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Periodic orbits in chaotic systems 
simulated at low precision
Milan Klöwer 1,2*, Peter V. Coveney 3,4,5, E. Adam Paxton 1 & Tim N. Palmer 1

Non-periodic solutions are an essential property of chaotic dynamical systems. Simulations with 
deterministic finite-precision numbers, however, always yield orbits that are eventually periodic. 
With 64-bit double-precision floating-point numbers such periodic orbits are typically negligible due 
to very long periods. The emerging trend to accelerate simulations with low-precision numbers, such 
as 16-bit half-precision floats, raises questions on the fidelity of such simulations of chaotic systems. 
Here, we revisit the 1-variable logistic map and the generalised Bernoulli map with various number 
formats and precisions: floats, posits and logarithmic fixed-point. Simulations are improved with 
higher precision but stochastic rounding prevents periodic orbits even at low precision. For larger 
systems the performance gain from low-precision simulations is often reinvested in higher resolution 
or complexity, increasing the number of variables. In the Lorenz 1996 system, the period lengths of 
orbits increase exponentially with the number of variables. Moreover, invariant measures are better 
approximated with an increased number of variables than with increased precision. Extrapolating 
to large simulations of natural systems, such as million-variable climate models, periodic orbit 
lengths are far beyond reach of present-day computers. Such orbits are therefore not expected to be 
problematic compared to high-precision simulations but the deviation of both from the continuum 
solution remains unclear.

Many natural systems exhibit chaotic dynamics. The chaos in weather prevents reliable forecasts beyond one 
or two weeks1,2. The turbulent flow of air or water around vehicles requires complex numerical simulations to 
optimise the drag3,4. Similarly, chaos is present in models of many-body problems from astrophysics5,6, classical 
molecular dynamics and chemical reaction networks7, and plasma in fusion reactors8,9. As chaotic dynamics 
often prevent analytical solutions, numerical simulations with finite-precision floating-point numbers10 are used 
to approximate a system’s state and predict its future.

However, simulating a deterministic, yet chaotic system with deterministic finite-precision numbers always 
results in closed periodic orbits due to a finite set of possible states11. One may think of these orbits as bitwise 
periodic, in the sense that they eventually return to a state in which every bit of every independent variable 
is identical to the initial state. Eternal periodicity in the simulation of chaotic systems violates a fundamental 
property of chaos, but periods are very long with the high precision of 64-bit floating-point numbers (Float64).

Unstable periodic orbits are the skeleton of chaos12 and have been intensively studied to better understand the 
dynamical properties of chaotic systems13–15. Chaotic trajectories follow a given periodic orbit in its vicinity but 
eventually diverge due to the orbit’s instability and approach another orbit until diverging again16. The spectrum 
of the periodic orbits is a decomposition of the attractor17. It contains infinitely many countable orbits: the more 
orbits the longer the period with no upper bound on the period length16,18. The spectrum is truncated with deter-
ministic finite-precision to a finite set of orbits bounded by a maximum period length. How such a truncation 
degrades the simulated dynamics is generally unclear. While very low-precision arithmetic truncates chaotic 
attractors to fixed points or short loops, the degradation can also be less obvious: it may be either substantial or 
to the point of being negligible.

Computed dynamics have errors relative to analytical solutions. Model errors arise from the difference 
between the mathematical equations and the natural systems they represent, including unresolved processes 
and heuristic parameters. Errors in the initial or boundary conditions are a result of imperfect observations being 
assimilated into the numerical model19. Discretization errors occur when a continuous system is discretized into 
a number of variables that is often limited by available computational resources20. In addition, there are rounding 
errors as a result of using finite-precision numbers to approximate real numbers21. In a chaotic system, errors 
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grow exponentially with time, so the largest source of error masks smaller ones. Due to often negligible round-
ing errors, many numerical simulations are currently transitioning to low-precision calculations in exchange for 
computational performance22–24. The performance gain is then reinvested into a higher resolution or complexity 
with more independent variables, typically with the intention of increasing the model’s accuracy.

16-bit low-precision computations are increasingly supported on modern processors, such as graphics pro-
cessing units25 (GPU), tensor processing units26 (TPU) and also conventional central processing units27,28 (CPU). 
While the standard and only widely available number format are floats, several alternatives have been proposed: 
posits29, logarithmic fixed-point numbers30 (logfix), and floats with stochastic rounding31–33. Currently lacking 
in hardware support, these number formats are first emulated in software for precision tests. The comparison 
across formats provides a better understanding as to how the numerical precision affects the simulated dynamics.

Here, we compare the periodic orbits and invariant measures as the properties of three chaotic dynamical 
systems when simulated with different binary number formats and rounding modes and at various levels of 
precision. The number formats are briefly described in section "Periodic orbits and number formats" along with 
our methodology for finding periodic orbits. In section "The logistic map with various number formats" we 
analyse the bifurcation of the logistic map as simulated with different number formats and rounding modes. In 
section "Revisiting the generalised Bernoulli map", we revisit the simulation of the generalised Bernoulli map 
to analyse numerical precision in a system where the analytical invariant measure is known. In section "Orbits 
in the Lorenz 1996 system", we turn to the Lorenz 1996 system to investigate the periodic orbit spectrum with 
an increasing number of variables. Section "Conclusions" summarises the results, section "Methods" provides 
further details on the methodology.

Periodic orbits and number formats
The state of a deterministic dynamical system is entirely determined by X = (x1, x2, ..., xN ) , the vector of all its N 
prognostic variables in a given finite-precision number format at a given time step t  . We define a periodic orbit 
in a simulation when the state vector Xt0 at time step t0 exactly reoccurs at a later time step t1 > t0,

Equality is hereby required within the considered precision of the number format. Equivalently, Xt0 and Xt1 
are bitwise identical. An exception occurs for floats where −0 = 0 , which arithmetically does not impact on the 
dynamical system. This bitwise periodicity is in contrast to other studies investigating quasi-periodic orbits34,35, 
which require Xt0 ,Xt1 to be close, but not bitwise identical. The periodic orbits here are found in long simulations 
when Eq. (1) holds and are very sensitive to the choice of the number format and numerical precision. This is 
distinct from unstable periodic orbits, numerically found via an iterative Newton method when Eq. (1) holds 
up to a numerical error36 that is larger than the precision of the number format.

The invariant measure of a chaotic system describes its attractor independent of the initial conditions. A 
deterministic chaotic system simulated with deterministic finite-precision arithmetic will converge to one of 
the periodic orbits for any initial condition. Based on all periodic orbits we can compute the invariant measure 
through a weighted average by the orbits’ respective basins of attraction, i.e. the fraction of initial conditions 
that end up on a given periodic orbit. To find all periodic orbits in a deterministic dynamical system, all possible 
initial conditions have to be integrated and checked for periodicity. For a 1-variable system with X ∈ [0, 1) (such 
as the Bernoulli map, see section "Revisiting the generalised Bernoulli map") simulated with Float32 there are 
1,065,353,216 unique initial conditions. For any larger system or higher precision number format it becomes 
computationally virtually impossible to consider all initial conditions. We therefore use a Monte Carlo-based 
random sampling of the initial conditions to find a subset of all orbits. An improved pseudo-random number 
generator for floats is developed for this purpose (see Methods). The orbits found are expected to be those with 
the largest basins of attraction, and a robust estimate of their size is obtained for a sufficiently large sample of 
initial conditions. This procedure is explained in the section Methods.

Floating-point numbers are standardised following IEEE10,37. Other binary number formats are briefly intro-
duced. Posits29 have a slightly higher precision within the powers of 2 around ±1 , yet a wide dynamic range at 
the cost of a gradually lower precision away from ±1 . While posits have been proposed as a drop-in replace-
ment for floats, they currently lack widely available hardware support. For more details on posits see refs.29,38–40. 
Logarithmic fixed-point numbers have received little attention apart from research implementations on custom 
hardware30 and are therefore described with our design choices in more detail.

Logarithmic fixed‑point numbers.  The logarithmic fixed-point number (logfix) format LogFixPoint16 
is here defined with a similar range-precision trade-off as Float16 with a sign bit s , ni = 5 signed integer bits in 
the exponent and nf = 10 fraction bits. A logfix number x is of the form

The exponent k = i + f  is equivalent to a fixed-point number with nf  binary digits accuracy. The signed 
integer i is in [−2ni , 2ni − 1] and allows a similar range of representable numbers, 2-16 to 216, compared to the 
exponent bits in Float16. The fraction f  is in [0, 1) and identically defined to the mantissa bits in floating-point 
numbers (without the hidden bit), which are encoded as the sum of powers of two with negative exponent. 
Multiplication, division, square root and power are easily implemented for a logarithmic number format with 
binary integer arithmetic and do not introduce any rounding errors unless the result is beyond the range of 
representable numbers. In contrast, addition and subtraction with logfixs is based on the Gaussian logarithms, 

(1)Xt0 = Xt1 .

(2)x = (−1)s · 2k
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which often introduce a rounding error where floats avoid them due to their piecewise uniform distribution. 
For more details and a software implementation see LogFixPoint16s.jl41.

Stochastic rounding.  The default rounding mode for floats, posits and logfixs is round-to-nearest10, which 
rounds an exact result x to the nearest representable number xi . Stochastic rounding has recently emerged as 
an alternative rounding mode, beneficial for scientific computing31,33,42,43. In this rounding mode x is rounded 
down to a representable number x1 or up to x2 at probability proportional to the distance between x and x1, x2

with u being the distance x2 − x1 and x1 ≤ x ≤ x2 . While deterministic rounding introduces a rounding error 
at most ± u

2 , the stochastic rounding error is bounded by ±u . This occurs at low probability when x is very close 
to a representable number but rounded away from it. However, stochastic rounding is exact in expectation32,44, 
such that for repeated rounding the expectation of the rounded result converges to the exact x . Depending on 
the algorithm, the effective precision of a number format with stochastic rounding can therefore be higher than 
with deterministic round-to-nearest33,42, despite the same number of mantissa bits. For more details and the 
software implementation used here see the software package StochasticRounding.jl45.

The logistic map with various number formats
The 1-variable logistic map is one of the most well-known chaotic maps, famous for its period-doubling 
bifurcation46. Starting with xi ∈ [0, 1) at time step i = 0 the logistic map with parameter r is

For r = [1, 3] the system has a stable fixed point at r−1
r  which all solutions will eventually converge to. For r = 3 

to r ≈ 3.45 the solution will oscillate between two values, for larger r this period doubles first to 4 time steps, 
then to 8, 16, … and so on (Fig. 1a). For each period doubling the fixed points before the previous bifurcation 

(3)roundstoch(x) =
{
x1 with probability 1− u−1(x − x1)

x2 with probability u−1(x − x1)
.

(4)xi+1 = rxi(1− xi)

Figure 1.   The bifurcation diagram of the logistic map simulated with various number formats, precisions and 
rounding modes. Bifurcation in the logistic map is a function of its parameter r . Shading represents a histogram 
of the solutions with darker colours denoting higher frequencies. Number formats, precisions and rounding 
modes in (a–i) as described in the respective titles.
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continue to exist, but are now unstable. For r ≈ 3.57 and larger, chaotic solutions are found. However, intermit-
tent ranges of r (often called islands of stability) exist which again have periodic solutions.

These properties of the logistic map are well simulated with Float64, Float32 and Posit32 (Fig. 1a,b,d) due to 
sufficiently high precision. However, at lower precision with Float16, Posit16, LogFixPoint16 and BFloat16 the 
unstable fixed points gain stability due to rounding errors (Fig. 1c,e,g,h, shown as third branch at bifurcations). 
Within the vicinity of these fixed points a diverging solution can be rounded back towards the unstable fixed 
points, which therefore become spuriously part of the simulated attractor. Furthermore, the chaotic solutions of 
the logistic map collapse into periodic orbits such that the dense attractor is only approximated by a low number 
of finite points (shown as sparsely dotted areas in the bifurcation diagram).

Stochastic rounding removes the aforementioned spurious stability of the unstable fixed points due to round-
ing errors at low precision (Fig. 1f,i). For Float16, stochastic rounding considerably improves the bifurcation 
diagram over deterministic rounding. Particularly the islands of stability reemerge and the chaotic solutions have 
a much denser attractor. While the bifurcation diagram with BFloat16 is poorly simulated with both rounding 
modes, stochastic rounding is still a clear improvement over deterministic rounding.

Revisiting the generalised Bernoulli map
The generalised Bernoulli map11 (also sometimes called the beta-shift47 or the Renyi map48,49) is a 1-variable 
chaotic system starting with xi ∈ [0, 1] at time step i = 0 with the parameter β > 1 defined as

The modulo-operation mod satisfies that x ∈ [0, 1) at all future time steps. We note in passing that the gen-
eralised Bernoulli map is topologically conjugate to various other dynamical systems, including the aforemen-
tioned logistic map. Simulating this system with Float32 was found not to represent the periodic orbit spectrum 
well11, which is in turn closely related to the simulated invariant measure. For the generalised Bernoulli map the 
analytical invariant measure is known as50

The Heaviside function is θ and f jβ(1) is the j-th time step of the Bernoulli map starting from x0 = 1 . C = 1 is 
a normalisation constant, but for the calculation of Wasserstein distances (see section Methods) renormalization 
is applied so that the integral of hβ(x) over [0, 1] is equal to 1 and hβ(x) a probability density. To better visualise 
the invariant measure for varying β we introduce a normalisation h̃β = hβ(x) /max(hβ(x)) , which is always in 
[0, 1] and can be applied to the analytical invariant measure as well as simulated ones.

We are revisiting the generalised Bernoulli map with various number formats and rounding modes to bet-
ter understand a previously suggested pathology11 as a function of arithmetic precision. While simulating the 
Bernoulli map numerically with a given number format, we perform both the multiplication and the subtraction 
in Eq. (5) with that format and avoid any conversion between number formats. This is in contrast to Boghosian 
et al. 2019, whose implementation converts xi to Float64 before multiplication with β (as Float64) and possible 
subtraction with 1 (as Float64), i.e. xi+1 = Float32(β * Float64(xi))mod 1 . While hardware allows for fused 
multiply–add operations without intermediate rounding error, similar to the conversion to Float64 here, the 
fused conditional subtraction in the modulo is generally not supported on hardware.

The special β = 2 case.  Boghosian et al. 2019 highlight that the Bernoulli map with β = 2 , and similarly 
for every even integer, will collapse to x = 0 after n time steps with any float format at arbitrary high but finite 
precision, where n is smaller than the number of bits. The subtraction with 1 acts as a bitshift towards more 
significant bits, pushing zero bits into the mantissa until x = 1 and the modulo returns x = 0 (Figure S3a, b and 
c). This phenomenon occurs as the Bernoulli map with β = 2 (and similarly for larger even integers) does not 
introduce any arithmetic rounding error: Both the multiplication with β and subtraction with 1 are exact with 
floats (and also with posits). The multiplication with β = 2 is exact as the base-2 exponent is simply increased 
by 1. The subtraction with 1 is exact as every finite positive float or posit can be written as 2e

(
1+ f

)
 for some 

integer e and a sum f ∈ [0, 1) of powers of two with negative exponents. Constraining the range to [1, 2) , where 
the subtraction is applied, yields e = 0 and so subtracting 1 from the mantissa 1+ f  is f  , again a sum of powers 
of two, which is exactly representable with floats or posits.

The only occurring rounding error is in the initial conditions. While a randomly chosen x ∈ [0, 1) at infinite 
precision will have infinitely many non-zero mantissa bits, at finite precision those beyond the resolved mantissa 
bits are rounded to 0. Therefore, the least significant mantissa bit remains 0 after each iteration of the Bernoulli 
map while the same 0 bit from the previous iteration is further bit-shifted in. This behaviour holds for floats and 
posits, but it does not occur with logfixs. All multiplications are exact with logfixs (unless under or overflows 
occur), but in contrast to floats and posits a rounding error occurs in the subtraction, with the possibility of set-
ting the least significant mantissa bit to 1. This rounding error is effective at preventing a collapse of the attractor 
(Figure S3d). The Bernoulli map with β = 2 and simulated with floats or posits is therefore special, as it is a 
chaotic system that does not involve any arithmetic rounding errors beyond the rounding of the initial condi-
tions. However, the simulation of most other systems, including the generalised Bernoulli map with 1 < β < 2 , 
involves rounding errors with any finite precision number format.

(5)xi+1 = fβ(xi) = (βxi)mod 1

(6)hβ(x) = C

∞∑

j=0

β−jθ

(
f
j
β(1)− x

)
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Bifurcation of the invariant measure.  Given that the analytical invariant measure is known for the 
generalised Bernoulli map (Eq. 6), we can assess its representation with various number formats at different 
levels of precision. Boghosian et  al. 2019 conclude that the invariant measure with Float32 is an inaccurate 
approximation of the analytical invariant measure. While this difference is even more pronounced with Float16 
arithmetic (Figure S2), with Float64 the invariant measure is comparably accurate. The question therefore arises 
as to whether the discrepancy of the invariant measures vanishes with higher precision, or whether a pathology 
persists at any precision level for some β.

The analytical invariant measure of the generalised Bernoulli map consists of many step functions taking 
values on a discrete set of points (Figure S2), which bifurcate with increasing β (Fig. 2a). These “quantization 
levels” cannot be exactly represented with Float16 or Float32 arithmetic (Figure S2), such that their bifurcation 
is visually blurred (Fig. 2c). The visually sharp representation of this bifurcation of the quantization levels with 
Float64 indicates a much more accurate approximation to the analytical invariant measure (Fig. 2b). Due to the 
higher precision of 32-bit posit arithmetic (Posit32) around ±1 , the bifurcation is slightly improved with Posit32 
over Float32 (Fig. 2d). Given the inaccurate representation of the invariant measure with Float16 (Figure S2), its 
bifurcation has little resemblance to the analytical bifurcation (Fig. 2f).

Effects of stochastic rounding.  Augmenting Float32 with stochastic rounding considerably improves 
the bifurcation (Fig. 2e) and makes it virtually indistinguishable from Float64 or the analytic bifurcation. How-
ever, stochastic rounding does not decrease the rounding error accumulated over many iterations in a fore-
cast (Figure S4), such that the effective precision is not increased over deterministic rounding. But introduc-
ing stochasticity prevents the convergence onto periodic orbits, which are otherwise present with deterministic 
rounding11. Previously inaccessible regions of the attractor can be reached with stochastic rounding as the simu-
lation is frequently pushed off any periodic orbit. This advantage of stochastic rounding is also observed in 
the logistic map (section "The logistic map with various number formats"). While periodic orbits are not fully 
removed from solutions due to the use of pseudo random number generators (PRNG) that are themselves peri-
odic, the periods of PRNGs are usually so long that effectively any periodicity is avoided. The period length of 
Mersenne Twister51, the most widely-used PRNG, is 219937 − 1 and still sufficiently long with 2128 − 1 for the 
faster Xoroshiro128 + 52,53 PRNG that is used in StochasticRounding.jl.

The agreement of the analytical and simulated invariant measures is quantified with the Wasserstein distance 
(section Methods). For β = 2 the analytical invariant measure is the uniform distribution U(0, 1) , whereas all 
float and posit formats for both deterministic and stochastic rounding simulate a collapse of the attractor to zero 
such that the invariant measure is the Dirac delta distribution (Fig. 3). The Wasserstein distance W1 is in all these 
cases W1 = 0.5 and does not improve with precision. However, as previously mentioned, the rounding errors 

Figure 2.   Bifurcation of the quantization levels corresponding to the invariant measure in the generalised 
Bernoulli map as simulated with various number formats. (a) Analytical bifurcation hβ(x) from the exact 
invariant measure, normalised by max(hβ(x)) , compared to the invariant measure by simulating the Bernoulli 
map with (b) Float64, (c) Float32, (d) Posit32, (e) Float32 + stochastic rounding, and (f) Float16.
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from logfixs prevent a collapse such that for LogFixPoint16 the invariant measure is much better approximated, 
with W1 = 0.05.

For 1 ≤ β < 2 the Wasserstein distance is always reduced going to higher precision, supporting the inference 
that only the case β = 2 (and other even integers) presents a pathology where higher precision does not improve 
the simulated invariant measure arising from the generalised Bernoulli map. The Wasserstein distances of Float32 
with stochastic rounding are similarly low to Float64 and no significant difference can be found. However, using 
stochastic rounding with Float16 is worse than deterministic rounding as here the stochasticity makes it possible 
that the invariant measure of the generalised Bernoulli map collapses to 0, which is a fixed point (Figure S5). 
For Float32 the probability of such an occurrence is low and is not observed here. With Float16 most simula-
tions collapse within a few thousand iterations transforming their invariant measures into Dirac distributions. 
Whether this problem generalises to other systems is questionable. We suspect that this may be a feature of 
low-dimensional dynamics and may not arise commonly in higher dimensional systems: There the chance of a 
stochastic perturbation onto a fixed point becomes vanishingly small even at very low precision. Other natural 
systems do not have fixed points due to time-dependent forcing. The posit format is slightly better than floats at 
both 16 and 32-bit, as expected from the slightly higher precision.

Orbits in the Lorenz 1996 system
In contrast to the 1-variable generalised Bernoulli map, most continuous natural systems are simulated numeri-
cally with as many variables as computationally affordable by increasing resolution and/or complexity. Weather 
forecast and climate models often use millions of independent variables that result from a discretisation of con-
tinuous variables on the globe. While short periodic orbits in low precision are problematic in the simulation 
of few-variable systems as discussed in the previous sections, this section tests the hypothesis that large systems 
are unaffected for all practical purposes.

To investigate the dependence of periodic orbits on the number of variables in the system we consider the cha-
otic Lorenz 1996 system54,55. This system has been widely studied for data assimilation56 and machine learning57,58. 
With N variables Xi , i = 1, . . . ,N the one-layer version is a system of coupled ordinary differential equations.

in a one-dimensional spatial domain with periodic boundary conditions, XN+1 = X1 etc. The term 
Xi−1(Xi+1 − Xi−2) implements nonlinear advection, and drag is represented with the relaxation term –Xi. The 
forcing F is the single parameter in the Lorenz 1996 system fixed at the common default F = 8 which produces 
chaotic solutions. The forcing is steady in time and constant in space. The system exhibits dynamics of nonlinear 
wave-wave interactions (Fig. 4a), which are reasonably independent of the number of variables (Fig. 4b). The sys-
tem can be integrated with as little as N = 4 variables without an obvious degradation of the simulated dynamics.

The initial conditions are in equilibrium Xi = F, i �= j ∀i with only a single variable which is slightly per-
turbed Xj = F + 0.005+ 0.01ε with ε ∼ U(0, 1) , drawn from a random uniform distribution in [0, 1) . Due 
to the periodic boundary conditions and the spatially constant forcing the system is spatially invariant. After 

(7)
dXi

dt
= Xi−1(Xi+1 − Xi−2)− Xi + F

Figure 3.   Agreement between the simulated and analytical invariant measures in the generalised Bernoulli map 
quantified by the Wasserstein distance. For all values 1 ≤ β < 2 a higher precision number format yields a better 
agreement with the analytical Bernoulli map. Simulations using (a) Floats with and without stochastic rounding, 
(b) Posits and logarithmic fixed-point numbers. The Wasserstein distances are calculated for the invariant 
measures obtained from N = 10

3 simulations for each value of β . Scatter points denote individual Wasserstein 
distances, solid lines indicate averages across a range of β as indicated by steps.
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some several hundred time steps, the information from the initial conditions is removed through the chaotic 
dynamical evolution (Fig. 4a). The invariant measure µ of one variable Xi is therefore identical to that of any 
other µ(Xi) = µ

(
Xj

)
∀i, j , as will be further discussed below.

The Lorenz 1996 system is discretized in time using the 4-th order Runge–Kutta scheme59 with a time step 
of �t = 0.1 . At this temporal resolution the system can also be integrated using a low-precision number format 
such as Float16 (Fig. 4). For more details and a software implementation see Lorenz96.jl60. Time integration 
scheme and time step also have a large impact on chaotic trajectories and hence on the periodic orbit analysis 
presented here. Numerical stability and performance usually dictate this choice, but low precision can add an 
additional constraint: Using a shorter time step can cause stagnation as tendencies are too small to be added in 
the time integration. Stagnation from low precision can be overcome with a compensated time integration61 or 
with stochastic rounding32.

Figure 4.   The Lorenz 1996 system simulated with Float16 arithmetic. A Hovmoeller diagram visualising the 
temporal evolution of every variable Xi encoded in colour. (a) N = 100 variables starting from equilibrium 
Xi = 8 (coloured as grey) with a small perturbation in X50 , and (b) same as (a) but N = 10 variables, starting 
with a perturbation in X5 . Pixels visible in the shading represent individual variables and time steps.

Figure 5.   Periodic orbits in Lorenz96 simulated with Float16 with an increasing number of variables. Initial 
conditions are randomly taken from a high-precision simulation. Basins of attraction (shading) correspond to 
the share of initial conditions that converge to the respective periodic orbit. Dashed lines provide an orientation 
for the exponential increase in orbit lengths with the number of variables.
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Longer orbits with more variables.  Using N = 4 variables in the Lorenz 1996 system simulated with 
Float16, the longest periodic orbit we find is 6756 time steps long (Fig. 5 and Table S1). The basin of attraction is 
about 0.82, meaning that about 82% of the randomly chosen initial conditions converge onto this orbit. Increas-
ing the number of variables to N = 5 , the longest periodic orbit found increased to a length of 294,995 time steps 
at a similarly large basin of attraction. For N > 9 the orbit search becomes computationally very demanding and 
requires more than several days on sizable compute clusters with 100 cores (see section Methods for a descrip-
tion of how the orbit search is parallelised). For N = 9 though, the longest periodic orbit we were able to find 
has a period of 32,930,252,532 time steps. For a list of periodic orbits found in the Lorenz 1996 system and their 
respective minimums see Table S1.

More variables instead of higher precision.  In most cases between 4 and 9 variables in the Lorenz 1996 
system, the longest orbit is also the one with the largest basin of attraction. The longer the orbit the larger the 
occupied state space of possible values the variables Xi can take at a given precision. Consequently, the assump-
tion is that it is most likely that a given trajectory ends up on the longest orbit. However, we also found a counter 
example as the longest orbit with N = 8 variables is shorter than the longest with 9 variables (Fig. 5).

The orbit length increases approximately exponentially following a scaling of about 16N to 128N from N = 4 
to N = 9 . Such an exponential increase translates to about 4 to 7 effective bits of freedom (as 24 = 16, 27 = 128 ) 
for every additional variable in Lorenz 1996 represented with Float16. However, the computational resources 
limit the orbit search for larger N  , making it hard to constrain this exponential scaling further. Assuming a 
similar exponential orbit increase holds for larger N , extrapolation of these findings suggests orbit lengths on 
the order of about 10100,000 for million-variable systems simulated with Float16. This is far beyond the reach of 
any computational resources currently available. In that sense, while a simulation of such large systems would 
eventually be periodic, a periodic solution will never be reached.

Longer orbits are promising to avoid periodic solutions in low precision, but short periodic orbits do not 
necessarily misrepresent a reference invariant measure. We assess the agreement of invariant measures using 
the Wasserstein distance as before. As a reference invariant measure µ

(
Xref

)
 we integrate the Lorenz 1996 sys-

tem for 1,000,000 time steps with N = 500 variables using Float64 arithmetic. The Wasserstein distance is then 
W

(
µ
(
Xref

)
,µ(X)

)
 with X representing the variables from a Lorenz 1996 simulation with N variables using either 

Float16 or Float64 arithmetic.
Using only N = 4 variables in the simulation of Lorenz 1996 yields an invariant measure with little resem-

blance to the reference (Fig. 6a,f), regardless of the number format. While more variables yield an invariant 
measure that converges to the reference, there is virtually no difference whether Float16 or Float64 arithmetic is 
used (Fig. 6b–e). The Wasserstein distance significantly reduces with an increasing number of variables, but not 
with higher precision (Fig. 6g). Given a certain availability of computational resources a better invariant meas-
ure is therefore obtained by reducing the precision and reinvesting the performance gain into more variables.

Discussion.  From a rigorous mathematical perspective, we would like to know how the periods of orbits 
increase with the number of variables and precision. Experimentally, we find orbits that exponentially increase 
in length with the number of independent variables in the Lorenz 1996 system. Every variable is found to add 
between 4 and 7 maximum entropy bits that extend orbits by a factor of 24 to 27. Similarly, assuming maximum 
entropy for additional mantissa bits, the expected length of periodic orbits doubles with every additional man-
tissa bit in precision.

The Lorenz 1996 system is deemed to be too easy62 as a toy model for machine learning, meaning that it is 
too homogeneously chaotic to be actually a challenging problem. In our case, the conclusions from Lorenz 1996 
may not translate directly to more chaotic systems: the exponential growth of the periodic orbit length with the 
number of variables in such systems might be weaker.

For more complex simulations of natural systems such as million-variable climate models, the periodic orbits 
found here would naively extrapolate to lengths beyond 10100,000 time steps even in 16-bit precision. The largest 
orbits will very likely remain out of reach on future generations of supercomputers, especially if the performance 
gained from low-precision simulations is reinvested into higher resolution or complexity. In the context of cli-
mate models, this supports a vision of low-precision but high-resolution simulations with added stochasticity 
to accelerate and improve climate predictions.

Conclusions
We analysed the bifurcation in the logistic map with different number formats and rounding modes. The round-
ing errors from 16-bit floats, posits or logfixs with deterministic rounding can spuriously stabilise the unstable 
fixed points. Furthermore, the dense attractors collapse into short periodic orbits. Both issues can be addressed 
with stochastic rounding. It prevents periodic orbits as a chaotic trajectory is regularly pushed off any periodic 
orbit due to the stochastic perturbation in rounding. This considerably improves the logistic map bifurcation 
with Float16.

The periodic orbit spectrum in the generalised Bernoulli map was analysed with different number formats 
and levels of arithmetic precision. While there are very special cases (such as β = 2 ) in which the system’s simu-
lation is greatly degenerated at any precision, in all other cases simulations were found to improve with higher 
precision. 16 and 32-bit arithmetic result in short periodic orbits in the Bernoulli map, but a sufficiently high 
precision reduces the error in the invariant measure to a minimum.

Stochastic rounding is also found to be especially beneficial for 32-bit floats in the Bernoulli map. Simu-
lated invariant measures are improved as chaotic trajectories travel with stochastic rounding through otherwise 
unreachable state space. However, in the Bernoulli map stochastic rounding also causes a non-zero chance that 
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the system collapses on the fixed point. But for any precision higher than Float16 and in systems with more 
variables this chance quickly vanishes. In many complex natural systems the fixed points are not close to the 
attractor, further limiting the relevance of this issue in practice.

Increasing the number of variables in the Lorenz 1996 system, we find that more variables improve the simu-
lated invariant measure much more than increased precision with fewer variables does: Doubling the amount of 
variables yields a more accurate invariant measure than doubling the precision of a high-resolution and high-
precision reference. This provides evidence that computational resources should be invested in higher resolution 
rather than higher precision for the simulation of continuous chaotic systems.

Methods
An improved random number generator for uniformly distributed floats.  Conventional random 
number generation for a float f  from a uniform distribution U(0, 1) uses the following technique: First, 10/23/52 
random bits (for Float16/Float32/Float64 respectively) from an unsigned integer are used to set the mantissa bits 
of floating-point 1. This creates a floating-point number that is uniformly distributed in [1, 2) as all float formats 
are uniformly distributed in that range (the exponent bits are constant). Second, 1 is subtracted to obtain a float 
in [0, 1) , i.e. f ∼ U(1, 2)− 1 . While this approach is fast, it is statistically imperfect as the resulting distribution 
U(1, 2)− 1 does not contain all floats in [0, 1) . There are 223 Float32s in [1, 2) but the subtraction maps those only 
to a subset of all 1, 065, 353, 216 ≈ 230 Float32s in [0, 1) . This technique only samples from every second float in [
1
2 , 1

)
 , every fourth in 

[
1
4 ,

1
2

)
 and so every 2n-th float in 

[
2−n, 2−n+1

)
 . Furthermore, the smallest positive number 

that can be obtained is about 10−7 for Float32 and 10−16 for Float64. This is many orders of magnitude larger than 
minpos, the smallest representable positive float, which is about 10−45 , 10−324 for Float32, Float64, respectively.

Figure 6.   Improvement of the simulated Lorenz 1996 invariant measure with increasing number of variables. 
(a) The invariant measure of Lorenz 1996 simulated with N = 4 variables. Using Float16 (orange line outlining 
the histogram) or Float64 (teal filled histogram) arithmetic yields a virtually identical invariant measure. (b–e) 
as (a) but with an increasing number of variables. (f) The reference invariant measure obtained from N = 500 
variables using Float64 arithmetic. (g) The Wasserstein distance of the simulated Lorenz 1996 system with 
respect to the reference. Invariant measures are taken from all available variables, which are invariant due to 
periodic boundary conditions and spatially-independent forcing (see Eq. 7). Shadings in (g) represent the 
5–95% confidence interval and solid lines the median obtained from an ensemble simulation with 100 members 
starting from slightly different random initial conditions.
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We therefore developed a statistically improved conversion from a random unsigned integer to a uniformly 
distributed float in [0, 1) . Counting the number of leading zeros l  of a random unsigned integer yields l = 0 at 
probability 12 , l = 1 at probability 14 and l = k at probability 2−k−1 . These probabilities correspond exactly to the 
share of power-2 exponents in the unit range [0, 1) . Consequently, we translate the number of leading zeros l  
to the respective exponent bits and use the remaining bits of the unsigned integers for the mantissa bits. The 
statistical flaws from the conventional conversion as presented above are avoided, but for practical reasons the 
smallest float that can be sampled is about 10−20 for both Float32 and Float64. It is therefore practically impos-
sible to sample a zero with this technique, which is in contrast to the conventional technique. Just as the chance 
of obtaining a zero in [0, 1) is 0 for real numbers, the method here also has a zero chance for floats. We implement 
this method in the software package RandomNumbers.jl and use it throughout this study.

Monte Carlo orbit search.  For the generalised Bernoulli map, the random number generator described 
above is used to sample from all floats in [0, 1) to obtain a representative subset of all initial conditions. While 
there is no guarantee that all orbits are found, those found have the largest basin of attraction. While it is easily 
possible to miss a periodic orbit, those missed are expected to have a very small basin of attraction and therefore 
a negligible contribution to the invariant measure. Estimating the invariant measure from these orbits is there-
fore also expected to be an unbiased approximation that converges to the exact invariant measure. The exact 
invariant measure is obtained by finding all simulated orbits and their exact basins of attraction rather than 
using a random set of initial conditions. We verify this methodology for Float16 and Float32, where the exact 
invariant measure can be calculated in Figure S1. While we cannot find all orbits with Float64, the Monte Carlo-
based invariant measure converges to the analytical invariant measure and is for the same sample size a better 
approximation than using Float16 or Float32. Despite the high precision, a Float64 simulation of the generalised 
Bernoulli map still substantially degrades some properties of the analytical system: The topological entropy, 
measuring how trajectories diverge onto distinct orbits, is positive in the analytical system, representing chaotic 
solutions. However, even with the high precision of Float64 the topological entropy is negative, as trajectories 
eventually converge onto periodic orbits.

For the Lorenz 1996 system, the space of all possible initial conditions is much larger than the space the 
attractor occupies. It is therefore more efficient to only choose initial conditions randomly that are already part 
of, or at least close to, the attractor. The basin of attraction here means therefore the relative share of the initial 
conditions from the attractor that end up on a given orbit, and not from all possible initial conditions. To obtain 
an initial condition for the Lorenz 1996 system, one first starts a high-precision simulation from a given initial 
condition including a small stochastic perturbation (see section "Orbits in the Lorenz 1996 system" for more 
details). After disregarding a spin-up the information about the chosen initial condition is removed and the 
stochastic perturbation grows into a fully independent random initial condition. Converting a random time 
step from a high-precision simulation into the given number format is then intended to emulate sampling from 
the invariant measure at low precision.

Efficient orbit search with distributed computing.  To find an orbit in a simulation, Eq. (1) is used 
after every time step to check for equality with a previous time step. However, before an orbit is found, it is 
unknown whether a given initial condition Xt0 is already part of the orbit or still part of the trajectory that is yet 
to converge onto an orbit. It is possible to use the last time step of a very long spin-up simulation as Xt0 . This 
strategy limits the chance that Xt0 is not yet part of the orbit, but does not provide a guarantee, nor is it efficient. 
Instead we implemented a strategy whereby Xt0 is updated during simulation and slowly moves forward in time: 
Updates like t0 = round

(√
t1
)
 or t0 = round

(
log(t1)

)
 , with t0 < t1 integers, indicating the time steps, are used. 

In particular, we use several past time steps of the simulation as Xt0 to check for periodicity. Checking for perio-
dicity with all past time steps is inefficient as they would have to be stored and O

(
t21
)
 checks have to be performed 

in total for all time steps from t0 to t1 . In contrast, for a constant number of checks per time step, the total number 
of checks increases only linearly with the simulation time.

Finding n orbits from n different initial conditions is a problem that is parallelizable into n independent pro-
cesses calculated on np ≤ n processors. We follow ideas of the MapReduce framework: Each worker process starts 
with a different initial condition and simulates the dynamical system independently of other processes until an 
orbit is found. This orbit is passed to the main process, which reduces successively all n orbits found into a list 
of unique orbits, as several initial conditions can yield the same orbit. Instead of defining an orbit by all of the 
points on it, which would be computationally inefficient for very long orbits, we describe an orbit by the period 
length and its minimum. The minimum of an orbit is the point for which the L2 norm is minimised. While it is 
theoretically possible that an orbit has several minima with identical norms, this occurred rarely in our applica-
tions. Two such orbits that are falsely identified as respectively unique are then merged in post-processing. A 
uniqueness check between two orbits (or one orbit and a list of orbits, in which case the uniqueness check is 
pairwise against every orbit in the list) is unsuccessful and yields a single orbit only if all of the three following 
criteria are fulfilled: 1) Length: the two orbits must have the same period length; 2) Minimum norm: the norms 
of the orbits’ minima have to be identical; 3) Minimum: the orbits’ minima, including possible rotation of the 
variables for spatially periodic solutions, have to be bitwise identical. While criterion 3 is sufficient to identify 
the uniqueness of two orbits, it is computationally more efficient to check for criterion 3 only if criterion 2 is 
fulfilled, which is only checked if criterion 1 is fulfilled, hence the proposed order.

Wasserstein distance.  The invariant measure of a chaotic dynamical system is estimated with histogram 
binning. To assess the agreement of two histograms representing invariant measures (either simulated or ana-
lytical) we use the Wasserstein distance, a metric that derives from the theory of optimal transport, with an L1 
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cost. The Wasserstein distance is defined as the least cost at which one can transport all probability mass from 
histogram µ to another histogram ν , where the cost to move mass m from a bin of µ at location x to a bin at 
location y of ν is m

∣∣x − y
∣∣33,63. This gives a non-parametric method to compare probability distributions which 

accounts for both differences in the probabilities of events as well as their separations in the underlying space, 
so that closeness in Wasserstein distance truly corresponds to a natural notion of closeness between probability 
distributions63, Thm 7.12.

Data availability
The repository BernoulliMap is available at https://​github.​com/​milan​kl/​Berno​ulliM​ap64 and contains the software 
to produce the analysis presented here. Lorenz96.jl (v0.3) is available at https://​github.​com/​milan​kl/​Loren​z96.​
jl60. LogFixPoint16s.jl (v0.3) is available at https://​github.​com/​milan​kl/​LogFi​xPoin​t16s.​jl41. StochasticRounding.
jl (v0.6) is available at https://​github.​com/​milan​kl/​Stoch​astic​Round​ing.​jl45.
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