associated with severity of hypertrophy 

CMA1 1625A/G No changes in frequency in HCM 

BDKRB2 
−412C/G 

T21M 

T21M was found in HCM cases but not in controls 

CYP11B2 −344T/C No association with indices of hypertrophy 

EDN1 8002G/A A allele is associated with severity of hypertrophy 

TNF −308G/A A allele is associated with severity of hypertrophy 

IGF2 820G/A No association with indices of hypertrophy 

TGFB1 −509C/T No association with indices of hypertrophy 

IL6 −174G/C No association with indices of hypertrophy 

PLA2G7 
994G/T 

(V279T) 

T allele is more common in HCM and is associated with increased 

left ventricular dimension and decreased function 

 

 

Several polymorphisms in genes encoding proteins involved in the renin-

angiotensin-aldosterone system (RAAS), acting alone or together, might impact the 

phenotypic alterations found in HCM and are considered modifiers (178). This is because 

changes in “activation status” of the RAAS may lead to more prominent LVH and 

remodeling (36,178). RAAS contributes to ventricular hypertrophy through circulating 

angiotensin effects, and by local activation of RAAS in the myocardium. Polymorphisms 

in genes encoding proteins involved in the RAAS are associated with increased severity 

of LVOTO and progressive septal hypertrophy, while both of them are risk factors for 

adverse outcomes (178). 

ACE DD genotype is linked with the degree of LVH. However, the role of RAAS 

polymorphism in HCM is still debatable (2). An insertion/deletion variant in the ACE, 

which is associated with variation in the plasma levels of ACE, modestly modifies cardiac 

hypertrophy and the risk of SCD in HCM (29). 
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1.6.3.1.2. Mitochondrial DNA variants 

The heart demands a lot of energy. A single cardiomyocyte comprises hundreds of 

mitochondrias. Mitochondrial DNA mutations have been linked with childhood HCM. 

Furthermore, an association between several mitochondrial haplotypes and clinical 

progression of cardiomyopathies has been shown. The proposed mechanisms might 

involve polymorphisms in mitochondrial genes, causing decreased energy efficiency. For 

example, haplogroup H represents a susceptibility factor, whereas haplogroup J 

represents a protective factor for HCM. This is the result of haplogroup H having higher 

mitochondrial oxidative damage [this haplogroup has the highest maximal oxygen 

consumption (VO2max)], in contrast with haplogroup J (the lowest VO2max consumer) 

(2). 

 

1.6.3.1.3. Epigenetics 

Modifications of gene expression in the absence of alterations in the genetic code 

are referred to as epigenetics (179,180). Epigenetics refers to modifiers that have a role 

in switching genes “off” and “on” (179). These changes in gene expression are mediated 

by DNA methylation/demethylation, histone modification, nucleosome positioning, and 

non-coding RNA-mediated modifications (179,180). The effects of various 

environmental factors arise through alterations in the epigenome (88,180). 

Along with genetic and environmental components, epigenetics are implicated in 

the pathophysiology of HCM (179). In individuals with HCM, phenotypic expression is 

shaped by epigenetic modifications. For instance, CpG islands methylation of the cardiac 

troponin T gene results in genetic instability, which leads to the deamination of this region, 

in turn leading to mutations that later predispose to HCM. CpG sites are spots where 

cytosine (C) is next to guanine (G), and CpG islands are domains with numerous CpG 

sites (179). There is evidence that end-stage cardiomyopathic hearts present differential 

methylation. Cardiac hypertrophy has also been associated with histone acetylation (2). 

 

1.6.3.1.3.1. DNA methylation 

Research suggests that an increased methylation of exonic CpG sites in the 

MYBPC3 can lead to deamination of methylated CpGs, which consequently contributes 
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to mutation development. The frequentness of such mutations differ among particular 

genes. This mechanism of mutations can be accredited to highly methylated CpG sites 

deamination within genes. Furthermore, frequent HCM-causing mutation due to G-to-T 

transversion may be induced by the binding of carcinogens like acrolein and 

benzo(a)pyrene diol to methylated CpG sites (179). 

 

1.6.3.1.3.2. Histone modification 

Histones maintain chromatin in an active or silenced state by interreaction with 

DNA. Histone deacetylases 5 (HDAC5) inhibits histone deacetylases 2 (HDAC2) through 

deacetylation. Phosphorylation of HDAC5 occurs when the myocardium is stimulated by 

hypertrophic stress and activation of HDAC2 causes myocardial hypertrophy. Thus, 

histone deacetylases has a critical role in the cardiac hypertrophy development (179). 

 

1.6.3.1.3.3. Micro RNAs (miRNA) 

miRNA is a negative regulator, which operates through complementary mRNA 

silencing (179,180). Concentrations of miRNA are changing at various phases of HCM 

(2,179), so there is a potential for them to serve as severity markers in the course of HCM 

(179). In HCM, there are increased pro-fibrotic and pro-hypertrophic miRNAs and 

decreased miRNAs leading to opposite effects (Table 5). In cardiac tissue, miR-1 and 

miR-133 act as anti-hypertrophic factors, targeting several hypertrophic signaling 

molecules like transforming growth factor (TGF) β and fatty acid-binding protein (FABP). 

miR-29a is increased only in the plasma of patiens with obstructive HCM. This is in line 

with a correlation between the interventricular septum size and miR-29a (179).  
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Table 5. miRNAs in HCM [adapted from (2)] 

miRNA Effects 

21, 23a, 24, 125, 129, 132, 195, 199, 208, 212, 222 Upregulated in hypertrophy 

1, 133a, 29, 30b and 150 Downregulated in hypertrophy 

27a, 29a, 199a-5p Circulating miRNAs. Correlated 

with left ventricular mass 

27a Circulating miRNAs. Regulates 

HCM gene expression by targeting 

thyroid hormone receptor in 

cardiomyocyte 

29a Circulating miRNAs correlated with 

fibrosis 

 

 

In this context, long non-coding RNAs (IncRNAs), which are also non-coding 

RNAs, play an important role. lncRNAs affect gene expression at the transcriptional and 

post-transcriptional levels. They are involved in development of HCM through the 

regulation of chromatin remodeling and interaction with the matching miRNAs. Levels 

of IncRNA myocardial infarction associated transcript (MIAT) are inversely correlated 

with miR-29a expression in HCM. Here, patients with no fibrosis exhibit increased 

lncRNA-MIAT and decreased miR-29a, compared to patients with fibrosis. The study 

has suggested that IncRNA-MIAT may serve as an endogenous miRNA buffer, which 

regulates the expression of miR-29a-3p (179).  

Several miRNAs have been described as suitable biomarkers of HCM. There are 

some expectations that miRNAs may be useful as therapeutic agents for inherited cardiac 

diseases, as few miRNAs appear to be heart-tissue specific (2). 

 

1.6.3.1.4. Signal pathways involved in cardiac hypertrophy 

HCM mutations directly change the structure and function of the sarcomeric 

proteins and biophysical characteristics of the cardiomyocyte (15). The initial defects 

cause secondary (intermediary) molecular events such as activation of Ca2+-sensitive, 

stress-responsive molecular pathways (29), and change cellular energy balance (15). 

These events produce the histological and morphological (tertiary) HCM phenotypes that 

are clinically presented as HCM (29). HCM mutations can trigger other signaling 

pathways: mitotic and trophic factors (e.g. calcineurin), mitogen-activated protein kinases, 

and TGF β pathways (15,29), and promote non-cardiac cells (e.g. fibroblasts). Genetic 
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variants in molecular pathways involved in cardiac hypertrophy and fibrosis can act as 

disease modifiers (15). The intermediate molecular events are activated in other cardiac 

hypertrophic responses as well (e.g. pressure overload-induced cardiac hypertrophy). 

Myocyte disarray, interstitial fibrosis, and cardiac hypertrophy are results of the 

intermediate molecules and pathways activation (29). 

For instance, development of cardiac hypertrophy involves a complex set of 

pathways comprising dozens of receptors, ligands, transcriptional effectors, and 

cytoplasmic signal amplifiers. Some of the signal transduction molecules include MAPK, 

TGF, tyrosine kinase, fibroblast growth factor (FGF), insulin-like growth factor (IGF), 

protein kinase C (PKC), and c-Jun N-terminal kinase (JNK). These pathways additionally 

alter gene transcription, thereby causing alterations in protein synthesis, which then leads 

to cardiac hypertrophy. An example of extracellular signals transduction from the plasma 

membrane to the nucleus is the calcineurin/nuclear factor of the activated T-cell (NFAT) 

pathway. Cyclic guanosine monophosphate (cGMP)-dependent protein kinase-1 (PKG-1) 

is a significant downstream effector of cGMP-signaling in cardiomyocytes. A recent 

research has shown interaction between the phosphoinositide 3-kinase (PI3K) (Akt 

signaling pathway causing physiological cardiac hypertrophy) and the protein kinase C 

beta 2 (PKCβ2) (causing pathological cardiac hypertrophy) (179). 

 

1.6.3.2. Non-molecular disease modifiers 

Exercise (36,178), diet (36), alcohol consumption (178), microbial infection (88), 

cardiac loading conditions (36,178), environmental factors, and other diseases are non-

molecular aspects that change the HCM phenotype. This proposes that the HCM 

phenotype is an outcome of the complex interplay between molecular and non-molecular 

factors (15,36). 

 

1.6.3.2.1. Changes in loading conditions 

Since cardiac hypertrophy is a result of the original defects derived by mutations, it 

is expected that changes in loading conditions (like systemic arterial hypertension) 

increase the severity of hypertrophy. Heavy physical activity is also expected to promote 
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cardiac hypertrophy in cases where mutations in genes encoding sarcomere proteins are 

already present (29,178). 

 

1.6.3.2.2. Sex 

Sex is suggested to be an important modifying factor in HCM (2), and could provide 

an explanation for some part of the clinical heterogeneity of HCM (174). Women have a 

tendency to develop HCM later in life, but when it occurs, affected women are more 

symptomatic (2,174). They are 6-13 years older at diagnosis than men (174). 

A possible explanation for a delay in disease onset could be estrogen, which could 

have a role in cardiac hypertrophy inhibition through epigenetic modulations (174,176). 

On the other hand, the exposure of cardiomyocytes to androgens can produce hypertrophy. 

Studies have shown that males usually predominate over the life course up to 60 years of 

age when females become the more prevailing — pre-menopausal women might be more 

protected against developing HCM compared to men. However, another study has 

proposed that the high number of younger women (< 50 years) diagnosed with HF may 

indicate that menopause is unlikely to have a role in HCM (174). 

Women are more likely to be sarcomere variant positive, while men are more likely 

to be sarcomere variant negative (174). Male patients predominate in the MYBPC3, 

TNNT2, and mutation negative groups. A well-balanced sex ratio in the MYH7 group 

might be the result of higher penetrance, compared to the MYBPC3 or sarcomeric 

mutation negative group (176). 

Maximum LV wall thickness, LA diameter, and LV cavity size are often greater in 

men. However, the female heart is smaller than the male heart, and after correction for 

body surface area, they show relatively greater maximal LV wall thickness, LA diameter, 

and LV cavity size. Current HCM diagnostic criteria do not take this into account — 

women need to have relatively greater hypertrophy to come to at least 15 mm maximal 

LV wall thickness (current diagnostic criteria). Reduced heart size also explains the 

postponement in recognizing HCM, thus, more prominent symptoms are found in women. 

However, there is no difference between men and women in the severe hypertrophy 

prevalence (LV wall thickness ≥ 30 mm) (174). 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

61 

 

Women have worse diastolic dysfunction, a higher prevalence of an obstructive 

phenotype, and more prominent HF symptoms (174). Regardless of similar extent of 

hypertrophy, women more often manifest dynamic LVOTO (≥ 30 mmHg) than men. 

Women also have more MR, which is likely associated with the reduced cavity size. 

Women more frequently have HF symptoms, especially fatigue, exertional dyspnea, chest 

pain, and palpitations, and NYHA functional classes III to IV, compared to men (174). 

Women more frequently undergo ASA and septal myectomy, which is probably 

related to the higher prevalence of obstruction and HF symptoms and to the increased age 

at diagnosis (174). 

 

1.6.3.2.3. Exercise 

Regular physical activity can improve symptoms of HCM patients, through 

improvement of LV diastolic dysfunction and better microcirculation via improvement of 

endothelial function (159). 

The optimum exercise prescription in HCM remains unknown, but it appears that 

the benefits of regular physical activity can outweigh the risks of physical inactivity. 

Initiation of regular exercise training, in the early phases of HCM, can even produce 

genotype-positive relatives with a window of opportunity to prevent progress to the HCM 

phenotype, through favorable physiological adaptations (181).  

However, HCM is the most frequent cause of SCD in young athletes. Hence, 

patients should avoid engaging in intense physical activities and participating in 

competitive sports (143). According to the current guidelines, the HCM diagnosis 

represents a cause for disqualification in competitive sports (2). Intensive physical 

activity is connected with an increase in LVH, and can serve as a trigger for malignant 

arrhythmias (2). 

 

1.6.3.2.4. Comorbidities 

1.6.3.2.4.1. Hypertension 

The hypertensive heart is generally not easy to differentiate from HCM. 

Furthermore, the hypertension can have a negative effect on HCM progression by 
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promotion of additional LVH through diverse mechanisms, like neuroendocrine 

activation and increased afterload (143).  

Hypertension enhances the extent of LVH via the induction of molecular pathways 

leading to cardiomyocyte hypertrophy — similar to intense physical exercise (2). 

Numerous HCM patients develop hypertension during their life. Women usually 

have a prior diagnosis of hypertension more often than men (174). 

 

1.6.3.2.4.2. Obstructive sleep apnea 

Obstructive sleep apnea and HCM are a particularly frequent and destructive 

combination — obstructive sleep apnea is found in 32-71% of HCM patients (143,174). 

This wide range is probably the result of varied definitions of sleep-disordered breathing. 

HCM patients with obstructive sleep apnea are older, have greater limiting symptoms and 

exercise capacity, and more hypertension (174). Patients diagnosed with both HCM and 

obstructive sleep apnea show worse structural and functional heart impairment (143), 

increased prevalence of AF (143,174), and worse quality of life (143). Obstructive sleep 

apnea and HCM share some key pathophysiological mechanisms: myocardial 

hypertrophy, LA dilation, and overstimulation of the sympathetic nervous system (143). 

 

1.6.3.2.4.3. Obesity 

Obesity is linked with increased HCM penetrance, with a more severe phenotype, 

and more rapid and worse disease progression (140,174). Excess weight is linked with 

increased LV hypertrophy and mass (2,174). LVOTO is more frequent in overweight 

patients — it is observed in more than 50% HCM patients with body mass index > 30 

(174). 

Obesity affects the myocardium and amplifies the detrimental effects of sarcomere 

mutations via multiple mechanisms: LV remodeling, inflammation, perfusion defects, 

hemodynamic changes, neurohumoral activation, and metabolic perturbations (140). 

Obesity impacts the HCM phenotypic expression and progression by affecting cardiac 

function independently of mutation-induced effects. Further, it was also hypothesized that 

obesity intensifies mutation-induced pathogenic effects. In obese HCM patients, the heart 

appears to dilate exceedingly to increase stroke volume. That may propose that the 
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presence of a sarcomeric mutation decreases the myocardial capacity to handle increased 

obesity-related demands (140). 

Obese patients with HCM more often present a significant LV outflow tract 

obstruction and are more symptomatic, as evaluated by NYHA functional class. They 

show decreased physical activity tolerance and capacity, compared to non-obese 

individuals. Obesity is linked with an increased LV mass index, LV cavity enlargement, 

greater posterior wall thickness and larger LA diameter (140).  

There is a high prevalence of obesity in HCM patients. It is shown that while HCM 

patients are advised to regularly carry out non-strenuous physical activity, most of them 

do not follow these instructions due to fear of SCD, mental discomfort, or misinterpreted 

medical advice. This non-compliance contributes to the body weight increase, and the 

sedentary lifestyle further negatively impacts HCM progression (140).  

Increased body weight predisposes individuals to develop HCM: high BMI in 

young adulthood is a predictor of HCM development later in life; each 1-unit increase in 

BMI increases in the risk of being diagnosed with HCM for 9% (140). 

Obesity is closely related to diabetes. The clinical course is worse in diabetic 

patients with HCM. Compared to non-diabetic patients, diabetic HCM patients more 

often display LA enlargement, diastolic dysfunction, and MR. HCM patients with type 2 

diabetes mellitus additionally show lower exercise capacity and worse NYHA functional 

class symptoms (140).  

In obese individuals, cardiac workload and cardiac output are increased due to 

increased circulating blood volumes (and increased afterload, if hypertension coincides). 

HCM cardiomyocytes containing mutant protein compulsorily increase mitochondrial 

workload as a consequence of high ATP-usage by inefficient sarcomeres. Moreover, 

missense mutations in HCM impair length-dependent activation, which probably limits 

the cardiac contractile reserve when augmented preload appears. Persisting obesity-

promoted preload elevation can consequently decrease the threshold for compensatory 

hypertrophy in HCM. There is an association between the quantity of truncal fat and 

septal thickness. The amount of epicardial fat is associated with the N-terminal 

prohormone of brain natriuretic peptide levels (140). Obesity represents an independent 

risk factor for HF in HCM cases (182). 
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Obesity may lead to cardiac adiposity, which in turn can induce endothelial 

dysfunction and local myocardial inflammation. Intramyocardial accumulation of fat is a 

source of cytokines and proinflammatory adipokines, which further contribute to 

vasodilation impairment, cardiac remodeling and stiffening. Cardiac adiposity is 

associated with lipotoxicity, which is shown to be detrimental to cardiomyocyte 

homeostasis. The epicardial fat volume is associated with the extent of cardiac 

hypertrophy, level of circulating biomarkers indicating myocyte injury, and diastolic 

dysfunction severity. Clinical manifestations observed in obese HCM patients may 

therefore be explained by myocardial adiposity (140). 

Another factor related to obesity is hypertrophic stimuli driving LV remodeling, 

which affect molecular mechanisms. This prevents the incorporation and accumulation 

of mutant proteins (140).  

In obese and diabetic patients, sympathetic nervous system overactivity is often 

seen. A high adrenergic drive occurs in symptomatic HCM with LVOTO. Chronic 

overstimulation of β-adrenergic receptor leads to its downregulation and pathway 

desensitization. Likewise, adrenergic receptor stimulation can append to the already high 

adrenergic drive in HCM, causing β-adrenergic signaling pathways impairment, and 

additional impairment of cardiomyocyte function. β-adrenergic overstimulation also 

induces oxidative stress, and thereby disrupt cardiomyocyte homeostasis (140). 

Hyperlipidemia and hyperinsulinemia in obese and diabetic individuals cause a 

higher transfer of fatty acids to the myocardium. As time goes by, heart metabolism no 

longer has substrate flexibility and relies more on fatty acid oxidation. Glucose oxidation 

is more efficient than ATP production through fatty acid oxidation, regarding the amount 

of ATP molecules generated per oxygen atom used. In the HCM cardiomyocyte, this lack 

of balance in energy production can deteriorate the already existing mutation-related 

perturbations of the mitochondrial regeneration of ATP (140).  

Also, in obese individuals, despite the increase in fatty acid oxidation, the uptake 

of fatty acids surpasses capacity of fatty acid oxidation, and leads to the intracellular lipid 

deposition, some of which may be transformed into toxic lipid species causing 

lipotoxicity. Lipotoxicity is connected with oxidative stress, mitochondrial dysfunction, 

endoplasmic reticulum stress, inflammation, and apoptosis. Lipid excess increases the 
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amount of acetyl-CoA precursors, which has been detected in failing hearts. Increased 

acetyl-CoA negatively regulates autophagy. Inhibited autophagy reduces mutant protein 

clearance, and therefore increasing the mutant protein dose (140).  

Hyperglycemia promotes the generation and myocardial accumulation of glycation 

end-products, which induces diastolic dysfunction and inflammation (140).  

 

1.6.3.2.4.4. Phenocopies 

At first, term phenocopy was defined as phenotype variations induced by 

environmental, non-hereditary conditions, similar to or identic with the genotype-

determined phenotype of some other individual. Phenocopy is now usually “defined as a 

phenotypic trait or disease that resembles the trait expressed by a particular genotype, but 

in an individual who is not a carrier of that genotype” (183). 

Some HCM phenocopies, which can mimic HCM, are recognized and caused by 

mutations in PRKAG2 (Wolff-Parkinson-White syndrome), RAF1 and PTPN11 

(LEOPARD syndrome and Noonan syndrome), TTR (amyloidosis), LAMP2 (Danon 

disease), GLA (Anderson-Fabry disease), FXN (Friederich’s ataxia), and GAA (Pompe’s 

disease) (6,168).  

Fabry disease is particularly common (6) — approximately 1-3% of cases with 

clinically suspected HCM are deemed to have Fabry disease (168).  

In amyloidosis, amyloid fibrils are accumulated extracellularly. Recently, advances 

in testing have discovered that transthyretin amyloidosis is more common than postulated 

in the past, and that some of the patients were formerly misdiagnosed as having HCM 

(168). 

 

1.6.3.2.5. Environmental factors 

A standard strategy towards assessing the genetic and environmental factors 

contribution to the varying progression of human diseases is to compare phenotypes in 

monozygotic (MZ) twins, who carry identical genetic sequences. It has been shown that 

a pair of twins carrying a pathogenic mutation in sarcomeric gene (MYH7 G768R) had 

comparable LV wall thickness (LVWT) but varied fibrosis amounts. Interventricular 

septum thickness (IVSd) in 11 MZ twin pairs, demonstrated no significant heritability for 
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IVSd in HCM. On the contrary, another study showed consistent morphologic features 

and clinical development in identical twins diagnosed with HCM, proposing only a small 

influence of environment on HCM clinical presentations (88). 

In a study of 11 MZ HCM twin pairs, followed up for over 5-14 years, LVWT 

discordance is demonstrated in all twin pairs. This suggests that environmental and 

epigenetic factors have a key role in hypertrophic remodeling. In the same study, LA sizes 

were consistent in 3 of 9 MZ twin pairs carrying HCM-causing mutations. An explanation 

of this result could be that LA dimension demonstrates defective ventricular relaxation, 

caused directly by sarcomeric dysfunction (88). 

Another identical adult twin pair with HCM was reported as being extraordinarily 

similar, considering their clinical course and morphological features. However, there 

were no differing environmental influences between the twins — they reported no notable 

differences in diet, exercise, or lifestyle habits and showed no evidence of exposure to 

radiation or chemicals (184). 

 

1.7. HCM in contemporary cardiology 

The genetic basis of HCM has been traced back to 5-10 centuries ago. For this 

reason, HCM is not a “new” disease, however, its clinical identification is new. 

Contemporary HCM is to some extent a result of its often benign nature and reproductive 

fitness (185). 

The prevalence of reporting HCM has increased with the usage of advanced genetic 

testing and precise imaging techniques. Genetic testing allows a molecular diagnosis 

before ventricular hypertrophy appears (15). 

HCM should be diagnosed as the disease secondary to mutations in the sarcomere 

or associated structural cardiomyocyte proteins, but only after rigorous elimination of the 

secondary causes of LVH and of all systemic syndromes associated with LVH and 

mimicking HCM. Some of the secondary causes of LVH are arterial hypertension, 

anatomical heart disease, or medication toxicity. Other metabolic, endocrinological, 

neurological, neuromuscular, or autoimmune multisystem disorders and genetic 

syndromes can manifest the characteristic HCM features. They must be taken into account 
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(15), because the management of these disorders and syndromes is different from that in 

HCM (15,45).  

Nowadays, numerous HCM patients are still not aware of their diagnosis due to 

lack of symptoms and discreet clinical presentation, lack of clinical experience with HCM, 

or subadequate diagnostics (185). 

HCM identification and treatment have advanced notably over the previous decade 

— it has been converted from an odd disease with an unfavorable prognosis to a treatable 

disease with low mortality (< 1% per year) (11,185). With contemporary evidence-guided 

approach, life expectancy is mostly relatively high, and a greatly improved quality of life 

is seen. 2/3rds of HCM patients have a normal life span (15). However, these advances 

are fully available only in highly developed countries and regions (185). 

HCM occurs worldwide, among different races and cultures (11,185). It is 

estimated that probably 20 million people are affected, but many of them are undiagnosed 

or undertreated. Identified HCM patients form only the “tip of the HCM patients iceberg” 

(11,185). 

 

1.7.1. Clinical stages of HCM 

The pathogenic HCM mutation starts up a lifelong myocardial remodeling. At the 

beginning, the “non-hypertrophic HCM” phase arises — the absence of LVH in patients 

with HCM-causing mutations. The prevalence of HCM in this phase has elevated since 

genetic testing and family screening has begun, and ~ 0.6% patients at this phase are 

“genotype-positive/phenotype-negative”, and should be described as having “pre-clinical 

HCM”, or “HCM without clinical signs” (15). 

The first stage of HCM is characterized by the occurrence of LVH with or without 

LVOTO, hyperdynamic ventricular function, and mild symptoms, such as intermittent 

chest pain or decreased exercise tolerance. In ~ 50% of the HCM patients, the onset of 

this stage occurs by the 3rd decade, and in ~ 3/4ths of the HCM patients, by the 6th decade. 

Subtle abnormalities can be found upon performing ECG or ECHO during this phase: 

impaired LV relaxation, mild LA dilatation, or mitral valve abnormalities. Altered 

coronary microvascular function and higher amounts of type I collagen precursors have 

been reported in this stage. The risk of SCD is in general small, however, malignant 
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arrhythmias may arise, particularly in HCM patients carrying a mutation in the cardiac 

troponin T gene (15). 

During the second stage of HCM, myocardial remodeling, expanding myocardial 

hypertrophy, and fibrosis with retained clinical state occur. The prevalence of this stage 

is about 15%. The characteristics of this phase are: a low to normal EFLV, atrial dilatation, 

moderate to severe diastolic dysfunction, thinning of LV walls, LV apical aneurysms, 

microvascular dysfunction, and onset of AF. Congestive symptoms begin to be detectable 

through higher levels of natriuretic peptides and by cardiopulmonary exercise testing 

impairment (CPET) (15). 

The third stage represents the irreversible “end-stage” of HCM. In this phase, 

extreme LV fibrosis, progression to LV and atrial dilatation, systolic and diastolic 

dysfunction associated with hemodynamic decompensation, HF-related complications, or 

death are found. This stage has high morbidity and mortality. Less than 5% of HCM 

patients reach this end-stage phase (15).  

In most of the patients, the disease is identified between 20-50 years of age. 

However, HCM may be also diagnosed during childhood, while some HCM patients 

remain asymptomatic and un-diagnosed until late in life (15). 

Once the patient is suspected as having HCM, or once a relative has been diagnosed 

with HCM, rigorous workup is necessary including: genetic and laboratory testing, 

comprehensive medical and family history, physical examination, ECG, 24-hour ECG, 

CPET, transthoracic ECHO, and CMRI. The aim of this workup is exclusion of conditions 

that mimic HCM, and to determine the HCM stage. HCM is often diagnosed in 

asymptomatic patients by a relative being diagnosed with HCM or by the incidental 

detection of a heart murmur (15). 

The most common initial tests for patients suspected of having HCM are ECG and 

ECHO. CMRI is used to supplement ECHO, if the images are inconclusive. When 

hypertrophy is found to be borderline on ECHO, CMRI can be useful for better 

visualization of all of the cardiac segments and identification of characteristic patterns of 

fibrosis. For those diagnosed with HCM, ambulatory ECG monitoring lasting at least 24 

hours is recommended. Exercise testing can be used for assessment of the functional 

capacity and detection of latent outflow obstruction. Genetic testing might clarify an 
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underlying diagnosis — to exclude HCM phenocopies when suspicion has been based on 

phenotypic evaluation (45).  

 

1.7.2. Genetic testing 

Genetic testing has been recently introduced into the practice of cardiology (15,148). 

It is valuable in clarifying both HCM and phenocopy conditions diagnosis (15). 

There are several benefits of pathogenic mutation identification: it facilitates 

cascade family screening and identifies first-degree family members at risk of HCM 

development. After detection of pathogenic mutation in the proband, predictive genetic 

testing should be offered to first-degree family members. Mutation positive family 

members should undergo a regular ECHO and ECG. Mutation negative family members 

can be discharged from follow-up. However, long-term follow-up of family members is 

required since late-onset cardiac expression is common in HCM. Physical activity is 

generally allowed, but must be individualized according to the character of sport activity, 

family history, genetic status, and full cardiac examination (86,148). 

The additional motive for genetic testing comprises phenocopy conditions, since 

their management could be different: regarding different modes of inheritance (Fabry and 

Danon disease are X-linked), distinct progression (accelerated systolic dysfunction in 

Danon disease), distinct complications (conduction defects in PRKAG2 disease), and 

specific therapeutics (enzyme replacement treatment in Fabry or Pompe disease) (86,148). 

In some situations, genetic testing can be considered for reproductive issues, like 

prenatal testing or pre-implantation diagnosis (148). 

Genetic testing is used in individuals with HCM symptoms and signs to confirm 

HCM diagnosis, in patients who already have HCM diagnosis to guide genetic cascade 

screening in family members, as well as in first-degree family members estimated to be 

at risk of developing HCM after pre-test counseling (15). 

Positive genetic testing supports the HCM diagnosis in a patient, but negative 

genetic testing cannot exclude it (15). 
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1.7.3. General laboratory and metabolic testing 

Systematic laboratory and specific metabolic testing (like enzyme-assays to identify 

exact lysosomal or glycogen storage disorders) should be performed in suspected HCM 

cases (15). 

Collagen synthesis and degradation cleavage products, increased levels of 

cytokines, cardiac troponin T, and other myocardial inflammation markers have been 

reported as interstitial fibrosis biomarkers. They may be used in HCM patient assessment. 

Several microRNAs (particularly miR29a) can be used as biomarkers for interstitial 

fibrosis and cardiac hypertrophy (15). 

 

1.7.4. Electrocardiogram 

An ECG is the most sensitive routine diagnostic test in the setting of HCM — only 

5-10% of HCM patients have normal ECG at the time of presentation. Reported ECG 

abnormalities involve P wave abnormalities, as well as prominent septal Q waves (148), 

complete bundle branch block, evidence of LA enlargement (15), repolarization 

abnormalities, and left axis deviation (148). Sometimes, gigantic deeply-inverted T waves 

in the precordial leads may suggest apical or midventricular HCM (148). Delta-wave or 

extremely high-voltage QRS complexes should increase the likelihood of a phenocopy. 

Typical ECG patterns in athletes include sinus bradycardia or arrhythmia, first-degree 

atrioventricular (AV) block, incomplete right bundle branch block, and J-point elevation 

with ascending ST-segments (15). 

Ambulatory (24-48 hours) ECG monitoring is used in the assessment of palpitation 

symptoms, when it can detect either a supraventricular or a ventricular arrhythmia 

including paroxysmal AF, or as a part of the risk assessment, when it can capture 

ventricular arrhythmias (148). 

Although sensitive, the ECG is not specific; thus, a normal ECG must undergo more 

detailed diagnostic evaluation, usually imaging (148). 

 

1.7.5. Cardiopulmonary exercise testing 

Exercise testing is important in the clinical assessment of HCM patients. There are 

4 important HCM aspects assessed by exercise testing. The first is the evaluation of stress-



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

71 

 

induced LV obstruction (especially important in patients with symptomatic HCM). The 

second is the blood pressure response to exercise (abnormal one may indicate an increased 

risk of SCD). Third is the assessment for accompanying coronary artery disease and 

provocable ventricular arrhythmias (ventricular arrhythmias are rare in symptom-limited 

exercise testing, but when detected, they indicate an increased risk of SCD). The fourth 

important aspect of exercise testing is that, in asymptomatic or mildly symptomatic 

individuals, it enables risk stratification: low event rate is suggested in patients 

achieving >100% predicted metabolic equivalents (148,169). Peak oxygen consumption 

during CPET may assist in differentiate between HCM and the athlete’s heart, being low 

in HCM and high in athletes (15). 

It is worth mentioning that exercise testing is safe for HCM patients (148). 

 

1.7.6.  Echocardiography 

ECHO is the primary imaging modality for establishing HCM diagnosis, for 

monitoring of the disease, as well as for basic hemodynamic status assessment 

(15,45,143,186).   

In suspected HCM cases, the thickness of all LV segments should be measured. To 

prevent oblique orientation leading to overestimation of wall thickness, measurements 

need to be preferably taken from parasternal short axis views with orthogonal beam 

alignment. Only in case of apical hypertrophy are apical views important for the apical 

segments hypertrophy assessment. Otherwise, measurements from apical views should 

be avoided, to prevent possible overestimation of LV walls thickness (186). 

As previously stated, pathological hypertrophy in adults refers to the presence of 

unexplained wall thickness ≥ 15 mm, in one or more LV myocardial segments. In patients 

with already established HCM diagnosis, lower cutoff values may be used in screening 

of first-degree family members, with an absolute wall thickness ≥ 13 mm (15,30,86,148). 

Two-dimensional (2D) ECHO is the first step in assessment of hypertrophy in HCM. 

Observation of chamber characteristics can be facilitated by the usage of intravenous 

contrast agents (148). 

In adolescent and adult individuals active in competitive sports, physiological 

cardiac hypertrophy (also known as an athlete’s heart) is presented with LV wall thickness 
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of 13-15 mm. In these individuals, there is a symmetrical enlargement of all heart 

chambers, and the LV cavity size is increased. This contrasts with HCM, wherein LV 

cavity is not enlarged. The asymmetrical septal hypertrophy distribution pattern greatly 

supports HCM. The morphological and functional features in athletes are considered 

reversible and benign (15). 

SAM of the anterior mitral valve might present as well as provoke and aggravate 

LVOTO. This generates mechanical impedance in blood flow as it leaves the heart, which 

generates a pressure gradient between the LV cavity and the aorta. Some structural 

characteristics may contribute to the LVOT gradients development: excessive thickening 

of the interventricular septum (causes LVOT narrowing), elongated anterior or both 

leaflets of the mitral valve, and apical insertion of papillary muscles (15,143,187). 

Elongated mitral leaflets can protrude into the LVOT, while abnormalities of the 

subvalvular apparatus may contribute to obstruction by positioning the anterior leaflet 

anteriorly into the LVOT. Anterolateral papillary muscle displacement “pulls” the plane 

of leaflet coaptation anteriorly or up into the LVOT, predisposing the patient to SAM and 

LVOTO. A papillary muscle or abnormal, fibrotic secondary chord, which inserts itself 

directly onto the anterior leaflet, also tends to pull the anterior leaflet into the LVOT (187). 

LVOTO is defined as a “Doppler-derived peak instantaneous LVOT pressure gradient 

≥ 30 mmHg, either at rest or during Valsalva maneuver or exercise” (186).  

SAM can be identified with 2D and M-ECHO (143). SAM of the mitral apparatus 

produces a posteriorly directed mitral regurgitant jet. If a central or anteriorly directed jet 

is observed, the mitral apparatus abnormality is probably a co-contributor to the MR. 

Since resolution of  the LV obstruction will not resolve MR in case of primary mitral 

valve disease, this will affect the choice of treatment (148). 

MR is usually functional in HCM, and is a result of SAM of the anterior leaflet. In 

most cases, regurgitant jet as a consequence of SAM-related MR is directed posteriorly 

and is rarely severe. Difference in jet direction or a severe regurgitation should raise the 

suspicion that another contributing mechanism exists. In such cases, a transesophageal 

ECHO should be used in addition to transthoracic ECHO to confirm or refute the 

aforementioned possibility. In this case, the focus shoud be on examination intrinsic 
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valvular abnormalities: leaflet restriction secondary to “percussion injury”, leaflet fibrosis, 

a chordal rupture, or a myxomatous disease (143,186).  

Management of obstructive and of non-obstructive forms of HCM differ; hence, it 

is important to clinically differentiate the two. Resting LVOTO is defined as peak 

gradient > 30 mmHg, and represents a predictor of HF and death (143).  

Approximately 1/3rd of HCM patients have the non-obstructive HCM; another 

1/3rd have physiologically provocable gradients (< 30 mmHg at rest and > 30 mmHg 

with physiologic provocation); and yet another 1/3rd have peak gradients > 30 mmHg at 

rest (15,143,172), usually due to SAM (143). 

Gradients > 50 mmHg at rest or with provocation propose the need for percutaneous 

or surgical intervention, if symptoms cannot be controlled with medicaments. Exercise 

(stress) ECHO is the preferred approach for provoking the LVOT gradient, because it 

simulates well the conditions experienced by HCM patients in everyday life (143). The 

Valsalva maneuver (exhale with glottis closed) or the administration of nitrates are 

utilized for provoking LV obstruction in HCM (148,186). 

Additional echocardiographic characteristics can be observed in LVOTO such as: 

fibrotic mitral valve changes, early systolic closure of the aortic valve, mid-systolic 

notching, and coarse fluttering of the aortic valve during systole (143). 

Apart from classical HCM (with or without LVOTO), other anatomical varieties of 

HCM also exist: midcavity obstruction, midcavity obstruction with apical aneurism, 

apical HCM, or right ventricular obstruction. Some of these varieties may be managed 

differently (143). 

Midcavity or midventricular obstruction with or without apical aneurism is a result 

of varied anatomic and hemodynamic elements. In HCM, midcavity obstruction is a result 

of the apposition of the lateral wall and septum or of the systolic apposition of the lateral 

wall and hypertrophied papillary muscle at the mid-LV level. In these cases, 2 distinct 

LV chambers are generated (proximal and distal), and they set up an “hour-glass” shaped 

LV (143).  

Absence of SAM of the mitral valve and a narrowed mid-LV cavity, with or without 

a thin-walled, scarred LV apical aneurysm, sometimes containing thrombi, can be 

observed using ECHO in isolated midcavity HCM (143). 
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In apical HCM, the myocardial hypertrophy primarily affects the apex of the LV. 

This type can be overlooked during echocardiographic assessment. CMRI is most 

accurate in diagnosing apical HCM (143). 

In rare cases of HCM patients, right ventricular outflow tract obstruction can be 

found (143). RV hypertrophy is rarely involved in HCM. Hence, the involvement of the 

RV or extreme ventricular hypertrophy increases the likelihood of a phenocopy 

mimicking HCM (15).  

LA is an important parameter to be measured in HCM, since it has been shown that 

enlarged LA is associated with adverse outcomes. Enlargement > 48 mm (transverse 

linear dimensions) or volume > 118 mL has been correlated with an increased risk for AF, 

HF, and death (143).  

Regarding left ventricular ejection function (LVEF), most of HCM patients have 

normal or supernormal LV systolic function. In HCM patients with sarcomeric mutations, 

myocardial mechanics abnormalities occur prior the clinical hypertrophy (143). 

Increased stiffness and reduced chamber compliance are associated with decreased 

LV volume on account of excessive hypertrophy in HCM (143).  

Tissue Doppler imaging (TDI) is a standard procedure for evaluation of HCM 

patients. Systolic myocardial velocity is reduced in HCM, even in non-hypertrophied 

sections. For sarcomeric mutation positive individuals with absence of LVH, a systolic 

TDI velocity in the lateral annulus < 13 cm/s is predictive for manifesting HCM (143). 

Diastolic parameters, like the ratio of E to E’, peak E wave-to-flow propagation 

velocity ratio, and color M mode flow propagation velocity, predict end-diastolic pressure 

of LV, exercise tolerance, and reduction in filling pressures after septal ablation or 

myomectomy (143). 

The maximum instantaneous LV gradient is estimated by continuous wave Doppler. 

It usually takes place in late systole and has a specific late-peaking, dagger-shaped profile 

(148). Doppler profiles and timing intervals can help in the diastolic function assessment 

as well (148). Doppler ECHO of the LV inflow tract enables the diastolic function 

characterization in HCM (143). 
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1.7.7. Cardiac magnetic resonance imaging 

Some morphological abnormalities (such as focal myocardial hypertrophy or left 

ventricular aneurysms) can be best detected by CMRI (15). Myocardial tissue 

abnormalities may be assessed most effectively using CMRI. Interstitial fibrosis is found 

in ~ 2/3rds of HCM patients (148). Focal fibrotic changes and interstitial fibrosis can also 

be detected using CMRI. Further, contrast CMRI can help in the identification of patients 

transitioning from clinical stage I to stage II of adverse remodeling. Moreover, CMRI is 

usually required to exclude phenocopies (15). 

CMRI is superior to ECHO with contrast for LV apical assessment, particularly in 

the assessment of apical pouches across the HCM spectrum (148). CMRI provides 

information about chamber volumes and EFLV, similar to ECHO. Myocardial tagging 

utilising CMRI can also help in the evaluation of regional function (148). 

 

1.7.8. Positron emission tomography (PET) and computed tomography (CT) 

In HCM, myocardial ischemia can be most reliably and non-invasively assessed 

using PET. Myocardial ischemia in the absence of epicardial coronary artery disease is 

often found in HCM. Perfusion abnormalities in HCM have been linked with adverse 

outcomes, and obstruction relief results in normalization or improvement of perfusion. 

Perfusion abnormalities following pharmacological vasodilation in the absence of 

epicardial coronary artery disease can be observed using PET as well, and suggest 

microcirculatory abnormalities and adverse prognosis. Direct imaging of the coronary 

arteries is traditionally performed using invasive angiography; still, cardiac CT represents 

a new, more sensitive approach. Cardiac CT can detect abnormalities in the coronary 

arterial course (e.g. myocardial bridging) (148). 

 

1.7.9. Pharmacological treatment 

A part of contemporary HCM treatment is still directed toward symptomatic relief, 

and does not treat the cause of HCM. Such medications are beta blockers (e.g., metoprolol, 

propranolol), calcium channel blockers (e.g., verapamil, diltiazem), anti-arrhythmic drugs 

(e.g., amiodarone, disopyramide), and anticoagulants for thrombus formation prevention 

(188).  
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New disease-specific and cause-directed treatments have been developed, including 

aficamten (65,188), danicamtiv, mavacamten, and omecamtiv (65). EXPLORER-HCM 

trial showed that treatment with mavacamten improves LVOTO, NYHA class, exercise 

capacity, and health status of patients with obstructive HCM (66). In randomized trials, 

aficamten has been shown to reduce hypercontractility and LVOTO. Further, danicamtiv 

is seen to improve left atrial and left ventricular echocardiographic parameters. Also, 

omecamtiv mecarbil is found to be efficient in HF with decreased systolic function, 

thereby reducing HF-related outcomes or cardiovascular death (189).  

 

1.7.10.  Septal reduction therapy 

Although pharmacological therapy is effective for managing symptoms in majority 

of HCM patients with a resting or provocable LV outflow gradient, some patients require 

septal mass reduction therapies (190). 

Septal reduction therapy is indicated by both the European and American guidelines 

in cases of LVOTO gradient ≥ 50 mmHg (with or without provocative maneuver) and 

when moderate to severe symptoms (NYHA III or IV or recurrent syncope) persist despite 

optimized (maximum-tolerated) pharmacological therapy (NYHA class III-IV) 

(11,186,187,191).  

Effective management of LVOTO consists of invasive septal reduction procedures 

(192). Septal reduction therapy consists of two chief modalities: surgical treatment (septal 

myectomy) and percutaneous treatment (ASA) (19,99,191,193,194). Both septal 

myectomy and ASA aim at the septal mass reduction, regression of obstruction, and 

symptoms improvement (186). 

The outcomes of both treatments mentioned above are highly dependent on the 

administering center’s experience. The best results in septal reduction therapies are 

attained at centers with a high volume of ASAs and septal myectomies (11,191,193). 

Further, treatment needs to be personalized, with respect to the functional conditions, the 

anatomical structure, the patient’s wishes, and advantages and disadvantages of each 

technique (192). A team, including a cardiologist-expert in HCM, an interventional 

cardiologist, and a cardiac surgeon specialized in ASA and septal myectomy, should 

evaluate each patient during the decision-making process for the treatment (191,193). 
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Unlike other cardiac procedures, no randomized trials of septal myectomy and ASA have 

been performed (186,195).  

 

1.7.10.1. Surgical approach 

Surgical myectomy represents the elimination of a small quantity (5-10 g) of 

hypertrophied tissue from the interventricular septum (193). Although HCM was first 

described in 1958 by Teare, the first surgical HCM treatment had already been 

accomplished in 1961 (191).  

Surgical HCM treatment is based on septal myectomy, which aims to reduce the 

LVOTO gradient (191) that is a cause of progressive limiting symptoms (192). It involves 

the removal of a relatively small amount of muscle from the ventricular septum (196). In 

10-11% of HCM patients, realignment of papillary muscles and valve plication might be 

necessary as well (191). 

Morrow’s modified septal myectomy is the preferred technique. It is usually used 

in young patients or when other pathologies requiring accompanying treatment (e.g. 

coronary disease or mitral valve anomalies) are present (191). 

In the obstructive HCM refractory to medical therapy, septal myectomy has been 

considered the gold standard septal reduction technique and provides the most effective 

symptomatic relief (15,187,192,193,196,197). 

The surgical approach restores life quality (15,187,192) and exercise capacity (15), 

with LVOTO reduction in 90% of the cases and low mortality (septal myectomy mortality 

rates are 1-2%). It is one of the safest open-heart procedures, with a 30-day mortality of 

0.4% at high-volume centers (11,15,187). Long-term survival of surgically-treated 

patients is comparable to that of the general population and risk of SCD is decreased 

(191–193). Literature supports superior long-term symptomatic relief in HCM patients 

who undergo surgical septal myectomy (15). 

ACC and AHA guidelines propose surgical treatment as the first option, while it is 

stated that ASAs should be reserved for patients for whom surgery is contraindicated or 

the risk of surgical treatment is unacceptable (191,195). For younger patients, septal 

myectomy can be an appropriate alternative, given the low re-operation rate 

(156,186,187,193).  
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Further, surgical myectomy is recommended when there are other concomitant 

surgical indications like mitral valve replacement, coronary bypass, or realignment/partial 

excision of ectopic or hypertrophic papillary muscles (15,144,186,193). Heart 

transplantation is reserved for the most refractory cases (188).  

However, ventricular septal defects are possible complication of the surgical 

approach, usually exhibited in patients with septum thickness < 20 mm or several 

concurrent surgical procedures (e.g. myectomy and coronary bypass grafting). Another 

possible complication is aortic valve regurgitation, and it can occur because of lack of 

septal support or dissection of septal coronary arteries. New regurgitation jets after 

surgical procedure must be cautiously assessed to rule-in or rule-out these complications 

(191). 

 

1.7.10.2. Percutaneous approach 

Three decades after the first septal myectomy for HCM, Sigwart executed the first 

non-surgical septal reduction ever, utilizing surgical alcohol (195). ASA is a catheter-

based technique (15,144,191,195). It consists of the infusion of a small quantity of high-

grade alcohol (1.5-2.5 mL) into a septal branch supplying the basal interventricular 

septum, to generate an iatrogenic infarction (causing myocardial necrosis). This, over the 

next few months, cause the myocardial remodeling, thereby reducing the LVOT gradient 

(144,156,191,193,195). Results are visible 3-6 months after ASA (this is the time it takes 

for the myocardium to reduce) (144,191). ASA is less invasive than surgical myectomy, 

and enables a shorter hospital stay and recovery time (156,187,191,195). Nevertheless, 

more arrhythmic episodes are observed after the procedure and in the long term, as a 

result of scar tissue generation (191). Given that ASA is associated with an increased risk 

of permanent pacemaker placement or repeated procedures, it should be reserved for 

individuals with high operative risk or a personal preference of avoiding surgery 

(186,187).  

ASA has results comparable to surgical myectomy (regarding improvement in 

symptoms, functional status, exercise capacity, LVOT gradient reduction, long-term 

survival) (186,193,195). AV block is the most frequent complication of ASA (7-20%) 

(193). 
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In HCM patients with multiple comorbidities and/or advanced age, ASA can 

provide a more favorable risk-safety profile (20,156,186,187,196). In this context, the 

primary disadvantage of ASA is its effect on the conduction system (195). Septal 

myectomy tends to cause left bundle branch block, while ASA tends to cause right bundle 

branch block. In patients with pre-existing bundle branch blocks these need to be 

considered, in order to avoid the development of complete heart block requiring 

pacemaker implantation (187).  

The 2011 Guideline stated that ASA should not be performed in subjects < 21 years 

of age (class III), and should be discouraged in subjects < 40 years of age or with septal 

thickness ≥ 30 mm (195). 

With ASA, the distribution of the ablated myocardium is completely dependent on 

the perfusion pattern of the septal perforator branches. For that reason, adequate volume 

or correct location is less predictable to achieve, compared to septal myectomy that is 

performed under open visualization (144). 

Alternative septal ablation methods have been introduced recently — endocardial 

radiofrequency ablation may produce modest reduction of basal septal hypertrophy 

LVOT gradients and functional class. It is administered from the LV endocardial surface, 

by bypassing the access from coronary arteries (186). 

 

1.8. Machine learning (ML) 

ML is a subdiscipline of artificial intelligence (198), wherein computer algorithms 

are used for learning complex patterns from data (199). ML algorithms easily detect 

trends and patterns, which could not be identified by the human or classical statistical 

approaches. ML algorithms handle multidimensional and multivariety data (200). 

Applications of ML have the potential to be useful across several medical domains (201), 

including cardiology (199). 

In contrast to traditional rule-based algorithms, which apply rules explicitly 

programmed by humans to perform a sequence of operations, ML algorithms learn rules 

and patterns from the provided data itself. An ML algorithm is trained on provided data, 

and a trained ML model is then evaluated on test data it has never seen before (199).   
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There are different categories of ML algorithms (199). Within ML, tasks could be 

classified into supervised and unsupervised learning (198).  

In supervised learning tasks, ML algorithms learn patterns from provided labeled 

examples. Relying on the labeled examples exclusively, the algorithm learns the most 

important features that drive its decisions, and formulates rules by itself to exploit those 

features. Formulated rules (ML model) can then be applied to data never seen before 

(199). More specifically, a training dataset with ground-truth labels is utilized to generate 

a model and optimize its performance. The learnt patterns can then be used for performing 

the same tasks in new datasets (198). 

In unsupervised learning, algorithms learn patterns without labeled examples. 

Unsupervised learning uncovers patterns by analyzing unlabeled data. It can find similar 

examples (clustering), and select the most important features for differentiating the 

examples (199). Unsupervised learning enables the algorithm to create its own 

understanding of the data, unconstrained by human interpretation. The algorithm may 

find novel groupings in the data, which a human might not be aware of (199). Once 

clusters are recognized, they can be further analyzed or visualized (198).  

 

1.8.1. Clustering 

Clustering or cluster analysis refers to the division of data into groups (clusters) 

consisting of similar examples, based on their characteristics (199,202–204). Clustering 

categorizes the data based on the criterion that the points within one cluster should be 

maximally similar to each other and maximally different from the samples in other 

categories (203,205). Clustering has been successful in finding structures within medical 

datasets (204). For example, the clusters thus determined may lead to the identification 

of novel patient subgroups of diseases. Notably, identified clusters may suggest new 

groupings, but all insights must be clinically validated (199). Clustering is an 

unsupervised method, since it is carried out without prior knowledge of class-label 

patterns (204,205).  

Clustering methods can be categorized into: hierarchical methods and partition 

methods (204,205). Partitional clustering produces a single, final clustering result. In 

contrast, hierarchical clustering provides a hierarchy of clusterings (205).  
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Hierarchical clustering typically constructs a tree structure (hierarchy of clusters), 

either out of separate clusters with single elements to a single cluster including all 

individuals or vice versa. There are 2 strategies for hierarchical clustering: an 

agglomerative (a “bottom-up”) and a divisive (a “top-down”) approach (202,203,205). 

In the agglomerative approach, each observation is considered its own cluster; next, 

pairs of the most similar clusters are combined as one iteratively; and thus, as we move 

up the hierarchy, bigger clusters are created at each step. Finally, all the clusters are 

merged into a single large cluster containing all the objects. In the divisive approach, all 

observations are placed into one cluster at the beginning; splits are then performed 

recursively; and likewise, as we move down the hierarchy, an increasing number of 

smaller clusters are created at each step (202,203,205). 

The output of hierarchical clustering is most often visualized as a dendrogram, a 

tree-based representation of the elements. It provides a good visualization of proximity 

among data objects and their clusters (202). Through a dendrogram, the processes of 

hierarchical clustering may be tracked (205). A dendrogram is more informative and 

intuitive than an unstructured collection of flat clusters (203,205). By cutting the 

dendrogram at the appropriate layer, a clustering with a desired resolution is gained (205). 

 

1.8.2. Classification 

Classification is another important task in ML (206) and is used in biomedicine 

(207). It is a supervised learning method (208). Classification in ML concerns the problem 

of identification (prediction) regarding which groups or categories an instance belongs to 

(206). 

Classification can be binary, as in case of determining whether a pathology is 

present or not, or involve multiple classes, such as determining a particular pathology 

among several labels (206). 

In single-label ML classifiers, each sample can have only one status, while multi-

label classification enables each sample to have more than one status (209). 
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1.8.3. Artificial neural networks (ANNs) 

The structure of ANNs is inspired by structures of the human brain (198,210,211). 

ANNs consist of an input layer (with the number of neurons usually equal to the number 

of input features), multiple hidden layers, and an output layer (with the number of neurons 

typically equal to the number of classes to be predicted). Each layer contains numerous 

artificial neurons usually connected to the neurons in the next layer via weights that reflect 

the relative importance of a given input (198,211). Each of the units “applies an activation 

function to the weighted sum of its inputs to calculate its output value”. Such propagation 

of information continues until the final output values in the last layer are calculated (211). 

With increasing number of neurons in each hidden layer, and with an increasing number 

of hidden layers, the network becomes increasingly capable to solve more complex 

problems, but at the same time, it becomes more difficult to train (198).  

 

1.8.4. Deep learning (DL) 

DL is a representation learning method wherein input information is transformed 

into multiple levels of abstractions (212). Deep neural networks are ANNs with many 

hidden layers (198,211,213) and often non-linear activation functions (213). The 

composition of deep neural networks is able to model non-linear dependencies (211,213), 

and to integrate complex collections of data to produce reliable predictions 

(210,211,213,214). Contrary to other ML methods, DL does not require feature selection 

prior to training, since it learns higher-order representations directly from raw input data 

(211). Through layer-wise learning, it progressively builds up abstract representation and 

automatically extracts the relevant features needed for a given task (212,215). 

For pattern recognition tasks, deep convolutional neural networks (DCNNs) are the 

most frequently used. With a sufficiently large training set, DCNNs can extract relevant 

features for a given task from the training samples (212). 

DL has an important role in practical solutions and knowledge discovery from 

biomedical big data (with applications in bioinformatics, biomedicine, healthcare, and 

drug discovery) (216). DL is well-suited for these disciplines, wherein interdependent 

complex relationships between biological entities and processes exist in the data, and 

which often occur at multiple scales that are intrinsically noisy (213). DL is particularly 
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useful for large-scale image classification (210,214,215). Medical images exhibit a large 

variability due to the countless varied imaging modalities, sample preparation protocols, 

combinations of phenotypes of interest, and acquisition parameters (214).  

Despite the high expectations of what artificial intelligence can bring to medicine, 

there are several challenges to be overcome before such tools can be integrated into 

clinical practice (212).  

 

1.8.5.  Automatic extraction of molecular mechanisms from databases and 

literature 

Scientific literature may be perceived as a large repository of unstructured data 

(217). PubMed is a database of biomedical literature and enables the search and retrieval 

of such literature (218). Filters can be utilized to restrict the search using diverse criteria 

(publication date, species, etc.). Each publication in the PubMed database has a unique 

identifier (PMID). The Medical Subject Headings (MeSH) vocabulary thesaurus is 

utilized for indexing articles for PubMed (219). Other biomedical databases are ChEMBL 

(220), Pathway Commons (221), DrugBank (222), CTDbase (223), miRTarBase (224), 

and many more. 

Molecular mechanisms underlining different diseases can be extracted from 

biomedical knowledge resources through automated or manual curation (225,226). The 

extracted information may be represented visually using visual pathway editors like 

CellDesigner (225). An automated approach example is the “Integrated Network and 

Dynamical Reasoning Assembler” (INDRA) (227). INDRA aggregates knowledge 

extracted from abstracts and full open-access articles, combines it with information from 

pathway databases using several different machine-reading systems, and subsequently 

assembles the same into executable models (228).  

Knowledge in the form of graphs supports the research on complex systems as an 

intuitive visual representation and as a data structure readable both by humans and 

computers (229). Disease maps are comprehensive graph- and knowledge-based 

representations of molecular mechanisms of diseases (230). Interactive disease maps have 

been created so far for cancer (231), inflammation (232), Parkinson’s disease (233), 
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Alzheimer’s disease (234), asthma (235,236), rheumatoid arthritis (229), influenza A 

virus replication cycle (237), and others. 
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2. RESEARCH AIMS AND HYPOTHESES 

Research aims: 

1. Identification of HCM subphenotypes using clustering 

2. Correlation determination between genotypes and subphenotypes in HCM 

3. Determination of associations of genotype and phenotype outcomes in HCM using 

ML algorithms 

4. Creation of ML models for HCM outcomes prediction based on genotypic and 

phenotypic data 

5. Identification of genotype-specific echocardiogram findings in HCM using ML 

algorithms 

 

Hypotheses: 

1. HCM subphenotypes can be identified using clustering. 

2. There is a correlation between genotypes and subphenotypes in HCM. 

3. The associations of genotype and phenotype outcomes in HCM can be determined 

using ML algorithms. 

4. ML models can predict HCM outcomes based on genotypic and phenotypic data. 

5. Genotype-specific echocardiogram findings in HCM can be identified using ML 

algorithms. 
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3. MATERIALS AND METHODS 

3.1. Study design 

The study was multi-centric and retroprospective, wherein the retrospective period 

lasted 18 months and the prospective period was 12 months. Five institutions participated 

in the study: Institute of Cardiovascular Diseases Vojvodina (Republic of Serbia), 

University of Belgrade Clinical Centre (Republic of Serbia), Newcastle University 

Medical School and Newcastle upon Tyne Hospitals NHS Foundation Trust (United 

Kingdom), University Medical Centre Regensburg (Germany), and Careggi University 

Hospital Florence (Italy). 

The study was approved by the Research Ethics Committees/Institutional Review 

Boards of each participating institution. The study was conducted in accordance with 

Good Clinical Practice and the Helsinki Declaration. 

 

3.2. Subjects 

The study involved 143 adult patients (≥ 18 years of age) with a confirmed 

diagnosis of HCM, who met the inclusion and exclusion criteria. 

 

Inclusion criteria were as follows: 

1. confirmed diagnosis of obstructive and/or non-obstructive HCM; 

2. a history of unexplained LVH with either maximum wall thickness ≥ 15 mm or 13-14 

mm (borderline hypertrophy) on ECHO and ≥ 1 fist-degree relative with HCM. 

 

Exclusion criteria were as follows: 

1. < 3 months post septal reduction (catheter-based intervention or surgery); 

2. clinical decompensation in the previous 3 months, defined as NYHA class IV 

congestive HF symptoms; 

3. resting blood pressure > 180/100 mm Hg; 

4. systolic blood pressure < 100 mm Hg; 

5. resting LVOT gradient > 50 mm Hg; 

6. LVEF < 50% by ECHO; 

7. implanted or scheduled pacemaker or cardio-defibrillator in the last 3 months;  
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8. renal insufficiency with a glomerular filtration rate < 30 mL/min per 1.73m2; 

9. pregnancy or planned pregnancy; 

10. life expectancy < 12 months; 

11. BMI > 40 kg/m2; 

12. a history of exercise induced ventricular arrhythmias or syncope; 

13. presence or history of any other disease with a life expectancy of  < 3 years; 

14. history of treated or untreated malignancy of any organ system (except localized 

prostate cancer or localized basal or squamous cell carcinoma of the skin) within past 

2 years, regardless of existence of local recurrence or metastases; 

15. uncontrolled or life-threatening dysrhythmia, inclusive of symptomatic or sustained 

ventricular tachycardia and AF or atrial flutter with a resting ventricular rate > 110 

beats per minute; 

16. participation in organized or competitive sports activities (basketball, football, etc.), 

burst activity (racket sports, sprinting, etc.), heavy isometric exercise (bodybuilding, 

etc.) or opposition of refraining from the same for the duration of the study. 

 

The patient eligibility was assessed through the evaluation of patients’ electronic 

health records. Eligible patients were informed about the aims of the study, and signed 

informed consent forms for participation in the study. Patients’ data were collected from 

hospital information system.  

All participants in the study went through genetic counseling, wherein the 

importance of further cardiological screening of family members was unequivocaly   

underlined. 

 

3.3. Protocol 

3.3.1.  Genotype-phenotype associations in HCM: Examination by machine 

learning algorithms using clinical data 

3.3.1.1. Data 

3.3.1.1.1. Demographics 

Age and sex of patients were recorded. 
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3.3.1.1.2. Medical and family history 

Current symptoms (chest pain, palpitations, fatigue, dyspnea, and syncope), signs 

(heart murmur, pulmonary crackles, pleural effusion, pretibial edema, and venous 

congestion), NYHA class, systolic and diastolic blood pressure, and also comorbidities 

[diabetes mellitus, thyroid disease, phaeochromocytoma, acromegaly, renal dysfunction, 

hepatic dysfunction, chronic obstructive pulmonary disease (COPD), anemia, 

neuromuscular disease, amyloidosis, and genetic disease] were registered.  

Family history of HCM, DCM, SCD age < 40, SCD age between 40-59, SCD age 

≥ 60, unexplained HF, pacemaker or defibrillator implants, cardiac transplantation, and 

evidence of systemic disease were recorded. 

 

3.3.1.1.3. Anthropometric measurements 

Height of the participants was measured using stadiometer, whilst weight was 

measured using beam scale. BMI was calculated. 

 

3.3.1.1.4. Blood sampling 

Blood samples were collected through the antecubital vein venipuncture in the 

morning after overnight fasting.  

 

3.3.1.1.5. Genetic testing 

After isolation of DNA from whole blood using QIAamp DNA Blood BioRobot 

MDx kit (QIAGEN GmbH, Hilden, Germany), a genetic panel of 41 genes was analyzed 

by polymerase chain reaction (PCR) and on the Next Generation Sequencing platform 

(Illumina, Inc., San Diego, USA). For this panel, the samples represent DNA isolated 

from the blood of patients. These genes are part of the commercially available panel, the 

TruSight Cardio Sequencing Kit (Illumina, Inc., San Diego, USA), for targeted 

sequencing for research purposes.  

 

3.3.1.1.5.1.  Gene panel 

The core of the HCM gene panel analyzed consisted of: ACTC1, ACTN2, ANKRD1, 

CSRP3, FHL1, GLA, LAMP2, MYBPC3, MYH7, MYL2, MYL3, PLN, PRKAG2, TNNI3, 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

89 

 

TNNT2, and TPM1. These genes belong to the HCM gene panel used in the Oxford 

Medical Genetics Laboratory (OMGL) for blood samples. This core gene panel was 

designed to cover all HCM causative genes (MYBPC3, MYH7, TNNI3, TNNT2, MYL2, 

MYL3, ACTC1, TPM1) according to ACCF and AHA guidelines for HCM diagnosis and 

treatment (2011); as well as genes for differential diagnosis (PRKAG2, GLA, FHL1); and 

other validated genes associated with HCM (22). Additionally, the following genes were 

analysed: ABCC9, CACNA1C, CTF1, DMD, DSC2, DSG2, DSP, ELN, FBN, HCN4, 

JPH2, LAMA4, MYH6, MYPN, NEXN, NKX2-5, NOTCH1, PDLIM3, PKP2, PTPN11, 

RBM2, RYR1, SDHA, TRPM4, and TTN. All these genes are part of the Illumina TruSight 

Cardio Sequencing Panel, a commercially available panel for scientific purposes for 

targeted sequencing of genes implicated in inherited cardiac conditions. For all the genes 

analyzed, the sample represents DNA isolated from the blood of the patient. 

This research study focuses on HCM causative genes. However, all the genes 

analyzed were used in the generation of models for predicting phenotypic outcomes using 

only genetic data, to attain more complete and prediction-capable genotypic information. 

 

3.3.1.1.5.1.1.  Causative genes 

3.3.1.1.5.1.1.1. MYH7 

The myosin heavy chain 7 (MYH7) gene is located on the long arm of chromosome 

14 (14q11.2). MYH7 is a protein-coding gene that encodes the beta (slow) heavy chain 

subunit of cardiac myosin. MYH7 is expressed in the ventricle and skeletal muscles rich 

in slow-twitch type I muscle fibers. Mutations in MYH7 are associated with HCM, myosin 

storage myopathy, DCM, and Laing early-onset distal myopathy (238). 

 

3.3.1.1.5.1.1.2.  MYBPC3 

The myosin binding protein C3 (MYBPC3) gene is located on the short arm of 

chromosome 11 (11p11.2). MYBPC3 is a protein-coding gene that encodes the cardiac 

isoform of the myosin-binding protein C. The cardiac isoform of MYBPC3 is expressed 

exclusively in the myocardium. Mutations in this gene are found to cause familial HCM 

(239). 

 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

90 

 

3.3.1.1.5.1.1.3. TNNT2 

The troponin T2, cardiac type (TNNT2) gene is located on the long arm of 

chromosome 1 (1q32.1). TNNT2 is a protein-coding gene that encodes the tropomyosin-

binding subunit of the troponin complex. TNNT2 is expressed predominantly in the heart. 

Mutations in this gene have been associated with familial HCM and DCM (240). 

 

3.3.1.1.5.1.1.4. TPM1 

The tropomyosin 1 (TPM1) gene is located on the long arm of chromosome 15 

(15q22.2). TPM1 is a protein-coding gene that encodes tropomyosin alpha-1 chain, which 

composes the main tropomyosin of striated muscle. TPM1 is expressed mostly in the heart. 

Mutations in TPM1 are associated with type 3 familial HCM (241). 

 

3.3.1.1.5.1.1.5. MYL2 

The myosin light chain 2 (MYL2) gene is located on the long arm of chromosome 

12 (12q24.11). MYL2 is a protein-coding gene that encodes the regulatory light chain 

associated with cardiac myosin beta (slow) heavy chain. MYL2 is expressed 

predominantly in the heart. Mutations in MYL2 are associated with mid-left ventricular 

chamber type HCM (242). 

 

3.3.1.1.5.1.1.6. MYL3 

The myosin light chain 3 (MYL3) gene is located on the short arm of chromosome 

3 (3p21.31). MYL3 is a protein-coding gene that encodes the myosin light chain 3. MYL3 

is expressed predominantly in the heart. Mutations in MYL3 cause mid-left ventricular 

chamber type HCM (243). 

 

3.3.1.1.5.1.1.7. TNNI3 

The troponin I3, cardiac type (TNNI3) gene is located on the long arm of 

chromosome 19 (19q13.42). TNNI3 is a protein-coding gene that encodes Troponin I 

(TnI)-cardiac protein. TnI together with troponin C (TnC) and troponin T (TnT) forms 

the troponin complex of the thin filament of striated muscle. TnI is the inhibitory subunit 

responsible for blocking actin-myosin interactions (enabling relaxation). TNNI3 is 
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expressed only in the myocardium. Mutations in TNNI3 cause familial HCM type 7 and 

familial RCM (244). 

 

3.3.1.1.5.1.1.8. ACTC1 

The actin alpha cardiac muscle 1 (ACTC1) gene is located on the long arm of 

chromosome 15 (15q14). ACTC1 is a protein-coding gene that encodes cardiac muscle 

alpha actin (belonging to the actin family). The alpha actins are expressed in muscle 

tissues, and represent a predominant constituent of the contractile apparatus. Mutations 

in ACTC1 have been associated with familial HCM and idiopathic DCM (245). 

 

3.3.1.1.5.1.2. Other genes 

3.3.1.1.5.1.2.1. ACTN2 

The actinin alpha 2 (ACTN2) gene is located on the long arm of chromosome 1 

(1q43). ACTN2 is a protein-coding gene that encodes a muscle-specific alpha actinin 

isoform, which is expressed in both heart and skeletal muscles (246).  

 

3.3.1.1.5.1.2.2. ANKRD1 

The ankyrin repeat domain 1 (ANKRD1) gene is located on the long arm of 

chromosome 10 (10q23.31). ANKRD1 is a protein-coding gene that encodes cardiac 

ankyrin repeat protein. Interactions between cardiac ankyrin repeat protein and the 

sarcomeric proteins titin and myopalladin propose that it can be implicated in the 

myofibrillar stretch-sensor system (247). ANKRD1 is greatly expressed in cardiac and 

skeletal muscles (248). 

 

3.3.1.1.5.1.2.3. CSRP3 

The cysteine and glycine rich protein 3 (CSRP3) gene is located on the short arm 

of chromosome 11 (11p15.1). CSRP3 is a protein-coding gene that encodes cysteine and 

glycine-rich protein 3 (also known as muscle LIM protein or cardiac LIM protein), a 

member of LIM-domain proteins, implicated in regulation of cellular differentiation and 

development. CSRP3 is expressed in the cardiac and skeletal muscles. Mutations in 

CSRP3 are presumed to cause heritable HCM and DCM (249,250). 
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3.3.1.1.5.1.2.4. FHL1 

The four-and-a-half LIM domains 1 (FHL1) gene is located on the long arm of 

chromosome X (Xq26.3). FHL1 is a protein-coding gene that encodes four-and-a-half 

LIM domains protein 1, a member of the four-and-a-half LIM only protein family. FHL1 

is expressed in the fat, heart, and several other tissues. Mutations in FHL1 have been 

found in Emery-Dreifuss muscular dystrophy (251). 

 

3.3.1.1.5.1.2.5. GLA 

The galactosidase alpha (GLA) gene is located on the long arm of chromosome X 

(Xq22.1). GLA is a protein-coding gene that encodes enzyme alpha-galactosidase A. GLA 

has a ubiquitous expression in tissues. Mutations in GLA have an effect on the synthesis 

and stability of alpha-galactosidase A, and cause Fabry disease, a rare lysosomal storage 

disorder (252). 

 

3.3.1.1.5.1.2.6. LAMP2 

The lysosomal associated membrane protein 2 (LAMP2) gene is located on the long 

arm of chromosome X (Xq24). LAMP2 is a protein-coding gene that encodes lysosomal 

associated membrane protein-2 (LAMP-2), a member of the family of membrane 

glycoproteins. It may play a role in the maintenance, protection, and adhesion of the 

lysosome. LAMP2 has a ubiquitous expression in tissues (253). 

 

3.3.1.1.5.1.2.7. PLN 

The phospholamban (PLN) gene is located on the long arm of chromosome 6 

(6q22.31). PLN is a protein-coding gene that encodes phospholamban, a main regulator 

of cardiac diastolic function. PLN is expressed in the heart as well as in other tissues in 

lower amounts. Mutations in PLN cause familial HCM and inherited human DCM with a 

refractory congestive HF (254). 
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3.3.1.1.5.1.2.8. PRKAG2 

The protein kinase AMP-activated non-catalytic subunit gamma 2 (PRKAG2) gene 

is located on the long arm of chromosome 7 (7q36.1). PRKAG2 is a protein-coding gene 

that encodes the γ2 regulatory subunit of AMP-activated protein kinase (AMPK). AMPK 

is an energy-sensing enzyme that monitors cellular energy status. PRKAG2 has a 

ubiquitous expression in tissues. Mutations in PRKAG2 have been associated with 

familial HCM, Wolff-Parkinson-White syndrome, as well as glycogen storage disease of 

the heart (255). 

 

3.3.1.1.5.1.2.9. JPH2 

Junctophilin 2 (JPH2) gene is located on the long arm of chromosome 20 

(20q13.12). Junctional complexes between endoplasmic/sarcoplasmic reticulum and the 

plasma membrane are a common structural feature of all excitable cells. They enable 

communication between intracellular ion channels and cell surface. The protein encoded 

by JPH2, junctophilin 2, is a component of junctional complexes (256). 

 

3.3.1.1.5.1.2.10.  DSG2 

Desmoglein 2 (DSG2) gene is located on the long arm of chromosome 18 (18q12.1). 

DSG2 encodes desmoglein 2, a member of the desmoglein family. Desmogleins are Ca2+-

binding transmembrane glycoprotein constituents of desmosomes (which are cell-cell 

junctions between cell types that participate in intense mechanical stress, like in the 

myocardium). Mutations in DSG2 have been associated with arrhythmogenic right 

ventricular dysplasia, familial, 10 (257). 

 

3.3.1.1.5.1.2.11. TRPM4 

Transient receptor potential cation channel subfamily M member 4 (TRPM4) gene 

is located on the long arm of chromosome 19 (19q13.33). The protein encoded by TRPM4 

is a calcium-activated nonselective ion channel. Although the activity of the encoded 

protein increases with rising intracellular Ca2+ levels, this channel does not transport 

calcium (258). 
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3.3.1.1.5.1.2.12. TTN 

Titin (TTN) gene is located on the long arm of chromosome 2 (2q31.2). TTN 

encodes titin, an abundant protein in the striated muscle. One titin molecule stretches over 

half the length of a sarcomere. It guides the contractile machinery assembly in muscle 

cells. Mutations in TTN are associated with familial HCM 9 (259). 

 

3.3.1.1.5.1.2.13. RYR1 

Ryanodine receptor 1 (RYR1) gene is located on the long arm of chromosome 19 

(19q13.2). Ryanodine receptor 1 is a calcium channel in the sarcoplasmic reticulum. 

Mutations in RYR1 are associated with minicore myopathy along with external 

ophthalmoplegia, malignant hyperthermia susceptibility, and central core disease (260).  

 

3.3.1.1.5.1.2.14. NEXN 

Nexilin F-actin binding protein (NEXN) gene is located on the short arm of 

chromosome 1 (1p31.1). Nexilin F-actin binding protein is an actin-binding protein with 

the most probable function in cell migration and adhesion. Mutations in NEXN have been 

associated with DCM (261). 

 

3.3.1.1.5.1.2.15.  DSC2 

Desmocollin 2 (DSC2) gene is located on the long arm of chromosome 18 (18q12.1). 

Desmocollin 2 is a member of the desmocollin protein family. Desmocollins are one of 

main constituents of the desmosome. Desmosomes are cell-cell junctions found mostly 

in cells experiencing mechanical stress. Mutations in DSC2 are associated with 

arrhythmogenic right ventricular dysplasia-11 (262). 

 

3.3.1.1.5.1.2.16.  ABCC9 

ATP binding cassette subfamily C member 9 (ABCC9) gene is located on the short 

arm of chromosome 12 (12p12.1). ATP binding cassette subfamily C member 9 is a 

member of the superfamily of ATP-binding cassette (ABC) transporters. They transport 

diverse molecules across intra- and extra-cellular membranes. Mutations in ABCC9 are 

associated with DCM type 10 (263). 
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3.3.1.1.5.1.2.17.  DSP 

Desmoplakin (DSP) gene is located on the short arm of chromosome 6 (6p24.3). 

Desmoplakin anchors intermediate filaments to desmosomal plaques and establishes a 

necessary element of functional desmosomes. Mutations in DSP cause several 

cardiomyopathies and keratodermas (264). 

 

3.3.1.1.5.1.2.18. FBN1 

Fibrillin 1 (FBN1) gene is located on the long arm of chromosome 15 (15q21.1). 

Fibrillin 1 is a member of the fibrillin protein family. Fibrillin-1 is an extracellular matrix 

glycoprotein, a constituent of calcium-binding microfibrils, which enable force-bearing 

structural support. Mutations in FBN are associated with Marfan syndrome, Shprintzen-

Goldberg syndrome, Weill-Marchesani syndrome, neonatal progeroid syndrome, and 

ectopia lentis syndrome (265). 

 

3.3.1.1.5.1.2.19.  CTF1 

Cardiotrophin 1 (CTF1) gene is located on the short arm of chromosome 16 

(16p11.2). Cardiotrophin 1 is a cytokine that leads to cardiac myocyte hypertrophy in 

vitro (266). 

 

3.3.1.1.5.1.2.20.  CACNA1C 

Calcium voltage-gated channel subunit alpha1 C (CACNA1C) gene is located on 

the short arm of chromosome 12 (12p13.33). Calcium voltage-gated channel subunit 

alpha1 C is an alpha-1 subunit of a voltage-dependent calcium channel. Calcium channels 

perform the Ca2+ ions influx into the cell upon membrane polarization. The alpha-1 

subunit constitutes the pore of the channel (267). 

 

3.3.1.1.5.1.2.21.  ELN 

Elastin (ELN) gene is located on the long arm of chromosome 7 (7p11.23). Elastin 

is a constituent of elastic fibers. Mutations and deletions in ELN are associated with 

autosomal dominant cutis laxa and supravalvular aortic stenosis (268). 
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3.3.1.1.5.1.2.22. NOTCH1 

Notch receptor 1 (NOTCH1) gene is located on the long arm of chromosome 9 

(9q34.3). Notch receptor 1 is a member of the NOTCH protein family. Notch signaling 

controls interreactions between adjoining cells. Notch receptor 1 has a role in the 

development of different tissues and cells. Mutations in NOTCH1 are associated with 

aortic valve disease, T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, 

head and neck squamous cell carcinoma, and Adams-Oliver syndrome (269). 

 

3.3.1.1.5.1.2.23. PTPN11 

Protein tyrosine phosphatase non-receptor type 11 (PTPN11) gene is located on the 

long arm of chromosome 12 (12q24.13). Protein tyrosine phosphatase non-receptor type 

11 is a member of the protein tyrosine phosphatase (PTP) family. PTP signaling controls 

several different cellular processes such as cell growth and differentiation, as well as 

mitotic cycle and oncogenic transformation. Mutations in PTPN1 are a cause of Noonan 

syndrome and acute myeloid leukemia (270). 

 

3.3.1.1.5.1.2.24. MYH6 

Myosin heavy chain 6 (MYH6) gene is located on the long arm of chromosome 14 

(14q11.2). Cardiac muscle myosin contains 2 light chain subunits, 2 heavy chain subunits, 

and 2 regulatory subunits. MYH6 encodes the alpha heavy chain subunit of cardiac 

myosin. Mutations in MYH6 cause familial HCM and atrial septal defect 3 (271). 

 

3.3.1.1.5.1.2.25.  RBM20 

RNA binding motif protein 20 (RBM20) gene is located on the long arm of 

chromosome 10 (10q25.2). RNA binding motif protein 20 binds RNA and controls 

splicing. Mutations in RBM20 have been associated with familial DCM (272). 

 

3.3.1.1.5.1.2.26.  DMD 

Dystrophin (DMD) gene is located on the short arm of chromosome X (Xp21.2-

p21.1) (273). Its protein product dystrophin connects the sarcomere to the extracellular 

matrix shielding the sarcolemma from contraction-produced injury (274). DMD gene is 
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the greatest in human genome (274,275). There are at least 17 DMD transcript variants 

(275). The mutation are frequent in DMD gene (274). Deletion, duplication, and point 

mutation at this gene locus can cause Duchenne muscular dystrophy, Becker muscular 

dystrophy, or cardiomyopathy (273).  

 

3.3.1.1.5.1.2.27. LAMA4 

Laminin subunit alpha 4 (LAMA4) gene is located on the long arm of chromosome 

6 (6q21). Laminins are extracellular matrix glycoproteins, the principal non-collagenous 

components of basement membranes. They play a role in signaling, migration, adhesion, 

differentiation, and metastasis. Laminins contain 3 non-identical chains. Each of the 

chains is encoded by a distinct gene. LAMA4 encodes the alpha chain isoform laminin, 

alpha 4. Its precise role is unknown (276). 

 

3.3.1.1.5.1.2.28.  SDHA 

Succinate dehydrogenase complex flavoprotein subunit A (SDHA) gene is located 

on the short arm of chromosome 5 (5p15.33). Succinate dehydrogenase complex 

flavoprotein subunit A is the principal catalytic subunit of succinate-ubiquinone 

oxidoreductase, a part of the mitochondrial respiratory chain. Mutations in SDHA gene 

have been associated with Leigh syndrome (277). 

 

3.3.1.1.5.1.2.29.  HCN4 

Hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4) 

gene is located on the long arm of chromosome 15 (15q24.1). Hyperpolarization activated 

cyclic nucleotide gated potassium channel 4 is essential for the cardiac-pacemaking 

process. Mutations in HCN4 gene have been linked to AF with bradyarrhythmia (familial 

sinus bradycardia) (278). 

 

3.3.1.1.5.1.2.30. PKP2 

Plakophilin 2 (PKP2) gene is located on the short arm of chromosome 12 

(12p11.21). Plakophilin proteins have a role in connecting cadherins to the cytoskeleton’s 

intermediate filaments. PKP2 gene is necessary to maintain transcription of genes 
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controlling intracellular Ca2+ cycling. Mutations in this gene are associated with Brugada 

syndrome, ACM, and idiopathic ventricular fibrillation (279). 

 

3.3.1.1.5.1.2.31.  PDLIM3 

PDZ and LIM domain 3 (PDLIM3) gene is located on the long arm of chromosome 

4 (4q35.1). PDZ and LIM domain 3 protein contains a PDZ and a LIM domains, which 

indicates that it may be implicated in cytoskeletal assembly. It colocalizes with skeletal 

muscle alpha-actinin-2 at the Z lines. Aberrant alternative splicing of PDLIM3 may be 

involved in myotonic dystrophy (280). 

 

3.3.1.1.5.1.2.32.  NKX2-5 

NK2 homeobox 5 (NKX2-5) gene is located on the long arm of chromosome 5 

(5q35.1). NK2 homeobox 5 is a homeobox-containing transcription factor involved in 

heart development. Mutations in NKX2-5 gene cause atrial septal defect with AV 

conduction defect, tetralogy of Fallot, and congenital hypothyroidism non-goitrous type 

5 (281). 

 

3.3.1.1.5.1.2.33.  MYPN 

Myopalladin (MYPN) gene is located on the long arm of chromosome 10 (10q21.3). 

MYPN encodes a protein, which interacts with nebulette in the cardiac muscle. 

Myopalladin has both structural and regulatory functions (282).  

 

3.3.1.1.6. Blood markers 

A complete blood count was done from a whole blood sample using a hematology 

analyzer. 

Serum and plasma samples were used for blood-markers testing. Serum was 

prepared by allowing the whole blood samples to clot after collection, by leaving it 

undisturbed at room temperature, followed by centrifugation performed at 3500 

revolutions per minute (rpm) for 15 minutes. The plasma was prepared by centrifugation 

of whole blood samples, performed at 3500 rpm for 15 minutes.  
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Blood-markers testing included: glucose, urea, creatinine, uric acid, sodium, 

potassium, calcium, alanine transaminase (ALT), aspartate transaminase (AST), creatine 

kinase (CK), creatine kinase MB isoenzyme (CK-MB), lactate dehydrogenase (LDH), 

troponin, N-terminal prohormone of brain natriuretic peptide (NT-proBNP), total 

cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) 

cholesterol, triglycerides, total protein, and albumin. Estimated glomerular filtration rate 

(eGFR) was calculated using Cockcroft-Gault equation. 

 

3.3.1.1.7. Transthoracic echocardiography with Doppler 

A transthoracic ECHO with Doppler was performed. ECHOs were recorded in real 

time during 3 cardiac cycles in the standard parasternal (long-axis) and apical views 

(apical 4, apical 2, and apical long). Parasternal short-axis views were acquired at 3 levels: 

basal, midpapillary, and apical. Apical 4-chamber view was used for right ventricular 

evaluation. Peak velocity of the LVOT was recorded from the apical 5-chamber view 

using pulse Doppler and used to calculate the pressure gradient. 

The following parameters were registered: left atrial (LA) size, left atrial volume 

(LAV), left atrial volume in systole (LAVs), transmitral maximal pressure gradient (MV 

maxPG), transmitral mean pressure gradient (MV meanPG), mitral valve velocity-time 

integral (MVVTI), mitral annulus diameter at end-diastole (MADd), diastolic mitral 

annular area diameter (MAAd), mitral valve area (MVA), MR, vena contracta, effective 

regurgitant orifice area for mitral regurgitation (MR ERO), mitral regurgitation 

regurgitant volumes (MR RV), SAM, papillary muscle abnormalities, mitral leaflet 

abnormalities, calcification of mitral annulus, interventricular septal thickness at end-

diastole (IVSd), posterior LV wall thickness at end-diastole (PLWd), left ventricular 

internal dimension at end-systole (LVIDs), left ventricular internal dimension at end-

diastole (LVIDd), end-diastolic volume of the left ventricle (EDVLV), end-systolic 

volume of left ventricle (ESVLV), stroke volume of the left ventricle (SVLV), EFLV, 

LVOT maximal velocity (LVOT Vmax), LVOT peak gradient (LVOT maxPG), LVOT 

peak gradient (LVOT maxPG) after Valsalva maneuver, myocardial fibrosis, hypokinesia, 

akinesia, dyskinesia, hyperkinesia, ratio of peak velocity of early diastolic transmitral 

flow to peak velocity of early diastolic mitral annular motion as determined by pulsed 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

100 

 

wave Doppler (E/E'), diastolic dysfunction grade, aortic valve peak pressure gradient (AV 

maxPG), aortic valve mean pressure gradient (AV meanPG), aortic valvular velocity time 

integral (AVVTI), aortic valve peak velocity (AV Vmax), aortic valve area (AVA) by 

planimetry, aortic valve area (AVA) by Doppler, aortic regurgitation (AR), aortic valve 

(unicuspid/bicuspid/tricuspid), aortic root diameter (AO), aortic leaflet separation 

diameter (AOvs), ascending aorta diameter (AscAO), right atrial volume at end systole 

(RAVs), transverse aortic arch during end-diastole (TADd), tubular ascending aorta 

during end-diastole (TAAd), tricuspid regurgitation (TR), tricuspid annular plane systolic 

excursion (TAPSE), and right ventricle systolic pressure (RVSP). 

 

3.3.1.1.8. Cardiopulmonary exercise testing 

A progressive CPET with a cycle ergometer was conducted to evaluate participants’ 

cardiac, pulmonary, and circulatory functions. ECG was continuously monitored at rest, 

during the exercise, and in the recovery phase. Heart rate and blood pressure were 

regularly measured. At the beginning, resting baseline values were recorded for 3 minutes. 

Next, the participants pedaled for 3 minutes without any resistance at a pedal frequency 

of 60-70 rpm, and subsequently resistance has been constantly increased at the 

predetermined ramp rate of 10 W/minute. The CPET was ended, if participants voluntary 

stopped the exercise due to severe symptoms (like exhaustion or breathlessness), or were 

not able to keep pedal-frequency > 60 rpm, or if complications (such as significant ST-

segment deviation) arose.  

The following CPET parameters were registered: peak oxygen consumption (peak 

VO2), anaerobic threshold (AT), peak heart rate, peak respiratory exchange ratio (RER), 

and ventilatory efficiency slope (VE/VCO2 slope). 

 

3.3.1.1.9. Electrocardiography and ECG-holter-monitoring 

The electrocardiography was conducted in supine position using a standard 12-lead-

electrocardiograph. For identification of sporadic arrhythmia, participants wore an ECG-

holter-monitor for 24 hours and kept a diary of symptoms and activities.  

Heart rate and heart axis were determined. Based on ECG, heart rhythm was 

evaluated: presence of sinus rhythm, atrial flutter, AF, paroxysmal supraventricular 
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tachycardia (PSVT), and NSVT. Conduction parameters were registered as well: AV 

block I, AV block II (Mobitz 1), AV block II (Mobitz 2), AV block III, left bundle branch 

block (LBBB), right bundle branch block (RBBB), left anterior hemiblock, and right 

anterior hemiblock. Further, PR interval, QRS duration, Sokolow index, presence of 

significant Q wave, ST segment abnormalities, and negative T wave in ECG were also 

evaluated. 

 

3.3.1.2. Data analysis 

3.3.1.2.1. Data wrangling 

Most of the preparation, transformation, and structuring of raw genotypic and 

phenotypic data into format appropriate for further analysis, as well as data exploration 

were done using Python’s library Pandas v. 1.4.3 (283).  

 

3.3.1.2.2. Identification of HCM subphenotypes using clustering 

Since clustering is division of data into groups (clusters) of similar examples, and 

clustering here was done based on patients’ phenotypic data, groups of similar patients 

were found based on their phenotypic data. Therefore, identified clusters represent HCM 

subphenotypes, and terms clusters and subphenotypes were used interchangeably. 

Appropriately prepared phenotypic data were analyzed by clustering algorithms 

(unsupervised ML). Hierarchical clustering (agglomerative clustering, 

affinity=”euclidean”, linkage=”ward”) was accomplished employing Scikit-learn module 

v. 1.1.1. and SciPy library v. 1.8.1 and dendrogram was visualized using MatPlotLib v. 

3.5.2 (283).  

Only first visits of the patients were included in the cluster analysis. The data from 

the second visit would interfere with cluster analysis, so they were omitted. No 

combinations of features were made — features were analyzed in their original form. 

Features containing > 30% missing values were eliminated from the dataset, and all other 

missing values were imputed by KNNImputer of Scikit-learn (n_neighbors = 12, weights 

= “uniform”). Numerical features were standardized employing Scikit-learn 

StandardScaler (283).  
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Since both numerical and categorical data were analyzed, to minimize further data 

manipulation, K-Prototypes algorithm from Kmodes package was used for clustering 

(appropriate for direct use, when dataset contain mixed categorical and numerical values). 

For determining the optimal number of clusters, elbow method was used and the result 

was validated using Kneelocator (https://pypi.org/project/kneed/). Cluster characteristics 

were visualized employing Seaborn library v. 0.11.2 (283).  

Currently there is no technique to interpret K-Prototypes clustering directly. For 

this reason, two indirect methods to interpret K-Prototypes clustering were used — first, 

decision tree classification (classes were set up as determined in the clustering, and 

predicted using on all the data used for clustering) with dendrogram generation (using 

sklearn.tree.plot_tree). The second method involved feature importance computation for 

random forest classification (using the fitted attribute of the random forest algorithm, 

feature_importances_), which was performed after the clustering (classes were set up as 

determined in the clustering). Since decision trees make locally optimal choices, random 

forest classification was performed to gain more stable and general feature importance 

(283). 

 

3.3.1.2.3. Genotype-phenotypic outcomes associations’ identification and 

generation of models for outcome prediction based on genotypic and 

phenotypic data 

Associations of genotype and phenotypic outcomes were evaluated used Python 

modules Scikit-learn and SHapley Additive exPlanation (SHAP). Models for outcome 

prediction based on genotypic and phenotypic data were built using Python modules 

Scikit-learn and SHAP. In order to generate synthetic samples for the minority class in 

classification tasks, Synthetic Minority Oversampling Technique (SMOTE) from 

imbalanced-learn library was used. Feature selection was performed using Scikit-learn 

SelectKBest (score_func = f_classif), SelectPercentile, Scikit-learn VarianceThreshold 

(threshold = 0.02), Recursive Feature Elimination, and domain knowledge. Feature 

contribution to model predictions was assessed using SHAP module v. 0.41.0 (283). 

The presence of diverse phenotypic outcomes was predicted in classification tasks. 

Altogether, 268 visits were covered by the analysis. For majority of participants, data 

https://pypi.org/project/kneed/
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were collected for 2 visits. For a minority of patients, data were obtained for the first visit 

only, due to loss of follow-up (283). 

Feature engineering was performed: numerical features were combined by division, 

categorical by multiplication, and numerical and categorical with each other by their 

multiplication. Custom features were also generated as a multiplication or sum of features 

that conjointly represent a rational clinical entity (283).  

Features with > 30% missing values were excluded from the analysis, and all other 

missing values were imputed employing KNNImputer of Scikit-learn (n_neighbors = 12, 

weights = “uniform”). Standardization of numerical features was performed using Scikit-

learn StandardScaler. Imputation and standardization were implemented as a pipeline, 

and the pipeline was applied to training and test data separately. Training sets contained 

188 (75.80%) visits (283). In cases where data were available for two visits, both visits 

were assigned to either training or test set exclusively (284).  

For Scikit-learn, estimators’ parameters default values were applied, and 

additionally, for logistic regression, class_weight = “balanced” was applied (283). For 

each classification task, tree-based pipeline optimization (TPOT) was also employed 

(285). 

Five-fold cross-validation was applied. Accuracy, precision, recall, F1-score, AUC, 

and average precision (AP, under the PR curve) were used as evaluation metrics (283). 

Global feature importance was assessed as mean absolute Shapley values per 

feature across the data, using SHAP v. 0.41.0 (283). 

 

3.3.1.2.4. Identification of genotype-specific echocardiogram findings  

Ultrasonic records in DICOM format were converted to JPG images using RadiAnt 

DICOM Viewer v. 2021.2.2. Images were grouped based on the views they represented. 

Ultrasonic images showing beginning of P-wave and T-wave on ECG (as a representative 

image of ventricular diastole and ventricular systole phase) were detached, each to a 

separate image batch. In order to remove background noise (patient details, date, heart 

rate, ECG, etc.), custom masker was used. The masker was built using Python OpenCV 

library. Masked ultrasonic images, showing only the region of interest, were used for 

further analysis (Figure 3). 
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Figure 3. Same ultrasonic image before (up) and after (down) custom masker 

application 

 

Genotype-specific ECHO findings were identified using Python DL and computer 

vision library Fast AI. This was accomplished by generation of DL models for 

classification of ultrasonic images, based on the underlying genotype and later analysis 

of the most decisive image regions (which most directed the prediction of the model 

towards one class or another). For the creation of classification model Autokeras was 

consulted. Models were built using the following setting: image_size = 224, batch_size = 

4, validation_percentage = 0.15, without data augmentation, using pretrained ResNet18. 
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3.3.2.  Molecular mechanisms of genotype-phenotype associations in HCM: 

Examination by machines using literature data 

3.3.2.1. HCM Map: Interactive knowledge resource about molecular 

mechanisms of HCM 

In order to generate a disease-specific knowledge base containing a formalized 

visual review of all principal molecular pathways implicated in HCM, HCM Map was 

generated (287).  

The HCM Map was built in Systems Biology Markup Language (SBML) using 

CellDesigner software v. 4.4.2. The HCM Map was visualized as a Systems Biology 

Graphical Notation (SBGN) diagram, and was made interactive and publicly available 

using Molecular Interaction NEtwoRks VisuAlization (MINERVA) platform (287). 

The HCM Map was constructed manually through the incorporation of molecular 

interactions extracted from PubMed database articles about human HCM molecular 

mechanisms. The construction begun with a comprehensive manual article search in 

PubMed, using relevant key phrases such as “gene hypertrophic cardiomyopathy,” 

“signaling hypertrophic cardiomyopathy,” “micro RNA hypertrophic cardiomyopathy,” 

“noncoding RNA hypertrophic cardiomyopathy,” and more. The filter “10 years” (for 

including the period 2010-2020) was applied for selection of the articles. A well- 

demonstrated “consensus” information was collected from major reviews, incorporated 

into the HCM Map in the first phase, and specific aspects from recent original research 

articles were integrated afterward (287). 

The following plugins were added: Gene set enrichment analysis (GSEA) plugin 

(286), Adverse drug reactions plugin (286), Disease-variant associations plugin (286), 

and Map exploration plugin (286). 

 

3.3.2.2. Molecular mechanisms of genotype-phenotype associations in HCM 

collected and represented by machines 

The study aimed to gather knowledge related to molecular aspects of HCM and its 

clinical presentations, which are dispersed in scientific papers. For this purpose, by the 

automated extraction of molecular mechanisms, 4 models were generated by machines 

and subsequently analysed (287). 
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3.3.2.2.1. Models’ generation 

The INDRA-assembled PubMed HCM model was automatically assembled, 

applying INDRA’s PubMed literature client with the search term “hypertrophic 

cardiomyopathy” (major_topic = True), and filtering out retrieved results published 

before January 1, 2010 (287). The literature was automatically read by REading and 

Assembling Contextual and Holistic mechanisms from text (REACH) reading system 

(288). The extracted statements were then grounded, mapped, preassembled (de-

duplicated and organized in a hierarchy), and assembled employing Cytoscape networks 

assembler (287).  

INDRA-assembled PubMed+PathwayCommons HCM model was assembled 

automatically using Pathway Commons database via BioPAX API of INDRA and 

PubMed literature client of INDRA (287). The first set of statements was gathered from 

the Pathway Commons database (221) via BioPAX API of INDRA, with “neighborhood” 

query, for genes: ACTC1, ACTN2, ANKRD1, CALR3, CASQ2, CAV3, CRYAB, CSRP3, 

DES, FHL1, FLNC, GAA, GLA, JPH2, LAMP2, LDB3, MYBPC3, MYH6, MYH7, MYL2, 

MYL3, MYLK2, MYOZ2, MYPN, NEXN, PLN, PRKAG2, TCAP, TNNC1, TNNI3, TNNT2, 

TPM1, TTR, and VCL (287). The second set of statements for this model was composed 

by PubMed literature client of INDRA with the search term “hypertrophic 

cardiomyopathy” (major_topic = True), and by filtering out retrieved results published 

before January 1, 2010 (287). The literature was automatically read using the REACH 

reading system (288). All the statements from both sets were gathered, grounded, mapped, 

preassembled (de-duplicated and organized in a hierarchy), and later assembled 

employing networks assembler of Cytoscape (287).  

Statements for Truncated INDRA DB model were drawn from the INDRA 

Database with the MeSH query constraint “Cardiomyopathy, Hypertrophic, Familial.” 

Only completely correctly extracted statements were included into the model. The 

criterion for correctness was that all aspects of the statement (labels, subject, object, 

interaction direction, and type) had to be extracted the identically as careful manual 

curation would. The statements then were manually transcribed as interactions and nodes 

in a network table in XLSX format (287). 
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Statements for INDRA DB model were drawn from the INDRA Database with the 

MeSH query constraint “Cardiomyopathy, Hypertrophic, Familial.” All statements found 

were included into the model. The statements were transcribed as interactions and nodes 

in a network table in XLSX format (287). 

 

3.3.2.2.2. Network analysis 

For further network analysis, all models were imported to Cytoscape v. 3.8.2 (289) 

and later uploaded to NDEx v. 2.5.0 (290–292). Top 10% of elements for each of the 12 

centrality measures [closeness, eccentricity, betweenness, degree, clustering coefficient, 

radiality, bottleneck, stress, edge percolated component (EPC), density of maximum 

neighborhood component (DMNC), maximum neighborhood component (MNC), 

maximal clique centrality (MCC)] in each network were visualized (287) employing the 

Cytoscape CytoHubba app v. 0.1 (293) and uploaded to NDEx (287). Partition of nodes 

into shells, based on the rank of their importance in the network, was performed 

employing the Cytoscape Wk-shell-decomposition app v. 1.1.0 (287,294). Models with a 

lower level of noise were created employing the Cytoscape PE-measure app v. 1.0 

(287,295). 

 

3.3.2.3. Molecular mechanisms of different clinical presentations of HCM 

collected and represented by machines 

3.3.2.3.1. Generation of models 

Molecular mechanisms of HCM and its various clinical presentations were 

compiled using the INDRA database (227). From all PubMed articles published after 1 

January 2010, molecular mechanisms were collected in the form of INDRA statements 

(296), separately for HCM and 19 of its clinical presentations. INDRA statements were 

found by PubMed identifiers (PMIDs) in the INDRA database, employing REST Client 

API. PMIDs were congregated through the INDRA PubMed client (228) using the search 

terms: hypertrophic cardiomyopathy, myofibrillar disarray, cardiomyocyte disarray, 

cardiomyocyte hypertrophy, myocardial fibrosis, myocardial hypercontractility, 

myocardial stiffness, impaired myocardial relaxation, impaired cardiac relaxation, 

myocardial remodeling, cardiac remodeling, diastolic dysfunction, coronary 
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microvascular dysfunction, myocardial ischemia, atrial fibrillation, sudden cardiac death, 

left ventricular outflow tract obstruction, heart failure, major adverse cardiovascular 

events, and rehospitalization (use_text_word = True, major_topic = True) (92). 

Intersections of the sets containing INDRA statements for HCM and its clinical 

presentations were generated; each of them was transcribed to a network table, visualized, 

analysed using Cytoscape v. 3.8.2 (92,289), and uploaded to NDEx v 2.5.0 (290–292). 

 

3.3.2.3.2. Network analysis 

The most important nodes of intersection networks were identified and partitioned 

into shells employing Cytoscape Wk shell decomposition v. 1.1.0 (92,294). The reliability 

of interactions was calculated using Cytoscape PE-measure application v. 1.0 (92,295), 

and models with a lower level of noise were created. Cooperatively working elements 

were found using NCMine Cytoscape plugin version 1.3.0 (92,297), whereas the nodes’ 

centrality scores were calculated using Cytoscape CytoHubba app version 0.1 (92,293). 

 

3.3.2.4. HCM clinical course dynamics on smaller scale 

The HCM Clinical interactive knowledge resource was built using CellDesigner v. 

4.4.2, following literature and databases exploration and compaction, as well as gathering 

of the elements found. The elements incorporated are in line with the HCM clinical 

practice guidelines. Components were annotated using the Minimal Information 

Requested In the Annotations of Models (MIRIAM). The HCM Clinical was converted 

into an interactive HCM knowledge resource and made publicly available using the 

Molecular Interaction NEtwoRks VisuAlization (MINERVA) platform v. 15.1.2. 

 

3.4. Definitions of terms 

Outcome is defined as any phenotypic expression that can be determined 

qualitatively, quantitatively, or by standard medical practices. 

(Normal) Sinus rhythm is the (normal) rhythm of the heart where electrical stimuli 

are initiated in the sinoatrial (SA) node.  

Cardiac cycle refers to all of the events that occur from the beginning of one 

heartbeat to the beginning of the next. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

109 

 

3.5. Statistical analyses 

Statistical analyses were conducted using licensed SPSS software v. 28.0.1.1. (IBM 

SPSS Statistics, Armonk, New York). Mean values of continuous variables were 

compared using ANOVA, whereas categorical variables were compared through the chi-

square test. The statistical significance was set at the p value of < 0.05. Phi coefficient 

was used as a measure of relationship between presence/absence of mutations in genes 

and presence/absence of phenotypic outcomes. Comparison of agreement between real 

and determined clusters were estimated using Cohen’s kappa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

110 

 

4. RESULTS 

4.1. Genotype-phenotype associations in HCM: Examination by machine 

learning algorithms using clinical data 

4.1.1. Genetic variants 

Detected variants are shown in Table 6. 

Table 6. Detected variants 

 

Mutated 

gene 

Genetic variant 

 

Coding DNA 

reference 

sequence 

Genetic variant 

 

Protein reference 

sequence 

Reference 

SNP ID  

Consequence Clinical significance by 

ClinVar database 

MYBPC3 c.3192dup p.Lys1065Glnfs*12 rs397516007 Frameshift 

Variant 

Pathogenic 

MYBPC3 c.1624G>C p.Glu542Gln rs121909374 Stop Gained Pathogenic 

MYBPC3 c.1615A>G p.Ile539Val - - - 

MYBPC3 c.772C>A p.Glu258Lys - - - 

MYBPC3 c.772G>A p.Glu258Lys rs397516074 Missense 

Variant 

Pathogenic/Likely 

pathogenic 

MYBPC3 c.2398G>A p.Gly800Arg rs727504574 Missense 

Variant 

Uncertain significance 

MYBPC3 c.2846dup p.Met949Ilefs*102 - - - 

MYBPC3 c.1458-1G>A p.? rs397515903 Splice 

Acceptor 

Variant 

Pathogenic 

MYBPC3 c.2689_2698del p.Gly897Alafs*24 - - - 

MYBPC3 c.407-1G>A p.? - - - 

MYBPC3 c.1591G>C p.Gly531Arg rs397515912 Missense 

Variant 

Pathogenic/Likely 

pathogenic 

MYBPC3 c.913_914del p.Phe305Profs*27 rs397516080 Frameshift 

Variant 

Pathogenic/Likely 

pathogenic 

MYBPC3 c.1020C>G p.Tyr340* - - - 

MYBPC3 c.1505G>A p.Arg502Gln rs397515907 Missense 

Variant 

Pathogenic/Likely 

pathogenic 

MYBPC3 c.2728C>A p.Pro910Thr rs397515985 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Likely benign(1);Uncertain 

significance(9) 

MYBPC3 c.1112C>G p.Pro371Arg rs397515887 Missense 

Variant 

Uncertain significance 

MYBPC3 c.1504C>T p.Arg502Trp rs375882485 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Likely 

pathogenic(2);Pathogenic(15

);Uncertain significance(2) 

MYBPC3 c.1928-2A>G p.? rs397515937 Splice 

Acceptor 

Variant 

Pathogenic 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

111 

 

Table 6 (continued). 

 

MYBPC3 c.2441_2443del  p.Lys814del rs727504288 Inframe 

Deletion 

Conflicting interpretations of 

pathogenicity 

Likely 

pathogenic(2);Uncertain 

significance(10) 

MYBPC3 c.3226_3227insT  p.Asp1076fs rs397516008 Frameshift 

Variant 

Pathogenic 

MYBPC3 c.517_519del p.? - - - 

MYBPC3 c.655G>C  p.Val219Leu rs397516068 Missense 

Variant 

Pathogenic/Likely 

pathogenic 

MYBPC3 c.1174del  p.Ala392Leufs*14 rs1565628486 Frameshift 

Variant 

Pathogenic 

MYBPC3 c.1789C>T p.Arg597Trp rs201596087 Missense 

Variant 

Uncertain significance 

MYBPC3 c.1090G>A p.Ala364Thr rs794727046 Missense 

Variant 

Pathogenic/Likely 

pathogenic 

MYBPC3 c.2429G>T p.Arg810Leu rs375675796 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Likely 

pathogenic(3);Uncertain 

significance(1) 

MYBPC3 c.1224-52G>A p.? rs786204336 Intron variant Pathogenic/Likely 

pathogenic 

MYBPC3 c.2373dupG p.Trp792Valfs rs397515963 Frameshift 

Variant 

Pathogenic 

MYBPC3 c.3065G>C p.Arg1022Pro rs397516000 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Likely 

pathogenic(3);Pathogenic(1)

;Uncertain significance(4) 

MYBPC3 c*26+2T>C p.? - - - 

MYH7 c.4130C>T p.Thr1377Met rs397516201 Missense 

Variant 

Pathogenic 

MYH7 c.2167C>T p.Arg723Cys rs121913630 Missense 

Variant 

Pathogenic 

MYH7 c.2346C>A  p.Ser782Arg rs730880736 Missense 

Variant 

Likely pathogenic 

MYH7 c.2302G>A  p.Gly768Arg rs727503260 Missense 

Variant 

Pathogenic/Likely 

pathogenic 

MYH7 c.2207T>C  p.Ile736Thr rs727503261 Missense 

Variant 

Pathogenic 

MYH7 c.2389G>A  p.Ala797Thr rs3218716 Missense 

Variant 

Pathogenic/Likely 

pathogenic 

MYH7 c.2722C>G  p.Leu908Val rs121913631 Missense 

Variant 

Pathogenic 

MYH7 c.715G>A  p.Asp239Asn rs397516264 Missense 

Variant 

Likely pathogenic 

TNNT2 c.274C>T p.Arg92Trp - - - 

TNNT2 c.517_519del p.Glu173del - - - 
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Table 6 (continued). 

 

 

TNNI3 c.557G>A p.Arg186Gln rs397516357 Missense 

Variant 

Pathogenic/Likely 

pathogenic 

TNNI3 c.511G>A p.Ala171Thr rs121917761 Missense 

Variant 

Uncertain significance 

TNNI3 c.625G>A  p.Glu209Lys rs727504268 Missense 

Variant 

Uncertain significance 

MYH6 c.5519A>G p.Lys1840Arg rs373629059 Missense 

Variant 

Uncertain significance 

MYH6 c.4193G>A p.Arg1398Gln rs150815925 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(7); 

Likely benign(1) 

TPM1 c.375-3C>T p.? rs202228866 Intron Variant Conflicting interpretations of 

pathogenicity 

Benign(5);Likely 

benign(2);Uncertain 

significance(2) 

TPM1 c.4871C>T p.? - - - 

MYL2 c.58A>C  p.Met20Leu - - - 

MYL3 c.170C>G p.Ala57Gly rs139794067 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Pathogenic(3); Likely 

pathogenic(2); Uncertain 

significance(6) 

PKP2 c.1114G>C p.Ala372Pro rs200586695 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(1); 

Likely benign(8) 

MYPN c.3335C>T p.Pro1112Leu rs71534278 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(2); 

Benign(4); Likely benign(5) 

ABCC9 c.3394_3395dupA

C 

p.Pro1133LeufsTer

70 

- - - 

JPH2 c.692G>A p.Arg231Gln rs761591158 Missense 

Variant 

Uncertain significance 

CSRP3 c.10T>C p.Trp4Arg rs45550635 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(3); 

Benign(3); Likely benign(6) 

CACNA1C c.3830T>A p.Leu1277His -  - - 

PDLIM3 c.331-537G>T p.? - - - 

PTPN11 c.824A>C p.Asn275Thr rs397507528 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(3); 

Benign(2) 

NEXN c.1419_1421delA

AG 

p.Arg475del rs794729091 - Conflicting interpretations of 

pathogenicity 

Uncertain significance(4); 

Likely benign(1) 
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Table 6 (continued). 

 

NEXN c.1949_1951delG

AG 

p.Gly650del rs397517853; 

rs760927219, 

- Conflicting interpretations of 

pathogenicity 

Uncertain significance(5); 

Likely benign(1) 

HCN4 c.3417-3425 

(cCTCCCCCAGg

a/cga) 

p.2423-2431 - - - 

ANKRD1 c.197G>A p.Arg66Gln rs150797476 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(3); 

Benign(1); Likely benign(5) 

DSC2 c.2393G>A p.Arg798Gln rs61731921 Missense 

Variant 

Benign 

DSC2 c.1787C>T p.Ala596Val rs148185335 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(1); 

Benign(1); Likely 

benign(10) 

PKP2 c.419C>T p.Ser140Phe rs150821281 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(4); 

Benign(1); Likely 

benign(11) 

DSG2 c.877A>G p.Ile293Val rs2230234 Missense 

Variant 

Benign 

TRPM4 c.536G>A p.Gly179Glu - - - 

HCN4 c.3317C>T p.Pro1106Leu - - - 

RYR1 c.14833C>T p.Arg4945Ter - - - 

DSP c.528T>A p.Ser176Arg - - - 

DSP c.913A>T p.Ile305Phe rs17604693 Missense 

Variant 

Benign/Likely benign 

FBN1 c.2956G>A p.Ala986Thr rs112287730 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(1); 

Benign(10); Likely 

benign(10) 

CTF1 c.277G>T p.Ala93Ser - - - 

NOTCH1 c.1060G>T p.Val354Leu - - - 

RBMD20 c.3584C>A p.Ser1195Tyr rs753102653 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(4); 

Likely benign(2) 

DMD c.8762A>G p.His2921Arg rs1800279 Missense 

Variant 

Benign/Likely benign 

TRPM4 c.3611C>T p.Pro1204Leu rs150391806 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(1); 

Benign(4); Likely benign(3) 

TRPM4 c.913G>A p.Gly305Arg - - - 

TRPM4 c.2158G>A p.Glu720Lys  - - - 
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Table 6 (continued). 

 

 

4.1.2. Identification of HCM subphenotypes using clustering 

Clusters of HCM patients were determined based on phenotypic data.  

 

4.1.2.1. Hierarchical clustering 

As a result of hierarchical cluster analysis, a dendrogram has been generated (a tree 

diagram, wherein the most similar HCM patients are placed on branches that are close 

together) (Figure 4). 

SDHA c.1367C>T p.Ser456Leu rs76896145 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(1); 

Benign(1) 

ELN c.1828G>C p.Gly610Arg - - - 

ELN c.1363G>A p.Ala455Thr - - - 

NKX2-5 c.73C>T p.Arg25Cys rs28936670 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(1); 

Benign(4); Likely benign(2) 

LAMA4 c.1436A>G p.Asp479Gly - - - 

FBN1 c.1081G>T p.Asp361Tyr - - - 

TTN c.16546G>T p.Asp5516Tyr rs72648940 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(8); 

Benign(2); Likely benign(8) 

TTN c.17721G>T p.Lys5907Asn - - - 

TTN c.30274C>T p.His10092Tyr rs72650011 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(1); 

Benign(7); Likely benign(5) 

TTN c.43690T>A p.Ser14564Thr rs181189778 Missense 

Variant 

Conflicting interpretations of 

pathogenicity 

Uncertain significance(6); 

Benign(2); Likely benign(5) 
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Figure 4. Dendrogram — result of hierarchical cluster analysis 

 

A set of clusters is derived from a dendrogram, by cutting at varied horizontal levels. 

In this case, the most prominent aggregations happen, if we divide all patients into 2, 4, 

or 6 clusters. 

An approximate interpretation of clustering-logic is presented in the form of a 

visualized decision tree (Figures 5-7). Feature importance of random forest trained on the 

same dataset was determined, with labels as assigned by hierarchical clustering (Tables 

7-9). 
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Figure 5. An approximate interpretation of clustering-logic for 2 clusters 
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Table 7. Feature importance — Top 35 features for distinguishing 2 clusters 
Feature Estimated importance 

LVOT Vmax 0.059688 

MVVTI 0.055190 

PLWd 0.053490 

Albumin 0.041790 
LDH 0.040685 
E/E' 0.039324 

MV maxPG 0.034698 

Heart axis [normal/left/right/extreme left] 0.028349 

LAV 0.023633 

AO 0.019106 

Random glucose 0.018822 

QRS duration 0.018626 

LAVs 0.018459 

Weight 0.017638 

RAVs 0.017498 

LA 0.016575 

EFLV 0.016143 

ESVLV 0.014526 

AV Vmax 0.014466 

AT (anaerobic threshold) 0.014386 

AV meanPG 0.013739 

AV maxPG 0.012468 

Sokolow index 0.012265 

Peak heart rate 0.011912 

Triglycerides 0.011650 

HDL 0.011483 

Peak VE/VCO2 0.011092 

Age 0.010751 

Calcium 0.010320 

TAPSE 0.010200 

MV meanPG 0.009797 

Creatine-kinase 0.009785 

AOvs 0.009746 
AscAO (mm) 0.009344 

Diastolic 0.009286 
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Figure 6. An approximate interpretation of clustering-logic for 4 clusters 
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Table 8. Feature importance — Top 40 features for distinguishing 4 clusters 

Feature Estimated importance 

LDH 0.061884 

AO (mm) 0.055299 

MV meanPG 0.046228 

AOvs 0.033707 

PLWd 0.029291 

E/E' 0.028763 

MVVTI 0.027145 

MV maxPG 0.026808 

AscAO 0.024202 

Peak VE/VCO2 0.022777 

RAVs 0.022454 

LVOT Vmax 0.020590 

AVVTI 0.019889 

HDL 0.019392 

Albumin 0.019389 

LAVs 0.016331 

Calcium 0.015438 

QRS duration 0.014732 

Weight 0.014536 

Heart murmur [no/yes] 0.014079 

LAV 0.013832 

NYHA class 

AV Vmax 

0.012940 

0.012782 

ESVLV 0.012625 

Random glucose 0.011767 

AVA by planimetry 0.011489 

LA 0.010609 

AV meanPG 0.010592 

EFLV 0.010500 

HCM in family history [no/yes] 0.010493 

Heart axis [normal/left/right/extreme left] 0.010487 

Diastolic dysfunction grade 0.010210 

AV maxPG 0.010105 

Peak heart rate 0.009650 

LVOT maxPG - Valsalva maneuver 0.009561 

Sokolow index 0.009249 

NT-BNP 0.009109 

RVSP 0.009008 

Heart rate 0.008841 

LVIDd 0.008485 
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Figure 7. An approximate interpretation of clustering-logic for 6 clusters 
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Table 9. Feature importance — Top 45 features for distinguishing 6 clusters 
Feature Estimated importance 
LDH 0.056124 

AO 0.054735 

MV meanPG 0.037623 

AOvs 0.032800 

Peak VE/VCO2 0.029921 

MVVTI 0.027920 

PLWd 0.026490 

LVOT Vmax 0.022202 

MV maxPG 0.021949 

E/E' 0.021736 

NT-BNP 0.019012 

LAV 0.018839 

RAVs 0.018373 

LA 0.017998 

Albumin 0.016098 

Heart murmur [yes/no] 0.015882 

AscAO 0.015036 

AVVTI 0.014664 

Heart axis [normal/left/right/extreme left] 0.014625 

Diastolic dysfunction grade 0.013922 

LAVs 0.013861 

Hypertrophic cardiomypathy 0.013206 

AVA by planimetry 0.012182 

Troponin 0.012135 

HDL 0.011520 

Heart rate 0.011465 

Height 0.011373 

EFLV 0.010996 

NYHA class 0.010971 

Sinus rhythm [yes/no] 0.010752 

Calcium 0.010746 

Weight 0.010435 

LDL 0.010257 

PR interval 0.009927 

Sokolow index 0.009848 

AV maxPG 0.009406 

Random glucose 0.009334 

ICD [no/yes] 0.009256 

IVSd 0.009047 

Total cholesterol 0.008985 

Atrial fibrillation [no/yes] 0.008854 
AV meanPG 0.008706 

Peak heart rate 0.008595 

Triglycerides 0.008520 

ESVLV 0.008393 
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4.1.2.2. K-Prototype clustering 

The optimal number of clusters in this dataset was found to be 4, which was 

determined using Elbow method (283). However, to systematically inspect the dataset, 

sets of 2, 3, 5, 6, and 7 clusters were also investigated in greater detail. None of the 

patients presented pleural effusion, venous congestion, phaeochromocytoma, acromegaly, 

amyloidosis, dyskinesia, and AV block III. 

An approximate interpretation of the clustering-logic is presented in the form of a 

visualized decision tree. Feature importance of random forest trained on the same dataset 

was determined, with labels as assigned by K-Prototype clustering. 

 

4.1.2.2.1. Two clusters 

Characteristics of the 2 clusters determined are shown in Figures 8-25. 

 

 

 

 

 

Figure 8. Two clusters setting, features: A — Age, B — Weight, C — Height, D — 

BMI 

P < 0.001 

P = 0.572 

P = 0.755 

P = 0.823 

A B 

C D 
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Figure 9. Two clusters setting, features: A — Sex, B — ICD, C — Fatigue, D — 

Dyspnea, E — Chest pain, F — Palpitations 

 

P = 0.019 P = 0.055 

p = 0.045 P = 0.357 

P = 0.908 

P = 0.321 

A B 
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Figure 10. Two clusters setting, features: A — Systolic blood pressure, B — 

Diastolic blood pressure, C — Heart murmur, D — Pretibial edema, E — Pulmonary 

crackles, F — HCM in family history 
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Figure 11. Two clusters setting, features: A — DCM in family history, B — SCD 

in age < 40 in family history, C — SCD in age 40-59 in family history, D — SCD in age 

≥ 60 in family history, E — Unexplained HF in family history, F — Cardiac 

transplantation in family history 

P = 1.000 
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Figure 12. Two clusters setting, features: A — Pacemaker/defibrillator implants in 

family history, B — Evidence of systemic disease in family history, C — Diabetes 

mellitus, D — Thyroid disease, E — Renal dysfunction, F — Hepatic dysfunction 
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Figure 13. Two clusters setting, features: A — COPD, B — Anemia, C — 

Neuromuscular disease, D — Genetic disease, E — LA, F — LAV 
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Figure 14. Two clusters setting, features: A — LAVs, B — MV maxPG, C — MV 

meanPG, D — MVVTI, E — MR, F — SAM 
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Figure 15. Two clusters setting, features: A — Papillary muscle abnormalities, B 

— Mitral leaflet abnormalities, C — Calcification of mitral annulus, D — IVSd, E — 

PLWd, F — LVIDs 
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Figure 16. Two clusters setting, features: A — LVIDd, B — EDVLV, C — ESVLV, 

D — SVLV, E — EFLV, F — LVOT Vmax, G — LVOT maxPG, H — LVOT maxPG 

— Valsalva maneuver 
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Figure 17. Two clusters setting, features: A — Myocardial fibrosis, B — 

Hypokinesia, C — Akinesia, D — Hyperkinesia, E — E/E', F — Diastolic dysfunction 

grade 
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Figure 18. Two clusters setting, features: A — AV maxPG, B — AV meanPG, C 

— AVVTI, D — AV Vmax, E — AVA by planimetry, F — AR, G — AO, H — AOvs 
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Figure 19. Two clusters setting, features: A — AscAO, B — RAVs, C — TR, D — 

TAPSE, E — RVSP, F — Sodium, G — Potassium, H — Calcium 
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Figure 20. Two clusters setting, features: A — Random glucose, B — Urea, C — 

Creatinine, D — Uric acid, E — ALT, F — AST, G — LDH, H — Creatine-kinase 

 

p = 0.004 

p = 0.388 

p = 0.160 p = 0.489 

p = 0.762 
p = 0.715 

p = 0.011 
p = 0.302 

A B 

C D 

E  F 

G H 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

135 

 

 

 

 

 

Figure 21. Two clusters setting, features: A — Troponin, B — NT-BNP, C — 

Albumin, D — LDL, E — HDL, F — Total cholesterol, G — Triglyceride, H — Peak 

VO2 
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Figure 22. Two clusters setting, features: A — AT, B — Peak HR, C — Peak RER, 

D — Peak VE/VCO2, E — Sinus rhythm, F — Atrial flutter 
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Figure 23. Two clusters setting, features: A — AF, B — PSVT, C — Non-sustained 

VT, D — Heart rate, E — AV block I, F — AV block II (Mobitz 1) 
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Figure 24. Two clusters setting, features: A — AV block II (Mobitz 2), B — LBBB, 

C — RBBB, D — Left anterior hemiblock, E — Right anterior hemiblock, F — PR 

interval 
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Figure 25. Two clusters setting, features: A — QRS duration, B — Sokolow index, 

C — Significant Q wave, D — ST segment abnormalities, E — Negative T wave 
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An approximate interpretation of clustering-logic for 2 clusters is presented in the 

form of visualized decision tree (Figure 26). Feature importance of random forest trained 

on the same dataset was determined, with labels as assigned by clustering (Table 10). 
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Figure 26. An approximate interpretation of clustering-logic for 2 clusters 
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Table 10. Feature importance — Top 35 features for distinguishing 2 clusters 

Feature Estimated importance 

PLWd 0.080593 

LVOT Vmax 0.074177 

Serum albumin 0.066732 

E/E' 0.060873 

LAV 0.035834 

MVVTI 0.035781 

LDH 0.035777 

LAVs 0.033546 

MV maxPG 0.032848 

AO 0.028702 

AV Vmax 0.023693 

AV maxPG 0.023128 

AOvs 0.020798 

Random glucose 0.016864 

MV meanPG 0.013688 

QRS duration 0.013257 

Age 0.013242 

Serum calcium 0.012902 

AV meanPG 0.012264 

NT-BNP 0.011428 

AVA by planimetry 0.011422 

RVSP 0.010845 

Peak VO2 0.010418 

Diastolic 0.010385 

LA 0.010270 

Peak HR 0.010065 

EFLV 0.009574 

RAVs 0.009526 

TAPSE 0.009351 

AT 0.008802 

PR interval 0.008787 

Sodium 0.008229 

Weight 0.008145 

AscAO 0.008133 

Troponin 0.008042 
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4.1.2.2.2. Three clusters 

Characteristics of 3 clusters determined are shown in Figures 27-44. 

 

 

 

      

Figure 27. Three clusters setting, features: A — Age, B — Sex, C — Weight, D — 

BMI, E — ICD, F — Fatigue 

p = 0.007 

p = 0.327 

p < 0.001 p < 0.001 

p = 0.048 p = 0.017 

A B 

C D 

E  F 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

144 

 

    

 

 

 

Figure 28. Three clusters setting, features: A — Dyspnea, B — Chest pain, C — 

Palpitations, D — Systolic blood pressure, E — Diastolic blood pressure 
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Figure 29. Three clusters setting, features: A — Heart murmur, B — Pulmonary 

crackles, C — Pretibial edema, D — HCM in family history, E — DCM in family history, 

F — SCD in age < 40 in family history 
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Figure 30. Three clusters setting, features: A — SCD in age 40-59 in family history, 

B — SCD in age ≥ 60 in family history, C — Unexplained HF in family history, D — 

Cardiac transplantation in family history, E — Pacemaker/defibrillator implants in family 

history, F — Evidence of systemic disease in family history 
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Figure 31. Three clusters setting, features: A — Diabetes mellitus, B — Thyroid 

disease, C — Renal dysfunction, D — COPD, E — Hepatic dysfunction, F — Anemia 
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Figure 32. Three clusters setting, features: A — Neuromuscular disease, B — 

Genetic disease, C — LA, D — LAV, E — LAVs, F — MV maxPG 
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Figure 33. Three clusters setting, features: A — MV meanPG, B — MVVTI, C — 

MR, D — SAM, E — Papillary muscle abnormalities, F — Mitral leaflet abnormalities 
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Figure 34. Three clusters setting, features: A — Calcification of mitral annulus, B 

— IVSd, C — PLWd, D — LVIDs, E — LVIDd, F — EDVLV 
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Figure 35. Three clusters setting, features: A — ESVLV, B — SVLV, C — EFLV, 

D — LVOT maxPG, E — LVOT Vmax, F — LVOT maxPG - Valsalva maneuver 
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Figure 36. Three clusters setting, features: A — Myocardial fibrosis, B — 

Hypokinesia, C — Akinesia, D — Hyperkinesia, E — E/E', F — Diastolic dysfunction 

grade 
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Figure 37. Three clusters setting, features: A — AV maxPG, B — AV meanPG, C 

— AVVTI, D — AV Vmax, E — AVA by planimetry, F — AO, H — AOvs 

 

p = 0.002 p < 0.001 

p = 0.014 p < 0.001 

p = 0.001 p < 0.001 

p < 0.001 

A B 

C D 

E F 

G 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

154 

 

 

 

 

 

Figure 38. Three clusters setting, features: A — AscAO, B — RAVs, C — TAPSE, 

D — RVSP, E — Sodium, F — Potassium, G — Calcium, H — Random glucose 
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Figure 39. Three clusters setting, features: A — Urea, B — Creatinine, C — Uric 

acid, D — ALT, E — AST, F — LDH, G — Creatine-kinase, H — Troponin 
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Figure 40. Three clusters setting, features: A — NT-BNP, B — Total protein, C — 

Albumin, D — LDL, E — HDL, F — Total cholesterol, G — Triglyceride, H — Peak 

VO2 
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Figure 41. Three clusters setting, features: A — AT, B — Peak HR, C — Peak RER, 

D — Peak VE/VCO2, E — Sinus rhythm, F — Atrial flutter 
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Figure 42. Three clusters setting, features: A — AF, B — PSVT, C — Non-

sustained VT, D — AV block I, E — AV block II (Mobitz 1), F — LBBB 
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Figure 43. Three clusters setting, features: A — RBBB, B — Left anterior 

hemiblock, C — Right anterior hemiblock, D — PR interval, E — QRS duration, F — 

Sokolow index 
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Figure 44. Three clusters setting, features: A — Significant Q wave, B — ST 

segment abnormalities, C — Negative T wave 

 

 

An approximate interpretation of clustering-logic for 3 clusters is presented in the 

form of visualized decision tree (Figure 45). Feature importance of random forest trained 

on the same dataset was determined, with labels as assigned by clustering (Table 11). 
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Figure 45. An approximate interpretation of clustering-logic for 3 clusters 
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Table 11. Feature importance — Top 40 features for distinguishing 3 clusters 

Feature Estimated importance 

AO 0.101542 

LDH 0.077974 

AOvs 0.075634 

PLWd 0.069079 

LVOT Vmax 0.049774 

MV meanPG 0.047133 

Peak VE/VCO2 0.043810 

Albumin 0.028354 

MVVTI 0.027188 

HCM in family history [yes/no] 0.025341 

AscAO (mm) 0.024483 

MV maxPG 0.021908 

AV Vmax 0.020156 

Heart murmur [yes/no] 0.017667 

E/E' 0.015789 

AV maxPG 0.015206 

QRS duration 0.015160 

Serum calcium 0.012818 

RVSP 0.012465 

BMI 0.011648 

Weight 0.010973 

AV meanPG 0.010871 

MR 0.010865 

AVA by planimetry 0.010404 

NYHA class 0.010226 

LVOT maxPG - Valsalva maneuver 0.009823 

Height 0.007761 

NT-BNP 0.007440 

RAVs 0.006483 

EDVLV 0.006385 

PR interval 0.006343 

Heart rate 0.006067 

ESVLV 0.006051 

LAV 0.005837 

TR 0.005767 

ALT 0.005680 

Anaerobic threshold 0.005592 

LVOT maxPG 0.005365 

LAVs 0.005342 

Total cholesterol 0.004976 
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4.1.2.2.3. Four clusters 

Characteristics of 4 clusters determined are shown in Figures 46-62. 

 

 

 

 

Figure 46. Four clusters setting, features: A — Age, B — Weight, C — Sex, D — 

BMI, E — ICD, F — Fatigue (283) 
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Figure 47. Four clusters setting, features: A — Dyspnea, B — Chest pain, C — 

Palpitations, D — Systolic blood pressure, E — Diastolic blood pressure (283) 
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Figure 48. Four clusters setting, features: A — Heart murmur, B — Pulmonary 

crackles, C — Pretibial edema, D — HCM in family history, E — DCM in family history, 

F — SCD in age < 40 in family history (283) 
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Figure 49. Four clusters setting, features: A — SCD in age 40-59 in family history, 

B — SCD in age ≥ 60 in family history, C — Unexplained HF in family history, D — 

Pacemaker/defibrillator implants in family history, E — Evidence of systemic disease in 

family history, F — Diabetes mellitus (283) 

p = 0.788 p = 0.008 

p = 0.018 
p = 0.143 

p = 0.440 p = 0.017 

A B 

C D 

E F 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

167 

 

 

 

 

Figure 50. Four clusters setting, features: A — Thyroid disease, B — Renal 

dysfunction, C — Hepatic dysfunction, D — COPD, E — Anemia, F — Genetic disease 

(283) 
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Figure 51. Four clusters setting, features: A — LA, B — LAV, C — LAVs, D — 

MV maxPG, E — MV meanPG, F — MVVTI (283) 
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Figure 52. Four clusters setting, features: A — MR, B — SAM, C — Papillary 

muscle abnormalities, D — Mitral leaflet abnormalities, E — Calcification of mitral 

annulus, F — IVSd (283) 
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Figure 53. Four clusters setting, features: A — PLWd, B — LVIDs, C — LVIDd, 

D — EDVLV, E — ESVLV, F — SVLV, G — EFLV, H — LVOT Vmax (283) 
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Figure 54. Four clusters setting, features: A — LVOT maxPG, B — LVOT maxPG 

— Valsalva maneuver, C — Myocardial fibrosis, D — Hypokinesia, E — Akinesia, F — 

Hyperkinesia (283) 
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Figure 55. Four clusters setting, features: A — E/E', B — Diastolic dysfunction 

grade, C — AV maxPG, D — AV meanPG, E — AVVTI, F — AV Vmax, G — AVA 

by planimetry (283) 
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Figure 56. Four clusters setting, features: A — AR, B — AO, C — AOvs, D — 

AscAO, E — RAVs, F — TR, G — TAPSE, H — RVSP (283) 
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Figure 57. Four clusters setting, features: A — Sodium, B — Potassium, C — 

Calcium, D — Random glucose, E — Urea, F — Creatinine, G — Uric acid, H — ALT 

(283) 
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Figure 58. Four clusters setting, features: A — AST, B — LDH, C — Creatine-

kinase, D — Troponin, E — NT-BNP, F — Total protein, G — Albumin, H — LDL (283) 
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Figure 59. Four clusters setting, features: A — HDL, B — Total cholesterol, C — 

Triglycerides, D — Peak VO2, E — AT, F — Peak HR, G — Peak RER, H — Peak 

VE/VCO2 (283) 

 

p = 0.004 p = 0.013 

p = 0.113 p = 0.002 
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Figure 60. Four clusters setting, features: A — Sinus rhythm, B — Atrial flutter, C 

— AF, D — PSVT, E — Non-sustained VT, F — AV block I  (283) 

p = 0.557 p = 0.490 

p = 0.071 p = 0.216 

p = 0.012 
p = 0.167 

A B 

C D 

E F 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

178 

 

 

 

 

Figure 61. Four clusters setting, features: A — AV block II (Mobitz 1), B — LBBB, 

C — RBBB, D — Left anterior hemiblock, E — Right anterior hemiblock, F — PR 

interval  (283) 

p = 0.266 p = 0.391 

p = 0.280 p = 0.308 

p = 0.490 

p = 0.447 
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Figure 62. Four clusters setting, features: A — QRS duration, B — Sokolow index, 

C — Significant Q wave, D — ST segment abnormalities, E — Negative T wave  (283) 

 

p < 0.001 p = 0.053 

p = 0.021 p = 0.003 

p = 0.126 
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An approximate interpretation of clustering-logic for 4 clusters is presented in the 

form of visualized decision tree (Figure 63). Feature importance of random forest trained 

on the same dataset was determined, with labels as assigned by clustering (Table 12). 
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Figure 63. An approximate interpretation of clustering-logic for 4 clusters 
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Table 12. Feature importance — Top 45 features for distinguishing 4 clusters 

Feature Estimated importance 

LDH 0.072933 

AO 0.063513 

AOvs 0.053407 

PLWd 0.042644 

LVOT Vmax 0.039411 

MV meanPG 0.034072 

MV maxPG 0.032063 

Peak VE/VCO2 0.031522 

Heart murmur [yes/no] 0.027068 

AV maxPG 0.026379 

AscAO 0.024348 

HCM in family history [yes/no] 0.024280 

Serum albumin 0.023722 

Weight 0.017189 

LVOT maxPG 0.017161 

MVVTI 0.015820 

AV meanPG 0.014308 

RVSP 0.014291 

NYHA class 0.013766 

AV Vmax 0.013508 

LA 0.013420 

AVVTI 0.013285 

BMI 0.013265 

LAV 0.013225 

Diastolic 0.013080 

LAVs 0.012232 

QRS duration 0.011427 

LVIDd 0.011076 

Serum calcium 0.010857 

NT-BNP 0.009222 

AVA by planimetry 0.009159 

E/E' 0.009069 

RAVs 0.008986 

EFLV 0.008804 

Serum creatinine 0.008517 

LVOT maxPG - Valsalva maneuver 0.008415 

Heart rate 0.008279 

LDL 0.007798 

Age 0.007743 

IVSd 0.007711 

Sokolow index 0.007636 

MR 0.007281 

Peak HR 0.006946 

Anaerobic threshold 0.006793 

ESVLV 0.006754 
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4.1.2.2.4. Five clusters 

Characteristics of 5 clusters determined are shown in Figures 64-81. 

 

 

 

Figure 64. Five clusters setting, features: A — Age, B — Sex, C — Weight, D — 

BMI, E — ICD, F — Fatigue 
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Figure 65. Five clusters setting, features: A — Dyspnea, B — Chest pain, C — 

Palpitations, D — Syncope, E — Systolic blood pressure, F — Diastolic blood pressure 

p = 0.076 
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p < 0.001 p = 0.028 

p = 0.086 

p = 0.014 
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Figure 66. Five clusters setting, features: A — Heart murmur, B — Pulmonary 

crackles, C — Pretibial edema, D — HCM in family history, E — DCM in family history, 

F — SCD in age < 40 in family history 

p < 0.001 p = 0.113 

p = 0.031 p < 0.001 

p = 0.457 
p = 0.378 
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C D 
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Figure 67. Five clusters setting, features: A — SCD in age 40-59 in family history, 

B — SCD in age ≥ 60 in family history, C — Unexplained HF in family history, D — 

Pacemaker/defibrillator implants in family history, E — Evidence of systemic disease in 

family history, F — Diabetes mellitus 

p = 0.620 
p = 0.369 

p = 0.569 p = 0.241 

p = 0.651 

p = 0.005 
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E F 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

187 

 

 

 

 

Figure 68. Five clusters setting, features: A — Thyroid disease, B — Renal 

dysfunction, C — Hepatic dysfunction, D — COPD, E — Anemia, F — Neuromuscular 

disease 

p = 0.043 
p = 0.096 

p = 0.693 p = 0.236 

p = 0.050 p = 0.479 
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Figure 69. Five clusters setting, features: A — Genetic disease, B — LA, C — LAV, 

D — LAVs, E — MV maxPG 

 

p < 0.001 
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Figure 70. Five clusters setting, features: A — MV meanPG, B — MVVTI, C — 

MR, D — SAM, E — Papillary muscle abnormalities, F — Mitral leaflet abnormalities 

p < 0.001 p = 0.007 

p < 0.001 

p < 0.001 

p = 0.134 p = 0.150 
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Figure 71. Five clusters setting, features: A — Calcification of mitral annulus, B — 

IVSd, C — PLWd, D — LVIDs, E — LVIDd, F — EDVLV 

 

 

p = 0.002 
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Figure 72. Five clusters setting, features: A — ESVLV, B — SVLV, C — EFLV, 

D — LVOT Vmax, E — LVOT maxPG, F — LVOT maxPG - Valsalva maneuver 

 

p < 0.001 p < 0.001 

p = 0.002 

p < 0.001 

p = 0.006 p = 0.001 
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Figure 73. Five clusters setting, features: A — Myocardial fibrosis, B — 

Hypokinesia, C — Akinesia, D — Hyperkinesia, E — E/E', F — Diastolic dysfunction 

grade 

 

p = 0.479 p = 0.418 
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Figure 74. Five clusters setting, features: A — AV maxPG, B — AV meanPG, C 

— AVVTI, D — AV Vmax, E — AVA by planimetry, F — AR, G — AO, H — AOvs 

 

p = 0.002 p < 0.001 

p < 0.001 p = 0.007 

p = 0.005 p = 0.126 

p < 0.001 p < 0.001 
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Figure 75. Five clusters setting, features: A — AscAO, B — RAVs, C — TR, D — 

TAPSE, E — Sodium, F — Potassium, G — Calcium, H — Random glucose 

 

 

p < 0.001 
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p < 0.001 
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Figure 76. Five clusters setting, features: A — Urea, B — Creatinine, C — Uric 

acid, D — ALT, E — AST, F — LDH, G — Troponin, H — Creatine-kinase 

 

p < 0.001 p = 0.061 

p = 0.005 p = 0.078 

p = 0.146 p < 0.001 

p = 0.261 
p = 0.104 
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Figure 77. Five clusters setting, features: A — NT-BNP, B — Total protein, C — 

Albumin, D — LDL, E — HDL, F — Triglycerides, G — Peak VO2, H — AT 

p = 0.041 
p = 0.149 

p < 0.001 p = 0.016 

p = 0.087 p = 0.052 

p < 0.001 p < 0.001 
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Figure 78. Five clusters setting, features: A — Peak RER, B — Peak VE/VCO2, C 

— Sinus rhythm, D — Atrial flutter, E — AF, F — PSVT 

 

 

 

p = 0.295 p = 0.002 
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Figure 79. Five clusters setting, features: A — Non-sustained VT, B — AV block 

I, C — AV block II (Mobitz 1), D — AV block II (Mobitz 2), E — LBBB, F — RBBB 

 

p = 0.006 p = 0.520 
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Figure 80. Five clusters setting, features: A — Left anterior hemiblock, B — Right 

anterior hemiblock, C — PR interval, D — QRS duration, E — Sokolow index, F — 

Significant Q wave 

 

 

p = 0.623 p = 0.659 

p = 0.428 p < 0.001 

p = 0.076 

p = 0.040 
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Figure 81. Five clusters setting, features: A — ST segment abnormalities, B — 

Negative T wave 

 

An approximate interpretation of clustering-logic for 5 clusters is presented in the 

form of visualized decision tree (Figure 82). Feature importance of random forest trained 

on the same dataset was determined, with labels as assigned by clustering (Table 13). 

 

p = 0.007 p = 0.180 

A B 
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Figure 82. An approximate interpretation of clustering-logic for 5 clusters 
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Table 13. Feature importance — Top 50 features for distinguishing 5 clusters 

Feature Estimated performance 

AO 0.064219 

LDH 0.055462 

EDVLV 0.050539 

MV meanPG 0.038548 

SVLV 0.036455 

ESVLV 0.034233 

AOvs 0.032217 

Peak VO2 0.025251 

Weight 0.024397 

Height 0.021852 

Peak VE/VCO2 0.020364 

RAVs 0.018605 

MV maxPG 0.017974 

Calcium 0.017628 

Albumin 0.016222 

PLWd 0.016192 

RVSP 0.015337 

LAVs 0.015174 

LVIDd 0.014638 

E/E' 0.014228 

NT-BNP 0.013645 

AVVTI 0.013381 

LAV 0.013117 

HCM in family history [yes/no] 0.012657 

Anaerobic threshold 0.012502 

Serum urea 0.012461 

AV meanPG 0.012326 

LVOT maxPG 0.011570 

Age 0.011425 

LVOT Vmax 0.011268 

AV maxPG 0.011199 

NYHA class 0.010263 

BMI 0.010210 

MVVTI 0.010070 

AscAO 0.009943 

QRS duration 0.009362 

TR 0.009313 

LA 0.009019 

LDL 0.008725 

Heart rate 0.008618 

Creatine-kinase 0.008565 

Troponin 0.008330 

EFLV 0.008095 

Triglycerides 0.007970 

MR 0.007632 

ALT 0.007523 

Random glucose 0.007375 

Heart murmur [yes/no] 0.007115 

AVA by planimetry 0.007060 

Uric acid 0.006565 
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4.1.2.2.5. Six clusters 

Characteristics of the 6 clusters determined are shown in Figures 83-100. 

 

 

 

Figure 83. Six clusters setting, features: A — Age, B — Sex, C — Weight, D — 

ICD, E — BMI, F — Fatigue 
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Figure 84. Six clusters setting, features: A — Dyspnea, B — Chest pain, C — 

Palpitations, D — Systolic blood pressure, E — Diastolic blood pressure 

 

 

p = 0.038 p = 0.859 
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p = 0.077 p = 0.006 
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Figure 85. Six clusters setting, features: A — Heart murmur, B — Pulmonary 

crackles, C — Pretibial edema, D — HCM in family history, E — DCM in family history, 

F — SCD in age < 40 in family history 

p < 0.001 p = 0.052 

p = 0.045 P < 0.001 

p = 0.633 
p = 0.669 
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Figure 86. Six clusters setting, features: A — SCD in age 40-59 in family history, 

B — SCD in age ≥ 60 in family history, C — Unexplained HF in family history, D — 

Cardiac transplantation in family history, E — Pacemaker/defibrillator implants in family 

history, F — Evidence of systemic disease in family history 

p = 0.459 

p = 0.078 

p = 0.083 p = 0.067 

p = 0.200 p = 0.240 

A B 

C D 

E F 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

207 

 

 

 

 

Figure 87. Six clusters setting, features: A — Diabetes mellitus, B — Thyroid 

disease, C — Renal dysfunction, D — Hepatic dysfunction, E — COPD, F — Anemia 

 

p = 0.194 
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Figure 88. Six clusters setting, features: A — Neuromuscular disease, B — Genetic 

disease, C — LA, D — LAV, E — LAVs, F — MV maxPG 

 

 

p = 0.447 p < 0.001 
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Figure 89. Six clusters setting, features: A — MV meanPG, B — MVVTI, C — 

SAM, D — MR, E — Papillary muscle abnormalities, F — Mitral leaflet abnormalities 
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Figure 90. Six clusters setting, features: A — Calcification of mitral annulus, B — 

IVSd, C — PLWd, D — LVIDs, E — LVIDd, F — EDVLV 
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Figure 91. Six clusters setting, features: A — ESVLV, B — SVLV, C — EFLV, D 

— LVOT Vmax, E — LVOT maxPG, F — LVOT maxPG - Valsalva maneuver 
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Figure 92. Six clusters setting, features: A — Myocardial fibrosis, B — 

Hypokinesia, C — Akinesia, D — Hyperkinesia, E — E/E', F — Diastolic dysfunction 

grade 

p = 0.580 p = 0.252 

p = 0.098 p = 0.580 

p < 0.001 p = 0.029 
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Figure 93. Six clusters setting, features: A — AV maxPG, B — AV meanPG, C — 

AVVTI, D — AV Vmax, E — AVA by planimetry, F — AO, G — AOvs, H — AR 
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Figure 94. Six clusters setting, features: A — AscAO, B — RAVs, C — TR, D — 

TAPSE, E — RVSP, F — Sodium, G — Potassium, H — Calcium 
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Figure 95. Six clusters setting, features: A — Random glucose, B — Urea, C — 

Creatinine, D — Uric acid, E — ALT, F — AST, G — LDH, H — Creatine-kinase 

p < 0.001 p = 0.005 

p = 0.013 
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p = 0.098 p = 0.028 

p < 0.001 p = 0.237 
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Figure 96. Six clusters setting, features: A — Troponin, B — NT-BNP, C — Total 

protein, D — Albumin, E — HDL, F — Total cholesterol, G — Triglycerides, H — Peak 

VO2 
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Figure 97. Six clusters setting, features: A — AT, B — Peak HR, C — Peak 

VE/VCO2, D — Sinus rhythm, E — Atrial flutter 
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Figure 98. Six clusters setting, features: A — AF, B — PSVT, C — Non-sustained 

VT, D — AV block I, E — AV block II (Mobitz 1), F — AV block II (Mobitz 2) 
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Figure 99. Six clusters setting, features: A — LBBB, B — RBBB, C — Left anterior 

hemiblock, D — Right anterior hemiblock, E — PR interval, F — QRS duration 
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Figure 100. Six clusters setting, features: A — Sokolow index, B — Significant Q 

wave, C — ST segment abnormalities, D — Negative T wave 

 

 

 

An approximate interpretation of clustering-logic for 6 clusters is presented in the 

form of a visualized decision tree (Figure 101). Feature importance of random forest 

trained on the same dataset was determined, with labels as assigned by clustering (Table 

14). 
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Figure 101. An approximate interpretation of clustering-logic for 6 clusters 
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Table 14. Feature importance — Top 35 features for distinguishing 6 clusters 

Feature Estimated importance 

AO 0.053284 

LDH 0.046597 

AOvs 0.040991 

MV meanPG 0.033790 

LVOT Vmax 0.026312 

PLWd 0.026020 

Peak VE/VCO2 0.024505 

Height 0.024011 

EDVLV 0.022810 

AV meanPG 0.022360 

LAV 0.021264 

LAVs 0.020985 

Peak VO2 0.020242 

AV maxPG 0.018780 

NT-BNP 0.018620 

RVSP 0.018227 

NYHA class 0.017358 

Albumin 0.016636 

Heart murmur [yes/no] 0.016513 

Serum calcium 0.015658 

MVVTI 0.015298 

AscAO 0.015032 

E/E' 0.014929 

SVLV 0.014906 

HDL 0.014718 

LA 0.014164 

Weight 0.014051 

AVVTI 0.013854 

ESVLV 0.013028 

RAVs 0.012670 

LDL 0.012563 

MV maxPG 0.012536 

Random glucose 0.012080 

Sex 0.012015 

LVIDd 0.011660 
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4.1.2.2.6. Seven clusters 

Characteristics of the 7 clusters determined are shown in Figures 102-118. 

 

 

 

 

Figure 102. Seven clusters setting, features: A — Age, B — Sex, C — Weight, D 

— BMI, E — ICD, F — Fatigue 
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Figure 103. Seven clusters setting, features: A — Dyspnea, B — Chest pain, C — 

Palpitations, D — Systolic blood pressure, E — Diastolic blood pressure 
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Figure 104. Seven clusters setting, features: A — Heart murmur, B — Pulmonary 

crackles, C — Pretibial edema, D — HCM in family history, E — DCM in family history, 

F — SCD in age < 40 in family history 
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Figure 105. Seven clusters setting, features: A — SCD in age 40-59 in family 

history, B — SCD in age ≥ 60 in family history, C — Unexplained HF in family history, 

D — Cardiac transplantation in family history, E — Pacemaker/defibrillator implants in 

family history, F — Evidence of systemic disease in family history 
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Figure 106. Seven clusters setting, features: A — Thyroid disease, B — Renal 

dysfunction, C — Hepatic dysfunction, D — COPD, E — Anemia, F — Neuromuscular 

disease 

p = 0.135 p = 0.593 

p = 0.117 p = 0.087 

p = 0.106 p = 0.122 

A B 

C D 

E F 
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Figure 107. Seven clusters setting, features: A — Genetic disease, B — LA, C — 

LAV, D — LAVs, E — MV maxPG, F — MV meanPG 

 

 

 

p = 0.006 

p < 0.001 

p < 0.001 p < 0.001 

p < 0.001 
p < 0.001 

A B 

C D 
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Figure 108. Seven clusters setting, features: A — MVVTI, B — MR, C — SAM, 

D — Papillary muscle abnormalities, E — Mitral leaflet abnormalities, F — Calcification 

of mitral annulus 

 

p < 0.001 p < 0.001 

p < 0.001 

p = 0.427 

p = 0.056 p < 0.001 

A B 

C D 
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Figure 109. Seven clusters setting, features: A — IVSd, B — PLWd, C — LVIDs, 

D — LVIDd, E — EDVLV, F — ESVLV, G — SVLV, F — EFLV 

 

p = 0.044 p < 0.001 

p = 0.180 p < 0.001 

p < 0.001 p < 0.001 

p < 0.001 

p < 0.001 

A B 

C D 

E F 

G H 
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Figure 110. Seven clusters setting, features: A — LVOT Vmax, B — LVOT maxPG, 

C — LVOT maxPG - Valsalva maneuver, D — Myocardial fibrosis, E — Hypokinesia, 

F — Akinesia 

 

p < 0.001 
p < 0.001 

p < 0.001 

p = 0.545 

p < 0.001 p = 0.440 
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Figure 111. Seven clusters setting, features: A — Hyperkinesia, B — E/E', C — 

Diastolic dysfunction grade, D — AV maxPG, E — AV meanPG, F — AVVTI 

 

 

 

p = 0.705 

p = 0.180 

p = 0.002 p < 0.001 

p < 0.001 p < 0.001 
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Figure 112. Seven clusters setting, features: A — AVA by planimetry, B — AR, C 

— AO, D — AOvs, E — AscAO, F — RAVs, G — TR, H — TAPSE 

p = 0.012 p = 0.284 

p < 0.001 p < 0.001 

p < 0.001 

p < 0.001 

p < 0.001 
p < 0.001 

A B 
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Figure 113. Seven clusters setting, features: A — RVSP, B — Sodium, C — 

Potassium, D — Calcium, E — Random glucose, F — Urea, G — Creatinine, H — Uric 

acid 

p < 0.001 

p = 0.158 

p = 0.017 

p < 0.001 

p < 0.001 
p < 0.001 

p < 0.001 p < 0.001 

A B 

C D 
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Figure 114. Seven clusters setting, features: A — ALT, B — AST, C — LDH, D 

— Creatine-kinase, E — Troponin, F — NT-BNP, G — Total protein, H — Albumin 

 

p = 0.011 p = 0.094 

p < 0.001 p = 0.324 

p = 0.149 p = 0.007 

p = 0.001 p < 0.001 
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Figure 115. Seven clusters setting, features: A — LDL, B — HDL, C — Total 

cholesterol, D — Triglycerides, E — A Peak VO2, F — Peak VE/VCO2, G — Peak HR, 

H — Peak RER 

p = 0.003 p = 0.002 

p = 0.037 
p = 0.159 

p < 0.001 

p = 0.003 p = 0.105 

p < 0.001 

A B 

C D 

E F 
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Figure 116. Seven clusters setting, features: A — Sinus rhythm, B — Atrial flutter, 

C — AF, D — PSVT, E — Non-sustained VT, F — AV block I 

p = 0.643 
p = 0.512 

p = 0.063 p = 0.772 

p = 0.023 p = 0.455 
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Figure 117. Seven clusters setting, features: A — AV block II (Mobitz 1), B — AV 

block II (Mobitz 2), C — LBBB, D — RBBB, E — Left anterior hemiblock, F — Right 

anterior hemiblock 

p = 0.122 p = 0.705 

p = 0.458 

p = 0.351 

p = 0.747 p = 0.512 

A B 

C D 

E F 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

239 

 

 

 

 

 

 

Figure 118. Seven clusters setting, features: A — PR interval, B — QRS duration, 

C — Sokolow index, D — Significant Q wave, E — ST segment abnormalities, F — 

Negative T wave 

 

p = 0.242 p < 0.001 

p < 0.001 

p = 0.002 

p = 0.014 p = 0.216 

A B 
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Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

240 

 

An approximate interpretation of clustering-logic for 7 clusters is presented in the 

form of visualized decision tree (Figure 119). Feature importance of random forest trained 

on the same dataset was determined, with labels as assigned by clustering (Table 15). 
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Figure 119. An approximate interpretation of clustering-logic for 7 clusters 
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Table 15. Feature importance — Top 35 features for distinguishing 7 clusters 

Feature Estimated importance 

SVLV 0.015489 

ESVLV 0.015328 

AOvs 0.015201 

MVVTI 0.015017 

LVIDd 0.014685 

NT-BNP 0.014286 

Peak VE/VCO2 0.012190 

LVOT maxPG - Valsalva maneuver 0.012095 

AscAO 0.011887 

Albumin 0.011760 

MV maxPG 0.011565 

QRS duration 0.011490 

Heart murmur [yes/no] 0.011335 

ALT 0.010735 

Sex 0.010719 

Serum calcium 0.010673 

Peak HR 0.010617 

RAVs 0.010432 

Serum urea 0.010237 

Serum creatinine 0.010163 

LVOT Vmax 0.010121 

Sokolow index 0.010029 

EFLV 0.010012 

HDL 0.009956 

BMI 0.009584 

Creatine-kinase 0.009566 

Systolic 0.009432 

Diastolic dysfunction grade 0.009342 

AV meanPG 0.009158 

Troponin 0.008994 

LDL 0.008901 

Total serum protein 0.008707 

Random glucose 0.008429 

Heart rate 0.008322 

TAPSE 0.008313 

 

4.1.3. Genotype-cluster associations 

4.1.3.1. Hierarchical clustering 

According to hierarchical clustering, there is no association between clusters and 

genotype (Figure 120). 
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Figure 120. Hierarchical clustering — dendrogram 
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4.1.3.2. K-Prototype clustering 

Some statistically significant correlations were found between clusters determined 

using K-Prototype clustering and mutated genes. 

 

4.1.3.2.1. Two clusters 

No statistically significant correlation between genotypes and subphenotypes 

(belonging to determined clusters) was found in the 2-subphenotypes (2-clusters) setting 

(Figure 121). 

 

 

 

Figure 121. Correlations between mutated genes and subphenotypes in 2-

subphenotypes (2-clusters) setting 

p = 1.000 p = 1.000 

p = 0.864 p = 0.439 

p = 1.000 
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4.1.3.2.2. Three clusters 

A statistically significant correlation between mutated TNNI3 and subphenotypes 

(p = 0.041) was found in the 3-subphenotypes (3-clusters) setting (Figure 122). 

 

 

 

 

Figure 122. Correlations between mutated genes and subphenotypes in 3-

subphenotypes (3-clusters) setting 

 

 

 

 

p = 0.065 p = 0.050 

p = 0.210 p = 0.041 

p = 0.310 
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4.1.3.2.3. Four clusters 

Statistically significant correlations between mutated MYBPC3 and subphenotypes 

(p = 0.038), and mutated TNNI3 and subphenotypes (p = 0.045) were found in the 4-

subphenotypes (4-clusters) setting (Figure 123).  

 

 

 

Figure 123. Correlations between mutated genes and subphenotypes in 4-

subphenotypes (4-clusters) setting (283) 

 

 

 

 

p = 0.204 p = 0.038 

p = 0.122 p = 0.045 

p = 0.490 
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4.1.3.2.4. Five clusters 

A statistically significant correlation between mutated MYH7 and subphenotypes (p 

= 0.045) was found in 5-subphenotypes (5-clusters) setting (Figure 124).  

 

 

 

 

Figure 124. Correlations between mutated genes and subphenotypes in 5-

subphenotypes (5-clusters) setting 

 

 

 

 

p = 0.045 p = 0.055 

p = 0.336 p = 0.050 

p = 0.659 
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4.1.3.2.5. Six clusters 

A statistically significant correlation between mutated MYBPC3 and subphenotypes 

(p = 0.044) was found in 6-subphenotypes (6-clusters) setting (Figure 125). 

 

 

 

 

Figure 125. Correlations between mutated genes and subphenotypes in 6-

subphenotypes (6-clusters) setting 

 

 

 

 

p = 0.073 
p = 0.044 

p = 0.073 p = 0.129 

p = 0.447 
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4.1.3.2.6. Seven clusters 

No statistically significant correlation between genotypes and subphenotypes 

(belonging to determined clusters) was found in 7-subphenotypes (7-clusters) setting 

(Figure 126). 

 

 

 

 

Figure 126. Correlations between mutated genes and subphenotypes in 7-

subphenotypes (7-clusters) setting 

 

 

p = 0.163 p = 0.291 

p = 0.165 p = 0.351 
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4.1.4.  Genotype-phenotype associations 

4.1.4.1.  Predicting phenotypic outcomes using only genetic data  

Performance of generated models and relationships between mutated genes and 

phenotypic outcomes have been shown in Tables 16-105. Some composite outcomes were 

predicted as well: signs (consisting of heart murmur, pulmonary crackles, pleural effusion, 

pretibial edema, and venous congestion), symptoms (consisting of fatigue, dyspnea, chest 

pain, palpitations, and syncope), mitral valve abnormalities (consisting of papillary 

muscle abnormalities, mitral leaflet abnormalities, calcification of mitral annulus, and 

SAM), ventricular conduction disorders (consisting of LBBB, RBBB, left anterior 

hemiblock, and right anterior hemiblock), left ventricular kinetics disorders (consisting 

of hypokinesia, akinesia, dyskinesia, hyperkinesia, and myocardial fibrosis), atrial 

conduction disorders (consisting of AV block I, AV block II [Mobitz 1], AV block II 

[Mobitz 2], and AV block III), myocardial injury — infarction (consisting of significant 

Q wave, ST segment abnormalities, negative T wave). 

 

Table 16. Predicting palpitations from mutated causative genes [Support:  

Yes (n = 14); No (n = 54)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.31 0.74 0.37 0.85 0.23 0.00 0.48 0.50 0.38 0.46 0.20 0.21 0.18 0.21 

RF 0.74 0.74 0.85 0.85 0.00 0.00 0.48 0.50 0.46 0.46 0.20 0.21 0.21 0.21 

Log Reg 0.44 0.79 0.59 0.89 0.14 0.00 0.48 0.50 0.36 0.50 0.20 0.21 0.18 0.21 

GaussianNB 0.26 0.26 0.26 0.26 0.26 0.26 0.48 0.50 0.40 0.40 0.20 0.21 0.18 0.18 

Ridge 0.74 0.74 0.85 0.85 0.00 0.00 0.48 0.50 0.46 0.46 0.20 0.21 0.21 0.21 

SVC 0.74 0.74 0.85 0.85 0.00 0.00 0.49 0.50 0.46 0.46 0.20 0.21 0.21 0.21 

Linear SVC 0.74 0.74 0.85 0.85 0.00 0.00 0.48 0.50 0.46 0.46 0.20 0.21 0.21 0.21 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 17. Relationships between mutated causative genes and palpitations (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

TNNT2 0.097529 

TNNI3 -0.058930 

MYL3 0.069403 

TPM1 0.069403 
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Between mutated causative genes and palpitations negligible relationships were 

found. 

 

Table 18. Predicting palpitations from mutated genes [Support: Yes (n = 14); No 

(n = 54)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.62 0.76 0.75 0.86 0.24 0.27 0.62 0.46 0.49 0.56 0.26 0.21 0.20 0.24 

RF 0.76 0.76 0.86 0.86 0.27 0.27 0.62 0.46 0.56 0.56 0.26 0.21 0.24 0.24 

Log Reg 0.59 0.79 0.71 0.88 0.26 0.12 0.64 0.65 0.50 0.53 0.31 0.31 0.21 0.23 

GaussianNB 0.28 0.28 0.27 0.27 0.29 0.29 0.64 0.49 0.44 0.44 0.31 0.21 0.19 0.19 

Ridge 0.78 0.78 0.87 0.87 0.29 0.29 0.63 0.65 0.57 0.57 0.30 0.30 0.25 0.25 

SVC 0.79 0.79 0.88 0.88 0.30 0.30 0.57 0.60 0.58 0.58 0.25 0.25 0.27 0.27 

Linear SVC 0.78 0.78 0.87 0.87 0.29 0.29 0.63 0.65 0.57 0.57 0.29 0.30 0.25 0.25 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 19. Relationships between mutated genes (and their combinations) and 

palpitations (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

TTN 0.173773 

PTPN11 0.186814 

HCN4 0.186814 

ND -0.161280 

 

Between mutated genes (and their combinations) and palpitations negligible 

relationships were found. 
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Table 20. Predicting fatigue from mutated causative genes [Support:  

Yes (n = 28); No (n = 40)] 

DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 21. Relationships between mutated causative genes and fatigue (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 0.080645 

TNNT2 0.162619 

MYBPC3 -0.070188 

TNNI3    0.095797 

TPM1 0.114920 

 

Between mutated causative genes and fatigue negligible relationships were found. 

 

Table 22. Predicting fatigue from mutated genes [Support: Yes (n = 28);  

No (n = 40)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.71 0.71 0.77 0.78 0.58 0.55 0.75 0.74 0.67 0.66 0.70 0.70 0.56 0.56 

RF 0.71 0.71 0.78 0.78 0.57 0.57 0.70 0.74 0.67 0.67 0.67 0.70 0.56 0.56 

Log Reg 0.75 0.71 0.80 0.78 0.68 0.55 0.74 0.74 0.73 0.66 0.70 0.70 0.61 0.56 

GaussianNB 0.71 0.71 0.80 0.80 0.47 0.47 0.77 0.77 0.65 0.65 0.75 0.75 0.57 0.57 

Ridge 0.71 0.71 0.78 0.78 0.57 0.57 0.75 0.75 0.67 0.67 0.70 0.70 0.56 0.56 

SVC 0.71 0.71 0.78 0.78 0.57 0.57 0.76 0.70 0.67 0.67 0.67 0.56 0.56 0.56 

Linear SVC 0.71 0.71 0.78 0.78 0.55 0.55 0.75 0.75 0.66 0.66 0.70 0.70 0.56 0.56 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

 

 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.65 0.65 0.75 0.76 0.40 0.33 0.68 0.66 0.59 0.58 0.60 0.54 0.48 0.48 

RF 0.65 0.65 0.76 0.76 0.37 0.33 0.68 0.66 0.59 0.58 0.60 0.54 0.48 0.48 

Log Reg 0.53 0.66 0.60 0.77 0.43 0.34 0.68 0.66 0.51 0.59 0.60 0.54 0.42 0.51 

GaussianNB 0.62 0.62 0.70 0.70 0.48 0.48 0.68 0.68 0.59 0.59 0.60 0.60 0.47 0.47 

Ridge 0.65 0.65 0.76 0.76 0.33 0.33 0.68 0.66 0.58 0.58 0.60 0.54 0.48 0.48 

SVC 0.63 0.63 0.75 0.75 0.32 0.32 0.65 0.65 0.57 0.57 0.51 0.51 0.47 0.47 

Linear SVC 0.65 0.65 0.76 0.76 0.33 0.33 0.68 0.66 0.58 0.58 0.60 0.54 0.48 0.48 
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Table 23. Relationships between mutated genes (and their combinations) and 

fatigue (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

TNNT2 0.162619 

TRPM4 0.135189 

TTN 0.324315 

NEXN 0.114920 

ABCC9 0.114920 

FBN1 0.114920 

PTPN11 0.114920 

LAMA4 0.114920 

TPM1 0.114920 

SDHA 0.114920 

HCN4     0.114920 

PKP2 0.182939 

ND -0.202304 

TNNT2_TRPM4        0.114920 

TNNT2_LAMA4        0.114920 

TNNT2_PKP2         0.114920 

MYBPC3_FBN1        0.114920 

MYBPC3_PKP2        0.141064 

TRPM4_LAMA4        0.114920 

TTN_ABCC9          0.114920 

TTN_DSP            0.114920 

TTN_LAMA4          0.114920 

TTN_PKP2           0.114920 

NEXN_DSC2          0.114920 

ABCC9_DSP          0.114920 

TPM1_SDHA          0.114920 

 

Between mutated genes (and their combinations) and fatigue negligible 

relationships were mostly found, with exception of mutation in TTN wherein relationship 

is moderate positive. 
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Table 24. Predicting dyspnea from mutated causative genes [Support:  

Yes (n = 18); No (n = 50)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.65 0.69 0.73 0.81 0.50 0.16 0.66 0.46 0.65 0.51 0.37 0.28 0.35 0.27 

RF 0.69 0.69 0.81 0.81 0.22 0.16 0.66 0.46 0.52 0.51 0.37 0.28 0.28 0.27 

Log Reg 0.62 0.74 0.71 0.85 0.43 0.00 0.53 0.46 0.60 0.50 0.32 0.28 0.32 0.26 

GaussianNB 0.41 0.41 0.43 0.43 0.39 0.39 0.53 0.46 0.51 0.51 0.32 0.28 0.27 0.27 

Ridge 0.69 0.69 0.81 0.81 0.16 0.16 0.53 0.46 0.51 0.51 0.32 0.28 0.27 0.27 

SVC 0.69 0.69 0.81 0.81 0.16 0.16 0.36 0.47 0.51 0.51 0.22 0.30 0.27 0.27 

Linear SVC 0.69 0.69 0.81 0.81 0.16 0.16 0.53 0.46 0.51 0.51 0.32 0.28 0.27 0.27 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 25. Relationships between mutated causative genes and dyspnea (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 0.132383 

TNNT2 0.055589 

TNNI3    -0.069304 

MYL3 -0.056459 

TPM1 0.051196 

 

Between mutated causative genes and dyspnea negligible relationships were found. 

 

Table 26. Predicting dyspnea from mutated genes [Support: Yes (n = 18);  

No (n = 50)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.57 0.66 0.67 0.79 0.41 0.15 0.68 0.68 0.57 0.49 0.38 0.38 0.30 0.26 

RF 0.66 0.68 0.79 0.80 0.15 0.15 0.67 0.68 0.49 0.50 0.39 0.39 0.26 0.26 

Log Reg 0.56 0.71 0.64 0.83 0.42 0.00 0.71 0.69 0.58 0.48 0.39 0.39 0.30 0.26 

GaussianNB 0.28 0.28 0.08 0.08 0.41 0.41 0.64 0.63 0.49 0.49 0.35 0.35 0.26 0.26 

Ridge 0.68 0.68 0.80 0.80 0.15 0.15 0.71 0.66 0.50 0.50 0.40 0.37 0.26 0.26 

SVC 0.69 0.69 0.81 0.81 0.16 0.16 0.44 0.67 0.51 0.51 0.27 0.40 0.27 0.27 

Linear SVC 0.68 0.68 0.80 0.68 0.15 0.15 0.69 0.66 0.50 0.50 0.38 0.37 0.26 0.26 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 27. Relationships between mutated genes (and their combinations) and 

dyspnea (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYH7 0.132383 

TTN 0.205244 

PTPN11 0.158851 

MYH6 0.112074 

RBMD20    0.112074 

PKP2 0.115773 

ND -0.156712 

MYBPC3_DSG2        0.112074 

MYBPC3_PKP2        0.194990 

DSG2_FBN1          0.112074 

DSG2_PKP2          0.112074 

TTN_ELN            0.112074 

TTN_MYH6           0.112074 

TTN_RBMD20         0.112074 

FBN1_PKP2          0.112074 

ELN_MYH6           0.112074 

ELN_RBMD20         0.112074 

MYH6_RBMD20        0.112074 

              

Between mutated genes (and their combinations) and dyspnea negligible 

relationships were mostly found. Most prominent relationship found was between 

mutation in TTN and dyspnea wherein relationship is weak positive. 

 

Table 28. Predicting chest pain from mutated causative genes [Support:  

Yes (n = 15); No (n = 53)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.49 0.81 0.52 0.89 0.44 0.24 0.72 0.72 0.65 0.57 0.42 0.42 0.29 0.32 

RF 0.81 0.81 0.89 0.89 0.24 0.24 0.72 0.72 0.57 0.57 0.42 0.42 0.32 0.32 

Log Reg 0.49 0.78 0.52 0.88 0.44 0.00 0.71 0.71 0.65 0.50 0.32 0.32 0.29 0.22 

GaussianNB 0.49 0.49 0.51 0.51 0.46 0.46 0.72 0.72 0.67 0.67 0.42 0.42 0.30 0.30 

Ridge 0.81 0.81 0.89 0.89 0.24 0.24 0.72 0.71 0.57 0.57 0.42 0.32 0.32 0.32 

SVC 0.81 0.81 0.89 0.89 0.24 0.24 0.72 0.72 0.57 0.57 0.42 0.40 0.32 0.32 

Linear SVC 0.81 0.81 0.89 0.89 0.24 0.24 0.72 0.72 0.57 0.57 0.42 0.42 0.32 0.32 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

 

 

 

 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

256 

 

Table 29. Relationships between mutated causative genes and chest pain (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 0.137235 

MYBPC3 -0.190476 

TNNI3    0.217479 

MYL3 0.063276 

TPM1 -0.050621 

 

Between mutated causative genes and chest pain negligible relationships were 

mostly found. Most prominent relationship found was between mutation in TNNI3 and 

chest pain wherein relationship is weak positive. 

 

Table 30. Predicting chest pain from mutated genes [Support: Yes (n = 15);  

No (n = 53)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.50 0.81 0.56 0.89 0.41 0.24 0.68 0.71 0.61 0.57 0.40 0.43 0.27 0.32 

RF 0.81 0.81 0.89 0.89 0.24 0.24 0.68 0.71 0.57 0.57 0.40 0.43 0.32 0.32 

Logistic Regression 0.54 0.78 0.62 0.88 0.44 0.00 0.69 0.69 0.64 0.50 0.34 0.32 0.28 0.22 

GaussianNB 0.50 0.50 0.54 0.54 0.45 0.45 0.70 0.71 0.66 0.66 0.34 0.41 0.29 0.29 

Ridge 0.81 0.81 0.89 0.89 0.24 0.24 0.71 0.72 0.57 0.57 0.41 0.44 0.32 0.32 

SVC 0.78 0.78 0.88 0.88 0.00 0.00 0.66 0.47 0.50 0.50 0.40 0.26 0.22 0.22 

Linear SVC 0.81 0.81 0.89 0.89 0.24 0.24 0.71 0.72 0.57 0.57 0.42 0.44 0.32 0.32 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 31. Relationships between mutated genes (and their combinations) and chest 

pain (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYH7 0.137235 

MYBPC3 -0.190476 

TNNI3 0.217479 

PTPN11 0.177173 

PDLIM3 0.125000 

NKX2-5 0.125000 

TNNI3_DSG2 0.125000 

TNNI3_PDLIM3 0.125000 

TNNI3_NKX2_5 0.125000 

DSG2_PDLIM3 0.125000 

DSG2_NKX2_5 0.125000 

PDLIM3_NKX2_5 0.125000 

 

Between mutated genes (and their combinations) and chest pain negligible 

relationships were mostly found. Most prominent relationship found was between 

mutation in TNNI3 and chest pain wherein relationship is weak positive. 

 

Table 32. Predicting syncope from mutated causative genes [Support: Yes (n = 6);  

No (n = 62)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.38 0.91 0.53 0.95 0.09 0.00 0..54 0.56 0.36 0.50 0.09 0.10 0.08 0.09 

RF 0.91 0.85 0.95 0.92 0.00 0.00 0.55 0.56 0.50 0.47 0.11 0.10 0.09 0.09 

Log Reg 0.47 0.91 0.63 0.95 0.05 0.00 0.53 0.55 0.33 0.50 0.09 0.10 0.08 0.09 

GaussianNB 0.18 0.18 0.22 0.22 0.12 0.12 0.55 0.56 0.40 0.40 0.11 0.10 0.08 0.08 

Ridge 0.91 0.91 0.95 0.95 0.00 0.00 0.53 0.55 0.50 0.50 0.09 0.10 0.09 0.09 

SVC 0.91 0.91 0.95 0.95 0.00 0.00 0.44 0.57 0.50 0.50 0.08 0.10 0.09 0.09 

Linear SVC 0.91 0.91 0.95 0.95 0.00 0.00 0.53 0.56 0.50 0.50 0.09 0.10 0.09 0.09 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

No relationships between mutated causative genes and syncope with phi 

coefficients having values > 0.05 or < -0.05 were found — no relationships between 

mutated causative genes and syncope were found. 
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Table 33. Predicting syncope from mutated genes [Support: Yes (n = 15);  

No (n = 53)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.41 0.91 0.56 0.95 0.13 0.00 0.68 0.47 0.45 0.50 0.19 0.09 0.08 0.09 

RF 0.90 0.91 0.95 0.95 0.00 0.00 0.68 0.46 0.49 0.50 0.19 0.09 0.09 0.09 

Log Reg 0.49 0.91 0.64 0.95 0.10 0.00 0.57 0.50 0.42 0.50 0.10 0.09 0.08 0.09 

GaussianNB 0.22 0.22 0.31 0.31 0.10 0.10 0.56 0.45 0.35 0.35 0.10 0.08 0.07 0.07 

Ridge 0.87 0.87 0.93 0.93 0.00 0.00 0.60 0.51 0.48 0.48 0.11 0.10 0.09 0.09 

SVC 0.91 0.91 0.95 0.95 0.00 0.00 0.54 0.50 0.50 0.50 0.17 0.09 0.09 0.09 

Linear SVC 0.87 0.87 0.93 0.93 0.00 0.00 0.63 0.47 0.48 0.48 0.14 0.09 0.09 0.09 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 
 

Table 34. Relationships between mutated genes (and their combinations) and 

syncope (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

DSG2 0.132391 

FBN1 0.132391 

MYBPC3_DSG2 0.208248 

MYBPC3_FBN1 0.132391 

DSG2_FBN1 0.208248 

DSG2_PKP2 0.208248 

FBN1_PKP2 0.208248 

 

Between mutated genes (and their combinations) and syncope negligible 

relationships were mostly found. Some weak positive relationships were found between 

combinations of genes and syncope. 
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Table 35. Predicting pretibial edema from mutated causative genes [Support: Yes 

(n = 6); No (n = 62)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.44 0.94 0.61 0.97 0.00 0.00 0.52 0.52 0.23 0.50 0.06 0.06 0.06 0.06 

RF 0.94 0.94 0.97 0.97 0.00 0.00 0.52 0.53 0.50 0.50 0.06 0.06 0.06 0.06 

Logistic Regression 0.51 0.94 0.68 0.97 0.00 0.00 0.53 0.55 0.27 0.50 0.06 0.07 0.06 0.06 

GaussianNB 0.24 0.24 0.35 0.35 0.07 0.07 0.52 0.52 0.36 0.36 0.06 0.06 0.05 0.05 

Ridge 0.94 0.94 0.97 0.97 0.00 0.00 0.53 0.55 0.50 0.50 0.06 0.07 0.06 0.06 

SVC 0.94 0.94 0.97 0.97 0.00 0.00 0.52 0.50 0.50 0.50 0.06 0.06 0.06 0.06 

Linear SVC 0.94 0.94 0.97 0.97 0.00 0.00 0.54 0.59 0.50 0.50 0.06 0.07 0.06 0.06 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 36. Relationships between mutated causative genes and pretibial edema 

(only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.086918 

MYBPC3 -0.078678 

 

Between mutated causative genes and pretibial edema negligible relationships were 

found. 

 

Table 37. Predicting pretibial edema from mutated genes [Support: Yes (n = 4); 

No (n = 64)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.93 0.93 0.96 0.96 0.29 0.00 0.58 0.46 0.61 0.49 0.11 0.05 0.13 0.06 

RF 0.93 0.93 0.96 0.96 0.00 0.00 0.81 0.67 0.49 0.49 0.20 0.11 0.06 0.06 

Log Reg 0.94 0.94 0.97 0.97 0.60 0.00 0.82 0.34 0.85 0.50 0.26 0.05 0.39 0.06 

GaussianNB 0.32 0.32 0.48 0.48 0.04 0.04 0.50 0.49 0.29 0.29 0.06 0.06 0.05 0.05 

Ridge 0.94 0.94 0.97 0.97 0.00 0.00 0.91 0.42 0.50 0.50 0.32 0.08 0.06 0.06 

SVC 0.94 0.94 0.97 0.97 0.00 0.00 0.29 0.53 0.50 0.50 0.05 0.07 0.06 0.06 

Linear SVC 0.93 0.93 0.96 0.96 0.00 0.00 0.81 0.33 0.49 0.49 0.20 0.05 0.06 0.06 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 38. Relationships between mutated genes (and their combinations) and 

pretibial edema (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

DSG2 0.171630 

TRPM4 0.149258 

TTN 0.299958 

ABCC9 0.171630 

DSP 0.104582 

FBN1 0.171630 

LAMA4 0.171630 

TNNT2_TRPM4 0.171630 

TNNT2_LAMA4 0.171630 

MYBPC3_DSG2 0.259390 

MYBPC3_FBN1 0.171630 

MYBPC3_PKP2 0.130469 

DSG2_FBN1 0.259390 

DSG2_PKP2 0.259390 

TRPM4_LAMA4 0.171630 

TTN_ABCC9 0.171630 

TTN_DSP 0.171630 

TTN_LAMA4 0.171630 

ABCC9_DSP 0.171630 

FBN1_PKP2 0.259390 

 

Between mutated genes (and their combinations) and pretibial edema negligible 

relationships were mostly found. Some weak positive relationships were found between 

combinations of genes and pretibial edema. Most prominent relationship found was 

between mutation in TTN and pretibial edema wherein relationship is low-moderate 

positive. 

 

Table 39. Predicting SAM from mutated causative genes [Support: Yes (n = 11); 

No (n = 55)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.50 0.83 0.61 0.91 0.30 0.00 0.50 0.55 0.55 0.50 0.19 0.18 0.18 0.17 

RF 0.83 0.83 0.91 0.91 0.00 0.00 0.50 0.60 0.50 0.50 0.19 0.20 0.17 0.17 

Log Reg 0.65 0.83 0.77 0.91 0.26 0.00 0.50 0.60 0.54 0.50 0.19 0.20 0.18 0.17 

GaussianNB 0.33 0.33 0.33 0.33 0.33 0.33 0.60 0.60 0.60 0.60 0.20 0.20 0.20 0.20 

Ridge 0.83 0.83 0.91 0.91 0.00 0.00 0.50 0.60 0.50 0.50 0.19 0.20 0.17 0.17 

SVC 0.83 0.83 0.91 0.91 0.00 0.00 0.49 0.62 0.50 0.50 0.17 0.22 0.17 0.17 

Linear SVC 0.83 0.83 0.91 0.91 0.00 0.00 0.50 0.60 0.50 0.50 0.19 0.20 0.17 0.17 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 40. Relationships between mutated causative genes and SAM (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.064275 

MYBPC3 0.098106 

TNNI3 -0.051922 

 

Between mutated causative genes and SAM negligible relationships were found. 

 

Table 41. Predicting SAM from mutated genes [Support: Yes (n = 11);  

No (n = 55)] 

DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

 

Table 42. Relationships between mutated genes (and their combinations) and 

SAM (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

HCN4   0.219937 

 

Between mutated genes (and their combinations) and SAM mostly negligible 

relationships were found. Most prominent relationship found was between mutation in 

HCN4 and SAM wherein relationship is weak positive. 

 

 

 

 

 

 

 

 

Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.52 0.82 0.64 0.90 0.27 0.00 0.53 0.65 0.53 0.49 0.19 0.26 0.17 0.17 

RF 0.80 0.82 0.89 0.90 0.00 0.00 0.54 0.64 0.48 0.49 0.20 0.23 0.17 0.17 

Log Reg 0.48 0.83 0.60 0.91 0.26 0.00 0.53 0.64 0.51 0.50 0.20 0.23 0.17 0.17 

GaussianNB 0.38 0.38 0.42 0.42 0.33 0.33 0.63 0.63 0.59 0.59 0.23 0.23 0.20 0.20 

Ridge 0.83 0.83 0.91 0.91 0.00 0.00 0.57 0.64 0.50 0.50 0.21 0.23 0.17 0.17 

SVC 0.83 0.83 0.91 0.91 0.00 0.00 0.64 0.59 0.50 0.50 0.24 0.27 0.17 0.17 

Linear SVC 0.83 0.83 0.91 0.91 0.00 0.00 0.57 0.64 0.50 0.50 0.21 0.23 0.17 0.17 
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Table 43. Predicting mitral leaflet abnormalities from mutated causative genes 

[Support: Yes (n = 6); No (n = 57)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.49 0.90 0.62 0.95 0.24 0.00 0.53 0.53 0.64 0.50 0.11 0.11 0.13 0.10 

RF 0.90 0.90 0.95 0.95 0.00 0.00 0.53 0.53 0.50 0.50 0.11 0.11 0.10 0.10 

Log Reg 0.49 0.90 0.62 0.95 0.24 0.00 0.53 0.53 0.64 0.50 0.11 0.11 0.13 0.10 

GaussianNB 0.32 0.32 0.41 0.41 0.19 0.19 0.53 0.53 0.55 0.55 0.11 0.11 0.10 0.10 

Ridge 0.90 0.90 0.95 0.95 0.00 0.00 0.53 0.53 0.50 0.50 0.11 0.11 0.10 0.10 

SVC 0.90 0.90 0.95 0.95 0.00 0.00 0.50 0.53 0.50 0.50 0.10 0.11 0.10 0.10 

Linear SVC 0.90 0.90 0.95 0.95 0.00 0.00 0.53 0.53 0.50 0.50 0.11 0.11 0.10 0.10 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 44. Relationships between mutated causative genes and mitral leaflet 

abnormalities (only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.106952 

MYBPC3 -0.088080 

TNNI3 0.054644 

 

Between mutated causative genes and mitral leaflet abnormalities negligible 

relationships were found. 

 

Table 45. Predicting mitral leaflet abnormalities from mutated genes [Support:  

Yes (n = 6); No (n = 57)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.63 0.87 0.77 0.93 0.15 0.00 0.51 0.49 0.50 0.48 0.14 0.11 0.10 0.10 

RF 0.87 0.87 0.93 0.93 0.00 0.00 0.53 0.52 0.48 0.48 0.14 0.11 0.10 0.10 

Log Reg 0.68 0.90 0.80 0.95 0.17 0.00 0.54 0.61 0.53 0.50 0.13 0.12 0.10 0.10 

GaussianNB 0.30 0.30 0.41 0.41 0.15 0.15 0.46 0.46 0.46 0.46 0.09 0.09 0.09 0.09 

Ridge 0.87 0.87 0.93 0.93 0.00 0.00 0.53 0.64 0.48 0.48 0.13 0.14 0.10 0.10 

SVC 0.87 0.87 0.93 0.93 0.00 0.00 0.52 0.48 0.48 0.48 0.10 0.09 0.10 0.10 

Linear SVC 0.87 0.87 0.93 0.93 0.00 0.00 0.52 0.48 0.48 0.48 0.14 0.09 0.10 0.10 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 46. Relationships between mutated genes (and their combinations) and 

mitral leaflet abnormalities (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYH7 -0.106952 

TRPM4 0.104094 

RYR1 0.134862 

DSC2 0.191661 

CACNA1C 0.302026 

ELN 0.370810 

MYH6 0.213045 

RBMD20 0.213045 

TRPM4_DSC2 0.191661 

TRPM4_CACNA1C 0.302026 

TRPM4_ELN 0.302026 

TTN_ELN 0.213045 

TTN_MYH6 0.213045 

TTN_RBMD20 0.213045 

DSC2_CACNA1C 0.302026 

DSC2_ELN 0.302026 

CACNA1C_ELN 0.302026 

ELN_MYH6 0.213045 

ELN_RBMD20 0.213045 

MYH6_RBMD20 0.213045 

           

Between mutated genes (and their combinations) and mitral leaflet abnormalities 

negligible and weak positive relationships were mostly found. Most prominent single-

gene relationships found were between mutations in CACNA1C and mitral leaflet 

abnormalities, and ELN and mitral leaflet abnormalities wherein relationships are 

moderate positive. 

 

Table 47. Predicting calcification of mitral annulus from mutated genes [Support:  

Yes (n = 8); No (n = 55)] 

DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.62 0.86 0.74 0.92 0.25 0.00 0.45 0.40 0.57 0.49 0.12 0.12 0.15 0.13 

RF 0.86 0.86 0.92 0.92 0.00 0.00 0.42 0.39 0.49 0.49 0.12 0.11 0.13 0.13 

Log Reg 0.65 0.87 0.77 0.93 0.27 0.00 0.34 0.37 0.59 0.50 0.10 0.11 0.15 0.13 

GaussianNB 0.22 0.22 0.25 0.25 0.20 0.20 0.54 0.50 0.45 0.45 0.14 0.13 0.12 0.12 

Ridge 0.87 0.87 0.93 0.93 0.00 0.00 0.36 0.35 0.50 0.50 0.11 0.11 0.13 0.13 

SVC 0.87 0.87 0.93 0.93 0.00 0.00 0.53 0.39 0.50 0.50 0.14 0.11 0.13 0.13 

Linear SVC 0.86 0.86 0.92 0.92 0.00 0.00 0.38 0.39 0.49 0.49 0.11 0.11 0.13 0.13 
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Table 48. Relationships between mutated genes (and their combinations) and 

calcification of mitral annulus (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

CSRP3 0.108388 

PTPN11 0.255031 

HCN4 0.255031 

MYBPC3_DSP 0.108388 

MYBPC3_CSRP3 0.108388 

DSP_CSRP3 0.108388 

 

Between mutated genes (and their combinations) and calcification of mitral annulus 

negligible relationships were mostly found. Two weak positive relationships found were 

between mutation in PTPN11 and calcification of mitral annulus, and between mutation 

in HCN4 and calcification of mitral annulus. 

 

Table 49. Predicting sinus rhythm from mutated causative genes [Support:  

Yes (n = 50); No (n = 10)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.40 0.80 0.28 0.00 0.49 0.89 0.59 0.56 0.52 0.48 0.86 0.85 0.84 0.83 

RF 0.83 0.83 0.00 0.00 0.91 0.91 0.59 0.56 0.50 0.50 0.86 0.85 0.83 0.83 

Log Reg 0.40 0.83 0.28 0.00 0.49 0.91 0.61 0.59 0.52 0.50 0.88 0.86 0.84 0.83 

GaussianNB 0.40 0.40 0.14 0.14 0.54 0.54 0.56 0.56 0.36 0.36 0.85 0.84 0.80 0.80 

Ridge 0.83 0.83 0.00 0.00 0.91 0.91 0.59 0.56 0.50 0.50 0.86 0.85 0.83 0.83 

SVC 0.83 0.83 0.00 0.00 0.91 0.91 0.57 0.55 0.50 0.50 0.85 0.84 0.83 0.83 

Linear SVC 0.83 0.83 0.00 0.00 0.91 0.91 0.59 0.56 0.50 0.50 0.86 0.85 0.83 0.83 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 50. Relationships between mutated causative genes and sinus rhythm (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 0.062113 

MYBPC3 0.141487 

TPM1 -0.230073 

 

Between mutated causative genes and sinus rhythm negligible relationships were 

mostly found. Most prominent relationship found was between mutation in TPM1 and 

sinus rhythm wherein relationship is weak negative. 
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Table 51. Predicting sinus rhythm from mutated genes [Support: Yes (n = 50); No 

(n = 10)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.52 0.80 0.33 0.00 0.62 0.89 0.53 0.53 0.59 0.48 0.84 0.83 0.86 0.83 

RF 0.83 0.83 0.00 0.00 0.91 0.91 0.54 0.53 0.50 0.50 0.86 0.84 0.83 0.83 

Log Reg 0.52 0.83 0.33 0.00 0.62 0.91 0.54 0.52 0.59 0.50 0.86 0.83 0.86 0.83 

GaussianNB 0.32 0.32 0.20 0.20 0.41 0.41 0.52 0.57 0.39 0.39 0.83 0.84 0.81 0.81 

Ridge 0.83 0.83 0.00 0.00 0.91 0.91 0.50 0.52 0.50 0.50 0.84 0.83 0.83 0.83 

SVC 0.83 0.83 0.00 0.00 0.91 0.91 0.44 0.53 0.50 0.50 0.82 0.84 0.83 0.83 

Linear SVC 0.82 0.82 0.00 0.00 0.90 0.90 0.50 0.52 0.49 0.49 0.84 0.83 0.83 0.83 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 52. Relationships between mutated genes (and their combinations) and sinus 

rhythm (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYBPC3 0.141487 

DSG2 -0.162273 

ABCC9 -0.230073 

DSP -0.132000 

PTPN11 -0.230073 

TPM1 -0.230073 

SDHA -0.230073 

MYBPC3_DSG2 -0.162273 

DSG2_FBN1 -0.162273 

DSG2_PKP2 -0.162273 

TTN_ABCC9 -0.230073 

TTN_DSP -0.230073 

ABCC9_DSP -0.230073 

FBN1_PKP2 -0.162273 

TPM1_SDHA -0.230073 

 

Between mutated genes (and their combinations) and sinus rhythm negligible and 

weak negative relationships were found. 
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Table 53. Predicting left anterior hemiblock from mutated causative genes 

[Support: Yes (n = 5); No (n = 55)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.50 0.92 0.63 0.96 0.21 0.00 0.47 0.51 0.64 0.50 0.09 0.09 0.11 0.08 

RF 0.92 0.92 0.96 0.96 0.00 0.00 0.47 0.51 0.50 0.50 0.09 0.09 0.08 0.08 

Log Reg 0.50 0.92 0.63 0.96 0.21 0.00 0.47 0.51 0.64 0.50 0.09 0.09 0.11 0.08 

GaussianNB 0.27 0.27 0.35 0.35 0.15 0.15 0.46 0.51 0.51 0.51 0.08 0.09 0.08 0.08 

Ridge 0.92 0.92 0.96 0.96 0.00 0.00 0.47 0.51 0.50 0.50 0.09 0.09 0.08 0.08 

SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.47 0.65 0.50 0.50 0.08 0.12 0.08 0.08 

Linear SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.47 0.51 0.50 0.50 0.09 0.09 0.08 0.08 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

No phi coefficients having values > 0.05 or < -0.05 were found — no relationships 

between mutated causative genes and left anterior hemiblock were found. 

 

Table 54. Predicting left anterior hemiblock from mutated genes [Support:  

Yes (n = 5); No (n = 55)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.45 0.92 0.58 0.96 0.20 0.00 0.53 0.54 0.61 0.50 0.10 0.10 0.11 0.08 

RF 0.92 0.92 0.96 0.96 0.00 0.00 0.51 0.54 0.50 0.50 0.10 0.10 0.08 0.08 

Log Reg 0.60 0.92 0.73 0.96 0.25 0.00 0.50 0.49 0.69 0.50 0.09 0.09 0.14 0.08 

GaussianNB 0.40 0.40 0.53 0.53 0.18 0.18 0.47 0.58 0.58 0.58 0.09 0.11 0.10 0.10 

Ridge 0.92 0.92 0.96 0.96 0.00 0.00 0.49 0.49 0.50 0.50 0.09 0.09 0.08 0.08 

SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.73 0.37 0.50 0.50 0.14 0.08 0.08 0.08 

Linear SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.49 0.51 0.50 0.50 0.09 0.10 0.08 0.08 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

 

Table 55. Relationships between mutated genes (and their combinations) and left 

anterior hemiblock (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

TTN_PKP2           0.143625 

 

Negligible relationships between mutated genes (and their combinations) and left 

anterior hemiblock were found. 
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Table 56. Predicting RBBB from mutated causative genes [Support: Yes (n = 5); 

No (n = 55)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.73 0.92 0.84 0.96 0.20 0.00 0.65 0.38 0.58 0.50 0.19 0.07 0.10 0.08 

RF 0.92 0.88 0.96 0.94 0.00 0.00 0.65 0.38 0.50 0.48 0.19 0.07 0.08 0.08 

Log Reg 0.88 0.92 0.94 0.96 0.36 0.00 0.65 0.38 0.66 0.50 0.19 0.07 0.18 0.08 

GaussianNB 0.20 0.20 0.25 0.25 0.14 0.14 0.62 0.38 0.47 0.47 0.18 0.07 0.08 0.08 

Ridge 0.92 0.92 0.96 0.96 0.00 0.00 0.65 0.38 0.50 0.50 0.19 0.07 0.08 0.08 

SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.55 0.41 0.50 0.50 0.10 0.07 0.08 0.08 

Linear SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.65 0.38 0.50 0.50 0.19 0.07 0.08 0.08 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 57. Relationships between mutated causative genes and RBBB (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 0.118811 

TNNT2 0.213873 

 

Negligible relationships between mutated causative genes and RBBB were mostly 

found. Most prominent relationship found was between mutation in TNNT2 and RBBB 

wherein relationship is weak positive. 

 

Table 58. Predicting RBBB from mutated genes [Support: Yes (n = 5);  

No (n = 55)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.55 0.95 0.70 0.97 0.13 0.57 0.35 0.35 0.48 0.70 0.07 0.07 0.08 0.45 

RF 0.95 0.95 0.97 0.97 0.57 0.57 0.68 0.60 0.70 0.70 0.46 0.12 0.45 0.45 

Log Reg 0.68 0.92 0.80 0.96 0.17 0.00 0.45 0.34 0.55 0.50 0.09 0.07 0.09 0.08 

GaussianNB 0.20 0.20 0.25 0.25 0.14 0.14 0.22 0.22 0.47 0.47 0.06 0.06 0.08 0.08 

Ridge 0.92 0.92 0.96 0.96 0.00 0.00 0.50 0.18 0.50 0.50 0.12 0.06 0.08 0.08 

SVC 0.95 0.95 0.97 0.97 0.57 0.57 0.81 0.54 0.70 0.70 0.49 0.12 0.45 0.45 

Linear SVC 0.93 0.93 0.96 0.96 0.33 0.33 0.45 0.18 0.60 0.60 0.09 0.06 0.27 0.27 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 59. Relationships between mutated genes (and their combinations) and 

RBBB (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYH7 0.118811 

TNNT2 0.213873 

TRPM4 0.113266 

TTN 0.186557 

LAMA4 0.319365 

HCN4 0.319365 

PKP2 0.172852 

ND -0.127865 

TNNT2_TRPM4 0.319365 

TNNT2_LAMA4 0.319365 

TNNT2_PKP2 0.319365 

TRPM4_LAMA4 0.319365 

TTN_LAMA4 0.319365 

TTN_PKP2 0.319365 

  

Between mutated genes (and their combinations) and RBBB negligible and weak 

relationships were mostly found. Most prominent single-gene relationships found were 

between mutations in LAMA4 and RBBB, and HCN4 and RBBB wherein relationship is 

moderate positive. 

 

Table 60. Predicting LBBB from mutated causative genes [Support: Yes (n = 4);  

No (n = 56)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.52 0.93 0.67 0.97 0.12 0.00 0.67 0.67 0.51 0.50 0.10 0.10 0.07 0.07 

RF 0.93 0.93 0.97 0.97 0.00 0.00 0.67 0.67 0.50 0.50 0.10 0.10 0.07 0.07 

Log Reg 0.73 0.93 0.84 0.97 0.20 0.00 0.67 0.67 0.62 0.50 0.10 0.10 0.10 0.07 

GaussianNB 0.22 0.22 0.28 0.28 0.15 0.15 0.67 0.67 0.58 0.58 0.10 0.10 0.08 0.08 

Ridge 0.93 0.93 0.97 0.97 0.00 0.00 0.67 0.67 0.50 0.50 0.10 0.10 0.07 0.07 

SVC 0.93 0.93 0.97 0.97 0.00 0.00 0.54 0.67 0.50 0.50 0.07 0.10 0.07 0.07 

Linear SVC 0.93 0.93 0.97 0.97 0.00 0.00 0.67 0.67 0.50 0.50 0.10 0.10 0.07 0.07 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 61. Relationships between mutated causative genes and LBBB (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.091816 

TNNT2 -0.067697 

MYBPC3 0.161491 

 

Negligible relationships between mutated causative genes and LBBB were found. 

 

Table 62. Predicting LBBB from mutated genes [Support: Yes (n = 4);  

No (n = 56)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.48 0.93 0.65 0.97 0.00 0.00 0.77 0.70 0.26 0.50 0.34 0.32 0.07 0.07 

RF 0.93 0.93 0.97 0.97 0.00 0.00 0.77 0.68 0.50 0.50 0.34 0.11 0.07 0.07 

Log Reg 0.43 0.93 0.60 0.97 0.00 0.00 0.74 0.45 0.23 0.50 0.33 0.07 0.07 0.07 

GaussianNB 0.25 0.25 0.35 0.35 0.12 0.12 0.62 0.54 0.48 0.48 0.09 0.07 0.06 0.06 

Ridge 0.93 0.93 0.97 0.97 0.00 0.00 0.75 0.45 0.50 0.50 0.34 0.07 0.07 0.07 

SVC 0.93 0.93 0.97 0.97 0.00 0.00 0.76 0.54 0.50 0.50 0.34 0.08 0.07 0.07 

Linear SVC 0.93 0.93 0.97 0.97 0.00 0.00 0.75 0.51 0.50 0.50 0.34 0.07 0.07 0.07 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 
 

Table 63. Relationships between mutated genes (and their combinations) and 

LBBB (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYBPC3   0.161491 

 

Negligible relationships between mutated genes (and their combinations) and 

LBBB were found. 
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Table 64. Predicting AF from mutated genes [Support: Yes (n = 7); No (n = 53)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.62 0.88 0.74 0.94 0.26 0.00 0.41 0.43 0.60 0.50 0.11 0.12 0.15 0.12 

RF 0.88 0.87 0.94 0.93 0.00 0.00 0.40 0.41 0.50 0.49 0.11 0.11 0.12 0.12 

Log Reg 0.62 0.88 0.74 0.94 0.26 0.00 0.46 0.50 0.60 0.50 0.12 0.12 0.15 0.12 

GaussianNB 0.37 0.37 0.46 0.46 0.24 0.24 0.44 0.43 0.58 0.58 0.12 0.12 0.14 0.14 

Ridge 0.88 0.88 0.94 0.94 0.00 0.00 0.49 0.52 0.50 0.50 0.12 0.13 0.12 0.12 

SVC 0.88 0.88 0.94 0.94 0.00 0.00 0.49 0.55 0.50 0.50 0.12 0.13 0.12 0.12 

Linear SVC 0.87 0.87 0.93 0.93 0.00 0.00 0.46 0.48 0.49 0.49 0.12 0.12 0.12 0.12 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

 

Table 65. Relationships between mutated genes (and their combinations) and AF 

(only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYBPC3 -0.152631 

DSG2 0.191774 

ABCC9 0.271904 

DSP 0.166448 

FBN1 0.117091 

PTPN11 0.271904 

LAMA4 0.117091 

TPM1 0.271904 

SDHA 0.271904 

HCN4 0.117091 

TNNT2_TRPM4 0.117091 

TNNT2_LAMA4 0.117091 

MYBPC3_DSG2 0.191774 

MYBPC3_FBN1 0.117091 

DSG2_FBN1 0.191774 

DSG2_PKP2 0.191774 

TRPM4_LAMA4 0.117091 

TTN_ABCC9 0.271904 

TTN_DSP 0.271904 

TTN_LAMA4 0.117091 

ABCC9_DSP 0.271904 

FBN1_PKP2 0.191774 

TPM1_SDHA 0.271904 

          

Negligible and weak relationships between mutated genes (and their combinations) 

and AF were found.  
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Table 66. Predicting significant Q wave from mutated causative genes [Support: 

Yes (n = 4); No (n = 55)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.47 0.93 0.64 0.96 0.00 0.00 0.64 0.49 0.25 0.50 0.11 0.07 0.07 0.07 

RF 0.93 0.93 0.96 0.96 0.00 0.00 0.63 0.49 0.50 0.50 0.11 0.07 0.07 0.07 

Log Reg 0.47 0.93 0.64 0.96 0.00 0.00 0.64 0.49 0.25 0.50 0.11 0.07 0.07 0.07 

GaussianNB 0.19 0.19 0.27 0.27 0.08 0.08 0.64 0.49 0.33 0.33 0.11 0.07 0.05 0.05 

Ridge 0.93 0.93 0.96 0.96 0.00 0.00 0.64 0.49 0.50 0.50 0.11 0.07 0.07 0.07 

SVC 0.93 0.93 0.96 0.96 0.00 0.00 0.44 0.49 0.50 0.50 0.06 0.07 0.07 0.07 

Linear SVC 0.93 0.93 0.96 0.96 0.00 0.00 0.63 0.49 0.50 0.50 0.11 0.07 0.07 0.07 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 67. Relationships between mutated causative genes and significant Q wave 

(only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.096618 

TNNT2 0.094110 

 

Negligible relationships between mutated causative genes and significant Q wave 

were found. 

 

Table 68. Predicting significant Q wave from mutated genes [Support: Yes (n = 4); 

No (n = 55)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.49 0.93 0.66 0.96 0.00 0.00 0.77 0.72 0.26 0.50 0.34 0.33 0.07 0.07 

RF 0.93 0.93 0.96 0.96 0.00 0.00 0.77 0.60 0.50 0.50 0.34 0.09 0.07 0.07 

Log Reg 0.53 0.93 0.69 0.96 0.00 0.00 0.77 0.45 0.28 0.50 0.34 0.07 0.07 0.07 

GaussianNB 0.22 0.22 0.32 0.32 0.08 0.08 0.59 0.54 0.35 0.35 0.08 0.08 0.06 0.06 

Ridge 0.93 0.93 0.96 0.96 0.00 0.00 0.74 0.45 0.50 0.50 0.33 0.07 0.07 0.07 

SVC 0.93 0.93 0.96 0.96 0.00 0.00 0.63 0.53 0.50 0.50 0.31 0.08 0.07 0.07 

Linear SVC 0.93 0.93 0.96 0.96 0.00 0.00 0.74 0.45 0.50 0.50 0.33 0.07 0.07 0.07 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 69. Relationships between mutated genes (and their combinations) and 

significant Q wave (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

TRPM4 0.142783 

NOTCH1 0.366026 

LAMA4 0.366026 

TNNT2_TRPM4 0.366026 

TNNT2_LAMA4 0.366026 

MYBPC3_NOTCH1 0.366026 

TRPM4_LAMA4 0.366026 

TTN_LAMA4 0.366026 

            

Between mutated genes and significant Q wave negligible relationships were 

mostly found. Single-gene exceptions are relationships found between mutation in 

LAMA4 and significant Q wave, and mutation in NOTCH1 and significant Q wave 

wherein relationship is moderate positive. 

 

Table 70. Predicting ST segment abnormalities from mutated causative genes 

[Support: Yes (n = 30); No (n = 29)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.58 0.58 0.55 0.55 0.60 0.60 0.60 0.61 0.58 0.58 0.58 0.58 0.55 0.55 

RF 0.54 0.58 0.49 0.55 0.58 0.60 0.60 0.61 0.54 0.58 0.58 0.58 0.53 0.55 

Log Reg 0.54 0.54 0.49 0.49 0.58 0.58 0.60 0.60 0.54 0.54 0.58 0.58 0.53 0.53 

GaussianNB 0.51 0.51 0.38 0.38 0.59 0.59 0.60 0.62 0.51 0.51 0.58 0.58 0.51 0.51 

Ridge 0.54 0.54 0.49 0.49 0.58 0.58 0.60 0.60 0.54 0.54 0.58 0.58 0.53 0.53 

SVC 0.58 0.58 0.55 0.55 0.60 0.60 0.60 0.60 0.58 0.58 0.58 0.58 0.55 0.55 

Linear SVC 0.54 0.54 0.49 0.49 0.58 0.58 0.60 0.61 0.54 0.54 0.58 0.58 0.53 0.53 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

 

Table 71. Relationships between mutated causative genes and ST segment 

abnormalities (only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.058556 

MYBPC3 -0.119448 

TNNI3   0.069978 

MYL3 0.099220 

 

Negligible relationships between mutated causative genes and ST segment 

abnormalities were found. 
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Table 72. Predicting ST segment abnormalities from mutated genes [Support: Yes 

(n = 30); No (n = 29)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.53 0.53 0.50 0.50 0.55 0.55 0.63 0.63 0.52 0.52 0.60 0.60 0.52 0.52 

RF 0.56 0.54 0.50 0.51 0.61 0.57 0.63 0.63 0.56 0.54 0.60 0.60 0.54 0.53 

Log Reg 0.56 0.56 0.52 0.52 0.59 0.59 0.62 0.62 0.56 0.56 0.58 0.58 0.54 0.54 

GaussianNB 0.58 0.58 0.24 0.24 0.71 0.71 0.55 0.55 0.57 0.57 0.54 0.54 0.55 0.55 

Ridge 0.56 0.56 0.52 0.52 0.59 0.59 0.62 0.62 0.56 0.56 0.58 0.58 0.54 0.54 

SVC 0.53 0.53 0.48 0.48 0.56 0.56 0.61 0.62 0.52 0.52 0.57 0.57 0.52 0.52 

Linear SVC 0.56 0.56 0.52 0.52 0.59 0.59 0.62 0.62 0.56 0.56 0.58 0.58 0.54 0.54 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 73. Relationships between mutated genes (and their combinations) and ST 

segment abnormalities (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYBPC3 -0.119448 

JPH2 -0.128247 

TRPM4 -0.212208 

RYR1 -0.104442 

NEXN -0.104442 

DSC2 -0.148474 

CTF1 -0.104442 

CSRP3 -0.104442 

CACNA1C -0.104442 

ELN -0.128247 

NOTCH1 -0.104442 

PTPN11 -0.104442 

LAMA4 -0.104442 

PKP2 -0.166436 

ND 0.195798 

TNNT2_TRPM4 -0.104442 

TNNT2_LAMA4 -0.104442 

TNNT2_PKP2 -0.104442 

MYBPC3_JPH2 -0.104442 

MYBPC3_DSP -0.104442 

MYBPC3_CTF1 -0.104442 

MYBPC3_CSRP3 -0.104442 

MYBPC3_NOTCH1 -0.104442 

MYBPC3_PKP2 -0.128247 

JPH2_CTF1 -0.104442 

TRPM4_DSC2 -0.148474 

TRPM4_CACNA1C -0.104442 

TRPM4_ELN -0.104442 

TRPM4_LAMA4 -0.104442 

TTN_LAMA4 -0.104442 

TTN_PKP2 -0.104442 

NEXN_DSC2 -0.104442 

DSC2_CACNA1C -0.104442 

DSC2_ELN -0.104442 

DSP_CSRP3 -0.104442 

CACNA1C_ELN -0.104442 

 

Negligible relationships between mutated genes (and their combinations) and ST 

segment abnormalities were mostly found. The only exception is relationship between 

mutation in TRPM4 and ST segment abnormalities wherein relationship is weak negative. 
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Table 74. Predicting negative T wave from mutated causative genes [Support: Yes 

(n = 34); No (n = 24)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.63 0.59 0.56 0.50 0.68 0.66 0.62 0.51 0.62 0.58 0.65 0.59 0.64 0.62 

RF 0.58 0.58 0.42 0.47 0.67 0.65 0.62 0.46 0.55 0.56 0.65 0.56 0.60 0.61 

Log Reg 0.63 0.58 0.56 0.42 0.68 0.67 0.62 0.46 0.62 0.55 0.65 0.56 0.64 0.60 

GaussianNB 0.61 0.61 0.41 0.41 0.71 0.71 0.62 0.51 0.57 0.57 0.65 0.59 0.61 0.61 

Ridge 0.58 0.58 0.42 0.42 0.67 0.67 0.62 0.46 0.55 0.55 0.65 0.56 0.60 0.60 

SVC 0.59 0.59 0.50 0.50 0.66 0.66 0.53 0.46 0.58 0.58 0.61 0.56 0.62 0.62 

Linear SVC 0.58 0.58 0.42 0.42 0.67 0.67 0.62 0.46 0.55 0.55 0.65 0.56 0.60 0.60 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 
Table 75. Relationships between mutated causative genes and negative T wave 

(only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

TNNT2 -0.081670 

MYBPC3 -0.056908 

TNNI3   0.061806 

MYL3 0.087633 

 

Negligible relationships between mutated causative genes and negative T wave 

were found. 

 

Table 76. Predicting negative T wave from mutated genes [Support: Yes (n = 34); 

No (n = 25)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.68 0.63 0.63 0.56 0.72 0.68 0.51 0.54 0.67 0.62 0.66 0.67 0.68 0.64 

RF 0.63 0.63 0.52 0.50 0.69 0.70 0.51 0.58 0.61 0.60 0.66 0.69 0.64 0.69 

Log Reg 0.64 0.63 0.60 0.50 0.68 0.70 0.69 0.65 0.64 0.60 0.73 0.71 0.66 0.63 

GaussianNB 0.64 0.64 0.51 0.51 0.72 0.72 0.70 0.61 0.62 0.62 0.73 0.66 0.64 0.64 

Ridge 0.63 0.63 0.50 0.50 0.70 0.70 0.63 0.64 0.60 0.60 0.70 0.69 0.63 0.63 

SVC 0.61 0.61 0.49 0.49 0.68 0.68 0.55 0.51 0.59 0.59 0.65 0.63 0.62 0.62 

Linear SVC 0.61 0.61 0.49 0.49 0.68 0.68 0.57 0.62 0.59 0.59 0.68 0.69 0.62 0.62 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 77. Relationships between mutated genes (and their combinations) and 

negative T wave (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

TRPM4 -0.135687 

TTN 0.159062 

RYR1 -0.118251 

CACNA1C -0.118251 

NOTCH1 -0.118251 

LAMA4 -0.118251 

TNNT2_TRPM4 -0.118251 

TNNT2_LAMA4 -0.118251 

MYBPC3_NOTCH1 -0.118251 

MYBPC3_PKP2 -0.145204 

TRPM4_CACNA1C -0.118251 

TRPM4_ELN -0.118251 

TRPM4_LAMA4 -0.118251 

TTN_LAMA4 -0.118251 

DSC2_CACNA1C -0.118251 

DSC2_ELN -0.118251 

CACNA1C_ELN -0.118251 

           

Negligible relationships between mutated genes (and their combinations) and 

negative T wave were found. 

 

Table 78. Predicting signs from mutated causal genes [Support: Yes (n = 28);  

No (n = 40)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.47 0.56 0.58 0.72 0.28 0.00 0.55 0.55 0.44 0.47 0.44 0.44 0.39 0.41 

RF 0.53 0.53 0.69 0.69 0.06 0.00 0.55 0.55 0.46 0.45 0.44 0.44 0.40 0.41 

Log Reg 0.47 0.56 0.58 0.72 0.28 0.00 0.55 0.55 0.44 0.47 0.44 0.44 0.39 0.41 

GaussianNB 0.46 0.46 0.57 0.57 0.24 0.24 0.55 0.55 0.42 0.42 0.44 0.44 0.38 0.38 

Ridge 0.56 0.56 0.72 0.72 0.00 0.00 0.55 0.55 0.47 0.47 0.44 0.44 0.41 0.41 

SVC 0.56 0.56 0.72 0.72 0.00 0.00 0.48 0.55 0.47 0.47 0.41 0.44 0.41 0.41 

Linear SVC 0.56 0.56 0.72 0.72 0.00 0.00 0.55 0.55 0.47 0.47 0.44 0.44 0.41 0.41 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 79. Relationships between mutated causative genes and signs (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

TNNT2 0.154861 

MYBPC3 0.053789 

TNNI3   -0.098472 

MYL3 0.111798 

 

Negligible relationships between mutated causative genes and signs were found. 

 

Table 80. Predicting signs from mutated genes [Support: Yes (n = 28);  

No (n = 40)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.38 0.54 0.34 0.70 0.42 0.00 0.57 0.55 0.41 0.46 0.45 0.45 0.37 0.41 

RF 0.53 0.51 0.69 0.67 0.06 0.06 0.57 0.55 0.46 0.44 0.45 0.45 0.40 0.40 

Log Reg 0.38 0.54 0.40 0.70 0.36 0.00 0.53 0.54 0.39 0.46 0.44 0.44 0.37 0.41 

GaussianNB 0.40 0.40 0.44 0.44 0.35 0.35 0.52 0.54 0.40 0.40 0.43 0.44 0.37 0.37 

Ridge 0.54 0.54 0.70 0.70 0.00 0.00 0.55 0.54 0.46 0.46 0.45 0.44 0.41 0.41 

SVC 0.54 0.54 0.70 0.70 0.00 0.00 0.46 0.52 0.46 0.46 0.41 0.44 0.41 0.41 

Linear SVC 0.54 0.54 0.70 0.70 0.00 0.00 0.55 0.54 0.46 0.46 0.45 0.44 0.41 0.41 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 81. Relationships between mutated genes (and their combinations) and signs 

(only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

TNNT2 0.154861 

DSC2 -0.113963 

ABCC9 0.111798 

FBN1 0.111798 

MYL3 0.111798 

PTPN11 0.111798 

LAMA4 0.111798 

TNNT2_TRPM4 0.111798 

TNNT2_LAMA4 0.111798 

MYBPC3_FBN1 0.111798 

TRPM4_DSC2 -0.113963 

TRPM4_LAMA4 0.111798 

TTN_ABCC9 0.111798 

TTN_DSP 0.111798 

TTN_LAMA4 0.111798 

ABCC9_DSP 0.111798 
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Negligible relationships between mutated genes (and their combinations) and signs 

were found. 

 

Table 82. Predicting symptoms from mutated causative genes [Support:  

Yes (n = 44); No (n = 24)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.57 0.63 0.26 0.07 0.70 0.77 0.52 0.52 0.49 0.50 0.65 0.65 0.64 0.65 

RF 0.63 0.63 0.07 0.00 0.77 0.77 0.52 0.52 0.50 0.49 0.65 0.65 0.65 0.64 

Log Reg 0.57 0.65 0.26 0.00 0.70 0.79 0.52 0.52 0.49 0.50 0.65 0.65 0.64 0.65 

GaussianNB 0.54 0.54 0.28 0.28 0.67 0.67 0.52 0.52 0.48 0.48 0.65 0.65 0.64 0.64 

Ridge 0.63 0.63 0.00 0.00 0.77 0.77 0.52 0.52 0.49 0.49 0.65 0.65 0.64 0.64 

SVC 0.63 0.63 0.00 0.00 0.77 0.77 0.47 0.53 0.49 0.49 0.65 0.67 0.64 0.64 

Linear SVC 0.63 0.63 0.00 0.00 0.77 0.77 0.52 0.52 0.49 0.49 0.65 0.65 0.64 0.64 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

 
Table 83. Relationships between mutated causative genes and symptoms (only 

coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 0.100252 

MYBPC3 -0.068465 

TNNI3   0.087186 

MYL3 0.071027 

TPM1 0.071027 

  

Negligible relationships between mutated causative genes and symptoms were 

found. 
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Table 84. Predicting symptoms from mutated genes [Support: Yes (n = 44);  

No (n = 24)] 

DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 
Table 85. Relationships between mutated genes (and their combinations) and 

symptoms (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYH7 0.100252 

TTN 0.200446 

RYR1 -0.126270 

CSRP3 -0.126270 

CACNA1C -0.126270 

PKP2 0.113067 

ND -0.115648 

MYBPC3_DSP -0.126270 

MYBPC3_CSRP3 -0.126270 

TRPM4_CACNA1C -0.126270 

TRPM4_ELN -0.126270 

DSC2_CACNA1C -0.126270 

DSC2_ELN -0.126270 

DSP_CSRP3 -0.126270 

CACNA1C_ELN -0.126270 

 

Negligible relationships between mutated genes (and their combinations) and 

symptoms were mostly found. The only exception is relationship between mutation in 

TTN and symptoms wherein relationship is weak positive. 

 

 

 

 

 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.44 0.60 0.42 0.07 0.46 0.75 0.49 0.48 0.47 0.48 0.68 0.66 0.64 0.64 

RF 0.63 0.62 0.00 0.00 0.77 0.76 0.52 0.48 0.49 0.48 0.69 0.66 0.64 0.64 

Logistic Regression 0.46 0.65 0.37 0.00 0.52 0.79 0.53 0.53 0.46 0.50 0.66 0.68 0.63 0.65 

GaussianNB 0.38 0.38 0.52 0.52 0.12 0.12 0.48 0.54 0.51 0.51 0.66 0.68 0.65 0.65 

Ridge 0.63 0.63 0.00 0.00 0.77 0.77 0.48 0.48 0.49 0.49 0.66 0.67 0.64 0.64 

SVC 0.63 0.63 0.00 0.00 0.77 0.77 0.45 0.54 0.49 0.49 0.63 0.69 0.64 0.64 

Linear SVC 0.63 0.63 0.00 0.00 0.77 0.77 0.48 0.48 0.49 0.49 0.66 0.66 0.64 0.64 
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Table 86. Predicting mitral valve abnormalities from mutated causative genes 

[Support: Yes (n = 18); No (n = 45)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.57 0.71 0.70 0.83 0.27 0.00 0.52 0.45 0.48 0.50 0.30 0.26 0.28 0.29 

RF 0.71 0.68 0.83 0.81 0.00 0.00 0.45 0.45 0.50 0.48 0.26 0.26 0.29 0.29 

Log Reg 0.57 0.71 0.70 0.83 0.27 0.00 0.52 0.45 0.48 0.50 0.30 0.26 0.28 0.29 

GaussianNB 0.49 0.49 0.64 0.64 0.16 0.16 0.52 0.52 0.39 0.39 0.30 0.30 0.26 0.26 

Ridge 0.71 0.71 0.83 0.83 0.00 0.00 0.52 0.45 0.50 0.50 0.30 0.26 0.29 0.29 

SVC 0.71 0.71 0.83 0.83 0.00 0.00 0.45 0.52 0.50 0.50 0.27 0.30 0.29 0.29 

Linear SVC 0.71 0.71 0.83 0.83 0.00 0.00 0.52 0.45 0.50 0.50 0.30 0.26 0.29 0.29 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 87. Relationships between mutated causative genes and mitral valve 

abnormalities (only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.136852 

MYBPC3 0.082912 

TNNI3   -0.077475 

MYL3 -0.063104 

TPM1 -0.063104 

            

Negligible relationships between mutated causative genes and mitral valve 

abnormalities were found. 

 

Table 88. Predicting mitral valve abnormalities from mutated genes [Support: Yes 

(n = 22); No (n = 53)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.47 0.65 0.52 0.79 0.39 0.00 0.56 0.58 0.50 0.46 0.34 0.37 0.29 0.29 

RF 0.61 0.64 0.75 0.78 0.12 0.07 0.60 0.58 0.46 0.47 0.36 0.37 0.28 0.29 

Log Reg 0.47 0.71 0.53 0.83 0.37 0.00 0.56 0.57 0.49 0.50 0.35 0.35 0.29 0.29 

GaussianNB 0.31 0.31 0.16 0.16 0.41 0.41 0.56 0.59 0.46 0.46 0.36 0.37 0.28 0.28 

Ridge 0.65 0.65 0.79 0.79 0.00 0.00 0.56 0.58 0.46 0.46 0.36 0.36 0.29 0.29 

SVC 0.68 0.68 0.81 0.81 0.00 0.00 0.45 0.49 0.48 0.48 0.30 0.31 0.29 0.29 

Linear SVC 0.64 0.64 0.78 0.78 0.07 0.07 0.56 0.58 0.47 0.47 0.35 0.37 0.29 0.29 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 89. Relationships between mutated genes (and their combinations) and 

mitral valve abnormalities (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

CACNA1C 0.140974 

ELN 0.173009 

PTPN11 0.140974 

TPM1 -0.100711 

MYH7_DSG2 0.140974 

TNNT2_TNNI3 -0.100711 

TNNT2_DSG2 0.140974 

TRPM4_CACNA1C 0.140974 

TRPM4_ELN 0.140974 

DSC2_CACNA1C 0.140974 

DSC2_ELN 0.140974 

CACNA1C_ELN 0.140974 

 

Negligible relationships between mutated genes (and their combinations) and mitral 

valve abnormalities were found. 

 

Table 90. Predicting ventricular conduction disorders from mutated causative 

genes [Support: Yes (n = 13); No (n = 47)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.55 0.78 0.67 0.88 0.31 0.00 0.59 0.56 0.52 0.50 0.26 0.25 0.22 0.22 

RF 0.78 0.72 0.88 0.83 0.00 0.00 0.59 0.56 0.50 0.46 0.25 0.25 0.22 0.22 

Log Reg 0.55 0.78 0.67 0.88 0.31 0.00 0.59 0.56 0.52 0.50 0.26 0.25 0.22 0.22 

GaussianNB 0.47 0.47 0.60 0.60 0.20 0.20 0.59 0.56 0.41 0.41 0.25 0.25 0.20 0.20 

Ridge 0.78 0.78 0.88 0.88 0.00 0.00 0.59 0.56 0.50 0.50 0.26 0.25 0.22 0.22 

SVC 0.78 0.78 0.88 0.88 0.00 0.00 0.60 0.56 0.50 0.50 0.27 0.25 0.22 0.22 

Linear SVC 0.78 0.78 0.88 0.88 0.00 0.00 0.59 0.56 0.50 0.50 0.26 0.25 0.22 0.22 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 91. Relationships between mutated causative genes and ventricular 

conduction disorders (only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

TNNT2 0.070941 

MYBPC3 0.067379 

MYL3 -0.053515 

TPM1 -0.053515 
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Negligible relationships between mutated causative genes and ventricular 

conduction disorders were found. 

 

Table 92. Predicting ventricular conduction disorders from mutated genes 

[Support: Yes (n = 13); No (n = 47)] 

DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 93. Relationships between mutated genes (and their combinations) and 

ventricular conduction disorders (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

TTN 0.188641 

LAMA4 0.191657 

HCN4 0.191657 

TNNT2_TRPM4 0.191657 

TNNT2_LAMA4 0.191657 

TNNT2_PKP2 0.191657 

TRPM4_LAMA4 0.191657 

TTN_LAMA4 0.191657 

TTN_PKP2 0.191657 

 

Negligible relationships between mutated genes (and their combinations) and 

ventricular conduction disorders were found. 

 

 

 

 

 

 

 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.47 0.77 0.58 0.87 0.27 0.00 0.64 0.59 0.46 0.49 0.40 0.36 0.21 0.22 

RF 0.78 0.78 0.88 0.88 0.00 0.00 0.64 0.59 0.50 0.50 0.39 0.36 0.22 0.22 

Log Reg 0.47 0.78 0.59 0.88 0.24 0.00 0.67 0.61 0.44 0.50 0.40 0.36 0.20 0.22 

GaussianNB 0.17 0.17 0.00 0.00 0.29 0.29 0.52 0.52 0.38 0.38 0.22 0.22 0.18 0.18 

Ridge 0.77 0.77 0.87 0.87 0.00 0.00 0.67 0.62 0.49 0.49 0.40 0.36 0.22 0.22 

SVC 0.78 0.78 0.88 0.88 0.00 0.00 0.47 0.55 0.50 0.50 0.33 0.36 0.22 0.22 

Linear SVC 0.77 0.77 0.87 0.87 0.00 0.00 0.68 0.62 0.49 0.49 0.40 0.36 0.22 0.22 
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Table 94. Predicting left ventricular kinetics disorders from mutated causative 

genes [Support: Yes (n = 5); No (n = 57)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.31 0.92 0.41 0.96 0.16 0.00 0.63 0.63 0.53 0.50 0.11 0.11 0.09 0.08 

RF 0.92 0.92 0.96 0.96 0.00 0.00 0.63 0.63 0.50 0.50 0.11 0.11 0.08 0.08 

Log Reg 0.31 0.92 0.41 0.96 0.16 0.00 0.53 0.63 0.53 0.50 0.09 0.11 0.09 0.08 

GaussianNB 0.26 0.26 0.34 0.34 0.15 0.15 0.53 0.63 0.51 0.51 0.09 0.11 0.08 0.08 

Ridge 0.92 0.92 0.96 0.96 0.00 0.00 0.63 0.63 0.50 0.50 0.11 0.11 0.08 0.08 

SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.47 0.63 0.50 0.50 0.08 0.11 0.08 0.08 

Linear SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.63 0.63 0.50 0.50 0.11 0.11 0.08 0.08 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 95. Relationships between mutated causative genes and left ventricular 

kinetics disorders (only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.102562 

TNNI3   0.105570 

TPM1 0.319860 

            

Negligible relationships between mutated causative genes and left ventricular 

kinetics disorders were mostly found. The only exception is relationship between 

mutation in TPM1 and left ventricular kinetics disorders wherein relationship is moderate 

positive. 
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Table 96. Predicting left ventricular kinetics disorders from mutated genes 

[Support: Yes (n = 5); No (n = 57)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.34 0.92 0.47 0.96 0.13 0.00 0.61 0.62 0.46 0.50 0.11 0.13 0.08 0.08 

RF 0.92 0.92 0.96 0.96 0.00 0.00 0.59 0.62 0.50 0.50 0.11 0.13 0.08 0.08 

Logistic Regression 0.47 0.92 0.61 0.96 0.15 0.00 0.61 0.62 0.53 0.50 0.11 0.13 0.09 0.08 

GaussianNB 0.34 0.34 0.45 0.45 0.16 0.16 0.61 0.61 0.55 0.55 0.10 0.10 0.09 0.09 

Ridge 0.92 0.92 0.96 0.96 0.00 0.00 0.58 0.62 0.50 0.50 0.10 0.13 0.08 0.08 

SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.55 0.48 0.50 0.50 0.10 0.10 0.08 0.08 

Linear SVC 0.92 0.92 0.96 0.96 0.00 0.00 0.59 0.62 0.50 0.50 0.11 0.13 0.08 0.08 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 97. Relationships between mutated genes (and their combinations) and left 

ventricular kinetics disorders (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYH7 -0.102562 

TNNI3 0.105570 

DSG2 0.144453 

TRPM4 0.115223 

RYR1 0.144453 

CSRP3 0.144453 

TPM1 0.319860 

SDHA 0.319860 

PDLIM3 0.225617 

NKX2-5 0.225617 

MYBPC3_DSP 0.144453 

MYBPC3_CSRP3 0.144453 

TNNI3_DSG2 0.225617 

TNNI3_PDLIM3 0.225617 

TNNI3_NKX2_5 0.225617 

DSG2_PDLIM3 0.225617 

DSG2_NKX2_5 0.225617 

DSP_CSRP3 0.144453 

TPM1_SDHA 0.319860 

PDLIM3_NKX2_5 0.225617 

       

Negligible relationships between mutated genes and left ventricular kinetics 

disorders were mostly found. Single-gene exceptions are relationships between mutation 

in PDLIM3 and left ventricular kinetics disorders, and between mutation in NKX2-5 and 

left ventricular kinetics disorders, wherein relationships are weak positive; as well as 

between mutation in TPM1 and left ventricular kinetics disorders, and mutation in SDHA 

and left ventricular kinetics disorders, wherein relationships are moderate positive. 
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Table 98. Predicting atrial conduction disorders from mutated causative genes 

[Support: Yes (n = 6); No (n = 53)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.54 0.90 0.69 0.95 0.13 0.00 0.39 0.39 0.45 0.50 0.09 0.09 0.09 0.10 

RF 0.90 0.90 0.95 0.95 0.00 0.00 0.39 0.39 0.50 0.50 0.09 0.09 0.10 0.10 

Log Reg 0.54 0.90 0.69 0.95 0.13 0.00 0.39 0.39 0.45 0.50 0.09 0.09 0.09 0.10 

GaussianNB 0.27 0.27 0.32 0.32 0.22 0.22 0.39 0.39 0.59 0.59 0.09 0.09 0.12 0.12 

Ridge 0.90 0.90 0.95 0.95 0.00 0.00 0.39 0.39 0.50 0.50 0.09 0.09 0.10 0.10 

SVC 0.90 0.90 0.95 0.95 0.00 0.00 0.62 0.48 0.50 0.50 0.15 0.10 0.10 0.10 

Linear SVC 0.90 0.90 0.95 0.95 0.00 0.00 0.39 0.39 0.50 0.50 0.09 0.09 0.10 0.10 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 99. Relationships between mutated causative genes and atrial conduction 

disorders (only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 0.101205 

       

Negligible relationships between mutated causative genes and atrial conduction 

disorders were found. 
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Table 100. Predicting atrial conduction disorders from mutated genes [Support: 

Yes (n = 5); No (n = 69)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.49 0.90 0.64 0.95 0.12 0.00 0.40 0.52 0.42 0.50 0.09 0.12 0.09 0.10 

RF 0.90 0.90 0.95 0.95 0.00 0.00 0.39 0.52 0.50 0.50 0.09 0.12 0.10 0.10 

Logistic Regression 0.51 0.90 0.66 0.95 0.12 0.00 0.44 0.46 0.43 0.50 0.10 0.10 0.09 0.10 

GaussianNB 0.39 0.39 0.49 0.49 0.25 0.25 0.57 0.59 0.66 0.66 0.12 0.12 0.14 0.14 

Ridge 0.90 0.90 0.95 0.95 0.00 0.00 0.41 0.46 0.50 0.50 0.09 0.10 0.10 0.10 

SVC 0.90 0.90 0.95 0.95 0.00 0.00 0.47 0.53 0.50 0.50 0.10 0.12 0.10 0.10 

Linear SVC 0.90 0.90 0.95 0.95 0.00 0.00 0.41 0.52 0.50 0.50 0.09 0.12 0.10 0.10 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 

 

Table 101. Relationships between mutated genes (and their combinations) and 

atrial conduction disorders (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

MYH7 0.101205 

HCN4 0.133487 

 

Negligible relationships between mutated genes (and their combinations) and atrial 

conduction disorders were found. 

 

Table 102. Predicting myocardial injury from mutated causative genes [Support: 

Yes (n = 43); No (n = 16)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.44 0.73 0.20 0.00 0.57 0.84 0.49 0.44 0.38 0.50 0.72 0.71 0.69 0.73 

RF 0.73 0.73 0.00 0.00 0.84 0.84 0.53 0.44 0.50 0.50 0.74 0.71 0.73 0.73 

Log Reg 0.46 0.73 0.20 0.00 0.59 0.84 0.43 0.44 0.39 0.50 0.70 0.71 0.69 0.73 

GaussianNB 0.44 0.44 0.23 0.23 0.56 0.56 0.44 0.44 0.40 0.40 0.71 0.71 0.69 0.69 

Ridge 0.73 0.73 0.00 0.00 0.84 0.84 0.43 0.44 0.50 0.50 0.70 0.71 0.73 0.73 

SVC 0.73 0.73 0.00 0.00 0.84 0.84 0.54 0.44 0.50 0.50 0.75 0.71 0.73 0.73 

Linear SVC 0.73 0.73 0.00 0.00 0.84 0.84 0.43 0.44 0.50 0.50 0.70 0.71 0.73 0.73 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 103. Relationships between mutated causative genes and myocardial injury 

(only coefficients > 0.05 or < -0.05 are shown) 

Gene Phi coefficient 

MYH7 -0.052373 

MYL3 0.061386 

 

Negligible relationships between mutated causative genes and myocardial injury 

were found. 

 

Table 104. Predicting myocardial injury from mutated genes [Support:  

Yes (n = 43); No (n = 16)] 

Estimator Accuracy F1-score AUC from 

estimator 

AUC from 

predictions 

AP (PR) from 

estimator 

AP (PR) from 

predictions 

   No Yes         

Oversampling - + - + - + - + - + - + - + 

DT 0.36 0.59 0.17 0.08 0.47 0.74 0.52 0.52 0.32 0.43 0.75 0.75 0.67 0.70 

RF 0.63 0.69 0.00 0.00 0.77 0.82 0.51 0.52 0.43 0.48 0.76 0.77 0.70 0.72 

Log Reg 0.42 0.73 0.15 0.00 0.56 0.84 0.61 0.55 0.35 0.50 0.80 0.78 0.68 0.73 

GaussianNB 0.34 0.34 0.38 0.38 0.29 0.29 0.61 0.57 0.47 0.47 0.80 0.79 0.72 0.72 

Ridge 0.69 0.69 0.00 0.00 0.82 0.82 0.58 0.57 0.48 0.48 0.79 0.78 0.72 0.72 

SVC 0.73 0.73 0.00 0.00 0.84 0.84 0.50 0.56 0.50 0.50 0.72 0.76 0.73 0.73 

Linear SVC 0.69 0.69 0.00 0.00 0.82 0.82 0.51 0.52 0.48 0.48 0.76 0.77 0.72 0.72 
DT — decision tree; RF — random forest; Log Reg — logistic regression; GaussianNB — Gaussian Naive Bayes; SVC — radial basis function 

kernel C-support vector classification; AUC — area under the receiver operating characteristic curve; AP (PR) — average precision (precision-

recall curve) 
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Table 105. Relationships between mutated genes (and their combinations) and 

myocardial injury (only coefficients > 0.10 or < -0.10 are shown) 

Gene Phi coefficient 

DSG2 -0.119060 

TRPM4 -0.109135 

TTN 0.167710 

RYR1 -0.168812 

DSC2 -0.158170 

CACNA1C -0.168812 

ELN -0.113067 

PKP2 -0.122279 

MYBPC3_DSG2 -0.119060 

MYBPC3_PKP2 -0.207289 

DSG2_FBN1 -0.119060 

DSG2_PKP2 -0.119060 

TRPM4_DSC2 -0.158170 

TRPM4_CACNA1C -0.168812 

TRPM4_ELN -0.168812 

DSC2_CACNA1C -0.168812 

DSC2_ELN -0.168812 

FBN1_PKP2 -0.119060 

CACNA1C_ELN -0.168812 

 

Negligible relationships between mutated genes and myocardial injury were found. 

 

4.1.4.2. Predicting phenotypic outcomes using both genetic and other 

phenotypic data 

ML algorithms were able to predict phenotypic outcomes — fatigue, dyspnea, chest 

pain, palpitations, syncope, heart murmur, pretibial edema, SAM, papillary muscle 

abnormalities, hypokinesia, AF, AV block I, LBBB, RBBB, left anterior hemiblock, ST 

segment abnormalities, and negative T wave — using genotypic and phenotypic data. 

Performance of generated models has been shown in Table 106 (283).  
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Table 106. Performance of generated models for predicting phenotypic outcomes 

using both genetic and other phenotypic data (283) 

Predicted feature Estimator Accuracy Precision Recall F1-Score 
AUC from 

estimator 

AUC from 

predictions 

AP (PR) 

from 

estimator 

AP (PR) from 

predictions 

Fatigue SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Dyspnea SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Chest pain RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Palpitations SVC 0.97 0.97 0.83 0.91 0.92 0.92 0.86 0.86 

Syncope SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Heart murmur SVC 0.89 0.82 0.76 0.87 0.88 0.88 0.88 0.88 

Pretibial edema SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Systolic anterior motion SVC 0.99 0.98 0.93 0.97 0.97 0.97 0.95 0.95 

Papillary muscle 

abnormalities 
LogReg 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Hypokinesia SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Atrial fibrillation SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AV block I SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

LBBB SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RBBB SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Left anterior hemiblock SVC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

ST segment 

abnormalities 
RF 0.93 0.81 0.89 0.90 0.97 0.94 0.98 0.96 

Negative T wave SVC 0.93 0.88 0.85 0.92 0.93 0.93 0.92 0.92 
SVC — radial basis function (RBF) kernel C-support vector classification; RF — random forest; LogReg — logistic regression; AUC — area 
under the receiver operating characteristic curve; AP (PR) — average precision (precision-recall curve) 

 

4.1.4.2.1. Symptoms 

HCM symptoms were predicted by subgroups of other genotypic and phenotypic 

features (Figures 127-131) (283). 

 

Figure 127. Fatigue was predicted by the shown subset of features. Their relative 

importance is indicated (283). 

TNNT2_peak_rer = mutation in TNNT2 x peak respiratory exchange ratio; TNNT2_creatinine = mutation in TNNT2 x 

serum creatinine; TNNT2_edvlv = mutation in TNNT2 x EDVLV 
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Figure 128. Dyspnea was predicted by the shown subset of features. Their relative 

importance is indicated (283). 

MYBPC3_peak_vo2 = mutation in MYBPC3 x peak VO2; MYBPC3_potassium = mutation in MYBPC3 x serum 

potassium; TNNT2_bmi = mutation in TNNT2 x body mass index; MYBPC3_lvidd = mutation in MYBPC3 x LVIDd; 

MYH7_scd4059 = mutation in MYH7 x SCD in age 40–59 in family history; MYBPC3_anaer_thresh = mutation in 

MYBPC3 x anaerobic threshold; MYBPC3_tapse = mutation in MYBPC3 x TAPSE; MYBPC3_plwd = mutation in 

MYBPC3 x PLWD 

 

Figure 129. Chest pain was predicted by the shown subset of features. Their relative 

importance is indicated (283). 

TNNI3_hdl = mutation in TNNI3 x serum HDL; TNNI3_mvmaxpg = mutation in TNNI3 x MV maxPG; 

TNNI3_peak_rer = mutation in TNNI3 x peak respiratory exchange ratio; TNNI3_lav = mutation in TNNI3 x LAV; 

TNNI3_edvlv = mutation in TNNI3 x EDVLV; TNNI3_av_maxpg = mutation in TNNI3 x AV maxPG 
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Figure 130. Palpitations were predicted by the shown subset of features. Their 

relative importance is indicated (283).  

TNNT2_diastolic = mutation in TNNT2 x diastolic blood pressure; MYBPC3_plwd = mutation in MYBPC3 x PLWD; 

TNNI3_lav = mutation in TNNI3 x LAV 

 

 

Figure 131. Syncope was predicted by the shown subset of features. Their relative 

importance is indicated (283).  

MYBPC3_lvids = mutation in MYBPC3 x LVIDs; TNNT2_la = mutation in TNNT2 x LA 

 

4.1.4.2.2. Signs 

HCM signs were predicted by subgroups of other genotypic and phenotypic features 

(Figures 132 and Figure 133) (283). 
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Figure 132. Heart murmur was predicted by the shown subset of features. Their 

relative importance is indicated (283).  

MYH7_pacemaker = mutation in MYH7 x pacemaker/defibrillator implants in family history; TNNT2_lav = mutation 
in TNNT2 x LAV 
 

 

Figure 133. Pretibial edema was predicted by the shown subset of features. Their 

relative importance is indicated (283).  

icd_hepatic_dysf = ICD x hepatic dysfunction; icd_dm = ICD x diabetes mellitus; icd_thyro = ICD x thyroid disease; 

MYBPC3_svlv = mutation in MYBPC3 x SVLV; TNNT2_mvmaxpg = mutation in TNNT2 x MV maxPG 

 

 

 

4.1.4.2.3. Echocardiography 

Certain ultrasonic findings in HCM were predicted by subgroups of other genotypic 

and phenotypic features (Figures 134-136) (283). 
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Figure 134. SAM was predicted by the shown subset of features. Their relative 

importance is indicated (283).  

TNNT2_nt_bnp = mutation in TNNT2 x NT BNP; MYH7_sin_rhythm = mutation in MYH7 x sinus rhythm; 

MYBPC3_ldh = mutation in MYBPC3 x LDH; TNNI3_ua = mutation in TNNI3 x serum uric acid 

 

 

Figure 135. Papillary muscle abnormalities were predicted by the shown subset of 

features. Their relative importance is indicated (283).  

peak_vo2_pr_interval = peak VO2/PR interval; peak_vo2_hr = peak VO2/heart rate; peak_vo2_anaer_thresh = peak 

VO2/anaerobic threshold; peak_vo2_sokolow = peak VO2/Sokolow index; tp_peak_rer = total protein in serum/peak 

respiratory exchange ratio 
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Figure 136. Hypokinesia was predicted by the shown subset of features. Their 

relative importance is indicated (283).  

pacemaker_nt_bnp = pacemaker/defibrillator implants in family history x NT BNP; sys_disease_age = evidence of 

systemic disease in family history x age; sys_disease_eflv = evidence of systemic disease in family history x EFLV; 

pacemaker_hr = pacemaker/defibrillator implants in family history x heart rate; pacemaker_pr_interval = 

pacemaker/defibrillator implants in family history x PR interval; sys_disease_edvlv = evidence of systemic disease in 

family history x EDVLV 

 

 

 

4.1.4.2.4. Conduction and rhythm disorders 

Certain conduction and rhythm disorders in HCM were predicted by subgroups of 

other genotypic and phenotypic features (Figures 137-141) (283). 
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Figure 137. AF was predicted by the shown subset of features. Their relative 

importance is indicated (283).  

peak_rer_sokolow = peak respiratory exchange ratio x Sokolow index; anaer_thresh_peak_rer = anaerobic 

threshold/peak respiratory exchange ratio; la_lav_lavs_division = LA/LAV/LAVs; pr_interval_sokolow = PR interval 

x Sokolow index; la_lav_lavs_sum = LA+LAV+LAVs; sam_leaflet_sum = systolic anterior motion + mitral 

regurgitation + papillary muscle abnormalities + mitral leaflet abnormalities + calcification of mitral annulus; 

fibrosis_kinesia_sum = myocardial fibrosis + hypokinesia + akinesia + dyskinesia + hyperkinesia; endocrine_sum = 

diabetes mellitus + thyroid disease + phaeochromocytoma + acromegaly; systemic_endocrine_sum = evidence of 

systemic disease in family history + diabetes mellitus + thyroid disease + phaeochromocytoma + acromegaly + 

neuromuscular disease + amyloidosis + genetic disease as a comorbidity; peak_rer_pr_interval = peak respiratory 

exchange ratio/PR interval 

 

 

Figure 138. AV block I was predicted by the shown subset of features. Their relative 

importance is indicated (283). 

sam_la = systolic anterior motion x LA; sam_lvot_maxpg = systolic anterior motion x LVOT maxPG; mr_peak_hr = 

mitral regurgitation x peak HR in cardiopulmonary exercise test 
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Figure 139. LBBB was predicted by the shown subset of features. Their relative 

importance is indicated (283).  

calcmitrann_tr = calcification of mitral annulus x tricuspid regurgitation; calcmitrann_tapse = calcification of mitral 

annulus x TAPSE; myocard_fibrosis_bmi = myocardial fibrosis x body mass index; myocardial_fibrosis_mvmaxpg = 

myocardial fibrosis x MV maxPG 

 

 

 

Figure 140. RBBB was predicted by the shown subset of features. Their relative 

importance is indicated (283).  

MYBPC3_systolic = mutation in MYBPC3 x systolic blood pressure; TNNT2_sex = mutation in TNNT2 x sex; 

TNNI3_weight = mutation in TNNI3 x weight 
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Figure 141. Left anterior hemiblock was predicted by the shown subset of features. 

Their relative importance is indicated (283).  

hypokinesia_lvot_max_pg = hypokinesia x LVOT maxPG; hypokinesia_tapse = hypokinesia x TAPSE; akinesia_la = 

akinesia x LA; hypokinesia_ee = hypokinesia x E/E’ 

 

 

4.1.4.2.5. Ischemia  

Certain ECG findings indicating myocardial ischemia in HCM were predicted by 

subgroups of other genotypic and phenotypic features (Figures 142 and 143) (283). 

 

Figure 142. ST segment abnormalities were predicted by the shown subset of 

features. Their relative importance is indicated (283).  

lav_anaer_thesh = LAV/anaerobic threshold; MYBPC3_lavs = mutation in MYBPC3 x LAVs; TNNT2_chest_pain = 

mutation in TNNT2 x chest pain; anemia_sam = anemia x systolic anterior motion; TNNI3_diastolic = mutation in 

TNNI3 x diastolic blood pressure 
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Figure 143. Negative T wave was predicted by the shown subset of features. Their 

relative importance is indicated (283).  

MYBPC3_mvmaxpg = mutation in MYBPC3 x MV maxPG; TNNT2_palpitations = mutation in TNNT2 x palpitations; 

TNNI3_la = mutation in TNNI3 x LA 

 

4.1.5. Genotype-specific echocardiogram findings 

Genotype-specific echocardiogram findings were identified. 

 

4.1.5.1.  MYH7-specific echocardiogram findings 

4.1.5.1.1. Parasternal long axis view, ventricular diastole 

A model for echocardiographic images classification (parasternal long axis view 

during ventricular diastole) of patients with mutation in MYH7 gene and without detected 

mutation was created, with performance shown in Table 107 and Figure 144. The 

discriminative parts for classification of a given image (areas that contributed the most to 

the decision for the classification) are shown in Figure 145 (the deeper the highlighted 

color, the more important the region is for a particular class prediction). Septum and 

LVOT segment were shown to be discriminative for classification of echocardiographic 

images of patients with mutation in MYH7 gene and those without detected mutation 

(Figure 145). 
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Table 107. Performance of model for echocardiographic images classification 

(MYH7 vs. ND), parasternal long axis view during ventricular diastole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 144. Confusion matrix, model for echocardiographic images classification 

(MYH7 vs. ND), parasternal long axis view during ventricular diastole 
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Figure 145. Discriminative areas for classification of a given image (MYH7 vs. ND), 

parasternal long axis view during ventricular diastole 

 

4.1.5.1.2. Parasternal long axis view, ventricular systole 

A model for echocardiographic images classification (parasternal long axis view 

during ventricular systole) of patients with mutation in MYH7 gene and without detected 

mutation was created, with performance shown in Table 108 and Figure 146. Anterior 

wall and apex were shown to be discriminative for classification of echocardiographic 

images of patients with mutation in MYH7 gene and those without detected mutation 

(Figure 147). 

 

 

 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

301 

 

Table 108. Performance of model for echocardiographic images classification 

(MYH7 vs. ND), parasternal long axis view during ventricular systole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 146. Confusion matrix, model for echocardiographic images classification 

(MYH7 vs. ND), parasternal long axis view during ventricular systole 
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Figure 147. Discriminative areas for classification of a given image (MYH7 vs. ND), 

parasternal long axis view during ventricular systole 

 

4.1.5.1.3. Apical 2-chamber view, ventricular diastole 

A model for echocardiographic images classification (apical 2-chamber view 

during ventricular diastole) of patients with mutation in MYH7 gene and without detected 

mutation was created, with performance shown in Table 109 and Figure 148. No 

unequivocal discriminative areas for classification of echocardiographic images of 

patients with mutation in MYH7 gene and those without detected mutation were found in 

this view (Figure 149). 
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Table 109. Performance of model for echocardiographic images classification 

(MYH7 vs. ND), apical 2-chamber view during ventricular diastole 

 

Metric Value 

Accuracy 0.928 

Precision 1.000 

Recall 0.875 

 

 

Figure 148. Confusion matrix, model for echocardiographic images classification 

(MYH7 vs. ND), apical 2-chamber view during ventricular diastole 
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Figure 149. Discriminative areas for classification of a given image (MYH7 vs. ND), 

apical 2-chamber view during ventricular diastole 

 

4.1.5.1.4. Apical 2-chamber view, ventricular systole 

A model for echocardiographic images classification (apical 2-chamber view 

during ventricular systole) of patients with mutation in MYH7 gene and without detected 

mutation was created, with performance shown in Table 110 and Figure 150. No 

unequivocal discriminative areas for classification of echocardiographic images of 

patients with mutation in MYH7 gene and those without detected mutation were found in 

this view (Figure 151). 

 

 

 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

305 

 

Table 110. Performance of model for echocardiographic images classification 

(MYH7 vs. ND), apical 2-chamber view during ventricular systole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 150. Confusion matrix, model for echocardiographic images classification 

(MYH7 vs. ND), apical 2-chamber view during ventricular systole 
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Figure 151. Discriminative areas for classification of a given image (MYH7 vs. ND), 

apical 2-chamber view during ventricular systole 

 

 

4.1.5.1.5. Apical 4-chamber view, ventricular diastole 

A model for echocardiographic images classification (apical 4-chamber view 

during ventricular diastole) of patients with mutation in MYH7 gene and without detected 

mutation was created, with performance shown in Table 111 and Figure 152. RV was 

shown to be discriminative for classification of echocardiographic images of patients with 

mutation in MYH7 gene and those without detected mutation (Figure 153). 
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Table 111. Performance of model for echocardiographic images classification 

(MYH7 vs. ND), apical 4-chamber view during ventricular diastole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

 

Figure 152. Confusion matrix, model for echocardiographic images classification 

(MYH7 vs. ND), apical 4-chamber view during ventricular diastole 
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Figure 153. Discriminative areas for classification of a given image (MYH7 vs. ND), 

apical 4-chamber view during ventricular diastole 

 

 

4.1.5.1.6. Apical 4-chamber view, ventricular systole 

A model for echocardiographic images classification (apical 4-chamber view 

during ventricular systole) of patients with mutation in MYH7 gene and without detected 

mutation was created, with performance shown in Table 112 and Figure 154. Mitral 

apparatus was shown to be discriminative for classification of echocardiographic images 

of patients with mutation in MYH7 gene and those without detected mutation (Figure 155). 
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Table 112. Performance of model for echocardiographic images classification 

(MYH7 vs. ND), apical 4-chamber view during ventricular systole 

 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 154. Confusion matrix, model for echocardiographic images classification 

(MYH7 vs. ND), apical 4-chamber view during ventricular systole 
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Figure 155. Discriminative areas for classification of a given image (MYH7 vs. ND), 

apical 4-chamber view during ventricular systole 

 

4.1.5.2.  TNNT2-specific echocardiogram findings 

4.1.5.2.1. Parasternal long axis view, ventricular diastole 

A model for echocardiographic images classification (parasternal long axis view 

during ventricular diastole) of patients with mutation in TNNT2 gene and without detected 

mutation was created, with performance shown in Table 113 and Figure 156. No 

unequivocal discriminative areas for classification of echocardiographic images of 

patients with mutation in TNNT2 gene and those without detected mutation were found 

in this view (Figure 157). 
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Table 113. Performance of model for echocardiographic images classification 

(TNNT2 vs. ND), parasternal long axis view during ventricular diastole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 156. Confusion matrix, model for echocardiographic images classification 

(TNNT2 vs. ND), parasternal long axis view during ventricular diastole 
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Figure 157. Discriminative areas for classification of a given image (TNNT2 vs. 

ND), parasternal long axis view during ventricular diastole 

 

4.1.5.2.2. Parasternal long axis view, ventricular systole 

A model for echocardiographic images classification (parasternal long axis view 

during ventricular systole) of patients with mutation in TNNT2 gene and without detected 

mutation was created, with performance shown in Table 114 and Figure 158. No 

unequivocal discriminative areas for classification of echocardiographic images of 

patients with mutation in TNNT2 gene and those without detected mutation were found 

in this view (Figure 159). 
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Table 114. Performance of model for echocardiographic images classification 

(TNNT2 vs. ND), parasternal long axis view during ventricular systole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 158. Confusion matrix, model for echocardiographic images classification 

(TNNT2 vs. ND), parasternal long axis view during ventricular systole 
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Figure 159. Discriminative areas for classification of a given image (TNNT2 vs. 

ND), parasternal long axis view during ventricular systole 

 

 

4.1.5.2.3. Apical 2-chamber view, ventricular diastole 

A model for echocardiographic images classification (apical 2-chamber view 

during ventricular diastole) of patients with mutation in TNNT2 gene and without detected 

mutation was created, with performance shown in Table 115 and Figure 160. Septum was 

shown to be discriminative for classification of echocardiographic images of patients with 

mutation in TNNT2 gene and those without detected mutation (Figure 161). 
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Table 115. Performance of model for echocardiographic images classification 

(TNNT2 vs. ND), apical 2-chamber view during ventricular diastole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 160. Confusion matrix, model for echocardiographic images classification 

(TNNT2 vs. ND), apical 2-chamber view during ventricular diastole 
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Figure 161. Discriminative areas for classification of a given image (TNNT2 vs. 

ND), apical 2-chamber view during ventricular diastole 

 

4.1.5.2.4. Apical 2-chamber view, ventricular systole 

A model for echocardiographic images classification (apical 2-chamber view 

during ventricular systole) of patients with mutation in TNNT2 gene and without detected 

mutation was created, with performance shown in Table 116 and Figure 162. Septum was 

shown to be discriminative for classification of echocardiographic images of patients with 

mutation in TNNT2 gene and those without detected mutation (Figure 163). 
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Table 116. Performance of model for echocardiographic images classification 

(TNNT2 vs. ND), apical 2-chamber view during ventricular systole 

Metric Value 

Accuracy 0.909 

Precision 1.000 

Recall 0.750 

 

 

Figure 162. Confusion matrix, model for echocardiographic images classification 

(TNNT2 vs. ND), apical 2-chamber view during ventricular systole 
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Figure 163. Discriminative areas for classification of a given image (TNNT2 vs. 

ND), apical 2-chamber view during ventricular systole 

 

4.1.5.2.5. Apical 4-chamber view, ventricular diastole 

A model for echocardiographic images classification (apical 4-chamber view 

during ventricular diastole) of patients with mutation in TNNT2 gene and without detected 

mutation was created, with performance shown in Table 117 and Figure 164. Septum was 

shown to be profoundly discriminative for classification of echocardiographic images of 

patients with mutation in TNNT2 gene and those without detected mutation (Figure 165). 
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Table 117. Performance of model for echocardiographic images classification 

(TNNT2 vs. ND), apical 4-chamber view during ventricular diastole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

 

Figure 164. Confusion matrix, model for echocardiographic images classification 

(TNNT2 vs. ND), apical 2-chamber view during ventricular systole 
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Figure 165. Discriminative areas for classification of a given image (TNNT2 vs. 

ND), apical 2-chamber view during ventricular systole 

 

4.1.5.2.6. Apical 4-chamber view, ventricular systole 

A model for echocardiographic images classification (apical 4-chamber view 

during ventricular systole) of patients with mutation in TNNT2 gene and without detected 

mutation was created, with performance shown in Table 118 and Figure 166. Septum and 

RV were shown to be discriminative for classification of echocardiographic images of 

patients with mutation in TNNT2 gene and those without detected mutation (Figure 167). 
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Table 118. Performance of model for echocardiographic images classification 

(TNNT2 vs. ND), apical 4-chamber view during ventricular systole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 166. Confusion matrix, model for echocardiographic images classification 

(TNNT2 vs. ND), apical 4-chamber view during ventricular systole 
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Figure 167. Discriminative areas for classification of a given image (TNNT2 vs. 

ND), apical 4-chamber view during ventricular systole 

 

4.1.5.3.  MYBPC3-specific echocardiogram findings 

4.1.5.3.1. Parasternal long axis view, ventricular diastole 

A model for echocardiographic images classification (parasternal long axis view 

during ventricular diastole) of patients with mutation in MYBPC3 gene and without 

detected mutation was created, with performance shown in Table 119 and Figure 168. No 

unequivocal discriminative areas for classification of echocardiographic images of 

patients with mutation in MYBPC3 gene and those without detected mutation were found 

in this view (Figure 169). 
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Table 119. Performance of model for echocardiographic images classification 

(MYBPC3 vs. ND), parasternal long axis view during ventricular diastole 

Metric Value 

Accuracy 0.971 

Precision 1.000 

Recall 0.928 

 

 

 

Figure 168. Confusion matrix, model for echocardiographic images classification 

(MYBPC3 vs. ND), parasternal long axis view during ventricular diastole 
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Figure 169. Discriminative areas for classification of a given image (MYBPC3 vs. 

ND), parasternal long axis view during ventricular diastole 

 

4.1.5.3.2. Parasternal long axis view, ventricular systole 

A model for echocardiographic images classification (parasternal long axis view 

during ventricular systole) of patients with mutation in MYBPC3 gene and without 

detected mutation was created, with performance shown in Table 120 and Figure 170. 

LV/chamber is potentially discriminative for classification of echocardiographic images 

of patients with mutation in MYBPC3 gene and those without detected mutation (Figure 

171). 
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Table 120. Performance of model for echocardiographic images classification 

(MYBPC3 vs. ND), parasternal long axis view during ventricular systole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 170. Confusion matrix, model for echocardiographic images classification 

(MYBPC3 vs. ND), parasternal long axis view during ventricular systole 
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Figure 171. Discriminative areas for classification of a given image (MYBPC3 vs. 

ND), parasternal long axis view during ventricular systole 

 

 

4.1.5.3.3. Apical 2-chamber view, ventricular diastole 

A model for echocardiographic images classification (apical 2-chamber view 

during ventricular diastole) of patients with mutation in MYBPC3 gene and without 

detected mutation was created, with performance shown in Table 121 and Figure 172. LV 

was shown to be discriminative for classification of echocardiographic images of patients 

with mutation in MYBPC3 gene and those without detected mutation (Figure 173). 
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Table 121. Performance of model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 2-chamber view during ventricular diastole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 172. Confusion matrix, model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 2-chamber view during ventricular diastole 
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Figure 173. Discriminative areas for classification of a given image (MYBPC3 vs. 

ND), apical 2-chamber view during ventricular diastole 

 

4.1.5.3.4. Apical 2-chamber view, ventricular systole 

A model for echocardiographic images classification (apical 2-chamber view 

during ventricular systole) of patients with mutation in MYBPC3 gene and without 

detected mutation was created, with performance shown in Table 122 and Figure 174. No 

unequivocal discriminative areas for classification of echocardiographic images of 

patients with mutation in MYBPC3 gene and those without detected mutation were found 

in this view (Figure 175). 
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Table 122. Performance of model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 2-chamber view during ventricular systole 

Metric Value 

Accuracy 0.947 

Precision 1.000 

Recall 0.917 

 

 

Figure 174. Confusion matrix, model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 2-chamber view during ventricular systole 
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Figure 175. Discriminative areas for classification of a given image (MYBPC3 vs. 

ND), apical 2-chamber view during ventricular systole 

 

4.1.5.3.5. Apical 4-chamber view, ventricular diastole 

A model for echocardiographic images classification (apical 4-chamber view 

during ventricular diastole) of patients with mutation in MYBPC3 gene and without 

detected mutation was created, with performance shown in Table 123 and Figure 176. 

Septum was shown to be discriminative for classification of echocardiographic images of 

patients with mutation in MYBPC3 gene and those without detected mutation (Figure 177). 

 

Table 123. Performance of model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 4-chamber view during ventricular diastole 

Metric Value 

Accuracy 0.969 

Precision 0.941 

Recall 1.000 
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Figure 176. Confusion matrix, model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 4-chamber view during ventricular diastole 

 

 

Figure 177. Discriminative areas for classification of a given image (MYBPC3 vs. 

ND), apical 4-chamber view during ventricular diastole 
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4.1.5.3.6. Apical 4-chamber view, ventricular systole 

A model for echocardiographic images classification (apical 4-chamber view 

during ventricular systole) of patients with mutation in MYBPC3 gene and without 

detected mutation was created, with performance shown in Table 124 and Figure 178. 

Septum was shown to be discriminative for classification of echocardiographic images of 

patients with mutation in MYBPC3 gene and those without detected mutation (Figure 179). 

 

Table 124. Performance of model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 4-chamber view during ventricular systole 

Metric Value 

Accuracy 1.000 

Precision 1.000 

Recall 1.000 

 

 

Figure 178. Confusion matrix, model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 4-chamber view during ventricular systole 
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Figure 179. Performance of model for echocardiographic images classification 

(MYBPC3 vs. ND), apical 4-chamber view during ventricular systole 

 

 

4.1.5.4. Test set design 

As a side result of accessory cardiac MR image classification, it has been shown 

that test sets containing MR images from patients who have other MR images in the 

training set produce too optimistic results: MR images of adjacent slices in the 2 different 

sets are so very much alike (Figure 180) that they produce data leakage effect. This is 

confirmed by the trend of training and test loss, as well as by areas that have mostly 

contributed to the classification decision — these were consistently the structures around 

the heart, and not the heart itself (Figure 181) (284). 
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Figure 180. An example of neighboring slices. Image 

CAP_SCD0001401_MR__hrt_raw_20120813121634880_31 of patient 14 (left) and 

image CAP_SCD0001401_MR__hrt_raw_20120813121634905_32 of patient 14 (right) 

(284). 

 

Figure 181. An example of top losses (284) 
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4.2. Molecular mechanisms of genotype-phenotype associations in HCM: 

Examination by machines using literature data 

4.2.1. HCM Map: Interactive knowledge resource about genetic and molecular 

mechanisms of HCM 

HCM Map is an interactive visual review of all principal HCM molecular pathways. 

It is a detailed visual and intuitive representation of molecular mechanisms of HCM 

(Figure 182) and a base for in silico analysis available at: https://silicofcm.eu/interactive-

map/ (287). 

HCM Map is the only publicly available knowledge resource on molecular 

mechanisms of HCM — it contains information about the entities represented and 

corresponding links to their descriptions in biomedical databases (Figure 183): PubMed 

IDs, Gene IDs, UniProt accession numbers, etc (287). The HCM Map interfaces with 

miRTarBase (224), CHEMBL (220), DrugBank (222), and CTDbase (223). HCM Map 

is both human- and computer-readable and can be exported into different formats for 

further analysis. Protein elements on the map that already have a 3D structure determined 

and are available in the Protein Data Bank can be further directly analyzed (287) via 

MOLeculAR structure annoTator (MolArt) (298) — integrated extension of the Minerva 

platform for the molecular structure annotation and visualization (Figure 184) (287).  

Provided plugins enable onsite analysis. Focused molecular interaction network 

exploration can be performed using Map exploration plugin (286). Genes that have 

variants associated with HCM are marked by Disease-variant associations plugin (286). 

If there are pathway areas defined in the map, enrichment analysis can be performed using 

Gene set enrichment analysis (GSEA) plugin (286). Targets of drugs with identified 

adverse reactions are presented and filterable in the HCM map using Adverse drug 

reactions plugin (286). 

https://silicofcm.eu/interactive-map/
https://silicofcm.eu/interactive-map/


Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

336 

 

Figure 182. Visual appearance of entire HCM Map 
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Figure 183. Information about the entities represented in HCM Map (left) and 

corresponding links to their descriptions in biomedical databases (right) — example of 

element MYH7 gene 

 

Figure 184. A MolArt exploration of an element of HCM Map — example of 

analysis of the tropomyosin alpha-1 chain element 
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4.2.2. Molecular mechanisms of genotype-phenotype associations in HCM 

collected and represented by machines 

Four models of HCM molecular mechanisms were constructed automatically, using 

diverse computer-assisted approaches, and made publicly available (Table 125) (287).  

 

Table 125. Automatically constructed models (287) 

Model Available at 

INDRA-assembled PubMed HCM model https://bit.ly/3blm2rB 

INDRA-assembled PubMed+PathwayCommons HCM model https://bit.ly/2OLxJQM 

Truncated INDRA DB HCM model https://bit.ly/2ZKypbD 

INDRA DB HCM model https://bit.ly/3upHsga 

 

In subsequent network analysis, nodes’ centrality scores and the most important 

nodes were determined. The top 10% elements ranked by several centrality measures 

were visualized for each network (Table 126). General agreement regarding the most 

important nodes was reached only with respect to one element (calcium). Each network 

was also displayed as a packed concentric ring sorted by k-shell and a gradient of the 

nodes’ color used based on k-shell (Figures 185-188) (287). 

 

Table 126. Elements ranked as top 10% by centrality measures for each network 

(287) 

Model Link to folder with top 10% elements for 

each of centrality measures for the model 

INDRA-assembled PubMed HCM model https://bit.ly/3k6Dmon 

INDRA-assembled PubMed+PathwayCommons HCM model https://bit.ly/3s9Wc0x 

Truncated INDRA DB HCM model https://bit.ly/3s6uqSL 

INDRA DB model https://bit.ly/37Kqlfc 

 

 

https://bit.ly/3blm2rB
https://bit.ly/2OLxJQM
https://bit.ly/2ZKypbD
https://bit.ly/3upHsga
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Figure 185. INDRA-assembled PubMed HCM model represented as a packed 

concentric ring sorted by k-shell (287) 
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Figure 186. INDRA-assembled PubMed+PathwayCommons HCM model 

represented as a packed concentric ring sorted by k-shell (287) 
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Figure 187. Truncated INDRA DB HCM model represented as a packed concentric 

ring sorted by k-shell (287) 
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Figure 188. INDRA DB HCM model represented as a packed concentric ring sorted 

by k-shell (287) 

 

Since computer-assisted approaches introduce noticeable level of noise into the 

models, models with lower levels of noise were created as well (Table 127) (287). 

 

Table 127. Models with reduced level of noise (287) 

Model Models with reduced 

level of noise 

INDRA-assembled PubMed HCM model https://bit.ly/3bBKFkf 

INDRA-assembled PubMed+PathwayCommons HCM model https://bit.ly/3s6ALO3 

Truncated INDRA DB HCM model https://bit.ly/3k9iH2T 

INDRA DB model https://bit.ly/3pFqo1Y 

 

https://bit.ly/3bBKFkf
https://bit.ly/3s6ALO3
https://bit.ly/3k9iH2T
https://bit.ly/3pFqo1Y
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4.2.4. Genetic and molecular mechanisms of different clinical presentations 

of HCM collected and represented by machines 

Genetic and molecular HCM mechanisms were obtained from 230,072 articles on 

HCM and 19 HCM clinical presentations in the format of 182,167 INDRA statements 

(presentments of molecular mechanisms containing molecular subject, object, and their 

interaction) (Table 128) (92). 

 

Table 128. Number of articles about HCM and its clinical presentations 

automatically read and number of INDRA statements extracted (92) 

Pathophysiologic entity Number of articles read Number of INDRA 

statements extracted 

hypertrophic cardiomyopathy 8,111 7,559 

sudden cardiac death 10,060 6,770 

HF 111,565 98,397 

atrial fibrillation 54,117 25,842 

major adverse cardiovascular events 4,700 1,713 

rehospitalization 3,073 656 

left ventricular outflow tract obstruction 1,023 177 

myocardial ischemia 19,637 19,078 

cardiac remodeling 4,572 5,432 

myocardial fibrosis 3,634 4,978 

myofibrillar disarray 51 356 

cardiomyocyte disarray 11 22 

impaired myocardial relaxation 31 33 

impaired cardiac relaxation 12 28 

cardiomyocyte hypertrophy 1,337 2,500 

myocardial remodeling 967 1,500 

myocardial hypercontractility 3 3 

coronary microvascular dysfunction 569 522 

myocardial stiffness 257 500 

diastolic dysfunction 6,342 6,101 

 

 

4.2.3.1. Network analysis 

4.2.3.1.1. Intersection networks 

Mutual genetic and molecular mechanisms of HCM and its clinical presentations 

are presented as intersection networks (Table 129) (92).  
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Table 129. Shared genetic and molecular mechanisms of HCM and its clinical 

presentations (92) 

Pathophysiologic entities Link to the network 

representing shared 

molecular mechanisms 

hypertrophic cardiomyopathy, atrial fibrillation https://bit.ly/3d31kyT  

hypertrophic cardiomyopathy, cardiomyocyte disarray https://bit.ly/3wJsmmy  

hypertrophic cardiomyopathy, coronary microvascular dysfunction https://bit.ly/31Xh2VN  

hypertrophic cardiomyopathy, cardiomyocyte hypertrophy https://bit.ly/39Yn90x  

hypertrophic cardiomyopathy, cardiac remodeling https://bit.ly/31ZG3Qh  

hypertrophic cardiomyopathy, diastolic dysfunction https://bit.ly/3wHxRCn  

hypertrophic cardiomyopathy, heart failure https://bit.ly/322UjI9  

hypertrophic cardiomyopathy, impaired myocardial relaxation https://bit.ly/322sU94  

hypertrophic cardiomyopathy, left ventricular outflow tract obstruction https://bit.ly/3dN8G8R  

hypertrophic cardiomyopathy, major adverse cardiovascular events https://bit.ly/3mvZZE1  

hypertrophic cardiomyopathy, myocardial fibrosis https://bit.ly/3fZX3hC  

hypertrophic cardiomyopathy, myofibrillar disarray https://bit.ly/2PRnPOz  

hypertrophic cardiomyopathy, myocardial ischemia https://bit.ly/31YlC6a  

hypertrophic cardiomyopathy, myocardial remodeling https://bit.ly/2Q8dDkD  

hypertrophic cardiomyopathy, myocardial stiffness https://bit.ly/3mxmecq  

hypertrophic cardiomyopathy, rehospitalization https://bit.ly/3myyx8t  

hypertrophic cardiomyopathy, sudden cardiac death https://bit.ly/3wIN5ao  

 

The intersection of genetic and molecular interactions representing HCM and 

myocardial hypercontractility contains no molecular interactions. The intersection of 

HCM and impaired cardiac relaxation involves only phosphorylation of SMAD Family 

Member 2 (SMAD2) and therefore could not be represented as a network (92).  

 

4.2.3.1.2. The most important genetic and molecular elements nodes of 

intersection networks by k-shell 

All generated intersection networks of genetic and molecular elements of HCM and 

its clinical presentations are presented as packed concentric rings sorted by the most 

important nodes (by k-shell) (Figures 189-198). Gradient to the color of nodes 

corresponds to k-shell: the redder and closer to the center node is — the more important 

it is (92). 
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Figure 189. HCM ∩ AF (92) 
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Figure 190. HCM ∩ cardiomyocyte hypertrophy (92) 
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Figure 191. HCM ∩ cardiac remodeling (92) 
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Figure 192. HCM ∩ diastolic dysfunction (92) 
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Figure 193. HCM ∩ HF (92) 
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Figure 194. HCM ∩ myocardial fibrosis (92) 
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Figure 195. HCM ∩ myofibrillar disarray (92) 
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Figure 196. HCM ∩ myocardial remodeling (92) 
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Figure 197. HCM ∩ myocardial stiffness (92) 
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Figure 198. HCM ∩ SCD (92) 

 

4.2.3.1.3. Top genetic and molecular nodes of intersection networks by 

centrality scores 

Centrality scores for all nodes in the intersection networks were determined, and 

the top nodes by centrality scores were visualized (Table 130) (92). 
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Table 130. Top genetic and molecular nodes ranked by the centrality scores of 

each network (92) 

Network Top nodes ranked by 

centrality scores 

hypertrophic cardiomyopathy, atrial fibrillation https://bit.ly/2OhvNzE  

hypertrophic cardiomyopathy, cardiomyocyte disarray https://bit.ly/31LLUsi  

hypertrophic cardiomyopathy, coronary microvascular dysfunction https://bit.ly/3wiA5YR  

hypertrophic cardiomyopathy, cardiomyocyte hypertrophy https://bit.ly/3fCs1Mq  

hypertrophic cardiomyopathy, cardiac remodeling https://bit.ly/39CYWgj  

hypertrophic cardiomyopathy, diastolic dysfunction https://bit.ly/2PQuwju  

hypertrophic cardiomyopathy, heart failure https://bit.ly/3uwQiYP  

hypertrophic cardiomyopathy, impaired myocardial relaxation https://bit.ly/3dubAz7  

hypertrophic cardiomyopathy, left ventricular outflow tract obstruction https://bit.ly/3cJRWzY  

hypertrophic cardiomyopathy, major adverse cardiovascular events https://bit.ly/3fHsE7w  

hypertrophic cardiomyopathy, myocardial fibrosis https://bit.ly/3dc8HUA  

hypertrophic cardiomyopathy, myofibrillar disarray https://bit.ly/2OgKHpM  

hypertrophic cardiomyopathy, myocardial ischemia https://bit.ly/39Hexvk  

hypertrophic cardiomyopathy, myocardial remodeling https://bit.ly/3uj130t 

hypertrophic cardiomyopathy, myocardial stiffness https://bit.ly/2PpsZRM  

hypertrophic cardiomyopathy, rehospitalization https://bit.ly/3dzxLUy  

hypertrophic cardiomyopathy, sudden cardiac death https://bit.ly/3ugy2CI  

 

 

4.2.3.1.4. Networks of genetic and molecular mechanisms with a reduced level 

of noise 

Intersection networks of genetic and molecular mechanisms with a lower level of 

noise were created (Table 131) (92).  

 

 

 

 

 

 

 

 

 

 

 

 

https://bit.ly/2OhvNzE
https://bit.ly/31LLUsi
https://bit.ly/3wiA5YR
https://bit.ly/3fCs1Mq
https://bit.ly/39CYWgj
https://bit.ly/2PQuwju
https://bit.ly/3uwQiYP
https://bit.ly/3dubAz7
https://bit.ly/3cJRWzY
https://bit.ly/3fHsE7w
https://bit.ly/3dc8HUA
https://bit.ly/2OgKHpM
https://bit.ly/39Hexvk
https://bit.ly/3uj130t
https://bit.ly/2PpsZRM
https://bit.ly/3dzxLUy
https://bit.ly/3ugy2CI


Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

356 

 

Table 131. Intersection networks of genetic and molecular mechanisms with a 

reduced level of noise (92) 

Network Link to networks with 

reduced level of noise 

hypertrophic cardiomyopathy, atrial fibrillation https://bit.ly/3mhXtRv  

hypertrophic cardiomyopathy, cardiomyocyte disarray https://bit.ly/3cMpoGd  

hypertrophic cardiomyopathy, coronary microvascular dysfunction https://bit.ly/3uhQQ4l  

hypertrophic cardiomyopathy, cardiomyocyte hypertrophy https://bit.ly/3sMXLm1  

hypertrophic cardiomyopathy, cardiac remodeling https://bit.ly/3dBWPdU 

hypertrophic cardiomyopathy, diastolic dysfunction https://bit.ly/3cNFNu8  

hypertrophic cardiomyopathy, heart failure https://bit.ly/3mi5i9U  

hypertrophic cardiomyopathy, impaired myocardial relaxation https://bit.ly/31MjKxv  

hypertrophic cardiomyopathy, left ventricular outflow tract obstruction https://bit.ly/31GacUC  

hypertrophic cardiomyopathy, major adverse cardiovascular events https://bit.ly/2QZt66N  

hypertrophic cardiomyopathy, myocardial fibrosis https://bit.ly/324nVoj 

hypertrophic cardiomyopathy, myofibrillar disarray https://bit.ly/39Ebt2N  

hypertrophic cardiomyopathy, myocardial ischemia https://bit.ly/31GmOLu  

hypertrophic cardiomyopathy, myocardial remodeling https://bit.ly/3duSh8V  

hypertrophic cardiomyopathy, myocardial stiffness https://bit.ly/3sMZnfz  

hypertrophic cardiomyopathy, rehospitalization https://bit.ly/2QYjedr  

hypertrophic cardiomyopathy, sudden cardiac death https://bit.ly/3wxjGzZ  

 

 

4.2.3. Shared molecular pathways of HCM and its clinical presentations 

The most important putative genetic and molecular elements shared by HCM and 

its clinical presentations are illustrated (Figure 199). Based on the automatically collected 

genetic and molecular mechanisms and subsequent analysis, the most important putative 

pathways are depicted as well (Figure 200) (92). 
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Figure 199. The most important putative genetic and molecular elements (left) and 

corresponding HCM presentations (right) (92) 
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Figure 200. The most important putative pathways (left) and corresponding HCM 

presentations (right) (92) 

 

4.2.4.  HCM clinical course dynamics on lower scale 

HCM Clinical interactive knowledge resource was built as an interactive 

knowledge resource for clinical aspects of HCM diagnosis (including differential genetic 

and clinical diagnosis), monitoring, and treatment (Figure 201). One section of HCM 

Clinical interactive knowledge resource is dedicated to HCM clinical course dynamics 
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represented on a lower scale (Figure 202). HCM Clinical interactive visual review 

resource is available at: https://silicofcm.eu/hcm-clinical-interactive/  

 

Figure 201. A section of HCM Clinical: An interactive knowledge resource for 

HCM diagnosis, monitoring, and treatment 

 

 

Figure 202. A section of HCM Clinical: An interactive knowledge resource 

dedicated to HCM clinical course dynamics on lower scale 

https://silicofcm.eu/hcm-clinical-interactive/
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5. DISCUSSION 

5.1. Genotype-phenotype associations in HCM: Examination by machine 

learning algorithms using clinical data 

5.1.1.  Identification of HCM subphenotypes using clustering 

Since 4 was determined as the optimal number of clusters, the 4-cluster setting will 

be discussed in more detail.  

Cluster 0 consists of 55 patients, cluster 1 of 42 patients, cluster 2 of 17 patients, 

and cluster 3 of 29 patients. Clusters were determined based on 139 parameters (283). 

HCM cases are traditionally categorized into subtypes according to morphologic 

sites of hypertrophy (e.g. basal, midventral, apical) (299). In general, there are 2 types of 

HCM: obstructive (70% of HCM cases, with LVOTO) and nonobstructive type (30% of 

HCM cases) (300). On the other hand, the ESC Working Group recommends 

morphological classification (32), while the AHA Working Group recommends that 

HCM should be specified genetically (301). 

Maron et al. described 4 HCM types, based on morphologic sites of hypertrophy: 

type 1: basal septum; type 2: whole septum; type 3: septum, anterolateral, and anterior 

walls; type 4: apical LV (302,303). Helmy et al. proposed a HCM classification based on 

the hypertrophy patterns: septum alone; septum and adjacent segments; apical in 

combination with other LV segments; and apical (303,304). Syed et al. suggested at least 

5 main subtypes of HCM based on the septal contour, extent and location of hypertrophy: 

apical form, mid-ventricular form, sigmoidal septum, neutral contour, and reverse 

curvature (303,304). 

Kim et al. concluded that apical forms present milder myocardial fibrosis and 

diastolic dysfunction, and consequently better prognosis than other HCM types (305). 

Parato et al. reported that echocardiographic patterns significantly affect clinical course 

and prognosis of HCM (303). Tang et al. showed that different morphological types of 

HCM have different prognoses after surgical myectomy (299). 

LDH has the highest values in cluster 0. Comorbiditic genetic disease is most 

frequent in cluster 0. Diastolic blood pressure is the highest in cluster 0. HCM in family 

history is most often present in cluster 1. In cluster 2, patients are more obese and have 

higher values of serum creatinine. Patients of cluster 2 have the highest measures of the 
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LV cavity. Cluster 3 mainly consists of women. Cluster 3 has the minimal diameters and 

volumes of the LV in both systole and diastole with the highest thickness of the 

interventricular septum among the clusters. Cluster 3 has the worst diastolic function and 

the highest left ventricular filling pressures expressed through E/e’. Left ventricular 

systolic function recorded through ejection fraction was largest in cluster 3 and smallest 

in cluster 2. SAM is most frequent in cluster 3 and absent in cluster 1. Patients in clusters 

0 and 1 are younger than patients in clusters 2 and 3. In clusters 0 and 3, heart murmur 

exists in most cases, while it is a rare in clusters 1 and 2 (283). 

Cluster 0 consists of younger patients with heart murmur, higher LDH values, and 

higher diastolic blood pressure (283). 

Cluster 1 could be described as made of younger patients, often without heart 

murmur and SAM, but with positive HCM family history (283). 

Cluster 2 is constituted of older, more obese males, often without heart murmur and 

with comparatively higher serum creatinine. It has the the lowest left ventricular systolic 

function and the highest measurements of the LV cavity (283). 

Cluster 3 is mostly a female cluster, containing older patients, often with heart 

murmur and with SAM in approximately 60% of patients (283). 

It has the smallest volumes and diameters of the LV and the greatest left ventricular 

systolic function (283).  

These results suggest 4 HCM subtypes: cluster 0, distinguishable by “AHOLD” 

(word constructed from AO and LDH, from whose quantities the cluster is 

distinguishable) wherein values are mostly being AO > 30 mm, LDH > 300 U/L, LVOT 

Vmax < 2 m/s, MV maxPG < 2 mmHg, PLWD < 12 mm, and serum albumin > 44 g/L; 

cluster 1, distinguishable by “RVSP ASCAOVS” (RVSP, AscAO, and AOvs) wherein 

values are mainly being RVSP < 28 mmHg, AscAO < 31 mm, AOvs > 27 m/s, LVOT 

Vmax < 2 m/s, MV meanPG < 1 mmHg, PLWD < 12 mm, and serum albumin > 44 g/L; 

cluster 2, distinguishable by weight, wherein values are mainly being weight > 95 kg, 

LVOT Vmax > 2 m/s, PLWD > 12 mm, and serum albumin < 43 g/L; and cluster 3 

distinguishable by “AV LVOT PG” (AV meanPG, AV maxPG, and LVOT maxPG) 

wherein values are mostly being AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, LVOT 
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maxPG > 15 mmHg, LVOT Vmax > 2 m/s, MV maxPG > 5 mmHg, MV meanPG > 2 

mmHg, PLWD > 12 mm, and serum albumin < 43 g/L (283). 

Even though statistically significant differences were revealed among 4 clusters for 

many features, for some of them, the overlapping intervals of their values impede their 

usage for distinguishing the clusters from each other (283). 

 

5.1.2.  Genotype-cluster associations 

The absence of association of cluster membership and genotype in some cluster 

settings does not mean that the genotype-phenotype association does not exist. It shows 

that clustering algorithms choose other characteristics of patients preferably to determine 

the optimal clusters of HCM patients and that these clusters do not correlate with the 

genotype. 

 

5.1.3.  Genotype-phenotype associations 

5.1.3.1. Predicting phenotypic outcomes using genetic data only 

In general, ML algorithms were struggling to predict phenotypic outcomes using 

genotypic data only — most of the created models have less than adequate prediction 

performance, especially when taking into account that AP is a more appropriate measure 

of performance than AUC for imbalanced datasets. In such cases, AutoML was applied 

both before and after oversampling, without significant success.  

Shown relationships between genes (and their combinations) and phenotypic 

outcomes both explain and confirm that predicting HCM phenotype using genotypic data 

only is not an easy task, for both classical statistics and ML algorithms. 

Two outcomes that can be predicted from mutated genes are absence or presence 

of sinus rhythm and absence or presence of myocardial injury — infarction. Models 

predicting absence or presence of sinus rhythm had similar performance when they were 

built using causative genes only and using all analyzed genes. The model with best 

performance for predicting absence or presence of sinus rhythm is based on Logistic 

Regression with oversampling, and has accuracy 0.83, F1-score 0.91 and AP 0.86 (in this 

case AP metric is appropriate due to imbalanced dataset (306,307), with more patients 
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having the predicted outcome). Several other models based on other ML algorithms have 

similar but slightly worse performance. 

Models predicting myocardial injury — infarction had better performance when 

they were built using all analyzed genes (and not just causative ones). The model with 

best performance for predicting myocardial injury — infarction is based on Logistic 

Regression with oversampling, and has accuracy 0.73, F1-score 0.84 and AP 0.78 (in this 

case AP metric is more appropriate due to imbalanced dataset, with more patients having 

the predicted outcome). Several other models based on other ML algorithms have similar 

but slightly worse performance. 

 

5.1.3.2. Predicting phenotypic outcomes using both genetic and other 

phenotypic data 

5.1.3.2.1. Symptoms and signs 

The associations between peak VO2 and dyspnea, as well as VO2 and dyspnea, are 

intuitive. Seiler et al. reported dyspnea as associated with left ventricular dilatation in 

HCM (308), while Karaye et al. found increased prevalence of moderate to severe 

dyspnea in hypertensive patients with decreased TAPSE (309). 

Chida et al. found a high frequency of syncope in carriers of mutation in MYBPC3 

(310). However, Song et al. found more frequent syncope when mutations were in MYH7 

compared with mutations in MYBPC3 (311). 

In diabetes mellitus, thyroid and hepatic disorders, pretibial edema might be found 

(312–315). 

 

5.1.3.2.2. Conduction and rhythm disorders 

Palermo et al. reported a greater anaerobic threshold in HF patients with AF, than 

in HF patients with sinus rhythm due to a higher heart rate and a greater heart rate increase 

during exercise (316). 

LA remodeling is a substrate for AF (283,317). LA dilatation has been shown to be 

useful in identifying the individuals that will present with AF, and it is suggested that all 

AF patients should be evaluated for LA size and anatomy (317). Additionally, LA 

enlargement is associated with AF (283,318). 
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PR interval might represent a predictor for AF (283,319). Kornej et al. reported that 

prolongation of PR interval shares similar characteristics with AF (283,320). LA fibrosis 

plays important role in AF pathogenesis and represents a risk factor for adverse outcomes 

in AF (283,321). 

Wałek et al. proposed that LA dyskinesia registered in the LASct4c and 4c views 

represent independent risk factors for AF recurrence after direct current cardioversion 

(322). 

Endocrine factors are important in AF pathogenesis (283,323). 

In a study by Roshdy et al., a group of 49 patients with advanced-degree AV block 

had a significantly larger LA diameter than the 48 patients in the matched control group 

(324). Moreover, AV block is sometimes associated with MR (283,325–327). 

Bay et al. reported that in the middle-aged population in Switzerland, the male sex 

is associated with RBBB (328). This is confirmed by the studies of Francissco-Pascual et 

al. on 443 patients (329), Trullàs et al. on 3,638 acute HF patients (330), and Bessem et 

al. on 1436 athletes, all reporting that RBBB is found more often in men (283,331). 

 

5.1.3.2.3. Ischemia 

Aguiar Rosa et al. found that ischemia is linked with a shorter time to anaerobic 

threshold in HCM patients (332). Chest pain is known to be frequently associated with 

ST-segment elevation.  

In addition, cMyBP-C is associated with ischemia, as cMyBP-C proteolysis during 

ischemia impairs function of cells that survive ischemia-reperfusion injury. cMyBP-C 

phosphorylation by protein kinase A (PKA) controls myocardial function and provides 

protection of cardiac tissue against ischemia-reperfusion injury and resistance to 

proteolysis (333). 

Moreover, post-ischemic proteolysis affects cardiac sarcomere proteins, as multiple 

proteins (cMyBP-C, cardiac troponin I, and myosin light chain) are post-translationally 

modified and degraded (333). 
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5.1.3.2.4. Technical and statistical aspects 

Clinically illogical feature combinations were excluded in feature selection phase. 

Groups of combined features sufficient to “predict” a specific outcome are not typical 

predictors, but rather a set of co-expressions and associations with the “predicted” 

features. Some of these are previously reported, other are indicated in rare studies; 

however, there are some that are completely unknown (283). 

 

5.1.4.  Genotype-specific echocardiogram findings 

5.1.4.1. MYH7 

Septum, LVOT segment, anterior wall, apex, RV, and mitral apparatus were shown 

to be discriminative for classification of echocardiographic images of patients with 

mutation in MYH7 gene and those without detected mutation. 

MYH7 is one of 2 most frequent causal genes in the usual type of HCM with 

involvement of the basal septum and apical HCM (29). Li et al. described a case of 

mutation in MYH7-induced HCM with significantly hypertrophied systolic 

interventricular septum (334). Van de Sande et al. described a case with myocardial crypt 

found in the anterior septum in carrier of the mutation in MYH7 (335). In study of Gruner 

et al. in genetically tested cohort of 61 patients with apical HCM, sarcomere protein gene 

mutations were most often found in MYH7 and MYBPC3 genes (336). In study of Chung 

et al., among the 212 patients, pathogenic mutations in sarcomere-associated genes were 

more prevalent in non-apical HCM than in apical HCM and mutation frequency in MYH7 

gene was 9% in cases of apical HCM (337). In study of Velicki et al. involving 63 HCM 

MYBPC3- or MYH7-mutation positive patients, calcifications of mitral annulus were 

found only in patients with mutation in MYH7 gene and mitral leaflet abnormalities were 

significantly more often in patients with mutation in MYH7 gene (107). Waldmüller et al. 

reported a link between mutations in MYH7 and a higher degree of mitral valve 

regurgitation in HCM (338).  
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5.1.4.2.  TNNT2 

Septum and RV were shown to be discriminative for classification of 

echocardiographic images of patients with mutation in TNNT2 gene and those without 

detected mutation.  

In study by Mori et al., TNNT2 p.Lys263Arg was shown to be associated with 

increased septum thickness (339). 

 

5.1.4.3.  MYBPC3 

Septum, LV, and LV chamber were shown to be discriminative for classification of 

echocardiographic images of patients with mutation in MYBPC3 gene and those without 

detected mutation. 

MYBPC3 is one of 2 most frequent HCM causal genes in the usual type of HCM 

with involvement of the basal septum (29). Tarkiainen et al. reported that patients with 

the MYBPC3–Q10961X mutation have rised left ventricular septal convexity regardless 

of the presence of LVH (340). Waldmüller et al. reported a link between mutations in 

MYBPC3 and a particularly large thickness of the interventricular septum (338). 

 

5.2. Molecular mechanisms of genotype-phenotype associations in HCM: 

Examination by machines using literature data 

5.2.1. HCM Map: Interactive knowledge resource about molecular 

mechanisms of HCM 

HCM map is a quantum of knowledge on HCM mechanisms available today, still 

some molecular mechanisms have yet to be discovered. HCM Map is a resource for 

sharing and gathering molecular mechanisms of HCM — each component of the HCM 

Map can be commented by users and that will enable HCM Map to be continuously 

improved and updated involving the community of HCM molecular mechanisms experts 

(287). 
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5.2.2. Molecular mechanisms of genotype-phenotype associations in HCM 

collected and represented by machines 

Machine-assembled representations of molecular mechanisms are a rich source of 

information, which generate detailed representations of diseases. Such an approach also 

brings a certain level of noise (incorporation of non-molecular elements) and inaccuracy 

(wrongly or misleadingly labeled elements) into the disease representations. Low 

consensus between models generated by different computer-assisted approaches 

regarding the top elements in terms of centrality measures, was to a certain degree a 

repercussion of diverse labeling among models and inconsistent labeling within models. 

The rare elements found as a consensus reflect the simultaneously fulfilled conditions of 

the same labeling principle and agreement about the highest values of centrality measures. 

General agreement regarding the most important nodes in each of created representations 

was reached only with respect to calcium (287). 

 

5.2.3. Genetic and molecular mechanisms of different clinical presentations of 

HCM collected and represented by machines 

These findings indicate that cardiomyocyte hypertrophy, myocardial fibrosis and 

remodeling, and cardiac remodeling; coronary microvascular dysfunction and myocardial 

ischemia; myocardial ischemia and HF; AF and SCD have similar molecular mechanisms 

(92).  

The suggested shared pathways are in agreement with the clinical articles on HCM 

progression (341,342), ischemic character and interrelation of coronary microvascular 

dysfunction and myocardial ischemia (1,343,344), association of myocardial ischemia 

and HF in HCM (345,346), arrhythmic essence and link between AF and SCD (347–349). 

The obtained results propose a more distinctive character of myocardial stiffness, 

impaired myocardial relaxation, myofibrillar and cardiomyocyte disarray pathways. That 

is probably a result of the rarity of publications available about genetic and molecular 

mechanisms of these clinical contexts in HCM (and as a result, statements extracted). 

That reduces the overall ability of applied methodology to detect the most important 

molecular elements (92). 
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Automated extraction of genetic and molecular HCM mechanisms produces a lot 

of noise (e.g., elements that are not molecular mechanisms). Intersection operation 

removes much of the noise, because an avoidable element should exist in both intersected 

sets in order to occur in results. However, some noise still persists in shown results that 

are collected and represented by machines. The automatic extraction of genetic and 

molecular HCM mechanisms occasionally extracts gene products with the label of the 

corresponding genes. Consequently, each element with a gene label must be understood 

as the gene itself and/or its product (92). 

Applied automated extraction of genetic and molecular HCM mechanisms was not 

intended to unravel definitive genetic and molecular basis of HCM genotype-phenotype 

associations, but to provide a foundation for further research (92).  

 

5.2.4. HCM clinical course dynamics on lower scale 

Although the HCM Clinical interactive knowledge resource was built with a 

different aim (as an interactive visual review of HCM diagnosis, monitoring, and 

treatment), one of its segments is showing HCM clinical course dynamics on lower scale. 

The HCM Clinical interactive knowledge resource will be updated with knowledge from 

the clinical guidelines and research about HCM diagnosis, monitoring, and treatment 

improvements. However, some major changes in its segment showing HCM clinical 

course dynamics are not expected. 

 

5.3. Research hypotheses 

All 5 research hypotheses have been supported. 

 

5.4. Future perspectives 

Identification of HCM subtypes established by complete phenotypic presentation is 

a step towards HCM precision medicine, which may ultimately enable the establishment 

of prevention and treatment strategies refined for specific subgroups of HCM patients 

(283). Each of the results shown here could be re-inspected in broader, more specific, and 

classical clinical studies. 
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5.5.  Limitations 

5.5.1.  Genetic testing 

Shown genetic variants are all that were available on genetic variant-level for 

patients included in this research study — other genetic results were available on mutated 

gene-level.  

 

5.5.2.  Identification of HCM subphenotypes using clustering 

“Cut-offs” for distinguishing the clusters were determined for the examined dataset 

only and must be refined or confirmed before they could be utilized as cut-offs in any 

other context (283). 

 

5.5.3.  Phenotypic outcome prediction 

All features with many null values were removed as a part of preparation for further 

analysis, to eliminate the possibility that the model learns a several such “by heart” and 

fuse them to deliver a favorable result. Features that may be able to provide direct 

solutions to the models (for the questions asked in predictions) were also removed, in 

order to exclude the possibility of data leakage (283). 

In the prediction of HCM phenotypic outcomes, the models’ performance was 

surprisingly outstanding. Additional analysis was done to examine the approach taken. 

For each of the shown phenotypic outcome predictions, models were generated utilizing 

distinct ML algorithms: logistic regression, linear SVC, and RBF kernel SVC, decision 

tree, random forest, ridge classifier. Only the best results are shown. Some of models that 

are not shown had performance metrics around 0.75 (283).  

To verify the methodology and exclude the possibility that feature-overfitting is the 

cause of good performance, an artificial feature was created with the value of 0 for all 

even-index patients and the value of 1 for all odd-index patients in the dataset (patients 

were randomly ordered in the dataset). After application of the same methodology in such 

settings determined AUC values were around or below 0.5 (283).  

A possible explanation for this unexpectedly good performance may be that this is 

a trivial task for ML, with some of these features (or the features as a whole) directly 

providing the correct answers to the models (if “predicted” phenotypic outcome will be 
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manifested or not). Some of them are still unknown as direct association or causative 

relation, especially since features are combined here (which is rarely the case in classical 

clinical research). Regardless of all the precautions described, these results must be 

inspected critically and perceived as possibilities rather than final results (283). 

Demonstrated features in the HCM phenotypic outcomes predictions are not the 

best to predict particular outcomes; they are sufficient for each of the predictions and 

determined for this dataset, after elimination of all the features that may dis-reflect real 

relationships and associations. Some predicted phenotypic outcomes are not useful in 

clinical practice. Nevertheless, combinations of features sufficient to “predict” these 

outcomes may reveal some unknown relations between clinical presentations (283). 

 

5.5.4.  Genotype-specific echocardiogram findings 

The examined sample is, to a certain extent, homogenic, and these findings need 

further confirmation using a more diverse sample or in clinical settings. Number of 

images used to train and validate the model is considerably small for image classification 

task. 

 

5.5.5.  General 

Shown results reveal statistical distributions contained in the examined dataset, and 

require further validation using other datasets or additional research in clinical settings 

(283). Each of the shown results must be validated on other populations.  
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6. CONCLUSION 

In this study, ML has been employed to facilitate the deciphering of genotype-

phenotype associations in HCM.  

Four HCM subtypes were identified based on the overall phenotypic appearance: 

cluster 0 (“AHOLD”), distinguishable by AO and LDH, with values mostly AO > 30 mm, 

and LDH > 300 U/L; cluster 1 (“RVSP ASCAOVS”), distinguishable by RVSP, AscAO, 

and AOvs, with the values of RVSP < 28 mmHg, AscAO < 31 mm, AOvs > 27 m/s; 

cluster 2 (“weight”), distinguishable by weight, with values mostly > 95 kg; and cluster 

3 (“AV LVOT PG”) distinguishable by AV meanPG, AV maxPG, and LVOT maxPG 

wherein values mostly being AV meanPG > 6 mmHg, AV maxPG > 15 mmHg, and 

LVOT maxPG > 15 mmHg. 

Although none of the determined subtypes settings could be completely correlated 

with genotype, some significant correlations with genotype were found in the 3-subtypes 

setting (TNNI3), 4-subtypes setting (TNNI3 and MYBPC3), 5-subtypes setting (MYH7), 

and 6-subtypes setting (MYBPC3). 

In general, ML algorithms confirmed that the determination of genotype-phenotype 

associations in HCM is a cumbersome task. Two phenotypic outcomes that can be 

predicted from mutated genes are the absence or presence of sinus rhythm and the absence 

or presence of myocardial injury. Models predicting the absence or presence of sinus 

rhythm had similar performance when they were built using only causative genes and 

when using all analyzed genes, indicating potential importance of causative genes and 

irrelevance of non-causative genes for that outcome. On the other hand, models predicting 

myocardial injury — infarction had better performance when they were built using all 

analyzed genes (and not just causative ones), indicating a potentially significant role of 

non-causative genes in that outcome. 

The ML algorithms were able to predict phenotypic outcomes — fatigue, dyspnea, 

chest pain, palpitations, syncope, heart murmur, pretibial edema, SAM, papillary muscle 

abnormalities, hypokinesia, AF, AV block I, LBBB, RBBB, left anterior hemiblock, ST 

segment abnormalities, and negative T wave — using genotypic and phenotypic data. 

Subsets of features that are sufficient for prediction of these phenotypic outcomes were 

identified and their relative importance was assessed. The combination of a mutation in 
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TNNT2 and peak RER contributed the most in predicting fatigue. The combination of a 

mutation in MYBPC3 and peak VO2 contributed the most in predicting dyspnea. The 

combination of a mutation in TNNI3 and HDL level contributed the most in predicting 

chest pain. The combination of a mutation in MYH7 and pacemaker/defibrillator implants 

in family history, as well as the combination of a mutation in TNNT2 and LAV, 

contributed the most in predicting heart murmur. Lastly, the combination of a mutation 

in MYBPC3 and MV maxPG aided the most in predicting negative T wave. 

Genotype-specific ECHO findings were identified: for mutations in the MYH7 gene 

(vs. mutation ND), the most discriminative structures are the septum, LVOT segment, 

anterior wall, apex, RV, and mitral apparatus; for mutations in the TNNT2 gene (vs. 

mutation ND), the most discriminative structures are septum and RV; while for mutations 

in MYBPC3 gene (vs. mutation ND) these are septum, LV, and LV chamber. 

ML has thus been demonstrated to be useful in deciphering genotype-phenotype 

associations in HCM. 
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1. UVOD 

1.1. Hipertrofična kardiomiopatija (HCM) 

HCM je najčešća nasledna kardiomiopatija (1–5), sa prevalencom 1:500 u opštoj 

populaciji na globalnom nivou (3,4,6–11), a neke skorašnje studije procenjuju prevalencu 

HCM i do 1:200 (9,11–16). HCM predstavlja glavni uzrok iznenadne srčane smrti kod 

pacijenata mlađih od 35 godina (159). 

Uglavnom se smatra da se HCM nasleđuje autozomno dominantno (1,11,12,24) i 

da su uzrok HCM mutacije gena koji kodiraju proteine sarkomere (1,12,25–27), zbog 

čega se HCM ponekad opisuje kao „bolest sarkomere“ (6,9,16). Međutim, skorašnja 

istraživanja sugerišu da je genetička podloga HCM daleko kompleksnija nego što se 

smatralo (12,28). 

Dijagnoza HCM se postavlja na osnovu prisustva hipertrofije leve komore i 

odsustva bilo kog stanja koje bi moglo da uzrokuje hipertrofiju (29–31): kod odraslih 

osoba na osnovu debljine leve komore ≥ 15 mm (4,32). Uzroci sekundarne hipertrofije 

leve komore su sistemska hipertenzija, aortna stenoza i infiltrativne kardiomiopatije (3) i 

svi oni moraju da budu isključeni da bi se postavila dijagnoza HCM (3). Za srodnike 

prvog stepena pacijenata sa potvrđenom HCM, debljina leve komore ≥ 13 mm je dovoljna 

za postavljanje dijagnoze (32).  

 

1.2. Sarkomera 

Miokard se uglavnom sastoji od srčanih mišićnih ćelija (kardiomiocita) (9). 

Kardiomiociti sadrže longitudinalno pozicionirane miofibrile. Miofibrili su transverzalno 

dalje podeljeni na kontraktilne jedinice koje se nazivaju sarkomere (35,36). Sarkomera je 

ponavljajuća gradivna i kontraktilna jedinica prugastih (srčanih i skeletnih) mišića i ona 

koordiniše mišićnu kontrakciju (Slika 1) (33,37–40). Funkcija sarkomere je veoma 

osetljiva na poremećaje bilo koje vrste: narušavanje integriteta bilo koje komponente 

(postojanje pojedinačnog disfunkcionalnog proteina, promena u strukturi ili dinamici 

sarkomere, izmenjena ekspresija ili degradacija proteina) može da dovede do 

kardiomiopatije (39). Kompenzatorni mehanizmi koji se aktiviraju kako bi pomenuti 

defekti bili prevaziđeni nekada i sami postaju patološki (33). 
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1.3. Genotip HCM 

Genotip je genetička osnova određenog organizma ili karakteristike, nasledni 

genetički materijal koji kodira sve procese u određenom organizmu. Odnosi se na 

pojedinačni gen ili kombinaciju alela jedinke (70). 

Prva mutacija povezana sa HCM je identifikovana 1989. godine u MYH7 genu 

(9,30,36). Do sada je identifikovano > 1400 mutacija povezanih sa HCM, od kojih je oko 

90% pronađeno u genima koji kodiraju proteine tankih i debelih filamenata sarkomere 

(MYH7, MYBPC3 i TNNT2) (9,14,31,71,72). 

Nosioci mutacije su uglavnom heterozigoti (nose jedan mutantni i jedan zdrav alel). 

U retkim slučajevima nosioci mutacije mogu da budu i homozigoti, sa ranijim početkom 

(u detinjstvu) i težim oblicima bolesti. HCM se kod nosilaca mutacije koji su heterozigoti 

uglavnom javlja u uzrastu 20-50 godina (9). Oko 5% pacijenata ima dve (digenska) ili 

više (oligogenska) uzročnih mutacija u istom ili različitim genima (26,29). 

Prevalenca HCM je postala veća od kada je uvedeno genetičko testiranje koje 

omogućava postavljanje molekularne dijagnoze pre postavljanja kliničke dijagnoze (15). 

 

1.4. Fenotip HCM 

Fenotip (grč. phainein — prikazati i typos — tip) je skup svih karakteristika 

organizma, kao što su morfološke, razvojne, biohemijske i fiziološke odlike (70). 

Kliničke manifestacije i prognoza HCM mogu da budu različite (1,10,11). 

Patofiziološke karakteristike HCM su: hipertrofija (90–93) i dezorganizacija (91–

94) kardiomiocita, remodelovanje (92,95,96) i fibroza (3,23,92,97–99) miokarda, 

disfunkcija koronarne mikrocirkulacije (1,92,93,100,101), ishemija (1,18,92,101,102) i 

hiperkontraktilnost (10,92,103–105) miokarda, poremećaj relaksacije miokarda 

(10,92,97,106) i dijastolna disfunkcija (92,94,107). 

Kod većine pacijenata HCM ostaje asimptomatska ili blago simptomatska (148), 

dok se kod ostalih javljaju zamor, otežano disanje (u naporu), bol u grudima, palpitacije, 

presinkopa i sinkopa (1,3,10,25,101,148–151), pri čemu se otežano disanje javlja 

najčešće, a sinkopa najređe (149).  

Kliničke prezentacije HCM su takođe veoma različite (2,3,8,17,144). Kod nekih 

pacijenata su odsutne (3,5,6,93,144) dok se kod drugih pacijenata HCM ispoljava kao 
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opstrukcija izlaznog trakta leve komore (17,18,31,92,105,144), atrijalna fibrilacija 

(3,11,17,92), iznenadna srčana smrt (3,5,8,92,144,146) ili srčana slabost (3,6–8,34,92). 

Iznenadna srčana smrt može da bude prva manifestacija HCM (1). 

 

1.5. Povezanost genotipa i fenotipa HCM 

HCM je heterogena bolest, kako u pogledu genetičkih mutacija, tako i kliničkog 

toka (6,12,34,86,172). Čak i članovi istih porodica koji nose istu mutaciju često imaju 

različite manifestacije, progresiju i komplikacije (kod nekih se manifestacije i ne javljaju) 

(6,15,80,84,168,175). Raznolikost mutacija, relativno mala učestalost svake od mutacija 

(12,84), kao i nekompletna penetrantnost (15,86,173,174) ometaju utvrđivanje 

univerzalnih korelacija genotipa i fenotipa. Međutim, neke pravilnosti su identifikovane 

(84). Prisustvo mutacija u nekom od gena koji kodira proteine sarkomere je povezano sa 

ranijim početkom HCM (175,176), naglašenijom hipertrofijom leve komore (175) i težim 

kliničkim formama (2,84).  

Fenotip HCM je rezultat doprinosa i uzajamnog dejstva kako genetičkih mutacija 

tako i drugih faktora (npr. modifikatora bolesti i genske ekspresije, kao i faktora sredine) 

(29,80,168,174). Moguće je da poremećaj funkcije sarkomere predstavlja obavezan, ali 

ne nužno inicirajući događaj u patogenezi HCM (80).  

 

1.6. Mašinsko učenje 

Mašinsko učenje je grana veštačke inteligencije (198), pri čemu se kompjuterski 

algoritmi koriste za učenje kompleksnih šablona iz podataka (199). Algoritmi mašinskog 

učenja sa lakoćom identifikuju trendove i šablone koji ne mogu da budu uočeni golim 

okom ili korišćenjem klasičnih statističkih tehnika (200). Mašinsko učenje ima potencijal 

da bude primenjeno u više oblasti medicine (201), uključujući i kardiologiju (199). 

Klasterizacija predstavlja podelu podataka na osnovu njihovih karakteristika u 

grupe (klastere) koji se sastoje od sličnih entiteta (199,202–204). Klasterizacijom se 

grupisanje vrši na osnovu kriterijuma da entiteti u jednom klasteru budu međusobno 

maksimalno slični, a u odnosu na entitete u drugim klasterima maksimalno različiti 

(203,205). Klasterizacija se uspešno koristi za pronalaženje struktura u medicinskim 

podacima (204). Na primer, identifikacija klastera može da dovede do definisanja novih 
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podtipova bolesti. Važno je naglasiti da identifikovani klasteri mogu da sugerišu grupe 

pacijenata, ali da svi uvidi moraju naknadno da budu klinički validirani (199). 

Klasifikacija u mašinskom učenju predstavlja identifikaciju (predikciju) kategorije 

kojoj određeni entitet pripada (206). Klasifikacija se na ovaj način koristi i u biomedicini 

(207). 

Reč „duboko“ u dubokom učenju se odnosi na broj slojeva kroz koji podaci u 

izvornom obliku bivaju transformisani (163). Struktura dubokih neuronskih mreža 

omogućava modelovanje nelinearnih zavisnosti (211,213) i integraciju kompleksnih 

podataka (210,211,213,214). Kroz učenje koje se dešava u slojevima, automatski se 

pronalaze relevantne karakteristike neophodne za dati zadatak (212,215). Duboko učenje 

je naročito korisno u klasifikaciji slika (210,214,215). 

Uprkos velikim očekivanjima od primene veštačke inteligencije u medicini, postoje 

brojni izazovi koji moraju da budu prevaziđeni pre nego što se takvi alati mogu primeniti 

u kliničkoj praksi (212).  

 

2. CILJEVI ISTRAŽIVANJA I HIPOTEZE 

Ciljevi istraživanja: 

1. Identifikacija subfenotipova hipertrofične kardiomiopatije primenom 

klasterizacije 

2. Utvrđivanje korelacije između genotipova i subfenotipova hipertrofične 

kardiomiopatije 

3. Utvrđivanje povezanosti genotipa i ishoda fenotipa hipertrofične 

kardiomiopatije uz pomoć algoritama mašinskog učenja 

4. Izrada modela mašinskog učenja za predviđanje ishoda hipertrofične 

kardiomiopatije na osnovu genotipskih i fenotipskih podataka 

5. Identifikacija genotip-specifičnih nalaza ehokardiograma hipertrofične 

kardiomiopatije uz pomoć algoritama mašinskog učenja 
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Hipoteze: 

1. Subfenotipovi hipertrofične kardiomiopatije mogu se identifikovati 

klasterizacijom 

2. Postoji korelacija između genotipova i subfenotipova hipertrofične 

kardiomiopatije 

3. Povezanost genotipa i ishoda fenotipa hipertrofične kardiomiopatije može se 

utvrditi uz pomoć algoritama mašinskog učenja 

4. Modeli mašinskog učenja mogu da predvide ishode hipertrofične 

kardiomiopatije na osnovu genotipskih i fenotipskih podataka 

5. Genotip-specifični nalazi ehokardiograma hipertrofične kardiomiopatije mogu 

se identifikovati uz pomoć algoritama mašinskog učenja 

 

3. MATERIJALI I METODE 

3.1. Dizajn studije 

Studija je bila multicentrična i retroprospektivna, pri čemu je retrospektivni period 

trajao 18, a prospektivni 12 meseci. U studiji je učestvovalo 6 institucija: Institut za 

kardiovaskularne bolesti Vojvodine (Republika Srbija), Klinički centar Srbije (Republika 

Srbija), Medicinski fakultet Univerziteta Njukasl (eng. Newcastle University Medical 

School) i Bolnica Njukasl na Tajnu fondacije Nacionalne zdravstvene službe (eng. 

Newcastle upon Tyne Hospitals NHS Foundation Trust) (Ujedinjeno Kraljevstvo), 

Univerzitetski medicinski centar Regensburg (eng. Medical Centre Regensburg) 

(Savezna Republika Nemačka) i Careggi Univerzitetska bolnica Firenca (eng. Careggi 

University Hospital Florence) (Italija). 

Studija je dobila saglasnost etičkih komisija svake od institucija koje su učestvovale 

u istraživanju. Studija je vršena u skladu sa dobrom kliničkom praksom i Helsinškom 

deklaracijom. 

 

3.2. Uzorak 

Studija je obuhvatila 143 odrasla pacijenta (≥ 18 godina) sa potvrđenom 

dijagnozom HCM, koji su ispunili uključujuće i isključujuće kriterijume. 
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Uključujući kriterijumi: 

1. potvrđena dijagnoza opstuktivne i/ili neopstruktivne HCM; 

2. istorija neobjašnjene hipertrofije leve komore: ehokardiografijom određena 

maksimalna debljina zida ≥ 15 mm ili 13-14 mm (granična hipertrofija) kod pacijenata 

koji imaju bar jednog srodnika prvog stepena sa potvrđenom HCM. 

 

Isključujući kriterijumi: 

1. redukcija septuma (hirurška intervencija ili intervencija kateterom) u prethodna 3 

meseca; 

2. klinička dekompenzacija u prethodna 3 meseca; IV klasa simptoma kongestivne srčane 

slabosti na osnovu klasifikacije Njujorškog kardiološkog društva (NYHA klasifikacija); 

3. krvni pritisak u mirovanju > 180/100 mmHg; 

4. sistolni krvni pritisak < 100 mmHg; 

5. gradijent u izlaznom traktu leve komore u mirovanju > 50 mmHg; 

6. ejekciona frakcija leve komore određena ehokardiografijom < 50%; 

7. pejsmejker ili kardioverter defibrilator implantiran ili zakazan u prethodna 3 meseca;  

8. bubrežna insuficijencija sa brzinom glomerularne filtracije (GFR) < 30 

mL/min/1.73m2; 

9. trudnoća ili planirana trudnoća; 

10. očekivano trajanje života kraće od 12 meseci; 

11. indeks telesne mase (BMI) > 40 kg/m2; 

12. istorija sinkope ili komorskih aritmija indukovanih vežbanjem; 

13. istorija ili prisustvo bilo koje druge bolesti sa očekivanim trajanjem života kraćim od 

3 godine; 

14. istorija maligniteta bilo kog organskog sistema (osim lokalizovanog karcinoma 

bazalnih ili skvamoznih ćelija kože ili lokalizovanog karcinoma prostate), lečenog ili 

nelečenog, u prethodne 2 godine, bez obzira na to da li postoji dokaz o lokalnoj 

rekurenciji ili metastazama; 

15. životno ugrožavajuća ili nekontrolisana disritmija, uključujući simptomatsku ili 

dugotrajnu komorsku tahikardiju, fibrilaciju ili lepršanje pretkomora uz komorsku 

frekvenciju u mirovanju > 110 otkucaja u minuti; 
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16. učešće u takmičarskim ili organizovanim sportskim aktivnostima (kao što su fudbal, 

košarka, itd.), eksplozivnim aktivnostima (kao što su sprint, sportovi sa reketom, itd.), 

ili naporno izometrijsko vežbanje (kao što je bodibilding) ili protivljenje uzdržavanju 

od istog tokom trajanja studije. 

 

Ispunjenost kriterijuma za uključivanje u studiju utvrđivala se na osnovu uvida u 

elektronski karton pacijenta. Učesnici istraživanja su upoznati sa ciljevima doktorske 

disertacije, a potpisivanjem informisanog pristanka dali su saglasnost za učešće u 

istraživanju. Podaci i rezultati učesnika su preuzeti iz bolničkog informacionog sistema. 

Svi učesnici studije su prošli kroz genetičko savetovanje, kada im je nedvosmisleno 

naglašen značaj daljeg kardiološkog skininga unutar porodice. 

 

3.3. Protokol 

3.3.1.  Povezanost genotipa i fenotipa HCM: Ispitivanje korišćenjem 

algoritama mašinskog učenja i kliničkih podataka 

3.3.1.1. Podaci 

3.3.1.1.1. Demografski podaci 

Evidentirani su pol i uzrast pacijenata. 

 

3.3.1.1.2. Anamnestički podaci 

Evidentirani su trenutni simptomi, znaci, NYHA klasa, sistolni i dijastolni krvni 

pritisak, kao i komorbiditeti. Takođe su evidentirane porodična istorija HCM, dilatativne 

kardiomiopatije, iznenadne srčane smrti u uzrastu < 40 godina, 40-59 godina i ≥ 60 godina, 

neobjašnjene srčane slabosti, implantacija pejsmejkera ili defibrilatora, kao sistemskih 

bolesti. 

 

3.3.1.1.3. Antropometrijska merenja 

Visina tela je određena stadiometrom, a težina tela vagom. Izračunat je BMI.  
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3.3.1.1.4. Uzorkovanje krvi 

Uzorci krvi su dobijeni venepunkcijom antekubitalne vene, u jutarnjim časovima, 

nakon noćnog gladovanja. 

 

3.3.1.1.5. Genetičko testiranje 

Nakon izolacije DNK komercijalnim kitom QIAamp DNA Blood BioRobot MDx 

kit (QIAGEN GmbH, Hilden, Savezna Republika Nemačka), panel od 41 gena je 

analiziran polimeraza lančanom reakcijom (eng. polymerase chain reaction, PCR), kao i 

sekvencioniranjem naredne generacije na platformi Next Generation Sequencing 

(Illumina, Inc., San Diego, USA). Za ovaj panel, uzorak predstavlja DNK izolovana iz 

krvi pacijenata. Analizirani geni su deo komercijalno dostupnog panela TruSight Cardio 

Sequencing Kit (Illumina, Inc., San Diego, SAD), za ciljano sekvencioniranje u 

naučnoistraživačke svrhe. 

 

3.3.1.1.5.1. Genetički panel 

Osnova analiziranog panela se sastoji od: ACTC1, ACTN2, ANKRD1, CSRP3, 

FHL1, GLA, LAMP2, MYBPC3, MYH7, MYL2, MYL3, PLN, PRKAG2, TNNI3, TNNT2 i 

TPM1. Ovi geni pripadaju panelu gena za HCM koji se analiziraju iz uzorka krvi u 

Medicinskoj genetičkoj laboratoriji Oksford (Oxford Medical Genetics Laboratory, 

OMGL). Ova osnova panela gena je dizajnirana tako da obuhvati gene za koje je 

definitivno pokazano da izazivaju HCM (MYBPC3, MYH7, TNNI3, TNNT2, MYL2, 

MYL3, ACTC1, TPM1) — prema Vodiču Fondacije Američkog koledža za kardiologiju 

(American College of Cardiology Foundation, ACCF) i Američke asocijacije za srce 

(American Heart Association, AHA) za dijagnozu i tretman HCM iz 2011. godine; zatim 

gene za diferencijalnu dijagnozu (PRKAG2, GLA, FHL1) i druge validirane gene 

povezane sa HCM (22). Pored toga analizirani su i geni: ABCC9, CACNA1C, CTF1, 

DMD, DSC2, DSG2, DSP, ELN, FBN, HCN4, JPH2, LAMA4, MYH6, MYPN, NEXN, 

NKX2-5, NOTCH1, PDLIM3, PKP2, PTPN11, RBM2, RYR1, SDHA, TRPM4 i TTN. Svi 

ovi geni su deo panela Illumina TruSight Cardio Sequencing Panel, komercijalno 

dostupnog panela za ciljano sekvencioniranje gena koji su povezani sa naslednim 
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stanjima srca u naučnoistraživačke svrhe. Za sve analizirane gene, uzorak predstavlja 

DNK izolovana iz krvi pacijenata. 

Ovo istraživanje se fokusiralo na gene za koje je pokazano da izazivaju HCM. 

Međutim, prilikom kreiranja modela za predikciju ishoda fenotipa korišćenjem isključivo 

genetičkih podataka, korišćeni su svi navedeni geni, kako bi se dobila kompletnija 

informacija koja potencijalno pruža bolju osnovu za predikciju. 

 

3.3.1.1.6. Hematološke i biohemijske analize krvi 

Kompletna krvna slika je urađena iz uzoraka pune krvi, određivanjem na 

hematološkom brojaču. Biohemijske analize su urađene iz krvnog seruma i plazme. Za 

dobijanje seruma, uzorci pune krvi su nakon potpune koagulacije bili centrifugirani na 

3500 obrtaja/minuti tokom 15 minuta. Za dobijanje plazme, uzorci pune krvi su bili 

centrifugirani na 3500 obrtaja/minuti, tokom 15 minuta. 

 

3.3.1.1.7. Transtorakalna ehokardiografija sa doplerom 

Ehokardiogrami su snimljeni u realnom vremenu tokom 3 srčana ciklusa 

pregledanjem sledećih standardnih srčanih preseka: parastenalni (duga osa) i apikalni (4 

šupljine, 2 šupljine i duga osa). Parasternalni prikazi kratke ose su zabeleženi u tri nivoa: 

bazalnom (na nivou mitralne valvule), srednjem papilarnom i apikalnom. Maksimalna 

brzina u izlaznom traktu leve komore bila je registrovana korišćenjem pulsnog doplera, u 

apikalnom 5-šupljinskom preseku, i korišćena za računanje gradijenta pritiska nad 

izlaznim traktom leve komore (eng. left ventricular outflow tract, LVOT), ukoliko on 

postoji.  

 

3.3.1.1.8. Kardiopulmonalni test opterećenjem 

Kardiopulmonalni test opterećenjem je izvršen korišćenjem bicikl-ergometra kako 

bi se evaluirala tolerancija na napor.  
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3.3.1.1.9. Elektrokardiografija i EKG-holter-monitoring 

Elektrokardiogram (EKG) je zabeležen korišćenjem 12-kanalnog 

elektrokardiografa, u ležećem položaju. Za uočavanje sporadičnih aritmija, učesnici su 

nosili EKG-holter-monitor 24 časa i vodili dnevnik simptoma i aktivnosti.  

 

3.3.1.2. Analiza podataka 

3.3.1.2.1. Priprema podataka za analizu 

Najveći deo pripreme i transformacije podataka iz izvornog oblika u format koji je 

pogodan za dalju analizu, kao i istraživanje podataka (eng. data exploration) izvršeno je 

korišćenjem biblioteke Pandas v. 1.4.3. programskog jezika Python (283).  

 

3.3.1.2.2. Identifikacija subfenotipova HCM primenom klasterizacije 

Pošto klasterizacija predstavlja podelu podataka u grupe (klastere) sličnih entiteta, 

a klasterizacija je u ovom istraživanju izvršena na osnovu fenotipskih parametara, grupe 

sličnih pacijenata su određene na osnovu parametara fenotipa. Stoga, identifikovani 

klasteri predstavljaju subfenotipove HCM, a termini klasteri i subfenotipovi su korišćeni 

sa istim značenjem. 

Adekvatno pripremljeni parametri fenotipa su analizirani algoritmima za 

klasterizaciju (nenadgledano mašinsko učenje). Hijerarhijska klasterizacija 

(agglomerative clustering, affinity=”euclidean”, linkage=”ward”) je izvršena 

korišćenjem modula Scikit-learn v. 1.1.1. i biblioteke SciPy v. 1.8.1, a dendrogram je 

vizuelizovan korišćenjem MatPlotLib v. 3.5.2  (283). 

Samo prve posete pacijenata su bile uključene u klasterizaciju. Podaci o drugoj 

poseti bi interferirali sa klasterizacijom, pa su izostavljeni iz ove analize. Parametri 

kojima je nedostajalo više od 30% vrednosti bili su uklonjeni iz skupa podataka, a druge 

nedostajuće vrednosti su imputirane pomoću Scikit-learn KNNImputer-a (n_neighbors = 

12, weights = “uniform”). Numerički parametri su standardizovani pomoću Scikit-learn 

StandardScaler-a (283).  

Da bi se dalja manipulacija podacima svela na minimum, a kako su korišćeni i 

numerički i kategorički parametri, za klasterizaciju je korišćen K-Prototype algoritam 

Kmodes paketa (pogodan za slučajeve kada skup podataka sadrži i kategoričke i 
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numeričke podatke). Za pronalaženje optimalnog broja klastera korišćena je metoda lakta, 

a određena vrednost je potvrđena korišćenjem Kneelocator-a 

(https://pypi.org/project/kneed/). Karakteristike klastera su vizuelizovane korišćenjem 

biblioteke Seaborn library v. 0.11.2 (283).  

Pošto u ovom trenutku ne postoji metoda za direktnu interpretaciju K-Prototype 

klasterizacije, korišćene su dve indirektne metode. U prvoj je izvršena klasifikacija 

pomoću algoritma stablo odlučivanja (gde su klase dodeljene na način na koji su određene 

u klasterizaciji, a zatim je klasifikacija izvršena korišćenjem svih podataka koji su 

korišćeni u klasterizaciji) i generisan je dendrogram (korišćenjem sklearn.tree.plot_tree). 

Druga metodu je činilo izračunavanje značaja karakteristika za klasifikaciju pomoću 

algoritma slučajna šuma (korišćenjem atributa slučajne šume, feature_importances_), 

nakon klasterizacije (klase su dodeljene na način na koji su određene u klasterizaciji). 

Pošto stabla odlučivanja donose lokalno optimalne izbore, klasifikacija algoritmom 

slučajne šume je izvršena za postojaniju procenu globalnog značaja karakteristika (283). 

 

3.3.1.2.3. Identifikacija povezanosti genotipa i ishoda fenotipa HCM i 

kreiranje modela za predikciju ishoda na osnovu parametara genotipa i 

fenotipa 

Povezanost genotipa i ishoda fenotipa je evaluirana kreiranjem modela za 

predviđanje ishoda fenotipa korišćenjem Python modula Scikit-learn i SHapley Additive 

exPlanation (SHAP). Za generisanje veštačkih podataka za manjinsku klasu u 

klasifikaciji, korišćena je tehnika SMOTE (eng. Synthetic Minority Oversampling 

Technique) iz Imbalanced-learn biblioteke. Izbor karakteristika izvršen je korišćenjem 

Scikit-learn SelectKBest-a (score_func = f_classif), SelectPercentile-om, Scikit-learn 

VarianceThreshold-om (threshold = 0.02), rekurzivnom eliminacijom karakteristika, i na 

osnovu domenskog znanja. Doprinos svake od karakteristika predikcijama modela 

procenjen je upotrebom SHAP modula v. 0.41.0  (283). 

Predikcija prisustva različitih ishoda fenotipa je izvršena kao zadatak klasifikacije. 

Ukupno 268 poseta je obuhvaćeno analizom. Za većinu pacijenata bili su dostupni podaci 

o 2 posete. Za manji broj pacijenata prikupljeni su samo podaci o prvoj poseti, zbog 

gubitka ovih pacijenata iz praćenja (283). 

https://pypi.org/project/kneed/
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Vršen je inženjering karakteristika: numerički parametri su kombinovani 

međusobnim deljenjem, kategorički međusobnim množenjem, a kategorički i numerički 

međusobno množenjem. Množenjem ili sabiranjem karakteristika koje zajedno čine 

smisleni klinički entitet kreirane su i neke dodatne karakteristike (283).  

Parametri kojima nedostajalo više od 30% vrednosti bili su isključeni iz dalje 

analize, a druge nedostajuće vrednosti su imputirane pomoću Scikit-learn KNNImputer-

a (n_neighbors = 12, weights = “uniform”). Numerički parametri su standardizovani 

pomoću Scikit-learn StandardScaler-a. Imputacija i standardizacija su bile izvršene u 

okviru iste protične obrade podataka, a protočna obrada je izvršena posebno na podacima 

za trening i posebno na podacima za testiranje (283). Podaci za trening su se sastojali od 

188 (75.80%) poseta. U slučajevima kada su bili dostupni podaci za obe posete, obe 

posete istog pacijenta su se nalazile ili u podacima za trening ili u podacima za testiranje 

(284).  

Za svaki zadatak klasifikacije TPOT (eng. tree-based pipeline optimization) je 

takođe korišćena (285). 

Primenjena je petostruka unakrsna validacija. Tačnost, preciznost, odziv, F1-skor, 

površina ispod ROC (eng. Receiver Operating Characteristics) krive i prosečna 

preciznost su sve korišćene kao mere performanse (283). 

Globalni doprinos karakteristika predikcijama je određen kao srednja apsolutna 

vrednost Shapley vrednosti za svaku od karakteristika korišćenjem SHAP v. 0.41.0 (283). 

 

3.3.1.2.4. Identifikacija genotip-specifičnih nalaza ehokardiograma HCM 

Ultrazvučni pregledi u DICOM formatu su konvertovani u JPG format pomoću 

RadiAnt DICOM Viewer v. 2021.2.2. Slike su grupisane na osnovu preseka u kojima su 

snimljene. Ultrazvučne slike koje prikazuju početak P-talasa i T-talasa EKG-a (kao 

reprezentativne slike dijastole komora i sistole komora) bile su odvojene svaka u posebnu 

grupu slika. Kako bi se uklonio pozadinski šum na slikama (podaci o pacijentu, datum, 

EKG), korišćen je namenski kreirani prekrivač slika napravljen pomoću Python OpenCV 

biblioteke. Prekrivene ultrazvučne slike, koje prikazuju samo region od interesa (Slika 3), 

korišćene su u daljoj analizi. 
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Genotip-specifični nalazi ehokardiograma su identifikovani pomoću Python 

biblioteke za duboko učenje i računarski vid Fast AI. Ovo je ostvareno kreiranjem modela 

dubokog učenja za klasifikaciju ultrazvučnih slika, prema klasama koje su kreirane na 

osnovu podataka o genotipu i naknadnom analizom regiona slika koji su najviše uticali 

prilikom predikcije modela. Prilikom kreiranja ovih modela bio je konsultovan Autokeras. 

Modeli su kreirani prema sledećim podešavanjima: image_size = 224, batch_size = 4, 

validation_percentage = 0.15, bez augmentacije podataka, i primenom prethodno 

trenirane ResNet18. 

 

3.3.2. Genetički i molekularni mehanizmi povezanosti genotipa i fenotipa 

HCM: Proučavanje pomoću mašina korišćenjem litarature 

3.3.2.1. „HCM Map“: Interaktivni resurs o genetičkim i molekularnim 

mehanizmima HCM 

„HCM Map“ je kreiran u SBML jeziku (eng. Systems Biology Markup Language) 

koriščenjem CellDesigner softvera v. 4.4.2. „HCM Map“ je vizuelizovan kao SBGN (eng. 

Systems Biology Graphical Notation) dijagram i javno dostupan pomoću MINERVA (eng. 

Molecular Interaction NEtwoRks VisuAlization) platforme (287). 

„HCM Map“ interaktivni resurs je kreiran manuelno, unošenjem molekularnih 

interakcija koje su pronađene u naučnim radovima o molekularnim mehanizmima u 

humanoj HCM koji se nalaze u PubMed bazi podataka. Kreiranje je započelo opsežnom 

pretragom literature koja se nalazi u PubMed bazi, na osnovu relevantnih ključnih fraza 

poput „gene hypertrophic cardiomyopathy“, „signaling hypertrophic cardiomyopathy“, 

„micro RNA hypertrophic cardiomyopathy“, „noncoding RNA hypertrophic 

cardiomyopathy“, itd. Filter “10 years” (za obuhvatanje perioda od 2010-2020. godine) 

je primenjen prilikom odabira literature (287). 

 

3.3.2.2. Genetički i molekularni mehanizmi povezanosti genotipa i fenotipa 

HCM prikupljeni i prikazani od strane mašina  

Genetički i molekularni aspekti HCM i njenih kliničkih prezentacija koji se nalaze 

u naučnim radovima su automatski prikupljeni, a 4 modela su kreirana i analizirana.  
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PubMed HCM model sastavljen pomoću INDRA-e je automatski kreiran, 

korišćenjem INDRA PubMed klijenta za literaturu, termina za pretragu “hypertrophic 

cardiomyopathy” (major_topic = True), i odbacivanjem rezultata koji su stariji od 1. 

januara 2010. godine (287). Literatura je automatski pročitana od strane REACH (eng. 

REading and Assembling Contextual and Holistic mechanisms from text) sistema za 

čitanje (288). Izdvojene interakcije su zatim bile mapirane, deduplicirane i organizovane 

u hijerarhiju, a zatim sastavljene u model pomoću Cytoscape v. 3.8.2 (287).  

PubMed+PathwayCommons HCM model sastavljen pomoću INDRA-e je 

automatski generisan na osnovu podataka u Pathway Commons bazi podataka preko 

BioPAX API INDRA-e i PubMed klijenta za literaturu INDRA-e, termina za pretragu 

“hypertrophic cardiomyopathy” (major_topic = True), i odbacivanjem rezultata koji su 

stariji od 1. januara 2010. godine (287). Literatura je automatski pročitana od strane 

REACH sitema za čitanje (288). Izdvojene interakcije su bile mapirane, deduplicirane i 

organizovane u hijerarhiju, a zatim sastavljene u model pomoću Cytoscape v. 3.8.2 (287).  

Interakcije za skraćeni INDRA DB model su pronađene u INDRA bazi podataka 

primenom ograničenja upita na MeSH „Cardiomyopathy, Hypertrophic, Familial“. Samo 

u potpunosti tačno izdvojene interakcije su unete u model. Kriterijum za tačnost je bio da 

su svi aspekti interakcije (oznake, subjekat, objekat, smer i tip interakcije) isti kao što bi 

bili na osnovu pažljivog maneulnog odabira. Interakcije su zatim manuelno prevedene u 

mrežnu tabelu u XLSX formatu (287). 

Interakcije za INDRA DB model su pronađene u INDRA bazi podataka primenom 

ograničenja upita na MeSH „Cardiomyopathy, Hypertrophic, Familial“. Sve pronađene 

interakcije su unete u model. Interakcije su prevedene u mrežnu tabelu u XLSX formatu 

(287). 

 

3.3.2.3. Genetički i molekularni mehanizmi različitih kliničkih prezentacija 

HCM prikupljeni i prikazani od strane mašina  

Genetički i molekularni mehanizmi HCM i njenih različitih kliničkih prezentacija 

su prikupljeni automatski iz INDRA baze podataka (227). Molekularni mehanizmi su 

pronađeni u svim naučnim radovima iz PubMed baze podataka koji su objavljeni počevši 

od 1. januara 2010. godine (296), posebno za  HCM i svaku od njenih 19 kliničkih 
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prezentacija. Interakcije su pronađene u INDRA bazi podataka na osnovu PubMed 

identifikatora (PMID), a oni su prikupljeni pomoću INDRA PubMed klijenta (koji 

pretražuje članke na PubMed-u) (228) i termina za pretragu: „hypertrophic 

cardiomyopathy“, „myofibrillar disarray“, „cardiomyocyte disarray“, „cardiomyocyte 

hypertrophy“, „myocardial fibrosis“, „myocardial hypercontractility“, „impaired 

myocardial relaxation“, „myocardial stiffness“, „myocardial remodeling“, „cardiac 

remodeling“,  „impaired cardiac relaxation“, „diastolic dysfunction“,  „coronary 

microvascular dysfunction“, „myocardial ischemia“, „left ventricular outflow tract 

obstruction“, „atrial fibrillation“, „sudden cardiac death“, „heart failure“, „major adverse 

cardiovascular events“ i „rehospitalization“ (use_text_word = True, major_topic = True) 

(92). 

Preseci skupova pronađenih interakcija za HCM i njene kliničke prezentacije su 

prevedeni u mrežnu tabelu, vizualizovani i analizirani pomoću Cytoscape v. 3.8.2 (92,289) 

i učinjeni javno dostupnim pomoću NDEx v 2.5.0 (290–292). 

 

3.3.2.4. „HCM clinical“ interaktivni resurs o kliničkom toku HCM 

„HCM Clinical“ interaktivni resurs je napravljen pomoću CellDesigner v. 4.4.2, 

pregledom literature i istraživanjem baza podataka, kao i objedinjavanjem pronađenih 

elemenata. Učinjen je javno dostupnim pomoću MINERVA platforme v. 15.1.2. 

 

3.4. Statistička obrada podataka 

Za statističku obradu podataka korišćen je licencirani program za statističku analizu 

SPSS v. 28.0.1.1. (IBM SPSS Statistics, Armonk, New York). Radi utvrđivanja statističke 

značajnosti, razlika u srednjim vrednostima kontinuiranih varijabli korišćena je ANOVA, 

a kategoričke varijable su bile upoređene chi-square testom. Za statistički značajnu 

odabrana je p vrednost < 0.05. Phi koeficijent je korišćen kao mera povezanosti između 

prisustva/odsustva mutacije u genima i prisustva/odsustva ishoda fenotipa. Procena 

slaganja između stvarnih i određenih klastera je vršena pomoću Cohen’s kappa 

koeficijenta. 
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4. REZULTATI 

4.1. Povezanost genotipa i fenotipa HCM: Ispitivanje korišćenjem algoritama 

mašinskog učenja i kliničkih podataka 

4.1.1. Identifikacija subfenotipova HCM primenom klasterizacije 

Klasteri HCM pacijenata su određeni na osnovu parametara fenotipa (283). 

 

4.1.1.1. Hierarhijska klasterizacija 

Kao rezultat hijerarhijske klasterizacije generisan je dendrogram (dijagram u obliku 

drveta, na kome su nasličniji pacijenti smešteni na granama koje su u međusobnoj blizini) 

(Slika 4). 

Klasteri se na osnovu dendrograma određuju pravljenjem preseka na različitim 

horizontalnim nivoima. U ovom slučaju, najprominentnije agregacije se uočavaju ako su 

pacijenti podeljeni u 2, 4 ili 6 klastera. 

 

4.1.1.2. K-Prototype klasterizacija 

Za ovaj skup podataka o fenotipu određeno je da je optimalan broj klastera 4. 

Značaj svake od karakteristika je indirektno procenjen (Slika 63, Tabela 12). 

 

4.1.2. Povezanost genotipa i fenotipa HCM 

Nije pronađena povezanost između klastera određenih hijerarhijskom 

klasterizacijom i genotipa (Slika 120). 

Neke statistički značajne korelacije su pronađene između klastera određenih K-

Prototype  klasterizacijom i mutiranih gena (Slike 121-126). Iako niti jedna od određenih 

postavki subfenotipova ne korelira u potpunosti sa genotipom, neke značajne korelacije 

su pronađene u postavkama sa 3 subfenotipa (TNNI3, p = 0.041), 4 subfenotipa (TNNI3, 

p = 0.045 i MYBPC3, p = 0.038), 5 subfenotipa (MYH7, p = 0.045) i 6 subfenotipa 

(MYBPC3, p = 0.044). 

 

4.1.3. Predikcija ishoda fenotipa isključivo na osnovu genetičkih podataka 

Predviđanje dva ishoda fenotipa je moguće na osnovu podataka o mutiranim 

genima: prisustvo ili odsustvo sinusnog ritma (Tabele 49 i 51) kao i prisustvo ili odsustvo 
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oštećenja/infarkta miokarda (Tabele 102 i 104). Modeli koji vrše predikciju odsustva ili 

prisustva sinusnog ritma imali su slične performanse kada su kreirani samo na osnovu 

uzročnih gena i na osnovu svih analiziranih gena. Sa druge strane, modeli koji vrše 

predikciju oštećenja/infarkta miokarda imali su bolje performanse kada su kreirani na 

osnovu svih analiziranih gena (a ne samo na osnovu uzročnih gena). 

 

4.1.4. Predikcija ishoda fenotipa na osnovu genetičkih podataka i drugih 

parametara fenotipa 

Algoritmi mašinskog učenja mogu da vrše predikciju sledećih ishoda fenotipa — 

zamor, otežano disanje, bol u grudima, palpitacije, sinkopa, šum na srcu, pretibijalni edem, 

pokretanje mitralnog zalistka unapred, abnormalnosti papilarnih mišića, hipokinezija, 

atrijalna fibrilacija, AV blok prvog stepena, blok leve grane (LBBB), blok desne grane 

(RBBB), prednji levi hemiblok, abnormalnosti ST segmenta, i negativni T talas (Slike 

127-143) — na osnovu podataka o genotipu i fenotipu, imajući pri tome odlične 

performanse (Tabela 106) (283). 

Prilikom predviđanja zamora, najveći doprinos je imala kombinacija mutacije u 

TNNT2 i maksimalnog odnosa disajne razmene (RER) (Slika 127). Prilikom predviđanja 

otežanog disanja najveći doprinos imala je kombinacija mutacije u MYBPC3 i vršne 

potrošnje kiseonika (peak VO2) (Slika 128). Prilikom predviđanja bola u grudima, najveći 

doprinos je imala kombinacija mutacije u TNNI3 i koncentracije lipoproteina visoke 

gustine (eng. high-density lipoprotein, HDL) (Slika 129). Prilikom predviđanja šuma na 

srcu najveći doprinos imala je kombinacija mutacije u MYH7 i podatka o implantiranju 

pejsmejkera/defibrilatora u porodičnoj istoriji, kao i kombinacija mutacije u TNNT2 i 

zapremine leve pretkomore (LAV) (Slika 132). Prilikom predviđanja negativnog T talasa, 

najveći doprinos imala je kombinacija mutacije u MYBPC3 i vrednosti transmitralnog 

maksimalnog gradijenta pritiska (MV maxPG) (Slika 143). 

 

4.1.5. Identifikacija genotip-specifičnih nalaza ehokardiograma HCM 

Identifikovani su genotip-specifični nalazi ehokardiograma: za mutaciju u MYH7 

genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima), strukture koje 

najviše utiču na raspoznavanje su septum, izlazni trakt leve komore (LVOT), prednji zid, 
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vrh srca, desna komora i mitralni aparat (Slike 145, 147, 149, 151, 153, 155); za mutaciju 

u TNNT2 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) 

strukture koje najviše utiču na raspoznavanje su septum i desna komora (Slike 157, 159, 

161, 163, 165, 167); dok su za mutaciju u MYBPC3 genu (nasuprot negativnom rezultatu 

na mutacije u analiziranim genima) ove strukture septum, leva komora i šupljina leve 

komore (Slike 169, 171, 173, 175, 177, 179). Kreirani modeli imaju odlične performanse 

(Tabele 107-124). 

 

4.2. Genetički i molekularni mehanizmi povezanosti genotipa i fenotipa HCM: 

Proučavanje pomoću mašina korišćenjem litarature 

4.2.1. „HCM Map“: Interaktivni resurs o genetičkim i molekularnim 

mehanizmima HCM 

„HCM Map“ predstavlja interaktivni pregled svih važnih molekularnih elemenata 

uključenih u HCM, detaljni vizuelni intuitivni prikaz genetičkih i molekularnih 

mehanizama HCM (Slika 182) i platformu za dalje in silico proučavanje, dostupan na: 

https://silicofcm.eu/interactive-map/. Predstavljeni elementi poseduju linkove ka 

njihovim opisima u biomedicinskim bazama podataka (Slika 183) (286). 

 

4.2.2. Genetički i molekularni mehanizmi povezanosti genotipa i fenotipa 

HCM prikupljeni i prikazani od strane mašina 

Četiri modela koja predstavljaju genetičke i molekularne mehanizme HCM su 

kreirana automatski, korišćenjem različitih komjuterski potpomognutih pristupa, i 

učinjeni su javno dostupnim (Tabela 125). U okviru analize mreže koja je usledila, 

određene su mere centralnosti čvorova, kao i najznačajniji elementi mreže (Tabela 126). 

Konsenzus o najvažnijim elementima je postignut samo u vezi sa jednim elementom 

(kalcijumom) (287).  

 

4.2.3. Genetički i molekularni mehanizmi različitih kliničkih prezentacija 

HCM prikupljeni i prikazani od strane mašina 

Genetički i molekularni mehanizmi su automatski prikupljeni iz 230.072 naučna 

rada o HCM i 19 kliničkih prezentacija HCM u formi 182.167 INDRA interakcija — 

https://silicofcm.eu/interactive-map/
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reprezentacije molekularnih mehanizama koje se sastoje od subjekta, objekta i i njihove 

interakcije (Tabela 128). Zajednički genetički i molekularni mehanizmi HCM i njenih 

kliničkih prezentacija predstavljeni su u vidu mreža koje su dobijene kao presek skupova 

interakcija HCM i svake od njenih kliničkih prezentacija (Tabela 129). Na osnovu 

automatski prikupljenih mehanizma i naknadne analize, prikazani su molekularni putevi 

koji su procenjeni kao najvažniji (Slika 200) (92). 

 

4.2.4. „HCM clinical“ interaktivni resurs o kliničkom toku HCM 

„HCM Clinical“ interaktivni resurs prikazuje kliničke aspekte HCM: dijagnozu 

(uključujući i diferencijalnu genetičku dijagnozu), monitoring i lečenje (Slika 201). Jedan 

deo „HCM Clinical“ u najvažnijim crtama prikazuje klinički tok HCM (Slika 202). 

„HCM Clinical“ interaktivni resurs je javno dostupan: https://silicofcm.eu/hcm-clinical-

interactive/. 

 

5. DISKUSIJA 

5.1. Povezanost genotipa i fenotipa HCM: Ispitivanje korišćenjem algoritama 

mašinskog učenja i kliničkih podataka 

5.1.1. Identifikacija subfenotipova HCM primenom klasterizacije 

Slučajevi HCM se uglavnom kategorišu u podtipove na osnovu mesta na kojima se 

hipertrofija javila (npr. bazalna, apikalna) (299). Postoje 2 tipa HCM: opstruktivna (oko 

70% slučajeva) i neopstruktivna (oko 30% slučajeva) (300). Radna grupa Evropskog 

kardiološkog društva (eng. The European Society of Cardiology Working Group) 

preporučuje klasifikaciju HCM na osnovu morfologije (32), dok Radna grupa Američkog 

udruženja za srce (eng. American Heart Association Working Group) sugeriše da bi HCM 

trebalo da bude definisana na osnovu njene genetičke osnove (301). 1981. godine, Maron 

et al. opisali su 4 tipa HCM, na osnovu pozicije hipertrofije (302,303). Helmy et al. 

predložili su klasifikaciju HCM na osnovu različitih šablona hipertrofije (303,304). Syed 

et al. su nagovestili postojanje najmanje 5 glavnih podtipova HCM koji se razlikuju na 

osnovu septalne konture, stepena i pozicije hipertrofije (303,304). Tang et al. pokazali su 

da različiti morfološki tipovi HCM imaju različite prognoze nakon hirurške mijektomije 

(299). 

https://silicofcm.eu/hcm-clinical-interactive/
https://silicofcm.eu/hcm-clinical-interactive/
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Rezultati ovog istraživanja sugerišu postojanje 4 podtipa HCM: klaster 0 

(“AHOLD”), koji se razlikuje od ostalih na osnovu prečnika korena aorte (AO) i laktat 

dehidrogenaze (LDH), pri čemu su vrednosti AO > 30 mm i LDH > 300 U/L; klaster 1 

(“RVSP ASCAOVS”), koji se razlikuje od ostalih na osnovu sistolnog pritiska desne 

komore (RVSP), dijametra ascedentne aorte (AscAO), i separacije aortnih kuspisa 

(AOvs), pri čemu su vrednosti AOvs > 27 m/s, AscAO < 31 mm i RVSP < 28 mmHg; 

klaster 2 (“weight”), koji se razlikuje od ostalih na osnovu telesne težine, sa vrednošću > 

95 kg; i klaster 3 (“AV LVOT PG”) koji se razlikuje od ostalih na osnovu srednjeg 

gradijenta pritisaka nad aortnom valvulom (AV meanPG), maksimalnog gradijenta 

pritisaka nad aortnom valvulom (AV maxPG), i maksimalnog gradijenta pritisaka nad 

izlaznim traktom leve komore (LVOT maxPG), pri čemu su vrednosti AV maxPG > 15 

mmHg, AV meanPG > 6 mmHg, i LVOT maxPG > 15 mmHg (283). 

Iako je dosta statistički značajnih razlika pronađeno između klastera za mnoge 

parametre, za neke od njih, preklapanje intervala vrednosti ometa upotrebu u 

međusobnom razlikovanju klastera (283). 

 

5.1.2. Korelacije genotipa i određenih klastera 

Odsustvo korelacija između pripadnosti određenom klasteru i genotipa u nekim od 

postavki ne znači da povezanost genotipa i fenotipa ne postoji. Ono pokazuje da su se 

algoritmi prilikom klasterizacije najviše oslanjali na određene parametre kako bi odredili 

optimalne klastere HCM pacijenata i da na taj način određeni klasteri ne koreliraju u 

potpunosti sa genotipom. 

 

5.1.3. Povezanost genotipa i fenotipa HCM 

Algoritmi mašinskog učenja su uglavnom imali poteškoće prilikom vršenja 

predikcije ishoda fenotipa isključivo na osnovu genetičkih podataka — kreirani modeli 

su uglavnom imali neadekvatne performanse, naročito kada se uzme u obzir da je 

prosečna preciznost prikladnija mera performanse od površine ispod ROC (eng. Receiver 

Operating Characteristics) krive kada postoji neravnoteža u zastupljenosti klasa u skupu 

podataka (306,307). Kod takvih modela takođe je primenjen i AutoML kako pre, tako i 

posle naduzorkovanja (eng. oversampling), bez značajnog uspeha. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

393 

 

Modeli koji predviđaju prisustvo ili odsustvo sinusnog ritma imali su slične 

performanse kada su bili kreirani samo na osnovu uzročnih gena i kada su bili kreirani na 

osnovu svih analiziranih gena. Model sa najboljim performansama za predikciju prisustva 

ili odstustva sinusnog ritma se zasniva na logističkoj regresiji sa naduzorkovanjem i ima 

tačnost 0,83, F1-skor 0,91 i prosečnu preciznost 0,86 — u ovom slučaju prosečna 

preciznost je prikladna mera, jer je su klase različito zastupljene (306,307). Nekoliko 

drugih modela na bazi drugih algoritama mašinskog učenja imali su slične, ali nešto lošije 

performanse. 

Modeli koji vrše predikciju oštećenja/infarkta miokarda imali su bolje performanse 

kada su kreirani korišćenjem svih analiziranih gena (a ne samo uzročnih gena). Model sa 

najboljim performansama za predikciju oštećenja/infarkta miokarda se zasniva na 

logističkoj regresiji sa naduzorkovanjem, i ima tačnost 0,73, F1-skor 0,84 i prosečnu 

preciznost 0,78  — u ovom slučaju prosečna preciznost je prikladna mera, jer je su klase 

različito zastupljene (306,307). Nekoliko drugih modela na bazi drugih algoritama 

mašinskog učenja imali su slične, ali nešto lošije performanse. 

 

5.1.4.  Identifikacija genotip-specifičnih nalaza ehokardiograma HCM 

U studiji Chung et al., kod 212 pacijenata, patogene varijante u genima koji su 

povezani sa sarkomerom su češće kod ne-apikalnih formi HCM nego kod apikalnih formi 

HCM i učestalost mutacija u MYH7 genu je bila 9% kod pacijenata sa apikalnom formom 

HCM (337). Waldmüller et al. opisali su vezu imeđu mutacija u MYH7 i većeg stepena 

regurgitacije mitralne valvule u HCM (338). U studiji Mori et al., pokazano je da je 

TNNT2 p.Lys263Arg povezana sa povećanom debljinom septuma (339). Waldmüller et 

al. su pronašli vezu između mutacije u MYBPC3 i naročito velike debljine 

interventrikularnog septuma (338). 
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5.2. Genetički i molekularni mehanizmi povezanosti genotipa i fenotipa HCM: 

Proučavanje pomoću mašina korišćenjem litarature 

5.2.1. „HCM Map“: Interaktivni resurs o genetičkim i molekularnim 

mehanizmima HCM 

„HCM map“ predstavlja skup trenutnog znanja o molekularnim mehanizmima 

HCM. Međutim, očekuje se da će mnoge molekularne interakcije HCM tek biti otkrivene. 

„HCM Map“ takođe predstavlja platformu za deljenje i prikupljanje molekularnih 

mehanizama HCM (287). 

 

5.2.2. Genetički i molekularni mehanizmi povezanosti genotipa i fenotipa 

HCM prikupljeni i prikazani od strane mašina 

Reprezentacije molekularnih mehanizama koje su kreirane automatski 

predstavljaju bogat i veoma detaljan izvor informacija. Međutim, ovaj pristup takođe 

donosi određeni nivo šuma (unošenje elemenata koji nisu molekuli) i netačnosti 

(pogrešno obeleženi elementi) u prikaze molekularnih aspekata bolesti (287). 

 

5.2.3. Genetički i molekularni mehanizmi različitih kliničkih prezentacija 

HCM prikupljeni i prikazani od strane mašina  

Prikupljeni i analizirani genetički i molekularni mehanizmi ukazuju da hipertrofija 

kardiomiocita, fibroza i remodelovanje miokarda; disfunkcija koronarne mikrocirkulacije 

i ishemija miokarda; ishemija miokarda i srčana slabost; atrijalna fibrilacija i iznenadna 

srčana smrt dele slične molekularne mehanizme (92). Sugerisani zajednički molekularni 

putevi su u skladu sa kliničkim istraživanjima o progresiji HCM (341,342), ishemijskim 

karakterom i povezanošću disfunkcije koronarne mikrocirkulacije i ishemije miokarda 

(1,343,344), povezanošću ishemije miokarda i srčane slabosti u HCM (345,346), 

aritmijskom prirodom i povezanošću atrijalne fibrilacije i iznenadne srčane smrti (347–

349). 

Automatsko izdvajanje genetičkih i molekularnih mehanizama povremeno izdvaja 

produkte gena pod nazivom gena koji ih kodira. Posledično, svaki element koji nosi ime 

gena mora da bude interpretiran kao taj gen i/ili njegov produkt (92). Primenjeno 

automatsko izdvajanje genetičkih i molekularnih mehanizama nije korišćeno sa ciljem da 
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se utvrdi definitivna genetička i molekularna osnova povezanosti genotipa i fenotipa 

HCM, nego sa ciljem da  se postavi polazna osnova za buduća istraživanja (92).  

 

5.3. Istraživačke hipoteze 

Svih 5 istraživačkih hipoteza je prihvaćeno. 

 

5.4. Buduće perspektive 

Identifikacija HCM podtipova na osnovu ukupne fenotipske prezentacije 

predstavlja korak ka preciznoj medicini za HCM koja bi zatim mogla da omogući 

stvaranje strategija za preventivu i tretman određenih grupa HCM pacijenata (283). Svaki 

od rezultata prikazanih u ovom istraživanju zahteva proveru u okviru većih, specifičnih i 

klasičnih kliničkih studija. 

 

6. ZAKLJUČAK 

Četiri podtipa HCM su identifikovana na osnovu svih dostupnih podataka o 

fenotipu: klaster 0 („AHOLD“), koji se razlikuje od ostalih na osnovu AO i LDH, pri 

čemu su vrednosti AO > 30 mm i LDH > 300 U/L; klaster 1 („RVSP ASCAOVS“), koji 

se razlikuje od ostalih na osnovu RVSP, AscAO i AOvs, pri čemu su vrednosti AOvs > 

27 m/s, AscAO < 31 mm i RVSP < 28 mmHg; klaster 2 („weight“), koji se razlikuje od 

ostalih na osnovu težine, pri čemu su vrednosti > 95 kg; i klaster 3 („AV LVOT PG“) koji 

se razlikuje od ostalih na osnovu AV meanPG, AV maxPG i LVOT maxPG pri čemu su 

vrednosti AV maxPG > 15 mmHg, AV meanPG > 6 mmHg i LVOT maxPG > 15 mmHg. 

Iako niti jedna od određenih postavki subfenotipova ne korelira u potpunosti sa 

genotipom, neke značajne korelacije su pronađene u postavkama sa 3 subfenotipa (TNNI3, 

p = 0.041), 4 subfenotipa (TNNI3, p = 0.045 i MYBPC3, p = 0.038), 5 subfenotipa (MYH7, 

p = 0.045) i 6 subfenotipa (MYBPC3, p = 0.044). 

Algoritmi mašinskog učenja su potvrdili da je utvrđivanje povezanosti genotipa i 

fenotipa HCM zahtevan zadatak. Predikciju isključivo na osnovu informacije o 

mutiranim genima je moguće izvršiti za dva ishoda fenotipa: prisustvo ili odsustvo 

sinusnog ritma i prisustvo ili odsustvo oštećenja/infarkta miokarda. Modeli koji vrše 

predikciju prisustva ili odsustva sinusnog ritma imali su podjednake performanse kada su 
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kreirani samo na osnovu uzročnih gena i kada su kreirani korišćenjem svih analiziranih 

gena, što ukazuje na mogući značaj uzročnih gena i irelevantnost gena koji nisu uzročni 

za ovaj ishod. Sa druge strane, modeli koji vrše predikciju oštećenja/infarkta miokarda 

imali su bolje performanse kada su kreirani na osnovu informacija o svim analiziranim 

genima (a ne samo o uzročnim genima), što sugeriše potencijalno značajnu ulogu gena 

koji nisu uzročni za ovaj ishod. 

Algoritmi mašinskog učenja predvideli su sledeće ishode na osnovu podataka o 

genotipu i fenotipu: zamor, otežano disanje, bol u grudima, palpitacije, sinkopa, šum na 

srcu, pretibijalni edem, pokretanje mitralnog zalistka unapred (SAM), abnormalnosti 

papilarnih mišića, hipokinezija, atrijalna fibrilacija, AV blok prvog stepena, blok leve 

grane (LBBB), blok desne grane (RBBB), prednji levi hemiblok, abnormalnosti ST 

segmenta, i negativni T talas. Za svaki od ovih ishoda određeni su podskupovi parametara 

koji su dovoljni za vršenje predikcije i utvrđen je njihov relativni značaj u svakoj od 

predikcija. Prilikom predviđanja zamora, najveći doprinos je imala kombinacija mutacije 

u TNNT2 i maksimalnog RER. Prilikom predviđanja dispneje najveći doprinos imala je 

kombinacija mutacije u MYBPC3 i vršne potrošnje kiseonika (peak VO2). Prilikom 

predviđanja bola u grudima, najveći doprinos je imala kombinacija mutacije u TNNI3 i 

koncentracije HDL. Prilikom predviđanja šuma na srcu najveći doprinos imala je 

kombinacija mutacije u MYH7 i podatka o implantiranju pejsmejkera/defibrilatora u 

porodičnoj istoriji, kao i kombinacija mutacije u TNNT2 i vrednosti LAV. Prilikom 

predviđanja negativnog T talasa, najveći doprinos imala je kombinacija mutacije u 

MYBPC3 i vrednost MV maxPG.  

Identifikovani su genotip-specifični nalazi ehokardiograma: za mutaciju u MYH7 

genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima), strukture koje 

najviše utiču na raspoznavanje su septum, izlazni trakt leve komore (LVOT), prednji zid, 

vrh srca, desna komora i mitralni aparat; za mutaciju u TNNT2 genu (nasuprot negativnom 

rezultatu na mutacije u analiziranim genima) strukture koje najviše utiču na 

raspoznavanje su septum i desna komora; dok su za mutaciju u MYBPC3 genu (nasuprot 

negativnom rezultatu na mutacije u analiziranim genima) ove strukture septum, leva 

komora i šupljina leve komore.  
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Mašinsko učenje je na ovaj način doprinelo u određenoj meri izučavanju 

povezanosti genotipa i fenotipa HCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

398 

 

7. LITERATURE 

1.  Aguiar Rosa S, Rocha Lopes L, Fiarresga A, Ferreira RC, Mota Carmo M. 

Coronary microvascular dysfunction in hypertrophic cardiomyopathy: 

pathophysiology, assessment, and clinical impact. Microcirculation. 

2021;28(1):e12656. 

2.  Sabater-Molina M, Pérez-Sánchez I, Hernández del Rincón JP, Gimeno JR. 

Genetics of hypertrophic cardiomyopathy: a review of current state. Clin Genet. 

2018;93(1):3–14. 

3.  Geske JB, Ommen SR, Gersh BJ. Hypertrophic cardiomyopathy: clinical update. 

JACC Heart Fail. 2018;6(5):364–75. 

4.  Firth J. Cardiology: hypertrophic cardiomyopathy. Clin Med (Lond). 

2019;19(1):61–3. 

5.  Zegkos T, Tziomalos G, Parcharidou D, Ntelios D, Papanastasiou CA, 

Karagiannidis E, et al. Validation of the new American College of 

Cardiology/American Heart Association Guidelines for the risk stratification of 

sudden cardiac death in a large Mediterranean cohort with hypertrophic 

cardiomyopathy. Hell J Cardiol. 2022;63:15–21. 

6.  Sabater-Molina M, Pérez-Sánchez I, Hernández Del Rincón JP, Gimeno JR. 

Genetics of hypertrophic cardiomyopathy: a review of current state. Clin Genet. 

2018;93(1):3–14. 

7.  Cao Y, Zhang PY. Review of recent advances in the management of hypertrophic 

cardiomyopathy. Eur Rev Med Pharmacol Sci. 2017;21(22):5207–10. 

8.  Antunes MO, Scudeler TL. Hypertrophic cardiomyopathy. Int J Cardiol Heart 

Vasc. 2020;27:100503. 

9.  van der Velden J, Stienen GJM. Cardiac disorders and pathophysiology of 

sarcomeric proteins. Physiol Rev. 2019;99(1):381–426. 

10.  Borsari W, Davis L, Meiers E, Salberg L, McDonough B. Living with 

hypertrophic cardiomyopathy: a patient’s perspective. Future Cardiol. 

2022;18(1):43–50. 

11.  Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, et al. 

Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

399 

 

Am Coll Cardiol. 2022;79(4):390–414. 

12.  Bonaventura J, Polakova E, Vejtasova V, Veselka J. Genetic testing in patients 

with hypertrophic cardiomyopathy. Int J Mol Sci. 2021;22(19):10401. 

13.  Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the 

prevalence of hypertrophic cardiomyopathy.  J Am Coll Cardiol. 

2015;65(12):1249–54.  

14.  Prondzynski M, Mearini G, Carrier L. Gene therapy strategies in the treatment of 

hypertrophic cardiomyopathy. Pflugers Arch. 2019;471(5):807–15.  

15.  Wolf CM. Hypertrophic cardiomyopathy: genetics and clinical perspectives. 

Cardiovasc Diagn Ther. 2019;9(Suppl 2):S388–415. 

16.  Younger J, Lo A, McCormack L, McGaughran J, Prasad S, Atherton JJ. 

Hypertrophic cardiomyopathy: challenging the status quo? Hear Lung Circ. 

2020;29(4):556–65. 

17.  Tuohy CV, Kaul S, Song HK, Nazer B, Heitner SB. Hypertrophic 

cardiomyopathy: the future of treatment. Eur J Heart Fail. 2020;22(2):228–40. 

18.  Ariss RW, Khan Minhas AM, Nazir S, Patel MM, Nesheiwat Z, Mhanna M, et al. 

Outcomes and revascularization strategies of ST-elevation myocardial infarction 

in patients with hypertrophic cardiomyopathy. Curr Probl Cardiol. 

2022;47(11):101102. 

19.  Novén J, Stagmo M, Wierup P, Nozohoor S, Bjursten H, Sjögren J, et al. 

Exercise echocardiography following septal myectomy for hypertrophic 

obstructive cardiomyopathy. Thorac Cardiovasc Surg. 2020;70(1):18–25. 

20.  Batzner A, Aicha D, Pfeiffer B, Neugebauer A, Seggewiss H. Age‐related 

survival after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. 

ESC Heart Fail. 2022;9(1):327–36. 

21.  Hayashi T. Hypertrophic cardiomyopathy: diverse pathophysiology revealed by 

genetic research, toward future therapy. Keio J Med. 2020;69(4):77–87. 

22.  Weissler-Snir A, Allan K, Cunningham K, Connelly KA, Lee DS, Spears DA, et 

al. Hypertrophic cardiomyopathy–related sudden cardiac death in young people 

in Ontario. Circulation. 2019;140(21):1706–16. 

23.  O’Hara RP, Binka E, Prakosa A, Zimmerman SL, Cartoski MJ, Abraham MR, et 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

400 

 

al. Personalized computational heart models with T1-mapped fibrotic remodeling 

predict sudden death risk in patients with hypertrophic cardiomyopathy. Elife. 

2022;11:e73325. 

24.  Hong Y, Su WW, Li X. Risk factors of sudden cardiac death in hypertrophic 

cardiomyopathy. Curr Opin Cardiol. 2022;37(1):15–21. 

25.  Huang H, Chen Y, Jin J, Du R, Tang K, Fan L, et al. CSRP3, p.Arg122*, is 

responsible for hypertrophic cardiomyopathy in a Chinese family. J Gene Med. 

2022;24(1):e3390. 

26.  Zhang M, Sun X, Wu G, Wang D, Wang L, Zhang C, et al. Effect of cis-

compound variants in MYH7 on hypertrophic cardiomyopathy with a mild 

phenotype. Am J Cardiol. 2022;167:104–10. 

27.  Wu G, Liu J, Ruan J, Yu S, Wang L, Zhao S, et al. Deleterious rare desmosomal 

variants contribute to hypertrophic cardiomyopathy and are associated with 

distinctive clinical features. Can J Cardiol. 2022;38(1):41–8. 

28.  Tower-Rader A, Desai MY. Phenotype–genotype correlation in hypertrophic 

cardiomyopathy: less signal, more noise? Circ Cardiovasc Imaging. 

2017;10(2):e006066. 

29.  Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, 

clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–70. 

30.  Jordà P, Oudit GY, Tadros R. Unraveling the genetic substrate and phenotypic 

variability of hypertrophic cardiomyopathy: a role for desmosome gene variants? 

Can J Cardiol. 2022;38(1):3–5. 

31.  Pai SL, Chadha RM, Logvinov II, Brigham TJ, Watt KD, Li Z, et al. Preoperative 

echocardiography as a prognostic tool for liver transplant in patients with 

hypertrophic cardiomyopathy. Clin Transplant. 2022;36(2):e14538. 

32.  Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 

2014 ESC Guidelines on diagnosis and management of hypertrophic 

cardiomyopathy: the task force for the diagnosis and management of 

hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur 

Heart J. 2014;35(39):2733–79. 

33.  Cimiotti D, Budde H, Hassoun R, Jaquet K. Genetic restrictive cardiomyopathy: 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

401 

 

causes and consequences–an integrative approach. Int J Mol Sci. 2021;22(2):558. 

34.  Savariya U, Aponte MMP, Nathan S, Zhao B, Radovancevic R, de Armas IAS, et 

al. Hypertrophic cardiomyopathy with a complex clinical course leading to heart 

transplantation. Cardiovasc Pathol. 2022;58:107406. 

35.  Akhtar M, Elliott P. The genetics of hypertrophic cardiomyopathy. Glob Cardiol 

Sci Pract. 2018;2018(3):36. 

36.  Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic cardiomyopathy: an 

overview of genetics and management. Biomolecules. 2019;9(12):878. 

37.  Squire J. Special issue: the actin-myosin interaction in muscle: background and 

overview. Int J Mol Sci. 2019;20(22):5715. 

38.  Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix 

metalloproteinases: implications in disease. FEBS J. 2021;288(24):7162–82. 

39.  Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC. Overview of the 

muscle cytoskeleton. Compr Physiol. 2017;7(3):891–944. 

40.  Martin TG, Kirk JA. Under construction: the dynamic assembly, maintenance, 

and degradation of the cardiac sarcomere. J Mol Cell Cardiol. 2020;148:89–102. 

41.  Ribeiro M, Furtado M, Martins S, Carvalho T, Carmo-Fonseca M. RNA splicing 

defects in hypertrophic cardiomyopathy: implications for diagnosis and therapy. 

Int J Mol Sci. 2020;21(4):1329. 

42.  Solomon T, Filipovska A, Hool L, Viola H. Preventative therapeutic approaches 

for hypertrophic cardiomyopathy. J Physiol. 2021;599(14):3495–512. 

43.  Hayashi T. Hypertrophic cardiomyopathy: diverse pathophysiology revealed by          

genetic research, toward future therapy. Keio J Med. 2020;69(4):77–87. 

44.  Viola HM, Hool LC. Impaired calcium handling and mitochondrial metabolic 

dysfunction as early markers of hypertrophic cardiomyopathy. Arch Biochem 

Biophys. 2019;665:166–74. 

45.  Ommen SR, Semsarian C. Hypertrophic cardiomyopathy: a practical approach to 

guideline directed management. Lancet. 2021;398(10316):2102–8. 

46.  Ranta-Aho J, Olive M, Vandroux M, Roticiani G, Dominguez C, Johari M, et al. 

Mutation update for the ACTN2 gene. Hum Mutat. In press. DOI: 

10.1002/humu.24470.  



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

402 

 

47.  Henrique JS, Braga PLG, de Almeida SS, Nunes NSP, Benfato ID, Arida RM, et 

al. Effect of the ACTN-3 gene polymorphism on functional fitness and executive 

function of elderly. Front Aging Neurosci. 2022;14:943934. 

48.  Hou CR, Cortez D. Novel ACTN2 missense variant is associated with idiopathic 

ventricular fibrillation: a case report. Eur Hear J Case Reports. 

2022;6(7):ytac229. 

49.  Germain P, Delalande A, Pichon C. Role of muscle LIM protein in 

mechanotransduction process. Int J Mol Sci. 2022;23(17):9785. 

50.  Riaz M, Park J, Sewanan LR, Ren Y, Schwan J, Das SK, et al. Muscle LIM 

protein force-sensing mediates sarcomeric biomechanical signaling in human 

familial hypertrophic cardiomyopathy. Circulation. 2022;145(16):1238–53. 

51.  Herrero-Galán E, Martínez-Martín I, Sánchez-González C, Vicente N, Bonzón-

Kulichenko E, Calvo E, et al. Basal oxidation of conserved cysteines modulates 

cardiac titin stiffness and dynamics. Redox Biol. 2022;52:102306. 

52.  Marcello M, Cetrangolo V, Savarese M, Udd B. Use of animal models to 

understand titin physiology and pathology. J Cell Mol Med. 2022;26(20):5103–

12. 

53.  Kötter S, Krüger M. Protein quality control at the sarcomere: titin protection and 

turnover and implications for disease development. Front Physiol. 

2022;13:914296. 

54.  Lin YH, Major JL, Liebner T, Hourani Z, Travers JG, Wennersten SA, et al. 

HDAC6 modulates myofibril stiffness and diastolic function of the heart. J Clin 

Invest. 2022;132(10):e148333. 

55.  Dassanayake Mudiyanselage SP, Gage MJ. Regulation of poly-E motif flexibility 

by pH, Ca2+ and the PPAK motif. Int J Mol Sci. 2022;23(9):4779. 

56.  Lamber EP, Guicheney P, Pinotsis N. The role of the M-band myomesin proteins 

in muscle integrity and cardiac disease. J Biomed Sci. 2022;29(1):18. 

57.  Williams TD, Rousseau A. Actin dynamics in protein homeostasis. Biosci Rep. 

2022;42(9):BSR20210848. 

58.  Baltes C, Thalla DG, Kazmaier U, Lautenschläger F. Actin stabilization in cell 

migration. Front Cell Dev Biol. 2022;10:931880. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

403 

 

59.  England J, Granados-Riveron J, Polo-Parada L, Kuriakose D, Moore C, Brook 

JD, et al. Tropomyosin 1: Multiple roles in the developing heart and in the 

formation of congenital heart defects. J Mol Cell Cardiol. 2017;106:1–13. 

60.  Pavadai E, Rynkiewicz MJ, Yang Z, Gould IR, Marston SB, Lehman W. 

Modulation of cardiac thin filament structure by phosphorylated troponin–I 

analyzed by protein-protein docking and molecular dynamics simulation. Arch 

Biochem Biophys. 2022;725:109282. 

61.  Cha YJ, Jeon SB, Oh J, Lee ST, Kim S, Kim H, et al. Derivation of YCMi005-A, 

a human-induced pluripotent stem cell line, from a patient with dilated 

cardiomyopathy carrying missense variant in TPM1 (p. Glu192Lys). Stem Cell 

Res. 2022;60:102707. 

62.  Teekakirikul P, Zhu W, Xu X, Young CB, Tan T, Smith AM, et al. Genetic 

resiliency associated with dominant lethal TPM1 mutation causing atrial septal 

defect with high heritability. Cell Rep Med. 2022;3(2):100501. 

63.  Chalovich JM, Zhu L, Johnson D. Hypertrophic cardiomyopathy mutations of 

troponin reveal details of striated muscle regulation. Front Physiol. 

2022;13:902079. 

64.  Daniels MJ, Fusi L, Semsarian C, Naidu SS. Myosin modulation in hypertrophic 

cardiomyopathy and systolic heart failure: getting inside the engine. Circulation. 

2021;144(10):759–62. 

65.  Day SM, Tardiff JC, Ostap EM. Myosin modulators: emerging approaches for 

the treatment of cardiomyopathies and heart failure. J Clin Invest. 

2022;132(5):e148557. 

66.  Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, 

et al. Mavacamten for treatment of symptomatic obstructive hypertrophic 

cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-

controlled, phase 3 trial. Lancet. 2020;396(10253):759–69. 

67.  Wood NB, Kelly CM, O’Leary TS, Martin JL, Previs MJ. Cardiac myosin 

filaments are maintained by stochastic protein replacement. Mol Cell Proteomics. 

2022;21(10):100274. 

68.  Desai DA, Rao VJ, Jegga AG, Dhandapany PS, Sadayappan S. Heterogeneous 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

404 

 

distribution of genetic mutations in myosin binding protein-C paralogs. Front 

Genet. 2022;13:896117. 

69.  Arif M, Nabavizadeh P, Song T, Desai D, Singh R, Bazrafshan S, et al. Genetic, 

clinical, molecular, and pathogenic aspects of the South Asian–specific 

polymorphic MYBPC3Δ25bp variant. Biophys Rev. 2020;12(4):1065–84. 

70.  Nussinov R, Tsai CJ, Jang H. Protein ensembles link genotype to phenotype. 

PLoS Comput Biol. 2019;15(6):e1006648. 

71.  Wijnker PJM, Sequeira V, Kuster DWD, Velden JV. Hypertrophic 

cardiomyopathy: a vicious cycle triggered by sarcomere mutations and secondary 

disease hits. Antioxid Redox Signal. 2019;31(4):318–58. 

72.  Cui Y, Liu C, Luo J, Liang J. Dysfunctional network and mutation genes of 

hypertrophic cardiomyopathy. J Healthc Eng. 2022;2022:8680178. 

73.  Yotti R, Seidman CE, Seidman JG. Advances in the genetic basis and 

pathogenesis of sarcomere cardiomyopathies. Annu Rev Genomics Hum Genet. 

2019;20:129–53. 

74.  Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, et al. 

Results of clinical genetic testing of 2,912 probands with hypertrophic 

cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 

2015;17(11):880–8. 

75.  Alders M, Jongbloed R, Deelen W, van den Wijngaard A, Doevendans P, Ten 

Cate F, et al. The 2373insG mutation in the MYBPC3 gene is a founder mutation, 

which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur 

Heart J. 2003;24(20):1848–53. 

76.  Jääskeläinen P, Kuusisto J, Miettinen R, Kärkkäinen P, Kärkkäinen S, Heikkinen 

S, et al. Mutations in the cardiac myosin-binding protein C gene are the 

predominant cause of familial hypertrophic cardiomyopathy in eastern Finland. J 

Mol Med (Berl). 2002;80(7):412–22. 

77.  Adalsteinsdottir B, Teekakirikul P, Maron BJ, Burke MA, Gudbjartsson DF, 

Holm H, et al. Nationwide study on hypertrophic cardiomyopathy in Iceland: 

evidence of a MYBPC3 founder mutation. Circulation. 2014;130(14):1158–67. 

78.  Kubo T, Kitaoka H, Okawa M, Matsumura Y, Hitomi N, Yamasaki N, et al. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

405 

 

Lifelong left ventricular remodeling of hypertrophic cardiomyopathy caused by a 

founder frameshift deletion mutation in the cardiac Myosin-binding protein C 

gene among Japanese. J Am Coll Cardiol. 2005;46(9):1737–43. 

79.  Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, et al. A 

common MYBPC3 (cardiac myosin binding protein C) variant associated with 

cardiomyopathies in South Asia. Nat Genet. 2009;41(2):187–91. 

80.  Chou C, Chin MT. Pathogenic mechanisms of hypertrophic cardiomyopathy 

beyond sarcomere dysfunction. Int J Mol Sci. 2021;22(16):8933. 

81.  Ogino S, Gulley ML, den Dunnen JT, Wilson RB; Association for Molecular 

Patholpogy Training and Education Committtee. Standard mutation nomenclature 

in molecular diagnostics : practical and educational challenges. J Mol Diagn. 

2007;9(1):1–6. 

82.  Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell 

Cardiol. 2021;150:101–8. 

83.  Spudich JA. Three perspectives on the molecular basis of hypercontractility 

caused by hypertrophic cardiomyopathy mutations. Pflugers Arch. 

2019;471(5):701–17. 

84.  Glazier AA, Thompson A, Day SM. Allelic imbalance and haploinsufficiency in 

MYBPC3-linked hypertrophic cardiomyopathy. Pflugers Arch. 2019;471(5):781–

93. 

85.  Mazzarotto F, Olivotto I, Boschi B, Girolami F, Poggesi C, Barton PJR, et al. 

Contemporary insights into the genetics of hypertrophic cardiomyopathy: toward 

a new era in clinical testing? J Am Hear Assoc. 2020;9(8):e015473. 

86.  Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, et al. 

Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC State-of-the-

Art Review. J Am Coll Cardiol. 2022;79(4):372–89. 

87.  Ueda Y, Stern JA. A one health approach to hypertrophic cardiomyopathy. Yale J 

Biol Med. 2017;90(3):433–48. 

88.  Repetti GG, Kim Y, Pereira AC, Ingles J, Russell MW, Lakdawala NK, et al. 

Discordant clinical features of identical hypertrophic cardiomyopathy twins. Proc 

Natl Acad Sci U S A. 2021;118(10):e2021717118. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

406 

 

89.  Sequeira V, Bertero E, Maack C. Energetic drain driving hypertrophic 

cardiomyopathy. FEBS Lett. 2019;593(13):1616–26. 

90.  Farrell ET, Grimes AC, de Lange WJ, Armstrong AE, Ralphe JC. Increased 

postnatal cardiac hyperplasia precedes cardiomyocyte hypertrophy in a model of 

hypertrophic cardiomyopathy. Front Physiol. 2017;8:414. 

91.  Ramachandra CJA, Mai Ja KPM, Lin YH, Shim W, Boisvert WA, Hausenloy DJ. 

Induced pluripotent stem cells for modelling energetic alterations in hypertrophic  

cardiomyopathy. Cond Med. 2019;2(4):142–51. 

92.  Glavaški M, Velicki L. Shared molecular mechanisms of hypertrophic 

cardiomyopathy and its clinical presentations: automated molecular mechanisms 

extraction approach. Life (Basel). 2021;11(8):785. 

93.  Zhang ZL, Xu YY, Qin Z, Lu YZ, Liu TD, Zhang L, et al. N-terminal pro-brain 

natriuretic peptide and adverse outcomes in Chinese patients with hypertrophic 

cardiomyopathy. Biosci Rep. 2022;42(1):BSR20212098. 

94.  MacIver DH, Clark AL. Contractile dysfunction in sarcomeric hypertrophic 

cardiomyopathy. J Card Fail. 2016;22(9):731–7. 

95.  Sukhacheva TV, Chudinovskikh YA, Eremeeva MV, Serov RA, Bockeria LA. 

Proliferative potential of cardiomyocytes in hypertrophic cardiomyopathy: 

correlation with myocardial remodeling. 2016;162(1):160–9. 

96.  Fernlund E, Gyllenhammar T, Jablonowski R, Carlsson M, Larsson A, Ärnlöv J, 

et al. Serum biomarkers of myocardial remodeling and coronary dysfunction in 

early stages of hypertrophic cardiomyopathy in the young. Pediatr Cardiol. 

2017;38(4):853–63. 

97.  Ramachandra CJA, Kp MMJ, Chua J, Hernandez-Resendiz S, Liehn EA, Gan 

LM, et al. Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in 

hypertrophic cardiomyocytes. Cardiovasc Res. 2022;118(2):517–30. 

98.  Coppini R, Ferrantini C, Mugelli A, Poggesi C, Cerbai E. Altered Ca2+ and Na+ 

homeostasis in human hypertrophic cardiomyopathy: implications for 

arrhythmogenesis. Front Physiol. 2018;9:1391. 

99.  Volpe M, Liuzzo G. VANISHing the progression of cardiac abnormalities in 

hypertrophic cardiomyopathy with early use of valsartan? Eur Heart J. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

407 

 

2022;43(3):181–2. 

100.  Yin L, Xu HY, Zheng SS, Zhu Y, Xiao JX, Zhou W, et al. 3.0 T magnetic 

resonance myocardial perfusion imaging for semi-quantitative evaluation of 

coronary microvascular dysfunction in hypertrophic cardiomyopathy. Int J 

Cardiovasc Imaging. 2017;33(12):1949–59. 

101.  Bakar SN, Hayman S, McCarty D, Thain AP, McLellan A, Wagner C, et al. 

Invasive assessment of microvascular resistance in hypertrophic cardiomyopathy 

with echocardiographic correlates. Hear Lung Circ. 2022;31(2):194–8. 

102.  Raphael CE, Cooper R, Parker KH, Collinson J, Vassiliou V, Pennell DJ, et al. 

Mechanisms of myocardial ischemia in hypertrophic cardiomyopathy: insights 

from wave intensity analysis and magnetic resonance. J Am Coll Cardiol. 

2016;68(15):1651–60. 

103.  Argirò A, Zampieri M, Berteotti M, Marchi A, Tassetti L, Zocchi C, et al. 

Emerging medical treatment for hypertrophic cardiomyopathy. J Clin Med. 

2021;10(5):951. 

104.  Toepfer CN, Wakimoto H, Garfinkel AC, McDonough B, Liao D, Jiang J, et al. 

Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci 

Transl Med. 2019;11(476):eaat1199. 

105.  Autore C, Ferrazzi P. Patients with hypertrophic cardiomyopathy are getting 

older. Int J Cardiol. 2022;353:73–4.  

106.  Cordts K, Seelig D, Lund N, Carrier L, Böger RH, Avanesov M, et al. 

Association of asymmetric dimethylarginine and diastolic dysfunction in patients 

with hypertrophic cardiomyopathy. Biomolecules. 2019;9(7):277. 

107.  Velicki L, Jakovljevic DG, Preveden A, Golubovic M, Bjelobrk M, Ilic A, et al. 

Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy. 

BMC Cardiovasc Disord. 2020;20(1):516. 

108.  Su W, Huo Q, Wu H, Wang L, Ding X, Liang L, et al. The function of LncRNA-

H19 in cardiac hypertrophy. Cell Biosci. 2021;11(1):153. 

109.  Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and 

regeneration. Cell Regen. 2021;10(1):25. 

110.  Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

408 

 

for functional alterations in cardiac hypertrophy and heart failure. Antioxidants. 

2021;10(6):931. 

111.  Xie J, Wang Y, Ai D, Yao L, Jiang H. The role of the Hippo pathway in heart 

disease. FEBS J. 2022(19):5819–33. 

112.  Matsuura K. Toward the development of novel therapy for hypertrophic 

cardiomyopathy. Int Heart J. 2018;59(5):914–6. 

113.  Kraft T, Montag J. Altered force generation and cell-to-cell contractile imbalance 

in hypertrophic cardiomyopathy. Pflugers Arch. 2019;471(5):719–33. 

114.  Montag J, Kraft T. Stochastic allelic expression as trigger for contractile 

imbalance in hypertrophic cardiomyopathy. Biophys Rev. 2020;12(4):1055–64. 

115.  Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, et al. A review 

of the molecular mechanisms underlying the development and progression of 

cardiac remodeling. Oxid Med Cell Longev. 2017;2017:3920195. 

116.  Turner NA, Blythe NM. Cardiac fibroblast p38 MAPK: a critical regulator of 

myocardial remodeling. J Cardiovasc Dev Dis. 2019;6(3):27. 

117.  Zhou H, Wang B, Yang XY, Jia QJ, Zhang A, Qi ZW, et al. Long noncoding 

RNAs in pathological cardiac remodeling: a review of the update literature. 

Biomed Res Int. 2019;2019:7159592. 

118.  Liu X, Ma Y, Yin K, Li W, Chen W, Zhang Y, et al. Long non-coding and 

coding RNA profiling using strand-specific RNA-seq in human hypertrophic 

cardiomyopathy. Sci Data. 2019;6(1):90. 

119.  Chen C, Ponnusamy M, Liu C, Gao J, Wang K, Li P. MicroRNA as a therapeutic 

target in cardiac remodeling. Biomed Res Int. 2017;2017:1278436. 

120.  Garfinkel AC, Seidman JG, Seidman CE. Genetic pathogenesis of hypertrophic 

and dilated cardiomyopathy. Heart Fail Clin. 2018;14(2):139. 

121.  Webber M, Jackson SP, Moon JC, Captur G. Myocardial fibrosis in heart failure: 

anti-fibrotic therapies and the role of cardiovascular magnetic resonance in drug 

trials. Cardiol Ther. 2020;9(2):363–76. 

122.  Kotadia I, Whitaker J, Roney C, Niederer S, O’Neill M, Bishop M, et al. 

Anisotropic cardiac conduction. Arrhythm Electrophysiol Rev. 2020;9(4):202–

10. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

409 

 

123.  Giordano C, Francone M, Cundari G, Pisano A, d’Amati G. Myocardial fibrosis: 

morphologic patterns and role of imaging in diagnosis and prognostication. 

Cardiovasc Pathol. 2022;56:107391. 

124.  Zhu L, Li N, Sun L, Zheng D, Shao G. Non-coding RNAs: the key detectors and 

regulators in cardiovascular disease. Genomics. 2021;113(1):1233–46. 

125.  Liu MN, Luo G, Gao WJ, Yang SJ, Zhou H. miR-29 family: a potential 

therapeutic target for cardiovascular disease. Pharmacol Res. 2021;166:105510. 

126.  Carbone A, D’Andrea A, Sperlongano S, Tagliamonte E, Mandoli GE, Santoro 

C, et al. Echocardiographic assessment of coronary microvascular dysfunction: 

basic concepts, technical aspects, and clinical settings. Echocardiography. 

2021;38(6):993–1001. 

127.  Musumeci B, Tini G, Russo D, Sclafani M, Cava F, Tropea A, et al. Left 

ventricular remodeling in hypertrophic cardiomyopathy: an overview of current 

knowledge. J Clin Med. 2021;10(8):1547. 

128.  Godo S, Suda A, Takahashi J, Yasuda S, Shimokawa H. Coronary microvascular 

dysfunction. Arterioscler Thromb Vasc Biol. 2021;41(5):1625–37. 

129.  Zhu H, Zhou H. Novel insight into the role of endoplasmic reticulum stress in the 

pathogenesis of myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 

2021;2021:5529810. 

130.  Wang WL, Ge TY, Chen X, Mao Y, Zhu YZ. Advances in the protective 

mechanism of NO, H2S, and H2 in myocardial ischemic injury. Front Cardiovasc 

Med. 2020;7:588206. 

131.  Mamidi R, Li J, Doh CY, Verma S, Stelzer JE. Impact of the myosin modulator 

mavacamten on force generation and cross-bridge behavior in a murine model of 

hypercontractility. J Am Hear Assoc. 2018;7(17):e009627. 

132.  Ren X, Hensley N, Brady MB, Gao WD. The genetic and molecular bases for 

hypertrophic cardiomyopathy: the role for calcium sensitization. J Cardiothorac 

Vasc Anesth. 2018;32(1):478–87. 

133.  Sarkar SS, Trivedi DV, Morck MM, Adhikari AS, Pasha SN, Ruppel KM, et al. 

The hypertrophic cardiomyopathy mutations R403Q and R663H increase the 

number of myosin heads available to interact with actin. Sci Adv. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

410 

 

2020;6(14):eaax0069. 

134.  Voigt JU. Direct stiffness measurements by echocardiography: does the search 

for the holy grail come to an end? JACC Cardiovasc Imaging. 2019;12(7 Pt 

1):1146–8. 

135.  Villemain O, Correia M, Mousseaux E, Baranger J, Zarka S, Podetti I, et al. 

Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy 

and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging. 2019;12(7 

Pt 1):1135–45. 

136.  Li N, Hang W, Shu H, Zhou N. RBM20, a therapeutic target to alleviate 

myocardial stiffness via titin isoforms switching in HFpEF. Front Cardiovasc 

Med. 2022;9:928244. 

137.  Münch J, Abdelilah-Seyfried S. Sensing and responding of cardiomyocytes to 

changes of tissue stiffness in the diseased heart. Front Cell Dev Biol. 

2021;9:642840. 

138.  Wijnker PJM, van der Velden J. Mutation-specific pathology and treatment of 

hypertrophic cardiomyopathy in patients, mouse models and human engineered 

heart tissue. Biochim Biophys Acta Mol Basis Dis. 2020;1866(8):165774. 

139.  Wenzl FA, Ambrosini S, Paneni F. Molecular underpinnings of myocardial 

stiffness in patients with hypertrophic cardiomyopathy. Int J Cardiol. 

2021;343:80–2. 

140.  Nollet EE, Westenbrink BD, de Boer RA, Kuster DWD, van der Velden J. 

Unraveling the genotype-phenotype relationship in hypertrophic cardiomyopathy: 

obesity-related cardiac defects as a major disease modifier. J Am Hear Assoc. 

2020;9(22):e018641. 

141.  Rajiah P, Fulton NL, Bolen M. Magnetic resonance imaging of the papillary 

muscles of the left ventricle: normal anatomy, variants, and abnormalities. 

Insights Imaging. 2019;10(1):83. 

142.  Hughes RK, Knott KD, Malcolmson J, Augusto JB, Mohiddin SA, Kellman P, et 

al. Apical hypertrophic cardiomyopathy: the variant less known. J Am Hear 

Assoc. 2020;9(5):e015294. 

143.  Popa-Fotea NM, Micheu MM, Bataila V, Scafa-Udriste A, Dorobantu L, 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

411 

 

Scarlatescu AI, et al. Exploring the continuum of hypertrophic cardiomyopathy–

from DNA to clinical expression. Medicina (Kaunas). 2019;55(6):299.  

144.  Chiang YP, Shimada YJ, Ginns J, Weiner SD, Takayama H. Septal myectomy 

for hypertrophic cardiomyopathy: important surgical knowledge and technical 

tips in the era of increasing alcohol septal ablation. Gen Thorac Cardiovasc Surg. 

2018;66(4):192–200.  

145.  Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic 

implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll 

Cardiol. 2009;54(3):201–11. 

146.  Smole T, Žunkovič B, Pičulin M, Kokalj E, Robnik-Šikonja M, Kukar M, et al. A 

machine learning-based risk stratification model for ventricular tachycardia and 

heart failure in hypertrophic cardiomyopathy. Comput Biol Med. 

2021;135:104648. 

147.  Díez-López C, Salazar-Mendiguchía J. Clinical presentations of hypertrophic 

cardiomyopathy and implications for therapy. Glob Cardiol Sci Pract. 

2018;2018(3):19. 

148.  Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. 

Lancet. 2017;389(10075):1253–67. 

149.  Goff ZD, Calkins H. Sudden death related cardiomyopathies–hypertrophic 

cardiomyopathy. Prog Cardiovasc Dis. 2019;62(3):212–6. 

150.  Mateo JJS, Gimeno JR. Alcohol septal ablation in hypertrophic cardiomyopathy. 

Glob Cardiol Sci Pract. 2018;2018(3):30. 

151.  Kogut J, Popjes ED. Hypertrophic cardiomyopathy 2020. Curr Cardiol Rep. 

2020;22(11):154. 

152.  Brieler J, Breeden MA, Tucker J. Cardiomyopathy: an overview. Am Fam 

Physician. 2017;96(10):640–6. 

153.  Maron BJ, Rowin EJ, Udelson JE, Maron MS. Clinical spectrum and 

management of heart failure in hypertrophic cardiomyopathy. JACC Hear Fail. 

2018;6(5):353–63. 

154.  Nishimura RA, Seggewiss H, Schaff HV. Hypertrophic obstructive 

cardiomyopathy: surgical myectomy and septal ablation. Circ Res. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

412 

 

2017;121(7):771–83. 

155.  Marrakchi S, Kammoun I, Bennour E, Laroussi L, Kachboura S. Risk 

stratification in hypertrophic cardiomyopathy. Herz. 2020;45(1):50–64. 

156.  Savarimuthu S, Harky A. Alcohol septal ablation: a useful tool in our arsenal 

against hypertrophic obstructive cardiomyopathy. J Card Surg. 2020;35(8):2017–

24. 

157.  Falasconi G, Pannone L, Slavich M, Margonato A, Fragasso G, Spoladore R. 

Atrial fibrillation in hypertrophic cardiomyopathy: pathophysiology, diagnosis 

and management. Am J Cardiovasc Dis. 2020;10(4):409–18. 

158.  Pelliccia F, Alfieri O, Calabrò P, Cecchi F, Ferrazzi P, Gragnano F, et al. 

Multidisciplinary evaluation and management of obstructive hypertrophic 

cardiomyopathy in 2020: towards the HCM Heart Team. Int J Cardiol. 

2020;304:86–92. 

159.  Hindieh W, Adler A, Weissler-Snir A, Fourey D, Harris S, Rakowski H. Exercise 

in patients with hypertrophic cardiomyopathy: a review of current evidence, 

national guideline recommendations and a proposal for a new direction to fitness. 

J Sci Med Sport. 2017;20(4):333–8. 

160.  Garg L, Gupta M, Sabzwari SRA, Agrawal S, Agarwal M, Nazir T, et al. Atrial 

fibrillation in hypertrophic cardiomyopathy: prevalence, clinical impact, and 

management. Hear Fail Rev. 2019;24(2):189–97. 

161.  Vaidya K, Semsarian C, Chan KH. Atrial fibrillation in hypertrophic 

cardiomyopathy. Hear Lung Circ. 2017;26(9):975–82. 

162.  Yeung C, Enriquez A, Suarez-Fuster L, Baranchuk A. Atrial fibrillation in 

patients with inherited cardiomyopathies. Europace. 2019;21(1):22–32. 

163.  Patten M, Pecha S, Aydin A. Atrial fibrillation in hypertrophic cardiomyopathy: 

Diagnosis and considerations for management. J Atr Fibrillation. 

2018;10(5);1556. 

164.  Kochi AN, Vettor G, Dessanai MA, Pizzamiglio F, Tondo C. Sudden cardiac 

death in athletes: from the basics to the practical work-up. Medicina (Kaunas). 

2021;57(2):168. 

165.  Weissler-Snir A, Adler A, Williams L, Gruner C, Rakowski H. Prevention of 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

413 

 

sudden death in hypertrophic cardiomyopathy: bridging the gaps in knowledge. 

Eur Heart J. 2017;38(22):1728–37. 

166.  Raiker N, Vullaganti S, Collins JD, Allen BD, Choudhury L. Myocardial tissue 

characterization by gadolinium-enhanced cardiac magnetic resonance imaging 

for risk stratification of adverse events in hypertrophic cardiomyopathy. Int J 

Cardiovasc Imaging. 2020;36(6):1147–56. 

167.  Jordà P, García-Álvarez A. Hypertrophic cardiomyopathy: sudden cardiac death 

risk stratification in adults. Glob Cardiol Sci Pract. 2018;2018(3):25. 

168.  Kitaoka H, Kubo T, Doi YL. Hypertrophic cardiomyopathy–a heterogeneous and 

lifelong disease in the real world. Circ J. 2020;84(8):1218–26. 

169.  Lee JM, Park HB, Song JE, Kim IC, Song JH, Kim H, et al. The impact of 

cardiopulmonary exercise-derived scoring on prediction of cardio-cerebral 

outcome in hypertrophic cardiomyopathy. PLoS One. 2022;17(1):e0259638. 

170.  Smith JG. Molecular epidemiology of heart failure: translational challenges and 

opportunities. JACC Basic Transl Sci. 2017;2(6):757–69. 

171.  Mandeş L, Roşca M, Ciupercă D, Popescu BA. The role of echocardiography for 

diagnosis and prognostic stratification in hypertrophic cardiomyopathy. J 

Echocardiogr. 2020;18(3):137–48. 

172.  Ji Q, Wang Y, Liu F, Yang Y, Xia L, Ding W, et al. Hypertrophic 

cardiomyopathy with latent obstruction: clinical characteristics and surgical 

results. J Cardiol. 2022;79(1):42–9. 

173.  Coppini R, Santini L, Olivotto I, Ackerman MJ, Cerbai E. Abnormalities in 

sodium current and calcium homoeostasis as drivers of arrhythmogenesis in 

hypertrophic cardiomyopathy. Cardiovasc Res. 2020;116(9):1585–99. 

174.  Butters A, Lakdawala NK, Ingles J. Sex differences in hypertrophic 

cardiomyopathy: interaction with genetics and environment. Curr Heart Fail Rep. 

2021;18(5):264–73. 

175.  Norrish G, Field E, Kaski JP. Childhood hypertrophic cardiomyopathy: a disease 

of the cardiac sarcomere. Front Pediatr. 2021;9:708679. 

176.  Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, Lai A, Amr A, Haas J, et al. 

Clinical outcomes associated with sarcomere mutations in hypertrophic 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

414 

 

cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol. 

2018;107(1):30–41. 

177.  Marian AJ. Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol. 

2002;17(3):242–52. 

178.  Orenes-Piñero E, Hernández-Romero D, Jover E, Valdés M, Lip GY, Marín F. 

Impact of polymorphisms in the renin-angiotensin-aldosterone system on 

hypertrophic cardiomyopathy. J Renin Angiotensin Aldosterone Syst. 

2011;12(4):521–30. 

179.  Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, et al. 

Understanding the genetic and molecular basis of familial hypertrophic 

cardiomyopathy and the current trends in gene therapy for its management. 

Cureus. 2021;13(8):e17548. 

180.  Glavaški M, Stankov K. Epigenetics in disease etiopathogenesis. Genetika. 

2019;51(3):975–94. 

181.  Dias KA, Link MS, Levine BD. Exercise training for patients with 

hypertrophic cardiomyopathy: JACC review topic of the week. J Am Coll 

Cardiol. 2018;72(10):1157–65. 

182.  Sun D, Schaff HV, McKenzie TJ, Nishimura RA, Geske JB, Dearani JA, et al. 

Safety of bariatric surgery in obese patients with hypertrophic cardiomyopathy. 

Am J Cardiol. 2022;167:93–7. 

183.  Becherucci F, Landini S, Cirillo L, Mazzinghi B, Romagnani P. Look alike, 

sound alike: phenocopies in steroid-resistant nephrotic syndrome. Int J Environ 

Res Public Health. 2020;17(22):8363. 

184.  Maron BJ, Rowin EJ, Arkun K, Rastegar H, Larson AM, Maron MS, et al. Adult 

monozygotic twins with hypertrophic cardiomyopathy and identical disease 

expression and clinical course. Am J Cardiol. 2020;127:135–8. 

185.  Maron BJ, Rowin EJ, Maron MS. Global burden of 

hypertrophic cardiomyopathy. JACC Hear Fail. 2018;6(5):376–8. 

186.  Makavos G, Κairis C, Tselegkidi ME, Karamitsos T, Rigopoulos AG, Noutsias 

M, et al. Hypertrophic cardiomyopathy: an updated review on diagnosis, 

prognosis, and treatment. Hear Fail Rev. 2019;24(4):439–59. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

415 

 

187.  Chiang YP, Shimada YJ, Ginns J, Weiner SD, Takayama H. Septal myectomy 

for hypertrophic cardiomyopathy: important surgical knowledge and technical 

tips in the era of increasing alcohol septal ablation. Gen Thorac Cardiovasc Surg. 

2018;66(4):192–200.  

188.  Chuang C, Collibee S, Ashcraft L, Wang W, Vander Wal M, Wang X, et al. 

Discovery of aficamten (CK-274), a next-generation cardiac myosin inhibitor for 

the treatment of hypertrophic cardiomyopathy. J Med Chem. 2021;64(19):14142–

52. 

189.  Morelli C, Ingrasciotta G, Jacoby D, Masri A, Olivotto I. Sarcomere protein 

modulation: the new frontier in cardiovascular medicine and beyond. Eur J Intern 

Med. 2022;102:1–7.  

190.  Fitzgerald P, Kusumoto F. The effects of septal myectomy and alcohol septal 

ablation for hypertrophic cardiomyopathy on the cardiac conduction system. J 

Interv Card Electrophysiol. 2018;52(3):403–8. 

191.  Arévalos V, Rodríguez‐Arias JJ, Brugaletta S, Micari A, Costa F, Freixa X, et al. 

Alcohol septal ablation: an option on the rise in hypertrophic obstructive 

cardiomyopathy. J Clin Med. 2021;10(11):2276. 

192.  Maron BJ, Rowin EJ, Maron MS, Braunwald E. Nonobstructive hypertrophic 

cardiomyopathy out of the shadows: known from the beginning but largely 

ignored … until now. Am J Med. 2017;130(2):119–23. 

193.  Liew AC, Vassiliou VS, Cooper R, Raphael CE. Hypertrophic cardiomyopathy–

past, present and future. J Clin Med. 2017;6(12):118. 

194.  Ye Z, Smith MM, Jouni H, Geske JB, Carney SA, Urina-Jassir M, et al. Mitral 

valve cleft-like indentations in hypertrophic obstructive cardiomyopathy: insights 

from intraoperative three-dimensional transesophageal echocardiography. J 

Cardiothorac Vasc Anesth. 2022;36(2):429–36. 

195.  Douglas JS Jr. Current state of the roles of alcohol septal ablation and surgical 

myectomy in the treatment of hypertrophic obstructive cardiomyopathy. 

Cardiovasc Diagn Ther. 2020;10(1):36–44. 

196.  He M, Qiu J, Bai Y, Wang Y, Hu M, Chen G. Non-pharmaceutical interventions 

for hypertrophic cardiomyopathy: a mini review. Front Cardiovasc Med. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

416 

 

2021;8:695247. 

197.  Maron MS, Rastegar H, Dolan N, Carpino P, Koethe B, Maron BJ, et al. 

Outcomes over follow-up ≥10 years after surgical myectomy for symptomatic 

obstructive hypertrophic cardiomyopathy. Am J Cardiol. 2022;163:91–7. 

198.  MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome. 

2021;64(4):416–25. 

199.  Quer G, Arnaout R, Henne M, Arnaout R. Machine learning and the future of 

cardiovascular care: JACC State-of-the-Art Review. J Am Coll Cardiol. 

2021;77(3):300–13. 

200.  Edwards AS, Kaplan B, Jie T. A primer on machine learning. Transplantation. 

2021;105(4):699–703. 

201.  Shamout F, Zhu T, Clifton DA. Machine learning for clinical outcome prediction. 

IEEE Rev Biomed Eng. 2021;14:116–26.   

202.  Mahdi MA, Hosny KM, Elhenawy I. Scalable clustering algorithms for big data: 

a review. IEEE Access. 2021;9:80015–27. 

203.  Sarker IH. Machine learning: algorithms, real-world applications and research 

directions. SN Comput Sci. 2021;2(3):160. 

204.  Garg A, Mago V. Role of machine learning in medical research: a survey. 

Comput Sci Rev. 2021;40:100370. 

205.  Golalipour K, Akbari E, Hamidi SS, Lee M, Enayatifar R. From clustering to 

clustering ensemble selection: a review. Eng Appl Artif Intell. 2021;104:104388. 

206.  Barragán-Montero A, Javaid U, Valdés G, Nguyen D, Desbordes P, Macq B, et 

al. Artificial intelligence and machine learning for medical imaging: a technology 

review. Phys Med. 2021;83:242–56. 

207.  Tchito Tchapga C, Mih TA, Tchagna Kouanou A, Fozin Fonzin T, Kuetche 

Fogang P, Mezatio BA, et al. Biomedical image classification in a big data 

architecture using machine learning algorithms. J Healthc Eng. 

2021;2021:9998819. 

208.  Stankovic B, Kotur N, Nikcevic G, Gasic V, Zukic B, Pavlovic S. Machine 

learning modeling from omics data as prospective tool for improvement of 

inflammatory bowel disease diagnosis and clinical classifications. Genes (Basel). 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

417 

 

2021;12(9):1438. 

209.  Wu S, Chen Y, Li Z, Li J, Zhao F, Su X. Towards multi-label classification: next 

step of machine learning for microbiome research. Comput Struct Biotechnol J. 

2021;19:2742–9. 

210.  Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. 

Deep learning in cancer diagnosis, prognosis and treatment selection. Genome 

Med. 2021;13(1):152. 

211.  Baptista D, Ferreira PG, Rocha M. Deep learning for drug response prediction in 

cancer. Brief Bioinform. 2021;22(1):360–79. 

212.  Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image 

analysis. Adv Exp Med Biol. 2020;1213:3–21. 

213.  Muzio G, O’Bray L, Borgwardt K. Biological network analysis with deep 

learning. Brief Bioinform. 2021;22(2):1515–30. 

214.  Hallou A, Yevick HG, Dumitrascu B, Uhlmann V. Deep learning for bioimage 

analysis in developmental biology. Development. 2021;148(18):dev199616. 

215.  Wang H, Pujos-Guillot E, Comte B, de Miranda JL, Spiwok V, Chorbev I, et al. 

Deep learning in systems medicine. Brief Bioinform. 2021;22(2):1543–59. 

216.  Shi Q, Chen W, Huang S, Wang Y, Xue Z. Deep learning for mining protein 

data. Brief Bioinform. 2021;22(1):194–218. 

217.  Winnenburg R, Wächter T, Plake C, Doms A, Schroeder M. Facts from text: can 

text mining help to scale-up high-quality manual curation of gene products with 

ontologies? Brief Bioinform. 2008;9(6):466–78. 

218.  National Library of Medicine [Internet]. PubMed Overview [cited 2022 Jan 27]. 

Available from: https://pubmed.ncbi.nlm.nih.gov/about/ 

219.  National Center for Biotechnology Information [Internet]. U.S. National Library 

of Medicine, MeSH [cited 2022 Jan 30]. Available from: 

https://www.ncbi.nlm.nih.gov/mesh/ 

220.  Gaulton A, Hersey A, Nowotka ML, Patricia Bento A, Chambers J, Mendez D, et 

al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945–54. 

221.  Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur Ö, Anwar N, et al. 

Pathway Commons, a web resource for biological pathway data. Nucleic Acids 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

418 

 

Res. 2011;39(Database issue):D685–90. 

222.  Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: 

shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(Database 

issue):D1091–7. 

223.  Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, et al. The 

comparative toxicogenomics database: update 2019. Nucleic Acids Res. 

2019;47(D1):D948–54. 

224.  Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. MiRTarBase 

2020: updates to the experimentally validated microRNA-target interaction 

database. Nucleic Acids Res. 2020;48(D1):D148–54. 

225.  Ostaszewski M, Gebel S, Kuperstein I, Mazein A, Zinovyev A, Dogrusoz U, et al. 

Community-driven roadmap for integrated disease maps. Brief Bioinform. 

2019;20(2):659–70. 

226.  Hoyt CT, Domingo-Fernández D, Aldisi R, Xu L, Kolpeja K, Spalek S, et al. Re-

curation and rational enrichment of knowledge graphs in Biological Expression 

Language. Database (Oxford). 2019;2019:baz068. 

227.  INDRA Database [Internet]. 2022 [cited 2022 Jan 21]. Available from: 

https://db.indra.bio/search 

228.  Gyori BM, Bachman JA, Subramanian K, Muhlich JL, Galescu L, Sorger PK. 

From word models to executable models of signaling networks using automated 

assembly. Mol Syst Biol. 2017;13(11):954. 

229.  Singh V, Kalliolias GD, Ostaszewski M, Veyssiere M, Pilalis E, Gawron P, et al. 

RA-map: building a state-of-the-art interactive knowledge base for rheumatoid 

arthritis. Database (Oxford). 2020;2020:baaa017. 

230.  Mazein A, Ostaszewski M, Kuperstein I, Watterson S, Le Novère N, Lefaudeux 

D, et al. Systems medicine disease maps: community-driven comprehensive 

representation of disease mechanisms. npj Syst Biol Appl. 2018;4(1):21. 

231.  Kuperstein I, Bonnet E, Nguyen HA, Cohen D, Viara E, Grieco L, et al. Atlas of 

Cancer Signalling Network: a systems biology resource for integrative analysis of 

cancer data with Google Maps. Oncogenesis. 2015;4(7):e160. 

232.  Serhan CN, Gupta SK, Perretti M, Godson C, Brennan E, Li Y, et al. The Atlas 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

419 

 

of Inflammation Resolution (AIR). Mol Aspects Med. 2020;74:100894.  

233.  Fujita KA, Ostaszewski M, Matsuoka Y, Ghosh S, Glaab E, Trefois C, et al. 

Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol 

Neurobiol. 2014;49(1):88–102. 

234.  Mizuno S, Iijima R, Ogishima S, Kikuchi M, Matsuoka Y, Ghosh S, et al. 

AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s 

disease. BMC Syst Biol. 2012;6:52. 

235.  Mazein A, Knowles RG, Adcock I, Chung KF, Wheelock CE, Maitland-van der 

Zee AH, et al. AsthmaMap: an expert-driven computational representation of 

disease mechanisms. Clin Exp Allergy. 2018;48(8):916–8. 

236.  Mazein A, Ivanova O, Balaur I, Ostaszewski M, Berzhitskaya V, Serebriyskaya 

T, et al. AsthmaMap: an interactive knowledge repository for mechanisms of 

asthma. J Allergy Clin Immunol. 2021;147(3):853–6. 

237.  Matsuoka Y, Matsumae H, Katoh M, Eisfeld AJ, Neumann G, Hase T, et al. A 

comprehensive map of the influenza A virus replication cycle. BMC Syst Biol. 

2013;7:97. 

238.  National Library of Medicine [Internet]. MYH7 gene [cited 2022 Feb 15]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/4625 

239.  National Library of Medicine [Internet]. MYBPC3 gene [cited 2022 Feb 15]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/4607 

240.  National Library of Medicine [Internet]. TNNT2 gene [cited 2022 Feb 18]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/7139 

241.  National Library of Medicine [Internet]. TPM1 gene [cited 2022 Feb 23]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/7168 

242.  National Library of Medicine [Internet]. MYL2 gene [cited 2022 Mar 2]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/4633 

243.  National Library of Medicine [Internet]. MYL3 gene [cited 2022 Mar 5]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/4634 

244.  National Library of Medicine [Internet]. TNNI3 gene [cited 2022 Mar 17]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/7137 

245.  National Library of Medicine [Internet]. ACTC1 gene [cited 2022 Mar 26]. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

420 

 

Available from: https://www.ncbi.nlm.nih.gov/gene/70 

246.  National Library of Medicine [Internet]. ACTN2 gene [cited 2022 Apr 2]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/88 

247.  National Library of Medicine [Internet]. ANKRD1 gene [cited 2022 Apr 15]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/27063 

248.  The Human Protein Atlas [Internet]. ANKRD1 gene [cited 2022 Apr 20]. 

Available from: https://www.proteinatlas.org/ENSG00000148677-ANKRD1 

249.  National Library of Medicine [Internet]. CSRP3 gene [cited 2022 May 23]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/8048 

250.  The Human Protein Atlas [Internet]. CSRP3 [cited 2022 May 27]. Available 

from: https://www.proteinatlas.org/ENSG00000129170-CSRP3/tissue 

251.  National Library of Medicine [Internet]. FHL1 gene [cited 2022 Apr 3]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/2273 

252.  National Library of Medicine [Internet]. GLA gene [cited 2022 Apr 5]. Available 

from: https://www.ncbi.nlm.nih.gov/gene/2717 

253.  National Library of Medicine [Internet]. LAMP2 gene [cited 2022 Apr 6]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/3920 

254.  National Library of Medicine [Internet]. PLN gene [cited 2022 Apr 7]. Available 

from: https://www.ncbi.nlm.nih.gov/gene/5350 

255.  National Library of Medicine [Internet]. PRKAG2 gene [cited 2022 Apr 9]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/51422 

256.  National Library of Medicine [Internet]. JPH2 gene [cited 2022 Apr 14]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/57158 

257.  National Library of Medicine [Internet]. DSG2 gene [cited 2022 Apr 20]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/1829 

258.  National Library of Medicine [Internet]. TRPM4 gene [cited 2022 Apr 23]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/54795 

259.  National Library of Medicine [Internet]. TTN gene [cited 2022 Apr 30]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/7273 

260.  National Library of Medicine [Internet]. RYR1 gene [cited 2022 May 3]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/6261 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

421 

 

261.  National Library of Medicine [Internet]. NEXN gene [cited 2022 May 3]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/91624 

262.  National Library of Medicine [Internet]. DSC2 gene [cited 2022 May 5]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/1824 

263.  National Library of Medicine [Internet]. ABCC9 gene [cited 2022 May 8]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/10060 

264.  National Library of Medicine [Internet]. DSP gene [cited 2022 May 10]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/1832 

265.  National Library of Medicine [Internet]. FBN1 gene [cited 2022 May 12]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/2200 

266.  National Library of Medicine [Internet]. CTF1 gene [cited 2022 May 15]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/1489 

267.  National Library of Medicine [Internet]. CACNA1C gene [cited 2022 May 18]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/775 

268.  National Library of Medicine [Internet]. ELN gene [cited 2022 May 23]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/2006 

269.  National Library of Medicine [Internet]. NOTCH1 gene [cited 2022 May 26]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/4851 

270.  National Library of Medicine [Internet]. PTPN11 gene [cited 2022 May 30]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/5781 

271.  National Library of Medicine [Internet]. MYH6 gene [cited 2022 Jun 2]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/4624 

272.  National Library of Medicine [Internet]. RBM20 gene [cited 2022 Jun 5]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/282996 

273.  National Library of Medicine [Internet]. DMD gene [cited 2022 Jun 8]. Available 

from: https://www.ncbi.nlm.nih.gov/gene/1756 

274.  Fortunato F, Farnè M, Ferlini A. The DMD gene and therapeutic approaches to 

restore dystrophin. Neuromuscul Disord. 2021;31(10):1013–20. 

275.  Keegan NP. Pseudoexons of the DMD Gene. J Neuromuscul Dis. 2020;7(2):77–

95.  

276.  National Library of Medicine [Internet]. LAMA4 gene [cited 2022 Jun 10]. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

422 

 

Available from: https://www.ncbi.nlm.nih.gov/gene/3910 

277.  National Library of Medicine [Internet]. SDHA gene [cited 2022 Jun 12]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/6389 

278.  National Library of Medicine [Internet]. HCN4 gene [cited 2022 Jun 18]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/10021 

279.  National Library of Medicine [Internet]. PKP2 gene [cited 2022 Jun 20]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/5318 

280.  National Library of Medicine [Internet]. PDLIM3 gene [cited 2022 Jun 25]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/27295 

281.  National Library of Medicine [Internet]. NKX2-5 gene [cited 2022 Jun 30]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/1482 

282.  National Library of Medicine [Internet]. MYPN gene [cited 2022 Jul 3]. 

Available from: https://www.ncbi.nlm.nih.gov/gene/84665 

283.  Glavaški M, Preveden A, Jakovljević Đ, Filipović N, Velicki L. Subtypes and 

mechanisms of hypertrophic cardiomyopathy proposed by machine learning 

algorithms. Life (Basel). 2022;12(10):1566. 

284.  Glavaški M, Velicki L. More slices, less truth: effects of different test-set design 

strategies for magnetic resonance image classification. Croat Med J. 

2022;63(4):370–8. 

285.  Le TT, Fu W, Moore JH. Scaling tree-based automated machine learning to 

biomedical big data with a feature set selector. Bioinformatics. 2020;36(1):250–

6. 

286.  Hoksza D, Gawron P, Ostaszewski M, Smula E, Schneider R. MINERVA API 

and plugins: opening molecular network analysis and visualization to the 

community. Bioinformatics. 2019;35(21):4496–8. 

287.  Glavaški M, Velicki L. Humans and machines in biomedical knowledge curation: 

Hypertrophic cardiomyopathy molecular mechanisms’ representation. BioData 

Min. 2021;14(1):45. 

288.  Valenzuela-Escárcega MA, Babur Ö, Hahn-Powell G, Bell D, Hicks T, Noriega-

Atala E, et al. Large-scale automated machine reading discovers new cancer-

driving mechanisms. Database (Oxford). 2018;2018:bay098. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

423 

 

289.  Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 

Cytoscape: a software environment for integrated models of biomolecular 

interaction networks. Genome Res. 2003;13(11):2498–504. 

290.  Pillich RT, Chen J, Rynkov V, Welker D, Pratt D. NDEx: a community resource 

for sharing and publishing of biological networks. Methods Mol Biol. 

2017;1558:271-301. 

291.  Pratt D, Chen J, Welker D, Rivas R, Pillich R, Rynkov V, et al. NDEx, the 

Network Data Exchange. Cell Syst. 2015;1(4):302–5. 

292.  Pratt D, Chen J, Pillich R, Rynkov V, Gary A, Demchak B, et al. NDEx 2.0: a 

clearinghouse for research on cancer pathways. Cancer Res. 2017;77(21):e58–61. 

293.  Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. CytoHubba: identifying 

hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 

Suppl 4:S11. 

294.  Cytoscape App Store [Internet]. Wk-shell-decomposition [cited 2022 Jun 24]. 

Available from: http://apps.cytoscape.org/apps/wkshelldecomposition 

295.  Zaki N, Efimov D, Berengueres J. Protein complex detection using interaction 

reliability assessment and weighted clustering coefficient. BMC Bioinformatics. 

2013;14:163. 

296.  Gyori BM, Bachman JA, Subramanian K, Muhlich JL, Galescu L, Sorger PK. 

From word models to executable models of signaling networks using automated 

assembly. Mol Syst Biol. 2017;13(11):954. 

297.  Tadaka S, Kinoshita K. NCMine: Core-peripheral based functional module 

detection using near-clique mining. Bioinformatics. 2016;32(22):3454–60. 

298.  Hoksza D, Gawron P, Ostaszewski M, Schneider R. MolArt: a molecular structure 

annotation and visualization tool. Bioinformatics. 2018;34(23):4127–8. 

299.  Tang B, Song Y, Cui H, Ji K, Yu Q, Zhu C, et al. Prognosis of adult obstructive 

hypertrophic cardiomyopathy patients with different morphological types after 

surgical myectomy. Eur J Cardiothorac Surg. 2018;54(2):310–7. 

300.  Prinz C, Farr M, Hering D, Horstkotte D, Faber L. The diagnosis and treatment 

of hypertrophic cardiomyopathy. Dtsch Arztebl Int. 2011;108(13):209–15. 

301.  Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

424 

 

Contemporary definitions and classification of the cardiomyopathies: an 

American Heart Association Scientific Statement from the Council on Clinical 

Cardiology, Heart Failure and Transplantation Committee; Quality of Care and 

Outcomes Research and Functional Genomics and Translational Biology 

Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. 

Circulation. 2006;113(14):1807–16. 

302.  Maron BJ, Gottdiener JS, Epstein SE. Patterns and significance of distribution of 

left ventricular hypertrophy in hypertrophic cardiomyopathy: a wide angle, two 

dimensional echocardiographic study of 125 patients. Am J Cardiol. 

1981;48(3):418–28. 

303.  Parato VM, Antoncecchi V, Sozzi F, Marazia S, Zito A, Maiello M, et al. 

Echocardiographic diagnosis of the different phenotypes of hypertrophic 

cardiomyopathy. Cardiovasc Ultrasound. 2016;14(1):30. 

304.  Syed IS, Ommen SR, Breen JF, Tajik AJ. Hypertrophic cardiomyopathy: 

identification of morphological subtypes by echocardiography and cardiac 

magnetic resonance imaging. JACC Cardiovasc Imaging. 2008;1(3):377–9. 

305.  Kim EK, Lee SC, Hwang JW, Chang SA, Park SJ, On YK, et al. Differences in 

apical and non-apical types of hypertrophic cardiomyopathy: a prospective 

analysis of clinical, echocardiographic, and cardiac magnetic resonance findings 

and outcome from 350 patients. Eur Hear J Cardiovasc Imaging. 2016;17(6):678–

86. 

306.  Yuan Y, Su W, Zhu M. Threshold-free measures for assessing the performance 

of medical screening tests. Front Public Health. 2015;3:57. 

307.  Saito T, Rehmsmeier M. The precision-recall plot is more informative than the 

ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 

2015;10(3):e0118432. 

308.  Seiler C, Jenni R, Vassalli G, Turina M, Hess OM. Left ventricular chamber 

dilatation in hypertrophic cardiomyopathy: related variables and prognosis in 

patients with medical and surgical therapy. Br Heart J. 1995;74(5):508–16. 

309.  Karaye KM, Habib AG, Mohammed S, Rabiu M, Shehu MN. Assessment of 

right ventricular systolic function using tricuspid annular-plane systolic excursion 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

425 

 

in Nigerians with systemic hypertension. Cardiovasc J Afr. 2010;21(4):186–90. 

310.  Chida A, Inai K, Sato H, Shimada E, Nishizawa T, Shimada M, et al. Prognostic 

predictive value of gene mutations in Japanese patients with hypertrophic 

cardiomyopathy. Heart Vessels. 2017;32(6):700–7. 

311.  Song L, Zou Y, Wang J, Wang Z, Zhen Y, Lou K, et al. Mutations profile in 

Chinese patients with hypertrophic cardiomyopathy. Clin Chim Acta. 

2005;351(1–2):209–16. 

312.  Parlak S, Gulcek S, Kaplanoglu H, Altin L, Deveer M, Pasaoglu L. Hepatic 

artery pseudoaneurysm: a life-threatening complication of liver ransplantation. J 

Belgian Soc Radiol. 2015;99(2):61–4. 

313.  Kazama I, Mori Y, Baba A, Nakajima T. Pitting type of pretibial edema in a 

patient with silent thyroiditis successfully treated by angiotensin ii receptor 

blockade. Am J Case Rep. 2014;15:111–4. 

314.  Nigussie B, Abaleka FI, Gemechu T, Suhail M, Alikhan S. Severe pulmonary 

hypertension and cholestatic liver injury: two rare manifestations of Graves’ 

disease. Cureus. 2020;12(7):e9236. 

315.  Balal M, Paydas S, Seyrek N, Karayaylali I, Gonlusen G. Other glomerular 

pathologies in three patients with diabetes mellitus. Ren Fail. 2004;26(2):185–8. 

316.  Palermo P, Magrì D, Sciomer S, Stefanini E, Agalbato C, Compagnino E, et al. 

Delayed anaerobic threshold in heart failure patients with atrial fibrillation. J 

Cardiopulm Rehabil Prev. 2016;36(3):174–9. 

317.  Delgado V, Di Biase L, Leung M, Romero J, Tops LF, Casadei B, et al. Structure 

and function of the left atrium and left atrial appendage: AF and stroke 

implications. J Am Coll Cardiol. 2017;70(25):3157–72. 

318.  Thomas L, Abhayaratna WP. Left atrial reverse remodeling: mechanisms, 

evaluation, and clinical significance. JACC Cardiovasc Imaging. 2017;10(1):65–

77. 

319.  Schumacher K, Dagres N, Hindricks G, Husser D, Bollmann A, Kornej J. 

Characteristics of PR interval as predictor for atrial fibrillation: association with 

biomarkers and outcomes. Clin Res Cardiol. 2017;106(10):767–75. 

320.  Kornej J, Zeynalova S, Thiery J, Burkhardt R, Baber R, Engel C, et al. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

426 

 

Association between echocardiographic parameters and biomarkers in probands 

with atrial fibrillation and different PR interval lengths: insight from the 

epidemiologic LIFE Adult Study. PLoS One. 2019;14(2):e0212627. 

321.  Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: mechanisms, clinical 

evaluation and management. J Cell Mol Med. 2021;25(6):2764–75. 

322.  Wałek P, Ciesla E, Gorczyca I, Wożakowska-Kapłon B. Left atrial wall 

dyskinesia assessed during contractile phase as a predictor of atrial fibrillation 

recurrence after electrical cardioversion performed due to persistent atrial 

fibrillation. Medicine (Baltimore). 2020;99(49):e23333. 

323.  Aguilar M, Rose RA, Takawale A, Nattel S, Reilly S. New aspects of endocrine 

control of atrial fibrillation and possibilities for clinical translation. Cardiovasc 

Res. 2021;117(7):1645–61. 

324.  Roshdy HS, Soliman MH, El-Dosouky II, Ghonemy S. Skin aging parameters: a 

window to heart block. Clin Cardiol. 2018;41(1):51–6. 

325.  Attar R, El-Tallawi KC. Diastolic mitral regurgitation. Methodist Debakey 

Cardiovasc J. 2021;17(5):89–90. 

326.  Aksu U, Topcu S, Gulcu O, Kalkan K, Tanboga IH. Diastolic mitral and tricuspid 

regurgitation in a patient with 2:1 AV block. Int J Cardiol. 2015;195:111–2. 

327.  Ishikawa T, Kimura K, Miyazaki N, Tochikubo O, Usui T, Kashiwagi M, et al. 

Diastolic mitral regurgitation in patients with first-degree atrioventricular block. 

Pacing Clin Electrophysiol. 1992;15(11 Pt 2):1927–31. 

328.  Bay M, Vollenweider P, Marques-Vidal P, Schläpfer J. Clinical factors 

associated with the intraventricular conduction disturbances in Swiss middle-

aged adults: the CoLaus|PsyCoLaus study. Int J Cardiol. 2021;327:201–8. 

329.  Francisco-Pascual J, Rivas-Gándara N, Bach-Oller M, Badia-Molins C, Maymi-

Ballesteros M, Benito B, et al. Sex-related differences in patients with unexplained 

syncope and bundle branch block: lower risk of AV block and lesser need for 

cardiac pacing in women. Front Cardiovasc Med. 2022;9:838473. 

330.  Trullàs JC, Aguiló O, Mirò Ó, Díez-Manglano J, Carrera-Izquierdo M, Quesada-

Simón MA, et al. Prevalence and impact on prognosis of right-bundle branch 

block in patients with acute heart failure: findings from the RICA registry. Rev 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

427 

 

Clin Esp (Barc). 2022;222(5):272–80. 

331.  Bessem BB, de Bruijn MMC, Nieuwland WW. Gender differences in the 

electrocardiogram screening of athletes. J Sci Med Sport. 2017;20(2):213–7. 

332.  Rosa SA, Thomas B, Fiarresga A, Papoila AL, Alves M, Pereira R, et al. The 

impact of ischemia assessed by magnetic resonance on functional, arrhythmic, 

and imaging features of hypertrophic cardiomyopathy. Front Cardiovasc Med. 

2021;8:761860. 

333.  Barefield DY, McNamara JW, Lynch TL, Kuster DWD, Govindan S, Haar L, et 

al. Ablation of the calpain-targeted site in cardiac myosin binding protein-C is 

cardioprotective during ischemia-reperfusion injury. J Mol Cell Cardiol. 

2019;129:236–46. 

334.  Li X, Tang J, Li J, Lin S, Wang T, Zhou K, et al. Genetic clues on implantable 

cardioverter-defibrillator placement in young-age hypertrophic cardiomyopathy: 

a case report of novel MYH7 mutation and literature review. Front Cardiovasc 

Med. 2021;8:810291. 

335.  van de Sande DA, Hoogsteen J, Theunissen LJ. An unusual presentation of a 

myocardial crypt in hypertrophic cardiomyopathy. Case Reports Cardiol. 

2014;2014:737052. 

336.  Gruner C, Care M, Siminovitch K, Moravsky G, Wigle ED, Woo A, et al. 

Sarcomere protein gene mutations in patients with apical hypertrophic 

cardiomyopathy. Circ Cardiovasc Genet. 2011;4(3):288–95. 

337.  Chung H, Kim Y, Cho SM, Lee HJ, Park CH, Kim JY, et al. Differential 

contributions of sarcomere and mitochondria-related multigene variants to the 

endophenotype of hypertrophic cardiomyopathy. Mitochondrion. 2020;53:48–56. 

338.  Waldmüller S, Erdmann J, Binner P, Gelbrich G, Pankuweit S, Geier C, et al. 

Novel correlations between the genotype and the phenotype of hypertrophic and 

dilated cardiomyopathy: results from the German Competence Network Heart 

Failure. Eur J Heart Fail. 2011;13(11):1185–92. 

339.  Mori AA, Castro LR, Bortolin RH, Bastos GM, Oliveira VF, Ferreira GM, et al. 

Association of variants in MYH7, MYBPC3 and TNNT2 with sudden cardiac 

death-related risk factors in Brazilian patients with hypertrophic cardiomyopathy. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

428 

 

Forensic Sci Int Genet. 2021;52:102478. 

340.  Tarkiainen M, Sipola P, Jalanko M, Heliö T, Jääskeläinen P, Kivelä K, et al. 

CMR derived left ventricular septal convexity in carriers of the hypertrophic 

cardiomyopathy-causing MYBPC3-Q1061X mutation. Sci Rep. 2019;9(1):5960. 

341.  Liu T, Song D, Dong J, Zhu P, Liu J, Liu W, et al. Current understanding of the 

pathophysiology of myocardial fibrosis and its quantitative assessment in heart 

failure. Front Physiol. 2017;8:238. 

342.  Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, et al. A review 

of the molecular mechanisms underlying the development and progression of 

cardiac remodeling. Oxid Med Cell Longev. 2017;2017:3920195. 

343.  Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll 

HA, et al. Evidence for microvascular dysfunction in hypertrophic 

cardiomyopathy: new insights from multiparametric magnetic resonance 

imaging. Circulation. 2007;115(18):2418–25. 

344.  Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary 

microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N 

Engl J Med. 2003;349(11):1027–35. 

345.  Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, et al. The 

case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll 

Cardiol. 2009;54(9):866–75. 

346.  Raphael CE, Mitchell F, Kanaganayagam GS, Liew AC, Di Pietro E, Vieira MS, 

et al. Cardiovascular magnetic resonance predictors of heart failure in 

hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and 

the microcirculation. J Cardiovasc Magn Reson. 2021;23(1):26. 

347.  Jordà P, García-Álvarez A. Hypertrophic cardiomyopathy: sudden cardiac death 

risk stratification in adults. Glob Cardiol Sci Pract. 2018;2018(3):25. 

348.  Waldmann V, Jouven X, Narayanan K, Piot O, Chugh SS, Albert CM, et al. 

Association between atrial fibrillation and sudden cardiac death: 

pathophysiological and epidemiological insights. Circ Res. 2020;127(2):301–9. 

349.  O'Mahony C, Elliott P, McKenna W. Sudden cardiac death in hypertrophic 

cardiomyopathy. Circ Arrhythm Electrophysiol. 2013;6(2):443–51. 



Deciphering Genotype-Phenotype Associations in Hypertrophic Cardiomyopathy Using Machine Learning 

 

429 

 

 



План третмана података 

Назив пројекта/истраживања 

Утврђивање повезаности генотипа и фенотипа хипертрофичне кардиомиопатије применом 

машинског учења 

Назив институције/институција у оквиру којих се спроводи истраживање 

Институт за кардиоваскуларне болести Војводине, Република Србија 

Назив програма у оквиру ког се реализује истраживање 

Докторске академске студије, Претклиничка истраживања 

1. Опис података 

 

1.1 Врста студије 

 

Укратко описати тип студије у оквиру које се подаци прикупљају  

Ретропроспективна студија. 

 

1.2 Врсте података 

а) квантитативни  

б) квалитативни 

 

1.3. Начин прикупљања података 

а) анкете, упитници, тестови 

б) клиничке процене, медицински записи, електронски здравствени записи 

в) генотипови: ПЦР и НГС 

г) административни подаци 

д) узорци ткива 

ђ) снимци, фотографије: слике ултразвучног прегледа 

е) текст: доступна научна литература 

ж) мапа 

з) остало: описати ___________________________________________ 

 



1.3 Формат података, употребљене скале, количина података  

 

1.3.1 Употребљени софтвер и формат датотеке:  

a) Excel фајл 

b) SPSS фајл 

c) PDF фајл 

d) Текст фајл 

e) JPG фајл 

f) Остало, датотека ____________________ 

 

1.3.2. Број записа (код квантитативних података) 

 

а) број варијабли: велики број варијабли 

б) број мерења (испитаника, процена, снимака и сл.): 143 испитаника 

 

1.3.3. Поновљена мерења  

а) да 

б) не 

 

Уколико је одговор да, одговорити на следећа питања: 

а) временски размак између поновљених мера је 4 месеца 

б) варијабле које се више пута мере односе се на различите посете испитаника 

в) нове верзије фајлова који садрже поновљена мерења су именоване као ____________ 

 

Напомене:  ______________________________________________________________ 

 

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података? 

а) Да 

б) Не 



Ако је одговор не, образложити ______________________________________________ 

_______________________________________________________________________ 

 

 

2. Прикупљање података 

 

2.1 Методологија за прикупљање/генерисање података 

 

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?  

а) експеримент, навести тип _________________________________________________ 

б) корелационо истраживање, навести тип ________________________________________ 

ц) анализа текста, навести тип ________________________________________________ 

д) остало, навести шта: Ретропроспективна студија, подаци сакупљени током 

истраживачког пројекта   

 

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену 

научну дисциплину (ако постоје). 

Велики број мерних инструмената. 

 

2.2 Квалитет података и стандарди  

 

2.2.1. Третман недостајућих података 

а) Да ли матрица садржи недостајуће податке? Да Не 

 

Ако је одговор да, одговорити на следећа питања: 

а) Колики је број недостајућих података? Различит у зависности од варијабле о којој се 

ради. 

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да    Не 

в) Ако је одговор да, навести сугестије за третман замене недостајућих података 

______________________________________________________________________________ 

 



2.2.2. На који начин је контролисан квалитет података? Описати 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

2.2.3. На који начин је извршена контрола уноса података у матрицу? 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

3. Третман података и пратећа документација 

 

3.1. Третман и чување података 

 

3.1.1. Подаци ће бити депоновани у Репозиторијуму докторских дисертација Универзитета 

у Новом Саду. 

3.1.2. URL адреса  https://cris.uns.ac.rs/searchDissertations.jsf 

3.1.3. DOI ______________________________________________________________________ 

 

3.1.4. Да ли ће подаци бити у отвореном приступу? 

а) Да 

б) Да, али после ембарга који ће трајати до ___________________________________ 

в) Не 

 

Ако је одговор не, навести разлог ________________________________________ 

 

3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани.  

Образложење 

______________________________________________________________________________ 



 

______________________________________________________________________________ 

 

 

3.2 Метаподаци и документација података 

3.2.1. Који стандард за метаподатке ће бити примењен? _________________________________ 

 

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум. 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и 

процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд. 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

 

3.3 Стратегија и стандарди за чување података 

3.3.1. До ког периода ће подаци  бити чувани у репозиторијуму? Трајно 

3.3.2. Да ли ће подаци бити депоновани под шифром? Да   Не 

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да   Не 

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?  

Да   Не 

Образложити 



______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

4. Безбедност података и заштита поверљивих информација 

 

Овај одељак МОРА бити попуњен ако ваши подаци  укључују личне податке који се односе на 

учеснике у истраживању. За друга истраживања треба такође размотрити заштиту и сигурност 

података.  

4.1 Формални стандарди за сигурност информација/података 

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити 

података о личности (https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и 

одговарајућег институционалног кодекса о академском интегритету.   

 

 

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не 

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање 

16.07.2020., Медицински факултет Нови Сад 

 

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не 

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација 

везаних за испитанике: 

а) Подаци нису у отвореном приступу 

б) Подаци су анонимизирани 

ц) Остало, навести шта 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

5. Доступност података 

 

5.1. Подаци ће бити  

а) јавно доступни 

б) доступни само уском кругу истраживача у одређеној научној области   

https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html


ц) затворени 

 

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их 

користе: 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу 

приступити подацима: 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани. 

Ауторство – некомерцијално – делити под истим условима  

6. Улоге и одговорност 

 

6.1. Навести име и презиме и мејл адресу власника (аутора) података 

Мила Главашки, milaglavaski@uns.ac.rs 

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa 

Мила Главашки, milaglavaski@uns.ac.rs 

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим 

истраживачима 

Мила Главашки, milaglavaski@uns.ac.rs 

 

 

 


