
Toward Deep Monocular View
Generation and Omnidirectional

Depth Estimation

Helmi Fraser

Submitted for the Degree of Doctor of Philosophy in

Robotics and Autonomous Systems

June 2023

The copyright in this thesis is owned by the author. Any quotation from the thesis or
use of any of the information contained in it must acknowledge this thesis as the source
of the quotation or information.

Abstract

This thesis proposes new strategies for obtaining environmental depth represen-
tations from monocular perspective and omnidirectional vision. This research is
inspired by the necessity for mobile autonomous systems to be able to sense their
surroundings, which is frequently abundant in vital data necessary for planning,
decision-making and action.

The methodologies presented here are primarily data-driven and based on ma-
chine learning, specifically deep learning.

Our first contribution is the generation of top-down, “bird’s eye view” represen-
tations of detected vehicles in a scene. This was achieved using only monocular,
perspective view images. The novelty here was via an adversarial training scheme,
which our experiments showed resulted in more robust models versus a strictly su-
pervised baseline.

Our second contribution is a novel method for adapting view synthesis-based
depth estimation models to omnidirectional imagery. Our proposal comprise three
important facets. Firstly, a "virtual" spherical camera model is integrated into the
training pipeline to facilitate model training. Secondly, we explicitly encode infor-
mation of the spherical nature of the image format by adopting spherical convolu-
tional layers to perform convolution operations, consequently compensating for the
significant distortion. Thirdly, we propose an optical flow-based masking strategy
to reduce the impact of undesired pixels during training, such as those originating
from large, challenging visual areas of the image such as the sky. Our qualitative
and quantitative findings indicate that these additions result in improved depth
estimations versus earlier methods.

Our final contribution, broadly, is a method for incorporating LiDAR informa-
tion into the training pipeline of an omnidirectional depth estimation model. We
introduce a Bayesian optimisation-based extrinsic calibration method to match Li-
DAR returns with equirectangular images. Primarily, we weight the incorporation
of this data via a frequency-based scheme dependent on the number of detected
LiDAR projections. The results from this show that there is a tangible quantitative
benefit in doing the aforementioned.

Acknowledgements

Foremost of my acknowledgments would be my supervisor, Dr Sen Wang, whose
guidance and support over the years has been truly valuable. Without his help, I
wouldn’t be where I am today.

Inclusion of Published Works Form
Please note you are only required to complete this form if your thesis contains published works. If this is the
case, please include this form within your thesis before submission.

Declaration

This thesis contains one or more multi-author published works. I hereby declare that the contributions of each author to
these publications is as follows:

Please included additional citations as required.

Citation details H. Fraser and S. Wang, "DeepBEV: A Conditional Adversarial Network for
Bird's Eye View Generation," 2020 25th International Conference on
Pattern
Recognition (ICPR), 2021, pp. 5581-5586, doi: 10.1109/
ICPR48806.2021.9412516.

Author 1 Main author

Author 2 Review and guidance

Citation details H. Fraser and S. Wang, “Monocular Depth Estimation for Equirectangular
Videos”, 2022 IEEE/RSJ International Conference on Intelligent Robots
and
Systems (IROS 2022), 2022  
10.1109/IROS47612.2022.9982157

Author 1 Main author

Author 2 Review and guidance

Citation details e. g. Author 1 and Author 2, Title of paper, Title of Journal, X, XX-XX (20XX)

Author 1 Contribution….

Author 2 Contribution….

Page of 1 1
RDC Clerk/March 2023

Contents

I Introduction 1

1 Introduction 2

1.1 Motivations . 3

1.1.1 Open Challenges . 5

1.2 Contributions . 5

1.3 Outline . 7

2 Background 8

2.1 Preliminary . 8

2.1.1 Pinhole Camera Geometry . 8

2.1.2 Equirectangular Camera Geometry 13

2.1.3 Camera Calibration . 15

2.2 Neural Networks . 17

2.2.1 Perceptron . 18

2.2.2 Multi-layer Perceptron . 20

2.2.3 Convolutional Neural Networks 22

2.2.4 Common Network Architectures 27

2.2.5 Generative Adversarial Networks 30

2.3 Literature Review . 31

2.3.1 Perception and Vehicle Surround View 31

2.3.2 Monocular Depth Estimation 33

2.3.3 Omnidirectional Depth Estimation 34

i

II Contributions 36

3 Bird’s Eye View Generation 37

3.1 Overview . 37

3.2 Methodology . 39

3.2.1 Model Architecture . 39

3.2.2 Loss Functions . 41

3.2.3 Training Scheme . 42

3.3 Evaluation . 44

3.3.1 Dataset and Experimental Setup 44

3.3.2 Testing and Metrics . 46

3.3.3 Quantitative Results . 47

3.3.4 Qualitative Results . 49

3.4 Discussion . 51

4 Omnidirectional Depth Estimation 53

4.1 Overview . 53

4.2 Methodology . 55

4.2.1 Spherical Convolutions . 55

4.2.2 Optical Flow Masking . 57

4.2.3 Model Architecture . 58

4.2.4 Training and Implementation 59

4.3 Evaluation . 60

4.3.1 Dataset and Pre-Processing 60

4.3.2 Competing Methods and Evaluation 61

4.3.3 Results . 61

4.4 Discussion . 63

5 Omnidirectional Depth Estimation With LIDAR 66

5.1 Overview . 66

5.2 Methodology . 67

ii

5.2.1 Extrinsic Calibration . 67

5.2.2 Model Architecture . 73

5.2.3 Grid Loss . 73

5.2.4 Training and Implementation 75

5.3 Evaluation . 76

5.3.1 Dataset . 76

5.3.2 Quantitative Results . 76

5.3.3 Qualitative Results . 78

5.4 Discussion . 79

III Conclusions 81

6 Conclusions 82

6.1 Conclusions . 82

6.2 Limitations and Future Work . 83

iii

List of Figures

2.1 Equirectangular camera projection model 13

2.2 Effect of change in principal point. 16

2.3 Effect of change in focal length. 17

2.4 Effect of change in skew. 18

2.5 Perceptron model . 19

2.6 Example structure of a multi-layer perceptron. 21

2.7 Example input (left) and example convolution filter (right) 22

2.8 Convolution example: first step . 23

2.9 Convolution example: second step . 23

2.10 Convolution example: final . 24

2.11 Convolution with additional dimensions 24

2.12 Visualisation of multiple feature maps 25

2.13 Visualisation of padding to obtain an equal dimension feature map . . . 26

2.14 Visualisation of maximum pooling . 26

2.15 Visualisation of VGG-16 architecture. Convolution blocks are denoted
by the labels ‘conv1’ to ‘conv5’. Each block contains one or more convo-
lution layers (denoted in yellow). Each of these are followed by a ReLU
activation (denoted in orange). At the end of each block, the outputs are
pooled (denoted by dark orange). Fully connected layers are denoted by
the labels ‘fc6’ to ‘fc8’, in purple. Similarly, each of these are followed
by a ReLU activation (denoted in dark purple). 28

iv

2.16 Residual block representation, sourced from [1] 29

3.1 Outline of the bird’s eye view problem from a single image. 38

3.2 Overall system diagram. Generator and critic networks are shown in
Figures 3.3a and 3.3b respectively. 39

3.3 Generator and critic network system diagrams. 40

3.4 Histogram of DeepBEV errors on nuScenes. 47

3.5 Samples from the evaluation set in daytime, rain and night-time condi-
tions. Blue denotes ground truth pose, magenta denotes model prediction. 49

3.6 Samples from the Virtual KITTI 2 dataset. 50

3.7 Samples from the SVA dataset. 50

4.1 This model results in good quality depth estimation on “in the wild”
omnidirectional images. 54

4.2 A comparison of sampling locations between the spherical convolution
(blue) and a traditional kernel (red) using a 3x3 kernel as an example. . 56

4.3 Our optical flow based binary masking (left) versus automasking (right)
proposed in [2]. 57

4.4 Encoder-decoder network for depth estimation, and a ResNet18 back-
bone model for pose estimation. 58

4.5 Histogram of errors on depth estimation. 63

4.6 Qualitative samples from the validation set for different configurations. . 63

4.7 Qualitative samples from the additional “in the wild” validation set . . . 64

4.8 Qualitative samples from KITTI-360 . 64

5.1 Outdoor LiDAR to camera projection. 71

5.2 Indoor LiDAR to camera projection. 72

v

5.3 Emphasis on results of extrinsic calibration, using the checkerboard
shown in Figure 5.2. Left image shows the uncalibrated projection, while
the right is calibrated based on the calibration method outlined in this
chapter. 72

5.4 Encoder-decoder network for depth estimation, and a ResNet18 back-
bone model for pose estimation. 73

5.5 A simplified illustration of the loss weighting in action. 75

5.6 Histogram of errors on depth estimation. 78

5.7 Qualitative samples from the held out validation set. 78

vi

List of Tables

3.1 Training hyperparameters . 42

3.2 Training dataset overview . 45

3.3 Distance and orientation errors on nuScenes 47

3.4 Per detection inference time in milliseconds, where a detection is a de-
tected object in the image . 48

4.1 Quantitative results on depth estimation metrics on KITTI-360 along
with an ablation study of our model. Note the models are trained on
self-collected dataset, without fine-tuning on KITTI-360. Where: CM
signifies the use of the equirectangular camera model, OM the use of the
optical flow mask in conjunction with established automasking, OL the
use of just our optical flow mask, SC the use of spherical convolutional
layers (where e and p signify their use in just the depth encoder or pose
encoder respectively), CP the use of a rectified crop (cube patch) as
input to the pose network. 62

5.1 Hyperparameters and constraints for Bayesian Optimisation calibration,
where values in [...] are allowable lower/upper bounds and margin is
the allowable perturbation in the refining stage. 71

5.2 Quantitative results on depth estimation metrics on the held out valida-
tion set along with an ablation study of our model. Where: GL signifies
the use of the Grid Loss, CM the use of the equirectangular camera
model, OM the use of the optical flow mask in conjunction with estab-
lished automasking, OL the use of just our optical flow mask, SC the
use of spherical convolutional layers CP the use of a rectified crop (cube
patch) as input to the pose network. 77

vii

Part I

Introduction

1

1 | Introduction

The ability to detect one’s surroundings is an important part of how humans and
animals traverse the physical world. As humans, we have many senses that span
distinct modalities: sight, hearing and touch. Perhaps the most crucial is our sense
of sight, which gives us the ability to traverse both familiar and unfamiliar environ-
ments. Our eyesight also gives us the ability to glean information from such settings,
which may include not just environmental cues but also written words, pictures, and
other forms of visual information.

The information we gather from our surroundings allows us to make judgments
and take action. The same holds true for a wide range of non-biological systems
such as robots. For a large number of robotic systems, having a way of sensing the
environment is a fundamental requirement of safe operation. Mobile robotics and
autonomous vehicles, in particular, simply cannot execute their intended functions
without some sensing capability for mappping or navigation. Even many static
systems, such as factory or assembly line robots often require sensory input in order
to guide end effectors. Beyond this, augmented and virtual reality technology require
sensory input to better place objects and such.

Taking the example of an autonomous vehicle, the detection of objects in 3D is
of paramount importance. As autonomous vehicles need to operate in dynamic and
fast-changing environments, this capability forms the crux of many safety-critical
decision making processes.

Vision-based systems continue to be a popular choice for autonomous vehicle
perception, whether it forms the entirety of the perception stack or plays only a
limited role within it [3]. As the vast majority of current road infrastructure caters
to humans, significant information is conveyed visually. Vision-based systems are
uniquely able to leverage this pre-existing wealth of data and, in addition to this,
can be relatively inexpensive to deploy owing to the ubiquity of cameras.

To date, typical methods of 3D perception for autonomous vehicles consist of
utilising data from LiDAR, RADAR, a suite of cameras or a fusion of these. While
effective, utilising data from these sensors can be costly, both in terms of the financial

2

1.1. MOTIVATIONS

cost associated with the sensor itself as well as the computational overhead required
to process the data into a usable format.

Transforming and projecting 3D information to a top-down representation - a
“bird’s eye view” (BEV) - of semantically significant objects in the scene provides
a number of benefits in this regard. For example, compared to a point cloud or
an image, a BEV representation occupies less memory, as we are only interested
in information at the object level as opposed to low-level information like pixels
or LiDAR returns. In addition, it provides an easy-to-understand, interpretable
representation of the scene at a given moment in time.

Following the theme of “doing more” with less, it is also possible to extract
some estimate of depth directly from imagery. Humans are able to infer depth cues
from our pair of eyes which form stereo vision, with our brains internally resolving
disparity. Machine vision systems are similarly able to perform such feats, with
plenty of examples of commercial stereo vision systems available.

Indeed, depth estimation from imagery has been the subject of a significant
amount of research in the community. One area in particular which has seen a
lot of work is monocular depth estimation, which as the name implies, aims to ex-
tract depth not from stereo pairs but instead from a single image. The benefits
of being able to do this accurately are multiple. For one, a reduction in hardware
requirements may translate to reduced operational costs. Secondly, reliable monoc-
ular depth estimation could act as a redundancy in the event of hardware failures,
particularly in multi-camera or multi-sensor systems. However, it is an ill-posed
problem and faces many challenges compared to typical stereo imagery.

There is however an implicit bias associated with much of the work so far, in
that it typically targets cameras of a certain type: perspective pinhole. This usually
arises from the model used and data employed.

1.1 Motivations

As previously stated, it is typically advantageous to be able to perceive the sur-
roundings in some way in order to facilitate decision making. In many existing
systems, achieving this can be done via leveraging a suite of expensive and phys-
ically cumbersome sensors, such as LiDAR or RADAR. By virtue of being costly,
such sensing suites are a barrier to entry for many applications where either cost or
size is of paramount importance.

If such sensing can be performed by much cheaper sensors through clever use of
software, it could potentially address this issue, democratizing the technology and

3

1.1. MOTIVATIONS

encouraging further innovation.
There are a few current problems regarding environmental sensing for mobile

robotics and autonomous vehicles. One is an issue of representation and the size
associated with it. For example, the data obtained from a LiDAR sensor is often
represented as a 3D point cloud which can quickly possess a large memory footprint,
and is not a feasible option for large-scale environments, especially on resource con-
strained hardware.

Another issue is obtaining accurate depth information for the purposes of colli-
sion avoidance, mapping and so on. Many mobile robot platforms and autonomous
vehicles use LiDAR for this purpose. Some of the advantages such sensors have are
that they typically provide extremely accurate data and with a high (often horizon-
tally omnidirectional) field-of-view (FOV). It is easy to imagine why such traits are
desirable in the case of autonomous vehicles, which often operate in safety critical
and dynamic environments. However, as mentioned they are usually expensive and
physically bulky, and the data returned is sparse.

In recent years, cameras with wide FOV lenses are becoming increasingly com-
mercially available. Often, these cameras have an all encompassing, “omnidirec-
tional” FOV of 180° in the vertical and 360° in the horizontal. These cameras are
often used for recreational purposes by members of the public.

In comparison to LiDAR, omnidirectional cameras give colour and texture in-
formation which LiDAR returns do not. If such cameras can accurately estimate
depth, especially with only one camera, they might provide a low-cost sensing modal-
ity while maintaining rich information. Of course, many of the issues which plague
depth estimation from monocular perspective pinhole cameras also effect omnidirec-
tional cameras. Indeed, often these issues are exacerbated due to the high distortion
and FOV. As the price of omnidirectional imaging technology continues to fall, in
conjunction with the complete view of the scene that is supplied, this kind of im-
agery may hold promise for a wide range of robotics applications if it is utilised to
its full potential.

4

1.2. CONTRIBUTIONS

1.1.1 Open Challenges

There are currently several open challenges when it comes to accurate sensing for
mobile robotics applications, more than what this thesis attempts to address.

Some of these are:

1. Accurate and efficient environmental sensing on constrained hardware.

2. Leveraging the properties of omnidirectional cameras for sensing.

3. Depth estimation using omnidirectional cameras.

4. The comparative lack of high quality, publicly available omnidirectional image
datasets.

For example, computing resources can be costly and power hungry, and many
robotic platforms simply cannot host such resources onboard.

The current crop of omnidirectional cameras are becoming increasingly afford-
able and miniaturised, having generally shifted away from more traditional systems
based on mirrors to multi-sensor, high field-of-view lens systems. While such cam-
eras see a lot of recreational use, they seldom see much application in research and
development. Especially in terms of the quantity of scientific literature regarding
monocular depth estimation. The bulk of research so far on monocular depth esti-
mation has been centered on perspective pinhole cameras, which creates an implicit
bias toward that camera format.

Specifically because omnidirectional images are visually very different from per-
spective images, this implicit bias can cause issues. One issue is technical, as many
depth estimation models were not developed with spherical geometries and severe
distortion in mind. Another is an issue of data. Unfortunately, depth training
datasets with accurate depth labels are uncommon for omnidirectional vision, with
the majority being synthetic [4–6] and/or indoor scenes [7].

1.2 Contributions

Specifically, for Chapter 3, we draw inspiration from work in guided image gen-
eration, synthesis [8] and super-resolution. [9] Instead of solving the problem in
a supervised manner by minimising the difference between the output and ground
truth, we instead formulate the problem within the context of adversarial learning.

The main contribution of which is an adversarial approach to obtaining a BEV
representation of detected vehicles from a monocular image. We seek to leverage the

5

1.2. CONTRIBUTIONS

generative capabilities of a Generative Adversarial Network (GAN) [10], specifically
a Wasserstein GAN (WGAN) [11] with gradient penalty (WGAN-GP) [12]. Our
model is composed of two sub-networks: a generator network and a critic network.
The generator network is tasked with producing BEV representations from an image,
while the critic network is designed to assign a “realness” score to this representation,
distinguishing a generated BEV representation from its ground truth counterpart.
Therefore, the BEV representation produced by the generator network is gradually
trained to be similar to the ground truth. We show that a model trained in this way
generalises better between datasets compared to baseline, strictly supervised models.
In addition, our approach only requires data from a single monocular camera during
inference, and does not require more complex sensors such as LiDAR or radar.

Likewise for Chapter 4, we present a monocular depth estimation technique
that explicitly incorporates equirectangular geometry into a neural network training
process. Firstly, we re-formulating the existing view synthesis based depth esti-
mation models for equirectangular projection, injecting direct knowledge of camera
geometry for accurate, dense depth estimation using omnidirectional vision. This
is accomplished in part by including “spherical” convolutional layers into the depth
estimation model, which takes into account the substantial visual distortion for the
purposes of convolutional operations. Furthermore, we offer an optical flow-based ef-
ficient masking method to significantly reduce the noise added to the loss by “noisy”
pixels produced by the full field of vision. Such as noisy pixels often result from
wide, texture-less areas or moving objects. Compared with existing work in this
area which mostly targets generated indoor scenes, to the best of our knowledge,
this is the first work which demonstrates self-supervised learning-based, monocu-
lar omnidirectional vision for accurate depth estimation in real outdoor scenarios.
This approach does not depend on ground truth depth data for training, which is
rarely available for omnidirectional images. Experiments on two public datasets
show state-of-the-art monocular depth estimation accuracy using omnidirectional
videos.

Lastly, for Chapter 5, we propose an extrinsic calibration method for aligning
a LiDAR sensor with an omnidirectional camera based on Bayesian optimisation.
Additionally, we introduce a weighted loss function aimed at incorporating LiDAR
returns as ground truth depth for omnidirectional depth training, which we call the
Grid Loss. These contributions are used to extend the work shown in Chapter 4.

This thesis makes the following published contributions:

• The work undertaken in Chapter 3 in generating a BEV representation from a
single image has been peer reviewed and accepted for publication at the 25th

6

1.3. OUTLINE

International Conference on Pattern Recognition (ICPR 2020).

• The work undertaken in Chapter 4 for a method of estimating depth from
single omnidirectional image has been peer reviewed and accepted for publi-
cation at the 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2022).

1.3 Outline

This thesis is structured as follows:

• Chapter 1: this chapter serves as an introduction and contextualises the work
to follow, including an outline of motivations, open challenges and contribu-
tions.

• Chapter 2: this chapter details the necessary preliminary information which
the thesis is built on as well as a review on relevant literature.

• Chapter 3: this chapter describes the work undertaken on generating a bird’s
eye view representation from a single image, including the methodology em-
ployed and experiments performed.

• Chapter 4: this chapter describes the work undertaken on omnidirectional
monocular depth estimation, including details on methodology, data collection
and experiments.

• Chapter 5: this chapter describes an extension to the methodology outlined
in the previous chapter, incroporating LiDAR data to the training pipeline.

• Chapter 6: this chapter concludes the thesis, briefly summarising the impor-
tant points made and results obtained.

7

2 | Background

2.1 Preliminary

This chapter will serve as a primer on the necessary background information and
methods for the work contained within this thesis, as well as a review of the related
state of the art literature.

2.1.1 Pinhole Camera Geometry

It is first important to discuss the fundamentals of camera geometry and image
formation as a prerequisite to the work discussed in this thesis.

We assume that there is a coordinate system in the "world frame" in order to
depict the environment surrounding the camera. We can express every single point
as a three-dimensional point using this world frame coordinate (x, y, z).

Because an image is two-dimensional, it may be created by expressing the three-
dimensional coordinates in the world frame in a coordinate frame centred on the
picture – an image frame.

Image formation is based on capturing light rays that are reflected from an object
in the world frame onto a medium in this image frame. One could simply place the
medium in front of the object to “capture” it, but there would only be grey on the
medium. This is due to the light rays from various points on the object overlapping
on the medium, becoming incoherent.

To prevent this incoherence and achieve a one-to-one correspondence between the
world points and the medium, a barrier with a small hole (a pinhole, or aperture)
might be positioned between the object and the medium. This allows light rays to
pass through the surface at one point. Due to the fact that objects in a scene reflect
light rays in all directions, only one of these rays can travel through the aperture.
In actuality, this is not the case and is more like a narrow beam of light is often
formed by a collection of rays. Regardless, by doing this, it ensures that there is
little overlap, though the image formed on the medium would be inverted. At a very

8

2.1. PRELIMINARY

basic level, this is also how the human eye functions.
This type of projection involves converting three-dimensional points to two-

dimensional points. In this scenario, we refer to it as forward projection.
Typically, this is accomplished through the use of a camera model. Described

previously is the pinhole camera model at a basic level.
In order to mathematically model this, we must define a coordinate system.

Allow the centre of projection, O, to be the origin of this coordinate system and is
precisely at the centre of the pinhole. The Z axis is positive toward the perpendicular
of the pinhole, “away” from the camera. The X and Y axes are along the plane of
the pinhole surface.

We can then define an image plane (or projection plane), I, in this system as
Z = −f , where f is the focal length and is the distance between the plane of the
pinhole and the image plane.

Given some point P = (X, Y, Z) in the world, we can derive the projected point,
P ′ = (x, y), on the image plane I as:

x = −f
X

Z
, y = −f

Y

Z
, (2.1)

Here, we’ve defined the image plane to be behind the aperture, and thus form an
inverted image. We can remove this inversion by using a “virtual” pinhole camera
where the image plane is in front of the aperture, defined by Z = f . Now, the
projection is defined as:

x = f
X

Z
, y = f

Y

Z
, (2.2)

We can go a step further and use homogeneous coordinates to model an ideal
pinhole camera by:

xy
1

 =

f 0 0 0

0 f 0 0

0 0 1 0

X

Y

Z

1

 (2.3)

Where coordinates X, Y, Z, x, y and the focal length, f , are defined in meters.
The fourth column of the camera projection matrix represents the perspective divi-
sion, which transforms a 3D point in the world coordinate system to a 2D point in
the image coordinate system. This column is used to perform a division step that
accounts for the fact that objects that are farther away from the camera appear
smaller in the image. The division step scales the x and y coordinates proportion-

9

2.1. PRELIMINARY

ally to the Z component, so that the resulting 2D coordinates accurately reflect
the relative distances of the objects in the image. However, it is significantly more
practical if coordinates are measured in pixels and pixel distances. To convert to
pixel distances, we can introduce scale factors sx and sy:

xy
1

 =

sxf 0 0 0

0 syf 0 0

0 0 1 0

X

Y

Z

1

 (2.4)

Since x and y are now expressed in pixel coordinates, the focal lengths are often
denoted as fx and fy respectively:

xy
1

 =

fx 0 0 0

0 fy 0 0

0 0 1 0

X

Y

Z

1

 (2.5)

Additionally, while in theory the origin of the coordinates are centered precisely
at the aperture centre, in practice this is not often the case. Hence we can add
translation component to the matrix, like so:

xy
1

 =

fx 0 u0 0

0 fy v0 0

0 0 1 0

X

Y

Z

1

 (2.6)

To increase generalizability, we can apply a skew factor, s, which compensates
for any shear that may result from the optical axis not being precisely perpendicular
to the aperture:

xy
1

 =

fx s u0 0

0 fy v0 0

0 0 1 0

X

Y

Z

1

 (2.7)

Thus, a pinhole camera can be geometrically modelled, where K is the intrinsic
matrix:

10

2.1. PRELIMINARY

K =

fx s u0 0

0 fy v0 0

0 0 1 0

 (2.8)

However, the issue with this matrix is that it implies we can represent locations
in three-dimensional space, in coordinates relative to the camera frame in which the
Z axis is the optical axis. Unfortunately, it is difficult, if not impossible, to identify
the camera’s geometry in practice. Thus, we cannot determine what the coordinate
axes are, short of opening up a camera to find out.

Let us assume we know the three-dimensional coordinates of a point – P =

(X, Y, Z, 1)T – relative to an arbitrary frame, which we will refer to here as the
world frame. The camera frame is simply a transformed version of this world frame,
and a point in the world frame can be transformed into the camera frame by an
extrinsic matrix:

Pcam =
[
R t

]
P (2.9)

Where R is a 3x3 rotation matrix, and t is a 3x1 translation matrix. Hence the
general mapping of a pinhole camera in the world frame is defined by:

xy
1

 = K
[
R t

]

X

Y

Z

1

 (2.10)

The intrinsic matrix, K, defines the internal parameters of the camera and is
fixed. The extrinsic matrix, [R t], defines the external camera orientation and trans-
lation with respected to a world frame. Hence, a full geometrical model is obtained
and a relationship between three-dimensional points in the world and an imaging
medium can be described.

Fisheye calibration

It is also important to discuss fisheye calibration. Omnidirectional cameras are often
composed of multiple sensors with their own lenses, in effect becoming a miniature
multicamera system. These sensors are often coupled with wide-angle (or fisheye)
lenses and the resulting images are stitched together.

Just as regular, perspective cameras can diverge from the ideal pinhole model,
so too can cameras using fisheye lenses. In much the same way, these require undis-

11

2.1. PRELIMINARY

tortion.
A point to note is that there is no single fisheye projection, but several. These

are (confusingly) refered to as fisheye by various lens manufacturers.
The ideal fisheye projection is the equidistant projection. In this model, there is

a direct relationship between the distance of pixels in an image and the light’s angle
of incidence:

R = fθ (2.11)

Where R is the radial distance of pixel from the principal point, f is the focal
length and θ is the angle of incidence.

There are variious methods of incorporating distortion into the model above.
A popular method is that incorporated by the OpenCV library, where θ in the
projection equation is replaced by:

θd = θ + k1θ
3 + k2θ

5 + k3θ
7 + k4θ

9 (2.12)

Where kn denotes the radial distortion.

12

2.1. PRELIMINARY

2.1.2 Equirectangular Camera Geometry

Figure 2.1: Equirectangular camera projection model

The equirectangular image format is one of several omnidirectional image for-
mats and is quite popular, seeing usage within computer graphics and panoramic
photgraphy. As such, many omnidirectional camera hardware produces images in
such a format, so it is critical to understand and model.

This image format encapsulates a complete field-of-view, offering horizontal and
vertical perspectives of 360° and 180°, respectively. Despite usually being captured
through multiple sensors, the comprehensive scene coverage allows us to perceive it
as if it were derived from a solitary “virtual” spherical sensor.

We can divide the process into two main steps: forward projection and backpro-
jection

In our model, we propose that backprojection serves to transpose points from
the sphere’s surface to world coordinates, with forward projection being the inverse
process.

Starting with the forward projection, we begin by drawing a ray from the world
point to the center of the virtual spherical sensor

Thus, the projection of world to pixel coordinates, that is, forward projection,
can be modeled as the intersection of a ray with the sphere’s surface.

By introducing a unit sphere, the intersection point can be succinctly described
via the ray’s latitude (angle relative to the zenith/polar axis) and longitude (angle
of rotation around the zenith). This model is illustrated in Figure 2.1, where a
pixel, denoted by P , can be characterized in latitude-longitude coordinates and
corresponded to a distinct point on a unit sphere.

Next, we find the intersection of this ray with the surface of our unit sphere.
Given the pixel dimensions of the equirectangular image, we can establish a

13

2.1. PRELIMINARY

relationship between pixel coordinates and latitude-longitude coordinates. Once
the latitude and longitude for each ray are known, we can identify the respective
pixel location on the image. Specifically, a transformation from a Cartesian world
point to a spherical latitude-longitude coordinate (considering a unit sphere) can be
represented as follows: [

θ

ϕ

]
=

[
arctan

√
x2+y2

z

arctan y
x

]
(2.13)

The above equation represents the transformation from Cartesian to spherical
coordinates.

Here, θ symbolizes latitude, ϕ represents longitude, and x, y, z are the world
points.

Once we have established a relationship between pixel coordinates and latitude-
longitude coordinates, we can progress to the second step: backprojection.

For the inverse process, we handle each point, designated as P = (x, y, z), for
backprojection as if it resides on the surface of a sphere with radius r, at latitude
θ and longitude ϕ. To streamline calculations, we adjust the central meridian and
parallel by π and π

2
respectively, thus setting θ ∈ [0, π] and ϕ ∈ [0, 2π].

Here, we reverse our process by moving from spherical coordinates back to Carte-
sian. We calculate the position of a point on the sphere’s surface, given its latitude
and longitude.

For a pixel p = (u, v) within an image of dimensions w, h, where u ∈ [0, w],
v ∈ [0, h], P can be calculated as per the set of Equations 2.14, where r is the depth
at p. xy

z

 =

r cos(2πu
w
) sin(πv

h
)

r sin(2πu
w
) sin(πv

h
)

r sin(πv
h
)

 (2.14)

Thus, we have achieved a transformation from pixel to world coordinates.
Consequently, employing Equations (2.13) and (2.14), we can construct a com-

prehensive model of a “virtual” equirectangular camera. This model serves as a ro-
bust framework, bridging the gap between world coordinates and pixel coordinates,
hence facilitating an understanding of the image formation process in its entirety.

14

2.1. PRELIMINARY

2.1.3 Camera Calibration

The science of camera calibration has been extensively studied [13] [14], with popular
software packages available for use [15] [16].

In order to use the model described previously, it is essential that the parameters
be determined. This can be done via calibration. In the context of imaging, calibra-
tion can mean different things: colour calibration, or geometric calibration. Since
colour calibration is outside the scope of this thesis, we will focus only on geometric
calibration.

Primarily, camera calibration involves identifying the internal camera parameters
which influence the imaging process. There are several factors which will be taken
into account and estimated: the principal point, the focal length, the scaling factors
and the skew factor.

The principal point is the position of the centre of the image. Ideally, this will
be directly in the centre of the frame. In practice, due to inevitable manufacturing
inaccuracies, this is usually not the case. Figure 2.2 shows the effect of changing this
value. Varying the principal point effects the intersection of the center line (green)
with the focal plane (shown in yellow), where the top row shows a changing value
in the x-axis and the bottom row shows a changing value in the y-axis.

The focal length is the distance between the optical centre of the aperture and
the sensor, Figure 2.3 shows the effect of changing this value, where Changing the
focal length changes the focal plane (shown in yellow) and effects the field-of-view
of the camera. The top row depicts a low focal length value, while the bottom row
shows a high focal length value.

The scaling factors are coefficients needed to convert from metric distances to
pixel distances. Typically, this is bundled with the focal length, so that the focal
length is expressed in pixel units.

The skew factor is the parameter which handles the amount of shear present.
Figure 2.4 visualizes possible skew, which causes the focal plane (shown in yellow)
to be non-rectangular.

The camera matrix described previously is only valid for an ideal pinhole camera.
An ideal pinhole camera does not have a lens, and in practice the vast majority of
cameras have one. Lenses inherently have distortion, and to accurately represent a
real camera, the model must account for radial and tangential lens distortion.

Radial distortion results from light rays bending more towards a lens’s borders
than they do at its optical centre, with smaller lenses producing larger distortion.
This is modelled by radial distortion coefficients. The distorted points are computed

15

2.1. PRELIMINARY

Figure 2.2: Effect of change in principal point.

as such:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (2.15)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (2.16)

Where:

• x and y are the undistorted pixel locations in normalized coordinates. These
coordinates are determined from pixel coordinates by translating to the optical
center and dividing by the focal length in pixels.

• k1, k2, k3 are the radial distortion coefficients of the lens.

• r2 = x2 + y2

In most circumstances, two distortion coefficients are adequate, but in cases of
extreme distortion, three may be necessary (such as in wide-angle lenses).

Tangential distortion results from the lens and image plane not being parallel.
Similarly, these are modelled by coefficients which describe the degree of distortion.

16

2.2. NEURAL NETWORKS

Figure 2.3: Effect of change in focal length.

The distorted points are computed as such:

xdistorted = x+ (2 ∗ p1 ∗ x ∗ y + p2 ∗ (r2 + 2 ∗ x2)) (2.17)

ydistorted = y + (2 ∗ p2 ∗ x ∗ y ∗ p1 ∗ (r2 + 2 ∗ y2)) (2.18)

Where:

• x and y are the undistorted pixel locations in normalized coordinates.

• p1, p2 are the tangential distortion coefficients of the lens.

• r2 = x2 + y2

2.2 Neural Networks

As artificial neural networks (ANN) are one of the fundamental methods used in
this thesis, it is necessary to understand how they operate.

These machine learning algorithms are loosely based on the behaviour of bio-
logical neural networks observed in humans and animals. In general, they try to

17

2.2. NEURAL NETWORKS

Figure 2.4: Effect of change in skew.

identify underlying correlations in a dataset by imitating how these biological net-
works function. Typically, such systems learn to execute tasks by analysing samples,
without being explicitly designed with specific rules. For the remainder of this thesis,
artificial neural networks will simply be referred to as neural networks.

Neural networks are comprised of many basic building blocks called neurons.
Such neurons are simple but together are able to perform more complex operations.

2.2.1 Perceptron

Before diving deeper into more complex structures, let us look at a simple neural
network model: perceptron.

The first and simplest neural network model, the perceptron, was devised as a
mechanism for supervised learning. This network is considered elementary since it
has just two layers: an input layer and an output layer. This structure has a single
weight matrix, and all input layer units are connected to output layer units. The
perceptron is a linear classifier for binary predictions, therefore it can classify or
divide data into two categories.

The basic perceptron initially receives n input values (x1, x2, ..., xn) and is defined
by n+ 1 constants:

• n synaptic coefficients (weights: w1, w2, ..., wn)

• Bias: a neuron with an activation function equal to one. As with other neurons,
a bias interacts with the neurons of the layer before it via a weight.

Fundamentally, it operates on three basic steps, and an outline is shown in Figure
2.5. First, every input value is multiplied by their connection weight. Secondly, the
result of all of these operations are summed to produce a weighted sum. Finally, this

18

2.2. NEURAL NETWORKS

Figure 2.5: Perceptron model

sum is passed as input to an activation function, which tells us whether the neuron
has “fired” or not. The bias term lets us alter the behaviour of this activation
function, moving it up or down and acting as a threshold of sorts.

19

2.2. NEURAL NETWORKS

2.2.2 Multi-layer Perceptron

Consider, for a moment, a factory production line. On this production line, the first
worker receives an item, modifies it, and then forwards it on to the next. Similarly,
this next worker performs some action or modification, to then forward it on to the
subsequent worker in the line. This procedure is continued until the final worker
on the line completes the product, which is then exported out of the factory. In
this model, the production line is composed of a sequence of steps, and items move
between these steps as they are passed from worker to worker.

Following this analogy, a multi-layer perceptron is comparable to an assembly
line with three steps: an input step, an intermediate (or hidden) step, and an output
step. In the terminology, these steps are called ‘layers’. Each layer has a predefined
number of workers, or neurons.

Any input data is delivered to the MLP via the input layer, and a number of
neurons handle the data in the hidden layer before transferring it to the output
layer, which passes the final value(s) as output. These neurons modify input data
via mathematical functions. Figure 2.6 depicts a simple MLP showing three inputs,
a five node hidden layer and a single output.

There are weighted connections between network neurons (or nodes). These
weights regulate the transmission of information from neuron to neuron. In other
words, weights characterise the level of effect one neuron has on another.

When data leaves a node, it is conditioned by the connection weight and then
modified by a "activation function", a mathematical function. Activation functions
modify the input in a non-linear manner, enabling the network to learn complex data
representations. The input values are multiplied by the weight values, followed by
the addition of a bias term.

Multilayer perceptrons are commonly employed in supervised learning problems:
they are trained on a set of input-output pairs and learn to reflect the correlations
(or dependencies) between those inputs and outputs. Training involves adjusting the
model’s parameters, such as weights and biases, to reduce error. Backpropagation is
used to adjust the weights and biases relative to the error, which may be evaluated
using a number of techniques, including root-mean-squared error (RMSE).

MLPs, which are feedforward networks, are comparable to a game of tennis or
ping pong. They operate largely in two phases, a continuous back and forth. This
back-and-forth of guesses and replies may be viewed as a type of accelerated research,
since each guess is a test of what we assume we know, and each response is feedback
indicating how wrong we are.

20

2.2. NEURAL NETWORKS

In the forward pass, the signal flows from the input layer to the hidden layers to
the output layer, and the judgement of the output layer is compared to the ground
truth labels.

Backpropagation and the chain rule of calculus are employed in the backward
pass to back-propagate partial derivatives of the error function with respect to the
various weights and biases via the MLP. This procedure of differentiation provides
a gradient, or error landscape, along which the parameters may be adjusted to get
the MLP closer to the minimum error. This may be achieved via any gradient-based
optimization approach, such as stochastic gradient descent. The network continues
to engage in this tennis match until the error can no longer be decreased. This is
called convergence.

x1

x2

x3

o1

Figure 2.6: Example structure of a multi-layer perceptron.

Deep neural networks extend upon the MLP model by adding additional hidden
layers to its core. Instead of an input layer, a hidden layer, and an output layer,
there are several hidden layers in the middle, and the outputs of one hidden layer
become the inputs for the next hidden layer until the data has been returned from
the network’s final output layer.

Several hidden layers of a deep neural network may grasp more complex patterns
than a normal multilayer perceptron. Multiple layers of the deep neural network
learn the patterns of diverse input segments. For instance, if the input data consists
of images, the initial layer of the network may interpret the brightness or darkness
of pixels, while successive layers may recognise shapes and edges that may be used
to differentiate objects in the image.

However, MLPs do not scale well to larger images, requiring an exponentially
larger number of connections as the image dimensions increase.

A much more fitting class of neural networks are convolutional neural networks.

21

2.2. NEURAL NETWORKS

2.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of neural network design most
frequently utilised in the development of learning-based computer vision systems.
A CNN’s structure allows them to process image information, transforming it into
numbers which can be better processed by neural networks.

CNNs are built upon the convolutional layer. A convolution is a mathematical
operation which merges sets of data. In this case, input data is convolved using a
convolution filter to build a feature map.

Figure 2.7: Example input (left) and example convolution filter (right)

Figure 2.7 depicts an example input and an example convolution filter. The input
to the convolution layer, which could be input image for example, is located on the
left. On the right is the convolution filter, which we shall refer to interchangeably
as the kernel. Due to the filter’s structure, this is known as a 3x3 convolution.

Convolution is achieved by applying this filter to the input. We multiply matrices
element by element and total the results at each point. The receptive field of a neuron
in a CNN is the region in the input feature map that has a direct influence on the
output of that neuron. It is defined as the set of input pixels that contribute to the
activation of that neuron. Given the size of the filter, the receptive field is also 3x3.

Shown in Figure 2.8 is the filter positioned in the top left corner of the input,
and the result of the convolution operation (4) is displayed in the resultant feature
map.

Then, we shift the filter to the right and repeat the operation, appending the
result to the feature map, as shown in Figure 2.9.

This continues until all elements of the input have been covered and the feature
map is complete, as shown in Figure 2.10. A 2D illustration of a convolution process

22

2.2. NEURAL NETWORKS

Figure 2.8: Convolution example: first step

Figure 2.9: Convolution example: second step

with a 3x3 filter was shown. Yet, these convolutions are often implemented in 3D.
An image is really represented as a three-dimensional matrix with height, width, and
depth dimensions, where depth corresponds to colour channels (RGB). A convolution
filter has a fixed height and width, such as 3x3 or 5x5, and must also be 3D because
it encompasses the whole depth of its input.

Typically, many convolutions are executed on an input, with each convolution
employing a separate filter and yielding a unique feature map. The result of stacking
all of these feature maps is the final output of the convolution layer. First, let’s depict
a single-filter convolution.

Consider an input of 32x32x3 with a 5x5x3 filter, as shown in Figure 2.11. As
can be seen, the depth of the image and convolution kernel are both 3. When the
filter is in a specific position, it covers a restricted volume of the input, and the

23

2.2. NEURAL NETWORKS

Figure 2.10: Convolution example: final

Figure 2.11: Convolution with additional dimensions

convolution procedure outlined previously is carried out. The only difference is that
the summation of matrix multiplication is performed in 3D rather than 2D, but the
output is still scalar. As explained previously, we slide the filter across the input
and execute convolution at each location, accumulating the results in a feature map.
As indicated by the red slice on the right, the dimensions of this feature map are
32×32x1.

Suppose ten distinct filters were utilised, resulting in ten 32x32x1 feature maps.
By stacking them along the depth dimension, we would obtain the final result of
the convolution layer: a 32x32x10 volume, as seen on the right. Due to padding,
however, the height and width of the feature map remain identical at 32 pixels.

24

2.2. NEURAL NETWORKS

Padding will be explained at a later stage.
Similar to the 2D case, the kernel is shifted along the input and a scalar is

acquired at each place; this scalar is then aggregated in the feature map.

Figure 2.12: Visualisation of multiple feature maps

As illustrated in Figure 2.12, two feature maps are layered along the depth
axis. Each kernel’s convolution process is executed individually, resulting in separate
feature maps.

For any neural network to be effective, it must incorporate nonlinearity. Similarly
to an MLP, this is accomplished by applying an activation function to the weighted
sum of its inputs. Therefore, the values in the final feature maps are not a true sum
of the input data, but rather of the activation function that was applied to them.
This was excluded from the preceding figures for simplicity.

There are some parameters which broadly control how convolution kernels be-
have. One such parameter is stride. Stride determines the amount by which the
kernel is moved with each step. In the previous examples, a stride of one was used.
In other words, the kernel moves one element at a time. If less overlap is sought
between the receptive fields, it is possible to specify larger strides. This also reduces
the size of the resultant feature map, since some locations are omitted.

If we wish to avoid a drop in the size of the feature map, we might surround the
input with extra cells. This is known as padding.

Shown in Figure 2.13 is an example of how padding functions. The grey area
surrounding the input represents the padding. Typically, padded values are either
zero or the value of the adjacent cell. In this instance, the dimension of the feature
map corresponds to the input. CNNs frequently utilise padding to maintain the

25

2.2. NEURAL NETWORKS

Figure 2.13: Visualisation of padding to obtain an equal dimension feature map

size of their feature maps. Otherwise, they would contract with each layer, which
might be detrimental in some circumstances. The previously displayed convolution
example figures utilised padding, resulting in the feature map having the same size
as the input, with only the depth changing.

Another often employed operator is pooling. Typically, pooling layers are used
following convolution to reduce dimensionality. This decreases the number of pa-
rameters, lowering training time and mitigating overfitting as a result. Each feature
map is separately downsampled, resulting in height and breadth reductions while
keeping depth.

A common technique of pooling is max pooling, which takes the maximum value
in the pooling area. In contrast to convolution, pooling has no parameters. It just
moves a window over its input and reads in the maximum value.

Figure 2.14: Visualisation of maximum pooling

Shown in Figure 2.14 is the result of max pooling using a 2x2 window with a
stride of 2. Each colour represents a different window. Since the window dimensions

26

2.2. NEURAL NETWORKS

and stride are equal, the windows do not overlap.
This setup of window size and stride effectively halves the size of the feature

map. The primary application of this operator is to downsample a feature map
while retaining meaningful data. By cutting the height and width in half, we see a
reduction in the number of weights to a quarter of the original input. Given that
CNN systems typically include millions of weights, this reduction is considerable.

2.2.4 Common Network Architectures

Now that the basic “building blocks” have been described, our attention can now
turn to describing some commonly used architectures.

Although the challenge of classifying objects is not new, researchers continue to
work on it. LeNet-5 [17], proposed by LeCun et al. in 1998, was one of the first
deep neural networks to address the optical character recognition problem. One of
the primary reasons for this model’s appeal was its design, which is clear and easily
understandable.

AlexNet [18] was proposed to the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [19] by Krizhevsky et al. in 2012. AlexNet has a total of eight layers,
including five convolution layers and three fully-connected layers. In contrast with
LeNet, AlexNet employs extra kernels in each convolutional layer. The kernel sizes
used by AlexNet were 11x11, 5x5, and 3x3. The network contains approximately
62 million parameters and was trained in parallel on the ImageNet dataset using
two GPUs. That year, AlexNet won the ILSVRC competition with top-1 and top-5
accuracies of 57% and 80.3% respectively.

After AlexNet, VGG-16 [20] won the ImageNet (ILSVRC-2014) classification
competition. There are several differences between AlexNet and VGG-16.

VGG-16 contains additional convolution layers, which showed a growing trend
in which researchers were increasingly concentrating on increasing network depth.
Additionally, only 3x3 kernels were used and as a consequence these smaller kernels
are able to extract finer details from input data.

The architecture of the network consists of five blocks in total, and is shown in
Figure 2.15. Each of the first two blocks of the network consists of two convolution
layers and one max pooling layer. Each of the remaining three blocks consists of
three convolution layers and one max pooling layer. Following block number 5, three
fully connected layers are added to the network: the first two layers comprised of
4096 neurons, while the third layer comprised of 1000 neurons, conforming with the
ImageNet class distribution. In addition, about 100 million of the network’s 138

27

2.2. NEURAL NETWORKS

6464 22
4

224

conv1

128 128 11
2

conv2

256 256 256 56

conv3

512 512 512 28

conv4

512 512 512 14

conv5

1 40
96

fc6

1 40
96

fc7

1

fc8+softmax

K

Figure 2.15: Visualisation of VGG-16 architecture. Convolution blocks are denoted
by the labels ‘conv1’ to ‘conv5’. Each block contains one or more convolution layers
(denoted in yellow). Each of these are followed by a ReLU activation (denoted in
orange). At the end of each block, the outputs are pooled (denoted by dark orange).
Fully connected layers are denoted by the labels ‘fc6’ to ‘fc8’, in purple. Similarly,
each of these are followed by a ReLU activation (denoted in dark purple).

million parameters are located in the first two fully-connected layers of VGG-16.
The top-one and top-five accuracy of VGG-16 was 71.3% and 90.1%, respectively.

What these works highlight was a trend to make network architectures deeper
in terms of layers in the pursuit of better performance. The reasoning was that
deeper networks may capture more complex features, enhancing the robustness and
effectiveness of models. Hence, explaining the breakthrough levels of accuracy seen
in such competitions.

Researchers observed, however, that merely adding more layers did not work
beyond a certain point. While training deeper networks, the issue of accuracy decline
was observed. In other words, the addition of more network layers either saturated
the network or drastically dropped the accuracy score. The accuracy loss was due to
the vanishing gradient effect, which can only be observed in networks with greater
depth.

The cause of this effect is that when additional layers with particular activation
functions are added to neural networks, the gradients of the loss function approach
zero, which increases training difficulty. For instance, the sigmoid function com-
presses an input into a range of 0 to 1. The effect of this is that a significant change
in the input to the sigmoid function will result in a relatively minor change in the
output. Consequently, the derivative trends towards increasingly smaller values.

Using activation functions in neural networks with only a few layers is typically

28

2.2. NEURAL NETWORKS

not a major concern. However, as the architecture becomes deeper, incorporating
more layers, the gradient can become smaller and more difficult to manage.

While smaller networks with only a few layers and these activation functions
may not exhibit significant problems, deeper networks are more likely to suffer from
the vanishing gradient issue. This can make training the network more challenging
and can lead to suboptimal solutions.

A method called backpropagation is utilised to compute neural network gradi-
ents. This method calculates the network’s derivatives by traversing each layer in
reverse order and using the chain rule.

In theory, this works fine. The problem arises when multiple small derivatives
are multiplied together, which causes the gradient to exponentially decrease. This
means the weights of the initial layers will not be efficiently updated with each
training pass and leads to training difficulty and inaccuracies.

Figure 2.16: Residual block representation, sourced from [1]

Residual Networks, commonly known as ResNets, are a type of deep neural
network architecture that were introduced in 2015 by He et al [1]. The key innovation
of ResNets lies in their use of residual blocks, which allow for better flow of gradients
during the training process. This helps to mitigate the vanishing gradient problem.

A residual block consists of several layers of neurons, with a “skip connection”
added between the input and output. The skip connection is a direct pathway that
allows the gradients to bypass the intermediate layers and flow directly from the
input to the output. This helps to ensure that the gradients are not diminished

29

2.2. NEURAL NETWORKS

as they flow through the network, which can happen in traditional deep neural
networks.

The output of a residual block is the sum of the input and the output of the layers.
This is because the skip connection is added to the output of the layers, rather than
being passed through an activation function. This allows the derivatives to remain
unchanged, resulting in a net increase in gradient for the block.

The residual blocks are designed to learn the identity function, which helps to
ensure that the later layers in the network perform at least as well as the earlier
layers. This helps to prevent the network from getting stuck in suboptimal solutions
during the training process.

These innovations make ResNets a popular choice for training deep neural net-
works for a variety of tasks, including image classification, object detection, and
natural language processing.

2.2.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs), first introduced by Goodfellow et al. in
2014 [10], are a class of deep neural networks that are used to estimate generative
models. They operate based on a minimax game between two players: the generator
(G(z)) and the discriminator (D(x)), both of which are typically neural networks.

The generator takes as input a vector of random values, z, and converts it into a
data format, such as an image. The discriminator, on the other hand, accepts data
as input, either real (x) or generated (G(z)), and outputs the probability, P (x), of it
being authentic. In the context of image generation, the goal of the generator is to
produce an image that is indistinguishable from those in the ground truth training
set, while the discriminator’s task is to judge whether an image is real or generated.

However, standard GANs have a number of issues, such as difficulty in conver-
gence, mode collapse, or the discriminator loss quickly converging to zero. The
Wasserstein GAN (WGAN) was introduced as a solution to the difficulties faced by
regular GANs, such as difficulty in convergence, mode collapse, or the discriminator
loss quickly converging to zero. The WGAN uses an approximation of the Wasser-
stein distance as a loss function, which is more likely to provide useful gradients for
generator updates compared to the original loss function used in GANs.

In a WGAN, the discriminator is referred to as a “critic”, as its role is to evaluate
the quality of the generator output, rather than simply providing a binary classi-
fication of real or fake. The critic is trained to estimate the Wasserstein distance
between the real and generated distributions, which measures the amount of "mass"

30

2.3. LITERATURE REVIEW

that needs to be moved to transform one distribution into the other. The generator
is trained to generate samples that minimize the Wasserstein distance, effectively
making the generated samples more similar to the real data distribution.

An important advancement in the training of GANs was introduced by Gulrajani
et al. in 2017 [12]. This method, called the Wasserstein GAN with Gradient Penalty
(WGAN-GP), addresses a key limitation of regular GANs by providing a more stable
and meaningful loss function. In particular, the WGAN-GP penalizes the norm
of critic gradients with respect to the training samples, as opposed to the weight
clipping approach used in regular WGANs.

The WGAN-GP improves the training process in several ways. First, it helps to
stabilize the training process and prevent mode collapse, which is a common problem
in GANs where the generator produces limited varieties of samples. Second, it
promotes a more meaningful and stable optimization process for both the generator
and the discriminator, resulting in better performance in generating high-quality
samples. Finally, the gradient penalty further improves the stability of the training
process by constraining the critic’s gradients, which helps to prevent the generator
from producing poor quality samples.

The WGAN-GP has been demonstrated to produce better results compared to
regular GANs in various tasks, including image generation, text generation, and
others. For example, it has been shown to produce more realistic and diverse images
in tasks such as face generation, object generation, and style transfer. Moreover, it
has been used successfully in text generation tasks such as dialogue generation and
machine translation.

The WGAN-GP is a popular and effective approach for training generative mod-
els, thanks to its stable and meaningful loss function and improved training process.
By penalizing the norm of critic gradients with respect to the training samples, it
helps to prevent mode collapse and improve the quality and diversity of generated
samples.

2.3 Literature Review

2.3.1 Perception and Vehicle Surround View

Much of the current work in parsing a vehicle’s surroundings, specifically in the
manner of surround view generation, are geometric and/or pure vision-based tech-
niques.

An early approach to this was by stitching together the views from a suite of

31

2.3. LITERATURE REVIEW

fisheye cameras placed around the vehicle, thereby providing a single panoramic
image of the immediate surroundings. [21] Similarly, Zhang et al propose utilising
geometric and photometric alignment with composite view synthesis to generate a
surround view image for embedded systems. [22] Iterations on this approach up the
complexity significantly, as shown in [23], where an end-to-end system is proposed
utilising a bank of eight cameras in conjunction with route planners.

Few learning-based approaches exist in the literature tackling this task. One
such example is the approach proposed by Guindel et al. [24] The authors propose
a computer vision based framework fusing the object detection and recognition ca-
pabilities of a deep network with a 3D reconstruction of the scene using a stereo
camera. One disadvantage to this approach is that the accuracy of depth estima-
tion decreases with distance. As noted from the results, acceptably low localisation
errors are obtained in the 0-20m range but degrade further out.

Work specifically aimed at generating bird’s eye views in an adversarial manner
is sparse. One approach is BridgeGAN, [25] which generates bird’s eye view images,
not representations, through the use of an intermediary homography view. This
approach uses three views - frontal, homography and bird’s eye - and trains a GAN
model for each, whose task is to learn a transformation from one view to the next.
The homography view is obtained via homography estimation [26] from cropped
frontal view images. Though this work applies adversarial training to the bird’s
eye view problem, there are many steps involved, such as obtaining an intermediary
transformation and the need to train three separate GAN models.

On the other hand, MPV-Nets [27] does not have an adversarial component but
instead obtains a bird’s eye view representation through a series of convolutional
neural networks. The authors show that it is possible to learn an action policy from
this representation.

Another example is work conducted by Palazzi et al. [28] where the authors
show a learning-based approach to generating a bird’s eye occupancy map. This
approach works by training a model to warp a detection from a dashboard camera
to that of a top-down bird’s eye view.

The work presented in this paper builds and extends on these examples in several
significant ways. The generated bird’s eye view detections from our approach are
not axis aligned - as they are in [28] - and thus represent the environment in a finer
level of detail. We predict the orientation of the detection.

In contrast to some approaches, [25] [27] [28] our approach is trained and tested
on real data, as opposed to synthetic data. Generalisation and robustness of the
proposed method are also validated by testing on an entirely different dataset, with

32

2.3. LITERATURE REVIEW

quantitative metrics. Our model is capable of predicting objects at distances greater
than many of the examples discussed.

2.3.2 Monocular Depth Estimation

In recent years, depth estimation has proven to be a subject of great research interest,
particularly in robotics and computer vision.

Monocular depth estimation is a challenging task as there are a lack of certain
cues and hints, which other techniques can rely on. Much of the early body of work
relied on exploiting geometric priors coupled with bespoke features.

As the problem is inherently ill posed, many recent works focuses on tackling
it through learning methods. An early example is Saxena et al [29], who utilise a
Markov Random Field trained via supervisory signals to model image depth cues
and spatial relationships.

With the success of deep learning on image related tasks, many have switched
from classical methods to neural network based methods. Eigen et al [30] were one of
the first to use a deep neural network to estimate depth from a single image. In the
same vein, Liu et al [31] propose a Conditional Random Field [32] based approach
which does not rely on any geometric priors or similar.

Building on previous work, Eigen et al [33] show that it is possible to use a single
architecture to perform depth estimation, surface normal estimation and instance
labelling. Laina et al [34] propose a novel up-projection module to obtain finer
estimation. Facil et al [35] propose incorporating camera parameters directly in the
convolution operation to generalise depth estimation.

However, gathering suitable training data is challenging, especially fully anno-
tated depth-RGB pairs. [36] mitigates this by showing that transfer learning is
effective in this domain. Others have proposed utilising very sparse ground truth
data obtained from depth sensors to guide training. [37] [38] [39]

Going further, researchers have pursued self-supervised and unsupervised ap-
proaches. Godard et al [40] exploit stereo geometry constraints to generate dis-
parity by enforcing left-right consistency. The authors then improve on this by
introducing a minimum reprojection loss to deal with occlusions, an auto-masking
strategy to handle dynamic objects and multi-scale sampling to mitigate artifacting.
[2] Guizilini et al [41] propose novel blocks for compressing/uncompressing repre-
sentations using three dimensional convolutions. The authors use these blocks to
produce high-quality depth maps from unlabelled monocular images, even outper-
forming some fully supervised approaches.

33

2.3. LITERATURE REVIEW

However, the vast majority of work published to date has been for perspective
cameras. Given the abundance of perspective pinhole cameras - and that most
datasets are captured using them - this is hardly surprising.

2.3.3 Omnidirectional Depth Estimation

In contrast with perspective pinhole cameras, there is a much smaller body of work
for applying deep learning based methods to high field-of-view inputs.

The full surround vision would be useful in applications in robotics, autonomous
vehicles and virtual reality. However, current methods find such panoramic inputs
challenging, as well as the lack of available high quality datasets for this domain.
Representing spherical co-ordinates on a rectangular grid results in significant dis-
tortions at the poles and violates some perspective pinhole assumptions.

Some sidestep this issue by using other projections. Cheng et al [42] utilise the
cube map projection to map the equirectangular image to six perspective images
(the faces of a cube). Similarly, Wang et al [5] use cubic projection with cube
padding with a new indoor dataset.

Early attempts to solve the omnidirectional depth problem by Schönbein et al [43]
[44] forgo correcting the distortion and constructing perspective views, and instead
utilise a pair of calibrated catadioptric cameras with a plane-based model to perform
three dimensional reconstruction. Huang et al [45] adapt standard structure-from-
motion techniques for virtual reality related 360 images. Kumar et al [46] propose
using sparse LiDAR supervision as a training signal for a regular CNN in the au-
tonomous vehicles domain.

Recently, end-to-end trainable models have gained popularity in the literature,
though there are few examples in the omnidirectional domain. Zioulis et al [4] pro-
pose one of the first works showing a CNN trained directly on equirectangular images
to regress dense depth. The authors demonstrate how models trained on perspective
pinhole images perform worse than those trained on equirectangular images directly.
Zioulis et al [47] iterate on this work by utilising an improved synthetic dataset with
multiple viewpoints to guide supervision through view synthesis. Wang et al [48]
approach this problem via a stereo system, introduction of per pixel polar angle
as input and a learned cost volume. BiFuse, proposed by Wang et al [49], seeks
to regress for depth through a fusion of feature maps gained from equirectangular
and cubic projections. The authors reason that the former provides a lot of spatial
information owing to the wide field-of-view at the cost of high distortion, while the
latter provides distortion free views at the cost of border discontinuities.

34

2.3. LITERATURE REVIEW

Efforts to handle the distortions caused by equirectangular projections in CNNs
have been attempted. Su et al [50] propose to optimise a distortion aware network
to learn to recreate regular filter outputs on equirectangular images. Coors et al
[51] build on standard convolutional filters by incorporating the distortion directly
at the filter level. This is accomplished by modifying the filter’s sampling locations
to conform to equirectangular geometry, thereby encoding invariance. Additionally,
the filter preserves the “wrap-around” connective nature of these images, which is
not present in perspective pinhole images.

35

Part II

Contributions

36

3 | Bird’s Eye View Generation

3.1 Overview

The detection of objects in 3D is of paramount importance for an autonomous
vehicle. As autonomous vehicles need to operate in dynamic and fast-changing
environments, this capability forms the crux of many safety-critical decision making
processes.

Vision-based systems continue to be a popular choice for autonomous vehicle
perception, whether it forms the entirety of the perception stack or plays only a
limited role within it [3]. As the vast majority of current road infrastructure caters
to humans, significant information is conveyed visually. Vision-based systems are
uniquely able to leverage this pre-existing wealth of data and, in addition to this,
can be relatively inexpensive to deploy owing to the ubiquity of cameras.

To date, typical methods of 3D perception for autonomous vehicles consist of
utilising data from LiDAR, RADAR, a suite of cameras or a fusion of these. While
effective, utilising data from these sensors can be costly, both in terms of the financial
cost associated with the sensor itself as well as the computational overhead required
to process the data into a usable format.

While stereo depth systems have been explored in depth, it would still be prudent
to explore monocular systems. Halving the number of potential sensors required
would reduce costs. Additionally, in safety critical domains where human lives are
at risk, monocular systems could act as a backup in the event of other system or
hardware failures resulting from damage or faults.

Transforming and projecting 3D information to a top-down representation - a
“bird’s eye view” (BEV) - of semantically significant objects in the scene provides
a number of benefits in this regard. For example, compared to a point cloud or
an image, a BEV representation occupies less memory, as we are only interested
in information at the object level as opposed to low-level information like pixels
or LiDAR returns. In addition, it provides an easy-to-understand, interpretable

37

3.1. OVERVIEW

Figure 3.1: Outline of the bird’s eye view problem from a single image.

representation of the scene at a given moment in time.
We draw inspiration from recent work in guided image generation, synthesis [8]

and super-resolution. [9] Instead of solving the problem in a supervised manner by
minimising the difference between the output and ground truth, we instead formulate
the problem within the context of adversarial learning.

The main contribution of this chapter is an adversarial approach to obtaining
a BEV representation of detected vehicles from a monocular image. We seek to
leverage the generative capabilities of a Generative Adversarial Network (GAN)
[10], specifically a Wasserstein GAN (WGAN) [11] with gradient penalty (WGAN-
GP) [12]. Our model is composed of two sub-networks: a generator network and a
critic network. The generator network is tasked with producing BEV representations
from an image, while the critic network is designed to assign a “realness” score to

38

3.2. METHODOLOGY

this representation, distinguishing a generated BEV representation from its ground
truth counterpart. Therefore, the BEV representation produced by the generator
network is gradually trained to be similar to the ground truth.

We show that a model trained in this way generalises better between datasets
compared to baseline, strictly supervised models. In addition, our approach only
requires data from a single monocular camera during inference, and does not require
more complex sensors such as LiDAR or radar.

This chapter will provide an in depth examination of the methodology employed,
experiments undertaken, as well as quantitative and qualitative evaluation. It will
conclude with a discussion of key takeaways and future work.

3.2 Methodology

Here we introduce our method and outline the model, training data and training
schema.

3.2.1 Model Architecture

Generator

Critic

Generated
BEV

Score

Ground truth
BEV

Figure 3.2: Overall system diagram. Generator and critic networks are shown in
Figures 3.3a and 3.3b respectively.

The DeepBEV model is based on a WGAN-GP [12] framework, consisting of a
generator network and a critic network, both based on ResNet-18 [1]. Specifically,

39

3.2. METHODOLOGY

Bounding
boxes

...
xBEV
yBEV

θBEV

Image feature
extractor

Bounding
box encoder

Bird’s eye
view

(a) Generator system diagram

BEV encoder
Bird’s eye view

Score
xBEV
yBEV

θBEV

Bounding
Boxes

...

Bounding
box encoder

Image feature
extractor

(b) Critic system diagram

Figure 3.3: Generator and critic network system diagrams.

40

3.2. METHODOLOGY

both networks employ a multi-input multi-output paradigm.
In general, the task of the generator network is to output the detected object’s

BEV translation and orientation, while the critic network compares this output with
the image used to generate it and scores its quality - its “realness”. Effectively, this
critic learns a mapping between the scene and a plausible BEV representation. As
seen in Figure 3.2, the output of the generator is an input to the critic.

For the generator, we employ parallel layers to process the image and the bound-
ing box description, which is then concatenated into a feature vector. This feature
vector is then used independently by two heads to produce a prediction for the
object’s translation and orientation. This is shown in Figure 3.3a.

For the critic, the same ResNet-18 based architecture is used as a feature extrac-
tor for the image. However, instead of inputting the detection’s bounding box into
a separate bounding box encoder, we encode the translation and orientation values
via a dedicated encoder. The final output of the critic is a scalar score, evaluating
the consistency of that image-value pair. Essentially, the critic network’s aim is to
discern if a BEV representation is plausible given an image and score it accordingly.
This is shown in Figure 3.3b.

3.2.2 Loss Functions

Denote the loss function of the generator as:

L = E
∼
x∼Pg

[D(
∼
x)] (3.1)

where Pg is the distribution of the generator model, D() denotes the critic, and ∼
x

are a set of generated samples (bird’s eye view predictions). A modified form of the
Wasserstein GAN objective function with a gradient penalty [12] is utilised as a loss
function for the GAN training. Specifically, the loss function can be formulated as
follows:

L = E
∼
x∼Pg

[D(
∼
x)]− E

x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(|| ▽x̂ D(x̂)||2 − 1)2] (3.2)

The Wasserstein GAN with Gradient Penalty (WGAN-GP) is an improvement
over the standard Wasserstein GAN (WGAN) that addresses some of the stability
issues encountered during training. In WGAN-GP, a gradient penalty is used instead
of weight clipping to enforce a Lipschitz constraint on the critic.

The gradient penalty is calculated as the norm of the gradient of the critic with
respect to an interpolated distribution between the real and generated samples, Px̂.

41

3.2. METHODOLOGY

This interpolated distribution is created by randomly mixing real samples, x, with
generated samples, ∼

x, and the gradient penalty is calculated using the resulting set
of interpolated samples, x̂.

The goal of the gradient penalty is to enforce a Lipschitz constraint on the critic,
such that the norm of the gradient should be 1 along the interpolated distribution,
Px̂. If the norm of the gradient diverges from a target norm of 1, the critic is
penalized. This helps to stabilize the training process and prevent mode collapse,
resulting in higher quality generated samples.

In the original WGAN-GP paper [12], a λ value of 10 was used as it was deter-
mined to work well across a range of architectures, datasets, and tasks. The λ value
represents the trade-off between the Wasserstein distance and the gradient penalty,
and can be adjusted to suit the specific needs of the task at hand.

In practice, this loss is implemented by computing the mean average critic score
on ground truth and generated minibatch samples, while we uniformly sample and
interpolate between these to calculate the gradient penalty. This is because, as
defined by Equations 3.1 and 3.2, we seek to increase the difference between the
values for real and generated samples.

3.2.3 Training Scheme

For the most part, we follow the training scheme outlined in [12]. However, there
are two key distinctions: the use of pre-training and conditioning.

Pre-training

Table 3.1: Training hyperparameters

Parameter Pretraining Adversarial
Model ResNet-18 -
Epochs 1000 1000

Batch size 32 32
Learning rate 0.0002 -

Generator learning rate - 0.00001
Critic learning rate - 0.0002

ncritic - 1000
λ - 10

Optimizer Adam Adam
β1 0 0
β2 0.999 0.999

42

3.2. METHODOLOGY

The training scheme involves two passes on the training dataset. Firstly, the
generator network is trained on the training dataset in a supervised manner. The
network is given an image crop of an object along with its image bounding boxes
and tasked with predicting that object’s orientation and location. This serves to
bring the model up to a level of proficiency on the BEV task. Table 3.1 shows
the hyperparameters of the pre-training phase. Secondly, we perform adversarial
training. The pre-trained weights are used for the generator, and the weights for
the feature extractor are used in the critic. We justify this due to the fact that if we
do not use pre-trained weights in the critic, there is an imbalance in performance
between the two networks. The adversarial nature of the training scheme means
that this raises the possibility of the generator network reaching a local minimum,
as it relies on feedback from the critic.

We train the critic for ncritic more iterations than the generator, and this serves
to bridge the performance gap between the pre-trained generator and semi-trained
critic. In addition, this minimises the chance that the critic learns to significantly
outperform the generator.

As this step is essentially fine-tuning, the learning rate for the generator is low-
ered so that performance is not negatively impacted. Similarly, the weights of the
critic’s feature extractor are frozen. The hyperparameters for adversarial training
are outlined in Table 3.1.

Conditional GAN

In traditional GAN and WGAN implementations, a random latent vector is typically
fed into the generator to generate fake samples. However, in the case of DeepBEV,
the generator is conditioned solely on the input images and object bounding boxes,
and does not require the use of a latent variable. This makes it easier to control the
output of the generator based on specific input conditions, and may lead to better
overall performance.

In Eq. 3.2, the goal is to maximize the difference between the critic scores of
real and generated samples. This is typically achieved by training the critic to
output high scores for real samples and low scores for fake samples. In order to
label the samples for the critic during training, one can simply multiply the score
of the critic by -1 if it is evaluating a ground truth sample. This effectively flips the
sign of the score, making it negative, which is the desired labeling for real samples.
This labeling can be done online during training, making it a simple and efficient
method.

43

3.3. EVALUATION

3.3 Evaluation

3.3.1 Dataset and Experimental Setup

We applied this approach to two datasets: KITTI [52] and nuScenes [53]. For all
models presented, we trained on KITTI and evaluated on nuScenes. In this way, we
ensure a testing environment that is wholly different when compared to the training
environment. This ensures that dataset bias and overfitting is kept to a minimum,
while also mimicking potential real-life deployment scenarios.

Specifically, the object detection benchmark of the KITTI dataset is used for
training [52]. It is comprised of 7481 images taken in the city of Karlsruhe, Germany.
For each image we:

1. extract detections of object class Car

2. filter for detections that are not occluded at all (KITTI occlusion level 0)

3. obtain image co-ordinates of detection bounding boxes and their corresponding
3D poses. Both of them are normalised to the range [0, 1].

The image plane object bounding boxes are represented as a length four vector
describing its x and y centroid co-ordinate as well as bounding box width and height.
Regarding 3D pose, the normalisation is between the maximum x and y object
locations in metres, [0, 100] and [-50, 50] respectively. Similarly, the orientation was
normalised between KITTI’s range of [−π, π]. Since we are only interested in BEV
related information, we disregard the object’s height.

The evaluation dataset is comprised of 806 unique scenes (sequential recordings
20 seconds in length) from nuScenes, out of which are extracted entries at the object
level. Each sample is one detected object in the image, with corresponding informa-
tion such as image bounding box dimensions, translation, orientation and class. Out
of the list of possible object classes, we only train and test on car classes. In our
training dataset, KITTI, the car class is “Car” while in nuScenes it is “vehicle.car”.
In total, the entire evaluation dataset comprises of over 60 thousand unique “ve-
hicle.car” samples, split between two cities, at differing times of day and weather
conditions. The data is formatted in the same manner as during training, with no
augmentations applied.

DeepBEV is agnostic to the way objects are detected and bounding boxes ob-
tained. For this reason, we use datasets which provide these annotations, but in
principle any object detector can be used to obtain these. Our selection criteria for

44

3.3. EVALUATION

bounding boxes are primarily occlusion based; we only utilise detections which have
a very low level of occlusion.

In addition to nuScenes, we obtain some evaluation samples from Virtual KITTI
2 [54] - an adaptation of Virtual KITTI [55] - and the Surround Vehicle Awareness
(SVA) [28] dataset. These are both synthetic datasets and will serve as an additional
measure of robustness.

Table 3.2: Training dataset overview

Metric Value
Images 7481

Occlusion level 0
Car detections 13456

Bounding box format [xcentroid ycentroid widthbox heightbox]

45

3.3. EVALUATION

3.3.2 Testing and Metrics

In terms of the testing scheme and metrics used for evaluation, we assess the perfor-
mance on a per-object basis for the entire evaluation dataset. To compare the simi-
larity between the ground truth and model predictions for each object, we compute
the Euclidean distance between the two centroids and the difference in orientation.
Using these metrics, we calculate the dataset-wide median and standard deviation
(SD) values.

Since this is a specialized task, there are limited choices of pre-existing baseline
models trained on real data available. Therefore, we evaluate DeepBEV against
standard models trained in a supervised manner. To ensure a fair comparison, we
train and test these models using the same data that was provided to DeepBEV.
The benchmark models selected for comparison include various versions of standard
ResNet [1], ResNeXt [56], and Wide ResNets [57], as shown in Table 3.3.

46

3.3. EVALUATION

3.3.3 Quantitative Results

Table 3.3: Distance and orientation errors on nuScenes

Model Distance Error (m) Orientation Error (degrees)
Median SD Median SD

DeepBEV 5.91 8.22 28.67 56.83
ResNet-18 8.62 7.11 30.70 57.40
ResNet-50 8.43 8.44 33.74 57.99
ResNet-101 7.58 9.24 28.36 59.29
ResNeXt-50 7.26 8.69 31.86 58.45

Wide ResNet-50 7.97 8.55 33.09 59.08

The distance and orientation test errors on the nuScenes are given in Table 3.3.
It can be seen that DeepBEV has a median Euclidean distance error 22.8% lower
than the next best baseline model, while being comparable in the orientation metric.
Note that the generator portion of DeepBEV is a ResNet-18 model and its model
size is only 20.6% of the ResNet-101, the only model which surpasses DeepBEV in
orientation prediction by a median value of 0.318°.

0 30 60
Error (metres)

0

5000

(a) Histogram of translation errors.

0 90 180
Error (degrees)

0

3000

(b) Histogram of rotation errors

Figure 3.4: Histogram of DeepBEV errors on nuScenes.

47

3.3. EVALUATION

The histograms of the predicted distance and orientation errors are shown in
Figures 3.4a and 3.4b. It is clear that most of the prediction errors are spread to the
small error regions. While the results obtained show a somewhat high error value,
the inaccuracies are present across all models tested. Curiously, the shifted error
bars might indicate that there is systemic bias present – an average object distance
in the dataset perhaps. This would require further work to investigate.

Our results show that solving the task in an adversarial manner as opposed to
supervised improves model robustness and ability to generalise to novel data, both
real and synthetic. Not only this, but we achieve superior performance with a greatly
reduced model size compared to larger models like ResNet-101. The benefit of this
is evident in the lower inference time of DeepBEV compared to the other models,
as shown in Table 3.4.

Table 3.4: Per detection inference time in milliseconds, where a detection is a de-
tected object in the image

Model Median CPU (ms) Median GPU (ms) Total (ms)
DeepBEV 0.19 0.79 0.98
ResNet-18 0.19 0.80 0.99
ResNet-50 0.41 1.75 2.17

Wide ResNet-50 0.41 2.23 2.64
ResNeXt-50 0.75 2.86 3.61
ResNet-101 1.12 3.89 5.01

48

3.3. EVALUATION

3.3.4 Qualitative Results

Figure 3.5: Samples from the evaluation set in daytime, rain and night-time condi-
tions. Blue denotes ground truth pose, magenta denotes model prediction.

Shown in Figure 3.5 are example inferences from the nuScenes evaluation set in
a variety of conditions. To reiterate, this was unseen during training time as the
model was trained entirely on the KITTI dataset.

As can be seen, the results show a reasonable estimation of target object pose.
Somewhat expected, the model produces better estimations for cars closer to the
camera than further away. This can be seen in Figures 3.5 and 3.6, for example,
where the detected object is <20m away. Additionally, some conditions were absent
from the training dataset, such as rain on the lens or night time driving.

Adding to this robustness, is additional qualitative evaluation on two synthetic
datasets: Virtual KITTI 2 and SVA. These are shown in Figures 3.6 and 3.7. Note
that SVA does not contain object pose information in a similar manner to the
other datasets. Despite both datasets being unseen at train time, the results look

49

3.3. EVALUATION

plausible. Not only are the estimates reasonable, but it produces these estimates
while bridging a real-to-simulation gap.

Figure 3.6: Samples from the Virtual KITTI 2 dataset.

Figure 3.7: Samples from the SVA dataset.

50

3.4. DISCUSSION

3.4 Discussion

This chapter demonstrates an adversarial approach to generating a bird’s eye view
representation of a scene in the context of autonomous driving. Many solutions
to this problem involve the use of multiple cameras or other range-finding sensors.
Here, this is achieved using nothing more than a single image taken from a monocular
camera and do not require more advance sensors like LiDAR or RADAR.

The novel aspect of this approach is that it formulates the bird’s eye view prob-
lem as a conditional generative adversarial task and solves it with a WGAN-based
network. This WGAN-based network comprised of a generator and a critic.

Rather than training a model in a supervised manner, such as using the differ-
ence between the model output and the ground truth, the generator is trained to
produce plausible bird’s eye view representations given an image and bounding box
information. The error signal in this case is derived from a critic network, the task of
which is to score a given bird’s eye view representation in comparison to the inputs
used to generate it.

The experiments on public datasets show that the proposed adversarial approach
achieves better performance and robustness when tested on novel data than those
trained in a typical supervised approach.

To clarify, this better performance was achieved on an entirely unseen dataset,
captured using different camera hardware and containing unseen environmental con-
ditions like rain and lens smearing. From a robotics perspective, robustness and run
time speeds are highly important.

In this chapter, only unoccluded samples are used. Principally, there is noth-
ing stopping the use of partially occluded samples. This could increase robustness
further though it could be more difficult to train using highly occluded objects.

The results presented in this chapter imply that reframing the problem and
solving it adversarially has tangible benefits with respect to model robustness, all
else being equal. This robustness leads to DeepBEV outperforming much larger,
“heavier” models on the same task, leading to a lower memory footprint and reduced
inference time.

However, it is pertinent to also discuss the challenges and pitfalls present with
this approach. Compared to direct supervision on ground truth data, adversarial
training requires balancing the two competing “actors” on top of the usual consid-
erations regarding dataset quality, model design and so on. If this is not taken into
consideration, there is a risk of one aspect significantly outperforming the other and
the overall system reaching a local minimum.

51

3.4. DISCUSSION

While the results in this study are promising, it is not explicitly clear whether us-
ing a different network for feature extraction, such as a larger ResNet variant, would
lead to further improvements in performance. To answer this question, additional
experiments would need to be conducted, comparing a variety of network sizes and
the effect on performance. Additionally, the performance is sensitive to the quality
of obtained bounding boxes. Bad bounding boxes can lead to bad estimations.

Expanding the model to other object classes will also require corresponding
bounding boxes. There is nothing inherrent in the proposed solution which pre-
vents it from being trained on an arbitrary number of bounding boxes types. The
only limiting factor would be availability of data.

Though the approach presented here shows a quantifiable improvement versus
direct supervision, it has only been tested in this specific task. It does not mean
that the same approach will yield similar improvements in other domains.

Additionally, while the results show an improvement over direct supervision, in
absolute terms it is still quite large. Given the monocular nature of the task, large
metric errors can be expected, as inferring three dimensional depth from a two
dimensional projection is fundamentally ill-posed. Such large errors are not suitable
for safety critical systems and would require further work to improve accuracy and
robustness.

Given the above, future work could involve a combination of the following:

• Improving the accuracy and robustness further to be suitable for deployment
on an autonomous vehicle.

• Experiments to test whether adversarial training could provide benefits in
other domains

• Extending the critic network as an error estimator for the model outputs

One fundamental limit to this approach is the field-of-view of the images used.
In many autonomous vehicle or mobile robotics settings, it would be highly advan-
tageous to have as wide a field-of-view as possible, as the system would be able to
capture more information from the environment. However, such high field-of-view
images are based on an entirely different projection model and come with their own
set of problems. The next chapter explores how to tackle this problem from a depth
estimation viewpoint.

52

4 | Omnidirectional Depth Estima-
tion

4.1 Overview

Accurate depth information is critical for a wide variety of applications, ranging
from robotic navigation to augmented and virtual reality. Therefore, depth estima-
tion from images has been extensively investigated in the community. However, the
vast majority of work on monocular depth estimation so far has been focused on
perspective pinhole cameras, at least in terms of model design and data consump-
tion. These were not designed with spherical geometries and severe distortion in
mind, which means their performance may degrade significantly for omnidirectional
imaging.

Earlier attempts at monocular depth estimation were not spherical and heav-
ily depended on a supervised training signal delivered via labelled data, which was
often captured using an accurate 360° LiDAR sensor. Unfortunately, such depth
training datasets with accurate depth labels are uncommon for the omnidirectional
vision, with the majority being synthetic [4–6] and/or indoor scenes [7]. As a re-
sult, this work leverages self-supervised and unsupervised approaches for monocular
depth estimation using omnidirectional vision, benefiting from the considerably more
available omnidirectional videos, e.g., on YouTube.

The majority of the publicly available omnidirectional videos, i.e., “in the wild”
data, are in the equirectangular projection format. It is a planar representation of a
spherical surface, resulting in severe distortion on the omnidirectional images. This
means it violates some fundamental geometric assumptions held for perspective pin-
hole cameras. Since depth estimation is naturally a geometry problem, it is critical
for the depth estimation systems to model this equirectangular representation and
capable of tackling the severe distortion.

In this chapter, a monocular depth estimation technique is presented that explic-

53

4.1. OVERVIEW

Figure 4.1: This model results in good quality depth estimation on “in the wild”
omnidirectional images.

itly incorporates equirectangular geometry into a neural network training process.
This builds on themes outlined in the previous chapter and expands detected object
pose estimation to per pixel depth estimation.

This is desirable for several reasons.
Firstly, that dense depth can be used as an enabler for other applications, such

as in 3D reconstruction, mapping and localisation. Even consumer-grade, 1080p
resolution 360° cameras have 1920∗1080 = 2, 073, 600 potential depth points, which
is far denser than typical LiDAR systems. Harnessing this effectively and accurately
would result in a significantly lower barrier to entry for many applications.

Secondly, the all encompassing field-of-view is a significant advantage – theoreti-
cally eliminating blind spots – compared to those provided by traditional perspective
pinhole cameras.

Thirdly, there would be no need to perform an initial object detection phase, such
as with the method proposed in the previous chapter. Such a method would be more
difficult to scale to additional objects and would ultimately rely on the effectiveness
of the object detector. For example, the method presented in the previous chapter
was only tested on cars, and would need to be retrained to include other object
classes.

The main contributions of this chapter are as follows:

• Re-formulating the existing view synthesis based depth estimation models for

54

4.2. METHODOLOGY

equirectangular projection, injecting direct knowledge of camera geometry for
accurate, dense depth estimation using omnidirectional vision.

• Incorporating “spherical” convolutional layers into the depth estimation model,
considering the severe image distortion for convolutional operations.

• Proposing an optical flow based efficient masking strategy to dramatically
mitigate the noise introduced to the loss from “noisy” pixels caused by the
complete field of view, such as large, texture-less regions and dynamic objects.

In contrast with existing work in this area which mostly targets generated indoor
scenes, to the best of the author’s knowledge, this is the first work that demonstrates
self-supervised learning-based, monocular omnidirectional vision for accurate depth
estimation in real outdoor scenarios. In addition, this approach does not depend on
ground truth depth data for training, which is rarely available for omnidirectional
images. The experiments on two public datasets show state-of-the-art monocular
depth estimation accuracy using omnidirectional videos.

4.2 Methodology

Here we introduce our method, depth estimation model, training schema and im-
plementation.

4.2.1 Spherical Convolutions

The representation of a sphere on a two-dimensional plane through an equirectan-
gular projection introduces substantial distortion, especially noticeable at the poles.
The conventional convolutional filters and operations are primarily designed for per-
spective images and do not take into account such high levels of distortion. As a
result, a typical convolutional filter, when applied to an equirectangular image, may
fall short in fully capturing the image’s geometric intricacies, a critical aspect for
depth estimation.

Moreover, most existing depth estimation networks are conditioned on perspec-
tive images. This leads to inherent biases when such pre-trained standard convolu-
tional kernel weights are employed on an equirectangular image.

Drawing inspiration from Spherenet [51], we extend the concept of spherical
convolutions to depth estimation utilising equirectangular videos. A spherical con-
volution represents an alteration of the standard convolutional filter. Unlike the rigid

55

4.2. METHODOLOGY

Figure 4.2: A comparison of sampling locations between the spherical convolution
(blue) and a traditional kernel (red) using a 3x3 kernel as an example.

grid structure of the latter, spherical convolutions modify the kernel’s sampling loca-
tions to align with the distortions caused by the equirectangular projection. Figure
4.2 visually demonstrates this transformation of sampling locations to cover varying
portions of the image based on location. The red shaded cells denote the sampling
positions of a traditional kernel, whereas the crossed, blue regions represent the
adjusted sampling locations of a spherical kernel. Note that the kernel dimensions
displayed are exaggerated for better visualization.

In practice, we can assume that the dimensions (resolution) of images typically
do not change in a run, and we can therefore precompute sampling locations offline
for all image locations. This is relatively expensive to compute, but since we would
only need to do it once, utilisation at runtime should be significantly faster, enabling
real-time applications.

This innovative approach of spherical convolution inherently incorporates in-
variance to distortion as the kernel navigates across the image. Simultaneously, it
empowers the kernel to sample across the image boundary, leveraging the connective
nature of 360° images, thereby mitigating discontinuities.

Here, our objective is to establish direct comparisons with conventional models.
As a result, we strive to ensure equivalence in kernel dimensions, whenever feasible.
Specifically, we adopt the filter dimensions of the Monodepth2 model.

56

4.2. METHODOLOGY

Figure 4.3: Our optical flow based binary masking (left) versus automasking (right)
proposed in [2].

4.2.2 Optical Flow Masking

The complete surround view provided by 360° cameras offers many potential benefits,
but with it some unique challenges not present with more traditional formats.

Specifically, for methods utilising appearance matching based losses such as this
one, problems arising from non-Lambertian reflectances and inconsistent brightness
are exacerbated. Such problematic pixels can occupy a larger proportion of equirect-
angular images compared to perspective images, introducing noise to the training
signal if not dealt with. One particularly prominent example is the sky, which often
makes up a significant portion of outdoor omnidirectional imagery.

[2] introduced a per-pixel automasking scheme to remove stationary pixels by
only taking the loss of pixels where the warped photometric loss is less than that
of the source, unwarped photometric loss. However, this can suffer greatly when
applied to 360° images. As shown in Figure 4.3, many of the sky-region pixels are
taken as valid and contribute to the loss calculation.

To overcome this, we turn to a masking strategy based on optical flow. The idea
is to compute a binary, per pixel mask by taking only pixels above a certain optical
flow magnitude threshold. We generate the mask, Mt, at time t by calculating the
dense optical flow [58] for images It−1 and It, normalizing the magnitudes, Om, in
the range 0− 1 and taking only pixels above a magnitude threshold, τ (empirically
set to 0.1 in this case). 4.3 highlights the difference between our optical flow based
binary masking strategy and the automasking proposed in [2]. White pixels are valid

57

4.2. METHODOLOGY

and will contribute to the loss, while black pixels will not. It can clearly be seen
that this approach manages to largely filter for areas of importance while mitigating
many challenging areas, such as the sky region.

Mt = Om > τ (4.1)

In the interest of time, we compute this offline and apply it during training,
though in principle it could be implemented online. Essentially, this is a data aug-
mentation process and not real-time capable for mobile hardware. Though more
computationally expensive (versus the aforementioned automasking), the result is
a cleaner mask, devoid of most spurious sky pixels, non-Lambertian surfaces and
similar velocity dynamic objects.

As only a binary mask is required of equal dimension to the image is required,
implementation is agnostic to network architecture: we can replace the mask used
by [2] with one generated via the method outlined above.

4.2.3 Model Architecture

(a) Depth (b) Pose

Figure 4.4: Encoder-decoder network for depth estimation, and a ResNet18 back-
bone model for pose estimation.

The Monodepth2 model is selected as the baseline model [2] for our depth esti-
mation. The architecture consists of a depth estimation network and a separate pose
estimation network, both taking RGB images as inputs. The former is based on the
standard encoder-decoder U-Net with skip connections, accepting an equirectangu-
lar RGB image as an input. The output of the decoder is converted to depth by
D = 1/(aσ + b), choosing co-efficients a and b to restrict D to be within the range
0.1 and 100.

The pose estimation network is based on a ResNet18, outputting a 6 Degree-
of-Freedom (DoF) relative pose from a pair of input images. This pose directly
contributes to the photometric reconstruction error which guides the training pro-
cess.

58

4.2. METHODOLOGY

Pixels corresponding to a shared object in two distinct camera views should
display similar visual characteristics. By establishing pixel correspondences between
the views, we can ensure that their pixel intensities match. The goal is to minimize
the photometric error by selecting values that result in uniform pixel intensities
between the images. The pose is used here to perform warping between the two
views, in this case consecutive image frames. The more correct this pose is, the
lower the error.

When using spherical convolutional layers, we replace only the input layer of
the network in question. More specifically, we performed a wholesale reimplemen-
tation of the network via the PyTorch library, which lends itself well to modular,
ad-hoc replacements of various network details, such as custom layers. The replace-
ment spherical convolutional layers can therefore be dropped in-place to the existing
network and utilised with pre-trained weights.

4.2.4 Training and Implementation

We use weights from a pre-trained model for depth estimation for two reasons.
Firstly, obtaining high-quality omnidirectional images with associated depth data
is difficult. There are few publicly available datasets of this type in the literature,
and those that do exist are mostly synthetic [4–6] and/or indoor scenes [7]. While
these datasets are valuable, models trained on them face additional challenges in
terms of bridging two domain gaps: the synthetic-to-real world gap and the indoor-
to-outdoor gap. Secondly, we aim to demonstrate the applicability of our approach
by adapting pre-existing depth estimation networks for the omnidirectional domain,
providing greater flexibility in terms of selecting a depth estimation model.

We follow the self-supervised objective as outlined in [2, 40, 41, 59, 60], substi-
tuting the automasking procedure in [2] with our optical flow-based mask. In the
self-supervised learning approach to depth estimation, the model is trained on a
single image or video stream and learns to predict the corresponding depth map
without using any external depth information. This is achieved by defining a suit-
able objective function that encourages the predicted depth map to be consistent
with the input image or video stream.

This is using image reconstruction as a proxy for estimating depth. We can
minimise the image reconstruction loss by projecting an image to nearby views
using an estimated depth – this is the “view synthesis” aspect.

This approach has several advantages, including the ability to train models on
large-scale datasets without the need for costly depth sensors and the flexibility to

59

4.3. EVALUATION

apply the trained models to a wide range of tasks and environments.
The model is implemented using the PyTorch [61] framework, with the equirect-

angular projection model implemented as a PyTorch layer to enable drop-in replace-
ment. We use Adam [62] with β1 = 0.9 and β2 = 0.999, a batch size of 8, and a
learning rate of 10−8 for 10 epochs.

4.3 Evaluation

4.3.1 Dataset and Pre-Processing

As previously stated, there is a lack of publicly available omnidirectional depth
datasets and benchmarking. Thus, we opted for a combined approach of gathering
our own data and making use of publicly available internet videos.

The training data is entirely comprised of daytime footage collected by ourselves
while walking around an urban area with a handheld Ricoh Theta Z1 camera. As
such, there are numerous examples of both static and dynamic objects, such as
buildings and motor vehicles and pedestrians. In terms of augmentation, we employ
horizontal flips and jitter brightness, hue, saturation, and contrast to within 0.2 of
their true values.

Additionally, we evaluate the use of the cube map, another omnidirectional pro-
jection. The environment is projected onto the faces of a cube in this scenario, and
is generated online from the equirectangular image. This representation foregoes
some of the equirectangular benefits in return for a distortion-free (but reduced field
of view) image. This is solely for the pose network, which is fed the cube face in the
direction of egomotion as an input.

We build additional validation sets using “in the wild” omnidirectional videos
for qualitative evaluation. These were collected from publicly available YouTube
videos, specifically two videos, each roughly two hours in length. One is comparable
in that it is shot from the perspective of a pedestrian, while the other is captured
from the perspective of a moped rider with a helmet mounted camera.

This is intended to assess the models’ ability to adapt to a change in perspective,
from pedestrian to vehicle. Additionally, because these images were captured with
unfamiliar camera hardware, they will serve to verify the “virtual” camera model.
These sets contain no frames that are used in the training pipeline. We perform no
augmentation on these.

As the above have no ground truth depth, we further validate the designed model
with the KITTI-360 [63] dataset. Though this dataset was not intended for omnidi-

60

4.3. EVALUATION

rectional depth estimation, the data collection vehicle was equipped with a pair of
side mounted fisheye cameras, which we form an equirectangular image from, and
a Velodyne HDL-64E LiDAR sensor for sparse depth ground truth. The available
LiDAR points are projected into the fisheye images, which form the ground truth in-
formation used for evaluation. While this provides a 360° field-of-view horizontally,
the vertical is limited to the central 26.9°.

4.3.2 Competing Methods and Evaluation

To evaluate the effectiveness of our proposed approach, we compare it with several
existing models in the literature that tackle the problem of omnidirectional depth
estimation, as well as a comparable model for non-spherical imagery, namely BiFuse
[49], Omnidepth [4], and Monodepth2 [2].

As described earlier, we stitch together a single equirectangular image from the
pair of fisheye images available for KITTI-360 and perform depth estimation using
our proposed approach. To ensure a fair comparison, we transform the predicted
depth maps into dual fisheye format, mask them for existing ground truth LiDAR
reprojections, and perform median scaling of the depth values (per image sample)
following [60]. This scaling is done by multiplying the predicted depth maps by a
scaling value, s, where s = median(Gdepth)/median(Pdepth), with Gdepth and Pdepth

representing the ground truth and predicted depth maps, respectively. This scaling
ensures that the median depth value of the predicted depth maps matches that of
the ground truth depth maps, allowing for a fair comparison across models.

By comparing the performance of our proposed approach with these existing
models, we can demonstrate the superiority of our approach for omnidirectional
depth estimation tasks.

4.3.3 Results

Quantitative Results

Table 4.1 shows quantitative results on common depth estimation metrics [30] of
our models trained on self-collected data and tested directly on KITTI-360 without
fine-tuning. These metrics quantify errors in terms of metre deviations from the
ground truth as well as percentage accuracy within a certain threshold. To be clear,
we evaluate only where ground truth LiDAR returns are available and therefore do
not compare the whole scene evenly. For example, as there are no returns in the sky
regions, these areas do not contribute to the quantitative results.

61

4.3. EVALUATION

Model Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.251 δ < 1.252 δ < 1.253

BiFuse 0.524 4.961 11.692 0.67 0.268 0.497 0.695
Omnidepth 0.750 10.327 12.885 0.815 0.232 0.437 0.606
Finetuned Monodepth2 0.392 4.00 9.57 0.522 0.383 0.661 0.820
Ours (CM, OM, SCp) 0.439 5.068 9.770 0.558 0.352 0.626 0.796
Ours (CM, OM, SCe) 0.440 5.234 9.749 0.556 0.363 0.630 0.796
Ours (CM, OM, SC) 0.423 4.770 9.531 0.542 0.372 0.643 0.807
Ours (CM, OM) 0.455 5.528 9.978 0.571 0.345 0.614 0.785
Ours (CM, OM, CP) 0.395 4.166 9.449 0.521 0.380 0.668 0.825
Ours (CM, OM, CP, SCe) 0.368 3.762 9.184 0.491 0.415 0.697 0.844
Ours (CM, OL, CP, SCe) 0.350 3.179 10.238 0.510 0.393 0.693 0.845
Ours (CM, OL, SC) 0.339 3.066 9.795 0.485 0.421 0.717 0.859

Table 4.1: Quantitative results on depth estimation metrics on KITTI-360 along
with an ablation study of our model. Note the models are trained on self-collected
dataset, without fine-tuning on KITTI-360. Where: CM signifies the use of the
equirectangular camera model, OM the use of the optical flow mask in conjunction
with established automasking, OL the use of just our optical flow mask, SC the use
of spherical convolutional layers (where e and p signify their use in just the depth
encoder or pose encoder respectively), CP the use of a rectified crop (cube patch)
as input to the pose network.

As can be seen, our method and additions outperforms the others on nearly
all metrics, with the overall best configuration a model using: 1) the proposed
projection model, 2) our optical flow masking strategy in place of automasking and
3) spherical convolutional initial layers for both the depth encoder and pose encoder
networks. This demonstrates the efficacy of the techniques proposed.

The histogram of the absolute errors of predicted depths, for those pixels where
ground truth LiDAR reprojections are available, is given in Fig. 4.5. As can be
seen, our approach compares favourably with other models, with the majority of
predictions falling in the lower 3-metre error bins.

Qualitative Results

Figures 4.6, 4.7, and 4.8 show several qualitative depth prediction examples — from
the validation set, the “in the wild” set and the KITTI-360 set respectively. For
Figure 4.6, refer to Table 4.1, where A and B denote a configuration of [CM, OM,
CP, SCe] and [CM, OM, CP] respectively. Lighter pixels indicate a closer depth
value and vice versa. It is clear that the proposed model produces more accurate
and meaningful depth maps. Particularly, the depths to some objects, like cars, are
sharp and distinguishable from the background.

The models struggle with the sky and tunnel sections, resulting in erroneous
estimations. The former may pose a challenge as it is a large region of mostly
textureless pixels, which is exacerbated by the 360° nature of the images. The latter

62

4.4. DISCUSSION

0 5 10 15 20 25 30

Absolute Error (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

×107 Absolute Error (m) vs frequency

Finetuned Monodepth2
Ours (CM, OM, CP, SCe)
Ours (CM, OM, CP)
Ours (CM, OM, SCe)
BiFuse
Ours (CM, OM, SC)
Ours (CM, OM, SCp)
Ours (CM, OL, SC)
Omnidepth
Ours (CM, OM)

Figure 4.5: Histogram of errors on depth estimation.

RGB Ours (best) Ours (A) Ours (B) Monodepth2

Figure 4.6: Qualitative samples from the validation set for different configurations.

can be reasoned as the model struggles with the switch to an “indoor” scale, being
predominantly trained on outdoor imagery. Likewise, [4] and [49] for the inverse
reason. In future, we will investigate how to tackle these with more intelligent
masking and outdoor-indoor scene cross training.

Despite this, the addition of our alternative masking strategy shows a qualita-
tive improvement in depth consistency of the objects in the scene while preserving
definition along the edges.

4.4 Discussion

In this chapter, we present a unique approach for extending view synthesis-based
depth estimation models to 360° equirectangular projection images.

We achieve state-of-the-art results when compared to previous models by utilising

63

4.4. DISCUSSION

RGB Ours (best) Monodepth2 Omnidepth BiFuse

Figure 4.7: Qualitative samples from the additional “in the wild” validation set

RGB Ours (best) Monodepth2 Omnidepth BiFuse

Figure 4.8: Qualitative samples from KITTI-360

a camera projection model that takes into consideration the spherical nature of the
data, spherical convolutional input layers, and an optical flow-based binary masking
approach.

The results presented in this chapter imply that existing networks are capable
of adapting to an entirely different image format – even those containing severe
distortions, as is the case with equirectangular images – if certain considerations are
taken into account beforehand.

This is important in this case, as there exists a much broader body of litera-
ture on regular depth estimation and comparatively little for the omnidirectional
equivalent. This leaves open the possibility of the field keeping pace with regular
depth estimation research by adapting and extending the state-of-the-art methods
and ideas.

Another key takeaway from the results presented here is that being selective
with the data and training signal is important, moreso than with regular depth
estimation. The all encompassing field-of-view is both a blessing and a curse, in
the sense that there are no theoretical blind spots but a much higher “surface area”
where noise can be injected into the training. Usually, this is handled via masking.

64

4.4. DISCUSSION

However, Figure 4.3 show how current automasking methods fail completely to filter
for relevant pixels. By using an alternative masking scheme, we show state-of-the-
art improvements over the previous (as detailed in Table 4.1). This underscores the
need to take certain considerations into account while dealing with omnidirectional
imagery.

It is also important to discuss the limitations with these results.
The most noticeable limitation are the depth estimates for the sky region. In

many cases, these are obviously wrong, as can be seen for example in Figure 4.8,
where these regions are estimated to be close. This issue is not unique to the
omnidirectional domain and exists in regular depth estimation, but is exacerbated
by the wide field-of-view, where the sky region occupies a far larger proportion of
the image.

Another limitation on these results is whether this (or ideas along a similar
vein) is applicable to other omnidirectional projection models. The results imply
that similar adaptation using appropriate projection equations would yield similar
results, but further experiments would be needed to validate this.

Additionally, this work highlights an urgent need in the field for high quality,
publicly available datasets tailored for omnidirectional depth.

Future work could focus on refining erroneous outputs that appear in some por-
tions of the image, such as the sky regions, and when travelling through difficult
areas, such as tunnels.

Addressing these challenges may include using multi-modal data such as LiDAR
returns for instance, or enhancing multi-task learning through the use of semantic
segmentation.

In particular, the use of LiDAR data would be of interest. Many commercially
available LiDAR sensors similarly have a 360°field-of-view, albeit usually just in the
horizontal.

Therefore, LiDAR sensors and omnidirectional cameras are complementary, with
the former providing a source of high quality depth estimation and the latter pro-
viding rich colour information.

Building on the work detailed here, the next chapter will explore the pairing of
these two modalities for depth estimation. Crucially, the next chapter will explore
how some of the limitations highlighted here can be overcome.

65

5 | Omnidirectional Depth Estima-
tion With LIDAR

5.1 Overview

With the widespread commercial availability of omnidirectional cameras nowadays,
they present a unique opportunity for mobile sensing applications, particularly for
mobile robotics and autonomous vehicles. Such cameras provide an all encompassing
field-of-view, theoretically leaving no blind spots in vision. This is of course a very
attractive property for many systems to have.

However, this comes with the trade off of severe image distortions and very dif-
ferent properties compared to images obtained via regular perspective cameras. As
such perspective cameras are the de facto standard, the vast majority of datasets
(and consequently work built on them) have an implicit bias toward this format.
These combined lead to much of the existing literature from various domains – such
as depth estimation – being ineffecient or wholly incompatible with omnidirectional
images. Consequently, the body of work based on omnidirectional images is much
smaller in comparison. Translating techniques and insight gained from the perspec-
tive domain to the omnidirectional domain will help to bridge this gap. Further,
verification of existing techniques but in the omnidirectional domain will help guide
future work in this area.

One technique is the use of depth values from a LiDAR sensor as a ground truth
source to guide the training of a depth estimation model. This can be beneficial
as such sensors provide a source of high quality information and provide usable
error signals. Pairing them with omnidirectional cameras seems like a natural fit,
as many LiDAR sensors provide a 360°horizontal field-of-view. However, most are
normally quite sparse and limited in their field-of-view. As they are often paired
with perspective cameras, the field-of-view limitation is usually not too problematic.

However, this is exacerbated with the complete view afforded by omnidirectional

66

5.2. METHODOLOGY

cameras with most LiDAR sensors only providing a relatively thin slice of depth
for the entire image. Therefore, we hypothesize that utilising depth from LiDAR
requires some thought, so as not to overweight this region during training.

The main contributions of this chapter are as follows:

• Introduce an extrinsic calibration method for aligning a LiDAR sensor with
an omnidirectional camera based on Bayesian optimisation

• Propose a novel, weighted loss function aimed at incorporating LiDAR returns
as ground truth depth for omnidirectional depth training, which we call the
Grid Loss.

5.2 Methodology

Here we detail our method of fusing LiDAR and omnidirectional image data, out-
lining: extrinsic calibration, model architecture, loss functions and training scheme.

5.2.1 Extrinsic Calibration

While LiDAR sensors provide a high quality (albeit sparse) degree of depth infor-
mation, utilising the data returned with image data alone will not yield sufficient
results. This is due to the fact that the 3D points are not represented in the same
coordinate frame, resulting in inaccurate projections.

As with any multi-sensor system, some level of calibration is necessary. As
outlined in the previous chapter, a “spherical” camera model is used. What we
would like is to derive a rigid transformation between points in the LiDAR frame
to the camera frame, to then perform a projective transformation from the camera
frame into pixel co-ordinates using this new camera model. This would allow the
representation of high quality ground truth depth values in image space, establishing
a direct link between pixel values and depth values. While it is true that the ratio
of LiDAR points to image pixels will be sparse, it will at the very least be aligned.

Here, we take a modified form of the Perspective-n-Points (PnP) method. With
a standard PnP setup, we would like to estimate the pose of a calibrated camera
given a set of identified and observed three dimensional points and their two dimen-
sional projections in the image. When it comes to 3D object tracking and camera
localization and tracking, the PnP problem is relevant. It has been well studied
and applied in the robotics and computer vision domains. It is frequently utilised

67

5.2. METHODOLOGY

in applications such as Simultaneous Localization and Mapping (SLAM), Visual
Odometry (VO), Structure-from-Motion (SfM) and image-based tracking pipelines.

However, it is less thoroughly investigated for omnidirectional imaging, as is the
case with many well-known topics in this domain.

Starting with the data we have will help us outline the situation more clearly.
Here, we have:

1. A camera projection model, which lets us project three dimensional points
into pixel space.

2. Three-dimensional points collected using a LiDAR

Simply projecting the LiDAR points into pixel space is incorrect and will yield
unsatisfactory results. The reason being is that the physical placement of the LiDAR
sensor itself is away from the center of projection. Therefore, an initial transforma-
tion of the points is required prior to calibration, and this forms the reasoning behind
extrinsic calibration. Estimating this transformation accurately is crucial as it will
form the basis of the LiDAR ground truth data.

Intuitively, the approach described here can be thought of as “aligning” two sets
of points with each other:

1. Select a set of pixels in the image.

2. Identify the corresponding three-dimensional LiDAR points.

3. Apply a transformation, Ti, to the points.

4. Project the transformed points back into the camera frame.

5. Determine alignment by using a distance metric (in this case, Euclidean).

6. If the points are in close proximity to each other, the process concludes, having
found a suitable extrinsic calibration.

7. If not, the process repeats from step 3 with an adjusted transformation.

This bears some similarity to RANSAC but only in that it is an iterative process.
Regarding steps 1 and 2 in the above, the choice pixels and LiDAR correspon-

dences are done manually, however these are fixed for the duration of alignment.
These can in theory be arbitrary but a checkerboard was used as a guide.

The key to this process is the optimization of the transformation. Finding
this transformation is not trivial, as it’s a global optimization problem in a high-
dimensional space without a clear gradient to guide the search. A random search

68

5.2. METHODOLOGY

approach would not be effective due to the high-dimensionality, and we don’t have
the advantages that some optimization problems in machine learning have. For
instance, methods like gradient descent leverage mathematical shortcuts and have
access to derivatives of the function to expedite the evaluation. In our case, we need
to find a more efficient way to guide the search for an optimal transformation.

To address this, we use Bayesian optimization, a powerful tool for optimizing
expensive, complex functions. Bayesian optimization constructs a probability model
for the objective function and then exploits this model to find the optimum by
trading off exploration against exploitation. This will be explained in the next
section.

Bayesian Optimisation Applied to Calibration

As outlined, optimising the transformation from LiDAR to pixel space is challenging.
One attempt at solving this is Bayesian optimisation.

Bayesian optimization is a technique that utilizes Bayes’ Theorem to guide the
search for the minimum or maximum value of an objective function, denoted as f ,
within a bounded domain. This method is particularly well-suited for optimizing
complex, computationally expensive, or noisy objective functions through a process
called surrogate optimization.

In this context, the objective function is a measure of the alignment error between
the projected LiDAR points and their corresponding pixels in the image. The goal
is to minimize this alignment error by finding the optimal transformation, Ti, that
aligns the 3D LiDAR points with the 2D image pixels most accurately.

The surrogate function is an approximation of the objective function, constructed
based on the points sampled so far. The surrogate function is used in to model
our belief about the objective function, and is where the Bayesian nature of this
approach starts to show. The surrogate function serves as our posterior, which we
use to guide future sampling. In other words, our belief about the current objective
function influences the areas of the search space we focus on, as we aim to obtain
better results.

In this case, a Gaussian Process is employed as the surrogate function. Gaussian
Processes are flexible, non-parametric models that can capture complex, non-linear
relationships and provide uncertainty estimates. This makes them suitable for mod-
eling expensive or noisy objective functions, like the alignment error in this context.

The Bayesian optimization process iteratively refines the surrogate function by
sampling new points, which are proposed by an acquisition function. The acquisition

69

5.2. METHODOLOGY

function balances exploration (sampling points in areas with high uncertainty) and
exploitation (sampling points where the surrogate function predicts low alignment
errors). By efficiently updating the surrogate function based on the sampled points,
Bayesian optimization narrows down the search for the optimal transformation Ti

that minimizes the alignment error. Here, we use the Upper Confidence Bounds
method for acquisition.

More formally, the objective function f will be sampled at:

xt = argmax
x

a(x|D1:t−1) (5.1)

where a is the acquisition function and D1:t−1 = (x1, y1), ..., (xt−1, yt−1) are the
t− 1 samples drawn from f thus far.

Our goal is to find a rigid transform from the LiDAR frame to the camera frame,
with the search space consisting of possible (bounded) combinations of transforma-
tion parameters. In this context, the samples drawn represent sets of transformation
parameters.

The optimization is performed in two stages: an initial, exploratory search fol-
lowed by a secondary, refining (or fine-tuning) stage based on promising candidate
solutions. Table 5.1 presents the optimization parameters and algorithmic bounds
(constraints). In the first stage, the search space for optimization is restricted to
lie within the specified ranges. The second stage refines the proposals from the
first stage by further constraining the search to lie within a certain margin of the
proposed values.

Figures 5.1 and 5.2 display examples of LiDAR-camera projections before and
after calibration, respectively. Compare the view prior to calibration (top left) to
that after extrinsic calibration (top right), as well as their corresponding colored
LiDAR point clouds (bottom left and bottom right).

As shown, the uncalibrated projection, although close, is not accurate, which is
confirmed by the colored point clouds. The misalignment would worsen if the LiDAR
and camera were positioned farther apart or differently. However, the calibrated
projection, although imperfect, is considerably more precise, as demonstrated by
the alignment of various objects in the scene, such as the blue bin and traffic cones,
and the alignement of the points on the checkerboard and chair shown in Figure 5.3.

Despite utilizing a top-of-the-line LiDAR sensor, the vertical field of view remains
limited, covering only a relatively thin slice at the center.

70

5.2. METHODOLOGY

Parameter Value
Initial points 25
Number of initial iterations 15
Number of secondary iterations 10
Rotation (x) [-5, 5]
Rotation (y) [175, 185]
Rotation (z) [175, 185]
Translation (x) [-0.07, 0.07]
Translation (y) [-0.07, 0.07]
Translation (z) [-0.3, 0.3]
Rotation margin 0.05
Translation margin 0.005

Table 5.1: Hyperparameters and constraints for Bayesian Optimisation calibration,
where values in [...] are allowable lower/upper bounds and margin is the allowable
perturbation in the refining stage.

Figure 5.1: Outdoor LiDAR to camera projection.

71

5.2. METHODOLOGY

Figure 5.2: Indoor LiDAR to camera projection.

Figure 5.3: Emphasis on results of extrinsic calibration, using the checkerboard
shown in Figure 5.2. Left image shows the uncalibrated projection, while the right
is calibrated based on the calibration method outlined in this chapter.

72

5.2. METHODOLOGY

5.2.2 Model Architecture

(a) Depth (b) Pose

Figure 5.4: Encoder-decoder network for depth estimation, and a ResNet18 back-
bone model for pose estimation.

As we would like to investigate the effect of incorporating ground truth depth
information directly into an omnidirectional training pipeline, we choose a model
architecture identical to the one described in the previous chapter. This enables
fairer comparisons and conclusions to be drawn.

This architecture is made up of two networks: a depth estimation network and
a separate pose estimation network, both of which are fed RGB images as inputs
to the system and is shown in Figure 5.4. The former is based on an encoder-
decoder U-Net with skip connections, and it accepts as an input an equirectangular
RGB image. The output of the decoder is converted to depth using the equation
D = 1/(aσ + b), with the co-efficients a and b chosen to keep D within the range
of 0.1 and 100, respectively. The pose estimation network is based on a ResNet18,
which produces a relative 6 DOF pose from a pair of input photos.

An explanation of this architecture is provided in the previous chapter.

5.2.3 Grid Loss

As shown in Figures 5.1 and 5.2, pixels where ground truth depth data are available
are relatively sparse. This is due to the small vertical field of view of the LiDAR
sensor (40°) in comparison to the image as a whole. As such, integrating ground
truth depth data into a depth estimation pipeline may require a different approach.

Again, this is an example where a limitation is exacerbated by the complete field
of view of omnidirectional images. When using more traditional perspective images,
this is usually much less of an issue as the camera’s field of view is much smaller.

One potential solution to this problem is via additional hardware. The returns
from multiple LiDAR sensors, if positioned such that each covers a portion of the
image, can be fused together. Such an approach would provide complete coverage,

73

5.2. METHODOLOGY

however it would be costly, as one would require at minimum five of such sensors
to have at least 180°vertical coverage. As well as this, all additional sensors would
need to undergo extrinsic calibration.

Here, we explore a mitigating measure for this scenario, which we call the Grid
Loss.

Conceptually, it is quite simple and can be thought of as discretizing the image
into a grid, and assigning greater importance to those grid cells with a higher density
of ground truth points.

Specifically, we weight the per cell importance via the application of a unit
softmax function, σ over all cells containing depth values, defined for σ : RK →
(0, 1)K when K is greater than 1.

σ(c)i =
eci∑K
j=1 e

cj
for i = 1, ..., K and c = (c1, ..., ck) ∈ RK (5.2)

Where c is an input vector of length K, (non-empty grid cells) with each element
comprising of the frequency of LiDAR points in that cell.

With each grid cell now having a corresponding weight, the final loss is the sum
of weighted per-cell sum of absolute differences:

Grid Loss =
K∑
i=1

σi

n∑
j=1

|yin − ŷin| (5.3)

Where n is the number of LiDAR points in cell K, and yin and ŷin are the
predicted and ground truth points respectively. When dealing with a batch, the loss
is computed for each predicted-ground truth pair and the mean average of the batch
is taken. To be clear, we are only considering cells which contain LiDAR points. We
are effectively weighting and normalizing the cell importance via the application of
a unit softmax function.

Shown in Figure 5.5 is a simplified visualisation of how the loss weighting works.
For visualisation purposes, only three cells are shown. Each red dot is a ground
truth depth value and the opacity of tint in the cell visualises the cell’s contribution
to the overall loss. As cell number 1 has the most points inside, it is weighted more,
followed by cell number 2, then finally cell number 3. Hence, cell 1 contributes the
most, then 2, then lastly 3.

As this is an example, only weighting based on three cells are shown. Of course,
in actual usage all cells would be taken into account. To reiterate, these are not real
LiDAR returns but merely an illustration.

This example highlights where this weighting may be useful, especially in an

74

5.2. METHODOLOGY

Figure 5.5: A simplified illustration of the loss weighting in action.

omnidirectional context. Note that there is no assumption on the quality of the
points per se. Only that we assume that if more LiDAR points are available in an
area, then we can be more confident in using that area to guide depth estimation.

5.2.4 Training and Implementation

We build on the work shown in the previous chapter by following a similar training
and implementation procedure for many of the same reasons, as the challenges faced
are also very similar.

As publicly available non-synthetic, outdoor, omnidirectional depth datasets are
rare, we start with models pre-trained on the regular depth estimation task. We
argue that this is beneficial as we minimise the domain gaps the model has to bridge
versus using indoor, synthetic datasets.

Additionally, by choosing pre-existing models, we hope to demonstrate the ways
our proposed method is applicable in the perspective-to-omnidirectional adaptation
process.

Here, we follow the self-supervised objective as outlined in [59], [40], [60], [2], [41],
substituting the automasking procedure in [2] with our optical flow based mask.

In addition to the above, we formulate our final loss by the addition of the Grid
Loss. Crucially, we do not replace the self-supervised objective.

In practical terms, the training and validation process is implemented using the
PyTorch [61] framework, building upon our previous work. We use Adam [62] with
β1 = 0.9 and β2 = 0.999, batch size of 8, learning rate of 10−8, for 10 epochs.

75

5.3. EVALUATION

5.3 Evaluation

5.3.1 Dataset

To the best of our knowledge, a dataset containing high resolution equirectangular
images with corresponding LiDAR returns or point clouds does not exist in the
literature. Thus, we opted to collect our own data using a Velodyne Alpha Prime
sensor and a Ricoh Theta Z1 camera mounted on a bespoke rig. At the time of
writing, this LiDAR sensor is one of the highest quality sensors available, consisting
of 128 channels.

The training data is entirely comprised of daytime footage collected by pushing
the rig around an extra-urban, university campus setting. While collection was
performed in daytime, the weather ranged from sunny to cloudy, providing a variety
of lighting conditions.

Given the setting, there are numerous examples of both static and dynamic
objects, such as buildings, pedestrians and vehicles. In terms of augmentation, we
employ horizontal flips and jitter brightness, hue, saturation, and contrast to within
0.2 of their true values online at training time.

Similarly to the method discussed in the previous chapter, we incorporate the
use of the cube map, another omnidirectional projection. This is solely for the pose
network, which is fed the cube face in the direction of egomotion as an input.

In contrast with evaluation on the KITTI-360 dataset seen in the previous chap-
ter, our collected dataset has more of a depth estimation focus in mind. Where we
previously had to form an equirectangular image from two fisheye images as well as
handling the corresponding LiDAR projections, here we have no need to. The RGB
image captured by the camera is provided in an equirectangular format and LiDAR
projections can be done directly to this. This avoids any potential artifacts or errors
which could arise from warping between formats.

To be clear, all the data used for training and validation are self-collected using a
bespoke rig, and is separate from the dataset collected in the previous chapter. While
self-collected, the validation set is held out from training so as not to contaminate
results.

5.3.2 Quantitative Results

Shown in Table 5.2 are quantitative results on common depth estimation metrics
[30] of our models trained on the self-collected LiDAR dataset and tested on a held

76

5.3. EVALUATION

Model Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.251 δ < 1.252 δ < 1.253

Finetuned Monodepth2 1.185 5.821 4.077 0.865 0.284 0.498 0.652
Ours (CM, OL, CP, SC) 0.736 1.789 4.176 0.733 0.236 0.464 0.653
Ours (CM, OM) 0.734 3.680 4.674 0.744 0.258 0.482 0.650
Ours (CM, OL, SC) 0.722 1.761 3.864 0.690 0.248 0.496 0.699
Ours (GL, CM, OL, SC) 0.718 1.758 3.967 0.707 0.237 0.475 0.662
Ours (CM, OM, SC) 0.717 3.324 4.513 0.710 0.268 0.500 0.683
Ours (CM, OM, CP, SC) 0.681 2.836 4.342 0.666 0.247 0.529 0.731
Ours (CM, OM, CP) 0.659 2.758 4.277 0.677 0.265 0.524 0.721
Ours (GL, CM, OM, SC) 0.651 2.807 4.410 0.655 0.254 0.523 0.716

Table 5.2: Quantitative results on depth estimation metrics on the held out valida-
tion set along with an ablation study of our model. Where: GL signifies the use of
the Grid Loss, CM the use of the equirectangular camera model, OM the use of
the optical flow mask in conjunction with established automasking, OL the use of
just our optical flow mask, SC the use of spherical convolutional layers CP the use
of a rectified crop (cube patch) as input to the pose network.

out validation set. The metrics shown assess errors in metre values in addition to
percentage accuracy within a certain threshold.

It can be seen that the addition of the proposed loss leads to improved per-
formance in many metrics. The overall best configuration is one utilising: 1) the
proposed Grid Loss, 2) the proposed camera model, 3) our optical flow masking
strategy in place of automasking and 4) spherical convolutional initial layers for
both the depth encoder and pose encoder networks.

However, overall conclusions are murky, as some configurations perform better
than others in particular metrics. For example, the (GL, CM, OM, SC) configuration
performs the best in Absolute Relative Error, while the (CM, OL, SC) configuration
performs better in Squared Relative Error.

This could be due to a number of causes and leaves some questions unanswered.
One straightforwad (if time consuming) question to answer is the effect of training
data. As a rule of thumb, the more data that is available the better. In this case,
perhaps the data available was simply not enough to train the network to fully
leverage the new, more complex additions.

These findings suggest that the current approach would face challenges in real-
world implementation, yet the modifications do lead to enhanced performance. For
safety critical systems, these errors would be too high and further work is required
to improve this.

The histogram of the absolute errors of predicted depths, for those pixels where
ground truth LiDAR reprojections are available, is given in Fig. 5.6. These errors
are drawn from the unseen validation set. As can be seen, our approach compares
favourably with other models, with the majority of predictions falling in the lower

77

5.3. EVALUATION

2.5-metre error bins.

0 5 10 15 20 25 30

Absolute Error (m)

0

1

2

3

4

5

Fr
eq

ue
nc

y

×106 Absolute Error (m) vs frequency

Finetuned Monodepth2
Ours (CM, OM, CP)
Ours (CM, OM, SC)
Ours (CM, OL, CP, SC)
Ours (CM, OL, SC)
Ours (GL, CM, OL, SC)
Ours (CM, OM)
Ours (CM, OM, CP, SC)
Ours (GL, CM, OM, SC)

Figure 5.6: Histogram of errors on depth estimation.

5.3.3 Qualitative Results

RGB GL 1 GL 2 Best Non-GL Monodepth2

Figure 5.7: Qualitative samples from the held out validation set.

Figure 5.7 show several qualitative examples of depth estimation from the held
out validation set, where Grid Loss 1 and 2 are the models trained with the new loss
and utilising two permutations of the optical flow masking strategy, blended with

78

5.4. DISCUSSION

established automasking and without respectively. Here, GL signifies the use of the
Grid Loss, with 1 being the model trained with optical masking and established
automasking, and GL 2 being the model trained on just our optical flow mask.
These are denoted by OM and OL respectively in Table 5.2. Grid Loss 1 is the
best performing of the two in terms of raw metrics, as shown in Table 5.2.

As can be seen, qualitatively speaking, the results are sharper and contain finer
details compared to a non adapted model (finetuned Monodepth2 in this case),
making it easier to distinguish relatively thin objects such as trees.

In contrast, it also lacks the heavy vignetting effect present in the non adapted
model.

Interestingly, the blended masking approach (Grid Loss 1) has far fewer spurious
estimations in the sky region versus the solo approach, where it seems to struggle
more.

Crucially, our alternative masking strategy coupled with the Grid Loss shows a
qualitative improvement in quality, preserving more definition along the edges while
showing smoother, more consistent depth regions.

5.4 Discussion

In this chapter, we present a unique approach for incorporating omnidirectional
LiDAR data into the training pipeline of an omnidirectional depth estimation model.

Specifically, we introduce several items of interest.
First, we present a Bayesian optimisation based extrinsic calibration process

which utilises the equirectangular camera model introduced in previous chapters.
This process lets us pair LiDAR and omnidirectional images and obtain per-pixel
ground truth depth information. Per-pixel depth data for omnidirectional imagery
is extremely rare in the literature, to the best of our knowledge.

Obtaining data like this could be an enabler for future work and applications.
Being theoretically applicable to any equirectangular image and LiDAR pair, this
technique may help to bridge the data availability gap in the literature between per-
spective and omnidirectional images. Bridging this gap could spur further research
and help bring parity to this domain.

Secondly, we show that the incorporation of this LiDAR information in the train-
ing pipeline of a depth estimation model is feasible and desirable. The primary tech-
nique to achieve this is by discretizing the omnidirectional image into a grid, and
incorporating a weighting scheme to the LiDAR projections based on the frequency
of depth points in each cell. We incorporate this information into the training by

79

5.4. DISCUSSION

introducing a supervised term which computes a weighted L1 loss – which we call
the grid loss – to the self-supervised loss.

The results presented in this chapter imply that there are tangible benefits to
incorporating LiDAR ground truth to omnidirectional depth estimation. Despite
the sparsity of even top of the line LiDAR sensors in comparison to the image, even
this is enough to improve performance.

If in future, hardware improves such that the LiDAR field-of-view increases sig-
nificantly, further experiments can determine with greater certainty how much im-
provement the frequency-based weighting scheme provides. Alternatively, further
work can be done to fuse and project multiple LiDAR sources to the same image
which may be able to provide increased coverage.

In terms of limitations, the improvements gained versus strictly self-supervised
training is not as big as was initially hypothesized. It is highly likely that this is an
issue of data, and of not having enough training samples. The training set used in
the previous example was a lot larger than the one presented in this chapter, and
comparatively much easier to obtain. For such a data-driven method, having an
adequate amount of data is important.

Future work could focus on repeating the experiments with more data, both in
terms of raw samples and in density of LiDAR returns. This could then further
examine grid loss efficacy and enable the community to explore other potential
avenues of research, as such data is very rare.

80

Part III

Conclusions

81

6 | Conclusions

6.1 Conclusions

In conclusion, this thesis presents new strategies for extracting environmental depth
representations from perspective and omnidirectional monocular vision. Such ap-
proaches are helpful in and of themselves, but they also demonstrate to the research
community, particularly in the case of omnidirectional vision, that it is feasible to
convert methodologies developed for one modality to another.

The work presented here is motivated by the fact that mobile autonomous sys-
tems must have the capacity to detect their surroundings. Frequently, the envi-
ronment is rich with critical information required for decision making, planning,
and action. Even more useful would be the ability to do so with modest hardware
resources, as this would lower the barrier to entry for safe autonomous systems.

The ability to facilitate depth estimation on a variety of camera hardware is also a
factor. As the price and availability of omnidirectional cameras grow more accessible
for consumers, it would be especially advantageous for autonomous systems to utilise
their capabilities. However, compared to traditional perspective cameras, these
camera systems have received much less attention, particularly for depth estimation
applications. Perspective systems are the de facto default system in the bulk of
literature on computer vision. As such, many of the methodologies and datasets
available have an implicit bias toward these systems.

Unfortunately, this makes it difficult to directly apply much of the existing work
to omnidirectional cameras. Hopefully, the experiments shown herein highlight that
it is indeed possible to leverage a lot of the existing techniques applicable to con-
ventional perspective cameras for omnidirectional cameras.

Firstly, we present a method to generate object-scale top-down representations
from a single perspective image. The key contribution is the generation of such a
representation using an adversarial technique. As a consequence of the conducted
experiments, a model trained in this manner generalises across datasets better than

82

6.2. LIMITATIONS AND FUTURE WORK

baseline, strictly supervised models. We presented this approach at The 25th Inter-
national Conference on Pattern Recognition (ICPR 2020).

After this, we shifted our focus to extending such capabilities to omnidirectional
cameras. However, instead of a per-object depth schema, we instead opt for dense
depth. Our reasoning is that the complete scene view afforded by such cameras
contain a wealth of information. Omnidirectional depth could blend some of the best
of properties of LiDAR systems (high FOV) and traditional camera systems (colour
information and density of information). As such camera systems are becoming more
affordable and lightweight, autonomous systems could benefit from high-quality,
information rich yet low cost depth sensing. This would be an enabler for many
other applications in the domain.

Lastly, we extend the above work to incorporate LiDAR training data in order
to improve performance and accuracy. The difference here is that the LiDAR is
complementary to the system and is not required during inference. It can be imag-
ined that such a setup would be beneficial in the sense that only one LiDAR is
required to improve the depth estimation models for many cameras and is itself not
required to be deployed in the field. Crucially, we present an semi-auto calibration
method for a LiDAR sensor and an omnidirectional camera. This lets us align the
data between the two modalities correctly in order to extract correct depth values
for training. Additionally, a weighted loss is proposed which takes into account the
density of LiDAR points in a given region of the image in order to provide more
local refinement.

6.2 Limitations and Future Work

There are limitations to the methodologies presented in this thesis.
With regards to bird’s eye view generation, the proposed system requires addi-

tional training for extra object classes. Additionally, while there are quantifiable
improvements versus baseline models, the absolute errors are still relatively large
and therefore would require additional training and fine tuning for real world de-
ployment. Another limitation is the object detection itself. While the system is
agnostic to detection methodology, it is highly dependent on it and will vary with
its accuracy. As with all camera based systems, it is susceptible to areas of low
texture and extreme exposure (or lack thereof). Balancing the adversarial training
can also be tricky, and an imbalance can result in getting stuck in a local minima.

Future work in this area could involve exploring how additional object classes are
incorporated at training time in a scalable manner. For example, one could explore

83

6.2. LIMITATIONS AND FUTURE WORK

if a strategy inspired by active learning [64] could be incorporated. In brief, this is a
technique which enables a model to learn from a limited amount of labeled data by
iteratively selecting the most informative samples for labeling. These samples are
the ones which are expected to provide the most significant impact on the model’s
accuracy when they are labeled and added to the training set. In theory, this reduces
(but does not eliminate) the overhead of manual labelling or data collection and lets
the model ingest not only more data, but in a more tailored manner.

Additionally, it could also involve balancing the adversarial training better.
For the self-supervised omnidrectional depth work, some similar shortcomings are

prevalent. It can be seen from the results that erroneous depth values are assigned
to challenging regions, such as large sky regions and while traversing indoor/tunnel
sections. Regarding the sky regions, it is a challenge for depth estimation using
perspective pinhole, but is exacerbated in the omnidirectional case due to the much
higher field-of-view capturing more of it in comparison. Additionally, this work has
made it clear that the lack of high-quality public datasets tackling this problem is
hindering future research.

Future work could involve tackling these two issues. A priority for future work
should be a concentrated data collection effort. Futher research in this area can
be enabled by gathering a diverse and expansive dataset that encompasses a broad
range of environmental conditions. This data collection should focus on capturing
images from the areas where the current depth estimation methods struggle the most
- large sky regions and transitionary regions, such as outdoor-to-indoor or tunnel
areas. By securing more data from these challenging regions, it could be that it can
also address the issue of erroneous depth values.

Of course, the work incorporating LiDAR data into the training pipeline is also
not without issues. Despite how sparse LiDAR returns can be, it is enough to
provide a tangible benefit. However it was not as large as was intially hypothesized.

Future work could involve improving the density and coverage of LiDAR points,
either through hardware improvements in the sensors themselves or via the fusion
of multiple LiDAR sensors. This would also enable further experiments on the true
efficacy of the proposed frequency-based weighting scheme. Additionally, this would
provide more training data, which in turn should improve the performance.

Lastly, future work would involve investigating the integration of the methodolo-
gies outlined in this thesis into a cohesive system. For example, the omnidirectional
depth methodologies could be integrated as a component within a self-driving or
driver assistance system “stack”. This would receive as input a video stream from
a chassis-mounted camera and inform a collision avoidance systems of nearby haz-

84

6.2. LIMITATIONS AND FUTURE WORK

ards. These hazards could be further corroborated by the object-level bird’s eye view
generation outlined in Chapter 3, which could act in tandem or as an independent
component.

85

Bibliography

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. arXiv preprint arXiv:1512.03385, 2015.

[2] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J. Brostow.
Digging into Self-Supervised Monocular Depth Prediction. The IEEE Interna-
tional Conference on Computer Vision (ICCV), 2019.

[3] K. Bimbraw. Autonomous cars: Past, present and future a review of the de-
velopments in the last century, the present scenario and the expected future
of autonomous vehicle technology. 2015 12th International Conference on In-
formatics in Control, Automation and Robotics (ICINCO), 01:191–198, July
2015.

[4] Nikolaos Zioulis, Antonis Karakottas, Dimitrios Zarpalas, and Petros Daras.
OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas. Com-
puter Vision – ECCV 2018.

[5] Fu-En Wang, Hou-Ning Hu, Hsien-Tzu Cheng, Juan-Ting Lin, Shang-Ta Yang,
Meng-Li Shih, Hung-Kuo Chu, and Min Sun. Self-supervised Learning of Depth
and Camera Motion from 360° Videos. Computer Vision – ACCV 2018.

[6] Lei Jin, Yanyu Xu, Jia Zheng, Junfei Zhang, Rui Tang, Shugong Xu, Jingyi
Yu, and Shenghua Gao. Geometric Structure Based and Regularized Depth
Estimation From 360◦ Indoor Imagery. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[7] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niess-
ner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3D:
Learning from RGB-D Data in Indoor Environments. International Conference
on 3D Vision (3DV), 2017.

86

BIBLIOGRAPHY

[8] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and
Bryan Catanzaro. High-Resolution Image Synthesis and Semantic Manipulation
with Conditional GANs. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[9] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew P. Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-Realistic
Single Image Super-Resolution Using a Generative Adversarial Network. CoRR,
abs/1609.04802, 2016.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Ad-
versarial Nets. Advances in Neural Information Processing Systems 27, pages
2672–2680, 2014.

[11] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative
Adversarial Networks. Proceedings of the 34th International Conference on
Machine Learning, 70:214–223, 06–11 Aug 2017.

[12] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved Training of Wasserstein GANs. Advances in
Neural Information Processing Systems 30, pages 5767–5777, 2017.

[13] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

[14] Janne Heikkilä and Olli Silvén. A Four Step Camera Calibration Procedure
with Implicit Image Correction. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 22:1106–, 01 1997.

[15] J.-Y. Bouguet. Camera Calibration Toolbox For Matlab. 2001.

[16] Gary Bradski and Adrian Kaehler. Learning OpenCV - computer vision with
the OpenCV library: software that sees. 01 2008.

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Commun. ACM, 60(6):84–90,
may 2017.

87

BIBLIOGRAPHY

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[20] K Simonyan and A Zisserman. Very deep convolutional networks for large-scale
image recognition. pages 1–14. Computational and Biological Learning Society,
2015.

[21] Chien-chuan Lin and Ming-shi Wang. A vision based top-view transformation
model for a vehicle parking assistant. Sensors 2012, pages 4431–4446.

[22] B. Zhang, V. Appia, I. Pekkucuksen, Y. Liu, A. U. Batur, P. Shastry, S. Liu,
S. Sivasankaran, and K. Chitnis. A Surround View Camera Solution for Em-
bedded Systems. 2014 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 676–681, June 2014.

[23] Simon Hecker, Dengxin Dai, and Luc Van Gool. End-to-End Learning of Driv-
ing Models with Surround-View Cameras and Route Planners. Computer Vi-
sion – ECCV 2018, pages 449–468, 2018.

[24] Carlos Guindel, David Martín, and José María Armingol. Traffic scene aware-
ness for intelligent vehicles using ConvNets and stereo vision. Robotics and
Autonomous Systems, 112:109–122, 2019.

[25] Xinge Zhu, Zhichao Yin, Jianping Shi, Hongsheng Li, and Dahua Lin. Genera-
tive Adversarial Frontal View to Bird View Synthesis. CoRR, abs/1808.00327,
2018.

[26] Simon Baker, Ankur Datta, and Takeo Kanade. Parameterizing homographies,
2006.

[27] Dequan Wang, Coline Devin, Qi-Zhi Cai, Philipp Krähenbühl, and Trevor
Darrell. Monocular Plan View Networks for Autonomous Driving. CoRR,
abs/1905.06937, 2019.

[28] A. Palazzi, G. Borghi, D. Abati, S. Calderara, and R. Cucchiara. Learning
to map vehicles into bird’s eye view. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 10484:233–243, 2017.

88

BIBLIOGRAPHY

[29] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3D: Learning 3D Scene
Structure from a Single Still Image. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31, 2009.

[30] David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map Prediction from
a Single Image Using a Multi-Scale Deep Network. Advances in Neural Infor-
mation Processing Systems, 2014.

[31] Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep Convolutional Neural
Fields for Depth Estimation From a Single Image. The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[32] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Condi-
tional Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data. Proceedings of the Eighteenth International Conference on Ma-
chine Learning, 2001.

[33] David Eigen and Rob Fergus. Predicting Depth, Surface Normals and Semantic
Labels with a Common Multi-scale Convolutional Architecture. 2015 IEEE
International Conference on Computer Vision (ICCV), 2015.

[34] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and
Nassir Navab. Deeper Depth Prediction with Fully Convolutional Residual
Networks. International Conference on 3D Vision (3DV), 2016.

[35] Jose M. Facil, Benjamin Ummenhofer, Huizhong Zhou, Luis Montesano,
Thomas Brox, and Javier Civera. CAM-Convs: Camera-Aware Multi-Scale
Convolutions for Single-View Depth. The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2019.

[36] Ibraheem Alhashim and Peter Wonka. High Quality Monocular Depth Estima-
tion via Transfer Learning. arXiv e-prints, abs/1812.11941, 2018.

[37] Fangchang Ma and Sertac Karaman. Sparse-to-Dense: Depth Prediction from
Sparse Depth Samples and a Single Image. The IEEE International Conference
on Robotics and Automation (ICRA), 2018.

[38] Zhao Chen, Vijay Badrinarayanan, Gilad Drozdov, and Andrew Rabinovich.
Estimating Depth from RGB and Sparse Sensing. Computer Vision – ECCV
2018, 2018.

89

BIBLIOGRAPHY

[39] Shreyas S. Shivakumar, Ty Nguyen, Ian D. Miller, Steven W. Chen, Vijay
Kumar, and Camillo J. Taylor. DFuseNet: Deep Fusion of RGB and Sparse
Depth Information for Image Guided Dense Depth Completion. The IEEE
International Conference on Intelligent Transportation Systems (ITSC), 2019.

[40] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised
Monocular Depth Estimation with Left-Right Consistency. The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017.

[41] Vitor Guizilini, Rares, Ambrus, , Sudeep Pillai, Allan Raventos, and Adrien
Gaidon. 3D Packing for Self-Supervised Monocular Depth Estimation. The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[42] Hsien-Tzu Cheng, Chun-Hung Chao, Jin-Dong Dong, Hao-Kai Wen, Tyng-Luh
Liu, and Min Sun. Cube Padding for Weakly-Supervised Saliency Prediction
in 360° Videos. The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2018.

[43] Miriam Schönbein, Tobias Strauss, and Andreas Geiger. Calibrating and Cen-
tering Quasi-Central Catadioptric Cameras. The IEEE International Confer-
ence on Robotics and Automation (ICRA), 2014.

[44] Miriam Schönbein and Andreas Geiger. Omnidirectional 3D Reconstruction in
Augmented Manhattan Worlds. The IEEE International Conference on Intel-
ligent Robots and Systems (IROS), 2014.

[45] Jingwei Huang, Zhili Chen, Duygu Ceylan, and Hailin Jin. 6-DOF VR videos
with a single 360-camera. The IEEE International Conference on Virtual Re-
ality and 3D Interfaces (VR), 2017.

[46] Varun Ravi Kumar, Stefan Milz, Christian Witt, Martin Simon, Karl Amende,
Johannes Petzold, Senthil Yogamani, and Timo Pech. Monocular Fisheye Cam-
era Depth Estimation Using Sparse LiDAR Supervision. The IEEE Interna-
tional Conference on Intelligent Transportation Systems (ITSC), 2018.

[47] Nikolaos Zioulis, Antonis Karakottas, Dimitris Zarpalas, Federic Alvarez, and
Petros Daras. Spherical View Synthesis for Self-Supervised 360° Depth Estima-
tion. International Conference on 3D Vision (3DV), September 2019.

[48] Ning-Hsu Wang, Bolivar Solarte, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun.
360SD-Net: 360° Stereo Depth Estimation with Learnable Cost Volume . The
IEEE International Conference on Robotics and Automation (ICRA), 2020.

90

BIBLIOGRAPHY

[49] Fu-En Wang, Yu-Hsuan Yeh, Min Sun, Wei-Chen Chiu, and Yi-Hsuan Tsai.
BiFuse: Monocular 360 Depth Estimation via Bi-Projection Fusion. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[50] Yu-Chuan Su and Kristen Grauman. Learning Spherical Convolution for Fast
Features from 360° Imagery. Advances in Neural Information Processing Sys-
tems, 2017.

[51] Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger. SphereNet:
Learning Spherical Representations for Detection and Classification in Omni-
directional Images. Computer Vision – ECCV 2018, 2018.

[52] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[53] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Li-
ong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Bei-
jbom. nuScenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[54] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual KITTI 2,
2020.

[55] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds
as proxy for multi-object tracking analysis. Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 4340–4349, 2016.

[56] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Ag-
gregated Residual Transformations for Deep Neural Networks. arXiv preprint
arXiv:1611.05431, 2016.

[57] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. Proceedings
of the British Machine Vision Conference (BMVC), pages 87.1–87.12, Septem-
ber 2016.

[58] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expan-
sion. Image Analysis, 2003.

[59] Ravi Garg, BG Vijay Kumar, Gustavo Carneiro, and Ian Reid. Unsupervised
CNN for Single View Depth Estimation: Geometry to the Rescue. Computer
Vision – ECCV 2016, 2016.

91

BIBLIOGRAPHY

[60] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. Unsuper-
vised Learning of Depth and Ego-Motion from Video. The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Advances in Neural Information Processing Systems,
2019.

[62] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. CoRR, abs/1412.6980, 2015.

[63] Jun Xie, Martin Kiefel, Ming-Ting Sun, and Andreas Geiger. Semantic Instance
Annotation of Street Scenes by 3D to 2D Label Transfer. The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[64] Burr Settles. Active learning literature survey. 2009.

92

	I Introduction
	Introduction
	Motivations
	Open Challenges

	Contributions
	Outline

	Background
	Preliminary
	Pinhole Camera Geometry
	Equirectangular Camera Geometry
	Camera Calibration

	Neural Networks
	Perceptron
	Multi-layer Perceptron
	Convolutional Neural Networks
	Common Network Architectures
	Generative Adversarial Networks

	Literature Review
	Perception and Vehicle Surround View
	Monocular Depth Estimation
	Omnidirectional Depth Estimation

	II Contributions
	Bird's Eye View Generation
	Overview
	Methodology
	Model Architecture
	Loss Functions
	Training Scheme

	Evaluation
	Dataset and Experimental Setup
	Testing and Metrics
	Quantitative Results
	Qualitative Results

	Discussion

	Omnidirectional Depth Estimation
	Overview
	Methodology
	Spherical Convolutions
	Optical Flow Masking
	Model Architecture
	Training and Implementation

	Evaluation
	Dataset and Pre-Processing
	Competing Methods and Evaluation
	Results

	Discussion

	Omnidirectional Depth Estimation With LIDAR
	Overview
	Methodology
	Extrinsic Calibration
	Model Architecture
	Grid Loss
	Training and Implementation

	Evaluation
	Dataset
	Quantitative Results
	Qualitative Results

	Discussion

	III Conclusions
	Conclusions
	Conclusions
	Limitations and Future Work

