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Abstract

The brain tracks and encodes multi-level speech features during spoken language

processing. It is evident that this speech tracking is dominant at low frequencies

(<8 Hz) including delta and theta bands. Recent research has demonstrated distinc-

tions between delta- and theta-band tracking but has not elucidated how they

differentially encode speech across linguistic levels. Here, we hypothesised that

delta-band tracking encodes prediction errors (enhanced processing of unexpected

features) while theta-band tracking encodes neural sharpening (enhanced processing

of expected features) when people perceive speech with different linguistic contents.

EEG responses were recorded when normal-hearing participants attended to contin-

uous auditory stimuli that contained different phonological/morphological and

semantic contents: (1) real-words, (2) pseudo-words and (3) time-reversed speech.

We employed multivariate temporal response functions to measure EEG reconstruc-

tion accuracies in response to acoustic (spectrogram), phonetic and phonemic fea-

tures with the partialling procedure that singles out unique contributions of

individual features. We found higher delta-band accuracies for pseudo-words than

real-words and time-reversed speech, especially during encoding of phonetic fea-

tures. Notably, individual time-lag analyses showed that significantly higher accura-

cies for pseudo-words than real-words started at early processing stages for

phonetic encoding (<100 ms post-feature) and later stages for acoustic and phonemic

encoding (>200 and 400 ms post-feature, respectively). Theta-band accuracies, on

the other hand, were higher when stimuli had richer linguistic content (real-words >

pseudo-words > time-reversed speech). Such effects also started at early stages

(<100 ms post-feature) during encoding of all individual features or when all features

were combined. We argue these results indicate that delta-band tracking may play a

role in predictive coding leading to greater tracking of pseudo-words due to the pres-

ence of unexpected/unpredicted semantic information, while theta-band tracking

encodes sharpened signals caused by more expected phonological/morphological

and semantic contents. Early presence of these effects reflects rapid computations of

sharpening and prediction errors. Moreover, by measuring changes in EEG alpha
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power, we did not find evidence that the observed effects can be solitarily explained

by attentional demands or listening efforts. Finally, we used directed information

analyses to illustrate feedforward and feedback information transfers between pre-

diction errors and sharpening across linguistic levels, showcasing how our results fit

with the hierarchical Predictive Coding framework. Together, we suggest the distinct

roles of delta and theta neural tracking for sharpening and predictive coding of multi-

level speech features during spoken language processing.
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1 | INTRODUCTION

The brain neurally tracks and encodes various speech features as we

perceive spoken languages. The neural tracking of speech describes

the alignment between brain signals and important speech features

which is associated with improvements in speech comprehension

(Wöstmann, Fiedler, & Obleser, 2017). Speech tracking is dominated

by low-frequency (<8 Hz) neural oscillations which encode features at

different hierarchical levels, from acoustics to phonology and seman-

tics (Di Liberto et al., 2015), enabling us to recognise words and

understand speech (Lesenfants et al., 2019). The neural tracking not

only depends on sensory inputs of speech but is also modulated by

processing of higher-level linguistic content (Broderick et al., 2019;

Coopmans et al., 2022; Donhauser & Baillet, 2020; Gross et al., 2013;

Kaufeld et al., 2020; Keitel et al., 2018; Mai et al., 2016) as well as par-

ticipants' language experience (Etard & Reichenbach, 2019; Tezcan

et al., 2023). For example, greater low-frequency neural tracking is

related to existence of phonological information (normal vs. time-

reversed speech, Gross et al., 2013; Mai et al., 2016), greater semantic

similarity (Broderick et al., 2019), richer lexical content (Coopmans

et al., 2022) and compositional structure (coherent lexical-syntactic

information, Kaufeld et al., 2020). It is also shown that low-frequency

neural tracking of speech is modulated by language experience, for

instance, greater neural tracking of higher-level (phoneme), rather

than low-level (acoustic-edge), features were observed when partici-

pants perceived native compared to when they perceived an unfamil-

iar non-native language (Tezcan et al., 2023).

During these higher-level modulatory processes, prior expecta-

tion is an important factor that further affects speech tracking. For

example, more expected speech content (e.g., higher speech intelligi-

bility, greater semantic expectedness, or greater acoustic clarity)

enhances low-frequency neural tracking of speech (Broderick

et al., 2019; Coopmans et al., 2022; Etard & Reichenbach, 2019;

Peelle et al., 2013; Tezcan et al., 2023). On the other hand, there is

also evidence showing greater neural tracking of stimuli with greater

unexpectedness or surprisal (Donhauser & Baillet, 2020; Sohoglu &

Davis, 2020). The current study focuses on the effects of prior expec-

tation during speech perception and considers how expected and

unexpected linguistic content may modulate speech tracking.

Previous research has demonstrated two mechanisms for the proces-

sing of linguistic content with different degrees of expectation for

neural tracking of speech. The first states that neural representations

for input stimuli are enhanced or ‘sharpened’ by prior expectations

embedded in higher-order cognitive or linguistic processes (de Lange

et al., 2018). This would mean greater tracking when speech contents

are more expected linguistically (e.g., Broderick et al., 2019). The sec-

ond states that expected stimulus inputs are minimally encoded and

subtracted so that more unexpected information is represented as

prediction errors (Arnal & Giraud, 2012; Blank & Davis, 2016;

Friston, 2005, 2012; Sohoglu & Davis, 2016; Summerfield & De

Lange, 2014). This would mean greater tracking when more unex-

pected contents are present within speech signals (Donhauser &

Baillet, 2020; Sohoglu & Davis, 2020). It is suggested that the two

mechanisms coexist and can be detected in the same neural

responses to speech (Broderick & Lalor, 2020). Here, we ask a

research question of whether electrophysiological responses to con-

tinuous speech can reflect neural sharpening and predictive coding

respectively at different frequency ranges, particularly delta and theta

bands.

Indeed, previous research has shown differences between delta-

and theta-band tracking of speech. For example, Ding et al. (2014)

showed that delta-band tracking can be enhanced in more difficult lis-

tening situations (listening to noise-vocoded speech with lower spec-

tral resolutions) possibly reflecting greater listening efforts, while the

reversed pattern was found for theta-band tracking. Etard and Reich-

enbach (2019) manipulated the speech comprehensibility (native

vs. non-native language) and clarity (presented in quiet vs. in noise)

and showed that greater delta-band tracking contributes to better

comprehension while greater theta-band tracking reflects better

encoding of speech clarity. Donhauser and Baillet (2020) showed that

both delta- and theta-band tracking are involved during predictive

coding with the former more related to phonemic surprisal (unexpect-

edness of the presence of a phoneme) and the latter more related to

contextual uncertainty (uncertainty for the upcoming phonemes).

While it is indicative that the roles of delta- and theta-band tracking

are distinct, it is uncertain whether their roles are different for neural

sharpening and predictive coding, for example, whether one plays

greater roles for sharpening/predictive coding compared to the other,
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and whether these different roles (if there are) can be observed for

both sharpening and predictive coding in the same neural dataset.

Our previous study (Mai et al., 2016) has shown the differences

in delta- and theta-band tracking of speech with different degrees of

expected linguistic content. In this study (Mai et al., 2016),

participants listened to continuously spoken languages with stimuli

containing different phonological and semantic contents (real-words,

pseudo-words and time-reversed speech). Compared to time-reversed

speech, both real-words and pseudo-words contained valid phonolog-

ical/morphological contents. Real-words included semantically valid

words while pseudo-words included invalid words (hence unexpected

semantic information). We showed that phonological/morphological

contents (real-words and pseudo-words vs. time-reversed speech)

enhanced the theta-band tracking of speech envelopes, while unex-

pected semantic information (pseudo-words vs. real-words) enhanced

delta-band tracking of envelopes. This indicates the potential distinc-

tive roles of neural speech tracking between delta and theta bands for

sharpening and predictive coding. However, it is still unclear

(1) whether such distinctions are represented by tracking of features

across multiple levels beyond speech envelopes (e.g., phonetics and

phonemes); (2) when such distinctions occur across the processing

stages after feature onsets; and (3) whether the greater tracking of

stimuli with unexpected semantic information can actually be

explained by greater listening efforts in difficult listening situations

(Ding et al., 2014) instead of the predictive coding proposal.

In this current study, we used multivariate Temporal Response

Functions (mTRF) (Crosse et al., 2016; Di Liberto et al., 2015) to ana-

lyse electroencephalographic (EEG) data when participants listened to

speech with different linguistic contents in Mai et al. (2016) and mea-

sure encoding accuracies as representations for neural tracking of

multi-level speech features. Neural sharpening scheme anticipates

that richer linguistic content (hence with greater expectation) should

result in higher encoding accuracies (i.e., real-words > pseudo-words >

time-reversed speech, Figure 1a). Predictive coding, on the other

hand, suggests that discrepancies between the heard stimuli and

expected/predicted signals (i.e., prediction errors) are encoded

(Sohoglu et al., 2012; Sohoglu & Davis, 2016, 2020) so that utterances

containing unexpected information (i.e., pseudo-words) should yield

the highest accuracy (Figure 1a). Note that we anticipate that time-

reversed speech would always yield the lowest accuracy regardless of

sharpening or predictive coding (or as low as real-words for predictive

coding), since previous studies showed that neural tracking of forward

speech is significantly greater than time-reversed speech at both delta

and theta ranges (Gross et al., 2013; Mai et al., 2016). This would

mean neural sharpening by phonological/morphological contents (for-

ward vs. time-reversed speech) would coexist with prediction errors

even when the predictive coding proposal is upheld. We here

hypothesised that neural tracking of speech plays distinct roles at

delta and theta bands for sharpening and predictive coding, where

delta-band tracking plays roles in predictive coding driven by higher-

level semantic processing while theta-band tracking plays roles in neu-

ral sharpening driven by richer phonological/morphological and

semantic contents (Figure 1a). Beyond tracking of acoustic envelopes,

we looked into encoding of more complex acoustic (spectrogram),

phonetic and phonemic features. We first sought to examine whether

the results can be explained by attention/listening effort. Due to the

active sound-matching task of this study (see Section 2.2), we antici-

pate that stimuli with less rich linguistic information would grab more

attention hence greater listening effort (e.g., Reichenbach et al., 2016)

that results in greater neural tracking (i.e., real-words < pseudo-words

F IGURE 1 Predictions of results for the neural sharpening and predictive coding proposals (left) and the attention/listening effort proposal
(right). The neural sharpening proposal anticipates that neural tracking should be greater for speech with richer (i.e., more expected) linguistic
content (real-words > pseudo-words > time-reversed speech). The predictive coding proposal anticipates that pseudo-words which contain
unexpected semantic information should yield the highest neural encoding accuracies. The attention/listening effort proposal anticipates speech
with fewer linguistic content should grab more attention and lead to greater neural tracking (real-words < pseudo-words < time-reversed speech).
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< time-reversed speech, Figure 1b). We then examined neural encod-

ing accuracies across individual time lags to see what processing

stages after feature onsets at which sharpening and prediction errors

(or effects of attention/listening effort if attention models can explain

the results) start to appear. Finally, we conducted directed information

transfer analyses to illustrate how our findings may fit with the hierar-

chical Predictive Coding framework (Friston, 2005, 2012).

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty normal-hearing (audiometric thresholds ≤25 dB HL across

0.5–6 kHz), native Mandarin speakers (8 males; aged 19–25 years)

were recruited to participate in the experiment. No history of hearing,

neurological or language disorders was reported for any participant.

They were all right-handed (18 participants with handedness indices

(HI) > 40 classified as strong right-handed and two participants with

HIs = 33.3 classified as ambidextrous but towards right-handed)

according to the Edinburgh Handedness Inventory (Oldfield, 1971).

All participants were recruited and paid for with formal consents

under approval of the Research Ethics Committee of The Chinese

University of Hong Kong.

2.2 | Stimuli and tasks

Stimuli consisted of three types of continuous Mandarin utterances:

(1) real-words, (2) pseudo-words, and (3) time-reversed speech.

(1) and (2) were naturally produced by a male native Mandarin speaker

recorded at a sampling rate of 22,050 Hz. All were produced with a

syllable rate at �4 Hz with all syllables having a similar duration of

�250 ms (except for the particle ‘的’ which is �150–200 ms,

Figure 2a).1 Each real-word utterance consisted of four semantically

valid words with a syntactic structure of ‘Subject + Verb + Attribute

+ [particle] + Object’. The words within an utterance were not con-

textually related to each other to keep participants' attention to the

entire utterance during the behavioural tasks (see the next two para-

graphs). A sample (translated) utterance is ‘knowledge purchases fun-

damental opportunity’, in which each word is a Mandarin disyllabic

word (see Figure 2a). Pseudo-words were utterances consisting of the

same number of morphologically valid syllables as in each real-word

utterance, but with no two adjacent syllables forming a semantically

valid word (Figure 2a). All participants confirmed after the experiment

that all pseudo-word utterances were not semantically valid for them.

It is important to note that the current pseudo-words are different

from the commonly used ‘Jabberwocky’ stimuli where constituent

syllables within the pseudo-words often do not have explicit meanings

and/or potentials to form a valid word with another syllable (Kaufeld

et al., 2020; Matchin et al., 2017, 2019; Pallier et al., 2011). In Manda-

rin (the language we used here), almost all morphologically valid sylla-

bles are commonly used morphemes that by themselves have some

semantic meanings and each has potentials to form a valid disyllabic

word with another morpheme.2 This thus ensures word-level seman-

tic priming, that is, the first syllable within each disyllabic word should

provide prior knowledge to predict the second syllable, so that we

could examine how neural tracking was affected by prediction/expec-

tation. Time-reversed speech was temporally reversed versions of the

real-words and pseudo-words. Time reversal causes substantial pho-

nological distortion but retains similar acoustic complexity (temporal

fluctuations, formant distributions and harmonic structures) as well as

phonetic features of the original speech (Binder et al., 2000; Gross

et al., 2013; Londei et al., 2010; Saur et al., 2010). There were 80 dif-

ferent utterances for each stimulus type (i.e., 240 sentences in total).

Half of the time-reversed utterances were generated from real-words

with the other half from pseudo-words. All stimuli had a similar dura-

tion (2.2–2.3 s) and were adjusted to the same average sound (root-

mean-squared) intensity.

The experiment followed a within-subject design for which each

participant was exposed to all three stimulus types. During the experi-

ments, participants were seated in front of a computer screen and lis-

tened to the stimuli via EARTONE 3A inserted earphones (Etymotic

Research, USA) with a fixed adjusted intensity at �70 dB SPL for all

utterances. All stimuli utterances were presented using EPrime 2.0

(Psychology Software Tools) and were divided into 8 blocks (i.e., 30

utterances with 10 for each stimulus type) with breaks taken in-

between. The utterances in each block were presented in a random-

ised order. An additional practise block (30 utterances with different

contents from the formal test) were run prior to the formal test.

The paradigm of each trial is shown in Figure 2b. At the start of

each trial, there was a 3-s silence allowing participants to blink, fol-

lowed by another 1.5-s silence with a white cross centred on the

screen. A cue sound (200–300 ms long; a naturally produced syllable

for the real-words and pseudo-words, or a time-reversed syllable for

time-reversed speech) was then presented. These were followed by a

2-s silence and then the target utterance. Participants were required

to complete a sound-matching task, in which they made a forced-

choice judgement whether the cue sound was present in the target

utterance or not by pressing a button after the end of the utterance

(instructed by a question mark on the screen). They were instructed

to sit still, keep their eyes on the white cross and avoid eye blinking or

body movements as much as possible after the cue sound was played.

They were also asked to press the button only after the question mark

appeared to avoid motor artefacts during the target period. Feedback

of accuracies was given after each block and participants were

encouraged to respond as accurately as possible. Overall, the aim of

the sound-matching task was to keep participants actively attending

to the target utterances.

1Despite similar duration for all syllables, the utterances largely reserved the speech

naturalness (from participant feedback post experiment) thanks to the syllable-timed nature

of Mandarin (Mok, 2009).

2An example is the disyllabic word ‘基本’ ('fundamental') embedded in the current example

real-word utterance, which consists of syllables ‘基’ (meaning ‘base’) and ‘本’ (meaning

‘origin/root’), while a corresponding pseudo-word could be ‘基米’ in which ‘米’ means ‘rice’
or ‘metre’.
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Out of all 80 utterances in each stimulus type, 20% of them in

which the cue sounds were actually present in the target utterances

(i.e., 16 utterances). In the present study, only the trials where the cue

sounds were not present in the target utterances (i.e., 64 utterances)

were included in the subsequent analyses. This was to preclude the

possibility of participants not attending to the entire utterance period

and to avoid the effects of target detection (e.g., P300, see van

Dinteren et al., 2014) when the cue sound (as the target to be

detected) was present in the utterance. This could also minimise pos-

sible effects of motor preparation of button press due to judgements

made before the end of the utterance.

2.3 | EEG acquisition

2.3.1 | Acquisition and pre-processing

Scalp EEGs were recorded by a 32-electrode ActiveTwo system

(Biosemi, The Netherlands) with layout consistent with the standard

10–20 system (see Figure 2c) and were sampled at 1024 Hz. CMS

and DRL were used as ground electrodes. Bilateral mastoids were

used as the reference. Eye artefacts were detected via vertical (vEOG;

electrodes above and below the left eye) and horizontal EOGs (hEOG;

electrodes on the lateral sides of the left and right eyes). Electrode

offsets were always kept below 40 mV for all electrodes to ensure

good quality of electrode contacts.

EEGs were pre-processed using Matlab R2022a (Mathworks). Sig-

nals of all electrodes (including EOGs) were first re-referenced to the

bilateral mastoids and then bandpass filtered at 0.7–8 Hz using a

zero-phase, second-order Butterworth filter. Signals for detecting eye

artefacts were then obtained by subtracting between signals in corre-

sponding EOG electrodes (vEOGs and hEOGs for vertical and horizon-

tal artefacts, respectively). Trials, where the filtered EEGs in the target

period (target utterances with a fixed length of 2.25 s for all trials)

exceeded ±35 μV in any electrode (including vEOG and hEOG), were

treated as being contaminated by eye or body movement artefacts

and were rejected from subsequent analyses. Ultimately, out of the

total 64 trials for each stimulus type (see Section 2.2), 60.75 ± 0.76

F IGURE 2 Experiment design. (a) Stimuli. Each trial of forward speech (real-words and pseudo-words) contained nine morphologically valid
syllables (the seventh syllable is always the particle ‘的’ that syntactically connects an adjective with a noun). Real-words are sentences consisting
of four semantically valid disyllabic words which are not contextually related but fit with a fixed syntactic structure 'Subject + Verb + Attribute +

的 + Object‘ (a translated example 'Knowledge purchases fundemental opportunity'). Pseudo-words are utterances with no adjacent syllables form a
valid disyllabic word. Time-reversed speech are time-reversals of the forward speech. (b) Experiment paradigm. Participants were presented with
a cue sound before the target speech and were required to press a button to judge whether the cue sound was present in the target speech.
(c) EEG configuration. We focused on EEG reconstruction accuracies at centro-frontal electrodes (encompassed by the dashed trapezoid)
covering temporal, frontal and parietal regions that are most important for auditory speech perception.
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(mean ± standard error across participants), 59.95 ± 0.71 and 60.35

± 0.85 trials were retained for real-words, pseudo-words and time-

reversed speech, respectively. This means the rejection rates were

5.1 ± 1.2%, 6.3 ± 1.1% and 5.7 ± 1.3%, respectively.

Besides the approach of rejecting trials with artefacts, artefact

corrections through Independent Component Analyses (ICA) were

also conducted to correct vertical and horizontal eye blinks and other

spurious components (e.g., components with large magnitudes

appearing at a single electrode). However, as we found that EEG

reconstruction accuracies after ICA corrections were, on average,

lower than those after following the approach of trial rejections. This

probably means that artefact correction has not resulted in the level

of signal quality as in the artefact-free trials. Due to the relatively low

rejection rate (<7% on average for all stimulus types), we decided to

use the pre-processed signals based on trial rejections.

2.3.2 | Delta- and theta-band EEGs

Neural tracking was computed via multivariate Temporal Response

Functions (mTRF; Di Liberto et al., 2015; Crosse et al., 2016; see

Section 2.5 for details) by linearly mapping stimulus features onto

EEG responses at the delta and theta range. The algorithm was

applied for delta- and theta-band tracking separately for the three

stimulus types in each participant.

To obtain neural signals at the delta and theta range, pre-

processed EEGs were initially bandpass filtered into three frequency

ranges: (1) 0.75–1.5 Hz (‘ultra-low’ delta), (2) 1.5–3 Hz (delta) and

(3) 3–6 Hz (theta) using a zero-phase, second-order Butterworth filter.

These particular numbers were chosen so that the mean cycles of the

upper and lower bounds (667 ms and 1.333 s for ultra-low delta,

333 and 667 ms for delta and 167 and 333 ms for theta) correspond

to the typical delta and theta cycles at 1 Hz (1 s per cycle), 2 Hz

(500 ms per cycle) and 4 Hz (250 ms per cycle), respectively. The sig-

nals were then decimated to 64 Hz via a 30th-order Hamming-

windowed FIR filter. The delta and theta EEGs for the artefact-free

trials were then used for quantifying delta- and theta-band tracking,

respectively. Subsequent analyses did not find above-chance/null

tracking (tracking based on shuffled trial correspondence between

EEG and speech stimuli) of targeted speech features (spectrogram

plus phonetic and phonemic features) in the ultra-low delta-band for

any stimulus type. We hence focussed on the delta and theta range in

the present study.

2.4 | Extraction of stimulus features

The following stimulus features were extracted for each utterance:

acoustic features of (1) spectrogram, (2) derivatives of spectrogram

and (3) spectrotemporal modulations; higher-level phonetic and pho-

nemic features. The length of the features was fixed at 2.25 s for all

trials (as mentioned, all trials had durations at 2.2–2.3 s).

2.4.1 | Acoustic features

Acoustic features were extracted using Matlab 2022a. The spectro-

gram was obtained by first filtering each stimulus into 26 frequency

channels between 100 and 5000 Hz using Gammachirp auditory fil-

ters which simulate the auditory periphery using the open-accessed

Auditory Modelling Toolbox (Majdak et al., 2022; https://www.

amtoolbox.org/). Bandwidth of each frequency band corresponded to

one Equivalent Rectangular Bandwidth (ERB; Glasberg &

Moore, 1990). Filtered waveforms in each channel were then Hilbert

transformed to obtain the envelopes followed by further low-pass fil-

tering at 30 Hz using a zero-phase, second-order Butterworth filter. In

addition, we also bandpass filtered the envelopes in each channel into

the corresponding frequency ranges of EEGs: (i) delta (1.5–3 Hz) and

(ii) theta (3–6 Hz), so that EEGs can be reconstructed by spectrograms

fluctuating at the corresponding frequency ranges (i.e., delta-band

EEG reconstructed by delta envelopes while theta-band EEG recon-

structed by theta envelopes). The derivatives of spectrogram were the

first derivatives of the low-passed spectrogram followed by half-wave

rectification. These reflect the acoustic onsets in the spectrogram,

which have been shown to significantly contribute to EEG tracking

(Daube et al., 2019).

Our subsequent analyses showed that both delta- and theta-band

EEGs are best reconstructed by the spectrogram (with envelopes low-

passed at 30 Hz; (see Section 3.2.1). Also, we found that combining

spectrogram and the derivatives had not led to numerically higher

reconstruction accuracies than spectrogram alone at the group level.

We therefore used the spectrogram as the acoustic representation for

EEG reconstruction.

In addition, Sohoglu and Davis (2020) also showed that neural

encoding of spectrotemporal modulations (Elliott & Theunissen, 2009)

could best model cortical responses. Other neurophysiological and

fMRI studies have shown that cortical responses can be well-modelled

using spectrotemporal modulations (Daube et al., 2019; Pasley

et al., 2012; Santoro et al., 2014). We therefore further extracted such

features following Sohoglu and Davis (2020). Specifically, the NSL

toolbox in Matlab (Chi et al., 2005; http://nsl.isr.umd.edu/downloads.

html) computed 128-channel auditory spectrogram (logarithmic-

centred frequencies from 180 to 7040 Hz) for each utterance which

was then wavelet filtered to extract spectral modulations of 0.5, 1, 2,

4 and 8 cycles per octave and temporal modulations of 1, 2, 4, 8 and

16 Hz. Other parameters were as follows: both frame length and time

constant set at 15.6 ms to coordinate with the minimal interval of any

two sampling points of decimated EEG (with 64 Hz sampling rate) and

no linear compression. Modulations were finally averaged across the

frequency channels and positive/negative temporal modulation direc-

tions to yield 25 features (5 frequency � 5 temporal modulations;

Sohoglu & Davis, 2020). The features were used to model EEG via

mTRF. However, we subsequently found that the EEG reconstruction

accuracies using these features were not significantly above chance

(null/shuffled accuracies) for any stimulus type for either delta- or

theta-band tracking. This means spectrotemporal modulations would
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not be appropriate acoustic representations for our current dataset.

We thus focused on the spectrogram as the acoustic representation.

2.4.2 | Phonetic and phonemic features

To extract phonetic and phonemic features, onsets and offsets of

phonemes were first annotated for each utterance for real-words and

pseudo-words. Unlike previous studies which applied a forced-

alignment algorithm (e.g., Di Liberto et al., 2015), there is no such tool

for Mandarin. We therefore completed the annotation manually using

the TextGrid function in Praat instead (University of Amsterdam, The

Netherlands; see https://www.fon.hum.uva.nl/praat/manual/Intro_

7__Annotation.html). The phonemes include 24 consonants and

23 vowels (7 single vowels, 12 diphthongs and 4 triphthongs) based

on Standard Chinese phonology (Duanmu, 2007). Diphthongs and

triphthongs were used as separate phonemic categories rather than

consecutive single vowels because it is very difficult to define vowel

boundaries due to their highly dynamic nature in continuous speech

(most diphthongs and triphthongs are comprised of formant transi-

tions without any acoustically steady sub-segments). Each phoneme

vector was set at ones over the corresponding periods of that pho-

neme, otherwise at zeros.

We then converted the phonemic features into 19 phonetic fea-

tures. These included 5 places (Labial, Dental, Alveolar, Retroflex,

Velar) and 7 manners of articulations (Unaspirated Plosive, Aspirated

Plosive, Unaspirated Affricate, Aspirated Affricate, Fricative, Nasal,

Liquid) for consonants, 3 backnesses (Front, Central, Back), 3 heights

(High, Medial and Low) and 1 mouth roundedness (Round) for vowels.

Each phonetic feature vector was set at ones over the periods of cor-

responding phonemes (except for diphthongs and triphthongs which

were weighted averages across component vowels), otherwise zeros.

The weights of component vowels in diphthongs and triphthongs

were based on the components' relative estimated durations. Specifi-

cally, for diphthongs /ai/, /aʊ/, /ɔʊ/ and /ei/ (in IPA), the weights were

set the same for both component vowels (i.e., at 1/2). Other diph-

thongs all have glides of /i/, /u/ or /y/ preceding the nuclei (e.g., glide

/i/ preceding nucleus /a/ in /ia/). These glides have relatively shorter

durations than the nuclei (Duanmu, 2007) and we set the weights at

one-third for the glides and two-thirds for the nuclei. For the triph-

thongs (/iaʊ/, /iɔʊ/, /uai/ and /uei/), all of them have glides /i/ or /u/

and we set their weights at 1/5 and weights of each of the two

remaining component vowels at 2/5.

For the time-reversed speech, the phonetic and phonemic feature

matrices were time reversals of the corresponding forward speech

(real-words or pseudo-words).

All features were subsequently downsampled to 64 Hz as for the

EEGs. For the spectrogram and spectrogram derivatives, this was con-

ducted using the same decimating approach as for EEGs via a 30th-

order Hamming-windowed FIR filter. For the phonetic and phonemic

features, because they are discrete features, this was done by simple

resampling rather than decimation.

2.5 | Reconstruction of EEGs using stimulus
features

2.5.1 | The mTRF model

We employed multivariate temporal response functions (mTRFs;

Crosse et al., 2016; Di Liberto et al., 2015) to model EEGs using the

stimulus features (i.e., forward encoding) via the following formula:

ri tð Þ¼
X
j

Xτmax

τ¼0
TRFij τð Þsj t� τð Þþϵi tð Þ ð1Þ

ri(t) is the EEG time series at the ith electrode. sj(t) is the time series of

the jth vector of the stimulus features. TRFij(t) is the time series of the

TRF. εi(t) is the error term. τ is the time lag between the EEG and

the stimulus feature series and τmax is the maximum lag set at 500 ms

in the present study. The TRF was estimated by minimising the mean

squares of errors. As such, TRF can be obtained via the following

matrix formula:

TRFiλ ¼ STSþλI
� ��1

STri ð2Þ

S is a matrix comprised of a lagged time series of the stimulus fea-

tures. ri is the vector of EEG series at the ith electrode. λ and I denote

the ridge regression parameter and an identity matrix, respectively

(see Crosse et al., 2016). The ridge regularisation avoided the ill-posed

estimation and overfitting.

We used Matlab 2022a in combination with the mTRF Toolbox

(Crosse et al., 2016; https://cnspworkshop.net/resources.html) to fit

the models for delta- and theta-band EEGs using the stimulus features

as described above (spectrogram, phonetics and phonemes and the

combination of these features). To avoid the transient effect at

the stimulus onset, we excluded the first 250 ms (roughly correspond-

ing to duration of one syllable), hence 2 s period of interest for each

trial. The modelling procedures involved cross-validation to tune the λ

values to optimise TRFs followed by testing that estimated EEG

reconstruction accuracies using the optimised TRFs (Section 2.5.2).

Furthermore, because different features could be highly correlated

with each other, a partialling procedure was employed to single out

unique contributions of individual features (Section 2.5.3). Recon-

struction accuracies were then estimated at individual time lags (over

the 500 ms range; Section 2.5.4). Finally, we separately computed the

reconstruction for the first and second syllables of the disyllabic

words in the forward speech to reveal how semantics (real-words

vs. pseudo-words) may affect neural tracking (esp. sharpening) at dif-

ferent syllable positions (Section 2.5.5).

2.5.2 | Cross-validation and testing

Artefact-free trials were first divided into training sets and

testing sets. Here, for each stimulus type, we partitioned the trials into

MAI and WANG 7
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five subsets with each subset having the same or similar number of

trials (same number of trials was not always guaranteed because the

total number of artefact-free trials may not be divisible by five). A

training–testing procedure was then run for five times, each of which

used one subset as the testing set with the remaining trials as the

training set (hence the ratio of trial numbers of training:testing was

4:1). On average, there were 48.6 (12.15), 47.96 (11.99) and 48.28

(12.07) trials for the training (testing in the brackets) for real-words,

pseudo-words and time-reversed speech, respectively. EEG recon-

struction accuracies were obtained via such procedure and the final

accuracy was taken as the average over the five times. This thus made

sure that all trials had the equal opportunity to be both training and

testing trials, so that biases between individual trials were minimised.

Concerns may also be raised that these trial numbers for training may

not result in robust neural tracking. To relieve this concern, we con-

ducted additional analyses using different percentages of the number

of training trials (60%, 70%, 80%, 90% and 100%) to see how many

trials are needed to obtain stable and consistent tracking. Subse-

quently, we found that the overall patterns (i.e., how reconstruction

accuracies differ between stimulus types) are fairly consistent with

the current findings even when the number of training trials is as low

as 60% of the total number. Stable statistical patterns can be obtained

based on >80% of the training trials (i.e., �40 trials) with accuracies

comparable to previous reports that used lengthy audiobooks as stim-

uli (Di Liberto et al., 2015; Di Liberto & Lalor, 2017; see Supplemen-

tary Materials S1). This therefore in part validates the result

robustness based on the current number of training trials (please see

Section 4.4 for further explanations and discussions).

During each training–testing procedure, leave-one-out cross-

validation was employed to optimise the ridge parameter λ within the

training set (Crosse et al., 2016). First, one trial was selected to be left

out as a validator with TRFs averaged across the remaining trials com-

puted using the stimulus features and λ with a range of values (10�4,

10�3.5, 10�3, …, 103, 103.5 and 104). The TRFs were then tested on

the validator trial to obtain Pearson correlations between the pre-

dicted EEG and the actual EEG of the validator trial. Second, a differ-

ent trial was then selected as the validator in the next round of

validation and such procedure was repeated until all trials were

assigned as validators. The Pearson correlation values were then aver-

aged across all validators and all 32 EEG electrodes. The optimal λ

value was identified as the one which yielded the highest correlation

(i.e., best model fit for the training set).

The TRFs were then computed using the corresponding optimal λ

(formula (2) in Section 2.5.1) and were averaged across all trials within

the training set. The averaged TRF was then used to test on the test-

ing trials to estimate EEG reconstruction accuracies as Pearson corre-

lations (Fisher-transformed) between the predicted EEG and the

actual EEG. The correlation values were then averaged across all test-

ing trials and the five times of the training–testing procedures.

Furthermore, to test whether reconstruction accuracies were

above chance, we computed the shuffled accuracies by randomly per-

muting the trial correspondence between the stimulus features and

the to-be-predicted EEGs for the testing trials (meanwhile ensuring

all trials are unmatched). The permutation was repeated 100 times

for each partition of training/testing sets, hence 100 shuffled accu-

racy values for every testing trial (this therefore gives on

average > 1000 shuffled accuracies for each partition). This is impor-

tant because there would be concerns about whether reliable/robust

neural tracking by mTRF models can be obtained based on a short

stimulus duration (2 s analyses period, see Section 2.5.1) in each

utterance (see discussions in Section 4.4). We confirmed the validity

of model fitting to obtain reliable neural tracking by showing signifi-

cantly higher reconstruction accuracies than shuffled accuracies (see

results in Section 3.2.1). Besides confirming such validity, shuffled

accuracies were also used to obtain normalised accuracies in addition

to the original accuracies. Both original and normalised accuracies

were used for subsequent mixed-effect regressions (see Section 2.8.2

for details).

2.5.3 | Singling out contributions of individual
features

As different stimulus features (spectrogram, phonetics and phonemes)

could be highly correlated with each other (Kriegeskorte &

Douglas, 2019), a partialling procedure was applied to single out

unique contributions of the respective features to predict EEGs. We

used the Matlab function mTRFpartial.m (Crosse et al., 2021; provided

by Dr Aaron Nidiffer). Specifically, a model was fit using the to-

be-partialled features (e.g., phonetics and phonemes) via cross-

validation in all trials for a given condition (before partitioning trials

into training/testing sets). The TRF computed by this model was used

to predict the to-be-partialled EEG by the to-be-partialled features in

each trial. This predicted EEG was then subtracted from the actual

EEG to obtain the residual EEG for each trial. The residual EEGs were

then used for model fitting using the target feature (e.g., spectrogram)

following the same training–testing procedures described above (see

Section 2.5.2). Such approach has been validated by recent research

and shown that it is equivalent to the partial correlations that stati-

cally control for contributions of the to-be-partialled features (Teoh

et al., 2022).

2.5.4 | Predicting EEGs at individual time lags

To further investigate the temporal dynamics of neural tracking, EEG

reconstruction accuracies were calculated at individual time lags (τ)

across 0–500 ms. The time step was set at 15.6 ms, that is, one cycle

of the downsampled frequency for the model fitting (64 Hz). Specifi-

cally, at each time step, we used the corresponding TRF (computed

via cross-validation in Sections 2.5.2 and 2.5.3) to predict the EEG

over a short period of lags centred at that step (across three sampling

points, e.g., accuracy at the lag of 250 ms was obtained by EEG pre-

diction using the TRF over lags of 234.4, 250 and 265.6 ms). This was

done for both when combining all stimulus features and when specific

effects of individual features were singled out.

8 MAI and WANG
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2.5.5 | Reconstructing EEG at the first and second
syllables within disyllabic words

Results for theta-band tracking did not show significant semantic

effects (real-words vs. pseudo-words) following the procedure from

Sections 2.5.1 to 2.5.4 (see Sections 3.2.2 and 3.2.4). We suspected

that this might be because while there should be priming effects

within the disyllabic words, such effects would only happen at particu-

lar positions of the disyllabic words for the real-words condition

(i.e., the first syllables primed the seconds). As such, it may well be

that semantic sharpening only took effects at the second, but not the

first, syllables. We thus further computed the EEG reconstruction

accuracies separately for the first and second syllables within disyl-

labic words for real-words and pseudo-words. N.B., while every real-

word and pseudo-word utterance had the same number of syllables

(i.e., nine syllables), the ‘first/second syllables’ for pseudo-words spe-

cifically refer to pseudo-word syllables at the corresponding positions

of the first/second syllables within disyllabic words in the real-word

utterances. Therefore, while the first syllables within disyllabic words

are the 1st, 3rd, 5th, and 8th syllables in each real-word utterance

(corresponding to the four disyllabic words in each utterance), the

‘first syllables’ in pseudo-words refer to syllables at the corresponding

positions (i.e., the 1st, 3rd, 5th, and 8th syllables in each pseudo-word

utterance as in real-words); likewise, the second syllables within disyl-

labic words refer to the 2nd, 4th, 6th and 9th syllables in each real-

word and pseudo-word utterance. Specifically, the predicted EEG in

each trial, which was obtained following the previous procedures, was

used to correlate with the actual EEG not over the entire target

period, but over sub-periods at the first and second syllables,

respectively (correlations over the first 100 ms after syllable onset

which were shown to have the most robust semantic sharpening

effect, see Broderick et al. (2019) and Broderick and Lalor (2020).

Note that while both the actual and predicted EEGs had been already

mean-centred over the entire target period, mean-centring was not

duplicated when conducting correlations over these sub-periods. Sim-

ilar to Section 2.5.4, the reconstruction accuracies were obtained at

individual time lags for individual features (with partialling) as well as

when all features combined (without partialling). Also, to avoid onset

transient effects, the first two syllables of each utterance (correpsond-

ing to the first disyllabic word for each real-word utterance) were not

used for such analyses.

2.6 | Relation between alpha-band power and EEG
reconstruction accuracies

An alternative explanation for any effect proposed by sharpening and

predictive coding is that attention was paid to a specific stimulus type

which as a result enhanced neural tracking of that stimulus type. We

thus further looked into whether changes in alpha power, which index

attentional control during speech perception (O'Sullivan et al., 2019;

Wöstmann, Lim, & Obleser, 2017), are related to EEG reconstruction

accuracies. We used sliding windows (500 ms long and steps of

100 ms) covering pre-stimulus (a 1-s period before stimulus onset)

and the target period of interest (250–2250 ms after stimulus onset).

The alpha power in each window was taken as the average log-power

of the Fourier spectrum across 8–12 Hz across the parieto-occipital

electrodes (Pz, P3, P4, P7, P8, PO3, PO4, Oz, O1, O2, see Figure 2c;

referring to Wöstmann, Lim, & Obleser, 2017; O'Sullivan et al., 2019).

We calculated the changes in alpha power over the target period rela-

tive to the pre-stimulus period. We then tested whether they differed

between stimulus types and assessed whether greater negative

changes in alpha power (indicating greater attention) are correlated

with higher EEG reconstruction accuracies.

2.7 | Fitting with the hierarchical predictive coding
framework

To further investigate how the results might fit with the hierarchical

Predictive Coding framework (Friston, 2005, 2010), we measured the

directed information transfers between prediction errors and sharp-

ened signals across linguistic levels. In the framework (see Figure 7a),

‘prediction error units’ (brown boxes) feedforward prediction errors

to the ‘prediction units’ (green boxes), followed by feedback of sharp-

ened signals from the prediction units to the prediction error units

(Friston, 2005, 2010). The feedforward signals flow from a lower to a

higher hierarchical linguistic level (i.e., from acoustic to phonetic level

and from phonetic to phonemic level, Figure 7a). The feedback signals,

on the other hand, follow the opposite directions to the feedforward

signals. In this way, the feedforward flow transfers prediction errors

from the lower hierarchical level to the prediction unit at the higher

hierarchical level to generate an updated prediction with the sharp-

ened signals; the feedback flow then transfers the sharpened signals

(which indicate how predicted the stimulus is) back to the lower-level

prediction error unit so that prediction errors are also updated. Such

recurrent loops of transfers hence help to support speech perception

over time (Sohoglu & Davis, 2016).

The feedforward and feedback flows were computed based on

the temporal variations of EEG reconstruction accuracies across indi-

vidual time lags (see Section 2.5.4). Prediction errors and sharpened

signals used to fit the framework were represented by the real-words

versus pseudo-words differences in the delta- and theta-band recon-

struction accuracies, respectively, for multi-level features (spectro-

gram, phonetics and phonemes). These were based on the entire

analysis period in each utterance, independent of whether statistically

significant prediction errors or sharpening effects were actually

observed in the previous steps. We applied phase transfer entropy

(PTE; Hillebrand et al., 2016; Lobier et al., 2014; Wilmer et al., 2012)

that quantifies the directed transfers between prediction errors and

sharpened signals. We used the open-accessed Matlab function Pha-

seTE_MF.m (Fraschini & Hillebrand, 2017). Importantly, PTE measures

the amount of uncertainty reduced in future values (phase values

here) of one signal Y by knowing the past values of the other signal

X given the past values of Y. The uncertainty of phase values is mea-

sured using Shannon entropy:
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PTEX!Y ¼H θY ,tÞjθY,t�δð Þ�H θY,tjθY ,t�δ,θX,t�δð Þ
¼H θY ,t,θY ,t�δð Þ�H θY ,t�δð Þ� H θY ,t,θY ,t�δ,θX,t�δð Þ

�

�H θY,t�δ,θX,t�δð Þ
� ð3Þ

H θX,tð Þ¼�
XN

i¼1

pi θX,tð Þ log pi θX,tð Þð Þ ð4Þ

N¼1:87 L�1ð Þ0:4 ð5Þ

In formula (3), θ refers to the Hilbert phase in the time series. δ is

the delay between X and Y. Therefore, θX,t refers to the phase of X at

time t while θX,t-δ refers to the phase of X in the past with the delay of

δ. H refer to Shannon entropy. Formula (4) demonstrates the entropy

calculation through phase binning (Hillebrand et al., 2016; Lobier

et al., 2014; Wilmer et al., 2012), with pi as the probability of phase

occurrence in the ith bin and N as the total number of bins. N was

determined according to formula (5) (Otnes & Enochson, 1972;

Pereda et al., 2005), where L is the total number of data samples.

Here, we set L as the number of samples of individual time lags

(i.e., 32 points over 500 ms) multiplied by the number of electrodes of

interest (22 centro-frontal electrodes, see Figure 2c and Section 2.8).

The resulted N was 26, hence each bin size was π/13 (i.e., 2π divided

by 26). In order to have enough data to compute PTE, pi was first

measured for all electrodes of interest and was then averaged across

electrodes before computing the entropy. This had avoided the sce-

narios where probability for some phase bins was zero if entropy was

computed electrode-wise (which would make entropy unmeasurable).

After obtaining the PTE for the feedforward and feedback flows,

we further computed the ‘directed PTE’ (dPTE; Hillebrand

et al., 2016) to quantify the ‘net’ flows of a particular direction:

dPTE¼ PTEfeedforward

PTEfeedforwardþPTEfeedback
ð6Þ

dPTE > 0.5 indicates greater feedforward than feedback flows

(i.e., net feedforward transfers), while dPTE < 0.5 indicates greater

feedback than feedforward flows (net feedback transfers). We mea-

sured dPTE at different δ ranging from 15.6 to 250 ms (steps at

15.6 ms, i.e., one cycle of 64 Hz) to study the changes in dominance

of feedforward and feedback transfers across delays.

2.8 | Statistical analyses

2.8.1 | Model comparisons to determine the best
acoustic representation

We focused on 22 centro-frontal electrodes of interest for statistical

analyses (Figure 2c). EEG reconstruction accuracies were averaged

across these electrodes. Regions covered by these electrodes should

best represent the mTRF model fitting during auditory speech proces-

sing (Crosse et al., 2016). This is also proved in our topographic

results (see Section 3). As mentioned in Section 2.4, we first

determined that spectrogram was the best acoustic representation

for the model fitting. This was done by comparing reconstruction

accuracies predicted by different acoustic features (see Section 2.4).

We conducted bootstrapping (via Matlab R2022a) to quantify the sta-

tistical significance (Efron & Tibshirani, 1994). Specifically, for any

given within-subject comparison, the data (within-subject differences

across participants) were resampled with replacement in each repeti-

tion (10,000 repetitions) and a bootstrap distribution was obtained.

Following this, a null (H0) distribution was generated by subtracting

the bootstrap distribution from its own mean (so that the distribution

mean was zero). p-value was then computed by its definition, that is,

the probability of the bootstrap results when they are more extreme

than the actual test statistic given the null distribution (Wasserstein &

Lazar, 2016):

p¼2min Pr T ≥ tjH0ð Þ,Pr T ≤ tjH0ð Þf g ð7Þ

where Pr refers to probability, T is the bootstrap result (given the null

distribution) and t is the actual test statistic (here the mean value of

the within-subject difference). p-value was measured as the propor-

tion of T ≥ t (if t is positive) or T ≤ t (if t is negative) in the null distribu-

tion (hence min Pr T ≥ðf t jH0Þ,Pr T ≤ð t jH0Þg) and was multiplied by

two for the two-tailed test. p needs to be <.05 in order to reject the

null hypothesis.

2.8.2 | Linear mixed-effect regressions

After determining spectrogram as the best acoustic representation,

we predicted the EEGs using spectrogram, phonetic and phonemic

features and singled out contributions of individual features (see

Section 2.5.3). We then conducted linear mixed-effect regressions to

quantify whether the models based on these individual features dif-

fered significantly between delta- and theta-band EEGs. Specifically,

we used EEG reconstruction accuracy (averaged across the centro-

frontal electrodes, Figure 2c) as the dependent variable, Frequency

(delta vs. theta), Feature (spectrogram, phonetics and phonemes) and

Stimulus Type (real-words, pseudo-words and time-reversed speech)

as the fixed-effect factors, and Participant as the random-effect factor

(a random intercept for each participant). In additional, including ran-

dom slopes for within-subject factors is shown to lead to better model

fitting (Barr et al., 2013). We therefore further fitted a random slope

for Frequency and Stimulus Type, respectively, however, excluded fit-

ting a random slope for Feature because this was shown to result in

model singularity. The regression was performed using RStudio (Build

554; RStudio BPC) using the function lmer (based on packages lme4

and lmerTest; Bates et al., 2015; Kuznetsova et al., 2017). The follow-

ing formula was used:

ReconstrAcc� Freq�Fea�StimTypeþ FreqþStimTypejParticipantð Þ
ð8Þ

ReconstrAcc, Freq, Fea and StimType are abbreviations of Recon-

struction Accuracy, Frequency, Feature and Stimulus Type,

10 MAI and WANG
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respectively. The term Freq*Fea*StimType in RStudio includes all facto-

rial terms (main effects and interactions). The fixed-effect factors

were all sum-coded before the formula was applied. The model was

fitted by restricted maximum likelihood (REML). The degrees of free-

dom and p values for fixed-effect factors were estimated via Sat-

terthwaite approximation. Furthermore, as we were also specifically

interested in whether semantic contents (i.e., real-words vs. pseudo-

words) would drive the differences in neural tracking at different fre-

quency bands, we conducted additional analyses with Stimulus Type

that only included real-words and pseudo-words.

Moreover, to confirm the outcome validity, the regressions were

also conducted for reconstruction accuracies normalised based on the

chance level (i.e., the null/shuffled accuracies, see Section 2.5.2).

The normalised accuracies are computed as (i) differences between

the original and shuffled accuracies; and (ii) z-scores (electrode-wise

and for every testing trial) obtained by subtracting the shuffled mean

and then divided by the standard deviation of the shuffled accuracies

across testing trials within every given testing/training partition; see

Section 2.5.2). We subsequently showed that using original and nor-

malised accuracies resulted in similar statistical outcomes that led to

the same conclusions (see Section 3.2.2 and Supplementary

Materials S1).

2.8.3 | Subsequent analyses using bootstrapping

Following the linear mixed-effect regressions, we followed the same

bootstrapping procedure to conduct statistical comparisons for the

planned analyses: accuracies between stimulus types for each par-

tialled speech feature (Section 2.5.3) and across individual time lags

(Sections 2.5.4 and 2.5.5), changes in alpha power (Section 2.6) and

directed PTE across time delays (Section 2.7). False discovery rate

(FDR) corrections on p values were further applied according to multi-

ple comparisons (see Section 3 for more details when reporting the

statistical findings).

3 | RESULTS

3.1 | Behavioural results

The behavioural task in each trial was to judge whether the cue sound

was present in the target utterance in order keep participants' atten-

tion throughout the target period. Accuracies and reaction times

(interval between the appearance of the question mark and the

button-press in each trial) were recorded. Accuracies for the real-

words, pseudo-words and time-reversed speech were 98.1 ± 0.4%,

97.6 ± 0.5% and 73.1 ± 2.7%, respectively (mean ± standard error

across participants). Reaction times for real-words, pseudo-words and

time-reversed utterances were 502.3 ± 47.1, 484.4 ± 40.6 and 691.5

± 67.8 ms, respectively. We applied the bootstrapping as proposed

for the neural analyses (see Section 2.8) and found that all three accu-

racies were significantly greater than chance (50%; p < .0001).

Accuracy and reaction time were compared with p values FDR cor-

rected according to the number of stimulus types (i.e., three). The

accuracy was significantly greater for real-words and pseudo-words

than time-reversed speech (both p < .0001) but did not differ between

real-words and pseudo-words (p = .2196). Likewise, the reaction time

was significantly shorter for real-words and pseudo-words compared

to time-reversed speech (both p < .0001) but did not differ between

real-words and pseudo-words (p = .0952). Table 1 summarises the

accuracies and reaction times across the stimulus types as well as the

p statistics.

3.2 | Model fitting using mTRF

3.2.1 | Determining the best acoustic
representation for model fitting

Delta- and theta-band EEGs were first modelled using acoustic fea-

tures of delta/theta envelopes (fluctuated at the corresponding EEG

frequencies), spectrogram and spectrogram derivatives. As described

in Section 2.4.1, we also looked into the model fitting using spectro-

temporal modulations. This is because previous neurophysiological

and fMRI studies have shown that cortical responses can be well-

modelled using spectrotemporal modulations (Daube et al., 2019;

Pasley et al., 2012; Santoro et al., 2014; Sohoglu & Davis, 2020).

However, using spectrotemporal modulations failed to show signifi-

cantly greater EEG reconstruction accuracy than shuffled accuracy for

either delta- or theta-band tracking for any stimulus type. This may be

because spectrotemporal representations could be generic and differ-

ent stimuli may share common/homogeneous spectrotemporal pro-

files, especially, when all stimuli were spoken by the same individual

[which is the case in the present study and all utterances had the

almost the same syllable rate that may further strengthen the similar-

ity of spectrotemporal modulation properties; also see relevant

TABLE 1 Behavioural results showing the accuracies and reaction
times of the three stimulus types (mean ± standard error across
participants).

Stimulus type/comparisons Accuracy Reaction time

Real-words 98.1 ± 0.4% 502.3

± 47.1 ms

Pseudo-words 97.6 ± 0.5% 484.4

± 40.6 ms

Time-reversed 73.1 ± 2.7% 691.5

± 67.8 ms

Real-words versus pseudo-words p = .2196 p = .0952

Real-words versus time-reversed ***p < .0001 ***p < .0001

Pseudo-words versus time-

reversed

***p < .0001 ***p < .0001

Note: p values (FDR corrected across stimulus types) indicate whether

accuracy and reaction time differed significantly between stimulus types.

Significant p values are indicated in bold.

***p < .0001.
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discussions by Sohoglu and Davis (2020)]. Therefore, we did not con-

sider such feature for further analyses.

EEG reconstruction accuracies and the corresponding shuffled/

null accuracies (averaged across centro-frontal electrodes of interest,

see Figure 2c) were shown as Figure 3a. To determine the best acous-

tic representation, we averaged accuracies across frequency bands

(delta and theta) and stimulus types (Figure 3b) and assessed which

feature resulted in the highest accuracy. The results showed that

accuracies were all significantly higher than shuffled accuracies (for

delta/theta envelopes: p = .0106; for spectrogram derivatives and

spectrogram: p < .001), confirming the reliability of neural tracking

using mTRF models based on the short stimulus analyses duration

(2 s; see Section 2.5.1). The accuracy reconstructed using spectrogram

was the highest and significantly greater than using the

spectrogram derivatives (p = .0090) and delta/theta envelopes

(p < .0001). Combination of spectrogram and derivatives improved

the accuracy compared to using derivatives alone but did not yield

numerically higher accuracy than spectrogram alone (not shown in the

figure). Therefore, we concluded that spectrogram was the best

acoustic representation and thus used it as the acoustic feature in

subsequent analyses. Furthermore, as expected, we showed that add-

ing phonetic and phonemic features based on spectrogram signifi-

cantly improved reconstruction accuracy (p = .0326; Figure 3b),

confirming the superiority of including higher-level features. Also,

accuracies for encoding spectrogram and combined spectrogram, pho-

netic and phonemic features are significantly greater than the corre-

sponding shuffled accuracies (p < .0001) as expected. The p values

were all computed using bootstrapping (see Section 2.8.1) and were

not corrected.

3.2.2 | Neural tracking across frequency bands and
stimulus types

We then followed the partialling approach (see Section 2.5.2) to single

out the unique contributions of individual features. After that, linear

mixed-effect regressions were conducted using reconstruction accu-

racy (averaged across the centro-frontal electrodes) as the dependant

variable, Frequency, Feature and Stimulus Type as the fixed-effect

factors, Participant (random intercept), Frequency and Stimulus Type

(random slopes) as the random-effect factors (see Section 2.8.2).

These were conducted when all stimulus types were included and

when only real-words and pseudo-words were included. The statisti-

cal results are shown in Table 2. When all stimulus types were

included, there was a significant [Frequency � Stimulus Type] interac-

tion (F(1, 294.998) = 4.748, p = .0301) and main effects of Frequency

F IGURE 3 Reconstruction accuracies (averaged across centro-frontal electrodes shown in Figure 2c) for features of delta/theta (same
frequencies as for EEG) envelopes, spectrogram derivatives, spectrogram and spectrogram plus higher-level (phonetic and phonemic) features.
(a) Accuracies across features, frequency bands (delta and theta) and stimulus types (real-words, pseudo-words and time-reversed speech). The
original (with matched correspondence of trials) and null (with shuffled and unmatched correspondence of trials) accuracies are indicated by
darker and lighter colours, respectively. (b) Accuracies averaged across frequency bands and stimulus types (corresponding topoplots on the top).
Spectrogram yielded the highest reconstruction accuracy amongst the acoustic features. As expected, adding phonetic and phonemic features
resulted in significant improvement in accuracy. *p < .05; **p < .01; ***p < .001, all p values are uncorrected.
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(F(1, 18.998) = 20.590, p = .0002) and Stimulus Type (F(1, 19.003)

= 14.024, p = .0014). When only real-words and pseudo-words were

included, there was a significant [Frequency � Stimulus Type] interac-

tion (F(1, 175.001) = 13.513, p = .0003) and main effects of Fre-

quency (F(1, 19) = 15.416, p = .0009) and Feature (F(1, 175.001)

= 9.533, p = .0023). Here, the significant [Frequency � Stimulus

Type] interactions are of particular interest, because they indicate that

neural tracking of different stimulus types differed between delta and

theta bands. This is particularly the case when only real-words

and pseudo-words were included (with a much lower p-value).

Following the significant [Frequency � Stimulus Type] interac-

tions, we analysed how reconstruction accuracies (averaged across

centro-frontal electrodes) differed between stimulus types for delta-

and theta-band accuracies separately. Bootstrapping was conducted

to compute p values for evaluations of significance (FDR corrected

according to the three stimulus types for each frequency band and

feature, Figure 4a). Statistical results are as follows: (1) When combin-

ing all features (spectrogram + phonetics + phonemes) in the mTRF

models, pseudo-words had significantly greater delta-band accuracy

than real-words (p = .0027) and time-reversed speech (p = .0003). No

significant difference in delta-band accuracy was found between real-

words and pseudo-words (p = .1292). Both real-words and pseudo-

words had significantly greater theta-band accuracies than time-

reversed speech (p = .0030 and .0378, respectively). No significant

difference in theta-band accuracy was found between real-words and

pseudo-words (p = .3304). (2) During spectrogram encoding (when

contributions of phonetics and phonemes were partialled out), real-

words had significant greater delta- and theta-band accuracies than

time-reversed speech (delta: p = .0003; theta: p < .0001). Pseudo-

words also had significant greater delta- and theta-band accuracies

than time-reversed speech (delta: p < .0001; theta: p < .0001). No sig-

nificant differences in either delta- or theta-band accuracies between

real-words and pseudo-words (delta: p = .0890; theta: p = .9096).

(3) During phonetic encoding (when contributions of spectrogram and

phonemes were partialled out), pseudo-words had significantly greater

delta-band accuracy than real-words (p < .0001) and time-reversed

speech (p < .0001). No significant difference in delta-band accuracy

was found between real-words and time-reversed speech (p = .3488).

No significant differences in theta-band accuracy were found between

stimulus types (all p > .1). (4) During phonemic encoding (when

contributions of spectrogram and phonetics were partialled out),

pseudo-words had significantly greater delta-band accuracy than time-

reversed speech (p = .0024). No significant differences in delta-band

accuracies were found between real-words and pseudo-words

(p = .0639) or between real-words and time-reversed speech

(p = .3840). Real-words had significantly greater theta-band accuracy

than time-reversed speech (p = .0114). No significant differences in

theta-band accuracy were found between real-words and pseudo-

words (p = .4118) or between pseudo-words and time-reversed

speech (p = .2439). Table 3 summarises the reconstruction accuracies

across the stimulus types and features and the p statistics.

In addition, electrode-wise comparisons were conducted between

stimulus types for delta- and theta-band accuracies. p values were

computed using bootstrapping for all electrodes and were FDR-

corrected according to the number stimulus types (i.e., three) and elec-

trodes (i.e., 32) for each frequency band and feature (Figure 4b). The

effects are highly consistent with the results shown in Figure 4a.

When combination of all features were encoded (spectrogram + pho-

netics + phonemes), delta-band accuracy was significantly greater for

pseudo-words than real-words and time-reversed speech over

TABLE 2 Statistical results for the linear mixed-effect regressions.

DV Fixed-effect factors/interactions df1 df2 F p

Reconstruction accuracy (Stimulus Type includes real-words,

pseudo-words and time-reversed speech)

Frequency � Feature � Stimulus Type 1 294.998 <0.001 .9935

Frequency � Feature 1 294.998 0.118 .7313

Frequency � Stimulus Type 1 294.998 4.748 .0301*

Feature � Stimulus Type 1 294.998 3.808 .0520

Frequency 1 18.998 20.590 .0002***

Feature 1 294.998 2.593 .1084

Stimulus Type 1 19.003 14.024 .0014**

Reconstruction accuracy (Stimulus Type includes real-words

and pseudo-words)

Frequency � Feature � Stimulus Type 1 175.001 0.140 .7089

Frequency � Feature 1 175.001 0.266 .6064

Frequency � Stimulus Type 1 175.001 13.513 .0003***

Feature � Stimulus Type 1 175.001 0.247 .6201

Frequency 1 19.000 15.416 .0009***

Feature 1 175.001 9.533 .0023**

Stimulus Type 1 18.999 2.333 .1432

Note: These were conducted when including all stimulus types (first part) and when only including real-words and pseudo-words (second part). DV, df, F

and p refer to dependent variable, degree of freedom, F and p values, respectively. Degrees of freedom and p values for fixed-effect factors are estimated

via Satterthwaite approximation. Significant p values (<.05) are indicated in bold.

*p < .05; **p < .01; ***p < .001.
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multiple centro-frontal and parietal electrodes but only a few signifi-

cant electrodes on the left hemisphere for real-words versus time-

reversed speech (the first upper panel); theta-band accuracy was

greater for forward (real-words and pseudo-words) than time-

reversed speech over multiple temporo-frontal electrodes but did not

differ between real-words and pseudo-words (the first lower panel).

For individual features, greater delta-band accuracies for pseudo-

words than real-words are most evident during phonetic encoding

(the third upper panel) and greater theta-band accuracies for forward

than time-reversed speech are most evident during spectrogram

encoding (the second lower panel).

Similar statistical results were also obtained based on normalised

reconstruction accuracies (see Section 2.8.2) that lead to the same con-

clusion as the non-normalised original accuracies (see Supplementary

Materials S1). We here focus on the non-normalised accuracies. This is

because all trials shared common rhythmic speech properties (all utter-

ances were produced at the same syllable rate at �4 Hz with all sylla-

bles having a similar duration; see Section 2.2). These shared

properties across trials might contribute to similar patterns for shuffled

accuracies as for the non-normalised accuracies as a result of sharpen-

ing/predictive coding [esp. during encoding spectrogram which is

shaped by rhythmicity; similar concerns as in Sohoglu and Davis

(2020)]. In this case, the normalisation may, to a certain extent, smear

the effects of sharpening and predictive coding, so it may be more

appropriate to base our result interpretations on the non-normalised

accuracies. Nonetheless, we also emphasise that it is reassuring that

the normalised and non-normalised accuracies showed similar statisti-

cal outcomes.

F IGURE 4 Statistical comparisons of reconstruction accuracies between stimulus types for all three features combined (spectrogram +

phonetics + phonemes) and for all individual features (after partialling out contributions of any other two features). (a) Delta- (upper panels) and
theta-band (lower panels) accuracies showing individual participant values (scattered dots) averaged across centro-frontal electrodes of interest
(see Figure 2c). Lines connecting between two given dots indicate these dots came from the same participant according to the within-subject
design. Bar magnitudes indicate the mean values across participants. Corresponding topoplots are shown right above the bar graphs. p values are
FDR corrected according to the three stimulus types for each frequency band and feature. *p < .05; **p < .01; ***p < .001. (b) Electrode-wise
comparisons between stimulus types (delta: upper panels; theta: lower panels). The white asterisks over corresponding electrodes indicate
significance differences (p < .05, FDR corrected according to the three stimulus types and all 32 electrodes for each frequency band and feature).
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3.2.3 | Relation between alpha power and neural
tracking

We examine whether attention/listening effort may modulate the cur-

rent findings of sharpening and predictive coding by measuring the

changes in alpha power relative to the pre-stimulus baseline (averaged

over parieto-occipital electrodes, see Section 2.6). Alpha power indi-

ces attentional control during speech perception (greater negative

change for greater attention hence listening effort; O'Sullivan

et al., 2019; Wöstmann, Lim, & Obleser, 2017). If neural sharpening

was driven by attention/listening effort, we should anticipate greater

negative change for real-words than pseudo-words and for forward

than time-reversed speech. If predictive coding was driven by atten-

tion/listening effort, we should anticipate greater negative change for

pseudo-words than real-words and time-reversed speech.

Statistical significances were assessed using bootstrapping (see

Section 2.8) with FDR correction according to the number of stimulus

types (i.e., three). We found significantly greater negative changes in

alpha power for time-reversed speech than for real-words (p = .0087)

and pseudo-words (p = .0087; Figure 5a). This indicates that partici-

pants paid greatest attention to time-reversed speech, which is plausi-

ble because of the greatest task difficulty (also reflected by the

behavioural results, see Section 3.1). No significant difference was

found between real-words and pseudo-words (p = .4282). These

results are not consistent with any anticipation had sharpening/

predictive coding has been driven by attention/listening effort. As

there is a trend that pseudo-words had greater negative change than

real-words (despite no significant difference), it may still be possible

that greater delta-band tracking for pseudo-words is related to such

change. We thus conducted an additional correlation between the dif-

ference in change in alpha power (pseudo-words vs. real-words) and

the difference in delta-band reconstruction accuracy (also pseudo-

words vs. real-words; combining all features, i.e., spectrogram + pho-

netics + phonemes). No significant correlation was found (r = .3312,

p = .1537, Figure 5b; N.B., if greater tracking in pseudo-words was

related to greater listening effort, a significant negative correlation

should be found). Therefore, we found no evidence that the current

findings of sharpening or predictive coding can be plausibly explained

by attention/listening effort.

3.2.4 | Neural tracking at individual time lags

EEG reconstruction accuracies were further compared between stim-

ulus types across individual time lags between EEG and speech fea-

tures to see when sharpening/prediction errors were generated.

Statistical significances were determined by bootstrapping and were

FDR corrected according to the number of stimulus types (i.e., three)

and the length of time lags (32 points from 15.6 to 500 ms; see

Section 2.8). The results are shown in Figure 6a. Statistical significance

is indicated by dark and light brown lines.

For the delta-band (upper panels of Figure 6a), we consistently

found significantly higher accuracies for pseudo-words than real-

words and time-reversed speech. However, these effects occurred at

different time lags during encoding of different speech features. Spe-

cifically, when all features were combined, delta-band accuracy was

significantly higher for pseudo-words than real-words at both early

(16–78 ms; numbers after the decimal point are rounded up/down

hereafter) and late time stages (434–500 ms). Such effect occurred

briefly at mid stages of 218–250 ms during spectrogram encoding

(phonetics and phonemes partialled out); across the early (16–94 ms),

mid (218–265 ms) and late stages (406–452 ms) during phonetic

TABLE 3 EEG reconstruction accuracies (mean ± standard error) for all three features combined (spectrogram + phonetics + phonemes) and
individual features (after partialling out contributions of any other two features) across frequency ranges (delta and theta) and the three stimulus
types.

Frequency Stimulus type/comparisons All features Spectrogram Phonetics Phonemes

Delta Real-words 0.028 ± 0.009 0.037 ± 0.011 0.026 ± 0.010 0.023 ± 0.008

Pseudo-words 0.063 ± 0.007 0.061 ± 0.010 0.063 ± 0.010 0.043 ± 0.008

Time-reversed 0.008 ± 0.010 0.002 ± 0.009 0.014 ± 0.011 0.014 ± 0.009

Real-words versus pseudo-words **p = .0027 p = .0890 ***p < .0001 p = .0639

Real-words versus time-reversed p = .1292 ***p = .0003 p = .3488 p = .3840

Pseudo-words versus time-reversed ***p = .0003 ***p < .0001 ***p < .0001 **p = .0024

Theta Real-words 0.094 ± 0.013 0.090 ± 0.011 0.095 ± 0.012 0.075 ± 0.011

Pseudo-words 0.083 ± 0.014 0.089 ± 0.011 0.087 ± 0.011 0.063 ± 0.011

Time-reversed 0.046 ± 0.013 0.032 ± 0.011 0.061 ± 0.014 0.041 ± 0.012

Real-words versus pseudo-words p = .3304 p = .9096 p = .6146 p = .4118

Real-words versus time-reversed **p = .0030 ***p < .0001 p = .1311 *p = .0114

Pseudo-words versus time-reversed ***p = .0378 ***p < .0001 p = .1311 p = .2439

Note: p values (FDR corrected across stimulus types) indicate whether reconstruction accuracies differed significantly between stimulus types. Significant p

values (<.05) are in bold.

*p < .05; **p < .01; ***p < .0001.
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encoding (spectrogram and phonemes partialled out); and at late

stages only (406–468 ms) during phonemic encoding (spectrogram

and phonetics partialled out). Significantly higher delta-band accura-

cies for pseudo-words than time-reversed speech generally occurred

across the early, mid and later stages for all features. Consistent with

the results in Section 3.2.2, we also found significantly higher delta-

band accuracy for real-words than time-reversed speech during spec-

trogram encoding (78–172 ms). For the theta-band (lower panels of

Figure 6a), we consistently found significantly higher accuracies for

real-words and pseudo-words than time-reversed speech (spanning

over the 500 ms lags except for relatively early stages <250 ms during

phonemic encoding), but no significant differences between real-

words and pseudo-words.

Following the [Frequency � Stimulus Type] interactions shown in

Section 3.2.2, we further assessed such interactions at individual time

lags (for Stimulus Type that only includes real-words and pseudo-

words that we are particularly interested in). We followed the same

bootstrapping approach to compute p values (FDR-corrected accord-

ing to the total length of time lags) for comparing the real-words ver-

sus pseudo-words difference between delta and theta bands.

Significances are indicated by purple lines in Figure 6a. We found sig-

nificant interactions when encoding combination of all features at

early stages (16–94 ms) and during phonetic and phonemic encoding

at both early (phonetics: 47–94 ms; phonemes: at 62 ms) and late

stages (phonetics: 468–500 ms; phonemes: 406–452 ms). These

results further show that neural tracking of speech differed at delta-

and theta-bands and these differences started at early encoding

stages within 100 ms after feature onsets. Furthermore, this occurred

mainly during encoding higher-level phonetic and phonemic rather

than lower-level acoustic (spectrogram) features.

These results did not find the anticipated semantic sharpening

effect (greater theta-band tracking for real-words than pseudo-words)

and we suspected this might be because sharpening only occurred at

the second syllables of the disyllabic words. Therefore, we further

computed theta-band accuracies over the periods of the first and sec-

ond syllables separately (see Section 2.5.5). Statistical significances

were computed by comparing real-words with pseudo-words across

time lags using bootstrapping. p values were FDR corrected according

to the two types of comparisons (real-words vs. pseudo-words for the

first and the second syllables) and the total lengths of time lags. We

found significantly higher theta-band accuracies for real-words than

pseudo-words for the second syllables when encoding all features

combined (Figure 6b; patterns for encoding of individual features are

not shown here due to the lack of significant effects). This occurred

within 200 ms after feature onsets (16–31 and 125–141 ms; the left

panel of Figure 6b). Electrode-wise comparisons showed that this

effect occurred over multiple frontal electrodes (mostly in the left

hemisphere; p values were FDR corrected according to all 32 elec-

trodes; the right panel of Figure 6b). On the other hand, we did not

find any significant real-words versus pseudo-words difference in

theta-band accuracy for the first syllables. The results thus indicate

that semantic sharpening did exist for theta-band tracking. An addi-

tional observation is that theta-band tracking was seemingly greater

for the first compared to the second syllables regardless whether they

belong to real-words or pseudo-words. This may be because neural

tracking was greater when the tracked speech were in temporally ear-

lier positions (first vs. second syllables).

3.3 | Feedforward and feedback transfers in the
hierarchical predictive coding framework

Net information flows were computed using dPTE to indicate

whether and when feedforward and feedback information flows

F IGURE 5 Changes in alpha power averaged over parieto-occipital electrodes. (a) Results for changes in alpha power across stimulus types.
Significantly greater negative change was found for time-reversed speech than real-words and pseudo-words. n.s., non-significant; **p < .01;
p values are FDR corrected. Error bars indicate standard errors. (b) Correlation between the change in alpha power and delta-band reconstruction
accuracy (pseudo-words vs. real-words). No significant correlation was found.
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dominated the transfers between prediction errors and sharpened

signals (see Section 2.7) in the Predictive Coding framework

(Friston, 2005, 2010; Figure 7a). The framework proposes that pre-

diction errors (real-words vs. pseudo-words difference in delta-band

accuracies) are feedforwarded by the ‘prediction error units’ to the

‘prediction units’, followed by feedback of sharpened signals (real-

words vs. pseudo-words difference in theta-band accuracies) from

the prediction units to the prediction error units. We focused on

transfers across linguistic levels (i.e., information feedforwarded from

acoustic to phonetic levels followed by feedback from phonetic to

acoustic levels, and information feedforwarded from phonetic to

phonemic levels followed by feedback from phonemic to phonetic

levels). Statistical significances of dPTE were detected via boot-

strapping (see Section 2.8) with FDR correction according to the

number time delays (15.6–250 ms). The results show significant net

feedforward transfers from prediction errors to the sharpened sig-

nals (dPTE > 0.5) that occurred mostly within 100 ms delays (indi-

cated by horizontal lines in brown, Figure 7b). This was followed by

significant net feedback transfers from sharpened signals to predic-

tion errors (dPTE < 0.5) that occurred at �150–200 ms (from

F IGURE 6 Statistical comparisons of reconstruction accuracies across stimulus types at individual time lags (16–500 ms). (a) Delta- (upper
panels) and theta-band (lower panels) accuracies across individual time lags (averaged across the centro-frontal electrodes, see Section 2.8.1 and
Figure 2c). Shaded areas indicate the ranges of standard errors from the means. Horizontal lines at the bottom of each graph indicate the

significant differences between stimulus types (from darker to lighter browns: real-words vs. pseudo-words, real-words vs. time-reversed speech,
and pseudo-words vs. time-reversed speech, respectively; p < .05, FDR corrected according to the three stimulus types and total length of time
lags for each frequency band and feature). Horizontal lines in purple at the top indicate significant interactions between Frequency (delta
vs. theta) and Stimulus Type (real-words vs. pseudo-words; p < .05, FDR corrected according to the total lengths of lags). (b) Theta-band
accuracies (real-words vs. pseudo-words) for the first and second syllables of disyllabic words. The ‘1st/2nd syllables’ for pseudo-words are
specifically referred to pseudo-word syllables at the corresponding positions of the first/second syllables within disyllabic words in the real-word
utterances (see Section 2.5.5). Left panel: accuracies over individual time lags for the first and second syllables (averaged across the centro-frontal
electrodes in Figure 2c). The horizontal lines at the bottom indicate significant real-words versus pseudo-words differences for the second
syllables (p < .05, FDR corrected according to the two comparisons and the total lengths of time lags). Right panel: topoplot showing the real-
words versus pseudo-words differences at the second syllables (averaged over the first 200 ms time lags after feature onsets). The white
asterisks at corresponding electrodes indicate significant differences (p < .05, FDR corrected according to all 32 electrodes).
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phonemic to phonetic levels, indicated by horizontal line in green,

Figure 7b).

4 | DISCUSSION

The current study hypothesised that delta- and theta-band neural

tracking of multi-level speech features play the roles of predictive

coding and neural sharpening, respectively. We examined neural

tracking of acoustic (spectrogram), phonetic and phonemic features

following partialling procedures so that the tracking is unique for indi-

vidual features. Our results are consistent with this hypothesis. To the

best of our knowledge, this study is the first to illustrate the distinc-

tive roles of delta and theta bands for neural sharpening and predic-

tive coding during spoken language processing. We will discuss our

results for multi-level speech encoding (Section 4.1) and interpret the

findings of the distinctive neural tracking at delta and theta bands for

sharpening and predictive coding (Section 4.2). We will then discuss

the early occurrence of sharpening and prediction errors and how our

results fit with the hierarchical predictive coding framework

(Section 4.3). We will finally discuss possible concerns and how future

work may consolidate our current findings (Section 4.4).

4.1 | Neural tracking of multi-level speech features
beyond envelopes at the corresponding frequencies
of EEG

The current study investigated delta- and theta-band tracking of

multi-level speech features from acoustic to phonetic and phonemic

features. Traditionally, research has focused on tracking of slowly

varying envelopes at the corresponding frequencies of the neural sig-

nals (e.g., Ahissar et al., 2001; Etard & Reichenbach, 2019; Mai

et al., 2016; Peelle et al., 2013). Interestingly, our results showed that

the best acoustic representation for tracking was the spectrogram in

which envelopes were low-passed at 30 Hz rather than envelopes

bandpass filtered at the corresponding delta/theta frequencies

(Figure 3b). This indicates that low-frequency neural signals encode

not only speech properties fluctuating at the same frequencies, but

also components at other frequencies, which could also be important.

This is compatible with findings showing that envelopes fluctuating at

either delta or theta band alone are inadequate for speech intelligibil-

ity (Arai et al., 1999; Mai, 2014) and components with frequencies

higher than delta-theta can also make significant contributions

(Shannon et al., 1995; Xu & Pfingst, 2008). Furthermore, we con-

firmed that, besides acoustic (spectrogram) features, adding higher-

level phonetic and phonemic features into the models significantly

improved EEG reconstruction accuracies (Figure 3b), consistent with

previous studies (Di Liberto et al., 2015; Di Liberto & Lalor, 2017).

The current results thus stress that the neural sharpening and predic-

tive coding occur not only for the processing of envelope cues at the

corresponding frequencies (as in Peelle et al., 2013; Mai et al., 2016),

but also for more complex acoustic (spectrogram) and higher-level lin-

guistic (phonetics and phonemic) features.

4.2 | Distinct roles of delta- and theta-band neural
tracking for neural sharpening and predictive coding

Cumulative evidence showed that speech tracking at delta and theta

bands may play distinctive roles during processing of speech with vari-

ous degrees of acoustic clarity or different linguistic contents (Ding

F IGURE 7 Fitting the current findings with hierarchical Predictive Coding framework (Friston, 2005, 2010). (a) Schematic illustration of the
framework. Feedforward information for prediction errors are transferred from the ‘prediction error units’ at lower linguistic levels (brown boxes)
to the ‘prediction units’ at higher linguistic levels (green boxes), followed by feedback of sharpened signals from the prediction units at higher
linguistic levels to the prediction error units at lower linguistic levels. (b) Net feedforward (dPTE > 0.5) and feedback (dPTE < 0.5) transfers across
time delays (left: transfers between acoustic and phonetic levels; right: transfers between phonetic and phonemic levels). Net feedforward
transfers occurred followed by net feedback transfers (significances indicated by horizontal lines at the bottom in brown and green, respectively).
p values are FDR corrected according to the lengths of time delays (15.6–250 ms).
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et al., 2014; Etard & Reichenbach, 2019; Mai et al., 2016; Molinaro &

Lizarazu, 2018) as well as different aspects of predictive coding of con-

textual information (Donhauser & Baillet, 2020). It is therefore sensible

to study speech tracking at these two frequency bands separately.

Our results showed that delta-band tracking was greater for

pseudo-words than real-words, especially during phonetic encoding

(Figures 4 and 5). While tracking for pseudo-words were also greater

than time-reversed speech, no difference between real-words and

time-reversed speech was found. Therefore, delta-band tracking may

reflect predictive coding, such that tracking of utterances with more

expected semantic content (i.e., real-words) was suppressed, while

utterances with more unexpected semantic content (i.e., pseudo-

words) was neurally tracked to represent the discrepancies between

the heard speech and the predicted speech (i.e., prediction errors;

Sohoglu & Davis, 2020). It might be argued, however, that participants

should already realise the lack of valid words during an ongoing

pseudo-word utterance. As a result, similar to ‘Jabberwocky’ stimuli

(Kaufeld et al., 2020; Matchin et al., 2017, 2019; Pallier et al., 2011),

no predictive effects of lexical semantics should be anticipated. How-

ever, it should be noted that our stimuli were not exactly ‘Jabber-
wocky’ stimuli. Jabberwocky syllables do not often have explicit

meanings and/or potentials to form a valid word. For example, in an

English Jabberwocky sawl pand (Matchin et al., 2017, 2019), sawl can-

not form any valid word with another syllable. In contrast, our

pseudo-words consisted of Mandarin morphologically valid syllables

which are all commonly used morphemes that by themselves have

certain semantic meanings with each having potentials to form a valid

word with another syllable/morpheme. For example, in a pseudo-

word ‘基米’, syllable ‘基’ (meaning base) has the potential to be fol-

lowed by another syllable ‘本’ (meaning origin/root) to form a valid

(disyllabic) word ‘基本’ (meaning fundamental). Hence, we argue there

were involuntary/automatic priming effects (Deacon et al., 1999;

Neely, 1977; Neely & Kahan, 2001) of a syllable to predict the one fol-

lowing it, despite no explicit manipulations of prior prediction. While

probably not all syllables have such priming effects because of partici-

pants realising the lack of valid words during an ongoing pseudo-word

utterance, greater semantic unexpectedness/surprisal on average is

anticipated compared to real-words, which can explain the greater

delta-band tracking observed here.

It is also noted that delta-band tracking of time-reversed speech

was low and not significantly above chance for any feature (see

Figure 3a). Theoretically, upcoming signals during listening to time-

reversed speech are always highly unpredictable. The low tracking

accuracies thus reflect poor encoding of the heard time-reversed

speech under the predictive coding scheme. It means that sharpening

may coexist along with predictive coding, such that features of time-

reversed speech were poorly tracked due to its lack of linguistic con-

tent. Nonetheless, sharpening would always need to be in place as a

prerequisite so that predictive coding can be implemented

(Friston, 2005, 2012; Summerfield & De Lange, 2014).

Theta-band tracking, on the other hand, was greater for real-

words and pseudo-words than time-reversed speech (Figure 4). Ana-

lyses at individual time lags showed that such effects were significant

during encoding of all three features (Figure 6). This indicates that

theta-band tracking contributes to neural sharpening possibly due to

valid phonological and/or morphological contents in real-words and

pseudo-words. These results echo the previous finding showing

greater sharpening effect for neural tracking at theta than at delta

band (Broderick et al., 2019). However, we did not find significant

sharpening effects of semantics in the first instance (Figures 4 and

6a). As discussed above, all morphologically valid syllables should have

word-level semantic priming effects to predict the next syllable to

form a valid disyllabic word, so sharpening should be anticipated. We

suspected that the lack of sharpening might be because only the first

syllable within each disyllabic word had the priming effect so that

sharpening only took effect on the second syllable. Therefore, mea-

surements over the entire stimulus period may have smeared the

sharpening effects. We thus separated theta-band tracking during the

periods of the first and second syllables of disyllabic words and con-

firmed our suspicion. The theta-band tracking was significantly greater

for real-words than pseudo-words at the second, but not the first, syl-

lables of disyllabic words within the time lags of 200 ms (Figure 6b).

There may also be further concerns that, in our real-words stimuli,

words were not contextually related so that semantic predictability

would not take effects. However, we argue that, because every real-

word utterance had the same number syllables with a fixed syntactic

structure (Subject + Verb + Adjective + [particle] + Object), partici-

pants should know the word categories at fixed positions (e.g., the

second word in an utterance was always a verb). This therefore pro-

vided participants with further prior knowledge to enhance the

semantic priming leading to potential sharpening effects (e.g., when

participants heard the first syllable of the second word, they would be

able to predict the second syllable based on the prior knowledge that

a verb was to be formed). In sum, these results thus provide evidence

for the role of theta-band tracking for neural sharpening during both

phonological/morphological and word-level semantic processing.

While we found distinct roles of delta- and theta-band tracking

for sharpening and predictive coding, questions may arise in terms of

how such findings reconcile with previous studies with different

findings. For example, Etard and Reichenbach (2019) revealed that

delta- and theta-band tracking are respectively enhanced by the com-

prehensibility and acoustic clarity, indicating that, although their roles

differ between various levels of speech processing, both are involved

in neural sharpening. This is consistent with a large body of findings

showing richer linguistic content related to greater delta-theta neural

speech tracking (Coopmans et al., 2022; Gross et al., 2013; Keitel

et al., 2018; Peelle et al., 2013; Tezcan et al., 2023). Another piece of

evidence provided by Donhauser and Baillet (2020) showed that both

delta and theta-band tracking play a role in predictive coding of con-

textual information. We therefore suggest that different observations

may heavily depend on the experiment manipulations and speech fea-

tures (e.g., acoustic and contextual manipulations/features) involved.

We argue that the current findings would not preclude involvement

of speech tracking at a certain frequency band for sharpening or pre-

dictive coding (e.g., delta-band tracking for sharpening and theta-band

tracking for predictive coding), but instead stress that tracking at a
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certain band may play a greater role than the other for sharpening/

predictive coding.

It is also noteworthy that there is a possibility that the current

observations may simply be due to attention effects. For example,

greater delta-band tracking might be explained by greater listening

efforts in difficult listening situations (Ding et al., 2014). Also, greater

attention to utterances with richer linguistic content could lead to

greater theta-band tracking. We tested this possibility by measuring

the changes in parieto-occipital alpha-band power relative to pre-

stimulus periods. We found the greatest negative change for time-

reversed speech (Figure 5a), indicating that participants paid greatest

attention to time-reversed speech, plausibly due to the greatest task

difficulty. Therefore, the neural sharpening associated with richer

phonological/morphological contents cannot be explained by greater

attention to forward speech. Also, changes in alpha power did not dif-

fer between real-words and pseudo-words and the real-words versus

pseudo-words difference in alpha power change was not correlated

with the real-words versus pseudo-words difference in delta-band

tracking (Figure 5b). Also, behavioural results (accuracies and reaction

times) did not differ between real-words and pseudo-words (see

Section 3.1). Hence, no evidence is shown that the difference in delta-

and theta-band tracking between real-words and pseudo-words were

the results of greater attention or listening effort. Although lack of

alpha-band or behavioural effects might not provide strong enough

evidence against the attention-based explanation, it is noteworthy

that our results showed opposite effects of delta- and theta-band

tracking. If attention is the main deterministic factor of neural track-

ing, we should anticipate similar effects of delta- and theta-band

tracking. Alternatively, attention/listening effort might partly explain

the results. For example, if attention is to explain greater delta-band

tracking for pseudo- than real-words, greater theta-band tracking for

real-words should be due to sharpening (greater expectedness); if

attention is to explain greater theta-band tracking for real-words,

greater delta-band tracking for pseudo-words should be due to pre-

diction errors (greater unexpectedness). While we cannot totally

exclude the role of attention/listening effort, our data has not pro-

vided evidence to support such role.

A further proposal to interpret the current findings may be the

models of neural oscillations, for example, phase-aligning/phase-

resetting of oscillations at different linguistic features (Benítez-

Burraco & Murphy, 2019; Martin, 2020; Meyer, 2018; Peelle

et al., 2013; Zoefel et al., 2018). While mTRF used here would reflect

the mixed effects of oscillatory phase alignment/resetting and evoked

responses to these features (Crosse et al., 2016), neural oscillations

have been argued to play a major role in continuous speech percep-

tion (Meyer, 2018; Peelle et al., 2013; Zoefel et al., 2018). Indeed, the

oscillation model is shown to better predict auditory cortical entrain-

ment, for example, entrainment to music, compared to evoked

responses (Doelling et al., 2019). During speech perception, low-

frequency (delta and theta) oscillations are suggested to take a critical

role by aligning their excitatory phases to important acoustic and lin-

guistic features (Martin, 2020; Meyer, 2018; Zoefel et al., 2018). To

interpret our findings based on this argument, delta-band oscillations

may tend to be phase-aligned with more unexpected stimuli (pseudo-

words) reflecting predictive coding while theta-band oscillations may

be phase-aligned with more expected stimuli (real-words) reflecting

neural sharpening. Indeed, previous work has proposed the models of

predictive coding through oscillatory phase-alignment during neural

processing of external stimuli (Arnal et al., 2015; Arnal &

Giraud, 2012), including the processing of auditory speech in particu-

lar (Hovsepyan et al., 2020). Future work may look into how such

models are in coordination with predictive coding and sharpening dur-

ing neural processing of multi-level speech features and disentangle

the effects between oscillations and evoked responses.

4.3 | Rapid computations of sharpening and
prediction errors

Analyses on reconstruction accuracies across individual time lags

showed that both neural sharpening and prediction errors started to

appear at very early processing stages within 100 ms after feature

onsets. For sharpening, this early processing took place during both

phonological/morphological (theta-band tracking for real-words and

pseudo-words vs. time-reversed speech during encoding of all three

features; lower panels of Figure 6a) and semantic sharpening (real-

words vs. pseudo-words when encoding all features combined;

Figure 6b). For predictive coding, this started during phonetic encod-

ing (delta-band tracking for pseudo-words vs. real-words) as opposed

to mid-stage (�200–250 ms) during spectrogram encoding and late-

stage (>400 ms) during phonemic encoding (upper panels of

Figure 6a). Significant interactions between frequency bands (delta

vs. theta) and stimulus types (real-words vs. pseudo-words) also

started at this early stage during phonetic and phonemic encoding

(Figure 6a, purple lines). Our results are thus consistent with Broderick

et al. (2019) and Sohoglu and Davis (2020) which respectively show

occurrence of sharpening and prediction errors at such an early pro-

cessing stage. This also indicates such rapid computations can occur

at higher-than-acoustic linguistic (phonetic) levels. Indeed, previous

studies have shown that significant neural tracking of phonetic fea-

tures occurs within 100 ms post-feature (Di Liberto et al., 2015; Teoh

et al., 2022). In our case, prediction is updated in real-time prior to the

speech inputs to be tracked, for example, the second syllable within a

disyllabic word could be predicted just before the end of the first syl-

lable, so that sharpening and prediction errors are formed through

rapid computations at early stages.

Furthermore, we used these patterns of tracking accuracies

across individual time lags to fit with the hierarchical Predictive Cod-

ing framework (Friston, 2005, 2012) in which neural information

transferred between prediction errors of lower-level linguistic/

acoustic features and sharpened signals of higher-level linguistic fea-

tures (feedforward and feedback transfers, Figure 7a). According to

the framework, prediction errors are feedforwarded from the lower

hierarchical levels to the ‘prediction units’ at the higher levels to gen-

erate updated predictions with the sharpened signals; the feedback

signals then transfer the sharpened signals back to the lower-level

‘prediction error units’ so that prediction errors are also updated

(Friston, 2005, 2012). We showed that net feedforward transfers
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occurred within 100 ms delays followed by feedback transfers occur-

ring at �150–200 ms delays (Figure 7b). These early feedforward and

feedback flows thus indicate that, once prediction errors and sharp-

ened signals are formed, they are swiftly utilised for information trans-

fers within the framework. We interpret that such rapid computations

and swift transfers may contribute to the recurrent updates of predic-

tions and prediction errors over time (Friston, 2005, 2012) to support

spoken language processing. Importantly, this hierarchical mechanism

may also support long-term perceptual learning of speech (Sohoglu &

Davis, 2016).

4.4 | Possible caveats and concerns

There are also several potential caveats that may need further atten-

tion for future work. First, differences between the real-words and

pseudo-words here reflect the effects of word-level semantics. It is

not clear how delta- and theta-band tracking play different roles in

sharpening and predictive coding during processing of context-level

semantics (Broderick et al., 2018, 2019; Broderick & Lalor, 2020). It is

noteworthy that disyllabic words used in the real-word utterances

were fitted in a syntactically valid structure, but they were not contex-

tually related to each other (see Section 2.2). This may have caused

possible unexpected contextual semantic effects resulting prediction

errors in real-words. However, our results did not find such effects. It

is possible that adequately ‘surprising’ rather than unrelated contex-

tual information (Broderick & Lalor, 2020) are needed to result in such

effects. Indeed, a recent study (Slaats et al., 2023) has provided evi-

dence showing that delta- and theta-band neural signals differentially

track lexical features depending on the existence of contextual infor-

mation. Future work would be needed to use more contextual stimuli

to separate the effects of word-level and contextual semantics.

The second is the naturalness of the stimuli. Neural tracking of

speech has been widely researched using stimuli of long continuous

speech, like audiobooks (e.g., Broderick & Lalor, 2020; Broderick

et al., 2018, 2019; Di Liberto & Lalor, 2017; Di Liberto et al., 2015;

Etard & Reichenbach, 2019). This is more ecological and naturalistic

with richer phonological and semantic variations than using short

utterances as used here. Future work may thus combine the use of

more naturalistic stimuli with more controlled traditional paradigms/

stimuli to assess the roles of speech tracking at different frequency

bands.

The third is the potential influence of tasks on the results. For

example, a recent study (Ten Oever et al., 2022) examined how neural

tracking of speech are modulated by different tasks. It was shown that

delta-band tracking was greater when participants completed tasks

that require attention to phrasal information compared to those that

require attention to word and syllable information (Ten Oever

et al., 2022). This thus indicate that attention to speech information at

different linguistic levels or time scales could result in different

strengths of neural tracking. In this current study, participants com-

pleted a sound/syllable-matching task hence syllable information was

particularly attended to. It is not clear whether instructing participants

to attend to different levels of linguistic information could modulate

the current observed effects, which future work may need to study

further.

A final critical concern may be the duration and number of train-

ing stimuli. Duration of each target period is 2 s (see Section 2.5.1).

The average number of trials for training is �48 (see Section 2.5.2).

While it is unclear whether such duration and number were adequate

to obtain robust neural tracking, we conducted additional analyses to

see how many trials are needed to obtain stable patterns (how accura-

cies differ between stimulus types) consistent with the current find-

ings (Section 2.5.2). We found that the patterns are highly consistent

even when the number of training trials is as low as 60% of the total

number. Same statistical results as the current findings can be

obtained with 80% of the total number (see Figure S1 in the Supple-

mentary Materials). Furthermore, the reconstruction accuracies were

significantly above chance (p < .0001; see Section 3.2.1 and

Figure 3b) and the values (>0.05 for delta-band tracking of

pseudo-words and �0.1 for theta-band tracking of real-words

and pseudo-words) are comparable to previous reports that used

lengthy audiobooks as stimuli (e.g., Di Liberto et al., 2015). These all

support the validity of our results. However, this could still be surpris-

ing because the total duration of stimuli for training for each stimulus

type is only �96 s (�48 training trials, each 2 s long) compared to the

suggested length of 10 minutes at minimum to obtain robust tracking

(Di Liberto & Lalor, 2017). We argue that this may be because, first,

the short utterance duration and nature of the task (a sound-matching

task) ensured participants' attention to the stimuli compared to when

a long and tedious audiobook is used. Second, the characteristics of

Mandarin speech may result in particularly strong cortical tracking. As

mentioned, all stimuli were produced at �4 Hz syllable rate with all

syllables having a similar duration of 250 ms. Despite this quasi-

isochrony, they (the forward speech) still sounded relatively natural

according to participants' feedback, arguably due to the syllable-timed

nature of Mandarin (Mok, 2009). Previous studies using short sen-

tences with similar syllable rhythms in Mandarin showed sharp and

concentrated peaks of cortical tracking at the syllable (4 Hz) and word

rates (2 Hz), respectively (Ding et al., 2016, 2018). We have also used

the current dataset to show similar drastic concentrations of tracking

at these frequencies (see Mai et al., 2016). Such phenomenon was not

observed (i.e., more dispersed tracking values across delta-theta

bands) when naturally produced stimuli in English, which is a stress-

timed language, are used (e.g., Peelle et al., 2013). Importantly, mean

cycles of the current delta (1.5–3 Hz) and theta (3–6 Hz) bands are

exactly 2 and 4 Hz, respectively. Therefore, particularly strong cortical

tracking at these two frequency bands may have made significant

contributions to robust results despite the short total stimulus dura-

tion. Nonetheless, we suggest that longer stimulus duration and larger

number of trials should consolidate our current findings.

4.5 | Summary

To the best of our knowledge, the current study is the first to show

that delta- and theta-band tracking play possible distinctive roles for

neural sharpening and predictive coding of multi-level speech features
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during spoken language processing. Importantly, by applying the par-

tialling procedures in multivariate temporal response functions, we

investigated the unique effects for neural tracking of individual linguis-

tic features (acoustics, phonetics and phonemes). This enabled us to

study the brain processing of these linguistic features separately and

examine how information representing sharpening and prediction

errors were transferred across linguistic levels. We also investigated

the time course of neural tracking after feature onsets to gain infor-

mation as to when significant effects took place. Based on these, we

provided novel insights into how sharpening and predictive coding

may be operated across both times and linguistic levels during speech

perception, which, as far as we know, have not been uncovered by

previous research.

Particularly, we showed that delta-band tracking is involved with

predictive coding driven by unexpected/unpredicted word-level

semantic content, while theta-band tracking reflects neural sharpening

driven by greater expectations of phonological/morphological and

semantic content. Furthermore, we did not find evidence that these

effects can be solitarily explained by attention or listening effort. We

also showed that these effects started at early processing stages

within 100 ms after feature onsets (sharpening during encoding of

acoustics, phonetics and phonemes, or combined encoding of these

features, and prediction errors during phonetic encoding), arguing for

rapid neural computations of sharpening and prediction errors. Finally,

we illustrate that our findings fit with the hierarchical Predictive Cod-

ing framework by showcasing the swift feedforward followed by

feedback information transfers between prediction errors and sharp-

ened signals across linguistic levels. The rapid computations together

with the swift information transfers in the hierarchical framework may

thus contribute to the recurrent updates of predictions and prediction

errors over time to support spoken language processing. Taken

together, this study revealed neural sharpening and predictive coding

through neural tracking of continuous speech at different brain fre-

quencies across times and linguistic levels. We suggest these findings

contribute to the existing knowledge of predictive coding theory for

spoken language processing.
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