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A system science methodology
develops a new composite highly
predictable index of
magnetospheric activity for the
community: the whole-Earth
index E(1)

Joseph E. Borovsky1* and Christian J. Lao2

1Space Science Institute, Boulder, CO, United States, 2Mullard Space Science Laboratory, University
College London, London, United Kingdom

For community use, a new composite whole-Earth index E(1) and its matching
composite solar wind driving function S(1) are derived. A system science
methodology is used based on a time-dependent magnetospheric state vector
and a solar wind state vector, with canonical correlation analysis (CCA) used
to reduce the two state vectors to the two time-dependent scalars E(1)(t) and
S(1)(t). The whole-Earth index E(1) is based on a diversity of measures via six
diverse geomagnetic indices that will be readily available in the future: SML, SMU,
Ap60, SYMH, ASYM, and PCC. The CCA-derived composite index has several
advantages: 1) the new “canonical” geomagnetic index E(1) will provide a more
powerful description of magnetospheric activity, a description of the collective
behavior of the magnetosphere–ionosphere system. 2) The new index E(1) is
much more accurately predictable from upstream solar wind measurements on
Earth. 3) Indications are that the new canonical geomagnetic index E(1) will be
accurately predictable even when as-yet-unseen extreme solar wind conditions
occur. The composite solar wind driver S(1) can also be used as a universal
driver function for individual geomagnetic indices or for magnetospheric particle
populations. To familiarize the use of the new index E(1), its behavior is examined
in different phases of the solar cycle, in different types of solar wind plasma,
during high-speed stream-driven storms, during CME sheath-driven storms, and
during superstorms. It is suggested that the definition of storms are the times
when E(1) >1.
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geomagnetic indices, geomagnetic activity, magnetosphere, solar wind, system science,
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1 Introduction

The objective of this paper is to develop and present a convenient, accurate, highly
predictable composite geomagnetic index that can be used by the space physics community
to gauge globalmagnetospheric activity.This project addressed a prime goal of theNSFGEM
program: “The goal of the GEM program is to make accurate predictions of the geospace
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environment ….” Accurate predictions of individual geospace
indices have been difficult; this project took an innovative approach
based on system science (Borovsky and Valdivia, 2018) and
developed a magnetospheric activity index E(1) that is highly
predictable based on the knowledge of solar wind on Earth [e.g., a
knowledge of the properties of solar wind yields a high prediction
efficiency for the value of the activity index E(1)], and the new activity
index E(1) is useful for gauging of the magnitude of magnetospheric
activity.

Magnetospheric activity occurs in reaction to the solar wind
(Dungey, 1961; Axford and Hines, 1961). This activity takes a
number of forms (cf. Table 4 of Borovsky and Valdivia, 2018) and
is measured by a number of geomagnetic indices that are sensitive
to diverse current systems (cf. Table 1): magnetospheric (and
ionospheric) convection, auroral activity, cross-polar cap current,
plasma diamagnetism, cross-tail current, ULFwave activity, and Pc1
activity. There are well-known correlations between geomagnetic
indices and solar wind, enabling the geomagnetic indices to be
predicted (to some degree) from a knowledge of upstream solar
wind parameters. Two examples appear in Figure 1, where for the
years 1991–2007, the 1-hr-lagged auroral electrojet index AE(t) is
plotted in panel (a) as a function of the “Newell” driver function
dΦ/dt = vsw

4/3
B⊥

2/3
sin8/3(θclock/2) (Newell et al., 2007) and where the

1-hr-lagged Kp index is plotted in panel (b) as a function of the
“quick reconnection function,” Rquick = nsw

1/2 vsw
2 sin2(θclock/2)

MA
−1.35 [1 + 680MA

−3.30]−1/4 (Borovsky and Yakymenko, 2017a),
where vsw represents the solar wind speed; nsw represents the solar
wind number density; B⊥ represents the component of the solar
wind magnetic field, which is perpendicular to the Sun–Earth
line; θclock represents the clock angle of the solar wind magnetic
field relative to the Earth’s magnetic dipole; and MA represents
the Alfven Mach number of upstream solar wind. Each point in
Figure 1 represents 1 h of data. In Figure 1B, the discrete values
of Kp are spread vertically in the plot to aid the eye by adding
random numbers between −0.3 and +0.3. In both panels, the red
line is a least-squares linear regression fit to the black points, and
the blue curve is a 50-point vertical running average of the black
points.

In Figure 1A, the Pearson linear correlation coefficient between
AE(t) and the Newell dΦ/dt(t) is rcorr = 0.723. The amount
of variance of AE(t) that is not described by dΦ/dt(t) is

1-rcorr2 = 0.477; i.e., 47.7% of the variance of AE cannot be predicted
from a knowledge of the value of dΦ/dt. As can be noticed by the
local vertical spread in points in Figure 1A, there can be large errors
in the value of AE, as predicted from a known value of dΦ/dt.

Single geomagnetic indices are predicted from solar wind
measurements to gauge the upcoming space weather. For
example, the NOAA Space Weather Prediction Center (https://
www.swpc.noaa.gov) predicts the Kp index and uses it as a gauge of
the strength of the activity.The IZMIRANSpaceWeather Prediction
Center (http://spaceweather.izmiran.ru/eng/forecasts.html) and
the Parsec vzw SpaceWeatherLive (spaceweatherlive.com) also
predict Kp. The British Geological Survey geomagnetic and solar
activity forecast service (http://geomag.bgs.ac.uk/data_service/
space_weather/forecast.html) and the Royal Observatory of
Belgium Solar Influences Data Center (http://sidc.oma.be/products/
meu/) both predict Ap. The University of Colorado LASP Space
Weather Data (http://lasp.colorado.edu/space_weather/dsttemerin/
dsttemerin.html) predicts Dst and AE. The single geomagnetic
index Dst is used to gauge the intensity of storms (e.g., Sugiura
and Chapman, 1960; Loewe and Prolss, 1997), as is the single
geomagnetic index Kp (e.g., the NOAA SWPC Space Weather
Scales). Borovsky and Sprits (2017a) have criticized the use of
the single geomagnetic index Dst for gauging storm properties,
in particular because one category of geomagnetic storms (high-
speed stream-driven storms) occurs without producing strong Dst
signatures (Borovsky and Denton, 2006).

The new composite magnetospheric activity index (Earth index)
E(1) introduced in this paper will provide two, and possibly a third,
improvements for magnetospheric research and space weather over
the use of a single geomagnetic index. 1) The new “canonical”
geomagnetic index E(1) will provide a more powerful description
of magnetospheric activity: a description of the collective behavior
of the magnetosphere–ionosphere system. 2) The new canonical
geomagnetic index E(1) will be more accurately predictable from
upstream solar wind measurements on Earth. Furthermore, 3)
indications are that the new canonical geomagnetic index E(1) will
be accurately predictable even when as-yet-unseen extreme solar
wind conditions occur. The new magnetospheric activity index is
described in Section 4.

From a systems science point of view, a “state vector” comprising
severalmeasureswould provide a superior indication of the intensity

TABLE 1 Some geomagnetic indices and the processes that they respond to.

Index Indicative of

AE, AL, AU, SME, SML, and SMU Nightside and dayside auroral currents

PCN, PCS, and PCC Polar cap currents and polar cap convection

Kp, Ap, Hp60, Ap60, AM, and MBI Magnetospheric convection

Dst, SYMH, and ASYM Plasma diamagnetic currents and cross-tail currents

Sgrd, Sgeod, Tgrd, and Tgeod ULF wave intensities

mPe Electron precipitation power

mPi Ion precipitation power

Wp Pi2 pulsation level

MPB Mid-latitude current
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FIGURE 1
Two examples (A and B) of the correlations between a single geomagnetic index (vertical) and a common solar-wind driver function (horizontal). Each
point is 1 h of data.

of global geospace activity (Vassiliadis, 2006; Luo, 2010). In this
paper, a composite scalar magnetospheric index E(1) will be derived
from vector–vector correlations between a magnetospheric state
vector and a solar wind state vector.

The outline of this paper is as follows: Section 2elaborates the
advantages of a system-wide (whole-Earth) index. Section 3explains
the canonical correlation analysis (CCA) methodology used to
derive the composite Earth index E(1). Section 4provides the
composite index E(1)(t) created from six geomagnetic indices,
along with its matching composite solar wind driver S(1)(t).
Section 5examines the importance of individual indices and
individual solar wind variables. Section 6 examines the behavior of
E(1) in different phases of the solar cycle and in different types of solar
wind plasma. Section 7 uses the composite index E(1) to examine
geomagnetic storms. Section 8 discusses future work needed to
better understand E(1) and its driving by S(1).

2 Advantages of a system-wide
(whole-Earth) index

Single geomagnetic indices can be predicted from solar
wind measurements to gauge the upcoming space weather, but
single geomagnetic indices tend to measure a single aspect of
magnetospheric activity (cf. Table 1), and their prediction efficiency
from a knowledge of solar wind on Earth is usually weak.

In developing and studying composite magnetospheric activity
indices derived with the mathematical technique called canonical
correlation analysis (Borovsky, 2014; Borovsky and Denton, 2014;
Borovsky and Denton 2018; Borovsky and Osmane, 2019), several
properties have been learned that make composite indices ideal
for describing magnetospheric activity levels and the solar wind
driving of the magnetosphere–ionosphere system. These advantages
are enumerated in Table 2.

The first advantage listed in Table 2 (more accurately
predictable) comes about for a number of reasons: 1) the composite
index is describing a global mode of reaction of the magnetosphere

to the solar wind with an aggregate variable (which is a weighted
average of multiple variables that react to the solar wind in similar
fashions), which has less noise than a single variable (a single index).
2) The methodology uses a complex solar wind description that is
much more sophisticated than commonly used driver functions
based on solar wind electric fields or the amount of magnetic flux
delivered to the magnetosphere; composite solar wind driving
can account for Mach number effects, number density effects,
dipole tilt effects, By effects, turbulence effects, solar ionization
effects, etc.

The second advantage listed in Table 2 is the robustness of
the derivation of the composite index and its solar wind driver.
This is an important advantage. Borovsky and Denton (2018)
found that comparing derivations made on different subsets of the
magnetospheric and solar wind data demonstrates the robustness
of the definition of the composite activity index. For example, 1) if
the composite variables are derived using only slow solar wind, the
method is still very accurate for fast solar wind; 2) if the composite
variables are derived using only the low-geomagnetic activity data,
the method is still very accurate for high levels of activity; and 3)
if the composite variables are derived using only solar-minimum
data, they are still very accurate at the solar maximum. This ability
to accurately predict when radically different data are presented
indicates that thismethodmay be able to predict themagnetospheric
composite index accurately if very extreme, not-yet-seen solar wind
parameters occur. This will be discussed in Section 7.

The third advantage listed in Table 2 is the linearity of the
response of the composite geomagnetic index to the composite solar
wind driver via the CCA-derived scalar functions [cf. Figure 2A
of Borovsky and Denton (2018)]. This linearity means that the
response of the magnetosphere–ionosphere system to solar wind
is the same at strong driving (and high activity) as it is at weak
driving (and low activity). This is related to the robustness found in
deriving with one category of data and testing with another category
(advantage 2 in Table 2). The linearity of the response eliminates the
consideration of polar cap potential saturation ( Wygant et al., 1983;
Reiff and Luhmann, 1986;Weimer et al., 1990; Borovsky et al., 2009;
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TABLE 2 Advantages of CCA-derived composite magnetospheric activity indices over single geomagnetic indices.

# Advantage of a composite index

1 More accurately predictable from upstream solar wind measurements

2 Training/testing robustness indicates the description, and its predictions may be accurate for extreme (and as-yet-unseen) solar wind parameters

3 Description shows a linearity between the solar wind driver strength and the magnetosphere–ionosphere reaction, overcoming the need to consider whether the
polar cap potential saturates

4 Describes a global reaction of the magnetosphere–ionosphere system to the solar wind, not just a single current system

5 Develops and exploits a more sophisticated description of the solar wind pertinent to the driving of the magnetosphere–ionosphere system

6 Unlike machine learning approaches, straightforward algebraic formulas are obtained to make the composite index and its solar wind driver

TABLE 3 Standardizing the variables for the 1997–2020 dataset [XX units].

# Variable Mean value Standard deviation

Magnetospheric indices

1 log10(1 + |SML|) 1.9160 0.40865

2 log10(1 + |SMU|) 1.8089 0.31363

3 log10(1 + Ap60) 0.83552 0.38671

4 SYMH −11.273 18.119

5 ASYM 19.560 14.274

6 PCC 1.2537 1.2858

Solar wind variables

7 vsw 422.90 96.655

8 log10(nsw) 0.68806 0.29543

9 −Bz3 4.177E-02 2.5584

10 log10(F10.7) 1.9965 0.14995

11 sin2(θclock/2)3 0.50462 0.25811

12 Tilt 0.46986 18.398

13 log10(0.1 + ΔB) 0.25320 0.27810

14 Bmag 5.6019 2.9914

15 θBn3 53.154 18.077

16 log10(MA) 0.92086 0.18969

Myllys et al., 2017), which causes some individual geomagnetic
indices to saturate under low-Mach number solar wind conditions
(Lavraud and Borovsky, 2008; Borovsky, 2021a). The observed
linearity may be interpreted as follows: if the “correct” description
of magnetospheric activity is used and if the “correct” solar wind
driving function is used, the reaction of the magnetosphere to solar
wind driving is linear.

The fourth advantage listed in Table 2 is that the composite
magnetospheric activity index describes a global mode of reaction
of the magnetosphere–ionosphere system to solar wind. Canonical
correlation analysis has so far found three independent modes of
reaction of the magnetosphere–ionosphere system to solar wind
(Borovsky and Osmane, 2019): the mode that will be described
by the “canonical” geomagnetic index E(1) in this paper is the
fundamental (first) mode, in which all measures of geomagnetic
activity increase together or decrease together. Using a composite
geomagnetic index instead of a single geomagnetic index is akin to

describing economic activity with a stock-market index instead of a
single stock.

The fifth advantage listed in Table 2 is that the processes
of using CCA to develop a composite geomagnetic index also
develops a much more sophisticated solar wind driver S(1) than the
driver functions developed empirically (Holzer and Slavin, 1982;
Newell et al., 2007; 2008; McPherron et al., 2015) or developed via
physical derivations (Borovsky, 2008; 2013; Borovsky and Birn,
2014) [for extensive lists of existing driver function, see Table 1
of Newell et al., (2008) and Table 1 of Lockwood and McWilliams
(2021)]. The CCA composite solar wind driver can account for
Mach number effects, dipole tilt effects, By effects, solar ionization
effects, upstream turbulence effects, etc., and S(1) can serve as
a “universal driver function” with improved correlations with
individual geomagnetic indices.

The sixth advantage listed in Table 2 is that two simple algebraic
formulas are given, one to generate the composite magnetospheric
index E(1)(t) from the geomagnetic indices and the other to generate
the associated solar wind driver function S(1)(t) from upstream
solar wind variables. Unlike machine learning methods, one does
not need to run the data analysis algorithm to obtain E(1)(t) and
S(1)(t). The algebraic formulas yield straightforward interpretations
of what E(1) and S(1) are. If machine learning (e.g., neural network)
algorithms were used for magnetospheric predictions, no such
straightforward interpretation would be possible: one would need
to run numerical experiments on the machine learning algorithm to
determine how it works.

3 Methodology and data used to
develop the composite index E(1) and
its solar wind driver S(1)

A multivariable time-dependent “Earth” dataset comprising six
commonly available geomagnetic indices is used, along with a
multivariable time-dependent “solar wind” dataset comprising 10
standard measurements of solar wind on Earth. The variables of
each of the two datasets are listed in Table 3. One-hour averages
of all quantities are used for the years 1997–2020, with 1-hr-
resolution geomagnetic indices commonly available. The 10 solar
wind variables were extracted from the 1-hr-resolution OMNI2
solar wind dataset (King and Papitashvili, 2005), with no time lags
between the solar wind on Earth (OMNI2) and the geomagnetic
indices (time lags in the CCA analysis between the solar wind
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and the magnetosphere were studied in Borovsky (2020a) and were
found to have little effect).Thegeomagnetic indices inTable 3 should
be mostly familiar. SYMH is very similar to Dst. SML and SMU are
SuperMAG (Gjerloev et al., 2012) improvements to the AL and AU
auroral electrojet indices. Ap60 is a 60-minute-resolution version
of the Ap index. The PCC index is a combination of the PCI-
north and PCI-south indices (Stauning, 2021). Standard values for
the indices are used where SML, SMU, SYMH, and ASYM are in
units of nT; PCC is in units of mV/m, and Ap60 is dimensionless.
The solar wind variables in Table 3 should also be mostly familiar;
the solar wind flow speed is represented by vsw (in km/s), nsw
(in cm−3) represents the solar wind number density, Bz3 (in nT)
represents the GSM Z component of the solar wind magnetic
field, Bmag (in nT) represents the magnetic field strength in the
solar wind, and F10.7 (in 10–22 W m−2 Hz-1) represents the 10.7-
cm radio flux from the Sun; the tilt (in degrees) is the Sunward
tilt of the Earth’s northern magnetic pole, going from −34.8o to
+34.8o, which governs the angle at which the solar wind hits the
dayside magnetosphere and relates to the amount of hinging of
the cross-tail current sheet. The dipole tilt angle can be calculated
using Eq. 3 of Nowada et al. (2009). The variable θBn (in degrees)
represents the angle between the solar wind magnetic field line
and the Sun–Earth axis, going from 0o (radial field) to 90o. The
angle θclock (in degrees) represents the (GSM) clock angle θclock
= arccos(Bz/(By

2+Bz
2)1/2). ΔB represents the rms amplitude of the

vectormagnetic field fluctuations in the upstream solar wind during
each hour of the OMNI2 dataset, measured typically at L1. Finally,
MA (dimensionless) is the Alfven Mach number of the upstream
solar wind given by MA = Bmag/(4πminsw)1/2. Three of the solar
wind variables in Table 3 (with subscript “3”) are 3-h averages into

the past, involving the present hour and two previous hours: the
CCA process is significantly improved when these two 3-h averages
are implemented. Most of the solar wind variables used here have
appeared in “standard” solar wind driver functions (cf. Table 1 of
Newell et al., 2008 or Table 1 of Lockwood and McWilliams (2021):
rarer cases are the tilt angle and θBn (e.g., Hoilijoke et al., 2014) and
ΔB (e.g., Borovsky, 2013).

The data used are available as follows: Ap60 is available
at ftp://ftp.gfz-potsdam.de/pub/home/obs/Hpo. SML and SMU
are available at http://supermag.jhuapl.edu/indices. SYMH,
ASYM, and all solar wind variables are available at https://
omniweb.gsfc.nasa.gov/. The PCC index is PCC = (PCN + PCS)/2
if PCN and PCS are both positive, PCC = PCN/2 if PCS is negative,
PCC = PCS/2 if PCN is negative, and PCC = 0 if both PCN and PCS
are negative (Stauning, 2021). PCN and PCS are available at http://
isgi.unistra.fr.

The composite Earth index E(1)(t) and its solar wind driver
function S(1)(t) are derived using canonical correlation analysis,
which finds two projections (linear combinations) of the variables of
each of the two datasets such that the two linear combinations E(1)(t)
and S(1)(t) have the maximum Pearson linear correlation coefficient
between each other. The two time-dependent multivariable datasets
can be thought of as two time-dependent state vectors, and
CCA can be thought of as the vector–vector correlation. CCA
is a matrix (linear algebra) solution; it is not an iterative solver
or a machine learning method. Data are not used to “train,”
they are used to derive a solution. CCA is a well-known
mathematical methodology (Muller, 1982; Johnson and Wichern,
2007; Gatignon, 2010; Nimon et al., 2010; Borovsky, 2014); it
has often been used to identify causal factors or correlative

TABLE 4 Coefficients (weights) and correlations (loadings) for the variables going into E(1)(t) and S(1)(t) and the reduction (in percent) of the E(1)(t)↔ S(1)(t)
correlation when that variable is removed.

# Standardized variable Coefficient in E(1) Coefficient in S(1) Correlation with E(1) Correlation with S(1) Reduction [%]

1 log10(1 + |SML|)* 0.1472 0.880 0.798 0.24

2 log10(1 + |SMU|)* 0.2983 0.883 0.800 1.26

3 log10(1 + Ap60)* 0.3157 0.897 0.813 1.08

4 SYMH* −0.1108 −0.659 −0.598 0.22

5 ASYM* 0.1109 0.765 0.654 0.20

6 PCC* 0.1988 0.837 0.759 0.61

7 vsw* 0.5708 0.512 0.565 3.93

8 log10(nsw)* 0.2284 0.016 0.018 0.32

9 -Bz3* 0.4329 0.566 0.624 2.53

10 log10(F10.7)* 0.0909 0.230 0.254 0.31

11 sin2(θclock/2)3* 0.2177 0.522 0.576 0.65

12 tilt* 0.1261 0.109 0.120 0.61

13 log10(0.1 + ΔB)* 0.0956 0.459 0.507 0.22

14 Bmag* 0.2590 0.529 0.584 0.36

15 θBn3* 0.0757 0.121 0.133 0.22

16 log10(MA)* −0.0964 −0.285 −0.315 0.06
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FIGURE 2
Visual representation of the coefficients of expression (1) for E(1) [panel (A)] and of the coefficients of expression (2) for S(1) [panel (B)]. The red asterisk
reminds the reader that that coefficient [on the log10(MA)* term] is negative; two other negative coefficients are made positive in the graph by taking
−SYMH and −Bz.

factors, often in epidemiology ( Lassig and Duckett, 1979; Frie
and Janssen, 2009). Recently, it has been adapted as a systems
science tool for the reaction of complicated (multivariable) systems
with time-dependent drivers, e.g., the time-dependent solar wind-
driven magnetosphere–ionosphere system (Borovsky and Osmane,
2019).

4 The composite whole-Earth index
E(1)

Using the two sets of variables from Table 3 for the years
1997–2020, the CCA yields the two “first canonical variables” as the
“Earth” index,

E(1) = 0.1472log10(1+ |SML|)*+ 0.2983log10(1+ |SMU|)*

+ 0.3157log10(1+Ap60)*− 0.1108SYMH*+ 0.1109ASYM*

+ 0.1987PCC*, (1)

and the “solar wind driver” of the Earth index as

S(1) = 0.5707vsw
* + 0.2284log10(nsw)

* − 0.4329Bz3
* + 0.0909log10(F10.7)

*

+ 0.2177sin2(θclock/2)3* + 0.1261tilt* + 0.0956log10(0.1+ΔB)
*

+ 0.2590Bmag* + 0.0757θBn3* − 0.0964 log10(MA)
*

(2)

Both E(1)(t) and S(1)(t) are time-dependent scalars. In
Formulas 1, 2, the variables with asterisks are standardized: to
standardize the variable X, the mean value of X is subtracted
from X, and then the result is divided by the standard deviation
of X so that the standardized variable X* has a mean value of 0,
a standard deviation of unity, and no units. Hence, in expressions
(1) and (2), the magnitudes of the coefficients of each standardized
variable are indications of the “importance” or “contribution” of
the variable to either E(1) or S(1). These coefficients (known as
“weights”) are listed in the first two data columns of Table 4, and
they are plotted in Figures 2A and B. As can be seen in Figure 2A,
the contribution of SYMH and ASYM to E(1) is substantially weaker
than that of the other four geomagnetic indices. Note in expression
(1) the positive coefficient for the dipole tilt (tilt*), indicating that
the solar wind statistically drives E(1) stronger when the northern
hemisphereis tilted toward the Sun: this may be a result of the
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SML and SMU indices focusing on ground magnetometers in the
northern hemisphere.

The factor’s mean value and standard deviation values used
to standardize the hourly values of the 16 variables for the years
1997–2020 are listed in Table 3. Using these factors’ expressions, (1)
and (2) are rewritten in terms of the 16 non-standardized variables
as

E(1) = 0.36022log10(1+ |SML|) + 0.95106log10(1+ |SMU|)

+ 0.81583log10(1+Ap60) − 0.0061187SYMH

+ 0.0077747ASYM+ 0.15468PCC− 3.5072 (3)

and

S(1) = 0.0059043vsw + 0.77249log10(nsw) − 0.16923Bz3

+ 0.60634log10(F10.7) + 0.84342sin2(θclock/2)3
+ 0.0068518tilt+ 0.34336 log10(0.1+ΔB) + 0.086675Bmag

+ 0.0041892θBn3 − 0.50686 log10(MA) − 5.0033. (4)

For expressions (3) and (4), the units of all variables are noted in
Section 3.

The new composite magnetospheric activity index E(1)(t) of
expression (1) or (3) is plotted in Figure 3A as a function of its
composite solar wind driver function S(1)(t) given by expression
(2) or (4) is plotted in Figure 3A, each black point being 1 h of
data from the years 1997–2020. As a result of the CCA process that
derived them, the values of E(1)(t) and S(1)(t) are standardized, with
mean values of 0.00, standard deviations of 1.00, and no units. The
standardization of E(1)(t) means that E(1)(t) <0 represents below-
average magnetospheric activity and E(1)(t) >0 represents above-
average magnetospheric activity. Similarly, S(1)(t) <0 represents
below-average solar wind driving and S(1)(t) >0 represents above-
average driving. In Figure 3A, the Pearson linear correlation
coefficient is rcorr = 0.907, meaning that only 1-rcorr2 = 17.8% of the
variance of E(1)(t) is not described by a knowledge of S(1)(t). It should
be noted that this high correlation comes about without introducing

time lags between solar wind variables and magnetospheric
variables. An earlier study (Borovsky, 2020a) found that introducing
and optimizing time lags between the magnetospheric variables
and the solar wind variables do not significantly improve the
results of the CCA process (the reason why time lags are not
important in the CCA systems science methodology is not yet
understood).

In Figure 3A, a least-squares linear regression fit is plotted as the
blue line and a 200-point vertical running average is plotted as the
red points. Note the linearity of the plot in Figure 3A, with the 200-
point running average (blue) tracking the linear-regression fit (red).
Using the linear-regression fit

E(1)(t) = 0.9069S(1)(t) − 2.81× 10
−4 (5)

to predict E(1)(t) from a knowledge of the value of S(1)(t), the error
E(1)(t)–E(1)predicted(t) is binned in Figure 4.The standard deviation of
this distribution of errors is 0.446, and an error value of magnitude
unity [which is one standard deviation of M(t)] is far on the tail
of the distribution in Figure 4, with only 1.5% of the values having
that magnitude of unity or greater. The prediction efficiency 1 -
VAR(E(1)predict(t)–E(1)(t))/VAR(E(1)(t)) = 82.2%. In Figure 4, it is
noted that the standard deviations of E(1) and S(1) are both σ = 1.0,
and the standard deviation of the error E(1)(t)–E(1)predicted is σ =
0.421.

It should be noted that using the CCA process composite
magnetospheric indices E(1) can be derived that has higher
correlations with their S(1) drivers if a larger diversity of
measurements of the magnetosphere are included in the process,
e.g., including ULF indices (Borovsky and Denton, 2014)
or including particle population and particle precipitation
measurements (Borovsky andDenton, 2018; Borovsky andOsmane,
2019). However, for the purpose of creating this community-
useful composite index, the index must be based on measurement
quantities that will be easily available in the future; hence, spacecraft-
based measurements of particles and precipitation cannot be
included.

FIGURE 3
In panel (A), the data points for E(1) (t) are plotted as a function of S(1) (t) for the years 1997–2020. Each black point is 1 h of data. The red line is a linear
regression fit to the black points, and the blue points are 200-point vertical running averages of the black points. In panel (B), the black points are
replotted and the times of six superstorms are highlighted in six colors.
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FIGURE 4
Values of E(t) (green), S(1)(t) (blue), and the error E(1)(t)–E(1)predict(t) (red)
are binned for the years 1997–2020 to form occurrence distributions.

FIGURE 5
Superposed-epoch average plot of E(1) (black) and E(1)–E(1)predicted (red)
with the zero epoch taken as the onset time of 1,117 isolated
substorms.

It is known that some of the vertical error in the CCA-
generated E(1) ↔ S(1) relationship is associated with the occurrence
of substorms (Borovsky and Osmane, 2019), the timing of which is
not predicted in the CCA process. This is shown in Figure 5, where
1,117 isolated substorms in the years 1997–2007 are used to create
a superposed epoch average plot of E(1) and E(1)–E(1)predicted, with
the zero epoch being the onset time of each substorm (substorm-
onset collection is from Borovsky and Yakymenko (2017b), where
the onsets were determined by a numerical algorithm that examines
temporal changes in the 1-min-resolution SML index.). The lower
curve in Figure 5 is E(1)–E(1)predicted, where E(1)predicted is given by the
linear regression fit of expression (5). Note in Figure 5 the increase in
themagnitude of the error |E(1)-E(1)predicted| at the time of a substorm
occurrence.

Examining Figure 3A, it is noted that a slightly more accurate
predictor equation for E(1) could possibly be created by using a
curve fit to the 200-point running average in Figure 3A. Note the
nonlinear curvature of the running average (blue) away from the
linear-regression fit (red) in the bottom left portion of Figure 3A;
it has been argued (Borovsky, 2021a) that this curvature might be
owed to an atmospheric flywheel effect ( Richmond and Matsushita,
1975), wherein residual geomagnetic activity persists after solar

wind driving ceases, owing to upper atmospheric convection driven
by the prior activity; adding a time-integrated solar wind variable
representing the past 10 h of driving by solar wind reduces the
curvature.

5 Relative importance of individual
geomagnetic indices and solar wind
variables

The relative importance of the various individual variables in the
CCA derivations of E(1) and S(1) can be judged by the magnitude
of the variable’s coefficient in the expressions (1) and (2). These
coefficients are listed in Table 4, and they are plotted in Figure 2.
The CCA research literature ( Conger, 1974; Tzelgov and Henik,
1991; MacKinnon et al., 2000; Nimon et al., 2010; Hair et al., 2010)
discusses further indications of the importance of the individual
variables that can be gleaned by examining the correlations of the
individual variables with E(1) and S(1) (known in the literature as
“loadings”), in addition to examining the coefficients (known in the
literature as “weights”). The correlations of the individual variables
with the composites E(1) and S(1) are also listed in Table 4.

Another way to determine the relative importance of the
individual variables is explored in the last column of Table 4, where
the reduction in the percentage of the Pearson linear correlation
coefficient between CCA-derived E(1) and S(1) composite variables
is listed for cases where one geomagnetic index or one solar wind
variable is eliminated from the CCA derivation procedure. This
column provides further information about the importance of each
index or each variable to the definition of E(1) and its solar wind
driver S(1). In response to the solar wind, all geomagnetic variables
act similarly to 0th order. Hence, as seen in the first six entries in
the last column of Table 4, eliminating any one geomagnetic index
from the CCA derivation of E(1) does not significantly reduce the
correlation between E(1) and S(1).

Solar wind driver variables are different. The last column of
Table 4 shows that if the value of vsw is not known or if the
value of Bz3 is not known, then the Pearson linear correlation
coefficient between the CCA-derived composite variables E(1)(t) and
S(1)(t) decreases very noticeably. According to Table 4, for the set
of variables chosen, variables that have a more minor impact are
ASYM in the Earth dataset and F10.7, log10(0.1+ΔB), Bmag, θBn3, and
log10(MA) in the solar wind dataset. It should be noted, however,
that information carried in MA is also carried in nsw and Bmag. The
contribution of the upstream magnetic field fluctuation amplitude
ΔB to solar wind/magnetosphere coupling is controversial and is
of interest in physics (Borovsky and Funsten, 2003; Osmane et al.,
2015; D’Amicis et al., 2007; 2009; 2010; Borovsky, 2022c).

Among the individual geomagnetic variables and solar wind
variables, there is also redundant information.This can be discerned
in the CCA derivation process, where elimination of one variable
results in a substantial increase in the CCA coefficient of the related
variable. Exploration of this shows that for the Earth driving (1),
Bmag and nsw carry similar information (cf. Borovsky, 2018) and that
for (2), Bmag, nsw, and MA are related (of course by the definition
MA = Bmag/(4πmpnsw)1/2). Surprisingly, PCC and SML, which are
both high-latitude indices that are highly correlated with each other,
do not indicate that they are carrying similar information in the
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solar wind driving problem: eliminating one of these two variables
does not result in a noticeable increase in the magnitude of the CCA
coefficient of the other variable.

6 E(1) and the solar cycle and type of
solar wind

In this section, the relations of E(1)(t) to S(1)(t), as defined by
expressions (1) and (2), are examined in the different phases of the
solar cycle and in the different types of solar wind plasma that drive
the Earth’s magnetosphere.

The top panel of Figure 6 plots the yearly average values of E(1)
(green) and the yearly average of S(1)(t) (red). It should be noted that
the value of E(1)(t) is typically slightly less than the value of S(1) [see
also expression (5)]. The bottom panel of Figure 6 plots the Pearson
linear correlation coefficient rcorr between E(1)(t) and S(1)(t) for each
year. It should be noted the drop in the value of rcorr around the year
2010 corresponds to weak activity E(1) and weak driving S(1) in the
top panel. The years of weaker correlation in the bottom panel are
probably owed to a common property of linear regression, wherein
if the range of values of the points [e.g., S(1)(t) and E(1)(t)] becomes

reduced (because of weak activity), the correlation coefficient tends
to drop in magnitude ( Borovsky, 2022a), related to the property of
“regression dilution bias” ( Liu, 1988; Hutcheon et al., 2010; Sivadas
and Sibeck, 2022).

In Figure 7A, 1997–2020 data are binned into four solar cycle
phases and E(1)(t) is plotted as a function of S(1)(t) separately for
each of the four phases, and a 100-point vertical running average
of the data points is created. In Figure 7A, only the points of the
four running averages are plotted, and the four running averages are
color-coded as indicated in the figure. As can be seen in Figure 7A,
the E(1) ↔ S(1) relationship is consistent between the various solar
cycle phases.

It should be noted that prior solar wind/magnetosphere
coupling studies ( Nakai and Kamide, 1999; Nagatsuma, 2006;
McPherron et al., 2009, McPherron et al., 2013) have argued that
solar wind coupling changes the strength in the different phases of
the solar cycle, i.e., that the ratio of geomagnetic activity to the solar
wind driver function varies systematically with the phase of the solar
cycle. The CCA-derived E(1) ↔ S(1) relationship does not show a
solar cycle variation. With a better solar wind driver function S(1)
and a better magnetospheric index E(1), no such solar cycle trend
is seen. It should be noted that in Figure 7A, theEarth activity E(1)

FIGURE 6
In the top panel, the yearly averages of E(1)(t) (green) and S(1)(t) (red) are plotted for years 1997–2020. In the bottom panel, the yearly Pearson linear
correlation coefficient rcorr between E(1)(t) and S(1)(t) for each year is plotted.
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FIGURE 7
In panel (A), the 1997–2020 data are separated into the four phases of
the solar cycle, and E(1) is plotted as a function of S(1) for the data in
each phase (not shown) and 100-point running averages of the data in
each phase are plotted in the four colors. In panel (B), the 1997–2020
data are separated into the types of solar wind plasma on Earth, and
E(1) is plotted as a function of S(1) for the data in each type (not shown)
and 100-point running averages of the data in each type are plotted in
the four colors.

and solar wind driving S(1) do not go as high in magnitude during
the solar minimum (green) as during other phases. In Figure 8A,
the values of E(1) are again binned for each of the four solar cycles
and the occurrence distributions are plotted, showing the weaker
distribution of activity in the solar minimum (green).

In Figure 7B, the Xu and Borovsky (2015) solar wind
categorization scheme is applied to each hour of the OMNI2 solar
wind data in the years 1997–2020 to categorize each hour into the
four types of solar wind plasma that bathe the Earth. As seen in
Figure 7A, E(1) is plotted as a function of S(1) separately for the
four types, and separate 100-point running averages are created
and plotted for each of the four types. As labeled in Figure 7B, the

FIGURE 8
In panel (A), the 1997–2020 data are separated into the four phases of
the solar cycle, and the values of E(1) are binned for the data in each
phase to create occurrence distribution functions plotted in the four
colors. In panel (B), the 1997–2020 data are separated into the types
of solar wind plasma on Earth, and the values of E(1) are binned for the
data in each type to create occurrence distribution functions plotted
in the four colors.

four types of solar wind plasma are ejecta (blue), coronal hole-
origin plasma (red), streamer belt-origin plasma (green), and sector
reversal-region plasma (purple).The four types of solar wind plasma
have systematically different properties concerning the driving of
the Earth’s magnetosphere. Coronal hole-origin plasma is typically
fast (high vsw), with a low number density, weak magnetic field
strength, highAlfvenicity, and itsmagnetic field orientation is Parker
spiral-oriented. Streamer belt-origin plasma typically demonstrates
medium speed and Alfvenicity, with the magnetic field Parker
spiral-oriented. Sector reversal-region plasma is usually very slow,
has high number density, and is non-Alfvenic, with a non-Parker
spiral orientation of the magnetic field. Ejecta varies, but it can
be extremely fast, with strong or weak magnetic field strength,
low Alfven Mach numbers, and non-Parker spiral magnetic field
orientations. The plotted running averages in Figure 7B indicate
that the relationship between E(1)(t) and S(1)(t) is very similar for
the four types of solar wind. It should be noted that in Figure 7B,
ejecta plasma (blue) is capable of driving the magnetosphere to
higher levels of activity [larger values of E(1)]. This is also seen in
Figure 8B, where the values of E(1) for the years 1997–2020 are
binned into the four types of solar wind plasma and the occurrence
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distributions of E(1) values are plotted.The high E(1) tail on the ejecta
distribution (light blue) is clearly seen. Note also the strong driving
of E(1) in coronal-hole-origin plasma (red) and the weak driving of
E(1) in sector-reversal-region plasma.

7 Using the new composite index E(1)

In the left column of Figure 9, the superposed epoch averages of
four quantities are plotted for 25 high-speed stream-driven storms
from the collection of Borovsky and Denton (2016). The zero epoch
(trigger) for the superposition is theMBI index (Gussenhoven et al.,
1983;Madden andGussenhoven, 1990), crossing 60.7o equatorward
(Borovsky and Denton, 2010), which is approximately when the
magnetospheric convection index Kp exceeds 4.3 (cf. Borovsky
and Denton, 2008). In the left column of Figure 9, the vertical
red dashed line is the zero epoch where the high-speed stream-
driven storms commence according to the MBI index. In the
top two panels of Figure 9, the superposed average of the new
composite magnetospheric index E(1) and its solar wind driver S(1)

is plotted. As can be seen in E(1) index transitions from lower
activity [E(1) ∼ 0] to high activity [E(1) >1] at the onset of storms.
The behavior of the driver functions S(1) in the second panel
reflects this. In the bottom two panels of Figure 9, the superposed
averages of the two geomagnetic indices Hp60 (magnetospheric
convection strength, similar to Kp) and SME (auroral activity)
show their transitions from low activity to high activity. One
takeaway from the left panel of Figure 9 is that a high-speed
stream-driven geomagnetic storm might be defined as commencing
when the magnetospheric index E(1) exceeds 1, which is one
standard deviation of the E(1) distribution of values. For the years
1997–2020, E(1) is greater than the unity 15.4% of the time,
which includes high-speed stream-driven storms, CME and CME-
sheath driven storms, and other intervals of strong magnetospheric
activity.

In the right column of Figure 9, the superposed-epoch averages
of the quantities that were plotted in the left column are replotted
with the zero epoch for the superposition chosen to be the time
at which E(1) exceeds unity, a suggested new definition of storm
activity. The plots of the right-hand Figure 9 are quite similar to the

FIGURE 9
Superposed-epoch average plots for 25 high-speed stream-driven storms. In the left-hand column, the zero epoch for the superposition is the storm
onset time as determined by the MBI index, and in the right-hand column, the zero epoch is the storm onset time determined as the time when E(1) first
exceeds 1. The zero epoch is marked as the vertical red dashed line.
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FIGURE 10
Superposed-epoch average plot of E(1) for 43 CME sheath-driven
storms, where the zero epoch is the passage of the interplanetary
shock ahead of each sheath as seen by the ACE spacecraft at L1.

plots of the left column, where the zero epoch was triggered by the
convective MBI index.

In Figure 10, the superposed-epoch average of the composite
index E(1) is plotted for 43 CME-sheath-driven storms. The zero
epoch is the time of shock passage at ACE at L1 upstream of
the Earth. For these shocks, the magnetic cloud appears at ACE
from 2.5–22 h after the shock; hence, the early part of the curve
after the zero epoch is the uncontaminated sheath-driven storm
data, and the later data are a mix of sheath-driven and cloud-
driven storms. Comparing Figures 9, 10, it is seen that E(1) can be
significantly higher for the sheath-driven storms than for the high-
speed stream-driven storms. For high-speed stream-driven storms,
E(1) is approximately 1 or more standard deviations from 0, whereas
for sheath-driven storms, E(1) is 2 or more standard deviations
from 0.

In Figure 3B, the data of Figure 3A are replotted with the data
from six superstorms (|SYMH| >250 nT) highlighted in six different
colors. The hours just before and just after the superstorms are also
plotted, with lines connecting the data points. The dark-blue line is
the linear regression fit to E(1) as a function of S(1) (expression (5) for
the entire 1997–2020 dataset). As can be seen, the data points of the
superstorms track the linear regression fit quite well, with the linear
regression blue line serving as a predictor of E(1) for a known value of
S(1). The good tracking of the superstorm data to the prediction line
may indicate that E(1)(t) can be fairly well-predicted, even when as-
yet-unseen extreme solar wind driving occurs, such as Carrington
event driving (e.g., Li et al., 2006; Ngwira et al., 2014).

8 Future work

8.1 Exploring the S(1) driving of individual
indices

As noted in Section 2, the CCA-derived solar wind driving
function, S(1), can act as a universal driver function for geomagnetic
activity with high correlations with individual geomagnetic indices
and with magnetospheric particle populations [cf. Table 2 of
Borovsky and Denton (2018)]. The quality of the S(1) universal
driver derived here can be seen by examining the correlation
coefficients listed in the first six entries of the second-to-last column

FIGURE 11
In panel (A), the 1-hr-lagged SME index is plotted (not shown) as a
function of Rquick or the years 1997–2020, and a 21-point running
average is created and plotted in green. In panel (B), the 1-hr-lagged
SME index is plotted (not shown) as a function of S(1) or the years
1997–2020, and a 21-point running average is created and plotted in
green. In both panels, linear regression fits are made (red line) for the
50th to 90th percentile of the driver strength, and then the regression
line is extended toward the top of each plot.

of Table 4 (Note that these correlations are high, even without time
lagging the indices from the solar wind). In future, the driving
of other geomagnetic indices by this new S(1) should be explored.
Furthermore, driving issues beyond the single global correlation
coefficient should be examined [see also the warning by Lockwood
(2022)], e.g., the correlation coefficients of data sorted by the solar
cycle phase and the data sorted by the four types of solar wind
plasma. Furthermore, questions about which geomagnetic indices
saturate under strong driving (which is under low solar wind Mach
numbers) in the driving of single indices by S(1) [cf. Figure 5 of
Borovsky (2021a), which uses a different functional form for S(1)
than the one given in this paper]. Using a different functional form
for S(1), Borovsky (2021a) showed that in general, the individual
indices exhibit less saturation when driven by a CCA-derived S(1)
function than they do when driven by standard solar wind driver
functions. An example of this is shown in Figure 11, using the new
S(1) function of expression (2) or (4). In the top panel, the 1-h
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lagged SME index is plotted as a function of the solar wind driver
Rquick (Borovsky and Birn, 2014), and in the bottom panel, the
1-hr-lagged SME index is plotted as a function of S(1). The plotted
green points are 21-point running vertical averages of the full data.
Linear regression fits are made to the full data from the 50th to the
90th percentile of the strength of the driver function; these fits are the
red lines, with the red lines extending toward the top of the plots. As
can be seen in Figure 11A, at large values of Rquick, the green running
average curves downward away from the red line and flatten out; this
is what is meant by “saturation” of the index under strong driving
(Note also the saturation in both panels of Figure 1.) In Figure 11B,
this flattening-out effect is seen to a lesser degreewhen SME is driven
by the S(1) value introduced in Section 4, given by the expression (2)
or (4). Note in Figure 11B the flattening of the SME curve for weak
S(1) driving (similar to the flattening in Figure 3A): as discussed
in Section 4, this might be owed to an atmospheric flywheel effect,
where residual geomagnetic activity persists after solar wind driving
ceases, owing to the inertia of atmospheric convection driven by the
prior activity.

8.2 The role of upstream solar wind
fluctuations

Several studies have shown that geomagnetic activity levels
are positively correlated with the amplitude of magnetic field
fluctuations ΔB in the upstream solar wind (Borovsky and
Funsten, 2003; Borovsky and Steinberg, 2008; Osmane et al., 2015;
D’Amicis et al., 2007; D’Amicis et al., 2009; D’Amicis et al., 2010;
D’Amicis et al., 2020). The question is whether there is a physical
mechanism that underlies these correlations since ΔB could be
acting as a proxy for other solar wind variables (Borovsky, 2022c).
The CCA process, with the information it uncovers via the
magnitudes of its coefficients and the strength of the index-versus-
S(1) correlations (e.g., Table 4), can provide rich insight about the
role of ΔB in the coupling process. Future versions of CCA based
on information flow ( Wing et al., 2016; Wing and Johnson, 2019)
rather than the Pearson linear correlation are under development;
these versions will be particularly helpful in finding out how much
ΔB drives the magnetosphere.

8.3 Explore the use of the projection
state/vectors to identify different types of
magnetospheric activity

One of our future goals would be to use E(1) to identify high-
speed stream-driven activity, CME-driven activity, CME-cloud-
driven activity, non-cloud ejecta-driven activity, etc., and to develop
the critical E(1) level for the onset of different types of storms.
Every time, a six-element state vector of magnetospheric activity
can be created (SME*, SMU*, Ap60*, SYMH*, ASYM*, and PCC*).
A pathway for a future project would be as follows: 1) to collect
examples of known magnetospheric activity, 2) to create an average
factor for each type of activity, and 3) for all other times the state
vector of activity can be the dot product with the average state

vector of each type of activity to see how close a vector is to
one of the average vectors. Developing closeness criteria will allow
magnetospheric activity to be categorized into one of the different
types of activities.

8.4 Exploring the effects of noise and
errors in the individual variables going into
E(1) and S(1)

Noise and/or errors in the solar wind variables and geomagnetic
indices change the interpretation of how solar wind/magnetosphere
coupling works, as seen in data analysis; noise lowers correlations
and alters best-fit formulas of solar wind versus the geomagnetic
index data (Borovsky, 2022a; Borovsky 2022b). Understanding how
the coupling physically works is also made difficult by the multiple
intercorrelations between all of the solar wind variables (Borovsky,
2020b; Borovsky 2021b). When fitting formulas by maximizing
correlation coefficients, there are math-versus-physics reasons for
the optimal correlations (Borovsky, 2021b). Noise in the solar wind
variables comes, of course, from inaccuracies in the spacecraft
measurements. The error in the solar wind measurements is much
larger because, typically, the solar wind that hits an L1 monitor
is not the solar wind that hits the Earth (Burkholder et al., 2020;
Walsh et al., 2020).There is a triple dawn–dusk aberration that leads
to the measured solar wind, typically missing the Earth off on the
dusk side (Borovsky, 2022c). This is particularly bad for the small-
scale magnetic structure of the solar wind that produces the on–off
driving of the magnetosphere with sudden spatial changes in the
solar wind magnetic field orientation. Additionally, geomagnetic
indices are not perfect indicators of magnetospheric activity. A
future project would be to explore the effects of noise and errors
(a) in the S(1) ↔ E(1) derivation process and (b) in the behavior
of the S(1) ↔ E(1) interactions for the E(1) and S(1) derived in
Section 4.
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