
1. Introduction
Uncontrolled urbanization rates have transformed the cityscape of sub-Saharan African (SSA) cities and their 
suburbs, bringing with them changes in the socioeconomic and demographic contexts (Georganos et al., 2020; 
Robert et al., 2003). More than 40% of SSA population already lives in cities, and this figure is expected to reach 
58% by 2050 (United Nations et al., 2019). At the same time, SSA is also impacted by the current climate change, 
where climate projections foresee a warming trend with increased temperatures and disrupted rainfall (Serdeczny 
et  al.,  2017). This rapid urbanization and global climate change are likely to influence the epidemiology of 
vector-borne diseases such as malaria (Kabaria et  al., 2016; Serdeczny et  al.,  2017). In SSA, malaria-related 
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effect of DHS spatial displacement. We modeled malaria risk using a random forest regressor and remotely 
sensed covariates depicting the urban climate, the land cover and the land use, and we tested several spatial 
optimization approaches. The use of spatial optimization mitigated the effects of DHS spatial displacement 
on predictive performance. However, this comes at a higher computational cost, and the percentage of 
variance explained in our models remained low (around 30%–40%), which suggests that these methods cannot 
entirely overcome the limited quality of epidemiological data. Building on our results, we highlight potential 
adaptations to the DHS sampling strategy that would make them more reliable for predicting malaria risk at the 
intra-urban scale.

Plain Language Summary Global climate change and rapid urbanization in sub-Saharan Africa 
(SSA) are likely to affect the epidemiology of vector-borne diseases such as malaria in urban and peri-urban 
areas. In this context, a better understanding of intra-urban malaria risk and its determinants has become even 
more urgent. Malaria risk has often been modeled at the national scale from Demographic and Health Surveys 
(DHS), which are periodically conducted in more than 90 developing countries. However, survey cluster 
coordinates in DHS are randomly displaced by up to 2 km in urban areas to protect respondent privacy, which 
reduces the accuracy of malaria models and risk maps at the intra-urban scale. In this study, we tested the 
potential of spatial optimization methods to overcome the effect of DHS displacement. We found that spatial 
optimization methods improved the performance of malaria models, but the improvement in performance is 
small for a higher computational cost. With these methods, we predicted malaria risk in several SSA cities 
(Dakar, Dar es Salaam, Kampala and Ouagadougou). We expect the quality and quantity of available data on 
malaria and other vector-borne diseases to improve in the future, which will certainly make these methods 
extremely useful in the fight against these diseases.
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deaths still represent more than 95% of the global burden and almost all (i.e., 99.7%) are caused by the Plasmo-
dium falciparum (Pf) parasite (Sinka et al., 2012; World Health Organization, 2021). In this context of change, 
there is an urgent need for a better understanding of intra-urban malaria risk in SSA.

Malaria has often been studied in rural settings, where it is significantly more endemic than in urban areas 
(Kabaria et al., 2016; Tatem et al., 2013). However, urban environments are associated with higher population 
densities, which means that more people are exposed to malaria transmission risk (Doumbe-Belisse et al., 2021). 
Besides, cities are highly heterogeneous environments, where malaria risk is also likely to be heterogeneous 
(Boyce et al., 2019; Machault et al., 2010). This means that rural malaria models are not easily applicable to urban 
areas. In recent years, research initiatives have investigated intra-urban malaria risk in relation to driving factors 
such as climate (Brousse et  al.,  2020b, 2020c; Morlighem et  al.,  2022), land use and land cover (Georganos 
et al., 2020; Kabaria et al., 2016; Morlighem et al., 2022) and socioeconomic variables (Georganos et al., 2020; 
Morlighem et al., 2022). In this previous work, high-risk urban areas were associated with informal settlements 
built on lowlands, proximity to wetlands and urban agriculture.

Studying intra-urban malaria requires high-resolution data that capture the spatio-temporal heterogeneity of intra-urban 
epidemiology and its local determinants (i.e., malaria driving factors). The availability of epidemiological data has 
increased considerably in recent years, with various types of surveys being conducted as part of scientific research 
or larger scale studies. Common data sources are the Demographic and Health Surveys (DHS) and the Malaria 
Indicator Surveys (MIS) of the same DHS program (The DHS Program, 2022)—from this point on, we use the term 
“DHS” to refer to both DHS and MIS to avoid repetition. These are nationally sampled, cross-sectional, geolocated 
surveys conducted periodically in more than 90 developing countries (Corsi et al., 2012; Georganos et al., 2019). 
Besides, since the Malaria Atlas Project in the early 2000s (Hay & Snow, 2006; Malaria Atlas Project, 2022), remote 
sensing and geographic information systems have been increasingly used for low-resolution, large-scale mapping of 
malaria risk (Adigun et al., 2015; Riedel et al., 2010) and, more recently, for city-specific, high-resolution mapping 
(Georganos, 2020; Morlighem et al., 2022). This has led to the production of fine-scale maps of the environmental and 
socioeconomic factors that influence intra-urban malaria risk (e.g., Kabaria et al. (2016) and Rogers et al. (2002)). 
In recent years, several studies have combined DHS and remote sensing to map malaria risk at the national or 
sub-national level (Adigun et al., 2015; Ejigu, 2020; Giardina et al., 2012; Riedel et al., 2010; Ssempiira et al., 2017).

Nevertheless, a well-known issue with DHS epidemiological data is that survey cluster coordinates are randomly 
displaced by up to 2 km in urban areas (5 km in rural areas) before publication to protect the privacy of survey 
participants (Burgert et al., 2013; Corsi et al., 2012; Georganos et al., 2019; Ozodiegwu et al., 2021). Although 
it has little impact at the national scale, at the intra-urban scale it reduces the spatial accuracy of the DHS indi-
cators and may in turn affect the spatial accuracy and reliability of intra-urban malaria risk maps that rely on 
DHS (Ozodiegwu et al., 2021). Some spatial optimization methods have recently been proposed to adjust for this 
displacement effect when modeling the DHS wealth index at the intra-urban scale (Georganos et al., 2019). These 
are based on the duplication of the published DHS cluster coordinates in the four cardinal directions (N, S, E, 
W) to enrich or refine the contextual spatial feature extraction (Georganos et al., 2019). In this paper, we further 
investigate these methods to map intra-urban malaria risk with DHS.

The main objective of this study is to test the potential of spatial optimization methods to overcome the loss of 
spatial accuracy due to survey cluster displacement when modeling and predicting intra-urban malaria risk in SSA 
using DHS. We focus on four SSA cities for which data are available: Dakar (Senegal), Dar es Salaam (Tanzania), 
Kampala (Uganda) and Ouagadougou (Burkina Faso). The main modeling workflow involves a popular machine 
learning algorithm, namely random forest (RF), and multi-resolution remotely sensed variables representing the 
urban climate, the land use and the land cover. In addition, we test the spatial optimization methods on non-DHS 
data for which we simulated a spatial displacement according to the DHS procedure. Building on our results, we 
discuss potential adaptations of the DHS sampling strategy so that they can better support intra-urban malaria 
risk mapping.

2. Materials and Methods
2.1. Plasmodium falciparum Prevalence Data

Plasmodium falciparum (Pf) prevalence data were extracted from an open source malaria database (Snow 
et al., 2017a), which contains survey data compiled  from various sources such as DHS or scientific research 
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from 1900 to 2015 (Snow et  al.,  2017b). Data are available as geolocated 
data points accompanied with the timestamp of the survey, the age range 
of the population sampled, the size of the sample and the Pf prevalence. Pf 
prevalence is measured as the Pf Parasite Rate standardized to the 2 to 10 age 
range (PfPR2–10). The PfPR is the proportion of the surveyed human popula-
tion with detectable Pf parasites in their peripheral blood (Smith et al., 2007). 
As this measure varies across age groups with human immunity, the metric 
is standardized over a child age range following Smith et al. (2007) to ensure 
comparability between malaria surveys conducted on different age samples 
(Smith et al., 2007).

This database has been used in previous work to predict malaria risk at the 
intra-urban scale in several SSA cities (including Dar es Salaam, Kampala and 
Dakar) (Brousse et al., 2020b; Georganos et al., 2020; Kabaria et al., 2016; 
Morlighem et al., 2022), but DHS were usually filtered out of the database 

and malaria models relied only on non-displaced survey data, which drastically reduced the number of available 
survey points. Here, we selected all types of surveys conducted between 2005 and 2015, assuming stable malaria 
prevalence over this period, as a compromise between temporal consistency and the number of available surveys. 
We did not consider surveys in which participants were older than 16 years to ensure that PfPR2–10 estimates are 
not affected by the increased mobility of older individuals (Brousse et al., 2020b). The four cities selected are those 
with the highest number of survey data points after applying these selection criteria. Table 1 shows the number of 
surveys available for each city, together with their mean PfPR2–10 and standard deviation. Despite  the  variety of 
survey types, many of the surveys are DHS, in which the urban cluster coordinates are randomly displaced within 
2 km buffers to protect the privacy of the respondents. The only restriction on displacement is that data points 
must remain within the boundaries of the administrative unit (usually the second administrative level) to which 
they belong, and this only applies to surveys conducted after 2008 (Burgert et al., 2013). Given this diversity in 
survey types, the spatial accuracy of the data points varies within and between cities, for example, Dakar and 
Ouagadougou (see Table 1).

2.2. Remotely Sensed Predictors

In this study, we conjointly used as predictors data sets that have separately been shown to be useful for mapping 
intra-urban malaria risk in SSA cities. We gathered the Land Cover and Land Use (LCLU) data sets used in 
Georganos et al. (2020) to map PfPR2–10 in Kampala and Dar es Salaam, and the Local Climate Zones (LCZ) and 
ancillary variables used in Brousse et al. (2020b) to map PfPR2–10 in nine SSA cities. On top of these data sets, we 
assembled climatic variables from different data sources. These data sets are detailed in the following sections.

2.2.1. Land Cover and Land Use (LCLU)

The LC maps (50 cm resolution) were generated following the processing toolchain of Grippa et al. (2017), which 
performs LC classification from satellite imagery. The LC classification is implemented by a combination of 
Computer Assisted Photo Interpretation, Geographic Object Based Image Analysis and machine learning algo-
rithms. The satellite images on which the classification is based are Pleiades images of Dar es Salaam (acquired 
in March and January 2016 and July 2018), Kampala (acquired in February 2013) and Dakar (acquired in July 
2015), and WorldView3 VHR images of Ouagadougou (acquired in October 2015).

Following Grippa et al.  (2018), LU maps (20 m resolution) were created from the aforementioned LC maps. 
Spatial metrics derived from the LC maps were used to perform LU classification of street blocks recon-
structed from OpenStreetMap parcels and street networks. All LCLU maps are freely available from Zenodo 
scientific repositories (Grippa & Georganos,  2018a,  2018b,  2018c,  2019; Georganos,  2020; Georganos & 
Grippa, 2020a, 2020b) and have been used in previous research to map intra-urban malaria risk in Kampala and 
Dar es Salaam (Georganos et al., 2020; Morlighem et al., 2022). The LC and LU classes are detailed in Table 2.

2.2.2. Local Climate Zones (LCZ)

LCZ are meaningful LCLU classes that describe the urban climate, where each class represents a specific urban 
typology with its inherent climate (Brousse et al., 2020b). The LCZ maps (100 m resolution) used in this study are 
derived from an RF classification applied to Landsat, USGS and Sentinel imagery from 2017 to 2019 (Brousse 

Selected surveys Mean PfPR2–10 ± SD DHS

Dakar 122 1.4 ± 3.0 88 (72.1%)

Dar es Salaam 172 5.2 ± 7.5 82 (47.7%)

Kampala 77 5.0 ± 6.9 38 (49.4%)

Ouagadougou 52 15.2 ± 23.4 52 (100%)

Note. The selection criteria are all surveys conducted over 2005–2015 
and including only participants aged less than 16. SD stands for “standard 
deviation.”

Table 1 
Surveys Meeting the Selection Criteria, PfPR2–10 Statistics and 
Demographic and Health Surveys for Each City
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et al., 2020b) and are freely available from the LCZ Generator (Demuzere et al., 2021). Training areas used in 
the RF classification originated from a mapathon organized in November 2019 and have served the mapping of 
intra-urban malaria epidemiology for nine SSA cities (Brousse et al., 2020a, 2020b).

Table 2 shows the LCZ classes used in this study.

2.2.3. Climatic Variables

We gathered meteorological satellite observations from MODIS data collections (products MYD11A1 v006 and 
MOD11A1 v006) at 1 km resolution (Wan et al., 2015a, 2015b) to account for intra-urban climatic variations. 

Variables Spatial resolution Type of extraction

Land cover and land use

 Low vegetation (humid, riparian, grasses, bushes) (LC) 50 cm Proportion

 Tall vegetation (LC) 50 cm Proportion

 Water (LC) 50 cm Proportion

 Building (LC) 50 cm Proportion

 Bare ground (LC) 50 cm Proportion

 Planned settlements (LU) 20 m Proportion

 Informal settlements (LU) 20 m Proportion

 Wetlands, streams, marshes, rivers (mixed class) (LU) 20 m Proportion

 Non-residential built-up (ACS: Administrative Commercial Service) (LU) 20 m Proportion

Local climate zones

 Compact built areas 100 m Proportion

 Open built areas 100 m Proportion

 Water bodies 100 m Proportion

 Lowlands 100 m Proportion

 Trees 100 m Proportion

 Industrial areas 100 m Proportion

Climatic variables

 Maximum day LST 1 km Direct extraction

 Minimum day LST 1 km Direct extraction

 Mean day LST 1 km Direct extraction

 Maximum night LST 1 km Direct extraction

 Minimum night LST 1 km Direct extraction

 Mean night LST 1 km Direct extraction

 Mean daily LST range 1 km Direct extraction

 Maximum precipitation 1 km Direct extraction

 Minimum precipitation 1 km Direct extraction

 Mean precipitation 1 km Direct extraction

 Maximum windspeed 1 km Direct extraction

 Minimum windspeed 1 km Direct extraction

 Mean windspeed 1 km Direct extraction

Ancillary variables

 Mean NDVI 100 m Average

 Mean NDWI 100 m Average

 Elevation 30 m Average

Table 2 
Remotely Sensed Predictive Variables of PfPR2–10
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From the daily averages of TERRA and AQUA day and night Land Surface Temperatures (LST), we extracted 
the maximum, minimum and mean year-monthly day and night LST and the mean daily LST range (calculated as 
the difference between the maximum and minimum daily LST) over a 13-year period (2005–2017). In addition, 
we used the maximum, minimum and mean year-monthly precipitation and windspeed over 1970–2000 from 
WorldClim climate data (1 km resolution) (Fick & Hijmans, 2017).

2.2.4. Ancillary Variables

Finally, following Brousse et al. (2020b), we included additional variables for which the relationship with malaria 
prevalence has often been highlighted (Kabaria et al., 2016; Sewe et al., 2016): (a) the averaged Normalized 
Difference Vegetation and Water Indices (NDVI and NDWI) over period 2005–2019 derived from Landsat 5 and 
8 satellite imagery (100 m resolution) and (b) a digital elevation model of 2000 from the Shuttle Radar Topogra-
phy Mission (SRTM) (30 m resolution) (Rodríguez et al., 2006).

Table 2 provides a summary of all the predictor variables investigated in this study.

2.2.5. Covariate Extraction

For 1 km resolution variables, that is, climatic variables, covariate values were extracted directly at the malaria 
survey coordinates. For all LC, LU and LCZ variables, we calculated the proportion of each class contained 
within 1 km buffers around the geolocated surveys. Finally, we used 1 km buffers to extract averaged NDVI, 
NDWI and SRTM values. In this way, all covariates were aggregated at the same 1 km resolution.

2.3. Modeling and Predicting PfPR2–10

2.3.1. Random Forest Modeling

We used an RF regressor to model PfPR2–10 from the set of remotely sensed covariates. RF is a robust algorithm 
for dealing with multicollinearity and allows for non-linear relationships between the covariates and the depend-
ent variable (Breiman, 2001). RF is an ensemble method based on decision trees and uses bagging to reduce 
overfitting (Breiman, 2001). As spatial autocorrelation tends to bias variable importance in RF modeling (Meyer 
et al., 2019), we used five-repeated five-fold spatial cross-validation (25 RF models in total), which means that 
80% of the data was used for training and 20% for testing (Lovelace et al., 2019). Hyperparameter tuning was 
performed by further dividing each fold into five sub-folds and fitting 50 RF models to define optimal values for 
(a) the number of covariates used at each node split (ranging from one to the number of covariates decremented 
by one), (b) the minimum number of observations per terminal node (ranging from one to 10), and (c) the fraction 
of observations used per decision tree (ranging from 0.2 to 0.9) (Lovelace et al., 2019).

To identify the most relevant covariates for predicting PfPR2–10, we implemented a feature selection method 
called recursive feature elimination (RFE) (Gregorutti et al., 2017). This method works by iteratively removing 
the least important covariate from the set of predictors until the predictive performance is the highest (Gregorutti 
et al., 2017). Here, covariate importance is measured as the standardized increase in the averaged Out of Bag 
(OOB) error of the RF models after random permutation of the covariate values. The most important covariates 
produce the largest increases in OOB error when permuted (Breiman, 2001). To measure the predictive perfor-
mance at each iteration of the RFE, we used three goodness-of-fit (GoF) indices (calculated on the test set): the 
root mean square error (RMSE), the mean absolute error (MAE) and the coefficient of determination (R 2), which 
is calculated using Equation 1, where n is the number of observations, yi is the value of observation i, 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is its 
predicted value and 𝐴𝐴 𝑦𝑦 is the mean of all observed values.

�2 = 1 −

�
∑

�=1
(�� − �̂�)2

�
∑

�=1

(

�� − �
)2

 (1)

2.3.2. Spatial Optimization Methods

As mentioned in Section 2.1, many malaria surveys are DHS. As a result, the displacement of survey cluster coor-
dinates is likely to reduce the predictive performance of RF models. The displacement occurs within a 2 km radius, 
and variables describing the cityscape, such as LCLU, can change drastically within this range in urban settings 
(Gething et  al.,  2015). To mitigate the effects of dislocation, we investigated two spatial optimization methods 
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recently proposed by Georganos et al. (2019) to overcome the effects of survey cluster displacement when mode-
ling the DHS wealth index. The first method (M1) consists of enriching the size of the training and test sets by 
duplicating the DHS data points in the four cardinal directions (N, S, E, W) at 500 m and 1,000 m—resulting in a 
ninefold increase in the number of DHS data points—as shown in Figure 1. Covariates are extracted and RF mode-
ling is implemented along with RFE using the original DHS data points and the newly created duplicates. With this 
method, we assumed that at least 50% of the DHS clusters are displaced within a 1 km buffer, following Georganos 
et al. (2019). In addition, when this technique is combined with covariate extraction in 1 km buffers around the 
duplicates, the maximum 2 km range of DHS displacement is almost completely covered, as can be seen in Figure 1.

The second method (M2) involves data refinement rather than enrichment. Instead of using all nine potential 
locations (i.e., eight duplicates and one original data point) for each DHS data point, one of them is randomly 
selected—leaving the total number of data points unchanged—and the final random selection is used for covariate 
extraction and RF modeling. This process is repeated over 1,000 iterations, and we finally use the data points of 
the best performing iteration (as measured by the GoF indices, i.e., RMSE, MAE and R 2) to implement the RFE.

Eventually, we used M1, M2 and M0, that is, the base RF modeling method implemented without any spatial 
optimization, to model malaria risk in the four cities of interest, and compared the performance of these methods 
using the GoF indices. In this study, we retained all types of surveys, allowing us to test spatial optimization meth-
ods for different case studies, with varying proportions of DHS, ranging from around 50% (Kampala and Dar es 
Salaam) to 100% (Ouagadougou) (see Table 1). Using the best performing method among M0, M1 and M2, we 
predicted PfPR2–10 in the four cities of interest on a 1 km resolution grid. The final predictive maps are obtained 
by averaging the predictions of the 25 RF models built in spatial cross-validation.

Figure 1. Example of duplication of a data point from the Demographic and Health Surveys in Dakar. The data point is 
duplicated in the four cardinal directions (N, S, E, W) at 500 and 1,000 m. The figure is adapted from Georganos et al. (2019) 
and the background map is Esri World Imagery (Esri et al., 2021).
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2.3.3. Simulation Study

Following Macharia et al. (2022), we conducted a simulation study to also test the two above-mentioned spatial 
optimization methods on simulated data. This simulation study focuses on the city with the highest number of 
non-DHS surveys, that is, Dar es Salaam, resulting in 90 surveys (see Table 1). The simulation was implemented 
through the following steps:

1.  Non-DHS data were split into a training set (77%) and a test set (33%), and the training set was spatially 
displaced according to the DHS displacement method (including the constraint that data points must stay 
within the same level 2 administrative area), see Burgert et al. (2013) for more details on the exact procedure.

2.  Three models were fitted to the displaced training set: the base RF modeling method implemented without 
using any spatial optimization (M0) and the two spatial optimization methods (M1 and M2). The administra-
tive area constraint was considered in the implementation of M1 and M2 by only creating duplicates in the 
same level 2 administrative area as the (displaced) data-point. In addition to M0, M1 and M2, an RF model 
with an RFE was fitted to the original training set, that is, before displacement, and is referred to as the true 
model (TM). Note that all RF models here were built in random cross-validation as we were not interested in 
variable importance and for the sake of computational efficiency.

3.  All four models (M0, M1, M2 and TM) were used for predictions on the non-displaced test set, and GoF indi-
ces (RMSE, MAE and R 2) were calculated to compare predicted and observed values.

We repeated this process 10 times, including the separation into training and test sets. Predictive performance was 
summarized over these 10 iterations, using averaged GoF indices, and used to compare M0, M1, M2, and TM.

3. Results
3.1. Performance of PfPR2–10 Models

The GoF indices (RMSE, MAE and R 2) for the different methods implemented (M0, M1 and M2) and for each 
city are shown in Figure 2 and Table 3. An RFE was implemented for each of these methods and the values 
displayed correspond to the best performing models after removing non-significant covariates.

In Dakar, M1 performed better than the other two methods in terms of R 2 and MAE, with an R 2 of 0.27 and an 
MAE of 1.88. In Kampala, M2 was the best performing method for all three GoF indices, with an average R 2 of 
0.36, RMSE of 5.89 and MAE of 4.47. M1 also outperformed M0 on all three GoF indices. In Ouagadougou, M2 
was also the best performing method according to all three GoF indices, with an average R 2 of 0.46, an average 

Figure 2. Average R 2, root mean square error (RMSE) and mean absolute error (MAE) scores obtained with M0, M1 and M2. A recursive feature elimination (RFE) 
was implemented for each of M0, M1 and M2, and the values shown correspond to the RFE iteration with the highest predictive performance. The thick dots are the 
averaged metrics (R 2, RMSE and MAE) over 25 random forest models built in spatial cross-validation, and the error bars represent the interquartile range calculated 
over these 25 models.
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RMSE of 15.39 and an average MAE of 12.15. M1 also showed a higher 
performance than M0 in terms of R 2 and MAE. Finally, in Dar es Salaam, 
M2 performed best in terms of R 2 and MAE, with an average R 2 of 0.41 and 
an average MAE of 4.61. However, unlike all other cities, M1 did not outper-
form M0 in any of the GoF indices.

For all cities, regardless of the proportion of DHS data points used to build 
the models, the best performing method is either M1 or M2—i.e. M1 for 
Dakar and M2 for Dar es Salaam, Kampala and Ouagadougou—with the 
models from worst to best performing (in terms of R 2) being those of Dakar 
(0.27), Kampala (0.36), Dar es Salaam (0.41) and Ouagadougou (0.46). 
These differences in R 2 could be explained by several factors, such as the 
number of malaria surveys available for each city, but also the regional 
level of malaria endemicity, the cityscape heterogeneity within cities, and 
the extent to which the covariates used are good predictors of intra-urban 
malaria risk in each city. RMSE and MAE values should not be compared 
between cities, as they depend on the number of surveys and the distribution 
of PfPR2–10 values in each city. The wider distribution of PfPR2–10 values in 
Ouagadougou (Table 1) could explain the higher RMSE and MAE values 
(15.39 and 12.15) compared to the other three cities, which show less varia-
bility in their PfPR2–10 values.

3.2. Importance of Covariates

Feature selection was implemented through RFE. Figure 3 shows the covar-
iates included in the best models (i.e., M1 for Dakar and M2 for Dar es 

Salaam, Kampala and Ouagadougou) and their importance. The RFE selected 10 important covariates for Dakar, 
all of which are climatic (mean, maximum and minimum day LST, mean, maximum and minimum windspeed, 
mean daily LST range and mean and maximum precipitation) except for one which is part of the LCLU data set 
(the proportion of bare ground) (Figure 3a). In Dar es Salaam, the RF models included four LCLU covariates (the 
proportion of bare ground, water, tall vegetation and ACS) and two ancillary covariates (the mean NDWI and 
NDVI) (Figure 3b). In Kampala, the main predictors of PfPR2–10 were three LCLU covariates (the proportion of 
informal settlements, planned settlements and tall vegetation) and one climatic covariate (the maximum day LST) 
(Figure 3c). Finally, the RF models in Ouagadougou included only two covariates: the proportion of buildings 
and the maximum windspeed (Figure 3d).

In short, these results show the importance of climatic variables in modeling and predicting PfPR2–10 in Dakar, 
Ouagadougou and Kampala. In Dar es Salaam, most of the important covariates were instead LCLU covariates. 
LCLU covariates were also important for modeling PfPR2–10 in the other cities, as there is at least one important 
LCLU covariate in the model of each city, and for all cities except Dakar, the most important covariate was either 
an LC or LU variable (Figure 3). For the other data sets, both the mean NDVI and NDWI from the ancillary vari-
ables were important for Dar es Salaam and no LCZ covariate was found to be important for any of the four cities.

3.3. Predictive Maps

Using the best models, we were able to predict PfPR2–10 at 1 km resolution in the four cities of interest. Predictive 
maps revealed two different types of spatial trends. In Dakar and Kampala (Figures 4a and 4c), the predicted 
intra-urban malaria risk increased from the city center to the peri-urban areas. In Dar es Salaam and Ouagadou-
gou (Figures 4b and 4d), however, the intra-urban malaria risk did not follow this classical increasing trend from 
the city center to the outskirts, but developed as central hotspots where some specific environmental conditions 
(LCLU) were met. In Dar es Salaam in particular, hotspots developed around water channels.

3.4. Simulation Study

Figure 5 and Table 4 show the predictive performance (RMSE, MAE and R 2) of M0, M1 and M2 applied to the 
simulated displaced data for Dar es Salaam, and of TM, the RF models trained on the original non-displaced 

Method R 2 RMSE MAE

Dakar M0 −0.08 3.08 2.00

M1 0.27 3.23 1.88

M2 −0.01 2.91 1.97

Dar es Salaam M0 0.36 6.21 4.61

M1 0.30 6.41 5.16

M2 0.41 6.54 4.61

Kampala M0 0.11 6.31 4.93

M1 0.31 5.94 4.60

M2 0.36 5.89 4.47

Ouagadougou M0 0.04 21.49 16.20

M1 0.27 21.76 16.12

M2 0.46 15.39 12.15

Note. The scores are averaged over 25 RF models (five-repeated five-fold 
spatial cross-validation) for each city.

Table 3 
Average R 2, Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE) Scores Obtained With M0, M1 and M2
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data. GoF indices were calculated after prediction on the non-displaced sets and averaged over 10 iterations of 
the simulation study.

Randomly shifting the data points from their location following the DHS displacement procedure resulted, as 
expected, in a decrease in prediction performance in terms of all three GoF indices; the R 2 decreased from 0.82 
(TM) to 0.76 (M0), the RMSE increased from 3.25 (TM) to 3.75 (M0), and the MAE increased from 2.56 (TM) 
to 3.12 (M0) (Table 4). M1 and M2 did not fully recover the performance of TM, but on average M2 slightly 
outperformed M0 in terms of all three GoFs, with an average R 2 of 0.77, an average RMSE of 3.67 and an average 
MAE of 2.99. In contrast, M1 did not improve the performance over M0 on any of the three GoF indices. These 
results are consistent with previous results from modeling malaria risk in Dar es Salaam using DHS, where M2 
outperformed M0 but this was not the case for M1 (Table 3). Note that there are limitations associated with this 
simulation study that could affect the performance of the spatial optimization methods (see Discussion section).

4. Discussion
In the current context of climate change and rapid and unplanned urbanization in SSA, there is an urgent need to 
deepen the knowledge of intra-urban malaria risk and to develop predictive maps for SSA cities, where malaria 
risk is known to be highly heterogeneous (Brown et al., 2020; Mathanga et al., 2016). However, such attempts have 
always been constrained by the availability and quality of malaria survey data, which, although improving consid-
erably, remain limited for studying malaria risk at the intra-urban scale. In this study, we tested the potential of 
spatial optimization methods to overcome the loss of spatial accuracy due to DHS cluster displacement in mode-
ling and predicting intra-urban malaria risk. For all cities, regardless of the proportion of DHS data points used 
to build the models, at least one of the two spatial optimization methods investigated in this study improved the 
performance of the RF models compared to models for which no spatial optimization method was used. However, 
the performance improvement was small, while using the spatial optimization methods increased the computa-
tional cost. We also tested the spatial optimization methods on non-DHS data from Dar es Salaam, for which we 
simulated a DHS displacement. Randomly shifting the survey locations reduced the predictive performance of 

Figure 3. Covariate importance for each city of interest. Covariate importance is computed over 25 random forest (RF) models (five-repeated five-fold spatial 
cross-validation) using recursive feature elimination together with the best performing method for each city, that is, M1 for Dakar and M2 for Dar es Salaam, Kampala 
and Ouagadougou. The importance of a covariate is the increase in the Out of Bag error (measured as a mean squared error) after applying a random permutation of the 
covariate values. The error bars represent the standard deviation calculated across 25 RF models.
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the models as expected, as shown in previous work (Burgert et al., 2013; Perez-Heydrich et al., 2013). Only one of 
the two spatial optimization methods (M2) improved the predictive performance in the simulation. However, the 
predictive performance of the spatial optimization methods in the simulation study may be affected by the large 
uncertainty in the accuracy of the coordinates of the non-DHS data used to run the simulation. While some of 
these surveys have precise GPS coordinates, others are based on the surveyor's best estimate of the location of the 
surveys, and still others are school surveys where the actual residence of the respondents is unknown (Macharia 
et al., 2022).

Overall, the GoF indices (R 2, RMSE and MAE) obtained with the spatial optimization methods for the four cities 
of interest are in line with previous studies that have modeled PfPR2–10 at the intra-urban scale without using 

Figure 4. Predicted PfPR2–10 at 1 km resolution for Dakar, Dar es Salaam, Kampala and Ouagadougou. PfPR2–10 was 
predicted using the important covariates selected by recursive feature elimination and using the best performing method 
for each city, that is, M1 for Dakar and M2 for Dar es Salaam, Kampala and Ouagadougou. The final predicted values are 
obtained by averaging the predictions of 25 random forest models built in spatial cross-validation.
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DHS data but using similar covariates and modeling frameworks (Brousse et al., 2020b; Georganos et al., 2020; 
Morlighem et al., 2022). Rather than using only DHS or non-DHS data separately, the inclusion of both types 
of surveys in the models can assist the spatial optimization methods in finding back plausible locations for the 
(displaced) DHS data points, while increasing the number of observations available to build the models. This is 
done by providing the models with some information about the relationships between the predictors and PfPR2–10 
derived from the non-displaced observations. For example, if there is a positive relationship between PfPR2–10 and 
the proportion of water in the non-displaced data, and if this is found by the RF models, the spatial optimization 
method based on refining feature extraction (M2) might tend to select duplicates of DHS data points created at 
locations that support this relationship.

Nevertheless, the findings of this research should be used with caution, as our models explained only about 30%–40% 
of the variance of PfPR2–10. In addition to the expected lower performance due to the use of spatial cross-validation 
(Meyer et al., 2019), several limitations may explain this low percentage of explained variance. First, we assumed 
temporal stationarity of malaria risk, as malaria surveys are poorly distributed within our 10-year period (2005–2015) 

and are not available in sufficient numbers to make seasonal or annual predic-
tions. We also did not capture temporal variation in the covariates, as they were 
not collected at the same time either in relation to each other or in relation to the 
malaria surveys. Instead, where sufficient data were available, we aggregated 
covariates over a long time period (i.e., 10 years) to smooth out temporal vari-
ations influenced by exceptional weather conditions. In addition to assuming 
temporal stationarity, we also assumed a stationary population and ignored the 
effect of human mobility on malaria risk. Yet, human mobility plays an impor-
tant role in the transmission of vector-borne diseases, as population movements 
lead to continuous pathogen reintroductions (Buckee et al., 2013; Wesolowski 
et  al.,  2012). Future studies should investigate the use of mobile phone and 
social media data to recover human mobility patterns and test the added value of 
this information for malaria risk mapping. Our models also lacked information 

Figure 5. Average R 2, root mean square error (RMSE) and mean absolute error (MAE) scores obtained with true model (TM), M0, M1 and M2. The thick dots are 
the averaged metrics (R 2, RMSE and MAE) over the 10 repetitions of the simulation study and the error bars represent the interquartile range calculated over these 
repetitions.

Method R 2 RMSE MAE

TM 0.82 3.25 2.56

M0 0.76 3.75 3.12

M1 0.75 3.84 3.19

M2 0.77 3.67 2.99

Note. The scores are averaged over 10 repetitions of the simulation study.

Table 4 
Average R 2, Root Mean Square Error (RMSE) and Mean Absolute Error 
(MAE) Scores Obtained With True Model (TM), M0, M1 and M2, for the 
Simulation Study in Dar es Salaam
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on human behavior related to malaria prevention and anticipation (e.g., use of bed nets, antimalarial drugs, or indoor 
residual spraying), which could also be the focus of future work.

Alongside those methodological limitations, there are also some limitations related to the epidemiological data 
available to conduct this research, and these are inherent to DHS. First, while MIS are generally conducted 
during the high transmission season, that is, the rainy season and subsequent weeks, this is not the case for DHS 
(Massoda Tonye et al., 2018). However, the PfPR is highest during the wetter months and drops during the dry 
season. Seasonal variation in PfPR also leads to seasonal variation in malaria transmission and human behavior, 
such as increased use of insecticide-treated nets during the rainy season (Massoda Tonye et al., 2018; Ozodiegwu 
et al., 2021; Wright et al., 2012). This raises comparability issues between annual DHS conducted at different 
time periods, but also between DHS and MIS (Massoda Tonye et  al.,  2018; Ozodiegwu et  al.,  2021; Wright 
et al., 2012). Furthermore, as the DHS sampling frame is defined to provide indicators that are representative at 
the national level, the number of survey clusters at the intra-urban level for a given DHS is often insufficient to 
model DHS indicators using data from that specific DHS only. Instead, mapping malaria risk at this scale requires 
combining several years of data collection, assuming stable malaria prevalence over the period, as was done in this 
study and in other previous work (Brousse et al., 2020b; Georganos et al., 2020; Kabaria et al., 2016; Morlighem 
et al., 2022). This limits the potential to analyze annual/seasonal trends in malaria risk at the intra-urban scale, 
for example using spatio-temporal models. Another challenge with DHS is that they typically measure malaria 
prevalence by testing children under the age of five, as malaria is known to be most prevalent in this age group 
(Smith et al., 2007), before standardizing to the 2 to 10 age range. However, the final PfPR2–10 may be underes-
timated as antimalarial drug use is more prevalent in young children due to their lower immunity and therefore 
more severe clinical malaria reactions when infected (Smith et al., 2007). This is exacerbated by the fact that DHS 
are conducted independently of national intervention programmes (Ozodiegwu et al., 2021). DHS are sometimes 
conducted during chemoprevention interventions that target young children and significantly reduce the PfPR 
in this specific age group, while having less impact on other groups (Ozodiegwu et al., 2021). Finally, DHS 
sometimes have low spatial accuracy, partly due to instrumental biases (sampling errors in GPS receivers), but 
mainly due to the displacement of survey cluster coordinates by up to 2 km in urban extents for privacy protection 
(Burgert et al., 2013; Corsi et al., 2012; Georganos et al., 2019; Ozodiegwu et al., 2021).

To address these challenges, we highlight here potential adaptations to the DHS sampling strategy, as already 
encouraged by Ozodiegwu et  al.  (2021). Specifically, we propose to (a) systematically plan DHS during the 
high transmission season, that is, the rainy season, so that PfPR estimates are comparable between surveys; (b) 
increase survey frequency where possible, especially in high-risk areas; (c) include children up to 10 years of age 
in testing to avoid the potential underestimation of PfPR2–10 when only younger children are tested; and (d) adapt 
the DHS strategy based on national control interventions to measure their impact and avoid intervention-related 
bias. In addition, we propose to re-think the geographical displacement procedure of DHS cluster centroids. This 
could be achieved by reducing the displacement distance in areas of high population density, at least in urban 
areas, where displacement has a greater impact on the analysis potential due to the high heterogeneity of the 
cityscape. Restrictions could also be applied to the survey coordinates, forcing them to stay within the city extents 
or within the land use or land cover class to which they belong. Urban masks based on layers such as GHSL 
(European Commission, 2022) or GUF (DLR, 2022) could be used to support this displacement. Following the 
same idea, the displacement could also be constrained by the boundaries of the lower administrative unit level, 
that is, the third administrative level instead of the second. Recently, the DHS program has started to investi-
gate alternative displacement methods, revising its spatial Anonymisation approach by using population maps to 
calculate the minimum distance to which a cluster centroid must be displaced such that anonymity is preserved 
(The DHS Program & the Development Data Group of the World Bank, 2021). With further work in this direction 
and consideration of the proposed changes, DHS would become a valuable tool for mapping intra-urban malaria 
risk, especially in malaria-endemic countries where DHS are the only available source of epidemiological data.

Our findings also have future implications for malaria risk mapping in SSA cities where malaria data are too 
limited in both quantity and quality. As already suggested by Brousse et al. (2020b), when SSA cities share the 
same socioeconomic and environmental contexts, the extrapolation capacity of models calibrated on data-rich 
cities may be tested to predict PfPR2–10 in data-poor cities. Future work will further investigate this extrapo-
lation capacity and the potential for upscaling methods. Given the rapid and profound environmental changes 
in SSA  cities that are likely to affect the burden of vector-borne diseases in the future, risk mapping methods 
tailored to African urban areas are urgently needed to help target control interventions. We expect the quality and 
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quantity of available data on malaria and other vector-borne diseases to improve in the future, which will certainly 
make these methods extremely useful in the fight against these diseases.
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