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Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, 
continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. 
Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory 
research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number 
of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of 
different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the 
adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this 
review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which 
are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities 
for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
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Introduction

Regenerative medicine encompasses numerous areas of biol-
ogy and engineering, including stem cell biology, bioma-
terial engineering and gene therapy [1]. The ultimate aim 
is to eventually creating functional “artificial” organs and 
tissues. Its enormous potential to engineer biologic organ 
substitutes, which can replace damaged organ and tissues 

of the patients, may fulfil the unmet clinical needs and over-
come some of the unacceptable consequences of current 
therapeutic approaches in paediatric surgery, especially in 
the severe forms of congenital malformations and end-stage 
organ failures. Inspired by initial success in both preclinical 
and clinical studies using relatively simple organ systems 
and techniques, the research field has further expanded in 
an attempt to create more complex organs with sophisticated 
technologies.

This review will first briefly overview technological plat-
forms available for regenerative medicine both after birth 
and prenatally [2]. Tissue stem and progenitor cells of each 
organ will be discussed in the later section on clinical appli-
cation. Various strategies to engineer translatable organs 
utilising stem cell biology, including novel cell culture 
methodology, gene editing technology, tissue engineering 
and biomaterial technologies, will then be reviewed. It is 
beyond the scope of this review to discuss the entire body 
of research on biomaterials. Instead, we will describe the 
surgically-relevant part of these technologies of biomate-
rials in relation to stem cell biology and tissue engineer-
ing approaches, as biomaterials are now an indispensable 
part to tissue engineering. Next, relevant paediatric surgi-
cal preclinical and early studies aiming to alter underlying 

 *	 Paolo De Coppi 
	 p.decoppi@ucl.ac.uk

1	 Stem Cells and Regenerative Medicine Section, University 
College London Great Ormond Street Institute of Child 
Health, London, UK

2	 NIHR BRC SNAPS Great Ormond Street Hospitals, London, 
UK

3	 Stem Cells and Regenerative Medicine Section, Faculty 
of Population Health Sciences, UCL Great Ormond 
Street Institute of Child Health, 30 Guilford Street, 
London WC1N 1EH, UK

4	 Present Address: Department of Pediatric Surgery, Osaka 
University Graduate School of Medicine, Osaka, Japan

5	 Present Address: UOC Chirurgia Pediatrica, Ospedale 
Infantile Regina Margherita, Turin, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00383-023-05438-6&domain=pdf


	 Pediatric Surgery International          (2023) 39:167 

1 3

  167   Page 2 of 16

pathophysiology and to replace damaged organs will be 
reviewed by organ system. Finally, potential future outlooks 
in the field and major hurdles for clinical translation will be 
discussed.

Overview of technological platforms 
in regenerative medicine

Regenerative medicine aimed to overcome three overarching 
themes: (1) to facilitate the repair of damaged tissues, (2) 
to replace damaged cells with healthy functional cells, and 
(3) to replace the damaged organ system with engineered 
tissues. There have been many technological advancements 
to this aim, including tissue engineering, stem cells and 
organoid biology, and gene editing. These advancements 
have allowed overcome significant technical hurdles and led 
to a more profound knowledge of how resident cells com-
municate with their microenvironment, issues of immuno-
genicity, and the role of stem or progenitor cells in tissue 
regeneration.

The main components of successful bioengineered tissues 
include cell sources, scaffolds, and biomolecules (Fig. 1). 
Although primary cells are ideal cell sources for regenera-
tive medicine, they are usually in short supply, particularly 
in damaged organs, and do not proliferate enough to provide 
sufficient cell yield for clinical application. Stem cells can 
proliferate, differentiate, and have a self-renewal capacity, 
all of which are ideal for therapeutic application. Stem cells 
can be derived from native stem and progenitor popula-
tions, embryonic stem cells (ESC), or induced pluripotent 
stem cells (iPSC) from healthy or damaged tissues [3–6]. 
Furthermore, these stem cells can be genetically modified 
or corrected using gene editing technologies (such as the 

CRISPER-Cas system) [7]. The second component is the 
biomaterials, which are pivotal in providing an optimal 
microenvironment for cell growth and functional differentia-
tion. These biomaterials include extracellular matrix (ECM) 
derived from decellularised tissue, natural polymers, and 3D 
bioprinting [8–10]. The final component is biomolecules, 
such as growth factors and morphogens. These molecules 
can be introduced as small molecules, recombinant proteins, 
synthetic mRNA, small non-coding RNA, and extracellular 
vesicles (e.g., exosomes) [11]. Some of these molecules can 
be incorporated into the scaffold while fabricating tissues, 
and the release can be controlled.

Recently, in vitro human organ models with physiologi-
cal functions similar to native organs have become feasible 
through engineering research, such as micro-physiological 
systems represented by organ-on-chip. Among in vitro mod-
els, organoid-based platforms have a wide range of applica-
tions, from basic research in embryology and regenerative 
medicine to disease modeling and drug discovery research. 
Furthermore, the application of organoids to regenerative 
medicine using organoids for transplantation is also begin-
ning to be explored.

Organoids have three-dimensional structural character-
istics similar to those of organs in vivo. Since organoids 
are composed of multiple differentiated cell types, they are 
expected to have physiological responses similar to native 
tissues compared to the “classic” cell culture [12]. Orga-
noids can primarily be derived from adult stem cells or pluri-
potent stem cells such as ESCs or PSCs [12]. By artificially 
reconstituting embryological processes in vitro, organoids of 
various organs of ectodermal, mesodermal, and endodermal 
lineages have been created (Fig. 2) [13–21].

An ultimate application of organoids in tissue engineer-
ing is the regeneration of deficient tissues through organoid 

Fig. 1   Schematic representation 
of different aspects of tissue 
engineering and therapeutic 
candidates
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transplantation. Improved survival of liver failure models 
through liver organoid transplantation and regeneration of 
intestinal epithelium through intestinal organoid transplanta-
tion have been reported [21–23]. Organoid transplantation 
is hoped to advance the treatments for critically ill paediat-
ric patients with limited therapeutic options, such as biliary 
atresia and intestinal failure.

Therapeutic application relevant 
to paediatric surgery

Trachea and lung

Airway systems encounter two main fields of interests with 
substantial unmet clinical needs: conduit system and paren-
chymal disease. Severe forms of congenital tracheal steno-
sis/agenesis, laryngotracheal clefts, trauma and aggressive 
forms of cancer may require the replacement of main air-
ways [24]. In paediatric population, cystic fibrosis and lung 
hypoplasia caused by bronchopulmonary dysplasia or con-
genital diaphragmatic hernia (CDH) are instead the leading 
causes of untreatable parenchymal disease. Allogenic trans-
plantation is the ultimate treatment option for end-stage lung 
diseases, but it is still associated with a significant burden of 
morbidity and mortality and relies on donated organs [25].

Stem and progenitor cells

The human respiratory system is composed of a highly 
complex and hierarchical structure from proximal conduct-
ing region to distal alveolar region with numerous different 
types of cells along [26], varying according to the needs and 
functions each region fulfils. Epithelial cells in the airway 
are usually quiescent, but progenitor cells retain the potential 

to propagate and restore the epithelial integrity following 
injury [27]; these are classified as endogenous lung stem 
cells. Exogenous stem cell sources originating from other 
adult tissue or pluripotent stem cells may also be used for 
airways regeneration.

In early development the digestive and respiratory sys-
tems share a common precursor from the anterior foregut 
endoderm (marked by the expression of the transcription 
factor Nkx2.1). These progenitors are later specified by tran-
scription factors Sox2 and Sox9 in the proximal and distal 
regions respectively. Despite the mesenchymal instructive 
paracrine signals are crucial to regulate proliferation and 
maturation of endodermal progenitors, there is a paucity of 
evidence concerning the airways mesodermal-derived pro-
genitors, which are nevertheless thought to share a common 
origin with cardiopulmonary mesoderm progenitors [28].

In the mature proximal conducting region of the human 
lung, TRP63 + KRT5 + basal cells have been identified as 
a progenitor cell population [29]. However, to-date little 
is understood about the molecular mechanisms for basal 
cell self-renewal and differentiation, yet recent evidence in 
murine models indicated Notch signalling plays an impor-
tant role [30]. Various protocols have been described for 
the isolation and culture of these human basal cells, with 
the most efficient methods being co-cultures of fibroblast 
with feeder layer and/or specific signalling pathway inhibi-
tors [31–33].

In the alveolar region, alveolar type 2 (AT2) surfactant-
producing cells are widely recognised as the best progenitor 
candidate [34–36]. In addition, several recent studies have 
suggested another stem/progenitor cell candidate in the 
mouse, such as Trp63 + Krt14 + basal cells or alveolar epi-
thelial cells expressing the laminin receptor α6β4 [31, 37].

As exogenous stem cell sources promising candidates are 
bone marrow-derived stem cells [38], ESCs [39–41], human 

Fig. 2   Regenerative medicine 
approach using somatic cells 
or pluripotent stem cells: sche-
matic of various organs which 
can have been engineered A and 
organoids that can be grown 
from stem cells and the tissue-
specific developmental signals 
that are employed B  Adapted 
from Clevers, 2016 [12] and 
created with BioRender.com
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iPSCs through combination of FGF, BMP and Wnt signal-
ling pathways [18, 42, 43] and human amniotic fluid stem 
cells (AFSCs) [44]. For instance, administration of hAFSCs 
into hypoplastic lungs in a nitrofen-induced CDH rat model 
rescued lung growth, bronchial motility and innervation 
[45].

Three‑dimensional culture system

Most evidence on respiratory stem cell biology had been 
using 2D cell culture models, clearly too simplistic to reflect 
the complex in vivo interconnections and microarchitectures. 
Development of lung organoids has been reported from the 
different epithelial cell populations, including basal cells, 
club cells and AT2 cells, in addition to hPSCs [46]. A vari-
ety of names have been given to these organoids including 
tracheosperes, bronchospheres, alveospheres, alveolar sphe-
roids, depending on the site of origin of the cells [46–49]. 
Recently, SFTPC + AT2 cell-like alveolar stem cells induced 
from hPSCs in organoids showed long-term stable expansion 
while maintaining their stem cell properties by utilising a 
co-culture system with fibroblasts [50] and smooth muscle 
cells [51].

Air–liquid interface (ALI) culture systems provide cul-
tured cells with a more physiological environment and allow 
better differentiation for induced pluripotent stem cells [52]. 
Since the first model described in 1988, ALI has enabled the 
development of disease models such as asthma and cystic 
fibrosis [53, 54]. Further studies combining the advantages 
of 3D-organoid system with ALI culture may lead to the 
development of a more sophisticated in vitro miniature lung 
model.

Tissue engineering

Tracheal engineering  The upper airway has been thought to 
be relatively amenable to bioengineering due to its simple 
structure and function, and has already been engineered and 
translated clinically on a compassionate basis [55, 56]. Most 
successfully engineered upper airways involve co-culturing 
of different cell lines such as autologous bone marrow-
derived mesenchymal stem cells (MSCs) and airway epithe-
lial cells on a decellularised trachea scaffold [56, 57]. Alter-
natives for decellularised trachea include allogeneic trachea 
[58], aortic grafts [59] and composite reconstruction from 
autologous tissue.

Whole lung engineering  Whole lung engineering was 
obtained in rodent lungs by repopulating decellularised 
lung ECM with epithelial and endothelial cells and allowed 
gas exchange [60–62]. More recently, a scaling up in size 
was obtained successfully engineering human-sized lung 
by reseeding porcine decellularised lung with human air-

way epithelial progenitor cells and human umbilical vein 
endothelial cells in a bioreactor system and achieving a 
surgical implantation into porcine recipients [63]. An addi-
tional promising technique is bioprinting, the deposition of 
layers of different cell types and matrix material, address-
ing the need for creation of complicated tubular airflow and 
vascularity paths [64].

Oesophagus

In paediatrics, many conditions may require the presence of 
a complete or partial substitute of the oesophagus, including 
long-gap oesophageal atresia (LGOA), caustic ingestion and 
traumatic injuries. Despite great advances in clinical care, 
reconstruction of oesophageal continuity is still associated 
with substantial morbidity and severe consequences on qual-
ity of life [65].

Research on tissue engineering of oesophagus was pre-
ceded by advancement of biomaterials, including decellular-
ised, natural derived and synthetic materials. The successful 
in vivo implantation of these materials, using the small patch 
implantation model, has demonstrated their biocompatibility 
[66]. However, when aiming to generate longer oesopha-
geal constructs, spontaneous migration of adjacent cells 
is not sufficient and identification of suitable oesophageal 
cell populations for bioengineering and establishment of 
their in vitro isolation and expansion method is an essential 
prerequisite for successful clinical translation [67]. Other 
obstacles for functional oesophageal replacement include the 
need for vascular supply, crucial for reseeded cells survival, 
and innervation of the implanted tissue, to enable efficient 
peristalsis of food intake.

Stem cells of oesophagus

Development of oesophagus from early foregut  While ven-
tral foregut endoderm expresses transcription factor Nkx2.1 
giving rise to the respiratory system, transcription factor 
Sox2 and Pdx1 are vital signalling pathway molecules for 
specification towards oesophagus, stomach and pancreas 
[68].

Stem and progenitor cells  Epithelial cells: The continuous 
turnover of the epithelial layer of the oesophagus relies on 
the so-called basal layer. These cells mature flattening into 
a stratified squamous epithelium consisting of 20–30 lay-
ers [69, 70]. Recent advances in lineage-tracing technology 
have revealed the stem/progenitor function of KRT5 posi-
tive basal cells in mice [71]. Currently, prevailing models 
for basal cell homeostasis in mature oesophagus are two: 
the heterogenous model, with multiple populations of 
basal cells (low integrin b1 and high laminin b2 [72] and 
CD34 + [73] subpopulations being the most validated), ver-
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sus the homogenous model, with a single progenitor popu-
lation maintaining self-renewal and differentiation capacity 
[74–76]. More recently, other various markers which indi-
cate basal cell subpopulations have been advocated, although 
their overlapping has not been determined [77–79]. Further 
analysis to clarify relationships between these markers and 
the genuine indicators for stem cell populations is required. 
As an alternative approach, some researchers successfully 
used oral epithelial cells as an alternative cell source read-
ily obtained during a minimally invasive procedure, with a 
high similarity in phenotype to oesophageal epithelial cells 
[80, 81].

Muscle cells: The submucosa and muscularis externa 
comprise mesenchymal elements of oesophageal wall; nerve 
fibres and ganglion cells are responsible for the generation 
of coordinated peristalsis [82, 83]. However, the origin of 
cells forming oesophageal muscular layer also remains an 
unanswered question. Initially, the unique structure of the 
human oesophageal muscle layer, a mixture of skeletal and 
smooth muscle, was considered to be the result of transdif-
ferentiation of smooth muscle into skeletal muscle [84, 85]. 
However, lineage-tracing studies provided this assumption 
wrong [86]. Alternatively, it has been suggested that a skel-
etal muscle population originating from cranial mesoderm 
may migrate into the smooth muscle layers [87–89].

Tissue engineering

Much interest in tissue engineering of the oesophagus has 
focused on using acellular scaffolds derived from animal or 
human tissues and with or without cell-seeding. In particu-
lar, difficulty mimicking the complex native structure using 
synthetic materials whilst satisfying all the crucial features 
required for transplantable tissue constructs has provoked 
tissue engineering research to shift towards decellularised 
scaffolds [90, 91]. Badylak et al. demonstrated promising 
regenerative advantage of small intestinal submucosa (SIS) 
laid onto the surface of dissected submucosal layer following 
endoscopic submucosal resection in a human clinical trial 
[92]. In an attempt to generate a cell-based construct which 
more closely resembles the native structure of the oesopha-
gus, researchers have attempted combination of synthetic 
and cells such as polyglycolic acid (PGA) and human amni-
otic membrane loaded with oral keratinocytes, fibroblasts, 
and smooth muscle cells in the canine model [93], acellular 
matrix recellularised with skeletal myoblasts covered by 
human amniotic membrane seeded with oral keratinocytes 
in a minipig model [94]. Urbani et al. developed recellular-
ised oesophageal grafts using mesangioblasts and fibroblasts 
that formed a muscle layer after dynamic bioreactor culture 
[95–97]. Epithelial progenitor cells and enteric neural crest 
cells were functionally engrafted, and the graft was success-
fully prevascularised in vivo [95]. More recently, tubular 

synthetic scaffolds were seeded with autologous mesen-
chymal stem cells in preclinical models [98] and clinical 
application [99].

Stomach

Gastrectomy is commonly performed in adults and chil-
dren for a variety of conditions, ranging from the need of 
an oesophageal substitute as in LGOA or caustic ingestion 
[100] till gastric cancer [101]. After gastrectomy, patients 
suffer from various symptoms due to a loss of reservoir, 
digestive and exocrine glandular functions [102]. To com-
pensate for the loss of reservoir, various techniques have 
been developed but the lack of gastric mucosa, which plays 
a crucial role for the functionality of stomach, remains an 
unsolved aspect [103].

Stem cells and progenitors

Epithelial cells: Organogenesis of the stomach originates 
from a highly coordinated interaction between foregut endo-
derm and splanchnic mesoderm due to interplay of various 
factors and signals, such as HHEX, SOX2, retinoic acid, 
FGF and Wnt pathways and gradients of BMP [104].

The adult stomach is lined with a glandular epithelium 
in which self-renewal is driven by gastric stem cells. How-
ever, their exact location among the glandular functional unit 
is not clear. Using incorporation of labelled nucleotides in 
animal models, historical studies suggested that renewal of 
antral gastric cells was driven by one or a few cells localised 
in the isthmus [105]. More recently, by adapting lineage-
tracing research from the previous intestinal studies, Clev-
ers et al. identified a small number of cells at the bottom of 
pyloric gastric niches with active Wnt signalling marked 
with Leucine-rich repeat-containing G-protein coupled 
receptor 5 (Lgr5) [106, 107]. These cells were able to form 
and maintain fully differentiated gastric organoids. Subse-
quently, Sigal et al. identified the presence of a second stem 
cells population, by targeting the classic Wnt gene Axin2 
[108].

W h e n  c o m b i n e d  w i t h  L g r 5  l a b e l l i n g , 
AXIN2 + LGR5 + and AXIN2 + LGR5- subpopulations 
located at the base and lower isthmus of the gastric glands 
were identified. Importantly, the two cell types can replen-
ish each other, being alternatively activated and silenced in 
case of specific depletion [109]. Moreover, among all Wnt 
signalling, R-spondin 3 secreted by a-SMA positive mesen-
chymal cells beneath the gland has been pinpointed as an 
essential guide to epithelial stem cell renewal, in a reciprocal 
interaction [108].

Finally, in 2014 McCracken et al. firstly described the 
de novo generation of gastric mucosa from human iPSCs 
by temporal manipulation of the abovementioned signalling 
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pathway [19] and subsequently obtained to recreate a func-
tional epithelium [110].

Smooth muscle cells: The smooth muscle of the stom-
ach is thicker than that of other digestive organs, but the 
mechanisms of stomach-specific myogenesis from a pool of 
progenitors are not fully understood [111]. Moreover, enteric 
neural crest cells also have a role in stomach smooth muscle 
development [112]. For example, specialised muscle cells 
in the pyloric sphincter integrate neuronal and hormonal 
signals to control the progression of food into the intestine 
[113].

Tissue engineering

Tissue engineering of the stomach for translational medicine 
has two main aims: regeneration of epithelial lineage itself 
and physiological reinforcement of gastric wall [114]. In the 
literature, different approaches have so far been applied: his-
torically, scaffold biomaterials, such as collagen sponges or 
nonwoven poly glycolic acid (PGA) fibres, with or without 
cells loaded on the inner surface have been commonly used 
[115]. However, the regeneration achieved was just partial 
with a disturbed epithelialisation, a non-functional muscular 
layer and a significant contraction over time [116]. Recently, 
Tanaka et al. demonstrated that a myoblast cell sheet without 
scaffold could prevent leakage of the enteral contents in the 
mice model and obtained a rapid recovery of the discontinu-
ation [117].

In addition to the reinforcement of the gastric wall defect, 
improvements in the functional regeneration of the mucosa 
have been seen once the scaffold has been loaded with orga-
noids. Vacanti's group seeded organoids of a mesenchymal 
cores surrounded by epithelia onto a PGA tubular construct 
and then implanted both small (2-step replacement of native 
stomach in the murine model [118]) and large animal models 
(in the porcine model the constructs were implanted intra-
peritoneally [119]). To our knowledge, present literature is 
lacking naturally derived scaffolds, which may potentially 
facilitate regeneration, as composition of ECM in each 
tissue is unique and it could influence cell migration and 
differentiation.

Intestine

Various paediatric gastrointestinal diseases, including necro-
tising enterocolitis, gastroschisis, midgut malrotation and 
volvulus, intestinal atresia, and inflammatory bowel dis-
eases, may result in short bowel syndrome (SBS), in which 
limited length of the intestine cannot perform the required 
functions such as absorption and barrier function, commonly 
caused [120]. Patients with SBS eventually develop intesti-
nal failure when the residual bowel can no longer have suffi-
cient absorptive capacity to meet their nutritional needs and 

become dependent on total parenteral nutrition associated 
with poor quality of life, risk of sepsis and liver dysfunction, 
and mortality [121]. Although small bowel transplantation 
is the ultimate cure and has already been performed in more 
than 2000 cases, surgical outcomes still remain unsatisfac-
tory, with the survival rate at five years around 50% [122].

Intestinal stem cells and progenitor cells

The intestine is a highly complex organ with several essen-
tial functions; nutrient absorption, host immunity, and mucin 
secretion [123]. The intestinal epithelium has an integrated 
crypt-villus structure comprised of different cell types with 
specialised functions. The characteristic high turnover rate 
of the intestinal epithelium is mediated by intestinal stem 
cells located in the crypt base [124]. The aligned muscula-
ture and innervation are crucial to achieving synchronised 
and coordinated contraction throughout the enormous gas-
trointestinal tract. Smooth muscle cells and the enteric nerv-
ous system, together with the interstitial cells of Cajal (ICCs) 
as pace-making cells, mediate this function [125]. The vas-
cular and lymphatic systems play a role in both absorption 
of nutrients and the maintenance of vascular supply [126].

Organogenesis and maturation of the intestine were 
recently reviewed in [127], emphasising the role of signal-
ling pathways on intestinal specification, gut tube patterning, 
integration of smooth muscle and enteric nervous system 
(ENS), crypt-villus formation and postnatal maturation and 
maintenance. For example, the foregut and hindgut are spec-
ified by the expression of Sox2 and Cdx2 [128, 129]. Wnt 
and Notch signalling are two major signalling pathways reg-
ulating intestinal stem cells [130, 131]. This knowledge of 
molecular pathways, such as Wnt and Notch signalling, has 
been adapted into successful epithelial cell culture protocols.

Stem and progenitor cells  Generating functional intestinal 
epithelium is crucial to restoring a patient's enteral auton-
omy. Barker et al. first identified a widely accepted intestinal 
stem cell marker, Leucine-rich repeat-containing G-protein 
coupled receptor 5 (Lgr5), expressed in crypt base colum-
nar cells, and demonstrated that a single Lgr5 + cell has the 
capacity to regenerate crypt-villus structures [124, 132]. 
Mesenchymal-free 3D culture systems allow intestinal stem 
cells to form enteroids or organoids with intestine-specific 
crypt-villus architecture by combining niche factors [132]. 
These mouse organoids were successfully repopulated onto 
a damaged colonic epithelial layer in vivo when delivered 
via a simple colonic enema, indicating their potential for 
clinical application for intestinal regeneration [23]. Pluri-
potent stem cells are alternative cell sources for regenerat-
ing human intestinal epithelium. Human iPSCs were suc-
cessfully differentiated into definitive endodermal cells, 
followed by hindgut specification [20]. When transplanted 
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under the mouse kidney capsule, enhancing vascularisation, 
these cells formed mature organoids with terminally differ-
entiated intestinal cell lineages and adult-type crypt-villus 
architecture [133].

The mesenchymal and smooth muscle components of the 
intestine represent another challenge for intestinal regenera-
tion, as they have a crucial role in maintaining the epithelial 
niche. Recently, human iPSC-derived intestinal organoids, 
in combination with human-PSC-derived neural crest cells, 
were reported to generate a smooth muscle layer that is posi-
tive for the smooth muscle marker desmin and can function-
ally respond to electrical and pharmacological stimuli [134].

Large-scale vascularisation capable of enabling success-
ful surgical anastomosis into isolated engineered intestinal 
segments remains a challenge. Kitano et al. successfully 
repopulated human endothelial cells and human iPSCs-
derived intestinal progenitors on a decellularised intesti-
nal scaffold in a rat model. They restored perfusability and 
patency following in vivo isolated transplantation, as well 
as in ex vivo perfusion testing [135].

Tissue engineering

To create a sizable intestinal equivalent that can be success-
fully anastomosed to the native intestine, tissue engineering 
of the intestine has attempted to bring some or all cellular 
components and systems together into one platform. Given 
the complex structure and highly organised function of the 
intestine, the creation of synthetic biomaterials which reca-
pitulate intestinal ultrastructure, such as the crypt-villus 
structure and stem cell niche, is challenging. Decellularised 
scaffolds of the intestine have attracted attention with advan-
tages over synthetic materials. Our group has established a 
detergent-based decellularisation protocol that retains essen-
tial ECM proteins, angiogenic properties, and mechanical 
strength [90]. Recent studies focus on the integration of 
intestinal organoids into tissue-engineered intestines. Both 
human and mouse organoids replicated the structure and 
absorptive function of the intestine when implanted in a 
mouse model [136]. Implantation of human intestinal orga-
noid-seeded scaffolds results in a tissue-engineered intestine 
resembling a native structure [137, 138].

The enteric nervous system (ENS)

Neurological dysfunction within the enteric nervous sys-
tem (ENS) is responsible for a wide range of gastrointes-
tinal motility disorders, such as oesophageal atresia [139], 
oesophageal achalasia [140, 141], and most commonly, 
Hirschsprung's disease (HD) and intestinal aganglionosis 
in children [142, 143]. Specifically, HD is known to be the 
result of impaired migration of enteric neural crest cells 
(NCCs) during intestinal development, with the primary 

symptom being intestinal obstruction caused by the lack of 
peristalsis [144]. Surgical resection of the aganglionic seg-
ment is the standard therapy; however, it is often associated 
with persistent symptoms, such as repeated enterocolitis and 
dysmotility [145, 146]. The restoration of the ENS through 
stem cell transplantation is attracting attention as a poten-
tially curative therapeutic method [147].

Recently, substantial progress has been made in ENS 
research through the identification and isolation of enteric 
neural stem cells (ENSCs): multipotent cells which can 
be isolated from human GI tracts. McCann et al. reported 
the restoration of the ENS and colonic motility following 
the implantation of ENSCs into a mouse model of human 
enteric neuropathy (neuronal nitric oxide synthase deficient 
mouse), which highlighted the significant possibility of 
clinical ENSC therapy [148]. PSCs are alternative sources 
to circumvent the above issue, with abundant proliferative 
capacity. Fattahi et al. successfully isolated ENS progeni-
tors from human PSCs and demonstrated their maturation 
into functional ENS [149]. They also reported restoring ENS 
components on human PSC-derived intestinal organoids by 
combining human PSC-derived NCCs in 3D growth condi-
tions. Co-implanted NCCs migrated into intestinal mesen-
chyme and functionally integrated into the intestinal smooth 
muscle of the intestinal organoids [134, 150].

Pancreas

The intense interest in understanding human pancreas devel-
opment is related to the treatment of diabetes, a growing 
health problem worldwide. Type 2 diabetes, the most preva-
lent form of this disorder, is typically characterised by a 
progressive failure of β-cells to meet the body’s demands for 
insulin; in contrast, β-cells are lost by autoimmune destruc-
tion in type 1 diabetes mellitus. Both mechanisms leading 
to diabetes are related to genome sequence variants in adult 
β-cells [151] and during developmental events [152]. In both 
cases, cell therapy and tissue engineering of the whole or 
partial organ are of great interest for potential transplantation 
or drug development.

Development of pancreas

Human pancreas formation starts with dorsal bud formation 
deriving from endoderm, and it continues with the appear-
ance of the ventral bud. After the posterior migration, the 
ventral bud fuses with the dorsal pancreatic bud, giving rise 
to most of the pancreas. Although knowledge of events in 
human pancreas organogenesis is limited, Jennings et al. 
recently reported that contact between the dorsal pancreatic 
endoderm and the notochord leads to the exclusion of sonic 
hedgehog (SHH) expression from this endodermal region 
[153]. As a result, expression of the pancreatic and duodenal 
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homeobox 1 (PDX) gene, a master gene for pancreatic devel-
opment, is upregulated. Although all of the downstream 
effectors of pancreas development have not been deter-
mined yet, it appears that expression of the specific home-
obox genes of the PAX family guides differentiation towards 
endocrine cell lineages that are known as α (glucagon), β 
(insulin), δ (somatostatin) and γ (pancreatic polypeptide) 
cells. By contrast, little is known about exocrine pancreas 
development [154].

Stem cells in the pancreas

Pancreatic progenitor cells arise from a cluster of cells origi-
nating from the developing foregut. These clusters have been 
characterised to show multipotent properties [155] and the 
ability to differentiate into endocrine, exocrine, and ductal 
lineage precursors [156]. More recently, adult pancreatic 
stem cells have been found as a subpopulation of biliary 
tree stem cells, precursors of both hepatic and pancreatic 
stem cells in the hepato-pancreatic common duct [157, 158]. 
MSCs can differentiate into immature islet-like cells with 
such low efficiency that they are not a practical source for 
clinical products [159].

Tissue engineering

Since the first experiments pursuing pancreatic differentia-
tion [160], there has been a number of differentiation pro-
tocols using hESCs [161] or hiPSCs [162, 163], focusing 
on the generation of mature, single hormone-expressing, 
glucose-responsive human β-cells [164]. However, some 
transcriptional similarities have been identified between 
PSC-derived β-cells and human foetal β-cells, which may 
explain a relative immaturity of PSC-derived β-cells [165]. 
This immaturity may also reflect the lack of an appropriate 
developmental niche containing the necessary signalling 
factors for pancreatic cell differentiation [164], consistent 
with the better maturity achieved by in vivo incubation in 
mouse [157, 161] or culture on synthetic scaffolds [166]. In 
this context, some preliminary results are highlighting niche-
derived influence on cell differentiation [167], although the 
whole mechanism remains to be clarified [168]. Some latest 
protocols have significantly improved in generating a higher 
proportion of monohormonal cells [169]. However, it is 
unclear whether these cells possess the ability of glucose-
responsive insulin secretion and this remains a vital require-
ment for clinical transplantation [170].

Diaphragm and skeletal muscle

Several different approaches have been attempted to repair 
large defect in congenital diaphragmatic hernia (CDH), 
including synthetic mesh materials, autologous thoracic 

or abdominal muscle flap, with PTFE/Gore-tex® being the 
current standard practice. Because synthetic materials are 
related to various long-term complications, recent studies 
described using naturally derived materials, such as small 
intestine submucosa (SIS) and acellular dermis, with a fail-
ure of regeneration and a resultant re-herniation [171, 172]. 
A new strategy for a more effective biological substitute 
applicable for diaphragmatic defect repair or other muscu-
lar-related diseases (such as abdominal wall defect, trauma, 
volumetric muscle loss, or genetic disorders) represents a 
significant challenge.

Skeletal muscle regeneration

Skeletal muscle retains high regenerative capacity upon 
mechanical damage or diseases. This regenerative ability 
is mediated by a resident stem cell population for skeletal 
muscle, named muscle satellite cell (SC), and identified 
by the transcription factor Pax7 [173, 174]. The repair and 
regeneration of skeletal muscle comprise three phases: (1) 
host inflammatory cells are recruited to a damaged site in 
the inflammatory phase. (2) In the repair phase, pro-inflam-
matory macrophage (M1) is gradually replaced by anti-
inflammatory macrophage (M2), which contributes to the 
proliferation and differentiation of SCs and their progeny; 
myoblasts [175]. (3) In the remodelling phase, newly formed 
muscle fibres are joined into the existing muscles [176].

Stem cells for skeletal muscle therapy and bioengineering

SCs and myoblasts are physiological skeletal muscle precur-
sors, so it is rational that most studies on muscle cell therapy 
have been performed on these cell populations. Although 
investigations on SCs have demonstrated their proliferation 
and multipotent differentiation capabilities, utilising SCs 
for human cell therapy and bioengineered skeletal muscle 
has faced severe challenges and limitations [177]. Early-
phase clinical studies showed that insufficient cells could be 
obtained from human biopsies, poor expansion potential of 
SCs cultured in vitro, poor survival in vivo, and low contri-
bution of implanted SCs on muscle regeneration [178, 179].

Notably, in the setting of congenital disorders, SCs and 
myoblasts are exhausted, hindering efficient cell isola-
tion and expansion in vitro. These drawbacks of SCs and 
myoblasts have led to the identification of alternative stem 
cell candidates for skeletal muscle regeneration, including 
mesangioblasts/pericytes [180], CD133-positive cells [181], 
Aldehyde dehydrogenase 1A1 (ALDH)-positive cells [182], 
MuStem cells [183] and hPSC [184].

Regarding the microenvironment of stem cell niche, 
the importance of mechanical rigidity of substrate used 
during in vitro culture has been noted to preserve satel-
lite cell capacity. Appropriate elasticity or geometric 
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micropatterning of a substrate where cells cultured on 
enhanced survival, self-renewal, and engraftment abilities 
of satellite cells in vivo [185, 186], proposing the require-
ment of investigation on optimal bioengineered stem cell 
niche [187].

Tissue engineering for skeletal muscle regeneration

In the setting of congenital muscular defects such as CDH or 
abdominal wall defects, a purely cell-based (scaffold-free) 
strategy is not applicable due to the massive skeletal muscle 
defects seen in many cases, which overwhelms the inherent 
regenerative potential. A bioengineered construct compris-
ing exogenous myogenic stem/progenitor cells combined 
with scaffold biomaterials would be an attractive option for 
reconstructing these large defects. Growing evidence has 
suggested appropriate biomaterials can enhance the poten-
tial of stem/progenitor cells (see comprehensive review in 
[188]).

Most of these biomaterials are broadly divided into syn-
thetic and naturally derived materials. Among various syn-
thetic biodegradable materials, polycaprolactone (PCL), 
PGA, and poly-lactide-co-glycolic acid (PLGA) have been 
the most frequently tested materials in vitro and in vivo ani-
mal model, with relatively disappointing outcomes due to 
a pro-inflammatory response of the host immune system 
against these materials [189–192]. In contrast, an acellular 
ECM scaffold obtained by decellularisation of native mus-
cle tissues is advantageous in mimicking native extracel-
lular environments preferable for precursor cells, such as 
mechanical strength, microarchitecture, and growth factors.

Two approaches  Researchers have investigated an acellu-
lar approach, where only decellularised scaffold was used 
without cells. Sicari and Badylak et al. utilised an acellular 
scaffold derived from a porcine small intestinal submucosa-
ECM and urinary bladder matrix for rodent volumetric mus-
cle loss (VML) model and human patients. They showed 
constructive regeneration of skeletal muscle tissue [193, 
194]. Piccoli et  al. performed orthotopic transplantation 
of an acellular ECM scaffold derived from diaphragmatic 
muscle and demonstrated improvement of diaphragmatic 
function in an atrophic mouse model [195]. Based on 
results from preclinical trials, the first human clinical study 
implanting acellular ECM into severe VML cases have con-
ducted, demonstrating early functional improvements and 
site-appropriate remodelling [194, 196].

In contrast, a cell-based tissue construct combining stem/
progenitor cells and acellular ECM could be a better thera-
peutic solution, especially when the recipient's muscle is 
severely compromised and a scarcity of muscle progenitor 
pool [197, 198]. The combination of bone marrow-derived 

MSCs and acellular ECM demonstrated increased regenera-
tion of muscle fibres and blood vessels [199].

Future perspectives

In the last decade, regenerative medicine has expanded dra-
matically, combining numerous relevant fields and technolo-
gies, including stem cell biology, biomaterial engineering, 
immunology, and genetics, indicating the interdisciplinary 
nature of this emerging discipline. Many novel therapeutic 
strategies have been proposed to treat adult and paediatric 
pathologies and realise finely tuned transplantable "artifi-
cial" organs. However, regarding applying this innovative 
paradigm to the paediatric surgical clinical practice, sig-
nificant practical and ethical limitations still need to be 
addressed, including optimisation, scalability, and manu-
facturing standardisation [200].

Recent breakthroughs in this field might provide various 
alternative platforms and therapeutic options. Since 2017, 
researchers have developed an artificial placenta system 
comprising an extracorporeal circuit, oxygenator, and fluid-
filled womb-like environment, and they proved the concept 
using premature animal models [201, 202]. Another promis-
ing alternative is xenotransplantation of genetically modified 
organs. In January 2022, the first pig-to-human heart trans-
plantation was conducted at University of Maryland School 
of Medicine and the University of Maryland Medical Center. 
The transplanted xenogeneic heart was obtained from geneti-
cally modified pig [203]. Although there are still significant 
obstacles to overcome before the eventual clinical applica-
tion of these platforms, they could facilitate the development 
of novel therapeutic approaches or a deeper understanding of 
the underlying mechanism in regenerative medicine.

Conclusion

The last decade has witnessed remarkable advance in both 
the basic knowledge and technologies in stem cell biology 
and bioengineering, which has made it possible to create a 
variety of engineered tissues and organs with the clinical 
translational potential. Due to the complexity of reconstruc-
tion in paediatrics, many paediatric surgeons contributed 
to the development of the field. In 1954 Dr Joe Murray, a 
paediatric plastic surgeon from Children's Hospital Boston, 
who subsequently received the Nobel prize in 1990, and his 
team, performed the first successful kidney transplant where 
the donor and the recipient were two identical twins [204]. 
Dr Judah Folkman, the father of angiogenesis research, was 
the director of the Vascular Biology Program and a former 
surgeon-in-chief at the Children's Hospital Boston. He had 
the ability to bring together both a scientist's and a surgeon's 
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perspectives to finding solutions to medical problems. Dr 
Folkman published his ideas about angiogenesis in 1971 
[205]. Working together in his laboratory at that time were 
Dr Jay Vacanti and Dr Robert Langer who started collabo-
rating to create new matrices and scaffolds that could allow 
cells to be expanded and to differentiate. They defined the 
concept of tissue engineering as a new field that applies the 
principles of biology and engineering to the development of 
functional substitutes for damaged tissue [9]. Dr Folkman’s 
mentorship influenced many working in Boston at that time 
and just a few floors below in the same building Dr Anthony 
Atala, engineered the first human bladder which was later 
implanted in children requiring bladder augmentation [206]. 
Dr Prem Puri contributed as well to the field by investigating 
many of the diseases which will ultimately benefitting of 
a regenerative medicine approach like Hirschsprung’s Dis-
ease, congenital diaphragmatic hernia and abdominal wall 
defect. Moreover, we can identify Prof Puri as one of the 
contributors to the field by introducing and popularised the 
correction of vesicoureteric reflux by endoscopic injection of 
polytef paste. The bulging mechanism created by the poly-
mer can be considered a first step towards an engineering 
approach which is safe, simple, and effective in correcting 
all grades of reflux [207].

Despite the enormous progress, the field of regenerative 
medicine is still in its relative infancy phase: however, with 
present momentum on research progress and interdiscipli-
nary collaboration, it is reasonable to expect that shortly, 
regenerative medicine will lead to realising unprecedented 
surgical therapeutic strategies where impaired organs are 
replaced by novel biological substitutes.
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