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Abstract

The Cretaceous—Palacogene (KPg) boundary, one of Earth’s five major extinction events, occurred just before the appearance
of Placentalia in the fossil record. The Gobi Desert, Mongolia and the Western Interior of North America have important fossil
mammals occurring just before and after the KPg boundary (e.g. Prodiacodon, Deltatheridium) that have yet to be phylogeneti-
cally tested in a character-rich context with molecular data. We present here phylogenetic analyses of >6000 newly scored
anatomical observations drawn from six untested fossils and added to the largest existing morphological matrix for mammals.
These data are combined with sequence data from 27 nuclear genes. Results show the existence of a new eutherian sister clade
to Placentalia, which we name and characterize. The extinct clade Leptictidae is part of this placental sister clade, indicating that
the sister clade survived the KPg event to co-exist in ancient ecosystems during the Palacogene radiation of placentals. Analysing
the Cretaceous metatherian Deltatheridium in this character-rich context reveals it is a member of Marsupialia, a finding that
extends the minimum age of Marsupialia before the KPg boundary. Numerous shared-derived features from multiple anatomical
systems support the assignment of Deltatheridium to Marsupialia. Computed tomography scans of exquisite new specimens bet-
ter document the marsupial-like dental replacement pattern of Deltatheridium. The new placental sister clade has both Asian and
North American species, and is ancestrally characterized by shared derived features such as a hind limb modified for saltatorial
locomotion.

© 2022 The Willi Hennig Society.

Introduction soft tissues. They then scored these characters for 86
species, including 40 key fossils, and documented their
work with labelled images and annotations. By com-
bining this morphological matrix with published

molecular sequences these authors produced a well-

One of the most comprehensive morphological stud-
ies of phylogenetic relationships emerged from the col-
laborative work of a team of palacontologists and
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mammalogists investigating the mammal tree of life
(O’Leary et al., 2013). Working in annual conference
meetings and through the collaborative web applica-
tion MorphoBank, these authors standardized anatom-
ical  terminology and  resolved longstanding
disagreements on homology to identify over 4541 dis-
crete morphological characters from osteology and
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tested, parsimony-based tree of relationships derived
from multiple sources, producing a particularly thor-
ough example of the application of combined analysis
(Kluge, 1989, 1998; Nixon & Carpenter, 1996). Results
of O’Leary et al. (2013) showed that no placental
mammal fossils tested pre-dated the Cretaceaous—
Palacogene (KPg) boundary, one of Earth’s five major
extinction events. Those authors also showed that
although many clades in the combined tree derived
from a signal in the molecular data partition, this large
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morphological dataset overturned several molecules-
only results.

Given its comprehensiveness, building on this matrix
with new morphological data collection is an impor-
tant approach to ongoing phylogeny testing through
combined data analysis. Because of the time-
consuming nature of the morphological data collec-
tion, it is important to select carefully which taxa
might be most impactful for future work. O’Leary
et al. (2013) highlighted (see the Supplementary Mate-
rials of that paper) several fossils that were a high pri-
ority for further testing based on their morphology,
antiquity and completeness. Here we add some of
these fossils and report on their impact on the com-
bined data mammal tree analysed with parsimony.
Our study contributes >6000 newly scored and illus-
trated anatomical observations made on six previously
unsampled fossil taxa (O’Leary et al., 2013).

As a prelude to discussing the new phylogenetic
results, we note that applying the convention of crown
clades and total clades (de Queiroz, 2007) has been par-
ticularly useful in the study of higher-level mammalian
relationships, especially when the position of fossil spe-
cies relative to living species is an intensive research
topic. This convention has helped ensure that clade
names are unambiguous and that palacontologists and
molecular biologists investigating phylogenetics are
talking about “the same thing” when calling a species “a
placental mammal” or “a marsupial” [see discussion in
O’Leary et al., 2013 (Supplementary Materials)]. To
review the key points, Mammalia, and the three major
clades with living species nested within Mammalia, have
each been defined as crown clades with associated total
clades, the latter containing fossil species that are on the
stem branch to the crown clade in question. Particularly
relevant to our results below are the crown clades Pla-
centalia and Marsupialia within Mammalia. These
clades contain the living placental and marsupial mam-
mals, respectively, and—of course—each of these clades
contains many, well-documented fossil species. The
total clade of Placentalia is called Eutheria, and that of
Marsupialia, Metatheria. Thus, all placental mammals
are ecutherians, but not all eutherians are placentals.
Likewise, all eutherians that are not placentals are
extinct. An important research focus has been testing
which fossils, and of what age, fall inside a crown clade
like Placentalia as opposed to outside of it on the pla-
cental stem in the total clade Eutheria (O’Leary et al.,
2013; Wible et al., 1995, 2004, 2007, 2009).

One noteworthy result of O’Leary et al. (2013) was
that, of the taxa sampled, the clade Placentalia con-
tained no fossil taxa from the Cretaceous. Thus, a pri-
ority for additional taxon sampling in combined data
analyses has been to select fossil taxa thought to be
ancient or basal branches of the total clades Eutheria

and Metatheria, to investigate whether any of these
extinct species actually belonged to the crown clades
themselves.

Four of the new fossils we add here come from Late
Cretaceous localities: the metatherian Deltatheridium
pretrituberculare, and the ecutherians Prokennalestes
trofimovi, Kennalestes gobiensis and Gypsonictops hypo-
conus. Moreover, in the case of Deltatheridium pretritu-
berculare, several new specimens discovered from
recent field work in the Cretaceous of Mongolia made
this taxon a priority for inclusion. We also sampled
two fossil eutherians from the early Palacogene: Prodi-
acodon puercensis and Palaeictops bicuspis because they
are members of Leptictidae, a fossil clade whose
anatomical variation captures important aspects of
early mammalian diversification (Novacek, 1986;
Velazco & Novacek, 2016) and in many papers has
been associated with the Cretaceous taxon Gypsonic-
tops (Novacek, 1986).

It previously has been shown that the extinct taxon
Deltatheridium, from the Late Cretaceous of Mongo-
lia, was the sister taxon of the crown clade Marsupi-
alia, and that both were part of the larger clade
Metatheria (Rougier et al., 1998). Although not
emphasized in the publication of O’Leary et al. (2013),
which discussed many issues regarding placental mam-
mals, that dataset also incorporated numerous charac-
ters from prior phylogenetic analyses of marsupials
(Horovitz, 2000; Horovitz & Séanchez-Villagra, 2003).
The matrix also sampled living and fossil metatherians
to a roughly similar degree as the study sampled most
placental mammal clades; thus, two extant marsupials
were included in O’Leary et al. (2013) and, among pla-
cental clades, five extant chiropterans and four extant
rodents were sampled as representatives of the two
most diverse clades of placentals. Below we discuss in
more detail findings related to marsupials, particularly
in the context of the discovery of a new, juvenile fossil
specimen of D. pretrituberculare.

Materials and methods
Taxon sample

We selected six new fossil taxa for study (Table 1) because of their
relevance to the problem of metatherian and eutherian diversifica-
tion. The stratigraphic ages of the first appearances of the six newly
added fossil species are listed in Table 1 [see also the Supplementary
Materials of O’Leary et al. (2013) for first appearances of all other
species in the tree]. These six fossil species were scored for any of the
4541 phenomic characters in O’Leary et al. (2013) that were
preserved. The new species were scored from direct observation. We
did not modify the published characters, nor did we add new charac-
ters. The numbers of cells scored for each of the new fossil taxa
are in Table 1 (characters not scored were not preserved or were
inapplicable).



Partial cranium (4), petrosal (1), dentaries (8), postcranial skeleton

(1), ulna (2), and upper and lower teeth
Partial cranium (1), partial dentaries (2), partial pelvis (1), partial

Partial cranium (3), partial dentaries (3), and upper and lower
femur (1), partial tibia (1), calcaneus (1), astragalus (1),

Petrosal (1), partial dentaries (5), and upper and lower teeth
teeth

Material

Cells
scored
1387
871
1138
936
957

2017)
Late Cretaceous, Campanian (Dingus et al., 2008)

2018)
Early Eocene, Wasatchian (Velazco & Novacek, 2016)

Late Cretaceous, Campanian (Dingus et al., 2008)
Early Cretaceous, Aptian/Albian (Lopatin & Averianov,
Middle Palaeocene, early Tiffanian (Halverson & Eberle,

Ages of the first appearances

Deltatheridium pretrituberculare
Prokennalestes trofimovi
Kennalestes gobiensis
Prodiacodon puercensis

Fossil taxa

Numbers of characters scored de novo for six fossil species in this analysis; images of the character states for these scorings also have been added to the database MorphoBank

Table 1
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Character sample: morphological data

Characters were scored and documented in the web application
and database MorphoBank (O’Leary & Kaufman, 2011), Project
P3871, and the matrix and additional phylogenetic files are freely
viewable online. This project was created by duplicating Project
P773 (O’Leary et al., 2013) so that the additional taxa could be
added for simultaneous analysis of new data with published data.
The six new fossil taxa were examined using light microscopy, digi-
tally photographed, and >900 new images were loaded to the matrix
from O’Leary et al. (2013). Photographs documenting the character
states were loaded to MorphoBank so that the homology assess-
ments for the new taxa were thoroughly documented for maximum
repeatability. Computed tomography (CT) scans of D. pretritubercu-
lare and Zalambdalestes lechei also are presented here as additional
important new information. Information on the CT data collection
and processing can be found in Table S1. Images from the scans are
deposited in MorphoBank Project P3871.

Character sample: molecular data

The molecular dataset of 27 nuclear genes for the combined data
analysis was that used in O’Leary et al. (2013: Supplementary Mate-
rials). The O’Leary et al. (2013) dataset included genes used in previ-
ous higher-level mammalian phylogenetic analyses (Madsen et al.,
2001; Meredith et al., 2011; Murphy et al., 2001a,b) and x-linked
zinc finger protein (zfx). The final matrix analysed here consisted of
4541 discrete morphological characters; 27 nuclear genes (37 kbp);
and 92 species, of which 46 were fossils. All of the DNA characters
for all fossils were replaced with “?”.

Partial cranium (1), partial dentaries (3), and upper and lower

teeth
Partial dentaries (6), and upper and lower teeth

917

Phylogeny reconstruction

The combined matrix of 41 401 characters, was prepared in a text
editing program for phylogenetic analysis. On the basis of first prin-
ciples, we consider the combined data parsimony analysis to be the
most effective means of analysing this dataset (Farris, 1983). How-
ever, we recognize that often there is keen interest in using large,
newly collected, primary datasets for reanalysis under a range of par-
titions and statistical algorithms as the basis for new publications.
Thus, we preempt this trend by providing and briefly discussing
alternative trees from model-based methods and certain data parti-
tions (i.e. molecular and morphological data) for the reader’s infor-
mation (Appendix; Figs A1-A3, S1-S5).

Maximum parsimony (MP) analyses were performed in the pro-
gram TNT (Goloboff & Catalano, 2016). Characters were considered
unordered and were assigned equal weights. We conducted a new
technology search including sectorial searches, ratchet, tree drifting
and tree fusing. The search was set to stop after finding the mini-
mum length 40 times. After the initial search, TBR arrangements
were searched with the tree in memory. We rooted the tree along the
branch leading to Morganucodon. Nodal support in all analyses was
assessed using 1000 jackknife replicates (Farris et al., 1996). Addi-
tional Bremer Support indices (Bremer, 1994) were calculated for
our main tree. We plotted the main tree against minimum strati-
graphic age drawn from the literature for each terminal (Table 1).
Because we are focused on the basal nodes of Placentalia and Mar-
supialia for this study, we present a summary tree of those nodes in
Fig. 1 and the full tree in Fig. Al.

For the additional model-based analyses, computational limita-
tions of these approaches regarding our dataset must first be
described. The Mkv model used by model-based algorithms to infer
phylogenies from morphological data has been shown to be too
unrealistic and inadequate to analyse these types of datasets (Golob-
off et al., 2019). The MP analyses run with implied or equal weights

Late Cretaceous, Maastrictian (Archibald & Clemens, 1984)

Ages correspond to numbers in Figure 1 (following O’Leary et al., 2013: tables S2 and S3).

Palaeictops bicuspis
Gypsonictops hypoconus
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Fig. 1. Single most parsimonious tree based on combined data parsimony analysis (see full tree in Fig. Al) mapped against stratigraphy. The
oldest taxa nested within Placentalia (Purgatorius, Leptacodon and Protungulatum) are ~65 Myr old and post-date the KPg boundary (see discus-
sion on dating in Supplementary Materials of O’Leary et al., 2013). The sister taxon of Placentalia, Tamirtheria, is an extinct and diverse clade
containing members ranging from the Late Cretaceous to the Eocene. The oldest taxon within Marsupialia, Deltatheridium pretrituberculare, pre-
dates the KPg boundary. Nodal numbers indicate Bremer support (Bremer, 1994). The oldest taxa on particular lineages (boxed numbers) are
listed in Table 1, with additional data in O’Leary et al. (2013: tables S2 and S3).

performed as well as or better than model-based algorithms when
analysing morphological data (Goloboff et al., 2018). Maximum par-
simony algorithms also can accommodate morphological characters
with more than ten states and characters with polymorphisms. Both
of these occur in our dataset. Model-based phylogenetic methods,
however, are unable to accommodate polymorphic morphological

characters. Because Phylip, the RAXML preferred alignment format,
does not permit polymorphic scoring, multistate character scorings
were changed to "?". Additionally, character states above nine had
to be changed to "?" to accommodate the algorithm. Thus, phyloge-
netic analyses ultimately were performed on two datasets: the
unmodified dataset including characters with more than ten states
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and polymorphisms and on the modified dataset that excluded char-
acter states >9 and polymorphic character states. In constructing the
modified dataset the changes affected 768 polymorphic scorings and
56 scorings with character states >9. Using these two datasets, we
performed a total of eight analyses in order to evaluate the perfor-
mance of the different algorithms and the effects of the exclusion of
characters with more than ten states and polymorphisms.

Maximum-likelihood (ML) analyses were performed with
RAXML-HPC2 v.8.2.12 (Stamatakis, 2014) on the CIPRES portal
(Miller et al., 2010). The ML analyses included 1000 rapid bootstrap
pseudoreplicates followed by a search for the tree that maximizes the
likelihood function (the “-f a” option). The searches used the default
value of 25 rate categories and estimates of all free model parame-
ters. The search for the ML tree used the GTRGAMMA model for
nucleotides and the MK + gamma model for the phenomic data. By
default, the bootstrap searches used the CAT approximation. As for
the parsimony analyses, in all searches we rooted the tree along the
branch leading to Morganucodon.

In order to study character optimization on the parsimony analy-
sis of combined data, we obtained both the ACCTRAN and DEL-
TRAN optimizations using the “DescribeTrees” option in PAUP*
v.4.0a (Swofford, 2003). We report unambiguous synapomorphies as
those common to both ACCTRAN and DELTRAN optimization
strategies. These optimizations are available as Supplementary Mate-
rials in the public database, MorphoBank, Project P3871.

Results

A parsimony search of the phenomic dataset com-
bined with the molecular data including 41 401 charac-
ters for 92 taxa (46 extinct, 46 extant) resulted in a
single tree of length 128 104 steps (CI: 0.3854; RI:
0.4070; Figs 1, Al). The tree was rooted with the clade
Morganucodon. Haldanodon exspectatus appears as the
next branch, as sister taxon to Mammalia [BS (Bremer
support index): 26; J (Jackknife pseudoreplicate fre-
quencies): 100). Monotremata is monophyletic (BS: 53;
J: 100), appearing as the sister taxon of Theriimorpha
(BS: 24; J: 100), a group that includes Eomaia and the
sister taxa Henkelotherium + Zhangeotherium (BS: 6; J:
83). Marsupialia is monophyletic (BS: 51; J: 100) and
sister to Eutheria (BS: 19; J: 66). The analysis supports
the hypothesis that D. pretrituberculare is a member of
Marsupialia, with strong support for a sister relation-
ship with Pucadelphys (BS: 11; J: 82). A eutherian
clade was recovered along the stem to Placentalia con-
taining extinct Mesozoic and Paleogene members.
Within  this clade  Maelestes is  sister  to
Ukhaatherium + Zalambdalestes (BS: 12; J: 94) and
Kennalestes + Prokennalestes is sister to Leptictidae
(BS: 16; J: 97). The basal split within Placentalia
occurs between Xenarthra (BS: 29; J: 100) and Epithe-
ria (BS: 16, J: 60). Afrotheria is weakly supported (BS:
24; J: 63). Boroeutheria is weakly supported in this
analysis (BS: 21; J: 76). We recover Euarchontoglires
(BS: 26; J: 95), Euarchonta (BS: 47; J: 100) with Sun-
datheria (BS: 66; J: 100), comprising Scandentia (BS:
168; J: 100) + Dermoptera (BS: 136; J: 100), as sister
taxon to Primates (BS: 63; J: 100). We recover

Laurasiatheria (BS: 24; J: 76) with Lipotyphla (BS: 51;
J: 100) as the basal branch. Within Ostentoria, we
recover Ferae, Carnivoramorpha and Carnivora (BS:
11; J: 68). Within Chiroptera, we recover Microchi-
roptera (BS: 8; J: 43). The extinct Eocene taxa
Icaronycteris and  Onychonycteris form a well-
supported clade (BS: 19; J: 100) that appears as a sis-
ter taxon to Microchiroptera. We find that the sister
taxa to Euungulata, within the clade Pan-Euungulata,
are extinct. These include the most basal member of
Pan-Euungulata, Protungulatum donnae, and the sec-
ond branch, a clade comprising Aphelisus, Hyopsodus,
Phenacodus, ~ Didolodus and Protolipterna. Within
Euungulata (BS: 24; J: 100), we find Mesonyx and
Rodhocetus as the basal-most branches. We recover
Perissodactyla (BS: 21; J: 100) and Cetacea (BS: 17; J:
100), with Basilosaurus and Artiocetus as successive sis-
ter taxa to extant cetaceans. Cetancodonta is weakly
supported (BS: 8; J: 32), with Archaeotherium, Bos,
Sus and Lama as successive sister taxa.

The ML tree of the combined data matrix (Fig. A3)
is largely in agreement with the central point on
parsimony-based trees (Appendix; Figs 1, A1-A2): a
eutherian clade exists on the stem to Placentalia that
contains Palacogene taxa. However, for the position of
some major clades the tree differs from MP. For
example, condylarths were recovered  within
Laurasiatheria by MP (Appendix; Figs A1-A2) as sug-
gested by a wide array of studies (e.g. Buckley, 2015;
Halliday et al., 2017), whereas the combined ML anal-
ysis placed a clade of condylarths as the sister to
crown Placentalia (Fig. A3). The differences between
our MP and ML trees do not reside in the use of a
modified (multistate character scorings and character
states >9 were changed to "?") or unmodified matrix,
but rather in how the ML and MP programs analysed
the morphological data. This is because when the
modified combined matrix was analysed under MP, it
recovered the same topology as the unmodified matrix
(Appendix; Figs A1-A3).

Results regarding the clade Placentalia

None of the newly added fossil species falls within
Placentalia, indicating again that the oldest known
members of Placentalia tested here post-date the KPg
boundary, and corroborating those results from
O’Leary et al. (2013). Ten extinct species form a new
sister clade to Placentalia, which we name below.
Results show that several species in the new placental
sister clade belong to lineages that survived the KPg
boundary to persist well into the Cenozoic (Fig. 1).
Thus, as placental mammals radiated in the early
Palaeogene into familiar clades such as Cetacea and
Primates, nonplacental eutherian congeners existed in
the same ecosystems. Although some suggestion that
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members of Leptictidae might fall outside Placentalia
emerged in previous work (Wible et al., 2007, 2009),
this result previously has not been upheld by such a
character-rich phylogenetic test of the phylogeny, and
not with such a speciose clade. In the following section
we formally name this eutherian clade.

Systematic palaeontology

Mammalia Linnaeus, 1758

Theria Parker and Haswell, 1897
Eutheria incertae sedis Gill, 1872
Tamirtheria unranked, stem-based clade

Etymology. For the late Tamir Nasankhuu, the long-
standing chief technician and Mongolian member of
the American Museum of Natural History-Mongolian
Academy of Sciences expeditions.

Age and geographical range. Late Cretaceous of
Mongolia and North America; Palaeocene-Oligocene
of North America.

Definition and clade membership. All species more
closely related to Ukhaatherium nessovi than to Elephas
maximus: Maelestes gobiensis, Zalambdalestes lechei,
Ukhaatherium nessovi, Kennalestes gobiensis, Proken-
nalestes trofimovi and Leptictidae.

Diagnosis. Eutherian sister taxon of Placentalia, dif-
fers from Placentalia in 43 unambiguous synapomor-
phies (Fig. 2; Supplementary Material on MorphoBank
Project P3871) including presence of a suprameatal
fossa on the squamosal; a dental ramus with a masse-
teric fossa and condyloid crest; a V-shaped premaxilla-
maxilla suture on the palate; an ectopterygoid process;
P5 with a wide stylar shelf; M1 with a postparaconule
crista, parastylar groove, and metaconule; M2 with a
preparaconule crista and a premetaconule crista, M3
with a metaconule; scapula coracoid process <0.5x the
dimension of the glenoid fossa; absence of an anterior
concavity on the humerus supinator crest; flat ulnar
facet rim on the radial head; distal contact of the tibia
and fibula extended to near the midshaft of the tibia;
and an astragalar ectal facet continuous with the astra-
galar lateral facet, among other features.

Discussion. Small mammals with a sectorial denti-
tion, long canines and a postcranial skeleton modified
with a fibula that is in close contact with the tibia
through midshaft. Tamirtherians also primitively
retain epipubic bones (bones in the anterior abdominal
wall), also found in Marsupialia, among other mam-
mals (Novacek et al., 1997). Among tamirtherians,
epipubic bones are present in Zalambdalestes lechei
and Ukhaatherium nessovi and absent in the Oligocene
Leptictis. In the other members of the group the struc-
ture is not preserved.

Preserved as skulls, dentitions and skeletons,
Tamirtheria, along with Placentalia, form the total

clade, Eutheria. All known tamirtherians are extinct.
The phylogenetic position of the tamirtherian Gypson-
ictops extends the minimum age of the clade Lepticti-
dae into the late Mesozoic (Fig. 1). Tamirtheria
persisted alongside the newly diversifying placental
orders such as primates, bats and rodents in the early
Palacogene. Like tamirtherians, the Mesozoic clade
Multituberculata survived the KPg event to persist
until the latest Eocene (Prothero, 1994). Whether com-
petition among the increasingly specialized placental
clades limited the success of these Cretaceous relic
taxa, as has been posited for Multituberculata
(Krause, 1986; Ostrander, 1984), is currently unknown.
Our tree also indicates that Asioryctitheria, previously
conceived as a basal eutherian clade with Ukhaather-
ium, Kennalestes and Asioryctes (Novacek et al., 1997),
is paraphyletic with its members in different clades of
Tamirtheria.

The substantial contact between the tibia and fibula
(here represented by character 3414; Fig. 2) reported
in Zalambdalestes has been described as being similar
to that in rabbits (Kielan-Jaworowska, 1978; Novacek
et al., 1997; Rose, 2006), the latter having specialized
hind limbs for saltatorial locomotion. This condition is
a synapomorphy of Tamirtheria, as it is also well-
represented in Leptictis, and present to a lesser degree
in Prodiacodon. Reversals from this derived condition
may have occurred in the clade in such taxa as
Ukhaatherium; the distal fibula of Ukhaatherium and
its contact with the tibia are not well-known (Horo-
vitz, 2003), although the shape of its fibula overall dif-
fers from that of Zalambdalestes.

Examination of other dental changes on the shortest
tree indicates that the loss of the lower third premolar
(p3) is a synapomorphy of Theria, and that Gypsonic-
tops, Prokennalestes and Maelestes have each regained
a tooth at the lower third premolar (p3) locus (note,
the tooth locus terminology follows that of O’Leary
et al., 2013: fig. 3]). This pattern thus is an example of
a complex structure—a tooth—reappearing evolution-
arily, in contrast to a Dollo’s Law-type preconception
that the evolution of complex structures is irreversible
(Collin & Miglietta, 2008).

Results regarding the clade Marsupialia

Our tree produced the novel result that the clade
Marsupialia contains a Late Cretaceous fossil,
Deltatheridium pretrituberculare. Long-recognized as a
metatherian, but not necessarily as a marsupial (Rou-
gier et al., 1998), the position of Deltatheridium inside
Marsupialia is supported by numerous unambiguous
synapomorphies at multiple nodes, including the node
Marsupialia, and nodes more highly nested within that
clade. Our study supports the hypothesis that
Deltatheridium pretrituberculare is part of a fossil sister
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Fig. 2. Computed tomography scans of specimens and an associated skeleton [PSS-MAE 131, centre and (f)] of the extinct eutherian mammal
and tamirtherian, Zalambdalestes lechei, with shared derived features of Tamirtheria illustrated from the skull, dentition and postcrania. Charac-
ters: 37 (a), nasal bones elongate relative to skull length; 463 (b), presence of the ectopterygoid process; 549 (¢ and d), presence of a suprameatal
fossa; 1198 (c) presence of a condyloid crest in the masseteric fossa, and (¢) numerous features of crests and cusps of the upper molars; and 3414
(f) tibia and fibula in contact proximally. (a—d) PSS-MAE 108; (¢) PSS-MAE-130. Character numbers are those in the matrix (Methods and

online at MorphoBank project P3871).

clade to Didelphis (Fig. 1). Regardless of whether some
of these synapomorphies may show homoplasy else-
where in the tree, their cumulative impact results in
this novel, but highly supported, position of
Deltatheridium. No member of Marsupialia previously
had been shown to pre-date the KPg boundary, but
this result indicates that Marsupialia has a nested
member that is ¢. 80 Myr old (Dingus et al., 2008).

Over 75 unambiguous morphological synapomor-
phies support the clade Marsupialia with Deltatherid-
ium pretrituberculare nested within it. Thirty-five
unambiguous synapomorphies support the clade of the
two fossil species Pucadelphys + Deltatheridium. These
come from the cranial, dental and postcranial parti-
tions, and include: the presence of a W-shaped fronto-
nasal suture (character 38: state 2); a posterior masse-
teric shelf that is nearly vertical (1202: 1); the absence
of a medial expansion of the dentary condyle (1208:
0); an angular process of the dentary that is at least as
large as the dentary itself (1224: 2); the presence of a
parastylar groove on M1 (2336: 1); an M1 parastylar
lobe that is hook-like and that curves around the post-
metacrista of the preceding tooth (2341: 0); and the
absence of a parafibula (3417: 0).

Additionally, the sister-taxon relationship between
the extant marsupial Didelphis and the clade Pucadel-
phys + Deltatheridium is strongly supported by 55
unambiguous synapomorphies from the cranial, dental
and postcranial systems. These include: elongate nasal

bones (37: 2); presence of a paracanine fossa (106: 1);
absence of contact between the lacrimal and the max-
illa in the orbital wall (218: 0); a pterygoid canal posi-
tioned such that it is visible in ventral view of the skull
(413: 1); presence of the condyloid fossa on the exoc-
cipital (906: 1); a triangular anterior process on the
dentary (1223: 0); presence of the upper dP5 stylocone
(1863: 0); presence of a stylocone on upper M2 (2487:
0); presence of stylar cusp D on upper M2 (2495: 0); a
sigmoid-shaped clavicle (2946: 2); an ischial process
that flares laterally (3329: 1); absence of contact
between the fibula and the calcaneus (3431: 0); and a
well-developed lateral tubercle on the astragalus (3482:
1). These characters, and other synapomorphies, are
illustrated and labelled in MorphoBank projects 773
and 3871.

Further important information that emerged from
CT scans of a newly discovered metatherian fossil,
while not directly incorporated into the phylogenetic
analysis, points to an important new phenomic charac-
ter set. The scans exposed exquisite new details of a
marsupial-like dental eruption pattern preserved in
new Mongolian fossils of Deltatheridium (Fig. 3). The
sequence of tooth eruption observed in the new fossils
of the extinct Cretaceous taxon Deltatheridium pre-
sented here for the first time, lends further support for
its phylogenetic position inside Marsupialia (Fig. 3).
Deltatheridium had been described as resembling living
marsupials in replacing deciduous teeth with
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G

permanent P4/p4 replacement teeth (1552)
are unerupted in crypt

(1552) DP5, dp5
(1730) P2 not replaced

not replaced

(1459) p1 roots

¥ (1220) Medial Fossa

(1201) Masseteric Shelf

(1221) Angular Process
directed medially

()

(1831) DP5

(1730) P1, 2 not replaced

(1220) Medial Fossa (1201) Masseteric Shelf

Fig. 3. Computed tomography scans of Deltatheridium pretritubercu-
lare, a Late Cretaceous member of Marsupialia illustrating derived
morphological features that it shares with Marsupialia (numbered
characters). (a) Digital cutaway of maxilla and dentary (PSS-MAE
221), juvenile individual preserving the following marsupial feature:
canine teeth fully erupted but the permanent fourth premolar (P4/
p4) teeth still in crypts. These teeth have yet to develop adult mor-
phology. (b) Medial view of the dentary (PSS-MAE 133) and (c)
ventral view of dentary and skull (PSS-MAE 221), both showing
derived marsupial features present in this fossil (see Supplementary
Information). Note dental nomenclature here follows O’Leary et al.
(2013: fig. 3), wherein C/c, P/pl, P/p2, DP/dp4, P/p4, DP/dp5, M/
ml, M/m2, M/m3 correspond to C/c, P/pl, P/p2, DP/dp3, P/p3, M/
ml, M/m2, M/m3, M/m4 of previous work (Rougier et al., 1998).

permanent teeth only at the fourth upper and lower
premolar loci (P4/p4) (Rougier et al., 1998). The
canine in marsupials erupts only once as a permanent
tooth and it erupts before the permanent P4/p4 teeth
erupt. Previously data existed only from a single fossil
specimen of Deltatheridium from which it was

concluded that the permanent P4/p4 erupted in
Deltatheridium before the canine fully erupted (Rou-
gier et al., 1998). The latter pattern would make
Deltatheridium unlike marsupials in the relative timing
of the canine and P4/p4 eruption.

However, evidence in a new juvenile specimen of
Deltatheridium pretrituberculare indicates that the
canine has fully erupted, but the permanent P4/p4
teeth are incipiently developed, unerupted and still in
their crypts (Fig. 3). Thus, Deltatheridium has a more
marsupial-like dental replacement pattern than previ-
ously recognized. This replacement pattern compares
closely with that of fossil and living didelphoid marsu-
pials, some dasyurid marsupials, and the Cretaceous—
Palaeocene metatherian taxon Alphadon (Cifelli et al.,
1996; Rougier et al., 1998). Further underscoring the
marsupial-like delayed maturity seen in Deltatheridium
is the observation that the P4/p4 replacement teeth
themselves are not even fully formed in the upper and
lower jaws in this specimen (Fig. 3a). Examination of
other dental changes on the tree indicates that the loss
of the lower third premolar (p3) is a synapomorphy of
Theria and that Gypsonictops, Prokennalestes and
Maelestes each have regained a tooth at the lower
third premolar (p3) locus.

Discussion

Tests of phylogenetic hypotheses often proceed by
additions to taxon-rich or character-rich matrices. Our
results are based on additions to a character-rich
matrix: we added >6000 new morphological observa-
tions taken from six fossil species to a matrix with
4541 morphological (osteological and soft tissue) char-
acters. This matrix previously had been assembled by
a collaborative team in O’Leary et al. (2013), a paper
that revised and sourced the new, large matrix from
many published matrices including characters from
matrices explicitly focused on Marsupialia (Horovitz,
2000; Horovitz & Sanchez-Villagra, 2003).

Our addition of six fossils to this character-rich
matrix further refines our understanding of the timing
of placental diversification relative to the KPg bound-
ary, a topic of debate (Meredith et al., 2011; O’Leary
et al., 2013; Phillips, 2016; Springer et al., 2017). The
new tree presents critical calibrations for higher mam-
malian clades. The tree topology (Fig. 1; Supplementary
Information) indicates that Protungulatum donnae,
which dates to just after the KPg boundary (O’Leary
et al., 2013), is the oldest species known within Placen-
talia. Continued addition of taxa and characters to this
large matrix will provide an important ongoing test of
mammalian phylogeny, not only the addition of more
marsupials, both living and fossil species, but also ongo-
ing eutherian fossil discoveries from Cretaceous rocks.
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The extinct clade Leptictidae, now outside of Placen-
talia, has been hypothesized to fall in a number of dif-
ferent places on the mammalian tree (Asher, 2018),
including Leptictis being among the oldest Afrotheri-
ans (O’Leary et al.,, 2013). We show here, however,
that Leptictidae belongs neither to Afrotheria nor even
to Placentalia. The oldest fossils associated with
Afrotheria, Thomashuxleya externa and Carodnia
vieirai, thus are South American. Tamirtherian fossils
are known from Asia and western North America,
regions that were in relatively close contact in the lat-
est Cretaceous, with the latter separated by an epicon-
tinental sea from the rest of North America
(Matthews et al., 2016). Previously, Placentalia was
considered to have a single (O’Leary et al., 2013) or
multiple (Rougier et al., 1998) outgroups from Asia
alone, but our results show a more complex history
with early eutherian speciation occurring on at least
two continents.

That the North American Leptictidae is phyloge-
netically nested within an Asian eutherian radiation
is consistent with other evidence for a degree of flo-
ral and faunal continuity between Asia and North
America in the Late Cretaccous (Russell, 1993).
Close relationships between Asian and North Ameri-
can taxa during this interval are observed in multiple
plant lineages (Wen et al., 2016); in ceratopsian
(Farke et al., 2014), hadrosaurid (Pricto-Marquez,
2010) and coelurosaurian (Ding et al., 2020) dino-
saurs, including tyrannosaurids (Brusatte & Carr,
2016); in alligatoroid crocodilians (Massonne et al.,
2019); and in polyglyphanodontian (Gauthier et al.,
2012) and iguanian (DeMar et al., 2017) lizards.
Thus, our new findings about the distribution of
ancient mammals are consistent with a larger biogeo-
graphical pattern.
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Fig. S1. Maximum parsimony tree computed on the
molecular matrix only, the same tree published in
O’Leary et al. (2013: fig S2A)

Fig. S2. RAXML tree computed on the molecular
data matrix.

Fig. S3. Maximum parsimony tree computed on the
phenomic matrix only

Fig. S4. Maximum parsimony tree computed on the
modified phenomic matrix only

Fig. S5. RAXxML tree computed on the modified
phenomic matrix only

Table S1. Details of the CT scanning equipment and
software

APPENDIX

Results of the combined, molecular and phenomic
analyses

Here we present the results and comparison of eight maximum
parsimony (MP) and maximum-likelihood (ML) analyses performed
on different combinations and versions of the phenomic and molecu-
lar matrices. We analysed two versions of the phenomic matrix. One
included multistate character scorings and character states >9, and
the other included what we refer to as “the modified dataset,” that is
a version of the phenomic matrix in which multistate character scor-
ings and character states >9 were changed to “?”. The exclusion of
multistate character scorings and character states >9 was necessary
to run the matrix under the RAXML algorithm. The eight analyses
performed were: (A) MP analysis using a combined phenomic and
molecular dataset, (B) MP analysis using a modified version of the
phenomic dataset combined with the molecular dataset, (C) ML
analysis using a modified version of the phenomic dataset combined
with the molecular dataset, (D) MP analysis of the molecular data-
set, (E) ML analysis of the molecular dataset, (F) MP analysis of the
phenomic dataset, (G) MP analysis of the modified phenomic data-
set, and (H) ML analysis of the modified phenomic dataset. We tried
to analyse the combined dataset using Bayesian Inference, but it was
computationally unfeasible due to the size of the dataset. The branch
support values for analysis (A) are given by Bremer support indices
(BS) and Jackknife pseudoreplicate frequencies (J); for analyses (B)
and (G) by J (modified [M]); for analyses (C), (E) and (H) by boot-
strap values (B); and for analyses (D) and (F) by J.

Combined data

A parsimony search of the phenomic dataset combined with the
molecular data using 41 401 characters for 92 taxa (46 extinct, 46
extant) resulted in a single tree of length 128 104 steps (CI: 0.3854;
RI: 0.4070; Figs 1, Al), which is the primary result of our analysis
as discussed in the main paper. The parsimony search of the modi-
fied dataset and the molecular data resulted in a single tree of length
128 019 steps (CI: 0.379; RI: 0.407; Fig. A2). A ML analysis of the
same modified phenomic matrix + molecular data resulted in a tree
with a likelihood value of —632600.100826 (Fig. A3). All trees are in
general agreement concerning the overall tree structure. The trees
were rooted with the clade Morganucodon. Haldanodon exspectatus
appears as the next branch, as sister taxon to Mammalia (BS: 26; J:
100; J [M]: 100; B: 100). Monotremata is monophyletic (BS: 53; J:
100; J [M]: 100; B: 100), appearing as the sister taxon of Theriimor-
pha (BS: 24; J: 100; J [M]: 85; B: 99), a group that includes Eomaia

and the sister taxa Henkelotherium + Zhangeotherium (BS: 6; J: 83; J
[M]: 85; B: 84). Marsupialia is monophyletic (BS: 51; J: 100; J [M]:
100; B: 100) and sister to Eutheria (BS: 19; J: 66; J [M]: 65; B: 85).
All of the analyses support the hypothesis that Deltatheridium pre-
trituberculare is a member of Marsupialia. With a strong support for
a sister relationship with Pucadelphys (BS: 11; J: 82; J [M]: 87; B:
82). Both MP analyses recover a eutherian clade along the stem to
Placentalia containing extinct Mesozoic and Paleogene members.
Within this clade Maelestes is sister to Ukhaatherium + Zalamb-
dalestes (BS: 12; J: 94; J [M]: 95) and Kennalestes + Prokennalestes is
sister to Leptictidae (BS: 16; J: 97; J [M]: 95). This clade in the ML
tree is paraphyletic. Both MP analyses recover identical topologies
for all Placentalia members (see below for ML). The basal split
within Placentalia occurs between Xenarthra (BS: 29; J: 100; J [M]:
100) and Epitheria (BS: 16, J: 60; J [M]: 58). Afrotheria is weakly
supported in both parsimony analyses (BS: 24; J: 63; J [M]: 62).
Boroeutheria is weakly supported in both analyses (BS: 21; J: 76; J
[M]: 70). We recover Euarchontoglires (BS: 26; J: 95; J [M]: 94),
Euarchonta (BS: 47; J: 100; J [M]: 100) with Sundatheria (BS: 66; J:
100; J [M]: 100), comprising Scandentia (BS: 168; J: 100; J [M]:
100) + Dermoptera (BS: 136; J: 100; J [M]: 100), as sister taxon to
Primates (BS: 63; J: 100; J [M]: 100). We recover Laurasiatheria (BS:
24; J: 76; J [M]: 72) with Lipotyphla (BS: 51; J: 100; J [M]: 100) as
the basal branch. Within Ostentoria, we recover Ferae, Carnivo-
ramorpha and Carnivora in both MP analyses with identical topolo-
gies (BS: 11; J: 68; J [M]: 74). Within Chiroptera, we recover
Microchiroptera in both MP analyses (BS: 8; J: 43; J [M]: 49). In
both MP analyses, the extinct Eocene taxa Icaronycteris and Onycho-
nycteris form a clade (BS: 19; J: 100; J [M]: 100) that appears as a
sister taxon to Microchiroptera. We find, in both MP analyses, that
the sister taxa to Euungulata, within the clade Pan-Euungulata, are
extinct. These include the most basal member of Pan-Euungulata,
Protungulatum donnae, and the second branch, a clade comprising
Aphelisus, Hyopsodus, Phenacodus, Didolodus and Protolipterna.
Within Euungulata (BS: 24; J: 100; J [M]: 100), we find Mesonyx
and Rodhocetus as the basal-most branches in both analyses. We
recover Perissodactyla (BS: 21; J: 100; J [M]: 100) and Cetacea (BS:
17; J: 100; J [M]: 100), with Basilosaurus and Artiocetus as successive
sister taxa to extant cetaceans. Cetancodonta is weakly supported
(BS: 8; J: 32; J [M]: 32), with Archaeotherium, Bos, Sus and Lama as
successive sister taxa.

Important differences occur within the clades when the parsimony
and ML analyses are compared. The ML analysis recovered Protun-
gulatum donnae, and a clade comprising Aphelisus, Hyopsodus,
Phenacodus, Didolodus and Protolipterna sister to crown Placentalia.
Both MP analyses found these taxa as the basal-most members of
Pan-Euungulata. The ML analysis also fails to recover Epitheria.
However, the ML analysis recovers a weekly supported Atlanto-
genata (B: 35) which includes Xenarthra + Afrotheria. There are dif-
ferences between the parsimony and ML trees regarding the
placement of Notharctus within Primates, with the ML analysis sup-
porting a clade of Notharctus + Lemur (B: 96), whereas the parsi-
mony analyses favour Lemur and Notharctus as successive sister taxa
to the remaining primate taxa. Within Glires the position of Tri-
bosphenomys differs in the different analyses; both MP analyses
recover Tribosphenomys as the most basal member of the clade in
both analyses, whereas the ML analysis recovers Tribosphenomys as
sister to Duplicidentata + Rhombomylus.

Both MP analyses recover Sinopa as sister to Carnivoramorpha
(BS: 23; J: 100; J [M]: 100). However, the ML analysis recovers
Sinopa nested within Carnivoramorpha, sister to the clade including
both species of Vulpavus (B: 97).

The ML tree of the combined data matrix (Fig. A3) is largely in
agreement with the central point on parsimony-based trees: a euthe-
rian clade exists on the stem to Placentalia that contains Palacogene
taxa. In addition, when the modified matrix was analysed under MP,
it recovered the same topology as the unmodified matrix.
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Fig. Al. Single most parsimonious tree resulting from parsimony analysis of combined data Nodal numbers indicate Bremer support (Bremer,
1994). This tree is summarized with stratigraphy in Figure 1.
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MP -Combined (Mod)

Fig. A2. Maximum parsimony tree computed on the combined
matrix using the “the modified dataset” —a phenomic matrix for
which polymorphic scorings and multistate character scorings were
changed to "?" so that the matrix would run under the RAxML
algorithm. Nodal numbers are Jackknife pseudoreplicate frequencies.

Molecular data

A parsimony search using 36 860 characters for 46 extant taxa
resulted in a single tree of length 97 787 steps (CI: 0.4366; RI:
0.3974; Fig. S1) (see also O’Leary et al., 2013, where the identical
analysis was performed). An ML search for the same matrix and
number of taxa produced a tree with a likelihood of
—474 260.690809 (Fig. S2). Both trees differ in arrangements of sev-
eral clades. The trees were rooted at the branch leading to Monotre-
mata (J: 100, B: 100). Marsupialia is recovered in both analyses (J:
100, B: 100). The basal branch of Placentalia (J: 100, B: 100) differs,
with parsimony supporting Xenarthra (J: 100) as the sister taxon of
Epitheria, and the ML analysis supporting a basal position within
Placentalia for Afrotheria (B: 100). Within Afrotheria, the MP anal-
ysis recover Sirenia as sister taxon to a clade including Hyra-
coidea + Proboscidea (J: 73; + Sirenia: J: 100). Afrosoricida is
recovered only by the ML analysis (B: 83), whereas the parsimony
analysis places Tubulidentata and Chrysochloridae as the successive
sister taxa of Macroscelidea + Tenrecidae (J: 53). In the ML analy-
sis, Tubulidentata and Macroscelidea are successive sister taxa of
Afrosoricida. This entire clade receives J of 98 (MP) and 100% ML
bootstrap support. We recover Boreoeutheria (J: 99, B: 100). Within
this clade Euarchontoglires receives strong support (J: 99, B: 100).
The parsimony analysis recovers Sundatheria (J: 88) as the sister
taxon of Glires (J: 91); however, the ML analysis support an alterna-
tive grouping of Scandentia (B: 100) with Glires (B: 86). In the ML
analysis, Dermoptera (B: 100) appears as the sister taxon of Primates
(B: 100; + Dermoptera: B: 88). Within Primates, relationships are
identical among both analyses (Lemur and Tarsius as successive sis-
ter taxa to Homo + Saimiri) and are strongly supported. However,
within Glires, relationships within Rodentia (J: 100) differ with Hys-
tricognathi and Sciuromorpha as successive sister taxa to Caviomor-
pha + Myomorpha (J: 100) in the parsimony analysis. The ML
analysis, however, offer weak support for a sister taxon relationship
between Caviomorpha and Sciuromorpha (B: 38), and more robust
support for a sister taxon relationship between Hystricognathi and
Myomorpha (B: 98). We find strong support for Laurasiatheria (J:
100, B: 100), with Lipotyphla as the basal branch (J: 100, B: 100).
Relationships within Lipotyphla differ among the analyses, with par-
simony supporting Talpa and Solenodon as successive sister taxa to
Sorex + Erinaceus, while the ML analysis switch the order of Solen-
odon and Talpa. Ostentoria is supported in both analyses (J: 84, B:
99), as is Carnivora (J: 100, B: 100). Ostentoria is the sister taxon of
Chiroptera + Euungulata, a clade receiving weak support (J: 52, B:
46). Chiroptera is well-supported (J: 100, B: 100), as is Yinpterochi-
roptera (J: 100, B: 100) and Yangochiroptera (J: 100, B: 100). Rela-
tionships within Yangochiroptera are identical in all analyses. We
recover Euungulata with weak support (J: 62, B: 43), with Equus as
the sister taxon of Artiodactyla (J: 100, B: 100). Cetacea (J: 100, B:
100) is monophyletic, as is Cetancodonta (J: 100, B: 100) and the
topology of Artiodactyla is identical (Bos, Sus and Lama) as succes-
sive sister taxa to Cetancodonta) and strongly supported in both
analyses.

Morphological data

A parsimony search of the unmodified phenomic dataset using
4541 phenomic characters for 92 taxa (46 extinct, 46 extant) resulted
in four trees of length 28 389 steps (CI: 0.191; RI: 0.445; Fig. S3).
The parsimony search of the modified matrix (M; see Material and
Methods) resulted in two trees of length 28 311 steps (CI: 0.191; RI:
0.445; Fig. S4). A ML analysis of the same modified matrix resulted
in a tree with a likelihood value of —181 970.953262 (Fig. S5). The
MP strict consensus trees (unmodified and modified matrices) and
the ML tree are in general agreement concerning the overall tree
structure. The trees were rooted with the clade Morganucodon.
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Fig. A3. RAXML tree computed on the modified combined data matrix. Note, the RAxML algorithm cannot accommodate our morphological

characters that include polymorphisms, and, as such, could only compute on a modified version of this part of the matrix with a reduced number
of observations. Nodal numbers are bootstrap values.



P. M. Velazco et al. | Cladistics 0 (2022) 1-15 15

Haldanodon exspectatus appears as the next branch, as sister taxon
to Mammalia (J: 100; J [M]: 100; B: 100). Monotremata is mono-
phyletic (J: 100; J [M]: 100; B: 100), appearing as the sister taxon of
Theriimorpha (J: 100; J [M]: 100; B: 100), a group that includes
Eomaia and the sister taxa Henkelotherium + Zhangheotherium, a
group well-supported in the parsimony tree (J: 93; J [M]: 91; B: 87).
Marsupialia is monophyletic (J: 100; J [M]: 100; B; 100) with Dromi-
ciops and Didelphis as successive sister taxa to Deltatherid-
ium + Pucadelphys (J: 93; J [M]: 96; B: 98). Both MP analyses
recover a weekly supported clade including the extinct Mesozoic
taxon Maelestes sister to Ukhaatherium + Zalambdalestes (J: 98; J
[M]: 95) and Kennalestes + Prokennalestes (J: 100; J [M]: 100). Pla-
centalia is weakly supported in both MP analyses (J: 6; J [M]: 3). In
the ML analysis the extinct Mesozoic taxa Maelestes, Ukhaatherium
and Zalambdalestes form a weakly supported sister taxon (B: 57) to
Placentalia (B: 69). In both MP analyses, the basal split within Pla-
centalia is between a weekly supported grouping of Lipotyphla plus
Leptictidae and Rhynchocyon and the remaining placental taxa. The
basal split within Placentalia in the ML analysis is similar with the
difference that the Mesozoic taxa Kennalestes + Prokennalestes are
recovered as sister to Leptictidae (B: 83). Our phenomic data do not
recover Euarchontoglires. Instead, our phenomic analyses weakly
support Archonta (J: 51; J [M]: 52; B: 67), with Sundatheria, Scan-
dentia (J: 100; J [M]: 100; B: 100) + Dermoptera (J: 100; J [M]: 100;
B: 100), as the sister taxon to Primates (J: 100; J [M]: 100; B: 100).
Within Chiroptera (J: 100; J [M]: 100; B: 100), we recover Microchi-
roptera (J: 100; J [M]: 100; B: 100). In all analyses, the extinct
Eocene taxa Icaronycteris and Onychonycteris form a clade (J: 100; J
[M]: 100; B: 100). This group appears as sister taxon to Microchi-
roptera in both the parsimony and ML analyses. There are differ-
ences between the parsimony and ML analyses regarding the
placement of Notharctus within Primates, with the ML analysis sup-
porting a clade of Notharctus + Lemur (B: 69), whereas the parsi-
mony analyses favor Notharctus and Lemur as successive sister taxa
to the remaining primate taxa. All analyses recover Edentata (Pholi-
dota, Xenarthra, + Tubulidentata; J: 100; J [M]: 96; B: 99), as the
sister group of Archonta (J: 51; J [M]: 52; B: 67). We recover Ferae,

Carnivoramorpha and Carnivora in all analyses with identical
topologies and strong support (J: 100; J [M]: 100; B: 100). Protungu-
latum donnae appears as the sister taxon of a clade that includes
artiodactyls, perissodactyls, cetaceans, extinct ungulates, rodents and
lagomorphs. Carnivoramorpha is the sister taxon of this clade. All
of the analyses agree regarding the position of a clade of extinct
ungulates, including Apheliscus, Didolodus, Hyopsodus, Phenacodus
and Protolipterna (J: 71; J [M]: 66; B: 79) placing them as the next
branch within the clade. Although we recover Glires with a strong
support (J: 100; J [M]: 100; B: 100) in all analyses as the next
branch, the internal structure of the clade differs. The topology of
crown Rodentia is identical in the MP analysis with the unmodified
data and the ML analyses (J: 46; B: 81). The MP analysis with the
modified data recovers crown Rodentia as a polytomy. In all analy-
ses, Rhombomylus and Tribosphenomys are successive sister taxa to
Duplicidentata (J: 100; J [M]: 100; B: 100). However, the positions
of these taxa vary among all trees, with Tribosphenomys appearing
to be more closely related to Duplicidentata in the MP unmodified
dataset, Rhombomylus sister to Duplicidentata in the ML analysis,
and a polytomy of both species in relation to Duplicidentata.
Tethytheria is recovered in all analyses (J: 60; J [M]: 63; B: 92), with
Carodnia and Thomashuxleya as successive sister taxa (ML), forming
a polytomy with Tethytheria clade (MP unmodified dataset), or
forming a basal polytomy with Tethytheria and Euungulata. In the
ML analysis we recover Procavia as the sister taxon to Thomashux-
leya (B: 34), whereas in both parsimony analyses Procavia is the sis-
ter taxon of Euungulata. Within FEuungulata, we recover
Perrisodactyla (J: 87; J [M]: 87; B: 95) in all trees, as well as
Cetaceamorpha (J: 17; J [M]: 24; B: 56), Cetaceamorpha + Mesonyx
(J: 4; J [M]: 7). In both MP analyses, Archaeotherium and Mesonyx
appear as successive sister taxa to Cetaceamorpha, but both
branches are reversed in the ML analysis. The ML analysis supports
Perrisodactyla + Artiodactyla (B: 28), with Lama + Bos as sister
taxon to a clade including Sus + Hippopotamus. Both MP analyses
recover Archaeotherium, Hippopotamus, Sus and Lama + Bos as suc-
cessive sister taxa to the Cetaceamorpha + Mesonyx clade.





