
Planning Problems as Types, Plans as

Programs: A Dependent Types

Infrastructure for Verification and

Reasoning about Automated Plans in

Agda

Alasdair Hill

Submitted for the degree of

Doctor of Philosophy

Heriot-Watt University

Department of Computer Science,

School of Mathematical and Computer Sciences.

June, 2023

The copyright in this thesis is owned by the author. Any quotation from the thesis

or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.

ii

Abstract

Historically, the Artificial Intelligence and programming language fields have had

a mutually beneficial relationship. Typically, theoretical results in the programming

language field have practical utility in the Artificial Intelligence field. One example

of this that has roots in both declarative languages and theorem proving is AI plan-

ning. In recent years, new programming languages have been developed that are

founded on dependent type theory. These languages are not only more expressive

than traditional programming languages but also have the ability to represent and

prove mathematical properties within the language. This thesis will explore how de-

pendently typed languages can benefit the AI planning field. On one side this thesis

will show how AI planning languages can be enriched with more expressivity and

stronger verification guarantees. On the other, it will show that AI planning is an

ideal field to illustrate the practical utility of largely theoretical aspects of program-

ming language theory. This thesis will accomplish this by implementing multiple

inference systems for plan validation in the dependently-typed programming lan-

guage Agda. Importantly, these inference systems will be automated, and embody

the Curry-Howard correspondence where plans will not only be proof-terms but

also executable functions. This thesis will then show how the dependently-typed

implementations of the inference systems can be further utilised to add enriched

constraints over plan validation.

I dedicate this thesis to

my family and friends. I especially dedicate this thesis to Kirsty for her continuous

love and support during this challenging time.

Acknowledgements

To start with I want to thank my supervisors Ekaterina Komendantskaya and Ron

Petrick for all the help that they have given me throughout this process. Their joint

insight greatly helped me navigate this interdisciplinary thesis. I would also like to

thank all of the other academics I have worked with throughout this process with

special mentions to Joe Wells, Matthew Daggitt, and Frantǐsek Farka.

I am also grateful for all the support my family has given me throughout this

process. I want especially to thank my Dad for forcing me to write up the final

parts of my thesis. I also want to mention my appreciation for all my friends in my

extended office. I wish this time hadn’t been cut short.

I also want to mention my appreciation to Simon Thompson for his support and

understanding during the final months of my thesis write-up.

Finally, I want to thank my partner Kirsty for being by my side throughout this

process. I can’t imagine having completed my thesis without her.

Inclusion of Published Works Form
Please note you are only required to complete this form if your thesis contains published works. If this is the
case, please include this form within your thesis before submission.

Declaration

This thesis contains one or more multi-author published works. I hereby declare that the contributions of each author to
these publications is as follows:

Citation details Schwaab, Christopher, Ekaterina Komendantskaya, Alasdair Hill, Frantiˇsek
Farka, Ronald Petrick, Joe Wells, and Kevin Hammond. “ProofCarrying
Plans.” In International Symposium on Practical Aspects of Declarative
Languages, pp. 204-220. Springer, Cham, 2019.

Author 1 Contributed many ideas to the initial Agda formalisation and was the main
author of the paper.

Author 2 Secondary author of the paper who wrote a lot of the paper.

Author 3 Contributed to the research and Agda formalisation of the paper including
writing some of the soundness proofs.

Citation details Hill, Alasdair, Ekaterina Komendantskaya, and Ronald PA Petrick.
“Proof-Carrying Plans: a Resource Logic for AI Planning.'' In Proceedings of
the 22nd International Symposium on Principles and Practice of Declarative
Programming, pp. 1-13. 2020.

Author 1 The primary author of paper and did the research.

Author 2 Advisor for the primary author.

Citation details Hill, Alasdair, Ekaterina Komendantskaya, Matthew L. Daggitt, and Ronald
PA Petrick. ``Actions you can handle: dependent types for AI plans.'' In
Proceedings of the 6th ACM SIGPLAN International Workshop on
Type-Driven Development, pp. 1-13. 2021.

Author 1 The primary author of paper and did the research.

Author 2 Advisor for the primary author.

Please included additional citations as required.

Page 1 of 1
RDC Clerk/March 2023

Contents

1 Introduction 1

1.1 Verification of AI Planning . 1

1.2 Type-Based Verification . 4

1.3 Thesis Aims . 7

1.4 Contributions . 8

1.4.1 Declaration of Authorship . 10

2 Background 12

2.1 First-Order Logic . 12

2.2 The Planning Problem . 15

2.3 Planning Domain Definition Language (PDDL) 21

2.3.1 PDDL Domain Definition . 21

2.3.2 PDDL Problem Definition . 23

2.3.3 Declarative Semantics for PDDL 24

2.3.4 Solving a PDDL Planning Problem 26

2.4 Curry-Howard Correspondence . 29

2.5 Agda Introduction . 31

2.5.1 Agda Basics . 32

2.5.2 Dependent Types . 36

2.6 Summary . 38

3 Literature Review 39

3.1 Programming Languages . 39

3.1.1 Type-Based Verification . 39

3.1.2 Semantics . 41

i

CONTENTS

3.1.3 Resource Logic . 42

3.1.4 Automated Theorem Proving 42

3.2 AI Planning . 44

3.2.1 Logic for AI Planning . 44

3.2.2 PDDL Versions . 45

3.2.3 Embedding Planning in Other Logics 46

3.2.4 Automated Theorem Provers as Planners 47

3.2.5 Verification of AI Planning . 48

3.3 Programming Languages and AI Verification 49

3.3.1 Formal Verification in AI . 49

3.3.2 Discussion - Formal Verification in AI Planning 49

4 Planning Problems as Types STRIPS/Operational Approach 51

4.1 Introduction . 51

4.2 Example: Proof-Carrying PDDL . 52

4.3 Planning Problems as Types . 53

4.3.1 Formal Language . 53

4.3.2 Operational Semantics, States and Types 57

4.4 Plans as Proof Terms . 60

4.4.1 Inference Rules for Planning Problems 60

4.4.2 Computational Characterisation of Plans: Soundness of Plan

Execution . 65

4.5 Agda Formalisation . 69

4.5.1 Approach to Formalisation . 69

4.5.2 Verifying and Executing Plans in Agda 73

4.6 Approach to State Consistency . 75

4.7 Discussion . 76

4.8 Related Work . 77

5 Resource Logic for AI Planning 79

5.1 Introduction . 79

5.1.1 Results of this chapter by means of an example 81

5.2 The PCPR Logic . 83

ii

CONTENTS

5.2.1 Syntax of PCPR Logic . 83

5.2.2 Subtyping (order on states) 85

5.2.3 Evaluation of Constraint Lists 86

5.2.4 PCPR Logic Rules . 87

5.3 Soundness of the PCPR Logic . 92

5.4 Lessons Learnt: Effects and States 96

5.5 Agda Formalisation . 99

5.6 Automation . 102

5.6.1 PDDL to Agda Translation 103

5.6.2 Automation of Derivation for PCPR Logic 106

5.6.3 Automation of the Derivation for PCP Logic 108

5.6.4 Evaluation of the Library Performance 110

5.6.5 Extraction of Plans to Executable Code 113

5.6.6 Applicability to PDDL Domains 113

5.7 Discussion . 115

5.8 Related Work . 117

6 Dependently Typed Enrichment for AI Plan Verification 119

6.1 Introduction . 119

6.1.1 Verifying Extrinsic Properties 120

6.1.2 The Technical Approach . 122

6.2 PCP∗ Logic - Validating Intrinsic Properties of a Plan 123

6.3 Running Example for Extrinsic Verification 126

6.3.1 PDDL to Agda Translation 127

6.3.2 Verification and Evaluation of Plans 131

6.3.3 Expressivity of PDDL . 132

6.4 Verifying Extrinsic Properties . 133

6.4.1 Example 1: Fuel Consumption 134

6.4.2 Example 2: Fairness . 137

6.4.3 Concrete Fairness Example . 142

6.4.4 Example 3: Universal Properties 144

6.5 Applications of Agda Library . 146

6.6 Discussion . 148

iii

CONTENTS

6.7 Related Work . 148

7 Conclusions 151

7.1 Challenges . 152

7.2 Future Work . 153

7.3 Reflection . 154

7.4 Supporting Code . 155

Bibliography 156

A Inconsistency Example 170

B PDDL Examples 172

B.1 Blocks World . 172

B.1.1 Domain Definition . 172

B.1.2 Problem Definitions . 174

B.2 Logistics . 175

B.2.1 Domain Definition . 175

B.2.2 Problem Definitions . 177

B.3 Satellite . 178

B.3.1 Domain Definition . 178

B.3.2 Problem Definitions . 180

B.4 MPrime . 187

B.4.1 Domain Definition . 187

B.4.2 Problem Definition . 189

iv

Chapter 1

Introduction

Historically, the Artificial Intelligence and programming language fields have had a

mutually beneficial relationship. Typically, theoretical results in the programming

language field have practical utility in the Artificial Intelligence field. One example

of this that has roots in both declarative languages and theorem proving is AI

planning [50]. In recent years, new programming languages have been developed that

are founded on dependent type theory. These languages are not only more expressive

than traditional programming languages but also have the ability to represent and

prove mathematical properties within the language. This thesis will explore how

dependently typed languages can benefit the AI planning field. On one side this

thesis will show how AI planning languages can be enriched with more expressivity

and stronger verification guarantees. On the other, it will show that AI planning

is an ideal field to illustrate the practical utility of largely theoretical aspects of

programming language theory.

1.1 Verification of AI Planning

AI Planning is a research area within AI that studies the automated generation of

plans from symbolic domain and problem specifications [39]. AI planners came into

existence in the 1970s as an intersection between general problem solvers [31], the

situation calculus [77] and theorem proving [43].

Typically, a planning domain is represented by an abstract description of the

world and a set of actions that can be used to alter the world states. Actions are

1

Chapter 1: Introduction

typically defined by giving:

• preconditions that denote the conditions in which an action can be applied to

a state.

• effects which denote how the action will affect the state it is applied to.

Planning problems in the domain consist of the initial state of the world and a

goal state.

One canonical AI planning domain is Blocks World which describes a world

containing blocks on a table and actions that rearrange the blocks. A planning

problem for this domain would set the blocks in a specific position and have a goal

for the blocks to be rearranged in some other position.

Given a domain and problem, a planner seeks to produce a sequence of actions,

referred to as a plan, that transforms the initial state into a state that achieves the

goals set out in the goal state. This transformation is done by applying the first

action of the plan to the initial state and then sequentially applying each action in

the plan to the resultant state. A planner therefore has to ensure that it produces

a plan where all actions can be sequentially applied to the initial state given their

preconditions. If the plan can be applied to the initial state and the resultant state

of the application achieves the goal state then the plan is valid.

Over the years many different planning languages have been created to represent

planning problems leading to the creation of the Planning Domain Definition Lan-

guage (PDDL) [78] which aimed to standardise them. PDDL can represent a vast

number of planning problems with the latest versions [37, 38] supporting types, nu-

merical functions, equality, conditionals, concurrency, temporal planning and more.

Applications include: reasoning about knowledge, belief and causality, planning al-

location of resources, modelling perception of the real world, program synthesis and

implementations of multi-agent systems [50, 126].

Many of these applications of planning are used in real-world environments where

the verification of plan correctness is essential for successful and safe operation.

Verification and validation of AI planning languages is a multifaceted and rich

field of research. One may verify domain models, planning algorithms, the produced

plans and the execution of plans. The range of methodologies used to achieve this

range from standard testing [8, 106], to more ‘lightweight” verification [57, 72] and

2

Chapter 1: Introduction

Formal

Verification

Lightweight

Verification

Testing

Formal Verification Of

Planners [2, 97, 110]

Formal Plan

Validation [3]
Plan

Validation

[46, 57]

Model Checking

Domains [47, 98, 117]

Testing

Domains [106]

Runtime

Verification [8]

Figure 1.1: Spectrum of the verification methodologies used in AI planning. The work

presented in this thesis is part of Formal Plan Validation research.

even formal verification [2, 97, 110]. The most common approaches used in AI

planning verification sit between lightweight verification and testing as shown in

Figure 1.1.

This thesis makes a distinction between more “heavyweight” formal verification

approaches versus “lightweight” verification approaches through the idea of the veri-

fication of planners versus the verification of plans. Both the verification of planners

and plans ultimately want to ensure the correctness of plans. The formal verification

of a planner, however, is a complicated and large-scale verification task. In contrast,

the verification of a plan is a more lightweight approach and contains the same level

of confidence over the correctness of a plan. Plan verification is more lightweight

because it is just concerned with the validity of an individual plan according to some

planning model whereas the verification of a planner has to ensure the validity of

all possible produced plans according to some planning model. Despite being more

lightweight, the verification of plans has an equivalent end result to the verification

of planners when it comes to the correctness of plans. This thesis argues that the

lightweight approach is more flexible as it allows for the integration with a wide

range of planners.

To be able to verify existing validators it would be necessary to prove that the

implementation of the validator matches the semantics of PDDL. This is very diffi-

cult to do as the relation between the intended semantics of PDDL and the actual

implementation of the validator is often unclear. One reason for this is that plan

3

Chapter 1: Introduction

validators often have many performance optimisations that obfuscate their seman-

tics. Another issue is that the semantics of PDDL are not defined in enough detail

to be used for formal verification. Many of its semantics are open to interpretation,

with planners interpreting parts of PDDL differently.

One example of unclear semantics in PDDL can be found in the effects of actions.

It is possible in PDDL to define an effect that will both add and remove the same

fact from a state. This effect has undefined behaviour because PDDL does not define

the order in which effects should be executed. This means that different planners

will come to the conclusion that the fact will either exist or not exist in the resultant

state. This is discussed in more detail in Section 5.4.

To be able to create a verified plan validator this thesis will therefore have to

define new semantics for PDDL, an implementation of a plan validator, as well as

soundness proofs for this validator. This thesis will create a verified plan validator

for the STRIPS subset of PDDL 1.2 [78] excluding quantification and disjunction.

A Type-Based approach to AI plan verification, introduced in this thesis, promises

to deliver features that existing lightweight approaches [46, 57] do not have. For-

mal guarantees can be given about the validator itself as well as the plans that it

validates. It is also possible to create a validator that can produce checkable evi-

dence for validated plans. In contrast, lightweight approaches that attempt to mimic

the semantics of PDDL without obfuscation still suffer from errors. One example

of this can be found in Patrik Halsum’s INVAL [46] which has known errors and

non-termination on some plans [3].

Considering that many applications of AI planning can be executed in the real

world and have serious safety implications, this higher standard of formalisation is

desirable. The next section will explore why taking a type-based approach to plan

validation is a natural solution for the problem.

1.2 Type-Based Verification

Type-based verification is a field of research focused on using the rich type systems

of modern programming languages to verify and prove properties of various mathe-

matical problems [42] and computer systems [67, 82, 86]. This is a natural evolution

4

Chapter 1: Introduction

in the field of programming languages as declarative programming languages have

long provided convenient formalisms for knowledge representation and reasoning,

ranging from Lisp and Prolog in the 1960s-1980s to modern SMT solvers [27, 79],

model checkers [91], and automated planners [32, 78]. Common features of such

languages typically include a clear logic-based syntax, a well-understood declarative

semantics, and an inference engine that produces sound results with respect to the

semantics.

Type-based verification expands on the capability of programming languages by

enabling them to be used as interactive theorem provers. An interactive theorem

prover is a computer tool that allows users to specify and prove mathematical prop-

erties. Typically these systems aid in the mechanisation of proofs by supplying goal

information and auto-completing proofs where possible.

This is possible through exploiting the Curry-Howard correspondence [118, 122],

that states that every proof in intuitionistic first-order logic can be represented as a

computable function. In the case of type-based verification first-order formulae are

seen as types, and proofs are seen as terms that inhabit those types. This means

that the expressivity of the typing system limits what mathematical properties you

can verify. Until recently, the significance of the Curry-Howard correspondence

has been predominantly theoretical; this is because programming languages did not

have expressive enough type systems that could fully utilise this idea. Dependently-

typed languages that offer the necessary expressivity have now become available

and practical, e.g., Coq, Agda, and Idris. The key difference in dependently-typed

languages is that types can contain arbitrary values and appear as arguments to the

results of ordinary functions. This means that types can not only contain values

but also that types can contain propositions about these values. Dependently-typed

languages can therefore be used to write programs that carry proofs about their

properties. This development has made it possible to re-open the discussion of the

actual practical value of the Curry-Howard correspondence.

With the advent of dependently-typed languages, it is possible to encode and

prove properties within a programming language. Overall there are many advantages

of taking a type-based approach to formalising an AI plan validator. In current

lightweight approaches, a user has to trust the equivalence of the semantics of the

5

Chapter 1: Introduction

implementation of the validator and the clear and concise semantics of PDDL. By

taking a type-based approach this thesis shows that it is possible to implement the

clear and concise semantics as types and prove them sound in the same language

which reduces the chance for errors. Using this approach also gives the ability

to prove further sanity-checking theorems within the programming language. For

example, a consistency theorem is proven in Figure 5.6 that ensures that a predicate

can never be both true and false in the same state. Furthermore, by using this

approach it is possible to implement the validator in a proof-carrying code style [86],

where all relevant verification properties are directly embedded in the source code.

Due to their ability to prove mathematical properties dependently-typed lan-

guages also give rise to interactive theorem provers. A related, albeit not dependently-

typed, attempt at formalising a PDDL plan validator [3] has been done in the in-

teractive theorem prover Isabelle [94]. Isabelle combines functional programming

language with the ability to express higher-order logic. In [3] a verified plan valida-

tor was created by defining the validator as a program and then proving properties

ensuring the validator is sound. This verified validator was then extracted.

This thesis will take a proof-carrying code approach instead where plan validation

is defined as a typing relation rather than a program. A plan is then seen as a proof-

term which proves that it is possible to reach the goal state from the initial state

given the domain. Since plan validation is proven within the Agda system it is also

possible to define the computation of a plan as well within the system. This will

allow this thesis to fully realise the Curry-Howard approach as plans will not only be

proof-terms but also executable functions. This is advantageous because it will allow

for the validation of a plan to contain guarantees about its execution. Critically, the

proof-carrying code approach taken in this thesis is not possible in Isabelle because

it does not contain proof-terms.

Dependent types will also be used in this thesis to expand on the verification

capabilities of PDDL by adding additional verification constraints at the type level of

functions describing the execution of plans. This will allow for additional properties

to be ensured during plan execution, some of which are inexpressible in PDDL. This

will be further detailed in the contributions section and throughout the rest of the

thesis.

6

Chapter 1: Introduction

1.3 Thesis Aims

This thesis aims to demonstrate how modern programming language theory can

benefit the field of AI planning and in turn show that AI planning is a natural

domain to showcase the practical benefits of dependent types. This thesis sets the

following aims in order to accomplish this:

Aim 1. Demonstrate why taking a Curry-Howard approach to plan validation is a

useful and natural solution.

Aim 2. Explore how dependently-typed programming languages can be used to

improve state-of-the-art plan validation.

To accomplish these aims this thesis sets the following objectives:

Objective 1. Provide new formal foundations for PDDL planning that can be

used to verify PDDL plans as well as improve the understanding of them. These

foundations should be compatible with existing PDDL domains and problems as

well as contain the additional details that are necessary for them to be formalised

in Agda.

Objective 2. Demonstrate a Curry-Howard view to plan validation. To accomplish

this, a plan should not only be seen as a proof of a planning problem but also as an

executable function.

Objective 3. Develop a methodology on how to implement and verify declarative

systems in a dependently-typed language. This should provide a basis for future

formalisms of declarative systems in dependently-typed languages.

Objective 4. Implement a new verified plan validator for PDDL. This plan valida-

tor should give additional proof evidence of validated plans in order to give increased

confidence over existing methods.

Objective 5. Introduce automation into the defined systems that show how to

mechanise the plan validation process. This automation should be designed so that

non-expert users can utilise the Agda formalism to verify plans.

7

Chapter 1: Introduction

Objective 6. Show how it is possible to utilise richer dependently-typed languages

to add additional verification properties as well as demonstrate why these properties

are better suited outwith the standard PDDL planning problem. This should include

examples of properties that are inexpressible in PDDL to showcase the power of the

implementation.

1.4 Contributions

This thesis makes the following contributions:

Chapter 4

Formal Semantics for AI Planning

In order to verify AI planning languages, this thesis defines concrete semantics

for AI planning. Section 2.3.3 defines declarative semantics describing entailment

in PDDL. Chapter 4 introduces operational semantics for AI planning that describe

how to execute AI plans. A representation language based on first-order logic for AI

planning problems is defined in Chapter 4. The semantics defined in this thesis adds

additional detail and rigour to PDDL’s specifications in order to meet Objective 1.

Formalisation of Inference Systems for AI Plan Validation

This thesis defines and formalises multiple inference systems for plan verifica-

tion. These inference systems can be used to verify plans for a subset of planning

problems that can be expressed in PDDL. Crucially all of the inference systems have

an accompanying implementation in the dependently-typed programming language

Agda. All of the systems have also been proven sound in Agda. The implementa-

tion of the inference systems meets Objective 3. The Agda formalisation of these

inference systems can validate plans for PDDL planning problems as well as produce

proof-terms for why they are valid which addresses Objective 4. Chapter 4 intro-

duces the first inference system called PCP logic along with the various definitions

of soundness given in this thesis. PCP logic is proven sound. The chapter also gives

details of the Agda formalism of PCP logic.

Curry-Howard Approach to Plan Validation

8

Chapter 1: Introduction

This thesis will show that the Planning Domain Definition Language (PDDL) is

a natural domain for the Curry-Howard implementation of declarative reasoning. In

particular, specifications of planning problems that are usually written in first-order

logic can be expressed naturally as types, and executable plans that are generated

by PDDL can be formalised as programs that inhabit those types. Type checking

thus verifies that correct executable programs are generated from specifications via

the automated planning tool. This approach will showcase a practical use case of

the Curry-Howard correspondence and address Objective 2. A detailed description

of the Curry-Howard approach to plan validation will be given in Chapter 4. All of

the inference systems presented in this thesis are implemented in a Curry-Howard

style.

Chapter 5

Resource Logic for AI planning

Chapter 5 defines and create a new logic called Proof-Carrying Plan Resource

logic (PCPR logic). This logic has clear and intuitive formal semantics which helps to

clarify the computational properties of AI plans which further addresses Objective 1.

This logic utilises Hoare triples to represent AI planning problems and explores the

utility of a resource logic based approach to plan validation. In particular, PCPR

logic explores the utility of using a frame rule in the inference system as historically

done in early AI planning. Chapter 5 defines PCPR logic as well as proves it sound

relative to the declarative and operational semantics given defined in this thesis.

Automating plan validation in a dependently-typed language

This thesis introduces automation for all of the inference systems that it defines.

This automation allows a user to validate a plan using the inference systems de-

fined Agda without having to write any Agda code. This is done by automatically

converting PDDL domains and problems into Agda code and then automatically

generating a proof for a given plan using the defined inference rules. This enables

the wider planning community that are less familiar with dependently-typed pro-

gramming languages to be able to use the inference systems this thesis defines with

minimal learning. This contribution addresses Objective 5. Chapter 5 describes the

9

Chapter 1: Introduction

various strategies for automation.

Chapter 6

Formalisation of Inference Systems for AI Plan Validation

Chapter 6 introduces a modified version of PCP logic called PCP∗ logic addresses

the weaknesses of the other systems. This inference system is also proven sound in

Agda, automated and compared with the other inference systems presented in this

thesis.

Verification of extrinsic properties of AI plans

Chapter 6 introduces the notion of extrinsic verification properties to PDDL

planning problems. This is done by first making a distinction between intrinsic and

extrinsic properties. Chapter 6 then identifies ideal extrinsic properties such as inex-

pressible properties, unavailable properties and probable properties. Furthermore,

Chapter 6 shows how it is possible to leverage the power of dependently-typed lan-

guages to add these extrinsic verification properties to the planning problem. This

addresses the final objective of this thesis, Objective 6.

1.4.1 Declaration of Authorship

This thesis is the result of my own work. Several of the chapters presented in this

thesis are formed from previous publications. All of the chapters have substantial

differences from these publications. I am the third author in the “Proof-Carrying

plans” publication however I was heavily involved in this research. Chapter 4 is sub-

stantially different and my own work. The declarative semantics given in Figure 2.3

is the same as in the “Proof-Carrying plans” paper.

Publications

• Chapter 4: Schwaab, Christopher, Ekaterina Komendantskaya, Alasdair Hill,

Frantǐsek Farka, Ronald Petrick, Joe Wells, and Kevin Hammond. “Proof-

Carrying Plans.” In International Symposium on Practical Aspects of Declar-

ative Languages, pp. 204-220. Springer, Cham, 2019. [114]

• Chapter 5: Hill, Alasdair, Ekaterina Komendantskaya, and Ronald PA Petrick.

“Proof-Carrying Plans: a Resource Logic for AI Planning.” In Proceedings of

10

Chapter 1: Introduction

the 22nd International Symposium on Principles and Practice of Declarative

Programming, pp. 1-13. 2020. [53]

• Chapter 6: Hill, Alasdair, Ekaterina Komendantskaya, Matthew L. Daggitt,

and Ronald PA Petrick. “Actions you can handle: dependent types for AI

plans.” In Proceedings of the 6th ACM SIGPLAN International Workshop on

Type-Driven Development, pp. 1-13. 2021. [52]

11

Chapter 2

Background

This chapter will cover the necessary preliminaries to understand the rest of this

thesis as well as introduce the running examples. This will include a variety of

background knowledge from both AI planning and programming languages fields.

A brief introduction will be given to first-order logic. The AI planning problem will

be defined then an introduction will be given to the Planning Domain Definition

Language (PDDL). This will be followed by an introduction to declarative semantics

for planning, the Curry-Howard correspondence and the notion of dependent types.

2.1 First-Order Logic

Planning languages in general are based on a fragment of first-order logic. This

chapter will now give a brief introduction to first-order logic, taking definitions from

[71] and relating them to the Blocks World planning problem defined in Figure 2.2.

A first-order language describes the formulas that can be written in a first-order

system known as well-formed formulas.

A grammar defines the set of all formulas that can be constructed in a lan-

guage by defining production rules for the language. The grammar for a first-order

language without functions is defined in Figure 2.1.

Definition 1 (First-Order Language).

All first-order grammars presented in this thesis are parametrised over a language

containing:

1. A set Predicate of predicate symbols with their arity.

12

Chapter 2: Background

Binary Connective Connective ::= ∧ | ∨ | → | ⇐⇒

Quantifier Quantifier ::= ∀ | ∃

Term Term 3 t, t1, ... tn ::= X | C

Atomic Formula Atom 3 A ::= R (t1, ... tn)

Formula Formula 3 F ::= A | (F)

| ¬F

| F Connective F

| Quantifier X, F

Figure 2.1: First-Order Language

2. A set Contant of constant symbols.

Metavariable R and notational variants such as R′, R1, R2 etc. range over

predicate symbols, metavariable c and notational variants such as c′, c1, c2 etc.

over constants, metavariable x and notational variants such as x′, x1, x2 etc. over

variables, metavariable t and notational variants such as t′, t1, t2 etc. over terms

which are either variables or constants, therefore

t ::= x | c

The informal semantics of the quantifiers and connectives is as follows: ¬ is

negation, ∧ is conjunction (and), ∨ is disjunction (or), → is implication and ←→ is

equivalence. Also, ∃ is the existential quantifier, so that “∃x” means “there exists

an x”, while ∀ is the universal quantifier, so that “∀x” means “for all x”. Thus the

informal semantics of ∀x((R(x) ∧ ¬R1(x))→ R2(x)) is “for every x, if R(x) is true

and R1(x) is false then R2(x) is true”. A literal is an atomic formula or a negated

atomic formula.

Example 1 (First-Order Formulae Example). First-Order Formulae are simply

any formulae that can be produced from the grammar rules in Figure 2.1. This

includes formulae such as R(x), R(x) ∧R(x1) and (∀x (∃y (R(x, x1)→ R1(x)))).

Definition 2 (Variable Definitions with Quantifiers).

13

Chapter 2: Background

The scope of ∀x (resp. ∃x) in ∀x F (resp. ∃x F) is F . A bound occurence of

a variable in a formula is an occurrence immediately following a quantifier or an

occurrence within the scope of a quantifier. Any other occurence of a variable is

free. A closed formula is a formula with no free occurrences of any variable.

Example 2 (Quantifier Example).

Given the formula ∀x(R(x) ∧ R1 (x , x1)) all occurences of x are bound and x1 is

a free variable. The formula ∀x(R(x) ∧ R1 (x , x1)) is not closed however it can be

closed by adding quantification for the free variable x1, e.g., ∀x∀x1(R(x)∧R1 (x , x1))

is closed.

Definition 3 (Universal and Existential Closure).

If F is a formula, then ∀(F) denotes the universal closure of F , which is the

closed formula obtained by adding a universal quantifier for every variable having a

free occurrence in F . Similarly, ∃(F) denotes the existential closure of F , which is

obtained by adding an existential quantifier for every variable having a free occur-

rence in F .

Example 3 (Universal Closure Example).

If F is R(x) ∧ R1 (x , x1), then ∀(F) is ∀x∀x1(R(x) ∧ R1 (x , x1)).

Remark on Notation 1

This thesis will use abbreviation x to denote a finite list {x1, ... xn} of arbitrary

length.

Definition 4 (Substitution).

A substitution is a partial map from variables to constants. Given an atomic

formula R(x) the notation R(x)[xi\ci] will be used to denote a substitution of each

occurrence of a variable xi in x by a constant ci. A ground substitution will map all

variables in a formula to a constant and will be denoted by the symbols {σ, σ1, σ2, ...}.

Example 4 (Substitution Example).

Given a constant c, the substitution of the variable x in the formula R(x , x1) is

denoted by R(x , x1)[x\c] and results in the formula R(c, x1). This formula is not

ground as the variable x1 remains.

14

Chapter 2: Background

Definition 5 (Herbrand Base).

The Herbrand base is the set of all ground atomic formulae that can be formed

from the constants of a first-order language.

The grammar presented contains no functions therefore there are no function

symbols denoting functions. This is important because the Herbrand base of first-

order language with function symbols is generally an infinite set however in the

absence of function symbols it becomes a finite set if there are only finitely many

predicate symbols and constants.

Example 5 (Herbrand Base Example).

For a first-order language without function symbols and constants {c, c1} and

atomic formulae {R(x),R1 (x , x1)} the Herbrand base is the set {R(c),

R(c),R1 (c, c),R1 (c, c1),R1 (c1 , c),R1 (c1 , c1)}.

This concludes the generic first-order language definitions that will be used in

this thesis.

2.2 The Planning Problem

This section will give a general introduction to the planning problem using definitions

from Ghallab et al. [39].

Example 6 (First-Order Language). The language of the Blocks World domain and

problem defined in Figure 2.2 is:

Predicate = {handEmpty/0 , holding/1 , onTable/1 , on/2 , clear/1}

Constant = {a, b, c}

Definition 6 (Planning Problem).

A planning problem is represented by the triple (Σ, s0, G) where Σ represents a

planning domain, s0 the initial state and G the goal.

A state is a representation of the world and contains information about the truth

of all formulae. Typically a state is represented as a set of ground atomic formulae.

A goal defines the acceptance condition for a planning problem and is typically

15

Chapter 2: Background

Definition of a Planning Domain: Definition of a Planning Problem:

(define (domain blocksworld)

(:requirements :strips)

(:predicates

(handEmpty)

(holding ?x)

(onTable ?x)

(on ?x ?y)

(clear ?x))

(:action pickup_from_table

:parameters

(?x)

:precondition

(and (handEmpty)

(onTable ?x)

(clear ?x))

:effect

(and (not (handEmpty))

(not (onTable ?x))

(holding ?x)))

(:action putdown_on_table

...)

(:action pickup_from_stack

...)

(:action putdown_on_stack

...))

(define (problem blocksworld1)

(:domain blocksworld)

(:objects a b c)

(:init (onTable a)

(onTable b)

(onTable c)

(clear a)

(clear b)

(clear c)

(handEmpty))

(:goal (and (on a b) (on b c))))

Figure 2.2: Blocks World: a code snippet in PDDL defining a planning domain and

problem.

represented by a ground first-order formula. In this thesis a planning domain is

represented by a state-transition system.

Definition 7 (State-Transition System [39]).

A state-transition system is a triple Σ = (S, α, γ), where

• S is a finite set of states in which the system may be.

• α is a finite set of actions that the actor may perform.

• γ : S × α → S is a partial function called the state-transition function.

If (s, a) is in γ’s domain (i.e., γ(s, a) is defined), then a is applicable in

s, with γ(s, a) being the predicted outcome. Otherwise a is inapplicable

in s.

In order to define the finite set of possible states in a state-transition system

16

Chapter 2: Background

it is necessary in the definition of a state-transition system to define what can be

contained in a state. This is given by a set of constant names referred to as objects

and set of n-ary relations over objects referred to as predicates. A state is defined

as a set of ground atoms denoting all true formulae. The set of possible states is

therefore the superset of all possible ground atomic formulae.

Definition 8 (Plan [39]).

A plan is a finite sequence of actions:

p = a1; a2, ...; an

An empty plan containing no actions is represented by [].

Definition 9 (Plan Application [39]).

A plan p = a1; a2; ...; an is applicable in a state s0 if there are states s1, ..., sn such

that γ(si−1; ai) = si for i = 1, ..., n. The result of plan application is:

γ(s0, p) = sn

.

The empty plan [] is applicable in every state s, with γ(s, []) = s

Informally, a state satisfies a goal if it meets the goal’s acceptance condition. In

this thesis, a goal’s acceptance condition will be given by a conjunction of literals

and negated literals. Given a state S and a goal G if all literals in G are true in S

and all negated literals in G are false in S then S satisfies G. A formal definition

for satisfaction is given in Definition 13.

Definition 10 (Planning Problem Solution [39]).

Given a planning problem (Σ, s0, G), a solution for the problem is any plan

applicable in s0, p = a1; ...; an, such that the state γ(s0, p) satisfies G.

Example 7 (The planning problem as Deterministic Finite Automata (DFA) [55]).

The above definitions of the planning problem as a State-Transition system could

also be seen as a DFA M = (Q, Σ, δ, q0, F) where:

• The set of states Q is the set of states in which the system may be.

17

Chapter 2: Background

• The alphabet Σ is the set of actions.

• The transition function δ describes all applicable action transitions. Note that

this function could be made total by adding an error state.

• The initial state q0 describes the initial state of the planning problem.

• The set of accept states F are all the states in which the goal is satisfied.

The language of the DFA describing a planning problem is therefore the set of

all plans that achieve the goal.

This thesis only works with state-transition systems that are deterministic. The

set of states and actions in a planning domain also have to be finite. In addition to

this, two assumptions are made:

1. Changes of the world state only occur in response to actions.

2. The effects of an action can be predicted with certainty and match the mod-

elled effects.

Both of these are standard assumptions in the AI planning field [39, 50, 85]. The

first assumption excludes the possibility of external factors affecting the planning

problem such as another actor acting on the world. The second assumption excludes

the possibility of execution errors as well as nondeterministic actions.

One of the issues in defining a state-transition system is the definition of the

state-transition function. The most simple implementation of this function is to

create a lookup table that contains γ(s, a) for every s and a however this quickly

becomes infeasible with larger domains. This is because every possible state that

an action can be applied to has to be defined.

Example 8 (State-transition implementation issues.).

Given Figure 2.2, to define an action that picks up a block a from a table in a do-

main that has blocks {a, b, c} the definition of γ would have to contain definitions for

all possible states s that the action a is applicable in. This would include definitions

for the states: {handEmpty , clear a, onTable a}, {handEmpty , clear a, onTable a,

onTable b}, {handEmpty , clear a, onTable a, onTable b, onTable c} among many other

states.

It is intuitive to understand picking up some block a that is on the table is

unaffected by whether some block b is also on the table however definitions need to

18

Chapter 2: Background

be given for both states in the state transition function. Since most actions in AI

planning only make small local changes to the world, a more general representation

would be more suitable. Ideally, the state transition function could be defined using

local reasoning where only the atomic formula that are involved in an action are

defined. The problem of local reasoning in AI planning is referred to as the frame

problem [25, 48].

The Stanford Research Institute Problem Solver (STRIPS) [32, 69] provides a

general representation for actions using local reasoning.

Definition 11 (Actions in STRIPS).

An action is described by a triple (P,LD, LA) where:

• P is the preconditions of the action represented by a first-order formula.

• LD is a delete list represented by a list of atomic formula.

• LA is an addition list represented by a list of atomic formula.

An action description is typically parametrised by multiple variables:

∀x(P (x), LD(x), LA(x))

In STRIPS instead of defining all states for which an action can be applied a

precondition is given where an action can be applied to a state if it satisfies the

precondition. The result of action application is computed by deleting all of the

atomic formulae in the delete list from the state then adding all the atomic formulae

from the addition list to the state. It is assumed that all atomic formulae not

mentioned in the delete and addition lists are unaffected by the application of the

action. This assumption is known as the STRIPS assumption [124] and is how

STRIPS deals with the frame problem. STRIPS also utilises first-order formulae to

create generic descriptions of actions. Note that all atomic formulae in STRIPS are

given by object and predicate definitions in the same manner as the state-transition

system.

Example 9 (STRIPS Action).

19

Chapter 2: Background

The “pickup from table” action could be defined in STRIPS by:

P = handEmpty ∧ clear x ∧ onTable x

LD = {handEmpty , onTable x}

LA = {holding x}

Example 10 (STRIPS Action Application).

This example will walk through the application of the pickup from table action.

It is only possible to apply ground actions therefore the example definition in Ex-

ample 9 will first be ground by the object a. This results in the following grounded

action:

P = handEmpty ∧ clear a ∧ onTable a

LD = {handEmpty , onTable a}

LA = {holding a}

Given the initial state {handEmpty , clear a, onTable a, onTable b, onTable c} the

preconditions of the action are satisfied because all formula in P exist in the initial

state. The action is therefore applicable in the given initial state. The first step

of the application is to delete the formula contained in the delete list LD from the

initial state. This results in the state:

{clear a, onTable b, onTable c}

The action application is then completed by adding all the formula contained in

the addition list LA. The action application will therefore result in the state:

{clear a, onTable b, onTable c, holding a}

.

20

Chapter 2: Background

2.3 Planning Domain Definition Language (PDDL)

The Planning Domain Definition Language is a representation language aimed at

providing a common syntax for modelling planning problems. This section will

introduce the syntactic representation of the planning problem using the subset of

PDDL[78] that this thesis supports. Examples will be given using the classic Blocks

World domain where a robot is tasked with rearranging blocks on a table. Figure 2.2

gives a PDDL definition of this problem.

PDDL splits a planning problem into a domain definition and a problem defini-

tion. The domain definition represents the state-transition system and the problem

definition contains the initial state, goal and a set of constants referred to as objects.

Even though PDDL has its own syntax it is still a language that can be largely

represented using the standard first-order language given in Figure 2.1.

Example 11 (First-Order PDDL). In Blocks World both the : predicates def-

inition as well as the use of predicates in general can be written using first-order

formulae. For example, the predicate onTable ?x can simply be written in first-order

logic as the atomic formula onTable(x). Preconditions for actions could also be rep-

resented by a formula. For example, the preconditions for the pickup from table

action could be represented by the formula handEmpty ∧ onTable(x) ∧ clear(x).

The fragment of PDDL that will be used in this thesis does not include existen-

tials, disjunction or implication so this thesis will define a subset of first-order logic

that will be referred to as PDDL formulae. Note that the A in the below PDDL

formulae definition refers to standard first-order atomic formulae defined in 2.1.

Definition 12 (PDDL Formulae).

PDDL Formulae Form 3 F, F1... Fn ::= A | ¬A | F ∧ F1

Thus, PDDL formulae are conjunctions of literals.

2.3.1 PDDL Domain Definition

A PDDL domain definition includes definitions of requirements, predicates, actions

and types. Definitions in PDDL use a Lisp like syntax where definitions are given

21

Chapter 2: Background

by a : followed by a name in brackets.

Example 12 (Definitions in PDDL).

Predicates are defined by a definition in the form (: predicates definition).

Requirements are used to define the subset of PDDL required for the domain.

This is given by simply giving a list of requirements in the form (: requirements

:name ...). For example, the : strips requirement represents actions in a STRIPS

style. All of the PDDL introduced in this thesis will be restricted to the STRIPS

subset of PDDL which restricts the first-order formulae used in actions to just con-

tain negation and conjunction. This thesis will also use the : equality and : typing

extensions.

Predicates are a PDDL interpretation of a first-order logic predicate. The

predicate definition defines the set of atomic formulae that are permissible for a

domain. A predicate is defined by giving a predicate name as well as the number

of arguments for that predicate. The number of arguments is given by a list of

variables. Parameters are denoted by the ? symbol followed by a variable name.

Example 13 (Predicate).

The predicate (on ?x ?y) defines a predicate named ‘on’ that has two parameters.

It should be noted that predicate names have no intrinsic meaning i.e. they are

declared rather than defined. The meaning of predicates is given by how they are

used in actions. Most PDDL definitions will however give meaningful names to pred-

icates such as the handEmpty predicate in Blocks World that indicates the robot’s

hand is empty. For example, in Blocks World all of the actions that include picking

up a block will require that the predicate handEmpty is true in the preconditions.

Actions are used to perform transformations on a world state. Actions are

defined by giving a name as well as a definition for its parameters, preconditions

and effects. All definitions except for the name are optional when defining actions.

Parameters are defined by giving a list of variables. The parameter definition defines

the list of variables that can be used in the subsequent definitions of Preconditions

and Effects. In this thesis, both the Preconditions and Effects of an action can be

defined by a PDDL formula. Note, that in PDDL negation is denoted by not and

conjunction by and. An example pickup from table action is defined in Figure 2.2.

22

Chapter 2: Background

Just like in STRIPS preconditions denote requirements that have to be satisfied in

order to apply an action. One notable difference in PDDL is that the delete and

addition list from STRIPS is combined into one effect list. In an effect list the

negated atomic formulae are used to denote items to delete from the state and

atomic formulae are used to denote items to add to the state.

The equality requirement allows for the comparing of objects in a precondition

of an action.

Example 14 (Equality).

Assuming a precondition has parameters ?x and ?y they can be compared in

a precondition using (= ?x ?y) or (not (= ?x ?y)) indicating that the parameters

have to be equal or not equal respectively.

The typing requirement allows for types to be added to the domain definition.

The typing definition is given by a list of names. Types can then be added to

the parameters in the predicate and action definitions. This restricts the allowable

bindings of the parameters for actions and predicates, to objects of the corresponding

type.

Example 15 (Types).

A block type could be added to Blocks World by the typing definition (: types block)

then the predicate holding could assert that its parameter ?x is a block by the def-

inition (holding ?x − block).

The PDDL typing extension also supports type hierarchy. For example, it is

possible to define a cube type and assert that the block type is also a cube type.

This thesis will not be using type hierarchy so it will not be defined.

This thesis will use Γ to denote the set of action definitions in a PDDL domain

and refer to Γ as the context of a PDDL domain.

2.3.2 PDDL Problem Definition

A PDDL problem is defined by giving definitions of the objects, initial world, goal

and domain of a problem. The domain is simply defined by giving the domain name

e.g. (: domain blocksworld).

23

Chapter 2: Background

Objects define the set of constants that can be used for a problem. In Blocks

World the objects are the blocks on the table. The object definition is given by a

list of names. In domains that use typing the objects are also given types.

Example 16 (Typed Objects).

The objects in Figure 2.2 can be given the block type with the definition

(: objects a b c − block).

Since Blocks World only has one type of object there is no need to use a typed

domain.

The initial world gives the initial state of the problem. This is defined by giving

a list of all true predicates. All predicates not contained in the initial state are

assumed to be false because PDDL operates under a closed world assumption. The

initial world should be considered a set of predicates as the order of the predicates

is irrelevant to the planning problem. All of the predicates in the initial world have

to be ground. This means that all of the free variables in the predicates have to be

substituted by objects.

Example 17 (Initial World).

Given the initial world (: init (onTable a) (onTable b)), the predicate (onTable a)

is true but the predicate (onTable c) is false because it is not contained in the world.

The predicate (onTable ?x) would not be valid to include in the initial world because

it contains the free variable ?x.

A goal defines a logical expression that must be satisfied for a plan to solve the

planning problem. In this thesis a goal is represented by a ground PDDL formula

formally defined in Definition 12. The formal definition for satisfaction is defined in

Definition 13.

2.3.3 Declarative Semantics for PDDL

This section will introduce declarative semantics for the entailment of ground PDDL

formulae which will be used to formally define the notion of satisfaction. This thesis

will give declarative semantics and define satisfaction over worlds rather than states.

In this thesis worlds are sets of ground atomic formulae denoting all true formulae.

24

Chapter 2: Background

Both
w |=z F w |=z F1

w |=z F ∧ F1

Flip
w |=−z Ag

w |=z ¬Ag

Somewhere
Ag ∈ w
w |=+ A

g
Nowhere

Ag 6∈ w
w |=− Ag

Figure 2.3: Declarative interpretation of PDDL formulae. Ag represents a ground atom.

−z is defined by taking −+ = − and −− = +.

All formulae that are not in a world are considered false. Worlds are all subsets

of Herbrand base. Since there are no function symbols and there is a finite set of

predicates and constants there is a finite number of worlds. Whilst a world in PDDL

is commonly referred to as a state, this thesis will refer to the state describing a

world in PDDL as a world. This is done to ensure that the reader knows when this

thesis is referring to states containing only true predicates.

The declarative semantics of ground PDDL formulae are given by an entailment

relation defined in Figure 2.3. The letter w is used to denote a world. PDDL

formulae can be used to represent the preconditions and effects of actions as well as

goal formulae.

Example 18. Given the syntax of Definition 12, handEmpty∧¬onTable a is a formula.

In order to solve a planning problem, a planner needs to show that a given goal

is satisfied by the final world produced from the application of a plan. In this thesis,

if a PDDL formula can be entailed from a world then it is satisfied by that world

therefore Goal satisfaction is equivalent to entailment.

Definition 13 (Satisfaction). Given a world w, a goal formula F is satisfied by w

if w |=+ F can be derived by the rules of Figure 2.3.

Example 19 (Entailment Example).

Given the running example if there existed a world w1 = {handEmpty} then the

only atomic formula that can be positively entailed is handEmpty because handEmpty ∈

w1. It would be possible to positively entail any other negated formula in the problem

such as ¬onTable a because onTable a /∈ w1 e.g. w1 |=+ handEmpty ∧¬onTable a.

By using set membership the entailment relation preserves the closed world as-

sumption of PDDL as it assumes that all true formulae exist in the world. It should

25

Chapter 2: Background

also be noted that the order of the formula contained in the goal formula does not

affect entailment.

One notable restriction of the PDDL formulae used in this thesis is that only

atomic formulae can be negated. This is done to ensure that disjunction is not

definable in the systems presented in this thesis. For example, if negation could be

applied to arbitrary formulae then it would be possible to define disjunction with

the formula ¬(¬F ∧ ¬F1). This restriction prevents disjunctive goals as well as

disjunctive preconditions and effects in actions. In this thesis, goal formulae are

PDDL formulae where all atomic formulae are ground. The goal formulae need to

be ground to ensure the decidability of set membership on worlds.

2.3.4 Solving a PDDL Planning Problem

Given a PDDL domain and problem a planner has to find a plan that will reach

a state that satisfies the goal state for a problem after being applied to the initial

world. This section will give definitions in the context of PDDL for satisfaction,

plans and plan application.

PDDL is a language that represents domains and problems so does not supply

a representation for plans [37] therefore it is up to plan validators and planners to

define their own representation. This thesis will define plans with respect to STRIPS

definitions of actions that are parametrised therefore the definitions of plans have

to be updated in comparison to Definitions 8, 9 and 10.

In PDDL all action definitions contain definitions of the action name as well as

its preconditions and effects. To make it easier to define definitions for plans, this

thesis will introduce a notion of context that contains the precondition and effect

definitions for all actions. An action α[σ] will therefore simply refer to the action

name followed by its ground substitution. This can be noticed from the difference

between the definitions of plans given in Definition 8 and Definition 16.

Definition 14 (First-Order Actions).

Definition of PDDL actions given the constant and variable definitions in Fig-

ure 2.1

26

Chapter 2: Background

Term Term 3 t, t1, ... tn ::= x | c

Actions Act 3 a ::= α (t1, ... tn)

The context will contain the definitions of preconditions and effects for all actions.

Definition 15 (PDDL Context).

A PDDL context is a function mapping all actions to preconditions and effects

γ : α(x)→ F (x)×F1(x). A PDDL context is similar to the state transition function

given in Definition 7 and is part of the definition of a PDDL domain Σ along with

definitions of predicates and types. The preconditions and effects for a given action

can be accessed by the following functions:

Pre(γ(α[σ])) = F [σ]

Post(γ(α[σ])) = F1[σ]

Definition 16 (PDDL Plan).

A plan is a finite sequence of action names with ground substitutions:

π = α1[σ1];α2[σ2], ...;αn[σn]

An empty PDDL plan containing no actions is represented by [].

In what follows, this thesis will only use PDDL plans and will often just call

them plans. Plan applicability in STRIPS is defined based on a satisfaction relation

where an action can only be applied to a state if its preconditions are satisfied by

that state. In this thesis both the preconditions of actions and the goal formula use

the satisfaction relation given in Definition 13.

Example 20 (Goal Satisfaction).

Assume that a plan reaches the final world:

{(handEmpty) (onTable c) (on a b) (on b c)}

27

Chapter 2: Background

The PDDL goal (: goal (and (on a b) (on b c))) can be written as a formula

(on a b) ∧ (on b c) that would be satisfied since both predicates are contained in

the world. The goal formula (: goal (and (on a b) (not (handEmpty)))) would not

be satisfied because the predicate handEmpty is in the world when it is required to

not be in the world.

Definition 17 (PDDL Plan Application).

This definition assumes the existence of a function f(γ, α[σ], w) → w1 that ap-

plies a grounded action to a world given its context.

A plan π = α1[σ1];α2[σ2]; ...;αn[σn] is applicable in a world state w0 if there

are worlds w1, ..., wn such that f(γ, αi, wi−1) = wi and wi−1 |=+ Pre(γ(αi[σ])) for

i = 1, ..., n. The result of plan application is the final world wn that is produced by

f(γ, αn, wn−1). The result of plan application is denoted as:

Jf, γ, π, w0K = wn

The empty plan [] is applicable in all worlds w and results in the same world w.

Definition 18 (PDDL Planning Problem Solution).

Given a PDDL domain Σ, an initial world w0 and a goal formulae G then a

solution to the PDDL planning problem (Σ, w0, G), is any plan π = a1[σ1]; ...; an[σn]

such that Jf, γ, π, w0K |=+ G.

This thesis will take a STRIPS view on action application [32] therefore the

function f in Definition 17 will apply an action to a world by adding all atomic

predicates in the effects to the world and removing all negated predicates in the

effects from the world. A suitable function is given in Definition 26.

Example 21 (Plan Application).

One solution to the running example described in Figure 2.2 could be the plan:

pickup from table b;

putdown on stack b c; pickup from table a; putdown on stack a b.

This thesis will say that a plan is applicable to a world if its preconditions are

satisfied for all actions when being applied to a world. A plan will solve a PDDL

28

Chapter 2: Background

planning problem if it is applicable to the initial world given the domain and results

in a world that satisfies the goal condition.

Example 22 (Action Application).

The application of the action pickup from table a to the initial world given in

Figure 2.2 results in the world: {(onTable b) (onTable c) (clear a) (clear b)

(clear c) (holding a)}.

2.4 Curry-Howard Correspondence

This thesis will design and implement a logic for AI planning in the dependently

typed programming language Agda. This is possible through the Curry-Howard cor-

respondence [118, 122]. The Curry-Howard correspondence shows that propositions

in intuitionistic logic correspond to types in programming languages. Specifically,

this correspondence is very closely related to the standard BHK-interpretation of

intuitionistic logic [120]. This correspondence was developed over many years, start-

ing with Curry [24] who observed that an implication F → F1 is equivalent to a

function F → F1. The theory was further developed by Howard [56] who extended

the correspondence to the other logical connectives ∧,∨. More importantly, Howard

observed the correspondence between the simplification of proofs and the reduction

of programs. This observation proved that the correspondence between propositions

and types is deep and inspired Martin-Löf’s type theory [73] which paved the way for

the development of programming languages that fully embody the correspondence.

The Curry-Howard correspondence shows a correspondence between a given logic

and a programming language [122]:

There are three aspects to this correspondence:

1. (Propositions as Types) For each proposition in the logic there is a correspond-

ing type in the programming language.

2. (Proofs as Programs) For each proof of a given proposition, there is a program

of the corresponding type.

3. (Simplification of proofs as reduction of programs) For each way to simplify a

proof there is a corresponding way to reduce a program.

To illustrate that first-order logic propositions can be represented as types in a

29

Chapter 2: Background

programming language consider the logical connectives ∧,∨,→ of first-order logic.

A conjunction F ∧ F1 states that both F and F1 hold. A disjunction F ∨ F1 states

that either F or F1 holds. An implication F → F1 states that if F holds then F1

holds. These logical connectives all directly correspond to types in programming lan-

guages. This correspondence is particularly clear when considering the intuitionistic

interpretation of these connectives.

Intuitionistic logic is based on the notion of construction where a proof of a

proposition is a construction of the proposition.

Example 23 (Proof of Construction).

An even number could be defined with the following definition even(x) = ∃y :

N.y + y = n. This states that x is even if there is a object of the natural number

type y that when added to itself equals x. To prove the proposition even(8) → >,

which states that the number 8 is even, a construction of a natural number y has

to be given as well as a construction of a proof that y + y = 8. In this case, the

number 4 could be used to prove this proposition.

Example 24 (Conjunction and Cartesian Product).

To prove a conjunction F ∧F1 a proof of construction for both F and F1 have to

be given. This corresponds to the Cartesian product F × F1 where a value of type

F × F1 is given by a value of type F and a value of type F1.

Example 25 (Disjunction and Disjoint Sum).

To prove a disjunction F ∨ F1 then a proof of construction has to be given for

either F or F1. This corresponds to the disjoint sum F + F1 where a value of type

F + F1 is given by a value of type F or a value of type F1.

Example 26 (Implication and Functions).

A proof of an implication F → F1 is a method for transforming every construc-

tion of F into a construction of F1. This corresponds to a function type F → F1

where a function of type F → F1 will produce a value of type F1 when applied to a

value of type F .

The above examples have illustrated correspondence between first-order logic

connectives and programming languages for intuitionistic logic. A key difference

30

Chapter 2: Background

between intuitionistic logic and classical logic is that the law of excluded middle

that states the proposition F ∨ ¬F holds for all F does not hold in intuitionistic

logic but holds in classical logic. This is because in intuitionistic logic to prove this

proposition there needs to be a proof of construction of either F or ¬F for any F

and it is impossible to know for any F which side of the disjunction holds.

In first-order logic an entailment relation T ` p : A is used to show that a

proposition A holds in a first-order theory T given the proof p. The Curry-Howard

correspondence states that it is possible to represent this entailment in a program-

ming language. In this case, first-order formulae are seen as types, and proofs are

seen as terms that inhabit those types. If implemented in a programming language,

the entailment relation states that the proof term p is an executable program that

satisfies the property A given the theory T , and moreover that this inference is

sound, i.e. that T ` p : A holds in some formal system. One advantage of this

approach is that the implementation of this entailment in the formal system will

give the additional guarantees of that system. For example, implementing a theory

in Agda guarantees that all functions will terminate.

2.5 Agda Introduction

Inspired by the Curry-Howard correspondence Martin-Löf introduced an intuition-

istic theory of types [73]. This theory gave a formalism for constructive mathemat-

ics as well as introduced the notion of dependent types which are types that can

contain arbitrary values and appear as arguments to the results of ordinary func-

tions. Martin-Löf furthered his intuitionistic theory of types by showing how it can

be viewed as a programming language [74]. This work led to the development of

Agda [87] which is a dependently-typed programming language based on Martin-

Löf’s intuitionistic type theory. Thanks to the Curry-Howard correspondence Agda

is not only a functional programming language that can compile executable pro-

grams, it is also an interactive theorem prover that can prove propositions written

in intuitionistic logic. Agda is not the only programming language that is considered

an interactive theorem prover. One notable alternative is the interactive theorem

prover Coq which is based on the Calculus of Inductive and Coinductive Construc-

31

Chapter 2: Background

tion (CIC) [23]. Just like Agda, Coq allows for the compilation of programs as well

as the ability to prove propositions.

One key difference between the two languages is that proofs in Coq have their

own tactic language whereas proofs and functions in Agda are all written in the same

language. Note that it is possible in Coq to write proofs directly in the programming

language and tactics exist on top of this. However, writing proofs directly in CIC

is cumbersome in Coq as it does not provide dependent pattern matching in a

convenient way. Agda has dependent pattern matching, which is why it is feasible

to use the programming language directly for proofs.

The use of interactive theorem provers has been very successful in many verifi-

cation projects. For example Coq was used in CompCert [67] to create a verified C

compiler. Agda has also been used to create executable formalisations such as the

formalisation of system F [20] in Agda.

2.5.1 Agda Basics

This section will give an overview of the basics of using Agda. Agda has an expressive

type system with the ability to express arbitrary data types. To define a datatype

a developer has to give a data declaration that includes the name and type of the

datatype as well as its constructors and their types. It is possible to define the

natural numbers with the following data declaration:

Example 27 (Natural Numbers in Agda).

data N : Set where

zero : N

suc : N � N

The natural numbers are an inductive definition in Agda where a natural number

is either zero or some successor of a previous natural number. In Agda a colon is

used to represent a type in the form name : Type.

Example 28 (Natural Number).

The declaration x : N in Agda states that x is a natural number. The definition

of x therefore has to be a construction of a natural number. The following code

defines x as the natural number 2 by applying the successor function twice to zero.

32

Chapter 2: Background

x : N

x = suc (suc zero)

Addition over natural numbers can be defined by a recursive function in Agda.

Example 29 (Addition).

+ : N � N � N

zero + n = n

suc m + n = suc (m + n)

The addition function makes use of pattern matching over the natural number

datatype. In Agda all functions are guaranteed to be total. This includes two

obligations:

1. pattern matching has to cover all possible cases,

2. functions have to terminate.

In the case of the addition function there are only two cases for a natural number

which is that the number is zero or that it is a successor of some other number.

Termination is guaranteed if recursive calls have to be getting smaller. For example,

if the recursive call in the addition function was (suc m + n) then the function

would not type check. Another concept illustrated by the addition function is Agda’s

support for definitions of mixfix operators where underscores are used to denote

where the arguments are expected to go.

So far this section has introduced functions as well as data declarations. Due to

the rich type system of Agda it is also possible to represent propositions as types.

Example 30 (Less Than or Equal Proposition).

In Agda the “less than or equal” operator for natural numbers is defined as:

data ≤ : N � N � Set where

z≤n : ∀ {n} � zero ≤ n

s≤s : ∀ {m n} (m≤n : m ≤ n) � suc m ≤ suc n

This is an inductive operator where the base case states that zero is less than or

equal to all natural numbers. The inductive case states that if a number is less than

33

Chapter 2: Background

or equal to another number then the relation still holds for the successor of both

sides.

Given two natural numbers m and n, a value of the type m ≤ n is a proof that

the natural number m is less than or equal to n. For example, a proof that the

number two is less than or equal to three can be given in Agda by:

p : 2 ≤ 3

p = s≤s (s≤s z≤n)

A developer knows that the above proof is a correct proof that 2 is less than or

equal to 3 because it type-checks in Agda. Another feature of Agda is that it has

an automatic proof search that will try to construct a value of the goal type. The

proof of p in the above example was automatically generated by Agda.

All the examples shown so far can be represented as a record type. Record types

can be used to group values together in a single type. Records do not need to have

values of the same type. A record is defined using the record declaration along with

the field names and the types of the fields.

Example 31 (Records).

record leqNums : Set where

field small : N

big : N

prf : small ≤ big

The leqNums record has three fields. small and big fields are natural numbers

and the prf field is a proof that the number given in the small field is less than or

equal to the number given in the big field. It is possible to construct a value of the

leqNums by defining values for all fields as shown below.

ln : leqNums

ln =

record {

small = 2 ;

big = 3 ;

prf = s≤s (s≤s z≤n) }

34

Chapter 2: Background

Records also have inbuilt projection functions for easy access to values in their

fields. For example, the small value can be easily accessed by leqNums.small.

One of the key differences in intuitionistic logic is the interpretation of negation.

In classical logic the statement ¬F states that the proposition F is false however in

intuitionistic logic it states that it is impossible to construct a proof that F is true.

Example 32 (Negation in Agda).

The proof that it is impossible to show three is less than or equal to two is

represented in Agda by:

p : ¬ (3 ≤ 2)

p (s≤s (s≤s ()))

To show that it is impossible in Agda it is first assumed that there is a construc-

tion of the proof 3 ≤ 2 which is inductively case split on until the case 1 ≤ 0 is

reached. At this point, it is impossible to continue the splitting and the proof of

negation is finished. The notion that it is impossible to continue is represented in

Agda by ().

As discussed in Section 2.4, the intuitionistic view of disjunction perfectly maps

to the sum type in Agda. Disjunction is represented by the symbol] in Agda and a

proof is given by choosing which side of the disjunction holds, using inj1 for the left

side and inj2 for the right side, along with a construction of a value of the chosen

side’s type.

Example 33 (Sum Type).

This example states that either 2 is less than or equal to 3 or that it is impossible

to construct a proof that 2 is less than or equal to 3. Since 2 is less than or equal

to 3 the left hand side is chosen and a proof is given.

p : 2 ≤ 3] ¬ (2 ≤ 3)

p = inj1 (s≤s (s≤s z≤n))

Agda is a language that has a module system that handles the way names are

used in a program. This works in similar ways to other module systems where

35

Chapter 2: Background

modules can be imported and definitions from modules can be used, hidden and

renamed. Modules can also be parametrised which this thesis will use to give define

abstract implementations.

Example 34.

The below example first imports a module containing definitions of natural num-

bers whilst hiding the definition of addition from the module. An example module

is then declared that is parametrised by a natural number.

open import Data.Nat hiding (+)

module Example (num : N) where

2.5.2 Dependent Types

One of the key advantages of Agda is that it is a dependently typed programming

language. In standard programming languages, there is a clear separation between

types and values. In dependently typed languages, types can contain arbitrary

values and appear as arguments and results of ordinary functions. This means that

types can not only contain values but also that types can contain propositions about

these values.

This thesis will introduce a concept of fuel where an action can be applied de-

pending on the level of fuel. The fuel data type is indexed by a natural number

which allows for reasoning about the value of the fuel at the type level.

Definition 19 (Fuel).

data Fuel : N � Set where

fuel : (n : N) � Fuel n

Example 35 (Updated Decrement Fuel).

Imagine that a decrement function of type N → N that decrements a natural

number. One problem with this decrement function is that type does not ensure

the behaviour of the function as any natural number could be returned. It is also

possible to try to decrement the number zero which cannot be decremented. With

36

Chapter 2: Background

the fuel type it is possible to ensure that both of these issues can be addressed at

the type level. This can be done by the following definition:

decrementFuel : ∀ {n} � Fuel (suc n) � Fuel n

decrementFuel (fuel (suc n)) = fuel n

The decrementFuel function encodes at the type level that the fuel level will go

from suc n to n where suc n is the successor of the natural number n.

The decrementFuel function utilises an implicit type denoted by {n}. Implicit

types are types that Agda’s type checker attempts to figure out and do not need

to be given as arguments to functions. It is obvious what the value of n should be

since when the function is run it is given a value of suc n therefore it does not need

to be explicitly passed into the function.

Giving more detail at the type level of functions is really helpful in Agda due to

its interactive nature. At any point in development a user can leave a hole in the

function and query what the goal is. As discussed, Agda has an automated proof

search that tries to construct a value that corresponds to the goal type. The more

precise this type is the more likely Agda is to construct something that corresponds

to the desired definition. The decrementFuel function can only type check if it returns

a construction of fuel with the number decremented however the decrement function

described would still type check no matter what number was returned.

It is also possible to encode properties as arguments at the type level of functions.

This is helpful as a proof of a type level property has to be given in order to execute

a function that contains one.

Example 36 (Minus).

One issue with defining a minus function on natural numbers is what to do in the

case m−n when n is greater than m. One option is to simply return zero. In Agda

it is possible to ensure that this case never happens by including the proof n ≤ m in

the argument of the function. This prevents the application of the function in the

case that n > m.

minus : (m : N) � (n : N) � n ≤ m � N

minus m zero n≤m = m

minus (suc m) (suc n) (s≤s n≤m) = minus m n n≤m

37

Chapter 2: Background

When defining typing relations such as ≤ it is useful to be able to define pro-

cedures that that will automatically calculate whether the relation holds. Typically,

programming languages will define a function that will return a boolean value for

whether two numbers are equal. The problem with this approach is that the ev-

idence for why the relation holds is lost as the function only returns the boolean

value. Agda allows for the definition of the decidable data type that defines a proce-

dure for deciding a property that gives a yes or no value just like a boolean as well

as proof evidence for the choice.

Definition 20 (Decidable [123]).

data Dec (A : Set) : Set where

yes : A � Dec A

no : ¬ A � Dec A

Example 37 (The relation ≤ is decidable).

≤? : (m n : N) � Dec (m ≤ n)

zero ≤? n = yes z≤n

suc m ≤? zero = no (λ ())

suc m ≤? suc n with m ≤? n

... | yes m≤n = yes (s≤s m≤n)

... | no ¬m≤n = no (λ { (s≤s m≤n) � ¬m≤n m≤n})

2.6 Summary

This chapter has introduced the variety of preliminaries required to understand

the rest of this thesis. On the planning side, this included introductions to the

subset of AI planning and PDDL that are used in this thesis. On the programming

language side, this included an introduction to the Curry-Howard correspondence

and the Agda programming language. This chapter has also defined all topics using

a standard notation that will be used throughout this thesis.

38

Chapter 3

Literature Review

This thesis is inter-disciplinary, and this chapter clarifies the conceptual relation

of different methods used in this thesis, relative to the existing literature. This

chapter will separately discuss the literature surrounding programming languages

and AI planning and then finally discuss their relations.

3.1 Programming Languages

3.1.1 Type-Based Verification

The Curry-Howard correspondence [118, 122] is at the core of this thesis as this

thesis not only utilises many research results deriving from the correspondence but

also takes inspiration from the correspondence itself when designing its inference

systems. A detailed description of the correspondence is given in Section 2.4.

One of the key research results derived from the Curry-Howard correspondence

is the creation of interactive theorem provers. The Curry-Howard correspondence

shows that propositions in intuitionistic logic correspond to types in programming

languages. As discussed in Section 2.5, the Curry-Howard correspondence inspired

Martin-Löf to create a theory of types [73] that can be viewed as a programming

language [74]. This work not only led to the creation of Agda [87] but also inspired

the creation of the calculus of constructions [23] on which the interactive theorem

prover, Coq, is based. Interactive theorem provers such as Agda and Coq are pro-

gramming languages that have broad uses within verification. This is because they

allow for the definition of propositions as well as their proofs within the language.

39

Chapter 3: Literature Review

These proofs have high-levels of assurance as they are checked by the language’s

type checker.

The creation of interactive theorem provers enables typed-based approaches to

programming validation which is a field of research focusing on utilising type sys-

tems to prove properties of programs. One of the key methodologies is the idea

of Proof-Carrying Code [86, 128] which is the idea of splitting program verification

into certification and proof validation stages. At the certification stage, a proof is

generated that acts as a witness that the certification was performed. This proof is

carried with the code where it can be checked during runtime. Since proof valida-

tion is far quicker than certification, the Proof-Carrying Code methodology allows

for the running of certified code with minimal overhead.

There have been many high-profile successes utilising type-based verification

such as CompCert [67] where the Coq proof assistant was used to create a verified

optimizing C compiler. This was a massive verification effort that aimed at providing

optimizations to C code whilst maintaining high levels of assurance. This included

formal proofs that CompCert is free from miscompilation issues. Coq has also

been used to prove many mathematical theorems such as the Four-colour theorem

[42]. The Four-colour theorem is significant because it was the first theorem proven

using a computer program. This theorem was heavily doubted due to it being

proven using assembly language programs however this scepticism was alleviated

when it was finally proven in Coq. Other examples of famous proofs using the Coq

interactive theorem prover include the Kepler conjecture and the Feit-Thompson

theorem [41, 44].

Agda has also been used for many formalisations. In recent years, research into

cryptocurrencies has led to many executable formalisations being defined in Agda.

For example, System F [20] has been formalised in Agda due to it correspond-

ing to the underlying Plutus Core language in the Cardano blockchain /citebrun-

jes2020utxo. This formalisation can extract a Plutus Core interpreter that can be

tested against the production Plutus Core interpreter. Similar research has also

been done formalising the UTXO model used by Bitcoin [115] and the Extender

UTXO model used by Cardano [19].

As software systems scale there is a general need to produce formal specifications

40

Chapter 3: Literature Review

and proofs about software. Type-based verification is an ideal strategy to accomplish

this as interactive theorem provers such as Agda and Coq have many of the tools

necessary to accomplish this [7]. This is particularly true when formalising programs

that are executable as these languages have the ability to not only prove properties

about programs but also compile and execute them. The idea of proof-carrying

code and the use of interactive theorem provers is a core part of this thesis. This is

because this thesis will not only utilise Agda to verify plans but also to compile and

execute them.

3.1.2 Semantics

The study of semantics for computer programs and programming languages is also

closely related to this thesis. This is because in order to formalise programs some

form of semantics must be given. Key foundational work in this field was done

by Hoare and Floyd [34, 54] which focused on providing logical foundations for

describing the meaning of computer programs using an axiomatic approach. This

work allows for formal proofs to be written about computer programs such as proofs

of correctness and termination. Hoare logic is the canonical example of axiomatic

semantics for describing computer programs.

There are many approaches to describing the semantics of computer programs

such as operational semantics [100] and denotational semantics [113]. Operational

semantics focuses on the operations that a computer program can perform. These

operations can be seen as describing transition steps from one configuration to an-

other. Typically, operational semantics are given either by structural operational

(small-step) semantics [100] or natural (big-step) semantics [60]. Structural opera-

tional semantics describe the transitions between configurations as individual steps

of computation whereas natural semantics describe the entire transition from a con-

figuration to a final value. Denotational semantics describe computer programs as

denotations typically representing mathematical objects.

This thesis utilises various formal semantics to describe AI plan validation. This

thesis takes particular inspiration from Hoare triples {P} {Q} | c that state that

from a state P , the execution of a computer program c results in a state {Q}. This

thesis adapts Hoare Triples to a planning context by using the triple {P} {Q} | f

41

Chapter 3: Literature Review

to state that from an initial state P , the application of a plan f results in a state

satisfying the goal state Q. The inference rules given in Chapter 4 can be seen as

describing the individual computational steps taken to reach the goal state from the

initial state, therefore this thesis gives structural operational semantics for plans.

3.1.3 Resource Logic

This thesis takes inspiration from resource logics [105]. One popular area of research

within the field is separation logic [89, 109] which is an extension of Hoare logic that

was created for verifying and reasoning about imperative programs with shared

mutable data structures. Separation logic has been used extensively in program

verification [11, 12, 83, 92, 102]. This thesis takes inspiration from two papers

written by Berdine et al. [11, 12]. In the first paper [12], a symbolic execution

system was described that provided operational rules for programs as well as proof

rules for entailment. In the second paper [11], the system presented in the first paper

[12] was mechanised. This thesis follows this style of approach where inference rules

are first defined and then later mechanised.

There is also work within the field of separation logic that utilises the Curry-

Howard correspondence. Both Hoare logic and Separation logic have been given a

Curry-Howard interpretation [81, 83]. Several papers explore the computational and

practical benefits of this interpretation. For example, Polikarpova and Sergey [102]

took a Curry-Howard approach to Separation logic to improve program synthesis

by framing it as a proof search problem. In a similar way to the specifications

defined in this thesis, they define a synthesis goal Γ ` P Q, which is solved by

a program c if the assertion Γ ` P Q | c can be derived in their system. This

is particularly interesting with respect to AI planning as a planning problem can

be seen as a program synthesis problem. In Chapter 5 this thesis introduces PCPR

logic which is a Curry-Howard approach to AI planning that is in part inspired by

existing applications of the Curry-Howard approach in separation logic.

3.1.4 Automated Theorem Proving

Within the programming language field there is also a large amount of research

into automated theorem proving. This includes stand-alone automated theorem

42

Chapter 3: Literature Review

provers as well as various tools designed to automatically generate a proof within

an interactive theorem prover.

Satisfiability (SAT) solvers [40] and SMT solvers [10] are one example of auto-

mated theorem proving that is used in the programming language and AI planning

fields. A SAT solver is a computer program designed to solve the boolean satis-

fiability problem. This problem is: given some boolean statement, try to find an

example in which the statement will evaluate as true. One of the restrictions of

SAT solvers is that all problems are restricted to boolean theories. Many problems

require first-order reasoning which led to the creation of SMT solvers that gener-

alise SAT problems by adding first-order background theories such as equality, lists,

integers and real numbers. By adding these background theories an SMT solver is

able to do bounded checks for satisfiability over infinite domains.

SMT solvers are used in functional programming languages. The Z3 solver [79]

was used to add refinement types to Haskell [121]. The addition of refinement types

allows for the encoding of invariants over Haskell functions that are ensured by SMT

solvers. For example, it is possible to encode the invariant over the minus function

as described in Example 36. SMT also has uses in interactive theorem provers.

SMTCoq [30] is a plug-in for Coq that dispatches Coq goals to external SAT and

SMT solvers and then translates and verifies the certificates provided by the solvers

in Coq. This allows for the use of SAT and SMT solvers in Coq proofs which can

vastly speed up compatible proof problems. Recently there has also been work on

allowing Agda to interface with SMT solvers [66].

There are also many automated theorem proving methods that are created di-

rectly for use with interactive theorem provers such as Hammers [13] which have

found great success in automatically proving theorems in interactive theorem provers

based on higher order logic such as Isabelle. This thesis does not utilise any exter-

nal theorem provers to solve proofs in Agda. On the other hand, in Chapter 5 this

thesis utilises tactics that are enabled by reflection in Agda [125] to automatically

generate equality proofs when translating PDDL domains and problems. Chapter 5

also automatically generates proofs for plans using the inference systems defined in

this thesis.

43

Chapter 3: Literature Review

3.2 AI Planning

3.2.1 Logic for AI Planning

Just as there are many different semantics for representing programming languages,

there are also many different logics created to represent AI planning problems. This

section will discuss some of the approaches taken to represent AI planning, specifi-

cally those deriving from the situation calculus and STRIPS.

In 1963 McCarthy published a paper [75] describing the situation calculus that

is a formalism designed to represent AI planning problems. The core components

of situation calculus are: situations, actions and fluents. Actions are used to change

the state of the world. Fluents describe the world state and can be given by boolean

relations or functional relations containing a range of values. In McCarthy’s situa-

tion calculus a situation describes “the complete state of the universe at an instant of

time”. As discussed in Section 2.2 it is obviously impossible to describe the complete

state of the universe therefore the frame problem needs to be addressed.

The frame problem specifically is concerned with representing the non-effects of

actions. For example, a person would intuitively understand that picking up some

block a that is on the table would have no effect on some other block b that is on the

table. In McCathy’s situation calculus the situation resulting from performing the

action of picking up block a would no longer contain the information that block b

is on the table. McCarthy initially proposed the introduction of a frame axiom [76]

to deal with this problem however this approach was shown to not work [45, 70].

To address the frame problem in situation calculus, in the 1990s, Reiter intro-

duced a new formalisation of situation calculus [107, 108] that describes situations

as finite sequences of actions performed on the initial situation. In this formalisa-

tion of the situation, the effects of actions are described using successor state axioms

that describe all possible changes to fluents given a situation. Any fluent that is

not affected by performing the action on a situation remains unchanged in the new

situation. Reiter’s formalisation of the situation calculus is considered the standard.

The Stanford Research Institute Problem Solver (STRIPS) [32] is a theorem

prover for AI planning problems created in 1971. As discussed in Section 2.2,

STRIPS addressed the frame problem by defining the effects of actions as additions

44

Chapter 3: Literature Review

and deletions from a state. In this case, all predicates in a state that are unaffected

by the action remain the same as in situation calculus. Whilst STRIPS had its

own definitions for the planning problem, it was ultimately a theorem prover, not a

calculus or logic therefore further work was done in 1987 defining formal semantics

for STRIPS [69].

Situation calculus is a first-order logic where situations themselves are first-order

objects that can be quantified over. This makes situation calculus more expressive

than STRIPS, in contrast, planning in situation calculus is much more computation-

ally expensive than in STRIPS. This led to the creation of a language somewhere

in between STRIPS and situation calculus called the Action Description Language

(ADL) [95, 96]. Some key differences between STRIPS and ADL are:

• ADL can contain positive and negative literals whereas STRIPS can only con-

tain positive literals,

• ADL allows for quantification within the goal state whereas STRIPS can only

contain grounded literals,

• ADL allows for conditional effects.

The work on ADL inspired the creation of the Planning Domain Definition Lan-

guage [37] discussed in Section 2.3. PDDL is based on the STRIPS formalism of AI

Planning but contains many of the extensions that were proposed in ADL including

negative preconditions, typing and conditional effects.

This thesis can be seen as part of this larger work of defining logic to represent

planning problems. It contains definitions of formal semantics for AI planning, two

approaches to deal with the frame problem as well as three inference systems for

the validation of AI plans. All of the work presented in this thesis is inspired by the

work given above, specifically the STRIPS and PDDL approach.

3.2.2 PDDL Versions

PDDL is a very expressive language with many extensions. PDDL 1.2 usually op-

erates under a closed world assumption and expresses domains using the STRIPS

assumption where the effects of an action are applied by adding and deleting pred-

icates to a given world.

PDDL 1.2 also allows for the expression of types with type hierarchy, equalities

45

Chapter 3: Literature Review

over objects, existential and universal quantification over preconditions and condi-

tional effects. Conditional effects are effects that will only be applied when a list of

preconditions hold true. In PDDL 2.1 there is also a definition of numeric fluents

that allow for the reasoning about numbers such as comparing and adding numbers.

PDDL 2.1 also introduces negative preconditions and durative actions. Durative

actions add the concept of time to actions. Finally, PDDL 3 adds strong and soft

constraints that can be applied across a planning problem. Strong constraints can

allow for the statement of certain implications to hold across every state during

the execution of a plan. Soft constraints, also known as preferences, introduce soft

goals that a user would prefer a planner to satisfy but are not necessary to satisfy

for a valid plan. Many PDDL extensions such as conditionals introduce branching

into planning. Whilst loops are not officially supported there has been work done

to encode loops by using actions [99]. There also exist many unofficial extensions

and variants to PDDL such as PDDL+ [36] that further extend the expressivity of

PDDL.

3.2.3 Embedding Planning in Other Logics

This thesis embeds the AI planning problem into the dependently-typed program-

ming language Agda. This is inspired by previous work done in embedding planning

into logic programming languages and Linear Logic.

There is a long history of modelling AI planning in Linear logic, that dates back

to the 90s [59], and was investigated in detail in the 2000s, see e.g. [21, 119]. In

fact, AI planning is used as one of the iconic use-cases of Linear logic [101]. The

main idea behind using Linear logic for AI planning is treating action descriptions

as linear implications:

α : ∀x.P (Q,

where P and Q are given by tensor products of atoms: R1(t1)⊗ . . .⊗ Rn(tn). It is

possible to incorporate information about polarities inside the predicates, as follows:

R1(t1, z1) ⊗ . . . ⊗ Rn(tn, zn). Then, the linear implication and the tensor products

model the resource semantics of PDDL rather elegantly. Curry-Howard semantics

of Linear logic also attracted attention of logicians first in the 90s [6], and then in

46

Chapter 3: Literature Review

the 2000s in connection with research into Linear Logical Frameworks [18, 112].

In 1997 GOLOG [68] was created which is a logic programming language for AI

planning based on Reiter’s situation calculus [108]. This allows for the reasoning

of AI planning problems in situation calculus with an explicit representation of

the world. GOLOG can be used as a tool to not only reason about and check

plans but also to search for plans. An issue with searching for plans in GOLOG is

that it is far slower than searching for equivalent plans using ADL planners. This

is because GOLOG is primarily designed as a programming language so does not

have the optimisations that dedicated planners have. For example, planning can be

simply implemented in GOLOG by asking its solver to nondeterministically choose a

sequence of actions until a goal is met. To improve the speed of planning in GOLOG

work was done to integrate GOLOG with ADL planners [22]. In order to accomplish

this, the paper showed how to convert ADL planning problems into the situation

calculus. This was possible because the situation calculus is more expressive than

ADL.

This thesis embeds the planning problem into the richer dependently-typed lan-

guage Agda in order to reason about plans. The work done in Linear Logic and

in particular, GOLOG supports this idea of lightweight verification for plans taken

by this thesis. This is because this thesis uses a richer language to verify and rea-

son about plans whilst leaving the planning to planners that can find plans more

efficiently.

3.2.4 Automated Theorem Provers as Planners

Whilst planners themselves are automated theorem provers, this section will talk

about the use of SAT and SMT solvers in AI planning. Some early research in AI

planning [63, 64] framed the planning problem as a SAT problem, which allowed

for the use of SAT solvers to solve planning problems. Many AI planning problems

are first-order, therefore SMT solvers are useful for modern planning. For example,

there has been research [14, 17] that encodes the PDDL+ language [36] as an SMT

problem which enables SMT solvers to be used to solve PDDL+ planning problems.

SMT solvers are also used in planning at large, not just PDDL planning domains

and problems [111, 116].

47

Chapter 3: Literature Review

The use of SAT and SMT solvers is one example of the overlap between the AI

planning and programming language communities. The work presented in this thesis

produces inference systems that automatically verifies plans produced by planners.

This can be seen as part of the larger automated theorem proving work done by

both communities.

3.2.5 Verification of AI Planning

This thesis uses formal methods to verify AI plans. There are many approaches to

AI plan verification including verifying domain models, planning algorithms as well

as plans themselves as shown in Figure 1.1.

The verification of domain models [72, 98] seeks to validate whether domain

descriptions accurately capture (expert) knowledge about the world. This can be

done by performing test based verification of input and output specifications to

check the domain performs as expected. Alternatively, some approaches [72] verify

common sanity properties that should hold across many domains. One example of

this is ensuring that applying an action cannot lead to an inconsistent state where

a fact is both true and false at the same time.

Formalisation of planning algorithms [2] has shown that even well-understood

algorithms can produce incorrect plans. Modern AI planners are complex software

artefacts, and the existing attempts [97, 110] to verify them focus on creating verified

algorithms however bugs are often introduced in their implementation [2]. Due to the

complexity of planning problems, many planners will opt for implementations where

efficiency is the primary concern which further complicates the formal verification

of planners. To the author’s best knowledge, no mainstream planner has been fully

verified yet.

AI plan verification seeks to verify plans produced by planners against some

domain model. These tools check properties such as precondition satisfaction, ter-

mination and goal satisfaction to ensure that a plan is valid. For example, PDDL

has a validator [57] that performs these checks and suggests repairs. In order to

accomplish this VAL defined and implemented a semantic interpretation of PDDL

in C++. This includes definitions of plan applicability, plan application and satis-

faction as given in Section 2.2. In VAL a plan is valid if according to its semantics

48

Chapter 3: Literature Review

a plan is applicable, and the result of the application of the plan results in a state

where the goal is satisfied. This more practical and lightweight approach to verifica-

tion is broadly in line with other lightweight verification trends in the literature [33].

However, at the same time, it is rather disjointed from the growing body of research

into type-based verification [67, 82, 86] or resource logics [15, 105] that offer more

principled, formal and rigorous approaches, as well as richer languages for expressing

the verification properties.

3.3 Programming Languages and AI Verification

3.3.1 Formal Verification in AI

Formal verification techniques have already been applied to the field of AI at large.

One particularly popular area of research in this field is the verification of neural

networks. One example of this is the use of SMT solvers to verify properties of

neural networks [61, 62, 104]. Verification of binarised deep neural networks has

also been presented as a SAT problem [84]. There has also been work [9] using

Coq that certifies the generalisation of learning procedures that are used in machine

learning.

The trend of using formal methods for AI verification can also be seen as part of

Explainable AI research [127]. Explainable AI is a research area that aims to make

clear what an AI does. Formal methods can be used to elucidate the properties of

various AI. For example, the Marabou framework [62] answers users’ queries about a

given network by translating queries into an SMT problem. This thesis talks about

Explainable AI with respect to planning in Section 6.7.

3.3.2 Discussion - Formal Verification in AI Planning

The AI planning and programming languages fields contain vast bodies of research

that are largely disjoint but cover many similar topics. Both fields are concerned

with the definition of various semantics and logics, verification and automated the-

orem proving however there has been little work bringing the two fields together.

Most of the verification techniques already employed in AI planning sit in between

49

Chapter 3: Literature Review

what this thesis considers to be lightweight verification and testing as illustrated in

Figure 1.1. In recent years, there have been multiple papers attempting to bridge

the gap between these two fields. In particular, the work done by Abdulaziz in cre-

ating a formally verified planner [2] and plan validator [3]. The thesis continues this

trend by taking an alternative type-based approach to lightweight plan verification

inspired by the Curry-Howard correspondence.

This chapter has laid out evidence to illustrate that the task of integrating the

programming language and AI planning domains is an interesting problem and de-

serves further attention from both communities.

50

Chapter 4

Planning Problems as Types

STRIPS/Operational Approach

4.1 Introduction

This chapter will formalise an AI plan validator in Agda for the STRIPS subset

of AI planning problems that can be expressed in PDDL. This is one of the main

contributions of this thesis as the formalisation will allow for the validation of PDDL

problems with formal guarantees. This will be done by first introducing a new formal

language for representing PDDL planning problems. This chapter will then intro-

duce a new logic called Proof-Carrying Plan logic (PCP logic) where the planning

problem is defined as an entailment relation. This will be followed by the introduc-

tion of a model of computation for plans that describe the execution of a plan on

a world. The entailment relation will then be proven sound against the model of

computation.

The second contribution of this chapter is a demonstration that AI planning is a

natural domain for the Curry-Howard implementation of declarative reasoning. This

will be accomplished by defining the entailment relation describing planning prob-

lems as a typing relation in Agda. A plan will be defined as an executable function

(program) that inhabits the types given by the formulae describing planning prob-

lems in the typing relation. By exploiting the Curry-Howard correspondence, type

checking not only validates a plan but also automatically ensures that the execution

of the plan corresponds precisely to the specification of the planning problem.

51

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

4.2 Example: Proof-Carrying PDDL

Examples in this chapter will be given using the blocks world domain and problem

defined in Figure 2.2. Given the domain and problem definitions, one solution an

automated planner may produce is the plan:

plan1 = pickup_from_table b; putdown_on_stack b c;

pickup_from_table a; putdown_on_stack a b.

To be able to produce this plan, an automated planner has to have a planning

model that internally simulates the execution of the plan. The automated planner

will return a plan that according to its planning model is applicable and when applied

to the initial state will return a world that satisfies the goal state. Assuming the

correctness of the planning model the planner will produce an applicable plan with

the guarantee that the result of executing the plan on the initial state will return

a world satisfying the goal state. A plan validator can then verify that the plan

is applicable and satisfies the goal state according to its internal model about plan

execution. For valid plans, a plan validator typically just returns a confirmation that

the plan is valid with no reference to the internal computation that the validator

has taken to confirm this. The computation that produced the guarantees at both

the planner and plan validation stage are implicit and therefore obfuscated from

the user. It would be useful to design a formal system where a validated plan has

checkable evidence that makes it clear why a specific plan is valid. This will make

it transparent why a particular plan is valid. In a formal system, this checkable

evidence can also be used to give formal guarantees about the execution of a plan

according to its planning model.

This chapter will define a formal system where an executable function plan1 is

generated from the planning domain and problem, such that plan1 corresponds to

the actions of plan1 and has a type onTable a ∧ onTable b ∧ onTable c ∧

clear a ∧ clear b ∧ clear c ∧ handEmpty on a b ∧ on b c. This example

was introduced in Figure 2.2. If this judgement type checks then a verified program

plan1, that can later be compiled and executed, will be obtained. Guarantees about

the execution of the plan will be ensured by including a model of execution and

proving properties about it in the formal system. This chapter will show that this

52

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

task is far from trivial. Although the Curry-Howard correspondence shows that,

in principle, (intuitionistic) first-order proofs have a computational meaning, the

problem cannot be solved by just formulating arbitrary proofs. Firstly, there is a

need to formulate a generic and automatable approach to translate PDDL domains

and problems into the dependently-typed setting. In addition, a calculus has to be

devised in such a way as to ensure that the programs that inhabit the types give

the actual executable plans in the STRIPS sense.

This chapter will first define and prove the formal system for plan validation in

mathematical notation independently of the concrete implementation. After this,

the formal system will be formalised in Agda.

4.3 Planning Problems as Types

This section will define the formal language for PCP logic that can represent the

AI planning problems that can be expressed in the STRIPS subset of PDDL. This

language will be an extension to PDDL as it will contain language for talking not

only about the syntactic representation of domains and problems but also plans

and entailment. Section 2.3.3 defines the declarative semantics for the entailment of

PDDL goal formulae. This section will introduce operational semantics that show

how to work with the PDDL formulae directly in a type-system, yielding proof

obligations that will be fulfilled by plan execution.

4.3.1 Formal Language

Figure 4.1 represents a syntax for representing the STRIPS subset of AI planning

problems. This section will define the syntax in Figure 4.1 and relate it to the

standard first-order language defined in Figure 2.1.

Predicates, variables, constants, terms, atomic formulae and substitution are

defined in a standard first-order logic style as in Section 2.1. It should be noted

that for any concrete planning problem the predicates, variables and constants are

all finite sets despite the definitions in Figure 4.1. In this language constants will

be used to represent PDDL objects and atomic formulae will be used to represent

PDDL predicates.

53

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Atomic Formulae Atom 3 A ::= R (t1, ... tn)

Actions Act 3 a ::= α (t1, ... tn)

Plans Plan 3 f ::= halt | α; f

Polarities Polarity 3 z ::= + | −

States State 3 S ::= [] | [A 7→ z :: S]

(Planning) Context Γ 3 γ ::= P (x) Q(x) : α(x)

Specification Specification 3 Spec ::= Γ ` P G : f

Preconditions Preconditions 3 P ::= S

Effects Effects 3 Q ::= S

Goals Goals 3 G ::= S

Figure 4.1: Syntax of PCP logic

The PDDL formulae given in Definition 12 can be used to represent a variety of

things in PDDL such as preconditions and effects of actions as well as goals. The

formal language defined in this chapter introduces a notion of state that will be used

instead of PDDL formulae. States are introduced because they are easier to work

with in programming languages as they can be defined by the common list data

type as shown in Figure 4.4. The definition of state removes the need to define the

logical connectives ∧ and ¬ in the formal language.

In a state, polarities + and − are used to denote the presence or absence of a

certain atomic fact in a world. Given a polarity z and an atomic formula A, A 7→ z

is a singleton formula map. A state can be given by an empty state, a singleton

formula map or a conjunction of such maps (denoted by ::). This definition of state

is uncommon compared to standard literature in AI planning where the word state is

used to denote the representation of a world. From this point in this thesis, the word

state will be used specifically to refer to the definition of state given in Figure 4.1.

When referring to a state that represents a world specifically this thesis will use the

term world state.

Note that both PDDL formulae and States are not only used to represent the

54

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Representation World State

World {(onTable b) (clear a) (clear b) (holding a)}
PDDL Fomula clear b ∧ holding a ∧ ¬ handEmpty

State [(clear b) 7→ + :: (holding a) 7→ + :: handEmpty 7→ −]

Table 4.1: Comparison of Worlds, PDDL formulae and States.

world state but also Goals and the preconditions and effects of actions. When used

to represent a world state a state is simply the list of true and false facts. In

preconditions and goals, the state is a condition on a world state that identifies

the sets of world states that satisfy their requirements. When used as an effect,

states can be seen as descriptions of updates on world states. This overloading

use of the state definition is fine for the STRIPS subset of PDDL that this thesis

supports however the definitions of preconditions, effects and goals would have to

have separate definitions in order to support many of the extensions of PDDL.

Including the world definition given in Section 2.3.3, this thesis has now intro-

duced three ways to represent the world state. A comparison of the representations

is given in Table 4.1. This comparison showcases that the world representation does

not explicitly say that the predicate handEmpty is false as this is implicit in the

world definition. Note that PDDL formulae and States have a one to one mapping

and in theory can be used interchangeably to represent world states, preconditions,

effects and goals however worlds can only be used to represent world states.

Let A be set of action names {α, α1, α2, ...}. An action is an action name applied

to a list of terms. For example, pickup from table a is an action. For any concrete

planning problem, the set of action names is finite.

A context Γ contains descriptions of actions in the form P (x) Q(x) : α(x)

where P (x) Q(x) denotes a transformation from a state P (x) to a state Q(x)

and α(x) is an action. Just as in Definition 15, P (x) describes the preconditions of

an action and Q(x) describes the effects of an action. Note that the formalisation

given in this chapter makes two distinct choices:

1. An action is viewed as a function that inhabits the type P (x) Q(x).

2. P (x) and Q(x) are represented as states, not PDDL formulae.

It is assumed that there is a context definition for all actions and that all variables

in P and Q are universally bound in α. The combination of the definition of actions

along with the context definition is used to describe the action definitions given in

55

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

a PDDL domain. The action set defines the names and parameters of actions and

the context definition defines the preconditions and effects for actions. A PDDL

Domain Σ is defined by the combined definition of predicates, actions and context.

Remark on Notation 2

To simplify the notation in this thesis, the use of notation “(x)” from atomic for-

mulae, such as R(x), is extended to states (e.g. Q(x)) and actions (e.g. α(x)). In

all these cases, the presence of x signifies the presence of free variables x in the

states, actions, and constraints, respectively. This thesis will drop x and will write

just Q and α to emphasise that the state or action do not contain any variables,

i.e. Q and α are ground. This thesis will also use a standard simplification of list

notation where [A 7→ z] ≡ [A 7→ z :: []].

Given a halting state halt , plans are defined inductively as finite sequences of

action names ending with halt . The halting state halt indicates the end of a plan

or an empty plan and is therefore equivalent to the empty [] plan in Definition 15.

PCP logic represents the planning problem as an entailment relation referred to

as a specification. A specification is a sequent of the form:

Γ ` P G : f

A specification states that given a context Γ, f is a plan that gives a provable

transformation from (ground) state P to (ground) state G. In the Curry-Howard

interpretation of this logic, a plan f is viewed as a function that inhabits type

P G. The entailment rules for this specification should embody the iterative

nature of plans as defined in Definition 17 where the entailment of a plan indicates

the sequential entailments of all actions within the plan.

In a traditional PDDL problem the initial world state would be represented

as a world that only contains a list of true atomic formulae instead of a state.

This chapter opts to use states as it is possible to then represent the initial state,

goal state, preconditions and effects of actions all using the same data type. This

chapter will show that states correspond to PDDL formulae therefore the whole

planning problem can also be defined relative to the declarative semantics. It will

also be possible to define the typing relation that defines the planning problem using

only a simple subtyping relation for state comparison. Using states will also allow

for more flexibility when defining the model of computation for plans. One key

56

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

difference is that states do not contain all possible information about the world as

it is possible that a state does not necessarily contain information about all negated

atomic formulae. Chapter 6 will explore an inference system that uses worlds instead

of states to describe the initial state.

4.3.2 Operational Semantics, States and Types

It is useful to establish a correspondence between states and PDDL formulae as it will

allow for the formal Agda system to reason about states that are easier to work with.

This can be done by defining operational semantics. Matching the declarative-style

semantics of Figure 2.3, operational semantics are given by a normalisation function

that acts directly on formulae and computes states. The term ”normalisation“ is

used here, as given a formula, it produces a unique state.

Definition 21 (Normalisation of PDDL Formulae to States). The function ↓z nor-

malises a PDDL formula to a state:

(F ∧ F1) ↓z S = F1 ↓z F ↓z S

¬Ag ↓z S = Ag ↓−z S

Ag ↓z S = Ag 7→ z :: S

We write F ↓z to mean (F ↓z []).

Example 38 (Normalisation of a Formula to a State).

(handEmpty ∧ ¬onTable a) ↓+= [handEmpty 7→ + :: onTable a 7→ −]

Note that, in order to bring the disjunction into this language in any future

extensions, normalisation function for minus could be amended, to allow for non-

determinism. This section will now prove that normalisation is sound relative to the

declarative semantics. By a small abuse of notation, this thesis will use ∈ to denote

list membership, as well as set membership.

Definition 22 (Well-Formed World).

57

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

A world wS is a well-formed world for a given state S, denoted w ∈ 〈S〉, if the

world wS contains all Ag’s such that (Ag 7→ +) ∈ S and contains no Ag’s such that

(Ag 7→ −) ∈ S.

Unlike normalisation, wS is generally not uniquely defined, and the notation

〈wS〉 will be used to refer to the (necessarily finite) set of all wS.

Example 39 (Well-Formed Worlds).

If S = (handEmpty∧¬onTable a) ↓+, then wS may be given by e.g. w1 ={handEmpty},

or w2 = {handEmpty , onTable b}, or any other world containing handEmpty but not

onTable a. The given formula will be satisfied by any such wS.

Normalisation is sound and complete (note that all of the following proofs are

formalised in Agda [51]):

Lemma 1 (∈ 〈〉 strengthening)

Given a world w, formulas F ,F1 and a polarity z if w ∈ 〈wF↓z〉 and w ∈ 〈wF1↓z〉

then w ∈ 〈wF1↓zF↓z〉.

Lemma 2 (∈ 〈〉 weakening)

Given a world w, formulas F ,F1 and polarities z,z1 if w ∈ 〈wF1↓z1F↓z〉 then w ∈

〈wF↓z〉.

Lemma 3 (∈ 〈〉 exchange)

Given a world w, formulas F ,F1 and polarities z,z1 if w ∈ 〈wF↓zF1↓z1 〉 then w ∈

〈wF1↓z1F↓z〉.

Theorem 1 (Soundness and completeness of normalisation)

Given a formula F and a world w, it holds that w |=z F iff w ∈ 〈wF↓z〉.

Proof. (⇒) is proven by induction on the derivation of w |=z F .

Case (w |=+ Ag)

By assumption Ag ∈ w therefore w ∈ 〈Ag ↓+〉.

Case (w |=− Ag)

By assumption Ag /∈ w therefore w ∈ 〈Ag ↓−〉.

Case (w |=+ ¬Ag)

By assumption Ag /∈ w therefore w ∈ 〈¬Ag ↓+〉.

58

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Case (w |=− ¬Ag)

By assumption Ag ∈ w therefore w ∈ 〈¬Ag ↓−〉.

Case (w |=z F ∧ F1)

The goal w ∈ 〈wF↓zF1↓z1 〉 can be obtained by the application of Lemma 1 if w ∈ 〈wF↓z〉

and w ∈ 〈wF1↓z〉. By assumption w |=z F and w |=z F1 therefore by induction on

the assumptions w ∈ 〈wF↓z〉 and w ∈ 〈wF1↓z〉 are obtained as required.

Proof. (⇐) follows by induction on the structure of F .

Case (Ag)

By assumption w ∈ 〈Ag ↓z〉. If z = + then Ag ∈ w is known from the assumption

therefore w |=+ A is obtained by application of the Somewhere rule. If z = − then

Ag /∈ w is known from the assumption therefore w |=− Ag is obtained by application

of the Nowhere rule.

Case (¬Ag)

By assumption w ∈ 〈¬Ag ↓z〉. If z = + then Ag /∈ w is known from the assumption

therefore w |=− Ag is obtained by the application of the Nowhere rule. By application

of the Flip rule on w |=− Ag, w |=+ ¬Ag is obtained as required. If z = − then Ag ∈

w is known from the assumption therefore w |=+ Ag is obtained by the application

of the Somewhere rule. By application of the Flip rule on w |=+ Ag, w |=− ¬Ag is

obtained as required.

Case (F ∧ F1)

By assumption w ∈ 〈F ∧ F1 ↓z〉 which normalises to w ∈ 〈wF1↓zF↓z〉. The goal

w |=z F ∧ F1 can be obtained by the application of the Both rule if w |=z F and

w |=z F1 can be obtained. By the application Lemma 2 on the assumption w ∈ 〈F ↓z〉

is obtained. w |=z F is obtained by induction on w ∈ 〈F ↓z〉. By application of

Lemma 3 on the assumption w ∈ 〈wF↓zF1↓z〉 is obtained. By application of Lemma 2

on w ∈ 〈wF↓zF1↓z〉, w ∈ 〈F1 ↓z〉 is obtained. w |=z F1 is obtained by induction on

w ∈ 〈F1 ↓z〉.

Theorem 1 will allow the formal system to work with states at the type level,

59

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

while keeping the link to the standard PDDL formula syntax and declarative se-

mantics.

This chapter will now move to its main goal: to realise the Curry-Howard intu-

ition and define a framework in which plans will inhabit normalised formulae seen as

types. This chapter aims to show that, proving that a certain (possibly composite)

plan f satisfies pre- and post-conditions given by the formulae F1 and F2 will be

equivalent to typing the judgement

Γ ` F1 ↓+ F2 ↓+ : f

We will say F1 ↓+ is the initial state of the plan f , and F2 ↓+ is its goal state. The

next section will introduce inference rules that define derivations of these judge-

ments.

4.4 Plans as Proof Terms

4.4.1 Inference Rules for Planning Problems

To define the inference rules for planning problems this chapter has to address the

frame problem. These inference rules can be seen as typing rules when implemented

in a programming language. This chapter will take a STRIPS like approach to

solving this problem where actions describe transformations on a world state rather

than the resultant world state itself. On top of this, this chapter will introduce a

notion of precondition satisfaction by introducing a subtyping relation.

The subtyping relation will adhere to the STRIPS assumption that the applica-

tion of a ground action P Q : α should not produce exactly Q, but an extension

of P by Q. For example, picking up b from the table does not affect the fact that c

is still on the table.

To define action application, this chapter will introduce an override operator

P tQ:

60

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

NilSub
S <: []

ASub
S ′ <: S A 7→ z ∈ S ′
S ′ <: A 7→ z :: S

Figure 4.2: Subtyping order on states.

Definition 23 (Override Operator).

P t [] = P

P t [A 7→ z ∗Q] = [A 7→ z :: P\{A 7→ + :: A 7→ −}] tQ

The override operator adds all formula maps from one state to the other. If

a mapping for a formula that is to be added already exists, then that formula is

removed before adding the new formula map. Unlike STRIPS which applies actions

to a world that only contains information about true atomic formulae, this chapter

defines action application on states that explicitly record negated predicates. This

change means that negated predicates are added to the state rather than removed.

Example 40 (Override Operator).

[(handEmpty 7→ +) :: (onTable a 7→ +) :: (clear a 7→ +)] t

[(handEmpty 7→ −) :: (onTable a 7→ −) :: (holding a 7→ +)]

= [(holding a 7→ +) :: (onTable a 7→ −) :: (handEmpty 7→ −) :: (clear a 7→ +)]

It is also necessary to be able to apply an action P Q : α in a state P ′ that

is weaker (has more atomic formulae) than P . For example, if b is known to be on

the table, knowing that c is also on the table should not preclude picking up b. This

state-weakening action corresponds to subtyping P ′ <: P defined in Figure 4.2. The

notation P ′ <: P , denotes that P ′ is a subtype of P . This agrees with the usual

convention that a subtype is given by a stronger assertion. This relation is called

subtyping to refer to the fact that states can also be seen as types. Subtyping is

also a satisfaction relation as if P ′ is a subtype of P then P ′ satisfies P .

Example 41 (Subtyping). Given: Q ≡ (onTable a 7→ −) :: (onTable b 7→ +) ::

(clear a, b 7→ +) :: (holding a 7→ +) :: (handEmpty 7→ −) and

Q′ ≡ (onTable b 7→ +) :: (onTable a 7→ −) :: (clear a, b 7→ +) :: (holding a 7→

+), it is obtained Q <: Q′.

61

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Halt
S <: S ′

Γ ` S S ′ : halt
Seq

P ′ <: P (x)[σ] P (x) Q(x) : α(x) ∈ Γ
Γ ` P ′ tQ(x)[σ] S : f

Γ `: P ′ S : α(x)[σ]; f

Figure 4.3: PCP logic rules.

The rules of Figure 4.3 define how a program P G : f can be typed given

some planning domain Γ. A well-typed plan Γ ` P G : f “transports” an

initial state P to a goal state G. To exemplify these rules, this section will now

refer again to the blocks world problem with the pre-condition F1 = onTable a ∧

onTable b ∧ onTable c ∧ clear a ∧ clear b ∧ clear c ∧ handEmpty and the post-condition

F2 = on a b ∧ on b c. Suppose that the PDDL planner proposes plan1, as given

in Section 4.2. Let plan1 be the corresponding version in the precise mathematical

notation of Figure 4.1.

plan1 = (pickup from table b); (putdown on stack b c); (pickup from table a);

(putdown on stack a b); halt

Given the initial world state F1, goal state F2 if Γ1 ` F1 ↓+ F2 ↓+ | plan1

yields a typing derivation by Figure 4.3, then this typing derivation verifies that

plan1 correctly implements the given planning problem in the planning domain Γ1.

In this chapter the derivation Γ1 ` F1 ↓+ F2 ↓+ | plan1 will refer to the PDDL

problem domain given in Figure 2.2. In PCP logic, the definition of the context for

the example domain is given by the following definition of Γ1:

62

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Γ1 = {

handEmpty 7→ + ::

(onTable x) 7→ + ::

(clear x) 7→ +

handEmpty 7→ − ::

(onTable x) 7→ − ::

(holding x) 7→ +

 | pickup from table x

. . . | putdown on table x

. . . | pickup from stack x y

 (holding x) 7→ + ::

(clear y) 7→ +

(holding x) 7→ − ::

(clear y) 7→ − ::

(on x y) 7→ + ::

handEmpty 7→ +

| putdown on stack x y}

This chapter will now perform the typing derivation for:

Γ1 ` F1 ↓+ F2 ↓+ | plan1

Given F1 ↓+, then the first action that can be applied by the Seq rule is

pickup from table b. The application of Seq demands that the initial state of the

action pickup from table b in Γ1 is a subtype of F1 ↓+. A subtyping derivation

provides such a proof, selecting the required piece of evidence from F1 ↓+, i.e.

(onTable a, b, c) 7→ + ::

(clear a, b, c) 7→ + ::

handEmpty 7→ +

 <:

handEmpty 7→ + ::

(onTable b) 7→ + ::

(clear b) 7→ +

At this point of the derivation plan1 = (pickup from table b); f ′ is now verified.

To complete the proof and compute an action for f ′, it must be shown that the

remainder of the plan is typeable. The application of Seq, produced a new state P1

as well as an obligation to prove f ′ : P1 F2 ↓+.

63

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

P1 = F1 ↓+ t

handEmpty 7→ − ::

(onTable b) 7→ − ::

(holding b) 7→ +

 =

(onTable a) 7→ + ::

(onTable b) 7→ − ::

(onTable c) 7→ + ::

(clear a, b, c) 7→ + ::

(handEmpty) 7→ − ::

(holding b) 7→ +

The proof proceeds by trying to apply the Seq rule to next action from plan1:

putdown on stack b c. Again P1 is readily shown to be a subtype of the pre-

conditions of putdown on stack b c. The proof continues in this way for each action

in plan1, the final state is:

P3 =

(onTable a, b) 7→ − ::

(onTable c) 7→ + ::

(clear a) 7→ + ::

(clear b, c) 7→ − ::

(on b c) 7→ + ::

(handEmpty) 7→ + ::

(holding a, b) 7→ − ::

(on a b) 7→ +

However, this is not the same state as the goal state G0. The Halt rule was

introduced to resolve such cases as it eliminates all unnecessary evidence from the

current state by proof of subtyping i.e. Γ1 ` P3 G0 : halt. Clearly P3 <:

[(on a b) 7→ + :: (on b c) 7→ +] as required. After this application of Halt,

Γ1 ` plan1 : F1 ↓+ F2 ↓+ is now verified.

64

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

4.4.2 Computational Characterisation of Plans: Soundness

of Plan Execution

The proof of Γ1 ` F1 ↓+ F2 ↓+ | plan1 provides evidence that the execution of

plan1 on a world satisfying F1 produces a new world satisfying F2. Generally, the

inference of Γ ` P G : f , with f = α1; . . . ;αj; halt corresponds to successively

applying actions α1 . . . αj to states P, P1, . . . Pj in a sequence of state transitions,

satisfying Pj <: G. This section will now prove that the plan f thus inferred

indeed has a computational meaning, i.e. can be evaluated, and that the result of

its evaluation is sound. To state this, an evaluation function J.K that will interpret

actions on worlds needs to be defined. Recall that every state S maps to a world

wS, as shown in Example 4.3.2. This thesis will use the notation δ for an arbitrary

mapping (an action handler) that maps each ground action P Q : α to insertions

and deletions on the world wP according to α’s action on P . The evaluation function

JKδ w that evaluates a plan to a world (according to a given world w and action

handler δ) can then be defined as:

Definition 24 (Evaluation Function).

JhaltKδ w = w

Jα; fKδ w = JfKδ (δ α w)

This section will now proceed to define the notion of a well-formed handler, that

will be used to prove soundness of the PCP logic.

Definition 25 (Well-Formed Handler). An action handler δ is well-formed if, given:

• a context Γ with P ′(x) Q(x) : α(x) ∈ Γ,

• a state P , such that P (x) <: P ′(x)[σ] for some ground substitution σ,

• a world w ∈ 〈wP 〉,

δ satisfies the following property: (δ (α(x)[σ]) w) ∈ 〈wPtQ(x)[σ]〉.

Canonical Handler. In order for this thesis to be constructive in its further

claims, and to provide a practical solution to the quest for a well-formed handler, a

well-formed canonical handler will now be defined for a given planning domain.

The first step is to define a function δα that updates a world given an effect:

65

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Definition 26 (The update world function δα).

δα [] w = w

δα [A 7→ + :: Q] w = δα Q (w ∪ {A})

δα [A 7→ − :: Q] w = δα Q (w\{A})

This function updates a world given an effect by adding all of the positively

mapped predicates to the world and removing all the negatively mapped predicates.

When this function is applied to an empty world it simply creates the smallest world

that satisfies the effects. When δα is applied to a non-empty world, it is equivalent

to applying the effects of an action on the world. The canonical handler can then

be defined when given a context Γ and a ground action α(x)[σ] by applying δα to

Q(x)[σ] for each P (x) Q(x) : α(x) in Γ. This gives a canonical mapping from

actions and worlds into worlds, as required. The resulting canonical action handler

canonical-δ Γ (defined formally in Figure 4.6) is well-formed, as long as the states to

which it is applied are consistent, i.e. in the following sense:

Definition 27 (Implicit consistency assumption). Implicit consistency assumption:

for every state S, if A 7→ z ∈ S then A 7→ −z /∈ S.

The implicit consistency assumption is needed for the following lemmas about

the update world function:

Lemma 4 (Update world inserts all positive formulae)

Given a state S and a world w if (A 7→ +) ∈ S then A ∈ δα S w.

Lemma 5 (Update world deletes all negative formulae)

Given a state S and a world w if (A 7→ −) ∈ S then A /∈ δα S w.

By definition of the update world function, it is known that a positive mapping

is added to a world and a negative mapping is deleted from a world. It is however

possible in an inconsistent state that after a formula has either been added to or

deleted from the given world that the formula appears again in state S with a

66

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

different mapping causing the lemmas to not hold. It is therefore necessary to know

that the state is consistent to prove the lemmas. This lemma is simply proven by

induction on S and discharging the possibility of inconsistent states with the implicit

consistency assumption.

Lemma 6 (Union property)

Given a formula map (A 7→ z), a state P and a state Q, if A 7→ z ∈ P tQ then:

• (A 7→ z) ∈ P and (A 7→ ¬z) /∈ Q, or

• (A 7→ z) ∈ Q.

Lemma 7 (Canonical handler keeps non-negated facts)

Given a predicate A, a world w, and a state S, if A ∈ w and A 7→ − /∈ S then

A ∈ δα S w

Lemma 8 (Canonical handler does not add additional facts)

Given a predicate A, a world w, and a state S, if A /∈ w and A 7→ + /∈ S then

A /∈ δα S w

Proposition 1

Given a context Γ, the canonical handler canonical-δ Γ is well-formed with respect

to Γ.

Proof. By assumption there exists a world w, a ground action α with a transforma-

tion P Q and w ∈ 〈P 〉. The proof needs to consider two cases:

Case (A ∈ P tQ)

The goal of this case is to show that A ∈ δα S w. By application of the union lemma

is it obtained (A 7→ +) ∈ P and (A 7→ −) /∈ Q, or (A 7→ +) ∈ Q.

If (A 7→ +) ∈ P and (A 7→ −) /∈ Q is obtained then it is known that A ∈ w

from the assumption w ∈ 〈P 〉. The proof is then completed by the application of

Lemma 7.

If (A 7→ z) ∈ Q the goal is obtained by the application of Lemma 4.

Case (A /∈ P tQ)

The goal of this case is to show that A /∈ δα S w. By application of the union lemma

is it obtained (A 7→ −) ∈ P and (A 7→ −) /∈ Q, or (A 7→ −) ∈ Q.

If (A 7→ −) ∈ P and (A 7→ −) /∈ Q is obtained then it is known that A /∈ w

67

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

from the assumption w ∈ 〈P 〉. The proof is then completed by the application of

Lemma 8.

If (A 7→ z) /∈ Q then the goal is obtained by the application of Lemma 5.

The next two theorems show that executing a well-typed plan f by the evaluation

function JfKδ w is sound, for any well-formed handler δ.

Theorem 2 (Soundness of evaluation for normalized formulae)

Suppose Γ ` P G : f . Then for any w ∈ 〈wP 〉, and any well-formed handler δ,

it follows that JfKδ w ∈ 〈wG〉.

Proof. The proof proceeds by structural induction on the typing derivation Γ ` P

G : f .

Case (Halt)

By assumption w ∈ 〈wP 〉 and thus because P <: G, it follows w ∈ 〈wG〉. Since

JhaltKσ w = w, JhaltKσ w ∈ 〈wG〉 is obtained as required.

Case (Seq)

Note that by assumption: f = α(x)[σ]; f ′ and therefore P ′(x) Q(x) : α(x) is in

Γ and Γ ` P tQ(x)[σ] G : f ′. Then by induction every w′ ∈ 〈wPtQ(x)[σ]〉 gives

(JfKσ w′) ∈ 〈wG〉 for any well-formed δ. However, by the well-formedness of δ and

because w ∈ 〈wP 〉, it obtained that (σ α w) ∈ 〈wPtQ(x)[σ]〉. Thus Jf ′Kσ (σ α w) ∈

〈wG〉 and therefore JfKσ w ∈ 〈wG〉.

Theorem 3 (Soundness of Evaluation)

Suppose Γ ` F1 ↓+ F2 ↓+ | f then for any w such that w |=+ F1, and any

well-formed δ it follows JfKδ w |=+ F2.

Proof. By assumption w |=+ F1 and by the completeness of normalisation (Theo-

rem 1), w ∈ 〈wF1↓+〉 is obtained. By the application of Theorem 2 using w |=+ F1

and w ∈ 〈wF1↓+〉, JfKδ w ∈ 〈wF2↓+〉 is obtained. Thus by the soundness of normali-

sation (Theorem 1), JfKδ w |=+ F2 is obtained.

68

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Thus the derivation of a type for a plan f induces a proof that the execution of

a plan in world w is correct. Although neither of the above theorems depends on

the implicit consistency assumption for its proofs, the existence of a well-formed and

canonical handler is predicated upon the consistency assumption. Given a derivation

of a plan it is now possible to compute the world generated for any plan. For the

blocks world example, a user can directly evaluate Jplan1Kδ w by plugging in:

– in place of w – the world resulting from computing δα(F1 ↓+ []) ∅. (To see this,

recall that F1 is the formula that described the initial state in all examples of the

previous section, and F1 ↓+ [] is the state resulting from normalising F1.)

– and in place of δ – the canonical handler for Γ1. (Recall that Γ1 is the context

that defined the given planning domain in the previous section.)

4.5 Agda Formalisation

The Agda formalisation of the plan validation system described in this chapter will

allow users to fully utilise the theoretical applications of this work. PDDL domains

and problems will be able to be implemented in Agda and plans verified by the

typing derivation. If a derivation for a plan type checks in the Agda system then

it is known that the plan is valid. The Agda implementation will also allow users

to harness the computational properties of the plans defined in this chapter. The

definition of the canonical handler will allow users to execute plans on worlds. On

top of this, this section will show that it is possible to extract the execution of plans

into executable Haskell or binary. Chapter 6 will show that it is possible to fully

automate the verification, execution and extraction processes.

4.5.1 Approach to Formalisation

A large amount of the Agda formalisation of PCP logic can be done through induc-

tive data type declarations that exactly map to the definitions given in this thesis.

For example, the declarative semantics and typing relation are simply defined as in-

ductive data types in Figure 4.4 and Figure 4.5. Two notable exceptions are worlds

and states which are defined as lists to take advantage of the extensive library of

list operations that Agda has. Plans are defined as a list of actions where the empty

69

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Declarative and Operational Semantics

data Form : Set where
∧ : Form � Form � Form

¬ : Predicate � Form
atom : Predicate � Form

FormulaMap : Set
FormulaMap = (Polarity × Predicate)

World : Set
World = List Predicate

↓[] : Form � Polarity � State � State
F ∧ F1 ↓[z] S = F1 ↓[z] F ↓[z] S
¬ x ↓[z] S = (neg z , x) :: S
atom x ↓[z] S = (z , x) :: S

data Plan : Set where
:: : Action � Plan � Plan

halt : Plan

data Polarity : Set where
+ - : Polarity

State : Set
State = List FormulaMap

data |=[] : World � Polarity � Form � Set where
flip : ∀{w t A} � w |=[neg t] (atom A) � w |=[t] ¬ A
both : ∀{w t P Q} � w |=[t] P � w |=[t] Q � w |=[t] P ∧ Q
somewhere : ∀{w a} � a ∈ w � w |=[+] atom a
nowhere : ∀{w a} � a /∈ w � w |=[-] atom a

Figure 4.4: Agda implementation of Declarative and Operational Semantics of PCP
logic defined in Section 2.3.3 and Section 4.3.

Typing Relation

del : Predicate � State � State
del x [] = []

del x ((t’ , x’) :: P) with x
?
=p x’

del x ((t’ , x’) :: P) | yes p = del x P
del x ((t’ , x’) :: P) | no ¬p = (t’ , x’) :: del x P

tN : State � State � State
P tN [] = P
P tN ((z , q) :: Q) = (z , q) :: del q P tN Q

data ` : : Context � State � State � Plan � Set where
halt : ∀{Γ currentState goalState} � currentState <: goalState

� Γ ` currentState goalState : halt
seq : ∀{α currentState goalState Γ f}

� currentState <: preconditions (Γ α)
� Γ ` currentState tN effects (Γ α) goalState : f
� Γ ` currentState goalState : (α :: f)

Figure 4.5: Agda implementation of the typing relation defined in Section 4.4.1.

70

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Computational Characteristics of Plans

ActionHandler : Set
ActionHandler = Action � World � World

J K : Plan � ActionHandler � World � World
J (α :: f) K δ w = J f K δ (δ α w)
J halt K δ w = w

δα : State � World � World
δα [] w = w
δα ((+ , x) :: N) w = x :: δα N w
δα ((- , x) :: N) w = remove x (δα N w)

canonical-δ : Context � ActionHandler
canonical-δ Γ α = δα (effects (Γ α))

Figure 4.6: Agda implementation of the computational characteristics of plans de-
fined in Section 4.4.2.

list is renamed to halt to improve readability. Functions are also directly translated

to Agda as functions such as the normalisation function in Definition 4.3.2. The

canonical handler and the evaluation function are also defined using functions in

Agda as shown in Figure 4.6. Functions implemented in Agda are guaranteed to

terminate therefore the evaluation function and canonical handler are guaranteed to

terminate.

Remark on Notation 3

The use of the word Predicate in the Agda definitions is overloaded where the data

declaration of Predicate really describes how to construct atomic formulae. This

naming convention for Predicate was adopted to better match PDDL.

The Agda implementation needs to have an abstract definition of a domain in

order to reason about planning domains and problems in general. For example, the

definition of the typing relation given in Figure 4.4 is defined in a generic Agda

module Plan that takes in a domain as a parameter. This will allow the typing

derivation to be used for any domain that can be expressed in PCP logic. The

module declaration is defined as:

module Plans.Plan (domain : Domain) where

The abstract definition of a domain is given as a record type that requires a

71

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Abstract Domain

record Domain : Set1 where
Action : Set
Predicate : Set
Γ : Context
?
=p : DecidableEquality Predicate

record ActionDescription : Set where
field

preconditions : Preconditions
effects : Effects

Context : Set
Context = Action � ActionDescription

Concrete Blocks World Domain

data Object : Set where
a b c : Object

Γ : Context
Γ (pickup from table x) = record {

preconditions =
(+ , handempty) ::
(+ , ontable x) ::
(+ , clear x) :: [] ;

effects =
(- , handempty) ::
(- , ontable x) ::
(+ , holding x) :: [] }

Γ (putdown on table x) = ...
Γ (pickup from stack x y) = ...
Γ (putdown on stack x y) = ...

data Predicate : Set where
clear : Object � Predicate
on : Object � Object � Predicate
ontable : Object � Predicate
holding : Object � Predicate
handempty : Predicate

data Action : Set where
pickup from table :

Object � Action
putdown on table :

Object � Action
pickup from stack :

Object � Object � Action
putdown on stack :

Object � Object � Action

Figure 4.7: Agda definition of an abstract domain and the blocks world domain.

concrete definition of actions, predicates and a context to be defined. Figure 4.7

shows the abstract definition of a domain as well as a concrete example of the

blocks world domain that corresponds to the PDDL definition in Figure 2.2. A

domain definition also requires a proof of decidable equality for the Predicate data

type. A proof of decidable equality for predicates is given by defining an evidence-

based procedure for comparing the equality of predicates. This is needed throughout

formalisation, for example, it is needed in the del function in Figure 4.5 that deletes

all instances of a predicate from a state. One caveat with proving decidable equality

for predicates it that it is also necessary to prove decidable equality over objects

for the proof. This thesis will address this issue by including objects in the domain

72

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

declaration unlike in PDDL which includes the object definition in the problem file.

Including the object definition in the domain definition has no effect on plan validity

and corresponds to the traditional definition of a domain in a planning problem given

in Definition 6.

The approach taken to the Agda formalisation has a focus on simplicity in both

the implementation and readability of the code. This was accomplished by reusing

code from the standard library wherever possible as well as utilising predefined

theory within Agda. One example of this is illustrated in Figure 4.7 where the

handling of variables for all definitions is left to Agda. Simplicity is also one of

the primary reasons why states are represented as lists of pairs rather than using

AVL trees. It would, however, be worthwhile to implement states as AVL trees in

future work to see if there is a notable performance increase. Representing states

as functions from Predicate → Polarity was not chosen as it overly complicates the

definitions that use states. For example, functions complicate definitions where the

state has to be printed. Functions are also unnecessary as states generally only need

to encode mappings for a small portion of the possible predicates.

4.5.2 Verifying and Executing Plans in Agda

The Agda implementation of PCP logic defined in this section allows for the valida-

tion and execution of plans for PDDL problems. By instantiating the Plan module

with a domain it is possible to validate a plan by defining the initial state, goal

state and using the typing relation. Figure 4.8 shows the code for the validation and

execution of the running blocks world example defined in Figure 2.2. The initial and

goal state of the problem is given by the PDDL formulae F1 and F2 respectively. The

example plan, plan1, used in this chapter is defined by plan1. The derivation given

in Section 4.4.1 is then defined by the Derivation function. If it is possible to define

a program that inhabits the type of the derivation then the plan is validated and

it is ensured that plan1 can be soundly executed as a function. Agda ensures that

a program inhabits the derivation type via type checking. The Derivation function

type checks in Agda therefore it is known the plan is valid for the given problem.

The function formula-eval executes the validated plan on the initial state using

the canonical handler. It should be noted that the initial state is converted into a

73

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

F1 : Form
F1 = atom (onTable a) ∧ atom (onTable b) ∧ atom (onTable c) ∧

atom (clear a) ∧ atom (clear b) ∧ atom (clear c) ∧ atom handEmpty

F2 : Form
F2 = atom (on a b) ∧ atom (on b c)

plan1 : Plan
plan1 = pickup from table b :: putdown on stack b c :: pickup from table a

:: putdown on stack a b :: halt

Derivation : Γ ` (F1 ↓+) (F2 ↓+) : plan1

Derivation =
seq

(λ { (here refl) � here refl
; (there (here refl)) � there (there (there (there (there (here refl)))))
; (there (there (here refl))) � there (there (here refl))})

(seq (λ { (here refl) � there (there (there (here refl)))
; (there (here refl)) � there (there (there (there (here refl))))})

(seq (λ { (here refl) � there (there (there (here refl)))
; (there (here refl))
� (there (there (there (there (there (there (there (there (here refl)))))))))

; (there (there (here refl)))
� there (there (there (there (there (there (here refl))))))})

(seq (λ { (here refl) � there (there (there (here refl)))
; (there (here refl))
� (there (there (there (there (there (there (there (here refl))))))))})

(halt λ { (here refl)
� there (there (there (there (there (there (there (there (here refl))))))))

; (there (here refl)) � there (there (here refl))}))))

formula-eval : World
formula-eval = J plan1 K (canonical-δ Γ) (δα (F1 ↓[+] []) [])

Figure 4.8: Agda type checking the derivation of Γ1 ` F1 ↓+ F2 ↓+ : plan1.

74

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

world by using the δα function as described. The evaluation of formula-eval results

in the world w′ = { handEmpty, on a b, on b c, clear a, onTable c}. That is, the

world that corresponds to the state P3 of the previous section.

It is also possible to go one step further, and use Agda’s code extraction library

and compile the verified plans into executable Haskell programs or executable binary.

The process is fully automated by existing Agda libraries, and subsequent execution

of the binary takes just milliseconds. The generated code will run a plan on the given

world using the evaluation function and return a string of the resultant world. The

world produced by the execution of the extracted code is also guaranteed to satisfy

the goal of the planning problem if it has been proven by the typing derivation. The

binary file can in principle be run on any independent platform, e.g. on a robot.

Example code that can be compiled and run is given in the repository [51].

4.6 Approach to State Consistency

As Proposition 1 has shown, the existence of a canonical and well-formed handler

depends crucially on the implicit consistency assumption. At the same time, the

proofs of Theorems 2 or 3 do not depend on the consistency assumption. The intro-

duction of the inconsistency assumption makes it possible in principle to construct

planning domains and problems that violate the assumption but are accepted by

the well-typedness relation of Figure 4.3. If domains are added that contain ill-

formed actions that can produce an inconsistent state then ⊥ will become provable.

It should be impossible to prove ⊥ in Agda as it has no constructor therefore the

formal system is not sound when the consistency assumption is violated.

Example 42 (Ill-Formed Action).

An ill-formed action can be formed by an action that produces an inconsistent

state with no preconditions. Appendix A shows a derivation of ⊥ using this action.

[]

 handEmpty 7→ − ::

handEmpty 7→ +

 | naughty

If it is assumed that this formal system could handle domains that contain ill-

75

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

formed actions then the implicit consistency assumption needs to be removed. But

without the assumption, it is no longer possible to define a well-formed and canonical

handler and therefore the ability to evaluate plans is lost. This situation is of course

illustrative of the rigour and transparency that a constructive approach brings to

verification. It is necessary to ensure that any practical deployment of the presented

prototype needs to enforce the consistency assumption. This thesis will address

this issue in two different ways. In Chapter 5 a new formal inference system will be

implemented which is guaranteed to be consistent however this system has scalability

issues. Chapter 6 will modify the inference system presented in this chapter so that

it is guaranteed to be consistent whilst also addressing scalability concerns.

4.7 Discussion

This chapter has given a formalisation of a plan validator in Agda for the STRIPS

subset of AI planning problems that can be expressed in PDDL. This formalisation

addresses Objective 1, Objective 3 and Objective 4. In line with the Curry-Howard

approach to first-order logic, this chapter formulated an inference system that treats

planning domains as types, and generated plans as functions that inhabit these types.

Type checking then ensures the soundness of these executable functions relative to

the specifications given as types. This approach addresses Objective 2 and allows

for the ability to generate executable code directly from plans verified in Agda.

The Agda system presented in this chapter was defined in a modular style that

is compatible with any domain and problem that is definable in the STRIPS subset

of PDDL. As discussed in Section 4.5.2, to validate a different planning problem it is

only necessary to define the domain and problem from the relevant PDDL files and

simply instantiate the relevant modules with the domain as was shown in Figure 4.7.

One issue with this approach is that manually translating and proving derivations

for PDDL problems into Agda is a time consuming task and becomes unfeasible with

larger problems. It is therefore necessary to automate the translation and verification

process for plans, which is a problem that is addressed in the subsequent chapters.

76

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

4.8 Related Work

Verification of AI languages and applications is an active research field. In planning

languages, two major trends exist. Firstly, PDDL is used to verify autonomous

systems and applications, see e.g. [106]; and it has been successfully integrated

within other similar languages, such as GOLOG [68], with the purpose of verifying

plans written in the situation calculus [22, 129]. Secondly, planning domains have

been verified using model checkers [65], other automated provers such as Event-

B [35], or planning support tools such as VAL [57]. The method presented in this

chapter is complementary to these two trends. Its main difference lies in taking the

perspective of intrinsic, rather than external verification. That is, the correctness

of the generated plans is verified not by an external tool, such as a model checker,

but is performed intrinsically within the code that implements the plans. At the

same time, the code that implements the plans is inseparable from the language

in which planning domains are specified. Furthermore, the executable binary files

automatically extracted from Agda bear the verification guarantees provided by

Agda proofs. This chapter’s novel Curry-Howard approach to plan validation fully

embodies the correspondence and all of its benefits. This is because provisioning

types for plans not only equips planners with certificates of correctness for inspection,

but also provides a direct link to an implementation’s type theory.

Comparison to other validation methods. The work presented in this

chapter provides a strong level of verification for plans as well as a certificate of

correctness. There are two major drawbacks to the approach taken in this chapter.

The first drawback is that the work presented in this chapter does not automate

the validation of plans or the translation process from PDDL. This makes the sys-

tem infeasible to use in practice in comparison to state-of-the-art validators [3, 57].

Methods for mitigating the drawback will be introduced in Chapter 5. The other

drawback is that the system presented in this chapter only validates a small por-

tion of PDDL in comparison to Val [57]. The subset of PDDL that PCP logic can

validate still encapsulates a large number of planning problems and is in line with

the subset of PDDL that other formally verified validators [3] work with. Because

PDDL is such a vast and expressive language planners also only work with a specific

subset of PDDL.

77

Chapter 4: Planning Problems as Types STRIPS/Operational Approach

Formalisation of Planning in Other Theorem Provers. Much of the work

proposed in this chapter could be replicated in another dependently-typed prover,

such as Coq, Idris or Lean. The main reasons that Agda was chosen over other

interactive theorem provers is due to its extensive standard library and easy-to-use

interactive mode of development. There has been an impressive line of work by

Abdulaziz and co-authors on formal verification of plan validators in Isabelle/HOL,

see e.g. [1, 3, 4]. One advantage of using Isabelle/HOL for PDDL formalisations is

the availability of extensive mathematical libraries that can support proof develop-

ment. Specifically in [3] Abdulaziz et al. create a formally verified validator for the

STRIPS subset of planning problems. Their approach to validation differs from the

work presented in this chapter because they validate the plan validation algorithm

itself which is later extracted and can be executed on a variety of planning prob-

lems. The advantage of this approach is that the produced executable validator has

comparable validation speeds to the state-of-the-art validator Val. The disadvan-

tage of their approach is that they lose all the formal guarantees that are gained by

implementing the validator in a dependently-typed programming language. Many

sanity checks that had to be proven in their systems such as substitution and termi-

nation are checked and guaranteed automatically by Agda’s typechecker. Another

advantage of our approach is that by defining plan validation as a typing relation,

validated plans have checkable evidence for why a plan has been validated. The

typing relation can also be used to give guarantees about extracted plans.

78

Chapter 5

Resource Logic for AI Planning

5.1 Introduction

Chapter 4 introduced an inference system for the AI planning problems in a STRIPS

style where actions are defined by adding and removing atomic predicates from a

state. One issue with the STRIPS approach is that an implicit consistency assump-

tion is needed in order to evaluate plans. When the work from Chapter 4 was

presented at the Symposium on Practical Aspects of Declarative Languages in 2019,

audience members recognized the link between the problem of local reasoning with

AI and resource logic. Frame axioms were historically a common solution for local

reasoning in AI planning [25, 48]. Due to this audience feedback and the success of

research done in resource semantics [93, 105] this thesis will re-investigate the use

of a frame rule in AI planning.

This chapter will present a novel resource logic for validating plans, the Proof

Carrying Plans Resource (PCPR) logic, that embeds consistency as an integral part

of the logic. PCPR logic is inspired by resource semantics, and by the Curry-Howard

view on Separation logic as given e.g. in [81, 102]. The key logic features are:

• Hoare triples to describe plans and states

• The frame rule for local resource-aware reasoning

• The Curry-Howard view on states as types, and state transformations as func-

tions

As shown in Chapter 4, the final feature ensures that the plans that are verified

in the logic are also executable functions.

79

Chapter 5: Resource Logic for AI Planning

(define (problem blocksworld)

(:domain blocksworld)

(:objects a b)

(:init (onTable a)

(onTable b)

(clear a)

(clear b)

(handEmpty))

(:goal (and (on a b) (onTable b))))

(:action putdown_on_stack

:parameters

(?x ?y)

:precondition

(and

(not (= ?x ?y))

(holding ?x)

(clear ?y))

:effect

(and

(not (holding ?x))

(not (clear ?y))

(on ?x ?y)

(handEmpty))))

Figure 5.1: Blocks world planning problem and updated putdown on stack action
with added constraint.

One major departure in PCPR logic is the use of a frame rule for local reasoning

instead of using the standard STRIPS approach. The use of a frame rule will

allow for the definition of an inference system at a higher level of abstraction than

Chapter 4. This higher level of abstraction allows for the definition of clear and

intuitive formal semantics that helps to clarify the computational properties of plans.

For example, the embedding of consistency into the rules of the logic will lead

to a discussion in Section 5.4 about the potential effects of inconsistent actions.

From the theoretical perspective, this chapter will introduce an alternative for-

malisation of plan validation and will prove it sound relative to the declarative

semantics. This chapter will also add support for PDDL constraints into the logic

as well as expose additional properties about various aspects concerning both the

PCP logic and PCPR logic inference systems. From the practical perspective, the

logic and soundness proofs will be fully formalised in Agda [51]. Moreover, in Sec-

tion 5.6 the full Curry-Howard, or functional, value of the Agda implementation

will be showcased by supplementing the Agda formalisation with automation that

allows the verification of PDDL problems automatically. This will include the in-

troduction of a parser that converts PDDL domain and problem specifications into

their equivalent Agda code as well as a solver that automatically produces Agda

derivations for plans.

80

Chapter 5: Resource Logic for AI Planning

5.1.1 Results of this chapter by means of an example

This chapter will use the Blocks World domain for its running example however

the domain will be updated to include constraints on actions and a different Blocks

World problem will be used. An example updated pickup from table action and

the new problem definition is defined in Figure 5.1. Given the new problem definition

a PDDL planner could solve the problem with the plan:

fab = ((pickup from table a) ; (putdown on stack a b)).

This chapter will formalise a proof system which can prove the correctness of

this plan whilst using the frame rule for local reasoning. This will be done just as

in Chapter 4 by forming a typing relation with judgements of the form:

Γ ` {P} {G} | f

This judgement is inspired by Hoare logic. If the context is removed then it is

obvious that the judgement is naturally inspired by Hoare triples [54] e.g. {P}

{G} | f . The need for a context that describes a set of axioms describing the domain

of a planning problem is however a minor departure from Hoare logic.

There are two additional problems that need to be solved to define the context

in this chapter. The first problem is how to represent the addition of constraints to

the domain. Figure 5.1 shows the pickup from table with the additional inequality

constraint x 6= y in its preconditions. This constraint ensures that when the action

is given a ground substitution, the objects x and y do not equal each other. This

chapter will follow the resource logic tradition [12, 102] and separate state descrip-

tions from constraints on states. To do this, this chapter will further refine domain

descriptions to have the syntax φ; {P} {Q} | action, where φ defines constraints

on states. For technical reasons, this chapter will formalise φ to be a list (rather

than a conjunction) of constraints, and will use equality (=) and inequality (6=)

constraints instead of using negation explicitly. The inference systems presented

in this thesis only support a fragment of PDDL therefore states can only contain

predicates. Since predicates can only contain objects it is only possible to define

equality constraints. In PDDL [37] it is possible for states to contain numeric fluents

81

Chapter 5: Resource Logic for AI Planning

[];

handEmpty 7→ +
∗ onTable x 7→ +
∗ clear x 7→ +

handEmpty 7→ −
∗ onTable x 7→ −
∗ holding x 7→ +
∗ clear x 7→ +

 | α1 x

where α1 ≡ pickup from table

[x 6= y];

{
holding x 7→ +
∗ clear y 7→ +

}

holding x 7→ −
∗ clear y 7→ −
∗ on x y 7→ +

∗ handEmpty 7→ +

 | α2 x y

where α2 ≡ putdown on stack

Figure 5.2: Context ΓBW that defines Blocks World PDDL domain with constraints.

which assign numeric values to zero or more objects. If states could contain numeric

fluents then numeric constraints such as ≤ could be added.

The second problem occurs with the representation of actions when using the

frame axiom approach to local reasoning rather than the STRIPS approach. The

PDDL domains that are being used in this thesis represent actions as effects that

contain additions and deletions to a world. Chapter 4 took a STRIPS style ap-

proach to local reasoning by defining inference rules using an override operator that

added and deleted predicates from a state. This chapter will instead represent ac-

tions as preconditions and postconditions where the result of an action is simply the

postcondition. This has many implications which will be discussed in Section 5.4.

Figure 5.2 defines the context ΓBW that gives an example definition of the mod-

ified Blocks World domain in PCPR logic. Preconditions and postconditions will

be represented by states that represent a first-order domain therefore this chapter

will assume that all φ(x); {Pre} {Post} | action in Γ are implicitly universally

quantified as follows: ∀x.φ(x); {Pre(x)} {Post(x)} | action(x).

One final challenge when defining the rules of PCPR logic is that it must not

allow inconsistent states where a formula is mapped to + and − simultaneously.

This chapter will ensure this by introducing a notion of a valid state where a state

is valid if it is consistent, i.e. contains no conflicting formula maps. For example

{(onTable a 7→ +) ∗ (onTable b 7→ +)} is a valid state but {(onTable a 7→ +) ∗

(onTable a 7→ −)} is not. Conjunctions in a valid state are represented by the ∗

operator as opposed to the standard list operator :: used in Chapter 4.

Given the above requirements, the last step is to formulate the rules for PCPR

logic. These rules will be defined with simplicity in mind: an “ApplyAction” is

82

Chapter 5: Resource Logic for AI Planning

needed to be able to choose specific action definitions from the context, a composition

rule is needed to compose the actions, similar to the composition rule of Hoare

logic [54], and finally a frame rule [25, 48] is needed to have local reasoning on states.

Additionally, the system will need two structural rules, weakening and shrink. This

chapter will give definitions for these rules and will show that these rules are sound

relative to the declarative semantics of PDDL.

This chapter will then formalise the PCPR logic and the soundness proof in

Agda [51]. In a similar manner to Chapter 4 it will be shown that the Agda system

can prove the correctness of PDDL plans. For example, given Pab ≡ {(onTable a 7→

+) ∗ (onTable b 7→ +) ∗ (clear a 7→ +) ∗ (clear b 7→ +) ∗ (handEmpty 7→ +)} and

Qab ≡ {(on a b 7→ +) ∗ (on Table b 7→ +)} as in Figure 5.1, ΓBW ` Pab Gab| fab ,

i.e. it is possible to certify that the plan fab is indeed valid in Agda.

Finally, this chapter will introduce the implementation of automation for both

PCPR logic and PCP logic. This has huge practical value as without automation

it is too time consuming and difficult to use the systems presented in this thesis to

verify plans. This automation will be showcased by automatically verifying plans

from multiple benchmark domains via type checking. The automation introduced in

this chapter will also automate the extraction of verified plans to Haskell or binary

files.

5.2 The PCPR Logic

This section defines the formal language and rules of PCPR logic with references to

the PCP logic of Chapter 4.

5.2.1 Syntax of PCPR Logic

PCPR syntax is defined in Figure 5.3. PCPR syntax is a modification of the PCP

logic syntax defined in Figure 4.1 therefore only the changes to syntax will be dis-

cussed in detail.

First-order formulas and constraints. First-order formulas are defined in

the exact same way as PCP logic with the addition of constraints that are two

specific kinds of atomic formulae that feature equality and inequality as predicate

83

Chapter 5: Resource Logic for AI Planning

Atomic Formulae Atom 3 A ::= R (t1, ... tn)

Constraint Constraint 3 e ::= t = t1 | t 6= t1

Constraint List CList 3 φ, ψ ::= [] | e :: φ

Actions Act 3 a ::= α (t1, ... tn)

Plan Plan 3 f, f1, f2 ::= shrink | a | f ; f1

Polarities Polarity 3 z ::= + | −

State State 3 S ::= emp | A 7→ z | S ∗ S

(Planning) Context Γ 3 γ ::= φ(x); {P (x)} {Q(x)} | α x

Specification Specification 3 G ::= Γ ` {P} {Q} | f

Preconditions Preconditions 3 P ::= S

Effects Effects 3 Q ::= S

Goals Goals 3 G ::= S

Figure 5.3: The syntax of PCPR logic. The bold text indicates modifications to the

syntax in comparison to PCP logic.

symbols. Constraints can be used to reason about the equality of constants in the

preconditions of an action as shown in Figure 5.1.

States in PCPR logic can be represented as a list of formula maps, just as in

PCP logic, however, a new syntax for states is given to indicate that the states in

this system are valid states. A state can be given by an empty state, a formula map

or a conjunction of such maps (denoted by ∗). This chapter will only work with

valid states.

Definition 28 (Valid State). A state (A 7→ z ∗ S) is valid if A does not occur in S

and S is a valid state.

Actions are still action names applied to lists of terms however the context has

been updated to add constraints. Constraints are added to the context as a Contraint

List that is simply a list of constraints. A list is needed as there may be any number

of constraints in the preconditions of actions (including zero).

84

Chapter 5: Resource Logic for AI Planning

The syntax of a plan has been updated. A plan is a sequence of actions repre-

sented as a binary tree with actions or shrink as leaves. The constructor shrink can

therefore be used in a plan instead of an action. The function of shrink is similar

to halt in Chapter 4 however it is no longer forced to be at the end of a plan as

discussed later in the chapter. In practical use of the system, many plans will simply

be represented in the exact same way as Chapter 4 as a sequence of actions with

shrink at the end of the plan.

A plan specification in PCPR logic also represents the planning problem as a

specification of the form (compare with Figure 4.1):

Γ ` {P} {G} | f
In this chapter both contexts and the specification contain curly braces around

states and use | instead of : to indicate the difference between PCP logic and PCPR

logic.

Remark on Notation 4

In all examples in this chapter, the following shorthand notation is used:

R t 7→ z ∗R t1 7→ z ≡ R t, t1 7→ z

For example, (onTable a, b 7→ +) will be written instead of (onTable a 7→ +) ∗

(onTable b 7→ +). To emphasise that a formula map binds stronger than ∗, paren-

theses will be put around formula maps in all examples. But this chapter will omit

the parentheses in the formal grammar, to keep the notation simple.

5.2.2 Subtyping (order on states)

PCPR logic has the same subtyping relation and override operator as PCPlogic as

defined in Figure 4.2 and Definition 4.4.1. In this chapter, subtyping is useful to

compare states or to decide whether states are equal. Two states P and Q are

considered equal if P <: Q and Q <: P . Subtyping is a natural way to compare

states as the comparison is order independent. This section will now define lemmas

about subtyping and the override operator that will further elucidate their properties

and will be useful in proving soundness later.

Subtyping is both reflexive and transitive, i.e. it is a pre-order.

85

Chapter 5: Resource Logic for AI Planning

Lemma 9 (Subtyping is Preorder)

Given states P,Q, S, it is obtained:

• (reflexivity) P <: P ;

• (transitivity) P <: Q and Q <: S implies P <: S.

The following lemmas summarise the properties of the subtyping relation and

the override operator.

Lemma 10 (Order of Subtyping)

Given an atom A and states P and Q, if A /∈ Q and Q <: P then A /∈ P .

Lemma 11 (Monotonicity of Subtype Expansion)

Given states P and Q and a formula map A 7→ z, if Q <: P then A 7→ z ∗Q <: P .

Lemma 12 (Post-condition Override)

(P tQ) <: Q holds for all states P and Q.

Lemma 13 (Monotonicity of Override)

Given a polarity z, an atom A, states P and Q, if A /∈ Q then A 7→ z ∈ (A 7→

z ∗ P) tQ.

5.2.3 Evaluation of Constraint Lists

This section will define an evaluation function for constraint lists. This function

takes a list of constraints and recurses through them checking that they are true. If

a constraint is not true, ⊥ is returned; otherwise, the empty list case will be reached

and > will be returned. The notation t ≡ t1 denotes syntactic equivalence between

terms.

Definition 29 (Evaluation Function for Constraints).

eval [] = >

eval (t = t1 :: φ) = if t ≡ t1 then eval φ else ⊥

eval (t 6= t1 :: φ) = if t ≡ t1 then ⊥ else eval φ

86

Chapter 5: Resource Logic for AI Planning

Frame
Γ ` {P} {Q} | α

Γ ` {P ∗ A 7→ z} {Q ∗ A 7→ z} | α
Where A /∈ P and A /∈ Q

Shrink
P <: Q

Γ ` {P} {Q} | shrink

Weakening

P ′ <: P
Γ ` {P} {Q} | f
Γ ` {P ′} {Q} | f

ApplyAction
φ(x); {P (x)} {Q(x)} | α(x) ∈ Γ

Γ ` {P (x)[σ]} {Q(x)[σ]} | α(x)[σ]
Where φ(x)[σ] evaluates to >

Composition
Γ ` {P} {Q} | f Γ ` {Q} {S} | f1

Γ ` {P} {S} | f ; f1

Figure 5.4: Rules of the PCP logic. The rules operate on valid states.

Example 43 (Evaluation Function for Constraints). We have eval [a = a, b = b] =

> because both a and b are equal to themselves however eval [a = a, b = c] = ⊥

because b is not equal to c.

5.2.4 PCPR Logic Rules

Figure 5.4 gives the rules of the PCPR logic. This section will discuss and illustrate

each rule in order, using the running Blocks World example. This chapter defined an

example Blocks World context ΓBW , in Figure 5.2. Assume that this is the context

for all below examples.

ApplyAction checks that an action is in the context and then constructs the

resultant state given by a ground substitution on that action.

Example 44 (Apply Action). The grounded action pickup from table a can be

applied by this rule because pickup from table is included in ΓBW (cf. the first action

in Figure 5.2) and has no constraints. Note that the constraint list is automatically

satisfied when empty. Grounding the pickup from table action with the constant a

results in the precondition and postcondition states:

P a ≡ {(handempty 7→ +) ∗ (onTable a 7→ +) ∗ (clear a 7→ +)} and

Qa ≡ {(handEmpty 7→ −) ∗ (onTable a 7→ −) ∗ (holding a 7→ +) ∗ (clear a 7→ +)}.

87

Chapter 5: Resource Logic for AI Planning

The result of applying the ApplyAction rule on the grounded action pickup from table a

is therefore:

(1) ∈ ΓBW

ΓBW ` {P a} {Qa} | pickup from table a

where (1) refers to the first action in ΓBW .

This is the only rule that allows for the access of planning domain definitions.

Note also that this is the only rule that checks whether constraints on states are

satisfied. This is possible thanks to essentially propositional reasoning implemented

in planning, thus it is sufficient to check the constraints only once.

The Composition rule says that given an entailment Γ ` {P} {Q} | f it

can be composed together with another entailment Γ ` {Q} {S} | f1 to produce

Γ ` {P} {S} | f ; f1.

Example 45 (Composition). Assume that their exists an entailment Γ ` {P}

{Q} | f where

P ≡ (onTable a, b 7→ +) ∗ (clear a, b 7→ +) ∗ (handEmpty 7→ +)

Q ≡ (onTable a 7→ −) ∗ (onTable b 7→ +) ∗ (clear a, b 7→ +) ∗

(handEmpty 7→ −) ∗ (holding a 7→ +)

f ≡ pickup from table a.

Given the entailment Γ ` {Q} {S} | f1 where

S ≡ (onTable a 7→ −) ∗ (onTable b 7→ +) ∗ (clear a 7→ +) ∗ (clear b 7→

−) ∗ (handEmpty 7→ +) ∗ (holding a 7→ −) ∗ (on a b 7→ +)

f1 ≡ putdown on stack a b

it is possible to apply the composition rule because Q ≡ Q. The result of the

application of the composition rule for these entailments is:

ΓBW ` {P} {Q} | f ΓBW ` {Q} {S} | f1

ΓBW ` {P} {S} | f ; f1

The Frame rule allows the addition of formula maps to both states in an entail-

88

Chapter 5: Resource Logic for AI Planning

ment, provided the atom of the formula map does not already have a mapping in

either state.

Example 46 (Frame). Continuing the derivation in Example 44 it is possible to

use the frame rule to add onTable b to the states P a and Qa because onTable b

does not exist in either of the states. This results in the following application of the

frame rule:

ΓBW ` {P a} {Qa} | pickup from table a

ΓBW ` {P a ∗ (onTable b 7→ +)}

{Qa ∗ (onTable b 7→ +)} | pickup from table a

Frame

In PCPR logic, the frame rule is more restrictive than can be seen in other

logics such as the Separation logic [12, 109], as it can only be used at an action

level but not at a plan level. The following example shows the problem with the

consistency of derivations, if the frame rule is applied to arbitrary judgements of the

form Γ ` {P} {Q} | f .

Example 47 (Problems with the Frame rule for complex plans). Imagine that their

exists the context Γ with the following action descriptions:

{clear x 7→ +} {(clear x 7→ −) ∗ (clear x1 7→ +)} | α x x1

{clear x 7→ −} {clear x 7→ +} | α x.

Given this context the ApplyAction rule can be used to produce the entailments:

Γ ` {clear a 7→ +} {(clear a 7→ −) ∗ (clear b 7→ +)} | α a b

Γ ` {clear a 7→ −} {clear a 7→ +} | α a.

Since {(clear a 7→ −) ∗ (clear b 7→ +)} <: {clear a 7→ −} the shrink rule can

be applied to produce the entailment: Γ ` {(clear a 7→ −) ∗ (clear b 7→ +)} <:

{clear a 7→ −} | shrink . The composition rule can now be applied twice to generate

the entailment:

Γ ` {clear a 7→ +} {clear a 7→ +} | α a b; shrink ; α′ a After the second

application of the composition rule, the information the clear b 7→ + has been lost.

If the Frame rule was not bound to single actions it would now be possible to use

the Frame rule to incorrectly add clear b 7→ − to the entailment since clear b is not

89

Chapter 5: Resource Logic for AI Planning

mapped on either side of the entailment.

To be able to apply this rule on judgements involving complex plans instead

of single actions, it needs to be ensured that the framed atom is not mapped in

any state at any level in the plan derivation. This could be done by amending

the restrictions on the frame rule or by amending the shrink rule to prevent loss of

information. However, this is not done in preference of keeping the rules of inference

simple.

Weakening is applied when a formula map that is wanted in the precondition

P already exists in the (previously obtained) post-condition Q.

Example 48 (Weakening). This example will use the putdown on stack action de-

fined in ΓBW . In Blocks World it is implied that handEmpty is false when holding

any block is true and vice versa. This leads the putdown on stack action’s precon-

ditions to only contain the precondition that holding a block has to be true in the

preconditions despite adding the information that handEmpty is true in the post-

conditions. It is possible to use the Weakening rule to gain back the information

that handEmpty is false in the preconditions as shown below.

ΓBW ` {(clear b 7→ +) ∗ (holding a 7→ +)}

 {(clear b 7→ −) ∗ (holding a 7→ −) ∗ (on a b 7→ +) ∗

(handEmpty 7→ +)} | α

ΓBW ` {(clear b 7→ +) ∗ (holding a 7→ +) ∗

(handEmpty 7→ −)} {(clear b 7→ −) ∗

(holding a 7→ −) ∗ (on a b 7→ +) ∗ (handEmpty 7→ +)} | α

The Shrink rule is a constructor that allows for the creation of an entailment

given that the precondition state P is a subtype of the postcondition state Q. It

is mainly used for the shrinking and reordering of the post-condition state. Shrink

can appear anywhere in a plan but the main use of this rule is when there exists a

goal state that is smaller than the obtained post-condition state just like the Halt

rule in Chapter 4. Without this rule, it would be impossible to create an entailment

for an empty plan.

90

Chapter 5: Resource Logic for AI Planning

Example 49 (Shrink). For this example assume that there exists an entailment

with the post state Q defined by:

Q ≡ {(clear b 7→ −) ∗ (holding a 7→ −) ∗ (on a b 7→ +) ∗ (handEmpty 7→ +)}.

It would be possible to prove a goal state {(on a b 7→ +)} by using the Shrink and

composition rule. The shrink rule can be used to create the entailment:

(clear b 7→ −) ∗ (holding a 7→ −) ∗ (on a b 7→ +) ∗

(handEmpty 7→ +) <: (on a b 7→ +)

Γ ` {(clear b 7→ −) ∗ (holding a 7→ −) ∗ (on a b 7→ +) ∗

(handEmpty 7→ +)} {(on a b 7→ +)} | shrink

The composition rule can now be applied given the entailments to prove the

desired goal state:

Γ ` {P} {Q} | f Γ ` {Q} {(on a b 7→ +)} | shrink

Γ ` {P} {(on a b 7→ +)} | f ; shrink

Frame and Weakening are structural rules, i.e. they do not change the compu-

tational properties of plans and do not change the plans syntactically. This section

will be finished by stating two lemmas that explain subtyping for plans derived by

structural rules. Note that all actions have unique definitions in any given context

Γ. The proofs of these lemmas are given in Agda [51].

Lemma 14 (Property of structural rules (left))

If there is a derivation for Γ ` {P} {Q} | α by the rules of Figure 5.4 then it is

known that:

{P ′(x)} {Q′(x)} | α(x) ∈ Γ and P <: P ′(x)[σ].

Lemma 15 (Property of structural rules (right))

If there is a derivation Γ ` {P} {Q} | α by the rules of Figure 5.4 then it known

that:

{P ′(x)} {Q′(x)} | α(x) ∈ Γ and Q <: Q′(x)[σ].

91

Chapter 5: Resource Logic for AI Planning

Given a planning context Γ, it will be said that a plan f is well-typed (for

{P} {Q}), if there is a derivation of Γ ` {P} {Q} | f by the rules of

Figure 5.4.

5.3 Soundness of the PCPR Logic

This section will show that a derivation of Γ ` {F ↓z} {F1 ↓z} | f using the rules

given in Figure 5.4 guarantees that the evaluation of the plan f on a world that sat-

isfies F produces a new world satisfying F1. In order to give this proof this section

will use the declarative semantics defined in Section 2.3.3, the operational seman-

tics defined in Section 4.3.2 and the definitions of an action handler and canonical

handler given in Section 4.4.2. This section will now introduce additional technical

machinery as well as additional lemmas needed for the soundness proof.

Well-formed worlds have the following property :

Lemma 16 (Subtyping and Well-Formed Worlds)

If we have states P and Q, Q <: P and w ∈ 〈wQ〉 then w ∈ 〈wP 〉.

It is necessary to define a new evaluation function for the new definition of a

plan given in this chapter.

Definition 30 (Evaluation Function).

JshrinkKδ w = w

JaKδ w = δ a w

Jf ; f1Kδ w = Jf1Kδ(JfKδ w)

The evaluation function has three cases. The shrink case just returns the world

itself, as there is no computational meaning for a shrink action in evaluation. For

a single action, evaluation applies the action handler to the world. For a complex

plan, evaluation recurses to sub-plans.

The following property of action handlers will be used in the soundness proof:

Lemma 17 (Action Handler Strengthening)

92

Chapter 5: Resource Logic for AI Planning

If (δ α w) ∈ 〈wQ〉 and (δ α w) ∈ 〈wA 7→z〉 then (δ α w) ∈ 〈wA 7→z∗Q〉.

The definition of a well-formed handler needs to be updated to include con-

straints.

Definition 31 (Well-Formed PCPR Handler). An action handler δ is well-formed

if, given:

• a context Γ with φ(x); {P ′(x)} {Q(x)} | α(x) ∈ Γ,

• a state P , such that P (x) <: P ′(x)[σ] for some ground substitution σ and

φ(x)[σ] evaluates to >,

• a world w ∈ 〈wP 〉,

δ satisfies the following property: (δ (α(x)[σ]) w) ∈ 〈wPtQ(x)[σ]〉.

All states in PCPR logic have to be valid therefore the well-formed handler also

only works with valid states. The proof for Proposition 1 is prefaced on the existence

of lemmas that need the implicit consistency assumption. In PCPR logic Lemma 4

and Lemma 5 hold without the implicit consistency assumption since it is known

that all states are valid. Proposition 1 therefore holds in PCPR logic without the

need for the implicit consistency assumption. The proof remains the same because

the same canonical handler is used and the addition of constraints to the well-formed

handler definition does not affect the proof.

The next two theorems show that executing a well-typed plan f by the evaluation

function JfKδ w is sound, for any well-formed handler δ.

Theorem 4 (Soundness of evaluation for normalized formulae)

Suppose Γ ` {P} {Q} | f . Then for any w ∈ 〈wP 〉, and any well-formed handler

δ, it follows that JfKδ w ∈ 〈wQ〉.

Proof. The proof proceeds by structural induction on the typing derivation Γ `

{P} {Q} | f . In each of the below cases, take P , w ∈ 〈wP 〉, and assume

Γ ` {P} {Q}| f was proven by application of a given rule in Figure 5.4, and each

case will aim to show that JfKδ w ∈ 〈wQ〉.

Base Case 1 (ApplyAction)

Suppose there exists a proof for Γ ` {P} {Q}| f by means of the rule ApplyAction.

The rules premise requires that some φ(x); {P ′(x)} {Q′(x)} | α(x) ∈ Γ, and

93

Chapter 5: Resource Logic for AI Planning

moreover there exists σ s.t. P ′(x)[σ] ≡ P, Q′(x)[σ] ≡ Q, α(x)[σ] ≡ f and φ(x)[σ]

evaluates to >.

Because δ is well-formed and w ∈ 〈wP 〉, it is obtained that: (δ f w) ∈ 〈wPtQ〉.

Note that P <: P ′(x)[σ] because P ≡ P ′(x)[σ] by the conditions of the rule, and

P <: P by reflexivity of subtyping relation.

It remains to show that (δ f w) ∈ 〈wPtQ〉 implies that (δ f w) ∈ 〈wQ〉. It is

known that (P tQ) <: Q from Lemma 12 and can therefore it is possible to deduce

(δ a w) ∈ 〈wQ〉 by applying Lemma 16.

Inductive Case 1 (Weakening)

Taking P , w ∈ 〈wP 〉 as before, assume Γ ` {P} {Q}| f was proven by applying

Weakening. By inductive hypothesis it is known that there is a proof of Γ ` {P ′}

{Q}| f , such that P <: P ′ and JfKδ w′ ∈ 〈wQ〉 if w′ ∈ 〈wP ′〉 for some w′. By

Lemma 16, it is known that w ∈ 〈wP 〉 implies w ∈ 〈wP ′〉. And so it is obtained that

JfKδ w ∈ 〈wQ〉 as required.

Inductive Case 2 (Shrink)

Assume that Γ ` {P} {Q}| shrink is obtained by application of Shrink. From

the assumption it is known that w ∈ 〈wP 〉 and P <: Q. Lemma 16 is applied to get

w ∈ 〈wQ〉, as required.

Inductive Case 3 (Composition)

Assume that Γ ` {P} {Q}| f by application of Composition. By inductive

hypothesis is is known that, for some f1 and f2 such that f ≡ f1; f2,

• there is a proof of Γ ` {P} {Q′}| f1 and Jf1Kδ w ∈ 〈wQ′〉 if w ∈ 〈wP 〉;

• there is a proof of Γ ` {Q′} {Q}| f2 and Jf2Kδ w′ ∈ 〈wQ〉 if w′ ∈ 〈wQ′〉;

Because w ∈ 〈wP 〉 is part of the assumptions, it is obtained that Jf1Kδ w ∈ 〈wQ′〉.

Thus a suitable w′ ≡ Jf1Kδ w has been found. It is then obtained that Jf2Kδ(Jf1Kδ w) ∈

〈wQ〉. Finally, by definition of the evaluation function, it is known that Jf1; f2Kδ w =

Jf2Kδ(Jf1Kδ w). And so it is obtained that Jf1; f2Kδ w ∈ 〈wQ〉.

Inductive Case 4 (Frame)

Assume that Γ ` {P} {Q}| f by application of the Frame rule, that is, f ≡ α,

P ≡ (P ′ ∗ A 7→ z), Q ≡ (Q′ ∗ A 7→ z) (for some α, P ′, Q′, A and z), moreover

w ∈ 〈wA 7→z∗P ′〉, A /∈ P ′, A /∈ Q′. By the inductive hypothesis, it is known that there

94

Chapter 5: Resource Logic for AI Planning

is a proof of Γ ` {P ′} {Q′}| α and JαKδ w′ ∈ 〈wQ′〉 if w′ ∈ 〈wP ′〉, for any w′.

By Lemma 11 and the fact that P ′ <: P ′, it is obtained that A 7→ z ∗ P ′ <: P ′.

The application of Lemma 16, and the assumption w ∈ 〈wP 〉 is used to assert that

w ∈ 〈wP ′〉, and therefore it is obtained that JαKδ w ∈ 〈wQ′〉. It remains to show that

JαKδ w ∈ 〈wQ〉.

By the definition of evaluation function, JαKδ w = δ α w. Lemma 17 allows for

the combination of two results: 1. (δ a w) ∈ 〈wQ′〉 and 2. (δ α w) ∈ 〈wA 7→z〉 to

produce the goal (δ α w) ∈ 〈wA 7→z∗Q′〉 which gives (δ α w) ∈ 〈wQ〉 and therefore

JαKδ w ∈ 〈wQ〉, as required.

It only remains to show that (δ α w) ∈ 〈wA 7→z〉. To prove this, this proof will

make use of the fact that δ is a well-formed handler, and consider (δ α w). Recall

that

• w ∈ 〈wA 7→z∗P ′〉, and,

• by inductive hypothesis, there is a derivation for Γ ` {P ′} {Q′}| α. There-

fore, there is φ(x); {P ′′(x)} {Q′′(x)} | α(x) ∈ Γ by Lemma 14.

• Also by Lemma 14, we have P ′ <: P ′′(x)[σ], for some σ.

• It is known that φ(x)[σ] must evaluate to >, or there would be no derivation

for Γ ` {P ′} {Q′}| α.

Given these four conditions, a well-formed handler must satisfy the property: (δ α w) ∈

〈w(A 7→z∗P ′)tQ′′(x)[σ]〉. The Lemma 16 can be applied to show that (δ α w) ∈ 〈wA 7→z〉,

if is is possible to show that (A 7→ z ∗ P ′) tQ′′(x)[σ] <: (A 7→ z). Using Lemma 13

it can be established that A 7→ z ∈ (A 7→ z ∗P ′)tQ′′(x)[σ] if A /∈ Q′′(x)[σ]. To show

A /∈ Q′′(x)[σ], the proof uses Lemma 10, Lemma 15 (which gives Q′ <: Q′′(x)[σ])

and the assumption that A /∈ Q′. From A 7→ z ∈ (A 7→ z ∗ P ′) t Q′′(x)[σ] it is

obtained that (A 7→ z ∗ P ′) tQ′′(x)[σ] <: (A 7→ z) by using the subtyping derivation

rules.

The soundness of evaluation is proven in the exact same way as Theorem 3

however the proof will be given for completeness.

Theorem 5 (Soundness of Evaluation)

Suppose Γ ` {F1 ↓+} {F2 ↓+}| f then for any w such that w |=+ F1, and any

95

Chapter 5: Resource Logic for AI Planning

well-formed δ it follows JfKδ w |=+ F2.

Proof. By assumption w |=+ F1 and by the completeness of normalisation (The-

orem 1), w ∈ 〈wF1↓+〉 is obtained. Then from Theorem 4, JfKδ w ∈ 〈wF2↓+〉 is

obtained. Thus by the soundness of normalisation (Theorem 1), JfKδ w |=+ F2 is

obtained.

Thus if f is well-typed, it is guaranteed that the execution of f in world w is correct.

5.4 Lessons Learnt: Effects and States

The implementation and verification of PCPR Logic helped to uncover some interest-

ing properties of PDDL. This section will cover two interesting examples discovered

when formalising action definitions in PCPR logic.

The standard STRIPS subset of PDDL defines actions as a definition containing

preconditions and effects. In the restricted version of PDDL used in this thesis

there is not any difference between what can be expressed in preconditions and

effects therefore they are both represented as states. If the systems in this thesis

worked with a less restricted set of PDDL then preconditions and effects would have

different representations. The normal semantic interpretation of an effect is that

it is given by a list containing additions and deletions. This was reflected in the

rules of PCP logic however in PCPR logic the effect list is no longer seen as a list

of additions and deletions but instead as the resultant state of action application.

The first problem discovered was that states are lists, and so they come with the

notion of ordering, however, effects do not have an explicit ordering. The second

problem was that an effect does not quite represent the resultant state of an action

therefore they have to be converted to keep the list of all unaffected formula maps

intact. These simple observations have surprisingly powerful consequences.

Example 50 (Ordering and consistency). Consider the following move action that

moves a vehicle from one location to another:

96

Chapter 5: Resource Logic for AI Planning

[];

isVehicle v 7→ +

∗ isLocation loc1 7→ +

∗ isLocation loc2 7→ +

∗ isAt v loc1 7→ +

 isAt v loc1 7→ +

∗ isAt v loc2 7→ −

If the move action is instantiated with v 7→ car , (loc1, loc2) 7→ museum then the

resultant precondition and postcondition states would be inconsistent.

isVehicle car 7→ +

∗ isLocation museum 7→ +

∗ isLocation museum 7→ +

∗ isAt car museum 7→ +

 isAt car museum 7→ +

∗ isAt car museum 7→ −

Inconsistent states are not explicitly forbidden by PDDL therefore this action

could be executed. In practice, a planner or verifier will have to make a decision

about what to do with actions that contain inconsistent effects. If taken as a stan-

dard effect, the result of this action will depend on the order in which the effect

formulas are executed. To show this, two execution methods will be considered.

The first method will simply apply the effects in the order that they are given

and the second will take the more common STRIPS approach where all negatively

mapped preconditions are removed first then the additions are made.

Both of these methods will be applied to an initial world:

w = {isVehicle car , isLocation museum, isAt car museum}

Method 1

The first step would add isAt car museum to the world therefore the world will

remain the same as it already contained this information.

Step 1: {isVehicle car , isLocation museum, isAt car museum}

The second step will remove isAt car museum from the world resulting in the

final state

Final State: {isVehicle car , isLocation museum}

Method 2

The first step would remove isAt car museum from the world.

97

Chapter 5: Resource Logic for AI Planning

Step 1: {isVehicle car , isLocation museum}

The second step would add isAt car museum to the world resulting in the final

state:

Final State: {isVehicle car , isLocation museum, isAt car museum}

Different execution methods can therefore produce different results which means

that different planners and verifiers can also produce different results for the same

domain depending on their implementation. PDDL specifications [37] do not specify

any particular ordering on effect formulas, therefore planners and verifiers have to

make this decision themselves. A third option a planner or verifier could take is to

throw an error if an inconsistent action is reached. This is the approach that PCPR

logic takes as it is impossible to produce a typing derivation for a plan containing

inconsistent actions. This thesis proposes that producing an error is the best option

as it will produce consistent results across various planners as the order in which

predicates are added and removed is irrelevant for consistent effects.

It could also be argued that it isn’t the job of a planner or verifier to deal with

inconsistent effects but instead that the domain engineer should prevent the con-

struction of ill-formed actions in the domain. The above action could easily be fixed

by adding in the precondition either an equality constraint making it impossible to

try to apply the inconsistent effects in the first place. Another possible solution

would be to represent effects as functions where only one mapping is allowed per

predicate. Whilst this may be an assumption some planners make, this thesis pro-

poses that it is useful to have these additional checks in the verifier as it can help

identify these ill-formed domains.

Example 51 (Loss in Translation). During early experiments of PCPR logic, an

issue was encountered where many good plans were not being successfully validated

when they were translated verbatim to PCPR logic. The reason for this is the loss of

information between the “precondition” and the “effect” in the PDDL formulation.

The following example illustrates the problem:

Consider the pickup from stack action from the BlockWorld domain definition:

98

Chapter 5: Resource Logic for AI Planning

[];

on x1 x2 7→ +

∗ clear x1 7→ +

∗ handEmpty 7→ +

on x1 x2 7→ −

∗ handEmpty 7→ −

∗ holding x1 7→ +

∗ clear x2 7→ +

Notice that clear x1 7→ + is not mentioned in the effect list, because this fact

is unaffected by the action. In PCPR logic an action defines the effect list as a

resultant state (postcondition) rather than an effect therefore the information about

clear x1 7→ + will simply be lost. In the PCPR logic, the frame rule can not be

used to recover this information, as this formula already occurs in the precondition.

As a result, some PDDL plans will fail to type check in the PCPR logic. To fix this

problem, all such formula maps are added explicitly to the postconditions:

[];

on x1 x2 7→ +

∗ clear x1 7→ +

∗ handEmpty 7→ +

on x1 x2 7→ −

∗ handEmpty 7→ −

∗ holding x1 7→ +

∗ clear x2 7→ +

∗ clear x1 7→ +

Automation will be introduced in Section 5.6.1 which does this transformation

automatically when producing domain definitions in Agda.

5.5 Agda Formalisation

The PCPR logic and all lemmas and theorems presented in this chapter are for-

malised in Agda, see [51]. This gives additional assurance over the correctness of

the presented approach. In a similar manner to Chapter 4 an Agda module has been

implemented for this chapter and also serves as a standard library for verifying and

executing plans for PDDL problems. A large part of the Agda formalisation of the

background theory is defined in Section 4.5. This section will therefore focus on the

unique aspects of the formalisation such as the typing relation and validity of state.

The majority of the Agda formalisation works on states that do not necessarily

need to be valid therefore it was decided not to redefine states to be valid inherently

99

Chapter 5: Resource Logic for AI Planning

Valid State, Typing Relation and Updated Well-Formed Handler

ValidState : State � Set
ValidState [] = >
ValidState ((z , A) :: S) = A /∈S S × ValidState S

data , ¦ : Γe � (State × State) � f � Set where
weakening : ∀{Γe P Q fs}

� (P’ : State)
� P’ <: P
� ValidState P’
� Γe , P Q ¦ fs
� Γe , P’ Q ¦ fs

applyAction : ∀ {Γe f}
� trueListExp (expressions (Γe f))
� ValidState (preconditions (Γe f))
� ValidState (postconditions (Γe f))
� Γe , (preconditions (Γe f)) (postconditions (Γe f)) ¦ act f

composition : ∀ {Γe P Q R f f’}
� Γe , P Q ¦ f
� Γe , Q R ¦ f ’
� Γe , P R ¦ join f f ’

frame : ∀ {Γe P Q f }
� (z : Polarity)
� (a : R)
� a /∈S P
� a /∈S Q
� Γe , P Q ¦ act f
� Γe , ((z , a) :: P) ((z , a) :: Q) ¦ act f

shrink : ∀ {Γe P Q}
� (ValidState P)
� (ValidState Q)
� P <: Q
� Γe , P Q ¦ shrink

WfHandlere : Γe � ActionHandler � Set
WfHandlere Γe σ =
∀{α P w} � P <: (preconditions (Γe α))

� w ∈〈 P 〉
� trueListExp (expressions (Γe α))
� ValidState (postconditions (Γe α))
� σ α w ∈〈 P tN (postconditions (Γe α)) 〉

Figure 5.5: Snippet of Agda formalisation for PCPR Logic. Note that the symbol
is sometimes used instead of the standard product symbol , to better match the
syntax given in Figure 5.3.

100

Chapter 5: Resource Logic for AI Planning

Proof Of Consistency for PCPR Logic

consistency : ∀ {Γ P Q fs} � Γ , (P , Q) ¦ fs � ValidState P × ValidState Q
consistency (weakening P<:P1 ValidP P1 Q) with consistency P1 Q
... | ValidP1 , ValidQ = ValidP , ValidQ
consistency (applyAction e ValidP ValidQ) = ValidP , ValidQ
consistency (composition P Q Q’ R) with consistency Q’ R

| consistency P Q
... | ValidQ’ , ValidR | ValidP , ValidQ = ValidP , ValidR
consistency (frame z a a/∈P a/∈Q P Q) with consistency P Q
... | ValidP , ValidQ = (a/∈P , ValidP) , (a/∈Q , ValidQ)
consistency (shrink ValidP ValidQ P<:Q) = ValidP , ValidQ

Figure 5.6: Agda proof that states in the PCPR logic typing relation are valid.

but instead define the notion of valid state as a property. The valid state property is

defined in Agda by the ValidState function in Figure 5.4. Note that the operator A

/∈S S simply denotes that the atom A does not have a mapping in the state S. Just

as in Definition 5.2.1 the ValidState function returns that a state is valid if there is

a proof for each atom in the state that it does not exist in the rest of the state.

The notion of valid state is needed to ensure that all states in a given typing

derivation are consistent therefore additional requirements are added to the PCPR

logic rules in the Agda formalisation as shown in Figure 5.4. The ApplyAction rule

adds conditions that both the precondition and postcondition states are valid. The

Composition rule remains the same as it is composing derivations already containing

valid states. The Frame rule knows that the transformation from P Q contains

valid states and therefore only adds a condition that the new atom being framed

does not already exist in either side. Both the Weakening and Shrink add the

condition that the new state is valid. This culminates in a consistency proof given

in Figure 5.6 that states that for any given typing derivation Γ ` {P} {Q} | f

that the states P and Q are valid.

To be able to prove that the canonical handler is well-formed both Lemma 4

and Lemma 5 previously required an implicit consistency assumption to be true. As

discussed in Section 5.3 the implicit consistency assumption can be removed provided

the lemmas are being applied to a valid state. The canonical handler is an action

handler that applies the effects of actions to a world therefore to prove the canonical

handler to be well-formed it is necessary to ensure that all effects of actions are valid

101

Chapter 5: Resource Logic for AI Planning

states. In the Agda formalisation, this is done by adding the condition that all effects

have to be valid states in the well-formed handler definition. The updated well-

formed handler, given in Figure 5.4, propagates additional proofs of consistency to

Theorem 4. The additional consistency proof requirements of Theorem 4 are trivial

as shown by the consistency proof, therefore, will not be discussed further in this

chapter. The proof of Proposition 1 remains the same except the implicit consistency

assumption is no longer needed as it is known that all effects being applied are valid

states. Since Proposition 1 no longer uses the implicit consistency assumption it

is no longer needed or included in the formalisation. The full formalisation of all

proofs is given in the repository [51].

5.6 Automation

The formalisation of PCPR logic in Agda allows for the verification, execution and

extraction of AI plans just as shown for PCP logic in Section 4.5.2. The running

example presented in Section 5.1.1 of this chapter aimed to derive ΓBW ` Pab

Gab | fab . The Agda code for this derivation is given in Figure 5.8. Agda cannot

automatically produce the code for this derivation therefore a user has to manually

use the rules of PCPR logic in order to produce the derivation. As can be seen in

Figure 5.8, producing a derivation for a simple Blocks World problem is a complex

and time consuming task. It is therefore intuitive to see that producing derivations

for more complex and larger problems is unfeasible. This section will introduce

an implementation that automates the validation and extraction process for the

STRIPS subset of PDDL domain and problem specifications. The automation aims

to be friendly even to non-expert users therefore a user will only have to supply a

PDDL domain specification, a PDDL problem specification and a plan to generate

the necessary Agda code to verify and extract the plan.

To automate this process it is necessary to automate:

1. The conversion PDDL Domain and Problem specifications to Agda.

2. The PCPR logic proof generation for Agda, given a PDDL plan.

3. The creation of Agda code in order to extract a plan.

The following sections will mainly focus on the overall strategy for the automa-

102

Chapter 5: Resource Logic for AI Planning

(defun parseProblem (in)

(cond

((eq nil (car in)) (print "done"))

((eq ’define (car in)) (parseProblem (cdr in)))

((eq :objects (caar in))

(progn

(setq objList

(concatenate ’string (objectConvert (cdar in) "") " : Object"))

(parseProblem (cdr in))))

((eq :init (caar in))

(progn

(setq init (stateConvert (cdar in) ""))

(parseProblem (cdr in))))

((eq :goal (caar in))

(progn

(setq goal (stateConvert (cdar (cdar in)) ""))

(parseProblem (cdr in))))

(t (parseProblem (cdr in)))

))

Figure 5.7: Parser for PDDL Problem Spefication and Object .

tion and only discuss implementation details when necessary. The full code for the

automation can be found in the repository [51].

5.6.1 PDDL to Agda Translation

PDDL uses a Lisp like syntax for the definition of domain and problem specifications

therefore this thesis will use Common Lisp to implement the translation of PDDL to

Agda. This choice is uncommon in comparison to modern planners and validators

such as VAL [57] that are written in C++. This thesis has opted for Common Lisp

due to the ease of parsing PDDL in the language which makes the implementation

of PDDL to Agda translation simple and clear. The validator INVAL [46] is also

written in Common Lisp due to its simplicity for working with the PDDL language.

In Common Lisp reading in a PDDL specification will be read in as a list of symbols.

A symbol is simply a generic data type representing names like a string however there

are many predefined functions in Common Lisp that can be used with symbols such

as the eq function that compares the equality of symbols. The list of symbols

generated from reading in a PDDL specification excludes white space therefore it is

simple to define a parser for specifications. A parser for PDDL problems is shown

103

Chapter 5: Resource Logic for AI Planning

P : State
P = (+ , (ontable a))

:: (+ , (ontable b))
:: (+ , (clear a))
:: (+ , (clear b))
:: (+ , (handempty)) :: []

Q : State
Q = (+ , (on a b)) :: (+ , (ontable b)) :: []

P’ : State
P’ = (+ , ontable b)

:: (+ , clear b)
:: (+ , handempty)
:: (+ , ontable a)
:: (+ , clear a) :: []

plan : f
plan = (join (join (act (pickup from table a)) (act (putdown on stack a b))) shrink)

Derivation : Γ1 , P Q ¦ plan
Derivation = weakening P (from-yes (decSub P P’)) tt (composition

(weakComp (from-yes
(decSub ((+ , ontable b)

:: (+ , clear b)
:: (+ , clear a)
:: (- , handempty)
:: (- , ontable a)
:: (+ , holding a) :: [])

((- , ontable a)
:: (+ , ontable b)
:: (+ , clear a)
:: (+ , holding a)
:: (+ , clear b) :: [])))

((frame + (ontable b) (λ z � z) (λ z � z)
(frame + (clear b) (λ z � z) (λ z � z) (applyAction tt tt tt))))

((frame - (ontable a) (λ z � z) (λ z � z)
(frame + (ontable b) (λ z � z) (λ z � z)
(frame + (clear a) (λ z � z) (λ z � z) (applyAction tt tt tt))))))

(shrink tt tt (from-yes (decSub ((- , ontable a)
:: (+ , ontable b)
:: (+ , clear a)
:: (- , holding a)
:: (- , clear b)
:: (+ , on a b)
:: (+ , handempty) :: []) Q))))

Figure 5.8: Agda typing derivation for Blocks World problem given in in Figure 5.1
where weakComp is a composition of the composition and weakening rules.

104

Chapter 5: Resource Logic for AI Planning

in Figure 5.7 that recursively looks for keywords indicating a definition and then

sends the definition to the relevant functions for converting it into Agda code.

Example 52 (Translating an Object Definition). In order to translate an object

definition the parseProblem function recursively compares the current symbol read

in to see if it is : objects indicating an object definition. Once an object definition

is found the object list is passed to the objectConvert function that converts an

object definition into a string representing the equivalent Agda definition. In the

case of Figure 5.1 the object list is (A B) and the string produced is “ a b : Object”.

The general strategy for translating the definitions from PDDL domain and

problem specification follows the methodology shown in Example 52. Most of the

definitions can be simply translated to a string or a list of strings that represent the

definition in PCPR logic syntax. Once all of the definitions are translated to strings

they are then written to an Agda file. One notable exception is the translation of

PDDL actions into PCPR logic syntax. This is because additional constraints some-

times need to be added to the postconditions of actions as discussed in Example 51.

This is performed by comparing the list of preconditions to effects whilst they are

still symbols and modifying the effect list to add any missing preconditions before

it is translated to a string.

To avoid having to generate the decidability proof for predicates in Lisp, this

thesis will make use of the equality tactics included in the Agda Prelude library [88]

to automatically derive the proofs.

Example 53 (Agda Translation of Objects). The automated translation of the

objects in Blocks World will produce the following Agda code:

data Object : Set where

a b : Object

-- EqObject : Eq Object

unquoteDecl EqObject = deriveEq EqObject (quote Object)

The two additional lines under the normal data declaration for objects use the

Agda Prelude library to automatically derive the decidability proof for objects. If

the library cannot automatically derive the proof then the Agda code will not type

check.

105

Chapter 5: Resource Logic for AI Planning

It remains to discuss whether the translation of PDDL to Agda produces an

Agda file that remains faithful to the original specification. This thesis argues that

the conversion is directly equivalent to the specification for the supported STRIPS

subset of PDDL. Conversion of objects is one-to-one, i.e. the list of objects is given

as a list of constructors for the datatype Object that stores constants. Predicates

are directly translated one-to-one as they are simply constructors parametrised by a

number of objects. The translation converts the preconditions and effects of actions

as well as the initial world and goal state to the State type defined in the Agda

implementation. As shown by the normalisation function, states are equivalent to

PDDL formulae. In Section 2.3 it was shown that PDDL formulae can be used

to represent preconditions and effects of actions as well as the goal for a planning

problem therefore this translation is equivalent. As discussed in Section 4.3.1 it is

unusual to represent the initial world as a state however all positive information in

the world is however retained therefore any derivation proven using this conversion

remains sound.

Actions are slightly abnormal since the Agda file gives two definitions one for

the name and parameters of actions and another describing their preconditions and

effects. The combination of the two definitions define actions in the exact same way

as PDDL excluding constraints. Constraints define equalities over objects in PDDL

which is mapped one-to-one in Agda however in PDDL constraints are defined as

a precondition whereas constraints are defined separately in the context in Agda.

The Agda definition of constraints is equivalent as constraints are simply discharged

when actions are applied as if they were preconditions.

It is unlikely that there is an error in the implementation of the translation due to

the straightforward nature of the implementation through its definition in Common

Lisp. Type checking the translation in Agda will give additional guarantees as well

as ensure that the translation adheres to the abstract definition of domains.

5.6.2 Automation of Derivation for PCPR Logic

To automatically produce the Agda derivation for a plan that solves a given plan-

ning problem a solver was implemented in Common Lisp. A high-level overview of

the solver algorithm is shown in Figure 5.9. Critically the solver had to have an in-

106

Chapter 5: Resource Logic for AI Planning

Given a PDDL domain D, a PDDL problem description PD, and a plan f1,
the Agda proof script for f1 in PCP logic is generated as follows:

1. Parse D, PD into Lisp syntax:
(a) Store the objects in D, initial and goal world in PD as variables in

Lisp. The initial world id stored in a variable w representing the
current world.

(b) Convert actions from D into parametrised Lisp functions that gen-
erate preconditions and post-conditions.

2. For all actions in the plan f1:
(a) Store w in a backup variable so that the Agda subtyping relations

can be generated.
(b) Use the relevant Lisp function (as defined in (1.b)) to generate the

preconditions and postconditions of the current action.
(c) Generate the frame axioms by comparing the preconditions of the

action to w where all formula maps in w that are not in the pre-
conditions are framed in.

(d) Use Lisp functions to apply the action to the world and store the
result in the world variable.

3. Use all stored results to generate and write Agda proof to file:
(a) Start derivation with the Weakening rule to allow for the reordering

of the initial state.
(b) Use the Shrink rule over the rest of the derivation to shrink the

result to the goal state.
(c) The rest of the derivation proceeds by composing all actions in the

plan f1 with the relevant subtyping relations and frame axioms.
4. Type check the generated Agda file to confirm the validity of the proof.

Figure 5.9: Overview of the code that automatically generates PCP proofs in Agda
given PDDL Domain and plan. The code is given in [51].

ternal representation of PDDL domains, problems and plans as well as the ability to

evaluate these plans to generate the relevant frame axioms. If the solver terminates

with an Agda derivation generated then the Lisp solver has internally decided that

the plan is valid for the given problem. Type checking the produced derivation will

provide the additional formal guarantee that the plan is valid.

Both the translation of PDDL domains and problems and the production of the

derivation have now been automated therefore simply combining these and type

checking the result in Agda fully automates the validation of PDDL plans. This

thesis refers to the resultant tool as a plan verifier. It is assumed that plans are

received from external tools and then translated into Lisp syntax manually.

A plan is simply a list of symbols.

107

Chapter 5: Resource Logic for AI Planning

Decidability for PCP Logic and Subtyping

<:? : Decidable <:
xs <:? [] = yes ([]<: xs)
xs <:? (y :: ys) with y ∈? xs | xs <:? ys
... | yes y∈xs | yes xs<:ys = yes (atom<: y∈xs xs<:ys)
... | no y/∈xs | = no λ { (atom<: x x1) � y/∈xs x}
... | | no xs≮ys = no λ { (atom<: x x1) � xs≮ys x1}

solver : (Γ : Context) (f : Plan) (P Q : State) � Dec (Γ ` P Q : f)
solver Γ (α :: f) P Q with P <:? (preconditions (Γ α))
... | no ¬p = no λ { (seq P<:Pre d) � ¬p P<:Pre}
... | yes p with solver Γ f (P tN (effects (Γ α))) Q
... | no ¬p = no (λ { (seq P<:Pre d) � ¬p d})
... | yes p1 = yes (seq p p1)
solver Γ halt P Q with P <:? Q
... | no ¬p = no λ { (halt P<:Q) � ¬p P<:Q}
... | yes p = yes (halt p)

Figure 5.10: Proof of decidability for PCP logic and subtyping.

Example PCP Logic Derivation Using Decidability

Derivation : Γ ` P Q : plan
Derivation = from-yes (solver Γ plan P Q)

Figure 5.11: Example PCP logic derivation utilising the solver.

Example 54 (Lisp Plan). The Blocks World plan

fab = ((pickup from table a) ; (putdown on stack a b)).

is represented in Lisp as:

(setq plan ′((pickup from table ′a) (putdown on stack ′a ′b))

Section 6.5 contains the methodology for this process and actual implementation

[51] contains further instructions and examples.

5.6.3 Automation of the Derivation for PCP Logic

It is also possible to automatically produce a derivation for PCP Logic that is defined

in Chapter 4. Since the rules of PCP logic are more simple than PCPR logic the

automation of the derivation can be implemented in Agda rather than Lisp. The

108

Chapter 5: Resource Logic for AI Planning

automation for PCP logic derivation is given by defining Agda function solver that

is a proof of decidability for PCP logic. As discussed in Section 2.5.2, a proof of

decidability defines a decidable procedure that gives proof evidence for the result.

The solver function is defined in Figure 5.10 and is a major improvement over the

automation strategy given for PCPR logic. In the PCPR logic, it is known that

any derivation that type checks is valid however there is no proof that the solver

will produce a derivation for a valid plan. By proving the decidability of PCP logic

it is guaranteed that if it is possible to produce a derivation for a given plan then

the derivation will be produced. On top of this in the case that a derivation fails

there is proof evidence for why the derivation failed and therefore why the plan is

not valid.

In order to define the solver function a proof of decidability for subtyping is

needed. The proof of decidability for subtyping is given by the function <:? in

Figure 5.10. To prove the decidability of PCP logic the solver considers two cases.

The first case considered is that there is a plan α :: f . In this case the solver checks

to see if the current state P is a subtype of the preconditions of the action alpha. If

the preconditions are not a subtype of P then the derivation cannot be produced.

If the preconditions are a subtype of P then the postconditions of α are applied to

P and then the solver is recursively applied to the rest of the plan f . If the solver is

successful then the derivation can be produced using the seq rule. In the case that

the solver is not successful the derivation fails. The second case is that the plan is

at the halting state halt. In this case the solver checks to see that the final state P

is a subtype of the goal state Q and if so the halt rule is applied and the derivation

is complete. If P is not a subtype of Q then the derivation fails.

To implement a plan verifier for PCP logic it is necessary to automatically create

an Agda file that will show that a plan is valid upon type checking. This can be done

by using Lisp to write an Agda file including the derivation given in Figure 5.11.

This code is rather generic, given the supporting solver infrastructure (of Figure 5.11.

The function from-yes assumes that a decidable function will succeed. This means

that Agda will check when type checking a file that a decidable function applied

to from-yes will actually succeed. The derivation given in Figure 5.11 will therefore

only type check when a plan is valid.

109

Chapter 5: Resource Logic for AI Planning

PDDL Domain /
Problem

Number of
Predicates

Number of
Actions

Number of
Objects

Predicates in
Initial State

Predicates in
Goal

Blocks World (A) 5 4 6 13 5

Blocks World (B) 5 4 7 9 6

Blocks World (C) 5 4 11 15 10

Logistics (A) 9 6 15 30 4

Logistics (B) 9 6 22 44 7

Logistics (C) 9 6 29 58 11

Satellite (A) 11 5 12 17 3

Satellite (B) 11 5 18 35 8

Satellite (C) 11 5 42 85 14

MPrime 12 4 25 77 1

Table 5.1: Comparison table containing information about the various domains and
problems used for evaluation testing. See Appendix B for the PDDL domain and
problem definitions.

5.6.4 Evaluation of the Library Performance

This chapter has now described the implementation of a plan verifier for both PCPR

logic and PCP logic. Results for this section have been obtained by evaluating the

plan verifiers over a few benchmark PDDL domains: BlocksWorld, Logistics, Satel-

lite and Mprime [5] with accompanying definitions in Appendix B. All domains use

the STRIPS requirement with Mprime also requiring equality and negative precon-

ditions. For each domain, three problem descriptions of increasing complexity were

used indicated by (A),(B) or (C). A comparison of the different domains and prob-

lems is given in Table 5.1. MPrime only has one test as it cannot be compared

with PCP logic due to the logic not supporting equality constraints. The results

of the evaluation are presented in Table 5.2. The results for all of these examples

were generated automatically by supplying a plan and the PDDL domain and prob-

lem descriptions to the plan verifiers. The plans were all automatically produced

through the Planning.Domains planner [80].

The evaluation shows that for smaller plans the PCP logic and PCPR logic

system have similar type checking times however the PCP logic system scales far

better than the PCPR logic system. Specifically, the PCPR logic system seems to

explode in type checking time after a certain length of plan as can be seen in the type

checking time difference between Logistics (A) and (B). PCPR logic unfortunately

does not scale to larger problems as it fails to type check both Logistics (C) and

Satellite (C). This is due to the type checking exceeding the maximum heap size

110

Chapter 5: Resource Logic for AI Planning

PCPR Logic PCP Logic

PDDL Domain /
Problem

Plan
Length

(number
of actions)

Lisp
Solver
Time

(seconds)

Type checking
Time

(seconds)

Type checking
Time

(seconds)

Blocks World (A) 10 0.017 6.7 6.17
Blocks World (B) 20 0.025 8.22 6.28
Blocks World (C) 34 0.047 13.59 6.59
Logistics (A) 24 0.047 14.47 8.02
Logistics (B) 58 0.142 47.88 9.25
Logistics (C) 74 0.249 * 11.27
Satellite (A) 9 0.019 8.43 7.9
Satellite (B) 21 0.049 15.56 8.59
Satellite (C) 44 0.288 * 16.71
MPrime 11 0.057 26.49 n/a

Table 5.2: Evaluation of the plan verifier. A * indicates a test that failed due to
the maximum heap size being exceeded after 800 seconds. All tests were performed
on an Intel Core i5-12600K processor with 16GB of RAM. See Appendix B for the
PDDL domain and problem definitions.

after 800 seconds. Fortunately, the PCP logic scales well and manages to type check

all problems. In particular, there is only a 3 second difference in the type checking

time between Logistics (A) and Logistics (C). PCPR logic also has to generate

proofs using the lisp solver however this adds a negligible amount of time. Whilst

the PCP logic system does scale with increasing plan complexity the type checking

time is still far slower than traditional validators. For example, VAL [57] validates

the slowest problem Satellite (C) in 0.003 seconds in comparison to the 18 seconds

taken by PCP logic to type check the problem.

The type checking time for the PCPR logic system is worrying, however there is

plenty of room for improving it. The given type checking times reflect the fact that

the Lisp script generates excessively long Agda proofs. This happens because the

Lisp script creates a derivation that frames all possible formulas in when generating

proofs (see Figure 5.9). For example, the Logistics (A) domain and problem contain

a derivation with nearly 900 rule applications. Out of the almost 900 applications,

there are 838 Frame rules, 24 ApplyActions, 24 Weakenings, 23 Compositions and 1

shrink. Many of these frame rule applications are redundant and could be removed

in order to speed up type checking time.

When comparing the type checking time versus plan length another outlier for

111

Chapter 5: Resource Logic for AI Planning

showObject : Object � String
showObject a = "a "

showObject b = "b "

showPredicate : Predicate � String
showPredicate (clear x) = "clear " ++ showObject x
showPredicate (on x y) = "on " ++ showObject x ++ showObject y
showPredicate (ontable x) = "ontable " ++ showObject x
showPredicate (holding x) = "holding " ++ showObject x
showPredicate handempty = "handempty "

showWorld : World � String
showWorld [] = "emp"

showWorld (x :: xs) = showPredicate x ++ " * " ++ (showWorld xs)

world-eval : World
world-eval = J plan K (canonical-σ Γ1) (σα P [])

main : IO >
main = putStrLn (showWorld world-eval)

Figure 5.12: Automatically Generated Agda Code for Plan Extraction

the PCPR logic system is the MPrime domain. The reason the type checking time

is so long for this example is also because of excessive frame rule applications. There

are also nearly 900 rule applications in the derivation for the MPrime problem and

these applications contain 865 frame rules, 11 ApplyActions, 11 Weakenings, 10

compositions and 1 shrink. Once again most of these frame rule applications are

redundant.

Whilst it is possible to reduce the size of the proofs produced by PCPR logic

this will only further increase the complexity of the solver generated in Lisp. The

simplicity of the current algorithm gives confidence that the solver for PCPR logic

will find a proof. This however does not supply the same levels of confidence that

the decidability proof of PCP logic brings. Constructing a similar decidability proof

for PCPR logic would be far more difficult and has not been completed for this

thesis. This leads this thesis to conclude that the automation of plan validation is

better left to the PCP logic system.

112

Chapter 5: Resource Logic for AI Planning

5.6.5 Extraction of Plans to Executable Code

Just as with PCP logic it is also possible in PCPR logic to extract code that evaluates

a plan on the given initial world. The code needed for the extraction of the Blocks

World running example is given in Figure 5.12. In order to print out the resultant

world to a user, it is necessary to define functions that convert a world to a string.

To convert a world to a string there needs to be functions that map strings to both

the object and predicate data definitions. This is a time consuming task manually

however it is easy to produce these functions automatically using the Lisp parser

defined in this chapter. The resultant extracted code will run the main function that

evaluates a plan using the world-eval function and returns the resultant world as a

string to the user. The extraction is fully automated in the repository [51] and the

resultant code runs in milliseconds.

5.6.6 Applicability to PDDL Domains

The inference systems presented in this thesis have been tested on multiple bench-

mark domains from the downward-benchmark repository [5] as shown in Table 5.2.

It is difficult to accurately evaluate how applicable the subset of PDDL formalised

in this thesis is to PDDL domains in general as there is no centralised database

containing all PDDL domains. In lieu of this, this thesis will use two benchmark

repositories called downward-benchmarks and pddl-instances [5, 103] to evaluate the

applicability of the presented inference systems. Applicability will be evaluated by

considering the percentage of domains in the repositories, that the inference systems

presented in this thesis support.

Table 5.3 shows the applicability results. These results were calculated by iter-

ating through all the domains within these repositories and checking if their require-

ments were a subset of the supported requirements. If the requirements field was

empty then the domain was ignored. The results also consider the applicability of

the inference systems for the : typing, : action− costs and durative− actions

requirements.

The : typing requirement is already possible to encode without changing the

inference rules. This is demonstrated in Chapter 6 which contains domains that use

the typing extension. Automation for : typing has been left for future work however

113

Chapter 5: Resource Logic for AI Planning

Benchmark
Repository

Supported
Requirements

Supported
plus

typing

Supported
plus

typing and
action-costs

Supported
plus

typing and
durative-actions

Total
Domains

downard-
benchmarks

19% 37% 82% 37% 650

pddl-
instances

17% 23% 45% 55% 1836

Table 5.3: Evaluation of the percentage of domains supported by the inference sys-
tems presented in this thesis. The supported requirements are : equality, : strips
and : negative− preconditions.

this does not prevent the use of typed domains. This is because typing in PDDL

has mainly a syntactic meaning so types can be compiled into predicates [49]. It

would therefore be possible to use typed PDDL domains automatically as long as

they have been compiled into predicates.

The : action− costs and : durative− actions requirements are considered

as they represent the two biggest applicability improvements for the inference sys-

tems. The : action− costs requirement adds costs to the effects of actions and an

additional goal condition to minimise the action cost for the plan. Adding action

costs would be a minimal change to the inference rules similar to adding equality

constraints however to ensure that the minimal action cost has been reached the in-

ference systems would have to be able to meta-reason over the set of correct plans.

This meta-reasoning would be a major extension to the system and may require in-

terfacing with SAT solvers. The : durative− actions requirement adds temporal

reasoning to the domains. It was also assumed that the : numeric− fluents exten-

sion would be added along with the : durative− actions which allows for numeric

function definitions in the domain. Adding the : durative− actions requirement

would require a significant change to the inference rules of the inference systems in

this thesis.

The results in Table 5.3 show that the inference systems are already compatible

with a large number of domains. For future work, extending the inference systems

to support requirements : action− costs or : durative− actions have been iden-

tified to best improve applicability. In the benchmark domains, there is no overlap

between these two requirements, therefore pursuing either of these extensions would

be worth further investigation.

114

Chapter 5: Resource Logic for AI Planning

5.7 Discussion

This chapter has introduced PCPR logic, a novel resource logic for the verification of

AI plans, and proven its soundness. Critically, PCPR logic addresses the issue of in-

consistent states that affected PCP logic in Chapter 4. It was possible to accomplish

this through the use of resource semantics and the frame rule. The implementation

of the frame rule for local reasoning introduced an alternative view on the verifi-

cation of AI planning which further addresses Objective 1. Since both the rules of

PCP logic and PCPR logic are proven sound relative to the computational seman-

tics defined in this thesis it shows that both the STRIPS and the frame approach to

local reasoning are equally sound as expected. The last theoretical contribution was

to show how the systems presented in this thesis are easily extendable to capture

more of the PDDL syntax through the introduction of constraints.

From the practical perspective, this chapter formalised PCPR logic as an Agda

library. On top of this, the parsing, verifying and extracting of AI planning problems

from PDDL specifications and plans was automated. The automation introduced

fully realises the practical significance of the Curry-Howard correspondence as it

allowed for the systems to be used on real benchmark domains to verify and extract

plans without any need for expert knowledge in Agda. The introduced automation

therefore achieves Objective 5 and further addresses Objective 2.

The automated inference systems have been used to test domains however no

issues with planners have yet to be found for the benchmark domains that were

tested in this thesis. This chapter discusses potential issues with state consistency

in Section 5.4 that lead to undefined behaviour. In this case, planners can produce

invalid plans that are proven false in PCPR logic. This is because domains that pro-

duce inconsistent states are considered ill-formed, therefore some planners assume

that they will not receive these domains. By modifying benchmark domains so that

they intentionally produce inconsistent states there have therefore been cases where

planners produce incorrect plans. The inference systems produced by this thesis

will prove that these plans produce inconsistent states and therefore can be used to

not only verify plans but also as a sanity check for domains. It would be useful to

perform a larger-scale verification effort using the inference systems in this thesis to

see if any other issues with planners can be found.

115

Chapter 5: Resource Logic for AI Planning

Compared to the PCP logic the PCPR logic is stronger theoretically. This is

because PCPR logic embeds consistency directly into the system through its rules.

This has two advantages. The first is that it is impossible to derive proofs that

contain inconsistent states and the second is that type errors for inconsistency will

show exactly where and why there is an inconsistent state. The PCPR logic has also

been extended to support PDDL constraints. On the other hand, the evaluation of

the automation introduced in this chapter has shown that PCPR logic is far less

practical to use for verification than PCP logic. Even though the frame rule seems

like a natural way to perform local reasoning, it unfortunately overcomplicates the

derivations which leads to two disadvantages. The first is that the automated proofs

produced for PCPR logic are far slower to type check and do not scale as well

as PCP logic. The second is that to produce the derivations for PCPR logic an

external solver was required whereas PCP logic was automated by being shown to

be decidable. The decidability of PCP logic guarantees not only that a plan will be

definitely verified if it is possible to verify but also that in the case where a plan

fails to verify that the PCP logic system will return a proof of why it has failed.

It should be noted that there has not been a conclusive investigation into whether

proving the decidability of PCPR logic is possible however it is much more compli-

cated to prove than PCP logic. This can be seen by comparing the simple decid-

ability proof given in Figure 5.10 to the algorithm in Figure 5.9. It can also be

shown by considering some of the cases of the decidability proof for PCPR logic.

For example, to prove decidability for entailment over an action Γ ` {P} {Q} | α

any possible combination of the Weakening , Frame and ApplyAction rules have to

be considered in order to show decidability. In comparison, the similar case in PCP

logic only needs to consider the Seq rule. Whilst theoretically, it would be useful

to further investigate the possibility of proving the decidability of PCPR logic this

investigation has been left to future work.

This chapter concludes that PCP logic is more useful from a practical perspec-

tive. From the experience gained in developing PCPR logic this thesis will therefore

adapt the PCP logic system in Chapter 6 to ensure consistency rather than continue

with using PCPR logic. Due to the results from this chapter, Chapter 6 will focus

on utilising the benefits of formalising the logic in Agda to introduce additional ex-

116

Chapter 5: Resource Logic for AI Planning

pressivity and verification constraints rather than continue to develop more complex

logics for verification.

5.8 Related Work

Origins of the Frame Rule. The “frame problem” that inspired the frame rule of

Separation logic has origins in AI [25, 48]. One of the early methodologies to solve

this problem was to declare “frame axioms” for every action explicitly. This is an

inefficient way to deal with this problem as defining these frame axioms becomes

infeasible the larger the system gets [25]. Since most actions in AI planning only

make small local changes to the world, a more general representation would be more

suitable. The logic of Bunched Implications [58, 92] and Separation Logic [93] took

inspiration from this older notion of the frame problem, and introduced more ab-

stract formalism, which is now known as a “frame rule”, into the resource logics [105].

This family of logics has brought many theoretical and practical advances to mod-

elling of complex systems, and is behind many lightweight verification projects [15].

This chapter has shown how the original frame problem from AI maps back to

the more abstract ideas of resource logics. This is one of this chapters theoretical

contributions.

Curry-Howard Approaches to Resource Logics and Linear Logic.

The PCPR Logic introduces a Curry-Howard approach to AI planning inspired

by resource logic. This is in part inspired by existing applications of the Curry-

Howard approach in the field as discussed in Section 3.1.3. The computational

(Curry-Howard) interpretation of AI plans was not the focus of study in the above

mentioned approaches, yet it plays a crucial role in the PCPR logic, from design all

the way to implementation, verification and proof extraction (see Section 5.5).

Linear logic has also been used extensively to represent AI plans and has con-

nections to Curry-Howard as discussed in Section 3.2.1. This thesis proposes that

many results obtained in this chapter could be replicated in an existing Linear Logic

system [18, 112]. Generally speaking, the PCPR logic can be seen as a domain spe-

cific language for AI planning. It is simpler and less expressive than Linear logic

but makes up for it in simplicity and close correspondence to PDDL syntax. Trans-

117

Chapter 5: Resource Logic for AI Planning

formations between PDDL domain and problem descriptions to the PCP logic are

straightforward since the syntax is so similar. This enables us to automate the gen-

eration of Agda proofs from PDDL plans. Notably, PCPR logic has typing rules

for functions that are given directly by PDDL plans. Thus, the outputs of PDDL

planners are verified as given. This close correspondence to the plans would be im-

possible in either of the above Curry-Howard versions of Linear logic, where proof

terms tend to be much more complex. Pros and cons of domain specific versus

general approaches to verification of AI plans deserves further investigation.

This chapter proposes that the DSL nature of the PCP logic and PCPR logic

along with their automation algorithms will pave the way for their wider adoption

as a practical verification tool for the AI planning community. This is something

that previously proposed Linear logic approaches to AI planning did not achieve.

118

Chapter 6

Dependently Typed Enrichment

for AI Plan Verification

6.1 Introduction

In Chapter 4 and Chapter 5 this thesis focused on the design of formal logics to verify

plans produced for a subset of PDDL domains and specifications. The evaluation

given in Chapter 5 showed that from a practical perspective the simpler PCP logic

was the best choice for plan verification. This chapter will explore the benefits

that the dependently-typed approach generally, and the Agda implementation of

the PCP logic specifically, bring to the modelling and verification of AI plans.

The first contribution of this chapter is a modification of PCP logic called PCP∗

Logic that is the most optimal formalisation for the verification of plans. In order

to do this, this chapter will simplify and adapt the PCP logic implementation to

not only remove the need for a consistency assumption but also further improve

the speed of type checking derivations. The second contribution of this chapter

will be to demonstrate how the Agda implementation can enable users to reason

about and verify more general and abstract properties of plans, and also provides

a more holistic programming language infrastructure for modelling plan execution.

To accomplish this, this chapter will introduce additional verification properties into

the Agda system that are not part of the original domain. These properties will be

referred to as extrinsic properties and will include properties that are inexpressible

in PDDL such as higher-order properties.

119

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

6.1.1 Verifying Extrinsic Properties

The work presented up until this chapter has focused on the verification of plans

in the traditional sense. This includes the verification of properties such as the

satisfaction of preconditions and goal states for plans. These kinds of properties

are inherent in the domain definition and will therefore also have to be ensured

by a planner in order to produce a plan. This thesis will therefore refer to these

properties as intrinsic properties. Although AI planners are mature tools from the

algorithmic and engineering points of view, they have limitations in the type of

properties they can ensure. For example, PDDL prohibits the use of higher-order

properties and recursion so that planners can have decidable and efficient automated

search. This chapter will extend the Agda system to reason about plan properties

that the planner itself either cannot or should not reason about. These properties

will be referred to as extrinsic properties.

This chapter identifies three main classes of extrinsic properties:

1. Inexpressible properties - these are properties that cannot be expressed

in the declarative specification language of the planner, for example, because

they involve high-order functions or an unbounded state. A good example of

such a property is that the plan produced is fair. Fairness typically involves

universally quantifying over all the agents in the problem and keeping track of

and comparing state. As discussed in Section 6.3.3, such global properties are

typically impossible to express as pre-conditions of individual actions in the

baseline versions of planning languages such as PDDL [78]. In contrast, it is

easy to express and reason about them in a dependently-typed language like

Agda.

2. Unavailable properties - these are properties whose evaluation requires

world states that are not available at planning time. A good example of

such a property is the fuel consumption of a robotic agent. Although the fuel

used per action can be estimated at planning time, in practice the amount of

fuel required to carry out an action in the real world may depend on real-time

conditions such as weather, temperature or other local conditions. Therefore,

even though it cannot be checked at planning time, it is still desirable to ver-

ify that during execution the robotic agent never starts an action that it has

120

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

insufficient fuel to complete.

3. Probable properties - finally these are properties which plans produced by

the planner have a high probability of satisfying. These types of properties are,

in general, meta-level properties that do not necessarily need to be included

in the planning domain and problem. Fairness is also an example of this

type of property. For example, suppose that the planner is assigning jobs

to workers and it needs to be ensured that the set of assignments does not

exhibit gender bias. By default, if the planner does not have access to gender

information it would be expected that the vast majority of plans produced

are fair. Nonetheless, it is possible that in certain circumstances some other

part of the domain may act as a proxy for gender and result in plans that

are biased. Such problems are widely known in data science and machine

learning [90]. Even if such a property can be added to the planning domain,

the time complexity of planning algorithms is typically super-linear in the size

of the domain. Therefore this chapter argues that one should avoid encoding

it in the problem domain and only verify the property holds of any produced

plans.

It should be noted that none of the extrinsic properties discussed are novel ideas

in planning. For example, the idea of unavailable properties is already studied in

semantic attachments [26]. The core contribution of adding these extrinsic properties

in Agda is to provide an alternative “lightweight” way of reasoning and verifying

these properties. Whilst it is possible to have planners reason about these kinds of

extrinsic properties, that is not the focus of this chapter. The focus of this chapter

is to provide additional verification value to planners that use the restricted subset

of PDDL that PCP logic supports.

This thesis views the distinction between intrinsic and extrinsic properties as

mirroring the separation between the search and control components of AI mod-

elling. The intrinsic properties are incorporated into PDDL domains and inform the

PDDL search algorithms. In contrast, the extrinsic properties are imposed on the

controller and the Agda framework provides a methodology for guaranteeing that

the controller does not violate them during the execution of the plan. This chapter

proposes that this guarantee will be used in one of two ways: firstly, prior to execu-

121

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

tion, a plan can be run in a simulated environment to check for extrinsic property

violations. Secondly, during the live execution of a plan it can be used as a form

of run-time checking that provides a formally verified guarantee that the controller

will never perform an action that violates the extrinsic properties. Note that this

chapter will not address what the controller should do in response to an imminent

violation of an extrinsic property however it will discuss how potential methods to

provide feedback about the violation to the planner in Section 6.6.

6.1.2 The Technical Approach

The first contribution of this chapter is the introduction of PCP∗ Logic that is a

modified version of PCP logic that eliminates the consistency issues of the original

formalisation. This will be accomplished by modifying the typing derivation as well

as showing how these modifications affect the soundness proofs. An evaluation of

the type checking time of PCP∗ logic will also be given.

The second and main technical contribution of this chapter is the use of action

handlers as a means of integrating rich extrinsic properties expressed in the proof

and programming environment of Agda in PCP∗ logic formalisation. In this chap-

ter, action handlers become the central tool for building richer programs and proof

infrastructure around the plans produced by AI planners. In particular, this chap-

ter will utilise dependent types to enrich the handlers with additional constraints

representing extrinsic properties that should hold during plan execution. As a re-

sult, enriched action handlers will be obtained in which it is possible to incorporate

additional safety, security, fairness or other checks of arbitrary complexity which

are then formally verified by Agda. Crucially, these extrinsic properties can be ex-

pressed and verified without altering either the native PDDL problem domain or

its formal semantics. Notably, the richer properties that this chapter will define

and prove are specified at the type level. From this point of view, this chapter will

present a non-trivial exercise in dependently-typed programming.

This chapter also serves as a prototype for embedding existing automated rea-

soning tools within dependently-typed modelling environments. For example, it is

possible to perform higher-order reasoning (in Agda’s interactive style) on top of

the first-order proof search already performed by the AI planner. This substan-

122

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

Halt
w ∈ 〈S〉

Γ ` w S : halt
Seq

w ∈ 〈P (x)[σ]〉 P (x) Q(x) : α(x) ∈ Γ
Γ ` (δα Q(x)[σ]) w S : f

Γ `: w S : α(x)[σ]; f
where Q(x)[σ] is a valid state

Figure 6.1: PCP∗ logic rules.

tially extends the modelling power of the AI planners, as in Agda it is possible to

encode many properties that PDDL cannot encode. This includes function defini-

tions, universal and existential quantification, action dependencies and higher-order

quantification. This chapter will give evidence that this approach could play an

important role in verification of complex AI applications.

6.2 PCP∗ Logic - Validating Intrinsic Properties

of a Plan

This section presents PCP∗ logic, a modification of the PCP logic defined in Chap-

ter 4. The major change in the modified formalisation is that the inference rules will

no longer represent the world state as a state but instead as a world. Recall that

a world is simply a list of all true atomic predicates and a state is a list containing

mappings of predicates to polarities. The intuition for the change in representation

of the world state is that a world cannot possibly be inconsistent as it only contains

true formula. The inference rules for PCP∗ logic are given in Figure 6.1 and use

the grammar defined in Figure 4.1. This change in representation has major con-

sequences to the definition of the inference rules, well-formed handler and proof of

soundness of normalised formula as shown in Figure 6.2. Note that in Figure 6.2

the δα function has been renamed to updateWorld.

By defining the world state as a state in the inference rules of PCP logic, the

world state, preconditions and effects of actions all had the same type. This allowed

for satisfaction to be defined using the subtyping relation in the inference rules. In

comparison PCP∗ logic uses the notion of well-formed worlds, given in Definition 22,

to define the satisfaction of preconditions and goal states. In the case of the Halt

rule the definition is the exact same as Figure 4.3 except that it uses worlds and

the well-formed world relation. The Seq rule is more interesting as changing the

123

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

∈〈 〉 : World � State � Set
w ∈〈 S 〉 = (∀ a � (+ , a) ∈ S � a ∈ w) ×

(∀ a � (- , a) ∈ S � a /∈ w)

ValidS : State � Set
ValidS [] = >
ValidS ((z , r) :: S) = r /∈S S × ValidS S

data ` : : Context � World � State � Plan � Set where
halt : ∀ {Γ currentWorld goalState}

� currentWorld ∈〈 goalState 〉
� Γ ` currentWorld goalState : halt

seq : ∀ {α currentWorld goalState Γ f}
� currentWorld ∈〈 preconditions (Γ α) 〉
� ValidS (effects (Γ α))
� Γ ` updateWorld (effects (Γ α)) currentWorld goalState : f
� Γ ` currentWorld goalState : (α :: f)

WfHandler : Context � ActionHandler � Set
WfHandler Γ δ =
∀{α w} � w ∈〈 preconditions (Γ α) 〉

� ValidS (effects (Γ α))
� δ α w ≡ updateWorld (effects (Γ α)) w

sound : ∀{δ w Γ f Q}
� WfHandler Γ δ
� Γ ` f : w Q
� execute f δ w ∈〈 Q 〉

sound wfh (halt w∈〈Q〉) = w∈〈Q〉
sound wfh (seq w∈〈P〉 prf tr) rewrite wfh w∈〈P〉 prf = sound wfh tr

wf-canonical-δ : ∀ Γ � WfHandler Γ (canonical-δ Γ)
wf-canonical-δ Γ w∈〈P〉 prf = refl

Figure 6.2: PCP∗ Logic definition changes in Agda

124

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

PDDL Domain /
Problem

Plan
Length

(number
of actions)

PCPR Logic
Type checking

Time
(seconds)

PCP Logic
Type checking

Time
(seconds)

PCP∗ Logic
Type checking

Time
(seconds)

Blocks World (A) 10 6.7 6.17 2.39

Blocks World (B) 20 8.22 6.28 2.46

Blocks World (C) 34 13.59 6.59 2.65

Logistics (A) 24 14.47 8.02 4.29

Logistics (B) 58 47.88 9.25 5.42

Logistics (C) 74 * 11.27 7.26

Satellite (A) 9 8.43 7.9 4.06

Satellite (B) 21 15.56 8.59 4.85

Satellite (C) 44 * 16.71 11.99

Table 6.1: Type checking time on benchmark domains for all Agda formalisations
presented in this thesis. A ∗ indicates a test that failed due to the maximum heap
size being exceeded after 800 seconds. All tests were performed on an Intel Core
i5-12600K processor with 16GB of RAM. See Appendix B for the PDDL domain
and problem definitions.

representation of the world state and using the well-formed world relation is not

enough. The previous Seq rule uses the override operator to apply actions however

the override operator only works on states. The new Seq rule instead uses the δα

function from Definition 26 to apply the action. This change means that inference

rules use the same method of action application as the operational semantics.

The final restriction of the Seq rule is that the effects of the applied actions are

valid states. It might be assumed that this restriction is necessary in the Halt rule

as well as on the preconditions of actions, however, this is not necessary. This is

because it is impossible for a world to satisfy a state that is inconsistent using the

world relation, therefore the Seq and Halt rules cannot be applied to inconsistent

states. Whilst it is impossible to produce an inconsistent world regardless of whether

an effect is consistent, it is still necessary to restrict effects to be valid states. As

discussed in Section 5.4 the application of inconsistent effects leads to undefined

behaviour dependent on the execution order. However, the application of consistent

effects will always result in the same world independent of order execution. In Agda

the notion of valid state is given by the ValidS function given in Figure 6.2.

A well-formed handler defines the expected behaviour of an action handler in

the case when the action handler is applying an action to a world where the action’s

preconditions are satisfied and effects of the action are consistent. The well-formed

125

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

handler defined in PCP∗ logic forces an action handler to apply an action using

the updateWorld function. This is more restrictive than previous definitions of the

well-formed handler. Since consistent effects will always result in the same world

regardless of order application, this chapter proposes that there is no functional

need to be able to define the application of actions differently. It should be noted

that action handlers will still be free to independently deal with the cases where

an action’s preconditions are not met. The modification of the well-formed handler

definition makes the proof of soundness of normalisation as well as the proof that

the canonical handler is well-formed trivial as shown in Figure 6.2.

It is also possible to prove that the well-formed world relation is decidable and

therefore also prove that PCP∗ logic is decidable. The automation algorithm can

therefore be used to generate derivations for PCP∗ logic. The results are shown in

Table 6.1 and show that there is a flat speedup of around 4 seconds for type checking

across all examples in comparison to PCP logic. There are two trade-offs to this

modification. First is that PCP∗ logic cannot be extended to work with open world

problems as it assumes the world is closed. Second is that the definition of execution

for well-formed handlers is restricted. Since this thesis only works with closed world

problems, PCP∗ logic is the best fit as it is simple, fast and ensures consistency.

This concludes the definition of PCP∗ logic that validates the intrinsic properties

of PDDL plans.

6.3 Running Example for Extrinsic Verification

This section will introduce the running example. This includes a PDDL definition

of the domain and problem as well as its Agda encoding. The running example has

a unique Agda implementation because it encodes a typed domain. This section will

therefore reintroduce the formalisation of domains and problems in Agda explaining

the design changes. This example will pave the way to Section 6.4 where this chapter

will explain how to extend the formalisation to allow the embedding of extrinsic

properties.

126

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

(define (domain taxi)

(:requirements :strips :typing)

(:types taxi location person)

(:predicates

(taxiIn ?obj1 - taxi

?l1 - location)

(personIn ?obj1 - person

?l1 - location))

(:action drive_passenger

:parameters

(?t1 - taxi

?p1 - person

?l1 - location

?l2 - location)

:precondition

(and

(taxiIn ?t1 ?l1)

(personIn ?p1 ?l1))

:effect

(and

(not (taxiIn ?t1 ?l1))

(not (personIn ?p1 ?l1))

(taxiIn ?t1 ?l2)

(personIn ?p1 ?l2)))

(:action drive

:parameters

(?t1 - taxi

?l1 - location

?l2 - location)

:precondition

(taxiIn ?t1 ?l1)

:effect

(and

(not (taxiIn ?t1 ?l1))

(taxiIn ?t1 ?l2))))

(define (problem taxi)

(:domain taxi)

(:objects

taxi1 taxi2 taxi3 - taxi

person1 person2 person3 - person

loc1 loc2 loc3 - location)

(:init (taxiIn taxi1 loc1)

(taxiIn taxi2 loc2)

(taxiIn taxi3 loc3)

(personIn person1 loc1)

(personIn person2 loc2)

(personIn person3 loc3))

(:goal (and (taxiIn taxi1 loc2)

(personIn person1 loc3)

(personIn person3 loc1))))

Figure 6.3: PDDL Taxi Domain and Problem.

6.3.1 PDDL to Agda Translation

In order to illustrate extrinsic constraints this chapter defines a new taxi domain

in Figure 6.3. The taxi domain is a typed domain with the types: taxi, location

and person. There are only two predicates taxiIn and personIn that are used to

represent whether a taxi or person is in a specific location respectively. There are

two actions drive and drive passenger. The drive action drives a taxi from one

location to another and the drive passenger action drives a taxi and passenger

127

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

from one location to another.

To represent a typed domain the abstract domain definition is extended to in-

clude types:

record Domain : Set1 where

field

Type : Set

Action : Set

Predicate : Set

Γ : Context
?
=p : DecidableEquality Predicate

The Taxi Planning Domain This section will now introduce the concrete code

describing the taxi domain. Types are simply defined by creating a data type in

Agda with the required types as constructors.

data Type : Set where

taxi location person : Type

The introduction of types needs to then be propagated to the definitions of

predicates, actions and objects. This will be performed by adding types to objects

and then defining predicates and actions using these typed objects.

In PDDL, objects are first introduced implicitly as typed variables within the

block that defines predicates, and only later does the planning problem give an

explicit set of objects that can be used to instantiate these variables. As discussed

in Section 4.5.1 this chapter will combine these two separate notions of objects and

variables into a single Object data type whose constructors are indexed by Types.

The most obvious method to define objects would be to simply define them as

constructors indexed by types. For example, it would be possible to define the

objects with the following definition: It may be expected

data Object : Type � Set where

taxi1 taxi2 taxi3 : Object taxi

person1 person2 person3 : Object person

loc1 loc2 loc3 : Object location

128

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

The above definition of objects mimics the style of definitions given in PDDL

however this style of definition will not be used as it does not allow for meta reasoning

about objects. For example, in Section 6.4.2 this chapter will define functions over

a list of all taxis. The automatic creation of a list containing all taxis can only

be defined through meta reasoning over the object data declaration. To enable

meta reasoning over the objects data type, instead of defining objects by giving

a list of constructors, objects will be defined by a finite number indicating the

number of objects of each type. In Agda a finite number is represented as the Fin

type. For example, in the object definition below the number of taxis is given by

numberOfTaxis and if this number was equal to 3 then it is possible to construct

taxis: taxi 0, taxi 1, taxi 2. The following object definition implements the objects

given by the problem specification in Figure 6.3:

data Object : Type � Set where

taxi : Fin numberOfTaxis � Object taxi

location : Fin numberOfLocations � Object location

person : Fin numberOfPeople � Object person

Now that the number of taxis is known it is possible to produce the list of all

taxis by mapping over list of all finite numbers. This is defined in Agda as:

allTaxis : List (Object taxi)

allTaxis = Data.List.map taxi (allFin numberOfTaxis)

By defining objects using finite numbers instead of constructors the names of

the objects given in PDDL are lost. Whilst there is no intrinsic meaning in the

names of objects it can help users understand the PDDL domain better. If desired,

the names can easily be recovered by defining an additional function that maps the

object data type to their original names or by using pattern synonyms.

Predicates are defined as constructors over typed objects, closely mimicking the

PDDL syntax in of Figure 6.3.

data Predicate : Set where

taxiIn : Object taxi � Object location � Predicate

personIn : Object person � Object location � Predicate

129

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

Actions are defined in the same way as in previous chapters however they now give

typed parameters instead.

data Action : Set where

drive : Object taxi � Object location

� Object location

� Action

drivePassenger : ...

The context definition does not change from previous chapters however the in-

corporation of types into the action definition ensures that the context is defined

over typed objects. The context for the drive action is given by:

Γ : Context

Γ (drive t1 l1 l2) =

record {

preconditions =

(+ , taxiIn t1 l1) :: [] ;

effects =

(- , taxiIn t1 l1) ::

(+ , taxiIn t1 l2) :: [] }

...

The Planning Problem As discussed in Section 6.2 the initial world is now

represented using a world data type. The problem file can therefore be translated

to the following definitions:

initialWorld : World

initialWorld =

taxiIn (taxi 0) (location 0) ::

taxiIn (taxi 1) (location 1) ::

taxiIn (taxi 2) (location 2) ::

personIn (person 0) (location 0) ::

personIn (person 1) (location 1) ::

130

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

personIn (person 2) (location 2) ::

[]

goalState : State

goalState =

(+ , taxiIn (taxi 0) (location 1)) ::

(+ , personIn (person 0) (location 2)) ::

(+ , personIn (person 2) (location 0)) ::

[]

6.3.2 Verification and Evaluation of Plans

This section will now discuss how to verify and evaluate plans for typed PDDL

planning problems. The running example for this chapter can be solved by the

following plan:

plan = (drive (taxi 0) (location 0) (location 1)) ::

(drivePassenger (taxi 2) (person 2) (location 2) (location 0)) ::

(drivePassenger (taxi 2) (person 0) (location 0) (location 2)) ::

halt

It should be noted that whilst there is full automation for PCP∗ logic for untyped

domains there does not exist automation to translate typed PDDL domains. This

is not because it is impossible to automate but rather because it is not the focus of

this chapter. Even though the domains have to be manually implemented, it is still

possible to use the solver to automatically verify the intrinsic properties of plans

using the following code:

Derivation : Γ ` plan : initialWorld goalState

Derivation = from-yes (solver Γ plan initialWorld goalState)

It is now possible to evaluate the plan, as shown in previous chapters, by apply-

ing the execute function to the canonical handler and initial world. Note that the

evaluation function has been renamed to execute in this chapter.

131

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

evaluationResult : World

evaluationResult = execute plan (canonical-σ Γ) initialWorld

As the execution is run on a validated plan the output of this function will be a

world that satisfies the goal state. The resultant world is:

Output:

taxiIn (taxi 2) (location 2) ::

personIn (person 0) (location 2) ::

personIn (person 2) (location 0) ::

taxiIn (taxi 0) (location 1) ::

taxiIn (taxi 1) (location 1) ::

personIn (person 1) (location 1) :: []

As discussed in previous chapters, the derivation of the plan establishes that the

plan, and therefore each action in it, is valid e.g. all preconditions are satisfied and

all effects are consistent. As a consequence, it is not required for action handlers to

check the validity of each action with respect to the current world before applying

it. This simplifies the definition of action handlers. In the following sections, this

will also enable this chapter to keep the definitions of enriched handlers that add

additional constraints simple.

6.3.3 Expressivity of PDDL

This thesis has focused on the STRIPS subset of PDDL 1.2 under the closed world

assumption. Specifically, this thesis has only worked with the subset of PDDL for

deterministic planning domains and problems. Determinism implies the use of first-

order logic without function symbols (which guarantees finite domains when defining

the models). Whilst it is possible to define restricted functions in deterministic

planning, the problem with functions, especially with recursive functions, is that

they can make domains infinite. For example, it only takes one nullary and one

unary function to generate the infinite set of natural numbers.

This chapter will utilise arbitrary functions in its development, as well as open

ways to surpass the closed world assumption, by embedding the plans in a wider

programming and modelling environment. By embedding these functions in Agda,

132

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

determinism is still ensured as Agda’s type checker ensures that functions will ter-

minate. Higher-order functions will also be used to express some more sophisticated

properties, for example calculating the number of taxis that satisfy a certain prop-

erty as discussed in Section 6.4.2. Both arbitrary and higher-order functions cannot

be defined in PDDL and therefore are the subject of the syntactic (type-driven)

extensions that will be introduced in this chapter. These extensions will give an

alternative, lightweight and dependently-typed way to introduce some of the exten-

sions that PDDL 2.1 and 3 introduced.

6.4 Verifying Extrinsic Properties

This thesis has introduced components (II) and (III) of its framework:

(I) Plan generation via a PDDL planner which takes a PDDL domain and

problem definition as in Figure 6.3, and performs an automated search for plan

that takes the system from the initial to the goal state.

(II) Validation of the resulting plan via Agda which compiles the planning

domain, planning problem and plan received from the planner into a compact

DSL. The plan is then validated relative to the formalised operational and

declarative semantics.

The rest of this chapter will focus on a third, and perhaps the most intriguing and

novel component of the framework:

(III) Dependently-typed verification of extrinsic properties of the exe-

cution of the plan via Agda, in which this chapter formally verifies that

during the execution of the plan the controller will never execute an action

that violates extrinsic properties. As discussed previously, extrinsic properties

are those which are either undesirable or impossible to encode in PDDL at

planning time.

To achieve this, this chapter will augment the ActionHandler type with the desired

property and then ensure that the execute function has the correct type. Note that

this third stage lacks the generality of stage (II) as these higher level properties

are necessarily specific to the particular domain being modelled. Nonetheless, this

thesis argues that it is a powerful and flexible technique for verifying properties that

133

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

cannot be checked at planning time. A notable advantage of our approach is that it

is possible to verify that a property holds without altering the semantics of PDDL

specification or the shape of the plans produced by the planner.

As discussed in Section 6.1.1, the verified controller could be used directly during

execution. Alternatively, it could be run in a simulated environment prior to the

execution of the plan by a non-verified controller. If the plan satisfies the extrinsic

properties during simulation, then the environment can be monitored during execu-

tion and as long as it doesn’t deviate from the simulation then the actual execution

of the plan will not violate the extrinsic properties either.

6.4.1 Example 1: Fuel Consumption

The first property this chapter will introduce is a fuel property that ensures that

the agent never runs out of fuel while executing a plan. Although fuel is often used

in an abstract sense in functional programming to limit the number of iterations

a function may perform before termination, in planning fuel often has a very real

interpretation as it represents a resource (e.g. electrical energy) that an agent uses

to perform actions. Typically, before an agent runs out of fuel it must return to its

base and recharge.

In many domains, fuel levels cannot be taken into account by the planner in

stage (I) because it is unknown what the exact fuel level will be at a given point

in the plan. For example, while the plan of driving from location1 to location2 and

then from location2 to location3 may be valid at planning time, it can subsequently

be invalidated by unexpectedly high fuel consumption during the first leg of the

trip (e.g. due to a diversion caused by road-works) that leaves the taxi unable to

complete the second leg.

This chapter will now show how such a constraint can be incorporated into the

Agda framework. For simplicity and pedagogical purposes, it will be assumed that

all taxis share a single fuel source and that applying any action uses 1 unit of fuel.

To add this property to an action handler it is first modelled using types and then

it is added to the type level of the action handler. In order to reason about natural

numbers at the type level this chapter defines a Fuel data type that is indexed by a

natural number:

134

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

data Fuel : Nat � Set where

fuel : (n : Nat) � Fuel n

It is now possible to enrich the definition of an action handler, by encoding the

fact that applying an action reduces the fuel level from suc n to n where suc n is

the successor of the natural number n.

FuelAwareActionHandler = ∀ {n} � Action

� World × Fuel (suc n)

� World × Fuel n

This encodes at the type level that the agent cannot begin to execute an action

without having sufficient energy and that each action uses one unit of fuel.

It is now possible to define an enriched handler, by changing the canonical han-

dler’s return type to FuelAwareActionHandler:

enriched-σ : Context � FuelAwareActionHandler

enriched-σ Γ α = updateWorld’ (effects (Γ α))

The auxiliary function updateWorld’ above is an enriched version of updateWorld

that has to be defined due to the additional type requirements on the execution of

actions. It takes care of checking the additional fuel constraint on the type of the

action handler is satisfied during the execution of an action:

updateWorld’ : Effect � World × Fuel (suc n)

� World × Fuel n

updateWorld’ s (w , fuel (suc n)) = updateWorld S w , fuel n

One advantage of defining at the type level that the fuel goes from suc n to n is that

the updateWorld’ function is forced to supply an energy of exactly n in its return

type.

To execute plans with the FuelAwareActionHandler and check the constraints

during execution, the evaluation function also has to be enriched. The evaluation

function must check the fuel level and if it is suc n then the action is applied and if

it is zero whilst there are still actions to apply then the plan fails in which case the

function will return an error message with the failure. One simple way to implement

135

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

this is to introduce a disjunction] in the return type where the function can either

return a world or an error if the execution fails. To do this, this chapter defines a

OutOfFuelError data type that is constructed by passing in the current world and

the failed action.

data OutOfFuelError : Set where

error : Action � World � OutOfFuelError

executeWithFuel : Plan � FuelAwareActionHandler

� World × Fuel n

� World] OutOfFuelError

executeWithFuel halt σ (w ,) = inj1 w

executeWithFuel (α :: f) σ (w , fuel 0) = inj2 (error α w)

executeWithFuel (α :: f) σ (w , fuel (suc n)) =

executeWithFuel f σ (σ α (w , fuel (suc n)))

It is now possible execute the same example plan that was validated in the previous

section, with the enriched (rather than canonical) handler and evaluation function:

evaluationResult : World] OutOfFuelError

evaluationResult = executeWithFuel plan (enriched-σ Γ)

(initialWorld , (fuel 3))

The evaluationResult function defined above will produce the same output as

given in Section 6.3.2. This is because the plan length is 3 and the amount of fuel

given is also 3 therefore allowing for the application of all the actions in the plan.

If the fuel level was set to 2 then an error would be returned during the application

of the final action of the plan.

This section has used a simple fuel consumption example to explain the general

approach of reasoning about meta-properties of already validated plans and demon-

strated how enriched handlers allow for the introduction of arbitrary additional

constraints at execution time without interfering with either the native (sound)

semantics of PDDL, or the shape of the native plans produced by STRIPS. In a

realistic system, fuel levels might be better implemented as a monadic evaluation

136

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

function, such as State n m A = Fuel n � A × Fuel m, that performs real-time

measurements of the current fuel level.

6.4.2 Example 2: Fairness

This chapter will now introduce a more complex constraint, in particular, that the

assignment of taxi drivers to trips exhibits no significant gender bias. Unlike the fuel

consumption example, the gender information could be made available to the planner

at Stage (I). However, it is infeasible and undesirable to do so for the following two

reasons. Firstly, any non-trivial fairness property is unlikely to be expressible in

standard PDDL syntax. Secondly and perhaps more subtly, statistically speaking

it would be expected for there to be no gender bias in the output of the planner in

the first place. This thesis argues that it is unnecessary to add extra complications

to the planning stage to enforce something that should normally hold true most of

the time. It would be possible to encode the notion of gender bias as a planner-level

property at Stage (I). In this case, it is still useful to model this property in Agda

to check that the planner has adhered to it.

A model gender is needed in order to encode this property in Agda. Gender is

defined by the following data declaration:

data Gender : Set where

male female other : Gender

A TripCount type will now be defined which is used to store the number of trips

each gender has taken so far.

TripCount : Set

TripCount = Gender � N

It should be noted that all of the code associated with the enriched handler is defined

in a separate Agda module. The advantage of this choice is that it will be possible to

pass in static functions representing data that will not change during the evaluation

of a given domain.

driverGender : Object taxi � Gender

margin : Nat

137

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

In particular two functions driverGender and margin will be passed into the module.

The driverGender function maps all taxi drivers to a Gender. The margin function

represents a natural number that is used to allow for some leeway for statistical

fluctuations when enforcing the fairness constraint. It is natural to include both

the mapping of gender to drivers and the margin as a module parameter because

their definitions vary depending on the given PDDL problem specification. For

example, the driverGender definition depends on the number of taxis in the problem

specification.

The total trips taken is simply calculated by adding the trips taken for all genders.

totalTripsTaken : TripCount � N

totalTripsTaken f = + (+ (f male) (f female)) (f other)

The percentage of trips assigned to a given gender is then calculated via the

following function:

calculateGenderAssignment : Gender � TripCount � N

calculateGenderAssignment g tripCount =

(tripCount g * 100) /0 totalTripsTaken tripCount

Note that the above definition uses the function /0 for division that returns zero in

the case that a division by zero happens to avoid errors.

To calculate a fair percentage of assignments it is necessary to first calculate the

number of drivers of each gender. Note that this uses a higher order function filter

which, as discussed in Section 6.3.3, is not supported by the PDDL language.

noGender : Gender � N

noGender g =

length (filter (λ t � decGender g (driverGender t)) allTaxis)

Using this it is possible to calculate the percentage of drivers of a given gender:

percentage : Gender � N

percentage g = (noGender g * 100) /0 totalDrivers

The lowest acceptable threshold that is deemed to be fair, which is controlled by

the margin parameter, is then calculated as follows:

138

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

calculatelower bound : Gender � N

calculatelower bound g =

percentage g − (percentage g /0 margin)

Example 55 (Margin). The margin allows for users to have more leeway when

calculating the accepted lower bound value that a gender assignment can be. For

this example assume that the percentage of women is 20 percent. If the margin

value is set to 0 then the lower bound is 20 percent because dividing by zero equals

zero in the formalisation. If the margin was set to 4 then the lower bound would

have 25 percent leeway over the actual percentage giving a lower bound value of 15

percent for women.

Is is now possible to express the property that a trip count is unbiased for a

particular gender as follows:

IsFair : Gender � TripCount � Set

IsFair g f =

calculateGenderAssignment g f ≥ calculatelower bound g

At this point, this section has defined a fairness property for a single gender however

it is desired to enrich an action handler so that applying an action is fair for all

genders, not just one. This is modelled by adding a IsFairForAll type that is the

product of the IsFair type for all genders.

IsFairForAll : TripCount � Set

IsFairForAll f = ∀ (g : Gender) � IsFair g f

There are still two problems with implementing the action handler just using the

IsFairForAll type. The first problem is that it is unreasonable to assume that

after the assignment of one or just a few trips that the trips will be fairly assigned.

To model this, this chapter defines the following predicate:

UnderMinimumTripThreshold : TripCount � Set

UnderMinimumTripThreshold tripCount =

totalTripsTaken tripCount < totalDrivers * 10

139

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

The second problem is that there are two actions drive and drivePassenger and only

the latter should count as a paying trip for the purpose of fairness. Again this is

represented by another predicate:

TripAgnostic : Action � Set

TripAgnostic (drivePassenger t p1 l1 l2) = ⊥

TripAgnostic (drive t l1 l2) = >

There are now sufficient definitions to describe the fairness property in detail, in

which an action is fair if it satisfies any of the three predicates defined above:

data ActionPreservesFairness

(α : Action) (tripCount : TripCount) : Set where

underThreshold : UnderMinimumTripThreshold tripCount

� ActionPreservesFairness α tripCount

fairForAll : IsFairForAll tripCount

� ActionPreservesFairness α tripCount

agnostic : TripAgnostic α

� ActionPreservesFairness α tripCount

The type of enriched action handlers that enforce this property can then be defined

as follows:

GenderAwareActionHandler : Set

GenderAwareActionHandler =

(α : Action)

� {tripCount : TripCount}

� {fair : ActionPreservesFairness α tripCount}

� World � World

One thing to note is that the form of this definition is slightly different from that of

the FuelAwareActionHandler defined in the previous section. Instead of adding Trip-

Count as a part of a product with the World, it is added as an implicit argument.

This is because, unlike fuel, this thesis has chosen not to enforce any type level rela-

tionships between the trip count before and after applying the action. Instead, this

thesis will rely on the enriched execute function to update the trip count correctly.

140

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

The disadvantage of this approach is that one cannot enforce relationships between

actions and the additional enriched state at the type level, however, the advantage

of this is that it allows us to use exactly the same form for the enriched handler and

canonical handler instances:

enriched-σ : Γ � GenderAwareActionHandler

enriched-σ Γ α = updateWorld (effects (Γ α))

Another advantage of working in a rich dependently-type language such as Agda

is that the execution function can return error messages containing proofs in them

explaining exactly why the execution of the function failed. Currently, a failed

execution just returns a precise error for why an execution has failed however this

thesis proposes these precise errors could be used for plan repair in future work. In

this case, the error contains a proof of why the action is not fair:

data GenderBiasError : Set where

notProportional : (a : Action) (f : TripCount)

� ¬ (ActionPreservesFairness a f) � GenderBiasError

The enriched execute function can then be defined to check for fairness and can only

execute in action if it can generate a proof that the action will not result in any

gender bias:

execute’ : Plan �

GenderAwareActionHandler �

TripCount �

World �

World] GenderBiasError

execute’ halt σ tripCount w = inj1 w

execute’ (a :: f) σ tripCount w with updateTripCount a tripCount

... | updatedTrips with ActionPreservesFairness? a updatedTrips

... | yes fair = execute’ f σ updatedTrips (σ a {fair = fair} w)

... | no ¬fair = inj2 (notProportional a updatedTrips ¬fair)

To be able to define the above execution function it is necessary to be able to

automatically decide whether an action is fair. This is accomplished by proving

141

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

decidability for the ActionPreservesFairness data type. This is defined in the Agda

formalisation by the ActionPreservesFairness? function. The decidability functions

are defined in the accompanying Agda library [51].

6.4.3 Concrete Fairness Example

This section will showcase the fairness constraint using the running example. All

examples will use a margin value of 4 and the following driverGender function:

driverGender : Object taxi � Gender

driverGender (taxi 0F) = male

driverGender (taxi 1F) = female

driverGender (taxi 2F) = male

The execute’ function takes in the trip count as a function before applying the

plan to the given initial world. It is therefore possible to execute a plan whilst

giving data for previous trips taken. This section will give examples using three

different trip assignments for the running example. For all examples the output

will be generated by the following function definition with the relevant trips taken

function passed in:

output : World] GenderBiasError

output = execute’ plan (enriched-σ Γ) tripsTaken initialWorld

Example 56 (Under Threshold). This example assumes that there were 0 trips

taken before the execution. This is defined by the following function:

tripsTaken : Gender � N

tripsTaken g = 0

There are three taxis therefore the minimum threshold for enforcing the fairness

constraint is 30. Since the total number of trips will never exceed 3 the execution

function will apply all actions in the plan as expected and return the output world

given in Section 6.3.2.

Example 57 (Fair Assignments). This example considers the following tripsTaken2

function:

142

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

tripsTaken2 : Gender � N

tripsTaken2 male = 30

tripsTaken2 female = 11

tripsTaken2 other = 0

In this case, there have been 41 trips taken which is above the minimum threshold

therefore the execute’ will function will check to see if the plan is fair for each action.

The first action of the plan is a drive action therefore it is trip agnostic so will be

applied. The second action is a drive passenger action that uses a male taxi driver.

To apply this action the execute function has to have a proof that after the drive

passenger action is completed the IsFairForAll property holds. This holds true for

this example. The last action of the plan is also a drive passenger action using a

male taxi driver. After the application of the last action the IsFairForAll property

will hold therefore in this example the execute’ function returns the expected world.

Example 58 (Unfair Assignments). This final example will consider the tripsTaken3

function:

tripsTaken3 : Gender � N

tripsTaken3 male = 30

tripsTaken3 female = 9

tripsTaken3 other = 0

In this case, there have been 39 trips taken which is above the minimum threshold

therefore the execute’ will function will check to see if the plan is fair for each action.

The first action of the plan is a drive action therefore it is trip agnostic so will be

applied. Applying the next action in the plan would produce a trip assignment that

is unfair therefore a gender bias error will be given. The proof the error returns is

not very readable for users therefore an additional displayErrorMessage function is

defined in the Agda formalisation that produces the following output:

drivePassenger (taxi 2F) (person 2F) (location 2F) (location 0F) ,

"The gender female is not proportional:

the assignment 22 is not greater than the lower bound 25."

143

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

6.4.4 Example 3: Universal Properties

In PDDL domains there are often many assumed implicit universal properties that

are enforced by the action definitions rather than explicitly stated. For example,

in blocksworld, it is assumed that it is never possible for any grounded holding

predicate and handEmpty to be true at the same time. It is enforced on an implicit

meta-level by ensuring that the preconditions and postconditions of all actions will

never allow for the creation of such a world. Historically, this type of property could

be encoded by using a universal formula in STRIPS [32, 69]. PDDL does not include

universal formulae for efficiency reasons however this thesis proposes that it could

be useful to explicitly encode these properties for testing purposes. This section

will demonstrate how universal properties can be explicitly encoded into the action

handler. Action handlers can then be used to sanity-check that domains enforce

their universal properties.

To implement the BlocksWorld example objects are defined using the Fin type

in order to meta-reason over the set of objects. It is now possible to define the list

of all holding predicates with the following code:

allObjects : List Object

allObjects = Data.List.map obj (allFin objects)

allHolding : List Predicate

allHolding = Data.List.map holding allObjects

It is now possible to define the cantHoldWithHandEmpty function to enforce the

desired property. This function first checks if the handEmpty predicate is true in

the world and if so checks if any possible holding predicate is also true:

cantHoldWithHandEmpty : World � Set

cantHoldWithHandEmpty w with handempty ∈? w

... | no ¬p = >

... | yes p with any? (λ x � x ∈? w) allHolding

... | no ¬p = >

... | yes p1 = ⊥

To create the action handler that enforces the cantHoldWithHandEmpty property,

it is necessary to return a world where this property holds. Since this property

144

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

is dependent on a world, the dependent product type will be used to create the

correctWorld type. This will then be used to define the BlocksWorld action handler:

correctWorld = Σ World λ w � cantHoldWithHandEmpty w

BlocksWorldActionHandler : Set

BlocksWorldActionHandler = (α : Action) � correctWorld � Maybe correctWorld

There is no guarantee that the updateWorld function will produce a correctWorld

therefore the type definition will change to Maybe correctWorld to reflect this. The

decidability of cantHoldWithHandEmpty is trivial and is referred to as cantHoldWith-

HandEmpty?. The enriched handler is defined by using the decidability of cantHold-

WithHandEmpty to check that the updateWorld function returns a correct world:

enriched-σ Γ α (w , prf) with cantHoldWithHandEmpty?

(updateWorld (effects (Γ α)) w)

... | no ¬p = nothing

... | yes p = just ((updateWorld (effects (Γ α)) w) , p)

The execute function is simply defined by recursively applying the enriched han-

dler as long as it returns a correctWorld:

execute’ : Plan �

BlocksWorldActionHandler �

correctWorld �

Maybe correctWorld

execute’ halt σ w = just w

execute’ (a :: f) σ w with σ a w

... | nothing = nothing

... | just w = execute’ f σ w

With this definition of the execution function, it is now possible to check for a

given plan and world that no predicate holding ?x is true whilst the handEmpty

predicate is also true. Whilst it is known that this property will always hold true

for BlocksWorld, this section has demonstrated how to encode a universal property

explicitly. By encoding explicit definitions of implicit properties, it is possible to

145

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

check that these properties hold over a set of plans and worlds. This will give

additional assurance over PDDL domains. The methodology taken in this section

can also be made more generic in order to make it simple to encode similar properties.

6.5 Applications of Agda Library

An accompanying Agda library [51] has been defined along with this thesis con-

taining the full formalisation and code presented. It has been designed with the

intention that it is friendly to users from the AI planning community. The library

can be used in two ways. The first is to verify plans for untyped PDDL domains

and problems. The second, as shown in this chapter, is to fully utilise the Agda

implementation to define enriched handlers. The methodology for both as well as

their applications will be given in this section.

Automatic Verification

The automatic translation and verification of plans for untyped PDDL domains

and problems are run by editing a run.lisp program in the relevant Automation

Algorithm folder. The general methodology is as follows:

1. Open run.lisp.

2. Change the domainfile and problemfile variables to the path of the desired

PDDL domain and problem specifications

3. Set the name of the generated Agda file by changing the outputfile variable.

4. Set the plan file you want to type check to the plan variable.

5. Run the run.lisp file.

This methodology does not require a user to write any Agda code at all. The

user simply has to define the relevant variable in lisp and run the run.lisp file. The

run.lisp file generate and type check an Agda file where if the file type checks then

the plan is known to be valid as discussed in Section 5.6.

Verification with Enriched Handlers

This is the summary of the general methodology to set up, verify and execute a

PDDL problem using an enriched handler in the Agda library:

1. Import the Semantics and Plan files from the Plan folder.

2. Create and import a Domain file for your problem.

146

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

3. Define an initial world, goal state and a plan.

4. Use the typing derivation to check that the plan is valid for the initial world

and goal state provided.

5. Create an enriched handler and evaluation function:

(a) Model the additional properties as types.

(b) Show that the additional properties are decidable if necessary.

(c) Create the relevant error types.

(d) Define an action handler that includes the additional properties.

(e) Define an evaluation function for the action handler.

(f) Define an enriched canonical handler.

6. Import the enriched handler that you want to use.

7. Use the relevant evaluation function to execute your handler on the initial

world.

Although the primary purpose of the presented work is to illustrate the benefits

of embedding plan validation in a dependently-typed language, there are also many

possible future extensions and applications of this work.

In this chapter steps 2, 3 and 4 have been performed manually due to the changes

in syntax for typed domains and problems however there is no reason that these steps

could not be automated for typed domains. It should be noted that step 4 is still

automated via a solver function. These steps have not been automated because the

presented work in this chapter is to test the limits of type-driven code development

in AI. It would be possible to update the automation algorithms for these steps

however it would not be possible to automate step 5 in the same way.

This thesis envisages several applications of this work for AI planning. As dis-

cussed in previous chapters it is possible to use the implementation of the plan

validator to verify plans using the typing relation as well as extract them.

For enriched handlers, there may be use cases when software and hardware re-

quirements, or indeed legal regulations, do not permit the direct deployment of code

extracted from Agda. For example in the autonomous car industry, the set of us-

able languages is strictly regulated. In such cases, the methodology proposed in this

chapter can be used as part of a broader modelling and simulation environment. In

fact, this chapter proposes this to be the most promising avenue for applications of

147

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

these ideas. The enriched handlers proposed in this chapter enhance exactly this

modelling aspect, by opening a way for lightweight and flexible modelling of arbi-

trary properties of plans separately from (and in addition to) the automated plan

search performed by an AI planner such as STRIPS.

6.6 Discussion

This chapter has introduced a final Agda formalisation that addressed the shortcom-

ings of the formalisations presented in the previous chapters. The new formalisation

ensured the consistency of the effects of actions whilst maintaining the decidability

of the derivation. This allowed for the definition of a system that not only has the

fastest type checking time but also removed the need for the inconsistency assump-

tion.

This chapter has also presented a novel methodology of using enriched handlers

for embedding AI plans into a richer programming and modelling environment in

Agda. The main focus of this was to show that the idea of a verification framework

combining automated solvers and planners on the one hand and richer type-driven

programming environments on the other hand has its merits, and can be imple-

mented in an interesting, natural and even user-friendly way. This achieves Objec-

tive 6. One of the main merits of this approach is that properties can be expressed in

the Agda system that are inexpressible in PDDL. The Agda system gives additional

guarantees over these properties such as termination of higher-order functions. This

chapter therefore concludes that the best extensions to the work presented in this

thesis will come from further utilising the benefits of the Agda implementation.

6.7 Related Work

Formalisation of Planning in Other Theorem Provers. The extrinsic verifica-

tion that this chapter has presented is a novel use case of the Agda implementation

that cannot be expressed in other state-of-the-art plan validators [3, 57]. In partic-

ular, it is not possible to express and extract the higher-order properties in Isabelle

that have been presented in this chapter. This novel approach has shown how Agda

148

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

can be used to extend the expressibility of properties in a way that is unique to

dependently typed programming languages.

Explainable AI. Extrinsic tools that introduce meta properties over PDDL are

already being used in the field of Explainable AI. In [16] a wrapper over PDDL

was created so that users can express “contrastive questions” to better understand

and explore why a planner has chosen certain actions over others. An example

contrastive question could be ”Why did you choose action A rather than B?”. To

accomplish this, users give questions in natural language which are then converted

into formal constraints that are then compiled down into PDDL. These additional

constraints force the planner to choose different actions which the wrapper will use

to generate a contrastive explanation by comparing the original plan to the new

plan generated from the additional constraints. The user can then add additional

constraints by asking further contrastive questions. This ability to ask further ques-

tions is particularly useful as it allows a user to build complex constraints to gain a

deeper understanding of a plan.

Plan-Property Dependencies. There is also work [28, 29] that introduces

plan-property dependencies which impose boolean functions over plans which allows

a user to query why a plan satisfies certain properties over others. These properties

are equivalent to soft goals in PDDL [38]. This work explains plans by showing the

cost of satisfying certain properties over others by computing the minimal unsolvable

goal subsets of a planning problem. An example question in this work could be ”Why

does the plan not satisfy the property X?” and a potential reply could be ”because

then we would have to forgo property Y and property Z”. To be able to do this, they

compile plan properties into goal facts and then compute the minimal unsolvable

goal subsets to produce plan explanations. This work can also reason about plan

properties in linear temporal logic.

In comparison to the work presented in this thesis, both Chapter 4 and Chap-

ter 5 define extrinsic properties in a domain-independent manner. Whilst the veri-

fication and execution of plans in our system are domain-independent, the enriched

handlers are not necessarily domain independent. For example, the more generic

properties of FuelAwareActionHandler could be used in any domain, however the

GenderAwareActionHandler is defined specifically for the taxi domain. The benefit

149

Chapter 6: Dependently Typed Enrichment for AI Plan Verification

of the approach taken in this chapter is the ability to define complex properties that

would be undefinable in either of the previous systems. However, at the current

moment, there is no way to compile the properties into PDDL when a plan fails.

150

Chapter 7

Conclusions

This thesis showcases the practical benefits of modern programming language theory

whilst simultaneously improving the state-of-the-art plan validation. Aim 1 was to

demonstrate why taking a Curry-Howard approach to plan validation is a useful

and natural solution. In order to address this aim, this thesis formalised multiple

inference systems where planning problems were represented as types and plans were

executable functions that inhabited those types. This approach to plan validation

was a novel practical use of the Curry-Howard correspondence which allowed for

the validation of plans to provide formal guarantees about their execution. Showing

that plans can be represented in this Curry-Howard style is a major contribution as

the inference systems in this thesis had to be derived in such a way as to ensure that

the programs that inhabit the types give the actual executable plans in the STRIPS

sense.

Aim 2 was to explore how dependently-typed programming languages can be

used to improve the state-of-the-art plan validation. This thesis accomplished this

by implementing formal inference systems for plan validation in the dependently-

typed programming language Agda. By using Agda this thesis could prove these

inference systems to be sound as well as ensure that any validated plans had check-

able evidence. Automation for these systems was also introduced so that their

usability was more in line with state-of-the-art plan validators [3, 57]. The biggest

advantage of the dependently-typed approach was the gained extensibility of the

inference systems. This thesis introduced the concept of enriched handlers that

could be used to check additional properties over the execution of plans. By using a

151

Chapter 7: Conclusions

dependently-typed language it was possible to implement useful properties that are

inexpressible in PDDL. On top of this, the Agda system gives additional guarantees

over these properties such as the termination of higher-order functions.

7.1 Challenges

In order to address both aims, this thesis created formal inference systems in Agda.

The creation of these inference systems in Agda achieves Objective 2, Objective 3

and Objective 4. The first challenge in accomplishing this task was that the existing

semantics defined in PDDL were not detailed enough to be simply defined verbatim

in Agda. In order to address this issue, this thesis defined a new formal language

for representing plans in Chapter 4. The implementation of this logic provided new

formal foundations for a subset of PDDL which achieves Objective 1 of this thesis.

These foundations contained the detail necessary to be implemented and proven

sound in Agda.

Another challenge that this thesis faced was discovering how best to write the

inference rules for plan validation. This thesis explored two different methodologies

for describing the inference rules by creating PCP logic and PCPR logic. PCP logic

took the standard STRIPS approach to plan validation whereas PCPR logic took

an older approach to plan validation based on a frame rule. One major issue with

PCP logic was that it needed an implicit consistency assumption for soundness.

This was addressed in PCPR logic where consistency was embedded directly into

the rules. The implementation of PCPR logic not only addressed the consistency

issue but also provided interesting insights about the interpretation of actions as

discussed in Section 5.4. This work further addresses Objective 1. Unfortunately,

the proofs produced by PCPR logic were very complicated making it an impractical

system to use for plan validation. PCP logic on the other hand had simple proofs

and could even be proven to be decidable. This thesis therefore introduced PCP∗

logic in Chapter 6 that addressed the issues of consistency.

Figuring out the best approach to formalise and automate PCP logic and PCPR

logic in Agda was another major challenge that this thesis faced. This thesis has

shown in detail its methodology behind defining the formal systems presented in

152

Chapter 7: Conclusions

Agda. In Chapter 4 the Agda code to implement PCP logic was shown and ex-

plained. Chapter 5 explored how to best automate these systems including how

to use techniques such as decidability to automatically generate proofs. This au-

tomation achieves Objective 5. Finally, Chapter 6 demonstrated how to implement

verification properties at the type level of functions. This implementation of these

verification properties achieves Objective 2. This thesis can therefore be used as

a demonstration of the methodology for implementing a declarative system in a

dependently-typed programming language.

7.2 Future Work

One limitation of the systems presented in this thesis in comparison to other plan

validators is the time it takes to validate plans. Whilst the systems presented in

this thesis have been shown to scale to larger problems they are much slower than

their counterparts [3, 57]. This was not a focus of the work presented in this thesis

and instead, this thesis focused on utilising the dependently-typed approach to its

full potential by implementing inexpressible properties. One area of future work is

to investigate the best methods to reduce the type-checking time whilst retaining

all of the benefits of the dependently-typed approach.

Other limitations can be found in the implementation of enriched handlers. In

comparison to Chapter 4 and 5 which requires no Agda knowledge to use, the def-

inition of enriched handlers requires a user to be familiar with dependently-typed

programming. This is justified because even though the verification and execution

of plans in the presented systems are domain-independent, the enriched handlers

are not necessarily domain independent. Because the extrinsic properties (modelled

by the enriched handlers) are not part of the PDDL domain or problem, it is not

possible to provide the same level of automation for generating them. In future

work, it would be beneficial to lower the barrier for entry in creating and using

these extrinsic properties. This could be done by the creation of a library of generic

properties that could be used in many domains. Another more ambitious approach

to creating a more user-friendly infrastructure for enriched handlers would be to

define a DSL for enriched handlers. This would mean that a user would only have

153

Chapter 7: Conclusions

to learn how to use the DSL.

A final limitation of the enriched handler approach at the moment is what to

do in the case an extrinsic property fails. At the current moment in time, it is only

possible to produce an error message along with a proof of why the plan has failed.

Chapter 6 attempted to mitigate this limitation by defining extrinsic properties that

will most likely be satisfied by a planner without any additional replanning. One

area of future work would be to look at if it is possible to do plan repair in Agda.

This thesis proposes that this issue could be addressed by compiling down additional

constraints to PDDL based on the extrinsic properties of the enriched handler. Since

the extrinsic properties can not be easily expressed in PDDL it would be necessary

to create compilation strategies based on the errors produced by failed evaluations

to force the planner to pick different actions. For example, if we have a plan that

fails in our taxi domain because it has disproportionately picked men over women

in a plan we could fix this by removing a certain number of male taxi drivers from

the planning problem so that the planner no longer has the option to choose them.

Another interesting potential way to solve the repair plans would be to interface

Agda with an SMT solver that can produce new plans.

7.3 Reflection

This work presented in this thesis has largely accomplished what it set out to do and

has achieved all of its objectives, as discussed. One major accomplishment of this

thesis is the complete automation of plan validation within Agda. This allows for

members of the planning community to be able to use the work presented without

knowing any Agda at all. This greatly reduces the barrier needed to utilise this

work. At the current stage of this research, there is a large trade-off in time for

validation in comparison to modern planners. Whilst it would be great to improve

this, and an obvious next step, this thesis argues that the validation is still useful.

This thesis envisions users using the inference systems as a final extra validation

step to double-check plans that need the increased assurance.

There are many further potential benefits from defining the inference systems in

Agda. This thesis has shown a definition of enriched handlers that introduce a novel

154

Chapter 7: Conclusions

way of adding constraints to plans. If time permitted, it would have been great to

further explore this idea as there are so many different avenues for improvement.

This includes defining new unique properties that can only be expressed with de-

pendent types, plan repair, and the possibility to add some of these constraints to

a planner.

7.4 Supporting Code

The supporting code for this thesis is located in the following repository [51]. This

code includes all of the inference systems as well as their proofs. All of the automa-

tion experiments are also included in the repository.

155

Bibliography

[1] Abdulaziz, M., and Berger, D. Computing plan-length bounds using

lengths of longest paths. In Thirty-Fifth AAAI Conference on Artificial Intel-

ligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of

Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational

Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,

2021 (2021), AAAI Press, pp. 11709–11717.

[2] Abdulaziz, M., Gretton, C., and Norrish, M. A verified compositional

algorithm for AI planning. In 10th International Conference on Interactive

Theorem Proving (ITP 2019) (2019), Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik.

[3] Abdulaziz, M., and Lammich, P. A formally verified validator for classical

planning problems and solutions. In 2018 IEEE 30th International Conference

on Tools with Artificial Intelligence (ICTAI) (2018), IEEE, pp. 474–479.

[4] Abdulaziz, M., and Lammich, P. AI planning languages semantics. Arch.

Formal Proofs (2020).

[5] aibasel. Downward benchmarks. https://github.com/aibasel/downward-

benchmarks, 2020.

[6] Albrecht, D. W., Crossley, J. N., and Jeavons, J. S. New Curry-

Howard terms for full linear logic. Theor. Comput. Sci. 185, 2 (1997), 217–235.

[7] Appel, A. W., Beringer, L., Chlipala, A., Pierce, B. C., Shao, Z.,

Weirich, S., and Zdancewic, S. Position paper: the science of deep spec-

ification. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences 375, 2104 (2017), 20160331.

156

BIBLIOGRAPHY

[8] Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid,

S., Lowry, M., Pasareanu, C., Roşu, G., Sen, K., Visser, W., et al.

Combining test case generation and a verification. Theoretical Computer Sci-

ence 336, 2-3 (2005), 209–234.

[9] Bagnall, A., and Stewart, G. Certifying the true error: Machine learning

in Coq with verified generalization guarantees. In Proceedings of the AAAI

Conference on Artificial Intelligence (2019), vol. 33, pp. 2662–2669.

[10] Barrett, C., and Tinelli, C. Satisfiability modulo theories. In Handbook

of model checking. Springer, 2018, pp. 305–343.

[11] Berdine, J., Calcagno, C., and O’hearn, P. W. Smallfoot: Modular

automatic assertion checking with separation logic. In International Sym-

posium on Formal Methods for Components and Objects (2005), Springer,

pp. 115–137.

[12] Berdine, J., Calcagno, C., and O’hearn, P. W. Symbolic execution

with separation logic. In Asian Symposium on Programming Languages and

Systems (2005), Springer, pp. 52–68.

[13] Blanchette, J. C., Kaliszyk, C., Paulson, L. C., and Urban, J.

Hammering towards QED. Journal of Formalized Reasoning 9, 1 (2016), 101–

148.

[14] Bryce, D., Gao, S., Musliner, D., and Goldman, R. SMT-based

nonlinear PDDL+ planning. In Twenty-Ninth AAAI Conference on Artificial

Intelligence (2015).

[15] Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer,

P., Luca, M., O’Hearn, P., Papakonstantinou, I., Purbrick, J.,

and Rodriguez, D. Moving fast with software verification. In NASA Formal

Methods Symposium (2015), Springer, pp. 3–11.

[16] Cashmore, M., Collins, A., Krarup, B., Krivic, S., Magazzeni, D.,

and Smith, D. Towards explainable AI planning as a service. 2nd ICAPS

157

BIBLIOGRAPHY

Workshop on Explainable Planning, XAIP 2019 ; Conference date: 12-07-2019

Through 12-07-2019.

[17] Cashmore, M., Fox, M., Long, D., and Magazzeni, D. A compilation

of the full PDDL+ language into SMT. In Workshops at the Thirtieth AAAI

Conference on Artificial Intelligence (2016).

[18] Cervesato, I., and Pfenning, F. A linear logical framework. Inf. Comput.

179, 1 (2002), 19–75.

[19] Chakravarty, M. M., Chapman, J., MacKenzie, K., Melkonian, O.,

Peyton Jones, M., and Wadler, P. The extended UTxO model. In In-

ternational Conference on Financial Cryptography and Data Security (2020),

Springer, pp. 525–539.

[20] Chapman, J., Kireev, R., Nester, C., and Wadler, P. System F

in Agda, for fun and profit. In International Conference on Mathematics of

Program Construction (2019), Springer, pp. 255–297.

[21] Chrpa, L., Surynek, P., and Vyskočil, J. Encoding of planning prob-

lems and their optimizations in linear logic. In Applications of Declarative

Programming and Knowledge Management. Springer, 2007, pp. 54–68.

[22] Claßen, J., Eyerich, P., Lakemeyer, G., and Nebel, B. Towards

an integration of GOLOG and planning. In IJCAI 2007, Proceedings of the

20th International Joint Conference on Artificial Intelligence (2007), M. M.

Veloso, Ed., pp. 1846–1851.

[23] Coquand, T., and Huet, G. The calculus of constructions. Information

and Computation 76, 2-3 (1988), 95–120.

[24] Curry, H. B. Functionality in combinatory logic. Proceedings of the National

Academy of Sciences of the United States of America 20, 11 (1934), 584.

[25] Dennett, D. C. Cognitive wheels: The frame problem of AI. Minds, ma-

chines and evolution (1984), 129–151.

158

BIBLIOGRAPHY

[26] Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M.,

and Nebel, B. Semantic attachments for domain-independent planning sys-

tems. In Nineteenth International Conference on Automated Planning and

Scheduling (2009).

[27] Dutertre, B., and De Moura, L. The yices SMT solver. Tool paper at

http://yices. csl. sri. com/tool-paper. pdf 2, 2 (2006), 1–2.

[28] Eifler, R., Cashmore, M., Hoffmann, J., Magazzeni, D., and

Steinmetz, M. A new approach to plan-space explanation: Analyzing plan-

property dependencies in oversubscription planning. In Proceedings of the

AAAI Conference on Artificial Intelligence (2020), vol. 34, pp. 9818–9826.

[29] Eifler, R., Steinmetz, M., Torralba, A., and Hoffmann, J. Plan-

space explanation via plan-property dependencies: Faster algorithms & more

powerful properties. In Proceedings of the Twenty-Ninth International Con-

ference on International Joint Conferences on Artificial Intelligence (2021),

pp. 4091–4097.

[30] Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G.,

Reynolds, A., and Barrett, C. SMTCoq: A plug-in for integrating SMT

solvers into Coq. In International Conference on Computer Aided Verification

(2017), Springer, pp. 126–133.

[31] Ernst, G. W., and Newell, A. GPS: A case study in generality and

problem solving. Academic Pr, 1969.

[32] Fikes, R., and Nilsson, N. J. STRIPS: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence 2, 3/4 (1971),

189–208.

[33] Fisher, K., Launchbury, J., and Richards, R. The HACMS program:

using formal methods to eliminate exploitable bugs. Phil. Trans. Royal Society

(2017).

[34] Floyd, R. W. Assigning meanings to programs. In Program Verification.

Springer, 1993, pp. 65–81.

159

BIBLIOGRAPHY

[35] Fourati, F., Bhiri, M. T., and Robbana, R. Verification and valida-

tion of PDDL descriptions using Event-B formal method. In 2016 5th Inter-

national Conference on Multimedia Computing and Systems (ICMCS) (Sept

2016), pp. 770–776.

[36] Fox, M., and Long, D. PDDL+: Modeling continuous time dependent

effects. In Proceedings of the 3rd International NASA Workshop on Planning

and Scheduling for Space (2002), vol. 4, p. 34.

[37] Fox, M., and Long, D. PDDL2. 1: An extension to PDDL for expressing

temporal planning domains. Journal of Artificial Intelligence 20 (2003), 61–

124.

[38] Gerevini, A., and Long, D. Plan constraints and preferences in PDDL3.

Tech. rep., Technical Report 2005-08-07, Department of Electronics for Au-

tomation, 2005.

[39] Ghallab, M., Nau, D., and Traverso, P. Automated Planning: theory

and practice. Elsevier, 2004.

[40] Gomes, C. P., Kautz, H., Sabharwal, A., and Selman, B. Satisfia-

bility solvers. Foundations of Artificial Intelligence 3 (2008), 89–134.

[41] Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Gar-

illot, F., Roux, S. L., Mahboubi, A., O’Connor, R., Biha, S. O.,

Pasca, I., Rideau, L., Solovyev, A., Tassi, E., and Théry, L. A

machine-checked proof of the odd order theorem. In Interactive Theorem

Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-

26, 2013. Proceedings (2013), S. Blazy, C. Paulin-Mohring, and D. Pichardie,

Eds., vol. 7998 of Lecture Notes in Computer Science, Springer, pp. 163–179.

[42] Gonthier, G., et al. Formal proof–the four-color theorem. Notices of the

AMS 55, 11 (2008), 1382–1393.

[43] Green, C. Theorem proving by resolution as a basis for question-answering

systems. Machine intelligence 4 (1969), 183–205.

160

BIBLIOGRAPHY

[44] Hales, T. C. A proof of the Kepler conjecture. Annals of mathematics

(2005), 1065–1185.

[45] Hanks, S., and McDermott, D. Nonmonotonic logic and temporal pro-

jection. Artificial intelligence 33, 3 (1987), 379–412.

[46] Haslum, P. Inval. https://github.com/patrikhaslum/INVAL, 2022.

[47] Havelund, K., Groce, A., Holzmann, G., Joshi, R., and Smith, M.

Automated testing of planning models. In International Workshop on Model

Checking and Artificial Intelligence (2008), Springer, pp. 90–105.

[48] Hayes, P. J. The frame problem and related problems in artificial intelli-

gence. In Readings in Artificial Intelligence. Elsevier, 1981, pp. 223–230.

[49] Helmert, M. Concise finite-domain representations for PDDL planning

tasks. Artificial Intelligence 173, 5-6 (2009), 503–535.

[50] Hendler, J. A., Tate, A., and Drummond, M. AI planning: Systems

and techniques. AI magazine 11, 2 (1990), 61–61.

[51] Hill, A., Daggitt, M., Farka, F., Komendantskaya, K., and

Schwaab, C. DOI of Agda code for thesis. https://doi.org/10.5281/

zenodo.7953083, 2023.

[52] Hill, A., Komendantskaya, E., Daggitt, M. L., and Petrick, R.

P. A. Actions you can handle: dependent types for AI plans. In TyDe 2021:

Proceedings of the 6th ACM SIGPLAN International Workshop on Type-

Driven Development, Virtual Event, Korea, 22 August 2021 (2021), H. Ko

and D. Orchard, Eds., ACM, pp. 1–13.

[53] Hill, A., Komendantskaya, E., and Petrick, R. P. A. Proof-Carrying

Plans: a Resource Logic for AI planning. In PPDP ’20: 22nd International

Symposium on Principles and Practice of Declarative Programming, Bologna,

Italy, 9-10 September, 2020 (2020), ACM, pp. 14:1–14:13.

[54] Hoare, C. A. R. An axiomatic basis for computer programming. Commu-

nications of the ACM 12, 10 (1969), 576–580.

161

https://github.com/patrikhaslum/INVAL
https://doi.org/10.5281/zenodo.7953083
https://doi.org/10.5281/zenodo.7953083

BIBLIOGRAPHY

[55] Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction to

automata theory, languages, and computation. Acm Sigact News 32, 1 (2001),

60–65.

[56] Howard, W. A. The formulae-as-types notion of construction. To HB Curry:

essays on combinatory logic, lambda calculus and formalism 44 (1980), 479–

490.

[57] Howey, R., Long, D., and Fox, M. VAL: Automatic plan validation,

continuous effects and mixed initiative planning using PDDL. In 16th IEEE

International Conference on Tools with Artificial Intelligence (2004), pp. 294–

301.

[58] Ishtiaq, S. S., and O’Hearn, P. W. BI as an assertion language for

mutable data structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages (2001), pp. 14–26.

[59] Jacopin, E. Classical AI planning as theorem proving: The case of a frag-

ment of linear logic. In AAAI Fall Symposium on Automated Deduction in

Nonstandard Logics (1993), AAAI Press Publications Palo Alto, CA, pp. 62–

66.

[60] Kahn, G. Natural semantics. In Annual symposium on theoretical aspects of

computer science (1987), Springer, pp. 22–39.

[61] Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer,

M. J. Reluplex: An efficient SMT solver for verifying deep neural networks.

In International conference on computer aided verification (2017), Springer,

pp. 97–117.

[62] Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C., Lim,

R., Shah, P., Thakoor, S., Wu, H., Zeljic, A., Dill, D. L., Kochen-

derfer, M. J., and Barrett, C. W. The marabou framework for verifi-

cation and analysis of deep neural networks. In Computer Aided Verification -

31st International Conference, CAV 2019, New York City, NY, USA, July 15-

18, 2019, Proceedings, Part I (2019), I. Dillig and S. Tasiran, Eds., vol. 11561

of Lecture Notes in Computer Science, Springer, pp. 443–452.

162

BIBLIOGRAPHY

[63] Kautz, H., and Selman, B. Blackbox: A new approach to the application

of theorem proving to problem solving. In AIPS98 workshop on planning as

combinatorial search (1998), vol. 58260, sn, pp. 58–60.

[64] Kautz, H. A., and Selman, B. Planning as satisfiability. In 10th European

Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7,

1992. Proceedings (1992), B. Neumann, Ed., John Wiley and Sons, pp. 359–

363.

[65] Khatib, L., Muscettola, N., and Havelund, K. Verification of plan

models using UPPAAL. In International Workshop on Formal Approaches to

Agent-Based Systems (2000), Springer, pp. 114–122.

[66] Kokke, W. Schmitty the solver. https://github.com/wenkokke/schmitty,

2022.

[67] Leroy, X., et al. The CompCert verified compiler. Documentation and

user’s manual. INRIA Paris-Rocquencourt 53 (2012).

[68] Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., and Scherl,

R. B. GOLOG: A logic programming language for dynamic domains. The

Journal of Logic Programming 31, 1 (1997), 59–83.

[69] Lifschitz, V. On the semantics of STRIPS. In Reasoning about Actions and

Plans: Proceedings of the 1986 Workshop (1987), pp. 1–9.

[70] Lin, F. Situation calculus. Foundations of Artificial Intelligence 3 (2008),

649–669.

[71] Lloyd, J. W. Foundations of logic programming. Springer Science & Business

Media, 2012.

[72] Long, D., Fox, M., and Howey, R. Planning domains and plans: valida-

tion, verification and analysis. In Proc. Workshop on V&V of Planning and

Scheduling Systems (2009).

[73] Martin-Löf, P. An intuitionistic theory of types. Twenty-five years of

constructive type theory 36 (1972), 127–172.

163

https://github.com/wenkokke/schmitty

BIBLIOGRAPHY

[74] Martin-Löf, P. Constructive mathematics and computer programming. In

Studies in Logic and the Foundations of Mathematics, vol. 104. Elsevier, 1982,

pp. 153–175.

[75] McCarthy, J. Situations, actions, and causal laws. Tech. rep., Stanford

University CA department of Computer Science, 1963.

[76] McCarthy, J. Applications of circumscription to formalizing common-sense

knowledge. Artificial intelligence 28, 1 (1986), 89–116.

[77] McCarthy, J., and Hayes, P. J. Some philosophical problems from the

standpoint of artificial intelligence. In Machine Intelligence 4, B. Meltzer and

D. Michie, Eds. Edinburgh University Press, 1969, pp. 463–502.

[78] McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A.,

Veloso, M., Weld, D., and Wilkins, D. PDDL – The Planning Domain

Definition Language (Version 1. 2). Technical Report CVC TR-98-003/DCS

TR-1165, Yale Center for Computational Vision and Control, 1998.

[79] Moura, L. d., and Bjørner, N. Z3: An efficient SMT solver. In Interna-

tional conference on Tools and Algorithms for the Construction and Analysis

of Systems (2008), Springer, pp. 337–340.

[80] Muise, C. Planning. domains. ICAPS system demonstration (2016), 242–250.

[81] Nanevski, A. Separation logic and concurrency. Oregon programming lan-

guages summer school (2016).

[82] Nanevski, A., Banerjee, A., and Garg, D. Dependent type theory for

verification of information flow and access control policies. ACM Transactions

on Programming Languages and Systems (TOPLAS) 35, 2 (2013), 1–41.

[83] Nanevski, A., Morrisett, G., and Birkedal, L. Polymorphism and

separation in Hoare type theory. In Proceedings of the eleventh ACM SIG-

PLAN international conference on Functional programming (2006), pp. 62–73.

[84] Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., and

Walsh, T. Verifying properties of binarized deep neural networks. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence (2018), vol. 32.

164

BIBLIOGRAPHY

[85] Nau, D. S. Current trends in automated planning. AI magazine 28, 4 (2007),

43–43.

[86] Necula, G. C. Proof-carrying code. In Encyclopedia of Cryptography and

Security, 2nd Ed. Association for Computing Machinery, 2011, pp. 984–986.

[87] Norell, U. Towards a practical programming language based on dependent

type theory, vol. 32.

[88] Norell, U. Agda prelude. https://github.com/UlfNorell/

agda-prelude, 2022.

[89] O’Hearn, P. W., and Pym, D. J. The logic of bunched implications.

Bulletin of Symbolic Logic 5, 2 (1999), 215–244.

[90] O’neil, C. Weapons of math destruction: How big data increases inequality

and threatens democracy. Crown, 2016.

[91] Ong, L. Higher-order model checking: An overview. In 30th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto,

Japan, July 6-10, 2015 (2015), pp. 1–15.

[92] O’Hearn, P., Reynolds, J., and Yang, H. Local reasoning about pro-

grams that alter data structures. In International Workshop on Computer

Science Logic (2001), Springer, pp. 1–19.

[93] O’hearn, P. W. Resources, concurrency, and local reasoning. Theoretical

computer science 375, 1-3 (2007), 271–307.

[94] Paulson, L. C. Isabelle: A generic theorem prover, vol. 828. Springer Science

& Business Media, 1994.

[95] Pednault, E. P. ADL: exploring the middle ground between STRIPS and

the situation calculus. In Proceedings of the first international conference on

Principles of knowledge representation and reasoning (1989), pp. 324–332.

[96] Pednault, E. P. ADL and the state-transition model of action. Journal of

logic and computation 4, 5 (1994), 467–512.

165

https://github.com/UlfNorell/agda-prelude
https://github.com/UlfNorell/agda-prelude

BIBLIOGRAPHY

[97] Penberthy, J. S., and Weld, D. S. UCPOP: A sound, complete, partial

order planner for ADL. In Proceedings of the 3rd International Conference

on Principles of Knowledge Representation and Reasoning (KR’92). Cam-

bridge, MA, USA, October 25-29, 1992 (1992), B. Nebel, C. Rich, and W. R.

Swartout, Eds., Morgan Kaufmann, pp. 103–114.

[98] Penix, J., Pecheur, C., and Havelund, K. Using model checking to

validate AI planner domain models. In Proceedings of the 23rd Annual Software

Engineering Workshop, NASA Goddard (1998).

[99] Petrick, R. P. P2: A baseline approach to planning with control structures

and programs. In Workshop on Generalized Planning: Macros, Loops, Domain

Control (ICAPS-09) (2009), pp. 59–64.

[100] Plotkin, G. D. A structural approach to operational semantics. Aarhus

university, 1981.

[101] Polakow, J., and Pfenning, F. Ordered linear logic and applications.

Carnegie Mellon University Pittsburgh, 2001.

[102] Polikarpova, N., and Sergey, I. Structuring the synthesis of heap-

manipulating programs. Proceedings of the ACM on Programming Languages

3, POPL (2019), 72.

[103] Potassco. PDDL benchmark instances. https://github.com/potassco/pddl-

instances, 2017.

[104] Pulina, L., and Tacchella, A. Challenging SMT solvers to verify neural

networks. AI Communications 25, 2 (2012), 117–135.

[105] Pym, D. Resource semantics: logic as a modelling technology. ACM SIGLOG

News 6, 2 (2019), 5–41.

[106] Raimondi, F., Pecheur, C., and Brat, G. PDVer, a tool to verify PDDL

planning domains. In ICAPS’09 Workshop on Verification and Validation of

Planning and Scheduling Systems, September 20, 2009, Thessaloniki, Greece

(2009).

166

BIBLIOGRAPHY

[107] Reiter, R. The frame problem in the situation calculus: A simple solution

(sometimes) and a completeness result for goal regression. In Artificial and

Mathematical Theory of Computation, Papers in Honor of John McCarthy on

the occasion of his sixty-fourth birthday (1991), V. Lifschitz, Ed., Academic

Press / Elsevier, pp. 359–380.

[108] Reiter, R. Knowledge in action: logical foundations for specifying and im-

plementing dynamical systems. MIT press, 2001.

[109] Reynolds, J. C. Separation logic: A logic for shared mutable data struc-

tures. In Proceedings 17th Annual IEEE Symposium on Logic in Computer

Science (2002), IEEE, pp. 55–74.

[110] Rizaldi, A., Immler, F., Schürmann, B., and Althoff, M. A formally

verified motion planner for autonomous vehicles. In International Sympo-

sium on Automated Technology for Verification and Analysis (2018), Springer,

pp. 75–90.

[111] Scala, E., Ramirez, M., Haslum, P., and Thiébaux, S. Numeric

planning with disjunctive global constraints via SMT. In Twenty-Sixth Inter-

national Conference on Automated Planning and Scheduling (2016).

[112] Schack-Nielsen, A., and Schürmann, C. Celf - A logical framework for

deductive and concurrent systems (system description). In Automated Rea-

soning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia,

August 12-15, 2008, Proceedings (2008), A. Armando, P. Baumgartner, and

G. Dowek, Eds., vol. 5195 of Lecture Notes in Computer Science, Springer,

pp. 320–326.

[113] Schmidt, D. A. Denotational semantics: a methodology for language devel-

opment. William C. Brown Publishers, 1986.

[114] Schwaab, C., Komendantskaya, E., Hill, A., Farka, F., Petrick,

R. P. A., Wells, J. B., and Hammond, K. Proof-Carrying Plans. In

Practical Aspects of Declarative Languages - 21th International Symposium,

PADL 2019, Lisbon, Portugal, January 14-15, 2019, Proceedings (2019), J. J.

167

BIBLIOGRAPHY

Alferes and M. Johansson, Eds., vol. 11372 of Lecture Notes in Computer

Science, Springer, pp. 204–220.

[115] Setzer, A. Modelling bitcoin in agda. CoRR abs/1804.06398 (2018).

[116] Shoukry, Y., Nuzzo, P., Saha, I., Sangiovanni-Vincentelli, A. L.,

Seshia, S. A., Pappas, G. J., and Tasbuada, P. Scalable lazy SMT-based

motion planning. In 2016 IEEE 55th Conference on Decision and Control

(CDC) (2016), IEEE, pp. 6683–6688.

[117] Smith, M. H., Holzmann, G. J., Cucullu III, G. C., and Smith,

B. D. Model checking artificial intelligence based planners: Even the best

laid plans must be verified.

[118] Sorensen, M. H., and Urzyczyn, P. Lectures on the Curry-Howard Iso-

morphism, vol. 149 of Studies in Logic. Elsevier Science, 2006.

[119] Steedman, M. Plans, affordances, and combinatory grammar. Linguistics

and Philosophy 25, 5-6 (2002), 723–753.

[120] van Atten, M. The Development of Intuitionistic Logic. In The Stanford

Encyclopedia of Philosophy, E. N. Zalta, Ed., Summer 2022 ed. Metaphysics

Research Lab, Stanford University, 2022.

[121] Vazou, N., Seidel, E. L., Jhala, R., Vytiniotis, D., and Peyton-

Jones, S. Refinement types for Haskell. In Proceedings of the 19th ACM SIG-

PLAN international conference on Functional programming (2014), pp. 269–

282.

[122] Wadler, P. Propositions as types. Commun. ACM 58, 12 (2015), 75–84.

[123] Wadler, P., Kokke, W., and Siek, J. G. Programming Language Foun-

dations in Agda. July 2020.

[124] Waldinger, R. J. Achieving several goals simultaneously. Machine Intelli-

gence 8 (1977).

168

BIBLIOGRAPHY

[125] Walt, P. v. d., and Swierstra, W. Engineering proof by reflection

in Agda. In Symposium on Implementation and Application of Functional

Languages (2012), Springer, pp. 157–173.

[126] Wilkins, D. E. Practical planning: extending the classical AI planning

paradigm. Elsevier, 2014.

[127] Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., and Zhu, J.

Explainable AI: A brief survey on history, research areas, approaches and

challenges. In CCF international conference on natural language processing

and Chinese computing (2019), Springer, pp. 563–574.

[128] Yu, D., Hamid, N. A., and Shao, Z. Building certified libraries for PCC:

Dynamic storage allocation. Science of Computer Programming 50, 1-3 (2004),

101–127.

[129] Zarrieß, B., and Claßen, J. Decidable verification of GOLOG programs

over non-local effect actions. In Proceedings of the Thirtieth AAAI Confer-

ence on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA.

(2016), D. Schuurmans and M. P. Wellman, Eds., AAAI Press, pp. 1109–1115.

169

Appendix A

Inconsistency Example

-- A simple example that demonstrates violation of the

-- implicit consistency assumpion

data Predicate : Set where

handEmpty : Predicate

-- There is only one, naughty, action, which violates

-- the implicit consistency assumption

data Action : Set where

naughty : Action

-- The naughty action does not have any preconditions and

-- introduces an atomic predicate and its negation as

-- postconditions

Γ : Context

Γ (naughty) = record {

preconditions = [] ;

effects = (+ , handEmpty) :: (- , handEmpty) :: []}

-- Despite the obvious inconsistency,

-- the following plan has a derivation that type checks:

plan = naughty :: halt

170

Appendix A: Inconsistency Example

Q : Form

Q = atom handEmpty ∧ ¬ handEmpty

Derivation : Γ ` [] (Q ↓[+] []) : plan

Derivation = seq (λ { ()}) (halt λ { (here px)

� there (here px) ; (there (here px)) � here px})

-- But, at the same time, action naughty

-- invalidates consistency of entire development

-- (given the implicit consistency assumption):

postulate

implicit-consistency-assumption : (z : Polarity) (R : Predicate)

� ∀ S � (z , R) ∈ S � (neg z , R) /∈ S

prop-inconsistent : ⊥

prop-inconsistent =

implicit-consistency-assumption + handEmpty (effects (Γ naughty))

(here refl) (there (here refl))

171

Appendix B

PDDL Examples

This appendix contains the PDDL domain and problem definitions for the test

examples shown in Table 5.2 and Table 6.1. All definitions were taken from a

benchmark repository [5].

B.1 Blocks World

B.1.1 Domain Definition

172

Appendix B: PDDL Examples

(define (domain blocksworld)

(:requirements

:strips

)

(:predicates

(handEmpty)

(holding ?x)

(onTable ?x)

(on ?x ?y)

(clear ?x))

(:action pickup_from_table

:parameters

(?x)

:precondition

(and

(handEmpty)

(onTable ?x)

(clear ?x)

)

:effect

(and

(not (handEmpty))

(not (onTable ?x))

(holding ?x)

))

(:action putdown_on_table

:parameters

(?x)

:precondition

(and

(holding ?x)

)

:effect

(and

(not (holding ?x))

(onTable ?x)

(handEmpty)

))

(:action pickup_from_stack

:parameters

(?x ?y)

:precondition

(and

(on ?x ?y)

(clear ?x)

(handEmpty)

)

:effect

(and

(not (on ?x ?y))

(not (handEmpty))

(holding ?x)

(clear ?y)

))

(:action putdown_on_stack

:parameters

(?x ?y)

:precondition

(and

(holding ?x)

(clear ?y)

)

:effect

(and

(not (holding ?x))

(not (clear ?y))

(on ?x ?y)

(handEmpty)

))

)

173

Appendix B: PDDL Examples

B.1.2 Problem Definitions

Problem A

(define (problem blocksworld-problem1)

(:domain blocksworld)

(:objects a b c d e f1)

(:init (onTable a) (onTable b) (onTable c) (onTable d)

(onTable e) (onTable f1) (clear a) (clear b)

(clear c) (clear d) (clear e) (clear f1)

(handEmpty))

(:goal (and (on a b) (on b c) (on c d) (on d e) (on e f1)))

)

Problem B

(define (problem BLOCKS-7-0)

(:domain blocksworld)

(:objects C F A B G D E)

(:INIT (CLEAR E) (ONTABLE D) (ON E G) (ON G B) (ON B A) (ON A F) (ON F C)

(ON C D) (HANDEMPTY))

(:goal (AND (ON A G) (ON G D) (ON D B) (ON B C) (ON C F) (ON F E)))

)

Problem C

(define (problem BLOCKS-11-0)

(:domain blocksworld)

(:objects F A K H G E D I C J B)

(:INIT (CLEAR B) (CLEAR J) (CLEAR C) (ONTABLE I) (ONTABLE D) (ONTABLE E)

(ON B G) (ON G H) (ON H K) (ON K A) (ON A F) (ON F I) (ON J D) (ON C E)

(HANDEMPTY))

(:goal (AND (ON A J) (ON J D) (ON D B) (ON B H) (ON H K) (ON K I) (ON I F)

(ON F E) (ON E G) (ON G C)))

)

174

Appendix B: PDDL Examples

B.2 Logistics

B.2.1 Domain Definition

(define (domain logistics)

(:requirements :strips)

(:predicates (package ?obj)

(truck ?truck1)

(airplane ?airplane1)

(airport ?airport)

(location ?loc)

(in-city ?obj ?city1)

(city ?city1)

(at ?obj ?loc)

(isin ?obj ?obj))

(:action load-truck

:parameters

(?obj

?truck1

?loc)

:precondition

(and (package ?obj) (truck ?truck1) (location ?loc)

(at ?truck1 ?loc) (at ?obj ?loc))

:effect

(and (not (at ?obj ?loc)) (isin ?obj ?truck1)))

(:action load-airplane

:parameters

(?obj

?airplane1

?loc)

:precondition

(and (package ?obj) (airplane ?airplane1) (location ?loc)

(at ?obj ?loc) (at ?airplane1 ?loc))

:effect

(and (not (at ?obj ?loc)) (isin ?obj ?airplane1)))

175

Appendix B: PDDL Examples

(:action unload-truck

:parameters

(?obj

?truck1

?loc)

:precondition

(and (package ?obj) (truck ?truck1) (location ?loc)

(at ?truck1 ?loc) (isin ?obj ?truck1))

:effect

(and (not (isin ?obj ?truck1)) (at ?obj ?loc)))

(:action unload-airplane

:parameters

(?obj

?airplane1

?loc)

:precondition

(and (package ?obj) (airplane ?airplane1) (location ?loc)

(isin ?obj ?airplane1) (at ?airplane1 ?loc))

:effect

(and (not (isin ?obj ?airplane1)) (at ?obj ?loc)))

(:action drive-truck

:parameters

(?truck1

?loc-from

?loc-to

?city1)

:precondition

(and (truck ?truck1) (location ?loc-from)

(location ?loc-to) (city ?city1)

(at ?truck1 ?loc-from)

(in-city ?loc-from ?city1)

(in-city ?loc-to ?city1))

:effect

(and (not (at ?truck1 ?loc-from)) (at ?truck1 ?loc-to)))

(:action fly-airplane

:parameters

(?airplane1

?loc-from

?loc-to)

:precondition

(and (airplane ?airplane1) (airport ?loc-from) (airport ?loc-to)

(at ?airplane1 ?loc-from))

:effect

(and (not (at ?airplane1 ?loc-from)) (at ?airplane1 ?loc-to)))

)

176

Appendix B: PDDL Examples

B.2.2 Problem Definitions

Problem A

(define (problem logistics-4-0)

(:domain logistics)

(:objects apn1 apt2 pos2 apt1 pos1 cit2 cit1 tru2 tru1 obj23 obj22 obj21

obj13 obj12 obj11)

(:init (package obj11) (package obj12) (package obj13) (package obj21)

(package obj22) (package obj23) (truck tru1) (truck tru2) (city cit1)

(city cit2) (location pos1) (location apt1) (location pos2) (location apt2)

(airport apt1) (airport apt2) (airplane apn1) (at apn1 apt2) (at tru1 pos1)

(at obj11 pos1) (at obj12 pos1) (at obj13 pos1) (at tru2 pos2)

(at obj21 pos2) (at obj22 pos2) (at obj23 pos2) (in-city pos1 cit1)

(in-city apt1 cit1) (in-city pos2 cit2) (in-city apt2 cit2))

(:goal (and (at obj11 apt1) (at obj23 pos1) (at obj13 apt1) (at obj21 pos1)))

)

Problem B

(define (problem logistics-7-0)

(:domain logistics)

(:objects apn1 apt3 pos3 apt2 pos2 apt1 pos1 cit3 cit2 cit1

tru3 tru2 tru1 obj33 obj32 obj31 obj23 obj22 obj21

obj13 obj12 obj11)

(:init (package obj11) (package obj12) (package obj13) (package obj21)

(package obj22) (package obj23) (package obj31) (package obj32)

(package obj33) (truck tru1) (truck tru2) (truck tru3) (city cit1)

(city cit2) (city cit3) (location pos1) (location apt1) (location pos2)

(location apt2) (location pos3) (location apt3) (airport apt1)

(airport apt2) (airport apt3) (airplane apn1) (at apn1 apt1) (at tru1 pos1)

(at obj11 pos1) (at obj12 pos1) (at obj13 pos1) (at tru2 pos2)

(at obj21 pos2) (at obj22 pos2) (at obj23 pos2) (at tru3 pos3)

(at obj31 pos3) (at obj32 pos3) (at obj33 pos3) (in-city pos1 cit1)

(in-city apt1 cit1) (in-city pos2 cit2) (in-city apt2 cit2)

(in-city pos3 cit3) (in-city apt3 cit3))

177

Appendix B: PDDL Examples

(:goal (and (at obj22 pos2) (at obj33 apt1) (at obj12 pos2) (at obj13 apt3)

(at obj31 apt2) (at obj23 apt1) (at obj32 pos1)))

)

Problem C

(define (problem logistics-11-0)

(:domain logistics)

(:objects apn1 apt4 pos4 apt3 pos3 apt2 pos2 apt1 pos1 cit4 cit3 cit2

cit1 tru4 tru3 tru2 tru1 obj43 obj42 obj41 obj33 obj32 obj31

obj23 obj22 obj21 obj13 obj12 obj11)

(:init (package obj11) (package obj12) (package obj13) (package obj21)

(package obj22) (package obj23) (package obj31) (package obj32)

(package obj33) (package obj41) (package obj42) (package obj43)

(truck tru1) (truck tru2) (truck tru3) (truck tru4) (city cit1) (city cit2)

(city cit3) (city cit4)(location pos1) (location apt1) (location pos2)

(location apt2) (location pos3) (location apt3) (location pos4)

(location apt4) (airport apt1) (airport apt2) (airport apt3) (airport apt4)

(airplane apn1) (at apn1 apt3) (at tru1 pos1) (at obj11 pos1) (at obj12 pos1)

(at obj13 pos1) (at tru2 pos2) (at obj21 pos2) (at obj22 pos2)

(at obj23 pos2) (at tru3 pos3) (at obj31 pos3) (at obj32 pos3)

(at obj33 pos3) (at tru4 pos4) (at obj41 pos4) (at obj42 pos4)

(at obj43 pos4) (in-city pos1 cit1) (in-city apt1 cit1) (in-city pos2 cit2)

(in-city apt2 cit2) (in-city pos3 cit3) (in-city apt3 cit3)

(in-city pos4 cit4) (in-city apt4 cit4))

(:goal (and (at obj33 apt1) (at obj22 apt2) (at obj43 pos4) (at obj11 pos1)

(at obj23 pos1) (at obj31 pos1) (at obj12 apt2) (at obj13 pos4)

(at obj42 apt2) (at obj21 pos4) (at obj41 pos4)))

)

B.3 Satellite

B.3.1 Domain Definition

178

Appendix B: PDDL Examples

(define (domain satellite)

(:requirements :equality :strips)

(:predicates

(on_board ?i ?s) (supports ?i ?m) (pointing ?s ?d) (power_avail ?s)

(power_on ?i) (calibrated ?i) (have_image ?d ?m)

(calibration_target ?i ?d)(satellite ?x) (direction ?x)

(instrument ?x) (mode ?x))

(:action turn_to

:parameters (?s ?d_new ?d_prev)

:precondition

(and (satellite ?s) (direction ?d_new) (direction ?d_prev)

(pointing ?s ?d_prev))

:effect

(and (pointing ?s ?d_new) (not (pointing ?s ?d_prev))))

(:action switch_on

:parameters (?i ?s)

:precondition

(and (instrument ?i) (satellite ?s) (on_board ?i ?s)

(power_avail ?s))

:effect

(and (power_on ?i) (not (calibrated ?i)) (not (power_avail ?s))))

(:action switch_off

:parameters (?i ?s)

:precondition

(and (instrument ?i) (satellite ?s) (on_board ?i ?s) (power_on ?i))

:effect

(and (power_avail ?s) (not (power_on ?i))))

(:action calibrate

:parameters (?s ?i ?d)

:precondition

(and (satellite ?s) (instrument ?i) (direction ?d) (on_board ?i ?s)

(calibration_target ?i ?d) (pointing ?s ?d) (power_on ?i))

:effect

(calibrated ?i))

(:action take_image

:parameters (?s ?d ?i ?m)

:precondition

(and (satellite ?s) (direction ?d) (instrument ?i) (mode ?m)

(calibrated ?i) (on_board ?i ?s) (supports ?i ?m)

(power_on ?i) (pointing ?s ?d))

:effect

(have_image ?d ?m)))

179

Appendix B: PDDL Examples

B.3.2 Problem Definitions

Problem A

(define (problem strips-sat-x-1)

(:domain satellite)

(:objects

satellite0

instrument0

image1

spectrograph2

thermograph0

Star0

GroundStation1

GroundStation2

Phenomenon3

Phenomenon4

Star5

Phenomenon6

)

(:init

(satellite satellite0)

(instrument instrument0)

(supports instrument0 thermograph0)

(calibration_target instrument0 GroundStation2)

(on_board instrument0 satellite0)

(power_avail satellite0)

(pointing satellite0 Phenomenon6)

(mode image1)

(mode spectrograph2)

(mode thermograph0)

(direction Star0)

(direction GroundStation1)

(direction GroundStation2)

(direction Phenomenon3)

(direction Phenomenon4)

180

Appendix B: PDDL Examples

(direction Star5)

(direction Phenomenon6)

)

(:goal (and

(have_image Phenomenon4 thermograph0)

(have_image Star5 thermograph0)

(have_image Phenomenon6 thermograph0)

))

)

Problem B

(define (problem strips-sat-x-1)

(:domain satellite)

(:objects

satellite0

instrument0

satellite1

instrument1

instrument2

infrared0

infrared1

thermograph2

GroundStation1

Star0

Star2

Planet3

Star4

Planet5

Star6

Star7

Phenomenon8

Phenomenon9

)

(:init

181

Appendix B: PDDL Examples

(satellite satellite0)

(instrument instrument0)

(supports instrument0 thermograph2)

(supports instrument0 infrared0)

(calibration_target instrument0 Star0)

(on_board instrument0 satellite0)

(power_avail satellite0)

(pointing satellite0 Star6)

(satellite satellite1)

(instrument instrument1)

(supports instrument1 infrared0)

(supports instrument1 thermograph2)

(supports instrument1 infrared1)

(calibration_target instrument1 Star2)

(instrument instrument2)

(supports instrument2 thermograph2)

(supports instrument2 infrared1)

(calibration_target instrument2 Star2)

(on_board instrument1 satellite1)

(on_board instrument2 satellite1)

(power_avail satellite1)

(pointing satellite1 Star0)

(mode infrared0)

(mode infrared1)

(mode thermograph2)

(direction GroundStation1)

(direction Star0)

(direction Star2)

(direction Planet3)

(direction Star4)

(direction Planet5)

(direction Star6)

(direction Star7)

(direction Phenomenon8)

182

Appendix B: PDDL Examples

(direction Phenomenon9)

)

(:goal (and

(pointing satellite1 Planet5)

(have_image Planet3 infrared1)

(have_image Star4 infrared1)

(have_image Planet5 thermograph2)

(have_image Star6 infrared1)

(have_image Star7 infrared0)

(have_image Phenomenon8 thermograph2)

(have_image Phenomenon9 infrared0)

))

)

Problem C

(define (problem strips-sat-x-1)

(:domain satellite)

(:objects

satellite0

instrument0

satellite1

instrument1

instrument2

instrument3

satellite2

instrument4

instrument5

instrument6

satellite3

instrument7

satellite4

instrument8

thermograph2

image3

183

Appendix B: PDDL Examples

infrared1

spectrograph4

infrared0

Star1

Star4

Star0

GroundStation3

Star2

Star5

Planet6

Phenomenon7

Star8

Phenomenon9

Star10

Star11

Star12

Planet13

Planet14

Phenomenon15

Planet16

Star17

Star18

Planet19

)

(:init

(satellite satellite0)

(instrument instrument0)

(supports instrument0 spectrograph4)

(calibration_target instrument0 Star0)

(on_board instrument0 satellite0)

(power_avail satellite0)

(pointing satellite0 Star8)

(satellite satellite1)

(instrument instrument1)

184

Appendix B: PDDL Examples

(supports instrument1 infrared0)

(supports instrument1 infrared1)

(calibration_target instrument1 GroundStation3)

(instrument instrument2)

(supports instrument2 infrared1)

(supports instrument2 infrared0)

(calibration_target instrument2 Star2)

(instrument instrument3)

(supports instrument3 spectrograph4)

(supports instrument3 infrared1)

(supports instrument3 thermograph2)

(calibration_target instrument3 Star0)

(on_board instrument1 satellite1)

(on_board instrument2 satellite1)

(on_board instrument3 satellite1)

(power_avail satellite1)

(pointing satellite1 GroundStation3)

(satellite satellite2)

(instrument instrument4)

(supports instrument4 infrared1)

(supports instrument4 image3)

(supports instrument4 infrared0)

(calibration_target instrument4 Star2)

(instrument instrument5)

(supports instrument5 thermograph2)

(supports instrument5 spectrograph4)

(calibration_target instrument5 Star0)

(instrument instrument6)

(supports instrument6 infrared0)

(calibration_target instrument6 GroundStation3)

(on_board instrument4 satellite2)

(on_board instrument5 satellite2)

(on_board instrument6 satellite2)

(power_avail satellite2)

185

Appendix B: PDDL Examples

(pointing satellite2 Star4)

(satellite satellite3)

(instrument instrument7)

(supports instrument7 image3)

(calibration_target instrument7 Star2)

(on_board instrument7 satellite3)

(power_avail satellite3)

(pointing satellite3 Phenomenon9)

(satellite satellite4)

(instrument instrument8)

(supports instrument8 infrared0)

(supports instrument8 spectrograph4)

(supports instrument8 infrared1)

(calibration_target instrument8 Star2)

(on_board instrument8 satellite4)

(power_avail satellite4)

(pointing satellite4 Phenomenon9)

(mode thermograph2)

(mode image3)

(mode infrared1)

(mode spectrograph4)

(mode infrared0)

(direction Star1)

(direction Star4)

(direction Star0)

(direction GroundStation3)

(direction Star2)

(direction Star5)

(direction Planet6)

(direction Phenomenon7)

(direction Star8)

(direction Phenomenon9)

(direction Star10)

(direction Star11)

186

Appendix B: PDDL Examples

(direction Star12)

(direction Planet13)

(direction Planet14)

(direction Phenomenon15)

(direction Planet16)

(direction Star17)

(direction Star18)

(direction Planet19)

)

(:goal (and

(pointing satellite0 Phenomenon9)

(pointing satellite1 Star4)

(pointing satellite4 Star11)

(have_image Star5 image3)

(have_image Planet6 infrared1)

(have_image Phenomenon7 infrared1)

(have_image Star8 image3)

(have_image Star10 thermograph2)

(have_image Star11 infrared1)

(have_image Planet13 spectrograph4)

(have_image Planet14 thermograph2)

(have_image Phenomenon15 infrared0)

(have_image Planet16 image3)

(have_image Star17 infrared0)

))

)

B.4 MPrime

B.4.1 Domain Definition

187

Appendix B: PDDL Examples

(define (domain mystery-prime-strips)

(:requirements :negative-preconditions :equality)

(:predicates

(province ?x)

(planet ?x)

(food ?x)

(pleasure ?x)

(pain ?x)

(eats ?n1 ?n2)

(craves ?v ?n)

(fears ?c ?v)

(locale ?n ?a)

(harmony ?v ?s)

(attacks ?i ?j)

(orbits ?i ?j))

(:action overcome

:parameters (?c ?v ?n ?s1 ?s2)

:precondition (and (pain ?c)

(pleasure ?v)

(craves ?c ?n)

(craves ?v ?n)

(food ?n)

(harmony ?v ?s2)

(planet ?s2)

(orbits ?s1 ?s2)

(planet ?s1))

:effect (and (not (craves ?c ?n))

(fears ?c ?v)

(not (harmony ?v ?s2))

(harmony ?v ?s1)))

(:action feast

:parameters (?v ?n1 ?n2 ?l1 ?l2)

:precondition (and (craves ?v ?n1)

(food ?n1)

(pleasure ?v)

(eats ?n1 ?n2)

(food ?n2)

(locale ?n1 ?l2)

(attacks ?l1 ?l2))

:effect (and (not (craves ?v ?n1))

(craves ?v ?n2)

(not (locale ?n1 ?l2))

(locale ?n1 ?l1)))

188

Appendix B: PDDL Examples

(:action succumb

:parameters (?c ?v ?n ?s1 ?s2)

:precondition (and (fears ?c ?v)

(pain ?c)

(pleasure ?v)

(craves ?v ?n)

(food ?n)

(harmony ?v ?s1)

(orbits ?s1 ?s2))

:effect (and (not (fears ?c ?v))

(craves ?c ?n)

(not (harmony ?v ?s1))

(harmony ?v ?s2)))

(:action drink

:parameters (?n1 ?n2 ?l11 ?l12 ?l13 ?l21 ?l22)

:precondition (and (not (= ?n1 ?n2))

(locale ?n1 ?l11)

(attacks ?l12 ?l11)

(attacks ?l13 ?l12)

(locale ?n2 ?l21)

(attacks ?l21 ?l22))

:effect (and (not (locale ?n1 ?l11))

(locale ?n1 ?l12)

(not (locale ?n2 ?l21))

(locale ?n2 ?l22)))

)

B.4.2 Problem Definition

(define (problem strips-mprime-x-4)

(:domain mystery-prime-strips)

(:objects muffin ham scallion shrimp cherry grapefruit bacon

arugula scallop wurst aesthetics hangover dread sciatica

jealousy loneliness abrasion anger surrey quebec bosnia oregon

kentucky mars vulcan)

(:init (food muffin)

(food ham)

(food scallion)

(food shrimp)

(food cherry)

(food grapefruit)

(food bacon)

189

Appendix B: PDDL Examples

(food arugula)

(food scallop)

(food wurst)

(pleasure aesthetics)

(pain hangover)

(pain dread)

(pain sciatica)

(pain jealousy)

(pain loneliness)

(pain abrasion)

(pain anger)

(province surrey)

(province quebec)

(province bosnia)

(province oregon)

(province kentucky)

(planet mars)

(planet vulcan)

(locale cherry kentucky)

(eats ham muffin)

(eats cherry shrimp)

(locale scallion quebec)

(craves dread ham)

(eats cherry ham)

(eats grapefruit scallop)

(craves sciatica grapefruit)

(eats wurst bacon)

(eats muffin ham)

(attacks oregon kentucky)

(eats arugula scallop)

(eats arugula bacon)

(eats bacon wurst)

(eats arugula muffin)

(craves anger wurst)

190

Appendix B: PDDL Examples

(eats scallion shrimp)

(eats arugula wurst)

(locale arugula kentucky)

(eats grapefruit wurst)

(craves loneliness arugula)

(harmony aesthetics vulcan)

(eats muffin cherry)

(eats scallop arugula)

(locale muffin kentucky)

(locale grapefruit surrey)

(craves hangover muffin)

(eats cherry arugula)

(eats shrimp scallion)

(locale ham bosnia)

(eats muffin scallion)

(eats arugula cherry)

(eats scallop grapefruit)

(craves abrasion scallop)

(eats bacon arugula)

(eats ham cherry)

(eats cherry muffin)

(locale bacon quebec)

(locale wurst surrey)

(attacks bosnia oregon)

(locale scallop oregon)

(eats shrimp cherry)

(eats wurst arugula)

(attacks quebec bosnia)

(eats muffin arugula)

(attacks surrey quebec)

(craves aesthetics shrimp)

(eats scallion muffin)

(orbits mars vulcan)

(locale shrimp bosnia)

191

Appendix B: PDDL Examples

(craves jealousy bacon)

(eats wurst grapefruit))

(:goal (and (craves sciatica wurst))))

192

	Introduction
	Verification of AI Planning
	Type-Based Verification
	Thesis Aims
	Contributions
	Declaration of Authorship

	Background
	First-Order Logic
	The Planning Problem
	Planning Domain Definition Language (PDDL)
	PDDL Domain Definition
	PDDL Problem Definition
	Declarative Semantics for PDDL
	Solving a PDDL Planning Problem

	Curry-Howard Correspondence
	Agda Introduction
	Agda Basics
	Dependent Types

	Summary

	Literature Review
	Programming Languages
	Type-Based Verification
	Semantics
	Resource Logic
	Automated Theorem Proving

	AI Planning
	Logic for AI Planning
	PDDL Versions
	Embedding Planning in Other Logics
	Automated Theorem Provers as Planners
	Verification of AI Planning

	Programming Languages and AI Verification
	Formal Verification in AI
	Discussion - Formal Verification in AI Planning

	Planning Problems as Types STRIPS/Operational Approach
	Introduction
	Example: Proof-Carrying PDDL
	Planning Problems as Types
	Formal Language
	Operational Semantics, States and Types

	Plans as Proof Terms
	Inference Rules for Planning Problems
	Computational Characterisation of Plans: Soundness of Plan Execution

	Agda Formalisation
	Approach to Formalisation
	Verifying and Executing Plans in Agda

	Approach to State Consistency
	Discussion
	Related Work

	Resource Logic for AI Planning
	Introduction
	Results of this chapter by means of an example

	The PCPR Logic
	Syntax of PCPR Logic
	Subtyping (order on states)
	Evaluation of Constraint Lists
	PCPR Logic Rules

	Soundness of the PCPR Logic
	Lessons Learnt: Effects and States
	Agda Formalisation
	Automation
	PDDL to Agda Translation
	Automation of Derivation for PCPR Logic
	Automation of the Derivation for PCP Logic
	Evaluation of the Library Performance
	Extraction of Plans to Executable Code
	Applicability to PDDL Domains

	Discussion
	Related Work

	Dependently Typed Enrichment for AI Plan Verification
	Introduction
	Verifying Extrinsic Properties
	The Technical Approach

	PCPTEXT Logic - Validating Intrinsic Properties of a Plan
	Running Example for Extrinsic Verification
	PDDL to Agda Translation
	Verification and Evaluation of Plans
	Expressivity of PDDL

	Verifying Extrinsic Properties
	Example 1: Fuel Consumption
	Example 2: Fairness
	Concrete Fairness Example
	Example 3: Universal Properties

	Applications of Agda Library
	Discussion
	Related Work

	Conclusions
	Challenges
	Future Work
	Reflection
	Supporting Code

	Bibliography
	Inconsistency Example
	PDDL Examples
	Blocks World
	Domain Definition
	Problem Definitions

	Logistics
	Domain Definition
	Problem Definitions

	Satellite
	Domain Definition
	Problem Definitions

	MPrime
	Domain Definition
	Problem Definition

	cd616c18-dd0b-4cb2-93f2-3ce2e7c5549c.pdf
	Introduction
	Verification of AI Planning
	Type-Based Verification
	Thesis Aims
	Contributions
	Declaration of Authorship

	Background
	First-Order Logic
	The Planning Problem
	Planning Domain Definition Language (PDDL)
	PDDL Domain Definition
	PDDL Problem Definition
	Declarative Semantics for PDDL
	Solving a PDDL Planning Problem

	Curry-Howard Correspondence
	Agda Introduction
	Agda Basics
	Dependent Types

	Summary

	Literature Review
	Programming Languages
	Type-Based Verification
	Semantics
	Resource Logic
	Automated Theorem Proving

	AI Planning
	Logic for AI Planning
	PDDL Versions
	Embedding Planning in Other Logics
	Automated Theorem Provers as Planners
	Verification of AI Planning

	Programming Languages and AI Verification
	Formal Verification in AI
	Discussion - Formal Verification in AI Planning

	Planning Problems as Types STRIPS/Operational Approach
	Introduction
	Example: Proof-Carrying PDDL
	Planning Problems as Types
	Formal Language
	Operational Semantics, States and Types

	Plans as Proof Terms
	Inference Rules for Planning Problems
	Computational Characterisation of Plans: Soundness of Plan Execution

	Agda Formalisation
	Approach to Formalisation
	Verifying and Executing Plans in Agda

	Approach to State Consistency
	Discussion
	Related Work

	Resource Logic for AI Planning
	Introduction
	Results of this chapter by means of an example

	The PCPR Logic
	Syntax of PCPR Logic
	Subtyping (order on states)
	Evaluation of Constraint Lists
	PCPR Logic Rules

	Soundness of the PCPR Logic
	Lessons Learnt: Effects and States
	Agda Formalisation
	Automation
	PDDL to Agda Translation
	Automation of Derivation for PCPR Logic
	Automation of the Derivation for PCP Logic
	Evaluation of the Library Performance
	Extraction of Plans to Executable Code
	Applicability to PDDL Domains

	Discussion
	Related Work

	Dependently Typed Enrichment for AI Plan Verification
	Introduction
	Verifying Extrinsic Properties
	The Technical Approach

	PCPTEXT Logic - Validating Intrinsic Properties of a Plan
	Running Example for Extrinsic Verification
	PDDL to Agda Translation
	Verification and Evaluation of Plans
	Expressivity of PDDL

	Verifying Extrinsic Properties
	Example 1: Fuel Consumption
	Example 2: Fairness
	Concrete Fairness Example
	Example 3: Universal Properties

	Applications of Agda Library
	Discussion
	Related Work

	Conclusions
	Challenges
	Future Work
	Reflection
	Supporting Code

	Bibliography
	Inconsistency Example
	PDDL Examples
	Blocks World
	Domain Definition
	Problem Definitions

	Logistics
	Domain Definition
	Problem Definitions

	Satellite
	Domain Definition
	Problem Definitions

	MPrime
	Domain Definition
	Problem Definition

