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Higher-dimensional processing using a 
photonic tensor core with continuous-time 
data

Bowei Dong    1,2, Samarth Aggarwal    1, Wen Zhou1, Utku Emre Ali    1, 
Nikolaos Farmakidis    1, June Sang Lee1, Yuhan He1, Xuan Li1, Dim-Lee Kwong2, 
C. D. Wright    3, Wolfram H. P. Pernice    4,5 & H. Bhaskaran    1 

New developments in hardware-based ‘accelerators’ range from electronic 
tensor cores and memristor-based arrays to photonic implementations. 
The goal of these approaches is to handle the exponentially growing 
computational load of machine learning, which currently requires the 
doubling of hardware capability approximately every 3.5 months. One 
solution is increasing the data dimensionality that is processable by such 
hardware. Although two-dimensional data processing by multiplexing space 
and wavelength has been previously reported, the use of three-dimensional 
processing has not yet been implemented in hardware. In this paper, we 
introduce the radio-frequency modulation of photonic signals to increase 
parallelization, adding an additional dimension to the data alongside 
spatially distributed non-volatile memories and wavelength multiplexing. 
We leverage higher-dimensional processing to configure such a system to 
an architecture compatible with edge computing frameworks. Our system 
achieves a parallelism of 100, two orders higher t ha n i mp le me nt ations using 
only the spatial and wavelength degrees of freedom. We demonstrate this by 
performing a synchronous convolution of 100 clinical electrocardiogram 
signals from patients with cardiovascular diseases, and constructing a 
convolutional neural network capable of identifying patients at sudden 
death risk with 93.5% accuracy.

Owing to the proliferation of the Internet of Things and 5G, the global 
data volume has grown exponentially, reaching 64.2 zettabytes in 
2020 and is projected to reach 181.0 zettabytes in 2025 (ref. 1). Big 
data provides machine-learning (ML) models with unprecedented 
rich and multifaceted information to reveal underlying data patterns 
for analysis and prediction2, with profound societal impact in diverse 
fields3 such as computer vision4, speech recognition5, natural language 
processing6, physical sciences7, computer sciences8 and biomedical 

sciences9. However, the heavy computational load that big data imposes 
on hardware systems threatens the viability of ML10. Matrix–vector 
multiplication (MVM) is the fundamental operation that dominates 
90% of runtime in most ML models (for example, GoogleNet, VGG, 
OverFeat and AlexNet)11. To parallelize MVM by increasing the dimen-
sionality of data, various electronic computing architectures with 
the parallel-mode advantage compared with central processing units 
(CPUs) have been employed in hardware12, such as graphics processing 
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elements31. Broadcast-and-weight PIC-based MVM processors using 
light at different wavelengths as data carriers and tunable micror-
ing resonator add–drop filters as weighting elements have also been 
developed32. More recently, optical frequency comb technology was 
introduced with PIC-based MVM processors to provide a high-quality 
multiwavelength light source with dense wavelength spacing33,34.  
A record high of 11 tera operations per second has been realized using 
a single optical frequency comb with the wavelength-and-time inter-
leaving technique33. The latest advance in delocalized photonic deep 
learning shows the advantages of using PIC-based MVM processors on 
the Internet’s edge35. In addition, it is worth noting that a photonic coun-
terpart of an electronic crossbar array has been demonstrated34. The 
passive photonic crossbar array uses waveguide directional couplers 
and crossings as interconnects and phase-change materials (PCMs) as 
memories (optical transmissions tuned by the non-volatile crystalline 
state of the PCM36).

In all the PIC-based MVM processors, two DOFs are accessible 
by the input data, that is, space and wavelength, allowing a two- 
dimensional (2D) array input

X2D =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x11 x12⋯ x1Q
x21 x22⋯ x2Q

⋱

xM1 xM2⋯ xMQ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(Fig. 1b). Here Q dM×1 input vectors, each carried by a different wave-
length λq, can be processed in parallel, leading to one dK×M × dM×Q 
matrix–matrix multiplication (equivalent to Q dK×M × dM×1 MVMs).  
A parallelism (defined as the number of MVMs per operation cycle of 

units13, field-programmable gate arrays14 and application-specific 
integrated circuits15. In addition, perhaps the most notable recent 
advance is the use of memristive crossbar arrays for analogue 
in-memory computing16–18. Various mechanisms have been explored 
to store memories in physical states of materials (redox19, phase 
change20, ferroelectric21 and magnetoresistive22) to enable such 
in-memory computing. A memristive crossbar array with M inputs 
and K outputs mathematically represents a matrix of dimension dK×M 
that contains K d1×M kernels. Multiplication and addition operations 
are performed according to Ohm’s law and Kirchhoff’s law, respec-
tively. The input data use the spatial degree of freedom (DOF) and 
are a one-dimensional (1D) array X1D = (x1x2…xM)T representing a dM×1 
vector, leading to one dK×M × dM×1 MVM per operation cycle (Fig. 1a).

Photonic MVM is emerging as a next-generation alternative with 
the advantages of low latency, low energy consumption and high 
DOFs23,24. Compared with electronic data transmission that is inher-
ently limited by capacitive delay and the energy consumption required 
to charge/discharge electronic integrated circuits, photons trans-
mit data at the speed of light with near-zero power consumption25.  
Photonic MVM can access a huge terahertz bandwidth compared  
with a gigahertz bandwidth accessible by electronics, opening the 
possibility of high parallelism by exploiting the wavelength DOF, that 
is, wavelength-division multiplexing (WDM). Traditionally, photonic 
MVM was implemented by light diffraction in free space, an approach 
that continues to inspire computing architectures26. In the past dec-
ade, photonic MVM using photonic integrated circuits (PICs) has 
flourished27,28 owing to the development of scalable on-chip dense 
integration of optical waveguide components29,30. Notable progress 
includes the demonstration of PIC-based MVM processors based on 
cascaded Mach–Zehnder interferometer arrays using coherent light 
as the data carriers and thermo-optic phase shifters as weighting 
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Fig. 1 | High-dimensional photonic in-memory computing using data with 
three DOFs. Comparison of computing schemes. a, Traditional electronic 
computing uses the spatial DOF for data input, inputting 1D arrays to achieve 
MVM. b, Recent photonic computing uses the spatial and wavelength DOFs, 

inputting 2D arrays to achieve matrix–matrix multiplications. c, Our scheme 
adds the RF DOF by using continuous-time data representation, inputting 3D 
arrays to achieve parallel matrix–matrix multiplications.
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a physical device) of 4 using a photonic crossbar array and WDM has 
been realized34. Recently, a similar endeavour to increase data dimen-
sionality was reported in electronic crossbar arrays by exploring the 
continuous-time data representation37. Conceptually similar to WDM, 
continuous-time data are generated by multiplexing radio-frequency 
(RF) signals at different frequencies, where data are encoded in RF 
amplitudes. As this was done in electronics, the input data are a 2D 
array restricted to spatial and RF DOFs, leading to one dK×M × dM×N 
matrix–matrix multiplication (equivalent to N dK×M × dM×1 MVMs) if N 
RF components are used. Inspired by such advances, in this paper, 
we demonstrate a computing architecture in hardware that allows 
three-dimensional (3D) array inputs for higher-dimensional MVM by 
simultaneously exploiting three DOFs, that is, space, wavelength and 
RF. The input data are a 3D array:

X3D = [X2D,λ1 X2D,λ2 ⋯X2D,λQ ] ,X2D,λq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x11,q x12,q⋯ x1N,q
x21,q x22,q⋯ x2N,q

⋱

xM1,q xM2,q⋯ xMN,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

X3D represents multiple dM×N matrices each carried by a wavelength 
λq, when N RF components (f1 to fN) and Q wavelengths are used  
(Fig. 1c). The 3D array input is processed by an electro-optically con-
trolled photonic tensor core with reconfigurable non-volatile PCM 
memories to enable photonic in-memory computing. Our system is 
effectively implementing Q dK×M × dM×N matrix–matrix multiplications 
(equivalent to Q × N dK×M × dM×1 MVMs) and achieves a remarkable ultra-
high parallelism of 100, two orders higher than the previous imple-
mentation34 using only two DOFs. Having such a higher-dimensional 
processing advantage allows our system to accelerate hugely common 
artificial-intelligence-type processing tasks. We demonstrate this by 
realizing the synchronous convolution of 100 clinical electrocardio-
gram (ECG) signals from cardiovascular disease (CVD) patients and 
facilitating a convolutional neural network (CNN) to identify patients 
at sudden death risk with 93.5% accuracy. Increasing the dimensionality 
from 1D to 2D to 3D data processing by exploiting additional DOFs, the 
system parallelism is increased from 1 to (Q or N) to Q × N, providing a 
viable path for ultraparallel photonic computing.

Data architecture and working principle
The proposed computing architecture utilizes continuous-time data 
representation instead of traditional discrete-time data represen-
tation to add RF as the third DOF for data input. Figure 2 conceptu-
ally illustrates the data architecture and working principle of using 
continuous-time data representation. An example of matrix–matrix 
multiplication without using WDM is illustrated to highlight RF paral-
lelism and maintaining visual clarity (Fig. 2a).

To perform higher-dimensional in-memory computing that simul-
taneously utilizes the spatial, wavelength and RF DOFs, a photonic ten-
sor core system based on electro-optically controlled PIC technology 
is proposed (Fig. 2b). To implement the matrix–matrix multiplication 
shown in Fig. 2a, the photonic tensor core with M inputs and K outputs 
defines a dK×M matrix

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

w11w21⋯wK1

w12w22⋯wK2

⋱

w1M w2M⋯wKM

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

consisting of K d1×M kernels. A cell (red-dashed box) contains a tun-
able power splitter for power distribution and routing, a PCM memory  

(or weight) for multiplication, a directional coupler for accumulation 
and a crossing for interconnect (Fig. 2c). The system scalability is evi-
dent from the periodic cell layout in the 2D plane. MVM requires equal 
power distribution to all the PCM weights and the same contribution 
from different cells for linear accumulation. The requirements are 
fulfilled by a meticulous design of the power splitter and directional 
coupler (Supplementary Section 1). In addition to equal power distri-
bution, power splitters also serve to concentrate all the optical power 
in a specific cell during the PCM weight-setting process (Methods).  
The input data architecture features a 2D array

X2D =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x11 x12⋯ x1N
x21 x22⋯ x2N

⋱

xM1 xM2⋯ xMN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

representing multiple dM×1 vectors. Here N RF components are multi-
plexed to produce this dM×N matrix. The nth vector is carried by the 
corresponding RF component at frequency fn. Data in the mth row are 
carried by a continuous-time signal inm(t) = ∑N

n=1xmnei2πfnt  through 
encoding individual elements into amplitudes of N different RF com-
ponents and input via optical channel m of the photonic tensor core. 
The weighted sum of M such inputs that is output from column k is

out (t)k = ∑
M
m=1wkminm (t) = ∑

N
n=1∑

M
m=1wkmxmnei2πfnt,

whose Fourier transform is out ( f )k = ∑N
n=1∑

M
m=1wkmxmnδ( f − fn) . 

Consequently, the collective outputs from all the columns are

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

out( f )1
out( f )2

⋮

out( f )K

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑N
n=1∑

M
m=1w1mxmnδ( f − fn)

∑N
n=1∑

M
m=1w2mxmnδ( f − fn)

⋮

∑N
n=1∑

M
m=1wKmxmnδ( f − fn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y11 y12⋯ y1N
y21 y22⋯ y2N

⋱

yK1 yK2⋯ yKN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Y represents N MVM results of all the N dM×1 vectors in X2D multiplied by 
the kernel matrix W. Using Q WDM channels will result in Q × N MVMs.

Verification of fundamental operations
The additional RF DOF is introduced to the system using a continuous- 
time data representation. We first verify the feasibility of using 
continuous-time data representation for photonic in-memory 
computing. A photonic tensor core provides three fundamental 
functions: data summation by routing cell outputs to common 
buses, data weighting by PCM memory and consequent weighted 
data summation. These three functions correspond to three math-
ematical operations, namely, addition, multiplication and multiply– 
accumulate (MAC), respectively. These three operations are stud-
ied using a Y junction loaded with PCM memories on both arms  
(Fig. 3a). Supplementary Section 2 shows the representative scanning 
electron microscopy image and testing setups. Fifty RF components 
(N = 50) are multiplexed to generate d1×50 input vectors. The frequen-
cies of these 50 RF components uniformly span from f1 = 0.15 MHz 
to f50 = 2.60 MHz. The shortest acquisition time required is  
tmin = 1/gcd(f1, f2…f50), such that an integer multiple of complete wave-
forms can be acquired for each RF component, where gcd stands for 
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the greatest common divisor. All the numbers are randomly generated 
from [0, 1] with a 0.01 resolution.

Supplementary Section 3 shows the basic transmission perfor-
mance of multiplexed RF modulated optical signal. To verify the addi-
tion operation, two weights are idle. Each value in a d1×50 vector 
(x1x2…x50) is encoded in the respective RF amplitude. Two multiplexed 
RFs modulate two optical carriers to generate continuous-time  
inputs, namely, in1(t) = ∑N

j=1xje
i2πfjt  and in2(t) = ∑N

k=1xkei2πfkt . The 
time-domain output is the direct sum of the two inputs, that is, 
out (t) = ∑N

j=1xje
i2πfjt +∑N

k=1xkei2πfkt  (Fig. 3b), and the frequency- 
domain output is the sum of two RF amplitudes at discrete frequencies, 
that is, out ( f ) = ∑k∑j(xk + xj)δ(fk − fj) (Fig. 3c). The accuracy of the 
addition operation is revealed by its error distributions (Supplemen-
tary Section 4). The wavelength spacing (Δλ) between the two inputs 
is also studied (Supplementary Section 5) for harnessing dense WDM 
parallelism in system implementation. The accuracy of the addition 
operation under different numbers of multiplexed RF components is 
also studied (Supplementary Section 6), suggesting that N = 50 pre-
sented here is not a limitation of parallelism for low-precision ML 
models38. To verify the multiplication operation, only one arm of the 
Y junction is active. A continuous-time input consisting of multipli-
cands is in(t) = ∑N

j=1xje
i2πfjt. The multiplier w (or weight) is determined 

by the crystalline state of PCM and can be set using optical pulses 

(Supplementary Section 7). The resultant change in optical transmis-

sion ΔT = Tset−Tref
Tref

 can be continuously tuned from 0% to more 

than 20% by increasing the amorphization pulse width (Fig. 3d). 
The weight w can be mapped to [0, 1], leading to normalized outputs 
from PCM memory: w × x ∈ [0, 1]. Supplementary Section 8 describes 
the details of weight mapping. The frequency-domain outputs at 
different weights are examined to confirm that the multiplicands 
encoded in the different RF components are operated by the same 
multiplier (Supplementary Section 9). The accuracy of the multiplica-
tion operation is revealed by the Gaussian error distribution of 1,500 
multiplication results, obtained by multiplying 300 random numbers 
and 5 weights, showing a standard deviation of 0.056 ± 0.001 (Fig. 3e). 
The whole Y junction is active for the verification of the two-channel 
MAC operation. The input vectors and operation principle are similar 
to the combination of addition and multiplication operations. Using 
300 pairs of random numbers and 5 pairs of weights using just a Y 
junction, we obtain a standard deviation of 0.057 ± 0.001 in Gaussian 
error distribution from 1,500 MAC operations (Fig. 3f). In a photonic 
tensor core with 300 three-element arrays of random numbers and 5 
three-element arrays of weights, the standard deviation we record is 
0.063 ± 0.001 (Supplementary Section 10), where the expected perfor-
mance of using more optical channels is also estimated. The errors are 
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Fig. 2 | Data architecture and working principle of a photonic tensor core 
for in-memory computing using continuous-time data representation. 
a, Target matrix–matrix multiplication using only one optical wavelength 
and N multiplexed RF components. b, Implementation of the matrix–matrix 
multiplication. The weight matrix W of dimension dK×M containing K d1×M kernels 
is defined by the tensor core with M inputs and K outputs. Carried by one 
wavelength λ1, a dM×N matrix X is input using M input optical channels and  
N multiplexed RFs. The nth dM×1 vector (x1nx2n…xMn)T is encoded in the amplitude 

of RF fn. The mth element is input via input optical channel m. Consequently,  
Q matrix–matrix multiplications can be processed in parallel using Q 
wavelengths, where each wavelength carries a dM×N matrix. c, Each cell 
(highlighted in the red-dashed box in b) in the tensor core contains a tunable 
power splitter for optical power distribution and routing, a PCM memory for 
multiplication, a waveguide crossing for interconnect and a directional coupler 
for addition. Here k represents the kth output column.
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attributed to variations in the weight setting and noise from receivers. 
The former can be minimized by the progressive setting method that 
gradually increases the setting pulse energy until the desired trans-
mission is reached34, and the latter can be improved by using on-chip 
integrated photodetectors with a lower noise-equivalent power or 
reducing the optical loss of the PIC to enhance the signal-to-noise ratio.

This successful verification of three fundamental operations 
proves the feasibility of using a continuous-time data representation 
to add the RF DOF to photonic in-memory computing. Using multi-
plexed N = 50 RF components for a simple PCM-loaded Y junction, a 
parallelism of 50 is achieved, showing the high parallelism provided by 
the additional RF DOF. Importantly, this high parallelism contributed 
by RF can be conveniently incorporated into optoelectronic systems 
since it involves no additional optical multiplexing or filtering. Pos-
sible existing solutions to implement RF multiplexing include the use 
of field-programmable gate arrays and operational amplifier banks39, 
making on-chip integration feasible for our proposed architecture.

Healthcare monitoring using a CNN
Statistics revealed by the World Health Organization show that CVDs 
are the leading cause of death, taking 17.9 million lives annually, with 
more than 80% caused by sudden heart attacks and strokes40. Real-time 
ECG recording and analysis are crucial to minimize sudden death risks. 
An edge computing framework is a solution to simultaneously moni-
tor the health condition of multiple CVD patients in real time with low 
latency41. The proposed computing architecture exploiting three DOFs 
is a potential platform to implement computing in edge clouds and 
perform the high-dimensional synchronous convolution of ECG sig-
nals and can facilitate ML-aided analysis to alert sudden death events, 
simultaneously benefiting a large number of CVD patients.

Having verified the feasibility of simultaneously using three DOFs, 
we configure our system to an architecture for edge cloud computing 

(Fig. 4). Specifically, the wavelength and spatial DOFs are utilized for 
high-bandwidth parallel convolution and the RF DOF enables low 
latency and synchronization between the end devices. The system 
contains three layers (edge device, edge interface and edge cloud) 
with five functional blocks: input light generation and (de)multiplex-
ing in the edge cloud, input-multiplexed RF generation at the edge 
device and interface, optical modulation relating edge interface and 
edge cloud, photonic tensor core for in-memory computing in the 
edge cloud, and output light (de)multiplexing and detection in the 
edge cloud. In our system implementation, six wavelengths covering 
1,548.51 to 1,552.52 nm, with an adjacent spacing of 0.8 nm (equivalent 
to 100 GHz), are used for WDM. The highest RF frequency limited by 
our variable optical attenuators is 1 kHz. Methods and Supplementary 
Section 11 show the detailed system setup and electro-optic response, 
respectively. The corresponding operation is a specific case of the gen-
eralized data architecture and working principle described previously 
and is discussed in detail in Supplementary Section 12. In a single opera-
tion cycle, the system is synchronously performing 300 convolutions, 
convolving 100 ECG signals using three kernels.

The convolution results are further fed to a CNN for ML-aided ECG 
signal analysis. The CNN is designed to identify CVD patients at sud-
den death risks caused by ventricular fibrillation (a type of abnormal 
heart rhythm). The CNN architecture is illustrated with a single ECG 
signal without the loss of generality (Fig. 5a) and described in detail 
in Methods. Figure 5b shows a typical expected (Fig. 5b(i), convolved 
by CPU) and measured (Fig. 5b(ii), convolved by photonic system) 
convolution result of normal ECG signals, whereas Fig. 5c shows those 
in sudden death events. All the convolutions are performed once, and 
the error bands shown in Fig. 5b,c represent the standard deviation 
of convolution results from 50 pulses generated by the same patient, 
showing the variation in the ECG signal generated by this patient.  
Supplementary Figs. 15 and 16 show all the other convolution results. 
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of weights. The inset shows the normalized error distribution.
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The features are effectively extracted, and the measured results 
resemble the expected ones. The convolution accuracy is examined 
by comparing 24,750 pairs of expected and measured results, show-
ing a Gaussian error distribution with a low standard deviation of 
0.015 ± 0.001 (Fig. 5d). Supplementary Fig. 17 shows the expected 
convolution result density. The standard deviation is lower than that 
obtained in MAC verification because most convolution results are 
small, within the range of [0, 0.5]. The CNN classification accuracies 
are presented in Fig. 5e. In the absence of a convolution layer, only 

89% accuracy can be reached. With a convolution layer that helps to 
extract features, the accuracy is increased to 94.0% and 93.5% when 
the expected and measured convolution results are used, respec-
tively. Minor differences in loss and accuracy evolution curves are 
observed between the use of expected and measured convolu-
tion results (Supplementary Fig. 18), suggesting a high accuracy of 
photonic-system-implemented convolution using continuous-time 
data representation. The confusion maps of classification results 
are shown in Supplementary Fig. 19, showing that there is only a 1% 
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probability that abnormal ECG signals will be misclassified as normal 
ECG signals. Similar details are observed in the two maps, indicating 
the simultaneous achievement of high accuracy, effectiveness and 
ultraparallelism using our system that exploits three DOFs.

Discussion and conclusion
We have demonstrated the first instance of a photonic in-memory 
computing architecture capable of implementing higher-dimensional 
MVM in a single operation cycle of a physical device by increasing the 
multiplexing dimensionality using RF as a carrier. By verifying the fea-
sibility of computing with continuous-time data in the optical domain, 
we provide an additional pathway to increase parallelism to photonic 

processors. An electro-optically controlled photonic tensor core 
system was built to simultaneously exploit spatial, wavelength and 
RF DOFs to harness ultrahigh parallelism. A parallelism of 100, two 
orders higher than the previous implementation34, was achieved by 
multiplexing 50 RF components on top of 2 WDM channels. Leveraging 
this higher-dimensional processing capability and high parallelism, we 
configured our system to an architecture for edge cloud computing to 
perform a synchronous convolution of 100 clinical ECG signals from 
CVD patients and built a CNN capable of identifying patients at sudden 
death risk with 93.5% accuracy. Although these are achieved using a 
small-size 3 × 3 photonic tensor core, larger-size photonic tensor cores 
are envisioned for better compute density, compute efficiency and 
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more general applications42. The scalability and performance estima-
tion of larger-size photonic tensor cores are also discussed in detail 
(Supplementary Section 15). Crucially, the parallelism of 100 is not an 
upper limit (Supplementary Fig. 9); multiplexing 150 RF components 
is possible if lower precision is allowed. By using 16 WDM channels, 
an overall parallelism of 2,400 can also be achieved, suggesting that 
a single system can synchronously process signals from 2,400 end 
devices; this is currently not possible using existing technologies with 
lower-dimensional processing capability. Possible alternative methods 
towards this high computing capability include increasing the clock 
speed of electronics and using ultradense WDM channels. Supple-
mentary Section 16 discusses the challenges associated with these two 
alternatives. Our proposed architecture is ubiquitously applicable to 
other photonic processing systems43–45 to enrich data information by 
exploiting more DOFs.

A key understanding underlying the mechanism of 
higher-dimensional data processing is that although the wavelength 
spacing of 0.8 nm may be considered ‘dense’ in WDM, this is orders of 
magnitude larger from an RF perspective. Therefore, the RF dimen-
sion can be regarded as a quasi-independent dimension that enriches 
data information. Meanwhile, continuous-time data representation 
brings another key advantage of avoiding electronic logic-state flips 
to potentially increase the clock frequency46. More interestingly, the 
recent exploration of synthetic dimensions in photonics suggests that 
a single photonic cavity acousto-optic modulator naturally compatible 
with RF could be adopted to substantially reduce the footprint of the 
weighting matrix47,48. From the hardware perspective, even though 
off-chip light sources, circulators, amplifiers, modulators and photode-
tectors were used in a lab environment aiming to verify high parallelism, 
these active photonic components can be monolithically integrated 
on a single chip29,49,50. Complementary metal–oxide–semiconductor 
RF electronics can be adopted in the system to maximize the com-
pute efficiency and density (Supplementary Section 17). In addition 
to the RF DOF, phase51, polarization52 and mode53 DOFs of light could 
also offer more dimensions to further parallelize signal processing. 
However, the possible parallelism from these dimensions is restricted 
by their limited number of possible states and the requirement of 
waveguide compactness. It is also worth highlighting that the realiza-
tion of ultrahigh parallelism relies on the combination of photonics 
that provides the wavelength DOF and electronics that provides the 
additional RF DOF, suggesting that synergy between photonics and 
electronics should be sought to fully unleash the potential of both in 
a single integrated system.
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Methods
Device fabrication
Waveguide devices for verification of basic operations. The fabrica-
tion started from a silicon-on-insulator wafer (Soitec) with a 220 nm 
silicon (Si) device layer and a 2 µm buried oxide layer. A 400-nm-thick 
positive electron-beam resist (CSAR-62) was spin coated on a diced 
1 cm × 1 cm silicon-on-insulator chip, followed by 3 min of pre-baking 
at 150 °C. The electron-beam resist was patterned by electron-beam 
lithography (EBL; JEOL JBX-5500 50 kV) and developed in AR600-546 
for 30 s, methyl isobutyl ketone for 15 s and isopropanol for 15 s in 
sequence. The waveguide patterns were transferred to the Si device 
layer (etch depth, 110 nm) by reactive ion etching (Oxford Instrument 
PlasmaPro) with SF6 and CHF3 gases, followed by O2 plasma cleaning of 
CSAR. Next, a 2-µm-thick double-layer PMMA (PMMA 495 A8 and PMMA 
950 A8) was spin coated on the chip, followed by EBL patterning and 
development in methyl isobutyl ketone:isopropanol = 1:3 for 1 min to 
define the sputtering windows. A 10-nm-thick/10-nm-thick Ge2Sb2Te5 
(GST)/indium tin oxide (ITO) stack was deposited on the waveguide 
using a magnetron sputtering system (PVD, AJA International). The 
GST and ITO targets were sputtered at 30 W RF power with 3 s.c.c.m. 
Ar flow and 40 W RF power with 3 s.c.c.m. Ar flow, respectively, at a 
base pressure of 10−7 torr. The stack was then lifted off in acetone for 
180 min at 50 °C. Finally, the chip was annealed on a hotplate for 5 min 
at 250 °C to fully crystallize the GST.

Electro-optically controlled photonic tensor core. The passive sili-
con photonic circuit was fabricated using the foundry multi-project 
wafer service provided by CORNERSTONE. The detailed specifications 
of CORNERSTONE standard waveguide components can be found 
at https://cornerstone.sotonfab.co.uk/. The fabricated Si photonic 
circuit has a 1-µm-thick silicon dioxide (SiO2) upper cladding. SiO2 
windows were patterned by EBL and opened by hydrogen fluoride for 
the subsequent deposition of the GST/ITO stack, which is similar to 
the previously described GST/ITO sputtering procedure. Next, NiCr 
heater patterns were defined by EBL using a double-layer PMMA (PMMA 
495-A3 and PMMA 495-A6) as the photoresist. A 200-nm-thick NiCr 
layer was sputtered followed by PMMA lift-off to form NiCr heaters. 
Gold pads with 75 nm thickness were fabricated using a similar process 
as the NiCr heater fabrication, but with thermal evaporation (Edwards 
306). A 3–5 nm Cr layer is deposited before gold deposition to serve as 
an adhesion layer. The chip was then annealed on a hotplate for 5 min 
at 250 °C to fully crystallize the GST. Finally, the chip was wire bonded 
to a printed circuit board for electro-optic control.

Measurement setup
Setup for verification of operations using continuous-time data 
representation. Supplementary Section 2 comprehensively describes 
the experimental setups used to verify the fundamental operations 
using continuous-time data representation. The setup used to verify 
the transmission operation and the multiplication operation is an opti-
cal waveguide pump–probe setup (Supplementary Fig. 3), which was 
reported before54. The pump line and probe line were taking opposite 
routes in the waveguide by using two fibre-optic circulators. The full 
setup was used for multiplication. The pump laser line was idle in trans-
mission. The setup used to verify the addition and MAC operations is a 
modified optical waveguide pump–probe setup that accommodates 
a Y junction (Supplementary Fig. 4). The pump line and probe line 
followed the same route in the waveguide. The full setup was used for 
verifying the MAC operation. The pump laser line was idle in verifying 
the addition operation.

System setup for synchronous convolution. The experimental setup 
for the synchronous convolution of 100 ECG signals is shown in Fig. 4. 
The photonic tensor core has three input optical channels and three out-
put optical channels, representing a d3×3 matrix consisting of three d1×3 

kernels. The input light was switchable between a supercontinuum laser 
(SuperK COMPACT, NKT Photonics) and a tunable pump laser (Santec, 
TSL-550) using an optical switch (Gezhi GZ-12C-1×2-SM). The PCM mem-
ory in each cell of the photonic tensor core was first set to the desired 
weight to correctly define the kernels. The tunable pump laser was used 
in the PCM weight setting. The amplified pump light passed through a 
demultiplexer (DEMUX) module (Gezhi, DWDM-100G-DEMUX) so that 
different wavelengths were routed to different input optical channels 
(λ1 = 1,552.52 nm to optical channel 1, λ2 = 1,551.72 nm to optical channel 
2 and λ3 = 1,550.92 nm to optical channel 3). The tunable power split-
ters of the photonic tensor core were controlled by a microprocessing 
unit (Analog Devices DC2026) to ensure that all the pump power was 
concentrated into the PCM of the target cell. For example, to set w23, 
λ3 was used so that the pump light was routed to optical channel 3. 
Cell13 was controlled to distribute all the light into the top channel of 
its 2 × 2 multimode interferometer (MMI), and cell23 was controlled to 
distribute all the light into the bottom channel of the MMI to efficiently 
set w23. In this case, cell33 was idle. After setting all the PCM weights, a 
parallel convolution was performed using the supercontinuum laser. 
The DEMUX module was used to separate six wavelengths with a spac-
ing of 0.8 nm (equivalent to 100 GHz) to different optical channels 
(λ1 = 1,552.52 nm, λ2 = 1,551.72 nm, λ3 = 1,550.92 nm, λ′1 = 1,550.12 nm, 
λ′2 = 1,549.32 nm and λ′3 = 1,548.51 nm). The ECG signal data were loaded 
onto each wavelength using a variable optical attenuator (VOA; Thorlabs 
V1550A). The VOAs with the highest RF frequency of 1 kHz were driven 
via coaxial cables by a digital signal processor (NI USB-6259) that gener-
ated 50 multiplexed RF components. Note that in practice, when the RF 
frequency is high (in the gigahertz range) and the transmission distance 
is long (>10 m) in the edge cloud computing framework, coaxial cables 
should be replaced by fibre-optic connections to avoid the power loss 
of high-frequency signals in the coaxial cables. Here λ1 to λ3 were carry-
ing three respective time-domain data points of the ECG signals 1–50, 
whereas λ′1 to λ′3 were carrying the same data of ECG signals 51–100. The 
polarization of output light from VOA was controlled by a polarization 
controller (Thorlabs FPC032). The six wavelengths were then grouped 
by a multiplexer (MUX) array (Gezhi, DWDM-100G-MUX) to form three 
inputs to the respective input optical channels of the photonic tensor 
core (λ1 and λ′1 to optical channel 1, λ2 and λ′2 to optical channel 2 and λ3 
and λ′3 to optical channel 3). Convolutions were naturally performed as 
light propagated through the photonic tensor core. Each output optical 
channel of the photonic tensor core contained all the wavelengths λ1–λ3 
and λ′1–λ′3. These six wavelengths were demultiplexed and regrouped 
by a MUX/DEMUX array to form two groups of multiplexed output. 
Here λ1–λ3 formed one group representing the convolution results of 
three time-domain data points of ECG signals 1–50 and λ′1–λ′3 formed 
another group representing the same representation but for ECG sig-
nals 51–100. The resultant six groups of output light were detected by 
a photodetector array (Newport New Focus 2011).

Generation, convolution and output of multiplexed RF signals
The properties of the original ECG data collected from Holter monitors 
are described in the ‘ECG signal dataset’ section. The Holter monitors 
represent the edge device layer. The generation of multiplexed RF sig-
nals represents the operations performed in the edge interface layer. 
The convolution and output are implemented in the edge cloud layer.

For parallel convolution of the middle three time-domain data of 
100 ECG signals, the input matrix is a d3×100 matrix:

X =
⎡
⎢
⎢
⎢
⎣

x11 x12⋯ x1,100
x21 x22⋯ x2,100
x31 x32⋯ x3,100

⎤
⎥
⎥
⎥
⎦

.

The jth column of X contains the middle three time-domain data of the 
jth ECG signal (Fig. 4). The ith row of X contains the ith time-domain 
data of 100 ECG signals. Taking the first row (x11x12…x1,100), for example, 
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the jth element x1j, where j ∈ [1, 100] ⊆ Z+, was encoded in the amplitude 
of the RF component fmod(j,50), resulting in a continuous-time data rep-
resentation of x1jei2πfj t. The whole row was represented by the multi-
plexed RF signal in1(t) = ∑100

j=1 x1je
i2πfj t. Similarly, in2(t) = ∑100

k=1x2kei2πfkt and 
in3(t) = ∑100

l=1 x3lei2πflt. The three inputs with continuous-time data rep-
resentation were mathematically generated in MATLAB R2021b, and 
converted to .tfw files55 readable by a function generator (Tektronix 
AFG3102C). The subsequent electrical output from the function gen-
erator drove VOAs to load the ECG data into the optical domain. Here 
in1(t) to in3(t) were input to optical channel 1 to channel 3, respectively. 
The photonic tensor core was then effectively performing:

Y(t)

= W • X(t) =
⎡
⎢
⎢
⎢
⎣

w11 w21 w31

w12 w22 w32

w13 w23 w33

⎤
⎥
⎥
⎥
⎦

T
⎡
⎢
⎢
⎢
⎢
⎣

∑100
j=1 x1je

i2πfj t

∑100
k=1 x2kei2πfkt

∑100
l=1 x3lei2πflt

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

∑100
j=1 w11x1je

i2πfj t +∑100
k=1 w21x2kei2πfkt +∑100

l=1 w31x3lei2πflt

∑100
j=1 w12x1je

i2πfj t +∑100
k=1 w22x2kei2πfkt +∑100

l=1 w32x3lei2πflt

∑100
j=1 w13x1je

i2πfj t +∑100
k=1 w23x2kei2πfkt +∑100

l=1 w33x3lei2πflt

⎤
⎥
⎥
⎥
⎥
⎦

The frequency-domain representation of Y is

Y ( f )

=

⎡
⎢
⎢
⎢
⎢
⎣

∑100
l=1 ∑

100
k=1∑

100
j=1 (w11x1j +w21x2k +w31x3l) × δ (fj − fk) (fk − fl)

∑100
l=1 ∑

100
k=1∑

100
j=1 (w12x1j +w22x2k +w32x3l) × δ (fj − fk) (fk − fl)

∑100
l=1 ∑

100
k=1∑

100
j=1 (w13x1j +w23x2k +w33x3l) × δ (fj − fk) (fk − fl)

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

y11 y12⋯ y1,100
y21 y22⋯ y2,100
y31 y32⋯ y3,100

⎤
⎥
⎥
⎥
⎦

where yij = w1ix1j + w2ix2j + w3ix3j was encoded in the RF component 
fmod(j,50), representing the convolution result of the middle three 
time-domain data of the jth ECG signal using the ith kernel. Each row 
of Y was output from the output optical channel of the respective 
photonic tensor core.

CNN model
ECG signal dataset. Long-time-duration ECG signals (shortest dura-
tion, 4 h 15 min 10 s) from ten CVD patients were taken from Sud-
den Cardiac Death Holter Database in PhysioNet56,57. Supplementary 
Section 14 provides the corresponding clinical information of these 
ten patients. Here 50 normal pulses and 50 abnormal pulses were 
extracted from each patient, leading to a total of 500 normal pulses 
and 500 abnormal pulses. Each pulse has a 0.7 s duration. The origi-
nal ECG signals have a 0.004 s time resolution. The ECG pulses were 
extracted with a time interval of 0.02 s (that is, one out of every five 
original dataset), leading to 35 datasets in the extracted ECG pulses. 
The 0.02 s time interval was carefully chosen to minimize the extracted 
dataset and maintaining the key features in the original ECG pulses. 
Here 80% of the pulses were used for training and 20% were used for 
testing, that is, a total of 800 pulses for training (400 normal pulses 
and 400 abnormal pulses) and 200 pulses for testing (100 normal 
pulses and 100 abnormal pulses).

CNN architecture. The CNN architecture is shown in Fig. 5a. The input 
layer takes the ECG pulse, which is in the form of a d35×1 1D array. Time 
multiplexing is used to assist in sending the data of the ECG signals. 
At each time step, the convolution window takes three data points. 

The window is moved by one data point after each step. Therefore, 
35 – 3 + 1 = 33 time steps are required to process the whole trace con-
taining the 35 data points. This signal, represented as a 1D array is 
passed to a convolution layer consisting of three d1×3 kernels. Convolu-
tion operations were implemented with a stride of 1 and valid padding, 
resulting in a d3×(35–3+1) output. The output was activated by a rectified 
linear unit layer and flattened to a d99×1 vector. The flattened activated 
output was then fed to a fully connected layer with 20 neurons. The 
output from the fully connected layer was converted into probabilities 
by a softmax layer. Finally, the classification result was obtained. The 
ECG pulses were classified into 20 categories, representing two heart 
health conditions (normal or abnormal) of 10 individual patients. The 
convolution operations were implemented using the electro-optically 
controlled photonic tensor core system. The convolution results were 
processed by the following CNN layers using the deep learning toolbox 
in MATLAB R2021b. Weights of the fully connected layer were trained 
by the Adam optimizer. Here 100 epochs were used to reach the final 
CNN outcomes.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request. The ECG dataset analysed in this 
study is available from the open-source ‘Sudden Cardiac Death Holter 
Database’ via PhysioNet at https://doi.org/10.13026/C2W306. A sus-
tainability report related to this article is available at https://nanoeng.
materials.ox.ac.uk/sustainability.

Code availability
The code used in the present work is available from the corresponding 
author upon request.
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