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Abstract

Visual place recognition localises a query place image by comparing it against a ref-

erence database of known place images, a fundamental element of robotic navigation.

Recent work focuses on using deep learning to learn image descriptors for this task

that are invariant to appearance changes from dynamic lighting, weather and seasonal

conditions. However, these descriptors: require greater computational resources than

are available on robotic hardware, have few SLAM frameworks designed to utilise

them, return a relative comparison between image descriptors which is difficult to in-

terpret, cannot be used for appearance invariance in other navigation tasks such as

scene classification and are unable to identify query images from an open environ-

ment that have no true match in the reference database. This thesis addresses these

challenges with three contributions. The first is a lightweight visual place recognition

descriptor combined with a probabilistic filter to address a subset of the visual SLAM

problem in real-time. The second contribution combines visual place recognition and

scene classification for appearance invariant scene classification, which is extended

to recognise unknown scene classes when navigating an open environment. The fi-

nal contribution uses comparisons between query and reference image descriptors to

classify whether they result in a true, or false positive localisation and whether a true

match for the query image exists in the reference database.
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Malusà, John Hill, Christiane Sandbye, and David Ager for their support, hospitality

and tolerance of me. I’d also like to thank the Wetterhamns for their hospitality and

kindness. An honourable mention also goes to Wilhelmiina Toivo for telling me to

leave the first chapter’s contribution alone, without your advice I’d probably still be

writing this thesis.

I would like to thank my family for their support. In particular my Mum Helen,

and my Dad Matthew, who have given me a huge amount of emotional and financial

IX



X William Hugh Burrough Smith

support. I really could not have done this without you. Thank you for the phone calls

Mum, you turned up every day for me. I’d also like to thank both my maternal grand-

parents whose kindness and financial support have enabled me to get to this point.

A massive thanks also to my brother, Ted. Your phone calls, invitations to game and

endless funny stories have done more to brighten my days than you will ever know.

Finally, thank you to the Edinburgh Centre for Robotics and EPSRC for funding

my research and giving me the opportunity to be part of such a great program.

X



Contents

Abstract VII

I Introduction 3

1 Introduction 5

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 13

2.1 Visual SLAM (vSLAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Local Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Local Descriptors & 3D Data . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Deep Learning for vSLAM . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Off-the-Shelf CNN Descriptors . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Fine-tuned CNN Descriptors . . . . . . . . . . . . . . . . . . . . . 20

2.3 Visual Place Recognition (VPR) . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Local Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Global Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Off-the-Shelf CNN Descriptors . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Fine-tuned CNN Descriptors . . . . . . . . . . . . . . . . . . . . . 23

2.3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Visual Teach and Repeat (VT&R) . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Visual Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Image Sequence Matching . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

XI



XII William Hugh Burrough Smith

2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Mathematical Derivation . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.4 Visual Place Recognition . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Scene Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Deep Learning on Embedded Hardware . . . . . . . . . . . . . . . . . . . 36

2.7.1 Computational Requirements . . . . . . . . . . . . . . . . . . . . . 36

2.8 Open Set Recognition (OSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.1 Discriminative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.2 Generative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Contributions 43

3 Particle Filtering for Robust Real-Time Visual Teach and Repeat 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 TinyVPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 TinyVPR Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3 Real-Time Route Repetition . . . . . . . . . . . . . . . . . . . . . . 68

3.3.4 Large Visual Changes . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.5 Variable Repetition Speed . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 80

4 OpenSceneVLAD: Appearance Invariant, Open Set Scene Classification 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Scene Class Labelling . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 SceneVLAD: Appearance Invariant Scene Classification . . . . . 89

XII



Visual Place Recognition for Improved Open and Uncertain Navigation XIII

4.2.3 OpenSceneVLAD: Open Set Appearance Invariant Scene Classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 SceneVLAD: Appearance Invariant Scene Classification . . . . . 97

4.3.2 OpenSceneVLAD: Open Set Appearance Invariant Scene Classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 112

5 Descriptor Comparison Classification for Open Set Recognition and Out-

come Classification 115

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.1 Investigation & Intuition . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1.3 Descriptor Comparison Classification . . . . . . . . . . . . . . . . 130

5.1.4 Supervised Contrastive Loss . . . . . . . . . . . . . . . . . . . . . 132

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.2 Outcome Classification . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.3 Open Set Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 151

III Conclusions 153

6 Conclusion 155

6.1 Contributions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.1 Particle Filtering for Robust Real-Time Visual Teach and Repeat . 155

6.1.2 OpenSceneVLAD: Appearance Invariant, Open Set Scene Clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.1.3 Descriptor Comparison Classification for Open Set Recognition

and Outcome Classification . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

XIII



XIV William Hugh Burrough Smith

IV Appendix 159

A Source Code and Dataset 161

A.1 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1.1 Edinburgh Visual Navigation and Scene Classification Dataset . . 161

A.1.2 Nordland and Oxford Visual Navigation and Scene Classifica-

tion Dataset Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

XIV



List of Figures

1.1 Particle Filters for Visual Teach and Repeat . . . . . . . . . . . . . . . . . 8

1.2 Introducing Appearance Variation in Scene Classes . . . . . . . . . . . . 9

1.3 Introducing Outcome Classification . . . . . . . . . . . . . . . . . . . . . 10

1.4 Introducing Open Set Recognition . . . . . . . . . . . . . . . . . . . . . . 11

2.1 ORB-SLAM2 failure example . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 ORB-SLAM3 system components . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Overview of VPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Contrastive loss examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 NetVLAD Architecture Diagram . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 VT&R pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 OPR Example Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 VPR with a Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Scene Class Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Intra-Class Splitting for Open Set Recognition . . . . . . . . . . . . . . . 39

3.1 Reference Route Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Example Of Variable Speed Route Repetition . . . . . . . . . . . . . . . . 47

3.3 Examples Of Large Visual Changes . . . . . . . . . . . . . . . . . . . . . 47

3.4 Particle Filter and TinyVPR Descriptor vs. OSS2 and OPR . . . . . . . . . 48

3.5 Reference Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 TinyVPR Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 TinyVPR Siamese Network Training Configuration . . . . . . . . . . . . 53

3.8 Test Route Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Specific Route Traversal Variations . . . . . . . . . . . . . . . . . . . . . . 63

3.10 OSS2 Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 64

XV



XVI William Hugh Burrough Smith

3.11 OSS2 Comparison Plot Processing . . . . . . . . . . . . . . . . . . . . . . 64

3.12 OPR HOG vs. CNN Descriptors For VT&R . . . . . . . . . . . . . . . . . 65

3.13 TinyVPR Descriptor Comparison Sample . . . . . . . . . . . . . . . . . . 71

3.14 Natural Large Visual Changes . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.15 Artificial Large Visual Change Samples . . . . . . . . . . . . . . . . . . . 74

3.16 Artificial Large Visual Changes . . . . . . . . . . . . . . . . . . . . . . . . 75

3.17 Natural Variable Speed Changes . . . . . . . . . . . . . . . . . . . . . . . 76

3.18 Artificial Variable Speed Changes . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Closed Set Scene Class Data with Appearance Variation . . . . . . . . . . 84

4.2 Open Set Scene Class Data with Appearance Variation . . . . . . . . . . . 85

4.3 SceneVLAD Network Architecture . . . . . . . . . . . . . . . . . . . . . . 91

4.4 OpenSceneVLAD Network Architecture . . . . . . . . . . . . . . . . . . . 95

4.5 Inference Using OpenSceneVLAD . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Inference Using OpenSceneVLAD + Openmax . . . . . . . . . . . . . . . 97

4.7 t-SNE Plots of SceneVLAD vs. Scene Classification . . . . . . . . . . . . . 102

4.8 Heatmap Plots of SceneVLAD vs. Scene Classification . . . . . . . . . . . 103

4.9 t-SNE Plots of OpenSceneVLAD vs. SceneVLAD . . . . . . . . . . . . . . 109

4.10 t-SNE Plots of OpenSceneVLAD vs. SceneVLAD for Closed Set Data . . 110

5.1 Descriptor Comparison Pipeline . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Outcome Classification Example . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Open Set Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Descriptor Comparison Example - 2D . . . . . . . . . . . . . . . . . . . . 120

5.5 Descriptor Comparison Example - 3D . . . . . . . . . . . . . . . . . . . . 121

5.6 Overconfident VPR Descriptor Comparisons . . . . . . . . . . . . . . . . 122

5.7 Outcome Classification True Positive . . . . . . . . . . . . . . . . . . . . . 123

5.8 Outcome Classification False Positive . . . . . . . . . . . . . . . . . . . . 123

5.9 Open Set Recognition Descriptor Comparison . . . . . . . . . . . . . . . 125

5.10 Open Set Recognition Closed Set . . . . . . . . . . . . . . . . . . . . . . . 126

5.11 Open Set Recognition Open Set . . . . . . . . . . . . . . . . . . . . . . . . 126

5.12 Illustrated Recall Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.13 DCC Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.14 DCC Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 133

XVI



Visual Place Recognition for Improved Open and Uncertain Navigation XVII

5.15 DCC Network Encoder Architectures . . . . . . . . . . . . . . . . . . . . 133

5.16 ResUnit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.17 TransUnit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.18 Dataset Image Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.19 Introducing Open Set Recognition and Outcome Classification . . . . . . 138

5.20 t-SNE Plots of Outcome Classification . . . . . . . . . . . . . . . . . . . . 144

5.21 t-SNE Plots of Open Set Recognition . . . . . . . . . . . . . . . . . . . . . 149

XVII



XVIII William Hugh Burrough Smith

XVIII



List of Tables

3.1 Reference Route Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Test Repetition Route Traversals . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Comparison of Triplet Mining Approaches . . . . . . . . . . . . . . . . . 67

3.4 Oxford Route Repetition Results . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 UAH Route Repetition Results . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Oxford Particle Filter vs. No Particle Filter Results . . . . . . . . . . . . . 72

3.7 UAH Particle Filter vs. No Particle Filter Results . . . . . . . . . . . . . . 72

4.1 Scene Class Dataset Summary . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 SceneVLAD vs Baselines for Appearance Invariance . . . . . . . . . . . . 99

4.3 SceneVLAD vs. Baselines for Appearance Invariance Summary . . . . . 99

4.4 OpenSceneVLAD vs. SceneVLAD vs. Baselines for Open Set Classifica-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 OpenSceneVLAD vs. SceneVLAD vs. Baselines for Open Set Classifica-

tion Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Openmax vs. No Openmax Layer for Open Set Classification . . . . . . . 107

4.7 OpenSceneVLAD vs. SceneVLAD + Openmax for Open Set Classification108

5.1 Description of the OC and OSR datasets . . . . . . . . . . . . . . . . . . . 137

5.2 Mean Performance of VPR Descriptors on Datasets . . . . . . . . . . . . 139

5.3 Full Outcome Classification Results . . . . . . . . . . . . . . . . . . . . . 142

5.4 Descriptor Comparison vs. Thresholding Outcome Classification Results 142

5.5 Comparison of Descriptor Outcome Classification Results . . . . . . . . 143

5.6 Architecture and Contrastive Learning Outcome Classification Results . 145

5.7 Full Open Set Recognition Results . . . . . . . . . . . . . . . . . . . . . . 146

5.8 Descriptor Comparison vs. Thresholding Open Set Recognition Results . 147

XIX



XX William Hugh Burrough Smith

5.9 Comparison of Descriptor Open Set Recognition Results . . . . . . . . . 148

5.10 Summary Open Set Recognition Results . . . . . . . . . . . . . . . . . . . 150

XX



Visual Place Recognition for Improved Open and Uncertain Navigation XXI

XXI



XXII William Hugh Burrough Smith

XXII



Nomenclature

CNN Convolutional Neural Network

CPU Central Processing Unit

DCC Descriptor Comparison Classification

DNN Deep Neural Network

GPS Global Positioning System

GPU Graphical Processing Unit

IMU Inertial Measurement Unit

OC Outcome Classification

OPR Online Place Recognition

OSC Open Set Classification

OSR Open Set Recognition

OSS2 OpenSeqSLAM 2.0

PDF Probability Density Function

SIS Sequential Importance Sampling

SLAM Simultaneous Localisation and Mapping

VO Visual Odometry

VPR Visual Place Recognition

VT&R Visual Teach and Repeat

1



2 William Hugh Burrough Smith

2



Part I

Introduction

3





Chapter 1

Introduction

Visual place recognition [1, 2] is a fundamental area of research in the field of robotics

that overlaps heavily with computer vision and deep learning and has applications

for other fields such as consumer photography and augmented reality [2, 3]. It refers

to a critical requirement for enabling autonomous mobile robots:

A robot should be able to use onboard cameras to localise itself within a geographical area

and extract relevant metadata to enable intelligent behaviour in real-time.

This thesis focuses on fulfilling this requirement by expanding visual place recog-

nition to address uncertain and open world conditions inherent to robotics. Monoc-

ular RGB images are considered because robots are often fitted with RGB cameras

which are of comparatively low cost compared to other sensors, high quality pre-

recorded data is readily available and further data is easy to collect. A comparison of

RGB data with alternatives is available in Section 2.1.2.

1.1 Problem Statement

Visual Simultaneous Localisation and Mapping (vSLAM) is a foundational research

area for robotics that has developed significantly over time [4, 5, 6]. However, current

approaches such as ORB-SLAM [5] are limited by their use of image descriptors [7]

which are vulnerable to variations in the navigated environment’s appearance, these

image descriptors are used to transfer raw image data to information that can be used

by the algorithm and therefore represent a performance bottleneck. Deep learning has

introduced the possibility of learning a visual SLAM algorithm from scratch, but is

yet to solve challenges associated with gathering training data, generalising to new

5
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environments and interpretation of taught models [8, 9].

Visual place recognition is an area of research that frames localisation as image re-

trieval by comparing a query place image against a reference set of place images to

find the best match, and therefore localise the query image. This naive search rep-

resents an extreme example of the localisation undertaken in vSLAM which uses a

variety of other techniques to reduce the naivety of this search but fundamentally still

requires a comparison between place images. Deep learning has recently been used

to generate state-of-the-art descriptors for this image comparison, such as NetVLAD

[10]. Other forms of data can be used as a reference to compare query images against,

for example traditional maps [11], but images are easy to collect, use for comparison

and are the dominant form of reference data [10, 12, 13, 14, 15].

Deep learning approaches for visual place recognition therefore represent a good

compromise for using deep learning to improve vSLAM without the aforementioned

challenges of learning a vSLAM approach from scratch because they are easier to in-

terpret and can potentially be combined with tried and tested vSLAM approaches

[16]. This thesis therefore focuses on visual place recognition and its application to

vSLAM. Current approaches focus on invariance to appearance changes caused by

dynamic viewpoint, lighting or weather conditions [7, 17, 13, 18]. However, these ap-

proaches often fail to consider tasks specific to robotics, such as leaving a pre-defined

geographical area during navigation and getting lost, or estimating the uncertainty of

predictions generated by a deep neural network, which prevents their application to

real-world problems:

Computational Requirements of large deep neural networks (DNNs) taught to gen-

erate visual place recognition descriptors make them impractical for robotics, because

current hardware is not powerful enough to run them in real-time [16] (addressed in

Chapter 3).

Integration of deep learnt visual place recognition descriptors into visual SLAM

pipelines is difficult because they were originally built for traditional image descrip-

tors such as SURF [4] and ORB [6]. Deep learnt descriptors generate a single descrip-

tor for each image [10, 13] rather than traditional local image descriptors which means

that vSLAM pipeline elements that depend on local descriptors or information de-

rived from them such as map point extraction and bundle adjustment (2.2) are not

6
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relevant. Additionally, deep learnt image descriptors are capable of predicting further

information such as their own uncertainty which is not possible with traditional im-

age descriptors and is therefore not considered in current vSLAM pipelines (addressed

in Chapter 3).

Ambiguous image retrieval results can be difficult to interpret correctly. Image re-

trieval returns a ranking of the reference database images in order of similarity to the

query image where the true match is often not the first result, but may be in the top

ten, for example (addressed in Chapters 3 & 5).

Non-Transferable but very useful characteristics of visual place recognition descrip-

tors cannot be applied to other navigation related tasks, such as scene classification

[19, 20]. Learning to classify different scenes and to generate visually invariant de-

scriptors are two different tasks with no current approach to learn them simultane-

ously. Networks taught on each task currently exist but there are no ways currently to

combine them (addressed in Chapter 4).

Open Set recognition aims to identify input data that was not defined at training

time. For example, current classification scenarios aim to differentiate between a fixed

number of classes but do not consider how to handle test data that does not belong

to any of those classes, because there is no prior knowledge of this data this is clearly

a very challenging task. This problem relates closely to robot navigation in an open

world, but has only recently been considered for classification [21, 22] and remains

largely unconsidered for visual place recognition (addressed in Chapters 4 & 5).

1.2 Original Contributions

This thesis focuses on using deep learning and probabilistic filtering to address the

previously highlighted problems. These problems are not limited to robotics so this

thesis’s contributions are relevant to wider areas of computer vision (scene classifica-

tion and image retrieval) and deep learning (filtering deep learning predictions and

open set recognition), links to these areas are explored more in Section 2. This section

highlights the contributions made in each chapter.

7
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Chapter 3: Particle Filtering for Robust Real-Time Visual Teach and Repeat

Figure 1.1: This figure shows a route around Oxford (blue line) being repeated by com-
paring test video frames of the route repetition with pre-recorded reference examples
of the route. The proposed particle filter system (TinyVPR+PF) is shown to produce a
more accurate localisation prediction than two state-of-the-art alternatives OpenSeqS-
LAM 2.0 (OSS2) and Online Place Recognition (OPR).

Theory and Algorithms

1. A compact VPR descriptor called TinyVPR for a subset of visual SLAM called

visual teach and repeat that improves state-of-the-art localisation performance

on a specific route while significantly reducing network parameters.

2. A particle filter to combine TinyVPR descriptors and visual odometry to en-

able real-time visual teach and repeat, as seen in Figure 1.1 that significantly

improves robustness to large visual changes and variable traversal speed input.

8
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TinyVPR is covered in: Image Pre-processing vs. Transfer Learning for Visual

Route Navigation. William H. B. Smith, Robert Fisher, Yvan R. Petillot. In UKRAS20

Conference: “Robots into the real world”, 2020.

Chapter 4: OpenSceneVLAD: Appearance Invariant, Open Set Scene Clas-

sification

Figure 1.2: Samples of scene classification data from the three datasets used with ap-
pearance variations, including the Edinburgh dataset collected as part of this thesis’
contributions. A red box is used to highlight the most class relevant areas of each im-
age, which are also enlarged for the reader’s convenience. Duplicate of Figure 4.1

Theory and Algorithms

1. For the first time the problem of visual invariance for scene classification is iden-

tified and improved with a fusion of visual place recognition and scene classifi-

cation neural networks called SceneVLAD.

2. For the first time open set recognition is considered for scene classification with

test data from previously undefined scene classes. Intra-class splitting is used to

9
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create OpenSceneVLAD for improved classification of the open and closed set

scene data that also includes visual changes.

Data

1. A visual place recognition dataset collected around Edinburgh in suburban, mo-

torway and rural environments.

2. A scene classification dataset that includes changes in visual conditions (Figure

1.2).

3. An open set scene classification dataset derived from visual place recognition

datasets.

OpenSceneVLAD: Appearance Invariant, Open Set Scene Classification. William

H. B. Smith, Michael Milford, Klaus McDonald-Maier, Shoaib Ehsan, Robert Fisher. In

Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2022

Chapter 5: Descriptor Comparison Classification for Open Set Recognition

and Outcome Classification

Figure 1.3: Illustrated example of outcome classification task using images from the
Oxford RobotCar dataset. The top query image’s 5 closest reference image matches
include a true match (true positive) and the bottom query image’s do not (false posi-
tive). Please note, the 5 closest matches are shown here for illustrative purposes only.
Duplicate of Figure 5.2.

Theory and Algorithms

1. For the first time the problems of outcome classification (identifying true and

false positive image retrieval results) and open set recognition for image retrieval

are formulated and applied to visual place recognition.

10
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Figure 1.4: Illustrated example of open set recognition task using images from the
Oxford RobotCar dataset showing examples of closed set query images that have a
potential match in the reference image database and open set query images that do
not. Duplicate of Figure 5.3.

11
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2. For the first time descriptor comparison classification is proposed to reliably ad-

dress both problems.

3. The addition of supervised contrastive learning is used to improve descriptor

comparison classification for both problems.

Source code related to this thesis has, or will be, released publicly (https://

github.com/WHBSmith). The remaining chapters are used to provide background

on the research areas related to these contributions (Chapter 2) and the conclusion of

this thesis (Chapter 6).

12
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Chapter 2

Literature Review

Visual place recognition (VPR) has recently been defined by Garg et al. [2] as ’the

ability to recognise one’s location based on two observations perceived from overlapping fields-

of-view’. This section begins with an overview of visual SLAM and image retrieval,

which provides the context for then introducing VPR for robotics. The other research

areas relevant to this thesis’s contribution are then explored. The contents of this liter-

ature review is summarised below:

• Visual SLAM is a fundamental area of robotics that typically uses VPR image

descriptors to consistently represent a single place uniquely with respect to other

places.

• Image Retrieval is the format of the VPR task when considered in isolation: a

query image is localised by comparing it to a database of reference images to

find the closest match.

• Visual Place Recognition is the main subject of this thesis and aims to create

accurate and robust place image descriptors for use in an image retrieval frame-

work.

• Visual Teach & Repeat is a subset of visual SLAM that relies on VPR to solve

autonomous route repetition, a task that remains relevant in many robotics sce-

narios.

• Particle Filtering has traditionally been used in robotics for noisy SLAM predic-

tions, but can also be applied to deep learning predictions.

13
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• Scene Classification is a well-defined area of research, closely related to visual

navigation, that aims to classify place images as members of scene classes.

• Deep Learning includes specific areas of research within itself that are relevant

to robotics and VPR scenarios.

2.1 Visual SLAM (vSLAM)

vSLAM [23] uses visual sensors (this thesis focuses on RGB cameras) to calculate the

position and orientation of the sensors relative to their surroundings, while simultane-

ously mapping the environment. A typical vSLAM pipeline extracts image descriptors

to compare against previously surveyed descriptors (VPR). The current camera pose

is then estimated using the descriptor matching results and local bundle adjustment to

jointly optimise the camera pose and the map. Finally loop-closure detection is used

to recognise previously visited places and therefore provides an opportunity to correct

localisation drift.

This section gives a brief introduction to vSLAM, establishes its link with VPR and

demonstrates the need for more robust and sophisticated image descriptors. Learning

vSLAM end-to-end is also explored and found to be a promising, but not yet viable

approach for robotics. Please note, in the interest of simplicity this work does not

distinguish between image feature extraction and description, instead the term image

descriptor is used to encapsulate the result of the entire process.

2.1.1 Local Descriptors

Early vSLAM approaches were restricted to small, static, indoor environments [24],

but the introduction of scale invariant image descriptors such as SIFT [25] and SURF

[26] which are algorithms designed to locate features in small parts of an image, com-

monly known as ‘keypoints’. These keypoints are scale and rotation invariant so en-

abled larger and more complex indoor environments to be navigated. For example,

Se et al. [27] use SIFT image descriptors to build and query a database of visual land-

marks for navigation and later basic simultaneous mapping and loop closure [28].

One of the first monocular vSLAM approaches was MonoSLAM [4] which tracks

visual landmarks between frames using SURF feature matching and an Extended

Kalman Filter. Another vSLAM approach, PTAM [29], developed for VR and AR ap-

14



Visual Place Recognition for Improved Open and Uncertain Navigation 15

plications introduced bundle adjustment for better accuracy and multi-threading for

more efficient computational performance. ORB-SLAM [30] extends PTAM further by

introducing ORB descriptors [31] which are a fusion of a FAST keypoint detector [32]

and BRIEF descriptors [33] for a degree of invariance to rotation and scale, resulting

in a very fast multi purpose descriptor with robustness to viewpoint changes. ORB-

SLAM also added parallelisation of tracking, mapping and loop closure detection, as

well as pose graph optimisation making it one of the most complete open-source vS-

LAM approaches available [34].

2.1.2 Local Descriptors & 3D Data

3D data was combined with local descriptors to further improve vSLAM. Newcombe

et al. combine depth maps with camera motion to estimate 3D structures [35]. ORB-

SLAM2 also extends ORB-SLAM to stereo and RGB-D sensors [5]. Salas-Moreno et al.

[36] propose registering 3D objects into a database in advance and recognising them at

test time to refine map building and reduce storage requirements. A similar approach

segments 3D objects to aid localisation [37]. RGB-D cameras are less ubiquitous than

RGB cameras but allow scale to be directly calculated, however consumer versions

only have a range of about 4 metres which makes them of limited use outdoors.

Light Detection And Ranging (LiDAR) is an alternative way to generate 3D data,

particularly for invariance to appearance changes from ambient lighting conditions

[38] and obstacle detection [39]. It has an improved range of up to around 500 me-

tres which makes it well-suited for outdoor navigation, but LiDAR is more expensive,

vulnerable to occlusion. Additionally approaches for processing 3D data are less ad-

vanced than RGB data because of the wide availability of RGB data and the fact that

it is sufficient for many tasks.

State-of-the-art vSLAM approaches continue to use local geometric descriptors,

which are significantly outperformed by deep learnt equivalents, particularly for ap-

pearance invariance [7]. The results of an early experiment carried out by the author

when evaluating ORB-SLAM2 are shown in Figure 2.1 and demonstrate the nega-

tive effect of appearance changes from lighting conditions. RTABMap [40] is an open

source vSLAM approach originally released in 2013 but updated to create dense 3D

and 2D maps that can be used as drop-in alternatives to SLAM using 2D LiDAR, it uses

BRIEF descriptors [33] for odometry. OpenVSLAM [6] is a recent and well-engineered,

15
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Figure 2.1: An evaluation of the ORB-SLAM2 [5] algorithm carried out at the begin-
ning of the project by the author. A map was built using ORB-SLAM2 by navigating
around Heriot-Watt University campus (centre map) at dusk (top) and the night (bot-
tom) using a remote-controlled ‘Husky’ UGV 1. In the figure black dots represent col-
lected point cloud data, red dots represent the start and end point and the green/blue
line represents the robot’s path. The final map is viewed at an oblique angle. This
figure shows the created map degrading as lighting conditions worsened, resulting in
a wedge-shaped map rather than the correct square. This shows that, despite point
cloud data, the appearance changes from the lighting affect the remaining ORB image
descriptor matching and therefore result in decreased vSLAM performance. Addi-
tionally ORB-SLAM2 is given the opportunity for loop closure as the robot returns to
its starting point, but this fails.
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vSLAM approach that uses ORB descriptors [31] and a unique frame tracking module

that enables fast and accurate localisation. ORB-SLAM3 [41] remains a state-of-the-

art approach by updating ORB-SLAM2 with more comprehensive bundle adjustment,

improved IMU tracking and active mapping which results in a pipeline with 31 com-

ponents (Figure 2.2). Large pipelines are required to compensate for image descrip-

tors that are unable to return accurate localisation estimates when compared against

a large number of image descriptors across a wide geographical area, an assumption

challenged by the latest advances in VPR. Please note, from now on image descriptors

used specifically for comparing place images against a reference database of image

descriptors are described as ‘VPR descriptors’.

Figure 2.2: A diagram showing the large number of ORB-SLAM3 system components
[41] including bundle adjustment (BA).

2.1.3 Deep Learning for vSLAM

Deep learning has enabled significant advancements in robotics, but learnt navigation

approaches lack maturity compared to the well understood and explored traditional

vSLAM algorithms. There are many different learnt approaches to visual navigation

[42], but this section focuses on approaches for large scale outdoor navigation using

1https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
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two main approaches.

2.1.3.1 Convolutional Neural Networks (CNNs)

CNNs have rarely been implemented on robot hardware because of the associated

computational requirements, however this is starting to be addressed, as discussed

later in Section 2.7.1. CNN-SLAM [16] proposes two parallel pipelines. The first uses

a CNN to estimate the camera pose by minimising the photometric error between the

current frame and the nearest keyframe. The second uses a CNN to performs semantic

segmentation on each frame and depth information is predicted for each keyframe but

this is not a feature based approach and is not tested outdoors. Another noteworthy

approach is PoseNet [43], which trains a CNN directly on traversals of a geographical

area to regress a pose, at test time traversals from different poses are used for testing

- the disadvantage of this approach is that it is constrained to quite small areas and

does not generalise to different areas without re-training.

2.1.3.2 Deep Reinforcement Learning (DRL)

DRL tries to avoid error accumulated in complex vSLAM pipelines by using CNN

image descriptors to infer navigation policy (vNavigation) from navigation data using

a number of approaches:

1. Direct approaches learn from place images collected by agents moving around

an environment to find the goal object for sparse rewards [8].

2. Hierarchical approaches decompose vNavigation into subproblems and solve each

of them to generate a global navigation policy [9].

3. Multitask DRL agents uses shared neural network parameters from related tasks

to improve generalisation to different environments [44].

4. External memory for DRL agents can improve visual navigation performance in

partially observable and large-scale environments [45].

5. Vision-and-language navigation models [46] fuse language instructions with vi-

sion state inputs to integrate control with navigation.

18
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DRL methods for this task show promise, but the large amount of training data

required, poor generalisation and lack of interpretability means that these approaches

remain restricted to simulated environments for now.

2.2 Image Retrieval

The previous section establishes that VPR descriptors are a key component of enabling

robust vSLAM in outdoor environments and that using DRL to learning the task of

vSLAM is not yet practically possible. In isolation VPR is typically formulated as

image retrieval: a query image is compared against a reference database of images

to find the nearest match. Although Özaydin et al. suggest that traditional geometric

descriptors, such as SURF [26], may be comparable with off-the-shelf CNN descriptors

for image retrieval in some scenarios [47] most recent image retrieval descriptors have

been based on CNNs since they were established as the state-of-the-art for recognition

tasks [48]. CNN descriptors can either be used off-the-shelf or fine-tuned for a specific

task.

2.2.1 Off-the-Shelf CNN Descriptors

Single [49] or multiple [50] feedforward passes can be used to extract image retrieval

descriptors using off-the-shelf CNNs pre-trained for general image classification, such

as VGG16 [12]. Descriptors can also be extracted from final fully-connected layers [51]

to give a representation based on lower level features, or intermediate convolutional

layers [52] for a representation based on higher level features.

Traditionally, pooling-based aggregation methods for global descriptors are di-

rectly applied to DNN output and then the whole model is used end-to-end [53].

Three embedding approaches can also be used to further improve the descriptors:

Bag of Words (BoW), Vector of Locally Aggregated Descriptors (VLAD) and Fisher

Vectors (FV) [54, 55, 10, 56]. Local descriptors can be used to describe small parts of an

image, but require individual storage, are not well-suited for large-scale scenarios and

incur additional cross-matching costs. To help mitigate this an initial search is done

with global descriptors and then a re-ranking of the top results is done using local de-

scriptors [57, 58]. An attention mechanism can also be used to compute an attention

map using channel-wise or spatial-wise pooling [59], or an attention map can be learnt
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with image patches or feature maps [60].

2.2.2 Fine-tuned CNN Descriptors

CNNs can be fine-tuned using supervised training to improve descriptor performance.

The most straightforward way to do this is to retrain the network using cross entropy

loss [61] and then use intermediate layers for descriptor extraction. However, a more

common approach is to use similarity learning. This is an important technique with

examples referenced throughout this thesis and is explained here in detail as it is foun-

dational to image retrieval.

Similarity Learning also known as metric learning [62], is distinctly different from

the traditional problem of classification. Rather than trying to classify test data as a

member of a pre-defined class, it aims to represent test data such that the distance

between ‘similar’ data samples is minimised and the distance between ‘dissimilar’

data samples is maximised according to measures such as the Euclidean distance. For

VPR this means a data representation can be learnt that is invariant to appearance

changes from dynamic lighting, weather and even seasonal conditions. Assume a

dataset X = {x1, . . . , xN} is available, from which certain similarity measures between

different pairs or triplets of data are collected. These similarities are described by the

sets shown in Equation 2.1. With these data and similarity constraints, the task is to

find, after establishing a family of distances D (often Euclidean), those representations

that best adapt to the criteria specified by the similarity constraints. To do this, a

certain loss function ℓ is set, and the sought-after representations will be those that

solve the optimization problem in Equation 2.2. Examples of loss functions used for

image retrieval are siamese loss [63], triplet loss [64] as well as other approaches [65,

66].

S = {(xi, xj) ∈ X × X : xi and xj are similar. } ,

D = {(xi, xj) ∈ X × X : xi and xj are not similar. } ,

R = {(xi, xj , xl) ∈ X × X × X : xi is more similar to xj than to xl} .

(2.1)

min
d∈D

ℓ(d, S,D,R) (2.2)

Unsupervised similarity learning is less studied, but also possible. For exam-
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ple, manifold learning finds initial similarities between extracted descriptors and uses

them to construct an affinity matrix, which is re-evaluated over time and used to mine

training data [67]. The affinity matrix is interpreted as a weighted graph and the pair-

wise affinities are re-evaluated in the context of all other elements by diffusing the

similarity values through the graph [68]. Clustering approaches, such as k-means, are

also used to cluster deep features for generating pseudo-labels for pairwise training

data [69].

Two big problems that remain for image retrieval are that the results are ambigu-

ous: a ranking of the reference images in order of similarity to the query image often

does not include the best match as the most similar and there is no way to recog-

nise a query image that does not have a true match in the reference database at all.

A true match for visual place recognition is a reference frame within a user defined

geographical distance from the query image.

2.3 Visual Place Recognition (VPR)

Visual place recognition overlaps with many research areas, as shown in Figure 2.3,

but is contextualised in this thesis specifically for robotics by its relationship to vSLAM

and image retrieval. There are several comprehensive literature surveys of VPR [1, 3,

70, 71], but for the purpose of this thesis it can be thought of as a variation of image

retrieval relevant specifically to robotics because of its ability to create appearance

invariant descriptors that are needed for vSLAM. VPR is a major application of image

retrieval so advances in each are often intertwined.

2.3.1 Local Descriptors

Scale invariant descriptors, such as sped-up robust features (SURF) [26], are used in

initial VPR approaches [72, 73], FAST [32] and BRIEF [74] descriptors are also used

[75]. These local descriptor approaches were improved by using a visual bag-of-words

model to quantise descriptors into a finite number of visual words. For each image, ev-

ery descriptor is assigned to a particular word reducing images to binary strings with

a length equal to the number of words in the vocabulary, which varies from 5000 up to

100,000 [76]. Bag-of-words representations do not describe the geometric structure of

the image resulting in some degree of viewpoint invariance [77], but this can reduce
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Figure 2.3: An illustrated overview of VPR from Gar et al. [2] showing its relationship
to other research areas.

the overall accuracy of VPR, which can be mitigated by requiring 3D data [78]. Ad-

ditionally, the bag-of-words approach is typically pre-trained on images which may

limit this approach’s ability to generalise to test data.

2.3.1.1 Appearance Invariance

Geometric descriptors such as SURF [26] have been shown to be non-repeatable in

the face of variations in appearance from changes in lighting, weather, and seasonal

conditions [79]. In response, a variation on SURF, Upright-SURF, was combined with

a consistency check using the epipolar constraint for improved appearance invariance

over small 40 image datasets [80]. Other approaches propose image pre-processing

techniques, such as shadow removal [81] and illumination invariant colour spaces

[82], but still struggle in many scenarios.

An alternative approach to generating visually invariant descriptors is to learn the

relationship between different place appearances. Ranganathan et al. [83] learns a

probability distribution over a bag-of-words vocabulary from multiple traversals of a

single environment in different illumination conditions which could then be used for

matching. Carlevaris-Bianco et al. [84] use SURF descriptor patches of place images

in different lighting conditions to train a multi-layer perceptron siamese neural net-

work [85] to cluster similar place image descriptors in different conditions together

and away from other place image descriptors.
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2.3.2 Global Descriptors

The aggregation of local descriptors collected from an image into a single represen-

tation can be done directly with whole-image global descriptors. HOG descriptors

[86] use a distribution of intensity gradients or edge directions within an image to de-

scribe local object appearance and shape. Gist descriptors [87] summarise the gradient

information (scales and orientations) for different parts of an image. Global descrip-

tors have been used for VPR [88] and are shown to have advantages for viewpoint

changes and occlusions which are key to robotic applications, but are less robust to

illumination changes [89].

2.3.3 Off-the-Shelf CNN Descriptors

Similarly to image retrieval, CNNs pre-trained on adjacent tasks such as object recog-

nition [90], scene classification [91] and semantic segmentation [92] have been used

for extracting VPR descriptors. Chen et al. [7] use a holistic approach that feeds the

whole image to a CNN and uses all activations from a layer as the descriptor. Further

research suggests that mid-level network descriptors are more robust to appearance

change, while higher level descriptors are more robust to changes in viewpoint [93].

Supporting evidence for this is presented by Yue et al. [90] who encode the output

from OxfordNet [12] and GoogLeNet [94] into VLAD descriptors, compress them us-

ing PCA [95] and report similar results. Landmarks can also be detected using Edge

Boxes [96] or BING [97] and descriptors extracted specifically from them, for example

Sünderhauf et al. [98] use AlexNet’s conv3 layer [99] for descriptor extraction. Regions

of interest can also be derived from intermediate CNN layers. Chen et al. [17] propose

using VGG16 [12] to extract regions of interest using a bag-of-words approach [100].

Region-VLAD [101] uses a lightweight scene classification CNN AlexNet365 [17] to

extract regional descriptors which are then encoded using a VLAD approach specially

adapted for computational efficiency.

2.3.4 Fine-tuned CNN Descriptors

2.3.4.1 Semi-Supervised Methods

Fine-tuning a network for VPR usually involves similarity learning [102]. For VPR

‘similar’ images are a single place in different appearance variations, while ‘dissimi-
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lar’ images are of any other place and appearance variation. This effectively teaches

the network some differences between place images are due to appearance variation and other

differences are because the underlying places are different. There are several variations of

this loss, including contrastive loss [103], triplet loss [104] and quadruplet loss [105],

the differences between these losses and training examples for each is pictured in Fig-

ure 2.4.

Figure 2.4: A diagram from Barros et al. [70] showing samples of training data used for
different contrastive loss variations and the differences between the following losses:
contrastive/margin (a), triplet (b) and quadruplet (c).

Arguably the single biggest contribution to VPR is NetVLAD [10] which uses a

VGG-16 [12] network pre-trained on the ImageNet dataset [106] up to the conv5 layer

with an appended trainable VLAD layer inspired by the ”Vector of Locally Aggre-

gated Descriptors” (Figure 2.5). This network is trained using a weakly supervised

triplet loss with a large VPR dataset derived from Google Street View data collected

from different locations with different appearance variations to generate appearance

invariant VPR descriptors. NetVLAD established a new benchmark for performance

on Oxford 5K [107], Paris 6K [108] and Holidays [109] datasets that consist of thou-

sands of images spread over large geographical locations and remains the backbone

of current state-of-the-art [13] approaches. Other approaches have also used VLAD

descriptors, Yu et al. [110] propose a spatial pyramid-enhanced VLAD (SPE-VLAD)

layer built around the use of VGG16 [12] and ResNet-18 [111]. A weighted triplet loss

is then used for weakly supervised training using GPS tags and the Euclidean distance

between the image representations. Qiu et al. [112] use a ResNET-based siamese net-

work [85] (a neural network with shared parameters that is particularly useful when

training data is scarce) and trained using an L2-based loss function [113] for VPR de-

scriptor generation. PatchNetVLAD [13] is one of the latest approaches to VPR and the

winner of the Facebook Mapillary Visual Place Recognition Challenge at ECCV2020
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and therefore can reasonably claimed as the current state-of-the-art for VPR. It uses a

re-trained version of NetVLAD [10] for rural or urban environments and then re-ranks

the top results using local patch descriptor local matching.

Figure 2.5: Network architecture diagram of the original NetVLAD [10] neural net-
work referenced throughout this paper.

State-of-the-art algorithms [14, 15] introduce significantly larger scale datasets such

as Nordland [114], Oxford RobotCar [115] and St. Lucia [116] which cover tens, or

even hundreds, of kilometers of urban and rural environments in a wide variety of

visual conditions which in turn increases the priority of improving VPR descriptor ef-

ficiency. Deep hashing can be used to reduce descriptors to binary codes which have

low storage requirements [117], in this case MobileNet [118] is used as the base net-

work. Network pruning can also improve efficiency by removing unnecessary neu-

rons or setting the weights to zero [119]. Hausler et al. [120] propose removing feature

maps at the beginning of a HybridNet [14] network while using descriptors from later

layers of the network for efficient matching which are selected using a triplet loss cal-

ibration procedure.

2.3.4.2 Unsupervised Methods

Unsupervised learning does not require labeled data, which can be impractical for the

large scale datasets associated with this task.

Latif et al. [121] use Generative Adversarial Networks (GANs) for domain transla-

tion for appearance invariance without labelled cross-domain place image correspon-

dences. However, only the transition between summer and winter images is consid-

ered and as all possible translations would have to be learned the paper itself describes

this approach as impractical.

An autoencoder-based approach [122] uses HOG [86] image descriptors for ex-

tracting salient features and a projective transformation (homography) [123] to de-

scribe differing viewpoints as input to a minimal autoencoder architecture to gener-
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ate a VPR descriptor, but only compares itself against off-the-shelf CNN descriptors.

Tang et al. [124] also use a modified autoencoder for adversarial learning that is used

to disentangle VPR descriptors from domain-related descriptors, but does not tackle

appearance invariance.

Wang et al. [18] propose the use of attention for VPR descriptors that are robust

to very long-term visual changes. A combination of weakly supervised triplet learn-

ing and an unsupervised multi-kernel maximum mean discrepancy (MK-MMD) loss

function is used for training. This work is useful for historical data, but these time

periods are not currently considered during robotic navigation.

2.3.5 Limitations

Visual place recognition initially used traditional image descriptors for small-scale

VPR in fairly constant lighting conditions, but this was found to be vulnerable to ap-

pearance variation from changes in lighting, weather and season. The same limita-

tions are found in current state-of-the-art vSLAM systems which use the same descrip-

tors. The introduction of fine-tuned CNNs using variations of contrastive learning has

enabled VPR to expand to larger datasets and resulted in significantly improved visual

robustness, but many challenges still remain.

Deep learnt descriptors generate a single descriptor for each image [10, 13] rather

than traditional local image descriptors which means that vSLAM pipeline elements

that depend on local descriptors or information derived from them such as map point

extraction and bundle adjustment (2.2) are not relevant. Additionally, deep learnt

image descriptors are capable of predicting further information such as their own un-

certainty which is not possible with traditional image descriptors and is therefore not

considered in current vSLAM pipelines

1. Computational Requirements - State-of-the-art CNN VPR descriptors are rarely

used in mobile robotics because they are too computationally demanding for

real-time operation on robotic hardware.

2. Integration - traditional vSLAM pipelines include modules such as map point

extraction and bundle adjustment which rely on local descriptors that are not

produced by deep neural networks.s
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3. Ambiguity - VPR results are a ranked similarity of the reference image database

which is ambiguous and difficult to interpret.

4. Non-Transferable - Appearance invariance of VPR descriptors cannot be trans-

ferred to other navigation-relevant tasks, such as scene classification.

5. Open Set - The recognition of query images with no potential true match in the

reference image database for VPR has not yet been considered.

These highlighted challenges were motivation for this thesis’s contributions, stated

in Chapter 1. The following sections of this literature review are dedicated to the

remaining research areas relevant to these contributions.

2.4 Visual Teach and Repeat (VT&R)

VT&R represents a subset of the visual SLAM problem [125] that avoids the need for

a full VPR pipeline by relying on accurate VPR descriptors and visual odometry (VO)

for navigation. VT&R was originally designed for GPS-denied environments [79, 126]

and therefore only requires reference images collected along a pre-defined route to au-

tonomously navigate it. A robot is initially piloted along a traversal of a route, during

this teaching phase it records images of the route in different appearance variations

which are used as reference for the robot to autonomously repeat the route. Reference

images do not need an exact location associated with them for relative localisation pre-

dictions. Furgale et al. [79] were the first to implement this technique outdoors over

kilometre distances using stereo cameras for calculating visual odomoetry between

frames and SURF descriptors for localisation. The pipeline used for this approach is

shown in Figure 2.6.

2.4.1 Visual Invariance

Furgale et al. [79] use SURF descriptors [26] for this approach which are found to

struggle when presented with significant lighting variations which were partially ad-

dressed using image pre-processing [127]. VT&R is commonly used for long term

repetitions and as such requires VPR descriptors to be updated which can be done by

recording newly seen images as ’experiences’ [75], or by using VPR descriptors that
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Figure 2.6: The foundational VT&R pipeline proposed by Barfoot et al. [79] showing
the teach and repeat passes.

are robust to long term visual changes. Multi-view approaches are considered for im-

proved robustness but require multiple cameras and still use SURF descriptors [128].

Krajnı́k et al. [129] show that CNN and their proposed GRIEF descriptors perform

better, but do not integrate them into a VT&R pipeline.

2.4.2 Image Sequence Matching

Full VT&R traditionally includes a control system seen in Figure 2.6 as the ’path

tracker’, but the problem can also be considered purely from a computer vision per-

spective and can be known as online place recognition or image sequence matching.

An early approach, FAB-MAP 2.0 [76], uses SURF descriptors to create a bag of visual

words representation from a set of training images. A Chow-Liu tree representation

of feature likelihood is then used to determine the probability of loop closure, or of

visiting a new location. Another approach [130] uses FAST corners [32] and BRIEF

feature descriptors [74] but fails when presented with large visual changes.

OpenSeqSLAM 2.0 (OSS2) [132] outperforms FAB-MAP 2.0 by constructing a ma-

trix of query and reference image descriptor comparisons. The matrix’s contrast is

enhanced and used to calculate the most likely trajectory. SeqSLAM is robust to sea-

sonal changes [133], but struggles with mild viewpoint changes. Fast-SeqSLAM [134]

extended this approach by introducing HOG image descriptors [86] and optimised the

sequence matching. Recently SeqSLAM was modified to use CNN descriptors [135],

which also increased performance. Online Place Recognition (OPR) [131] outperforms

OSS2 by using lazy data association and CNN descriptors in a directed acyclic data

association graph to track sequences online, instead of OSS2’s offline approach. OPR

is designed to work at variable speeds and can be used with HOG descriptors or CNN
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Figure 2.7: Descriptor comparison matrices showing HOG (left) vs. Overfeat CNN
(right) descriptors being used for image sequence matching in online place recogni-
tion [131]. CNN descriptors are shown to be more accurate with a tighter spread of
potential matches (shown in green). Variable speed inputs are also shown here, with
vertical lines indicating a stationary camera. Duplicate of Figure 3.12

descriptors from the OverFeat CNN pre-trained on general image classification [136],

an example of this can be seen in Figure 2.7.

2.5 Particle Filtering

One of the contributions of Chapter 3 is an implementation of a particle filter, this

subsection provides a general introduction to the filter in the context of robotic SLAM

and then provides a more in-depth mathematical derivation.

2.5.1 Overview

Sequential Monte Carlo algorithms use repeated random sampling to approximate the

state of possible events that depend only on the state of previous events, also known

as a Markov chain. Particle filters are a type of Sequential Monte Carlo algorithm that

use Bayes’ rule to estimate the posterior distribution of a system’s states, given partial

or noisy observations of previous states and was introduced for robotics by Sebastian

Thrun [137, 138, 139], whose work provides the basis for the following mathematical

explanation.

Suppose the state of the Markov chain at time, t is given by xt. Furthermore,

the state xt depends on the previous state xt−1 according to the probabilistic law

p(xt|ut, xt−1), where ut is the control asserted between t− 1 and t. The Markov chain

state is unknown, but can be estimated by measuring a stochastic projection zt of the

true state xt via the probabilistic law p(zt|xt). For example, a robot’s position is un-
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known but can be estimated given its sensor readings and recent movements.

In robotics, particularly SLAM, p(xt|ut, xt−1), is usually referred to as an actuation

or motion model, and p(zt|xt) as a measurement model. Assume all available sensor

measurements are given by zt = z0, . . . , zt and controls ut = u0, . . . , ut. Given that

the initial state is distributed according to some distribution p(x0), where p(x0) =

p(x0|z0, u0), the equation for the posterior distribution is given by Equation 2.3.

p
(
xt | zt, ut

)
= const. · p (zt | xt)

∫
p (xt | ut, xt−1) p

(
xt−1 | zt−1, ut−1

)
dxt−1 (2.3)

To recover a posterior distribution over the state xt at any time t, from all available

sensor measurements zt = z0, . . . , zt and controls ut = u0, . . . , ut the posterior distri-

bution can recursively estimated with incoming measurements and Bayesian statistics.

In robotics, particle filters are usually applied in continuous state spaces where

closed form solutions for Equation 2.3 are only known for highly specialized cases. If

the arguments are linear Equation 2.3 is equivalent to a Kalman filter [140, 141]. If the

system actuation and measurements models aren’t linear they can be approximately

linearised, if this is done using a first order Taylor series expansion the result is an

extended Kalman filter [141]. Particle filters address a more general Markov chain

case by approximating the posterior of a set of M sample states x[t]i , or particles. Here

each x
[t]
i is a state sample associated with each particle’s index from 1 to m. The most

basic version of a particle filter is a two step process:

1. Initialisation: At time t = 0, draw a set X0 of M particles according to p(x0).

2. Recursion: At time t > 0, generate a set X̄t of particles x
[i]
t for each particle

x
[i]
t−1 ∈ Xt−1 by drawing from the actuation model p(xt|ut, x[i]t−1). Draw M parti-

cles from X̄t, so that each x
[i]
t ∈ X̄t is drawn (with replacement) with a probabil-

ity proportional to p(zt|x[i]t ). Call the resulting set of particles Xt.

As M → ∞, this recursive procedure leads to particle sets Xt that converge uni-

formly to the desired posterior p(xt|zt, ut). Particle filter computation time depends

on the number of particles in the filter and are well suited to being implemented in

parallel. Linearisation that would be needed for Kalman filters is also not required.

However, particle filters do not work so well for large dimensional spaces as a large
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number of particles are needed to populate that space. Chapter 3 applies a particle

filter to VT&R that circumvents this problem by constraining the search space to a

reference database of images, a related approach is taken by Xu et al. [142].

2.5.2 Mathematical Derivation

For completeness a mathematical derivation of the particle filter is presented here for

Equation 2.3 and the weight calculation (Equation 3.5) described in Section 3.2.2. The

particle filter is a Bayesian filter, which performs state estimation by combining a mea-

surement model with a prior probability using Bayes’ theorem. For a general Bayesian

filter consider a non-linear stochastic system defined by a stochastic discrete-time state

space dynamic equation (Equation 2.4) and the stochastic observation process (Equa-

tion 2.5), where at time t, the unknown state vector is xt, the dynamic noise vector is

wt, the observation vector is yt and the observation noise vector is vt. Functions ft

and ht respectively relate the prior state to the current state and the current state to

the observation vector.

xt = ft (xt−1,wt−1) (2.4)

yt = ht (xt,vt)) (2.5)

A Bayesian filter estimates, p (xt | y1:t), the posterior probability density function

(PDF) using the observations defined by y1:t ≜ {y1,y2, . . . ,yt}. The non-linear, non-

Gaussian, state-space model in Equation 2.4 specifies the predictive conditional tran-

sition density, p (xt | xt−1,y1:t−1), of the current state given all previous state observa-

tions. Also, the observation process in Equation 2.5 specifies the likelihood function

of the current observation given the current state, p (yt | xt). The prior probability,

p (xt | y1:t−1), is defined by Bayes’ rule in Equation 2.6, where the previous posterior

PDF is p (xt−1 | y1:t−1). The measurement model can be used to generate the PDF,

p (xt | y1:t), in Equation 2.7 which relates directly to Equation 2.3, where c is a normal-

isation constant.

p (xt | y1:t−1) =

∫
p (xt | xt−1,y1:t−1) p (xt−1 | y1:t−1) dxt−1 (2.6)
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p (xt | y1:t) = cp (yt | xt) p (xt | y1:t−1) (2.7)

The filtering problem is to recursively estimate xt, given y1:t. For a general dis-

tribution, p(x), this consists of the recursive estimation of the expected value of any

function of x, such as ⟨g(x)⟩p(x), using Equations 2.6 and 2.7. However, this requires

calculation of integrals of the form shown in equation 2.8, but these cannot be evalu-

ated in closed form so must be approximated.

⟨g(x)⟩p(x) =
∫

g(x)p(x)dx (2.8)

In many cases, p (xt | y1:t) may be a multivariate, or multi-modal PDF and is there-

fore difficult to generate samples from to approximate the distribution. To overcome

this difficulty Importance Sampling can be used. Suppose that q (xt | y1:t) is another

PDF from which samples can be easily drawn, this is known as the Importance Den-

sity and could be an analytical Gaussian PDF. Let p (xt | y1:t) ∝ q (xt | y1:t), where the

symbol ∝ means that p (xt | y1:t) is proportional to q (xt | y1:t) at every xt.

Since p (xt | y1:t) is a normalized PDF, then q (xt | y1:t) must be a scaled and un-

normalised version of p (xt | y1:t) with a different scaling factor at each xt. Therefore

the scaling factor, or weight, can be written as shown in Equation 2.9.

w (xt) =
p (xt | y1:t)

q (xt | y1:t)
(2.9)

To estimate the weights recursively Equation 2.9 can be re-written using Equation

2.7 as Equation 2.10.

w (xt) =
cp (yt | xt) p (xt | y1:t−1)

q (xt | y1:t)
(2.10)

Using the expansion of p (xt | y1:t−1) from Equation 2.6 and a similar expansion

for q (xt | y1:t) allows Equation 2.10 to be expanded into Equation 2.11:

w (xt) =
cp (yt | xt)

∫
p (xt | xt−1,y1:t−1) p (xt−1 | y1:t−1) dxt−1∫

q (xt | xt−1,y1:t−1) q (xt−1 | y1:t−1) dxt−1
(2.11)

As mentioned previously these integrals must be approximated. To do this a set of

M particles (random samples from the distribution) and weights
{
x
(i)
t−1|t−1, w

(i)
t−1

}Ms

i=1

are defined to characterise the posterior PDF up until t − 1. The previous posterior
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PDF, p (xt−1 | y1:t−1), can therefore be approximated by Equation 2.12.

p (xt−1 | y1:t−1) ≈
Ms∑
i=1

w
(i)
t−1δ

(
xt−1 − x

(i)
t−1|t−1

)
(2.12)

If the particles xt−1|t−1 were drawn from the importance density, q (xt−1 | y1:t−1)

Equation 2.9 can be rewritten as Equation 2.13.

w
(i)
t−1 =

p
(
x
(i)
t−1|t−1

)
q
(
x
(i)
t−1|t−1

) (2.13)

As the weights are being estimated recursively sequential importance sampling

(SIS) [143] is used. At each iteration the random measure
{
x
(i)
t−1|t−1, w

(i)
t−1

}Ms

i=1
con-

stitutes an approximation to p (xt−1 | y1:t−1) and is used to approximate p (x | y1:t−1)

with a new set of samples and weights. By substituting Equation 2.12 in Equation

2.11, and using a similar formulation for q (xt−1 | y1:t−1), the weight update for each

particle becomes Equation 2.14.

w
(i)
t ∝

p
(
yt | x(i)

t|t−1

)
p
(
x
(i)
t|t−1 | x

(i)
t−1|t−1,y1:t−1

)
p
(
x
(i)
t−1|t−1

)
q
(
x
(i)
t|t−1 | x

(i)
t−1|t−1,y1:t−1

)
q
(
x
(i)
t−1|t−1

)
= w

(i)
t−1

p
(
yt | x(i)

t|t−1

)
p
(
x
(i)
t|t−1 | x

(i)
t−1|t−1

)
q
(
x
(i)
t|t−1 | x

(i)
t−1|t−1

) .

(2.14)

Chapter 3’s approach specifically uses the bootstrap particle filter [144] to calculate

particle weights (Equation 3.5) which makes an approximation that the importance

density is equal to the prior density p
(
x
(i)
t−1|t−1

)
= q

(
x
(i)
t−1|t−1

)
to cancel out two PDFs

and simplify the weight update to Equation 2.15, where x
(i)
t|t−1 = ft

(
x
(i)
t−1|t−1,w

(i)
t−1

)
,

from Equation 2.4.

w
(i)
t = w

(i)
t−1p

(
yt | x(i)

t|t−1

)
(2.15)

The posterior filtered PDF p (xt | y1:t) can then be approximated by Equation 2.16,

where the updated weights are generated recursively using Equation 2.15.

p (xt | y1:t) ≈
Ms∑
i=1

w
(i)
t δ

(
xt − x

(i)
t|t

)
(2.16)
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2.5.3 Visual SLAM

Particle filters can be used by SLAM algorithms to estimate the position of a robot

from noisy sensor observations, examples of this are proposed by Karkus et al. [145]

and FastSLAM 2.0 [146]. Brubaker et al. [147] use a particle filter to identify noise in

visual odometry using the KITTI dataset [148].

2.5.4 Visual Place Recognition

One of the earliest attempts at probabilistic VPR uses Bayesian filtering with Markov

chains to match sequences of indoor image signatures that it viewed as ‘words’ in a

sentence of places [149]. This approach was remarkably ahead of its time but was

limited to indoor use and the Gist [87] descriptors which are much older than state-of-

the-art VPR descriptors.

Figure 2.8: Particle filter pipeline used for VPR [142]. The belief state is recursively
updated using given query images and odometry data, if the particle filter converges
a pose estimate is predicted.

The introduction of deep learnt VPR descriptors allowed Xu et al. [142] to compare

consecutive query images with a single reference database of images and filter the best

matches of each result using a particle filter which converges to a single localisation

estimate on the longer and more visually challenging Oxford dataset [115] (Figure 2.8).

Combining deep learning with traditional particle filters allows unreliable predictions

to be removed that cause problems in practical applications. A similar approach uses

a directed graph to deal with confusing intersections and junctions represented in the

dataset [150]. Probabilistic filtering has also been used for aerial navigation [151].
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2.6 Scene Classification

Scene classification is heavily related to VPR, but as a classification task the main dif-

ference is that classes are defined at training time, which is not the case for image re-

trieval. Scene classification classifies a scene image into a pre-defined scene category

and has applications for content based image retrieval [152], robot navigation [153]

[154] and disaster detection [155]. Scene classification is a well-defined area of com-

puter vision research with a wide range of approaches described in comprehensive

survey papers [19, 20], an overview is presented here. As in many other computer vi-

sion tasks, CNNs have recently been used to increase classification accuracy. There are

five broad categories of CNN-based approaches for state-of-the-art scene classification

[19].

Figure 2.9: Two samples per category of the 365 scene classes presented by [156], show-
ing three macro classes: Indoor, Nature and Urban.

1. Global descriptors typically use a generic CNN trained on a task such as object

detection which is then fine-tuned for scene classification. Zhou et al. [156]

do exactly this on 365 scene classes, samples of which can be seen in Figure

2.9. Global descriptors contain spatial correlations between objects and global

scene properties and therefore provide enriched spatial information but are more

vulnerable to background noise [157].

2. Spatially invariant descriptors are usually extracted from multiple local patches

[158] using VLAD or Fisher encoding [159]. These approaches are an efficient

way to achieve geometric robustness, but perform poorly when a scene includes

objects with variable sizes or aspect ratios.

3. Semantic descriptor approaches based on object detection aim to identify salient

regions of the scene, which provide distinctive information about a scene’s con-

texts [160]. However, the lack of detailed scene labels and the computational
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requirements of searching for salient regions [161] limits development of these

approaches.

4. Multi-layer descriptors combine different resolution descriptors from different

CNN layers [162]. A specific example of this approach is DAG-CNN [163] which

integrates descriptors from different levels of a CNN in a directed acrylic graph.

Feature fusion is necessary for this approach and is usually done early or late.

Early fusion extracts multi-layer descriptors and merges them into a comprehen-

sive descriptor whereas late fusion directly uses supervised learning to ensure

the multi-layer descriptors are sensitive to each target scene class [164].

5. Multi-view descriptors (from multiple complementary CNN models trained on

different datasets) can be used to create comprehensive scene representations.

For example, FOSNet [165] introduces scene coherence loss to fuse object and

scene data while Sun et al. [166] separately extracts three complimentary rep-

resentations using object semantics, contextual information and global appear-

ance. However, all current fusion approaches generally fuse information from

networks trained for classification.

Some scene classes described in this manuscript overlap with autonomous driving

events, such as stopping at a junction [167]. However, events usually detected such

as lane changing, overtaking and rear-ending [168] are not directly linked to the scene

classes considered in this work.

2.7 Deep Learning on Embedded Hardware

Many of the approaches already highlighted in this section use deep learning, but

there are some remaining areas of research within the field of deep learning itself that

are relevant to this work.

2.7.1 Computational Requirements

2.7.1.1 Specialised Processing Units (SPUs)

A significant reason for the limited deployment of deep neural networks (DNNs) on

embedded hardware is the associated computational requirement. SPUs such as Ten-

sor Processing Units (TPUs) have recently been introduced to allow more efficient
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data-center implementations of hardware dedicated to deep learning [169]. These in-

novations have also enabled the development of embedded hardware capable of run-

ning DNNs [170]. A consumer solution for this is Google’s Coral development board
2 which allows for rapid prototyping of different deep learning solutions. Specialised

hardware for running CNNs includes Intel’s Deep Learning Processing Unit (DPU)

[171]. This technology is critical for enabling deep learning for embedded applica-

tions such as robotics, but remains uncommon.

2.7.1.2 Compression

DNN compression is the reduction in capacity of the network while retaining the orig-

inal task performance [172]. Compression of CNNs is particularly important as they

have the most obvious opportunities for embedded application. Some CNN architec-

tures have been specifically designed for efficiency, such as MobileNets [118] which

use depthwise separable convolutions and DenseNet [173] which connects each layer

to every other layer in a feed-forward fashion. A number of compression techniques

have been proposed.

1. Weight Sharing between layers or structures, such as CNN filters reduces the size

of a network. One approach to do this is to bin the CNN weights and use them

for re-training [174].

2. Pruning low priority network weights allows direct compression. The simplest

strategy uses a threshold to decide which weights should be removed [175].

3. Tensor Decomposition of weight tensors into a lower rank approximation enables

compression. For CNNs this can be performed filter-wise [176], channel-wise

[177] or a combination of the two [178].

4. Knowledge Distillation uses a large pre-trained network to train a smaller network

on the same task and to minimise the difference between their predictions [179].

5. Quantization compresses neural networks by representing network values with

fewer bits [180].

2https://coral.ai/products/dev-board
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2.8 Open Set Recognition (OSR)

The task of OSR for image classification is to recognise test images that have not been

defined during training as members of an open set class. This is a critical problem

for deploying deep learning approaches in the real world where they will often be

presented with open class data, but has rarely been addressed for image classification,

let alone image retrieval. An open set class is sometimes described as being out-of-

distribution with respect to the known classes. This is an emerging and challenging

area of research [181] that is largely limited to simple computer vision datasets such

as CIFAR-10 [182] and MNIST [183], although more recent work [21] addresses the

more complex ImageNet dataset [106]. Geng et al. [181] identify approaches to OSR

as generative, or discriminative.

2.8.1 Discriminative

The majority of deep neural networks trained for classification use a typical softmax

cross-entropy loss which is inherently closed set because of its normalised output.

Discriminative approaches revolve around finding an empirical threshold that can be

used to either reject or categorize the input samples as an unknown members of an

’open’ class [184], the disadvantage of this is that it requires knowledge of a validation

set to be chosen optimally.

Similarity Learning uses losses such as lifted [185], focal [186] and range [187] to

cluster known classes together in an embedded space, which then allows outlier classes

to be identified. Active learning has also been explored with similarity learning [188]

to detect open set inputs and label them for addition to training data.

Calibration can be applied to a DNN to improve the accuracy of the confidence of

its predictions. For example, an Openmax calibration layer [21], explained further in

Chapter 4, is trained normally using cross-entropy, then each class is represented as

a mean activation vector (MAV) based on correctly classified samples and fitted to a

separate Weibull distribution and used to compute a pseudo-activation for unknown

classes. Once the class embeddings are fitted to the statistical distribution it can be

used to estimate whether test image embeddings are likely to be outliers. Liang et
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al. [189] propose ODIN to use temperature scaling and small input perturbations to

separate the softmax score distributions of closed and open set image classes.

Figure 2.10: Intra-class splitting [190] for open set recognition trains for classification
on the original classes (A, B and C). The training data is evaluated on the trained
classifier and examples which are misclassified or classified with a low confidence are
identifed as atypical examples of the original data (the hatched classes A, B and C).
This atypical data is used as synthetic examples of the open class, which then allows
the network to be retrained for open set recognition.

2.8.2 Generative

Generative methods attempt to synthesize likely examples of unknown classes and

then learn to classify them as an additional open class.

Generative Adversarial Networks are a common choice for this approach. For

example, OpenGAN [22] generates synthetic open set data to train a discriminator for

open set recognition. Openmax [191] has also been extended by using a generative

adversarial network (GAN) to synthesize unknown classes, which can be investigated

visually, and then explicitly estimate probability over them. Encoder-decoder GANs

are also used to augment a training dataset to include synthetic open set images that

lie on the opposing side of the true decision boundary, between the known classes and

the open set [192].

In contrast, Vaze et al. [193] improve training of a closed set classifier with data

augmentation, longer training and ensembling, this is combined with maximum logit

scoring and demonstrates competitive open set recognition performance compared

to the state-of-the-art. Recently Schlachter et al. [190] suggested intra-class splitting
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(Figure 2.10) which trains a classifier on the closed set problem. Unlearnt training data

and correctly learnt training data that is classified with a low confidence threshold is

used to generate potential open set data by relabelling it as an open set for re-training

the network for OSR.

Long-Tailed open set recognition scenarios combine the problem of imbalanced train-

ing class samples with OSR. Liu et al. [194] introduces this problem and addresses it

using a meta embedding to combine a feature descriptor, a memory feature which

captures visual concepts from training classes and a feature that relates the feature

descriptor to the other training classes to transfer knowledge between class represen-

tations and enable open set recognition. Cai et al. [195] expands on this approach by

proposing a distribution-sensitive loss, to increase the weight of tail classes and de-

crease the intra-class distance in the descriptor space, and a local-density-based simi-

larity to measure the novelty of a testing sample.

Bayesian deep learning [196], although not explicitly labelled OSR, as has been used

to predict uncertainty for visual place recognition. Bayesian deep learning can be used

indirectly for OSR by identifying open set classes with a high degree of epistemic

uncertainty [197] or unifying a Dirichlet process mixture model with a DNN [198].

Warburg et al. [199] propose Bayesian triplet loss to train a DNN to produce stochastic

descriptors rather than point estimates. By considering a posterior distribution over

possible features direct uncertainty estimates can be calculated and used to assign

probabilities to descriptor matches. This approach also uses estimated uncertainty for

out of distribution detection, but does not aim for OSR.

2.9 Summary

The introduction of deep learning, in particular CNNs, has enabled significant ad-

vances in generating appearance invariant image descriptors but these are yet to have

found practical application in robotics. Two reasons for this is that current approaches

rarely consider the practical challenges of prediction uncertainty and open set recogni-

tion which are critical for use in real-world applications. Furthermore these tasks have

typically only been considered for image classification rather than visual place recog-

nition, which is an image retrieval task. To address these problems from a robotics
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perspective this thesis considers a wide variety of relevant research topics and uses

them to make three contributions towards improved navigation in open and uncer-

tain environments.

41



42 William Hugh Burrough Smith

42



Part II

Contributions
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Chapter 3

Particle Filtering for Robust

Real-Time Visual Teach and Repeat

3.1 Introduction

Visual SLAM has many important applications, but for real-world tasks navigation

along a pre-defined route is often sufficient, this task is a subset of visual SLAM known

as visual teach and repeat (VT&R). In this case a route is defined as a single path

between two geographic points. This chapter addresses two key challenges for state-

of-the-art VT&R:

• Appearance invariant visual place recognition descriptors specialised for each

route that can be generated faster on embedded hardware.

• Real-time route navigation that is robust to variations in speed, and large visual

changes.

Visual teach and repeat consists of a ‘teach’ phase that pre-records reference traver-

sals of a route and then a ‘repeat’ phase for real-time, autonomous repetition of that

same route with variations in appearance (Figure 3.1). VT&R compares single test im-

ages from a route repetition with the reference images using image descriptors. The

closest match from this comparison is used to localise the query image and therefore

relies heavily on those image descriptors being appearance invariant. Current ap-

proaches OpenSeqSLAM 2.0 (OSS2) [132] and Online Place Recognition (OPR) [131]

use patch-normalised descriptors and deep neural network (DNN) descriptors taught
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on general image classification [136] respectively which have not been taught for ap-

pearance invariant VPR. Recently large DNNs have been taught to generate appear-

ance invariant VPR descriptors that generalise across many environments and visual

conditions [112, 7], but these are not specialised for a unique route. The smaller the

DNN required, the lower the computational requirements and the better it is for mo-

bile robotics, which prioritises lower power usage and inference time.

Figure 3.1: Examples of the reference repetition traversals used from the Oxford and
UAH datasets showing the variations in appearance.

For route repetition OSS2 [132] and OPR [131] compensate for descriptors not de-

signed for the task by making associations between sequences of consecutive images,

but these fail during real-time operation, which is an integral aspect of real-world, out-

door navigation. Two significant causes of failure in these algorithms are repetition of

the route at variable speed and large visual changes. Variable speed repetition causes

query images to be unevenly sampled along the route (Figure 3.2), which disrupts the

sequences of images that OSS2 and OPR depend on for localisation during repetition.
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Large visual changes impact the ability of an accurate VPR descriptor to be generated

and therefore also disrupts the comparisons between sequences of consecutive place

images, examples of this can be seen in Figure 3.3.

Figure 3.2: Example of the difference between comparing reference images with test
traversals at constant or variable speeds using the Oxford RobotCar Dataset [115].
Variable speeds result in an uneven distribution of test images across the route which
makes them more challenging to localise, especially for approaches that explicitly use
sequential information.

This chapter’s first contribution uses reference traversals of a single route collected

in the teaching phase of VT&R to train a compact TinyVPR network with reduced in-

ference time to generate appearance invariant VPR descriptors. The different reference

traversals represent the single route in a number of appearance variations and are used

to train TinyVPR to generate VPR descriptors that generalise to unseen test appear-

ance variations, but are also specialised for that route for reduced localisation error.

Figure 3.3: Examples of the large visual changes that can disrupt descriptor matching
in the Oxford Robotcar Dataset [115] and the UAH-DriveSet [200] highlighted in red.
Examples include camera occlusion, construction work altering building appearance
and extreme light changes.
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Experiments show TinyVPR generates descriptors 11x faster with 30x fewer parame-

ters than state-of-the-art visual place recognition network NetVLAD [10] and reduces

localisation error for route repetition between 32.3% and 4.3% on two challenging out-

door datasets: Oxford RobotCar [115] and UAH-DriveSet [200] respectively.

Figure 3.4: Visualisation of the proposed particle filter (with 30 particles) and TinyVPR
descriptor localising during a route repetition when alternative approaches OSS2 [132]
and OPR [131] fail on the Oxford RobotCar dataset [115] using a test repetition traver-
sal in Snow conditions.

The second contribution is a novel combination of TinyVPR descriptors and accu-

mulated visual odometry in a particle filter (Figure 3.4) to remove incorrect matches

that occur when a test image is being compared to the reference traversal images for

localisation. Accumulated visual odometry is used to keep track of the approximate

progress along the route, if used for VT&R alone VO would drift but it can be used to

help reject unlikely descriptor matches. For example, if visual odometry indicates the
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robot has moved 20m along a route but a couple of descriptor comparisons suggest

the robot is localised 100m along the route then these matches can be identified as out-

liers. The TinyVPR descriptor comparisons are generally reliable, but the particle filter

is able to remove noisy matches affected by large visual changes. Other approaches

use sequences of data to address this problem but these are disrupted when the cam-

era is traversing the route at variable speed. The particle filter still uses a distribution

of previous localisation predictions but does not require fixed sequences of data which

are unavailable during variable speed repetition. Experiments show the proposed ap-

proach reduces localisation error by 94.3% and 99.1% compared to OSS2 and OPR on

the Oxford RobotCar [115] and UAH-DriveSet [200] datasets respectively.

1. A training approach and TinyVPR network with reduced parameters to generate

appearance invariant descriptors for a single route (Section 3.2.1).

2. A particle filter to combine TinyVPR embedded descriptors with accumulated

visual odometry for route repetition that is robust to variable repetition speed

and large visual changes (Section 3.2.2).

3.2 Methodology

In this section the network architecture and training scheme for generating the pro-

posed TinyVPR descriptors is described. Secondly, a particle filter for route repetition

at variable speeds and with large visual changes is proposed.

3.2.1 TinyVPR

3.2.1.1 Basic Hypothesis

State-of-the-art approaches use large datasets and deep neural networks to provide a

general solution for generating appearance invariant VPR descriptors. However, the

large capacity of these networks increases their computational requirements and the

lack of route-specific training data does not ensure the descriptors are best suited for

the target environment. This section explores the possibility of leveraging the refer-

ence traversal data collected in the teach phase of visual teach and repeat to train a

compact DNN architecture to generate specialised VPR descriptors for visual teach

and repeat on a per route basis.
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3.2.1.2 Teach Phase & Data Pre-Processing

The teaching phase of visual teach and repeat collects different traversals of a route in

different appearances throughout different times of the day and weather conditions,

amongst others. Images from repetitions of the route can then be localised by com-

paring them to the reference traversals to enable autonomous navigation. Reference

traversals are recorded as videos which can be separated into geotagged images (using

simultaneously recorded GPS data) with associated geographical positions and cover

different appearance conditions (Figure 3.1). It is proposed that this data is used to

train a compact network to generate a VPR descriptor specialised on a per-route basis.

For each dataset the geotagged images from one reference route traversal were

sampled at dataset-specific distance intervals (2.25m for Oxford and 18m for UAH) or

at camera rotations of more than 10 degrees. These intervals were chosen to reduce the

number of the frames in the dataset without compromising the coverage of the route,

including the rapid visual changes from turning corners. For each sampled frame of

the reference route a matching frame was found in each of the remaining reference

routes (Figure 3.5). The reference route data is sourced from different videos associ-

ated with different visual variations so the data can be used for training and as the

reference database for comparing test images against for VT&R. Synchronisation also

helps to ensure that every image has an equivalent with a visual variation available

for triplet training, as described in Section 3.2.1.4. Test images from previously unseen

routes could be synchronised against the reference images, or only at a time interval,

to reduce the number of frames from the original video but retain its real-time char-

acteristics, such as pauses in traffic. Both reference and test images were cropped to

remove potentially misleading visual information, such as the front of the recording

vehicle.

3.2.1.3 Network Architecture

NetVLAD [10] is a state-of-the-art approach for generating appearance invariant VPR

descriptors. NetVLAD is based on the VGG16[12] convolutional neural network pre-

trained on general image classification using the ImageNet dataset frozen down to,

but not including, the Conv5 layer. The network is cropped at the final convolutional

layer and a custom VLAD layer is appended. The network is then trained using a

version of similarity learning called triplet loss and semi-hard triplet mining. The
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Figure 3.5: Example of the Oxford dataset sampled and synchronised across four ref-
erence traversals showing the four examples of each single place.

training images are sourced from large, feature-laden city environments at minimum

intervals of 12 metres and in other environments at discrete locations.

This manuscript proposes a compact alternative to NetVLAD called TinyVPR which

uses MobileNetV1 [118] as the base CNN and replaces the final layer with global av-

eraging pooling and two fully connected layers. MobileNetV1 was originally trained

for the same image classification task as VGG16, but is approximately 30x smaller and

10x faster. The biggest problem with training on a per route-basis is overfitting to the

training appearance variations, dropout (ignoring a proportion of the output neurons

during training) and L2 normalisation (normalising the inputs to sum to 1) were used

to help prevent this (Figure 3.6). These final layers are inspired by FaceNet [201] which

uses similarity learning to cluster face images also using triplet loss. MobileNetV1 is

frozen and the remaining layers are trained with triplet loss. TinyVPR significantly

reduces network parameters and consequently training and inference time.

3.2.1.4 Triplet Learning

Triplet learning (a variation of similarity learning introduced in Section 2.2) is used

in a similar manner to NetVLAD to train TinyVPR to generate appearance invariant

VPR descriptors using the multiple reference traversals recorded during the VT&R

teaching phase. Specifically, the triplet loss function (Equation (3.1)) is minimised for

each batch of triplets (Equation (3.2)) to:
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Figure 3.6: TinyVPR CNN network architecture with the output shape of each layer,
the L2 normalization factor was 0.1. The architecture for TinyVPR and values for
dropout were determined heuristically, but with reference to FaceNet’s architecture
[201]. The architecture took inspiration from FaceNet, specifically a different backbone
network designed for mobile applications.

1. Minimize the Euclidean distance between the VPR descriptors of a randomly

selected ‘anchor’ image and nearby ‘positive’ image, but with different appear-

ances (Figure 3.7). This teaches the network that, despite some appearance vari-

ations, two images are of the same place. Some difference between the positive

images in terms of distance and rotation can be beneficial as it helps to encourage

viewpoint invariance, but a significant overlap is necessary.

2. Maximize the Euclidean distance between the VPR descriptors of the above an-

chor and ‘negative’ images of places from far away and with any example ap-

pearance (Figure 3.7). This teaches the network that other appearance variations

indicate two images are from different places.

For training the network a siamese configuration is used: three instances of TinyVPR

are used to generate the descriptors for each of the positive, anchor and negative im-

ages in preparation for calculating the triplet loss between them. The weights of each

network instance are shared so after training one network instance can be used for

VPR descriptor generation, given an input image, as shown in Figure 3.6.

L(a, p, n) = max(||f(a)− f(p)||2 − ||f(a)− f(n)||2 +m, 0) (3.1)

where:

a = random anchor place image
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Figure 3.7: Example of an image triplet and the siamese network setup used for train-
ing. Three instances of TinyVPR are shown here with shared weights and used to
produce the descriptor representations for the anchor, positive and negative images
which can then be minimised in the triplet loss.

p = positive place image (appearance variation of anchor place image)

n = negative image (different place with random appearance variation)

m = margin between positive and negative pairs

f = network output (descriptor)

Note Equation (3.1) uses the max() function to set L(a, p, n) = 0 if the distance

between the anchor and negative is larger than the distance between the anchor and

the positive because this is already the desired output. The cost function to minimise

for each triplet batch is therefore:

cost =
batchsize∑

i

L(ai, pi, ni) (3.2)

3.2.1.5 Triplet Mining

The strategy for selecting appropriate triplets of images for training is called ‘min-

ing’ and has been shown to have a significant affect on network performance [202].

For visual place recognition triplets are traditionally mined using their geographical
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positions, for example NetVLAD defines positive images as images within a bound-

ary of 10 meters of the anchor, and negative images as further away than a 25 meter

boundary.

Alternatively, consecutive frames could be used for triplet mining, for example

positive images can be defined as being within 10 frames of the anchor and negative

images more than 25 frames away. This frame-wise mining took advantage of the

pre-processing described in Section 3.2.1.2 to prevent anchor images at corners being

associated with positive images that did not look similar but were recorded nearby.

For example, using geographical mining an anchor image may have a positive image

mined from one meter away that looks very different because it was taken while turn-

ing a sharp corner, but because the dataset is collected at distance and rotation inter-

vals frame-wise mining a positive image from one frame away would ensure that the

positive image is similar and maintain the relationship between the triplet of train-

ing images shown in Figure 3.7. For initial selection a total of three approaches are

compared for training TinyVPR:

1. Geographical: positive images lie within X metres and negative images beyond

X metres.

2. Frame-wise: positive images lie within X consecutive frames of the anchor,

while negative images are further than X consecutive frames away.

3. Hybrid: positive images lie within X metres of the anchor and negative images

are further than X consecutive frames away.

Combining frame-wise and geographical approaches in a hybrid method allows

more overlap between positive and negative images, which may be useful for gener-

ating more difficult triplets for learning. Triplet difficulty for training a network falls

into three categories:

1. Easy triplets which have a loss of 0, because: ||f(a)−f(p)||2 ≦ ||f(a)−f(n)||2+m.

2. Semi-hard triplets where the negative is not closer to the anchor than the posi-

tive, but which still have positive loss: ||f(a)− f(p)||2 +m > ||f(a)− f(n)||2.

3. Hard triplets where the negative is closer to the anchor than the positive: ||f(a)−

f(p)||2 > ||f(a)− f(n)||2.
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To ensure efficient training easy triplets can be removed as they do not contribute

towards the network learning, but a triplet needs to be passed through the network

and its loss calculated before its difficulty is known, which can be time consuming

and increase computational time. Ultimately including easy triplets for training does

not change the result because they return 0 loss (Equation (3.1)). Different triplet min-

ing strategies and frame/distance boundaries for positive and negative images were

explored for training TinyVPR, the results of which can be seen in Section 3.3.2:

3.2.2 Particle Filter

3.2.2.1 Basic Hypothesis

State-of-the-art approaches to visual teach and repeat make associations between fixed

sequences of image descriptors to enable accurate route repetition. However, in real-

time operation these sequences are disrupted by variable speed route repetition and

large visual changes, such as occlusions which causes current approaches to fail. The

hypothesis of this chapter is that appearance invariant VPR descriptors can be com-

bined with accumulated visual odometry in a probabilistic filter to prevent these fail-

ure cases. In the case of the Oxford dataset the visual odomoetry is provided by the

dataset, for the UAH dataset the visual odometry was substituted with interpolated

GPS data with added noise, the same method used by Xu et al. [142]. As discussed

previously VPR descriptors are vulnerable to large visual changes from scenarios such

as buses cutting across the camera and accumulated visual odometry is vulnerable to

drift, by combining the two sensor measurements they can compensate for each others

weaknesses. The advantage of this approach is that it uses prior information without

requiring explicit associations between fixed sequences of query and reference images.

3.2.2.2 Algorithm

Particle filters are introduced in Chapter 2 as a Sequential Monte Carlo algorithm that

estimates the posterior distribution of a system’s state, given partial or noisy measure-

ments of previous states. In this case the state being estimated is the robot’s pose.

To begin with image descriptors extracted from a sequence of query images are

defined {zs}ts=1 with unknown poses {Ts}ts=1. The pose, T, is a 4x4 matrix (Equation

3.3), containing the frame’s translation, t ∈ R3, and rotation R ∈ SO(3) which repre-
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sents a rotation in 3-D in a right-handed Cartesian coordinate system. Visual odom-

etry, U, is represented as a change of pose in the same format. Therefore T ∈ SE(3),

where SE(3) is the special Euclidean group which represents 6 degrees of freedom, 3

from translation and 3 from orientation between the world reference frame and the

camera.

T =

 R t

0 1

 ,U =

 ∆R ∆t

0 1

 (Oxford) (3.3)

Unfortunately pose data was not available for the UAH Driveset, so the raw GPS

values were used as a substitute T,U ∈ R3 (Equation 3.4) in a 3x1 column matrix.

T =


latitude

longitude

altitude

 ,U =


∆latitude

∆longitude

∆altitude

 (UAHDriveset) (3.4)

Only descriptors (zs ∈ RD) extracted using TinyVPR or NetVLAD networks are

considered for evaluation, but others could be used. The proposed approach also uses

visual odometry {Us}ts=1 to provide an estimated change in pose between consecutive

frames. As the task is route repetition and the starting position is known an approx-

imate measure of how far along the route each frame is, with respect to the starting

point, is calculated for each image {ds}ts=1 by adding the magnitude of the transla-

tion from the odometry to the accumulated distance from the previous query frame

ds = (ds−1 + us), where ds−1 = 0 when s = 0. Additionally ds−1 may be adjusted

for drift, as described below. Accumulated changes in rotation are discarded as they

do not reflect a frame’s distance moved along the route. The available data from each

dataset means that the pose and visual odometry for Oxford is Ts,Us ∈ SE(3), where

SE(3) is the special Euclidean group which represents 6 degrees of freedom, 3 from

translation and 3 from orientation and for UAH is Ts,Us ∈ R3.

The multiple reference traversals of the target route collected during the the teach

phase and previously used for training TinyVPR, are formed into a ‘map’. The ac-

cumulated distance for each reference traversal frame is calculated by summing the

magnitude of the translations between the ground truth poses Tr of every previous

frame, the use of ground truth prevents drift. Each frame is then included in the map

with a pose and accumulated distance M = {(Tr
s, z

r
s,d

r
s)}

N
s=1.
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A finite set of M weighted particles Xt =
{
w

(i)
t ,T

(i)
t

}M

i=1
are then initialised around

the known starting point with poses, T (i)
t , from the map, M, that are known to exist

on the route, thereby also associating each pose with a reference image descriptor and

accumulated distance. During the measurement update particle weights, w(i)
t , are cal-

culated using the visual and accumulated distance measurement models (Equations

3.7 & 3.8). The particle filter can therefore be described by the following recursion

(Equation 3.5) which seeks to estimate the posterior distribution over the current pose

Tt given the map and the sensor measurements from the VPR descriptor and accu-

mulated distance.

p (Tt | z1:t,d1:t,M) = p (zt | Tt,M) p (dt | Tt,M) p (Tt−1 | z1:t−1,d1:t−1,M) (3.5)

Equation 3.5 is derived in Section 2.5.2 and reiterated in Equation 3.6 for conve-

nience, where the weight, w, at time, t, of each, i, particle w
(i)
t (p (Tt | z1:t,d1:t,M)) is

equal to the weight at the previous time step, w(i)
t−1 (p (Tt−1 | z1:t−1,d1:t−1,M)), mul-

tiplied by the probability of the observation, y, given the state vector x, p
(
yt | x(i)

t|t−1

)
(p (zt | Tt,M) p (dt | Tt,M)). The probability of each observation is multiplied to-

gether, as done by Xu et al. [142].

w(i)
n = w

(i)
t−1p

(
yt | x(i)

t|t−1

)
(3.6)

Visual Measurement Model: The likelihood of observing a query image descrip-

tor at each particle pose is calculated using the Euclidean distance between it and the

reference descriptor associated with the particle’s pose in the map,
∥∥∥zt − z

r(i)
s

∥∥∥. The

likelihood is drawn from a half-normal distribution phn(0, σvm), because Euclidean

distances can only be positive.

p
(
zt | T(i)

t ,M
)
= phn(

∥∥∥zt − zr(i)s

∥∥∥ ; 0, σvm) (3.7)

Accumulated Distance Measurement Model: The likelihood of observing a par-

ticular accumulated distance at each particle pose is drawn from a normal distribution

pn(d
r(i)
s , σdm)
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p
(
dt | T(i)

t ,M
)
= pn(dt;d

r(i)
s , σdm) (3.8)

Drift Compensation: If the particle with the highest weight has a visual measure-

ment from Equation 3.5 above a user defined threshold then the measured accumu-

lated distance, dt, is set to the accumulated distance ground truth associated with the

maximum a posteriori (MAP) reference descriptor from the map. This allows highly

likely descriptor matches to be used to correct visual odometry drift.

Standard deviations are defined by the user to model the distribution of likely val-

ues. For example, if 85% of the Euclidean distances between test and particle VPR

descriptors is between 0 and 1 then a suitable value for σvm would be 1. The value

of σdm should reflect the standard deviation of the distance moved between repetition

images and can be estimated from the reference traversals of the route collected dur-

ing the teaching phase. Automatically establishing parameters for these distributions

remains an outstanding problem, but can be approximated heuristically.

As p (Tt | z1:t,d1:t,M) is calculated using each particle the filter’s execution time

scales directly with the number of particles used, M , and is therefore O(N). Another

advantage of the proposed approach is that particles can be instantiated simultane-

ously across multiple reference traversals of the route, a similar concept was explored

by Churchill et al. [75].
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Algorithm 1: Particle Filter Route Repetition with VPR Descriptors and Vi-
sual Odometry

1: initialise a geographical starting point on the target route and choose an
approach for generating VPR descriptors, in this case TinyVPR.

2: for each reference traversal of the target route:
3: for each frame:
4: Extract a descriptor, zr, and calculate the accumulated distance, dr, by

summing the magnitude of the translations between the ground truth poses, Tr,
of every previous frame.

5: end for
6: end for
7: initialise a ‘map’, M = {(Tr

s, z
r
s,d

r
s)}

N
s=1, with all reference poses, descriptors

and accumulated distances.
8: initialise a set of equally weighted M particles Xt =

{
w

(i)
t ,T

(i)
t

}M

i=1
with weight,

w
(i)
t and pose T

(i)
t at time, t=0, centred around the start point.

9: end initialisation
10: Generate a new set of particles at time t+ 1, Xt+1 by randomly sampling the

previous particle set Xt in proportion to their weights and with replacement.
11: At an unknown pose, Tt, measure a query image descriptor, zt, and accumulated

distance, dt.
12: for particles i, 1 : M in Xt:
13: Update each particle by adding a small amount, dup, to the accumulated

distance d
r(i)
s associated with each particle drawn randomly from a normal

distribution ND, σdm), where D is a user defined constant associated with mean
accumulated distance per query frame.

14: The particle’s pose, T(i)
t , is then updated by finding the pose that corresponds

to the new accumulated distance, dr(i)
s , in the map. The particle is then associated

with a new image descriptor zr(i)s that corresponds to the new pose. This step
allows the particles to be updated without leaving the route.

15: Calculate the weight of each particle by calculating its likelihood using the
visual and accumulated distance measurement models as given by the general
form of the filter’s recursion (Equations (3.5) - (3.8):

w
(i)
t = p

(
zt | T(i)

t ,M
)
p
(
dt | T(i)

t ,M
)

16: end for
17: if the particle with the highest weight, j has a visual measurement greater than a

user defined threshold, p
(
zt | T(i)

t ,M
)
> threshold, then perform drift

correction as described previously: dt = d
r(j)
s

18: end if
19: Normalise the weights of all particles in Xt to a total of 1.
20: Calculate the pose estimate, Tt, with a mean of particle poses weighted by their

normalised weights.
21: if the end of the route has been reached end, otherwise loop to 5.
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3.3 Evaluation

In this section the proposed combination of TinyVPR descriptor and particle filter is

compared against state-of-the-art visual teach and repeat algorithms Open SeqSLAM

2.0 (OSS2) [132] and Online Place Recognition (OPR) [131]. State-of-the-art off-the-

shelf VPR descriptor NetVLAD was also combined with the proposed particle filter

for further comparison. Secondly, specific examples are used to compare the robust-

ness of these approaches to variable route repetition speed and large visual changes.

OSS2 and OPR do not use visual odometry, unlike the proposed approach, but the

comparison remains fair as the the proposed visual odometry is derived only from

images which are equally available to the alternatives.

3.3.1 Experimental Setup

Evaluation was done on two datasets. The first route was a 2km section of the Ox-

ford RobotCar dataset [115] which was collected over the course of a year in different

lighting conditions and seasons. The second route was a 16km section of the UAH-

DriveSet [200] collected in Spain on a semi-rural single lane road over 3 months in a

large variety of weather and lighting conditions.

Table 3.1: Details of each reference route traversal with the original dataset details.
Timestamps are in the format: year-month-day-hour-minute-second

Sampled
Orig. Dataset Ref. Label Frames
Oxford
2014-12-10-18-10-50 Night 884
2015-10-29-12-18-17 Rain 884
2014-12-16-09-14-09 Morning 884
2015-03-10-14-18-10 Afternoon 884
2015-03-03-11-31-36 Midday 884
2014-11-25-09-18-32 Overcast 884
UAH
2015-11-11-13-45-42 Blue Sky 2951
2015-12-11-16-28-29 Grey Clouds 2951
2015-12-03-17-43-23 Sunset 2951
2015-11-26-12-42-08 Light Cloud 2951
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3.3.1.1 Teaching Phase

For Oxford six reference traversals (Figure 3.1) of the route were collected, sampled

and the data pre-processed as described in Section 3.2.1.2 for 884 images per traversal

at mean intervals of approximately 2.25m for a total of 5304 reference images. For the

UAH-DriveSet four reference traversals of the route (Figure 3.1) were pre-processed

similarly resulting in 2951 images per traversal, for a total of 11804 reference images at

mean intervals of approximately 18m. A summary of these details and their original

dataset labels/timestamps can be found in Table 3.1.

3.3.1.2 Repetition Phase

For testing VT&R traversals of the same route in previously unseen appearance varia-

tions of the Oxford and UAH datasets were used (Figure 3.8) and the mean localisation

error of each frame was recorded.

Figure 3.8: Examples of the test repetition traversals used for the Oxford and UAH
datasets showing the variations in appearance.

These traversals were originally real-time videos, but were sampled at time inter-
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vals merely to reduce the test dataset frames because comparing many test frames

against all reference images was very computationally intensive, for ease of reference

these are referred to as unsampled. However during testing OSS2 and OSR were

found to fail very quickly when presented with this test data, mainly because they

relied on fixed sequences but the reasons for this are explored in more detail later. To

enable comparison the test traversals used for OSS2 and OPR had to be pre-processed

according to Section 3.2.1.2 to remove the variations in speed. A summary of these

details and their original dataset labels/timestamps can be found in Table 3.2. Fur-

thermore the proposed particle approach requires visual odometry data which is in-

cluded in the Oxford dataset, but not in the UAH-DriveSet so interpolated GPS data

with noise added was used as a substitute, a similar substitution was done by Xu et

al. [142].

Table 3.2: Details of each test repetition route traversal with the original dataset labels.
Timestamps are in the format: year-month-day-hour-minute-second.

Sampled Unsampled
Orig. Dataset Label Label Frames Frames
Oxford
2015-07-03-15-23-28 Cloudy 884 3485
2015-02-03-08-45-10 Snow 884 3132
2014-12-16-18-44-24 Dark 884 3486
2014-12-02-15-30-08 Early Evening 884 3942
UAH
2015-11-20-16-09-03 Medium Cloud 2951 3451
2015-12-03-17-17-59 Bright Sun 2951 3893
2015-12-21-11-24-44 Hazy 2951 4153

There is some apparent overlap between the reference and test appearance varia-

tions as shown in Figures 3.1 & 3.8, but this is because the range of appearance varia-

tion across the whole route is difficult to capture across one location on the route. As

well as weather and lighting conditions the appearance variations are also a result of

long term changes, evidence for this can be found in the timestamps associated with

each of the datasets: many traversals were recorded months apart (Table 3.1 & 3.2). A

sample of these further appearance variations is shown in Figure 3.9.
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Figure 3.9: Examples of the further appearance variations between locations in traver-
sals of the Oxford and UAH routes.

3.3.1.3 Comparison Approaches

OpenSeqSLAM 2.0 (OSS2) [132] and the original SeqSLAM paper remain popular

state-of-the-art approaches and have been used for comparison with state-of-the-art

approaches [133, 134, 142]. OSS2 is designed to use small sequences of consecutive

images to reduce the impact of appearance variation on route repetition. OSS2 be-

gins by downsampling images from a single reference traversal, converting them to
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grayscale, dividing them into patches and then performing patch normalisation to en-

hance contrast and create an image ’template’ that acts as a VPR descriptor (Figure

3.10).

Figure 3.10: The four image pre-processing steps used in OpenSeqSLAM 2.0 [132].

The same pre-processing is applied to incoming test images from a route repeti-

tion. A Sum of Absolute Differences (SAD) matcher is used to compare the test and

reference VPR descriptors, which is then plotted in a descriptor comparison plot. Lo-

cal neighbourhood normalisation is applied to the descriptor comparison plot and a

number of search strategies are used to find trajectories of differences that represent

the most likely reference image match for each test image (Figure 3.11).

Figure 3.11: Three processing steps for refining the descriptor comparison plot of test
and reference images and then using windows of ds images for searching for trajecto-
ries between vmin and vmax used in OpenSeqSLAM 2.0 [132] where yellow represents
a large difference between images and red a small difference.

OSS2’s trajectory matching approach allows a basic invariance to variable repe-

tition speeds, but ultimately relies on large stretches of the route to have only brief

visual changes that do not disrupt the trajectories. OSS2 is also vulnerable to routes

with a relatively homogeneous appearance because this leads to many plausible tra-
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jectories being calculated as different parts of the route are similar to each other and

trajectories across the entire descriptor comparison plot are considered.

Online Place Recognition (OPR) [131] is an approach that specifically aims to op-

erate in real-time. It uses a directed graph with no graph cycles (acylic) that is built

as each test image becomes available by initialising a node based on the similarity be-

tween the test image and the reference database. Similarity is measured by extracting

image descriptors and measuring the distance between them using the cosine dis-

tance. HOG [86] or generic CNN descriptors [136] were originally used but were up-

dated in this implementation to CNN descriptors extracted from the penultimate layer

of VGG16 [12]; VGG16 was originally trained on the same image classification task as

the original CNN, but is more recent and performs better. NetVLAD descriptors were

also experimented with but the dimension of the descriptors was not natively sup-

ported. If the similarity between descriptors is high then that node will be expanded

to a new set of nodes that represent comparisons between the next test image and the

reference images. To prevent exponential expansion lazy data association is used to

predict the cost of future expansions and prevent expansion of the least promising

nodes. Localisation predictions are found by searching the shortest path through the

graph.

Figure 3.12: Descriptor comparison plot from the original OPR paper [131] showing
the spread of graph nodes across potential reference image matches in green. Overfeat
CNN (right) descriptors are more distinctive than HOG (left) descriptors and therefore
require fewer nodes for matching. Variable speed traversal is also shown here, with
vertical lines indicating a stationary camera.

OPR works well to reduce the amount of reference image comparisons done at

each time step of a route repetition, but is vulnerable to large visual changes which

disrupt the generation of appropriate nodes. This weakness is exacerbated when vari-

able repetition speeds are combined with visual changes and causes a significant fail-
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ure point in the algorithm. One observed example was when the input camera became

stationary at a junction and cars passed in the opposite direction this introduced noise

which corrupted the creation of new nodes and moved them away from the correct

position. When the camera started moving again all the newly created nodes were

equally dissimilar to the incoming test image and the algorithm was unable to recover.

3.3.2 TinyVPR Training

Once the teach phase has been used to collect reference traversals of each route TinyVPR

can be trained on that route. For Oxford 51,000 triplets were mined and used for train-

ing over 10 epochs in batches of 16 with a margin of 1. For UAH TinyVPR was trained

using 177,060 triplets over 15 epochs in batches of 16 with a margin of 0.1. In both

cases 5% of the generated triplets were used for validation, 10 and 15 epochs were

used for training because it was observed that the validation loss increased beyond

these amounts of epochs. Training parameters were established using a grid search

which exhaustively searches a manually specified subset of the hyperparameter space,

NetVLAD was trained in a similar way so it was used as the basis for the parameter

subset. Training took approximately an hour on a mobile Nvidia GTX 1070.

3.3.2.1 Which Triplet Mining Approach Worked Best?

As part of the grid search for establishing training parameters different triplet mining

approaches described in Section 3.2.1.5 were evaluated for training TinyVPR. Triplet

hardness was not calculated during training as this increased training time by up to a

factor of 10, but this did reduce training efficiency because approximately 75% of the

mined triplets were easy. For further comparison MobileNet was replaced by VGG16

in TinyVPR by removing its final layer, freezing the remainder of the network and

replacing it with the layers shown in Figure 3.6. The following experiments were

performed on it as well.

For triplet mining two boundaries are typically defined, for example NetVLAD

defines positive images as being within 10 meters of the anchor, and negative images

as further away than 25 metres. However, for ease of evaluation these two boundaries

were collapsed into one, positive images were defined as being within this boundary

and negative images beyond it; this increased the likelihood of harder triplets being

mined (the negative image being more similar to the anchor image than the positive
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image). All numbers used for these boundaries are defined in terms appropriate to the

mining approach. For example, a boundary of 5 would be 5 metres for geographical

mining and 5 frames for frame-wise mining. Not all anchor images contained a posi-

tive image within 5 meters so this boundary was not used for hybrid and geographical

mining.

This test was only performed on the Oxford dataset because it included the most

challenging appearance variations and training all the networks with different triplet

mining approaches was limited by training and testing times. The unsampled test rep-

etitions were used for this experiment. Each cropped test image was passed through

the trained model to produce a VPR descriptor which was compared using the Eu-

clidean distance to the reference image VPR descriptors. The 20 reference images most

similar to the query image were found and the one with the smallest localisation error

used to evaluate each mining approach. This evaluation metric was used because the

proposed approach aims to filter the results and find the lowest error localisation esti-

mate, this metric is also related to image retrieval recall [10, 199] which counts a result

as a true positive if a true match is included in a set of top matches. The mean results

across the four test route traversals are collected in Table 3.3.

Table 3.3: Comparison of triplet mining techniques (Section 3.2.1.5) using mean local-
isation error (metres) across four test route traversals. The positive/negative bound-
ary is given in metres/metres (Geographical), frames/frames (Frame-wise) and me-
tres/frames (Hybrid).

Mining Approach Hybrid Geographical Frame-wise
Pos./Neg. Boundary 10 20 40 60 10 20 40 60 5 10 20 40 60
TinyVPR (M.Net) 8.96 4.33 4.76 5.06 5.78 6.06 6.44 5.67 5.98 4.10 5.20 5.11 4.79
TinyVPR (VGG16) 7.20 12.1 6.41 5.88 8.14 9.71 8.66 7.87 5.40 8.83 8.38 6.54 6.57

Frame-wise mining performed better than geographical mining. This may be be-

cause a positive image needs to be from a very similar viewpoint to the anchor, but

geographical mining can select a positive image within a couple of metres but with

a very different viewpoint, for example from around a corner. However, because the

training set is pre-processed at distance and rotation intervals (as discussed in Sections

3.2.1.2 and 3.2.1.5) using consecutive frames to define mining boundaries reduces the

risk of this. Hybrid mining outperforms frame-wise mining for larger boundaries but

never performs the best. More analysis to investigate this is required but a potential

explanation for this is that hybrid mining enables greater overlap between positive

and negative images which improves training by generating harder triplets, but ulti-
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mately is outweighed by the aforementioned advantages of frame-wise mining. These

results suggest the importance of mining appropriate triplets compared to prioritising

‘hard’ training data. Given these results all TinyVPR networks were therefore trained

using frame-wise mining with a boundary of 10.

3.3.3 Real-Time Route Repetition

Once TinyVPR descriptors had been taught on the reference route traversals of the

Oxford and UAH datasets they could be combined with the proposed particle filter

and evaluated for route repetition against OpenSeqSLAM 2.0 (OSS2) and Online Place

Recognition (OPR). For Oxford six reference traversals (Table 3.1) collected during the

teaching phase were used for reference when repeating each of the four test traversals

3.2. One advantage of the proposed approach is that it can compare multiple reference

traversals simultaneously with a single test traversal which is not possible for OSS2

and OPR because they are only designed to consider a single reference route for com-

parison, whereas the particle filter can distribute candidate particles across as many

reference routes as required. Some reference routes visual variations may be easier to

match against a test traversal so prior knowledge would be needed to select the best

reference route for OSS2 and OPR, whereas the proposed approach handles this auto-

matically, although may require more particles. Only using a single reference traversal

for the proposed approach would put more emphasis on the descriptor matching ex-

periments on this are presented in Sections 3.3.4.1 and 3.3.5.1. For OPR and OSS2 each

test traversals was compared with one reference traversal at a time and the mean of

the localisation results was recorded. A brief heuristic search of the main parameters

used in OSS2 1 and OPR 2 was done to see whether any major improvements could

be made but in the end both approaches were used with default parameters. with one

exception For OSS2 vmin = 0.8 and vmax = 1.2 were left unchanged but ds, as seen in

Figure 3.11, was increased to 30 to improve matching - a parameter value shown to be

effective in [132].

For this test a 100 particle filter was used for the Oxford dataset and a 200 particle

filter for the UAH dataset. These amounts were chosen because they represented less

than 2% of the total reference frames for each route: 5304 for Oxford and 11804 for

1https://github.com/qcr/openseqslam2
2https://github.com/PRBonn/online place recognition
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UAH.

In addition to the proposed TinyVPR descriptor the pre-trained NetVLAD descrip-

tor was also used with the particle filter for further comparison. Attempts were made

to re-train the final VLAD layer of NetVLAD for this task as well, but ended in triplet

collapse - a phenomenon where all descriptors collapse into a single point [203], this

may be caused by a lack of variety in the training data from only training on a sin-

gle route. Unlocking further layers for training would have removed any pre-trained

layers generated by the original model removing any of its specialisation for VPR.

Initial testing showed that OPR and OSS2 failed significantly on the unsampled

test data, so to enable comparison the sampled test data was used for OSS2 and OPR.

This biased the test in their favour, but only reinforced the significance of the results

with respect to the advantage of using the proposed approach for real-time test data.

Results are shown in Tables 3.4 & 3.5. Localisation error is calculated by comparing

the distance between the test image and the output of the particle filter, according to

Algorithm 1. For each test frame in each of the four test routes (Table 3.2) the mean,

median and standard deviation of the localisation errors was recorded.

Table 3.4: Mean, median and standard deviation of localisation error (metres) for vi-
sual teach and repeat on Oxford Robotcar Dataset. TinyVPR and NetVLAD descrip-
tors are used with a 100 particle filter and compared against OSS2 and OPR.

OSS2 OPR NetVLAD + PF TinyVPR + PF
Test Traversal Mean Med σ Mean Med σ Mean Med σ Mean Med σ

Cloudy 49.0 37.1 48.2 68.4 73.9 44.9 5.83 5.29 3.01 4.04 3.39 2.52
Dark 132 132 56.6 87.8 70.3 74.5 2.66 2.31 1.65 3.39 2.65 2.33
Snow 60.6 51.6 42.9 60.6 40.9 56.3 4.50 4.69 1.69 2.70 1.95 2.18
Early Evening 32.4 27.7 29.5 52.0 48.3 36.6 10.7 11.6 6.22 6.09 5.17 3.96
Mean 68.5 62.1 44.3 67.2 58.3 53.1 5.92 5.97 3.14 4.01 3.29 2.75

Table 3.5: Mean, median and standard deviation of localisation error (metres) for vi-
sual teach and repeat on UAH-DriveSet. TinyVPR and NetVLAD descriptors are used
with a 200 particle filter and compared against OSS2 and OPR.

OSS2 OPR NetVLAD + PF TinyVPR + PF
Test Traversal Mean Med σ Mean Med σ Mean Med σ Mean Med σ

Medium Cloud 3620 3380 1980 4090 3040 2840 27.7 26.0 13.9 20.3 17.9 13.0
Bright Sun 2970 2750 1830 4840 4380 3410 31.9 31.3 16.0 37.9 37.5 17.2
Hazy 2610 1850 2360 2210 1950 1827 27.2 25.9 15.4 25.0 24.2 12.5
Mean 3070 3380 2060 3710 3120 2690 28.9 27.7 15.1 27.7 26.5 14.2
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3.3.3.1 Is TinyVPR + Particle Filter Better Than OSS2 and OPR for VT&R?

TinyVPR+PF reduces mean localisation error compared to OSS2 and OPR by a mini-

mum of 94.3% from 67.2 to 4.01 (Table 3.4) for the Oxford dataset. For the UAH dataset

mean localisation error is reduced compared to OSS2 and OPR by a minimum of 99.1%

from 3070 to 27.7 (Table 3.5). Localisation error in metres is related to the overall size

of the route as smaller routes create an upper limit on the the localisation error.

This significant improvement of the proposed TinyVPR+PF approach in compari-

son to the state-of-the-art alternatives can be attributed firstly to the specialised TinyVPR

descriptors, which outperform the competing approaches’ descriptors by being more

appearance invariant and returning more distinct results, as seen in Figure 3.13. Sec-

ondly, the particle filter enables a distribution of localisation predictions to be estab-

lished without establishing an explicit dependency on sequential information used by

OPR and OSS2, which makes them vulnerable to disruptions in these sequences. Two

failure points that TinyVPR+PF helps to address are large visual changes and variable

speed route repetitions. Detailed investigations into the robustness of these algorithms

to large visual changes and variable speed repetitions can be found in Section 3.3.4 &

Section 3.3.5, but initial evidence to support this claim is that OPR and OSS2 failed

when presented with unsampled test images.

Additionally, OSS2 compares sequences of query and reference images to find re-

curring similarities between them for localisation and was designed to operate offline.

However, as OSS2 uses a fixed window to search for matches cached images could

be used to provide localisation predictions at distance intervals, whereas OPR and the

particle filter operate in real-time.

3.3.3.2 Are TinyVPR Descriptors Better Than NetVLAD’s?

TinyVPR reduces mean localisation error 32.3% from 5.92 to 4.01 (Table 3.4) for the

Oxford dataset and 4.3% from 28.9 to 27.7 (3.5)) for the UAH dataset in comparison

to using NetVLAD descriptors, when both are implemented in an identical particle

filter. This decrease in localisation error is due to the TinyVPR descriptors being taught

specifically for each route using the traversals collected during the teach phase. This

has a larger effect on the Oxford dataset because it is a more complex environment

with elements such as construction work (Figure 3.9, Cloudy vs. Rain) and unique

architecture that are not present in the more rural UAH dataset, which lends itself to
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Figure 3.13: Sample of a TinyVPR descriptor comparison plot of Night and Cloudy
traversals of the Oxford RobotCar dataset where more similar comparisons are dark
blue and less similar comparisons are in green. Note the improved distinctiveness of
the matching diagonal of descriptors compared to OSS2 (Figure 3.11) and OPR (Figure
3.12).

a more generic VPR descriptor.

NetVLAD’s performance on these unseen and challenging routes is a testament

to its original training and its implementation in the proposed particle filter still sig-

nificantly outperforms the state-of-the-art. However, it is a large and complex net-

work with 2.4 ∗ 107 parameters and an inference time of 80ms compared to TinyVPR’s

8.0 ∗ 105 parameters and inference of time 7ms on an Nvidia GTX 1070. TinyVPR is

therefore 11x faster with 30x fewer parameters.

Once the test image VPR descriptor had been generated by the network it was

compared to the reference VPR descriptor state associated with each particle in the

particle filter using the Euclidean distance (Equation 3.5). NetVLAD descriptors were

vectors of 4096 in length and TinyVPR descriptors were vectors of length 128. 100

(Oxford) or even 200 (UAH) of these comparisons added a negligible amount of time

which could be further decreased by using the Faiss library 3 designed to speed up

these operations by up to 8.5x [204].

3.3.3.3 How Important is the Particle Filter?

The proposed combination of the TinyVPR descriptors and particle filter has been

shown to reduce localisation error for route repetition, but it can be difficult to at-

tribute this improvement to either the particle filter or the descriptor. This experiment

therefore compares the localisation error from using just the TinyVPR descriptor in a

3https://github.com/facebookresearch/faiss
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naive global search to implementing it in the particle filter to see the specific effect of

using the particle filter. Localisation error is calculated by comparing the distance be-

tween the test image and the output of the particle filter, according to Algorithm 1. For

each test frame in each of the four test routes (Table 3.2) the mean, median and stan-

dard deviation of the localisation errors was recorded. The results for this are shown

in Table 3.6 and Table 3.7.

Table 3.6: Mean localisation error (metres) on Oxford RobotCar Dataset of TinyVPR
descriptors used with or without the proposed particle filter.

TinyVPR TinyVPR + PF
Test Traversal Mean σ Mean σ

Cloudy 21.8 60.2 4.04 2.52
Dark 9.28 28.7 3.39 2.33
Snow 6.76 18.8 2.70 2.18
Early Evening 6.28 24.0 6.09 3.96
Mean 11.0 32.9 4.01 2.75

Table 3.7: Mean localisation error (metres) on UAH-DriveSet of TinyVPR descriptors
used with or without the proposed particle filter.

TinyVPR TinyVPR + PF
Test Traversal Mean σ Mean σ

Medium Cloud 248 1190 20.3 13.0
Bright Sun 232 769 37.9 17.2
Hazy 145 848 25.0 12.5
Mean 208 936 27.7 14.2

The particle filter reduces mean localisation error 63.7% from 11.0 to 4.01 (Table

3.4) for the Oxford dataset and 86.7% from 208 to 27.7 for the UAH dataset (Table 3.5).

This demonstrates that the improved VPR descriptors in a naive global search perform

better than the state-of-the-art on this task, but still require the particle filter to reduce

large errors and significantly increase reliability. Further evidence for this can be seen

in the reduction in mean standard deviation of the localisation error of 91.6% from

32.9 to 2.75 for Oxford and 98.5% from 936 to 14.2 for UAH.

Overall these results show the specialised VPR descriptors NetVLAD and TinyVPR

are significantly better than OPR for this task, despite its use of similar neural network

descriptors. They localise so accurately in a naive global search that they only require

a probabilistic filter to remove noise from large visual changes to reduce localisation in

comparison to state-of-the-art alternatives. The particle filter is able to remove incor-

rect predictions caused by visual changes, or general descriptor noise by leveraging
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visual odometry and the distribution of previous localisation predictions. Increased

visual odometry noise would affect this, but the visual odometry is corrected for drift

upon particularly close descriptor (Algorithm 1).

3.3.4 Large Visual Changes

3.3.4.1 Natural

Large visual changes are naturally present throughout both datasets, to investigate

their affect on the localisation error on each algorithm the Oxford RobotCar cloudy

query traversal was compared against only the morning reference traversal. These

traversals were chosen because their similar appearances meant large visual changes

could be considered in isolation. The sampled versions of these traversals were used to

remove any changes in repetition speed. The mean localisation error when comparing

each query image query against the reference traversal using OSS2, OPR, TinyVPR

(naive global search) and TinyVPR+Particle Filter was plotted and specific large visual

changes highlighted in Figure 3.14.

Figure 3.14: Mean localisation error of the cloudy query traversal compared against
the morning reference traversal from the Oxford RobotCar Dataset [115]. Particular
examples of large visual changes are shown between frames 200 - 250 and 350 - 390,
specific images at these points are shown below the plot.
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3.3.4.2 Artificial

For further evaluation a 200m section of the reference and test traversals of the route,

represented by 100 frames, was artificially manipulated to examine the algorithm’s

robustness and compared against a route repetition. The 100 images used were 750-

849 (inclusive) of the sampled 884 images of each traversal and were chosen because

of their lack of visual changes. Images of cars from the Stanford Cars dataset [205]

were cropped into increasing proportions of the reference and test traversal frames to

realistically simulate cars passing at different rates and the contrast and brightness of

the frames was also randomly varied, samples of these images can be found in Figure

3.15. Both test and reference frames were manipulated because large visual changes

could also appear during the teach phase. To reflect these visual changes noise was

added to the dataset’s visual odometry using a normal distribution with mean and

standard deviation equal to 10% of the original measurement. The test repetition was

then compared against the reference data using the three algorithms. The mean local-

isation error when comparing each query image query against the reference traversal

using OSS2, OPR, TinyVPR (naive global search) and TinyVPR+Particle Filter was

plotted in Figure 3.16.

Figure 3.15: Samples of the artificial large visual changes introduced by cropping data
from the Stanford Cars dataset [205] into the reference and query frames.

3.3.4.3 Is TinyVPR+PF More Robust to Large Visual Changes?

An example of a naturally occurring visual change (Figure 3.14) is shown to be be-

tween frames 200 - 250 of the query traversal and is due to lighting conditions, whereas

frames 350 - 390 show a large visual change from an occlusion by two buses (Figure

3.14). In these scenarios OSS2 localisation error is higher than OPR, but OSS2 recovers
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Figure 3.16: Mean localisation error and standard deviation of the cloudy query
traversal compared against the morning reference traversal from the Oxford RobotCar
Dataset [115] with increasing amounts of frames with artificial visual changes added.

from its incorrect predictions. OPR handles the first lighting change well, but cannot

recover from the second occlusion. This chapter’s approach remained resilient in both

scenarios.

Artificially increasing the amount of frames with visual changes (Figure 3.16) show

OPR is the worst affected. Using TinyVPR descriptors in a global search significantly

outperforms OSS2 even when extremely disrupted, although the standard deviation

of the error increases. These occasional, large errors are dealt with effectively by

adding the particle filter.

OSS2 compensates for using descriptors that are not specialised for appearance in-

variant VPR by detecting recurring similarities that are available over long distances in

a constant environment, but become progressively harder to establish over short dis-

tances in a dynamic environment. The particle filter improves on this by using more

accurate TinyVPR descriptors specialised for the task which provide better global

matching as seen when comparing the descriptor comparison plots of OSS2 (Figure

3.11), OPR (Figure 3.12) and the TinyVPR descriptors (Figure 3.13).

OPR relies solely on VPR descriptor comparisons when building its acyclic graph

which are inherently vulnerable to large visual changes. The combination of a particle

filter with TinyVPR descriptors improves on this by explicitly estimating the uncer-

tainty of descriptor comparisons and taking that into account when making a locali-
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sation prediction.

3.3.5 Variable Repetition Speed

3.3.5.1 Natural

Variable repetition speeds are naturally present in all the unsampled route traversals.

For this investigation the Oxford RobotCar cloudy query traversal was again compared

against only the morning reference traversal. The query traversal was unsampled to

include all traffic light stops and other speed variations, but the reference route re-

mained sampled. The mean localisation error when comparing each query image

query against the reference traversal using OSS2, OPR, TinyVPR (naive global search)

and TinyVPR+Particle Filter was plotted and specific changes in repetition speed high-

lighted in Figure 3.17.

Figure 3.17: Mean localisation error of the cloudy query traversal compared against
the morning reference traversal from the Oxford RobotCar Dataset [115]. A particular
example of variable speed change is shown between frames 150 - 400. A specific image
at this points is shown below the plot. Note that TinyVPR in a global search performs
identically to its usage in the particle filter.
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Figure 3.18: Mean localisation error and standard deviation of the cloudy query
traversal compared against the morning reference traversal from the Oxford Robot-
Car Dataset [115] with increasing amounts of frames removed to simulate changes in
repetition speed.

3.3.5.2 Variable Speed Traversal - Artificial

For further evaluation a 200m section of the reference and test traversals of the route

represented by 100 frames was artificially manipulated to examine the algorithm’s ro-

bustness. The 100 images used were 750-849 (inclusive) of the sampled 884 images of

each traversal and were chosen because of their lack of visual changes which would be

otherwise disruptive. To reflect these visual changes noise was added to the dataset’s

visual odometry using a normal distribution with mean and standard deviation equal

to 10% of the original measurement. The number of frames in the reference traver-

sal were fixed, while progressively more of the test traversal’s frames were removed

manually to simulate large and small accelerations. The test repetition was then com-

pared against the reference data using the three algorithms. The mean localisation

error when comparing each query image query against the reference traversal using

OSS2, OPR, TinyVPR (naive global search) and TinyVPR+Particle Filter was plotted

in Figure 3.18. Unfortunately OSS2 produced no matches for some parameters as it

relied on sequences of test images which were simply not available.
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3.3.5.3 Is TinyVPR+PF More Robust to Variable Speed Traversals?

A natural variation in repetition speed occurs between frames 150 - 400 when the

camera pauses before pulling out into traffic (Figure 3.17). Results show OPR’s error

rises to 20m, while this chapter’s approach error remains at 3m. OSS2 breaks down

entirely in this scenario.

When artificial variable repetition speeds are introduced OSS2 only performs well

for minor changes. A global search using the TinyVRP descriptors produced the low-

est localisation error once 20% of the frames had been removed because it uses no se-

quential information which could be disrupted, but a significant difference was only

available at extreme variations in speed. Localisation error eventually increased be-

cause particle updates after each prediction (Algorithm 1, line 8) is drawn from a dis-

tribution which is unlikely to produce updates that keep pace with such accelerations.

OSS2 relies on a constant relationship between query and reference images because

its trajectory search can only identify straight lines of similarities between images in

a descriptor comparison plot, if this is disrupted by variable speeds or large visual

changes then it fails. For example, Figure 3.11 shows the straight diagonal line tra-

jectory search and Figure 3.12 shows how this straight line is disrupted by variable

speed. The particle filter reduces this vulnerability by relaxing the need for explicit

sequence matching and only using a previously calculated distribution of localisation

predictions from previous results to inform subsequent predictions.

OPR also claims to be robust to route repetitions at variable speeds but, particu-

larly when these are combined with visual changes, it fails because the descriptor com-

parisons become so unreliable that the graph expands away from the correct matches.

When the camera resumes motion the isolated graph nodes are left isolated in incor-

rect predictions and cannot recover. The proposed particle filter updates and resam-

ples particle states to prevent predictions becoming isolated in poor predictions in

addition to using visual odometry to take into account variations in repetition speed.

3.4 Discussion

This chapter proposes a contribution towards robust, real-time visual teach and re-

peat. To enable this a number of challenges had to be overcome. Firstly a descrip-

tor had to be learnt that was specialised for each route, but was still capable of pro-
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viding state-of-the-art appearance invariance while reducing inference time to allow

real-time implementation on robotic hardware. The second challenge was to use infor-

mation from sequences of localisation results to reduce localisation error during route

repetition without introducing dependencies that prevent practical real-time opera-

tion, particularly for large visual changes and variable route repetition speed.

To address these challenges data collected during the teaching phase of visual

teach and repeat was used to train a compact TinyVPR CNN architecture using triplet

loss to generate VPR descriptors specialised for each route. By learning to generate ap-

pearance invariant descriptors across only a single route the network capacity could

be reduced which enables faster descriptor generation and makes it easier to imple-

ment on embedded hardware typical in robotics. A particle filter was then used to

filter localisation results for route repetition using the TinyVPR descriptor by assign-

ing a probability to each prediction based on measured descriptor comparisons and

accumulated visual odometry. The result is a system that implicitly uses sequences of

images to reduce localisation error when repeating a route without introducing depen-

dencies that increase localisation error when large visual changes and variable speed

repetitions are present.

This approach was validated through a series of experiments on two state-of-the-

art outdoor visual teach and repeat datasets. TinyVPR descriptors were shown to re-

duce localisation error and decrease inference time when implemented in the particle

filter compared to using state-of-the-art alternative NetVLAD descriptors. Further-

more the proposed combination of TinyVPR descriptors and particle filter was shown

to significantly reduce localisation error in comparison to state-of-the-art alternatives

for VT&R. A series of further experiments and analysis was done to highlight the ro-

bustness of the proposed approach to visual changes and variable repetition speeds.

A paper describing an early version of the proposed TinyVPR descriptor was ac-

cepted for peer-reviewed publication at UK Robotics & Autonomous Systems Con-

ference in 2020. Further evidence of the significance and novelty of this chapter’s

contribution can be found in subsequent work which has used similar approaches.

For example, Xu et al. use a particle filter with visual odometry for VPR [142], rather

than VT&R, for localisation of a single place image using a series of images, Gridseth

et al. also train a CNN to predict keypoints and descriptors for appearance invariant

VT&R [206]. Most recently Rozsypálek et al. [207] used contrastive loss to teach a
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CNN to generate appearance invariant VPR descriptors also for VT&R and Garg et al.

formulate a triplet loss specifically for VPR using sequences of images [208].

3.4.1 Limitations and Future Work

One limitation of this approach is that the parameters for the particle filter are difficult

to estimate and can significantly affect performance. Section 3.2.2 specifies three nor-

mal distributions for estimating the likelihood of a correct localisation prediction us-

ing the VPR descriptor, the likelihood of correct visual odometry information and the

distance moved along the route to update each particle with at each time step. These

parameters are dependant on a number of different factors such as reliability of the

VRP descriptor and visual odometry, given the difficulty of the route and the likely

speed of the traversal. The mean and standard deviation of these distributions can

be roughly estimated but does ideally require some prior knowledge, such as likely

speed of the traversal. For example, if the movement update is not large enough the

particles in the filter will not be able to keep up with route repetition and the approach

will fail. In the future the reliability of the VPR descriptor could be integrated into the

filter directly by using a Bayesian DNN [199] that would generate a descriptor with

an associated uncertainty.

Another potential limitation is that the data gathered during the teaching phase

may not be sufficiently varied to train the VPR descriptor, preferably fewer teach

traversals of a route would be required to train TinyVPR to generate appropriate de-

scriptors. One shot learning focuses on a very constrained training set to learn a task

and may be able to address this. For deep learning generally more training data is bet-

ter, which suggests as many frames from the route’s reference videos should be sam-

pled as possible. However, the reference data is also compared against the test frames

which can take a long time if there is a lot of reference data, or the descriptors are very

large. An advantage of the particle filter is that the descriptor from each candidate

particle only needs to be compared against the test frame’s descriptor which increases

efficiency over comparing against every reference descriptor in a global search.

Traditional visual teach and repeat includes a control system for physically repeat-

ing the route, but focus on this has reduced due to the significant increase in time

required to develop and test this, particularly outdoors. One potential area of future

work would be to implement and evaluate this approach on a physical robot with
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the aim of releasing this approach as an open source Robot Operating System (ROS)

package. Implementing this approach in real-world conditions opens up further chal-

lenges for the robot leaving the pre-defined route and getting lost. This scenario of

navigation in an open environment is explored in subsequent chapters.
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Chapter 4

OpenSceneVLAD: Appearance

Invariant, Open Set Scene

Classification

4.1 Introduction

Scene classification is a well-established area of computer vision research that aims

to classify a scene image into pre-defined categories such as playground, beach and

airport. Research into this topic has applications in areas such as content based image

retrieval [152], robot navigation [153] [154] and disaster detection [155].

Current approaches use deep neural networks to focus on increasing the variety

of pre-defined categories for classification. For example, state-of-the-art datasets can

include up to 365 different scene classes [156] but have so far failed to consider two

major challenges which, to the author’s knowledge, are addressed for the first time in

this chapter:

• Invariance to changes in scene appearance due to lighting, weather and seasonal

conditions.

• Open set classification to classify scene images as one of the training classes, or

an ‘open’ class undefined at training time.

Scene classification is important for enabling intelligent robotic navigation. For

example, a service robot may need to identify a steep flight of stairs where a person
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with reduced mobility needs assistance, or an autonomous car may need to identify

a pedestrian crossing and drive more cautiously. Appearance invariance is important

because external influences such as weather and lighting are an unavoidable aspect of

outdoor scene classification and can dramatically affect accuracy. Recent research into

the related field of visual place recognition (VPR) has focused heavily on appearance

invariance [10, 101, 13] but VPR is an image retrieval task which is at odds with image

classification. Specifically, image retrieval aims to create consistently unique image

descriptor representations for comparing a query image against a reference set of im-

ages to find an appropriate match, this is a very different task to image classification

which aims to associate images with a single class so approaches for the two tasks

cannot trivially be combined.

Figure 4.1: Examples of each dataset’s classes and the complexity of their appearance
variations, as listed in Table 4.1. Oxford (overcast, night, sunny, overcast), Nordland
(spring, winter, summer, spring) and Edinburgh (evening, overcast, sunny, evening).
Class relevant image sections are highlighted in red and enlarged for the reader’s con-
venience.

In real world scenarios an autonomous robot needs to identify known scene classes

of interest from a continuous environment of unknown scene classes, this task is an

example of open set recognition (OSR). OSR is defined as recognising test data as

a member of an unknown open class that is not defined in the training dataset. In
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contrast closed set data is previously unseen examples of known classes. State-of-the-

art approaches typically only aim to discriminate between open and closed set data

[181] and limit themselves to simple computer vision datasets such as CIFAR-10 and

MNIST [190] [191]. The work presented here considers this problem on a significantly

more challenging scene classification dataset. Furthermore, this chapter frames the

problem as an N+1 classification problem, where N is the number of closed set classes

and the open set class is defined as the +1 class, meaning classification of closed set

data and recognition of open set data is attempted simultaneously, which is defined

here as ‘open set classification’ (OSC).

This chapter contains three main contributions to address the two previously high-

lighted challenges. Firstly, a new scene classification dataset that includes visual vari-

ation and open set data is synthesised from large-scale visual localisation datasets.

Specifically, four different scene classes (Figure 4.1) are identified within each dataset

and the remaining images are designated as an open class (Figure 4.2) across three

outdoor localisation datasets: Oxford RobotCar [115], Nordland [133] and a third Ed-

inburgh dataset collected specifically.

Figure 4.2: Examples of each dataset’s open class in different appearance variations,
as listed in Table 4.1 showing the potential overlap with the scene classes shown in
Figure 4.1. Oxford (overcast, night, sunny, overcast), Nordland (spring, winter, sum-
mer, spring) and Edinburgh (evening, overcast, sunny).

Secondly, scene classification and visual place recognition CNNs are fused to cre-

ate SceneVLAD and then trained for appearance invariant scene classification on each

dataset’s four scene classes. For comparison scene classification and visual place

recognition networks are trained separately for this task.

Finally the second contribution is extended to open set classification by using intra-

class splitting which modifies SceneVLAD’s architecture and training approach to

create OpenSceneVLAD. For evaluation open set images are added to the test data
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and OpenSceneVLAD’s classification performance is compared with SceneVLAD and

baseline scene classification networks using confidence thresholding to identify the

open class.

Experiments show the proposed SceneVLAD network increases mean appearance

invariant scene classification F1 scores by up to 0.07. For open set classification exper-

iments show improvements in mean F1 classification scores between baseline scene

classification and SceneVLAD of up to 0.11 and between baseline scene classification

and OpenSceneVLAD of up to 0.22. In summary, this chapter’s contributions are:

1. A visually variant, open set scene classification dataset that is made publicly

available 1, containing 4 scene classes derived from three traversals of each of

the Oxford RobotCar, Nordland and our Edinburgh datasets. The raw Edin-

burgh visual place recognition dataset covering a 9km traversal of different en-

vironments around Edinburgh in three different visual conditions with GPS data

is also released (Section 4.2.1).

2. A ‘SceneVLAD’ CNN that combines scene classification and visual place recog-

nition for improved appearance invariant scene classification (Section 4.2.2).

3. An investigation into the significance of open set scene classification as a prob-

lem and an extension to SceneVLAD ‘OpenSceneVLAD’ that uses intra-class

splitting for open set classification (Section 4.2.3).

4.2 Methodology

In this section, firstly the method used to generate the scene class data is outlined. Sec-

ondly, an approach for combining scene classification and visual place recognition for

visually invariant scene classification is described. Finally, an extension is proposed

to SceneVLAD to enable open set, visually invariant scene classification.

4.2.1 Scene Class Labelling

This is the first attempt at appearance invariant scene classification so there are no pre-

existing datasets available for this task. This chapter’s first contribution is therefore

a scene class dataset compiled from three large outdoor visual localisation datasets.

1https://github.com/WHBSmith
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These datasets cover routes around large geographical areas, each traversal of the

route is done in different appearance conditions (Figure 4.1) which makes them perfect

for extracting scene classes in a variety of different conditions, the remaining images

provide a challenging open set of images.

Table 4.1: Dataset, appearance condition traversals used for training and testing with
average number of frames per scene class, per traversal.

Dataset Traversals Scene Class Frames
Oxford Overcast (train) Pedestrian Crossing 170

Night (test) Bus Stop 129
Sunny (test) Four-way Junction 152

T-junction 103
Open Set 2739
Total 3293

Nordland Spring (train) Bridge 81
Winter (test) Level Crossing 87
Summer (test) Station 292

Tunnel 186
Open Set 3970
Total 4626

Edinburgh Evening (train) Pedestrian Crossing 53
Overcast (test) Roundabout 135
Sunny (test) Bus Stop 46

Bridge 47
Open Set 843
Total 1124

The first dataset is the 9km urban Oxford RobotCar dataset [115]. The three traver-

sals used are: 2015-05-22-11-14-30 (overcast), 2014-12-16-18-44-24 (night) and 2015-03-

24-13-47-33 (sunny). The second dataset is Nordland [133], a 763km train journey

through rural Norway. The traversals used are: spring, winter and summer. The final

Edinburgh dataset was collected from three traversals of 19km of urban, rural and mo-

torway environments: 20210524 (overcast), 20210526 (evening) and 20210804 (sunny)

using a dash-mounted OnePlus 7T recording 4k video at 30fps and a GPS logger app.

For each dataset one is randomly chosen for training/reference, the remaining two are

used for testing (Table 4.1) and these are fixed for all experiments. Each dataset was

sampled using a minimum distance between consecutive frames (0.1, 80 and 2 me-

ters for each dataset respectively) to prevent oversampling single scenes, for example

when the raw video data stops at a pedestrian crossing.

For each dataset four scene classes were identified based on how frequently they

occurred, how evenly they were spread across the dataset and their potential signifi-

cance for tasks such as autonomous navigation. Images from each dataset’s traversal

were then labelled according to each scene class, the remaining unlabelled images

comprise that traversal’s open set. In dynamic environments discretion is required
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when hand-labelling scenes, but all possible efforts were made to select the labels con-

sistently. Samples of the scene class data and open set data are shown in Figure 4.1

and Figure 4.2, but for completeness a brief description of each is provided below:

• Oxford

– Pedestrian crossing: any zebra crossing or set of traffic lights dedicated to

pedestrian crossing.

– Bus stop: a bus stop on either side of the road with associated road mark-

ings.

– Four-way junction: any perpendicular crossroads.

– T-junction: joining a road perpendicular to the current one.

• Nordland

– Bridge: passing underneath a pedestrian bridge.

– Level crossing: a crossing for pedestrian or vehicle over the railway tracks.

– Station: any stop with raised passenger platform.

– Tunnel: approaching and passing through a tunnel with daylight visible at

all times.

• Edinburgh

– Pedestrian crossing: any zebra crossing or set of traffic lights dedicated to

pedestrian crossing.

– Roundabout: view and traversal of a roundabout.

– Bus Stop: any bus stop on either side of the road with a bus shelter.

– Bridge: passing underneath a vehicle bridge.

A further summary of the scene classes and their frame counts is shown in Table

4.1. Note that some scene frames represent multiple views of a single scene instance.

For example, two consecutive scene frames may represent the approach and traversal

of the same roundabout, it is difficult to state the exact number of unique scenes as

they can overlap but a single scene is rarely represented by more than five frames.
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4.2.2 SceneVLAD: Appearance Invariant Scene Classification

4.2.2.1 Basic Hypothesis

Scene classification neural networks are not taught to consider appearance invariance,

but neural networks taught to generate VPR descriptors are, however the two tasks

are framed very differently which makes combining the output from both difficult.

For example, classification outputs a single class given a query image, whereas VPR

is an image retrieval task which outputs an embedded image descriptor to compare

against a reference set of image descriptors. The hypothesis of this chapter is that

incorporating a visually invariant representation of a scene image into the final layers

of a scene classification network encourages a visually invariant scene representation

to be learnt.

4.2.2.2 Architecture

To combine two neural networks, one taught for classification and the other for de-

scriptor generation (image retrieval), inspiration is taken from recent work on super-

vised [209] and self-supervised [210] contrastive loss.

Contrastive loss is a similarity learning loss function that Khosla et al. [209] adapt

to partially train a network on a ‘pretext task’ to represent data in a way that would be

helpful as input to a later part of the network taught on a ‘downstream task’, in this

case classification. Usually the pretext task and downstream task would be the same,

but in this case the objective is to combine the knowledge from two different tasks so

NetVLAD VPR descriptors [10] are used, which have been shown to generalise well to

a variety of environments and remain the backbone of state-of-the-art approaches [13].

NetVLAD consists of a VLAD layer appended to a partially frozen VGG16 network

pre-trained on the ImageNet dataset [12] and is retrained for appearance invariant

VPR using triplet loss, a variation of contrastive loss, rather than scene classification.

A downstream classifier would normally then be appended and trained on the task,

but as the pretext and downstream tasks are different it is fused with the lower levels

of an entire scene classification network and the whole network is partially re-trained

for scene classification.

In parallel the same training image is passed to the ‘365’ or ‘1365’ network pre-

trained on scene classification [156]. ‘365’ is taught to classify 365 scene classes from
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the Places datasets [156] and ‘1365’ is taught to classify 365 Places and the 1000 Im-

ageNet classes [106]. These CNNs were selected because of their performance on a

wide variety of scene classes, the availability of their pre-trained weights and the ease

with which they can be integrated into the proposed architecture. The classification

network’s final layer is removed, the top 16 layers frozen and the 365 or 1365 dimen-

sional output is concatenated with NetVLAD’s. A small, trainable 1x1 convolutional

layer is added before concatenation to reduce the NetVLAD descriptor output dimen-

sions from 4096 to 256 to make them more comparable in size to the output of the scene

classification network. Finally, the output is passed through two fully connected lay-

ers of size 4096 to a 4-class softmax classification layer (Figure 4.3). This architecture

forces SceneVLAD to learn scene classification with respect to NetVLAD’s appearance

invariant image descriptors, thereby improving appearance invariance for scene clas-

sification.

The number of filters used for dimension reduction, the number of final fully con-

nected layers and their width were optimised using a grid search. 365 and 1365 net-

works were re-trained with varying amounts of layers frozen, and it was found that

freezing the top 16 layers produced the best results in all cases. Additionally, using

Khosla et al’s supervised contrastive approach [209] to explicitly re-train NetVLAD

was explored for this task. However, NetVLAD is only taught for appearance invari-

ance down to the conv5 layer so retraining these layers significantly compromised its

performance for the task. The width of the NetVLAD dimension reduction layer was

varied to allow multiplication of the two networks’ output rather than concatenation,

as suggested by the literature [162], but this did not improve performance.

SceneVLAD was then evaluated (Section 4.3.1) before it was expanded to consider

an open set scenario.

4.2.3 OpenSceneVLAD: Open Set Appearance Invariant Scene Classifica-

tion

4.2.3.1 Basic Hypothesis

Scene classification for use in scenarios such as visual navigation requires rejection of

unknown scenes that cannot be defined at training time, this problem is known gen-

erally as open set recognition. Current approaches for this task use relatively simple

data [190] [191], the hypothesis explored in this section is that these techniques can be
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Figure 4.3: SceneVLAD network architecture fusing of scene classification and visual
place recognition for appearance invariant scene classification.

used on more complex scene data. Using these techniques SceneVLAD can therefore

be extended to a new network, OpenSceneVLAD, that can reject incoming images

from a set of unknown classes. To do this intra-class splitting is used which trains

SceneVLAD normally, identifies and gives a secondary label of a potential open class

to the training data from each class that is incorrectly classified, or correctly classified,

but with a low confidence. The network is then re-trained to simultaneously classify

the original classes and the open class. An alternative approach that uses a statistical

test to identify images from a potential open class, called openmax, is also explored as

an alternative.

4.2.3.2 Openmax Layer

The state-of-the-art openmax layer [21] introduced in Chapter 2 leverages the Extreme

Value Theory (EVT), a branch of statistics that models the likelihood of extreme events

using the tails of probability distributions, to identify open set data. The intuition

behind this approach is that the penultimate layer of a classification network produces

activation vectors of a class, the distances from a mean activation vector for that class

can then be fit to probability distributions for each class. An activation vector of an

open set image is assumed and its distance from the mean activation vector of the

known classes can be used to calculate whether it is likely to be a member of one of
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the pre-defined classes. The end result is a layer that replaces a softmax layer (the

softmax layer in Figure 4.3) with one extra output to represent the open set with no

further training.

Calculation of Mean Activation Vectors. A mean activation layer for each class

is calculated using penultimate activation values. Given an input, x, each element of

the penultimate activation values for N classes is given as v(x) = v1(x) . . . vN (x). For

each class, j, let Si,j = vj (xi,j) and for each correctly classified training example xi,j

the mean activation vector can be calculated µj = meani (Si,j).

Distribution Fitting. For each class j a Weibull distribution is fit to the largest η

distances from the mean activation vector to find a limit on the likely representation of

a known class from its mean representation. A value of η = 20 was used as specified

in the original work. The use of a Weibull distribution for EVT has been established

by previous work on meta-recognition [211]. To fit the Weibull distribution libMR’s

FitHigh [211] function is used ρj = (τj , κj , λj) = FitHigh
(∥∥∥Ŝj − µj

∥∥∥ , η), where τi is

for shifting the data and κi, λi are the Weibull shape and scale parameters.

Inference. Openmax then recalibrates each activation value of the penultimate

layer by estimating the Weibull CDF probability on the distance between a test sample

x each known class’ mean µi activation vectors, which servers as the core of the rejec-

tion estimation. This function is only assumed to provide a meaningful probability for

the classes that are predicted most likely as the input has already been established as

being relatively dissimilar to the remaining predicted classes. The weights for the α

largest activation classes are then calculated and used to scale the Weibull CDF prob-

ability and compute a revised activation vector with the top scores changed (line 6 of

Alg. 2). The α parameter was set using a grid search to 4. A final classification predic-

tion is then made using Equation 4.1). A comprehensive description of Openmax can

be found in [21] .

4.2.3.3 OpenSceneVLAD

Intra-class splitting identifies poorly classified images from pre-defined classes and

splits them into typical and atypical examples. Atypical examples are given secondary

labels as members of a potential open class and the original training data, with its new

secondary labels, is used to re-train the network for classification with an extra open

class. The intuition being that by selecting some ‘atypical’ images from the original
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Algorithm 2: Openmax probability estimation for open set classification
1: Require: number of classes N .
2: Require: activation vector for a test input v(x) = v1(x) . . . vN (x)
3: Require: a mean activation vector µj and associated Weibull distribution

ρj = (τj , κj , λj) for each class.
4: Require: α the number of most confidently predicted classes to revise.
5: Let s(i) = argsort(vj(x)); Let ωj = 1
6: for i = 1, . . . , α do calculate the weights for each class

7: ω(i)(x) = 1− α−i
α e

−
( ||x−τs(i)||

λs(i)

)κs(i)
8: end for
9: Recalibrate the activation vector. υ̂(x) = v(x) ◦ ω(x)

10: Define υ̂0(x) =
∑

i υi(x)(1− ωi(x))
11:

P (y = j | x) = ev̂j(x)∑N+1
i=1 ev̂i(x)

(4.1)

12: Let the openmax open class be N + 1 and y∗ = argmaxjP (y = j|x)
13: if y∗ == N + 1 or P (y = y∗|x) < ϵ, where ϵ is a user-defined confidence

threshold then the input is predicted to be the open set class.
14: end if
15: else predict one of the closed set classes, y∗.

training dataset as members of a potential open set some basic assumptions about

likely open set scene images could be leveraged, such as position of the ground plane

and orientation of ambient scenery for improved performance over openmax. Intra-

class splitting is summarised in Algorithm 3.

Identify Atypical Class Examples. Firstly, SceneVLAD is trained for closed set

classification on N number of classes using scene images xi and the corresponding

closed set labels yi,cs. The trained network is then used to classify the training images.

A user defined proportion of images per class, in this case 30% [190], that cannot be

classified correctly, or are classified with the lowest confidence are identified as ‘atyp-

ical’ examples. A small change from the original technique was made by identifying

atypical images proportionally across all training classes. This was necessary because

of the small class sizes and class imbalance.

Generate Open Set Labels. A new set of scalar labels is then generated yi,os. For

every image, xi, if deemed atypical yi,os = N + 1, otherwise yi,os = yi,cs.

Create Architecture and Re-train. Two separate softmax layers are used as net-

work outputs (Figure 4.4), one with N outputs trained for closed set regularization

using cross-entropy loss Lcs (Equation 4.4), the other with N + 1 outputs trained for
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OSC also using cross-entropy loss Los (Equation 4.3). OpenSceneVLAD is then trained

using both losses with the corresponding labels of each image. Closed set regularisa-

tion helps maintain a high closed-set accuracy by forcing the atypical samples to be

correctly classified to their original classes, this prevents the network learning to clas-

sify all data as the open class, for example. A user determined scaling factor γ, is

applied to Lcs and the two losses are then minimised as a joint optimisation problem

(Equation 4.2).

Loss Functions The objective of intra-class splitting is a joint optimisation problem

consisting of two individual loss terms for the open set layer and closed set layer

L = Los + γ ∗ Lcs, (4.2)

where Los is the loss function for the open set layer and Lcs is the loss function for

the closed set layer. γ is a hyperparameter to tune the focus on closed set regularisa-

tion.

Let B be the minibatch size during training. Moreover, 1yi∈y(n) is an indicator func-

tion which returns 1 if a given sample xi with a scalar label yi belongs to the class

y(n) and otherwise returns 0. Based on these notations Los is a simple (N + 1)-class

categorical cross-entropy loss

Los = − 1

B

B∑
i=1

Nos∑
n=1

1yi∈y(n) log[P (ŷi ∈ y(n))] (4.3)

where Nos = N +1 and P (yi ∈ y(n)) denotes the predicted probability that sample

xi belongs to the class y(n), i.e. the value of the n-th element of the network’s output

vector.Lcs is an N -class categorical cross entropy loss

Lcs = − 1

B

B∑
i=1

Ncs∑
n=1

1yi∈y(n) log[P (ŷ ∈ y(n))], (4.4)

where Lcs shares the same notation as Los and Ncs = N is the number of the given

known classes.
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Algorithm 3: Algorithm for training OpenSceneVLAD.
1: Train SceneVLAD, as detailed in Section 4.2.2 on N classes, with I scene images

using softmax loss. Each scene image, xi has a corresponding label yi,cs
2: for i = 1, . . . , I

3: Use SceneVLAD to calculate each image’s (xi) class probability prediction
P (y = j | xi) using softmax.

4:

P (y = j | xi) =
ej(xi)∑N
k=1 e

k(xi)
(4.5)

5: end for
6: for i = 1, . . . , I

7: if xi with class label yi,cs = n is in class n’s 30% incorrect, or lowest confidence
predictions, then let open set label yi,os = N + 1

8: else yi,os = yi,cs.
9: end if

10: end for
11: Create OpenSceneVLAD architecture (Figure 4.4) and train on N + 1 classes, with

I scene images by minimising the loss function in Equation 4.2.

Figure 4.4: OpenSceneVLAD network architecture, demonstrating training using
intra-class splitting on an atypical image.

Inference. At test time the closed set regularization is removed and output from

the remaining open set layer is used for open set classification, as shown in Algorithm

4 and Figure 4.5.
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Algorithm 4: Algorithm for using OpenSceneVLAD for inference.
1: A test image, x, has a label, y from N + 1 classes, including the open class.
2: Use OpenSceneVLAD to calculate the test image class probability prediction

P (y = j | x) using Equation 4.6.
3:

P (y = j | x) = ev̂j(x)∑N+1
i=1 ev̂i(x)

(4.6)

4: Let the open class be N + 1 and y∗ = argmaxjP (y = j | x)
5: if y∗ == N + 1 or P (y = y∗|x) < ϵ, where ϵ is a user-defined confidence threshold

the input is predicted to be the open set class.
6: else predict one of the closed set classes, y∗.
7: end if

Figure 4.5: Inference using OpenSceneVLAD with the output softmax layer with an
extra output for the open class (N + 1), given N original closed classes.

4.2.3.4 OpenSceneVLAD + Openmax

The final contribution of this chapter is the combination of OpenSceneVLAD with an

openmax layer (Figure 4.6). Openmax is designed to use out-of-distribution activa-

tion vectors to identify images from an open set, it is therefore well suited to scenarios

where open set images are likely to include images that create activation vectors far

away from the mean activation vectors of the known classes. Environments where

known scene classes are quite distinct from their surroundings. In contrast intra-class

splitting uses ‘atypical’ examples of known classes to learn to recognise examples of a

potential open set class so is better suited to scenarios where the the open set images

are more likely to overlap with the known classes because it has been trained to recog-

nise open set images using parts of the original training data. The intuition behind

this combination is that it can be used to account for both types of open set data more

effectively.

The two approaches are combined to formulate open set classification as an N + 2

classification problem, where N is the original number of closed set classes and intra-

class and openmax open set classification contribute an output each for the open set

as shown in Algorithm 5.
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Algorithm 5: Algorithm for training OpenSceneVLAD + OpenMAX and us-
ing it for inference.

1: Train OpenSceneVLAD (Algorithm 3).
2: At inference time apply the openmax layer to N + 1 classes (Algorithm 2 lines 1 -

11), to create N + 2 outputs.
3: Let the openmax open class be N + 1, the intra-class open class be N + 2 and

y∗ = argmaxjP (y = j|x).
4: if y∗ > N or P (y = y∗|x) < ϵ, where ϵ is a user-defined confidence threshold the

input is predicted to be the open class.
5: else predict one of the closed set classes, y∗.
6: end if

Figure 4.6: Inference using OpenSceneVLAD with the output softmax layer with an
extra output for the open class (N + 1) and openmax layer with another extra output
(N + 2), given N original closed classes.

4.3 Evaluation

In this section an evaluation of the three proposed methods is done on the collected

datasets. The experiments take the form of an extended ablation study. The proposed

contributions are systematically added to the scene classification CNN to specifically

demonstrate that SceneVLAD improves appearance invariance and then open set clas-

sification.

4.3.1 SceneVLAD: Appearance Invariant Scene Classification

The purpose of this experiment was to test the hypothesis that SceneVLAD’s fusion

of NetVLAD VPR descriptors with scene classification networks 365 or 1365 improves

appearance invariance for scene classification.

4.3.1.1 Baselines

For a baseline the VPR and scene classification networks that make up SceneVLAD

(NetVLAD, 365 and 1365) were trained individually for scene classification on each

dataset (Section 4.2.1). Each network has the same architecture as they do in SceneVLAD

(Figure 4.3) before the concatenation layer, simply with a softmax layer appended. The
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top 16 layers of networks 365 and 1365 were frozen for training and NetVLAD was

frozen up to its final normalization layer. The key difference between 365 and 1365

is that 1365 was also taught for general image classification, as well as specific scene

classification.

4.3.1.2 SceneVLAD

The base networks are then combined into two versions of SceneVLAD using the ar-

chitecture described in Section 4.2.2.2, each based on different scene classification net-

works: SceneVLAD365 (NetVLAD+365) and SceneVLAD1365 (NetVLAD+1365). For

SceneVLAD the top 16 layers of networks 365 and 1365 were also frozen for training

and NetVLAD was frozen up to its final normalisation layer.

4.3.1.3 Training

All 5 networks were trained to classify the four scene classes from the training traver-

sal of each dataset using the same approach: image augmentation (featurewise nor-

malisation, width and height shifting, horizontal flipping and brightness changes), a

minibatch size of 8, a learning rate of 1e-5 and a stratified training/validation split of

80/20. Training was done for 100 epochs with early stopping using a patience of 20.

For early stopping validation classification accuracy was monitored rather than loss

because the validation data was not representative of the test data’s visual conditions

so a coarser measure of training success was needed to prevent overfitting. For each

dataset the network was trained five times and the mean of the results was calculated.

4.3.1.4 Testing

The classifiers were tested on the scene classes from the remaining two traversals of

the same dataset. Because the traversals cover the same area the instances of the scene

classes remain similar but only the visual variations change, which allows any in-

crease in performance to be attributed solely to improved appearance invariance. For

evaluation the F1 score is used to compensate for the class imbalance. The F1 scores

for each class are reported to specifically highlight the score differences between the

base scene classification network and SceneVLAD in Table 4.2, which shows a mean

increase in F1 score between 0.04 - 0.10 for SceneVLAD versus the base scene classifi-

cation networks. These results are further summarised across all datasets in Table 4.3,
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which shows a mean increase in F1 scores across all datasets of between 0.05 and 0.07

for SceneVLAD compared to the base scene classification networks.

Table 4.2: Mean F1 scores of appearance invariant scene classification comparing
SceneVLAD’s fusion of VPR and scene classification with its constituent parts trained
on the same task. The standard deviation of the class means from each of the 5 trials
is reported. Changes in mean F1 scores (∆) are positive and negative.

Oxford RobotCar Class
Ped. Bus Four T Class Mean
Cross Stop Junct. Junct. Mean Std. Dev.

NetVLAD 0.64 0.69 0.67 0.48 0.62 0.0063
365 0.67 0.43 0.63 0.63 0.59 0.024
SceneVLAD365 0.67 0.67 0.61 0.63 0.65 0.014
∆ 0.00 0.24 -0.02 0.00 0.06
1365 0.67 0.44 0.67 0.65 0.61 0.019
SceneVLAD1365 0.67 0.62 0.70 0.68 0.67 0.016
∆ 0.00 0.18 0.03 0.03 0.06

Nordland Class
Lvl. Class Mean

Bridge Cross. Station Tunnel Mean Std. Dev.
NetVLAD 0.77 0.81 0.96 0.95 0.87 0.0097
365 0.84 0.69 0.96 0.92 0.85 0.11
SceneVLAD365 0.80 0.86 0.97 0.95 0.89 0.0095
∆ -0.04 0.17 0.01 0.03 0.04
1365 0.69 0.86 0.96 0.96 0.87 0.077
SceneVLAD1365 0.85 0.87 0.97 0.96 0.91 0.011
∆ 0.16 0.01 0.01 0.00 0.04

Edinburgh Class
Ped. Bus Class Mean
Cross. Round. Stop Bridge Mean Std. Dev.

NetVLAD 0.00 0.64 0.00 0.00 0.16 0.00
365 0.40 0.84 0.46 0.47 0.54 0.020
SceneVLAD365 0.48 0.80 0.65 0.47 0.60 0.028
∆ 0.08 -0.04 0.19 0.00 0.06
1365 0.32 0.89 0.37 0.59 0.54 0.039
SceneVLAD1365 0.44 0.89 0.60 0.63 0.64 0.043
∆ 0.12 0.0 0.23 0.04 0.10

Table 4.3: Summary of mean F1 scores of ablation study for appearance invariant scene
classification comparing SceneVLAD’s fusion of VPR and scene classification with its
constituent parts trained on the same task. Changes in scores (∆) are positive and
negative.

Dataset Class Average
Total

Oxford Nordland Edinburgh Mean
NetVLAD 0.62 0.87 0.16 0.55
365 0.59 0.85 0.54 0.66
SceneVLAD365 0.65 0.89 0.60 0.71
∆ 0.06 0.04 0.06 0.05
1365 0.61 0.87 0.54 0.67
SceneVLAD1365 0.67 0.91 0.64 0.74
∆ 0.06 0.04 0.10 0.07
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4.3.1.5 Does SceneVLAD Improve Appearance Invariance?

The results in Table 4.3 show a mean increase in F1 scores of up to 0.07 across a vari-

ety of scenes using SceneVLAD compared to state of the art scene classification net-

works. This experiment’s results demonstrate networks 365 and 1365, despite being

taught in exactly the same way, are outperformed by SceneVLAD’s fusion of them

with NetVLAD in all but three individual classes (Table 4.2). As the only difference

between SceneVLAD and the baseline scene classification networks is the addition

of NetVLAD for training this confirms the hypothesis that combining the two does

improve appearance invariance.

Table 4.2 shows NetVLAD’s improved performance on specific classes translates

directly to its addition in SceneVLAD, increasing F1 scores up to 0.24. However, any

reductions in F1 scores are limited to a decrease of up to 0.04. For the Edinburgh

dataset NetVLAD failed to classify all but one class. The final layers of NetVLAD

are trained for appearance invariance so unfreezing them to improve training would

remove any advantage the network has from its pre-training. However, SceneVLAD

improves the F1 score of each class, apart from one, which indicates SceneVLAD’s

successful and necessary use of VPR as a pretext task - re-training more layers of

NetVLAD would overwrite the part of the network that had been trained for appear-

ance invariance.

4.3.1.6 How Does SceneVLAD Improve Appearance Invariance?

To understand in more detail how SceneVLAD improves appearance invariance t-SNE

plots were used to investigate the inter-class relationships generated by SceneVLAD

and the baseline scene classification networks. t-SNE [212] was chosen over PCA for

visualisation because of its ability to represent non-linear relationships between data

and the local relationships between data points, which is useful for assessing the tight-

ness of each cluster - an important metric for examining a classifier’s performance.

However, PCA may have advantages because of its ability to preserve global rela-

tionships between different clusters of data points and warrants future investigation.

Additionally t-SNE plots are not presented as results alone and are meant to support

the other results with a visualisation.

Traditionally, the characteristics of a well-trained classifier are that it creates greater

separability between class representations Figure 4.7 shows that SceneVLAD’s class
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representations are able to improve classification by doing this. For example, in Fig-

ure 4.7 the Oxford and Nordland t-SNE plots indicate that SceneVLAD is able to better

distinguish bus stop and bridge/level crossing classes respectively, compared to stan-

dard scene classification. These results are further supported in Table 4.2. For the

Edinburgh dataset SceneVLAD365 is able to better separate the bus stop and bridge

classes, but the inter-class distance is reduced as a result. Meanwhile SceneVLAD1365

is able to distinguish between the bus stop and pedestrian crossing classes, which

1365 cannot. The t-SNE plots in Figure 4.7 show apparently separable classes, which

is not always reflected in the F1 scores in Tables 4.3 & 4.2. This is a limitation of the

2D t-SNE plots which in this case tightly groups class predictions and prevents their

overall separability being totally assessed, but still gives a good indication of the rela-

tive separability between different approaches. Evidence for this can be seen in Oxford

365/SceneVLAD365, Edinburgh 365/SceneVLAD365 and Oxford 1365/SceneVLAD1365

where classes are represented in very small clusters which are then spread out by

SceneVLAD.

Heatmaps are used to further examine the difference between false classifications

made by scene classifiers 365 and 1365 with SceneVLAD’s true classifications on the

same images. The classes investigated were those identified as having the biggest

difference using the t-SNE plots: bus stops (Oxford), level crossings (Nordland) and

pedestrian crossings (Edinburgh). To build the heatmaps Grad-CAM [213] was used

which computes the gradient of the most likely predicted class with respect to the last

convolutional layer, this is averaged and then multiplied with the last convolutional

layer. The final result is normalised between 0 and 1 and then overlaid on the original

image.

Figure 4.8 shows SceneVLAD activates more on more class relevant features than

the 365 and 1365 scene classification networks, enabling correct classification that

would otherwise be impossible. In Oxford bus stops are characterised by road mark-

ings and bus shelters which SceneVLAD is shown to activate more on than the scene

classifiers. Nordland level crossings vary for use with large vehicles down to pedes-

trians, SceneVLAD has a higher activation on relevant areas such as the railway track

for classification. Pedestrian crossings in the Edinburgh dataset vary between zebra

crossings and larger crossings with dedicated traffic lights, SceneVLAD focuses more

on the associated road markings and traffic lights.
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Figure 4.7: Samples of scene classification and SceneVLAD t-SNE plots from the test
results in Table 4.2. SceneVLAD is shown to be able to distinguish between classes
that baseline scene classification networks cannot.
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Figure 4.8: Samples of scene classification false positive and false negative classifica-
tions vs SceneVLAD true positives from the test results in Table 4.2. SceneVLAD’s true
positives are shown to be due to it focusing on more relevant features despite visual
changes. Class relevant image sections are highlighted in red. Activation amounts
range from low (purple) to high (yellow).
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4.3.2 OpenSceneVLAD: Open Set Appearance Invariant Scene Classifica-

tion

The purpose of this experiment was to test the hypothesis that scene classification

was negatively affected by an open set scenario and to examine whether intra-class

splitting used in OpenSceneVLAD could improve performance against the openmax

and softmax baselines.

4.3.2.1 Baseline

For this experiment the best performing 1365 base scene classification from the previ-

ous experiment was compared with its version of SceneVLAD and OpenSceneVLAD

with or without the state-of-the-art openmax [21] (Omax) layer used for open set clas-

sification and introduced in Section 4.2.3.2. To do this 10% of the test images for each

class were used as a validation set for the test dataset to calculate a confidence thresh-

old optimised to maximise the dataset class mean F1 score. In this way networks with

outputs equal to the closed set number of classes (1365 and SceneVLAD) predict an

open set image if the prediction confidence is below the calculated threshold and net-

works with an output that includes the open set (OpenSceneVLAD and any network

with a final openmax layer) predict an open set image if the open set is predicted,

or any prediction is below the calculated threshold. 1365 and SceneVLAD networks

with a threshold of 0 (base) were also included. These networks are unable to classify

any open set images, but were considered to examine how the open set scenario af-

fects scene classification and whether confidence thresholding affects classification of

known classes.

4.3.2.2 OpenSceneVLAD

An OpenSceneVLAD network is created using 365 or 1365 and NetVLAD with or

without an openmax layer, per Section 4.2.2. As before, the top 16 layers of 1365 were

frozen for training and NetVLAD was frozen up to its final normalization layer.

4.3.2.3 Training

All networks were trained following the same procedure in our previous experiment

(Section 4.3.1.3), the only change being that OpenSceneVLAD was trained using intra-
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class splitting (as described in Section 4.2.3.3), with 30% of training images being se-

lected as ‘atypical’.

Table 4.4: Mean F1 Scores of appearance invariant, open set scene classification using
thresholding. Baseline scene classification networks are compared with SceneVLAD
and OpenSceneVLAD with or without an openmax layer. Best class mean results are
orange.

Oxford RobotCar Class
Ped. Bus Four T Class Mean
Cross Stop Junct. Junct. Open Mean Std. Dev.

365 - base 0.20 0.14 0.19 0.33 0.00 0.17 0.014
365 0.038 0.033 0.041 0.083 0.73 0.19 0.0046
365+Omax 0.00 0.00 0.00 0.00 0.91 0.18 0.00
SceneVLAD365 0.17 0.14 0.26 0.35 0.46 0.27 0.011
SceneVLAD365+Omax 0.19 0.15 0.31 0.35 0.76 0.34 0.0078
OpenSceneVLAD365 0.17 0.2 0.26 0.31 0.84 0.36 0.017
OpenSceneVLAD365+Omax 0.15 0.16 0.34 0.26 0.83 0.35 0.0084
1365 - base 0.15 0.12 0.14 0.23 0.00 0.13 0.0037
1365 0.10 0.12 0.18 0.32 0.27 0.20 0.0091
1365+Omax 0.00 0.00 0.00 0.00 0.91 0.18 0 .00
SceneVLAD1365 0.16 0.23 0.33 0.37 0.47 0.31 0.0016
SceneVLAD1365+Omax 0.19 0.13 0.40 0.38 0.78 0.37 0.015
OpenSceneVLAD1365 0.15 0.15 0.33 0.33 0.82 0.35 0.0049
OpenSceneVLAD1365+Omax 0.15 0.13 0.39 0.29 0.87 0.36 0.016

Nordland Class
Lvl. Class Mean

Bridge Cross. Station Tunnel Open Mean Std. Dev.
365 - base 0.32 0.053 0.51 0.32 0.00 0.24 0.044
365 0.20 0.038 0.35 0.39 0.36 0.27 0.0076
365+Omax 0.00 0.00 0.00 0.00 0.92 0.18 0.00
SceneVLAD365 0.46 0.075 0.61 0.49 0.29 0.39 0.017
SceneVLAD365+Omax 0.48 0.11 0.59 0.55 0.57 0.46 0.0092
OpenSceneVLAD365 0.50 0.17 0.65 0.73 0.89 0.59 0.013
OpenSceneVLAD365+Omax 0.43 0.22 0.61 0.76 0.92 0.59 0.016
1365 - base 0.14 0.05 0.47 0.23 0.00 0.18 0.014
1365 0.34 0.069 0.51 0.35 0.00 0.25 0.00962
1365+Omax 0.00 0.00 0.00 0.00 0.92 0.18 0.00
SceneVLAD1365 0.29 0.089 0.61 0.49 0.40 0.38 0.0016
SceneVLAD1365+Omax 0.37 0.14 0.59 0.56 0.70 0.47 0.013
OpenSceneVLAD1365 0.47 0.14 0.67 0.74 0.80 0.56 0.016
OpenSceneVLAD1365+Omax 0.48 0.18 0.6 0.83 0.88 0.59 0.016

Edinburgh Class
Ped. Bus Class Mean
Cross. Round. Stop Bridge Open Mean Std. Dev.

365 - base 0.15 0.43 0.21 0.29 0.00 0.22 0.017
365 0.090 0.36 0.17 0.25 0.17 0.21 0.025
365+Omax 0.00 0.00 0.00 0.00 0.86 0.17 0.00
SceneVLAD365 0.34 0.27 0.27 0.48 0.11 0.29 0.021
SceneVLAD365+Omax 0.26 0.38 0.11 0.00 0.72 0.29 0.020
OpenSceneVLAD365 0.25 0.34 0.22 0.13 0.53 0.29 0.024
OpenSceneVLAD365+Omax 0.37 0.33 0.25 0.0093 0.61 0.31 0.019
1365 - base 0.07 0.36 0.20 0.21 0.00 0.17 0.014
1365 0.13 0.34 0.12 0.26 0.17 0.20 0.023
1365+Omax 0.00 0.00 0.00 0.00 0.86 0.17 0 .00
SceneVLAD1365 0.17 0.65 0.074 0.32 0.35 0.31 0.0017
SceneVLAD1365+Omax 0.044 0.60 0.063 0.00 0.82 0.31 0.012
OpenSceneVLAD1365 0.27 0.67 0.15 0.28 0.66 0.41 0.0021
OpenSceneVLAD1365+Omax 0.19 0.66 0.11 0.0048 0.78 0.35 0.012
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4.3.2.4 Testing

Testing was exactly the same as in Section 4.3.1.4 with one major difference: the test set

was expanded to include all the open set images from each dataset’s traversal, as seen

in Table 4.1. The full results of this experiment can be seen in Table 4.4 and a summary

of the results in Table 4.5. The individual class F1 scores are reported, but only for

completeness as they are heavily affected by the choice of confidence threshold used

for classification. In other words increasing the threshold value may allow more ac-

curate classification of closed set classes, but the corresponding reduction in open set

classification may result in an overall lower mean class F1 score. This leads to scenar-

ios where the 365 scene classification network with an openmax layer (365+Omax) is

reported with only the open class having a non-zero F1 score.

4.3.2.5 How Difficult is Open Set Scene Classification?

Base networks (-base) only attempt closed set classification but the results in Table 4.4

demonstrate that the addition of open set data significantly decreases the F1 score of

even known classes, sometimes by more than 50%, confirming the hypothesis that the

introduction of open set scene images makes this task very challenging due to false

predictions introduced by the additional open set class. The addition of confidence

thresholding to the base networks results in an improvement in open set detection but

reduces the F1 score on the known classes even further, resulting in a similar class

mean for all datasets. Some classes are affected more than others. For example, Nord-

land level crossings only have a slight difference in F1 score in closed set classification

than tunnels (Table 4.2). However in open set classification the level crossing class is

far more challenging, because that scene class overlaps more with the open class. In

effect, level crossings look more like a generic railway scene than a bridge does.

4.3.2.6 Does OpenSceneVLAD Improve Open Set Scene Classification?

The results in Table 4.5 show SceneVLAD alone outperforms the original scene classi-

fication networks by an increase in mean F1 score of 0.10 (365) and 0.11 (1365). This

suggests that the VPR descriptors improve open set classification as well as appear-

ance invariance. The use of intra-class splitting in OpenSceneVLAD further increases

performance over the original scene classification networks by mean F1 scores of 0.19
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(365) and 0.22 (1365). This result is particularly significant given that the training data

and majority of the underlying network architecture is the same used for SceneVLAD.

Table 4.5: Summary of mean F1 scores for appearance invariant, open set scene classi-
fication using confidence thresholding. Original baseline networks are compared with
SceneVLAD and OpenSceneVLAD. Best total results are orange.

Dataset Class Mean
Total

Oxford Nordland Edinburgh Mean
365 - base 0.17 0.24 0.22 0.21
365 0.19 0.27 0.21 0.22
SceneVLAD365 0.27 0.39 0.29 0.32
OpenSceneVLAD365 0.36 0.59 0.29 0.41
1365 - base 0.13 0.18 0.17 0.16
1365 0.20 0.25 0.20 0.22
SceneVLAD1365 0.31 0.38 0.31 0.33
OpenSceneVLAD1365 0.35 0.56 0.41 0.44

Table 4.6: Mean F1 scores for appearance invariant, open set scene classification us-
ing confidence thresholding. Original baseline networks, SceneVLAD and Open-
SceneVLAD are compared when used with an openmax layer (+Omax), or not.
Changes in mean F1 scores between best mean results (∆) are positive and negative.

Dataset Class Mean
Total

Oxford Nordland Edinburgh Mean
365 0.19 0.27 0.21 0.22
365+Omax 0.18 0.18 0.17 0.18
∆ -0.04
SceneVLAD365 0.27 0.39 0.29 0.32
SceneVLAD365+Omax 0.34 0.46 0.29 0.36
∆ 0.04
OpenSceneVLAD365 0.36 0.59 0.29 0.41
OpenSceneVLAD365+Omax 0.35 0.59 0.31 0.42
∆ 0.01
1365 0.20 0.25 0.20 0.22
1365+Omax 0.18 0.18 0.17 0.18
∆ -0.04
SceneVLAD1365 0.31 0.38 0.31 0.33
SceneVLAD1365+Omax 0.37 0.47 0.31 0.38
∆ 0.05
OpenSceneVLAD1365 0.35 0.56 0.41 0.44
OpenSceneVLAD1365+Omax 0.36 0.59 0.35 0.43
∆ -0.01

4.3.2.7 Does Openmax Improve Open Set Scene Classification?

Table 4.6 shows that using a scene classification network with an openmax layer and

confidence thresholding results in all test data being collapsed into open class predic-

tions, which performs worse than simply a softmax output decreasing the F1 score by

-0.04 in both cases. However, when combined with SceneVLAD openmax does im-

prove results by a mean of 0.04 (365) and 0.05 (1365), which provides supporting evi-

dence for improved class representations. Including openmax with OpenSceneVLAD
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changes results marginally with a mean F1 score increase of 0.01 (365) and -0.01 (1365),

the results in Table 4.4 show that combining OpenSceneVLAD with openmax main-

tains or improve the F1 score on the open class in all cases, but reduces the F1 scores

on the closed set classes.

4.3.2.8 Does OpenSceneVLAD Outperform SceneVLAD with an Openmax Layer?

The results in Table 4.7 confirm that OpenSceneVLAD outperforms SceneVLAD with

an openmax layer by 0.05 (365) and 0.06 (1365). This demonstrates that even the best

performing version of SceneVLAD with the openmax layer is outperformed by Open-

SceneVLAD. Table 4.4 shows that versions of OpenSceneVLAD with or without the

openmax layer perform the best on the datasets with only one exception (Oxford,

SceneVLAD1365+Omax).

Table 4.7: Mean F1 cores for appearance invariant, open set scene classification using
confidence thresholding. OpenSceneVLAD is compared to using SceneVLAD with an
openmax layer (+Omax). Changes in mean F1 scores between best mean results (∆)
are positive and negative.

Dataset Class Mean
Total

Oxford Nordland Edinburgh Mean
SceneVLAD365+Omax 0.34 0.46 0.29 0.36
OpenSceneVLAD365 0.36 0.59 0.29 0.41
∆ 0.05
SceneVLAD1365+Omax 0.37 0.47 0.31 0.38
OpenSceneVLAD1365 0.35 0.56 0.41 0.44
∆ 0.06

4.3.2.9 How Does OpenSceneVLAD Improve Open Set Scene Classification?

To investigate in detail how OpenSceneVLAD compares to the baseline networks for

open set classification t-SNE plots are used. Firstly, samples of plots that correspond to

results in Table 4.5 are presented. OpenSceneVLAD based on 365 and 1365 have sim-

ilar results so for the sake of space only the results for OpenSceneVLAD1365 (Figure

4.9) are examined. This figure shows how the class representation develops from the

baseline scene classification networks to SceneVLAD and then to OpenSceneVLAD.

Scene classification network predictions collapse all test data into the open, or closed

set classes with, or without an openmax layer. SceneVLAD begins to distinguish

between open and closed set classes, it performs particularly well on the Nordland

dataset. OpenSceneVLAD is able to further separate the closed class representations
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from each other and the open set, although there remains a significant overlap, which

is supported by the results in Table 4.4.

Figure 4.9: Samples of scene classification, SceneVLAD and OpenSceneVLAD t-SNE
plots from the test results in Table 4.4. The progressive separation of the open set
(purple) class from the closed set (red, blue, green, yellow) classes and the closed
set classes from each other are shown from the 1365 scene classification network to
SceneVLAD1365 and OpenSceneVLAD1365.
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Additionally, in Figure 4.10 the advantage of OpenSceneVLAD over SceneVLAD is

investigated. Two examples are selected from Figure 4.9 and a third from SceneVLAD365.

The open class is removed from the plot to explicitly show how OpenSceneVLAD is

able to better separate the closed from the open set classes and the individual closed

set classes from each other.

Figure 4.10: Samples of scene classification, SceneVLAD and OpenSceneVLAD t-SNE
plots from the test results in Table 4.4. The overlap between the open (purple) and
four (red, blue, green, yellow) closed classes is highlighted and the difference between
SceneVLAD and OpenSceneVLAD’s closed set class representation compared.

110



Visual Place Recognition for Improved Open and Uncertain Navigation 111

4.4 Discussion

This chapter proposes a series of contributions towards appearance invariant, open set

scene classification. To the author’s knowledge appearance invariance and open set

classification have not previously been addressed specifically for scene classification.

This presented a number of challenges. Firstly, a number of scene classes had to

be identified and extracted from three different visual place recognition datasets. A

variety of outdoor scenes also had to be classified, despite significant changes in light-

ing, weather and seasonal conditions. To perform open set classification the original

closed set of scene classes then had to be classified from a test dataset containing many

open set images that frequently overlapped heavily with the closed set images.

To address these challenges visually invariant visual place descriptors were lever-

aged by fusing them with a scene classification network and forming a new network

called SceneVLAD to achieve improved visual invariance. SceneVLAD was then ex-

tended to OpenSceneVLAD using intra-class splitting and an openmax layer to enable

open set, visually invariant scene classification.

This approach was validated through a series of experiments. The first contribu-

tion, SceneVLAD, is shown to improve F1 classification scores for visually invariant

scene classification, particularly for scene classes that are most vulnerable to visual

changes, such as bus stops which are sometimes only defined by road markings which

may be obscured in different lighting and weather conditions. The second set of exper-

iments used remaining images from the dataset not included in the closed set of scene

classes to test open set classification. SceneVLAD alone was demonstrated to improve

the mean F1 classification score for open set classification and OpenSceneVLAD im-

proves this even further with the further addition of an openmax layer only improving

performance in some scenarios.

Training for the smallest dataset (Edinburgh) took roughly half an hour, but stretched

to 2 hours on the larger Nordland dataset using an Nvidia RTX3070 and i5 CPU. A grid

search was used for parameter tuning, as described in Section 4.2.2, for finding the

number of filters used for dimension reduction, the number of final fully connected

layers and their width. Additionally a small heuristic search was done to determine

training parameters such as batch size, number of epochs and learning rate used for

training the network, further parameter tuning is left for future work.
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4.4.1 Limitations and Future Work

4.4.1.1 Additional Classes

Although a wide variety of scene classes are used for evaluation the total class number

is strictly constrained by the available data. As this is the first time this problem has

been addressed a wide variety of scene class data with large visual changes is very

difficult to find for evaluation. The results also show that some scene classes are more

vulnerable to visual changes than others, but fortunately the scene classes we use did

prove to be vulnerable to visual change which made them useful for assessing the

efficacy of our approach. In the future increasing the number of classes, particularly

those vulnerable to visual change, would enable better evaluation. Increasing the vari-

ety of data sources would also enable the network’s ability to generalise across classes

from different datasets to be tested. A wider variety of data sources would also allow

a wider variety of open set data to be used to evaluate open set classification. Intu-

itively SceneVLAD and OpenSceneVLAD should be able to be applied to more classes

because NetVLAD and 365/1365 are based on networks originally taught to classify

hundreds of different classes indicating a large remaining model capacity. Intra-class

splitting was originally used for 10 classes, increasing the classes and therefore the

open set data, may improve performance further, but this is reserved for future work.

4.4.1.2 Other Limitations

A second limitation of this work is that the NetVLAD descriptors are a very relevant,

but slightly older visually invariant descriptor. More recent approaches, such as Patch-

NetVLAD [13] may offer more visual invariance, but are not purely neural network

approaches, so a different approach to fusing the visual place descriptors and scene

classification may be required. More advanced approaches to visual invariance may

also affect the network’s use for open set classification.

Open set classification is still an emerging area of research, but the work in this

chapter goes some way towards showing that it is possible in more challenging sce-

narios than previously recognised. Intra-class splitting works by using poorly or in-

correctly classified training images as an open set, however this is problematic because

some training data, although challenging, may be necessary for strong generalisation

and therefore using it as open set data may be inappropriate. If all images are classified
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with a high confidence or the training data is particularly high quality there may also

not be many suitable images for use as the open class. However, intra-class splitting

demonstrates that manipulating training data can be useful in creating data for learn-

ing open set classification so further work could examine using image augmentation

based on classification performance or heatmaps to create an open set of data from the

training images that did not rely on unaltered training data being appropriated for

use as an open class.
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Chapter 5

Descriptor Comparison

Classification for Open Set

Recognition and Outcome

Classification

Image retrieval is established in previous chapters as a computer vision task that finds

a match for a query image by comparing it against a database of reference images.

Visual place recognition (VPR) is a variation of image retrieval that uses place images

and specially designed VPR descriptors for this comparison. In this chapter two ma-

jor new problems associated with image retrieval are identified and addressed in the

context of VPR, to the author’s knowledge, for the first time:

• Outcome classification to predict whether the top reference database matches

include a true match for the query image.

• Open set recognition to predict whether a true match for the query image exists

in the reference database.

Related problems have been addressed for image classification, as discussed in

Chapter 2, but so far remain unexplored for image retrieval. Image classification

returns a single label for an input image based on classes pre-defined at training

time, whereas image retrieval only returns a relative similarity between previously

unknown query and reference images. This fundamental difference in task renders
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image classification approaches to uncertainty and open set recognition irrelevant for

image retrieval. At first glance these problems appear almost intractable for image

retrieval, but this chapter proposes that underlying characteristics of the relative simi-

larities alone may be sufficient for training a neural network to address both problems.

Image retrieval compares a query image against a reference set of images, typi-

cally by measuring the distance between descriptors extracted from the images. The

descriptors extracted by the neural networks considered here are in the form of a 1D

vector of real numbers. Descriptors are used because they allow key information to be

extracted from the images, they also take up less space and can be compared with each

other using the Euclidean distance. These comparison values are also in the form of a

1D vector of real, positive numbers, one for each comparison between the query im-

age and a reference image, this is henceforth known as a descriptor comparison. The

descriptor comparison values can then be used to order the reference images accord-

ing to how similar they are to the query images, these ordered reference images are

henceforth known as the nearest neighbours. The pipeline for descriptor comparison

is shown in Figure 5.1.

Figure 5.1: A diagram showing the descriptor comparison pipeline of a single query
image against a set of reference images, note the size of the reference image set is
only used for illustrative purposes. Initially the query image and reference image
set is established, descriptors (each a 1D vector of numbers) are extracted and then
used to compare the query image to each reference image. In this case the resulting
comparison (a 1D vector of numbers) is plotted using a simple line graph.
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Image retrieval is evaluated using a metric called recall ([10]), which differs from

the traditional machine learning definition of recall. In this case a true positive result

is defined if the top X nearest neighbours contain a true match, which is a reference

image within a dataset-specific number of meters from the query image. For this work X is

set to 10, a common threshold for determining true positives [10, 199]. Currently there

is no way of knowing whether an image retrieval result is likely to be a true positive,

which poses a significant problem for the real-world utility of image retrieval. Note,

because image retrieval orders the reference set of images with respect to the query

image it always returns a result and is unable to produce negative predictions. An

example of this problem in the context of VPR is identifying reliable VPR results for

updating localisation predictions during autonomous navigation.

This chapter defines, for the first time, the task of predicting true positive, or false

positive VPR results as outcome classification (OC) and frames it as a binary classi-

fication problem (Figure 5.2). This chapter proposes descriptor comparison classifi-

cation (DCC) to address this problem, which trains a neural network on this classi-

fication task using descriptor comparison data. The taught model can then classify

unseen descriptor comparisons as resulting in true or false positive VPR results.

Figure 5.2: Illustrated example of outcome classification task using images from the
Oxford RobotCar dataset. The top query image’s 5 nearest reference image neigh-
bours include a true match (true positive) and the bottom query image’s do not (false
positive). Please note, the usage of 5 closest matches is shown here for illustrative
purposes only.

A fundamental assumption of image retrieval approaches is that a true match for

the query image exists in the reference image database, however this assumption is

often untrue for many practical scenarios. For example, during visual navigation a

robot may leave a pre-mapped area and produce query images with no true match.

Identifying these query images enables more intelligent navigation, for example a lost

robot can signal for help or begin mapping the new area.
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This chapter defines the task of predicting whether a query image has a potential

true match (closed set) in the reference database, or not (open set) as an example of

open set recognition (OSR) and a binary classification problem. This chapter pro-

poses that DCC is suitable for addressing this problem as well because descriptor

comparisons contain enough relevant information to train a neural network for this

task. An illustrated example of open set recognition is shown in Figure 5.3

Figure 5.3: Illustrated example of open set recognition task using images from the Ox-
ford RobotCar dataset. showing examples of closed set query images with a potential
match in the reference image database and open set query images that do not.

To the author’s knowledge this is the first time OC and OSR have been addressed

for image retrieval. One related approach is out of distribution detection using Bayesian

neural networks [199] which is used to estimate the uncertainty of comparisons be-

tween a query image and single reference images, but does not attempt open set

recognition, or to predict an uncertainty related to true or false positive results. A

small amount of work has been done on open set object recognition, but this approach

only aims to find a known object in an otherwise unfamiliar image, which is in fact an

example of image retrieval, not open set image retrieval [214, 215].
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This chapter’s final contribution is the application of contrastive supervised learn-

ing to both of these problems. Contrastive learning was used in Chapter 4 as the in-

spiration for the descriptor fusion, but in this chapter is used as originally proposed.

This chapter will later show the descriptor comparison data for the two classes for

both OC and OSR tasks overlaps. Contrastive learning trains a portion of the deep

neural network classifier to separate the classes to improve learning. The remainder

of the network is then trained on the original binary classification problem.

Experiments show that a baseline approach that only uses the distance between

descriptors for classification cannot address OC and OSR reliably when compared to

the proposed approaches. The baseline approach used in this chapter was inspired by

confidence thresholding for binary classification used by other open set recognition

work [21]. The proposed application of supervised contrastive learning is shown to

improve mean F1 classification scores by up to 0.04 and 0.05 for OC and OSR respec-

tively. In summary, this chapter’s contributions are:

1. An introduction and formulation of outcome classification and open set recog-

nition for visual place recognition (Section 5.1.2).

2. A descriptor comparison classification (DCC) approach applied to four deep

learning architectures to address both problems (Section 5.1.3).

3. The use of supervised contrastive learning to separate overlapping classes in the

embedded space for better classification performance (Section 5.1.4).

5.1 Methodology

This section describes a contribution towards outcome classification and open set

recognition for visual place recognition. Firstly, the intuition behind outcome clas-

sification and open set recognition is explained and then the problems are formally

defined. Secondly, an approach using descriptor comparisons to train four different

deep neural network architectures for each classification task is described. Finally, the

addition of supervised contrastive loss is proposed to separate overlapping classes

and improve classification performance.
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5.1.1 Investigation & Intuition

The introduction to this chapter establishes the pipeline required for descriptor com-

parisons: establish reference image set and query image, extract descriptors from the

image, compare the query image descriptor with each reference image descriptor (Fig-

ure 5.13). Please note, the descriptor used for all the comparisons in this section is

NetVLAD [10] with query images from 2015-03-24-13-47-33 (sunny) and reference im-

ages 2015-05-22-11-14-30 (overcast) from the Oxford RobotCar dataset [115]. In the

following figures the reference and query images are considered as they were col-

lected: in chronological order during the route traversal. A true match is defined here

as a reference image from the same location as the query image.

Descriptor comparisons can be examined in a number of ways. One of these is

a descriptor comparison plot, which is used in Chapter 3 (Figures 3.11, 3.12 & 3.13),

another example is shown in Figure 5.4. These plots show the descriptor comparison

values for each query image when compared to each reference image. There is a one-

to-one correspondence between query and reference images so a distinct diagonal line

of small comparison values (a high similarity) indicates true matches between corre-

sponding query and reference images. VPR aims to represent each place uniquely so

line’s width and distinction gives an indication of the performance of a descriptor for

the task. This plot can also be visualised in 3D (Figure 5.5).

Figure 5.4: 2D descriptor comparison plot of query and reference images where
smaller descriptor comparison values (higher similarity) are dark blue and higher val-
ues (lower similarity) are in green. This figure is for illustrative purposes only.
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Figure 5.5: 3D descriptor comparison plot of a subset of query and reference images,
where smaller descriptor comparison values (higher similarity) are dark blue and
higher values (lower similarity) are in green. This figure is for illustrative purposes
only.

5.1.1.1 Outcome Classification

Outcome classification considers the problem of overconfident descriptor matches. An

example of these can be seen in Figure 5.6, where single descriptor comparisons that

lead to false positives, when the true matching diagonal is poorly defined, are a similar

value to single descriptor comparisons that lead to true positives. This means that a

low comparison value is no guarantee of a true match which makes them difficult to

differentiate from false positives by placing a threshold on single comparison values

alone.

However, all of the descriptor comparison values for a query image may contain

more useful information. Specific plot descriptor comparisons were then examined

to confirm their characteristics varied for false and true positive results by looking

at specific query images. The following samples represent the general observations

made between the classes. A sample of a true positive descriptor comparison in Fig-

ure 5.7 shows a distinct and concentrated fall in comparison values where all of the

nearest neighbours are collected around the true match. In contrast the false posi-

tive sample in Figure 5.7 comes from a descriptor comparison with multiple, small

local minima where the nearest neighbours are distributed. This provides evidence

that the descriptor comparisons and the distribution of nearest neighbours contain
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Figure 5.6: Annotated version of Figure 5.4 showing the descriptor comparison plot of
query and reference images, where smaller descriptor comparison values (higher sim-
ilarity) are dark blue and higher values (lower similarity) are in green. Additionally,
descriptor comparisons leading to true positives (include distinct dark blue values
as part of the larger diagonal across the image) and descriptor comparisons leading
to false positives (include no distinct dark blue values as part of the larger diagonal
across the image) are highlighted in blue and red respectively. The overlapping de-
scriptor comparison values from each are highlighted in purple.

information which can be used to learn to classify true and false positives. It’s also

worth noting that the the true positive result is achieved despite some occlusion from

a passing bus, however the more significant occlusion from a bus may lead to the false

positive.

5.1.1.2 Open Set Recognition

Open set recognition considers the problem of being able to identify query images

with no true match in the reference image set. Figures 5.4 & 5.4, the literature [10, 13,

14, 70, 71] and intuition determine that, given a reference set of unique images and a

query image with a potential true match. The aim of VPR is to generate a descriptor

comparison that represents the query image as closely as possible to a single reference

image (the true match) and to represent the remaining reference images as far away

as possible. If the true match was to be removed from the reference image set, making

the query image open set, ideally all remaining reference images should still be rep-

resented far away from it, enabling a threshold to be used to easily identify open set

query images.
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Figure 5.7: Descriptor comparison plot between a query image and reference image
set from the Oxford dataset leading to a true positive match. The query image, the
top match and the true match from the reference set are displayed and plotted on the
descriptor comparison along with the next 24 nearest neighbours.

Figure 5.8: Descriptor comparison plot between a query image and reference image
set from the Oxford dataset leading to a false positive match. The query image, the
top match and the true match from the reference set are displayed and plotted on the
descriptor comparison along with the next 24 nearest neighbours.
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An investigation to explore this was undertaken (Figure 5.9) by removing all frames

beyond the first 1500 frames from the route used for reference image set. This made

all the query images beyond this cut-off point open set. Each query image was com-

pared with the reduced reference set and the minimum single comparison value was

plotted against the corresponding localisation error. Because there was no true match

for the query images beyond frame 1500, as expected, the localisation error promptly

increased beyond the cut-off. The minimum single comparison value increased on

average, but there was still a large overlap between the values. In other words there

is no reliable way to determine whether a match for a query image is likely to have

a potential true match in the reference database using single descriptor comparison

values, they need to be considered as a whole.

However, as previously, all of the descriptor comparison values for a query image

may contain more useful information. Specific plot descriptor comparisons were then

examined to confirm their characteristics vary for closed and open set results by look-

ing at specific query images and the distribution of nearest neighbours. The following

samples represent the general observations made between the classes. A sample of a

closed set descriptor comparison is shown in Figure 5.10 where a true positive result

with the nearest neighbours is clustered around the true match, closed set results can

also include false positives (Figure 5.8). The open set descriptor comparison sample

in Figure 5.11 shows several local minima with nearest neighbours distributed across

them, but with fewer local minima than the false positive, which intuitively makes

sense if the query image is from a very different place. This provides evidence that

the descriptor comparisons and the distribution of nearest neighbours contain infor-

mation which can be used to learn to classify query images as open and closed set.

5.1.1.3 Descriptor Comparison Pre-processing

Extracting information from the descriptor comparison for use in a classifier is difficult

for two main reasons. Firstly, the length of the descriptor comparison is completely de-

pendent on the number of reference images which is highly variable and the network

therefore needs to be capable of accepting a variable size. This is possible, but has

implications for generalisation to different input sizes. For example, some reference

image sets may be hundreds of images, while others could be thousands. Secondly,

there is a lot of variation in the descriptor comparison values which is essentially noise
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Figure 5.10: Descriptor comparison plot between a query image and reference image
set from the Oxford dataset corresponding to a closed set query image. The query
image, the top match and the true match from the reference set are displayed and
plotted on the descriptor comparison along with the next 24 nearest neighbours.

Figure 5.11: Descriptor comparison plot between a query image and reference image
set from the Oxford dataset corresponding to an open set query image. The query
image, the top match from the reference set are displayed and plotted on the descriptor
comparison along with the next 24 nearest neighbours.
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and is not useful for this task and can even be misleading, it is therefore important to

try and extract the key parts of the descriptor comparison for input to the classifier.

The final approach decided on for pre-processing was to take the descriptor com-

parison values from the 25 nearest neighbours and then exploit the sequential nature

of the route data to take the comparison values from 3 geographically nearby images.

This kept the input size to a vector of length 100, the number of nearby images to

consider was varied heuristically to establish this value, any less than 3 were found

to negatively impact performance with more providing no significant increase. The

top 25 nearest neighbours were chosen as this is a common threshold for considering

relevant image retrieval results [10]. The idea behind this approach was to encode

some geographical data into the processed descriptor comparison while also captur-

ing the spread and size of the local minima which from observations seemed to be

some of the major variables associated with each class. However, there may be some

overlap between classes, as seen in some of the similarities between Figures 5.7, 5.8,

5.10 & 5.11. Contrastive learning is proposed to help separate the data, as proposed in

Section 5.1.4.

5.1.1.4 Summary

The main difference between image retrieval and classification is that retrieval does

not define traditional classes for training and testing. Instead image retrieval outputs

a vector of descriptor comparison values of unknown length, rather than a traditional

classifier’s output of known class probabilities. Traditional image classification ap-

proaches for calculating prediction uncertainty and open set recognition are therefore

not applicable. As the only given for image retrieval are the relative descriptor com-

parison values they need to be used to solve these two tasks. The intuition behind

this chapter’s approach is that, despite descriptor comparison noise, valuable infor-

mation can still be extracted and used to address outcome classification and open set

recognition tasks.
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5.1.2 Problem Definition

5.1.2.1 Pre-Processing

The result of an image retrieval query, Q, compared to N reference images, R, is a de-

scriptor comparison, DC. The DC is the Euclidean distance between the query image

descriptor, Qdesc, and the reference descriptors, [Rdesc1 , ...RdescN ] as shown in Equa-

tion 5.1. Where MinMaxScaler() is an sklearn function that scales input between 0

and 1 1. Scaling is necessary because the absolute values of the descriptor compar-

isons can be misleading. For example, comparing a query image taken in summer to

a winter reference image set may lead to larger absolute values than comparing to a

spring reference image set but this does not reflect the relative changes between the

values which have been established as being relevant for learning each task.

DC = MinMaxScaler([∥Qdesc −Rdesc1∥, . . . ∥Qdesc −RdescN ∥]) (5.1)

The smaller a value in DC is the better the match between the query image and

that reference image. Once the descriptor comparison has been calculated it is used

to sort the reference image indexes from best to worst match (Equation 5.2), this is a

permutation of the original indexes [1..N ], also referred to as the nearest neighbours

of the query image in this chapter.

matches = argsort(DC) (5.2)

Each reference image match has a corresponding GPS location. For evaluation

the localisation errors, errors are calculated by measuring the geographical distance,

GeoDist(), between the GPS locations of the query image, Q and the reference image

matches (Equation 5.3).

errors = [GeoDist(Q,Rmatches[1]), . . . GeoDist(Q,Rmatches[N ]] (5.3)

5.1.2.2 Outcome Classification

Recall, in the case of image retrieval, has a different definition from its traditional

usage in machine learning. For evaluation recall [10, 199] is defined as the index, i,

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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of the first element of errors that is a true match for the query image, i.e. less than

a geographic, dataset-specific localisation error threshold, Thresherror. This is fully

described in Equation 5.4 and a visual example is given in Figure 5.12. Note that

conventional image retrieval, and therefore VPR, assumes a true match exists for each

query image and therefore a true or false negative outcome is impossible.

recall = min(i | errors[i] < Thresherror) (5.4)

Figure 5.12: Illustrated representation of recall = 2, as described by Equation 5.4

Outcome classification (OC) aims to predict whether a DC is a true or false positive,

i.e. whether its recall value is above or below a threshold value, Threshrecall which

is set to 10 for this work (Equation 5.5). This is done before evaluation, when the

localisation error is calculated and recall is explicitly measured.

OC =


True Positive, if recall ≦ Threshrecall

False Positive, if recall > Threshrecall

(5.5)

5.1.2.3 Open Set Recognition

Open set recognition (OSR) is defined for classification as the recognition of ‘unknown

classes submitted to an algorithm during testing’ [181]. As image retrieval defines

known classes at test time in the reference image database this is a particularly chal-

lenging problem and not compatible with current open set image classification ap-

proaches (Chapter 2). OSR is therefore defined as the binary classification of DC as

including a true match for the query image, or not. For image retrieval it is proposed

that an open set query image is defined as one without a true match in the reference

image database, which would mean i is undefined for Equation 5.4.

OSR =


Open Set, if recall is undefined

Closed Set, otherwise
(5.6)
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5.1.3 Descriptor Comparison Classification

5.1.3.1 Basic Hypothesis

The main hypothesis explored in this chapter is that a deep neural network (DNN)

can be used to identify underlying characteristics of descriptor comparisons which

can then be used to classify whether they are likely to include a true match (OC) in

the top results, or if a true match is likely to exist in the reference image database at all

(OSR).

5.1.3.2 Data Pre-processing

The comparison of query and reference descriptors, DC as defined above, is a one

dimensional vector that must be pre-processed before it can be used as data for learn-

ing OC and OSR because of the noise from dissimilar matches described in Section

5.1.1. To create this data the required visual place recognition dataset and descriptor

required and used in this chapter are described in Section 5.2.1.1.

The first 25 elements of matches, as defined previously, are selected. For each el-

ement the three geographically nearest images in the reference set are selected and

the DC values associated with all four images are sampled for a total of 100 values

(Figure 5.13). This is done to provide information about the similarity of the matched

place and nearby places, with respect to the query image for richer training data, not

including it was found to significantly decrease classification accuracy. This sampling

removes noise and fixes the input data size, which allows for generalisation to refer-

ence image databases as small as 25 images and is compatible with the input shape

of a wider variety of deep learning approaches. A grid search was used to set the

variables for number of best matches and adjacent descriptor comparisons.

5.1.3.3 Baseline Calibrated Threshold

This is the first time OC and OSR problems have been addressed so there are no state-

of-the-art approaches for comparison. As discussed in Section 5.1.1 larger comparison

values between query and reference descriptors should intuitively suggest for OC that

a query image is a false positive (y = 1), rather than a true positive (y = 0) and

for OSR that a query image is open set (y = 1), rather than closed set (y = 0). A

threshold approach inspired by the confidence thresholding baseline used for binary
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Figure 5.13: Illustrated example of the proposed classification pipeline for query and
reference image descriptor comparisons, including dataset pre-processing. This ex-
ample uses OSR classes.

classification by Bendale et al. [21] was therefore used to discriminate between larger

and smaller descriptor comparison DC values and enable classification for each task

accordingly. Training data for each task was used to calibrate the threshold Threshclass

by using the DC values of the first 25 matches elements of each training sample to

optimise Threshclass for binary classification on that task:

predicted labels, ŷ =


1, if max([DCmatches[1], . . . DCmatches[25]]) > Threshclass

0, otherwise
(5.7)

The threshold is optimised (Equation 5.8) to maximise the F1 score of the predicted,

ŷ and true training labels y.

maximise F1 score(y, ŷ)

where y = true labels

ŷ = predicted labels

(5.8)

Only the the first 25 matches are used as input (Equation 5.7) because the sampling

approach from Section 5.1.3.2 introduces noise that is potentially useful for training a

DNN, but disruptive for classification with this calibrated threshold. The calibrated

threshold can then be used to make predictions on test data.
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5.1.3.4 Deep Neural Networks

The data pre-processed according to Section 5.1.3.2 is a one dimensional vector so four

architectures inspired by state-of-the-art signal classification approaches [216] were

taught for both binary classification tasks using sigmoid loss and the pre-processed

descriptor comparisons.

1. Fully connected models are naturally well suited to one dimensional input and

have been used for classifying ECG signals [217] and hand gestures [218].

2. Convolutional models have been used for classifying ECG [219], high power

engine [220] and high power circuitry [221] signals.

3. ResNET models take inspiration from computer vision research to introduce

skip layers and have been used to classify electrodermal activity [222] and ra-

dio signals [223].

4. Transformers have been used to great effect for natural language processing and

have recently been applied to time series classification [224]. Transformers have

not been commonly explored for signal classification, however their use with

time series data has shown that they are relevant for usage with sequential data.

Each architecture is used to build an encoder that is appended to a small, fully con-

nected classifier network (Figure 5.14). The distinction between encoder and classifier

architectures is made to enable an ablation study that compares training the models

as a whole against the use of supervised contrastive loss (Section 5.1.4) which trains

the encoder and classifier separately. The specific architectures were inspired by the

referenced works and adapted for the task and ease of comparison. For example, all

the final fully connected layers of all encoders (Figure 5.15) have a dimension of 128

and both ResNet and Convolutional architectures use layers with 32 and 16 filters.

5.1.4 Supervised Contrastive Loss

5.1.4.1 Basic Hypothesis

This section aims to use supervised contrastive loss to train an encoder network to use

similarity learning to maximise the separation between overlapping classes of pre-

processed descriptor comparison data, which can then be used to improve training
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Figure 5.14: Diagram showing overall network architecture, as described in Section
5.1.3.4. For supervised contrastive loss each encoder was alternately separately pre-
trained and then frozen before the addition of the classifier, as described in Section
5.1.4.2. Each layer shown includes its output shape.

Figure 5.15: This figure shows the encoder architectures, as described in Section 5.1.3.4
which are then used in the larger DCC pipeline (Figure 5.14). Each layer is shown
along with its output shape. The individual architectures used for the ResUnit and
TransUnit layers are shown in Figures 5.16 & 5.17

Figure 5.16: ResUnit architecture used in the ResNET encoder (Figure 5.15), the first
layer in the encoder uses 32 filters and the second layer 16 filters.

133



134 William Hugh Burrough Smith

Figure 5.17: TransUnit architecture, used in the Transformer encoder (Figure 5.15).

for classification. The intuition here is that descriptor comparison data for true and

false positives used in the outcome classification task and the open and closed de-

scriptor comparison data for open set recognition can overlap, so separating them

may improve classification performance.

5.1.4.2 Training

A specific example of overlapping class data can easily be imagined for outcome clas-

sification which defines two classes: true positives (recall ≦ 10) and false positives

(recall > 10). Intuitively there will be significant overlap between descriptor com-

parison data with a recall of 9 and 11. This chapter therefore aims to use supervised

contrastive loss [209] (Equation 5.9) to pull the network encoder’s embedded output

from the same classes together and away from that of different classes.

The encoder section of each architecture is therefore pre-trained using contrastive

loss on a pretext task to separate the classes and frozen, before the final classifier net-

work is appended and trained with the improved embedded representation. The ad-

vantage of using supervised contrastive learning is that the labels remove the need to

mine the hardest combinations of embeddings for learning, which can be difficult and

time-consuming when unsupervised.

The generalised form of supervised contrastive loss in Equation 5.9 was introduced

by Khosla et al. [209] and is a variation of contrastive loss for similarity learning pre-

sented by Chen et al. [225]. A minibatch of N randomly sampled sample/label pairs
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{xk,yk}k=1...N is used and the contrastive prediction task is applied to each sample

where all other samples in the mini batch of the same class become positives and the

remaining samples are negatives, resulting in N data points. Let i ∈ I ≡ {1 . . . N}

be the index of an arbitrary sample. The set of indices of all positives in the batch

distinct from i is P (i) ≡ {p ∈ A(i) : ỹp = ỹi}, and |P (i)| is its cardinality. Additionally,

zℓ = Clas (Enc (x̃ℓ)) ∈ RDP , the · symbol denotes the inner (dot) product which is

used to measure the similarity between embedded class representations, τ ∈ R+ is a

scalar temperature parameter, and A(i) ≡ I\{i}.

Lsup
cont =

∑
i∈I

Lsup
cont ,i =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
(5.9)

The intuition behind supervised contrastive loss is that normalised embeddings

from the same class are drawn together and pushed away from embeddings from

different classes. Supervised contrastive loss considers many positives per anchor in

addition to many negatives, as opposed to triplet loss which only uses a single positive

and negative. These positives are drawn from samples of the same class as the anchor,

while the negatives come from any other class.

5.2 Evaluation

This section presents an evaluation of the proposed contributions. Firstly, the datasets

and VPR descriptors necessary for this evaluation are introduced. Secondly, the pro-

posed descriptor comparison classification approach is used to train deep learning

architectures for outcome classification in comparison to a calibrated threshold. The

addition of supervised contrastive loss is then tested in an ablation study. Finally this

evaluation is repeated for open set recognition.

5.2.1 Experimental Setup

5.2.1.1 Datasets

This is the first time outcome classification and open set recognition have been ad-

dressed, for image retrieval generally and specifically VPR, so datasets for these tasks

had to be created.

To begin with two traversals in different appearance conditions of a single route
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from four VPR datasets were used for this with associated geolocation data for each

image. The first dataset is the Oxford RobotCar dataset [115] and the two traver-

sals used are: 2015-05-22-11-14-30 (overcast), 2014-12-16-18-44-24 (night). The second

dataset is Nordland [133] and the two traversals used are winter and summer. The

third dataset is St. Lucia [226] and the two traversals used are 100909 0845 (morn-

ing) and 180809 1545 (afternoon). The fourth dataset is the UAH-DriveSet [200] and

the two traversals used are UAH 4 (sunset) and UAH 6 (haze). As the datasets were

originally raw video recordings each dataset was sampled using a minimum distance

between consecutive frames of 0.1 (Oxford), 80 (Nordland) and 5 (UAH) meters to

prevent oversampling of single locations. The St. Lucia dataset required some addi-

tional synchronising between routes to ensure that the same place images shared a

single GPS point, it therefore had to be sampled with a mean distance between frames

of 10 meters. For each dataset one traversal was randomly designated as a reference

and the other as a query traversal, this was kept constant for all experiments. Samples

of each dataset are shown in Figure 5.18.

Figure 5.18: Samples of the four VPR datasets used for experimentation and the as-
sociated appearance invariance. From top to bottom, left to right: Oxford RobotCar
(night, overcast), UAH DrivSet (sunset, haze), Nordland (winter, summer), St. Lucia
(afternoon, morning).

For open set recognition the reference traversal was then split into two halves and
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only one half was included in the reference image database. For each split query

images with a possible true match were designated as closed set and the rest as open set.

The descriptor comparison data between query and reference images was generated

using one of the four VPR descriptors described in Section 5.2.1.2.

For outcome classification descriptor comparisons between the reference and closed

set query descriptors with a recall of up to and including 10 were labelled as true pos-

itives. The remainder of the comparisons between the reference and closed set query

descriptors were labelled as false positives. This data was descriptor dependent be-

cause higher VPR performance meant more true positives existed. The average OC

data produced for each of the four descriptors is reported in Table 5.1, along with a

detailed summary of the datasets and a visualisation of a dataset split in Figure 5.19.

Table 5.1: A detailed description of the VPR datasets used to generate the OC and
OSR datasets, as described in Section 5.2.1.1. True and false positive comparisons
are derived from the closed set comparisons and therefore their total data samples
equal the number of closed set samples. Note OC data depends on the accuracy of the
descriptors used for comparison, the mean result using the four descriptors described
in Section 5.2.1.2 is shown here

OC Data OSR Data
False True Closed Open

Dataset Traversals Frames Type Length (km) Positive Positive Set Set
Oxford Overcast (ref.) 3235 Urban 9 2416 1281 3697 2863

Night (query) 3280
Nordland Summer (ref.) 4619 Rural 763 1859 2760 4619 4615

Winter (query) 4617
St. Lucia Afternoon (ref.) 1619 Suburban 18 1530 1239 2768 488

Morning (query) 1628
UAH Haze (ref.) 2066 Rural 16 919 1128 2047 2107

Sunset (query) 2077
Total: 6724 6408 13131 10073

5.2.1.2 VPR Descriptors

To experiment whether the proposed approach generalised to different descriptors

the four different state-of-the-art VPR descriptors were used to generate descriptor

comparisons. These descriptors are listed below, from oldest to newest.

AMOS and HybridNet [14]. AMOS-Net is a modified version of Caffe-Net with

all parameters trained for VPR, whereas Hybrid-Net’s top 5 convolutional layers were

initialized from Caffe-Net. ‘Conv5’ layer features from both networks are extracted

and encoded using Spatial Pyramidal Pooling to an output size of 2543.

NetVLAD [10]. NetVLAD appends a VLAD layer to a partially frozen VGG16
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network pretrained on the ImageNet dataset [12] and retrained for VPR using triplet

learning. NetVLAD features are reduced using PCA to an output shape of 4096.

Figure 5.19: A matrix showing comparisons between the UAH Driveset [200] query
and reference images using NetVLAD descriptors [10]. For open set recognition com-
parisons of open set images with no potential true match in the reference image set
are shown alongside comparisons of closed set images with a possible true match. For
outcome classification closed set comparisons can then be divided into true positives
(top 10 nearest neighbours include a true match for the query image and false posi-
tives which (no true match in the top 10 nearest neighbours). The proposed approach
uses these descriptor comparisons to train a neural network for these two binary clas-
sification tasks. Descriptor similarity ranges from blue (high) to yellow (low).

Patch-NetVLAD [13]. Patch-NetVLAD, introduced in Chapter 2 uses multi-scale

fusion of patch-level features from NetVLAD residuals to rearrange the top 50 descrip-

tor comparisons done using NetVLAD, re-trained specifically for urban (Oxford and

St. Lucia) or rural (Nordland and UAH) environments. For example, the first match,

according to the Patch-NetVLAD comparison, is given the value of the first match

from the original NetVLAD descriptor comparison, this is done to maintain a single

scale across the entire descriptor comparison. For experimentation performance con-

figuration of Patch-NetVLAD was impractical so the speed configuration was used,

which used more memory than than the NetVLAD features by a factor of 100. The

dimensions (num pcs) of the speed configuration Patch-NetVLAD patch descriptors

were increased to 512 to improve performance, resulting in a final descriptor shape of

(936x512).

Descriptor performance for localisation varies across each dataset split and the av-

erage performance is shown in Table 5.2. Recall at k (R@k) measures the percentage
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of queries that have at least one positive among their closest k descriptor comparison

neighbours, as described in Section 5.1.2. Although PatchNetVLAD [13] claims an im-

provement over vanilla NetVLAD these results suggest that hyperparameter selection

significantly affects its performance.

Using descriptors trained on each route specifically, such as the TinyVPR descrip-

tors proposed in Chapter 3 is an interesting possibility as they would be specialised

for each route and might be more sensitive to false positives or open set images, but

this is left for future work. Pre-trained descriptors were used in this case because of

their wider availability.

Table 5.2: Mean Recall (R) of AMOS-Net (AMOS), Hybrid-Net (Hybrid), NetVLAD
(NVLAD) and Patch-NetVLAD (P-NVLAD) descriptors on VPR dataset splits de-
scribed in 5.2.1.2.

Dataset Descriptors R@1 R@5 R@10
Oxford AMOS 0.04 0.10 0.14

Hybrid 0.04 0.11 0.16
NVLAD 0.34 0.57 0.66
P-NVLAD 0.22 0.35 0.42

Nordland AMOS 0.29 0.45 0.54
Hybrid 0.32 0.50 0.59
NVLAD 0.48 0.65 0.73
P-NVLAD 0.40 0.47 0.53

St. Lucia AMOS 0.18 0.34 0.42
Hybrid 0.21 0.38 0.48
NVLAD 0.27 0.43 0.51
P-NVLAD 0.22 0.32 0.38

UAH AMOS 0.13 0.29 0.38
Hybrid 0.16 0.35 0.45
NVLAD 0.38 0.67 0.76
P-NVLAD 0.31 0.51 0.61

5.2.2 Outcome Classification

This section contains experiments to test three hypotheses. The first is that DCC out-

performs a baseline threshold approach for outcome classification, the second is that

this approach is agnostic to the choice of VPR descriptor and the third is that the use

of contrastive learning helps to separate these three overlapping classes to improve

outcome classification.

5.2.2.1 Baseline

As described in Section 5.1.3.3, the descriptor comparison data from the top 25 nearest

neighbours [DCmatches[1], . . . DCmatches[25]] were compared against a threshold value
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Threshclass and the results used to predict the descriptor comparison as a true or false

positive.

5.2.2.2 Descriptor Comparison Classifiers

The four DNN encoders detailed in Section 5.1.3.4: Fully Connected (FC), Convolu-

tional (Conv.), ResNET (Res.) and Transformer (Trans.) were prepended to the clas-

sifier and the whole network was trained for the task. For supervised contrastive

learning the encoder was trained and frozen, then the classifier was appended and

trained for classification.

5.2.2.3 Training

For experimentation one dataset was selected for testing and the remaining three

were used for training data. For the baseline thresholding approach the top 25 near-

est neighbours are extracted from the training descriptor comparisons and a baseline

threshold is calibrated according to Section 5.1.3.

For the deep neural network models each training descriptor comparison was pre-

processed according to Section 5.1.3, 10% of the stratified training data was used to

create a validation set and the remaining 90% used to train each neural network for 50

epochs using sigmoid loss on batches of size 8 with a learning rate of 1e-5 and early

stopping according to the validation loss, with a patience of 20.

For the contrastive approach each encoder was trained to separate class embed-

dings using supervised contrastive loss for 100 epochs with a temperature of 0.05 us-

ing a learning rate of 1e-4 and a batch size of 64. The classifier was then appended to

the frozen encoder and trained with the same approach used for plain classification.

Supervised contrastive loss requires pre-training for the encoder so it was difficult to

ensure equivalent training for both deep neural network approaches. Early stopping

was used to help offset this by giving each classifier as many epochs as required for

the validation loss to stop decreasing. This process was repeated for each dataset and

VPR descriptor.

5.2.2.4 Testing

Descriptor comparison samples from one of two test data splits were pre-processed

and then classified using one of the deep neural networks. For the baseline thresh-
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old approach [DCmatches[1], . . . DCmatches[25]] were extracted and if one of these values

was above Threshclass the test sample was classified as a false positive, otherwise it

was classified as a true positive, in other words if one of the top 25 reference image

matches includes a particularly poor match then it is considered a false positive. This

approach was used because particularly large comparison values in the nearest neigh-

bours was a good indication of the unreliability of the other matches. This process

was repeated for the second test dataset split and the mean F1 score of each class is

then calculated for both test dataset splits and reported. For completeness the raw

experimental results are presented in Table 5.3, but for clarity these results are rein-

terpreted in Tables 5.4, 5.5 and 5.6. The Transformer architectures taught plainly and

with supervised contrastive learning (Trans & Trans + C) failed because they collapsed

all predictions into one class for all descriptors other than NetVLAD, this network’s

results were therefore only displayed in this table and not included in calculating the

mean scores for the other tables.

5.2.2.5 Is DCC Better Than Thresholding for Outcome Classification?

Thresholding attempts to calculate an absolute descriptor comparison value that can

be used to identify false positives, but because descriptor comparison data is the re-

sult of a relative comparison this absolute value becomes irrelevant if the relationship

between the query and reference test data is significantly different from the training

data, despite all descriptor comparison data being normalised between 0 and 1. This

leads to the threshold being too low and classifying all the test data as a false positive,

or too high and classifying all the test data as a true positive thereby collapsing all

of the outcome classification predictions into one class. These results were therefore

omitted and replaced with a dash (-).

Table 5.4 shows thresholding collapsed on 7 of the 16 dataset and descriptor com-

binations for outcome classification. Furthermore, in five of the nine examples DCC

outperforms thresholding by a mean F1 score of up to 0.21 (AMOS descriptor, St. Lu-

cia dataset, Thresh. vs. DNN). This result confirms the hypothesis that this chap-

ter’s DCC approach outperforms the threshold approach for outcome classification,

although there is still significant room for improvement on this new and challenging

task.
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Table 5.3: Raw mean true positive, false positive F1 outcome classification scores of
baseline thresholding, DNN and DNN with contrastive learning (+C) classification
approaches on four datasets using four VPR descriptors, as described in Section 5.2.2.
The best scores between networks with or without contrastive loss are shown in bold
(higher the better).

Datasets Dataset
Descriptor Classifier Oxford Nordland St. Lucia UAH Mean
AMOS Thresh. - - - 0.52 0.56 0.54 0.58 0.10 0.34 - - - -

FC 0.25 0.80 0.53 0.16 0.65 0.40 0.46 0.65 0.56 0.08 0.77 0.44 0.48
FC + C 0.18 0.85 0.52 0.31 0.68 0.49 0.48 0.60 0.54 0.06 0.76 0.41 0.49
Conv. 0.25 0.84 0.54 0.25 0.65 0.45 0.56 0.53 0.55 0.10 0.77 0.43 0.49
Conv. + C 0.22 0.84 0.53 0.17 0.67 0.42 0.45 0.67 0.56 0.12 0.76 0.44 0.49
Res. 0.29 0.80 0.54 0.27 0.63 0.45 0.55 0.52 0.54 0.13 0.77 0.45 0.50
Res. + C 0.26 0.76 0.51 0.36 0.63 0.50 0.53 0.52 0.52 0.26 0.75 0.50 0.51

Hybrid Thresh. - - - 0.65 0.41 0.53 0.63 0.25 0.44 0.56 0.55 0.56 -
FC 0.29 0.56 0.43 0.30 0.61 0.45 0.59 0.41 0.50 0.05 0.71 0.38 0.44
FC + C 0.28 0.77 0.52 0.39 0.60 0.50 0.57 0.42 0.50 0.06 0.71 0.39 0.48
Conv. 0.30 0.64 0.47 0.45 0.60 0.53 0.62 0.28 0.45 0.07 0.71 0.39 0.46
Conv. + C 0.28 0.74 0.51 0.38 0.58 0.48 0.58 0.42 0.50 0.14 0.70 0.42 0.48
Res. 0.30 0.66 0.48 0.40 0.59 0.50 0.62 0.25 0.43 0.08 0.71 0.39 0.45
Res. + C 0.28 0.70 0.49 0.48 0.57 0.52 0.60 0.42 0.51 0.13 0.70 0.42 0.49

NVLAD Thresh. - - - - - - 0.67 0.26 0.46 0.85 0.33 0.59 -
FC 0.79 0.31 0.55 0.56 0.49 0.52 0.68 0.20 0.44 0.86 0.20 0.53 0.51
FC + C 0.76 0.45 0.61 0.64 0.47 0.56 0.67 0.30 0.48 0.86 0.32 0.59 0.56
Conv. 0.79 0.40 0.59 0.60 0.49 0.54 0.68 0.26 0.44 0.87 0.15 0.51 0.52
Conv. + C 0.78 0.32 0.55 0.73 0.44 0.59 0.68 0.21 0.47 0.84 0.30 0.57 0.55
Res. 0.80 0.33 0.57 0.58 0.49 0.53 0.68 0.19 0.44 0.87 0.29 0.58 0.53
Res. + C 0.74 0.43 0.58 0.64 0.45 0.55 0.68 0.33 0.50 0.83 0.36 0.60 0.56
Trans. 0.79 0.34 0.56 0.59 0.49 0.54 0.68 0.19 0.39 0.87 0.19 0.53 0.51
Trans. + C 0.77 0.48 0.63 0.64 0.51 0.57 0.68 0.25 0.46 0.86 0.33 0.60 0.57

P-NVLAD Thresh. - - - - - - 0.51 0.10 0.30 0.14 0.49 0.32 -
FC 0.52 0.45 0.48 0.19 0.57 0.38 0.48 0.54 0.51 0.50 0.44 0.47 0.46
FC + C 0.53 0.47 0.50 0.32 0.52 0.42 0.49 0.49 0.49 0.46 0.40 0.43 0.46
Conv. 0.53 0.38 0.45 0.26 0.54 0.40 0.50 0.48 0.49 0.45 0.43 0.44 0.45
Conv. + C 0.47 0.49 0.48 0.37 0.50 0.44 0.49 0.42 0.45 0.44 0.44 0.44 0.45
Res. 0.55 0.19 0.37 0.30 0.53 0.41 0.50 0.36 0.43 0.37 0.46 0.42 0.41
Res. + C 0.45 0.50 0.47 0.42 0.48 0.45 0.44 0.49 0.46 0.49 0.38 0.44 0.46

Table 5.4: Comparison of mean F1 outcome classification scores of baseline threshold-
ing vs. all deep neural network (DNN) approaches (plain and contrastive) for DCC.
Changes in mean F1 scores (∆) are positive and negative.

Datasets Dataset
Descriptor Classifier Oxford Nordland St. Lucia UAH Mean
AMOS Thresh. - 0.54 0.34 - -

DNN 0.53 0.45 0.55 0.45 0.50
∆ n/a -0.09 0.21 n/a n/a

Hybrid Thresh. - 0.53 0.44 0.56 -
DNN 0.49 0.50 0.48 0.40 0.47
∆ n/a -0.03 0.04 -0.16 n/a

NVLAD Thresh. - - 0.46 0.59 -
DNN 0.58 0.56 0.46 0.57 0.54
∆ n/a n/a 0.00 -0.02 n/a

P-NVLAD Thresh. - - 0.30 0.32 -
DNN 0.46 0.42 0.48 0.44 0.45
∆ n/a n/a 0.18 0.12 n/a
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5.2.2.6 Does DCC for Outcome Classification Work with Different Descriptors?

The results in Table 5.5 show that, despite the large changes in VPR performance be-

tween the descriptors (Table 5.2), comparable performance for outcome classification

is achieved. For example, the mean VPR recall of the best performing NetVLAD

descriptors across all 4 datasets is 0.67 at R@10, compared to the worst performing

AMOS descriptor with a mean R@10 of 0.37. However, despite this decrease of 45%

in recall performance AMOS descriptors produce the second highest average F1 score

across all DNN approaches (Table 5.5), which is only 7% lower than the OC results

achieved with NetVLAD. Additionally, the range of mean F1 scores between descrip-

tors is only 0.09. These results confirm the hypothesis that DCC can be used for out-

come classification using data from different descriptors.

However, DCC is not totally agnostic to the VPR performance of each descriptor

because NetVLAD descriptors provide the best VPR recall and the best OC perfor-

mance in all cases. This makes sense intuitively because better VPR descriptors are

likely to include more consistent results for true positive results in the top nearest

neighbours, which should make them easier to differentiate from false positives.

Table 5.5: Comparison of mean F1 outcome classification scores of all deep neural
network (DNN) approaches (plain and contrastive) for DCC.

Descriptor
Classifier AMOS Hybrid NVLAD P-NVLAD
DNN 0.50 0.47 0.54 0.45

5.2.2.7 Which Deep Neural Network Architecture Performs the Best for Outcome

Classification?

Different DNN architectures only slightly affect performance for outcome classifica-

tion, as shown in Table 5.6. The convolutional network performs slightly better than

the others (+0.01) when trained normally, perhaps because the convolutional network

is best at processing the local coherence present in the descriptor comparison data as

a result of the pre-processing detailed in Section 5.1.3.2. The addition of supervised

contrastive learning results allows ResNET to slightly outperform the other networks

(+0.01). Interestingly, the transformer architecture was only able to reliably produce

results using NetVLAD descriptors. The reason for this requires further research, but

suggests that it benefits from high accuracy VPR descriptors. When the Transformer
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does work it provides the best F1 classification score on the Oxford and UAH datasets

0.63 and 0.60 respectively in Table 5.3 (NVLAD, Trans+C., Oxford and UAH).

Figure 5.20: t-SNE plots showing the improved separation and class grouping be-
tween true and false positive classes when using supervised constrastive learning for
outcome classification.

5.2.2.8 Does Supervised Contrastive Learning Improve Descriptor Comparison Clas-

sification?

Table 5.6 shows that supervised contrastive learning improves mean F1 scores by up

to 0.04. Supervised contrastive learning relies on separating descriptor comparisons

of true and false positives, which these results suggest is more advantageous with Hy-

brid and NetVLAD descriptors. This is not because Hybrid and NetVLAD descriptor

comparisons are the most accurate, because Hybrid descriptors have lower mean re-

call performance at R@10 than Patch-NetVLAD for Nordland and UAH datasets as

shown in Table 5.2. One possibility is that Hybrid and NetVLAD networks are both

only trained down to their conv5 layers for visual place recognition, leaving the re-

mainder of the network pre-trained for general feature extraction. Comparisons be-

tween descriptors that prioritise more general features may therefore be more pre-
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dictable in their representation of the true and false positive classes used for outcome

classification. Supporting evidence for this theory is that using supervised contrastive

learning with AMOS data provides the smallest mean improvement (+0.01) and the

only difference between Hybrid and AMOS descriptors is that AMOS descriptors have

been taught purely for VPR. Figure 5.20 uses t-SNE plots of class features to illustrate

the effects of supervised contrastive learning on the class representations.

Table 5.6: Comparison of different DNN architectures for DCC and the effect of su-
pervised contrastive learning on outcome classification. The mean F1 scores are calcu-
lated across four datasets. Changes in mean F1 scores (∆) are positive and negative.

Descriptor Descriptor
Classifier AMOS Hybrid NVLAD P-NVLAD Mean
FC 0.48 0.44 0.51 0.46 0.47
FC + C 0.49 0.48 0.56 0.46 0.50
∆ 0.01 0.04 0.05 0.00 0.03
Conv. 0.49 0.46 0.52 0.45 0.48
Conv. + C 0.49 0.48 0.55 0.45 0.49
∆ 0.00 0.02 0.03 0.00 0.01
Res. 0.50 0.45 0.53 0.41 0.47
Res. + C 0.51 0.49 0.56 0.46 0.51
∆ 0.01 0.04 0.03 0.05 0.04

5.2.3 Open Set Recognition

This section contains experiments to test three hypotheses. The first is that DCC out-

performs a baseline threshold approach for open set recognition. The second is that

this approach is agnostic to the choice of VPR descriptor and the third is that the use

of contrastive learning helps to separate overlapping closed and open set classes to

improve open set recognition.

5.2.3.1 Baseline, Descriptor Comparison Classifiers, Training and Testing

These sections were repeated exactly from Sections 5.2.2.1 to 5.2.2.4, the one difference

is that OC training and test data were substituted for OSR data. For completeness

the raw experimental results are presented in Table 5.7, but for clarity these results

are reinterpreted in Tables 5.8, 5.9 and 5.10. The Transformer architectures taught

plainly and with supervised contrastive learning (Trans & Trans + C) failed because

they collapsed all predictions into one class for all descriptors other than NetVLAD,

this network’s results were therefore only displayed in this table and not included in

calculating the mean scores for the other tables.
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Table 5.7: Raw mean closed set, open set and mean F1 open set recognition scores
of baseline thresholding, DNN and DNN with contrastive learning (+C) classification
approaches on four datasets using four VPR descriptors, as described in Section 5.2.3.
The best scores between networks with or without contrastive loss are shown in bold
(higher the better)

Datasets Dataset
Descriptor Classifier Oxford Nordland St. Lucia UAH Mean
AMOS Thresh. 0.19 0.58 0.38 0.66 0.44 0.55 - - - 0.19 0.66 0.42 -

FC 0.72 0.03 0.37 0.64 0.01 0.32 0.72 0.23 0.48 0.66 0.01 0.33 0.38
FC + C 0.67 0.24 0.45 0.66 0.03 0.34 0.69 0.24 0.46 0.66 0.03 0.34 0.40
Conv. 0.59 0.36 0.47 0.67 0.01 0.33 0.69 0.24 0.47 0.66 0.01 0.34 0.40
Conv. + C 0.62 0.31 0.47 0.62 0.14 0.38 0.61 0.23 0.42 0.64 0.23 0.43 0.43
Res. 0.53 0.42 0.47 0.66 0.02 0.34 0.74 0.23 0.48 0.66 0.01 0.34 0.41
Res. + C 0.58 0.36 0.47 0.62 0.22 0.42 0.66 0.23 0.44 0.59 0.36 0.47 0.45

Hybrid Thresh. - - - 0.66 0.43 0.55 0.87 0.14 0.51 0.61 0.54 0.58 -
FC 0.72 0.02 0.38 0.64 0.01 0.33 0.54 0.25 0.39 0.66 0.01 0.33 0.36
FC + C 0.71 0.08 0.39 0.65 0.03 0.34 0.66 0.25 0.45 0.66 0.02 0.34 0.38
Conv. 0.66 0.27 0.46 0.66 0.01 0.33 0.48 0.26 0.37 0.66 0.71 0.33 0.37
Conv. + C 0.59 0.36 0.48 0.65 0.10 0.38 0.55 0.26 0.41 0.60 0.29 0.45 0.43
Res. 0.71 0.05 0.38 0.65 0.02 0.34 0.58 0.24 0.41 0.66 0.01 0.34 0.37
Res. + C 0.58 0.41 0.49 0.62 0.30 0.46 0.60 0.26 0.43 0.57 0.44 0.51 0.47

NVLAD Thresh. 0.67 0.03 0.35 0.67 0.29 0.34 0.14 0.27 0.20 0.67 0.26 0.46 0.34
FC 0.65 0.57 0.61 0.64 0.54 0.59 0.56 0.29 0.43 0.69 0.37 0.53 0.54
FC + C 0.63 0.54 0.59 0.61 0.47 0.54 0.69 0.28 0.48 0.69 0.43 0.56 0.54
Conv. 0.58 0.61 0.60 0.65 0.47 0.56 0.56 0.29 0.43 0.70 0.48 0.59 0.55
Conv. + C 0.55 0.60 0.58 0.64 0.42 0.53 0.73 0.25 0.49 0.69 0.45 0.57 0.54
Res. 0.57 0.62 0.6 0.64 0.49 0.56 0.63 0.28 0.46 0.69 0.38 0.53 0.54
Res. + C 0.59 0.58 0.58 0.61 0.47 0.54 0.72 0.27 0.50 0.68 0.39 0.53 0.54
Trans. 0.63 0.58 0.60 0.63 0.58 0.61 0.66 0.30 0.48 0.69 0.50 0.60 0.57
Trans. + C 0.62 0.59 0.61 0.64 0.57 0.61 0.53 0.29 0.41 0.70 0.50 0.62 0.56

P-NVLAD Thresh. - - - 0.68 0.13 0.40 0.89 0.12 0.50 0.35 0.72 0.54 -
FC 0.66 0.37 0.51 0.64 0.06 0.35 0.36 0.27 0.32 0.66 0.07 0.37 0.39
FC + C 0.59 0.44 0.52 0.64 0.17 0.40 0.57 0.24 0.41 0.66 0.12 0.39 0.43
Conv. 0.49 0.52 0.51 0.65 0.11 0.38 0.42 0.26 0.34 0.66 0.08 0.37 0.40
Conv. + C 0.49 0.51 0.50 0.65 0.10 0.38 0.59 0.24 0.41 0.67 0.24 0.45 0.44
Res. 0.44 0.55 0.49 0.65 0.09 0.37 0.47 0.25 0.36 0.66 0.06 0.36 0.40
Res. + C 0.52 0.52 0.52 0.61 0.31 0.46 0.58 0.24 0.41 0.66 0.31 0.49 0.47

146



Visual Place Recognition for Improved Open and Uncertain Navigation 147

5.2.3.2 Is DCC Better Than Thresholding for Open Set Recognition?

As discussed in Section 5.2.2, the main weakness of thresholding is that it uses an

absolute value, which can result in a collapse of classification predictions into one

class if the test data is very different to the training data. Table 5.8 shows thresholding

failed in this way on 3 of the 16 dataset and descriptor combinations, these results

were omitted and replaced with a dash (-).

Thresholding works better for OSR than OC, with it outperforming DCC in 8 out

of 16 tests. Intuitively this makes sense because comparing an open set query im-

age with reference images should result in generally higher descriptor comparison

values than a closed set image, which makes thresholding with an absolute value eas-

ier. However, DCC outperformed thresholding in all cases for NetVLAD descriptors,

which performed the best for VPR (Table 5.2). These results suggest an improved

ability to match query and reference images for VPR may result in a tendency to over-

confidently match open set query images which makes an absolute threshold less re-

liable, but the underlying descriptor comparisons are more consistent and therefore

easier to classify.

Although thresholding and DCC perform the best on an equal number of dataset

and descriptor combinations thresholding fails on three and is therefore an unreli-

able approach to this problem. Furthermore DCC outperforms thresholding on the

best performing VPR descriptor NetVLAD in all cases. This evidence supports the

hypothesis that DCC is better than thresholding for open set recognition, but that

thresholding works better for descriptors that are less specialised for the task.

Table 5.8: Comparison of mean F1 outcome classification scores of baseline threshold-
ing vs. all deep neural network (DNN) approaches (plain and contrastive) for DCC.
Changes in mean F1 scores (∆) are positive and negative.

Datasets Dataset
Descriptor Classifier Oxford Nordland St. Lucia UAH Mean
AMOS Thresh. 0.38 0.55 - 0.42 -

DNN 0.45 0.36 0.46 0.38 0.42
∆ 0.07 -0.19 n/a -0.04 n/a

Hybrid Thresh. - 0.55 0.51 0.58 -
DNN 0.43 0.37 0.41 0.39 0.40
∆ n/a -0.18 -0.10 -0.19 n/a

NVLAD Thresh. 0.35 0.34 0.20 0.46 0.34
DNN 0.60 0.57 0.46 0.57 0.55
∆ 0.25 0.24 0.27 0.11 0.21

P-NVLAD Thresh. - 0.40 0.50 0.54 -
DNN 0.51 0.39 0.38 0.41 0.43
∆ n/a -0.01 -0.09 -0.10 n/a
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5.2.3.3 Does DCC for Open Set Recognition Work with Different Descriptors?

The results in Table 5.9 show that DCC for open set recognition is less agnostic to

the VPR performance descriptors than outcome classification because there is a larger

range of F1 scores: 0.09 for OC and 0.15 for OSR. However, despite a decrease of 45%

between the mean VPR recall of the best performing NetVLAD descriptors across all

4 datasets from 0.67 compared to AMOS’s 0.37 at R@10 there is only a 24% decrease

(Table 5.9) in open set recognition from 0.55 (NetVLAD) to 0.42 (AMOS). These results

confirm the hypothesis that the proposed approach works with different descriptors.

Table 5.9: Comparison of mean F1 open set recognition scores of all deep neural net-
work (DNN) approaches (plain and contrastive) for DCC.

Descriptor
Classifier AMOS Hybrid NVLAD P-NVLAD
DNN 0.42 0.40 0.55 0.43

5.2.3.4 Which Deep Neural Network Architecture Performs the Best for Open Set

Recognition?

Different DNN architectures only slightly affect open set recognition, as shown in

Table 5.10. When trained normally convolutional and ResNET networks achieve a

slightly higher mean F1 classification score than the fully connected network (+0.01),

but when trained with supervised contrastive loss the ResNet network achieves a

slight increase in the best mean F1 classification score (+0.02). As in outcome classifi-

cation, the Transformer was only able to reliably produce results using NetVLAD de-

scriptors but also provides the best F1 classification score on the Oxford (0.61), Nord-

land (0.61) and UAH (0.62) datasets, but the worst for St. Lucia (0.41) as shown in

Table 5.7 (NVLAD, Trans+C., all datasets).

5.2.3.5 Does Supervised Contrastive Learning Improve Descriptor Comparison Clas-

sification?

Table 5.10 shows supervised contrastive learning improves mean F1 classification scores

for OSR by up to 0.05. Supervised contrastive learning relies on separating descrip-

tor comparisons of closed and open set images, which these results suggest is more

advantageous with AMOS, Hybrid and Patch-NetVLAD descriptor comparisons.
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Figure 5.21: t-SNE plots showing the improved separation and class groupings be-
tween open and closed set classes when using supervised contrastive learning for
open set recognition.
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One reason for this may be found in Table 5.8 where thresholding is shown to be

better for classifying AMOS, Hybrid and Patch-NetVLAD than NetVLAD data for this

task and therefore implies some separability between the open and closed descriptor

comparisons which supervised contrastive learning might be able to leverage for bet-

ter performance.

Figure 5.21 uses t-SNE plots of class features to illustrate the effects of supervised

contrastive learning on the class representations.

Table 5.10: Comparison of different DNN architectures for DCC and the effect of su-
pervised contrastive learning on open set recognition. The mean F1 scores are calcu-
lated across four datasets. Changes in mean F1 scores (∆) are positive and negative.

Descriptor Dataset
Classifier AMOS Hybrid NVLAD P-NVLAD Mean
FC 0.38 0.36 0.54 0.39 0.42
FC + C 0.40 0.38 0.54 0.43 0.44
∆ 0.02 0.02 0.00 0.04 0.02
Conv. 0.40 0.37 0.55 0.40 0.43
Conv. + C 0.43 0.43 0.54 0.44 0.46
∆ 0.03 0.06 -0.01 0.04 0.03
Res. 0.42 0.37 0.54 0.40 0.43
Res. + C 0.45 0.47 0.54 0.47 0.48
∆ 0.03 0.10 0.00 0.07 0.05

5.3 Discussion

This chapter formulates two new problems for visual place recognition, and by exten-

sion image retrieval. Firstly, classification of image retrieval results as being true or

false positives is defined as outcome classification. Secondly, open set recognition is

extended for image retrieval to recognise query images that have no true match in the

reference image database.

Image retrieval is particularly complex because it compares representations of un-

known images with each other, rather than simply classifying images into a pre-defined

set of classes. The main challenge associated with these two problems was therefore

to classify not the images, but the relationship between them.

To address this challenge descriptor comparison classification is proposed. The top

results from the comparisons’ nearest neighbours and their adjacent descriptors are

used to train a deep neural network to classify these comparisons as resulting from

true or false positive results, or from closed or open set query images. Deep neural

networks designed for signal classification are used for this task and supervised con-
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trastive learning is used to separate overlapping descriptor comparisons to improve

classification on both tasks.

The proposed approach was evaluated on four state-the-art descriptors, datasets

and deep neural network architectures. The use of deep neural networks for descrip-

tor comparison classification is shown to be reliable compared to using a threshold on

the descriptor comparison values, which is shown to be unsuccessful for a number of

descriptor and dataset combinations. These experiments also show supervised con-

trastive learning improves results on outcome classification and open set recognition.

5.3.1 Limitations and Future Work

As this final chapter introduces two challenging new problems and a benchmark ap-

proach to address each one there is a large amount of work still to be done.

Real-world applications of deep learning are increasingly being required to pro-

duce an associated confidence with their prediction, for example in [196]. The results

of image retrieval are inherently difficult to interpret so tasks such as outcome clas-

sification are progressively becoming more important. Open set recognition is a key

problem for open world deployment of deep learning classification systems, which

is particularly important for robotic applications. Recognising previously unknown

images for image retrieval also potentially enables more advanced deep learning tech-

niques, such as continual learning.

Combining open set recognition and outcome classification into one network was

attempted and found to be impossible at this stage, but may be possible in the future

as currently they both use very similar data. Furthermore, outcome classification only

attempts to classify descriptor comparisons as binary true or false positive states, but

this could be extended to include more precise recall predictions. Further unsuccessful

experiments confirmed this was also currently impossible.

Overfitting was observed when training the deep neural network classifiers for de-

scriptor comparison classification, which indicates that the training data is too dissim-

ilar to the test data for generalisation. The relative similarity in classification perfor-

mance between different deep learning classifiers suggests that the underlying data is

a more significant factor in deciding performance. Adding noise to the descriptor com-

parisons was experimented with for data augmentation, but did not improve gener-

alisation, which suggests that specific transforms need to be applied for effective aug-
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mentation. The relative similarity of image descriptors within the reference database

significantly affects the descriptor comparisons, sampling the reference database at

various intervals and varying splits of open and closed data would reflect this and

therefore perhaps allow for more effective data augmentation. Alternative approaches

to sampling key information from the descriptor comparisons, which these results

suggest overlapped significantly for both tasks, may also be effective.

One weakness of the approaches proposed here is that the classifiers are descriptor

dependent, more work needs to be done to establish whether a classifier could be

trained that generalised to different descriptors, but this seems unlikely given the wide

range of descriptor characteristics observed ion this chapter. A better approach may

be to use a statistical approach similar to the one used by openmax which would be

descriptor agnostic. Although this approach may be difficult to apply to outcome

classification.

Descriptor comparison classification is shown to work for both open set recogni-

tion and outcome classification, but is dependent on descriptor characteristics that are

hard to quantify. Considering outcome classification and open set recognition when

creating descriptors for end-to-end training may be beneficial for both tasks and also

result in improved visual place recognition. An ensemble approach of descriptors

trained for complimentary tasks may also be effective.

Another limitation of this approach is that it only leverages relationships between

descriptors available at test time. A strength of this is that it requires no other in-

formation, but a weakness is that it fails to consider fixed descriptor characteristics

that could be derived from a calibration procedure. For example, if a distance be-

tween descriptors is particularly high for some descriptor comparisons then they may

be intrinsically unreliable. A combination of calibrated thresholding and descriptor

comparison classification could help to improve this situation.
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Chapter 6

Conclusion

This thesis began by introducing visual place recognition (VPR) as the localisation of

a query place image by comparing it against a reference database of place images. A

number of outstanding problems with state-of-the-art VPR for robotic navigation in

open and uncertain environments were then identified:

• Computational requirements of DNNs used to generate state-of-the-art VPR

descriptors [10, 13] make them impractical for use in robotics [16].

• Integration of deep learnt descriptors into visual SLAM pipelines is difficult [6]

because they were designed for descriptors with different characteristics [4].

• Ambiguous predicted similarities between place images make VPR results dif-

ficult to interpret.

• Non-transferable appearance invariant VPR descriptors cannot be used for ap-

pearance invariance in other navigation tasks such as scene classification [19, 20].

• Open set scenarios, fundamental to robotic navigation in an open world, have

not been considered for visual place recognition.

6.1 Contributions and Limitations

Three novel contributions were presented to address these problems.

6.1.1 Particle Filtering for Robust Real-Time Visual Teach and Repeat

Chapter 3 presents a compact ‘TinyVPR’ deep neural network that can be taught on a

per-route basis to generate appearance invariant descriptors in real-time for a subset of
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visual SLAM called visual teach and repeat. A particle filter is also proposed to com-

bine the TinyVPR descriptors with visual odometry for route repetition that is robust

to variations in speed and large visual changes. This approach was found to signifi-

cantly reduce localisation error when compared against the state-of-the-art [132, 131].

However, the parameters of the probability distributions used in the particle filter are

difficult to estimate precisely as they depend on the performance of the TinyVPR de-

scriptor and visual odometry in an unknown environment. Another weakness of this

approach is that training a network on a per-route basis requires reference examples

of it in multiple appearance variations which may not be available.

6.1.2 OpenSceneVLAD: Appearance Invariant, Open Set Scene Classifica-

tion

Chapter 4 presents a fusion of scene classification [156] and appearance invariant vi-

sual place recognition descriptor [10] deep neural networks called SceneVLAD for

appearance invariant scene classification. This is then extended to OpenSceneVLAD

which uses atypical class examples to retrain the network for an open set visual nav-

igation scenario where scene classes must be classified amongst an open set of pre-

viously undefined classes. These approaches are compared to state-of-the-art scene

classification [156] and open set classification [21] approaches and shown to increase

performance. For evaluation, a new dataset for open set and appearance invariant

scene classification was extracted from new and existing visual localisation datasets.

This approach is principally limited by the small number of scene classes with appear-

ance variations available for evaluation. Additionally, training for OpenSceneVLAD

assumes a suitable range of atypical class examples that can be used as synthetic mem-

bers of an open class which may not always be available.

6.1.3 Descriptor Comparison Classification for Open Set Recognition and

Outcome Classification

Chapter 5 formulates and addresses the problem of open set recognition and outcome

classification for the first time in the context of visual place recognition. Open set

recognition is the problem of predicting whether query images have a true match in

the reference database, or not and is analogous to detecting if a robot is lost. Outcome

classification is the problem of predicting whether the top 10 matches of a query image
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include a true match, or not and is analogous to estimating the reliability of a visual

place recognition result. To address these tasks classification of the actual comparisons

between descriptors is proposed and compared against confidence thresholding the

raw comparisons using state-of-the-art descriptors [14, 10, 13]. A number of deep

neural networks are proposed for classification and supervised contrastive learning

is also used to improve separation between the target classes. Results show that this

is the only approach that reliably solves both problems. The main weakness of this

approach is that it is the first attempt to solve these problems so classification accuracy

can still be significantly improved, particularly by improving generalisation between

training and test data. Another weakness of this approach is that separate networks

are required for each classification task.

6.2 Future Work

Deep learnt image descriptors specialised for visual place recognition are shown to

significantly decrease localisation error when combined with a probabilistic filter for

visual teach and repeat which indicates their potential for improving visual SLAM.

However, they are yet to be commonly implemented in state-of-the-art approaches

despite their increased robustness to appearance variations, which is a major limita-

tion of current approaches. Possible future work could implement specialised visual

place recognition descriptors on embedded robotic hardware in a specially designed

visual SLAM pipeline for improve appearance invariance.

Open set recognition and outcome classification for visual place recognition are in-

troduced in this thesis and represent key problems for robotic navigation, and image

retrieval generally, that justify future work. At the heart of these problems is the need

to estimate the uncertainty for descriptor comparisons. Using Bayesian neural net-

works (introduced in Section 2.8) to explicitly predict descriptor uncertainties, could

allow these problems to be addressed without a secondary classifier. Calibration of the

deep neural network used for descriptor generation could also be a promising future

research direction that is descriptor agnostic.

Throughout this thesis relatively simple, but well-trained deep convolutional neu-

ral networks, such as NetVLAD [10], have been shown to be remarkably versatile for

a variety of visual place recognition scenarios and remain competitive against more
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complex approaches. Recent advances in deep neural networks for image classifica-

tion, such as the introduction of convolutional vision transformers [227], opens up the

possibility of creating improved networks that use a learned attention mechanism for

improved VPR descriptor generation.

This thesis gives an insight into the overlap between image classification and re-

trieval that may have implications for future research into more general areas of deep

learning. For example, image retrieval uses similarity learning to learn a relationship

between data that generalises to comparisons between previously unknown test and

reference data. Using similarity learning to train a network to cluster general image

classes may allow test images from previously undefined classes to be classified by

calculating their similarity to samples of previously undefined image classes and may

therefore have applications for zero shot learning.
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Appendix A

Source Code and Dataset

In this appendix links are provided to the software (which has, or will be released) in

addition to the datasets developed and collected for this thesis.

A.1 Source Code

The open-source Python implementation for SceneVLAD and OpenSceneVLAD, the

method proposed in Chapter 4, can be found here:

https://github.com/WHBSmith

A.1.1 Edinburgh Visual Navigation and Scene Classification Dataset

The Edinburgh dataset used for the evaluation in Chapter 4 is available here:

https://github.com/WHBSmith/Edinburgh_VPR

It consists of three traversals of one 19.5km route around Edinburgh, the Scot-

tish capital city in urban, rural and motorway environments: 20210524 (overcast),

20210526 (evening) and 20210804 (sunny) using a dash-mounted OnePlus 7T record-

ing 4k video at 30fps and a GPS logger app. This dataset is designed for visually

invariant place recognition but has also been hand annotated to identify four classes

within them and all remaining images are labelled as open set images.

A.1.2 Nordland and Oxford Visual Navigation and Scene Classification

Dataset Subset

The subset of the Nordland [133] and Oxford [115] datasets along with the scene labels

used for evaluation in Chapter 4 are available here:
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https://github.com/WHBSmith/Nordland_Oxford_VPR

The first dataset subset is of the Nordland dataset, a 763km train journey through

rural Norway. The traversals used are: spring, winter and summer. The second subset

is of the 9km urban Oxford RobotCar dataset. The three traversals used are: 2015-07-

03-15-23-28 (overcast), 2014-12-16-18-44-24 (night) and 2015-03-24-13-47-33 (sunny).

These dataset subsets were designed for visually invariant place recognition but have

also been hand annotated to identify four classes within them and all remaining im-

ages are labelled as open set images:
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[114] D. Olid, J. M. Fácil, and J. Civera, “Single-view place recognition under seasonal

changes,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[115] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km: The

oxford robotcar dataset,” Intl. J. of Robotics Research, vol. 36, no. 1, pp. 3–15, 2017.

[116] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization and map-

ping in the space of appearance,” Intl. J. of Robotics Research, vol. 27, no. 6, pp.

647–665, 2008.

[117] L. Wu and Y. Wu, “Deep supervised hashing with similar hierarchy for place

recognition,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

IEEE, 2019, pp. 3781–3786.

[118] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” arXiv, 2017.

[119] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the state of

neural network pruning?” Proceedings of machine learning and systems, vol. 2, pp.

129–146, 2020.

[120] S. Hausler, A. Jacobson, and M. Milford, “Filter early, match late: Improving

network-based visual place recognition,” in IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems (IROS). IEEE, 2019, pp. 3268–3275.

[121] Y. Latif, R. Garg, M. Milford, and I. Reid, “Addressing challenging place recogni-

tion tasks using generative adversarial networks,” in IEEE Intl. Conf. on Robotics

and Automation (ICRA). IEEE, 2018, pp. 2349–2355.

[122] N. Merrill and G. Huang, “Lightweight unsupervised deep loop closure,” arXiv,

2018.

174



Visual Place Recognition for Improved Open and Uncertain Navigation 175

[123] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cam-

bridge university press, 2003.

[124] L. Tang, Y. Wang, Q. Luo, X. Ding, and R. Xiong, “Adversarial feature disentan-

glement for place recognition across changing appearance,” in IEEE Intl. Conf.

on Robotics and Automation (ICRA). IEEE, 2020, pp. 1301–1307.

[125] M. Milford and G. Wyeth, “Persistent navigation and mapping using a biologi-

cally inspired slam system,” Intl. J. of Robotics Research, vol. 29, no. 9, pp. 1131–

1153, 2010.

[126] M. Warren, M. Greeff, B. Patel, J. Collier, A. P. Schoellig, and T. D. Barfoot,

“There’s no place like home: Visual teach and repeat for emergency return of

multirotor uavs during gps failure,” IEEE Robotics & Automation Letters, vol. 4,

no. 1, pp. 161–168, 2018.

[127] M. Paton, K. MacTavish, C. J. Ostafew, and T. D. Barfoot, “It’s not easy seeing

green: Lighting-resistant stereo visual teach & repeat using color-constant im-

ages,” in IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE, 2015, pp.

1519–1526.

[128] M. Paton, F. Pomerleau, and T. D. Barfoot, “Eyes in the back of your head: Ro-

bust visual teach & repeat using multiple stereo cameras,” in Conference on Com-

puter and Robot Vision (CRV). IEEE, 2015, pp. 46–53.
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