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SUMMARY 

This study is composed of two parts: 

Wave Loading on Flexible Cylinders 

The objective of thi s study was to assess the suitabi 1 i ty of the 

relative motion form of Morison's equation 1n describing random wave 

loading on flexible cylinders. The data base for this study was eleven 

17-minute runs taken from an experimental programme on wave loading on 

and the response of a flexible (compliant) cylinder at Christchurch 

Bay, UK (1987). Furthermore, different methods of determining 

Morison's coefficients from the analysis of wave load data have been 

critically assessed. 

Both probabilistic (method of moments) and time-domain methods have 

been used in derivation of Morison's coefficients. It has been shown 

that higher order moments of water particle kinematics needed in the 

"method of moments must be calculated based on the assumption that water 

particle kinematics are Gaussian distributed. The use of observed 

values of these higher order moments leads to unstable results. 

It has been proved that the Least Square Error Method 1 eads to 
- --- .- - . . ..... 

pred i cted forces with sma 11 er variances than those of the observed 

forces. A new method, the Maximum Correlation Method, has been 

introduced which has all the advantages of the Least Square Error 

Method but leads to predicted forces with variances equal to those of 

the observed forces. In this study, there were cases where Cd and Cm 

from the Maximum Correlation Method were larger than those of the Least 

Square Error Method by as much as 50%. 
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Cd and Cm values for design purposes have been suggested. It has been 

shown that Cm values decrease with increasing values of acceleration 

parameter (ratio between the standard deviations of the cylinder and 

water particle accelerations). 

The extreme peaks of the predicted forces.are lower than those of the 

observed forces by as much as 40%. However, applying the predicted 

forces to the cylinder, it was observed that the predicted and observed 

extreme peaks of response are in reasonable agreement. The· overall 

conclusion of this study is that the relative motion form of Morison's 

equation with appropriate Cd and Cm values can adequately describe the 

response of an offshore structure exposed to random wave loading. 

Probabilistic Analysis of Offshore Structures 

The probability distribution of the response of a jacket-type offshore 

structure exposed to random wave loading is of Pierson-Holmes type, 

which is fully defined by its second and fourth statistical moments. 

These moments are functions of different combinations of nodal forces, 

which, in turn (according to Morison's equation) are functions of the 

(Gaussian-distributed) wave-induced water particle kinematics at the 

nodes. The existing model (Burrows, 1983) is based on the analytical 

solutions to these expectations. However, due to excessive computer 

run-time, only a coarse model of the structure can be used in the 

analysis (say 40 nodes). The purpose of this study was to reduce the 

computer run-time by introducing appropriate approximations so that a 

more refined model of the structure can be used in the analysis. 

Two different models have been developed for reducing the computer run

time. The polynomial approximation model reduces the computer run time 
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by about 28 times in comparison with Burrows' model (analytical 

solutions) while the reduction for the force-correlation model is about 

1000 times. As a result, the number of nodes can be increased from 40 

(in Burrows' model) to 85 and 200 nodes, respectively. For the test 

structures used in this study, the maximum level of inaccuracy in the 

kurtosis (fourth moment) was below 3% and 11% for the first and second 

models, respectively. In view of uncertainties in the input data to 

the model (such as environmental conditions, Morison's coefficients, 

etc.) these levels of inaccuracy are not significant. 
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NOTATION 

The following is the list of important parameters in the main text. 
Where notation differs in the Appendices, parameters are defined where 
they first appear. 
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kd 

Contribution of the drag force to the variance of the 
observed force. 
Error coefficient in the Least Square Error Method. 

Contribution of the inertia force to the variance of the 
observed force. 
Matrix of cross-covariances. 
Added mass coefficient. 

Drag coefficient. 

Inertia coefficient. 

Cross-covariance function. 

Water depth. 
Cylinder diameter. 
Spreading function. 
Expected value operator. 
Abbreviations for expectations. 

Vortex-shedding frequency. 
Cylinder's natural frequency. 
Drag component of Morison's force. 
Inertia component of Morison's force. 

Relative force, Equations (9.17c) and (9.17d). 

Gravitational constant. 
One-sided spectral density function of random process x(t). 

Cross-spectrum between x and y. 

Wave height. 
Significant wave height. 

Significant wave height. 

Wave number = 2~/L. 
Keulegan-Carpenter Number, Equation (9.1a). 
pDL/2. 
p~D2l/4 • 

Cd kd' 
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Cylinder length. 
nth spectral moment. 
Probability density function (pdf). 
Cumulative probability distribution (cdf). 
Probability of exceedence. 
Cylinder displacement. 
Cylinder velocity. 
Cylinder acceleration. 
Reynolds Number. 
Auto-correlation function of x{t). 
Cross-correlation function of x(t) and yet). 

Strouha 1 Number. 
Flexibility coefficient due to load at node i. 

Time. 
Wave period or time duration. 
Mean zero up-crossing period. 
Water particle velocity in the x direction. 
Water particle acceleration in the x direction. 
Relative velocity u - r. 
Relative acceleration u - f. 
Current component in the x direction. 
Water particle velocity in the y direction. 
Water particle acceleration in the y direction. 
(0.50 pDCd L)j1/2Uj • 

(pCmL * 1rD2/4)ju j , 

Response. 
Elevation above mean water level. 
Frequency parameter, Equation (7.22). 
Kurtosis of force. 
Horizontal depth attenuation factor, Equation (3.64). 

Vertical depth attenuation factor, Equation (3.65). 

Spectral bandwidth. 
Water surface elevation with respect to mean water level. 
Kinematic viscosity. 
Fluid density. 
Central correlation coefficient between x and y, Equation 
(9.46b). 
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Absolute correlation coefficient between x and y, Equation 
(9.46a). 

Standard deviation. 
Variance. 

Time lag. 
Wave frequency = 2~/T. 
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Root mean square. 
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Chapter 1 

Introduction 



1.1 GENERAL INFORMATION 

Offshore structures are used for many different purposes such as ocean 

energy extraction, navigational aid, microwave transmission, mining the 

ocean floor, and a few even serve as resort hotels. These, however, 

constitute a small percentage of the many thousands of offshore 

structures in operation round the world; the great majority of these 

structures are used in exploration, drilling, production, storage and 

transportation of oil and gas. 

Exploration drilling is done from carefully positioned ships or mobile 

platforms. In contrast, production and storage operations involve more 

permanent structures. Concrete gravity platforms and steel jacket-type 

offshore structures are used for depths up to 250 and 360 metres 

respectively. Steel compliant towers, which are stabilised by guy lines 

anchored to the sea floor, are economical for depths between 300 and 

750 metres. For deeper waters, tension-leg platforms, semi-submersible 

platforms and ship-controlled submerged systems are suitable (Wilson, 

1984). 

Among these different types of permanent structures, jacket or templ~te 

types are most common. There were about 2000 of these units by 1980, 

some of them in deep waters. The tallest one was the ten-legged, 380m 

high Cognac unit located in the Gulf of Mexico in a water depth of 

305m. 59000 tons of steel was used in its manufacture. Although some of 

these structures are in deep waters, the majority are in depths less 

than gOm. 

A jacket structure consists of a prefabricated steel substructure and 

a prefabricated steel deck sitting on top of the substructure. The 
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substructure extends from the sea floor to above the water surface and 

is composed of vertical or slightly inclined tubular legs with K or X 

type tubular cross braces. The deck is supported by pipe piles driven 

through the legs of the substructure to the sea floor. The piles not 

on ly support the deck but also fi x the structure to the sea floor 

against lateral loading (~awson, 1983). 

1.2 ANALYSIS AND DESIGN OF OFFSHORE STRUCTURES 

Offshore structures can fail due to foundation failure, or the failure 

of individual load-carrying members of the substructure. The latter can 

be due to fatigue, resulting from stress reversals associated with the 

passage of each wave, or due to first excursion, i.e. due to the 

encounter of loads larger than the design loads. Therefore, these 

structures must be designed against both fatigue and first excursion 

fail ures. 

The design of an (offshore) structure progresses through the following 

stages: 

1. Select a preliminary design to satisfy the functional 

requirements of the structure based on experience. 

2. Determine the external loads on the structure. 

3. Analyse the structure to calculate the structural response, e.g. 

internal forces, stresses, displacements, etc. 

4. Modify the structure so that it can safely and economically carry 

the external and internal loads. 

5. Return to step 2 and repeat the process until no modification is 

required. 
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As observed, determination of (external) loading and structural 

analysis are key functions in the process of the design of a structure. 

This thesis is a contribution to these two key functions with regard to 

offshore structures as further explained in Sections 1.3 and 1.4. 

1.3 WAVE lOADING ON FLEXIBLE CYLINDERS 

For an offshore structure, wind, wave, current, gravity, earthquake, 

and the forces associated with the transportation and installation of 

the structure at its intended site, are all important sources of 

(external) loading. However, in most cases, the most important load is 

due to wind generated waves. Therefore, the accurate estimation of wave 

loading on cylindrical components of an offshore structure is a major 

design consideration. 

The majority of stet:!l offshore structures are jacket ones in water 

depths of less than 90m. The fundamental frequency of these structures 

is considerably larger than characteristic wave frequencies so that 

these structures can be treated as rigid structures and hence wave 

loading on individual members can be calculated assuming that each 

member is a fixed rigid cylinder. However, elements of these structures 

and their associated systems, such as riser arrays, may have natural 

frequencies in the same range as wave frequencies. For these elements, 

oscillations along the predominant wave direction and transverse to it 

may build up, which in turn may modify the wave loading on them. 

For deeper water applications, the cost of scaling up jacket structures 

are prohibitive and consequently, there is a tendency for these 

structures to be either much more flexible jacket ones or compliant 

structures which are not rigidly attached to the sea bed. In both 
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cases, the movement of the structure is significant and the effect of 

this movement on wave loading on individual cylindrical members must be 

considered. Apart from the motion of complete structures, individual 

members may respond dynamically to wave loading, as was the case for 

fixed, rigid structures. 

In view of the above discussion, it is clear that research on wave 

~ loadin~on both fixed and flexible cylinders is of great value in the 

safe and economical design of offshore structures. 

Extensive small scale experiments have been conducted to study the 

mechanism of wave loading on cylindrical members and the effect of 
( " 

~l~xibilit~ 6~ members on that mechanism. However, there exists a major 

problem in the extrapolation of the results to full-scale conditions, 

where for example Reynolds numbers are much higher than those 

attainable in conventional laboratory experiments. Although some 

attempt has been made to do laboratory experiments with high Reynolds 

numbers (Chaplin, 1988a and 1988b; Bearman et al, 1985), it is fair to 

say that at present, one cannot simul ate all aspects of real sea 

conditions, such as directionality, randomness, high Reynolds numbers, 

etc. in the laboratory. 

Several major fi e 1 d experi ments have been completed to study wave 

loading on rigid cylinders. One can refer to the Ocean Test Structure 

(1976-1977) (Haring et al, 1979) and Christchurch Bay Tower (1976-1982) 

(B i shop et a 1, 1980) experi ments. However, no si mil ar experi ments 

directed to wave loading on flexible cylinders had been undertaken at 

the time of commencement of the present work. 
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However, in 1987, a joint government and industry project was 

established to carry out an experimental programme on the wave loading 

on and dynamic response of a flexible (compliant) vertical cylinder in 

real sea conditions. British Maritime Technology Limited (BMT) took 

responsi bil ity for the manufacture and operation of the fl exi bl e 

cylinder. The Department of Civil Engineering at the University of 

Liverpool was commissioned to carry out analysis of data for this 

project and the work undertaken by the writer forms part of this 

thesis. In particular, the adequacy of the relative motion form of 

Morison's equation (Morison et al, 1950) in describing wave loading on 

flexible cylindrical members has been investigated and suitable values 

of drag and inertia coefficients for design purposes have been 

recommended. Particular attention has been given to different methods 

of obtaining the coefficients. Unsuitable common methods in the 

literature have been identified, and a new method has been introduced. 

1.4 PROBABILISTIC ANALYSIS OF FIXED JACKET-TYPE OFFSHORE STRUCTURES 

EXPOSED TO RANDOM WAVE LOADING 

Comparison of Probabilistic and Deterministic Methods 

There are two distinct approaches to the analysis and design of 

offshore structures. One is deterministic, the other probabilistic. 

In the deterministic design, the long-term distribution of wave heights 

is needed for both fatigue and first excursion failure analysis. The 

distribution is obtained from the convolution of the short-term 

distributions of wave heights and the long-term distribution of sea 

states or wave conditions (Battjes, 1970). The structure is exposed to 

regular waves with specified heights and periods and the response is 

calculated. For fatigue analysis, the response (stress range) is needed 
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for the entire range of wave heights, while for the first excursion 

failure analysis, the response is obtained for extreme conditions 

characterised by the '50 year' or '100 year' design wave. Several 

suitable periods are considered for each wave height. 

In probabilistic methods, the long-term distribution of the response 

peaks is required. The distribution is obtained from the convolution of 

the short-term distributions of the response peaks with the long-term 

distribution of sea states, in a manner similar to that of the wave 

heights. Each short-term sea state is characterised by an appropriate 

water surface elevation spectrum, covering a wide range of frequencies. 

For fatigue analysis, the entire range of stress ranges (which are 

closely associated with stress peaks) is divided into a number of 

intervals. and the damage due to each interval is calculated. The total 

damage is t~e sum of the damages due to all the intervals. For first 

excursion failure analysis, the '50 year' or '100 year' response peak 

;s generally adopted as the basis of design. 

The deterministic method fails to take account of the random nature of 

sea waves and hence has serious shortcomings when applied in design. 

For example, it is known that a particular regular wave does not lead 

to the maximum for all responses, on all parts of the structure. In 

other words, one particular response variabl e may be larger under 

regular wave A, while another response variable may be larger under 

regular wave B. Consequently, in the deterministic method, the risks 

are associated with the environmental conditions, i.e. one can 

calculate the probability that the '50 year' design wave will be 

exceeded at 1 east once duri ng the service 1 i fe of the structure; 

however, one cannot convert this into the risk of failure for 
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individual members. In fact, every member will have a different unknown 

probability of failure. 

In contrast, probabilistic methods do take account of the random nature 

of the sea. Thus, they are more appropriate for the design of offshore 

structures. In these met'1ods, ri sk is associ ated with the response 

itself, and hence members can be designed so that they will all have 

equal risks of failure during the service life of the structure, 

(Inglis et al, 1985). 

Probability Distribution of Response 

The short-term distribution of response peaks is required in 

probabilistic methods. This obviously depends on the short-term 

distribution of Morison-type nodal loads. Assuming that water particle 

kinematics are Gaussian distributed, the probability distribution of 

the nonlinear Morison loading is of Pierson-Holmes type (Pierson and 

Holmes, 1965) and is fully expressed by its first four statistical 

moments. In the absence of current, the first and third moments are 

zero, and hence the distribution is defined by its second and fourth 

order statistical moments. 

Due to the linear nature of the relationship between response and 

loading (for fixed offshore structures which do not respond dynamically 

to the wave loading), it is expected that the probability distribution 

of the response would be similar to that of the wave loading. Tickell 

(1977) confirmed the above expectation by analysing experimental and 

real ocean data. Therefore, in the absence of current, the distribution 

of response is fully defined by its second and fourth order statistical 

moments. 
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Determination of the Probability Distribution of Response in Time, 

Spectral or Probability Domain 

Probabilistic analysis of structures can be attempted in the spectral, 

time or probability domains. The spectral analysis leads to the short

term frequency spectrum of response. Then, it is assumed that the 

response is Gaussian-distributed, and hence is fully defined by its 

second moment, which is equal to the area under the spectrum. But, this 

assumpt i on is not just ifi ed due to the non 1 i near nature of Mori son 

loading. As stated before, the real distribution is of Pierson-Holmes 

type, which has higher probability of exceedence in its tails (thicker 

tails) compared to an equivalent (same variance) Gaussian distribution. 

Therefore, the Gaussian assumption leads to the underestimation of 

extreme peaks of response when the drag component of Morison loading is 

significant. On the positive side, the method can be applied to dynamic 

structures. 

In the time domain, the Morison-type nodal loads are calculated from 

simulated water particle kinematics (Borgman, 1969b). The analysis of 

the structure 1 eads to a time hi story of response, whose fi rst 4 

moments can be determi ned di rectly. However, in order to get stabl e 

results, long records are needed (typically in excess of 10,000 time 

steps); therefore, the computer run-time is prohibitive (Burrows, 

1982). On the pos it i ve side, the method takes account of the non

linearity of Morison loading and is applicable to dynamic structures 

and the presence of currents leads to no difficulty. 

Finally, the method can be applied in the probability domain. In this 

method, the 2nd and 4th order statistical moments of response are 

calculated in terms of the variances and cross-covariances of water 
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particle kinematics at different nodes, which are then used to 

establish the probability distribution of the response. Following this 

approach, Burrows (1977, 1979, 1983) produced a novel probabilistic 

model. 

The model is only applicable to rigid structures, i.e. to structures 

whose fundamental natural frequencies are well above the frequency 

range of the waves, and hence inertia forces due to dynamic effects are 

negligible. This, however, is not a serious drawback since, as stated 

before, the great majority of these structures are in water depths less 

than gOm, and do not respond dynamically to wave loading. Nevertheless, 

the use of the model is limited due to excessive computer run-time. In 

present application, the structure must be idealised by a relatively 

small number of nodes (say 40), which is not enough for adequately 

representing the continuous loading on the structure. It has been the 

aim of this study to find ways of reducing the computer run-time 

substantially so that the model can be applied in the design of real 

structures with many nodes. 

Reduction in computer run-time has herein been accomplished in two 

different ways. The polynomial approximation method reduces the 

computer run-time by about 28 times; hence the number of nodes can be 

increased from 40 to about 85. The inaccuracies are less than 3%. The 

force correlation method reduces the computer run-time by more than 

1000 times so that the number of nodes can be increased to about 200 

nodes. The inaccuracies are less than 11%. It should be emphasised that 

the above two models, in their present form, do not account for the 

presence of current or the intermittency of wave loading in the splash 

zone, as is the case with Burrows' model. 
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1.5 OUTLINE OF THE TEXT 

The technical aspects of the compliant cylinder (its structure and 

instrumentation) together with the basic properties of wave records 

used in the Christchurch Bay Tower Project are discussed in Chapter 2. 

Chapter 3 describes the short-term properties of sea waves while 

Chapter 4 is concerned with the evaluation of the short-term properties 

of wave records used in this study. Derivation of long-term properties 

of sea waves from their short-term properties are discussed in Chapter 

5. 

The data supplied by BMT included the cylinder displacements; however, 

in the relative motion form of Morison's equation, it is the cylinder 

kinematics which are required. Furthermore, due to cylinder movement, 

the perforated balls, used in measuring water particle kinematics were 

mounted on the small rigid column of the tower, which is some 12m 

distance from the complaint cylinder. Therefore, it was necessary to 

predict water particle kinematics at the cylinder by shifting 

(translating) them from their point of measurement to the cylinder 

axis. These two topics are discussed in Chapter 6. 

Chapter 7 is concerned with fluid loading on submerged cylinders. In 

the first part, ideal fluid loading on cylinders is discussed while the 

second part is devoted to real fluid loading on both rigid and flexible 

cylinders. The spectral and probabilistic properties of in-line wave 

loading is described in Chapter 8. 

Chapter 9 is devoted to the derivation of Morison's coefficients from 

the Christchurch Bay data. The performance of the relative motion form 
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of Morison's equation in predicting the in-line forces is investigated 

by comparing the predicted and observed forces in both probability and 

time domains. Furthermore, different methods of analysis of the data 

are crit i ca 11y assessed; shortcomi ngs of some of these methods are 

discussed and alternative new methods are recommended. 

Probabilistic analysis of fixed jacket-type offshore structures is the 

subject of study in Chapter 10. The two methods for reducing the 

computer run-time are described. Furthermore, by applying the models to 

a few sample structures, it is shown that they are reliable. 

The main conclusions of this thesis are discussed in Chapter 11. 

Appendix A is devoted to the study of an ambiguity in the cylinder 

displacement. The source of the problem and its effect on the cylinder 

displacement is fully described. The effect of this error on the 

derived Morison's coefficients is discussed in Chapter 9 and it is 

shown that the effect is negligible. Methods of analysis of random data 

is presented in Appendix B, which is taken from Burrows (1982). 

Finally, Appendix C is concerned with sampling variability due to the 

finite-length of the records used in Christchurch Bay data analysis. 
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Chapter 2 

Technical Aspects of and Data Base 
for Christchurch Bay Tower 
Compliant Cylinder Project 



INTRODUCTION 

This chapter is devoted to the technical aspects of the compliant 

cylinder project together with a brief description of the data base 

collected for the experimental study of random wave loading on the 

compliant cylinder. Section 2.1 is devoted to general information about 

the tower and environmental conditions at its site. Section 2.2 is 

concerned with the structure of the cylinder. Instruments used for data 

gathering and the resulting data base are briefly discussed in Sections 

2.3 and 2.4, respectively. 

2.1 GENERAL INFORMATION 

The compl i ant cyl i nder was mounted on BMT's test tower, a small 

offshore structure built purposely for the study of wave induced forces 

on cylinders in real sea conditions at a suitably large scale. As shown 

in Figure 2.1, the tower is composed of a large central column of 2.80m 

diameter and a small rigid column of O.48m diameter on which velocity 

measurement probes are mounted. Figure 2.2 shows the position of the 

compliant (flexible) cylinder with respect to the tower. The tower is 

deployed in Christchurch Bay, Hampshire, off the South Coast of 

England, (Figure 2.3) in a water depth of approximately 9m. 

The highest waves at Christchurch Bay occur when winds blow from the 

southwest, due to the long fetch along the Engl i sh Channel in that 

direction. Several storms occur every winter, during which the wave 

heights can reach as high as 15m in deep waters near Christchurch Bay; 

however, the shoaling water of Christchurch Bay Ledge attenuates waves 

at the tower, so that the maximum wave height is approximately 7m. In 

storm conditions, significant wave heights are often in the range of 

2.S-3m and zero-crossing periods are in the range of 5 to 7 seconds. 
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Tidal currents can be up to O.60m/s and are almost perpendicular to 

predominant wave directions (Tickell et al, 1989; Bishop, 1982). 

2.2 THE STRUCTURE OF THE COMPLIANT CYLINDER 

The smooth cylinder is composed of two concentric cylinders. The inner 

fibreglass tube is continuous over the entire length of the cylinder 

(12.197m), but the outside cylinder with a diameter of O.480m is 

divided into 6 sections which can be locked together by means of five 

hydraulic joints. The joints are activated by telemetered signals from 

a shore station. A diagram of the cylinder is shown in Figure 2.4. 

Each section of the outer cylinder is mounted to the inner core tube by 

two thin diaphragms at its ends. When the outer sections are not 

connected to each other, they contri bute mass but 1 i tt 1 e bend i ng 

stiffness; this leads to the lowest natural frequency (F6 z 0.46Hz). When 

two adjacent sections are locked together, there are three diaphragms 

between the core tube and the combined section and consequently the 

deflections of the core tube within the section are small. Therefore, 

the bending stiffness of the overall cylinder is increased leading to 

a higher natural frequency. Progressive locking of more sections lead 

to higher natural frequencies. When all the sections are locked 

together, the maximum natural frequency (F1=1.69Hz) is obtained (Bishop 

et al, 1982). 

At each end of the cylinder there is a triangular array of links which 

incorporate three force transducers. Thi s system provides for the 

measurement of total shear force and also gives effective pin jOinting 

at the ends of the cylinder, that is, the system provides horizontal 
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constraint but vertical and rotational freedom (Bishop, 1988; Tickell 

and Burrows, 1988). 

2.3 INSTRUMENTATION 

There are three measurement stations along the length of the cylinder, 

known as Levels 2, 3 and 4, as shown in Figure 2.4. At each station, 

there is a force sleeve (ri ng) wi th three force transducers. The 

measured force consists of the hydrodynamic force and an inertia force 

due to cylinder acceleration. There are accelerometers at each 

measurement stat ion. The measured acce 1 erat ion is composed of two 

components: one due to horizontal cylinder acceleration and the other 

due to gravity (Bishop, 1988). The structure of the force sleeve, the 

derivation of hydrodynamic forces from measured forces, and the 

derivation of cylinder accelerations and displacements from measured 

accelerations (as done by BMT) are fully discussed in Appendix A. 

Water particle kinematics have been measured by perforated ball 

instruments, at the same depth as the force rings. However, due to the 

cylinder movement, the perforated balls could not be mounted on the 

cylinder itself. Thus, they were retained on the small rigid column of 

the tower, wh i ch is some 12m distance from the camp 1 i ant cyl i nder 

(Figure 2.2). 

The perforated ball instruments were of 100mm diameter. The instrument 

measures the force exerted on the ball by water particle kinematics in 

two orthogonal directions, via strain gauges at the root of the 

cantilever on which the ball is mounted (Bishop et al, 1984; Shipway, 

1984). The force on the ball is used to derive both the particle 
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velocity and acceleration through laboratory calibrated drag and 

inertia coefficients. Bishop (1979) has fully described the method. 

Water surface elevation data were obtained from a wave buoy some lOOm 

distance from the tower. There were also two capacitance wave gauges at 

a position near the test cylinder which unfortunately malfunctioned 

during the measurement period (Bishop, 1988). 

2.4 DATA BASE 

Vari ous transducers were monitored duri ng the experi ments conducted 

during the winter of 1987 and the data have been recorded on magnetic 

tape. BMT preprocessed the instrument readings and supplied the data in 

the form of 41 data channels, as listed ,in Table 2.1. Each data record 

consists of 13816 data points at a sampling interval of 0.075472 

seconds. All the time series have been subject to BMT quality checking 

routines. 

BMT selected 11 data sets or runs for analysis. The basic properties of 

these runs are given in Table 2.2. The table includes the estimated 

damped natural frequencies which were obtained from displacement 

spectra. For the purposes of the present study, Runs 01, 08, 13, 15 and 

23 were selected for more detailed analysis and discussion. These cover 

the cylinder in its most rigid condition (Run 01), an intermediate 

frequency setting (Run 08) and three runs for the cylinder in its most 

flexible condition (Runs 13, 15 and 23). 

Throughout this report, the data records have been referred by their 

filenames, e.g. storm.13.chan.16. This refers to the data in channel 16 

(hydrodynamic force at level 3, X direction) for Run number 13. The 
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word 'storm' only refers to the number of data set not to separate 

storm events. In fact, all the data were taken during two separate 

winter storms which occurred on the 6th February and 27th March 1987. 
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TABLE 2.1. 
DATA CHANNELS AND UNITS (TICKELL AND BURROWS, 1989) 

f. = 13.25Hz 
Basic Data 
Digitising Frequency 
Time Step 
Sample Size (Max) 
Sample Duration 

~t = 0.075472 secs 
N = 13816 

Force Sleeve Diameter 
Force Sleeve Length 
Seawater Density 
Structural Steel Density 

T. = 1042.7 secs 
D = 480mm 
t. = 535mm 
p - 1025 kg/m3 

P. .. 7700 kg/m3 

Channel Numbers 
01 Accelerometer Buoy (71, m) 

02 X Top Shear (Tx' KN) 
03 Y Top Shear (Ty, KN) 

04 X Force Level 2 (F x2' KN) 
05 Y Force Level 2 (F y2, KN) 

06 X Accelerometer Measurements Level 2 ( rx2 ' 
07 Y Accelerometer Measurements Level 2 ( ry2 , 

08 X Displacement Level 2 (rx2 ' m) 
09 Y Displacement Level 2 (ry2 , m) 

la X Particle Velocity Level 2 (u2, m/s) 
11 Y Particle Velocity Level 2 (V2 , m/s) 
12 Z Particle Velocity Level 2 (w2, m/s) 

13 X Particle Acceleration Level 2 (u2 , m/s2) 

14 Y Particle Acceleration Level 2 ('12 , m/s2) 

15 Z Particle Acceleration Level 2 (w2, m/s2) 

16 X Force Level 3 (F x3' KN) 
17 Y Force Level 3 (F y3, KN) 

19 

g) 

g) 



TABLE 2.1. 
DATA CHANNELS AND UNITS (CONTINUED) 

18 X Accelerometer Measurements Level 3 (Fx3 ' g) 

19 Y Accelerometer Measurements Level 3 (Fv3 ' g) 

20 X Displacement Level 3 (rx3 ' m) 

21 Y Displacement Level 3 (rv3 ' m) 

22 X Particle Velocity Level 3 (u3 , m/s) 
23 Y Particle Velocity Level 3 (v3 , m/s) 
24 Z Particle Velocity Level 3 (w3 , m/s) 

25 X Particle Acceleration Level 3 (u3 , m/s2) 

26 Y Particle Acceleration Level 3 (v3 , m/s2) 

27 Z Particle Acceleration Level 3 (w3 , m/s2) 

28 X Force Level 4 (Fx4 ' KN) 

29 Y Force Level 4 (Fv4 ' KN) 

30 X Accelerometer Measurements Level 4 (Fx4 ' g) 
31 Y Accelerometer Measurements Level 4 (Fv4 ' g) 

32 X Displacement Level 4 (rx4 ' m) 

33 Y Displacement Level 4 (rv4 ' m) 

34 X Particle Velocity Level 4 (u4 , m/s) 
35 Y Particle Velocity Level 4 (v4 , m/s) 

36 Z Particle Velocity Level 4 (w4 , m/s) 

37 X Particle Acceleration Level 4 (u4 , m/5 2
) 

38 Y Particle Acceleration Level 4 (v4 , m/s2) 

39 Z Particle Acceleration Level 4 (w4 , m/5 2
) 

40 X Bottom Shear (Bx ' KN) 

41 Y Bottom Shear (Bv' KN) 
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~ 
..... 

Run 
Number 

01* 

02 

06 

07 

08* 

09 

------~-

Day & Time 

37 10.33 

37 10.56 

37 12.27 

37 12.50 

37 13.11 

37 13.34 

Surface Elevation Mean Velocity (m/s) Frequency Estimated Damped 
Water Depth Standard Deviation level Setting Natural Frequency 

(m) (m) x y (Hz) 

9.21 0.343 2 0.22 0.41 F1 1.69 
3 0.14 0.44 
4 0.12 0.44 

9.24 0.351 2 0.22 0.44 F2 1.27 
3 0.18 0.48 
4 0.14 0.48 

9.28 0.402 2 0.26 0.42 F6 0.46 
3 0.17 0.47 
4 0.15 0.48 

9.28 0.428 2 0.26 0.41 F5 0.49 
3 0.17 0.47 
4 0.15 0.48 

9.27 0.395 2 0.22 0.41 F4 0.73 
3 0.16 0.46 
4 0.14 0.47 

9.27 0.380 2 0.19 0.41 F3 0.93 
3 0.13 0.46 
4 0.10 0.49 

-------- ---------_ .. _-- -

TABLE 2.2. 
BASIC PROPERTIES OF DATA SAMPLES (TICKELL AND BURROWS, 1989) 

•.. /continued 



f\,.) 
f\,.) 

Run Surface Elevation Mean Velocity (m/s) Frequency 
Number Day & Time Water Depth Standard Deviation Level Setting 

(m) (m) x y 

13* 86 9.26 10.25 0.863 2 -0.01 0.01 F6 
3 -0.05 -0.02 
4 -0.05 -0.04 

14 86 9.55 10.20 0.930 2 -0.09 -0.02 F6 
3 -0.14 -0.07 
4 -0.14 -0.08 

15* 86 10.30 10.15 0.998 2 -0.13 -0.12 F6 
3 -0.19 -0.23 
4 -0.21 -0.22 

16 86 11.30 9.95 0.929 2 -0.10 -0.25 F6 
3 -0.28 -0.35 
4 -0.31 -0.33 

23* 86 17.00 9.60 0.949 2 0.45 0.46 F6 
3 0.14 0.55 
4 0.16 0.58 

TABLE 2.2. 
BASIC PROPERTIES OF DATA SAMPLES (TICKELL AND BURROWS, 1989) 

Notes i) ~ater depths, surface eLevation, standard deviations and mean veLocities given by BMT. 
ii) Mean veLocities refer to mean vaLues of time series - vaLues given for leveL 2 may be subject to intermittent submergence. 

iii) Estimated damped naturaL frequencies are derived from the dispLacement spectra. 
iv) *Run numbers seLected for detaiLed studies 

Estimated Damped 
Natural Frequency 

(Hz) 

0.46 

0.46 

0.47 

0.48 

0.49 
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NOTE :-
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FIGURE 2.2. CHRISTCHURCH BAY TOWER. PLAN VIEW 

(dimensions in mm) 
(Tickell and Burrows, 1989) 
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Chapter 3 

Short-term Properties of Sea Waves 



INTRODUCTION 

This chapter is devoted to the study of short-term properties of sea 

waves based on Linear Random Wave Theory (LRWT). The study of LRWT is 

required for both subjects of this thesis as will be explained below: 

a) In the probabilistic analysis of offshore structures to be 

discussed in Chapter 10, the frequency spectra of water particle 

kinematics at different nodes and the cross-spectra between pairs 

of water particle kinematics are established according to Linear 

Random Wave Theory. 

Furthermore, The basic idea in the probabilistic analysis of 

offshore structures is to determine the probabilistic properties 

of the force and response from the' known probabilistic properties 

of water particle kinematics. It is, therefore, necessary as a 

prerequisite to investigate the probabilistic properties of water 

surface elevation and water particle kinematics based on LRWT. 

The probabilistic properties of force and response will then be 

determined by establishing how the probabilistic properties of 

water particle kinematics will be transformed by the nonlinear 

drag component of Mori son's equation (the latter part is the 

subject of study in Chapter 8). 

b) In the analysis of Christchurch Bay data, measured water particle 

kinematics have been used in deriving Morison's coefficients. 

However, one must appreciate that in practice, the designer will 

almost certainly use LRWT to predict water particle kinematics 

from a given water surface elevation spectrum. The predicted 

kinematics are then used in conjunction with Morison's equation 
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to predict random hydrodynamic forces. It is, therefore, 

necessary to consider the performance of LRWT in more detail and 

in particular, its capability in predicting the spectral 

properties of water particle kinematics must be assessed. LRWT 

itself will be discussed in this chapter and its performance with 

regard to Christchurch Bay data will be examined in the following 

chapter. 

Section 3.1 is devoted to the description of water surface elevation 

accordi ng to LRWT. The probabil i st i c properties of water surface 

elevation are the subject of study in Section 3.2. Section 3.3 is 

concerned with the derivation of spectra and cross-spectra of water 

particle kinematics from water surface elevation spectrum. Section 3.4 

discusses frequency spectra commonly used in specifying sea states (or 

wave conditions). These spectra are used as inputs to the probabilistic 

model. 

3.1 DESCRIPTION OF WATER SURFACE ELEVATION BASED ON LINEAR RANDOM 

WAVE THEORY 

A random process is stationary if its probability structure across the 

ensemble of its realisations is independent of the time origin. In 

other words, the statistical behaviour of a stationary random process 

does not change with time. If the mean, the standard deviation and the 

variance spectrum are the only statistical properties of the process 

which are invariant with time, then it is said to be stationary in the 

wide sense. 

A stationary random process is ergodic if the temporal averages taken 

along any si ngl e real i sat i on of the process are the same as the 
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ensemble averages. In particular, the mean, the standard deviation and 

the variance spectrum are the same. Physically, ergodicity implies that 

one realisation is typical of all the possible realisations of the 

process so that a measured realisation (Figure 3.1) contains all the 

statistical information of that process. 

If a random process depends on both space and time, ergodicity implies 

that the process is homogenous, too. A homogenous process is similar to 

a stationary process except that its statistical behaviour is 

independent of the space origin, i.e. the statistical behaviour of a 

homogenous random process does not vary with space. 

Over long periods of time and large distances, the sea surface is not 

stationary and homogenous, that is, storms vary in severity from time 

to time and from place to place. However, over a short period of time 

and small distances, the sea surface can be assumed stationary and 

homogenous. The time scale for stat i onarity is about a few hours. 

Typically, water surface records are obtained every three hours for a 

period of la to 20 minutes. The short-term spectral and probabilistic 

properties of ocean waves are obtained from these wave records. 

Short-term properties of sea waves are generally studied on the basis 

of linear Random Wave Theory (lRWT). With the exception of some 

nonlinear behaviour, lRWT has successfully explained most properties of 

real sea waves and hence its use can be justified for most engineering 

purposes. According to this theory, short-crested sea waves can be 

modelled as the sum of a large number of progressive 'linear' waves 

(Figure 3.2) of different amplitudes travelling in different directions 

with random phases (Borgman, 1969a) and can be expressed as 
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(3.1) 

In the above equation, n is water surface elevation, measured from mean 

wa~er level. x and y are the coordinates of a point in the horizontal 

plane, and t is the time. amn is the amplitude of the wave with 

frequency wm and direction 8n (measured anti-clockwise from the x axis). 

Qmn is a random phase uniformly distributed between 0 and 21[. In the 

absence of current, the wave number km is related to wave frequency by 

(3.2) 

where d and g are the water depth and the gravitational constant, 

respectively. It can be shown that ~(x,y,t) is a stationary, homogenous 

and ergodic random process (Price et al, 1974). 

The mean and the variance of ~ are 

In the limit, the variance is 

2 GO" 
(J'I = I I G'I'I (w, 8) dwd8 

o "" 

(3.3) 
(3.4) 

(3.5) 

where G'I'I(w,8) is the one-sided directional spectral density function, 

defined as 

G'I'I(w,8) 1 im ( a
mn2

) 

2AwA8 

!J.w and !J.~O (3.6) 

in which amn
2/2 is the water surface variance due to wave components in 

the small rectangular element (!J.w*A8) centred at point (w,8). 
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Equation (3.6) can be rewritten as 

(3.7) 

In words, the directional wave spectrum represents the manner in which 

the variance of the water surface elevation is distributed with respect 

to frequency and direction. 

The profiles of the sea waves represented by Equation (3.1), change 

from place to place and from time to time. However, at a fixed point 

such as (xo,Yo), the wave record is a function of time only, and can be 

broken down into its sinusoidal components, i.e. 

(3.8) 

From Equation (3.1), the wave profile at point (xo,Yo) is 

Comparison of Equations (3.8) and (3.9) reveals that 

Based on the above equation, the wave component with frequency Wm in 

Equation (3.8) is not a physical reality but the result of mathematical 

manipulation of all the waves with frequency wm travelling in all 

different directions. Nevertheless, it can be imagined as an equivalent 

long-crested wave with frequency Wm travelling in the mean direction of 

propagation. 

Equating the variance of both sides of Equation (3.10) results in 
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(3.lla) 

or 

(3.llb) 

According to Equation (3.11a), am2/2 is the contribution of all the 

waves with frequency Wm, regardless of their direction, to the variance 

of water surface elevation. 

substituting Equation (3.11a) into Equation (3.4) gives 

(3.12) 

In the limit, when m approaches infinity, a~2 will be 

(3.13) 

where G~~(w) is the one-sided uni-directional frequency spectrum, or 

simply frequency spectrum, of the water surface elevation. Frequency 

spectra can be expressed in terms of circular frequency, f, rather than 

angular frequency W = 2~f. The relationship between the two is 

(3.14) 

The amplitude of the uni-directional wave component am' is related to 

water surface frequency spectrum according to the following equation 

(3.15) 
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Comparing Equations (3.13) and (3.5) leads to the relationship between 

the uni-directional and directional wave spectra 

(3.16) 

It is convenient to express the directional spectrum in terms of the 

uni -d i rect i ona 1 wave spectrum and a spreadi ng funct i on, denoted by 

D{w,8) 

(3.17) 

Integrating both sides of the above equation with respect to 8 and 

replacing fGqq (w,9)d9 by G~(w), leads to 

[D{w,9)d9 = 1 
-" (3.18) 

3.2 SHORT-TERM PROBABIlISTIC PROPERTIES OF SEA WAVES 

Definition of Wave Height and Wave Period 

The most commonly used definitions of wave heights and periods are 

based on the zero up-crossing method. The wave height H is taken to be 

the elevation range between the highest crest and the lowest trough 

within successive up-crossings of the mean water level. The zero 

crossing period Tz is, then, taken to be the time between successive up

crossings of the mean water level. 

In addition to zero crossing period, the crest, the peak and the mean 

spectral periods are also mentioned in the literature (Price and 

Bishop, 1974; Tickell and Burrows, 1989). The crest period Te is defined 

as the time interval between two successive crests. The peak and the 

mean spectral periods are related to the frequency spectrum. The peak 

period Tp is associated with the peak of the spectrum and is obtained 

34 



by reciprocating the peak frequency. The mean spectral period 11 is the 

reci proca 1 of the mean frequency w. The peak and the mean spectral 

periods are not physical quantities and cannot be related to individual 

waves. 

Spectral Bandwidth 

A stationary random process can be classified as a broad-band or a 

narrow-band process depending on the nature of its frequency spectrum 

(Figure 3.4). In a narrow-band process, the width over which the 

ordinates are significant is substantially less than the central 

frequency withi n the band. The frequency spectrum of a broad-band 

process has significant values over a wide range of frequencies. 

The spectral bandwidth f is a measure of the width of the spectrum and 

is defined as 

(3.19) 

where mn is the nth moment of the frequency spectrum 

(3.20) 

It can be shown (Sarpkaya and Isaacson, 1981) that E is limited between 

zero and one. For a narrow-band process, f approaches zero; for a 

broad-band process it approaches one. 

Water Surface Elevation Distribution 

According to the central limit theorem, water surface elevation is a 

mean zero Gaussian-distributed function as shown in Figure 3.3 

(Pierson, 1955). Hence, its probability density function is 
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(3.21) 

and its cumulative distribution function is 

(3.22) 

Statistical and Probabilistic Properties of Wave Crests 

Assuming that water surface elevation is Gaussian distributed, the 

probability density function of its crest elevations (nmax) is given by 

Cartwright and Longuet-Higgins (1956). Defining the normalised crest 

elevation A as nmax/G'I' the distribution is 

£ x2 x2 

PA(X) = - exp(- -) + (1 - £2}YI X exp(- -) * 
~ 2£2 2 

(1 - £2)YI 

(0.50 + erf [ xl) 
£ (3.23) 

where 

2 
erf(x) = r exp( -e)dt 

fi Jo (3.24) 

The mean and the root mean square of the peak elevations are 

respectively given by 

- J'::'j"';;"/2 (1 - L 
2 ) 1/2 G'I TJmax = ,rTft'- ~ (3.25) 

and 

(3.26) 

The proportion of negative crests (crests below the mean water level) 

out of all crests is denoted by r and is related to £ by the equation 
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(3.27) 

Therefore, one can estimate r by counting the numbers of positive and 

negative crests of a given record and hence calculate £ from Equation 

(3.27) rewritten as 

(3.28) 

Alternatively, one can estimate the mean crest period Te and the mean 

zero crossing period Tz of a given record and calculate £ from 

(3.29) 

For a broad-band spectrum (£=1), crest elevations are Gaussian 

distributed; therefore there are as many crests below the mean water 

level as there are above it. The pdf ;s 

PA(X) • ~ exp (- :' ) 
(3.30) 

For a narrow-band spectrum (£=0), crest elevations are Rayleigh 

distributed (Figure 3.5), so that there will be no crests below the 

mean water level. The probability and cumulative density functions are, 

respectively 

(3.31) 

and 

(3.32) 

The pdf of crest elevations for different values of £ are shown in 

Figure 3.6. 
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Statistical and Probabilistic Properties of Wave Heights 

Defining the wave height as twice the elevation crest (H = 2rymax), then 

its pdf, cdf and probability of exceedence for the case of a narrow

band process are, respectively 

_h exp (- h' ) PH(h) = 
4a 2 8a,/ 

" 
(3.33) 

PH(h} 1 - exp ( ~) 
8a 2 

" 
(3.34) 

QH(h) = I - PH (h) = exp ( ~ ~ 
8a 2 

" 
(3.35) 

Strictly speaking, the above distribution is only applicable to a 

narrow-band process; however, it has been observed that for processes 

with fSO.80, the Rayleigh distribution is a relatively good 

approximation (Ochi, 1973). 

The various statistics of wave heights can be obtained from the above 

distribution. The following expresses the relationship between the 

probability of exceedence and the corresponding wave height, obtained 

from Equation (3.35) 

h = 2)211. ~( 1 _, j Ln \Wv (3.36) 

Therefore, 10% of the wave heights are ~ 4.29a", S% ~ 4.90a", 1% ~ 

6.07a", 0.1% ~ 7.43a", and 0.01% ~ 8.S8a". 
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The mean, the root-mean-square, and the standard deviation of the wave 

heights are, respectively 

(3.37) 

(3.38) 

(3.39) 

H1~ is defined as the average height of the highest (l/n)th of the wave 

heights, and is equal to 

H'/n = {j8Ln(n) + n!2i[l - erf(jLn(n»]} 

From the above relationship, one can obtain 

H '/2 = 1. 42 R = 3. 55 a'l 

H'/3 = 1.60R = 4.00 a'l 

H'l1o = 2.03H = 5.09 a'l 

H'l1oo = 2.66R = 6.68 all 

* a 'I (3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

H,~ or alternatively H. is called the significant wave height and is one 

of the parameters used to describe a sea state. That is why the wave 

height distribution is commonly expressed in terms of H. rather than u
II 

PH(h) = ~ exp (- 2h2) 
H/ H/ (3.45) 

and 

(3.46) 
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Consider many wave records, all with the same significant wave height 

and the same number of waves N. The largest wave height of each record, 

HN , is different from record to record and hence is a random variable. 

Its distribution in comparison to the wave height distribution is shown 

in Figure 3.7 and is called the extreme value distribution. 

The expected value of the largest wave height in N waves is (Price and 

Bishop, 1974) 

~Ln(N) + 
0.2886 J 

E [Hmax.N ] = Hrms 

/LN(N) (3.47) 

For N > 100, it becomes 

E[Hmax.N ] = 0.707H. jLn(N) (3.48) 

For N = 1000 and 10,000, the results are 

E[Hmax.1000] = 1.86H. (3.49) 

and 

E[Hmax.10.000] .. 2.15H. (3.50) 

The cdf of Hmax.N is (Houmb, 1981) 

(3.51) 

Choosing N = 10,000 and Hmax.N/H. = 3, results in 

PHmax.10.000{3H.) = 0.999848 (3.52) 
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which shows that the highest wave height in a record of approximately 

one day length will rarely exceed three times of the significant wave 

height. 

The most probable maximum wave height to be encountered in N waves, 

corresponds to the mode of the extreme wave height distribution. It is 

-only slightly smaller than the expected maximum wave height and for 

large values of N the two coincide (longuet-Higgins, 1952). 

Strictly speaking, the Rayleigh distribution of wave heights is only 

va 1 id for narrow-band spectra. For the case of broad-band spectra, 

Longuet-Higgins (1980) has modified the distribution of wave heights by 

replacing Hrm• with 0.925)8 a~ rather than )8a~. This leads to 

h 

3.41a/ (3.53) 

or in terms of H. 

4.69h (2.34h
2

) 
PH{h) = exp -

H 2 H 2 • • (3.54) 

This distribution is referred to as the modified Rayleigh distribution. 

The cumulative distribution function and the probability of exceedence 

are, respectively 

[ 

2.34h2] 
PH ( h ) = 1 - ex p - H/ 

(3.55) 

and 
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(3.56) 

Therefore, 10% of the wave heights are ~ 3.970"17' 5% ~ 4.530"17' 1% ~ 

5.610"17' 0.1% ~ 6.870"17' and 0.01% ~ 7.940"17' 

For the modified Rayleigh distribution, H1~ is 

H1/n = 0.925 {J8Ln(n) + n./21[[l - erf(jLn(n»]} * 0" 
" (3.57) 

The modified Rayleigh distribution is more accurate than the standard 

Rayleigh distribution in predicting the probabilities associated with 

higher waves (Tickell et al, 1987). 

Statistical and Probabilistic Properties of Wave Periods 

The distribution of individual wave periods is narrower than that of 

the wave heights, that is, the spread lies mainly in the range of 0.50 

to 2.0 times the mean wave period. However, the distribution becomes 

broader when wind waves and swell coexist. When this occurs, the period 

distribution is bi-modal, with two peaks corresponding to the mean 

periods of the wind waves and swell. This is one of the reasons that 

the wave distribution does not follow a universal distribution law. 

Therefore, relatively little effort has been devoted to the study of 

wave period distribution in comparison to the extensive research done 

on the distribution of wave heights. Discussion of the existing models 

for the wave period distribution and the bivariate distributions of the 

wave height and period is beyond the scope of this work. 

The mean zero-crossing, crest and spectral periods are related to the 

frequency spectrum by the following equations, respectively 
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Tz ,.. 21f/mO/m2 

T c ,.. 21fJm2/m4 

T m ,.. 21f(mO/ml} 

where mn is defined in Equation (3.20). 

3.3 DESCRIPTION OF WATER PARTICLE KINEMATICS 

Velocity Components (u, v, w) 

(3.58) 

(3.59) 

(3.60) 

According to Linear Random Wave Theory, the wave profile of Equation 

(3.1) is associated with the following horizontal and vertical wave 

particle velocities at point (x,y,z), with z being the elevation 

relative to still water level (Figure 3.2). 

u(X,y,z,t} ,.. ~amn wm r hm cos(8n}cos(xmn} 

v(x,y,z,t} ,.. ~amn Wm r hm sin(8n)cos(xmn} 

w(x,y,z,t} ,.. ~amn Wm rwm sin(xmn} 

{3.61} 

(3.62) 

(3.63) 

where u, v, and ware water particle velocities in the x, y and z 

directions, respectively. rhm and r wm ' the horizontal and vertical depth 

attenuation factors, are 

(3.64) 

and 

(3.6S) 

If there is current, appropriate mean velocities are added to Equations 

(3.61) and (3.62) to obtain the total velocities in the horizontal 

plane. 
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Acceleration components Cu, v, W) 

Only the local accelerations are considered in the present study; 

therefore, accelerations will be the time derivative of the velocities, 

that is 

U(x,y,z,t) = ~amn wm2 rhm cos(9n)sin(xmn ) 

v(x,y,z,t) = ~amn wm2 rhm sin(9n)sin(xmn ) 

w(x,y,z,t) = -~amn wm2 rwm cos(xmn) 

Auto and cross-spectra of water particle kinematics 

(3.66) 

(3.67) 

(3.68) 

The various auto and cross-spectra densities for particle kinematics 

may be derived from their time domain expressions, in terms of the 

water surface elevation spectrum (Borgman, 1977), that is 

G () G ( ) * w2 rh2 f"O(w,9)sin 2 (9)d9 vv w = f/f/ W 
-" 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

For uni-directional waves along the x axis, the above equations reduce 

to 

(3.73) 

(3.74) 

Cross-spectral density functions are, in general, complex functions in 

the form 

(3.75) 
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where CXY and QXY are the coincident and quadrature components of the 

cross-spectrum and i is /-1. For example, the cross-spectrum between u, 

and w2 is (subscripts 1 and 2 refer to points (x"y"z,) and (X2'Y2,Z2)' 

respectively) 

and 

where A~, the phase shift between u, and W2, is 

A~ = k[(x2-x,}cos(8) + (Y2-y,}sin(8)] (3.78) 

For uni-directional waves along the x axis, the above equations reduce 

to 

(3.79) 

and 

(3.80) 

where 
(3.81) 

Probability distribution 

According to the central limit theorem, water particle kinematics are 

Gaussian distributed. In general, due to the presence of current, the 

velocities are not mean-zero; therefore, a typical probability density 

function (pdf) is (Figure 3.3) 

1 [ (r -)2] p(r) = exp _ - r 
tFi ar 2a,l (3.82) 

where f is the mean and ar is the variance of the random process such 

that 
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(3.83) 

The joint pdf for two Gaussian random variables rand s is 

p(r,s) = 

(3.84) 

where f and s are the mean val ues of rand s, a/ and a/ are the 

variance of rand sand Pr .s is the correlation coefficient defined as 

E[(r-r)(s-s)] 
Pr•s = 

(3.85) 

Expectations Required in the Probabilistic Model 

In the probabilistic model to be discussed in Chapter 10, the 

correlation coefficients and hence the expected values of water 

particle kinematics at different nodes are required. Foster (1967) has 

derived these expressions for uni-directional waves along the x axis. 

A complete list of the expectations of water particle kinematics at 

points 1 and 2 follows. (Points 1 and 2 have coordinates (X1,Z1) and 

(X2,Z2)' respectively). 

(3.86) 
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E[u,w2] = fO rh,rW2COs(flcp)W3GIIII(W)dw 
0 (3.87) 

E[w,u2] - fO rW,rh2COs{flcp)W3GIII7{w)dw 
0 (3.88) 

E[w,w2] = - l~ rw,rw2s1n(flcp)w3GI7I7{w)dw 
0 (3.89) 

E[u,u2] = l~ rh,rh2COs(flcp)W2GI7I7(W)dw 
0 (3.90) 

E[W1W2] = l~ r w1 r w2COS (Acp)w2G17I1 (w)dw 
0 (3.91) 

E[u,w2] = J.~ rh,rw2s1n(flcp)w2GI7I7(w)dw 
0 (3.92) 

E[w,u2] = - J.~ rw,rh2sin(Acp)w2GI7I7(w)dw 
0 (3.93) 

E[u,u2] l~ 4 = r h,rh2COs{Acp)w G1717 (w)dw 
0 (3.94) 

E[w,w2] i~ 4 = r w,rw2cos(flcp)w G1717 (w)dw 
0 (3.95) 

E[u,w2] = l~ rh,rW2sin(Acp)w4GI7I7(w)dw 
0 (3.96) 

E[w,u2] = - fO rW,rh2s1n(Acp)w4GI7I7(w)dw 
0 (3.97) 

E[u,u2] = l~ rh,rh2sin(Acp)w3GI7I7(w)dw 
0 (3.98) 

E[w,w2] = i~ rw,rw2sin(flcp)w3GI7I7(w)dw 
0 (3.99) 
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(3.100) 

(3.101) 

(3.102) 

(3.103) 

(3.104) 

(3.105) 

where, as before rh and rw refer to the horizontal and vertical depth 

attenuation factors, and A~ is the phase shift as follows 

rh1 = cosh[k(z1 + d)]/sinh(kd) 

rh2 = cosh[k(z2 + d)]/sinh(kd) 

r w1 = sinh[k(z1 + d)]/sinh(kd) 

r w2 = sinh[k(z2 + d)]/sinh(kd) 

A~ = k(X2-X,) 

and d is the water depth. 

3.4 MODEL WAVE SPECTRA 

(3.106) 

(3.107) 

(3.108) 

(3.109) 

(3.110) 

Wind-generated waves are formed by the transfer of energy from the wind 

to the sea. The spectral shape of the resulting waves depends on the 

wind speed (strength), the duration, i.e. the time during which the 

wind blows over the water surface, and the fetch, which is the distance 

over which the wind blows. 
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As shown in Figures 3.8 and 3.9, the wave intensity increases with the 

wind speed, duration and fetch. However, there is a limit to the growth 

of waves due to instability of the higher waves which dissipate their 

energy through wave breaking. When this equilibrium condition, in which 

the rates of energy transfer and energy dissipation are equal, is 

reached, the sea is referred to as fully developed. 

Figure 3.10 shows the effect of the increase in duration on a sea 

exposed to a steady wind of 30 knots. Two effects are observed: (1) The 

area under the spectrum becomes larger, (2) The peak of the spectrum 

moves towards lower frequencies. Both processes continue until the sea 

becomes fully developed. The shift towards lower frequencies occurs 

because high frequency waves develop more rapidly than the low 

frequency ones and hence they achieve a steady state earlier (Price and 

Bishop, 1974). 

Several frequency spectra have been proposed to describe a particular 

sea state. Some of them refer to the condition of a fully developed 

sea; among them, the Pierson-Moskowitz spectrum is most commonly used. 

Others refer to the condition of developing seas; among them, the 

JONSWAP spectrum is most often employed. 

Pierson-Moskowitz Wave Spectrum 

Analysis of extensive wave data relating to fully-developed sea 

conditions in the North AtlaniTffiy"prefSdn and Moskowitz (1964), led 
~'~' :?':'-~ y\ 'r'''~\V 

to the following semi-empiric~i~ave spe~trum. 



(3.111) 

where a = 0.0081, P = 0.74, g = 9.81m/sec2
, Wo = g/uw and Uw is the 

wind speed in m/sec at a height of 19.5m above mean water level. 

Setting the first derivative of Equation (3.111) equal to zero, the 

peak of the spectrum wp is 

(3.112) 

and the spectral peak is 

ag
2 exp( -5/4) (1) 5 

= * Wo == o. 430wo·
5 

(0. 8P) 514 (3.113) 

Sarpkaya and Isaacson (1981) have normalised Equation (3.111) by 

dividing both sides of the equation by the spectral peak G~~(wp), that 

is 

(3.114) 

Figure 3.11 represents the variation of the normalised spectrum in 

terms of the normalised frequency. 

Applying Equations (3.42) and (3.58) to the Pierson-Moskowitz spectrum, 

the relationship between H. and Tz with the wind speed can be obtained 

as 

2u 2 
w 

H = • 
(3.115) 

and 
g 
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_ 27ruw (1 )1/4 
Tz - -- -

g f37r (3.116) 

The above two relationships can be used to relate the wind speed to HI' 

to Tz or to HI/Tz ' as follows: 

( 

g )112 ( 13 )114 
Uw = (H.)% * - * - ::: 6.84 /H. 

2 Cl (3.117) 

gf3114 
U = T * ::: 1. 93Tz w z 

27r314 (3.118) 

r~r * 
H. H. 

u = ::: 24.32 * w 

Tz Tz (3.119) 

Therefore, the P - M spectrum can be described in terms of H., Tz or the 

combination of H. and Tz• However, since the long-term properties of H. 

are understood much better than the long-term properties of Tz' the P -

M spectrum is commonly expressed in terms of H. as suggested by ITTe 

(The International Towing Tank Conference). The spectrum is described 

as 

(

-3.11 ~ 
exp H.2 W-; 

(3.120) 

The spectral peak is 

G () 0 25 exp (- 5/4) H.5/2 
f]f] wp = • (3.121) 

at a peak frequency of 

(3.122) 
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JONSWAP Wave Spectrum 

The JONSWAP spectrum is a modification to P - M spectrum to account for 

the effect of fetch restrictions. The main characteristic of this 

spectrum is its enhanced peak compared to that of P - M spectrum, as 

shown in Figure 3.12. The spectrum is a five parameter function, 

expressible as (Wilson, 1984). 

where wp is the peak frequency in terms of radians/sec and a ;s 

u - { :: ~ :::: ::: : : :: (3.124) 

'Yp is the shape factor, defined as the ratio of the peak spectral 

density to that of the corresponding P - M spectrum. When 'Yp ~ 1, the 

spectrum reduces to P - M.spectrum. The mean of 'Yp has been found to be 

3.3. Q and wp are fetch dependent; their best estimates are 

(3.125) 

and 

Q = or 

0.0081 whichever is the smaller (3.126) 
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Xf is the fetch length and Uw is the wind speed at a height of lOm above 

the mean sea level.2 
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FIGURE 3.2. DEFINITION SKETCH FOR A PROGRESSIVE LINEAR WAVE 

(Burrows, 1982) 
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FIGU RE 3. 3 . THE GAUSSIAN PROBABILITY DISTRIBUTION, la) CUMULATIVE PROBABILITY 
lb) PROBABILITY DENSITY (SARPKAYA and ISAACSON, 1981) 
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FIGUR E 3.4. EXAMPLES OF RANDOM PROCESS ES, (a) BROAD-BAND, (b) NARROW-BAND 
(SARPKAYA and ISAACSON, 1981) 
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FIGURE 3.6. PROBABILITY DENSITY FUNCTION OF NORMALISED CREST ELEVATIONS FOR 
DIFFERENT VALUES OF THE SPECTRAL BAND WIDTH 

(PRICE and BISHOP, 1974) 
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FIGURE 3.8 THE EFFECT OF DURATION AND WIND SPEED ON WAVE INTENSITY 
CHARACTERISED BY H. 

(PRICE and BISHOP, 1974) 
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(PRICE and BISHOP, 1974) 
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FIGUR E 3. 10. THE GROWTH OF THE SPECTRUM WITH INCREASING DURATION 
(PRICE AND BISHOP, 1974) 
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Chapter 4 

Short-Term Properties of Wave 
Records at Christchurch Bay 



INTRODUCTION 

This chapter is devoted to the study of wavefie1d conditions at 

Christchurch Bay so that the performance of the relative motion form of 

Morison's equation in predicting wave forces from water particle 

kinematics can be assessed. Of paramount importance, in this respect, 

is the study of wave directiona1ity, predominant wave direction and 

currents. Furthermore, in the method of moments to be di scussed in 

Chapter 9, Cd and Cm values have been determined based on the assumption 

that water particle kinematics are Gaussian distributed. It is, 

therefore, necessary to investigate the validity of this assumption, 

too. These are the minimum requirements for the analysis of 

Christchurch Bay data. However, in addition to the above minimum 

requirements, it is also desirable to establish the spectral and 

probabi1istic properties of water surface elevation and water particle 

kinematics for the following reasons: 

a) The theoretical effect of the nonlinear drag term of the Morison 

loading on the spectral and probabilist1c properties of water 

particle kinematics is the subject of study in Chapter 8. On the 

other hand, the spectral and probabi11 st i c propert i es of the 

observed wave forces at Christchurch Bay are determined in 

Chapter 9. Therefore, it is desirable to establish the spectral 

and probabilistic properties of water particle kinematics so that 

the performance of Morison's equation in the spectral and 

probability domains can be assessed. In other words, comparing 

the spectral and probabilistic properties of wave forces and the 

associated water particle kinematics, one can make comments on 

how closely the observed spectral and probabi1istic properties of 
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wave forces can be predicted by the application of Morison's 

equation to water particle kinematics. 

b) In the analysis of Christchurch Bay data, measured water particle 

kinematics have been used in deriving Morison's coefficients. 

However, one must appreciate that in practice, the designer will 

almost certainly use Linear Random Wave Theory (LRWT) to predict 

water particle kinematics from a given water surface elevation 

spectrum. The predicted kinematics are then used in conjunction 

with Morison's equation to predict random hydrodynamic forces. It 

is, therefore, necessary to consider the performance of LRWT in 

more detail and in particular, its capability in predicting the 

spectral properties of water particle kinematics from the water 

surface elevation spectrum must be assessed. 

c) The model developed for the probabilistic analysis of offshore 

structures, is based on the following assumptions I} Linear 

Random Wave Theory can successfully predict the spectral 

properties of water particle kinematics from the water surface 

elevation spectrum. 2} Water particle kinematics are Gaussian

distributed, as predicted by LRWT. 3} Morison's equation can 

successfully predict the probabilistic properties of wave forces 

from the known probabilistic properties of water particle 

kinematics. The study of spectral and probabilistic properties of 

water particle kinematics and wave forces at Christchurch Bay can 

be used in assessing the validity of these assumptions with 

regard to Christchurch Bay data. 
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Sections 4.1 and 4.2 of this chapter are devoted to the study of the 

spectral and probabilistic properties of water surface elevation and 

water particle kinematics, respectively. Although wave height of itself 

is not a primary variable in the probabilistic theory of wave loading, 

it is a very useful one by which to investigate the general behaviour 

of the seas. Therefore, the opportunity has been taken herei n to 

compare the observed statistical and probabilistic properties of the 

wave heights of the Christchurch Bay records with their corresponding 

theoretical counterparts. The results of this study are also included 

inSect ion 4.1. 

Sections 4.3 and 4.4 are concerned with the predominant wave direction 

and wave directionality, respectively. It will be shown that to a first 

degree of approximation, the waves can be considered to be uni

directional. Currents are the subject of study in Section 4.5. Finally, 

the performance of LRWT in predicting the spectral and probabilistic 

properties of water particle kinematics from the spectral and 

probabilistic properties of water surface elevation is studied in 

Section 4.6. Section 4.7 is devoted to the conclusions of this study. 

4.1 SPECTRAL. STATISTICAL AND PROBABILISTIC PROPERTIES OF WATER 

SURFACE ELEVATION 

The basic statistics for water surface elevation are given in Table 

4.1. As observed, all the data sets are drawn from two distinct sea 

state intensities; that is, Runs 01, 02, 06, 07, 08 and 09, collected 

on 6th February 1987, have a significant wave height of H. z I.Sm and 

Runs 13, 14, 15, 16 and 23, collected on 27th March 1987, have a 

significant wave height of H. z 3.7Sm, where H. - 40'11 (Equation (3.42)). 

From now on, the two sea states wi 11 be referred to as the low-
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intensity and high-intensity sea states, and are characterised by the 

dimensionless numbers of three and eight, which are the approximate 

ratios between their corresponding significant wave heights and the 

cylinder diameter. 

Mean zero-crossing, mean crest and mean spectral periods, calculated 

from appropri ate moments of the water surface el evat ion spectrum 

according to Equations (3.58), (3.59) and (3.60), are listed in Columns 

8, 9 and 10 of Table 4.1, respectively. In addition, the mean zero

crossing periods calculated directly from the time series are given in 

column 5. There is the general degree of agreement that might be 

expected from these period statistics. The calculated mean zero

crossing periods for low- and high-intensity runs are about 3.5 and 7.0 

seconds, respectively. 

Furthermore, the spectral band-widths calculated from Equation (3.29) 

are given in Column 11. Its value for the low-intensity runs is about 

0.80 and for the· high-intensity runs is about 0.85, indicating that 

water surface elevations are not strictly narrow-banded. 

Water surface el evat i on and wave hei ght probability di stri but ions 

together with plots of surface elevation spectra for a typical low

intensity run (Run 01) and a typical high-intensity run (Run 15) are 

represented in Figures 4.1 to 4.8. A comparison of the two frequency 

spectra shows that the low-intensity run is slightly more energetic 

than the high-intensity run for frequencies above 0.40Hz. The important 

frequency range for Run 01 is up to O. 40Hz and for Run 15 is up to 

0.20Hz. 
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With regard to logarithmic plots of spectra, it should be noted that 

small-amplitude, high-frequency components are due to numerical errors 

in digitizing the data and also due to round off errors in numerical 

calculations. Therefore, they should not be interpreted as the presence 

of real low-amplitude, high-frequency waves. Furthermore, it should be 

noted that the frequency spectra, cumulative distribution functions, 

and other statistics used in this study, are calculated from finite

length records and hence are subject to sampling variability. 95% 

confidence bands for typical spectral plots, cdf plots, and statistics 

have been established according to Sections C.5, C.6 and C.4 of 

Appendix C, respectively. 

According to linear Random Wave Theory (lRWT), water surface elevation 

is Gaussian-distributed. Figure 4.6 shows that the cdf of water surface 

elevation for Run 15 is outside the 95% confidence band of the 

theoretical Gaussian distribution. Furthermore, with reference to 

Columns 6 and 7 of Table 4.1, skewness and kurtosis for Run 15 are 0.37 

and 3.00, respectively. The 95% confidence bands for these two 

statistics are 0.17 < ~ < 0.57 and 2.59 < P < 3.41 (refer to Section 

C.4.2). The theoretical values of ~ and P for a Gaussian-distributed 

random variable are zero and three, respectively. As such, the 

theoretical value of kurtosis is within its associated 95% confidence 

band; however, that of skewness is not. Therefore, both cdf plots and 

skewness values indicate (at a significance level of 5%) that water 

surface elevation for Run 15 is not a sample record from a Gaussian

distributed random process. 

The situation for Run 01 is different. Figure 4.2 shows that the cdf of 

water surface elevation is within the 95% .confidence band of the 
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theoretical Gaussian distribution. From Table 4.1 (Columns 6 and 7), 

the values of skewness and kurtosis are 0.07 and 2.94 and the 

corresponding 95% confidence bands are -0.09 < A < 0.23 and 

2.61 < fJ < 3.27. Both ranges cover their corresponding theoretical 

values. It can therefore be concluded that there is no statistical 

reason to reject the Gaussian hypothesis (at the 5% significance 

level). In other words, it can be assumed that water surface elevation 

for Run 01 is a sample record from a Gaussian-distributed random 

process. It should be noted that the above approach investigates the 

validity of the Gaussian assumption for Run 01 in isolation from other 

runs. One can reach a different conclusion if all the records are used 

in assessing the validity of the Gaussian assumption. 

With reference to Column 6 of Table 4.1, it is observed that the 

skewness values are positive for all the runs and generally speaking 

increase with i ncreas; ng H.. I f each run was a sample record from a 

Gaussian-distributed random process, then skewness values should 

fluctuate about zero because of sampling variability. The fact that 

they are all positive, indicates that the sampling variability alone 

cannot explain the deviation of skewness from its theoretical value of 

zero. In fact, the deviation is consistent with finite-amplitude 

effects which give rise to higher crest elevations compared to trough 

elevations. 

Overall, there is no doubt that the water surface elevation cannot be 

exactly Gaussian-distributed due to physical factors. For example, the 

Gaussian model predicts very large excursions of the water surface from 

the mean water level, albeit with low probability. In reality these 

excursions are limited by wave breaking and nonlinear interactions 
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between waves. When a sample record such as Run 01 is investigated in 

isolation from other records, the genuine deviation from the Gaussian 

model and the sampling variability get mixed up and one cannot 

differentiate between the two. The correct interpretation for the case 

of Run 01 is that there is some genuine deviation between the 

probability distribution of the random process representp.d by Run 01 

and the corresponding theoretical Gaussian distribution; However, the 

deviation is small so that it can be explained by the sampling 

variability alone. 

In conclusion, both low-intensity and high-intensity runs (represented 

by Runs 01 and 15, respectively) deviate from their corresponding 

theoretical Gaussian distributions. However, for low-intensity runs, 

the deviation is small so that the sampling variability alone can 

explain the deviation; In contrast, for high-intensity runs, the 

deviation is large so that it cannot be explained by the sampling 

variability alone. 

Crests and Waveheights 

Examination of Figures 4.3 and 4.7 shows that crests are more or less 

Gaussian distributed, as expected for random processes with high 

spectral bandwidths (E = 0.8). However, comparison of Figure 4.2 with 

4.3 and 4.6 with 4.7 shows that the deviation between water surface 

elevations and associated theoretical Gaussian distributions in Figures 

4.2 and 4.6 are reproduced in Figures 4.3 and 4.7 for water surface 

elevation crests. 

Figures 4.4 and 4.8 show that wave heights are in reasonable agreement 

with Rayleigh distribution. Three. different theoretical Rayleigh 
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distributions are plotted based on range data (wave height) mean, range 

data standard deviation, and basic signal (water surface elevation) 

standard devhtion (Equations (3.34), (3.37) and (3.39)). While the 

distribution based on the mean of the wave heights are in closer 

agreement with the observed data for Run 01, examination of similar 

probabil i ty plots for other runs shows that th is is not a general 

trend. Furthermore, it should be noted that due to the relatively small 

number of peaks and wave hei ghts (i n the order of a few hundreds), 

peaks and wave height values with low probability of exceedence (say 

1%) are subject to significant sampling variability and hence their 

departure from their theoretical distributions should not necessarily 

be taken as evidence for the significant departure of the underlying 

population distribution from their corresponding theoretical 

distributions. 

Wave height statistics are presented in Table 4.2, where the upper 5% 

and 10% quantiles are calculated from Rayleigh distribution (Equation 

3.46) with H. = 4uq and are compared, as ratios, with their 

corresponding observed values (Columns 4 and 5). Furthermore, the ratio 

between the observed maximum wave height and the expected maximum wave 

height (Equation 3.48) is given in column 6. Since all these ratios are 

less than one, it is clear that Rayleigh distribution slightly 

overestimates the extreme wave height statistics. The level of 

overestimation is typical of data sets from other sites (Tickell et al, 
, 

1987). The above ratios when calculated from the modified Rayleigh 

distribution (Equation (3.56» are given in Columns 7, 8 and 9, and 

offer an improvement over those calculated from Rayleigh distribution. 

68 



In addition, for the maximum wave height of each record, the zero

crossing period, Tmax ' and the crest height to wave height ratio, 

~clHmax' are given in Columns 10 and 11. This ratio is greater than 0.50 

for all runs (except for Runs 02 and 06), which may be due to finite 

amplitude effects. 

Also included in Table 4.2, are estimates of the percentage exposure of 

the centreline of Level 2 force sleeve, based on the assumption that 

water surface elevation is Gaussian distributed. For example, for Run 

23, the water depth and (1" are 9.60m and 0.948m, re~pectively. The 

centreline of Level 2 has an elevation of 8.60m, or it is 1.00m below 

mean water level. Thi,s distance is equivalent to -1.055 (1". The 

probability of ~ being less that -1.055 (1" is 0.147. Therefore, 14.7% 

of the time, the centreline of the force sleeve at Level 2 is above 

water surface. The intermittency at Level 2 can introduce bias in 

estimates of mean current and hydrodynamic forces at this level. Hence, 

Morison coefficients obtained from the analysis of data at level 2 must 

be treated cautiously. 

4.2 SPECTRAL AND PROBABILlSTIC PROPERTIES OF WATER PARTICLE 

KINEMATICS 

Low-Intensity Runs 

Figures 4.9 to 4.11 show the auto spectra of the three components of the 

velocity in the x, y and z directions (u,v,w) at Level 3 for Run 01. 

The spectra is multi-modal, which can be due to the presence of a 

residual swell in the 15-17 second range in addition to a higher 

frequency local sea. Other low-intensity runs have similar spectral 

shapes. 
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Figures 4.12 to 4.14 represent the cumulative distribution of the three 

velocity components at Level 3 for Run 01. The probabil ity 
I 

distributions show some departure from Gaussian behaviour. 

Values of skewness and kurtosis for the three velocity components of 

low-intensity runs are g:ven in Table 4.3. The x components are all 

negatively skewed while the vertical components (except for Run 06) are 

all positively skewed. The kurtoses are all well above 3.0, indicating 

some departure from Gaussian distribution. 

Values of skewness and kurtosisfor acceleration components are given 

in Table 4.4. The x and z components are all positively skewed and the 

kurtoses are a 11 well above 3.0 and are higher than those for the 

velocity components. 

High-Intensity Runs 

The autospectra of the velocity components at Level 3 for Run 15 are 

shown in Figures 4.15 to 4.17. Other runs in this group have similar 

spectral shapes. The cdf of the velocity components are shown in 

Figures 4.18 to 4.20. The agreement of this data with Gaussian 

distribution is greater than that for Run 01 despite greater severity 

and hence expected increase in finite amplitude effects. 

Values of skewness and kurtosis for the three velocity components of 

the high-intensity runs are given in Table 4.5. The x and the z 

components (except for Run 14) are all positively skewed and have a 

kurtosis of less than 3.0 (except for Run 16). 
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Values of skewness and kurtosis for acceleration components are given 

in Table 4.6. The x components are all positively skewed while the z 

components are all negatively skewed. The kurtoses of the x components 

(except for Run 13) and all the z components are above 3.0, and are 

higher than those for the velocity components; however, they are less 

than those of the low-intensity runs. 

Are Water Particle Kinematics Gaussian Distributed? 

Examination of the probability plots for water particle velocities, 

together with skewness and kurtosis values for both velocities and 

accelerations, shows that the departure of water particle kinematics 

from their associated theoretical Gaussian distributions is 

statistically significant (at 5% significance level); that is, the cdfs 

of water particle kinematics lie outside the 95% confidence bands. 

Therefore, strictly speaking, the answer to the question of the 

validity of Gaussian distribution assumption for water particle 

kinematics is negative. However, the real question is whether the 

Gaussian distribution is a good approximation to the true distributions 

of the water particle kinematics at Christchurch Bay. The answer to 

this question is that it depends on the ultimate application of the 

results, which in the case of this study is the calculation of 

Morison's coefficients from the method of moments assuming that water 

particle kinematics are Gaussian distributed. Should the Gaussian 

distribution be a poor approximation to the real distribution, then the 

resultant Cd and Cm values from the method of moments should show great 

variation from record to record and from level to level. As will be 

demonstrated in Chapter 9, the results of this study show that Cd values 

for high-intensity runs are reasonably constant, and that Cm values, 

though of greater variability, show good correlation with the 
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acceleration parameter for both low-intensity and high-intensity runs. 

Cd values for low-intensity runs are unstable; however, that is because 

these runs are inertia dominated and hence are ill-conditioned for 

determination of Cd values. 

The overall conclusion of this section is that there is genuine 

deviation between the observed probability distribution for water 

particle kinematics and their theoretical Gaussian distributions; 

however, the Gaussian distribution can be considered as a good 

approximation for the purpose of calculating Morison's coefficients 

from the method of moments. 

4.3 PREDOMINANT WAVE DIRECTION 

The component of wave induced horizontal velocity on an axis making an 

angle of 9 with the x axis is 

Q - (u - u)cos9 + (v - v)sinS (4.1) 

in whi ch u and v are the x and y components of the water part i cl e 

velocity and u and v are the x and y components of the current. Note 

that u and v are 

u = E[u] 

v = E[v] 

where E[.] is the expectation operator. 

(4.2) 

(4.3) 

The predominant wave direction is then defined as the direction for 

which E[02] is maximum. From Equation (4.1), the following relationships 

are obtained 

E[O] - E[(u - Q)]cos9 + E[(v - v)]sin9 - 0 
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and 

or 

E[02] = E[(u - U)2]cos29 + E[(v - v)2]sin29 

+ sin29 E[(u - Q)(v - v)] (4.5) 

(4.6) 

where () is the standard deviation and PU,y is the correlation coefficient 

between u and v, defined as PU,y = E[u - u) (v - v)]/(}u (}y. 

E[02] is maximum or minimum when its first derivative with respect to 

9 is zero. Thus, the predominant wave direction, 8, is the solution to 

the following equation. 

= - sin29 (}u
2 + sin29 (]y2 + 2cos29 PU,y (]u (]y = 0 

(4.7) 

which after simplification reduces to 

tan(29) = • = Q 

or 

28 = arctan(Q) + k~ 
k • O,1,2~3, .•.... 

Thus 

9 = Y2 Arctan(Q) + k~/2 

The above equation leads to 4 angles round a circle, i.e. 

9, = Y2 Arctan(Q) 

92 = 9, + ~/2 
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Two of the above angles (180· apart) lead to the maximum and the other 

two lead to the minimum of E[02]. The two angles which lead to the 

maximum of E[Q2] can be identified by direct substitution of the above 

angles into Equation (4.5). However, there is an ambiguity in that it 

is not clear which of the two angles which lead to the maximum of E[02] 

is the true predominant wave direction. This ambiguity is resolved by 

knowing from the physical knowledge of the site that the predominant 

wave direction is close to the positive direction of the x axis. 

The wave component velocity on a direction making an angle of (w/2 + 9) 

with the x axis is denoted by v and is equal to 

v - (u - u) cos(w/2 + 9} + (v - v) sin(w/2 + 9} • 

-(u - Q) sin9 + (v - v}cos9 

From Equations (4.1) and (4.11), O.V will be 

(4.11) 

O.v = cos28(u - Q}(v - v) - Y~in29 [(u - Q)2 + (v - V)2] 
(4.12) 

Taking expectations from both sides of the above relationship results 

in 

E[O. v] '" cos29 Pu •y CTu CTy - %5 i n29 (CT/ - CT/) (4.13) 

Setting E[O.v] equal to zero, leads to the following equation 

Tan29 = 
(4.14) 

which is identical to Equation (4.8). Therefore, for the predominant 

wave direction, a, the following properties hold true. 

E[02] is maximum 

E[Q2] is minimum 
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E[Qv] = p- - = 0 u.y 

Where Q and v are defined by Equations (4.1) and (4.11), respectively. 

The predominant wave direction for each run, together with Pu.y, uu' uy 

and uy/uu are presented in Table 4.7. Some of the results for level 2 

must be treated with caution due to intermittency at this level. There 

is a consistency in the estimated predominant wave direction and this 

is very close to the x axis of the tower. The ratio uy/uu is about 0.3, 

i ndi cat i ng that the sea states are not strongly short-crested. The 

average predominant wave direction for levels 3 and 4 has been taken as 

the predominant wave direction for that run. The results are presented 

in Table 4.8. 

It is worth noting that in Equation (4.8), it is possible to replace u 

and v with u and v and calculate predominant wave directions based on 

water particle accelerations. The results are only marginally different 

from those in Table 4.7 and hence are not presented. 

4.4 WAVE DIRECTIONAlITY 

As stated in Chapter 3, it is convenient to express the directional 

spectrum, G~(w,9), in terms of the uni-directional wave spectrum and 

. a spreading function, denoted by D(w,9). Thus 

(4.15) 

Integrating both sides of the above equation with respect to 9 and 

replacing r G
1717

(w,9)d9 by G
1717

(w), leads to 
-" 

[ O(w,9)d9 • 1 
-" (4.16) 
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According to the above equation, the spreading function shows the 

directional distribution of the water surface variance (wave energy) at 

any frequency. 

Calculation of the spreading function 

At any particular frequency, D{~,S) is a function of S only and its 

truncated Fourier series is 

D{~,S) = 1/2~ + E n ak{~) cos{kS) + bk{w) sin{kS) 
k-' (4.17) 

The term 1/2~ is the mean of D{S) over the range -~ to +~ and ensures 

that Equation (4.16) is satisfied. 

Fourier coefficients up to n3 2 (a" b" a2 , b2 ) can be calculated from 

the auto and cross-spectra of the three orthogonal velocity components 

(van Heteren et al, 1988). 

a, (w) = 
(4.18) 

(4.19) 

(4.20) 

(4.21) 

where in general, the cross-spectrum between x and y is 

(4.22) 
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Fourier coefficients up to n=4 were calculated by Mitsuyasu (1975); 

however, that requires measurements such as wave slope and wave 

curvature which were not available in the present study. 

The truncated Fourier series (Equation 4.17) does not necessarily 

provide a good fit to the spreading function since, for example, it can 

lead to negative values for some directions. To provide a better 

approximation, weighting coefficients wn are introduced into Equation 

(4.17) in the following form. 

0(w,9) = 1/21r + En wk(w)[ak(w) cos(k9) + bk(w) sin(k9)] 
k=1 (4.23) 

However, this weighted or smoothed form of the spreading function leads 

to overly broad estimates of 0(w,9). This has resulted in the use of 

parametric spreading functions, such as the full circle cosine-power 

spreading function used in this study. 

Cosine-power spreading function 

The full circle cosine-power function is defined as (Mitsuyasu et al., 

1975), 

(
9 2- 9) D(w,9) = C(s)cos2

• 19-al ~1r 
(4.24) 

Where a is the mean wave direction and s, the spreading parameter, 

determines the broadness of the spreading, as shown in Figure 4.21. 

C(s) is a normalising function and ensures that Equation 4.16 is 

satisfied, and is given by 

1 
C(s) = = 

r(2s+1) 2Ji 
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Where r is the Gamma function. In general, both 8 and s are functions 

of w. 

This parametric form may be fitted to the Fourier representation of the 

spreading function (Equation 4.17) in terms of the calculated Fourier 

coefficients (Equations 4.18 to 4.21) using the expressions given by 

Mitsuyasu et al (1975). 

where 

or 

where 

s, = c,/(l-c,} 

1 + 3c2 + [C2
2 + 14c2 + 1]% 

2(1 - c2 } 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

If the cosine-power spreading function was a perfect fit to the 

measured (real) spreading function, 8, = 82 and s, = S2; however, in 

general, 8, t 82 and s, t S2' 

Tab 1 e 4.9 gi ves the cos i ne power parameters for Run 01 and Run 23 

derived from Level 3 and Level 4 particle velocities, while Table 4.10 

gives similar results for Run 13 and Run 15. The data for Run 08 is 

shown in Figure 4.22. The mean directions (8, and 92) at frequencies 

near the peak of the spectra are in agreement with those quoted in 
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Table 4.7. The mean direction at other frequencies is generally within 

5 - 10· of the overall direction except for Run 15 where there are some 

shifts at high frequency. 

As is commonly found, the spreading function is narrow (high s values) 

at the peak of Gq~(w) and then broadens in the tail of the spectra. 

Overall, the data can, to a first degree of approximation, be treated 

as long-crested. 

4.5 CURRENTS 

Currents can be normalised in two different ways: 

a) By dividing the current magnitude by the cylinder diameter times 

its natural frequency, i.e. 

r, = 
D*f. (4.32) 

This parameter is known as the current reduced velocity. 

b) By dividing the current magnitude by the standard deviation of 

the horizontal component of the wave-induced velocity, i.e. 

(4.33) 

Where u and Uu are the mean and S.D of the water particle velocity in 

the x direction. v and uy refer to similar entities in the y direction. 

79 



Low-Intensity Runs 

Current magnitude and direction (measured clockwise from x axis as 

shown in Figure 2.2) together with values of r1 and r2 are given in 

Table 4.11. The values of r2 are scattered about 1.6 indicating that 

current is significant with respect to wave-induced velocities. Current 

direction is about 70· from x axis (predominant wave direction) and 

therefore can be considered as being almost transverse to the 

predominant wave direction. 

High-Intensity Runs 

Similar information as Table 4.11 are represented in Table 4.12 for 

high-intensity runs. r 2 has a maximum of 0.6 indicating that current for 

high-intensity runs is not as significant as it is for low-intensity 

runs with respect to wave induced velocities. Current direction 

changes; however, with the exception of Run 23, it is in the opposite 

direction to wave propagation. For Run 23, the current ;s almost 

transverse to the predominant wave direction so that the particle 

velocity meters are almost in the shadow of the large column; hence, 

the measured value of the current is expected to be somewhat different 

from its real value at the compliant cylinder position (refer to Figure 

2.2). Another point to be noted is that for this run the current 

magnitude is larger than that for other high-intensity runs. 

4.6 PERFORMANCE OF LINEAR RANDOM WAVE THEORY (LRWT) 

Water surface elevation and water particle kinematics have not been 

measured at the same point at Christchurch Bay (refer to Chapter 2). 

Therefore, it is not possible to assess the performance of LRWT (in 

. predi ct; n9 water part icl e ki nematics from gi ven records of water 

surface elevation) in the time domain. However, since water surface 
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elevation and the associated water particle kinematics are assumed to 

be stationary and homogeneous random processes, it is possible to study 

the performance of the theory in both spectral and probability domains. 

Spectral Domain 

Performance of LRWT in the spectral domain can be assessed by comparing 

the observed and predicted transfer functions between water surface 

elevation (77) and water particle velocity in the predominant wave 

direction (u). 

The observed transfer function between 77 and u is defined as 

(4.34a) 

Where G~u(w) is the cross-spectrum between 77 and u (refer to Section 

3.3). The theoretical value of the above transfer function in the case 

of directional seas is (Borgman, 1977). 

(4.34b) 

Where D(w,S) is the spreading function and rh is the horizontal depth 

attenuation factor given by Equation (3.64). That is, 

rh - cosh[k(z + d)]/sinh(kd) (4.34c) 

According to Equation (4.34b), the transfer function is dependent on 

the spreading function, the value of which cannot be determined 

accurately. In order to remove the uncertainty regarding the 

appropriate spreading function, the following method was adopted for 

assessing the performance of LRWT. 

81 



According to Equations (3.69) and (3.70), the following relationships 

exists between the auto-spectra of horizontal water particle kinematics 

and water surface elevation spectrum. 

Guu(W) = GI'/I'/(W) * W
2 rh

2 r D(w,S) COS2S dS -n (4.35) 
and 

Gyy(w) = GI'/I'/(w) * w2 rh
2 In D(w,S) sin2S dS -n (4.36) 

Adding Equations (4.34) and (4.35) and replacing J:n D(w,S) dS by one, 
-n 

leads to 

" G ( ) * w2 rh
2 I ... 1'/1'/ W 

-n 
D(w,S) dS 

(4.37) 

or 

(4.38) 

which when combined with Equation (4.36), yields 

sinh2 (kd) 
GI'/I'/(W) = [Guu(W) + Gyy(W)] 

w2 cosh2 [k(z+d)] (4.39) 

The above relationship can be used to calculate GI'/I'/(w) from Guu{w) and 

Gyy(w). On the other hand, to calculate Guu(w) and Gyy(w) from GI'/I'/(W) , it 

is necessary to establish the spreading function accurately. Therefore, 

it is preferable to calculate GI)I'/(w) from the auto-spectra of horizontal 

water particle kinematics and compare it with the observed water 
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surface elevation spectrum. Alternatively, G~~{w} can be obtained from 

the following relationship {Equation 3.71}. 

(4.40) 

where rw is the vertical depth attenuation factor. After replacing fw 

from Equation (3.GS), the above equation can be rewritten as 

sinh2 {kd} 

{4.41} 

Figure 4.23 shows the comparison between the observed surface elevation 

spectrum for Run 13 and that predicted from Equation {4.39} at Level 3. 

Table 4.13 gives further comparison of observed and predicted (from 

Equation 4.39) surface elevation spectra for Runs 01, 08, 15 and 23. 

For Run 01, predictions based on Level 4 are smaller than predictions 

based on Level 3, while the opposite is true for Run 15, though for 

this run the differences are very small compared to the peak spectral 

value. Figure 4.24 shows the comparison between the observed surface 

elevation spectrum for Run 15 and those predicted from vertical 

velocity spectra (Equation 4.41) at all levels. It is noted that data 

for Level 4 leads to a consistent underestimation of the surface 

elevation spectrum. 

In addi t i on to the above procedure, the performance of LRWT in the 

spectral domain can be checked in the following way, too. Dividing 

Equation (4.41) by (4.39) and taking the square root of the resultant, 

a measure of the performance of linear random wave theory is obtained 

in terms of a function Z{w) where, 
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Z(w} 

J
% 

(kd) (4.42) 

According to lRWT, Z(w) must be unity for all frequencies. Values of Z 

are presented in Table 4.14 over the relevant range of frequencies. The 

largest departures occur in the high frequency tails of the spectra and 

in general, the data at Level 3 shows smaller discrepancies than those 

for Level 4. 

The above results show that there are differences between th~ observed 

velocity spectra and those predicted from the observed surface 

elevation spectrum using linear wave theory. Tickell and Burrows (1989) 

have offered a number of possible explanations for these differences 

though they could not identify any clear cause. These factors include: 

(I) Instrument/Calibration Errors 

The perforated ball systems have been in use for some time and 

the final version of the BMT algorithm for interpreting the three 

force measurements, in terms of the velocities and accelerations, 

has been as well proven as any other monitoring system. Spectral 

values given in Table 4.13 show both over and underestimation in 

comparison with the observed spectra which is not consistent with 

a system bias. It should also be recalled that the measurement of 

surface elevation being used is from an accelerometer buoy which 

is some lOOm remote from the site and subject to its own set of 

system characteristics. 
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(2) Current Interactions 

Simple calculations will show that no Doppler shift effect, due 

to currents, applied to the depth attenuation factors could alone 

explain the differences seen in the spectra in Table 4.13. 

(3) Interference Effects 

particle velocity meters are supported on the rigid small column 

and are approximately three diameters to one side in aline 

orthogonal to the predominant wave direction. It is not clear, 

from the data collected in the present programme, that any of the 

discrepancy can be explained through interference effects. It is 

of course recognised that, by virtue of the presence of the tower 

base, the seabed is not a horizontal plane. This is unlikely to 

produce diffraction effects in the longer period components (f < 

O.15Hz, say). Waves above f • O.3Hz are effectively in deep water 

and unaffected by the base. Simple calculations show that, for 

waves in the range 0.15 < f < 0.3Hz, an effective decrease in 

water depth would lead to increases in the predicted horizontal 

particle velocity spectra and decreases in the corresponding 

vertical spectra of typically 5-10%. 

(4) Nonlinear Hydrodynamics 

The existence of finite-amplitude effects has already been noted 

in terms of non-zero skewnesses of the kinematics. However, while 

weak nonlinear random wave theories do produce peaky crests and 

flat troughs, they do not deal with wind shear effects on the 

horizontal asymmetry of wave profiles. It was considered to be 

beyond the scope of the present study to pursue finite-amplitude 

modifications to the predicted kinematics. 
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Overall, the combination of the above-mentioned factors together with 

measurement errors and the shortcomings of LRWT itself can be 

considered as the cause of the discrepancies between the observed and 

predicted water particle velocity spectra. However, with the exception 

of Run 23, the differences are not consistent; that is, there are some 

overestimations and some underestimations so that the variance of the 

observed and the predi cted vel ocit i es are expected to be in good 

agreement. 

The case of Run 23 deserves special consideration in that the predicted 

water surface elevation is consistently above the observed values over 

the important frequency range, i.e. 0.0 to 0.2Hz. As a result, the 

variance of the predicted water surface elevation is about 15% higher 

than that of the observed water surface elevation. This implies that 

water particle velocities (and hence accelerations) predicted by the 

application of lRWT to the observed water surface elevation record, 

will be of lower variance in comparison with the observed kinematics 

(predicted/observed = o.al). This is important because, as will be 

shown in Chapter 9, the total force coefficient for Run 23 is smaller 

than those for other high-intensity runs (and in particular, than that 

for Run 16 which has the same Keulegan-Carpenter No. as Run 23) by 

about the same factor, without any clear reason (refer to Table 9.2). 

One possible explanation would be that somehow, the measured kinematics 

for Run 23 are overestimated. 

Probability Domain 

The cdfs of water particle velocities are expected to follow the same 

trend as those of their corresponding water surface elevations in view 

of the linear nature of the transformation between the two. Examination 
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of skewness values for water surface elevation and water particle 

velocities (Tables 4.1, 4.3, and 4.5) shows that with the exception of 

Run 16, Au < A~. According to lRWT, Au = A~ after accounting for sampling 

variability. Therefore, it seems that in this study, {Au)LRWT > 

{AJOburved' This implies that generated velocities (through the use of 

lRWT) underpredict extreme negative velocities and/or overpredict the 

extreme positive ones (also compare Figure 4.12 with 4.2, and 4.18 with 

4.6). This conclusion is in agreement with the results of Tickell et 

al, 1976 (Figures 3.9 and 3.10) who came to the same conclusion from 

analysis of 1976 Christchurch Bay data. 

The skewness of water particle accelerations are in better agreement 

with those of their corresponding water surface elevations and 

generally speaking are closer to their theoretical value of zero. This 

is not surprising as extreme values of velocity (positive or negative) 

will result in both large positive and negative accelerations. 

Therefore, accelerations are expected to be more symmetrical than the 

skewed velocities which gave rise to them, in the first place. 

In contradiction with lRWT, the kurtoses of water particle velocities 

in the case of low-intensity runs are consistently smaller than those 

of their associated water surface elevations (except for Run 09) and 

the reverse is true for high-intensity runs. Kurtoses of water particle 

accel erat ions are consi stently higher than those of water part icl e 

velocities. Again this is expected because of the asymmetries in the 

distributions of water particle velocities. As was previously 

mentioned, high extreme values of velocity (positive or negative) lead 

to high positive and negative accelerations with the overall p.ffect 

t hat {J acceleration > {Jvelocity' 
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Overall, the results of this investigation shows that there are some 

di screpanci es between the probabil i st i c properties of the observed 

ki nemat i cs and those predi cted by LRWT. The same factors as those 

mentioned for the discrepancies in the spectral domain can be 

responsible for the discrepancies in the probability domain. 

Is Linear Random Wave Theory Useable? 

The results of the above study in both spectral and probability domains 

show that there are some discrepancies between the spectral and 

probabilistic properties of the observed water particle kinematics and 

those predicted by the application of LRWT to water surface elevation 

records. The discrepancy is partly accounted for by the shortcomings of 

LRWT i tse 1 f, partly by measurement errors, and partly by reasons 

mentioned by Tickell and Burrows (1989), though at this stage, it is 

not possible to quantify the effect of any of the above-mentioned 

factors. Overall, though these differences are not insignificant, they 

are not excessive, either. Furthermore, these differences are more or 

less of a random nature, so that there are some overestimations and 

some underestimations. It is, therefore, expected that the 

discrepancies do balance each other out, so that the variances of the 

water particle kinematics and the resultant forces and responses can be 

est ab 1 i shed with reasonable accuracy. Therefore, the app 1 i cat i on of 

LRWT in the design of offshore structures, in view of its simplicity 

and in view of uncertainties in other important parameters used in the 

design of offshore structures (such as the water surface e1 evat ion 

spectrum and Morison's coefficients) is justifiable. However, the 

author bel ieves that it is always good practice to corroborate the 

results of such a study with other methods (which inevitably have their 

own shortcomings). If the results are significantly different, then the 
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cause of the differences must be established. If that proves 

impossible, the design, then, must be based on the most conservative 

results. 

With regard to the analysis of Christchurch Bay data, LRWT has been 

used in shifting water particle kinematics from their point of 

measurement to the cylinder axis assuming that the waves are uni

directional. Furthermore, water particle kinematics have been assumed 

to be Gaussian-distributed in calculating Morison's coefficients from 

the method of moments. The second assumption was fully discussed in 

Section 4.2 and its use for the purpose of the method of moments was 

justified. The shifting of water particle kinematics will be fully 

discussed in Chapter 6. In Chapter 9, it will be shown that phase shift 

errors introduced because of the shortcomings of LRWT and also because 

of the uni-directionality assumption, do not have a significant adverse 

effect on the calculated Morison's coefficients. 

4.7 Conclusions 

This chapter was devoted to the study of wave conditions at 

Christchurch Bay. The following conclusions have been made. 

1. The eleven data sets have been divided into two groups, low

intensity runs with a significant wave height of H. = I.5m and 

high-intensity runs with a significant wave height of HI = 3.75m. 

The mean zero-crossing periods for the low- and high-intensity 

runs are about 3.5 and 7.0 seconds, respectively. 

2. While close to Gaussian distribution, the surface elevation time 

series show departures consistent with finite amplitude effects. 
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3. As expected, the deviations between the cdfs of water surface 

elevations and their associated theoretical Gaussian 

distributions are reproduced in the cdfs of water surface 

elevation crests. 

4. Level 2 is subject to intermittent exposure and hence the results 

associated with this level must be treated cautiously. 

5. The Rayleigh distribution based on significant wave height (H •• 

4a~) can lead to an overestimation of 7 to 14% for the upper 5% 

quantile of the wave heights at Christchurch Bay. The modified 

Rayleigh distribution (incorporating the factor O.925) provides 

an improved fit. 

6. There are statistically significant differences between the 

observed probability distributions of water particle kinematics 

and their associated theoretical Gaussian distributions. However, 

the Gaussian assumption leads to stable Cd and Cm values from the 

method of moments, so that it can be cons i de red as a good 

approximation to the true distribution of water particle 

kinematics for the purpose of determining Morison's coefficients 

from the method of moments. 

7. The predominant wave direction is very close to the X axis of the 

tower. 

8. Near the peak of the wave spectrum, the sea is almost long

crested with high powers of s in the full circle cosine-power 

spreading function (12 < s < 24). At twice the peak frequency, 
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the sea is more short-crested wi th sin the range of 2 to 6. 

Overall, to a first degree of approximation, the waves can be 

considered to be uni-directional. 

9. The results of this investigation show that there are 

statistically significant discrepancies between the spectral and 

probabilistic properties of the observed kinematics and those 

predicted by the application of LRWT to their corresponding water 

surface elevation records. The discrepancies can be attributed to 

several factors such as measurement errors and the shortcomings 

of lRWT itself. However, the discrepancies are not excessive and 

are more or less of a random nature, so that in view of its 

simplicity, the application of LRWT to the design of offshore 

structures is justifiable in most circumstances. 

10. The case of Run 23 deserves special consideration. This is 

because the total force coefficient for this run is smaller than 

those for other high-intensity runs (and in particular than that 

for Run 16, which is of the same Keulegan-Carpenter No.), without 

any clear reason. Run 23 is different from other high-intensity 

runs in the following points. These points may prove useful in 

offering possible explanations for this apparent observed 

discrepancy in Chapter 9. 

a} Water depth for Run 23 is lower than that for other high

intensity runs. Consequently, the percentage of level 2 

exposure for this run is higher (15% against an average of 

5%; refer to Table 4.2). 
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b) Wi th the except i on of Run 23, the current is in the 

opposite direction to wave propagation for high-intensity 

runs. For run 23, the current is almost transverse to the 

predominant wave direction, so that the particle velocity 

meters are almost in the shadow of the large column. Hence, 

the measured value of the current is expected to be 

somewhat different from its real value at the compliant 

cylinder position. Another point to be noted is that the 

current magn itude for th is run is 1 arger than that for 

other high-intensity runs (Table 4.12). 

c) Water particle velocities (and hence accelerations) 

predicted by the application of LRWT to the observed water 

surface elevation record, are of lower variance in 

comparison with the measured kinematics (predicted/observed 

- 0.87). On the other hand, the force coefficient for this 

run are smaller than that for Run 16 by about the same 

factor. One possible explanation for the discrepancy is 

that somehow, the measured kinematics for this run are 

overestimated. 
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\0 
W 

(1) 
Run 
No 

01 

02 

06 

07 

08 

09 

13 

14 

15 

16 

23 

(2) (3) 
Water Surface 
Depth Elevn. 

(d m) (u
l1 

m) 

9.21 0.345 

9.24 0.352 

9.28 0.403 

9.28 0.429 

9.27 0.395 

9.27 0.374 

10.25 0.859 

10.20 0.933 

10.15 0.991 

9.95 0.936 

9.60 0.948 

(4) (5) (6) (7) (8) (9) (10) (11 ) I S;g. Zero-crossing Skewness Kurtosis Spectral Periods (sec) Spectral 
I 

Height Period Band-width ' 
(Ha m) (Tz sec ) (>.) (P) (Tz) (Te) (Tm) (£ ) 

I 

1.38 3.2 0.07 2.94 3.7 2.3 4.2 0.78 
I 

1.41 3.4 0.09 2.86 3.7 2.3 4.2 0.78 I 
I 

1.61 3.9 0.10 3.40 4.2 2.4 4.8 0.82 i 

1.72 3.2 0.07 2.89 4.3 2.5 5.0 0.81 

1.58 4.1 0.07 2.85 4.2 2.5 4.8 0.80 

1.50 3.9 0.27 3.19 4.3 2.5 5.0 0.81 

3.44 6.4 0.22 2.99 6.5 3.4 7.4 0.85 

3.73 6.8 0.36 3.00 6.7 4.3 7.4 0.77 

3.96 8.1 0.37 3.00 7.4 3.8 8.6 0.86 

3.74 6.6 0.11 2.62 7.S 4.1 8.5 0.84 

3.80 8.2 0.37 2.81 7.5 3.6 8.6 0.88 

TABLE 4.1. 
BASIC SURFACE ELEVATION STATISTICS (TICKELL AND BURROWS, 1989) 



\0 
~ 

Run 
Number 

(1) 

01 

02 

06 

07 

08 

09 

13 

14 

15 

16 

23 

Significant 
Height 

(2) 

1.38 

1.41 

1. 61 

1. 72 

1.58 

1.50 

3.44 

3.73 

3.96 

3.74 

3.80 

Rayleigh Distribution Modified Rayleigh Distribution Maximum Height Properties 

% Exposure Quantlle Height Ratios Maximum Height Quantile Height Ratios Maximum Height 
Level 2 Obs/Th Dbs/Th Tmax(sec) l1c/~x 

(Obs/Th)5X (Obs/Th)10% (Obs/Th)5X (Obs/Th)IO% 

(3) (4) (5) (6) (7) (8) (9 ) (IO) (11) 
I 

3.6 0.93 0.93 0.87 1.00 1.00 0.94 5.1 0.69 

3.5 0.87 0.83 0.79 0.94 0.90 0.85 5.1 0.49 

4.5 0.94 0.87 0.93 1. 01 0.94 1.00 6.0 0.48 

6.0 0.89 0.84 0.90 0.96 0.91 0.97 5.3 0.57 

4.5 0.91 0.93 0.86 0.98 1. 00 0.93 4.8 0.56 

3.6 0.90 0.86 0.92 0.97 0.93 1.00 9.2 0.59 

2.7 1.00 0.96 0.89 1.08 1.04 0.96 9.6 0.56 

4.5 0.99 0.92 0.88 1.07 1. 00 0.95 12.7 0.58 

5.5 0.93 0.95 0.86 1.00 1.03 0.93 9.8 0.61 

7.5 0.93 0.88 0.86 1.00 0.95 0.93 9.4 0.54 

I 14.7 0.96 0.99 0.86 1.04 1.07 0.93 8.2 0.54 

TABLE 4.2. 
WAVE HEIGHT AND EXPOSURE STATISTICS (TICKELL AND BURROWS, 1989) 



Skewness Kurtosis 
Run NI 

u v W u v w 

01 -0.43 -0.27 0.15 3.86 3.89 4.37 

02 -0.36 0.19 0.20 3.57 3.33 4.08 

06 -0.49 -0.04 -0.01 3.57 3.38 4.27 

07 -0.40 0.03 0.08 3.24 3.42 3.65 

08 -0.36 -0.02 0.03 3.48 3.87 4.34 

09 -0.26 0.36 0.35 2.95 3.51 3.68 

TABLE 4.3. 
VALUES OF SKEWNESS AND KURTOSIS FOR VELOCITY COMPONENTS 

OF LOW-INTENSITY RUNS (LEVEL 3) 

Skewness Kurtosis 
Run NI 

U v w u v W 

01 0.13 0.19 0.24 4.36 5.23 4.61 

02 0.23 0.24 0.26 3.98 3.83 4.22 

06 0.14 0.05 0.28 3.85 3.62 4.90 

07 0.20 0.03 0.18 3.63 3.74 4.05 

08 0.15 -0.04 0.07 3.89 4.36 4.14 

09 0.35 0.10 0.28 3.80 4.68 3.90 

TABLE 4.4. 
VALUES OF SKEWNESS AND KURTOSIS FOR ACCELERATION 

COMPONENTS OF LOW-INTENSITY RUNS (LEVEL 3) 
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Skewness Kurtosis 
Run Ni 

u V w u v w 

13 0.02 0.04 0.08 2.24 3.39 2.72 

14 0.02 0.03 -0.05 2.54 2.93 2.87 

15 0.22 -0.09 0.05 2.40 3.03 2.81 

16 0.41 0.17 0.01 2.60 3.13 3.27 

23 0.22 -0.10 0.21 2.24 2.87 2.94 

TABLE 4.5. 
VALUES OF SKEWNESS AND KURTOSIS FOR VELOCITY COMPONENTS 

OF HIGH-INTENSITY RUNS (LEVEL 3) 

Skewness Kurtosis 
Run Ni 

U V 'VI U V 'VI 

13 0.06 -0.20 -0.04 2.78 3.73 3.14 

14 0.01 0.00 -0.19 3.26 3.64 3.30 

15 0.10 -0.28 -0.32 3.11 3.29 3.69 

16 0.19 -0.22 -0.54 3.57 3.46 4.03 

23 0.21 0.18 -0.28 3.48 3.58 4.00 

TABLE 4.6. 
VALUES OF SKEWNESS AND KURTOSIS FOR ACCELERATION 

COMPONENTS OF HIGH-INTENSITY RUNS (LEVEL 3) 

96 



Run NI Level Uu Uv Uv Pu.v 
{} 

-
m/sec m/sec (Ju "degrees" 

2 0.313 0.145 0.46 -0.24 - 7.8 
01 3 0.293 0.092 0.31 -0.13 - 2.5 

4 0.232 0.070 0.30 0.05 1.1 

2 0.336 0.138 0.41 -0.19 - 5.2 
02 3 0.296 0.090 0.30 -0.10 - 1. 9 

4 0.231 0.081 0.35 0.07 1.5 

2 0.349 0.146 0.42 -0.23 - 6.5 
06 3 0.357 0.100 0.28 -0.21 - 3.6 

4 0.286 0.088 0.31 0.06 1.1 

2 0.369 0.150 0.41 -0.34 - 9.2 
07 3 0.390 0.109 0.28 -0.26 - 4.4 

4 0.325 0.092 0.28 -0.01 - 0.1 

2 0.363 0.138 0.38 -0.26 - 6.6 
08 3 0.342 0.103 0.30 -0.24 - 4.5 

4 0.270 0.080 0.30 -0.01 - 0.2 

2 0.365 0.140 0.38 -0.34 - 8.6 
09 3 0.348 0.108 0.31 -0.26 - 5.1 

4 0.278 0.087 0.31 -0.24 - 4.7 

2 0.777 0.309 0.40 -0.41 -10.6 
13 3 0.740 0.231 0.31 -0.23 - 4.5 

4 0.694 0.208 0.30 -0.23 - 4.3 

2 0.797 0.350 0.44 -0.38 -11. 2 
14 3 0.767 0.263 0.34 -0.19 - 4.2 

4 0.718 0.241 0.34 -0.17 - 3.6 

2 0.843 0.358 0.42 -0.36 -10.1 
15 3 0.823 0.252 0.31 0.01 - 0.1 

4 0.776 0.233 0.30 0.02 0.3 

2 0.815 0.396 0.49 -0.37 -12.5 
16 3 0.871 0.279 0.32 -0.17 - 3.5 

4 0.820 0.256 0.31 -0.17 - 3.3 

2 0.822 0.339 0.41 -0.30 - 8.2 
23 3 0.998 0.329 0.33 -0.15 - 3.1 

4 0.954 0.309 0.32 -0.12 - 2.6 

TABLE 4.7. 
PREDOMINANT WAVE DIRECTIONS FOR ALL RUNS AND ALL LEVELS 
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Run Predominant Wave Direction 
Number (Degrees) 

01 -0.7 

02 -0.2 

06 -1.2 

07 -2.2 

08 -2.3 

09 -4.9 

13 -4.4 

14 -3.9 

15 0.1 

16 -3.4 

23 -2.8 

TABLE 4.8. 
PREDOMINANT WAVE DIRECTIONS 
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RUN 01 

Level 3 Level 4 

Frequency 
- 0 - 0 - 0 - 0 

(Hz) 8, S, 82 S2 8, S, 82 S2 

0.065 1 2 - 8 7 - 1 3 - 5 9 

0.097 - 4 1 - 6 5 - 6 1 - 2 5 

0.129 - 6 9 - 5 16 - 1 11 0 14 

0.162 - 4 9 - 3 9 - 3 9 - 3 9 

0.194 - 1 13 0 10 3 17 2 13 

0.226 6 8 8 7 3 6 6 6 

0.259 - 3 8 - 1 5 0 6 3 6 

0.291 5 6 5 3 11 4 11 4 

0.323 9 6 8 4 11 2 9 3 

0.356 8 3 5 3 19 1 10 3 

RUN 23 

Level 3 level 4 

Frequency 
- 0 - 0 - 0 - 0 

(Hz) 8, S, 82 S2 8, S1 82 S2 

0.065 - 4 7 - 5 9 2 2 - 1 8 

0.097 - 5 10 - 5 9 - 3 7 - 4 10 

0.129 - 3 13 - 3 11 - 3 8 - 5 11 

0.162 - 2 9 - 1 7 - 1 8 - 3 8 

0.194 4 4 6 3 - 1 3 - 1 3 

0.226 4 2 10 3 - 4 2 4 3 

0.259 - 1 1 10 2 4 1 2 2 

0.291 11 1 6 2 4 1 9 2 

TABLE 4.9. 
COSINE-POWER SPREADING FUNCTION PARAMETERS FOR RUN 01 AND RUN 23 

(TICKEll AND BURROWS, 1989) 
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RUN 13 

Level 2 Level 3 Level 4 

Frequency (Hz) - 0 8, 5, 
- 0 8, 5, 

- 0 8, 5, 

0.058 -16 3 -7 5 -10 4 

0.071 -10 12 -4 16 - 4 12 

0.084 -10 19 -4 27 - 5 15 

0.097 - 9 25 -3 35 - 3 18 

0.110 -10 16 -4 24 - 2 16 

0.123 -12 15 -5 23 - 4 16 

0.136 -15 9 -8 12 - 6 9 

0.149 -15 8 -8 10 - 7 8 

0.162 - 7 7 -1 10 1 8 

0.175 - 7 7 0 10 2 9 

0.188 -10 6 -1 8 0 8 

0.201 - 9 4 -2 6 - 1 6 

RUN 15 

Level 3 Leve 1 4 

Frequency 
- 0 - 0 - 0 - 0 (Hz) 9, 51 92 S2 8, S, 92 52 

0.032 -13 1 -15 4 - 5 - -18 3 

0.065. - 4 11 - 4 15 - 3 10 - 3 15 

0.097 1 18 1 10 1 14 2 9 

0.129 0 23 0 9 0 20 0 9 

0.162 - 3 10 - 3 5 - 2 10 - 2 5 

0.194 2 5 6 2 4 5 8 2 

0.226 - 3 4 -31 5 - 1 4 - 2 2 

0.259 14 1 -47 - - 1 2 -64 1 

0.291 - 9 2 -22 1 - 1 - -29 2 

0.323 -15 1 -65 2 -10 1 -27 1 

0.356 -10 1 -58 1 -11 2 -11 2 

TABLE 4.10. 
COSINE-POWER SPREADING FUNCTION PARAMETERS FOR RUN 13 AND RUN 15 

(TICKELL AND BURROWS, 1989) 
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Run Nil Level Current Current 
Magnitude Direction r, r2 

(m/sec) (Degrees) 

2 0.47 62 0.57 1.35 
01 3 0.46 72 0.56 1. 50 

4 0.46 75 0.56 1.89 

2 0.49 63 0.81 1.36 
02 3 0.51 69 0.83 1.65 

4 0.50 73 0.83 2.05 

2 0.49 59 2.24 1.30 
06 3 0.50 71 2.28 1.36 

4 0.50 73 2.26 1.67 

2 0.49 57 2.08 1.23 
07 3 0.50 70 2.10 1.22 

4 0.50 73 2.14 1.49 

2 0.47 61 1.34 1.21 
08 3 0.48 71 1.38 1.35 

4 0.49 73 1.40 1. 74 

2 0.46 64 1.02 1.17 
09 3 0.48 73 1.06 1.31 

4 0.50 77 1.13 1.72 

TABLE 4.11. 
CURRENT FOR LOW-INTENSITY RUNS 
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Run Nil Level Current Current 
Magnitude Direction r, r2 

(m/sec) (Degrees) 

2 0.01 146 0.06 0.02 
13 3 0.05 203 0.24 0.07 

4 0.06 216 0.28 0.09 

2 0.09 191 0.41 0.10 
14 3 0.15 206 0.70 0.19 

4 0.17 208 0.76 0.22 

2 0.18 224 0.79 0.19 
15 3 0.30 230 1.34 0.35 

4 0.30 226 1.34 0.38 

2 0.27 247 1.17 0.30 
16 3 0.45 231 1. 96 0.49 

4 0.45 227 1. 96 0.53 

2 0.64 46 2.71 0.72 
23 3 0.57 76 2.45 0.55 

4 0.60 75 2.55 0.60 

TABLE 4.12. 
CURRENT FOR HIGH-INTENSITY RUNS 
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~ 
o 
w 

Frequency RUN 01 RUN 08 RUN 15 RUN 23 

(Hz) 

0.032 

0.065 

0.097 

0.129 

0.162 

0.194 

0.226 

0.259 

0.291 

0.323 

0.356 

Observed Level 3 Level 4 Observed Level 3 Observed Level 3 level 4 Observed 

0.006 0.154 0.117 0.014 0.119 0.558 0.760 0.772 0.487 

0.322 0.572 0.442 0.382 0.605 5.978 4.161 4.024 8.020 

0.087 0.174 0.121 0.130 0.256 9.254 8.538 8.631 8.050 

0.507 0.504 0.427 0.782 0.759 5.764 7.099 7.219 4.750 

0.578 0.450 0.396 1.177 0.986 2.514 2.540 2.696 3.450 

0.295 0.376 0.370 0.547 0.454 1.461 1.466 1.628 1.160 

0.323 0.300 0.264 0.549 0.479 1.041 0.723 0.846 0.878 

0.375 0.209 0.208 0.380 0.302 0.551 0.425 0.556 0.374 

0.252 0.126 0.139 0.214 0.187 0.181 0.244 0.398 0.229 

0.221 0.119 0.125 0.135 0.085 0.149 0.137 0.337 0.113 

0.150 0.066 0.075 0.066 0.075 0.093 0.112 0.471 0.044 

TABLE 4.13. 
SURFACE ELEVATION SPECTRA BASED ON TOTAL HORIZONTAL VELOCITY SPECTRA (Gqq m2/Hz) 

(TICKELL AND BURROWS, 1989) 

level 3 

2.707 

10.410 

9.411 

5.360 

3.761 

1.696 

0.832 

0.434 

0.260 

0.257 

0.193 
--_ .. _-



.... 
o 
~ 

frequency 

(Hz) 

0.065 

0.097 

0.129 

0.162 

0.194 

0.226 

0.259 

0.291 

0.323 

0.356 
-_.- --

Level 3 

0.976 

1.057 

0.909 

0.862 

0.817 

0.788 

0.879 

0.859 

0.800 

0.834 

RUN 01 RUN 08 RUN 15 

Level 4 Level 3 Level 3 

1.240 1.030 1.056 

1.262 0.803 0.949 

0.908 0.817 0.968 

0.804 0.824 0.972 

0.784 0.823 0.965 

0.759 0.814 1.021 

0.744 0.798 0.773 

0.771 0.830 0.972 

0.771 0.875 1.002 

0.717 0.644 0.890 

TABLE 4.14. 
HORIZONTAL/VERTICAL TRANSFORM fACTOR Z 

(TICKELL AND BURROWS, 1989) 

Level 4 

1.018 

0.869 

0.873 

0.837 

0.845 

0.866 

0.674 

0.785 

0.713 

0.562 

RUN 23 

level 3 

0.972 

0.827 

0.827 

0.827 

0.905 

0.821 

0.918 

0.928 

0.867 

0.768 
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Chapter 5 

Long-term Properties of Sea Waves 



INTRODUCTION 

There are two distinct approaches to the design of offshore structures: 

deterministic and probabilistic. One of the two subjects of this 

thesis, is the probabilistic analysis of fixed jacket-type offshore 

structures exposed to random wave loading. Deterministic and 

probabilistic methods are different in that the former is based on the 

long-term distribution of wave heights while the latter, on the long

term distribution of response peaks. 

Chapter 8 is concerned with the short-term probability distribution of 

response while Chapter 10 is devoted to efficient ways of establishing 

that probability distribution. The determination of the short-term 

distribution of the response peaks from the short-term distribution of 

the response itself, is the subject of study in Section 8.3. On the 

other hand, the derivation of long-term distribution of response peaks 

from its short-term distribution, is similar to the derivation of long

term di stri but ion of waveheights from its correspondi ng short-term 

distribution (which was discussed in Chapter 3). For this reason, the 

methodology for derivation of long-term distribution of waveheights is 

fully described herein. A brief discussion of the properties of the 

long-term distribution of response peaks will be presented in Section 

8.4. 

Offshore structures must be designed against both fatigue and first

excursion failures. First excursion failure analysis is based on 

extreme events. In the deterministic approach, an extreme wave height 

such as the '50 year' or '100 year' design wave height is used, while 

in the probabilistic approach, the '50 year' or '100 year' response 

peak is computed. There is a sma 11 probabil ity that these extreme 
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events will be exceeded during the service life of the structure. This 

is referred to as the probability of encounter or the risk of failure. 

The relationship between the risk of failure, the service life of the 

structure, and the probability of exceedence for the design waveheight 

(or the design response peak) will be established in Section S.l. 

Knowing the probability of exceedence, the design waveheight can be 

determined from the long-term distribution of the waveheights. 

The long-term distribution of the waveheights is obtained by 

convoluting the short-term distributions of the waveheights with the 

long-term distribution of sea states or wave conditions. Therefore, 

before the long-term distribution of the waveheights can be 

established, one must determine the long-term distribution of the sea 

states from a few years measurement. This is the subject of study in 

Section 5.2. The determination of the long-term distribution of 

waveheights by convoluting their short-term distributions with the 

long-term distribution of sea states is studied in Section 5.3. Knowing 

the long-term distribution of waveheights and the risk of failure, the 

design waveheight can be determined. 

5.1 PROBABILITY OF ENCOUNTER 

The probability of encounter or risk of failure has a clear 

interpretation; therefore, it is preferable to base the design on an 

acceptable level of risk of failure rather than on an extreme event 

which does not offer a clear interpretation. Of course, the two are 

interrelated so that knowing one of them, the other can be calculated. 

The 'r-year' wave height Hr is defined as the wave height which is 

equalled or exceeded on average once every r years. 
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let M be the average number of waves per year, then M'*r will be the 

average number of waves per r years. From the definition of the 'r

year' wave height, the probability of a wave height being equal to or 

greater than Hr is 

(5.1) 

or 

(5.2) 

let l years be the service 1 He of a structure; then the expected 

number of waves during this period is M'*l. Since the probability of an 

individual wave height being less than Hr is 1- l/M'*r, then, assuming 

that all the wave heights are statistically independent, the 

probability of all the wave heights (or the extreme wave height) in l 

years being smaller than Hr is 

, M'"L prob{extreme H<Hr during the service lHe} • (1 - l/M *r) 

- (1 - l/M'*r)M"r I L/r 

= [(1 - l/M'*r)M'·r]L/r 
(5.3) 

Since l/(M*r) is a very small number, the quantity in square brackets 

will approach ~'. Hence, 

prob{extreme H<Hr during the service life} .. (eo')L/r = exp{-l/r) (S.4) 

Thus, the probability of encountering at least one wave height greater 

than or equal to the 'r-year' wave height during the service life of 

the structure is 
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Ep = prob{at least one H~Hr during the service life} 

= 1 - exp(-L/r) (5.5) 

Therefore, for example, in order to keep the risk of failure below 10%, 

the design return period must be greater than 10 times the service life 

of the structure. 

In some publications (Borgman, 1963), Ep has been derived in a different 

way. The argument goes like this. 

prob{at least one H~Hr during a one-year period} • l/r (5.6) 

Therefore, 

prob{extreme H<Hr during a one-year period} = 1 - l/r (5.l) 

and 

prob{extreme H<Hr during L years} • (1 - l/r)L (5.8) 

consequently, 

Ep .. prob{ at 1 east one H~Hr duri ng L years) '"' 1 - (1 - l/r) L 
(5.9) 

Equation (5.9) approaches Equation (5.5) most of the time, but for 

example assume that the analysis is based on the 'one-year' wave 

height, i.e. r = 1, then from Equation (5.9), Ep = 1. This means that 

the probabil ity of the 'one-year' wave height being exceeded in a 

period longer than one year is 1, which obviously cannot be true. 

Equation (5.5) gives a probability of 0.63. It is Equation (5.6) which 

is flawed. During a one-year period, the 'r-year' wave height can be 

exceeded 0, 1, 2, 3, ..•.•• times. l/r is the mean of the associated 
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probability distribution, not the probability of 'r-year' wave height 

being exceeded at least one time. 

Sarpkaya and Isaacson (1981) suggest that Equation (5.9) is correct and 

that Equation (5.5) is a good approximation to it. In my opinion, it is 

Equation (5.5) which is correct and Equation (5.9) can be considered as 

an approximation to it. For the two equations to be equal, the 

following identity must hold true. 

1 - l/r = exp(- l/r) (5.10) 

The following table compares the values of (1 - l/r) and exp(- l/r). 

r 1 - l/r exp( - l/r) 

1 0 0.37 

2 0.50 0.61 

3 0.72 0.67 

4 0.78 0.75 

5 0.82 0.80 

10 0.90 0.90 

As observed, for the larger return periods (r~10), the two quantities 

approach each other. Therefore, in practical design both methods are 

equ i va 1 ent. 

5.2 SCATTER DIAGRAM AND ITS EXTRAPOLATION 

The long-term distribution of wave heights is obtained by convoluting 

the short-term distribution of wave heights with the long-term 

distribution of sea states or wave conditions (Battjes, 1970). As 

previously mentioned, over short periods of time (a few hours), the sea 

surface can be assumed stationary. Over longer periods, however, storms 
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vary in severity; therefore, in the long-term, the sea surface is not 

stationary. To represent the major long-term characteristics of sea 

waves, typically water surface records are obtained every 3 hours for 

a period of 10 to 20 minutes. Each record is considered to represent a 

sample from a short-term stationary sea state and is normally reduced 

to two representative parameters, H. and Tz• Furthermore, the expected 

maximum wave height E[Hm~] can be computed for each three hour 

observation. 

In addition to Ha and Tz ' a complete representation of the long-term 

properties of sea waves requires the short-term mean direction of the 

waves as well as their directionality. However, due to difficulty in 

measuring wave directions, the wave climate or distribution of sea 

states is normally described by means of a scatter diagram giving the 

joint probability of occurrence of pairs of H. and Tz ' as shown in 

Figure 5.1. The wave scatter diagram is usually obtained by direct 

measurements. 

A scatter diagram obtained from a short peri od of measurement (one 

year, for example) does not cover all the sea states possible at the 

site and hence does not lead to a reliable long-term distribution of 

wave heights. If one uses the measured scatter diagram, it means that 

the wave climate is repeated exactly at intervals equal to the 

measurement peri od; consequently, sea state conditions of greater 

intenSity (and of greater return period) than those measured are not 

accounted for. 

Trial calculations have shown that scatter diagrams should cover the 

average Occurrence of sea states over a duration which is at least 10 

times as long as the service life of the structure (Ing11s et al, 
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1985). Since such a long data base is not available, one must simulate 

it by extrapolating the observed wave scatter diagram. 

The first step in extrapolating the wave scatter diagram is to 

establ ish the long-term di stri buti on of significant wave hei ghts. 

Knowing this distribution, the procedure for extrapolating the diagram 

is straightforward and is nicely described by Inglis et al, (1985). 

Figure 5.2 (taken from Inglis (1985)) covers the procedure through an 

example in which a measured 6-year scatter diagram is extrapolated to 

a lOaD-year scatter diagram. 

Distribution of H. 

The long-term distribution of H. has not been derived by theoretical 

means. However, trial and error has shown that the best fits are 

obtained by the Weibull or Gumbel (extreme value type I) distributions. 

In effect, the marginal distribution of H., obtained from the scatter 

diagram, is compared with various theoretical probability distributions 

until a reasonable fit is obtained. The distribution of H. is then 

assumed to follow this distribution. 

It is usually the observed and theoretical cumulative distributions 

which are compared. Based on the scatter diagram, the observed 

cumulative distribution of H. is 

" prob{H. S HB"} = l;.1 
W + 1 (5.11) 

where 

Wij = number of occurrences in scatter diagram class (i,j) 
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W = Lni Lnj Wij 

Hm = upper limit of H. in class i = n 

The reason for using (W+1) rather than W is that the use of W assigns 

a probability of 1.0 to the upper bound of the observed significant 

wave heights which is' not appropriate because it implies that higher 

values of H. are not possible. By using (W+l), the probability assigned 

to the highest observed value of H. will be less than one and therefore, 

there will be room for extrapolation of the data. 

The data is then fitted to a theoretical probability distribution, i.e. 

the parameters of the distribution are chosen so that the best fit 

between the observed and the theoret i ca 1 d istri but ion is obta i ned. 

These parameters are determined by one of the following methods 

(Sarpkaya and Isaacson, 1981). 

a) Graphical estimation ('eye' fitting) 

b) Method of least squares 

c) Method of moments 

d) Method of maximum likelihood 

Probability papers are used to check how good a theoretical probability 

distribution fits the observed data. These papers are constructed so 

that the cumulative probability distribution is plotted as a straight 

line on the papers. The goodness of fit is judged by how close the 

observed cumulative distribution follows a straight line on the paper, 

as shown in Figure 5.3. 

In establishing the long-term distribution of significant wave heights, 

the following points must be considered: 
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1. Measurements of Ha taken over any finite interval of time are 

random samples from the complete population of H •. Through the 

techniques of extrapolation, one tries to estimate the 

distribution of the population from analysis of the limited 

amount of data available. However, it must be recognised that the 

distribution of such short-term data samples from infinite 

populations are subject to sampling errors. In particular, it is 

inevitable that higher intensity sea state occurrences will vary 

considerably from year to year. 

2. If the yearly variability is limited to the extreme events, then 

mathemat i ca 1 methods of fitt i ng data such as the method of 

moments are more suitable than the graphical fitting method 

because the 1 atter tends to place more emphas is on the upper 

range data points in comparison to mathematical methods. However, 

if the wave climate variability from sample to sample is not 

restricted to extreme sea states, but there is variability in 

lower and middle ranges of HI' then the one-year record length is 

too short and high degrees of uncertainty are inevitable (Nolte, 

1973). Therefore, an adequate data base is essential for 

establishing the long-term distribution of H •• 

3. When such a data base is not available, the wave height data may 

be obtained by hindcasting from meteorological data. Hindcast 

data are est ab 1 i shed from past weather i nformat i on us i ng wi nd 

data as input to a wave generating model. 

4. There will be a physical limit to the values of H. recorded at any 

location which depends upon the 1 imit1ng wind speed, and its 
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duration and the fetch available for the generation of the sea 

states of extreme severity. Clearly, extrapolation of H. beyond 

this physical limit would be meaningless. 

5.3 LONG-TERM DISTRIBUTION OF WAVE HEIGHTS 

As stated before, the long-term distribution of wave heights is 

obtained by convoluting the short-term distribution of wave heights 

with the long-term distribution of sea states or wave conditions. For 

each short-term sea state {H~, T~}, the probability of exceedence of 

individual wave heights is 

{5.12} 

and the average number of waves per unit time is 

(5.13) 

Therefore, the average number of waves per unit time with H~h, N(h), 

would be 

(5.14) 

Now, the proportion of time for which sea states are in class (i,j) is 

Wi/W, where Wij and Ware defi ned as before. Thus, the uncondi t i ona 1 

average number of waves per unit time, associated with class (i,j) 1s 

E[N(h)]i,j = E[N(h)IH.i,Tzj] * WiW 

= (l/Tzj ) * exp[-2(h/H.i)2] * Wi/W (5.15) 

The expected number of waves per unit time with H~h, for all the sea 

states is 

E[N(h)] = Li Lj E[N(h) ]i,j 

= (l/W) * Li exp[-2(h/H.J2] Lj Wj/Tzj (5.16) 
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and the expected number of waves per unit time for all heights is 

obtained by setting h=O in the above equation. 

Finally, the long-term probability of exceedence is 

QLT.H(h) = probLT {H~h} = E[N(h) l/E[N(O) 1 

and the long-term cdf is 

L exp [- 2(h/Hsi)2] * Li WiTzi 

'. '. W./T. L.I L.J I ZJ 

PLT•H (h) = probLT {H<h} 

Li exp[ -2(h/Hsi)2] Lj W/Tz; 
= 1.0 -

'. '. W./T. L.I L.J I ZJ 

(5.17) 

(5.18) 

(5.19) 

The above expression is then fitted to a suitable probability 

distribution such as Weibull 2 parameter or Gumbel (extreme value type 

I) distributions. The extreme events (such as the '100 year' wave 

height) are then obtained by extrapolating the theoretical 

distributions. 

Figure 5.4 shows the sensitivity of the long-term distribution of wave 

heights to the extrapolation of significant wave height. 
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Chapter 6 

Calculation of Cylinder Kinematics 
and Shifting Water Particle Kinematics 

from their Point of Measurement 
to the Cylinder Axis 



INTRODUCTION 

Before proceedi ng with the deri vat i on of Mori son coeffi ci ents, the 

following steps must be taken: 

1. The data supplied by BMT included cylinder displacements in the 

x and y directions; however, in the relative motion form of 

Morison's equation, the cylinder velocity and acceleration (i.e. 

the first and second derivatives of displacement with respect to 

time) are required. Finite-Difference and Fourier methods have 

been employed in derivation of the cylinder kinematics (velocity 

and acceleration) from cylinder displacement. 

2. Due to cylinder movement, the perforated balls, used in measuring 

water particle kinematics, were mounted on the small rigid column 

of the tower, which is some 12m distance from the compliant 

cylinder. Therefore, it is necessary to predict water particle 

kinematics at the cylinder by shifting (translating) them from 

their point of measurement to the cylinder axis. 

6.1 CYLINDER KINEMATICS 

6.1.1 FINITE DIFFERENCE METHOD 

The cylinder displacement is known at intervals of lit = 0.075472 

seconds and is denoted by r., where subscript s refers to time t. = slit 

with s = O,l, ..... ,N 1. In the Finite-Difference method, the 

successive derivatives of r at time t. are obtained in terms of the 

values of r at that point and a few neighbouring points. To ensure 

accuracy, especially as regard to the second order derivative, fourth 

order equations, which approximate the derivatives of a function at a 

pOint in terms of the values of the function at that point and four 

neighbouring points, were applied. 
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Central difference equations, in which two of the neighbouring points 

are before r. and the other two are after ri' were applied to all pOints 

except the first two and the last two points. That is, 

1 

12At (6.1) 

s = 2,3, .•.. ,N - 3 

1 
r. = (- r._2 + 16r._1 - 30r. + 16r.+1 - rs+ 2) 

12At2 (6.2) 

where rand r are the first and second derivatives of r with respect to 

time. 

For s = 0 fully-forward difference equations, in which all the 

neighbouring points are after point r. were used. Hence, 

1 
r. = (- 2Sr. + 48rs+1 - 36rs+2 + 16rs+3 - 3r1+4) 

12At (6.3) 

1 
f. = 

For s = 1, semi-forward difference equations, in which only one of the 

neighbouring pOints is before r. and the remaining three are after r., 

were used. 

1 

12At (6.5) 

1 

(6.6) 
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For s = N - 2, semi-backward difference equations, in which three of 

the four neighbouring points are before r., were applied. 

1 
f. = (- r •. 3 + 6r •. 2 - 18r •. 1 + 10r. + 3r.+d 

12~t (6.7) 

1 
F. =--

12~t2 (6.8) 

And finally, for s = N - 1, fully-backward difference equations, in 

which all the four neighbouring points are before r., were used. 

1 
r. = (3r •. 4 - 16r •. 3 + 36r •. 2 - 48r •. 1 + 25r.) 

F = • 

Int 

1 

(6.9) 

( 11 r •. 4 - 56r •. 3 + 114r •. 2 - 104r •. 1 + 3Sr.) 
12~t2 (6.10) 

Figures 6.1 and 6.2 show sample time series of cylinder velocity and 

acceleration obtained by this method for Level 2 of Run 15. 

Derivation of Central Difference Equations 

In this section, central difference equations are derived. Other 

equations are derived in a similar manner. 

In general, the central difference equations are of the following form 

f. = Ar._2 + Br._1 + Cr. + Dr.+1 + Era+2 

According to Taylor's theorem 

(6.11) 

(6.12) 

r(t+h) = r(t) + h.f(t) + 1/2 h2.F(t) + 1/6 h3.r~'(t) + 

(6.13) 
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Where rl31 and r l41 are the th i rd and fourth order deri vat i ves of rand 

O(h 5
) contains terms with h5 and higher powers of h. Setting t = t. and 

replacing h with -2At, -At, 0, At, and 2At respectively, the following 

values of r are obtained. 

r.-2 = r. - 2Ati'. + 2At2r. - 8/6At3 r.(3) + 16/24 

At4 r.(4) + 0 (At5 ) (6.14) 

r = r - Ati' + 1/2At2r - 1/6At3r (3) + 1/24At4 r 141 + 0 (At5
) .-1 •• • • • 

(6.15) 

r. = r. (6.16) 

Substituting from Equations (6.14) to (6.18) for r._2, r._" r., r.+" and 

r.+ 2 into Equations (6.11) and (6.12), leads to 

and 

i'. = (A + B + C + 0 + E)r. + At( -2A - B + 0 + 2E)r. + At2(2A + 1/2B 

+ 1/2D + 2E) r. + At3( -4/3A - 1/6B + 1/6D + 4/3E) r.(3) + At4(2/3A + 

1/24B + 1/240 + 2/3E)r.14) + 0(At5
) (6.19) 

F. = (P + Q + S + T + U)r. + At(-2P - Q + T +2U)r. + At 2(2P + 1/2Q 

+ 1/2T + 2U)F. + At3(-4/3P .; l/6Q + 1/6T + 4/3U)r.13) + At4(2/3P + 

1/24Q + 1/24T +2/3U)r.14) + 0(At5
) (6.20) 

If the above relationships are to be correct for all values of s, then 

similar terms on both sides of the equations must be equal. Hence 
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and 

A + B + C + 0 + E = 0 

1 
-2A - 8 + 0 + 2 E = -

At 

2A + 1/28 + 1/20 + 2E = 0 

-4/3A - 1/68 + 1/60 + 4/3E = 0 

2/3A + 1/248 + 1/240 + 2/3E = 0 

P + Q + S + T + U = 0 

-2P - Q + T + 2U = 0 

2P + 1/2Q + 1/2T + 2U = 
1 

At2 

-4/3P - 1/6Q + 1/6T + 4/3U = 0 

2/3P + 1/24Q + 1/24T + 2/3U = 0 

Solving the above two sets of linear equations, yields 

1 
A = 

12l1t 

8 
B = -

12l1t 

C = 0 

8 
o = - I1t 

12 

1 
E = - I1t 

12' 

and 
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1 
P = -

12At2 

16 
Q = 

12At2 

30 
S = -

12At2 

16 
T = 

1211t2 

-1 
U = 

1211t2 (6.24) 

Equations (6.5) and (6.6) are obtained, by replacing the values of the 

above coefficients into Equations (6.11) and 6.12), respectively. 

6.1.2 FOURIER METHOD· 

If x(t) is a periodic function with period T, then it is always 

possible to write (Newland, 1975) 

x(t) = Xo + EGO [ak cos (Wkt) + bk sin(wkt)] 
K -1 (6.25) 

Where 

21rk 
wk = 

T (6.26) 

2 T 
ak = - ~ x(t) COS(Wkt) dt 

T (6.27) 

2 T 
bk = - ~ x(t) sin{wkt) dt 

T (6.28) 

1 T 

xo = - ~ x(t) dt 
T (6.29) 
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Using complex notation, Equations (S.27) and (S.28) can be combined 

into a single equation by defining 

Then, 

and 

2 T 
xk = - ~ x(t) exp(-iwkt) dt 

T 

(6.30) 

(6.31) 

(6.32) 

where Real(c) refers to the real part of the complex number c. xk are 

known as the Fourier coefficients of the periodic function x(t). 

If the maximum frequency present in x(t) corresponds to k=m, then 

(6.33) 

Now consider the case when x(t) is only known at equally spaced 

intervals of 6t. In other words, x(t) is represented by the Discrete 

series {x.} where subscript s refers to the time t. = s6t and 

s=0,1, ..... ,N-1. In this case the maximum measurable frequency is known 

as the folding or Nyquist frequency and is equal to 

27r(N/2) 27r(N/2) 7r 
Wnyq = Wk =N/2 = '" 

T N.At At (6.34) 
or 

1 
fnyq = 

26t (S.35) 

In practice, 6t must be small enough so that the Nyquist frequency is 

well above (say at least 2 times) the maximum frequency present in the 

signal x(t). 
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From Equation (6.31), the Fourier coefficients of the discrete series 

{x.} wi 11 be 

2 t'N.' 
xk = - I.J x. exp[-i{21rks/N)] 

N ... 0 

k = 1,2, ......•. ,(N/2 - 1) 

_1 t' N·' 
I.J x, exp{-is1r) • N ,.,0 

1 EN.' 
N .-0 

(6.36) 

(6.37) 

x. cos (S1r) 
(6.38) 

Any typical value x, of the series {x.} is given by the inverse equation 

t' N/2 
X. = Xo + I.J Real [xk exp(i211"ks/N)] k-' 

s = O,I, •.•.. ,{N-l) (6.39) 

Note that for s < 0 or s > (N-l), the series repeats itself so that 

Fast Fourier Algorithms (FFT) were used to break down the cylinder 

displacement, r{t), into its frequency components, i.e. 

(6.40) 

The cylinder velocity and acceleration are obtained by taking the first 

and the second order derivatives of r(t) with respect to time, i.e. 

and 
(6.41) 
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~/2 
f(t) = L 

k=1 (6.42) 

The cylinder velocity and acceleration are then obtained by an inverse 

Fourier Transform of the above equations. Cylinder velocity and 

acceleration for Level 2 of Run 15 are shown in Figures 6.3 and 6.4, 

respectively and are in full agreement with those obtained from the 

Finite Difference method shown in Figures 6.1 and 6.2. 

Practical Considerations in the Fourier Method 

In FFT, the number of elements in a sequence must be an integer power 

of 2. If this is not the case, it is common practice to add zeros to 

the tail of the sequence so that the number of data points is increased 

to the nearest integer power of 2. For example, the number of data 

points in the cylinder displacement series {r.} is N = 13816 which is 

higher than 213 - 8192 but less than 214 = 16384. Therefore, 2568 zero 

points need to be'added to the tail of the sequence so that the number 

of data points in the signal is increased to 214 = 16384 points. 

Alternatively, as was the case with this study, L = 1284 zeros can be 

added to both the beginning and the end of the sequence. 

Using FFT algorithms, Fourier coefficients of r(t) were calculated. 

Fourier coefficients of r(t) and F(t) were then obtained from Equations 

(6.41) and (6.42) and subsequently an inverse Fourier transform yielded 

the values of r(t) and r(t). The results were satisfactory except that 

as shown in Figures 6.5 and 6.6, there were very large-amplitude, high

frequency fluctuations at the vicinity of time t=O. These high

frequency fluctuations are almost certainly due to the sudden jumps 

from rN.1 to rN = 0 and from r., = 0 to ro (Fi gure 6.7 -a). As a result of 
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these sudden jumps, high-frequency, low-amplitude oscillations are 

introduced in the signal r(t). However, these low-amplitudes are 

greatly magnified because of their high frequency, when the first and 

second order derivatives are calculated. 

Furthermore, the cylinder kinematics at the first and the last two 

points (points O,I,N-2,N-I) deserve special attention. Since these 

kinematics are dependent on the cylinder displacement in the vicinity 

of the above mentioned points, adding zeros to the beginning and the 

end of the series results in unreliable values of kinematics at these 

paints. 

The above mentioned problems were solved in the following manner. 

a) L = 1284 non-zero points were added to both the beginning 

and the end of the sequence {r.}, as wi 11 be des cri bed 

below. The new sequence is {r.} with s = -L, ........ , 

-1,O,I, ••••••. ,N + L - 1 (Figure 6.7-b). 

b) In Discrete Fourier analysis, the sequence {r.} repeats 

itself for s > N + L - 1, so that rN+l = r_L and rN+L1n
} = r_ 

L1n
} where r1n} stands for the nth order deri vat i ve of r. 

Therefore the values of rN +l-1 and r_L must not be far apart. 

In other words, there must not be a sudden jump from rN+G1 

to r_L. Furthermore, since it is intended to calculate the 

first and the second order derivatives of r, fN+G1 and rN +G 

1 must also be close to f_L and r_Lt respectively. 
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c) To avoid distorting the values of the kinematics at points 

o and 1, r., and r.2 were calculated from the following 

relationships. 

(6.43) 

(6.44) 

Substituting for ~, and r~ from the above equations into 

Equations (6.1) and (6.2) (Central-Difference Equations) 

with s = 0 and 1, leads to 

I 
fo = (-25ro + 48r, - 36r2 + 16r3 - 3r4 ) 

12At (6.45) 

1 
Fo = (35ro - I04r, + 1I4r2 - 56r3 + llr4 ) 

12~t2 (6.46) 

and 

1 
f, = ( -3ro - IOr, + 18r2 - 6r3 + r4 ) 

12At (6.47) 

I 
F, = (IIro - 20r, + 6r2 + 4r3 - r4 ) 

12At2 (6.48) 

which are the same as the fully-forward and semi-forward 

equations (Equations 6.3 - 6.6) used in calculation of the 

kinematics at points 0 and 1 in the finite-difference 

method. 
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d) Similarly, to avoid distorting the values of kinematics at 

points N - 2 and N - 1, rN and rN+1 were calculated from 

the following relationships 

rN = rN-5 - 5rN_4 + IOrN_3 - IOrN_2 + SrN + 1 (6.49) 

rN+ 1 = SrN_5 - 24rN_4 + 45rN_3 - 40rN_2 + 15rN_1 
(6.50) 

when these values of rN and rN+1 are replaced into the 

central-difference equations for s = N - 2 and s = N - 1, 

they lead to the semi-backward and fully-backward equations 

used in calculation of the kinematics at points N - 2 and 

N - 1 in the finite difference method. 

e} The first L - 2 points are the mirror image of r_1 to rL-4 

with respect to a vertical line at point r_2 (Figure 6.7b). 

Therefore, 

r_ 2-j = r_2 + j 

j = 1,2, .••.. ,L - 2 (6.51) 

f} Similarly, the last L - 2 points are the mirror image of rN_ 

L+3 to rN with respect to a line at point rN+1 (Figure 

6.7b). Therefore, 

r N + 1 + j = r N + 1-j 

j = 1,2, ..... ,L - 2 (6.S2) 

g) The resultant time series {r.} s = - L, •..• ,-I,O,I, .... , 

N + L - 1 is multiplied by the weighting'coefficients {w.} 

defined as (Figure 6.7e) 
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[~]3 L - 2 

{W.} = 1 

so that 

[

N + L - 1 _s]3 
L - 2 

for s = - L, ..... ,- 3 

for s = -2,-1,O, ..... ,N + 1 

for s K N + 2, ••... ,N + L -1 
(6.53) 

In other words, between the values of r.L and rN+L." r.L and 

rN+L.1' f\ and fCN+L.1 there is no sudden jump. Therefore, 

high-frequency oscillations will not be introduced in the 

series. 

Figure 6.8a shows that when zeros were added to the 

beginning and end of the series, high frequency 

oscillations build up in the vicinity of time = 0. In 

contrast when the above mentioned procedure is followed, 

high frequency oscillations are absent, as shown in Figure 

6.8b. 

6.2 SHIFTING WATER PARTICLE KINEMATICS IN THE PRESENCE OF CURRENT 

6.2.1 WAVE-CURRENT INTERACTION 

Consider a train of regular waves (wave length L, height H) travelling 

on a steady horizontally and vertically uniform current. The current 

velocity is c and its component in the direction of wave propagation, 

x, is ij = C COSQ (Figure 6.9). According to linear Wave theory, water 

surface elevation and water particle kinematics as observed by a 

stationary observer are (Hedges, 1987) 
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H 
T} = cos(kx - "'.t) 

2 (6.54) 

H 
u = U + ("'. - kU) rh cos(kx - "'.t) 

2 

v = v = c sina 

H 

(6.55) 

(6.56) 

2 (6.57) 

H 

2 (6.58) 

H 

2 (6.59) 

Where rh and ry are the horizontal and vertical depth attenuation 

factors (Equations (3.64) and (3.65», k = 27r/L is the wave number, "'. 

= 21[/T. and T. is the apparent wave period (wave period as measured by 

the stationary observer). The apparent angular frequency, "'., is related 

to wave number by 

"'. = jgktanh(kd) + ku (6.60) 

or 

T = • 
jgktanh(kd) + ku (6.61) 

6.2.2 SHIFTING THE KINEMATICS 

The above equations show that water surface elevation and its 

associated water particle kinematics are all of the form 

f(x,t) = f + p cos(kx - "'.t) (6.62) 
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where f is the mean of f and p is the amplitude of the sinusoidal 

function. At an arbitrary point x
" 

g(x
"

t) = f(x
"

t) - f is a function 

of time only. That is 

(6.63) 

in which kX, is a fixed phase angle. Expanding the cosine term, g(x
"

t) 

can be written as 

where 

{ 
axl = P C~S(kXl) 

bXl = P s 1 n (kx, ) 

(6.64) 

(6.65) 

Using complex notation, ax1 and bXl can be combined into a single complex 

number by defining 

A = ax1 - i bX1 = p exp ( -i kx,) (6.66) 

A is the complex Fourier coefficient of g(x
"

t). Knowing A, g(x
"

t) can 

be calculated by the process of inverse Fourier transform. Similarly, 

at pOint x2 = x, + 6X the Fourier coefficient 8 is 

8 = p exp(-ikx2) - p exp[-k(X, + 6X)] = P exp(-ikx, ) 

exp(-ik6X) = A exp(-ik6X) (6.67) 

Therefore, the Fourier coefficient of the sinusoidal wave at point x2 

can be obtained by multiplying its Fourier coefficient at point x, by 

exp(-ik6X) where k6x is the phase shift. 

In a random wave field, the discretised measured kinematics at pOint x, 

(N points at 6t apart) can be broken down into its harmonic components 
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( 

through FFT. For example, the horizontal component of water particle 
I 

velocity is 

(6.68) 

The wave number, ~, for each harmonic can be obtained from Equation 

(6.60) where 

C&.Iej = j • 1,2, •••.• ,N/2 
T (6.69) 

and T = Nat is the length of the recorded signal. 

To obtain the kinematics at point X2' the Fourier coefficients at point 

x" Aj, are multiplied by exp(-ikjAx) where Ax is the shift along the 

direction of wave propagation. Thus 

~ = ~ exp(-i~ ax) j = 1,2, ..... ,N/2 (6.70) 

Knowing Bj, (u - [j) at point x2 can be calculated by inverse Fourier 

transform. Note that the current component [j does not change from point 

x, to pOint x2 • 

Results 

The shifting distance depends on wave direction but is of the order of 

6m for the predominant direction. The phase shift can only be achieved 

by approximating the sea as long-crested in the predominant direction. 

Previous discussion of the directional properties of the seas suggests 

that this might not be unreasonable for those components in the most 

energetic part of the spectrum with wave lengths of 60-120m, where the 

shift is a fraction of the wave length. It is recognised that the phase 
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of shorter components, where the directional spread is greater and the 

wave length is shorter, will not be accurately transformed. 

Figures 6.10 to 6.15 show sample time series of the observed and 

translated velocities and accelerations at Level 2 and Level 3. Checks 

have been made to ensure that the general character of the time series, 

their variances and cross-correlations are reasonably maintained 

through the shifting process. 

6.2.3 PRACTICAL CONSIDERATIONS IN SHIFTING THE KINEMATICS 

6.2.3.1 The Effect of Current on Wave Period 

1) Examination of Equation (6.61) shows that when u ~ 0, TII is always 

positive and that for large values of k, TII approaches zero. For 

a wave with a particular wave length, wave period in the presence 

of current, TII , is less than the wave period in the absence of 

current (Figure 6.16). 

2) Figure 6.17 shows the variation of the apparent wave period with 

k for the case of a negative current. Equation (6.61) shows that 

the apparent wave period is infinity when 

/gktanh(kd} + kli = 0 (6.71) 

Dividing the above equation by k and taking u to the right hand 

side of the equation, leads to 

/ (g/k) tanh(kd) = - u (6.72) 

The left hand side of the above equation is equal to the celerity 

of individual waves. Therefore, when the celerity of the 

individual waves is equal and opposite to that of the current, 
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the apparent wave period is infinity, i.e. the waves are stagnant 

for the stationary observer (Hedges, 1987). 

3} Figure 6.17 shows that for negative currents, the apparent wave 

period has a minimum. The wave number leading to the minimum of 

Ta' can be obtained by setting the first derivative of Equation 

(6.61) equal to zero. That is Ta is minimum when 

g tanh(kd) + 
cosh2 (kd} 

gkd 
+ 2Q Jgktanh(kd) = 0 

{6.73} 

Dividing the above equation by 2tanh(kd} and replacing 2sinh(kd} 

cosh(kd) by sinh(2kd), results in 

1 [ 2kd] k 
2 1 + sinh(2kd) = - u gtanh(kd) (6.74) 

Multiplying the above equation throughout by J(g/k)tanh(kd), 

gives 

1 [ 2kd] - 1 + 
2 sinh(2kd) 

/(g/k)tanh(kd) • - u 
(6.7S) 

The left hand side of the above equation is equal to the group 

velocity of the waves and therefore, it can be concluded that the 

apparent wave period Ta is minimum when the group velocity is 

equal and opposite to the current velocity (Hedges, 1987). 

For deep water conditions (d/L > C.S), tanh(kd} = 1 and cosh(kd) 

would be large so that from Equation (6.73), Ta is minimum when 

g 
k = 

(6.76) 
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Combining Equations (6.76) and (6.61) leads to the minimum value 

of Ta for deep water conditions in the presence of negative 

currents 

(T a)min = 
81f I a I 

g (6.77) 

4) The above discussion shows that for negative currents, the wave 

number can be divided into three distinct regions (Figure 6.17). 

Region (a) -

Region (b) -

Region (c) -

Long waves (small k) where both the celerity 

of individual waves and group velocity are 

larger than lal. Therefore, individual waves 

and wave group as a whole propagate upstream. 

Short waves where the celerity of individual 

waves is larger than IQI, but the group 

velocity is smaller. Therefore, individual 

waves propagate upstream while the wave group 

as a whole is swept downstream. 

Very short waves (l arge k) where both the 

celerity of individual waves and group 

velocity are smaller than lal. Thus, 

individual waves and wave group as a whole are 

swept downstream and that is why the apparent 

period is negative for these short waves. 

Figure 6.17 shows that there are two possible solutions for 

periods greater than the minimum apparent wave period. However, 

Virtually all waves of engineering interest have group velocities 

which are greater than any current velocities likely to be 
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encountered {Hedges, 1987}. Consequently, only solutions in 

Region (a) need be considered in practice. 

5} In this study, the minimum value of 0 is -0.31 m/sec for Run 16 

at Level 4. From Equation (6.76), the wave number that leads to 

the minimum apparent wave period is 

or 

L = O.246m 

The water depth is approximately 10m so that d/L > 40 and hence 

deep water conditions are satisfied. Therefore, in this study, 

Equation (S.77) can be used to calculate the minimum apparent 

wave period for all the runs with negative currents. The largest 

value of {T.}m~ is for Run IS at Level 4. 

81£101 
Maximum [{T.}mnl = - 0.79 sec 

g 

Which corresponds to a frequency of 1.27Hz. While this is well 

above the important range of frequencies for all the runs, it is 

less than the Nyquist frequency of 6.SHz. Ideally, harmonics with 

periods smaller than {T.}m~ should not exist at all. However, the 

amplitudes of these harmonics though small are not zero. In this 

study, harmonics with periods greater than (T.)min were phase

shifted, but those with smaller periods were not. However, these 

harmonics have not been eliminated because their elimination 

results in a shifted signal which has a smaller standard 

deviation in comparison with the unshifted signal. 
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6.2.3.2 Solving the Dispersion Eguation 

Deep Water Condition 

For deep water conditions, (d/L ~ 0.50), tanh{kd) :: 1 and Equation 

(6.60) reduces to . 
w. = ./9k + ka (6.78) 

Taking ko to the left hand side of the above equation and raising both 

sides to the second power, results in 

Solving this quadratic equation, gives 

_ w.
2 

(1 + 2et ± /1 + 4et) 
k - -

g 2et2 

where et is a dimensionless entity defined as 

et = 
g 

(6.79) 

(6.80) 

(6.81) 

Equation (6.80) offers two solutions; however, for positive currents, 

there is only one acceptable solution. Equation (6.78) shows that 

w. - ka must be positive. Substituting from Equation (6.80) for k in 

Equation (6.78), yields 

w - kG = w (-• • 
1 + /I + 4et) 

2et 

That solution of k with positive square term results in a negative 

value for w. - kO. It is therefore concluded that for positive currents, 

the only acceptable solution is 
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_ W.
2 

( 1 + 2a - )1 + 4a) 
k - -

g 2a2 (6.82) 

For negative currents, {T.)m~ is calculated from Equation (6.77). For 

larger values of T., there are two solutions. However, as previously 

discussed, only the longer wave (smaller k) is of engineering interest. 

Therefore, for both negat i ve and pos it i ve currents, the fo 11 owi ng 

solution is adopted 

w/ (1 k:ll -
g (6.83) 

The above equation is indeterminate for a = 0 (a = 0) and for small 

values of a (small a and large T.), the problem of accuracy arises 

because (I + 2a) and )1 + 4a will be very close to each other. From 

Taylor's series, the power series expansion of )1 + 4a is 

Combining Equations (6.83) and (6.84) leads to 

k = 
w2 

• 

9 

(6.84) 

(6.BS) 

For lal < 0.01, the above equation gives accurate results. For larger 

values of a Equation (6.83) is used. Note that for a = 0 (a = 0), k = 

w.2/g which is the solution to Equation (6.78) when a is equal to zero. 

Shallow Water Condition 

When d/L < 0.50, there is no analytical solution to Equation (6.60). 

The wave number k is the root of function f{k) defined as 

f(k) = )gktanh{kd) + ka - w. (6.86) 
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Newton-Raphson numerical technique was used to solve the above 

equation. In this technique, the initial estimate of the root ko is 

successively improved in the following manner. 

k -n 

(6.87) 

where f(kn ) is the first order derivative of f(kn ) with respect to k, 

and is equal to, 

f(k) = 

gkd 
gtanh(kd) + 

cosh2(kd) 

2 jgktanh(kd) 
+ ii 

(6.88) 

The iterative process is repeated until sufficient accuracy is 

achieved. The initial estimate, ko, can be taken as the wave number for 

deep-water conditions obtained from Equations (6.83) or (6.85). Since 

for a given period, the wave length in deep water is always larger than 

the wave length in shallow water, ko serves as a lower bound to the 

solution of Equation (6.86). Furthermore, since for negative currents, 

there are two possible solutions, the choice of ko as the initial 

estimate ensures that the iterative process converges to the solution 

with the larger wave length, i.e. the solution in Region (a) of Figure 

6.17. 
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Chapter 7 

Fluid Loading on Submerged Cylinders 



INTRODUCTION 

The most-widely accepted approach to the problem of predicting wave 

loads on submerged members of an offshore structure with characteristic 

dimensions much smaller than the wave length (O/l < 1/5) is due to 

Morison et al (1950). The method is based on the assumption that the 

total force exerted by the fluid is composed of two parts: a drag force 

due to water particle velocity, similar to drag on a body subjected to 

a steady flow of a real (viscous) fluid; and an inertial force due to 

water particle acceleration, analogous to that on a body subjected to 

a uniformly-accelerated flow of an ideal (inviscid) fluid. That is, the 

horizontal force per unit length on a vertical cylindrical member of 

diameter 0 is 

where 

F = F d + Fj = 0.50 pO Cd u I u I + p Cm li 
4 (7.1 ) 

Fd and Fj are the drag and inertial components of fluid loading 

Cd and Cm are empirical drag and inertia coefficients 

p is the fluid density 

u and u are the undi sturbed hori zonta 1 components of water 

particle velocity and acceleration at the centre of the cylinder. 

For Simplicity, the Morison equation is usually written in the 

fo 11 owi ng form 

(7.2) 

In which, kd and kj are defined as 

(7.3) 
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~ = C ~ = P * Cm I m I 

4 (7.4) 

The vertical component of fluid loading is negligible. It must be noted 

that Morison loading does not account for lift (transverse) force which 

can be important in some cases. 

Note that in the general case of an i ncl i ned cyl i nder, the Mori son 

loading can be written as 

(7.5) 

where u and u are components of water particle kinematics in a plane 

normal to the cylinder axis. Ap is the projected area of the cylinder 

per unit length on a plane perpendicular to u, and V is the volume of 

the cylinder per unit length. 

The main purpose of this chapter is twofold: 

a) To study the mechani srn whi ch gi ves ri se to wave 1 oadi ng on 

submerged bodies, mostly the result of small-scale experiments in 

the laboratory. In this regard, Section 7.1 has been devoted to 

the study of ideal fluid loading on fixed submerged cylinders, 

where the origin of inertia loading is studied. Section 7.2 is 

concerned with real (viscous) fluid loading on fixed submerged 

cylinders where the effect of separation on fluid loading is 

emphasized. Finally, the effect of flexibility of cylinders on 

fluid loading is studied in Section 7.3. 

b) To report large-scale experiments, conducted either in laboratory 

or in real ocean environment, so that the results of the present 
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Chri stchurch Bay project can be compared wi th the resul ts of 

other large-scale investigations. Section 7.4 has been devoted to 

this topic. 

The reference for the contents of this chapter, unless otherwise 

notified, is Sarpkaya and Isaacson (1981). 

7.1 IDEAL FLUID LOADING ON FIXED SUBMERGED CYLINDERS 

For analysis purposes, it is frequently assumed that a fluid is non

viscous (inviscid). With zero viscosity the shear stress is always 

zero, even if the fluid is in motion. If it is also assumed that the 

fluid is incompressible, it is then called an ideal fluid. If a body of 

ideal fluid, initially at rest, is brought into motion, it flows 

without vorticity because it does not experience any shear stress. This 

is said to be irrotational flow. For a uniform (steady or non-steady) 

irrotational flow past a circular cylinder (Figures 7.1 and 7.2), the 

velocity at the surface of the cylinder, necessarily tangent to it, can 

be obtained from potential theory. That is 

Ve = 2u sine (7.6) 

where u is the ambient flow velocity. 

The above equation shows that at 8 • 180·, the fluid particles come to 

rest. In other words, there is a stagnation point at e • 180·. The 

velocity then gradually increases until at e = 90· it reaches its 

maximum of two times the ambient flow velocity. From 9 = 90· to O· 

degrees, the velocity gradually decreases until it comes to rest at 8 

- O· (another stagnation point). Therefore, from e = 180· to 90·, the 

flow is accelerating (favourable pressure gradient) while from 9 • 90· 
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to 180', the flow is decelerating (adverse pressure gradient). For a 

steady (du/dt = 0) uniform flow, the pressure on the cylinder is equal 

to 

(7.7) 

Equation (7.7) shows that there is pressure variation round the 

cylinder, with pressure being maximum at stagnation pOints and minimum 

at 8 = 90'. However, due to symmetry of pressure distribution with 

respect to x and y axes, the components of force in both directions are 

zero. In other words, no drag force or lift force act on the cylinder. 

The important point to be noticed is that for the case of an 

irrotational, ideal fluid past a cylinder, there is pressure recovery 

behind the cylinder; that is, the pressure decreases from 180' to 90· 

but increases from 90· to O' and that the pressure at 180' and O' are 

equal. 

For an unsteady (du/dt f 0) uniform flow, the (dynamic) pressure on the 

cylinder surface is 

du 
P = 0.5 pu 2 (l - 4sin2S) - pOcos8 -

dt (7.8) 

where du/dt is the total undisturbed acceleration of the ambient flow. 

The pressure distribution is composed of two terms. The first term is 

the same as the pressure distribution for a uniform, steady flow and as 

di scussed before, due to symmetry, it does not 1 ead to any drag or 

1 ift. However, the second term whi ch accounts for the ambi ent fl ow 

acceleration is only symmetric with respect to x axis. Therefore, the 

component of force in the y direction (lift force) will be zero, but 

the component of force in the x direction is 
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4 dt (7.9) 

The above force, which exist only when the acceleration of the ambient 

flow is not zero, is referred to as the inertia force, and is equal to 

two times the mass of the fluid displaced by the cylinder times the 

ambient flow acceleration. This force acts in the direction of the 

acceleration vector, regardless of the instantaneous flow direction. 

The inertia force can be considered as the sum of two components: 

1) The Froude-Krylov Force: The basic assumption in the calculation 

of this force is that the fluid pressure is completely 

undisturbed by the presence of the cylinder. In other words, it 

is the force which in the absence of the cylinder would 

accelerate at du/dt the volume of fluid it displaces, namely 

p~(D2/4) (du/dt). 

2) The Added-Mass Force: This force results from the disturbance in 

the flow field caused by the presence of the cylinder. The force 

is represented by the Froude-Krylov force on a certain added mass 

of the fluid. The added mass coefficient, C., is defined as the 

ratio between the added mass and the fluid mass displaced by the 

cylinder. The added mass coefficient depends on the shape of the 

body. Its value for a sphere and a long cylinder is 0.50 and 1.0, 

respectively. The inertia coefficient, Cm' is defined as 

Cm = 1 + C. (7.10) 

Thus, the inertia force, Fi' is 
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~ - Cm * (Displaced Fluid Mass) * - 2wp 
dt 4 dt 

(7.11) 

Figure 7.3 shows the values of Cm for circular cylinders of different 

length to diameter ratios (Wilson, 1984). 

If a cylinder with a mass per unit length of mo is moving at an 

acceleration of du/dt in a fluid otherwise at rest, the total force 

acting on the cylinder is 

du 
Total force = (body mass + added mass) * 

dt (7.12) 

As regard to the physical meaning of the added mass it has been shown 

that the motion of a body in an inviscid fluid is always accompanied by 

a fluid-mass transport and that this mass is the added mass which 

unveils itself only if the body is accelerated. 

7.2 REAL FLUID LOADING ON FIXED SUBMERGED CYLINDERS 

7.2.1 STEADY UNIFORM FLOW PAST A CYLINDER 

Boundary Layer 

Since the fluid cannot slip over the surface of solid boundaries, there 

is a steep velocity gradient from zero velocity (on the boundary 

surface) to the external flow velocity in a thin layer called the 

boundary layer (Figure 7.4). This velocity gradient sets up near the 

boundary shear forces that reduce the flow relative to the boundary. 

For fluids having relatively small viscosity (such as water), the 

effect of internal friction (shear forces) in the fluid is appreciable 

only in the boundary layer. The flow outside the boundary layer can be 

considered as an ideal or potential flow. 
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The boundary layer is very thin at the upstream end of a streamlined 

body at rest in an otherwise uniform flow. As this layer moves along 

the body, the continual action of shear stress tends to slow down 

additional fluid particles, causing the thickness of the boundary layer 

to increase with distance from the upstream point. The flow in the 

layer is also subjected to a pressure gradient, determined from the 

potential flow, that increases the fluid particle velocity in the layer 

if the pressure decreases downstream (favourable pressure gradient) and 

decreases the particle velocities if the pressure increases downstream 

(adverse pressure gradient). 

For smooth upstream boundaries, the boundary 1 ayer starts out as a 

laminar boundary layer in which the fluid particles move in smooth 

layers. As the laminar boundary layer increases in thickness, it 

becomes unstable and finally transforms into a turbulent boundary layer 

in which the fluid particles move in haphazard paths, although their 

velocity has been reduced by the action of shear stresses at the 

boundary. When the boundary layer has become turbulent, there is still 

a very thin layer next to the boundary that has laminar motion. It 1s 

called the laminar sub-layer. 

If a flat plate is placed at rest in an otherwise uniform flow, the 

thickness of the boundary layer, as long as it 1s laminar, is (Streeter 

et al, 1979) 

4.6Sx 
o • 

(7.13) 

Where Rx = ux/v is a Reynolds number based on the distance x from the 

leading edge of the plate; u is the flow velocity and v 1s the fluid 

184 



kinematic viscosity. This equation shows that 6 increases as the square 

root of the di stance from upstream end of the pl ate for a 1 ami nar 

boundary layer. For a turbulent boundary layer, the thickness is 

(7.14 ) 

That is, the thickness increases as X4/5. Therefore, the thickness 

increases more rapidly in the case of a turbulent boundary layer. 

When the Reynolds number for the plate reaches a value between 500,000 

and 1,000,000, the boundary layer becomes turbulent. Figure 7.5 

indicates the growth and transition from laminar to turbulent boundary 

layer. The critical Reynolds number depends upon the initial turbulence 

of the fluid stream, the upstream edge of the plate, and the plate 

roughness. 

Separation 

Along a flat plate, the thickness of the boundary layer increases in 

the downstream direction, regardless of the length of the plate, when 

the pressure gradient remains zero. A favourable pressure gradient 

tends to reduce the thickness of the boundary layer, while on the other 

hand, an adverse pressure gradient causes the boundary layer to grow 

rapidly. The adverse pressure gradient and the boundary shear decrease 

the momentum in the boundary layer, and if both act over a sufficient 

distance, they cause the boundary layer to come to rest (Figure 7.6). 

The boundary streamline must leave the boundary at the point where it 

has come to rest, leading to a phenomenon called separation. Downstream 

from this point the adverse pressure gradient causes backflow near the 

wall. The region downstream from the streamline that separates from the 

boundary is known as the wake. As a result of separation, the pressure 
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recovery in the wake is incomplete, leading to a drag force. The drag 

force can be expressed in terms of a drag coeffi ci ent Cd times the 

stagnation pressure pu2/2 times the projected area of the body on a 

plane perpendicular to the flow. That is 

pu2 

Drag = Cd - * projected area 
2 (7.15) 

Streamlined bodies are so designed that the separation point occurs as 

far downstream along the body as possible (Figure 7.7). If separation 

can be avoided, the boundary layer remains thin and the pressure 

recovery will be almost complete along the body. Then, the drag is only 

due to shear stress in the boundary layer,' called skin friction. When 

there is separation, the pressure is not recovered in the wake, and a 

pressure drag results. Reduction of wake size reduces the pressure drag 

on a body. In general, the drag force is due to both skin friction and 

. pressure drag. 

Uniform Flow Past a Circular Cylinder 

As was seen for the case of an ideal flow past a circular cylinder, 

over the front face of the cylinder the external velocity (that outside 

the boundary layer) increases towards the widest section of the 

cylinder and thereafter decreases. As long as the flow is accelerating, 

the favourable pressure gradient maintains the forward flow in the 

boundary 1 ayers. However, downstream of the wi dest sect i on of the 

. cylinder, the adverse pressure gradient causes the boundary layer to 

leave the surface of the cylinder altogether, separated from it by a 

region of recirculating flow (wake). The separated boundary layer 

retains initially its characteristic high velocity gradient and 

consequent shear stress but gradually diffuses into the surrounding 
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fluid. It provides a route for the vorticity generated in the attached 

portion of the boundary layers to be fed into the wake. From a cylinder 

there are of course two separated boundary layers carrying vorticity· of 

opposing sense of rotation. 

For a Reynolds number of the order of 1000, the flow is predominantly 

laminar, though the wake may degenerate into turbulence some distance 

from the cyl i nder. As R. is increased the trans it i on to turbul ence 

gradually approaches the cyl i nder, fi na lly movi ng up the separated 

boundary 1 ayers even to the separat i on poi nts and beyond. When the 

transition to turbulence coincides with the separation point at a 

Reynolds number of about 5 x 105
, the flow undergoes first a laminar 

separation, followed by a reattachment to the cyl inder, and then a 

turbulent separation. As previously discussed, a turbulent boundary 

layer over a solid surface is able to remain attached beneath an 

unfavourable pressure gradient longer than a laminar one because of the 

high-momentum transfer in the turbulent boundary layer. Consequently, 

as soon as the region of turbulence envelopes the separation paints, 

they move rearwards to form a narrower wake leading to smaller drag 

(drag crisis). With further increases in R., the attached boundary 

layers become turbulent progressively earlier, until around R. = 107 , 

they are immediately turbulent from the stagnation point. Over this 

trans-critical range, the separation points move somewhat upstream to 

form a slightly larger wake and hence larger drag. 

The drag force is conveniently expressed in terms of the drag 

coefficient Cd defined as 

187 



drag force per unit length 

1/2 pu20 (7.16) 

Where 0 is the cylinder diameter, Figure 7.8 shows the variation of Cd 

with Reynolds number. At very low Reynolds numbers the drag is 

dominated by the effects of skin friction and hence Cd is inversely 

proportional to Re. For Re > 1000, however, the form (pressure) drag is 

much larger than the skin friction so that the skin friction 

contribution is insignificant. 

Uniform Flow Past a Sphere 

Flow around a sphere is an excellent example of the effect of 

separation on drag. For Reynolds numbers less than one, (Re· VO/v with 

o and V, the diameter and the velocity of sphere in fluid, 

respectively) the flow is laminar everywhere. Stokes's Law gives the 

drag force for this case. For large Reynolds numbers, the flow may be 

considered potential flow except in the boundary layer and the wake. 

The boundary 1 ayer forms at the forward stagnat ion poi nt and is 

generally laminar. 

Figure 7.9 shows the photographs of two spheres dropped into water at 

25 ft/sec (Streeter et al, 1979). In (a), separation occurs in the 

laminar boundary layer that forms along the smooth surface and causes 

a very large wake with a resulting large pressure drag. In (b), the 

nose of the sphere, roughened by sand glued to it, induced an early 

transition to turbulent boundary layer before separation occurred. The 

high-momentum transfer in the turbul ent boundary layer del ayed the 

separation so that the wake size is substantially reduced, resulting in 

a total drag on the sphere, less than half that occurring in (a). 
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A plot of drag coefficient against Reynolds number for smooth spheres 

is shown in Figure 7.10. The sudden drop in the drag coefficient at a 

Reynolds number of about 5 x 105 shows that the shift to turbulent 

boundary layer before separation occurs by itself at a sufficiently 

large Reynolds number. The exact Reynolds number for the sudden shift 

depends upon the smoothness of the sphere and the turbulence in the 

fluid stream. Note that the sudden drop in the drag coefficient does 

not occur for the disk (flat plate), where the separation points are 

always fixed at the edge of the plate. 

Vortex Shedding 

The separated boundary layers, or 'free shear layers' do not remain 

stationary downstream of the cylinder. Each one has a strong tendency 

to curl up in the direction of the vorticity it is transporting and 

form a concentration of rotation (a vortex). In doing so it occupies 

much of the wake area and draws the other shear layer across the rear 

face of the cylinder. Ultimately its supply of vorticity is cut off by 

interference from fluid of opposite sense of rotation, and the fully

formed vortex is swept downstream leaving the other shear layer room to 

begin growing the next one. Consequently, much of the vorticity 

generated on the cylinder passes downstream not in a continuous stream 

but in the form of concentrated packets (vortices) of different sense 

of rotation shed alternately from both sides of the cylinder. 

The vortex shedding frequency, fv' (equal to the number of vortex pairs 

per unit time) can be determined from the following empirical 

relationship. 
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Su 
f = y 

D (7.17) 

Where S is a dimension1ess constant called Strouha1 number. The 

Strouha 1 number is about 0.20 for a 1 arge range of sub-cri t i ca 1 

Reyno1ds number. The vortex shedding at critical Reynolds number is 

rather irregular wi th an average Strouha 1 number of about 0.40. At 

higher Reynolds numbers the shedding becomes more regular, and the 

Strouhal number is about 0.30. 

Because of the growth and shedding of alternate vortices, the rear wake 

of the cylinder, bounded by the free shear layers, oscillates from side 

to side like the tail of a swimming fish (Figure 7.11). As a result, 

unsteady forces in-line and perpendicular to the flow (and cylinder 

axis) is felt by the cylinder. In the in-line direction there will be 

one force cycle for each vortex shed, i.e. the in-line force has a 

frequency of 2fy. In the transverse direction, each vortex gives rise 

to only half a cycle in the transverse (lift) forcei i.e. the 

transverse force has a frequency of fy. The magnitudes of these forces 

are normally non-dimensionalised in the same way as the mean drag 

{Equation 7.16} to define coefficients of fluctuating lift CfI and 

fluctuating drag C'd. These coefficients are very sensitive to external 

disturbances. Typical values for cylinders in two-dimensional wind or 

water tunnel flow are CfI = 0.2 - 1.0 and C~ = 0.1. 

The oscillatory nature of unsteady 1 ift and drag gi ves ri se to the 

poss i bl1 i ty of resonance 1 f a natural frequency of the cy1 i nder is 

close to fy or 2fy. Vortex-induced vibrations will be discussed later 

in this chapter. 
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7.2.2 TIME-VARYING FLOW PAST A CYLINDER 

7.2.2.1 ImpulsivelY-Started Flow and Uniformly-Accelerated Flow 

The separat i on of boundary layers and formation of a wake beh i nd a 

bluff body gives rise to a form drag and also significant changes in 

the inertia forces. It must be recogni sed that the drag and inertia 

forces are interdependent and time-dependent for real viscous fluids 

past bluff bodies. In other words, the velocity dependent drag is not 

the same as that for the steady flow of a viscous fluid and the 

acceleration dependent inertial resistance is not the same as that of 

the unsteady flow of an ideal fluid. The drag and inertia coefficients 

obtained for unseparated unsteady flows are not applicable to 

occurrences in which the duration of flow in one direction is long 

enough and the body form blunt enough for separation to occur. 

If a circular cylinder starts impulsively from rest to a constant 

velocity, v, the distance covered until separation begins is 

S =: 0.351C, where C is the radius of the cylinder. The separation 

begins at rear stagnation point. For a uniformly-accelerating circular 

cylinder the separation distance is 0.52C. The measured drag and lift 

coefficients for an impulsively-started flow are shown in Figures 7.12 

and 7.13, respectively. The growth and motion of vortices at the 

initial stages of the flow for different values of vt/C (obtained from 

numerical simulation through the use of discrete vortex modelling) is 

shown in Figure 7.14 (Sarpkaya and Shoaff, 1979). 

Figure 7.12 shows that the drag coefficient in the initial stages (vt/C 

~ 4) of an impulsively-started flow can exceed its steady value by as 

much as 30 percent. In the early periods of the flow, vorticity is slow 

to diffuse and therefore accumulates rapidly in the close vicinity of 
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the cylinder. The growing vortex soon reaches unstable proportions and 

separates from its shear layer; however, the growth of the vortices are 

so rapid that the vortices become much larger than their quasi-steady

size before separation. This leads to the observed large drag 

coefficient. Shortly after the onset of asymmetry, the drag coefficient 

decreases sharply and the lift coefficient begins to increase. 

Therefore, in impulsively-started flow, a drag overshoot occurs at 

about S/D = 2 (vt/C = 4) because of the rapid accumulation of vorticity 

in the two symmetrically growing vortices (see Figure 7.14), where S is 

the distance travelled by the cylinder or the displacement of the 

ambient flow, i.e. S = vt. For a uniformly-accelerating flow, the 

displacement of the ambient flow is O.Svt, where v is the velocity at 

time t. The variation of the drag and inertia coefficients with 

relative displacement in uniformly-accelerated flow is shown in Figure 

7.15. The drag overshoot occurs at S/D - 2.5 and is milder in 

comparison with the impulsively-started flow. This is because the rate 

of accumulation of vorticity is not as large. For all other flows whose 

velocity is an arbitrary function of time, the drag overshoot may range 

from 10 percent (uniformly-accelerating flow) to about 30 percent 

(impulsively-started flow). The inter-relationship between the drag and 

inertia coefficients in uniformly-accelerated flow is shown in Figure 

7.16. 

7.2.2.2 Harmonically Oscillating (Bodies) Flows 

Planar oscillatory flow provides a two dimensional idealisation of the 

conditions present under waves. It ignores several important effects, 

including the three dimensionality of wave flows due to orbital motion 

of water particlei and the exponential decay of water particle 

velocities with depth, etc. Nevertheless, planar oscillatory flow does 
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reproduce the periodic conditions which are the most important 

characteristic of wave induced flow. The assumption in this section is 

that the oscillations are of large amplitude so that the separation of 

flow plays an important role. 

There are several fundamental differences between the harmonically 

oscillating flow and the unidirectional flow. When a cylinder is 

subjected to a harmonic flow normal to its axis, in addition to 

accelerating and decelerating to zero, the flow changes direction as 

well during each cycle. Consequently, the wake reverses from the 

downstream to upstream side whenever the flow changes sign and the 

separation points undergo large excursions. The boundary layer over the 

cylinder may change from fully laminar to partially or fully turbulent 

states and the Reynolds number may range from sub-critical to post

supercritical over a given cycle. 

In steady flow, the near wake 1s dominated to a large degree by the 

newest generation of vortices. In periodic flow, however, as a result 

of sweeping back of vortices, the body 1s surrounded by a cluster of 

young and old generations of vortices. The formation, growth and motion 

of the new vortices strongly affect and are affected by the older 

vortices which have survived diffusion and dissipation. The transverse 

force is partly due to the shedding of the newest vortices, as in 

steady flow, and partly due to the older vortices returning to the body 

which gave rise to their existence in the first place. These phenomena 

lead to incalculable changes in the pressure distribution on the 

cylinder indicating that the force coefficients can be determined only 

experimentally. 
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Keulegan-Carpenter Number 

An important dimensionless parameter in oscillatory flow is the 

Keulegan-Carpenter number, K, given by 

umT 1)1 

K = 
0 D (7.lS) 

in which um is the maximum ambient flow velocity and T is the period of 

the motion. Keulegan-Carpenter number is related to the relative 

amplitude of water particle motion, through the following relationship. 

(A 
K '" 21f ~) 

,,_ 0 (7.19) 

Where A is the amplitude of water particle motion. The Keulegan

Carpenter number gives an indication of the relative significance of 

drag and inertia loading. For example, in planar oscillatory flow, in 

which the ambient motion is simply backwards and forwards along a 

straight line with u = um cos 21ft/T, the ratio of magnitudes of drag 

and inertia forces from Morison's equation is 

= K 
inert ia (7.20) 

Reynolds number 

For an oscillating flow, the Reynolds number is defined as 

R = e 

v (7.21) 

where um is the maximum ambient flow velocity and v is the kinematic 

viscosity. Since um appears in both K and R., Sarpkaya introduced a new 

parameter which 1s defined as the ratio between the Reynolds number and 
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the Keul egan-Carpenter number and is referred to as the frequency 

parameter. That is 

f3 = RjK = 
liT (7.22) 

Experimental Values of Cd and Cm 

Physical considerations and simple dimensional analysis show that Cd and 

Cm are not only dependent on the Keulegan-Carpenter number, the 

Reynolds number, and the relative roughness, but also they are time 

dependent, i. e. even when all the above parameters are fi xed, the 

Morison coefficients are changing with time in a given cycle. However, 

the use of instantaneous values of Cd and Cm is not practical and hence 

it is the time-averaged (constant) values of Cd and Cm which are 

invariably used for design purposes. 

The results of experiments conducted by Sarpkaya (1976a) in a u-shaped 

vertical water tunnel are shown in Figures 7.17 to 7.21. The variation 

of Cd and Cm with Keulegan-Carpenter number, for several values of the 

frequency parameters are shown in Figures 7.17 and 7.18, respectively. 

It is observed that at small Keulegan-Carpenter numbers (say less than 

5), Cm is close to its ideal flow value of 2. For larger values of K (K 

> 12), Cd decreases with K, while Cm increases. Furthermore, it is 

observed that Cm increases with frequency parameter while Cd decreases. 

The same data are shown as functions of R. for different values of K in 

Figures 7.19 and 7.20. These figures show that within the range of 

Reyno 1 ds numbers encountered, Cd decreases wi th i ncreas i ng R. to a value 

of about 0.50 (depending on K) and then gradually rises to a constant 

value of about 0.65 (post-supercritical value). The inertia coefficient 
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increases with increasing R., reaches a maximum and then gradually 

approaches a value of about 1.85. 

Figure 7.19 shows that the drag coefficient for a cylinder in 

harmonically oscillating flow is not always larger than that for the 

steady flow at the same Reyno1ds number. Stokes has shown that for an 

unseparated flow about an oscillating sphere, the drag coefficient is 

always larger than its corresponding steady-state value. However, 

according to Figure 7.19, for K .. 100, for example, Cd for the 

oscillating flow is smaller than its steady-state value for R. between 

60,000 and 400,000. The reason for this is believed to be the earlier 

transition to turbulence in the boundary layers for an oscillating flow 

in comparison with the steady-state flow. Furthermore, Figures 7.17 to 

7.20 show that Cd and Cm follow different trends with respect to R. and 

K, i.e. in a general sense, whenever Cd increases, Cm decreases and vice 

versa. Figure 7.21 shows a plot of Cm versus Cd for different values of 

K. 

Transverse (lift) Force and the Strouhal Number 

The transverse force acting on smooth and sand-roughened cylinders were 

measured by Sarpkaya (1976a) for a wide range of Keulegan-Carpenter 

numbers and Reynolds numbers, and relative roughness. Figures 7.22 and 

7.23 show the lift coefficient defined by CL .. (lift force)/ 

(0.SpLDu 2
m) as a function of K (for various values of fJ) and as a 

function of R. (for various values of K). The results show that CL(max} 

reaches its maximum value in the vicinity of K .. 12 and decreases 

sharply with increasing K. 
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As previously mentioned, the lift force is due to alternating pressure 

gradient across the wake, which in turn is due to the asymmetry of the 

strength and position of the vortices. The minimum value of K at which 

lift or the asymmetry in the vortices develop is between 4 - 5. The 

maximum asymmetry is in the neighbourhood of K • 12. 

The alternating nature of the transverse force is as important as its 

magnitude. The relative frequency of the transverse force, f" defined 

as the frequency of the transverse force divided by the frequency of 
\ 

the oscillatory flow, is shown in Figure 7.24 for a smooth cylinder. It 

is apparent that f, is Mt constant but increases with K and R.. It 

should be noted that the frequency of vortex shedding is not constant 

in a given cycle and that it also changes from cycle to cycle. Figure 

7.24 is based on the maximum frequency in a given cycle defined as the 

reciprocal of the shortest interval between two maxima. A point on each 

line represents the maximum value of K for a given R. and ~. In other 

words, a line such as ~ = 4 means that the alternating force does not 

contain frequencies larger than ~ - 4 for K and R. values in the region 

to the left of the line. Odd values of ~ such as ~ • 3, 5, etc., are 

not shown to keep the figure relatively simple. 

It should be noted that the frequency of vortex shedding is not a pure 

multiple of the flow oscillation frequency. Relative frequency, as an 

integer, is a measure of the number of vortices actually shed during a 

cycle. However, there are vortices which do not break away from their 

shear layers before the flow is reversed because they are not fully

developed and disSipate when the flow reverses. This is particularly 

true for,f, 1n the neighbourhood of 2 or 3. The fractional shedding of 

vortices for values of K between 5 and 15 leads to incalculable changes 
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in the flow pattern and hence in the in-line and transverse forces. For 

small values of K, two vortices begin to develop at the start of the 

cycle in one direction; however, due to various reasons the vortices 

will acquire different strengths. As the flow reverses, the larger of 

the vortices is swept past the cylinder but the weaker one dissipates 

partly due to turbulent diffusion. As a result of the single shedding, 

the in-line force becomes asymmetrical. Furthermore, the vortex which 

is swept away plays an important role in the formation of the new 

vort ices when the f1 ow reverses its direct ion. The domi nant vortex 

establishes, by its sense of rotation, a preferred location for the 

generat i on of a new domi nant vortex. The new vortex and the one 

convected downstream may form a pair, increase the transverse pressure 

gradient and thus give rise to significant lift forces. The evolution 

of vortices for various ranges of Keulegan-Carpenter number are shown 

in Figure 7.25. 

The vortex shedding frequency can be expressed in terms of Strouhal 

number defi ned as S • fvD/um • f/K. Sarpkaya' s experiments (1976a) have 

shown that for f, larger than about 3, the Strouhal number remains 

reasonably constant at 0.22. Strouhal number depends on both R. and K 

and for very large values of R. (post-supercritical region) it rises to 

about 0.3. Its average value based on all vortices shed during a given 

cycle was found to be between 0.14 and 0.16. 

Instantaneous Values of Force Coefficients 

Sarpkaya calculated the instantaneous values of Cd(S) and Cm{S) 

(a = 21ft/T) by sol vi ng a set of Mori son type equat ions written at a • an 

and a - an + Aa assuming that Cd(S) and Cm{a) remain constant in the 

interval AS (AS z 3 degrees). The results of this study showed that for 
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intermediate values of K (for ~ less than about 2500), Cd and Cm vary 

significantly during a given cycle (Figure 7.26). It can therefore be 

concluded that the Morison's equation with time-averaged Cd and Cm gives 

a poor estimate of the loading on a cylinder for intermediate values of 

K. However, for K smaller that 8 (inertia dominated) and larger than 20 

(drag dominated) the difference between Cd and Cd(S) and Cm and Cm(S) 

rapidly diminishes and the instantaneous force is accurately predicted 

by the linear-quadratic sum with constant coefficients. 

7.2.2.3 Wave Forces on Cylinders 

In waves the flow field surrounding the cylinder is always three

dimensional. According to linear wave theory, deep water waves have 

circular orbits rather than the planar-harmonic motion previously 

discussed. The effect of the tangential component of water particle 

velocity on a cylinder is to destabilise the boundary layer and thus 

lower the crit i ca 1 Reyno 1 ds number. I n the ocean env i ronment, a. 

cylindrical member will experience the integral effect of a mixture of 

wavelets of many frequencies also having a directional spread. 

Furthermore, the decay of wave-induced water particle kinematics with 

depth makes vortex shedding and pressure distribution along the 

cylindrical pile less correlated. Fortunately, these effects lead to 

forces which are smaller than those calculated based on plane-harmonic 

flow. It can therefore be concluded that the use of force coefficients 

obtained from plane-harmonic flow experiments in the design of offshore 

structures are conservative. 

The influence of current on wave loading is taken into account by 

adding the current vectorially to the wave-induced water particle 

velocity in the absence of current. Morison's equation then becomes 
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1 ~ 
F = - pDCd (u + ii) I u + ii I + pD2Cmu 

2 4 {7.23} 

Where u represents the current velocity and u and u are the horizontal 

components of wave-induced kinematics. The above procedure is a 

simplified approach to the problem of wave loading on cylinders in the 

presence of currents. A more rigorous method must account for the wave 

current interact ions. I f the current is in the direction of wave 

propagation, the wave amplitude decreases and its length increases. If 

the current opposes the wave, the wave becomes steeper and its length 

decreases. Further discussion of this subject is beyond the scope of 

this Thesis. 

The most important point to be considered is that in the design of 

offshore structures water particle kinematics must be calculated 

accordi ng to apart i cular wave theory and that the choi ce of wave 

theory affects the values of Morison's coefficients. Therefore, in 

practice Morison's coefficients must be calibrated against a particular 

wave theory and only be used in conjunction with kinematics obtained 

from that particular theory. In other words, the drag and inert 1a 

coefficients obtained through the use of one method should not be 

compared with those obtained through the use of another one. 

Furthermore, Sarpkaya and Isaacson (19Bl) suggest that the Reynolds 

number and the Keulegan-Carpenter number be defined as 

and 

R = e 

(urn + u}D 

(7.24) 
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(um + a}T 
K = 

D (7.25) 

where um is the amplitude (maximum) of the horizontal component of 

wave-induced water particle velocity. 

7.3 REAL FLUID LOADING ON FLEXIBLE SUBMERGED CYLINDERS 

7.3.1 WAVE-INDUCED IN-LINE LOADING 

If a structural member is dynamically responsive, then fluid loading on 

the member can be written in terms of relative velocities and 

accelerations between the fluid (u,u) and the structure (r,F). That is 

D 
F = Cd P - (u - r) I u - r I + P 

2 4 
(u - F) 

4 (7.26) 

Where the first term on the right hand side of the above equation is 

the drag force, the second term is the Froude-Krylov force and the 

third term is the added-mass force. The Froude-Krylov force is due to 

undisturbed pressure field and therefore does not depend upon the pile 

motion. The above equation can be rewritten as 

D 1I"D2 1I"D2 
F = Cd P - (u - r) I u - r I + Cmp U - CII P F 

2 4 4 {7. 27} 

The equation of motion for a single-degree of freedom system with mass 

M, damping coefficient C and stiffness K can be written as 

MF + Cr + Kr = F(t) (7.28) 

Where F(t}, the fluid loading on the mass M (assumed to be a cylinder), 

is given by Equation (7.27). Combining Equations (7.27) and (7.28) 

results in 
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XD2 D XD2 
(M + C. P -) F + Cf + Kr = Cd P - (u - f) I u - fl + Cm P U 

2 2 4 (7.29) 

The drag term can be approximated by (Penzien, 1976) 

(u - f)lu - fl - ulul - 2E[lullf (7.30) 

Where E[lull is the time average of the absolute value of the water 

particle velocity. 

Substituting Equation (7.30) into Equation (7.29), gives 

XD2 
(M+C.p -) F+ [C+CdPDE[jul]lf+Kr-CdP 

4 

D XD2 
ulul + Cmp U 

2 4 
(7.31) 

The term CdPDE[lull which is added to the viscous damping, C, in the 

above equation is frequently referred to as the fluid damping. Knowing 

the values of Cd and Cm and the flow field, r can be obtained by solving 

Equation (7.31). 

It should be noted that the lift force is not considered in the dynamic 

analysis of the full structure. This is justifiable partly because of 

phase 'shifts in lift forces acting on various members and partly 

because of the relatively high frequency of vortex shedding. However, 

it is emphasised that for individual members as well as for tube 

bundles, the periodic lift can be very important and may give rise to 

in-line and/or transverse oscillations. 
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7.3.2 VORTEX-INDUCED OSCILLATIONS 

Flexible Cylinders in Currents 

A flexible pile in a steady current will respond dynamically to the 

unsteady drag and the fluctuating transverse forces. The motions of the 

pile in many cases modify the force and one may therefore talk about 

hydro-elastic oscillations. A most important feature of hydro-elastic 

oscillations is the so called 'lock-in' or synchronisation phenomenon 

(Figures 7.27 and 7.28). When lock-in occurs, the cylinder takes 

control of vortex shedding in apparent violation of the Strouhal 

relationship, i.e. the frequencies of vortex shedding and the body 

oscillation collapse into a single frequency close to the natural 

frequency of the body. 

Lock-in occurs when the fluid velocity is increased beyond that for 

which fy = f., in which f. is the resonant frequency of the structure and 

fy is the vortex shedding frequency. Then the resonant motions of the 

pile from side to side will slow down the vortex shedding process, 

keep; ng the vortex sheddi ng frequency 'locked at' or 'synchroni sed' 

with the resonant frequency of the pile. Thus while the vortex shedding 

frequency (or the frequency of transverse force) for a rigid pile would 

increase with the velocity according to the Strouhal relationship, the 

flexible cylinder will have large amplitude motions at fy = f. for a 

range of velocities. Eventually when the velocity is too high, the 

large amplitude pile motions suddenly stop and the vortex shedding 

frequency jumps up to that of the fixed pile at the same velocity 

(Figure 7.27). 

The most important parameter with regard to synchroni sat i on is the 

reduced velocity defined as 
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u = r 

u 1 
= 

flD S 
* 

(7.32) 

Where as before S is the Strouhal number and f. is the natural frequency 

of the cylinder. fv is the number of vortex pairs shed per unit time. 

For alternative vortex shedding, the in-line force will have a 

frequency of 2fv and the transverse force a frequency of fv' Therefore, 

one must expect resonance in the transverse di rect i on at ur '" S·, and for 

the in-line direction at ur lE 0.5S·'. For sub-critical flow, S·, "" 5 and 

therefore, one expects resonance in the transverse direction at about 

Ur = 5 and in the in-line direction at ur = 2.5. However, in view of the 

lock-in phenomenon, resonance continues for ur appreciably larger than 

that. 

Experiments have shown that in-line oscillations occur within two 

adjacent regions (Figures 7.28 and 7.29). The first is in the range of 

1.25 < ur < 2.5, with maximum amplitudes (about 0.20) occurring at ur • 

2.1. The second region extends from ~ • 2.7 to Ur = 3.8 with maximum 

amplitude at ur = 3.2. The first instability region is accompanied by 

symmetric vortex shedding, which become aligned in an alternate vortex 

street within a short distance downstream. Oscillations are at the 

cylinder's natural frequency; however, the vortex shedding frequency 

continues to be governed approximately by the Strouhal relationship 

(Figure 7.28). The second unstable region of the in-line motion and the 

first (and only) unstable region of cross-flow direction (Figure 7.29) 

are accompanied by alternate vortex shedding and 'lock-in' occurs. The 

frequency of vortex shedding remains constant throughout the lock-in 

range, being equal to the cylinder's natural frequency for cross-flow 
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motion and one-half of the natural frequency for in-line motion (King, 

1977). 

For a circular cylinder with large LID, synchronisation begins with fv 

:::: f. and ends at fv/f. • 1.4. The maximum ampl itude occurs near the 

middle of the range. At the end of the lock-in range, vortex shedding 

frequency jumps to that governed by the Strouhal relationship, but the 

cylinder continues to oscillate at fe :::: f., where fe is the cylinder 

oscillation frequency. This is true at both ends of the lock-in range 

and shows that the response is not a simple forced vibration at the 

exciting natural Strouhal frequency. 

The correlation length increases rapidly with amplitude. The increase 

of the correlation length in smooth flow is much larger than in 

turbulent flow. In smooth flow the correlation length is estimated by 

numerical extrapolation to increase from about 3.50 to 400 for R. • 

19,000 in the range 0.05 < AID < 0.1, (A is the amplitude of cylinder 

oscillation). In turbulent flow, it is again estimated to vary from 

about 2.50 to 100 in the same AID range. The rate of increase is 

steeper than linear but does not show any abrupt change which would 

indicate a sudden development of the lock-in once a threshold amplitude 

is achieved. 

Flexible Cylinders in Waves 

Raj abi (1979) conducted experiments with spri ng-mounted smooth and 

rough cylinders undergoing sustained oscillations in a harmonically 

oscillating flow in a u-shaped water tunnel. The results indicate that 

an elastically-mounted cylinder may sustain synchronised oscillations 

when the reduced velocity ur = urn/f.O is in the range of 5 to 7.5, with 
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maximum response at ur = 5. Synchronised oscillations occurred at an 

average Strouhal number of 0.16. 

7.4 lARGE-SCALE EXPERIMENTS 

Small-scale experiments have greatly increased our understanding of the 

mechanism of wave loading on circular cylinders. However, the 

experiments are in the range of low Reynolds number (subcritical) and 

hence the results cannot be used for design purposes where Reynolds 

number are in the post-critical regime. In the 1980's, however, several 

research programmes were initiated to study wave loading at large scale 

with Reynolds numbers large enough to represent post-critical 

conditions. 

Chaolin's Work 

Chaplin (1988a) conducted experiments in which a smooth cylinder was 

driven along a straight line in a large tank of water. The Random 

Planar Motion mechanism (RPM), on which the experiments were carried 

out, was built in the Marine Technology Laboratory of the University of 

Liverpool for the purpose of moving a cylinder through a tank of water 

with a regular or random oscillatory motion. The general arrangement of 

the RPM is shown in Figure 7.30. The cylinder under test was bolted 

beneath amounting frame whi ch was suspended above a 1 arge tank of 

water (7.0m diameter and 1.3m deep). The mounting frame could be driven 

up to I.Om in any horizontal direction from its central position by two 

computer-controlled hydraulic winches. 

Driving the cylinder with a simple harmonic motion along a straight 

line generates conditions which correspond to those produced in 

naturally-oscillating U-tubes. However, unlike the U-tube experiments, 
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in which there are a very narrow range of available frequencies, the 

RPM could be programmed to oscillate at constant magnitude, but over a 

wide range of periods. By keeping the amplitude of motion fixed while 

T changes, different Reyno 1 ds numbers for the same K values were· 

obtained. 

Two smooth plastic cylinders, of diameters 160 mm and 315 mm, were used 

in the experiments. For each experiment, the rig executed 5 

oscillations from rest, and then at least 30 oscillations were 

recorded. The sequence of at least 30 cycles were phase-averaged in 

order to obtain the mean force and displacement records. 

The above experiments were conducted for K .. 6, 10, 14 and 20. The 

largest period was about 15 seconds. The results, shown in Figure 7.31, 

indicates that the root-mean-square in-line force coefficient, Cflrms)' 

does not vary significantly with the Reynolds number. Cflrms) is defined 

in terms of the in-line force per unit length (including a Froude

Krylov force) and the rms velocity, Urms ' that is 

The variation of Cf(rms) with the Keulegan-Carpenter No. is shown in 

Fi gure 7. 32a and is in very good agreement wi th the results from a 

vertical cylinder in waves at similar Reynolds numbers by Bearman et 

al, 1985, shown in Figure 7.32b. 

Morison's coefficients were derived for each cycle of oscillation, and 

their mean and S.D were computed over the whole sequence of 30 or so 

cycles. 
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The vari at i on of Cd and Cm with Re at Keul egan-Carpenter No. of 10 

(inertia-dominated) and 20 (drag-inertia regime) are shown in Figure 

7.33. The results are in good agreement with Sarpkaya's (1976b) data 

from U-tube experiments. The lines through each point extend up and 

down by a distance corresponding to the standard deviation of the 

coefficient. 

Bearman's Work on a Rigid Cylinder 

Bearman et a1 (1985) conducted experiments on a smooth rigid vertical 

cylinder of 0.50m diameter in the large Delta flume at the Delft 

Hydraulics Laboratory. This facility is 230m long, 5m wide and 7m deep, 

and is equipped with a programmable, hydraulically driven, piston type 

wavemaker, whi ch can generate waves with peri ads between 3 and 10 

seconds and with heights up to about 2 meters. The aim of the 

experiments was to study wave loading at high Reyno1ds number under 

controlled laboratory conditions. For these experiments the Reynolds 

number was in the range 1.46*105 < Re < 5*105
• 

Both regular and random waves were used in the study. Each regular wave 

test lasted for about 15 minutes and usually the passage of more than 

100 waves was recorded. One random wave test was done on the cylinder 

with a durat i on of 189 mi nutes. For regul ar waves, Cd and Cm were 

calculated on a wave by wave basis and averaged over the length of the 

record (100 or so waves). In order to compare regular and random waves, 

16 individual waves were chosen from the random test. First, the 11 

waves which gave the highest maximum or minimum in-line forces were 

chosen. Then the Keulegan-Carpenter No. range was extended by 5 

additional waves with smaller values of KsUT/D (where U is the 
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fundamental component of the horizontal velocity for an individual 

wave) . 

The variation of root-mean-square in-line force coefficients with 

Keulegan-Carpenter No. is shown in Figure 7.32b. There is very good 

agreement between force coefficients from regular and random waves. 

Values of Cd and Cm for regular waves are plotted against Keulegan

Carpenter No. in Figure 7.34. At Keulegan-Carpenter No. between 10 and 

20, Cd is about 0.60 and Cm 1s 1n the range 1.45 to 1.65. The force 

coefficients did not show any significant variation with Reynolds 

number. 

Bearman's Work on the Compliant Cylinder 

Before the compliant cylinder (described in Chapter 2) was mounted at 

Christchurch Bay, some wave loading measurements were done for regular 

waves in the delta flume. The flume is 7m deep over most of its length, 

but has a 9.5m deep section, where the 12.2m long cylinder was mounted. 

Tests were done for the cylinder in both F6 mode (most flexible) and Fl 

mode (most rigid) conditions. Cd and Cm values were calculated for each 

wave and then averaged for all but the f1 rst few waves over runs 

lasting about 15 minutes. Reynolds numbers were in the range of 2*105 

to 5.5*105
• In-line force coefficients were calculated as before. 

In the F1 mode, disp1acements of the cylinder were never more than a 

few percent of a diameter and the Cd and Cm values were found to agree 

well with the earlier results for a fixed, smooth cylinder. 

01 sp lacements recorded in the F6 mode, defi ned as the rat i 0 of rms 

displacement divided by cylinder diameter reached values as high as 

0.30 to 0.40 in both in-line and transverse directions. The largest 
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displacements in both directions occurred when the cylinder oscillation 

frequency was an integer multiple of wave frequency. 

The root-mean-square in-line force coefficient for F6 mode is plotted 

in Figure 7.35, and the curve for FI mode is shown for comparison. In 

general. the loading is 15 to 20% higher when the cylinder is 

responding but around K=7.S, the loading is increased by as much as 

50%. 

The variation of Cd and Cm with Keulegan-Carpenter No. (F6 mode) is 

shown in Figure 7.36. Comparison of Figure 7.36 with Figure 7.34 shows 

that Cm values have not been significantly affected by the cylinder's 

response; However, Cd values at low Keulegan-Carpenter No. have been 

significantly increased. The average Cd for K vales between 10 and 20 

is 0.70. Another poi nt to be noted is that Cd values for station 4 

{deeper station} are consistently lower than those for level 3. 

Second Christchurch Bay Tower Project 

The tower {Figure 2.1} has been described in Section 2.1. The 2.8m 

diameter vertical member is in the inertia regime while the small 

column (0.48m diam.) is in the drag-inertia regime. Measurements 

(winter 1982) were done at four different levels known as levels 2, 3, 

4 and 5. However, due to intermittency at level 2, the results have 

been presented for other levels only (Bishop and Shipway, 1984). A 

total of sixty-nine 20-minute records were analysed. About half of the 

analysed records were in the high wave group with water surface 

elevation standard deviation greater than 0.40m (H. > 1.6m). 
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Keulegan-Carpenter numbers and total force coefficients were calculated 

using the expressions due to Bishop (Equations 9.la and 9.3a). The 

variation of total force coefficient with Keulegan-Carpenter No. is 

shown in Figure 7.37. As observed, the total force coefficient 

decreases with increasing depth of immersion. Cd and Cm values as a 

function of Keulegan-Carpenter No. are shown in Figure 7.38. There is 

considerable scatter in the data for K values between 10 and 30; Cm is 

about 1.8 and Cd is about 0.75. For smaller values of K, Cm is about 2.0 

and Cd values are unreliable because the forces are strongly inertia 

dominated. The coefficients do not show a trend with Reynolds number. 
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FIGURE 7. 1 . DEFINITION SKETCH FOR FLUID LOADING ON A SUBMERGED CYLINDER 

FIGURE 7. 2. EQUIPOTENTIAL LINES AND STREAMLINES FOR IDEAL FLOW 

AROUND A CIRCULAR CYLINDER . (Streeter. 1979) 
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FIGURE 7. 3 . A RIGID. STATIONARY CYLINDER IN AN IDEAL ACCELERATING 

FLUID. (Wilson. 198!.) 
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FIGURE 7.4 . DEFINITION OF BOUNDARY LAYER THICKNESS 

iStree ter, 1979) 
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FIGURE 7. 5. BOUNDARY LAYER GROWTH (THE VERTICAL SCALE 

IS GREATLY ENLARGED) (Streeter, 1979) 
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FIGURE 7.6 . SEPARATION DUE TO COMBINED EFFECT OF ADVERSE 

PRESSURE GRADIENT AND BOUNDARY SHEAR . 

(Streeter, 1979) 
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FIGURE 7. 7. REDUCTION OF WAKE SIZE FOR STREAMLINE BODIES 

(Street er, 1979) 

100r------------------.., 

FIGURE 7. 8. VARIATION OF DRAG COEFFICIENT WITH REYNOLDS No. FOR 

A CIRCULAR CYLINDER . (Sarpkaya and Isaacson, 1981) 
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FIGURE 7.9 . Shift in sepa rat ion roint due to induced turbulence : (a) !l .S-in bowling ball. smooth 
surface. 25 ft /s entry \'elocity into water ; (il) same except for 4-i n-diameter patch of sa nd on nose . 
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FIGURE 7. 10. DRAG COEFFICIENTS FOR SPHERES AND CIRCULAR DISKS. 

(Street er. 1981) 
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FIGURE 7. 11. PERIODIC VORTICES TRAILING BEHIND A RIGID. STATIONARY 

CYLINDER . (Wi Ison. 1984) 
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FIGURE 7.12. MEASURED DRAG COEFFICIENT AS A FUNCTION OF Vt/c FOR 

IMPULSIVEL Y - STARTED FLOW. (Sarpkaya and Isaacson.1981) 
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FIGURE 1. 13 . MEASURED LIFT COEFFICIENT AS A FUNCTION OF vt/c FOR 

IMPULSIVELY-STARTED FLOW (Sarpkaya and. Is~acson. 1981) 

216 



FIGURE 7. 14 . EVOLUTION OF WAKE IN IMPULSIVELY-STARTED FLOW 

FOR DIFFERENT VALUES OF Vtle 

(Sarpkaya and Shoaff, 1979) 
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FIGURE 7. 15. V ARIA TION OF THE DRAG AND INERTIA COEFFICIENTS 

WITH RELATIVE DISPLACEMENT IN UNIFORMLY-

ACCELERA TED FLOW (Sarp~':l'y'a and Isaaeson. 1981) 
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FIGURE 7. 16. THE INTER-RELATIONSHIP BETWEEN THE DRAG AND INERTIA 
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FIGURE 7. 17. Cd VERSUS K FOR VARIOUS VALUES OF THE FREOUENCY 

PARAMETER FOR HARMONICALLY OSCILLATING FLOW 

(Sarpkaya. 19763) 
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FIGURE 7. 18 . Cm VERSUS K FOR THE VARIOUS VALUES OF THE FREQUENCY 

PARAMETER FOR HARMONICALLY OSCILLATING FLOW 

(Sarpkaya. 197613) 
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FIGURE 7. 19. Cd VERSWS REYNOLDS NUMBER FOR VARIOUS VALUES OF K 

FOR HARMONICALLY-OSCILLATING FLOW (Sarpkaya. 1976a) 
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OF K FOR HARMONICALLY -OSCILLA TING FLOW 
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FIGURE 7. 21 . VARIATION OF Cm WITH Cd FOR VARIOUS VALUES 

OF K FOR HARMONICALLY -OSCILLA TING FLOW 

(Sarpkaya. 1976a) 
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FIGURE 7. 22. LIFT COEFFICIENT VERSUS K FOR VARIOUS VALUES OF THE 

REYNOLDS NUMBER AND THE FREQUENCY PARAMETER FOR 

HARMONICALLY -OSCILLA TING FLOWS (Sarpkaya. 1976 aJ 
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FIGURE 7. 23 . LIFT COEFFICIENT VERSUS REYNOLDS NUMBER FOR VARIOUS VALUES 

OF K FOR HARMONICALLY-OSCILLATING FLOWS (Sarpkaya. 19769) 
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FIGURE 7. 25 . EVOLUTION OF VORnCES IN VARIOUS RANGES OF THE 

KEULEGAN - CARPENTER NUMBER 

~ (Sarpkaya and Isaacson, 1981) 
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FIGURE 7. 27. CROSS-FLOW RESONANCE : SYNCHRONIZATION BETWEEN 
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FIGURE 7.30 GENERAL ARRANGEMENT OF THE DRIVE SYSTEM 

(Choplin, 19880) 
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Chapter 8 

Spectral and Probabilistic Properties of 
Morison-Type Wave Loading 



INTRODUCTION 

This chapter is devoted to the study of spectral and probabilistic 

properties of Morison-type wave loading. In this regard, it should be 

noted that probabil istic properties of the response are similar to 

those of wave forces due to the 1 inear nature of the relationship 

between the response and loading (for fixed offshore structures which 

do not respond dynamically to wave loading). The study of the spectral 

and probabilistic properties of wave loading is required for both parts 

of this thesis as will be explained below: 

a) With regard to the Christchurch Bay project, the spectral and 

probabilistic properties of measured forces and their peaks will 

be established in Chapter 9. On the other hand, the spectral and 

probabilistic properties of water particle kinematics were 

established in Chapter 4. In this chapter, the theoretical effect 

of the nonlinear drag component of force on both spectral and 

probabilistic properties of water particle kinematics are 

studied. This paves the way for the assessment of the performance 

of Morison's equation in predicting the spectral and 

probabilistic properties of forces from the spectral and 

probabil i st i c properties of their associated water particle 

kinematics in Chapter 9. 

b) With regard to the probabilistic analysis of offshore structures, 

the ultimate goal is to establish the long-term distribution of 

the response peaks. This is obtained by the convolution of the 

short-term distribution of the response peaks with the long-term 

distribution of the sea-states, as was explained in Chapter 5. 

The short-term properties of the peaks are obviously dependent on 
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the short-term properties of the force (or response) itself. 

Therefore, for the purpose of the probabilistic analysis of 

offshore structures, one has to study the short-term probability 

distributions of both the response and its peaks. 

Section 8.1 is devoted to the probabilistic properties of the force 

itself. Section 8.2 is concerned with the short-term probability 

distribution of the peaks, while the short-term probability 

distribution of the extreme peak is the subject of study in Section 

8.3. Section 8.4 is devoted to a brief discussion of the long-term 

distribution of the peaks. Finally, the relationship between the 

spectral properties of the force and water particle kinematics are 

established in Section 8.5. 

8.1 SHORT-TERM PROBABILITY DISTRIBUTION OF "ORISON-TYPE WAVE LOADING 

8.1.1 UNIDIRECTIONAL SEAS 

No Current 

Accord i ng to Mori son I s equat i on, wave load i ng per un it 1 ength on a 

vertical cylinder exposed to unidirectional waves can be expressed as 

(8.1 ) 

where all the variables are defined as in Chapter 7, and u and U are 

assumed to be Gaussian-distributed according to Linear Random Wave 

Theory. The probability distribution of force may be found in terms of 

the jOint distribution of u and u by the method of transformation of 

variables (Pierson and Holmes, 1965). The general procedure for the 

transformation of variables is as follows (Papoulis, 1965). 

Let Wand X be functions of two random variables Y and Z. That is 
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W = f, (V, Z) (8.2) 
and 

x = f2 (V, Z) (8.3) 

For given values of Wand X, i.e., Wo and Xo' let there be m pairs of 

roots for Equations (8.2) and (8.3), (i.e. Vi' Zi' i .. l, m), then 

m 
Pw.x (Wo, Xo) ;: L 

... 1 (8.4) 

Pw.x(Wo,Xo) is the jOint probability density function of Wand X and 

Det J is the determinant of the Jacobian matrix defined as 

J(V,Z) co 

af, 

av 

af, 

az 

(8.5) 

Now in the case of Morison's equation, the jOint pdf of u and u is 

known, from Linear Random Wave Theory, to be a mean-zero Gaussian pdf. 

1 1 
p(u,u) = exp[-

(8.6) 

where Uu and Uu are the standard deviations of water particle velocity 

and acceleration, respectively. In order to map between the u, U 

probability space and the force space, it is necessary to introduce a 

dummy variable such as 

G = u (8.7) 

Then 

235 



p(u,CI) 
p(F,G) = 

IOet JI (8.8) 

where 

J = [ 2~lul ~J (8.9) 

Thus 

IOet JI = kj (8.10) 

and 

1 1 u2 Cl 2 

p(F,G) = exp [ - (- + -)] 
211'kpuO'u 2 0' 2 0'.2 

u u (8.11) 

The dummy variable G may be removed by integration with respect to G = 

u, leading to the following expression for the pdf of force (Tickell, 

1977) 

+CD 
p(F) = J p(F,G)dG .. 

-CD 
1 +CD 1 u2 u2 

J exp[ -- (- + -)]du 
211'k jO'uO'u -CD 2 0'2 0'.2 u u (8.12) 

where 

Cl .. ( F - kd U I u I ) / kj (8.13) 

The pdf given by Equation (8.12) will be referred to as Pierson/Holmes 

(P/H) distribution. In the absence of current, the odd-valued absolute 

moments of force are all zero. That is 

, J = 1, 2, ... (8.14) 

The second and fourth moments are given by 

(8.15) 

and 
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1-'4 = m4 = E[F4] = 3kj
4 

UiJ 
4 + 18kj

2k/ U/ Uu 
4 + 105k/ Uu 

8 

(8.16) 

Morison's equation can be rewritten as 

(8.17) 

where X1 = kjll and X2 =v'kd u are Gaussian random variables. Then the pdf 

of force will be 

1 +CI) 1 X,2 x/ 
p(F) = I exp [- (- + -)]dX2 

2 2 
211"Ux1 U)(2 -Cl) 2 UX ' Ux2 (S.IS) 

where 

(S.19) 

The second and the fourth statistical moments of the above distribution 

are 

(8.20a) 

and 

(S.20b) 

Knowing 1-'2 and 1-'4' the above two equations may be solved simultaneously 

for ux1 and ux2 ' That is 

E[F4] _ 3E[F2]2 1/4 f3 - 3 1/4 

Ux2
2 = ( ) = ( ) * 

78 78 

and 

where f3 is the kurtosis of force defined as f3 = 1-'~1-'22 
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(S.21a) 
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0xl and 0x2 are then used in Equation (B.1B) to define the probability 

density function of the force. Therefore, in the absence of current, 

the pdf of force is fully defi ned by its second and fourth order 

statistical moments. 

The pdf of force is clearly not of a Gaussian form which is fully 

defined by its second moment. A typical pdf and cumulative distribution 

function (cdf) are shown in Figure B.l, compared with the Gaussian 

forms with the same variance. It 1 s cl ear that in such a case, the 

level of force with a given probability of exceedence is higher in the 

tails of the distribution than would be predicted from a Gaussian form. 

As previously mentioned the ratio of P4 to P2
2 is known as the kurtosis 

and is denoted by p 

(B.22) 

Substituting for ~4 and ~2 from Equations (B.20-a) and (B.20-b) leads 

to 

p = 3 + 

[3 + 

7B 

k.2 0. 2 

_'_U_]2 

k/ou
4 (B.23) 

Hence, for inertia dominated loading (k j 0u » kd ou2), p ... 3.0 (Gaussian 

distribution) and for drag dominated loading (kd ou2 » kj ou)' p ... 11.67. 

Therefore, the kurtosis serves as a measure of the importance of the 

nonlinear drag term and the higher the value of the kurtosis, the more 

marked is the departure of the force distribution from Gaussian 

distribution, as shown in Figure B.2. 
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With Current 

In the presence of a current u, the pdf of force will be 

where 

1 +co 
p(F) = J exp {-

21rO'x'O'x2 -co 

1 

2 

x2 =vKd (u + u) (u is the wave-induced 
horizontal velocity) 

x, '" kj U = F - x2 1 x2 1 

0' 1 = k· 0'. x I U 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 

When current is not zero, the odd-valued statistical moments are no 

longer zero, i.e. E[F] r 0, E[F3] r 0 and the pdf is skewed to the right 

or left depending on the sense of the current. The first four 

statistical moments of force are (Borgman, 1967) 

where 

m, = E[F] .. 20'x/ ['YZ{'Y) + ('Y2 + 1) Q('Y)] (8.30) 

(8.31) 

m3 = E[F3] = 2'YZ('Y)[('Y4 + 14-y2 + 33) O'X26 + 3 O'x/ O'x/] 

+ 2Q{-r)[{-y6 + 15·l + 45-y2 + 15) O'x26 + 3(l + 1) 

m4 = E[F4] = O'x28 ('Y8 + 28'Y6 + 210-y4 + 420'Y2 + 105) 

+ 60'x/ O'x24 {-r4 + 6-y2 + 3} + 30"x,4 

'Y = = 
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and 

1 "(2 

Z(,,() = exp (- -) 
V21r 2 

"( 
Q("() = f Z(Y) dY 

o 

(8.35) 

(8.36) 

The pdf and cdf can be calculated once ux1 ' ux2 and "( = X2!ux2 are known 

and these can be found from the solution of any 3 of the four equations 

giving the first four statistical moments of force. That is why the 

distribution of force in the presence of current is sometimes referred 

to as a PH3 distribution. 

8.1.2 SHORT-CRESTED SEAS 

When a vertical pile is subjected to a short-crested sea, there will be 

forces in two orthogonal directions in the horizontal plane, as shown 

in Figure 8.3. According to Morison's equation, the horizontal 

components of force per unit length are (note that lift forces have not 

been included), 

F x = kj U + kd U (u2 + v2
) 1/2 

Fy = kj V + kd V (u2 + v2) 1/2 

(8.37) 

(8.38) 

Tickell and Elwany (1979) have derived the joint probabil 1ty 

distribution of Fx and Fy in the absence of current. They rewrote 

Equations (8.37) and (8.38) in the following form. 

Fx = l/J1 + 'P3 (l/J/ + l/J/)1/2 

Fy = 'P2 + 'P4 (l/J/ + 'P/) 1/2 
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Following the method of transformation of variables, the joint pdf of 

Fx and Fy is 

(S.41) 

where in evaluating the above integral, 

(S.42) 

(S.43) 

(S.44) 

(~}T is the transpose of {~} and the matrix ~ consists of the second 

moments of {~}. That is 

C11 C12 C13 C14 

C21 C22 e23 C24 

J1. -
C31 C32 C33 C34 

C41 C42 C43 C44 
(S.45) 

where 

Cjj = E[~j ~j] (S.46) 

The pdf is of Pierson/Holmes type and is fully defined when m20 , m11 , 

m40 , m31 and m22 are known, where mk,· E[FxkFy']. Tickell and Elwany (1979) 

compared the cdf of simulated force data in a directional sea with 

their theoretical distribution and found it to be satisfactory, as 

shown in Figure S.4. Figure S.4 also shows P(Fx) obtained by introducing 

the theoretical second and fourth moment of force (m20 and m40 ) into the 

expression for the distribution of force for a long-crested sea 

(Equations (S.lS) to (S.20}) and found it to be in very good agreement 
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with the theoretical distribution. Therefore, the theoretical 

distribution of force in the predominant wave direction can be obtained 

by calculating the second and fourth order moments of force component 

in the predominant wave direction in conjunction with Equations (8.18) 

to (8.20). 

Finally, it should be noted that Tickell (1977) has demonstrated by 

analysis of prototype data that the distribution of structural response 

(stress, displacement) is similar to that of wave loading. In other 

words, structural response follows P/H distribution (Figure 8.5). 

Hence, the content of this chapter with regard to the probabilistic 

properties of wave loading is also valid for the probabilistic 

properties of structural response. 

8.2 THE PROBABILITY DISTRIBUTION OF PEAK FORCES 

In deSign applications it is the probabilistic distribution of the peak 

and extreme values of either load or response, rather than the basic 

variate, that are of most importance. Distribution of peak values may 

be transformed into the pdfs of stress range required in fatigue 

analyses to check the long-term integrity of structures and they also 

form the input to the distribution of extreme values necessary for the 

assessment of risk of first excursion failure. 

The theory covering the probability structure of the peaks of random 

variables is given by lin (1967). A positive peak (maximum or crest) on 

the time history of F{t) corresponds to the condition of zero slope, 

F(t) = 0, and t(t) S 0, where F and t are the first and second order 

derivatives of F, respectively. Using this criteria, lin has shown that 
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E[M(q)], the number of positive peaks per unit time of magnitude 

greater than or equal to a force level F = q, is 

co 0 
E[M{q)] = - f f F p{F, F = 0, F) dt dF 

q -co (8.47) 

where p{F, F, F) is the joint probability distribution of force and its 

two first derivatives. The total number of positive peaks, E[MT ] is 

obtained by setting q = -co. That is 

co 0 
E[MT ] = - f f t p{F, F = 0, F) dF dF 

-co -co (8.48) 

The cumulative peak distribution, Pp{q), can then be determined from 

E[M{q)] 

E[MT] (8.49) 

The above distribution is referred to as the wide-band peak 

distribution as opposed to the narrow-band peak distribution obtained 

from the assumption of a narrow-band force. 

The jOint pdf of force and its two derivatives needed in Equations 

(8.47) and (8.48) can be obtained in the following manner (Tickell, 

1977). Differentiation of Morison's equation with respect to time leads 

to the following relationships. 

F = kd ulul+k j du/dt 

F = 2kdl u I du/dt + kjd2u/dt2 

(8.50) 

(8.51) 

F = 2kdlul d2u/dt2 + 2kd (du/dt)2 sign(u) + kj d3u/de 
(8.52) 

The method of transformation of variables can be used to obtain the pdf 

of {F} - (F, F, F, G), where G • u is an auxiliary variable G • u, from 
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the pdf of {u} = {u, du/dt, d2u/dt2, d3u/dt3
}. The variables {u} are 

jointly Gaussian distributed with the following distribution 

1 1 
exp [- {u} [JLr' {u} T] 

2 (8.53) 
p(u,du/dt, d2u/dt2 , d3u/dt3 ) = 

41(2 v'bet[JL] 

where {U}T is the transpose of {u} and [JLl is the square matrix of 

cross-covariances 

mo 0 -m2 0 

0 m2 0 -m4 
[JLl • 

-m2 0 m4 0 

0 -m4 0 m6 
(8.54) 

where 

co 

mj = f rJ Guu (w) dw 
0 

the determinant of the Jacobian matrix needed in derivation of pdf of 

{F} is k~. Therefore, 

p{u} 
p(F, F, r, u) = 

k.3 
I (8.55) 

and the pdf of F, F, t is obtained by integrating out the auxiliary 

variable G = u. Therefore, 

1 +co 1 
p(F, F = 0, t) m f exp [-

41(
2 v'bet[JL] kj

3 
-co 

where in evaluating Equation (8.56) 

du 
- = 
dt (8.57) 
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(8.58) 

d3u/dt3 = [t - 2kdluld2u/dt2 - 2kd(du/dt)2 sign(u)]/kj 
(8.59) 

The peak distribution thus derived is referred to as wide-band peak 

distribution and is applicable to time series with a general bandwidth 

form. It therefore includes the occurrence of peaks below mean level 

for a wide-band (wb) spectrum. It is obvious that the wb peak 

distribution is computationally very demanding. The peak distribution 

can be s impl ifi ed if one assumes that the force is narrow-banded. 

Tickell (1977) has shown by analysis of prototype data that the 

assumption has little effect on the distribution of force peaks. 

For a narrow-banded process, each threshold crossing with positive 

slope leads to a single positive peak and all positive peaks (maxima) 

have positive magnitudes. Under these conditions, the peak distribution 

may be simplified to 

E[N+(q)] 

E[N+(O)] (8.60) 

where E[N+(q)] is the number of upward threshold crossings of F - q. 

lin (1967) has shown that the number of upward crossings of a threshold 

level F • q, E[N+(q)], is 

co 

E[N+(q)] = f F p(F = q, F) dF 
o 

subst~tuting the above equation into Equation (8.60) leads to 
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CD 

f F p(F = q, F) dF 
0 

Pp(F = q) = 1 -
CD 

f F p(F = 0, F) dF 
0 (B.62) 

This distribution, referred to as 'type l' narrow-band distribution, is 

simpler than the wide band distribution because it does not involve the 

second order derivative of force. The 'type l' narrow-band distribution 

can be obtained in terms of the joint pdf of u, u, a, in a manner 

similar to the wide band distribution and is not repeated here. 

If F and F are assumed to be statistically independent, a simplified 

expression results, termed the 'type 2' narrow-band peak distribution. 

The joint pdf of F and F under the independence assumption is 

p(F, F) = p(F) p(F) 

Replacing this equation into Equation (8.62), yields 

Pp (F '" q) .. 1 -
p(F '" q) 

p(F .. O} 

\B.63} 

(B.64) 

The great advantage of the 'type 2' approximation is that it represents 

a considerable reduction in computational effort over the 'type l' 

approach, requiring only the P/H probability densities for its 

evaluation. 

A standardised plot of the 'type 2' peak distributions is shown in 

Figure B.6. The plots are made on Rayleigh paper since the narrow-band 

Gaussian process (~ = 3.0) has peak values following the Rayleigh pdf. 
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Comparison of Theoretical Peak Distributions with Prototype Data 

Tickell (I977) has compared the peak distributions of the prototype 

stress records with 'type 2' narrow-band theoretical distribution 

(Figure 8.7). The fact that the stress records are not narrow-banded is 

obvious since peaks were identified below the mean value of the stress. 

In addition to the 'type 2' distribution, the theoretical peak 

distribution for a wide-band Gaussian process and the Rayleigh 

distribution, which results from a narrow-band Gaussian process, have 

been plotted. The Rayleigh and the 'type 2' distributions do not 

compare favourably with the observed behaviour at low stress levels due 

to their narrow-band assumption which leads to positive peaks only. 

However, the 'type 2' distribution approaches the observed distribution 

at higher levels. Both the Rayleigh and wide-band peak distributions, 

arising from the assumption of a Gaussian distribution for the basic 

stress, significantly underestimate peak values with low probability of 

exceedence (say less than l%). 

In fatigue calculations, it is the probabilHy distribution of the 

stress range whi ch is required. Tickell (1977) compared prototype 

cumulative distribution range with its theoretical distribution. The 

prototype stress range was defi ned as the magni tude of the stress 

reversal measured from the highest peak to the lowest trough between 

two successive upward zero-crossings. The theoretical stress range was 

defined based on the narrow-band assumption that each value of positive 

peak is associated with a negative trough of equal magnitude between 

successive upcrossings, that is, stress range • 2 * peak. As 

demonstrated in Figure (8.B), the results showed that the non-Gaussian 

stress range provides a much better fit to the data than the Rayleigh 
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distribution resulting from the assumption that force is Gaussian 

distributed. 

Comparison of Theoretical Peak Distributions with Simulated Force Data 

In addition to the comparison of prototype data with the above 

mentioned theoretical peak distributions, Tickell (1977) compared 

simulated wave force data based on Morison's equation with these 

theoretical models. His results, shown in Figures 8.9 to 8.11, revealed 

that the 'type I' narrow-band approximation gives a satisfactory 

distribution when compared with the full wide-band model for all 

degrees of non-linearity. The 'type 2' narrow-band approximation gives 

a reasonable estimate of the approximation when the kurtosis is low, 

say less than 4.5. However, at higher values of kurtosis, the 'type 2' 

distribution underestimates the high stress levels but still it is much 

better than the Rayleigh distribution resulting from the linearisation 

of the drag term. It should be noted that a modification was introduced 

in the case of wide-band model. That is the cdf was obtained for 

positive peaks only by setting the lower limit of the first integral in 

Equation (8.48) equal to zero rather than minus infinity. 

8.3 THE PROBABILITY DISTRIBUTION OF EXTREME PEAKS 

The distribution of extreme peaks is derived from the distribution of 

peaks by applying the theory of Gumbel. If all the peaks in a record 

are assumed to be independent then, the probability of all the peaks 

(or the extreme peak) in a record of N peaks, to be smaller than the 

given value is 

(8.65) 
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This distribution may be used to assess the risk of exceedence of a 

particular level of F during a period of exposure equivalent to the 

passage of N cycles for application in first-excursion failure 

analysis. 

The pdf of the extreme force is obtained by differentiating Equation 

(8.65) with respect to F. That is 

(8.66) 

and the expected value of extreme peak force, E[Fmax], is obtained as 

Q) 

E[F max] = J FPep(F) dF 
o (8.67) 

For a given duration, the number of peaks, N, can be estimated using 

the spectral moments of force in the same way as was done for wave 

processes (Equation (3.S8}). 

Tickell calculated the extreme peak statistics for a 1.0m diameter 

member for a storm with assumed durations ranging from 1 hour to 12 

hours (Figure 8.12). These statistics include the expected value of the 

extreme peak, E[Fmax], based on the three theoretical models for the 

non-Gaussian distribution of force (wb, nbl, nb2). For comparison, the 

same statistic was also calculated assuming that the force was Gaussian 

distributed. Furthermore, the peak force which would occur during the 

passage of an equivalent deterministic wave is shown. The wave height 

was taken to be the expected maximum wave hei ght for the duration 

cons i dered and the wave per; od was taken to be the expected zero

crossing period. Stoke's fifth order wave theory was used to compute 
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the fluid kinematics. The extreme peak with one percent probability of 

exceedence duri ng the storm duration is also gi ven. The fo 11 owi ng 

comments about the accuracy of these extreme events wi th very low 

probability of exceedence are worthy of report here. 

The number of peaks in a 10 hour storm is in the order of several 

thousands. Let us assume that there are 5000 peaks in that duration. 

Then, the cdf of the extreme peak would be 

(8.68) 

A probability of exceedence of 0.01 for the extreme peak requires that 

Pp(F)5000 = 0.99 or Pp{F) = 0.999998. In other words, the probability of 

exceedence of the peak force itsel f is 2*10-8
• The probl em is that there 

is no firm evidence that the theoretical distributions are valid at 

these very low 1 eve 1 s of probabi 1 ity of exceedence. Ti cke 11 has 

demonstrated that the theoretical distributions are valid up to a 

probability of exceedence of at least 0.01 (Figure 8.5). Of course, it 

is understood that practically it is very difficult if not impossible 

to verify the theoretical distributions against prototype data for very 

low values of probability of exceedence, as that requires very long 

records and even then the question of stationarity of the record would 

be rai sed. The above comments are only meant to serve as a caution 

against the use of the extreme values obtained from probabilistic 

methods without a thorough examination. The author intuitively believes 

that the extreme events with very low probability of exceedence can be 

conservative because the underlying probability distribution assigns a 

very small but non-zero probability to events which are physically 

impOSSible. In view of the above comments, extreme events predicted 

from 'type 2' narrow-band distribution, which are somewhat smaller than 
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those predicted from the 'type l' narrow-band distribution, may be 

closer to the real value of these extreme events. 

8.4 LONG-TERM PROBABILITY DISTRIBUTION OF FORCE (RESPONSE) PEAKS 

The long-term probability distribution of peaks is obtained by 

convoluting the short-term distribution of the peaks with the long-term 

distribution of sea states or wave conditions in a similar way to that 

of the wave heights discussed in Chapter 5 (Tickell et al, 1976). 

Tickell's results indicate that for drag dominated cases, the 'type 2' 

long-term distribution is somewhat smaller than the 'type l' 

distribution at low values of probability of exceedence. However, in 

view of the considerable reduction in computer run-time, the use of the 

'type 2' distribution is recommended except for cases where the load 

(response) is strongly drag dominated. The long-term probability 

distribution of extreme peaks required in the first-excursion failure 

analysis of a structure is derived from the long-term distribution of 

peaks according to Gumbel's theory as was the case for the short-term 

distribution of extreme peaks. That is 

PepLT(F) = [PPLT(F)]N (8.69) 

where N is the total number of peaks. 

8.5 FORCE SPECTRUM 

The spectrum of force can be derived by first obtaining its auto 

correlation function. The force and the auto correlation function are, 

respectively 

F ( t ) = kd U ( t) I u ( t) I + kj U ( t ) (8.70) 

and 
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RFF (1) = E[F(t)F(t + 1)] = k/E[u(t)lu(t)l*u(t + 1) 

lu(t + 1)1] + k/E[u(t)u(t + 1)] + kdkjE[u(t)lu(t)1 

li (t + 1)] + kdkjE [u (t + 1) I u (t + 1) lu (t) ] (8.71) 

Assuming that water particle kinematics are Gaussian distributed the 

expectations in the above equation are (Borgman, 1967) 

where 

and 

E[u(t)lu(t)l*u(t + 1}lu(t + 1)1] = G[Puu(1)] * (] 4 u 

E[u(t)u(t + 1)] Ruu(1) 
------=--

(] 2 
u 

(] 2 
u 

1 
G(r) = - [(4r2 + 2)sin-'(r) + 6rvl - r2] 

7r 

4 
E[u(t}lu(t}lu(t + 1)] • - * Pu.u (r) * uu

2 Uu 
Vii 

4 
E[u(t + 1}lu(t + 1)lu(t}] • - * Pu.u(1} * u/ uiJ 

Vii 

(8.72) 

(8.73) 

(8.74) 

(8.75) 

(8.76) 

Borgman (1967) has shown that Pu.u(1) = - Pu.u(1); therefore Equation 

(8.71) can be rewritten as 

(8.77) 

The function G(r} may be expressed as a power series in r; that is 

1 4 1 
G(r) = (Br + r3 + r6 + ....• ) 

7r 3 IS (8.78) 

The spectrum of the wave force is the Fourier Transform of the auto 

correlation function. 
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2 co 

GFF(W) = f RFdT) COS(WT) dT 
1r 0 (8.79) 

There is no closed-form solution for the above integral. However, by 

approximating G(r} with the first term of the expansion series, that 

is, by assuming that G(r) is equal to the following linear function of 

r 

8r 
G(r) z 

(8.80) 

Then RFF(T} from Equation (8.77) will be 

1£ (8.81) 

which leads to the following approximation for the force spectrum 

1£ (8.82) 

The above expression for the force spectrum can be obtained by 

1 i neari sing the drag component in the Mori son's equat ion (Borgman, 

1972). That is by assuming 

ulul z cu (8.83) 

The coefficient c is obtained by minimising the expected value of the 

square of the error term, where the error term is 

I!. = ulul - cu (8.84) 

Raising both sides of the above equation to the second power leads to 

(8.85) 
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Therefore 

(8.86) 

The above expectation is minimum when 

--= 0 
dc (8.87) 

from which it follows that 

dc (8.88) 

or 

c = = 
(8.89) 

Hence, the linearised form of the Morison's equation is (Borgman, 1972) 

The above expression, leads to an autocorrelation function and 

frequency spectrum as in Equations (S.Sl) and (S.82). 

The force spectra resulting from the linearisation of the drag 

component fit the measured field force spectra quite well and it is 

therefore valid to use the linearised form of Morison's equation in the 

Frequency domain. However, the coefficient derived by Borgman (1972) 

underest imates the vari ance of the 1 oadi ng. The vari ances of the 

nonlinear and the linearised form of Morison's loading are 

respectively, 

(JF
2 .. 3kd2 (J 4 + k.2 (J.2 

U I U (8.91) 
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and 

8 
k 2 (] 4 + k.2 (]. 2 
dUI U 

(8.92) 

which leads to the following difference between the two variances 

The 

The 

8 
(]/ - (]~2 = (3 - _ )k/ (]u

4 
=: 0.454 k/ (]u

4 

1£ 

underestimation of variance as a result of linearisation 

(]F 
2 - (]~ 

2 O.454k/ (]u 
4 

-(] 2 
F 

3 k 2 (] 4 + k. 2 (]. 2 
dUI U 

underestimation is most significant when the force 

(8.93) 

is 

(8.94) 

is drag 

dominated. The maximum possible value for the underestimation of 

variance is 

(]F2 (] 2 - F 
[----]max ... 

(]/ 

0.454 

3 
- 0.15 

(8.95) 

The criterion used for the derivation of the linearisation coefficient, 

i.e. minimisation of the error term is not justifiable. That criterion 

means that if one wishes to use the linear form of Morison's equation 

in the time domain, then the coefficient c • V8/1£ minimises the 

expected value of the square of the error term. However, the linear 

form of Morison's equation is not used in the time domain, as it is 

inaccurate. The linearisation technique is used only in the frequency 

domain, and as such, the best criterion to be used is to ensure that 

the variance of the nonlinear drag term and the linearised drag term 

are equal, i.e. 
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(8.96) 

which leads to 

(8.97) 

Therefore, the force spectrum would be 

(8.98) 

The use of the coeffi c i ent c2 
.. 8/1£ rather than c2 = 3, causes a 

consistent overestimation of the drag coefficient by 8.5%, when 

spectral methods are used in derivation of Morison's coefficients. The 

reason for this is explained below. If the drag coefficient obtained by 

using c2 = 8/1£ and c2 = 3 are denoted by kd and kd, respectively, then 

equating the variance of the drag term in both cases results in 

(8.99) 

or 

= (31£/8) 1/2 = 1. 085 
(8.100) 

As will be fully discussed in Chapter 9, the important criteria for 

determi ni ng parameters when a function is approximated by another 

function in the analysis of random processes is that (a) the 

correlation coefficient between the two functions is maximised and (b) 

the variances of the two functions will be equal. In linearising the 

drag term, ulul is replaced by cu. Assuming that u is Gaussian 

distributed, the correlation coefficient between ulul and cu is 
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The correlation coefficient is independent of c. Therefore, there is no 

preference between different values of c as far as the correlation 

coefficient is concerned. However, equating the variances of ulul and 

cu leads to c ... V3 as was previously discussed. 

Finally, the following point deserves attention. Assuming that u is a 

sinusoidal function of time, then ulul (drag component) contains 

components at odd multiples of the fundamental frequency. The 

contribution to the mean-square drag component arising from components 

at the fundamental frequency and at the third and fifth harmonics are 

96.1%, 3.8% and 0.1%, respectively (Sarpkaya and Isaacson, 1981). As a 

result of linearisation of the drag term, the odd harmonics are 

omitted. This point must be considered when the third harmonic can 

excite one of the natural frequencies of a structure. 
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Chapter 9 

Determination of Hydrodynamic 
Coefficients from 

Christchurch Bay Data 



INTRODUCTION 

This chapter discusses the suitability of the relative motion form of 

Morison's equation in describing the in-line random wave loading on the 

flexible cylinder at Christchurch Bay. 

Spectral and probabilistic properties of the observed forces together 

with the basic hydrodynamic parameters and total force coefficients are 

discussed in Section 9.1. Sections 9.2 and 9.3 are devoted to the 

determination of Morison's coefficients via probabilistic and time

domain methods, respectively. In respect of the latter, the Least 

Square Error method of fitting has been critically assessed; its 

shortcomings in the analysis of stochastic processes have been 

identified and a new method, termed maximum correlation method, has 

been introduced. The effect of sampling variability on these 

coefficients has been discussed in Appendix C, where it is shown that 

the effect is not significant. 

The success of the relative motion form of Morison's equation can best 

be judged by the goodness of fit between the observed and predicted 

forces. This is covered in Section 9.4. However, even a perfect fit 

between the observed and predi cted forces does not mean that the 

relative motion form of Morison's equation is a successful model for 

predicting random wave loading on flexible cylinders. Of paramount 

importance is the stability of Cd and Cm values from one run to another 

one. In this context, stability means that either Morison's 

coefficients must be relatively constant, or alternatively, their 

variation must be predictable in terms of their dependence on basic 

hydrodynamic coefficients or some other parameters. This led to the 

introduction of a new parameter, which was termed the acceleration 

268 



parameter. The stabil i ty of Mori son's coeff; cients is di scussed in 

Section 9.5. Section 9.6 is devoted to the comparison of the results of 

this study with previous relevant work (which was discussed in Section 

7.4). The variation of Cd and Cm values for individual large waves in 

each run is presented in Section 9.7. 

Finally, although the main objective of this study was the 

investigation of in-line forces, brief discussions of in-line cylinder 

response, and transverse force and response are included in Sections 

9.8 and 9.9, respectively. 

9.1 GENERAL CONSIDERATIONS 

9.1.1 BASIC HYDRODYNAMIC PARAMETERS 

Hydrodynamic loads on cylindrical members are known to be related to 

the values of parameters such as Reynolds number (R.), Keulegan

Carpenter number (K) and roughness. Data in this study refers to only 

smooth cylinder condition; hence the latter effect is omitted. 

Furthermore, reduced velocity is known to be an important parameter for 

the case of flexible cylinders. The definition of these parameters for 

a random wave environment is not firmly established, that is, several 

different definitions for these parameters have been mentioned in the 

literature. In this study, the parameters have been calculated using 

the expressions due to Bishop (1980), so that the results of this study 

can be compared with those of the previous rigid cylinder studies at 

the Tower. Therefore 

K = 
7.255 

o (9.Ia) 
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1.280 
R = * [E[U4 ]]1/4 • 

V (9.1b) 

1. 28 
u = * [E[U4 ]]1/4 r 

f •. 0 (9.1c) 

where v is the kinematic viscosity of sea water (v z 1.43*10-6 m2/sec), 

f. is the cyl inder natural frequency and other variables are as 

previously defined. If a monochromatic linear wave is considered in 

calculating E[u4
] and E[u2], then the more familiar forms of K and R. 

are obtained. The values of these parameters for both low-intensity and 

high-intensity runs are given in Table 9.1. These calculations are 

based on both the observed absolute moments for E[u4
] and E[u2

] and 

theoretical absolute moments by assuming that u is Gaussian 

distributed. In both cases, the effect of current has been included. 

The values of the parameters obtained from observed and theoretical 

values of E[u4
] are in reasonable agreement. 

Low-Intensity Runs 

The Keulegan-Carpenter number is in the range 8.5 < K < 11.9 and hence, 

it is expected that the in-line force is inertia-dominated. The 

Reynolds number lies in the range 1.5*105 < R. < 2.7*105 ; therefore the 

shear layers are expected to be turbulent under the effect of three

dimensional flow, which in turn leads to low and high values of drag 

and inertia coefficients, respectively. The reduced velocity varies 

between 0.6 to 3.4, with the result that cylinder synchronisation 

('lock-in' effect) is not highly probable as synchronisation for 

flexible cylinders in waves occurs when the reduced velocity is in the 

range of 5 to 7.5 with maximum response at Ur = 5 (Rajabi, 1979). 
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High-Intensity Runs 

The Keulegan-Carpenter number is in the range 20.8 < K < 36.9, so that 

the in-line force is in the drag-inertia regime. The Reynolds number 

lies in the range 3.6*105 < R. < 5.7*105
; therefore, the shear layers 

are turbulent, drag coefficient is expected to be low and inertia 

coefficient is expected to be high. The reduced velocity ranges from 

4.9 to 7.2; hence synchronisation can be expected. 

9.1.2 TOTAL FORCE COEFFICIENTS 

In-line and transverse force coefficients are respectively defined as 

(Bearman, 1988): 

F rme 
CFrm8 = 

kd 2 urme (9.2a) 

and 

Firms 

Clrme = 
kd Urms 

2 (9.2b) 

where F rms , Firms and urms refer to the root mean square of the in-1 ine 

force, transverse force, and the in-line water particle velocity, 

respectively, and 

kd = pDL/2 (9.2c) 

with L being the length of the force sleeve. 

Bishop (1988) has defined the in-line and transverse force coefficients 

in the following way 

(9.3a) 
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and 

(9.3b) 

The form of the above equations is such that C· will tend to Cm for 

inertia-dominated situations and tend to Cd for drag-dominated 

s ituat ions. 

Bearman's and Bishop's force coefficients for the present study are 

presented in Table 9.2 and are plotted against Keulegan-Carpenter 

number in Figures 9.1 and 9.2. The transverse force coefficients are 

about 0.75 times the in-line force coefficients indicating that the 

transverse force is significant. As expected, the force coefficients 

decrease with increasing Keulegan-Carpenter number as the drag 

component becomes more significant. Force coefficients for low

intensity runs are more widely scattered than those for high-intensity 

runs. 

9.1.3 SPECTRAL AND PROBABILISTIC PROPERTIES OF IN-LINE AND TRANSVERSE 

FORCES 

9.1.3.1 Basic Statistical Parameters 

Values of skewness and kurtosis for both low-intensity and high

intensity runs, together with the ratio of UF/UFx are given in Table 

9.3. 

Low-Intensity Runs 

The values of skewness for in-line forces are small and fluctuate about 

zero, while their values for transverse forces are higher and are 

mainly positive. With the exception of Run 06, the skewness of the in-
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1 ine forces (at Level 3) are between those of the in-l ine water 

particle velocities and accelerations (refer to Tables 4.3 and 4.4) but 

are closer to the skewness values for accelerations. This is expected 

because these runs are inertia-dominated and hence are mostly affected 

by acceleration components. The effect of the drag component is 

expected to be small; however, the velocities have large negative 

skewnesses and hence, their effect on reducing the skewness values for 

the forces are not insignificant. 

The kurtoses for the in-line forces are close to 3 and are occasionally 

smaller than 3. From a theoretical point of view, Kurtosis cannot be 

less than 3; however, for records of finite length, this is possible 

due to sampling variability. Overall, the small values of kurtosis 

indicate that the in-line forces are inertia-dominated. Values of 

kurtosis for transverse forces are higher than their equivalents for 

in-line forces. 

The kurtoses of the in-line forces, against expectation, are 

systematically smaller than those of water particle kinematics (refer 

to Tables 4.3 and 4.4). According to Morison's equation, while the 

kurtoses of these inertia-dominated in-l ine forces must be between 

those of the water particle velocities and accelerations, they should 

be closer to the kurtoses for accelerations. However, it should be 

noted that Morison's equation offers only an approximation to the fluid 

1 oadi ng on submerged cyl i nders because it does not account for the 

effect of vortex shedding, etc. Therefore, some discrepancy between the 

propert i es of Mori son-type forces and observed forces are expected. 

Measurement errors in hydrodynamic forces and water particle kinematics 

can also contribute to the above-mentioned discrepancy. 
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The ratio between the standard deviations of the transverse and in-line 

forces are greater than 0.50, indicating that transverse forces are 

significant. 

High-Intensity Runs 

The values of skewness for in-line forces are all positive and 

relatively large, which could be due to finite amplitude effects. Their 

values for transverse forces are also large but they are negative. The 

skewness of the associated water particle kinematics are all positive 

but are smaller than those of the in-line forces (refer to Tables 4.5 

and 4.6). The drag component of force is expected to have a higher 

value of skewness than that of water particle velocity. However, the 

skewness of in-line forces are significantly higher than those of water 

particle kinematics so that some deviation from theoretical predictions 

are suspected. 

The kurtoses for in-line forces are all above 3 and larger than those 

for the low-intensity runs, which is expected in view of the fact that 

drag forces are more significant for high-intensity runs. Values of 

kurtosis for transverse forces are all well above 3 and are higher than 

those for in-line forces. They are also larger than their equivalents 

for law-intensity runs. the kurtoses of in-line forces are 

significantly greater than those of water particle kinematics (refer to 

Tables 4.5 and 4.6). This is consistent with theory as the high

intensity runs are in the drag-inertia regime and hence are expected to 

have kurtoses values greater than the associated water particle 

kinematics. 
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Conclusion 

At least in a qualitative sense, the predictions of Morison's equation 

with respect to skewness and kurtoses values of the in-line forces are 

correct. The exceptions are the kurtoses of the in-line forces for low

intensity runs which are consistently smaller than those of water 

particle kinematics. 

9.1.3.2 Spectral Properties 

Run 01 

Figures 9.3 to 9.6 show sample time series and spectra for the x and y 

components of force for Run 01. The major variance for both in-line and 

transverse components is restricted to 0 < f < 0.4Hz as was the case 

with the water surface elevation spectrum; however, the spectra show a 

very small contribution at the cylinder natural frequency, too. The 

contribution at the cylinder natural frequency in the in-line direction 

is about 2 times as large as that in the transverse direction. The 

spectral peak for Fy is at a higher frequency than that for Fx ' which 

is expected due to the presence of higher frequencies in the y 

components of water particle kinematics. 

According to Morison's equation, the frequency spectra of in-line 

forces are expected to be similar to those of water particle 

kinematics, except that due to the nonlinear drag component, there is 

a small contribution to the variance of the in-line forces at about 

three times the peak spectral density of the associated water particle 

velocities (refer to the last paragraph of Chapter 8). The comparison 

of the in-line frequency spectrum with that of the water particle 

velocity (Figure 4.9) shows that the general shape of the two spectra 

are the same; however the contribution of frequencies between 0.40 to 
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0.80 Hz is more significant for the in-line force. This could partly be 

due to the ampl ification of higher frequencies in the acceleration 

spectrum in comparison with the water particle velocity spectrum and 

partly due to the nonlinear drag component. 

Run 08 

The spectra are shown ;n Figures 9.7 and 9.8 and are strongly multi

modal as was the case for water particle kinematics. The spectra 

include a component at the cylinder natural frequency (O.73Hz), which 

are of equal magnitude in both x and y directions. 

Run 13 

The spectra shown in Figures 9.9 and 9.10, are noticeably different 

from the prev; ous sets as the transverse force is domi nated by the 

component at the natural frequency (O.46Hz). The contribution to 

variance at the cylinder natural frequency in the transverse direction 

is about 5 times as large as that in the in-line direction. Examination 

of water particle kinematics' spectra reveals that transverse wave 

components at this frequency are somewhat smaller than the in-line 

ones. This clearly shows that a mechanism different from Morison's 

equation is responsible for the excitation at the cylinder frequency in 

the transverse direction. This could be due to synchronisation which is 

possible in view of a reduced velocity of about 5.5 (Rajabi, 1979). In 

addition to the peaks at the cyUnder natural frequency, there are 

three other peaks at the wave frequency, at twice and three times the 

wave frequency which could be due to vortex shedding. This is because 

the Keulegan-Carpenter number is above 20 and hence up to a maximum of 

four vortices per cycle are possible (Figure 7.24). 
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Run 15 

Figures 9.11 to 9.14 show sample time series and spectra for the x and 

y components of force for Run 15. The spectra are more or less similar 

to those of Run 13. 

Again, comparing Figure 9.13 with Figure 4.11, it is observed that the 

general shape of the two spectra are the same; however, the 

contribution of frequencies between 0.2 to 0.4 Hz to the variance of 

the in-line force is more significant than their contribution to the 

variance of the associated water particle velocity. The reasons are 

similar to those mentioned for Run 01. 

Run 23 

The spectra for both in-line and transverse forces are shown in Figures 

9.15 and 9.16. The spectra are more or less similar to those of Runs 13 

and 15. It should be noted, however, that the contribution to variance 

at the cylinder natural frequency in the transverse direction is only 

about two times as large as the contribution in the in-line direction. 

That is, the contribution in the x direction for this run is somewhat 

larger than Runs 13 and 15 while the contribution in the y direction is 

somewhat smaller. The increased contribution in the in-line direction 

can be explained by the fact that water particle velocity is more 

energetic at this frequency in comparison with Runs 13 and 15. The 

reduced contribution in the transverse direction could be due to a 

reduced velocity of about 6.8 which is further away from 5.0 (maximum 

synchronisation) in comparison with Runs 13 and 15, which have reduced 

velocities of 5.3 and 5.7, respectively. 
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Conclusion 

At least in a qualitat~ve sense, the performance of Morison's equation 

in the frequency domain is good. In other words, Morison's equation can 

be used in predicting the spectral properties of the in-line forces 

from the spectral properties of water particle kinematics. 

9.1.3.3 Probabilistic Properties 

Low-Intensity Runs 

Figures 9.17 and 9.18 show cumulative probability distributions for a 

typical low-intensity run (Run 01) for in-line and transverse forces, 

respectively. The distributions are approximately Gaussian as is 

expected for the case of inertia-dominated loads (low kurtosis). Figure 

9.17 shows that the deviation of the negative tail from the Gaussian 

distribution is more marked than that of the positive tail. Examination 

of the probability distribution of water particle velocity (Figure 

4.12) shows that this is the result of a similar deviation in the cdf 

of water particle velocity. 

The crests ~istributions, shown in Figures 9.19 and 9.20 are also of 

Gaussian form, indicating that the forces are not narrow-banded. The 

distribution of mean-crossing ranges (equivalent to wave heights for 

water surface elevation) are in reasonable agreement with the Rayleigh 

distribution (Figures 9.21 and 9.22). As was the case with water 

particle kinematiCS, three different theoretical Rayleigh distributions 

are plotted based on range data mean, range data standard deviation and 

basic signal (in-line or transverse hydrodynamic force) 'standard 

deviation. 
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High-Intensity Runs 

Figures 9.23 and 9.24 show cumulative distributions of in-line and 

transverse forces for Run 13. The non-Gaussian behaviour is evident in 

both cases. Pierson-Holmes 3 parameter distribution (PH3) have also 

been fitted to the data and offer a much better fit than the Gaussian 

distribution. 

The analYSis can be taken a further stage to develop narrow-band 'type 

2' approximations for the crest and trough distributions of force 

(Tickell, 1977). This distribution can then be used to predict the 

extremes of the force. A comparison between predicted and observed 

maximum and minimum for the forces are shown in Figures 9.23 and 9.24 

(Tickell and Burrows, 1989). The same narrow-band approximation for 

peak distributions may be used to form the probability distribution of 

the mean-crossing ranges of the force variables. The distribution 

plotted on Rayleigh distribution papers are shown in Figures 9.25 and 

9.26. The non-Rayleigh PH3 distributions gives a better fit to the data 

in comparison with the Rayleigh distribution arising from the 

assumpt i on that the force variabl es are narrow-banded and Gauss ian 

distributed. It should be noted that the sample size for mean-crossing 

ranges is relatively small (about 300) and therefore range data values 

with low probability of exceedence (say less than 1%) are subject to 

significant sampling variability and hence their departures from their 

theoretical distributions should not necessarily be taken as evidence 

for the significant departure of the underlying population distribution 

from their corresponding theoretical distributions. 

Similar plots for Run 15 are shown in Figures 9.27 to 9.32 and show 

similar characteristics to those for Run 13. 
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Examination of Figure 9.27 shows that the positive tail of the 

distribution follows the theoretical PIH distribution. On the other 

hand, the negative tail is closer to the Gaussian distribution. This 

seems to be against theoretical expectations which predict a PIH 

distribution. However, a closer examination of the cdf of water 

particle velocity (Figure 4.18) reveals that this is due to the 

departure of the negative tail of the water particle velocity from the 

Gaussian distribution. In effect, both tails of the water particle 

velocity have been pushed toward values of higher magnitude as the 

result of the nonlinear drag component, in agreement with theory. 

Examination of Figure 9.29 indicates that the force crests follow the 

same trend as those of the basic variate itself. 

Conclusion 

At least in a qualitative sense, Morison's equation is capable of 

predicting the probabilistic properties of the in-line forces from the 

probabilistic properties of the associated water particle kinematics. 

9.2 DERIVATION OF DRAG AND INERTIA COEFFICIENTS VIA PROBABILISTlC 

METHODS 

As was fully discussed in Chapter 6, the water particle kinematics had 

to be shifted from their point of measurement at the small rigid column 

to the compliant cylinder by assuming that waves were uni-directional 

and that linear random wave theory is correct. The above process cannot 

be accurate due to the short-crestedness of the waves and fi nHe

amplitude effects; hence the relative velocity and acceleration needed 

in the study of the relative motion form of Morison's equation are not 

error free. However, by ignoring the cylinder movement, i.e. by 
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assuming that the cylinder is rigid and motionless and by resorting to 

probabilistic methods, one can avoid the shifting problem. Because of 

this reason and also in order to evaluate the effect of cylinder motion 

on the coefficients, it was decided to perform the probabilistic 

methods for both rigid and flexible cylinder cases. 

9.2.1 RIGID CYLINDER CASE 

9.2.1.1 Derivation of Mor1son's Coefficients 

According to Morison's equation, in-line wave loading can be written as 

(9.4a) 

The above form of Morison's equation is based on the resolved part of 

the kinematics in the predominant wave direction (x axis). However, 

recognising that the drag and inertia components of force are along the 

water particle velocity and acceleration vectors respectively, 

Morison's equation for a short-crested sea should be written as 

(9.4b) 

where u and v are the i n-l i ne and transverse components of water 

particle velocity, respectively. In this section, both forms of 

Morison's equation have been explored and the resultant coefficients 

have been compared. It is noted that by setting v = 0 in Equation 

(9.4b), Equation (9.4a) is obtained. 

Drag and inertia coefficients can be determined by forming the second 

and fourth order statistical moments of Morison's force and equating 

them to their corresponding observed values. Once the Morison's 

coefficients have been determined, the resultant first and third 
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moments of the predicted force can be compared with their corresponding 

observed values through the following non-dimensionalised error terms. 

E1 = (m10 - m1 )/uFO 

E3 = (J.L30 - J.L3)/UFO 
3 

(9.Sa) 

(9.Sb) 

Where m1 , J.L3 and uF refer to the first absolute moment, third central 

moment and the standard deviation of force, respectively. Subscript 'Q' 

indicates an observed value. It 1s noted that E3 refers to the 

difference between the skewness of the observed and predicted forces. 

In general, the first four statistical moments of force can be written 

as 

m1 = 

m2 = 

m3 = 

m4 = 

E[F] = a13 (kd) + a14 (kJ 

E[F2] = a1 (k/) + a2 (kj2 ) + a3 (kdkj) 

E[F3] = ag (kd 3) + a lO (k j
3) + 3a11 (k/kJ + 

3a12 (kdkj
2

) 

E[F4] = a4 (kd4) + a5 (kj4) + aB (k/kj2) + 

2a7 (kd 3kj ) + 2as (kdkj
3) 

(9.6a) 

(9.6b) 

(9.6c) 

(9.6d) 

Where a l to a14 are algebraic sums of expectations of different 

combinations of water particle kinematics. Their values for both short

crested form (Equation (9.4b)) and uni-d1rectional form (Equation 

(9.4a)) of Morison's equation are given in Table 9.4. (It should be 

noted that since the predominant wave direction is a few degrees apart 

from the x axis, a coefficients were calculated by writing the short

crested form of Morison's equation in the following form 
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where ~ refers to the angle between the predominant wave direction and 

the x axis. The Q coefficients turn out to be functions of 97 different 

combinations of water particle kinematics. However, Morison's equations 

derived from the assumption of ~ = 0, are only very slightly different 

from those based on the real values of predominant wave directions. 

Therefore, for simplicity, Q coefficients for the case of ~ = 0 are 

only mentioned here). 

The statistical moments of Table 9.4 can either be calculated from 

water particle kinematics data directly or by assuming that they are 

independent Gaussian-distributed random variables. The independence 

assumption is justified by recognising that Pu,v = 0 (because the 

predominant wave direction is very close to the x axis, Table 4.7) and 

va 1 ues of PiJ,v have been checked and are small (1 ess than 0.25 wi th 

higher val ues mostly at Level 2 which may have some bi as due to 

intermittency). Therefore, overall, four different methods can be used 

in calculating Q coefficients, namely: 

Method 1. Directional form of Morison's equation with all statistical 

moments estimated from the data. 

Method 2. Directional form of Morison's equation but using high order 

moments calculated on a Gaussian assumption. 

Method 3. Estimating Morison coefficients from the resolved part of 

the force and kinematics in the predominant wave direction 

and using observed values of high order moments. 

Method 4. As method 3 but using high order moments from assumed 

Gaussian relationships. 
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Once the values of a coefficients are known, Cd and Cm are determined 

by solving the set of two non-linear equations given in (9.6b) and 

(9.6d). 

a Coefficients for Methods 2 and 4 

Calculation of statistical moments of Gaussian distributed random 

vari abl es will be fully di scussed in Chapter 10. The closed-form 

solutions for the expectations needed in a coefficients are herein 

presented. It should be noted that due to the assumed mutual 

independence of u, u and v, the following relationship holds true. 

In calculating the required expectations of water particle kinematics, 

u and v were normalised in the following way 

where 

u = Gu (x + 1) 

v = AGu{y + P) 

u - (j 

x = 

v - v 
y ... 

1 .. 

p = 
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(9.8a) 

(9.8b) 

. (9.8c) 

(9.8d) 

(9.8e) 

(9.8f) 



). = 
(9.8g) 

It should be noted that x and y are two independent mean-zero Gaussian 

random variables with standard deviations of unity, and therefore their 

joint probability density function is 

1 x2 l 
p(x,y) == p(x) p(y) - exp (- -) * exp (- -) 

27r 2 2 (9.9) 

The following expectations have closed-form solutions 

E[u] == 0 

E[u3
] ... 0 

E[uulul] ... E[u]E[ulul] • 0 

E[uu ~2 + y2] z: E[u] E[u ~2 + y2] • 0 

E[uus Vu2 + y2] = E[u] E[us Vu2 + y2] = 0 

E[UU3 y2 v'u2 + y2] • E[u] E[U3 y2 Vu2 + y2] - 0 

E[uuSlul] - E[u]E[u5 Iul] - 0 

E[u3u Vu2 + y2] • E[u3
] E[u Vu2 + v2] ... 0 

E[u3ulul] = E[u3]E[ulul] ... 0 

E[uu4
] = E[u]E[u4

] = 0 

E[UU2y2] = E[u]E[U2y2] • 0 

E[u2
] = (J/ 

E[u4
] - 3(JiJ4 

E[u4
] = (3 + 6r2 + r 4

) (Ju4 

E[uB
] = (IOS + 420r2 + 210r4 + 28r6 + r 8

) (Ju8 

E[U2y2] = E[u2] • E[v2] • ).2(Ju4 (I + r2)(1 + p2) 

E[U6y2] = E[u6
] • E[v2] • ).2(Ju8 (15 + 4Sr2 + 15r4 + r 6 )(I + p2) 
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E[U4
V
4] = E[u4] . E[v4] = ).4(Ju8 (3 + 6)'2 + )'4) (3 + 6f32 + f34) 

E[U4U2
] = E[u4]E[u2

] 

(9.10) 

The expectations listed below do not have closed-form solutions and 

hence have been calculated by numerical integration as will be 

discussed in Chapter 10. 

E[ulul] = E[(x + )')Ix + )'1] 

E[u5 Iul] = (Ju8 E[(x + ),)5Ix + )'1] 

E[u 2ulul] = E[u 2]E[ulul] 

E[u Vu2 + v2] = (J/ E[ (x + )') 0x + )')2 + ).2(y + f3)2] 

E[u2u Vu2 + v2] = E[u2]E[u Vu2 + v2] 

E[u5 Vu2 + v2] = (JuS E[ (x + )')5 0x + )')2 + ).2(y + f3)2] 

E[U3y2Vu2+V2]=).2(J S E[(X+)')3(y + f3)2v'{X + )')2 + ).2(y + f3)2] 
u (9;11) 

9.2.1.2 Results and Discussion 

Values of Morison's coefficients derived from the four different 

methods are presented in Table 9.5. Examination of these values lead to 

the following observations. 

1. Solution to the non-linear system of equations resulting from 

these methods were not obtainable in the case of Methods 1 and 3 

for all low-intensity runs and in the case of Methods 2 and 4 for 

some of the low-intensity runs, i.e. Runs 02, 07 and 09 at Levels 

3 and 4. The mathematical reason for this is now explained 

Solving Equations (9.6b) and (9.6d) for Morison's coefficients 

for Method 4 (Qe = 6Q1Q2 due to Gaussian assumption) leads to 
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1 
* [m~ - 3m2

: 

2 r Cd ... 
kd Q4 - 3Q, 

1 [ C 2R 2 r * m
20 

- a:" d C = m 

kj 

The above equations can be simplified to 

1 r2 Cd = 
kd 

* - * ad 
Q, 

1 rf C = * - * aj m 

kj Q2 

Where 

m40 
114 

- 3 
m20 

2 

ad = 
Q4 

- 3 
Q/ 

and 

m40 
1/2 

1 - [ 

2 -: r m20 

aj '" 

Q4 

Q/ 

When current is negligible (0 = 0), ad and ai' reduce to 

ad = 0.583 * (Pt - 3) 1/4 

aj - y( - 0.34 v'Pt - 3 

(g.l2a) 

(9.l2b) 

(g.l3a) 

(9.l3b) 

(9.l3c) 

(9.13d) 

(9.14a) 

(9.14b) 

Where Pt is the kurtosis of the in-line force. Introducing the 

above relationships into Equations (9.13a) and (9.13b), replacing 

kd and ~ by their real numerical values, and substituting for Q1 
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and Q 2 from Table 9.4 and Equations (9.10), Morison's 

coefficients from Method 4 (for this particular study when 

current is negligible) will be 

and 

Uf 
Cd = 2.56 * ({3f - 3) 1/4 * 

U 2 
u 

Ut 

Cm = 10.08 *vl - 0.34v'{3t - 3 * 

(9.1Sa) 

Uu (9.1Sb) 

Examination of the above equations shows that for Cd and Cm to 

exist, the kurtosis of force must be above 3. Referring to Table 

9.3, it is observed that when there is no solution for Cd and Cm' 

kurtosis of the in-line force is less than 3. 

2. Morison's coefficients derived from Method 1 are only slightly 

different from those derived from Method 3. Drag coefficient is 

consistently smaller while the inertia coefficient does not show 

a consistent trend. Comparison of the results of Methods 2 and 4 

show that both drag and inertia coefficients from Method 2 are 

slightly smaller than those derived from Method 4. The difference 

is more noticeable for low-intensity runs where there 1s a 

significant transverse current (high value of r 2 defined in 

Section 4.5). Overall, it can be concluded that the assumption of 

uni-directionality does not lead to significant errors in the 

probabilistic properties of the force. It is recommended that 

slightly higher (about 2%) values of Cd and Cm be used when in

line forces are calculated based on the resolved part of water 

particle kinematics in the predominant wave direction. 
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3. Morison's coefficients derived from Methods 2 and 4 are more 

stable than those derived from Methods 1 and 3. This is because 

high order moments (such as E[uB
]) calculated from finite data 

samples are very unstable and can vary significantly from one 

data sample to another. The values of these high order moments 

are very much dependent on the extreme events in the data sample. 

The extreme events themselves can vary significantly from one 

record to another and hence high order moments tend to be very 

unstable. The reason that the Gaussian assumption leads to higher 

stability for high order moments is that they become a function 

of the standard deviation, which is a very stable parameter 

(since its value is influenced by all the data points, though 

more significantly by the higher ones). An example of the 

instability of high order moments and its effect on Cd and Cm can 

be provided by comparing the results of Runs 13 and 14, presented 

in the following Table. These two runs are very similar with a 

time delay of only half an hour between them. The current and 

water depth is only slightly different. It is therefore expected 

that Cd and Cm values for the two runs to be only slightly 

different. This is the case for Method 4; in contrast, Method 3 

shows significant variation caused by the instability of high 

order moments. 
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I 
I Run Clu Method 3 Method 4 

Level I No 
m/sec Cd Cm E[u4

] E[uB
] Cd Cm E[u4

] E[uB
] 

2 13 0.78 1.26 1.44 0.83 3.64 0.72 2.26 1.09 13.99 
14 0.80 1.09 1.82 1.03 6.83 0.76 2.29 1.24 17 .89 

3 13 0.74 1.18 1.28 0.68 2.40 0.66 2.18 0.91 9.56 
14 0.77 0.89 1.87 0.95 6.86 0.66 2.22 1.11 14.26 

4 13 0.69 1.04 1.29 0.52 1.40 0.52 2.04 0.71 5.80 
14 0.72 0.85 1.63 0.73 3.80 0.58 2.05 0.87 8.73 

4. Coefficients ad and aj' introduced in Equations (9.13a) and 

(9.13b), are measures of the contribution of the drag and inertia 

components of force to the total force variance, respectively. 

That is 

2 2 

a/ 
C/ kd tr1 C/ kd E[u4

] E[F2drag ] 
= = '" 

m20 m20 E [F2total] (9.16a) 

and 

2 2 
2 A Cm

2 kj E[u2] E [ F 2jnerti.] 2 Cm kj tr2 

ai = • = 
m20 m20 E [F2total] (9.1Gb) 

For Method 4, where u and u are independent Gaussian distributed 

random variables, E[Fdrag . Fjnerti.] = 0, and therefore the following 

relationship holds true. 

(9.16c) 

The values of a/ and a/ for Method 4 are given in Table 9.5. It 

is observed that low-intensity runs are inertia dominated while 

the high-intensity runs are in the drag-inertia regime. 
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5. The values of Cd are high for low-intensity runs but it must be 

considered that the low-intensity runs are inertia dominated and 

hence are not well-conditioned for the determination of Cd (Dean, 

1976). As an illustration, the value of kurtosis for Run 01 at 

Level 3 is 3.3. Considering that kurtosis is subject to sampling 

variability, the true value of kurtosis for the random process 

from which Run 01 is only one sample, could be (say) 3.1. As a 

result of this change, ad (Equation 9.14a) will reduce from 0.43 

to 0.33, which is equivalent to a reduction of about 25% in ad 

and hence Cd' In contrast, as a result of the same change 1n 

kurtosis, aj will change from 0.90 to 0.94, which is equivalent 

to an increase of only 4% in ~ and hence Cm' 

6. Cm values are higher than one might have anticipated but the 

implications of the dynamic response on the coefficients are not 

covered in the results of Table 9.5. It will be shown in the next 

section that the analysis of the relative motion form of 

Morison's equation leads to lower values of Cm' 

7. There is a consistent reduction 1n Cd in moving from Level 2 to 

Level 4. It must be stressed that Level 2 is subject to some 

intermittent exposure which could affect the values of Cd and Cm' 

The di fference between Cd for Level 3 and Level 4 are not so 

marked though they do show a consistent trend to reduce (with the 

exception of Run 07 which shows an increase). Previous studies at 

Christchurch Bay Tower have shown the same feature (Bishop, 1984; 

Tickell et al, 1982). The mathematical reason for this feature is 

the reduction of kurtosis from Level 2 to Level 4 (Table 9.3). 
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8. Coefficients E, and E3 , the measures of errors of the first and 

third moments given in Equations (9.Sa) and (9.Sb), do not give 

a consistent quantitative method for selection between Methods 1, 

2, 3 and 4. Their values for Method 4 are presented in Table 9.5. 

Conclusion 

In view of the above discussion, it is clear that Methods 2 and 4 are 

preferable to Methods 1 and 3 due to the stability of their results. 

While Method 4 is simpler than Method 2 due to the assumption of uni

directionality, the difference between the results of the two Methods 

is insignificant. It can therefore be concluded that Method 4 is 

preferable to the other methods. Consequently, only Method 4 was used 

in the probabilistic study of the relative motion form of Morison's 

equation, which follows in the next section. 

9.2.2 FLEXIBLE CYLINDER CASE 

9.2.2.1 Derivation of Morison's Coefficients 

The relative motion form of Morison's equation can be written as 

(Equation 7.27), 

(9.17a) 

where F refers to the in-line wave loading on the flexible cylinder, r 
and F refer to the cylinder kinematics and kj is defined as 

(9.17b) 

Subtracting ki F from both sides of Equation (9.17a), leads to 
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where Fr is referred to as the relative force. Noting that 

kj (1 + C.) = kj , the re lat i ve mot i on form of Mori son IS equat ion 

simpl ifies to 

F r = kd (u - f) I u .; f I + kj (u - r) (9.lld) 

The above relationship can be rewritten as 

(9.1Sa) 

where ur and ur refer to the relative velocity and acceleration 

respectively and are defined as 

ur = U - f 

lA = lA - F r 

(9.1Sb) 

(9.1Sc) 

It is noted that Equation (9.1Sa) is of the same form as Equation 

(9.4a) and therefore by calculating Fr , Ur and lAr , the methods used in 

deriving Morison's coefficients for the rigid cylinder case can be used 

in deriving the coefficients for the flexible cylinder case, too. As 

previously discussed, Method 4 1s preferable to the other three 

methods; hence only Method 4 was applied in this section. 

9.2.2.2 Effect of Shifting Water Particle Kinematics on Mor1son's 

Coefficients 

As was fully discussed in Chapter 6, the shifting process was conducted 

by breaking down the water particle kinematics into its harmonic 

components and then phase shi ft i ng each component to the cy11 nder 

centre by assuming that the waves were uni-directional along the 

predominant wave direction. As a result of this assumption, the 
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calculated phase shifts are only approximate with the high frequency 

harmonics being less accurate for two reasons, a) at high frequencies 

the sea is more short-crested than at low frequencies, b) the wave 

1 engths of the high frequency components are shorter and hence the 

phase shift is larger. Consequently, the Fourier series of the 

calculated water particle kinematics are accurate in terms of the 

amplitude of the harmonics (i.e. the shifting process does not alter 

the frequency spectra of the shifted kinematics) but are not error free 

in terms of the phase shifts. It is the intention of this section to 

show that the phase shift errors have only a marginal effect on the 

(calculated) values of Morison's coefficients. 

According to Equation (9.15), it is the variance of the relative 

kinematics which are used in determination of Morison's coefficients. 

Therefore, it is necessary to investigate the effect of the phase shift 

errors on the variance of the kinematics. From Equation (9.18b), the 

variance of the relative velocity is 

(9.19) 

With the exception of the correlation coefficient between water 

part i cl e vel oc i ty and cyl i nder vel oc i ty (Pu.r) , all the terms in the 

above relationship are independent of the phase shift and hence are not 

affected by phase shift errors. That is 

(9.20) 

Where Ai is the amplitude of the ith harmonic of water particle 

ve 1 oc ity. Therefore, it rem a ins to invest i gate the effect of phase 
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shift errors on the correlation coefficients between the particle and 

relative kinematics. 

Limit on the Correlation Coefficient Between Two Random Processes with 

Known Frequency Spectra 

In general, the correlation coefficient between two random processes x 

and y is limited to 

(9.21) 

However, when the frequency spectra of the two processes are known, one 

can put tighter limits on the correlation coefficient. That is 

". fOD 1/2 [Jo Gxx(f)df * 0 Gyy{f)df] 
(9.22) 

As far as the author is aware, the above is a new relationship, which 

can prove very useful in the analysis of random processes as will be 

demonstrated. 

In general, the cross-spectrum between x and y is 

Where CXy and QXY are referred to as the coincident and quadrature 

spectral density functions, respectively. IGxy(f}1 is the amplitude of 

the one-sided cross-spectrum and A~(f} is the phase difference between 

y and x at frequency (f). That is 

(9.23b) 

and 
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(9.23c) 

The cross-correlation function is related to the cross-spectrum through 

the following relationship. 

Rxy(r) = Real [fa Gxy(f) exp(i21rfr)df] = 

= I: Cxy(f) cos(21rfr)df • 

= I; IGxy(f)1 cosA~(f) cos(21rfr)df 

The expected value of x times y is 

(9.24) 

The above relationship shows that E[x,y] and hence Px.y is dependent on 

the phase shi ft between x and y at each frequency. The maximum of 

E[x.y] is obtained when cosA~(f) is equal to one for all frequencies 

and the minimum is obtained when the cosine is equal to minus one for 

all frequencies. Therefore 

(9.25b) 

On the other hand, the following relationship exists between IGxy{f)l, 

Gxx(f) and Gyy(f) 

(9.26a) 

Where 1xy2{f) is called the coherence function and is always less than 

or equal to unity (Bendat and Piersol, 1971). (The coherence function 

is equal to unity for all frequencies only when y is the response from 
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a 1 inear, noi se-free system, with x being the only input}. 

Consequently, Equation (9.26a) can be written as 

(9.26b) 

Combining Equations (9.26a) and (9.25b) leads to 

I E [x .y] I s J: bxy( f) I v'Gxx ( f) Gyy ( f) df 

S f: vtxx(f) GYY(f) df (9.27) 

The limit on the correlation coefficient is obtained from the 

definition of the correlation coefficient, that is 

IE[x·y]1 
IPx.yl = -- s 

(9.28) 

Considering that the variance, (]2, is equal to the area under the 

frequency spectrum, the above relationship can be written as 

I: bxy(f) I v'Gxx(f) Gyy(f)df 

[J; Gxx(f)df * I; Gyy (f)df]1/2 

Which is the same as Equation (9.22). 

Examination of the above relationship reveals that IPxyl can be equal 

to unity only when the frequency spectra of x and y are 1 i nearly 

related. This is an obvious conclusion because IPxyl is equal to one 

only when x and y are 1 i nearly rel ated and if two processes are 

linearly related, their frequency spectra will be linearly related, 

too. Of more relevance to this study is the observation that if the 
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important frequency range of x is different from the important 

frequency range of y, then their correlation coefficient will always be 

close to zero. If the two frequency ranges are exclusive of each other, 

then the correlation coefficient will be equal to zero. 

Furthermore, when the frequency spectra of x and y are exclusive of 

each other, then the frequency spectrum of z • x ± Y is simply the sum 

of x and y frequency spectra. That is 

(9.30) 

The reason for the above relationship is that 

Substituting Equation (9.26a) into Equation (9.24), yields 

When the x and y frequency spectra are exclusive of each other, 

Gxx{f) * Gyy{f) will always be zero and hence Rxy(r} ... O. As a result, 

Equation (9.31) reduces to 

(9.33) 

Taking Fourier Transforms from both sides of the above equation leads 

to Equation (9.30). It is also clear that 

(9.34) 

Finally, it should be obvious that changing the phase angles of x and 

y when they have exclusive frequency spectra does not have any effect 

298 



on the above conclusions since frequency spectra are always independent 

of the phase angles. 

Accuracy of the Variance of the Relative Kinematics 

The relevance of the above discussion to this study becomes clear when 

it is noted that the cylinder natural frequency is well above the 

important frequency range for both low-intensity and high-intensity 

runs. Therefore, it is expected that correlation coefficients between 

water particle and cylinder kinematics be close to zero and hence 

insensitive to phase angle errors resulting from the shifting process. 

As an example, the frequency spectra for water particle acceleration, 

cylinder acceleration and relative acceleration for Run 13 are shown in 

Figure 9.33. It is evident that the spectra of water particle and 

cylinder accelerations are exclusive and that the frequency spectrum of 

the relative acceleration is just the sum of the two frequency spectra. 

Therefore, phase angle errors have only a very small effect on the 

variance of the relative acceleration. Similar plots for water particle 

and cylinder velocity are shown in Figure 9.34. It is observed that the 

important frequency range for cylinder and water particle velocity is 

different, though there is a contribution to cylinder velocity at the 

wave frequency range. However, the variance of the cylinder velocity at 

the wave frequency range is by far smaller than the variance of water 

particle velocity and hence the effect of phase angle errors would be 

negligible. Comparison of the frequency spectra of the water particle 

velocity and the relative velocity spectra shows that the effect of the 

cylinder velocity on the variance of the relative velocity is small. 
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For interest, the frequency spectrum of urlurl is shown in Figure 9.35 

in comparison with the frequency spectrum of ur. As observed, the two 

spectra are strikingly similar, and that is why the linearisation 

technique is so successful in the frequency domain. It was proved in 

Chapter S (Equation (S.IOI}) that the correlation coefficient between 

ur and urlurl, assuming that ur is Gaussian distributed, is 0.921. It is, 

therefore, inevitable that the spectra of Ur and urlurl be very similar; 

otherwise, such a high correlation coefficient would be impossible. In 

general, a high correlation coefficient between two random processes x 

and y impl ies two things a) their frequency spectra are of similar 

shape, b) in the important frequency range, the phase angle difference 

between the processes are small. On the other hand, if the correlation 

coefficient between the two processes is small, it can be because of 

one or both of the following reasons a) the important frequency range 

of the two processes are not the same, b) the phase angle difference at 

the important frequency range is close to 90'. If the low correlation 

coefficient is due to the difference in phase angles, then its value 

would be very sensitive to any operation, such as shifting, that 

involves a change in the phase angles. On the other hand, if the low 

correlation coefficient is due to having different frequency ranges, 

then a change in the phase angles, would not have any effect on the 

correlation coefficient. 

The overall conclusion of this section is that the inaccuracies in the 

phase angles of water particle kinematics due to shifting have a very 

small effect on the variance of the water particle kinematics because 

the frequency spectra of water particle and cylinder kinematics have 

different important frequency ranges and hence the correlation 

coefficients between them would not be affected by the process of 
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shifting. This, in turn, leads to the conclusion that the results of 

the method of moments for the flexible cylinder assumption, which are 

presented in the next section, are reliable. 

9.2.2.3 Results and Discussion 

Values of Cd' Cm' E" E3 , a/ and ai
2 are given in Table 9.6. Furthermore, 

for ease of discussion, the results of the rigid and flexible cylinder 

assumptions are compared in Table 9.7. Examination of these results 

lead to the following conclusions. 

1. The Cm values have reduced for all runs in comparison with the 

rigid cylinder case. The reduction for the high-intensity runs, 

where the cylinder is at its most flexible mode, is in the range 

of 15% to 30%. For Runs 07 and 06 and in particular for Run 06, 

the reduction is more substantial. It should be noted that the 

cylinder is at its most flexible mode for these two low-intensity 

runs. The reduction for Run 01, as expected, is insignificant 

because the cyl i nder is at its most ri g i d mode and hence the 

response is small. The change in Cd values are less significant. 

With the exception of Run 16 at Levels 3 and 4, there is a slight 

reduction in Cd for the high-intensity runs. For Runs 07 and 06, 

and in particular for Run 06, the change is more substantial. For 

Run 01, the reduction is insignificant. The mathematical reasons 

for the above observations are now explained. 

Approximate values for Morison's coefficients can be obtained 

through Equations (9.1Sa) and (9.1Sb). The details of the 

calculations for both flexible and rigid cylinder cases are 

presented in Table 9.8 for Runs 13 and 23. Also included in the 
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table, are the results of the exact solutions which are only 

slightly different from the approximate solutions. For Run 13, Cm 

for the flexible cylinder is 76% of Cm for the rigid cylinder 

(Column 13). This ratio is the result of the multiplication of 

three different ratios given in Columns 6, 7 and 11; that is 0.76 

= 0.974 * 0.994 * 0.782. The first coefficient is due to the 

difference of the kurtosis of the relative force and the 

hydrodynamic force. The second coefficient is due to the change 

in the standard deviation of the relative force and the 

hydrodynamic force. The third coefficient, which accounts for the 

major part of the difference between the Cm values, comes from 

the fact that the standard deviation of the relative acceleration 

is about 28% larger than that of the water particle acceleration 

(Column 9). The reason for this is shown in Figure 9.33, where it 

is observed that the variance of the relative acceleration is the 

sum of the variances of the water particle acceleration and 

cylinder acceleration. It is therefore concluded that the main 

reason for the substant i a 1 reduction in Cm values for the 

flexible cylinder in comparison with the rigid cylinder is that 

the variance of the cylinder acceleration is added to the 

variance of the water particle acceleration to form the variance 

of the relative acceleration. Table 9.8 also includes similar 

calculations for Run 23. The reason for more substantial 

reduction in Cm for Run 06 is that the cylinder is highly 

responsive and that the ratio between the variance of the 

cylinder acceleration and water particle acceleration is larger 

in comparison with other runs. The difference in Cd values are in 

the order of 5% and are much less significant than those for the 

Cm values. This can be explained by the fact that the variance of 
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2. 

the cylinder velocity is very small in comparison with the 

variance of water particle velocity as shown in Figure 9.34. 

Therefore, the standard deviation of the relative velocity is 

only slightly larger than the standard deviation of the water 

particle velocity. (i.e. 5% for Run 13 and 3% for Run 23). This 

in tUrn leads to relatively small changes in Cd values. 

2 
As was the case for the rigid cylinder study, ad generally 

decreases with i ncreas i ng depth of i mmers ion, refl ect i ng the 

slightly greater rate of decay with depth for the drag force. 

3. As was the case for the rigid cylinder study, low-intensity runs 

are inertia dominated and hence are not well-conditioned for the 

determination of Cd values, which are high most of the time. 

4. There is a consistent reduction in both Cd and Cm values from 

Level 2 to Level 4. The mathematical reason for this observation 

is that though 0Fr' CTur and our all decrease with depth, the rate 

of decrease is 1 arger for 0Fr so that 0F/Uur
2 and UF/uur decrease 

with depth, too, which leads to a reduction in Cd and Cm values 

according to Equations (9.15a) and (9.15b). The physical reason 

behind this observation is not known. 

5. It is believed that the cylinder displacement (as supplied by BMT 

and after its sign was reversed) has the right sign at the wave 

frequency range but the wrong sign at cylinder's natural 

frequency range (refer to Appendix A). The wrong sign is 

equivalent to a phase shift of 180°; however, it was previously 

shown that the standard deviations of the relative kinematics are 
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insensitive to phase angle errors because the frequency spectra 

of the cylinder and water particle kinematics are exclusive of 

each other. Therefore, (Jur and (Jilr are re 1 i ab 1 e. The effect of the 

sign error on the standard deviation of the relative force is now 

investigated. 

The frequency spectra of the hydrodynamic force and the relative 

force are compared in Figure 9.36. As observed, the major 

di fference between the two spectra is that the bump at the 

cylinder's natural frequency has been removed from the spectrum 

of the relative force. However, examination of Equations (9.17a) 

and (9.17c) reveals that the relative force must have a larger 

bump (amplitude) at the cylinder's natural frequency. This, on 

its own, is a strong evidence for the assertion that the 

cylinder's response close to it's natural frequency has the 

incorrect sign. If the sign was right, then the area under the 

bump would have doubled rather than being removed. Therefore, the 

calculated (JFr is less than its real value leading to reduced 

values for Cd and Cm' However, the area under the bump is very 

small, therefore the overall effect is negligible. As shown in 

Column 7 of Table 9.S, the removal of the bump has caused 0.5% 

reduction in (J~, hence, real (J~ is expected to be larger than (JF 

by about 0.5%. Overall, real (JFr is expected to be about 1% larger 

than the ca 1 cul ated (JFr; hence, Cd and Cm shoul d be increased by 

about 1%, which is negligible. 

As regard to the effect of the sign error, it cannot be 

quantified on the kurtosis. An error in the kurtosis will change 

the balance between the Cd and Cm' The Cd and Cm values presented 
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in Table 9.S are not unusual. It can therefore be hoped that the 

value of kurtosis has not been significantly affected as a result 

of the incorrect sign. 

6. Values of E, and E3 for the rigid and flexible cylinder 

assumptions are compared in Table 9.7{c). Against expectation, 

these coefficients are higher for the flexible cylinder 

assumption. This is believed to be the consequence of the 

incorrect sign previously discussed. 

9.3 DERIVATION OF DRAG AND INERTIA COEFFICIENTS IN THE TIME DOMAIN 

FOR THE RELATIVE MOTION FORM OF MORISON'S EQUATION 

In this section, the Least Square Method and Bearman's Method (Bearman, 

1988) will be used for derivation of Morison's coefficients. The two 

methods will be criticised and a new method, which will be termed the 

Maximum Correlation method for the purposes of this study, will be 

introduced. 

9.3.1 LEAST SQUARE ERROR METHOD 

This technique is based on the minimisation of the sum of the square 

errors (re) between the observed force (Fo) and the predicted Morison 

force (F) over all or part of the data set. Considering that 

F, I: F kj f, the error term is 

e - F 0 - F - F 0 - ( F r + kj r) • (F 0 - kj r) - Fr· Fro - F r 
(9.35a) 

where Fro is referred to as the relative observed force and is a known 

quantity. Substituting for F, from Equation (9.1Sa) leads to 

(9.35b) 
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Raising both sides of the above equation to the second power and taking 

expectations, gives 

where 

z, = E[ur
4] 

Z2 = E [ur • Ur I Ur I ] 
Z3 '" E[ Fro • url url] 

Z4 .. E [ur
2] 

Z5 .. E[Fro • Ur] 

Za '" E[Fro
2

] (9.37) 

The expected value of the error term will be minimum when both of the 

following conditions are met. That is when 

8(E[e 2
] ) 

.. 2z, kdCd + 2Z2 kJiCm - 2kd Z3 • 0 

and 

8(E[e2
] ) 

'"' 2Z2 kJiCd + 2z4 k.~ Cm - 2k.i Z5 • 0 

The simultaneous solution of the above equations, 

following relationships for Morison's coefficients 

1 Z3 Z4 - Z2 Z5 
Cd '" * 

kd Z, Z4 - z/ 

1 Z, Z5 - Z2 Z3 
C .. * m 

kj Z/ Z, Z4 -
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(9.38b) 

1 eads to the 

(9.39a) 

(9.39b) 



The expected value of the error term is obtained by substituting for Cd 

and Cm from the above equations into Equation (9.36). That is 

24 3 2 2 22 
Z1 Z3Z4 + 2Z2Z3Z5 + 2Z1Z4Z5 - Z1 Z2Z5 - 2Z1Z2Z3Z4Z5 

E[e2
] = Ze -

Z1Z4 - z/ (9.39c) 

Assuming that relative velocity and relative acceleration are Gaussian 

distributed, then they would be statistically independent (Pur . .:.r - 0). 

Thus 

(9.40) 

and Cd' Cm and E[e2
] will reduce to, 

1 Z3 
Cd '" * 

kd Z1 (9.4la) 

1 Z5 
C = * m 

kj Z4 (9.41b) 

E[e2
] = Ze -

Z3
2 

Z5
2 

Z1 Z4 (9.41c) 

It should be noted that the second and third terms on the right hand 

side of Equation (9.41c) are the mean square of the drag and inertia 

forces, respectively. That is 

(9.42a) 

and 
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(9.42b) 

Therefore, Equation (9.41c) can be written as 

(9.43a) 

or 

(9.43b) 

Dividing both sides of the above equation by E[F r/], leads to 

+ + • 1 
(9.43c) 

or 

ad
2 + a.2 + a 2 = 1 

I e (9.44a) 

where 

(9.44b) 

(9.44c) 

Combining Equations (9.44b) and (9.44c) with Equations (9.4la) and 

(9.41b), respectively, yields 

1 
Cd = 

kd 
* {za/ z ,)'/2 * ad 

(9.44d) 

1 
C = m * (Za/Z4)'/2 * aj 

kj (9.44e) 

As before a/ and ai
2 are measures of the contri but i on of the drag and 

inertia components of force to the mean square of the observed relative 

force. The third term (ae
2

) is referred to as the error coefficient and 
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is a measure of the goodness of fi t between the predi cted and the 

observed forces. Equation (9.44a) carries a simpl~ but very important 

message. It i ndi cates that all the vari ance of the observed force 

cannot be accounted by drag and inert i a components of force. If it 

could, then a/ would be zero, which is possible only if Morison's 

equation was an exact relationship. In other words, the variance of the 

observed force is composed of three components a) the variance of the 

drag force, b) the variance of the inertia force, c) the variance of 

the error term. Consequently, Least Square Error Method results in a 

predicted force which always has a smaller variance than the observed 

force. This observation is very important in the study of random 

processes where the variance is a very important parameter and all the 

extreme statistics are expressed in terms of multiples of the standard 

deviation. It is obvious that the larger the value of a.2
, the smaller 

the variance of the predicted force. 

Therefore, the Least Square Error Method is good in spectral analysis 

because the fi t between the spectra of the observed and predi cted 

forces is expected to be good. On the other hand, its application in 

the time domain is not recommended because the agreement between the 

observed and predicted forces in the time domain is relatively poor. In 

particular, it is expected that Morison's coefficients from the 

analysis of long records in the time domain would be smaller than those 

obtained from the analysis of the same data in the spectral domain. It 

is now intended to identify those parameters which affect the value of 

the error coefficient. 

Coefficients z, to Ze from Equation (9.37) can be written as 
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lal 2 1/2 I I 2 1/2 lal 1/2 
Z3 I: PFro,urlurl * (E[Fro ]) * (E[(ur Ur )]) - PFro.urlurl * (Z1Ze) 

Z4 = E[u/] 
~ ~ 

Z5" PFro,iJr * (E[Fr/]}1/2 * (E[U/]}1/2 - PFro,iJr * (Z4Ze)1/2 

Ze = E[ Fro 2] (9.45) 

lal 
where Px,y is the absolute correlation coefficient defined as 

lal E[x.y] 
PX,y = 

x rll'W • Y rll'W (9.46a) 

as opposed to the (central) correlation coefficient which is equal to 

E[(x - x)(y - y)] 
Px•y = -------

(9.46b) 

Substituting for the above Z values into Equation (9.44b) and (9.44c), 

a/ and aj
2 wi 11 become 

2 lal 2 
ad ( ) I: PFro,ur I ur I (9.47a) 

(9.47b) 

Thus, from Equation (9.44a) 

a 2 = 1 (Ial ) 2 ( lal ) 2 
• - PFro,ur I ur I - PFro,ur (9.47c) 

It was previously shown that for a Gaussian distributed random variable 

such as x, the correlation coefficient between x and xlxl is very high 

(Px,xlxl = 0.921); it can therefore be concluded that PFro,urlurl is high 
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only when PFro,ur is high and vice versa. Consequently, in a qualitative 

sense, if the correlation coefficients between the force and at least 

one of the water particle kinematics is high, then from Equation 

(9.47c), ae
2 will be small, the fit between the predicted and observed 

forces will be good and Cd and Cm values would not be significantly 

underestimated. On the other hand, if the correlation coefficient 

between the force and both water particle velocity and acceleration is 

low, then ae
2 will be large, a/ and ai

2 will be small and from Equations 

(9.44d) and (9.44e), Cd and Cm will be small, too. The following 

relationships give further insight into the least Square Error Method. 

Multiplying, both sides of Equation (9.35b) by ur and taking 

expectations leads to 

Combining the above equation with Equations (9.37), (9.41a) and 

(9.41b), and considering that Z2 • 0, results in 

Z3 
E [e .ur] = 25 -

Z, 

Simil arly, one can show that 

E[e. url url] = 0 

E[e.Fr] = 0 

23
2 

E[e. Fro] = Ze -
2, 

and 

* Z2 -

Z/ 

24 
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Zs 
* 24 - 0 

24 

= E [e2
] 

(9.49a) 

(9.49b) 

(9.49c) 

(9.49d) 



• 

(9.4ge) 

Therefore, from Equation (9.47c) 

lal 2 lal 2 lal 2 
(PFro.ur I ur I) + (PFro.ur) + (PFro .• ) • 1 (9.49f) 

Where F, and Fro refer to the predicted and observed relative forces, 

respectively. The above equations indicate that the correlation 

coeffi ci ents between the error term on one hand and url url, ur and Fr is 

zero. In other words, the observed force is composed of three 

components. The first part is in correlation with urlurl and forms the 

drag component; the second part is in correlation with ur and forms the 

inertia component and finally, the third part is neither correlated 

with url url, nor with ur and hence forms the error term. 

Finally, considering that Fro • Fr + e, E[Fro • F,] will be 

E[Fro·Fr] - E[F/] + E[e.Frl 

However, according to Equation (9.49c), E[e.Frl - 0, therefore 

or 

lal 

PFro.Fr = 

From Equation (9.43b), E[F!] • E[F~2] - E[e2
]. Consequently 
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( 

E[F 2] _ E[e2
] )1/2 (al ro 

P = = (1 - a 2}1/2 = (a 2 + a.2 }1/2 Fro.Fr 2 • d I 

E[F~ ] (9.50d) 

Combining the above equation with Equation (9.47c), leads to 

(al (a) 2 (a) 2 1/2 

PFro.Fr = [( PFro.ur I ur I) + (PFro.ur) ] (9.50e) 

As expected, Equation (9.50d) shows that the larger the error 

coefficient, a.2
, the smaller the correlation coefficient between the 

observed and the predicted forces. The correlation coefficient can only 

be equal to one only when the error coefficient is equal to zero. 

Comment on the Least Square Error Method 

Least Square Error Method is a very powerful and valuable method of 

analysis. However, its results must be interpreted correctly. The error 

coefficient indicates what fraction of the total variance of the 

observed force cannot be accounted for by terms containing urlurl and ur• 

At this stage, three options are available. 

1. Trying to improve Morison's equation by introducing new terms or 

changing its form so that the error coefficient will reduce. This 

path has not been successful and it is generally believed that 

the present form of Morison's equation 1s the best one can expect 

for years to come. 

2. Ignoring the error term altogether. This is what has happened 

without being noticed. It leads to a predicted force with a 

smaller variance than that of the observed force, with all the 

implications that it may have. For example, extreme statistics 
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which are expressed in terms of multiples of the standard 

deviation of the predicted force may be underestimated. 

3. The third and the best option is to accept the present form of 

Morison's equation but changing the philosophy behind the method 

of analysis by determining Morison's coefficients such that a} 

the variances of the observed and predicted forces are equal, b) 

the correlation coefficient between the observed and predicted 

forces are maximum. This method will be investigated in Section 

9.3.3. 

Alternative Forms of least Square Error Method 

The difference between the observed and predicted forces in the 

neighbourhood of maximum forces may be further minimised by defining 

the error term in the following way 

(9.51a) 

where w is a weighting factor. In the present study, w was set to IF~I~2 

for various integer values of k. If k - 0, then the error term becomes 

the same as the standard error term, defined in Equation (9.35a). 

Higher values of k put greater weight on errors at the higher levels of 

force. Substituting for F, from Equation (9.1Sa) yields 

(9.51b) 

Raising both sides of the above equation to the second power and taking 

expectations, gives 
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where 

T1 = E[IFrolk * ur
4] 

T2 .. E[IFrolk * ur * urlurl] 

T3 = E [ I Fro I k * Fro * Ur I Ur I ] 
T4 = E[ I Frolk * u/] 

Ts = E[IFrolk * Fro * Ur] 

Te = E[ I Fro I k * F r/ ] (9.51d) 

The expected value of the error term will be minimum when its partial 

derivatives with respect to both Cd and Cm are zero. The resulting 

equations are similar to Equations (9.38a) and (9.38b) except that z 

coefficients are replaced with T coefficients. Solving these equations 

leads to the following values of Cd and Cm similar to Equations (9.39a) 

and (9.39b). 

1 T3T4 - T2Ts 
Cd = * 

kd T1T4 - T/ (9.51e) 

1 T1 TS - T2T3 
C = * m 

kj 
2 T1T4 - T2 (9.51f) 

The expected value of the error term is obtained by subst1tut1ng for Cd 

and Cm from the above equations into Equation (9.51c). That is 

(9.51g) 

The un i t of E [e2] is force to the power of (k + 2). The error 

coefficient is then defined as 
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a 2 = • 
(9.51h) 

So that a.2 is non-dimensional and is comparable with the error 

coefficient defined for the standard least square error technique. 

An alternative way of reducing the difference between the observed and 

predicted forces in the neighbourhood of maximum forces is by 

eliminating those points which are below a threshold level, Th (i.e. by 

attempting a least square fit to the large amplitude sections of the 

force tim~ series). The error term is theref~~e defined as 

e .. H(IFrol - Th) . (Fro - Fr) (9.52) 

with H(x) as a Heavyside function such that H(x) - 0 for x < 0, 

otherwise H(x) • 1. In this way, all the data points for which Fro lies 

in a band from -Th to +Th will be eliminated from the analysis; hence 

the error term is dependent on the differences between the observed and 

predicted forces at higher levels of force. 

9.3.2 BEARMAN'S METHOD 

Bearman (1988) refers to a simpler system of equations arising from the 

regular wave studies at de Voorst. According to Equation (9.18a), the 

relative observed force is estimated by 

(9.53) 

mult i plyi ng the above equat ion throughout fi rst by ur and then by ur and 

taking expectations gives 

(9.54a) 
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Solving the above set of equations for Cd and Cm leads to 

where 

1 P3P5 - P2Pe 
Cd .. * 

kd P,P5 - P2P4 

1 P3P4 - p,Pe 
C = * m 

ki P2P4 - P,P5 

P, = E[ I ur l3
] 

P2 = E[u r • Ur ] 

P3 '"' E[Fro • ur ] 

P 4 - E [Ur I Ur I Ur ] 

P5 • E[u/] 

Pe = E[Fro • U,] 

(9.54b) 

(9.SSa) 

(9.SSb) 

(9.S5c) 

As for the case of the least Square Error Method, if relative velocity 

and acceleration are assumed to be Gaussian distributed, then P2 and P4 

will be zero. Therefore, Equations (9.55a) and (9.SSb) will reduce to 

I P3 
Cd = * 

kd P, (9.56a) 

I Pe 
C .. * m 

kj P5 (9.S6b) 

Examination of the above relationships reveals that Cd and Cm depend on 

the correlation coefficients between the observed force and the 

relative velocity and acceleration, respectively. As was shown for the 

least Square Error Method, this leads to a predicted force with a 

smaller variance than the observed force. While the least Square Method 
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has an error term with a clear interpretation associated with it, 

Bearman's method 1 acks such a measure of error. Its use for short 

records of regul ar waves where the error is expected to be small is 

just ifiabl e; however, for the study of long records of random data 

where the error is expected to be 1 arge, the 1 east square error 

technique offers a more robust method of analysis. Comparison of 

Equations (9.56b) and (9.41b) shows that the two methods result in 

identical values of Cm; however, the relationships for the drag 

coefficients are not the same; therefore, some discrepancy between Cd 

values from the two.methods are.expected. 

9.3.3 MAXIMUM CORRELATION METHOD 

In this method, Morison's coefficients are determined so that a) the 

variances of the observed and predicted forces are equal, and b) the 

correlation coefficients between the observed and the predicted forces 

are maximum. It should be noted that Morison's equation offers only an 

approximation to the fluid loading on submerged cylinders because it 

does not account for the effect of vortex shedding, etc. and hence the 

predicted forces can never fit the observed forces perfectly. In other 

words, no method of determinat10n of Mor1son's coefficients will result 

in a perfect fit between the observed and predicted forces. 

According to Equation (9.18a), the relative motion form of Morison's 

equation is 

(9.57a) 

Raising both sides of the above equation to the second power and taking 

expectations, gives 
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(9.57b) 

where the z coefficients are the same as those introduced in the least 

Square Error Method (Equation 9.37). Recognising that E[F!]. 

E[Fro2
] = Z6 and that Z2 = 0 (Equation 9.40), the above equation will 

reduce to 

(9.58a) 

or 

(9.58b) 

Multiplying Equation (9.57a) throughout by Fro and taking expectations 

yields 

The correlation coefficient would then be 

(a' 

PFro,fr -
E[Fro • Fr] 

(9.59a) 

Z6 
(9.59b) 

The correlation coefficient is maximum when E[Fro • Fr] is maximum. 

Substituting Equation (9.58b) into Equation (9.59a), results in 

(9.59c) 

The above is maximum when its first derivative with respect to Cd is 

zero. The solution to the resultant equation 1s 
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1 
[ 2.2. r 1 Ze 

Cd = * Z3 * = * * ad 
kd 

2 2 
kd Zl (ZlZS + Z3Z4) Zl (9.60a) 

Substituting the above equation into Equation (9.58b), gives 

1 
[ 2,2. ] 

'/2 1 ze 
C = * Zs * .. * * aj m 

kj Z4{Z l Z: + Z:Z4) kj Z4 (9.60b) 

where, as before, a/ and aj
2 are measures of the contribution of the 

drag and inertia components of force to the mean square of the observed 

force. That is 

2A 2 2 

2 
E[F/] Cdkd Zl Z3Z4 

ad = = • 

E [Fro 2] 
2 2 

Z6 Zl Z5 + Z3Z4 (9.6la) 

and 

2A 2 2 

2 
E[F j

2
] Cmkj Z4 z,Zs 

aj = • • 

E[Fr/] 
2 2 

Ze Z,ZS + Z3Z4 (9.61b) 

so that as expected 

a/ 2 
+ aj = 1 {9.61c} 

The correlation coefficient is obtained by substituting Equations 

(9.60a) and (9.60b) into Equation (9.59b). That is 

2 2 

(a) _ [ Z_,_Z_5 _+_Z3_Z_4 ]'/2 
PFro,Fr -

Z,Z4Ze (9.62) 

Substituting from Equation (9.45) into Equations (9.61a), {9.61b} and 

(9.62), leads to 
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lal 2 

(PFro,ur I ur I ) 

lal 2 lal 2 

(PFro,ur I ur I) + (PFro,ur) (9.63a) 

2 aj = 
lal 2 lal 2 

(PFro,url ur I) + (PFro,ur) (9.63b) 

and 

lal lal 2 lal 2 1/2 
PFro,Fr = [(PFro,urlurl) + (PF,o,u,) ] (9.63c) 

The correlation coefficient is a measure of the goodness of fit between 

the observed and predicted forces. 

Relationship Between Maximum Correlation Method and Least Square Error 

Method 

As was the case for the Least Square Error Method, the error term is 

defined as 

(9.64a) 

Raising both sides of the above equation to the second power, taking 

expect at ions and noting that for Maximum Correl at i on Method 

E[Fro2
] = E[F!], one obtains 

E[e2
] = 2*(E[Fr/] - E[Fro . Fr]) (9.64b) 

In Maximum Correlation Method, E[Fro • ~] is maximised; however, the 

above equation shows that maximising E[Fro . Fr] is equivalent to 

minimising E[e2
] since E[Fro2

] is fixed. Thus, the Maximum Correlation 

Method is 2quivalent to a restrained form of the Least Square Error 
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Method. That is, it is equivalent to minimising E[e2], subject to the 

condition that E[Fr
2 ] ... E[Fro

2]. 

The error coefficient can then be obtained by dividing Equation (9.46b) 

by E[Fro
2
]. That is 

, 2 a = e 

lal 

• 2 (1 - PFro,Fr) 
E[Fr/] (9.64c) 

lal 
According to the above equation, a./ will be zero only when PFro,Fr - 1, 

which means a perfect match between the observed and predicted forces. 

Comparison of the Maximum Correlation and the Standard least Square 

Error Methods 

Comparison of Equations (9.63a) and (9.50e) shows that the correlation 

coefficients between the observed and predicted forces for both methods 

are identical. That means that the predicted force from the two methods 

are in perfect correlation. In other words, there is a linear 

relationship between the predicted forces from the two methods. This 

can be rigorously proved by calculating the ratios between the 

Morison's coefficients from the two methods. Dividing Equations (9.60a) 

and (9.60b) by Equations (9.41a) and (9.41b), respectively, leads to 

(Cd)m (Cm)m [ z,z,z. ]"' 1 

zs' ]'" 
-- .. .. • 
( Cd)' (Cm), Z,Z/ + Z/Z4 Z/ 

+ 
Z,Za Z4Za 

(9.65a) 

Substituting Equations (9.44b) and (9.44c) into the above equation 

gives 
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(9.65b) 

Combining Equation (9.44a) with Equation (9.65b), results in 

(9.66) 

Therefore, the predicted forces from the two methods are related by 

(F,)m • (F')I * MF (9.67a) 

where MF is a magnification factor defined by 

MF • ( 
1 )1/2 

1 - a 2 e (9.67b) 

and a.2 is the error coefficient of the Least Square Error Method. 

9.3.4 GENERAL COMMENT ON DIFFERENT METHODS 

Equating the second moments of the observed and predicted forces will 

result in Equation (9.58a). That is 

C 2 f'.2 2f'.2 
d Kd l1 + Cm Kj l4· Ze (9.68a) 

where the l coefficients are defined in Equation (9.37). Dividing both 

sides of the above equation by ze will lead to 

C/ C 2 
m 

+ .. 1 
le 

2 
le 

2 

kd vz,- kjv'i; (9.68b) 

or, 
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Cd
2 C 2 

m 
+ = 1 

a2 b2 (9.68c) 

where 

Z6 
a = 

kd~ (9.68d) 

and 

Z6 
b = 

k; ~ (9.68e) 

Equation (9.68c) is the equation of an ellipse as shown in the 

following figure. It should be obvious that Cd and Cm values which are 

inside the ellipse will lead to predicted forces with smaller variances 

than the observed force; Cd and Cm values on the ellipse will lead to 

forces with variances equal to that of the observed force. Those Cd and 

Cm values which lie out of the ellipse, will lead to forces with higher 

variances than that of the observed force. It is suggested that 

whatever method is used in determination of Cd and Cm values, if the 

resultant point is not on the ellipse, it should be connected to the 

origin and its intersection with the ellipse should be taken as the 

desired solution. In this way, the discrepancy in the reported Cd and 

Cm values from different experiments is expected to be reduced. 
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Cm 

PRE FER RED SOLUTION 

I (~~ FROM ANY METHOD 
b 

a Cd 

9.3.5 EFFECT OF SHIFTING WATER PARTICLE KINEMATICS ON THE VALUES OF Cd 

According to Equations (9.47a) and (9.47b), ad and aj and hence Cd and 

Cm depend on the correlation coefficients between the observed force 

and water particle kinematics. Therefore, it is necessary to 

investigate the effect due to shifting on these correlation 

coefficients. As previously discussed, shifting involves a change in 

the phase angles of different harmonics of water particle kinematics. 

Consequently, the phase angles of the harmonics of the shifted 

kinematics are not error free. The problem therefore reduces to the 

investigation of the effect of these phase angle inaccuracies on the 

correlation coefficients between observed forces and the shifted kinematics. 

Consider two random signals x and y which have been broken down into 

their harmonic components in the following way 
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" . 

N/2 

X = b=1 Ak cos (Wkt - 'Pk) (9.69a) 

and 

N/2 

Y - b=1 ~k COS(Wkt - IPk) (9.69b) 

It can readily be shown that 

N/2 
E[xy] = b.1 Ak ~k cos(t'Pk ) (9.70a) 

where 

(9.70b) 

Differentiation of Equation (9.70a) with respect to the phase angles, 

leads to 

(9.71) 

If x and y are highly correlated, then t'Pk would be close to zero; 

sin{t'Pk) would be small and hence d(E[xy]) would be small, too. On the 

other hand, the first derivative of y, y, is 90· out of phase with y; 

therefore, phase angle differences for x and y would be close to 90-; 

Px•y would be small and d(E[x,y]) would be large since sin(t'Pk) will be 

close to one. I f the force is drag domi nated, then PFr.ur is high but PFr.ur 

is small. Therefore phase angle inaccuracies have a much more 

significant effect on P~~ and hence on Cm. On the other hand, if the 

force is inertia dominated, PFr.ur is high but PFr.ur is small. Therefore 

the phase angle inaccuracies have a much more significant effect on PFr.ur 

and hence on Cd. It should be noted that the above comments are valid 

for low frequencies, where the error in the phase angles are expected 

to be in the order of a few degrees. For high frequencies where the 

shifting distance is several times the wave length and wave 
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directionality is more significant, the phase angle errors are large 

and both PFr.ur and PFr.ur and hence both Cd and Cm values are unreliable. 

It was therefore decided to investigate the effect of filtering out all 

the high frequencies from the three terms of Equation (9.53), i.e. Fro' 

urlurl and ur. It must be noted that high frequency harmonics must be 

eliminated from urlurl rather than Ur itself because if the high 

frequency harmonics are el iminated from ur' then urlurl will have some 

high frequency components due to the non-linear nature of the 

operation. For the low-intensity runs, the important frequency range is 

from O.lHz to 0.30Hz and therefore frequencies out of this range were 

eliminated. For high-intensity runs, the important frequency range is 

up to 0.20Hz and hence frequencies above this level were filtered. As 

was previously discussed, it is believed that there is a sign error in 

cylinder response at high frequencies. Therefore, removing the high

frequency harmonics has the extra advantage of ensuring that Cd and Cm 

values are not affected by this error. 

9.3.6 RESULTS AND DISCUSSION 

The results of the standard Least Square Error Method (k • 0, Th • 0) 

for both unfiltered and filtered data are presented in Table 9.9. The 

results from the unfiltered data are unsatisfactory (high error 

coefficients); therefore other methods were only applied to the 

fi 1 tered data. Among the methods used are Bearman' s method and the 

Maximum Correlation Method. Furthermore, the Least Square Error Method 

was also applied to the data points for which IFrol ~ uFro so that a 

better fit is obtained between the observed and predicted forces in the 

neighbourhood of maximum forces. The results of different methods are 

compared in Table 9.10. Examination of the results leads to the 

following conclusions. 
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1. In the case of low-intensity runs, the error coefficient for 

unfiltered data is very high (0.53 < a/ < 0.94); consequently, . 

both Cd and Cm are small. For filtered data, the error 

coefficient is smaller (0.38 < a.2 < 0.66) and PFro.Fr is about 0.73. 

The inertia coefficient is in the reasonable range but Cd values 

are of poor quality even including a few negative ones. This is 

because low-intensity runs are inertia dominated and hence their 

correlation with water particle velocity is low. As was 

previously discussed, low correlation coefficients are sensitive 

to phase angle errors (introduced due to shifting) leading to 

unreliable Cd values. 

2. The Cm values for filtered data are substantially higher than 

those for the unfiltered data for all the runs. The reason for 

this is now investigated. 

Combining Equations (9.44e) and (9.47b), gives 

1 ( E[Fro
2

] )1/2 ,_, 
C - * * P m -:- • 2 Fro.ur 

kj E[ur ] (9.72a) 

Assuming that current is negligible, as is the case for Run 13, 

then 

C -m * * PFro.ur 
(9.72b) k. 

I 

The details of the approximate calculations for both Levels 2 and 

3 of Run 13 are presented in Table 9.1Ia. For comparison, the 

exact value of Cm from Equation (9.39b) is also included in 
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Column 10. For level 2, Cm for filtered data is 56% larger than 

that of the unfiltered data (Column 9). This is the result of 

multiplication of three different ratios; that is, 

1.56 = 0.863 * (1/0.714) * 1.289. The first and second 

coefficients account for the reduction in the standard deviations 

of the relative force and relative acceleration as a result of 

filtering, respectively, while the third coefficient refers to 

the increase in the correlation coefficient between relative 

force and relative acceleration due to filtering. The reason for 

the increase in correlation coefficient is two-fold, a) the 

process of shifting high-frequency components are less reliable; 

therefore, as a result of their removal, the correlation 

coefficient has increased, b) the cylinder response which has the 

wrong sign at high frequencies has been eliminated, leading to an 

increase in the correlation coefficient. The combined effect of 

the reduction in the standard deviations of the relative force 

and relative acceleration is an increase of 21% in Cm; that is, 

0.863 * (1/0~714) • 1.21. This is because the reduction in the 

standard deviation of relative acceleration as a result of 

filtering is more substantial than that of the relative force 

(refer to Figures 9.33 and 9.36). Overall, two factors have 

contributed to the increase 1n Cm' uFro!uiJr has increased by 21% 

and PFro.iJr has increased by 29%, 1 eadi ng to an increase of 56% in 

Cm· 

3. For high-intensity runs, the Cd values for filtered data is 

somewhat higher than those for unfi ltered data, though the 

difference is not as significant as the difference for Cm values. 

The reason is now investigated. 
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Combining Equation (9.44d) and (9.47a) leads to 

(9.73a) 

when current is negligible, the above relationship can be written 

as 

* ----
(9.73b) 

The details of calculations are presented in Table 9.IIb. For 

Level 2, Cd for filtered data is 13% larger than that of the 

unfiltered data (column 9). This is the result of multiplication 

of 3 different ratios; that is, 1.13 - 0.863 * (1/0.922) * 1.209. 

The first and second coefficients account for the reduction in 

the standard deviations of the re lat i ve force and re lat i ve 

velocity as a result of filtering, respectively, while the third 

coefficient refers to the increase in the correlation coefficient 

between relative force and relative velocity due to filtering. 

The effect of fi 1 teri ng on PFro,iJr is more than its effect on 

PFro,urlurl because cylinder acceleration is a large part of relative 

acceleration while cylinder velocity is only a small part of 

relative velocity (compare Figures 9.33 and 9.34). Furthermore, 

as a result of filtering, CTFro!(E[ur
4

])1/2 has reduced (0.936) while 

CTFro!CTur has increased (1.209). The above two points explain why 

the effect of filtering is much more pronounced on Cm values in 

comparison with its effect on Cd values. 

4. The resul ts of Bearman's method and the standard Least Square 

Error Method are close to each other. The reason that Cm values 
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are not exactly the same as theory suggests is that the results 

of the Least Square Error Method are based on the exact 

relationships (Equation (9.39}), while the results of Bearman's 

method were obtained from the simplified version of the 

relationships (Equation (9.56}). 

5. When a threshold of IFrol ~ uFro is considered in the least Square 

Error Method, both Cd and Cm increase (Table 9.l0). The increase 

is more noticeable for low-intensity runs compared to high

intensity runs. The iJlcrease in Cd and Cm values shows that ,_ 

predicted forces due to standard Least Square Error Method 

underpredict the high forces. This will be demonstrated in a 

clearer way in the next section. 

6. There is a trend for Cd values to reduce from level 2 to level 4 

as was the case for the results of the method of moments. 

7. The results of Maximum Correlation Method are higher than those 

of the Least Square Error Method (Table 9.l0). The average 

increase is about 10% for high-intensity runs and 35% for low

intensity runs (based on level 3 and level 4 results). 

9.4 THE GOODNESS OF FIT BETWEEN OBSERVED AND PREDICTED fORCES 

Morison's coefficients have been determined by a number of different 

methods. Of cardinal importance at this stage is the question of how 

well any pair of Cd and Cm values in Morison's equation predict the 

forces actually observed. The degree of fit between observed and 

predicted forces are investigated in Figures 9.37 to 9.46 for Runs 01, 
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13 and 15 at Level 3. In addition, a statistical comparison is 

presented in Table 9.12. 

The first section of the observed force (Fox) time series is compared 

with that predicted using the derived Morison's coefficients and the 

shifted but unfiltered particle kinematics. In all case~ there is a 

general agreement in phasing of the forces, however, the agreement is 

more noticeable for Runs 13 and 15 with a correlation coefficient of 

about 0.70 between the observed and predicted forces (Table 9.12) 

compared with Run 01 with a correlation coefficient of about 0.50. ,. 

Examination of the time series plots shows that there are major force 

events where the observed and predicted force time histories agree 

closely but on the same plot there are similar events where the 

magnitude of predicted force can be in error by ± 100%. A review of the 

force and response time series in the corresponding transverse 

direction does not suggest a clear cause for such departures arising 

from strong vortex shedding. 

Of great importance for design purposes is the comparison of observed 

and predicted peak forces. The comparison was done in the following 

way. The mean-crossing positive and negative maxima for each time 

series were identified and then rank-ordered for plotting (Figures 

9.38, 9.40, etc.). It should be stressed that there is no guarantee 

that any particular rank-ordered observed and predicted peak val ues 

occurred in the same real time event. However, this engineering 

approach has some value in indicating whether a designer might over- or 

under-estimate a peak force in a given duration. If there were a 

perfect fit between the observed and predicted peak forces, then all 

the points would lie on the 45- perfect prediction line. To assist 
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explaining the degree of fit between the observed and predicted peak 

forces, the standard derivations and the kurtoses of the observed and 

predicted peak forces are presented in Table 9.12. 

For Run 01, the standard deviation of the force predicted from the 

Least Square Error Method wi th k • 0, 1 s only 2/3 of that of the 

observed force. Therefore, 1t 1s expected that both maxima and minima 

should be under-estimated (Figure 9.40). When k • 1, the standard 

deviation of the predicted force rises to 84% of that of the observed 

force. Therefore, some underestimation is expected. However, the 

kurtoses of the predicted force is 4.02 which is higher than that of 

the observed force (3.30). This partially compensates for the lower 

standard deviation of the predicted force. Overall, the fit is good, 

though the lowest minima 1s under-estimated. The method of moments give 

a good fit with a standard deviation of 96% of that of the observed 

force. The standard deviation and kurtosis of the force due to Maximum 

Correlation Method are sl ight1y higher than those of the method of 

moments and hence slightly higher predicted peak forces are expected. 

Runs 13 and 15 show similar trends. For Run 13, the standard deviation 

of the force predicted from Least Square Error Method with k • 0 1s 

only 86% of that of the observed force. The kurtosis is also lower. 

Therefore, a significant under-estimation of the extreme peaks are 

expected (Figure 9.44). When k ... 1, the standard deviation of the 

observed and predicted forces are close but the kurtoses of the 

predicted force is lower. Therefore, some under-estimation 1s expected 

(Figure 9.54). The results of Maximum Correlation Method are very close 

to that of Least Square with k • 1, therefore, a similar degree of 

under-estimation is expected. Both standard deviation and kurtosis are 
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under-estimated by the method of moments and hence significant under

estimation of the peaks are expected (Figure 9.44). 

Overall the Maximum Correlation Method and the Least Square Error 

Method wi th k = 1 offer the best pred i ctors, though even here, the 

extreme peaks of the high-intensity runs are underestimated by as much 

as 40%. As regard to the method of moments, it must be emphasised that 

since Cd and Cm values were obtained from a probabilistic analysis, the 

best procedure for assessing them is to form their 'type 2' narrow-band 

peak distribution and then calculate the extreme peaks as shown in 

Figures 9.23 and 9.27 for Runs 13 and 15, respectively. (Tickell and 

Burrows, 1989). It is observed that the extreme peaks with 1% 

probability of exceedence are always higher but in reasonable agreement 

with their associated observed extreme peaks. 

Finally, it should be noted that the correlation coefficients between 

observed and predicted forces quoted in Table 9.12 are somewhat lower 

than their real values due to the sign error of the high-frequency 

components of the cylinder's response. 

9.S RECOMMENDED Cd AND Cm VALUES 

Mori son's coeffi ci ents have been determi ned in both probabil i ty and 

time domains. However, it should be remembered that the time domain 

results were obtained from the analysis of filtered time series whereas' 

the method of moments values were determined from a fit to the observed 

moments including the high frequency components. Therefore, a direct 

comparison between the two sets of results is not justified. 

Furthermore, in the design of real structures, the entire frequency 

range including the high frequency components must be considered. It is 
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therefore desirable to adjust the time domain Morison's coefficients to 

the full frequency range. The adjustment can be done in the following 

way. 

1. Ca 1 cul ate the Crr/Cd rat i 0 for the results of the Least Square 

Error Method (k - O) applied to the filtered data. Note that this 

ratio is the same for the results of the Maximum Correlation 

Method (Equation {9.66}}. 

2. Assume that this ratio would have been the same for the results 

of the full frequency range if they were not of poor quality due 

to the phase angle errors of the high frequency wave components 

and the sign error in the high frequency components of the 

cylinder's response. 

3. Once the Cm/Cd ratio for the full frequency range data is known, 

Cd and Cm can be determined by equating the second moments of the 

observed and predicted forces (full-frequency range) which leads 

to Equation (9.58a). That is 

(9.74a) 

where the z coefficients are defined 1n Equation (9.37). The above 

equation can be written as 

2ft 2 

Cdkd (z, + a Z4) = Ze (9.74b) 

in which 

a=( 
(9.74c) 
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is a known quantity. Equation (9.74b) leads to 

(9.74d) 

or 

(9.75a) 

Substituting the above equation into Equation (9.74c), gives 

1 
C .. 

m * yQ"" * X 
(9.75b) 

The contribution of drag and inertia components of force to the total 

force variance will then be 

2" 2 
Cdkd Z, 1 

2 ad .. -
Ze 1 + Q(z.Jz,} (9.7Sc) 

and 

2,,2 
Cmkj Z4 Q 

2 1 - 2 aj = ad .. • 
Ze Q + (Z,/Z4) (9.75d) 

The details of calculations are presented in Table 9.13. It is expected 

that the resultant Cd and Cm values would be close to the results of the 

Maximum Correlation Method applied to the full frequency data if they 

were error free. 

As previously mentioned, Cd values for low-intensity runs obtained from 

the Least Square Error Method are unreliable; a few are even negative. 

Therefore, in the calculations presented in Table 9.13, whenever Cd 

values (for low-intensity runs) were less that 0.5, an assumed value of 
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0.5 was considered. Examination of a/ and aj
2 shows that the low

i ntens ity runs are strongly inert i a domi nated and hence even 1 arge 

errors in Cd have only a relatively small effect on the predicted 

forces. 

The resultant Cd and Cm values can now be compared with the results of 

the method of moments (Table 9.14). Similar comparisons for ad2 and ~2 

are presented in Table 9.16. For high-intensity runs, the Maximum 

Correlation Method leads to higher Cd values in comparison with the 

method of moments (flexible) and consequently, the Cm values are 

somewhat lower. This, in turn, means higher ad2 and lower ~2 for the 

Maximum Correlation Method (Table 9.15). For low-intensity runs, Cd and 

hence a/ from the method of moments are hi gher than those from the 

Maximum Correlation Method. 

At this stage, it is desirable to relate the Cd and Cm values with the 

basic hydrodynamic parameters presented in Table 9.1. Unfortunately, 

the resultant curves do not show a clear trend. However, the Cm values 

show a good correlation with ur/uu (i.e. the ratio between the standard 

deviations of the cylinder and water particle accelerat1ons) referred 

to as the acce 1 erat i on parameter. The values of th is parameter are 

presented in Table 9.16 and the variation of Cm from different methods 

with this parameter is shown in Figures 9.55 to 9.57. As observed, 

there are a tendency for Cm values to decrease with increasing values 

of the acceleration parameter when the cylinder's response is 

considered in the derivation of Morison's coefficients. When the 

response is ignored, i.e. for the rigid cylinder assumption, the Cm 
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values show a tendency to increase with increasing values of the 

acceleration parameter. 

For design purposes, the results of Figures 9.55 and 9.56 are combined 

in Figure 9.58 in which the larger of the Cm values from the method of 

moments and the Maximum Correlation Method are plotted against the 

acceleration parameter. It must be emphasised that these Cm values are 

only applicable when the basic hydrodynamic parameters are in the range 

of those shown in Table 9.1. and many more studies are necessary for 

the results to be used in the industry. 

The acceleration parameter, itself, 1s dependent on the ratio between 

the wave frequency content and the cylinder's natural frequency. 

Therefore, it is expected that Cm values should decline with fw/f, where 

fw is the most energetic wave frequency and f, is the cylinder's natural 

frequency. The variation of Cm with this parameter is shown in Figure 

9.59. Obviously, fw/f, gives an indication of the cylinder's response 

but the cylinder's response is dependent on the entire wave frequency 

content and therefore, the correlation of Cm with fw/f, is not a good 

as its correlation with uJuu' However, Figure 9.59 can be used for the 

first estimate of Cm which is then used to calculate the cylinder's 

response and hence uJuu' This value of the acceleration parameter can 

then be used to read a more exact Cm value from Figure 9.58. The 

iterative process continues until the difference between two successive 

Cm values is negligible. 

As regard to the Cd values, for high-intensity runs, they do not show 

much variation. For Level 3, the average Cd from the method of moments 
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and the Maximum Correlation Method are 0.64 and 0.83, respectively. 

Similar results for level 4 are 0.54 and 0.70, respectively. For low

intensity runs, the Cd values are not reliable; however, for design 

purposes a Cd value of 1.00 seems to be reasonably conservative. For 

high-intensity runs a Cd value in the range of 0.70 to 0.85 is 

recommended. 

A parameter similar to the acceleration parameter, i.e. (Jt/urma is listed 

in Table 9.16. For high-intensity runs, this parameter shows little 

variation about 0.20. Perhaps, if the data base for this study was such 

that this parameter showed greater variation, then there would have 

been some corre 1 at i on between Cd and (J,/urma . However, the data base of 

this study does not allow such an investigation. 

In summary, for this study (basic hydrodynamic parameters as given in 

Table 9.1) the Cm values are recommended to be read from Figure 9.58. 

For low-intensity runs, a Cd value of 1.00 and for high-intensity runs, 

Cd values in the range of 0.70 to 0.85 are recommended. 

Special Case of Run 23 

The total force coefficient for Run. 23 (Table 9.2) is smaller than 

those for other high-intensity runs {and in particular than that for 

Run 16 which has almost the same Keulegan-Carpenter No. (Table 9.1) and 

acceleration parameter (Table 9.16) as Run 16). As a result, different 

methods of determination of Cd and Cm values lead to lower values of Cd 

and/or Cm for this run (Tables 9.6 and 9.13) in comparison with Run 16. 

The special case of Run 23 was discussed in Section 4.7 (conclusion No. 

10). It was observed that water particle kinematics calculated from the 
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application of lRWT to the observed water surface elevation spectrum 

were of lower variance in comparison with the measured kinematics 

(predicted/measured = 0.87). Whether this is because of the 

shortcomings of lRWT or that somehow the measured water particle 

kinematics have been overestimated is not clear. However, if water 

particle kinematics predicted by lRWT are used in the determination of 

Morison's coefficients, the discrepancies between Run 23 and other 

high-intensity runs will be removed. 

The Effect of Vortices on In-line Forces 

It will be shown, in Section 9.9, that there is significant vortex 

shedding for both high-intensity and low-intensity runs, and that 

transverse forces are significantly affected by these vortices. It is 

expected that vortex- induced loads in the i n-1 i ne di rect i on do not 

correlate with water particle kinematics, and hence they do contribute 

to the lack of fit between the observed and predicted forces. The error 

coeffi c i ent in the least Square Error method is a measure of the 

relative importance of that part of the observed force which does not 

correlate with water particle kinematics. The values of a.2 for filtered 

data (Table 9.9) shows that the error coefficient is significant for 

low-intensity runs. This can be interpreted as the sign of significant 

effect of vortices on the i n-1 i ne forces. However, it shoul d be 

considered that in this study, the shifted water particle kinematics 

are less accurate for low-intensity runs than those for high-intensity 

runs (due to the presence of higher frequencies and more severe 

directiona1ity) and therefore part of the error coefficient is due to 

this source of inaccuracy. Cd and Cm values from the method of moments 

and the maximum corre1 at i on method do account for the effect of 

vortices in the in-line direction by equating the second moments of the 
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observed and predicted forces. However, the correlation coefficients 

between the observed and predicted forces will be less than unity due 

to the presence of vortex-induced loads and other effects which do not 

correlate with water particle kinematics (Table 9.12). 

Bearman (1985) and Chaplin (1988a) have reported high lift coefficients 

for Keulegan-Carpenter numbers about 10; however, they have not made 

any comment on the effect of the vortices on the in-line forces. 

9.6 COMPARISON WITH PREVIOUS STUDIES 

In this section, the results of the present study are compared with 

those of previous studies (as discussed in Chapter 7). Special emphasiS 

will be put on the results of large-scale experiments, which were the 

subject of study in section 7.4. 

Total Force CoeffiCients 

Comparison of Figures 7.37 and 9.1 shows that (Bishop's) total force 

coefficients from this study and the second Christchurch Bay Project 

(Tickell and Bishop, 1985) are in good agreement. It can therefore be 

concluded that the flexibil ity of the cy1 inder has not led to an 

increase in the force coefficients. This is in contrast with Bearman's 

(1988) experiments which showed an increase between 15% to 20% in the 

coeffi ci ents for the F6 mode in compari son with the rigid cyl i nder 

results. 

On the other hand, comparison of Figures 7.32 and 7.35 with Figure 9.1 

shows that Bearman's total force coefficients from this study are 

higher than those of Chap1in (1988a), Bearman et al (1985) and Bearman 

(1988). However, it should be noted that the definitions of Keulegan-
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Carpenter No. in these studies are not the same. The Keulegan-carpenter 

numbers in this study have been calculated using the expressions due to 

Bishop (Equation (9.1a», which is dependent on the fourth power of 

water particle velocity and as such leads to higher values of K 

compared with the normal definition of K for planar oscillatory flows 

(Equation 7.18). The above intuitive conclusion is confirmed by the 

results of the present study, which shows that Bearman's total force 

coefficient at K=25 is about 1.9 which is equal to Bearman's (1985) 

force coefficient at K-15. It is suggested that Bishop's K is replaced 

by a definition dependent on the second power of velocity. For example, 

the random velocity can be considered to be equivalent to a sinusoidal 

veloCity with amplitude um and period T, um being determined so that 

the variance of the two signals are equal. T could be the mean zero

crOSSing period or any other suitable measure of the period (preferably 

one dependent on lower moments of the spectral density). Therefore, for 

the purpose of comparing the results of this study with other studies 

(apart from the second Christchurch Bay project), the Keulegan

Carpenter numbers are (rather arbitrarily) scaled down by about two

thirds. 

Morison's Coefficients 

The results of Bearman's (1988) experiments on the flexible cylinder 

(F6 mode) are shown in Figure 7.36. At Keulegan-Carpenter numbers 

between 10 and 20, Cd was found to lie in the range of 0.55 < Cd < 0.85 

and Cm in the range of 1.50 < Cm < 1.65 for the cylinder in its most 

flexible mode (for levels 3 and 4). This is in reasonable agreement 

with the results of this study where for the high-intensity runs, Cd is 

in the range of 0.68 < Cd < 0.86 and Cm in the range of 1.40 < Cm < 1.54 

(Table 9.13). As observed, Cd values from this study are somewhat higher 
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and consequently Cm values are somewhat lower. It is therefore expected 

that both sets of Cd and Cm values will result in predicted forces with 

the same amount of variance. Bearman (1988) concluded that Cm values 

were not affected by the cylinder's response. This is in contrast with 

the results of this study which shows that Cm reduces with cylinder's 

response (Figures 9.55 and 9.56). 

A Cm value of about 1.8 for Run 01 (most rigid mode, K-lO) compares 

favourably wi th the results of the Second Chri stchurch Bay Project 

(Figure 7.38). Furthermore, with reference to Figure 7.20, it is 

observed that the inertia coefficient for this almost rigid cylinder is 

in good agreement with the results of small-scale experiments for a K 

value of 7 at higher Reynolds numbers. The Cd values for this inertia

dominated run are not reliable and hence comparison is avoided. 

For Keulegan-Carpenter numbers of about 20, Chaplin (1988a) has Cd and 

Cm values about 0.70 and 1.70, respectively (Figure 7.33). Cd values are 

slightly smaller than the results of this study while Cm values are 

slightly higher. Results of Bearman (1985) with Cd • 0.60 and 

1.40< Cm <1.60 are in good agreement with the results of the present 

study though Cd values are somewhat lower. At lower values of K, Cm 

values of about 1.8 are reported by both Chaplin (l988a) and Bearman 

(1985), in good agreement with the results of the present study. 

Overall, it can be concluded that Cd and Cm values from this study are 

in the range of values reported by other investigators. A further point 

to be noticed is that Cd values in this study decrease with increasing 
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depth of immersion in line with the Second Christchurch Bay results and 

Bearman's (1988) work in Delft laboratory. 

9.7 WAVE-BY-WAVE ANALYSIS OF IN-LINE LOADS 

Morison's coefficients were also calculated for individual large waves 

from the standard least Square Error Method applied to the filtered 

data. large waves were defined as those for which the peak relative 

velocities were higher than 1.2 times the standard deviation of the 

relative velocity. Keulegan-Carpenter number was defined as umo.T/D 

,.where umax was the average of the relative velocity at the trough and 

the crest of the relative velocity for the individual wave. T is the 

wave period and 0 is the cylinder diameter. The resultant Morison's 

coefficients are presented in Figure 9.60. The familiar "buckshot" 

scatter of the results is comparable with the scatter of the results 

reported from the study of the Exxon Ocean Test Structure (Heidman et 

al, 1979). The main reason behind the scatter is the striving of 

Mori son's equation to mi nimi se the phase di fferences between the 

observed and predicted forces. It does not reflect large uncertainties 

in the peak forces experienced in successive wave cycles (Starsmore, 

1981). In other words, the use of fixed Morison's coefficients results 

in predicted forces for individual waves which are different from the 

observed forces in both magnitude and phase, however, the phase 

difference is more severe than the difference between the observed and 

predicted magnitudes. 

9.B IN-LINE CYLINDER'S RESPONSE 

The study of cylinder's response is beyond the scope of this Thesis; 

however, for completeness and due to its relevance, the following is 

taken from Tickell and Burrows {1989}. 
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Cylinder's response was calculated in the time-domain. The time-domain 

analysis for each sample was based on the observed surface elevation 

spectrum being used to generate realisations of complex Fourier 

components with uniformly-distributed, independent random phases, which 

were transformed to Fourier series for water particle velocities and 

accelerations using linear wave theory. The time series of (u, u) were 

obtained by inverse Fourier transforms. The currents were added to the 

velocities. These long-crested simulations were performed for 6 load 

positions when the water depth was more than IOm and 5 load positions 

for lower water depths. Some 20 minutes of real time was considered for 

each case, corresponding to the durations of the measurement programme. 

The observed and predicted forces at Level 3 for Runs 01, 13 and 15 are 

compared in Table 9.17. A similar comparison for the in-line cylinder 

displacement is presented in Table 9.18. 

The results of Table 9.17 shows that the standard deviations of the 

pred i cted forces are in good agreement with those of the observed 

forces. The agreement between the kurtoses are not as good but they are 

not far apart and that the extreme peaks are underestimated by up to 

35% in the case of Run 13. However, the results of Table 9.18 shows 

that although extreme peaks are underestimated, this does not result in 

the underestimation of the extreme displacements, which are in 

reasonable agreement with extreme observed displacements. This is very 

encouraging as in the design, it is the responses which are the basis 

of design not the loads. One expla~ation for this phenomenon is that 

the extreme force peaks are not well correlated along the length of the 

cylinder, and as such they do not lead to corresponding extreme 

responses. 
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In the case of Run 01, the agreement between the kurtoses and hence the 

extremes of the predicted and observed displacements are very poor. A 

kurtosis of 9.14 for the displacement is very unusual as the forces are 

inertia-dominated and therefore, it is expected that the resultant 

responses must be nearly Gaussian distributed with a kurtosis close to 

three. It is possible that the observed response is unreliable because 

it is of very low magnitude. Furthermore, the author is not aware of 

any particular reason why the mean displacement for this run is not 

zero. 

Figures 9.61 to 9.66 show the cumulative probability distributions for 

the in-line cylinder displacements and their corresponding mean

crossing ranges. For Runs 13 and 15, the agreement between observed and 

theoretical distributions are good while for Run 01, the agreement is 

very poor. (Observed moments of response have been used to derive the 

theoretical PH3 distributions). Furthermore, extreme events over the 

measurement period have been calculated and are compared with the time

domain and the observed extremes. It is observed that for Runs 13 and 

15, the mean of the calculated extreme peaks are in good agreement with 

the observed extremes. 

9.9 TRANSVERSE FORCE AND RESPONSE 

Run 13 

As was exp 1 a i ned inSect ion 9.1.3.2, compari son of the frequency 

spectra of in-line and transverse forces for a typical high-intensity 

run such as Run 13 (Figures 9.9 and 9.10) reveals that at about the 

cylinder's natural frequency, transverse force is larger than the in

line force. Since the transverse wave components at this frequency are 

considerably smaller than the in-line ones (about 5 times), there 
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should be a mechanism different from Morison's equation for the 

excitation of the cylinder at its natural frequency. This could be due 

to synchronisation which is possible in view of a reduced velocity of 

about 5.5 (Rajabi, 1979). However, this does not mean that the large 

bump at the cylinder's natural frequency in Figure (9.10) is the same 

as the vortex-induced loading. What happens is that small transverse 

forces due to vortex shedding at the cylinder's natural frequency lead 

to large transverse responses because of large magnification factors at 

frequencies close to the natural frequency. This large response, 

according to the third term on the right hand side of Morison's 

equation {Equation (9.17a», leads to a force which is due to 

structural accelerations. The bump at the cylinder's natural frequency 

is therefore due to this inertial reaction to cylinder's response. 

However, the underlying reason for the existence of the inertial 

reaction is vortex-shedding at cylinder's natural frequency 

(synchroni sat ion). Further di scussion of thi s subject is beyond the 

scope of this thesis. It is, however, emphasised that it is very 

important that the difference between the two loads (transverse force 

due to vortex shedding and the inertial reaction force) must be clearly 

understood as it has major design implications. (Refer to Tickell and 

Burrows, (1989) and future publications on the analysis of Christchurch 

Bay data). 

Run 01 

Tickell and Burrows (l989) showed that Morison loading due to the 

short-crestedness of the sea can only account for about half of the 

variance of the force in the y direction. This shows that the remaining 

half of the variance is due to vortex shedding. However, in view of the 

small value of the reduced velocity (Table 9.1), synchronisation does 
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not occur. Consequently, the inertial reaction at the cylinder's 

natural frequency is very small {Figure 9.6}. 
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Sea St at e Run No Leve 1 
Int ensity 

2 
01 3 

4 

2 
02 3 

4 

2 
06 3 

Low- 4 
Intensity 
Runs 2 

07 3 
4 

2 
08 3 

4 

2 
09 3 

4 

2 
13 3 

4 

2 
14 3 

4 

High- 2 
Intens ity 15 3 
Runs 4 

2 
16 3 

4 

2 
23 3 

4 

Keulegan -Carpenter Number Reyno lds Number *10.5 Reduced Velocity 

Rea 1 Theoretical Real Theoret ica l Rea l 
E [u4

] E [u4
] E[u~ E [u4

] E [u4
] 

B.5 7.7 2.2 2.1 0.8 
B.6 8.6 1.8 1.8 0.7 
8. 4 7.9 1.5 1. 5 0.6 

8.8 8.4 2.3 2.2 1.1 
9.3 9.6 1.9 1.9 0.9 
8.6 8.7 1.5 1.5 0.7 

10 . 2 9.5 2.5 2.4 3.4 
10 .6 11.1 2.2 2.2 2.9 
10.1 10 .0 1.8 1.8 2.5 

11.1 9.9 2. 7 2.5 3.4 
11 . 2 11.9 2. 3 2.4 2.9 
11. 1 11. 0 2. 0 2.0 2.5 

9.9 9.0 2.5 2.4 2.1 
9. 7 9.9 2. 1 2.1 1.8 
9.0 9.0 1.7 1.7 1.5 

9.2 9.0 2.4 2.4 1.6 
9.4 10.0 2.1 2.2 1.4 
8. 7 9.0 1.7 1.7 1.1 

20 .8 23 .8 4.1 4.4 5.5 
22.2 25.6 3.9 4.2 5.3 
21. 4 25 .0 3.6 3.9 4.9 

22 .8 25 .0 4.3 4.5 5.8 
25 . 7 27 .9 4.2 4.4 5.7 
24 .9 27.2 4.0 4.2 5. 4 

24 .0 26.8 4.6 4.9 6.0 
27 . 1 31.1 4.5 4.8 5.9 
26.3 30 .6 4.2 4.5 5.6 

23.4 24.3 4.6 4.7 5.9 
31.4 36 .5 4.8 5.2 6.2 
31. 0 36 .3 4.6 5.0 5.9 

32 .0 29 .2 5.5 5.3 7.0 
33 .0 36 .9 5.4 5.7 6.8 
32 . 1 36 .3 5.1 5.4 6.5 

TABLE 9.1 
BASIC HYDRODYNAMIC PARAM ETERS 

(NOTE : CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 
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Theoret ica l 
E [u4

] 

0.8 
0.7 
0.6 

1.1 
0.9 
0. 7 

3.3 
3.0 
2.5 

3.2 
3.0 
2.5 

2.0 
1.8 
1.5 

1.6 
1.4 
1.1 

5.9 
5.7 
5.3 

6.1 
5.9 
5.6 

6.3 
6.3 
6.0 

6.0 
6.7 
6. 4 

6.7 
7.2 
6.9 



Sea State 
Intensity 

low-
Intensity 
Runs 

High-
Intensity 
Runs 

Bearman's Coefficients Bishop's Coefficients 
Run No Level 

In-line Transverse In-line 

2 6.1 4.7 2.05 
01 3 4.5 3.3 1.57 

4 4.9 4.1 1.63 

2 5.2 4.2 1.84 
02 3 4.0 3.0 1.51 

4 4.5 3.8 1.62 

2 5.7 4.3 2.16 
06 3 4.8 3.9 1. 93 

4 4.9 4.2 1.86 

2 4.9 3.6 1.89 
07 3 3.7 2.9 1.52 

4 4.0 3.2 1. 57 

2 5.1 3.9 1.83 
08 3 3.9 2.9 1.46 

4 4.6 3.5 1.60 

2 5.0 4.0 1. 72 
09 3 3.6 2.7 1.34 

4 4.3 3.4 1.48 

2 2.2 1.6 1.16 
13 3 2.0 1.6 1.08 

4 1.9 1.4 0.98 

2 2.2 1.6 1.17 
14 3 2.0 1.5 1.05 

4 1.8 1.3 0.96 

2 2.1 1.6 1.14 
15 3 1.8 1.4 0.97 

4 1.6 1.2 0.88 

2 2.5 1.8 1. 29 
16 3 1.7 1.2 0.91 

4 1.5 1.1 0.84 

2 1.9 1.6 1.03 
23 3 1.5 1.2 0.81 

4 1.3 1.0 0.73 

TABLE 9.2 
BEARMAN'S AND BISHOP'S TOTAL FORCE COEFFICIENTS 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 
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Transverse 

1.56 
1.16 
1.34 

1.47 
1.14 
1.36 

1.64 
1. 56 
1.60 

1.38 
1.19 
1.26 

1.39 
1.09 
1.24 

1.39 
0.98 
1.16 

0.83 
0.83 
0.72 

0.83 
0.79 
0.68 

0.83 
0.77 
0.63 

0.92 
0.67 
0.60 

0.86 
0.65 
0.56 



Sea State Skewness Kurtosis 
Intensity Run No level 

F. Fy F. Fy 

2 -0.09 0.21 3.68 3.86 
01 3 0.06 0.33 3.30 3.46 

4 0.09 0.28 3.10 4.65 

2 0.05 0.27 3.33 4.42 
02 3 0.09 0.31 2.92 3.94 

4 0.03 0.11 2.79 3.18 

2 -0.04 0.16 3.54 4.75 
06 3 0.22 -0.09 3.40 7.98 

Low- 4 0.12 0.20 3.19 16.11 
Intensity 
Runs 2 -0.04 0.20 3.28 4.05 

07 3 0.14 0.29 3.16 5.20 
4 0.14 0.31 3.18 4.91 

2 -0.02 0.21 3.02 3.75 
08 3 0.05 0.38 2.90 4.20 

4 0.04 0.41 2.90 3.93 

2 -0.05 0.25 3.20 4.04 
09 3 -0.01 0.41 2.95 3.94 

4 -0.07 0.26 2.81 3.32 

2 0.25 -0.26 3.88 4.39 
13 3 0.36 -0.30 3.91 5.42 

4 0.26 -0.42 3.55 8.24 

2 0.18 -0.24 4.09 4.75 
14 3 0.39 -0.28 4.07 4.35 

4 0.32 -0.56 3.92 6.94 

High- 2 0.34 -0.15 5.32 4.12 
Intensity 15 3 0.64 -0.35 4.62 4.52 
Runs 4 0.54 -0.55 4.42 6.45 

2 0.57 -0.51 5.19 6.79 
16 3 0.83 -0.35 5.70 5.42 

4 0.66 -0.38 4.57 6.89 

2 0.79 -0.12 4.43 4.95 
23 3 0.64 -0.21 4.29 6.06 

4 0.42 -0.02 4.30 7.64 

TABLE 9.3 
BASIC STATISTICAL PROPERTIES OF HYDRODYNAMIC FORCES 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 
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(]Fy 
-
(]F. 

0.70 
0.54 
0.47 

0.72 
0.52 
0.45 

0.70 
0.69 
0.67 

0.66 
0.66 
0.61 

0.68 
0.56 
0.50 

0.73 
0.55 
0.50 

0.74 
0.79 
0.76 

0.74 
0.78 
0.73 

0.72 
0.77 
0.70 

0.72 
0.73 
0.70 

0.69 
0.66 
0.60 



a 
Coefficients 

a, 

a2 

, a~ 

a4 

as 

as 

Q7 

as 

Q9 

a,o 

Q
'1 

a12 

a '3 
a'4 

Short-Crested Form of Uni-directional 
Morison's equation Form of Morison's 

eQuation 

E[u4
] + E[U2

V
2

] E[u4
] 

E[\i2] E[\i2] 

2E[uu v'uz + VZ] _ 2E[uulul1 

E[uS
] + 2E[uSv2

] + E[U4
V

4
] E[uS

] 

E[u4
] E[u4

] 

6E [U
4U2

] + 6E [U2v2iJ2
] 6E[U4U2

] 

2E[uSu v'u2 + VZ] + 2E[U3
V

2U vuz + VZ] 2E[uul5lull 

2E[uu3VuZ + VZ] 2E[u3ulul] 

E[uSv'uz + VZ] + E[U3
V2 VUZ + v2] E[uSI ul] 

E[\i3] E[\i3] 

E[u4u] + E[U2
V

2U] E[u4u] 

E[\i2u Vuz + vi] E[u2ulul] 

E[u v'u2 + v2
] E[ulul] 

E[\i] E[u] 

TABLE 9.4 
LIST OF WATER PARTICLE STATISTICAL MOMENTS 

REQUIRED IN THE METHOD OF MOMENTS 

352 



. -;:.-. . ........ : .. 

Run Level Method 1 Method 2 Method 3 Method 4 
No 

Cd Cm Cd Cm Cd Cm Cd Cm El E3 ad 
2 a.2 

I 

2 - - 1.99 1.88 - - 2.06 2.03 -0.27 -0.32 0.32 0.68 
01 3 - - 1.10 1.65 - - 1.16 1.75 -0.12 -0.06 0.20 0.80 

4 - - 0.94 1. 75 - - 1.03 1.84 -0.06 0.03 0.13 0.87 

2 - - 1.40 1.92 - - 1.46 2.01 -0.19 -0.09 0.22 0.78 
02 3 - - - - - - - - - - - -

4 - - - - - - - - - - - -
2 - - 1.77 2.22 - - 1.82 2.35 -0.26 -0.24 0.29 0.71 

06 3 - - 1.28 2.21 - - 1.33 2.34 -0.14 0.07 0.23 0.77 
4 - - 1.07 2.11 - - 1.14 2.23 -0.11 0.03 0.17 0.83 

2 - .- 1.27 2.15 - - 1.29 2.22 -0.20 -0.16 0.20 0.80 
07 3 - - 0.79 1.93 - - 0.82 1.99 -0.09 0.06 0.15 0.85 

4 - - 0.85 1.87 - - 0.89 1.96 -0.08 0.05 0.16 0.84 

2 - - 0.62 2.25 - - 0.63 2.26 -0.08 0.03 0.04 0.96 
08 3 - - - - - - - - - - - -

4 - - - - - - - - - - - -
2 - - 1.10 1.93 - - 1.11 1.99 -0.14 -0.14 0.16 0.84 

09 3 - - - - - - - - - - - -
4 - - - - - - - - - - - -
2 1.23 1.44 0.72 2.26 1.26 1.44 0.72 2.26 -0.04 0.26 0.31 0.69 

13 3 1.17 1.30 0.66 2.18 1.18 1.28 0.66 2.18 0.01 0.41 0.32 0.68 
4 1.02 1.33 0.52 2.04 1.04 1.29 0.52 2.04 -0.01 0.30 0.24 0.76 

2 1.05 1.87 0.76 2.29 1.09 1.82 0.76 2.29 -0.01 0.28 0.35 0.65 
14 3 0.85 1.96 0.66 2.22 0.89 1.87 0.66 2.22 0.06 0.54 0.34 0.66 

4 0.82 1.70 0.58 2.04 0.85 1.63 0.58 2.05 0.04 0.47 0.31 0.69 

2 1.20 1.29 0.87 2.05 1.22 1.38 0.87 2.06 0.00 0.57 0.50 0.50 
15 3 1.12 0.74 0.66 2.15 1.12 0.94 0.66 2.17 0.07 0.88 0.41 0.59 

4 1.03 0.64 0.57 1.99 1.04 0.80 0.58 2.00 0.05 0.78 0.37 0.63 

2 0.81 2.56 0.96 2.24 0.87 2.48 0.97 2.26 -0.07 0.75 0.45 0.55 
16 3 - - 0.68 2.02 - - 0.68 2.07 0.10 1.28 0.52 0.48 

4 0.96 0.41 0.53 2.14 0.96 0.80 0.53 2.17 0.06 0.96 0.38 0.62 

2 0.64 2.14 0.76 1.93 0.67 2.05 0.76 2.00 -0.16 0.32 0.49 0.51 
23 3 0.80 1.21 0.54 2.00 0.80 1.42 0.55 2.06 0.06 0.45 0.43 0.57 

4 0.75 0.83 0.48 1.79 0.76 1.15 0.49 1.85 0.05 0.23 0.41 0.59 

TABLE 9.5 
MORISON COEFFICIENTS FROM THE METHOD OF MOMENTS - RIGID CYLINDER CASE 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 
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Run 
No 

01 

02 

06 

07 

08 

09 

13 

14 

15 

16 

23 

Level Method 4 

Cd Cm E, E3 a/ a.2 
I 

2 2.06 2.01 -0.27 -0.32 0.32 0.68 
3 1.08 1. 74 -0.11 -0.02 0.17 0.83 
4 1.06 1. 78 -0.07 0.02 0.14 0.86 

2 1.47 1.94 -0.19 -0.10 0.23 0.77 
3 - - - - - -
4 - - - - - -
2 1.47 1.71 -0.23 -0.23 0.28 0.72 
3 1.11 1.29 -0.14 -0.01 0.29 0.71 
4 1.28 0.92 -0.16 -0.13 0.34 0.66 

2 1.11 1.80 -0.18 -0.16 0.18 0.82 
3 0.32 1.53 -0.02 0.09 0.03 0.97 
4 0.51 1.25 -0.03 0.06 0.07 0.93 

2 0.75 1.95 -0.11 -0.04 0.07 0.93 
3 - - - - - -
4 - - - - - -
2 1.17 1.89 -0.14 -0.16 0.17 0.83 
3 - - - - - -
4 - - - - - -
2 0.70 1.84 -0.03 0.32 0.35 0.65 
3 0.63 1.69 0.01 0.46 0.35 0.65 
4 0.55 1.49 -0.01 0.33 0.29 0.71 

2 0.73 1. 95 -0.00 0.36 0.38 0.62 
3 0.65 1.82 0.06 0.63 0.39 0.61 
4 0.56 1.61 0.04 0.46 0.32 0.68 

2 0.84 1. 72 0.00 0.65 0.53 0.47 
3 0.65 1.69 0.07 1.00 0.46 0.54 
4 0.56 1.48 0.05 0.81 0.40 0.60 

2 0.91 1.87 -0.07 0.82 0.48 0.52 
3 0.70 1.49 0.11 1.51 0.62 0.38 
4 0.53 1.61 0.07 0.95 0.40 0.60 

2 0.77 1.57 -0.18 0.29 0.53 0.47 
3 0.58 1.45 0.05 0.57 0.54 0.46 
4 0.51 1.27 0.03 0.28 0.49 0.51 

TABLE 9.6. 
MORISON COEFFICIENTS FROM THE 

METHOD OF MOMENTS-FLEXIBLE CYLINDER CASE 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITIENT EXPOSURE) 
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w 
U1 
U1 

Level 

2 

3 

4 

~~ -

Rigid 

Flexible 

Rigid 

Fl exibl e 

Rigid 

Fl exibl e 
- ~--

01 02 06 07 08 09 13 14 15 

Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm 

2.06 2.03 1.46 2.01 1.82 2.35 1.29 2.22 0.63 2.26 1.11 1.99 0.72 2.26 0.76 2.29 0.87 2.06 

2.06 2.01 1.47 1.94 1.47 1.71 1.11 1.80 0.75 1.95 1.17 1.89 0.70 1.84 0.73 1.95 0.84 1. 72 

1.16 1. 75 - - 1.33 2.34 0.82 1.99 - - - - 0.66 2.18 0.66 2.22 0.66 2.17 

1.08 1. 74 - - 1.11 1.29 0.32 1.53 - - - - 0.63 1.69 0.65 1.82 0.65 1.69 

1.03 1.84 - - 1.14 2.23 0.89 1.96 - - - - 0.52 2.04 0.58 2.05 0.58 2.00 

1.06 1. 78 - - 1.28 0.92 0.51 1.25 - - - - 0.55 1.49 0.56 1.61 0.56 1.48 
-- - ~ .. -

(a) 

TABLE 9.7. 
COMPARISON OF THE RESULTS FOR THE RIGID AND FLEXIBLE CYLINDER ASSUMPTIONS (CONTINUED) 

(NOTE: CAUTION ",ST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITIENT EXPOSURE) 

16 23 

Cd Cm Cd Cm i 

0.97 2.26 0.76 2.00 

0.91 1.87 0.77 1.57 

0.68 2.07 0.55 2.06 

0.70 1.49 0.58 1.45! 

0.53 2.17 0.49 1.85 

0.53 1.61 0.51 1.27
1 



w 
U'I 
0'1 

Level 

2 

3 

4 

Rigid 

Flexible 

Rigid 

Flexible 

Rigid 

Flexible 

01 

2 

ad 

0.32 

0.32 

0.20 

0.17 

0.13 

0.14 

02 06 07 08 09 13 14 15 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
aj ad aj ad aj ad aj ad aj ad aj ad aj ad aj ad aj 

0.68 0.22 0.78 0.29 0.71 0.20 0.80 0.04 0.96 0.16 0.84 0.31 0.69 0.35 0.65 0.50 0.50 

0.68 0.23 0.77 0.28 0.72 0.18 0.82 0.07 0.93 0.17 0.83 0.35 0.65 0.38 0.62 0.53 0.47 

0.80 - - 0.23 0.77 0.15 0.85 - - - - 0.32 0.68 0.34 0.66 0.41 0.59 

0.83 - - 0.29 0.71 0.03 0.97 - - - - 0.35 0.65 0.39 0.61 0.46 0.54 

0.87 - - 0.17 0.83 0.16 0.84 - - - - 0.24 0.76 0.31 0.69 0.37 0.63 

0.86 - - 0.34 0.66 0.07 0.93 - - - - 0.29 0.71 0.32 0.68 0.40 0.60 

(b) 

TABLE 9.7. 
COMPARISON OF THE RESULTS FOR THE RIGID AND FLEXIBLE CYLINDER ASSUMPTIONS (CONTINUED) 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 

16 23 

2 2 2 2 

ad aj ad aj 

0.45 0.55 0.49 0.511 
! 

0.48 0.52 0.53 0.47
1 

0.52 0.48 0.43 0.57 

0.62 0.38 0.54 0.46
1 

0.38 0.62 0.41 0.59 

0.40 0.60 0.49 0.51 



w 
Ut ...... 

level 

2 

3 

4 

Rigid 

Flexible 

Rigid 

Flexible 

Rigid 

Flexible 

01 

E, 

-0.27 

-0.27 

-0.12 

-0.11 

-0.06 

-0.07 

02 06 07 08 09 13 14 15 16 

E3 E, E3 E, E3 E, E3 E, E3 E, E3 E, E3 E, E3 E, E3 E, 

-0.32 -0.19 -0.09 -0.26 -0.24 -0.20 -0.16 -0.08 -0.03 -0.14 -0.14 -0.04 0.26 -0.01 0.28 0.00 0.57 -0.07 

-0.32 -0.19 -0.10 -0.23 -0.23 -0.18 -0.16 -0.11 -0.04 -0.14 -0.16 -0.03 0.32 -0.00 0.36 0.00 0.65 -0.07 

-0.06 - - -0.14 0.07 -0.09 0.06 - - - - 0.01 0.41 0.06 0.54 0.07 0.88 0.10 

-0.02 - - -0.14 -0.01 -0.02 0.09 - - - - 0.01 0.46 0.06 0.63 0.07 1.00 0.11 

0.03 - - -0.11 0.03 -0.08 0.05 - - - - -0.01 0.30 0.04 0.47 0.05 0.78 0.06 

0.02 - - -0.16 -0.13 -0.03 0.06 - - - - -0.01 0.33 0.04 0.46 0.05 0.81 0.07 
-- -- - ---- - --- -

(c) 

TABLE 9.7. 
COMPARISON OF THE RESULTS FOR THE RIGID AND FLEXIBLE CYLINDER ASSUMPTION 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 

23 

E3 E, E3 

0.75 -0.16 0.32 

0.82 -0.18 0.29 

1.28 0.06 0.45 

1.51 0.05 0.57 

0.96 0.05 0.23 

0.95 0.03 0.28 



w 
C11 
CD 

Run 

(I) 

13 

23 

level 

(2) 

3 

3 

p 

(3) (4) 

Fl exi ble 4.112 

Rigid 3.911 

Flexible 
1.051 

Rigid 

Flexible 5.125 

Rigid 4.289 

Fl exibl e 
1.195 

Rigid 

(P _ 3)1/4 aj = (I - 0.34 v'p - 3) 1/2 u F Uu uiJ 1 
--

(J2 
u 

(5) (6) (7) (8) (9) (10) 

1.0269 0.8009 0.1455 0.7762 0.7157 1.6598 

0.9763 0.8219 0.1464 0.7396 0.5597 1.8281 

1.052 0.974 0.994 1.049 1.279 0.908 

1.2074 0.7102 0.1910 1.0282 0.9177 0.9459 

1.0655 0.7834 0.1923 0.9978 0.7181 1.0044 

1.133 0.9066 0.993 1.030 1.278 0.942 

TABLE 9.8. 
EXPLAINING THE DIFFERENCE BETWEEN MORISON'S COEFFICIENTS 
DERIVED FROM THE RIGID AND FLEXIBLE CYLINDER ASSUMPTIONS 

Approx. Exact 
1 Value Value 

--
UiJ Cd Cm Cd Cm 

(ll) (l2) (13) (l4) (IS) I 

1.3972 0.63 1.64 0.63 1.69 

1. 7867 0.67 2.17 0.66 2.18 

0.782 0.95 0.76 0.95 0.77 

1.0897 0.56 1.49 0.58 1.45 

1.3926 0.53 2.11 0.55 2.06! 

0.782 1.06 0.70 1.05 0.70 



Run Unfiltered Filtered 
No Level 

Cd Cm a 2 
e p Cd Cm a 2 

e p 

2 0.13 0.56 0.937 0.25 0.34 1.56 0.66 0.58 
01 3 0.12 0.98 0.728 0.52 0.05 1.32 0.52 0.69 

4 0.13 1.29 0.545 0.67 0.04 1.53 0.41 0.77 

2 0.17 0.68 0.884 0.34 0.02 1.44 0.60 0.63 
02 3 0.07 0.97 0.716 0.53 -0.12 1.28 0.54 0.68 

4 0.12 1.24 0.581 0.65 -0.19 1.53 0.45 0.74 

2 0.55 0.72 0.817 0.43 0.78 2.03 0.42 0.76 
06 3 0.42 0.52 0.654 0.59 0.54 1.62 0.42 0.76 

4 0.42 0.68 0.573 0.65 0.58 1.57 0.44 0.75 

2 0.56 0.72 0.783 0.47 0.75 1.92 0.44 0.75 
07 3 0.40 0.71 0.623 0.61 0.36 1.49 0.38 0.79 

4 0.39 0.75 O.~·q 0.67 0.31 1.57 0.37 0.79 

2 0.38 0.69 0.806 0.44 0.44 1. 70 0.48 0.72 
08 3 0.19 0.89 0.619 0.62 0.13 1.38 0.42 0.76 

4 0.23 1.03 0.530 0.69 0.11 1.58 0.36 0.80 

2 0.29 0.67 0.863 0.37 0.32 1.45 0.54 0.68 
09 3 0.12 0.92 0.667 0.58 0.01 1.24 0.46 0.73 

4 0.11 1.09 0.573 0.65 -0.11 1.44 0.41 0.77 

2 0.79 1.03 0.480 0.72 0.88 1.58 0.21 0.89 
13 3 0.76 0.94 0.441 0.75 0.83 1.46 0.19 0.90 

4 0.69 1.00 0.350 0.81 0.76 1.48 0.17 0.91 

2 0.78 1.07 0.472 0.73 0.93 1.46 0.24 0.87 
14 3 0.73 1.02 0.406 0.77 0.79 1.43 0.18 0.91 

4 0.67 1.04 0.346 0.81 0.71 1.45 0.17 0.91 

2 0.86 0.97 0.434 0.75 0.85 1.55 0.21 0.89 
15 3 0.75 0.94 0.376 0.79 0.78 1.48 0.17 0.91 

4 0.66 0.97 0.329 0.82 0.72 1.50 0.15 0.92 

2 0.86 0.83 0.528 0.69 0.96 1.50 0.35 0.81 
16 3 0.74 0.91 0.358 0.80 0.79 1.37 0.16 0.92 

4 0.66 0.99 0.319 0.83 0.71 1.44 0.17 0.91 

2 0.65 0.71 0.474 0.72 0.69 1.07 0.31 0.83 
23 3 0.69 0.56 0.363 0.80 0.73 0.86 0.16 0.92 

4 0.62 0.62 0.340 0.81 0.66 0.85 0.16 0.92 

TABLE 9.9 
MORISON'S COEFFICIENTS FROM STANDARD LEAST SQUARE ERROR METHOD 

(NOTE: CAUTION MJST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 
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W 
0'1 
C> 

01 02 06 07 08 09 13 14 15 16 23 
Level Method of Analysis 

Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm 

Least k = 0 0.34 1.56 0. 02 1.44 0 . 78 2 . 03 0 . 75 1.92 0.44 1. 70 0.32 1. 45 0.88 1. 58 0.93 1. 46 0.85 1. 55 0 .96 1. 50 0.69 1. 07 
Th = 0 

Square 
k = 0 0.59 2.12 0 .12 J. 93 1.14 2. 71 0 .99 2 .60 0. 62 2.25 0.46 1.95 1. 04 1. 74 0.99 1. 67 1. 04 1. 66 1. 05 1. 61 0.72 1. 20 

2 Method IThl = OF", 

Bearman Method 0.32 1.56 * 1.44 0.73 2. 04 0.78 1.94 0.42 1. 70 0. 32 1. 45 0.89 1. 54 0.86 1. 52 0.93 1. 43 1. 01 1. 52 0.71 1. 11 

Max Correlation Method 0.58 2.68 0.03 2. 28 1. 02 2.67 1. 00 2. 57 0. 61 2.36 0.47 2. 14 0.99 1. 78 1.07 1. 67 0.96 1. 74 1.19 1.86 0.83 1. 29 

Least k = 0 0.05 1.32 * 1. 28 0. 54 1. 62 0.36 1.49 0. 13 1.38 0. 00 1. 24 0.83 1.46 0.79 1.43 0.78 1. 48 0. 79 1. 37 0.73 0.86 
Th = 0 

Square 
k = 0 0.09 1. 74 * 1. 74 0. 77 2.00 0.39 1.85 0.19 1. 72 * 1. 64 0.93 1. 62 0.86 1. 61 0.89 1. 56 0.88 1. 52 0. 76 0 .93 

3 Method ITh l = OF", 

Bearman Method * 1.32 * 1. 29 0.39 1. 59 0.28 1.48 * 1.38 * 1. 24 0.84 1. 42 0.80 1.45 0.80 1.40 0.82 1. 35 0. 75 0.87 

Max Correlation Method 0.07 1.91 * 1.89 0. 71 2.13 0.46 1.89 0.17 1.81 0.00 1. 69 0.92 1. 62 0.87 1.58 0.86 1. 62 0.86 1. 49 0.80 0.94 

Least k = 0 0.04 1. 53 * 1.53 0 .58 1. 57 0.31 1. 57 0. 11 1. 58 * 1.44 0.76 1.48 0. 71 1.45 0.72 1. 50 0.71 1. 44 0.66 0.85 
Th = 0 

Square 
k = 0 0.08 1.88 * 1.97 0 . 75 1.92 0.29 1.89 0.10 1.89 * 1.87 0.82 1. 66 0.76 1.66 0.79 1. 56 0.81 1. 62 0.69 0.93 

4 Method IThl = UFro 

Searman Method * 1.53 * 1. 54 0.43 1. 55 0.27 1. 56 * 1.58 * 1. 44 0.76 1.44 0.73 1.47 0.72 1.42 0.72 1.42 0.68 0.86 

Max Correlation Method 0.05 1.99 * 2.06 0.78 2.10 0.39 1. 98 0.14 1.98 * 1.87 0.83 1.62 0.78 1.59 0.78 1.63 0.78 1.58 0.7 2 0.93 

TABLE 9.10 
COMPARI SON OF MORI SON' S COEFFICIENTS FROM DIFFERENT METHODS IN THE TIME DOMAIN - FILTERED DATA 

Note: * These Values are Negative 

(NOTE: CAUTION MJST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITIENT EXPOSURE) 

I 

i 



w 
en .... 

1 (fFro Approximate Exact 
Run Level Status of Data - (fFro (fur - PFro.ur Cm Cm : 

A 

kj (fur 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Fil tered 10.08 0.1578 0.5868 0.2689 0.5661 1.53 1.58 

Unfiltered 10.08 0.1828 0.8218 0.2224 0.4391 0.98 1.03 
2 

Filtered 
1.00 0.863 0.714 1.209 1.289 1.56 1.53 

Unfiltered 
13 

Filtered 10.08 0.1319 0.5395 0.2445 0.5753 1.42 1.46 ! 

I 

Unfiltered 10.08 0.1455 0.7157 0.2033 0.4346 0.89 0.94 
3 

Filtered 
1.00 0.907 0.754 1.203 1.324 1.59 1.55 

Unfil tered 
- ---- ~-

(a) 

TABLE 9.11 
EXPLAINING THE DIFFERENCE BETWEEN THE RESULTS FROM THE 'STANDARD LEAST SQUARE ERROR METHOD 

FOR FILTERED AND UNFILTERED DATA a) Cm VALUES, b) Cd VALUES 



w 
CJ'I 
N 

1 O"Fro Approximate Exact 
Run Level Status of Data - O"Fro yE: [ur

4 ] PFro.iJr I ur I Cd Cd 
kd (E[u

r
4 ])1/;< 

(1 ) (2) (3) (4) (S) (6) (7) (8) (9) (10) 

Filtered 7.S98 0.IS78 0.9497 0.1662 0.6873 0.87 0.88 

Unfiltered 7.S98 0.1828 1.0296 0.1775 0.5685 0.77 0.79 
2 

Filtered 
1.00 0.863 0.922 0.936 1.209 1.13 1.11 

Unfiltered 
13 

Fil tered 7.598 0.1319 0.8626 0.1529 0.6997 0.81 0.83 

Unfiltered 7.598 0.1455 0.9017 0.1614 0.6098 0.75 0.76 
3 

Filtered 
1.00 0.907 0.957 0.947 1.147 1.08 1.09 

Unfiltered 

(b) 

TABLE 9.11 (CONTINUED) 
EXPLAINING THE DIFFERENCE BETWEEN THE RESULTS FROM THE STANDARD LEAST SQUARE ERROR METHOD 

FOR FILTERED AND UNFILTERED DATA a) Cm VALUES, b) Cd VALUES 



Run Level S.D Kurtosis Ppredic:ted. ot.erved 

(KN) 

Observed Force 0.0620 3.30 

Least Square k • 0 0.0419 4.00 0.52 

01 3 Least Square k • 1 0.0521 4.02 0.51 

Max. Correlation Method 0.0604 4.00 0.52 

Methods of Moments 0.0595 3.95 0.48 

Observed Force 0.146 3.91 

Least Square k • 0 0.126 3.04 0.71 

13 3 Least Square k • 1 0.141 3.11 0.77 

Max. Correlation Method 0.140 3.04 0.71 

Methods of Moments 0.121 2.58 0.66 

Observed Force 0.168 4.62 

Least Square k • 0 0.145 3.69 0.77 

15 3 Least Square k • 1 0.161 3.77 0.71 

Max. Correlation Method 0.159 3.69 0.77 

Methods of Moments 0.141 3.13 0.72 

TABLE 9.12 
STATISTICAL COMPARISON OF OBSERVED AND PREDICTED FORCES 
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Run Leve l 

2 
01 3 

4 

2 
02 3 

4 

2 
06 3 

4 

2 
07 3 

4 

2 
08 3 

4 

2 
09 3 

4 

2 
13 3 

4 

2 
14 3 

4 

2 
15 3 

4 

2 
16 3 

4 

2 
23 3 

4 

Least Squa re Max. Correlation 
k • 0 Me thod 

L imited Cm kl 
, 

z. Fu 11 Frequency Range I 
Frequency Range a • (--l x 

, . --- a/ . 
C. k. z, + az. I I + a(z./z,l 

C. Cm Cd · - * X Cm 
k. 

0 . 50 1. 56 5 .531 0 . 01010 0. 764 2. 382 0. 044 
0 .50 1.32 3 .960 0 . 00842 0.697 1. 841 0.070 
0 . 50 1. 53 5.321 0 .00647 0.611 1. 870 0.049 

0. 50 1.44 4 .7 13 0 . 00960 0. 745 2. 144 0.057 
0 . 50 1.28 3. 724 0. 00860 0.704 1.804 0. 084 
0 .50 I. 53 5 .32 1 0. 00665 0. 620 1.897 0. 050 

0. 78 2 . 03 3 .849 0 . 00967 0. 747 1.944 0. 072 
0 .54 I. 62 5 . 114 0 . 00423 0.494 1.482 0. 055 
0.58 I. 57 4 . 163 0 . 00296 0.414 1.120 0 .037 

0 . 75 I. 92 3 . 724 0 . 00961 0.745 1. 907 0.083 
0. 50 I. 49 5.046 0 . 00442 0. 505 1.504 0. 070 
0. 50 I. 57 5 . 602 0 . 00281 0. 403 I. 266 0. 042 

0. 50 I. 70 6. 569 0. 00586 0. 581 1.978 0 .042 
0.50 I. 38 4 .328 0 . 00562 0 .569 I. 571 0 .066 
0.50 1. 58 5 . 674 0 . 00430 0 .499 1. 575 0. 037 

0.50 1.45 4 . 779 0. 00831 0. 693 2. 008 0. 057 
0.50 I. 24 3.495 0 . 00712 0 . 641 1.590 0 .085 
0.50 1. 44 4 . 713 0 . 00583 0 .580 1. 670 0.050 

0. 88 1.58 I. 832 0 . 01500 0 .931 1.671 0. 465 
0. 83 1.46 1.758 0. 01289 0.863 1. 517 0. 479 
0. 76 1.48 2. 155 0 . 00898 0. 720 1.402 0 .373 

0. 93 1.46 1.400 0 . 01754 1.006 1.580 0 .594 
0. 79 1.43 1.862 0. 01253 0 .851 1.540 0 .559 
0. 71 1.45 2.370 0 . 00885 0. 715 1.460 0.447 

0.85 1. 55 1.889 0 . 01556 0 .948 1 . 728 0.524 
0. 78 1.48 2. 046 0 . 01142 0.812 I. 541 0 .549 
0. 72 I. 50 2.466 0. 00796 0 . 678 1.413 0 .451 

0. 96 I. 50 1.387 0 . 01964 1.064 1.664 0. 592 
0. 79 I. 37 1. 709 0 . 01194 0.830 1. 440 0. 645 
0. 71 1.44 2.33 7 0 . 00858 0 . 704 1.428 0 . 527 

0. 69 I. 07 1.366 0 . 01153 0 .816 1.266 0 .691 
0.73 0 . 86 0.789 0 . 01135 0 .809 0. 954 0.799 
0. 66 0 . 85 0 .943 0 . 00877 0 . 711 0. 916 0 . 732 

TABLE 9.13. 
MORISON'S COEFFICIENTS FROM MAXIMUM CORRELATION METHOD -

FULL FREQUENCY RANGE 

(NOTE : CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 
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al
2 

• (I - a.' l 

0. 956 
0.930 
0.950 

0. 943 
0.916 
0. 949 

0. 928 
0. 932 
0.963 

0. 916 
0. 930 
0.958 

0.958 
0.933 
0.963 

0. 943 
0.9 15 
0. 950 

0. 535 
0.521 
0.627 

0. 406 
0. 441 
0. 553 

0. 476 
0. 451 
0. 549 

0. 408 
0. 355 
0. 473 

0. 309 
0. 201 
0. 268 



W 
0\ 
01 

Level 

2 

3 

4 

01 02 06 07 08 09 13 14 
Methods 

Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd Cm 

Method of Moments, Rigid 2.06 2. 03 1. 46 2.01 1.82 2.35 1. 29 2. 22 0. 63 2. 26 1.11 1. 99 0.72 2.26 0.76 2.29 

Method of Moments, Flexible 2.06 2. 01 1.47 1. 94 1.47 1. 71 1.11 1.80 0. 75 1.95 1.17 1.89 0.70 1.84 0. 73 1.95 

Full Frequency 
Maximum Correlation Method 0.76 2.38 0.74 2.15 0.75 1.94 0.75 1.91 0.58 1.98 0.69 2 01 0.93 1. 67 1. 00 1.58 

Method of Moments, Rigid 1.16 1. 75 - - 1.33 2.34 0.82 1.99 - - - - 0.66 2. 18 0.66 2.22 

Method of Moments, Flexible 1.08 1. 74 - - 1.11 1.29 0.32 1. 53 - - - - 0.63 1. 69 0.65 1.82 

Fu 11 Frequency 
Maximum Correlation Method 0.70 1. 84 0. 70 1.81 0.50 1.48 0.50 1. 51 0.57 1. 57 0. 64 1. 59 0.86 1. 52 0.85 1. 54 

Method of Moments, Rigid 1.03 1.84 - - 1.14 2.23 0.89 1.96 - - - - 0. 52 2.04 0.58 2.05 

Method of Moments, Flexible 1. 06 1. 78 - - 1.28 0.92 0. 51 1.25 - - - - 0.55 1.49 0.56 1. 61 

Fu 11 Frequency 
Maximum Correlation Method 0.61 1.87 0.62 1. 90 0.41 1.12 0.40 1.27 0.50 1. 58 0.58 1. 67 0. 72 1.40 0. 71 1.46 

- -- - --

TABLE 9. 14 
COMPARISON OF THE RESULTS OF MAXIMUM CORRELATION METHOD 

WITH METHOD OF MOMENTS, BOTH FLEXIBLE AND RIGID ASSUMPTIONS 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITIENT EXPOSURE) 

15 16 23 

Cd Cm Cd Cm Cd Cm 

0.87 2. 06 0.97 2.26 0.76 2. 00 

0.84 1. 72 0.91 1. 87 0.77 1. 57 

0.95 1. 73 1. 06 1. 66 0.82 1. 27 

0.66 2.17 0.68 2.07 0. 55 2.06 

0. 65 1. 69 0. 70 1. 49 0.58 1.45 

0.81 1. 54 0.83 1.44 0.81 0.95 

0.58 2.00 0.53 2. 17 0.49 1.85 

0. 56 1.48 0.53 1. 61 0.51 1.27 

0.68 1.41 0.70 1.43 0. 71 0.92 
-



w 
0) 
0) 

Level 

2 

3 

4 

01 02 06 07 08 09 13 14 15 
Methods 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ad ai ad ai ad a i ad ai ad ai ad ai ad ai ad ai ad ai 

Method of Moments, Rigid 0.32 0.68 0. 22 0.78 0.29 0.71 0.20 0.80 0.04 0.96 0. 16 0.84 0.31 0.69 0.35 0.65 0. 50 0.50 

Method of Moments, Flexible 0.32 0.68 0. 23 0.77 0. 28 0.72 0.18 0.82 0.07 0.93 0.17 0.83 0.35 0.65 0.38 0. 62 0.53 0.47 

Fu 11 Frequency 
Maximum Correlation Method 0.04 0.96 0.06 0.94 0. 07 0. 93 0.08 0.92 0.04 0.96 0. 06 0.94 0.46 0.54 0. 59 0.41 0. 52 0.48 

Method of Moments, Rigid 0.20 0.80 - - 0.23 0.77 0.15 0.85 - - - - 0.32 0.68 0.34 0.66 0.41 0. 59 

Method of Moments, Flexible 0.17 0.83 - - 0. 29 0.71 0.03 0.97 - - - - 0.35 0.65 0.39 0.61 0.46 0.54 

Fu 11 Frequency 
Maximum Correlation Method 0.07 0 .93 0.08 0.92 0.06 0.94 0.07 0.93 0.07 0.93 0.09 0.91 0.48 0. 52 0.56 0.44 0. 55 0.45 

Method of Moments, Rigid 0.13 0.87 - - 0.17 0.83 0. 16 0.84 - - - - 0.24 0. 76 0.31 0.69 0. 37 0.63 

Method of Moments, Flexible 0.14 0 .86 - - 0.34 0.66 0.07 0.93 - - - - 0.29 0.71 0.32 0.68 0. 40 0.60 

Fu 11 Frequency 
Maximum Correlation Method 0.05 0.95 0. 05 0.95 0.04 0.96 0. 04 0.96 0. 04 0.96 0.05 0.95 0.37 0.63 0.45 0. 55 0.45 0.55 

TABLE 9.15 
COMPARISON OF ad

2 AND ai
2 FROM MAXIMUM CORRELATION METHOD 

WITH THOSE FROM THE METHOD OF MOMENTS, BOTH FLEXIBLE AND RIGID ASSUMPTIONS 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 

16 23 

2 2 2 2 ad a i ad ai 

0.45 0.55 0.49 0. 51 

0.48 0.52 0. 53 0.47 

0.59 0.41 0. 69 0. 31 

0.52 0.48 0.43 0.57 

0.62 0.38 0. 54 0. 46 

0.64 0.36 0.80 0.20 

0.38 0.62 0. 41 0.59 

0.40 0 .60 0.49 0. 51 

0.53 0.47 0. 73 0. 27 



a, 
Run Level a, aiJ -- at urme 

aiJ 

2 0.0549 0.477 0.12 0.0076 0.3823 
01 3 0.0535 0.320 0.17 0.0068 0.3262 

4 0.0487 0.220 0.22 0.0064 0.2613 

2 0.0853 0.490 0.17 0.0137 0.4027 
02 3 0.0733 0.319 0.23 0.0117 0.3464 

4 0.0623 0.218 0.29 0.0104 0.2729 

.2 0.4210 0.499 0.84 0.1394 0.4341 
06 3 0.4160 0.365 1.14 0.1356 0.3943 

4 0.4859 0.267 1.82 0.1547 0.3205 

2 0.3436 0.522 0.66 0.1003 0.4543 
07 3 0.2956 0.397 0.74 0.0883 0.4251 

4 0.3532 0.297 1.19 0.1001 0.3554 

2 0.2309 0.516 0.45 0.0555 0.4265 
08 3 0.1832 0.374 0.49 0.0457 0.3782 

4 0.1809 0.264 0.69 0.0414 0.3042 

2 0.0929 0.499 0.19 0.0204 0.4157 
09 3 0.0825 0.368 0.22 0.0168 0.3756 

4 0.0913 0.260 0.35 0.0173 0.2998 

2 0.4348 0.662 0.66 0.1586 0.7772 
13 3 0.4226 0.560 0.75 0.1482 0.7411 

4 0.4864 0.507 0.96 0.1605 0.6963 

2 0.3763 0.672 0.56 0.1411 0.8016 
14 3 0.3545 0.571 0.62 0.1286 0.7795 

4 0.4166 0.518 0.80 0.1372 0.7333 

2 0.4364 0.712 0.61 0.1567 0.8528 
15 3 0.4150 0.600 0.69 0.1460 0.8450 

4 0.4871 0.554 0.88 0.1562 0.8042 

2 0.4425 0.728 0.61 0.1573 0.8219 
16 3 0.4228 0.600 0.70 0.1482 0.9150 

4 0.4920 0.550 0.89 0.1583 0.8759 

2 0.5730 0.770 0.74 0.1919 0.9351 
23 3 0.5591 0.718 0.78 0.1856 1.0076 

4 0.6407 0.670 0.96 0.2017 0.9664 

TABLE 9.16. 
STATISTICAL COMPARISON OF CYLINDER KINEMATICS 

WITH WATER PARTICLE KINEMATICS 

(NOTE: CAUTION MUST BE EXERCISED WITH RESPECT TO 
RESULTS FOR LEVEL 2 DUE TO INTERMITTENT EXPOSURE) 
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urme 

0.020 
0.021 
0.025 

0.034 
0.034 
0.038 

0.32 
0.34 
0.48 

0.22 
0.21 
0.28 

0.13 
0.12 
0.14 

0.049 
0.045 
0.058 

0.20 
0.20 
0.23 

0.18 
0.16 
0.19 

0.18 
0.17 
0.19 

0.19 
0.16 
0.18 

0.21 
0.18 
0.21 



" ........... -. 

Run Force Cd Cm Standard Skewness Kurtosis Maximum Minimum 
No Deviation 

(KN) (KN) (KN) 

Predicted 0.80 1.75 0.0673 -0.01 3.02 0.236 -0.234 
01 

Observed 0.0621 0.06 3.30 0.232 -0.329 

Predicted 0.80 1.65 0.150 -0.07 3.33 0.579 -0.541 
13 

Observed 0.146 0.36 3.91 0.900 -0.550 

Predicted 0.80 1.65 0.167 -0.75 5.04 0.630 -0.798 
15 

<- Observed 0.168 0.64 4.62 0.900 -0.670 

TABLE 9.17. 
COMPARISON OF THE IN-LINE FORCES 

CALCULATED IN THE TIME DOMAIN WITH THE OBSERVED FORCES (LEVE~ 3) 

Run Cyli nder Standard Skewness Kurtosis Maximum Minimum 
No Displacement Cd Cm Deviation 

(m) (m) (m) 

Predicted 0.80 1.75 0.0024 -0.02 3.02 0.0093 -0.0085 
01 

Observed 0.0024 -0.45 9.14 0.0290 -0.0110· 

Predicted 0.80 1.65 0.0786 -0.05 3.55 0.2960 -0.2922 
13 

Observed 0.0810 0.09 3.04 O.~OO -0.2900 

Predicted 0.80 1.65 0.0841 -0.58 4.70 0.3147 -0.3892 
15 

Observed 0.0880 0.16 3.42 0.3400 -0.3200 

TABLE 9.18. 
COMPARISON OF THE IN-LINE CYLINDER DISPLACEMENTS 

CALCULATED IN THE TIME DOMAIN WITH THE OBSERVED CYLINDER DISPLACEMENTS (LEVEL 3) 
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Chapter 10 

Probabilistic Analysis of 
Fixed Jacket-Type Offshore Structures 



10.1 INTRODUCTION 

Deterministic and probabilistic methods were compared in Section 1.4. 

It was argued that in the deterministic method, the risks are 

associated with the environmental conditions. For example, the 

probability that the '50 year' design wave will be exceeded at least 

once during the service life of the structure can be calculated; 

however, this probability cannot be converted into the risk of failure 
V 

for individual members. In fact, every member will have a different 

unknown probability of failure. In contrast, in probabilistic methods, 

the risks are associated with the responses themselves. For example, 

the probability that the '50 year' peak response will be exceeded at 

least once during the service life of the structure will be calculated. 

Therefore, members can be des i gned so that all responses will have 

equal risks of exceeding their design values during the service life of 

the structure. Alternatively, responses can be divided into two or 

three different groups with different acceptable risks of failure with 

regard to their importance in the overall safety of the structure. It 

can therefore be concluded that at least from a philosophical point of 

View, probabi1istic methods are more satisfactory than deterministic 

ones. 

In probabilistic methods the long-term distribution of response peaks 

is required. These long-term distributions are obtained by convoluting 

the short-term di stri but i on of response peaks with the long-term 

distribution of sea states or wave conditions as discussed in detail in 

Chapter 5. Chapter 8 was devoted to the probability distribution of 

responses of fixed jacket type offshore structures, which were shown to 

be of Pierson-Holmes type. Furthermore, it was shown that if the 

response is considered to be narrow-banded and if it is assumed that 
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the response and its first derivative are statistically independent, 

then the pdf of the peaks can be readily obtained from the pdf of the 

response itself and that the resultant distribution (nb2) is in 

reasonable agreement with the more accurate peak distributions obtained 

when these simplifying assumptions are not considered. Consequently, 

determination of the short-term distribution of response paves the way 

for the probabilistic analysis. 

As was mentioned earlier, the pdf of response is of Pierson-Holmes type 

which has got thicker tails in comparison with an equivalent (same 

variance) Gaussian-distributed random variable. The assumption that the 

response is Gaussian distributed, as is done in the spectral analysis 

of offshore structures, leads to an underestimation of the response and 

its peaks at low levels of the probability of exceedence. The 

underestimation is increased with the increased importance of the non

linear drag component of the Mor1son-type wave loading. 

The Pierson-Holmes distribution, is fully defined by its first four 

statistical moments. In the absence of current, the first and the third 

moments are zero and hence the distribution is fully defined by its 

second and fourth moments. These moments can be calculated in both time 

and amplitude domains. However, in order to obtain stable results in 

the time domain, long records of simulated response - typically in 

excess of 10,000 time steps (Burrows, 1982; Borgman, 1969b) are 

required, which is prohibitive in terms of computer run-time. 

Therefore, it is preferred to calculate these moments in the 

probability domain. 

Finally, the discussion in this chapter is based on the assumption that 
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a) The structure is rigid, i.e. the fundamental natural frequency of 

the structure is well above the frequency range of the waves so 

that inertia forces due to dynamic effects are negligible. This 

is not a serious drawback since the great majority of jacket type 

offshore structures are in water depths less than gOm and hence 

do not respond dynamically to wave loading. 

b) Current is negligible. The effect of current on the probability 

distribution of force and response is discussed by Tung et al 

(1976) (Section S.I.I). 

c) The intermittency of the elements in the splash zone is not 

considered (Tung, 1975). 

10.2 DERIVATION OF THE SECOND AND THE FOURTH MOMENTS OF RESPONSE 

The first step is the idealisation of the structure into a lumped 

system where member areas and volumes are concentrated into a discrete 

set of nodes. Following this procedure, the distributed wave loading on 

the structure can be modelled as a number of Morison-type nodal loads. 

Assuming that the jacket is stiff enough so that inertia forces due to 

its deflection under random wave loading is small, then the response 

(internal stress or deflection) can be considered as a linear function 

of the nodal loads. That is 

(10.la) 

where y is a typical response, Fj is the nodal load at node i and Sj is 

the contribution of a unit load at node i to the particular response 

under consideration (flexibility coefficient). Raising both sides of 

the above equation to the second and fourth power and taking 

expectations leads to 
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and 
(lO.lb) 

j r 

j r i k r i 

Therefore, determi nat i on of the second and fourth order moments of 

response leads to the calculation of all possible expectations of the 

form FjFj , Fj2F/, Fj3Fj , Fj2Flk and FllkFI between nodal loads. The requi red 

number of expectations for each of the above combinations as a function 

of the number of structural nodes are presented in Table 10.1 (Burrows, 

1982). It is obvious that as the number of nodes increases, most of the 

computer run-time is spent to calculate expectations of the form 

E[~2~Fk] and E[Fi~Fk~] because they are more complicated to calculate 

and because they are much greater in number. Therefore, it is of 

crucial importance to reduce the time needed to calculate each of these 

expectations. 

Morison-type wave loading at node is represented as 
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where for a vertical pile 

and 

71"02 

X2i = (- pCmL)i ui 
4 

(I0.2b) 

(I0.2c) 

All the variables in the above equations are defined as before and 

refer to the particular conditions at node 1. Idealisation of the 

continuous load on nodes consisting of several members including 

inclined ones into the form of Equation (IO.2a) has been discussed by 

Bound (1984). X~1 and x~ are considered to be stat1st1cally independent 

Gaussian-distributed random variables. From Equation (10.2a), 

expectations of higher order moments of force required in the 

deri vat i on of the second and fourth order stat i st i ca 1 moments of 

response are 

2 2 r 27 
E[F j Fj ] = ~=19 Tk 
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(I0.3a) 

(IO.3b) 

(I0.3c) 

(lO.3d) 

(10.3e) 

(10.3f) 

(10.3g) 



where 

4 2 

T 6 = E[X2i-1 X2i ] 

5 
T7 = E[X 2i_,lx2i_,1 * x2j-,lx2i-,1l 

3 

T 10 = E [X2i X2j] 

4 
T'1 = E [X2i-1 X2i * X2i-,1 X2i-,1 ] 

4 
T12 = E[X 2i-1 X2i X2i ] 

2 

T'3 = E[X 2i-,1 X2i-,1 * X2i * x2j-,1 X2i-,I] 
2 

T'4 = E[X 2i-11 X2i-11 * X2i * X2j] 
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4 4 
T'9 = E[X2i_, X2i-,] 

4 2 
T 20 = E [X2i-, X2i ] 

4 

T2, = E[X2i_, X2i-,lx2i-,1 * X2i ] 

2 4 

T 22 = E [X2i X2i-,] 

2 2 
T23 = E[X 2i X2i ] 

2 

T 24 = E [X 2i X2i-,1 X2i-,1 * X2i ] 

4 

T 25 - E [X2i-,1 X2i-,1 * X2i X2i-,] 

2 

T 26 .. E [X2i-,1 X2i-,1 * X2i X2i ] 

4 
* X2i-, I X2i-,1 * X2k-,1 X2k-,1 ] T28 = E [X 2i-, 

4 
T29 = E[X 2i_, * X2i-' I X2i-,1 * X2k] 

4 

X2i * X2k-,1 X2k-,1 ] T30 = E [X2i-, 

4 
T3, = E [X2i-, X2i X2k ] 

2 
* X2k-,1 X2k-' I ] T32 = E [X2i * X2i-,1 X2i-,1 

2 
T33 = E [X2i * X2i-,1 X2i-,1 * X2k] 

2 

T34 = E [X2i * X2i * X2k-,1 X2k-,1 1 

2 

T35 = E [X2i X2i X2k] 

T36 = 2E[X2i_,lx2i_,1 * X2i * X2i-,IX2i-,I * x2k.,lx2k-,ll 
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T39 = 2 E [X2i-, I X2i-,1 * X2i X2i X2k] 

T40 = E [X2i-,1 X2i-, I * X2i-,1 X2i-,1 * X2k-,1 X2k-,1 * X21_,1 X21_,1 ] 

T4, = E [X2i-,1 X2i-, I * X2i-, I x2i-' I * X2k-, I X2k-,1 * X21 ] 

T42 = E [X2i-,1 X2i-, I * X2i-,1 X2i-,1 * X2k * X21-,1 X21-,1 ] 

T53 - E[x~ x~ * x2~,lx2~,1 * x~] 

T 54 = E [X2i X2i X2k * X21-,1 X21_,1 ] 

T55 = E[X 2i X2i X2k X21 ] 
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Examination of T, to T55 reveals that overall 23 different types of 

expectations as listed below need to be calculated. 
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E'9 = E[xi Xj Xk XI] 

E20 = E[xilxil * Xj Xk XI] 

E2, = E[xilxil * XjlXjl * Xk XI] 

E 22 = E [ Xi I Xi I * XdXjl * xkl xkl * XI] 

E 23 = E [Xi I Xi I * XjlXjl * xkl xkl * xII xII] (10.5) 

Calculation of E, to E
23 

E1 to E23 are expectations of functions of 2, 3 or 4 mean-zero Gaussian 

distributed random variables. Expectations E, to E2, have closed-form 

solutions {Burrows, 1983}, but E22 and E23 must be calculated either by 

numerical integration in the four-dimensional Gausshn probability 

space or by introducing approximations. In general, the joint pdf of n 

Gaussian distributed random variables is (Miller, 1964) 

where 

{X} = (x" 

{x} = (x1 , 

... , 

... , 

1 
exp -: {(X - X)[er' (x XlT} 

(10.6) 
(21£}n/2 v1Jet([c]) 

Xn) is the row vector of the random variables 

Xn) is the row vector of the means 

{X}T is the transpose of {x}, i.e. a column vector 
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c", •.. , c'n 

c = • 

c is the matrix of cross-covariances (Equation (8.49) between the 

random variables and turns out to be a symmetric positive definite 

matrix. Cross-covariances (or correlation coefficients) needed in the 

calculation of E, to E23 can be calculated in terms of cross-covariances 

of water particle kinematics at different nodes {Foster, 1967} 

(Equations 3.85 to 3.110). E22 can either be calculated in the four 

dimensional probabil ity space or it can be broken down into the 

summation of three simpler expectations of the form {Burrows, 1983}. 

(IO.7) 

Therefore, in order to calculate E22 and E23 , the following numerical 

integrations must be carried out 

(lQ.8a) 

{lO.8b} 

Numerical integration over the three and four dimensional probability 

spaces for E24 and E23 , is performed by constant step integration using 

rectangular rule summations. For each cycle of integration, the 

relevant conditional probability distribution is Gaussian in form. 

Therefore, to centre the computations over the significant range of 
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this probability mass, the integration is performed over a range of ± 

7 standard deviations of this conditional distribution about its 

conditional mean values, these moments being obtained from Equations 

(8.55) and (8.57) of Appendix B. 

Burrows (1979) produced a computer model in which E1 to E21 were 

calculated from their analytical solutions while E22 and E23 were 

obtained by numerical integration. The numerical integration demanded 

considerable computer run-time and therefore limited the application of 

the model to systems of 12 nodes withi n the 30 mi nute run-time 

available on the ICL 19065 computer at Liverpool University. 

Approximations for E22 and E23 

In order to avoid the demanding integrations needed in the calculation 

of E22 and E23 , Burrows (1983) applied polynomial approximations to some 

of the xlxl terms in E22 and E23 so that the resultant expectations can 

be calculated analytically in a manner similar to the remaining 

expectations. The polynomial approximations are obtained from the 

minimisation of the 'mean-square' error in a statistical sense and are 

given by Borgman (1969b). That is 

xjlxjl =VS/1f eT j xj (Linear approximation) 

x.3 

= v'ij; (eT j Xj + -' ) (Cubic approximation) 
3eTj 

(10.9a) 

(10.9b) 

(

3 X.3 x.
S

) 

=V2/1f - eT· x· + -' - -' -, , 3 
4 2eTj 60a j 

(Quintic approximation) 
(l0.9c) 

where eT j is the standard deviation of Xj' 
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These approximations are plotted in Figure 10.1. Examination of the 

figure shows that the linear approximation offers a reasonable solution 

only to about two standard deviations whilst the cubic to more than 

three and the quintic is good to about four standard deviations. 

Burrows (1983) applied cubic approximation to xklxkl of E22 . E23 was 

calculated by applying linear approximation to xklxkl and cubic 

approximation to xII xII. As a result of these approximations, systems 

with 30 nodes can be analysed within the same time restriction as 

before. Comparison of approximate values of E22 and E23 with the 'exact' 

values obtained from numerical integration showed that these 

approximations are not always very good. However, it happens that the 

inaccuracies are large only for expectations with lower numerical 

values, reflecting a relatively low degree of mutual correlation, and 

hence the effect of these inaccuracies on the fourth moment of response 

are very small (less than 0.1% in the example given in Burrows (1983)). 

It can therefore be concluded that for engineering purposes, the 

computer model produced by Burrows is accurate and that the results of 

other forms of approximations introduced later can be compared with the 

results of Burrows' model to check their accuracy. 

10.3 TWO DIFFERENT METHODS FOR REDUCING THE COMPUTER RUN-TIME 

10.3.1 POLYNOMIAL APPROXIMATION METHOD 

10.3.1.1 Theoretical Considerations 

Analytical solutions to expectations which have more than two different 

x terms and at least one of the x terms is in the form of xlxl are 

complicated and involve solving a set of two or three linear equations 

for calculating coefficients needed in the solution (Equation B.S6 of 

Appendix B). Furthermore, functions such as Arcsin{p), for which 
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eva 1 uat i on by computer is time consumi ng in compari son wi th si mp 1 e 

algebraic operations (+, -, *), appear in the solutions. On the other 

hand, analytical solutions to expectations which have more than two x 

terms but with no xlxl, are relatively simple. This encourages the 

application of polynomial approximations to all expectations having 

terms of the xlxl form. Bruce (1985) has suggested that xlxl be 

approximated by 

(10.10) 

so that the second and the fourth moments of both sides are equal. 

Ra is i ng both sides of the above equat i on to the second and fourth 

powers, taking expectations and assuming for simplicity that uj • 1, the 

following two equations will be obtained. 

Solving the above set of two non-linear equations gives 

r a, '" 1.007907 

t a3 '" 0.214243 
(Compare with Equation (10.9b) 

(10.lla) 

(10.12) 

For the general case when uj is not equal to unity, the approximation 

will be 

(10.13) 

where Yj = xjuj has a standard deviation of un; ty. 

The compari son of the above po lynomia 1 approxi mat ion wi th x I x I in 

Figure 10.2 reveals that the approximation is good up to about four 
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standard deviations. Using this polynomial approximation, expectations 

having xlxl terms (Equation 10.5) will be approximated by 

E17/(%/O/) = a, E[yiY;Y/] + a,a3E[YiYj3y/] + a,a3E[Yi
3
Y;Yk2] + 

a3
2 E[Yj3Yj3Yk2] 

E18/(0/0/CTk
4) = a/ E[YiY;Yk4] + a,a3E[YiYj3Yk4] + a,a3E[Yj3Y;Yk4] + 

a3
2 E [Yj3Yj3Yk 4] 

E21/ (CTi
2CT/CTkCT1) = a/ E [YiY;YkYI] + a, a3E [YiYj3YkYI] + a1 a3E[yj3Y;YkYl] 

+ a/E[Yj3Yj3YkY'] 

E22/(CTj2CT/CTk2CTI) = a,3 E[YiY;YkYI] + a/a3E[YiY;Yk3y,] + a12a3E[YiYj3YkYl] 

+ a1a32E[YiYj3Yk3y,] + a1
2a3E[Yi3Y;YkY,] 

+ a, a3 2E[yj3Y;Yk 3yl ] + a, a/E[Yj3Yj3YkYI] 

+ a3 3E[Yj3Yj3Yk 3yl ] 
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E23/{0/0,/0/0/) = a1
4 E[YiYlkYI] + a1

3a3E[YiYlkYI3] + a1
3a3E[YiYlk3YI] 

+ a/a/E[YiY;Yk3YI3] + a13a3E[YiYj3YkY,] 

+ a/a3
2E [YiY;YkYI3] + a/a/E [YiYj3Yk 3yl ] 

3E [ 3 3 3] 3 E [3 ] + a1 a3 YiYj Yk YI + a1 a3 Yi Y;YkYI 

2 2 [3 3] 2 2E [3 3] + a1 a3 E Yi YlkYI + a1 a3 Yi Ylk YI 

3E [3 3 3] 2 2E [ 3 3 ] + a1 a3 Yi Y;Yk YI + a1 a3 Yi Yj YkYI 

3 E [ 3 3 3] 3E [ 3 3 3 ] + a1a3 Yj Yj YkYl + a,a3 Yi Yj Yk YI 

+ a3
4E [Yi3Yj3Yk 3y13] 

(10.14) 

Substituting these approximations into T, to T66 {Equation (10.4)) 

whenever these approximations are necessary, approximate values for 

E[FjFj ], E[F j
3Fj ], E[Fj2F/], E[F/Flk], E[FJ;FkFI] can be calculated which are 

then used in the calculation of the second and the fourth moments of 

response {Equations (lO.lb) and (lO.lc)). 

When polynomial approximations are introduced, all the resulting 

expectations in T, to T55 will be of the form E[xtX/,X/XIA] where a, p, 

'Y and A vary between 0 and 3. These expectat ions can be evaluated 

through Price's theorem (Price, 1958). According to the theorem for the 

case of ~ • ~ = uk = ~ = 1, the following relationship holds true. 

(10.15) 

Using this principle, higher order expectations can be calculated from 

lower order expectations, systematically. For example, E[xi
2x/l is 

calculated in the following way. 
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= 4E[x.x.] .. 4p .. 
1 1 1I 

(l0 .16a) 

Therefore, 

2 2 I Pij 2 E [Xi Xj ] = 0 4Pij + c = 2Pij + c (l0.16b) 

If Pij = 0, then Xi and Xj are statistically independent and 

E[x/x/] = E[Xi2] * E[Xj2] '" 1. Hence, for Pij - 0, the right hand side of 

Equation (10.16b) is equal to 1, which leads to c .. 1. Consequently, 

E[X.2X.2] = 1 + 2p .. 2 (10.16c) 
1 1 1I 

If ~ and ~ are different from unity, then 

(10.16d) 

Bruce (l985) has evaluated these expect at ions. However, due to the 

importance of the expectations in this study, they have been calculated 

independently here. Furthermore, the resultant expressions have been 

checked by compari n9 thei r results wi th the results derived from 

numerical integration for a few data sets, as will be shown later. The 

complete list of expectations required in derivation of the second and 

fourth moments of response together with their solutions now follows. 
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and 

E[Yi5Yj] = 15Pi; 

E[Yi7y;] = 105Pi; 

E[Yi2y/] = 1 + 2Pi/ 

E[Yi
4
y/] = 3 + 12p/ 

E[Yi3y;3] = 9Pi; + 6Pi;3 

E[Yi5yj3] = 45Pi; + 60Pi;3 

E[Yi4y;4] = 9 + 72p.·2 + 24p .. 4 
I) I) 

E[Yi2y;3yk3] = 3{6Pi;Pik (1 + 2P;k2
) + Pjk[ (3 + 2p/) 

+ 6 (Pij2 + Pik2)]} 

E[Yi3Yj3Yk4] = 9{Pij[ (3 + 2p/) + 12{pik2 + Pj/)] 

+ 4PikPjk[6Pij{Pij + PikPjk) + 2{Pik
2 + Pik

2
) + 3D 

(10.17) 
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E[YiYiYk
3
YI

3
] ,.. 9(PijPkI + PikPjl + PilPjk} + 6PkI[PijPkl2 

+ 3 (PikPjk + PilPjl) + 3PkI{PikPjl + PiIPjk)] 

E[YiYj3Yk3YI3] = 18{6(pijPkl + PikPjl + Pi1Pjk}(O.25 + PjkPjlPkI) 

+ (PijPkl
3 + PikP/ + PilPjk 

3
) + 3 [PijPjkPjl + PikPjkPkI 

+ PilPjlPkl + PijPkI (Pjk 
2 + p/) + PikPjl (p/ + PkI 

2
) 

+ PilPjk {p/ + PlO 2} ]) 

E[Yi3Yj3Yk3YI3] = 81{PijPkI + PikPjl + PilPjk} + 54[pijPkI{Pi/ + Pkl2} 

+ PikPjl (Pik 
2 + p/) + PilPjd p/ + Pjk 

2 
} ] 

+ 36(Pij3Pkl3 + Pik3P/ + PiI
3p/} 

+ 162 [Pij (PikPil + PjkPjl) + PkI (PikPjk + PilPjl) 

{ 2 2 2 2} (2 2 + PijPkl Pjk + Pjl + Pik + Pil + PilPjk Pij + Pik 

+ p/ + Pkl2) + PikPjl(P/ + Pjk 2 + Pkl
2 + p/)] 

+ 324 [PijPjkPjl (Pik 2 + p/ + PlO 
2

) + PijPikPil (Pjk 
2 + p/ 

2) (2 2 2) (2 2 + PlO + PikPjkPkI Pij + Pil + Pjl + PilPjlPkl Pij + Pik 

+ Pj/) + P/P/(PijPkI + PikPjl) + Pi/P/{PijPkI + PilPjk} 

+ P/PkI
2

(PiIPjk + PikPjl}] + 1296PijPikPilPjkPjlPkI 
(IO.18) 

Validating Analytical Solutions to Expectations 

Analytical solutions to expectations of Equations (10.17) and {10.18} 

can be checked in two different ways. 

l. Checking the solutions for special conditions. For example, 

E[Yi
5yj3] = 45Pij + 60Pij3 can be checked for the following special 

conditions. 

a) If Yi = Yj, then Pij = 1, and hence the analytical solution 

wi 11 reduce to E[Yi5yj3] .. E[YiB] • 45 + 60 - 105 
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which is correct as E[y~] ., 105. 

b) If Yi and Yj are statistically independent, then Pij • 0 and 

the analytical solution will reduce to E[Yi5yj3] ., 0 

which is correct since for the condition of Yi and Yj being 

independent, we have E[Yi6yj3] • E[yi6] E[yj3] • 0 

2. By comparing the results of the analytical solutions with the 

results of numerical integration for sample data sets. Five 

different data sets were used for the purpose of comparison. The 

data sets are composed of the matrices of cross-covariances 

between ~, ~, xk and ~ (Table lO.2a). Furthermore, the matrix of 

correlation coefficients between the four Gaussian-distributed 

random variables are given in the same Table. These correlation 

coefficients are chosen randomly; however care has been taken to 

represent all different conditions. For example, data set number 

5 refers to the condition that correlation coefficients between 

the random variables are high while data set number 3 refers to 

the condition that these correlations are low. In all cases the 

results (Table lO.2b) are the same up to four decimal places, 

giving confidence in both the analytical solutions and the 

programme developed for numerical integration. Only expectations 

involving more than two variables have been checked as other 

expectations are very simple and have been reported by many 

authors. 

10.3.1.2 Developing and Checking the Computer Model 

A computer model was produced that defines a Pierson-Moskowitz spectrum 

in terms of .the significant wave height, H. (Equation (3.120». The 

Upper and lower limits of the spectrum are taken to be 0.40wp and 8.0w
p 
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(same as Burrows' model) where wp refers to the frequency at the 

spectral peak, that is G~q(wp) is the maximum of G~~(w). The spectrum is 

defined by its value at 32 equally spaced points starting from the 

lower limit (0.40 wp ) and ending at the upper limit (8.0 wp ) of the 

spectrum. For each discrete frequency the wave number is calculated 

(Section 6.2). The variances of water particle kinematics at different 

nodes and the cross-covariances and correlation coefficients between 

different pairs of kinematics at different nodes are calculated by 

numerical integration according to Equations (3.85) to (3.110). The 

flexibility coefficients are given as input to the programme and the 

second and the fourth moments of response are calculated from Equations 

(lO.lb) and (lO.lc). The Tk terms needed in calculating the expectations 

of different combinations of nodal forces are given by Equation (10.4). 

Those expectations having terms of the xlxl form are approximated by 

those given in (10.14). 

In order to make sure that the programme coding was right, the 

following checks were performed. Expectations used in calculating 

E[F,3 Fj], E[Flj] and E[F j
2Fj2 ] were calculated for the matrix of cross

covariances given in Table IO.3a. The correlation coefficients (or 

cross-covariances) in Table 10.3a have been chosen randomly, i.e. they 

do not represent any specific arrangement of nodal points. In other 

words, the approach towards checki ng these expectations is purely 

mathematical. The results of the analytical solutions to the 

approximate expectations (expectations when polynomial approximations 

have been applied) are in reasonable agreement with the results of 

analytical solutions to the exact expectations. The maximum difference 

in this example is less than 7%. It is emphasised that the results of 

both exact and approximate expectations (i.e. expectations before and 
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after the application of polynomial approximations) have also been 

checked by numerical integration and are in agreement with the results 

of their corresponding closed-form solutions up to four decimal places. 

Three different data sets were considered for checking expectations 

used in calculating E[~2~Fk] and E[~~Fk~]. The matrix of correlation 

coefficients and cross-covariances for these data sets are given in 

Tables 10.4a and 10.4b, respectively. Again, the correlation 

coeffi ci ents are chosen randomly and do not represent any specifi c 

arrangement of nodal points. The correlation coefficients between X2~1 

and X2i in our model when applied to structures would be zero; however, 

in these examples, this point has not always been considered. This 

however, woul d not cause any particular probl em as P2i.2i-1 • 0 is only a 

special value for the correlation coefficient which in general can vary 

between ± 1. 

The comparison for expectations used in calculating E[F?~Fk] is done in 

Table 10.4c. Similar comparison for expectations used in calculating 

E[~~Fk~] are presented in Table 10.4d. Again, the results are in good 

agreement with the maximum difference being less than 4%. As was the 

case in the previous example, both exact and approximate expectations 

have also been calculated by numerical integration and are in agreement 

with their corresponding analytical solutions up to four decimal 

places. For expectations of the form E22 and E23 analytical solutions do 

not exist and only the result of numerical integrations have been 

considered. The inverse of the matrix of cross-covariances for some 

particular combinations of cross-covariances did not exist and hence 

these expectations cannot be calculated for the associated data set. 
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However, all the expectations have at least been checked for one data 

set. 

Finally, two different versions of the computer model based on the 

polynomial approximation method have been produced. In the first one 

polynomial approximation has been applied to the expectations in E[FjFj ], 

E[F j
3Fj ], E[F j

2F/], E[F j
2Flk] and E[FjFlkF1]. In the second version the 

polynomial approximation has been applied only to the expectations in 

E[F j
2Flk] and E[FjFlkF1]. This is more reasonable as the analytical 

solution to expectations in E[FjFj ], E[F j
2Fj

2
], E[F j

3Fj ] are relatively 

simple. Furthermore, as shown in Table 10.1, the number of expectations 

involving two nodal loads is by far smaller than the number of 

expectations involving three or four nodal loads for structures with a 

large number of nodes. In the remaining sections, only the second 

version has been applied to the test structures. 

10.3.1.3 Testing the Model for a Few Sample Structures 

In order to check how good the polynomial approximation method is, the 

resultant model was applied to a few sample structures and its results 

were compared with the results of Burrows' model, which is considered 

to be adequate for engineering purposes. Before the comparison is done, 

the following point must be considered. 

For structures with a relatively small number of nodes (say less than 

12), the number of expectations involving one or two nodal forces (i.e. 

E[F j
4
], E[F j

3Fj ], E[Fj2Fj
2
]) account for a 1 arge part of the fourth moment 

of response. However, as the number of nodes increases, the number of 

expectations involving three or four different nodal. forces grows 

rapidly so that it is possible that the major part of the fourth moment 
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of the response is accounted for by these expect at ions. Now in our 

computer model, E[Fj4 ], E[Fj3Fj] and E[Fj2F/] are calculated analytically 

and the number of nodes in our test structures are not high; therefore, 

the comparison of kurtosis from the polynomial approximation model 

against the exact value of kurtosis will not be a good indicator of the 

accuracy of the model. Instead, it is more reasonable to compare 

E Sj2SjSk E[Fj2F;Fk] and E SjSjSkSI E[FjF;FkFI] from the polynomial 

approximation model against their corresponding exact values. 

The response calculated for the test structures is base shear which is 

defined as the sum of all the nodal loads. That is y • E Fj. The test 

structures include a one-leg, a two-leg and a four-leg structure. The 

effect of member diameter, significant wave height and the distance 

between the legs on the accuracy of the model was investigated. Cd and 

Cm values were taken to be 0.70 and 2.00, respectively. 

One-Leg Structure 

The first structure to be considered was a riser of 2.5ft (0.7620m) 

diameter, in a water depth of 400ft (122m). Figure 10.3 shows that the 

level of inaccuracy increases with H.; but it is always less than 3%. 

Significant wave heights up to 65ft (19.8m) have been considered in 

this study; however, it should be noted that values of H. greater than 

35ft (10.7m) are not realistic and therefore it can be concluded that 

inaccuracies are less than 1%. Another observation is that E E[~~Fk~] 
is less accurate than E E[Fj2F;Fk] as may be intuitively expected. 
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Two-Leg Structure 

In a one-leg structure, there is no horizontal spacing between nodal 

forces. In order to investigate the effect of nodes with di fferent 

horizontal coordinates on the performance of the model, two two-legged 

structures as shown in Figures 10.4 and 10.5 were investigated. Figure 

10.4 shows that inaccuracies are less than 5% and that inaccuracies 

increase with increasing distance between the legs. Figure 10.5 is 

similar to Figure 10.4 except for the leg diameter which has reduced 

from 2.Sft (0.7620m) to 1.Oft (0.3048m). As a result, the inaccuracies 

have increased up to a maximum of 7.5%. When the diameter reduces, the 

drag term becomes more domi nant and the force kurtos is increases. 

Therefore, it can be concluded that as the kurtos is increases, the 

level of inaccuracy increases, too. However, it should be considered 

that legs of 1.0ft diameter are not realistic. Furthermore, as far as 

the author is aware, the jacket dimensions are not more than 150ft 

(45.7m); therefore for more realistic conditions, the level of 

inaccuracy is limited to a maximum of 2%. 

Four-Leg Structure 

In the case of a two-legged structure, for an expectation of the form 

E[~~Fk~]' only two horizontal positions (coordinates) can be different 

for the four nodal loads. In order to investigate the accuracy of the 

model in cases when all the four horizontal positions (coordinates) can 

be different in E[F jFlkF!1, two four-legged structures, as shown in 

Figures 10.6 and 10.7, were studied. Figure 10.6 shows that for a 

dimension of 300ft (91.4m) with a leg diameter of 2.Sft (0.7620m), the 

inaccuracies are limited to 4% up to a significant wave height of 40ft 

(l2.2m). Figure 10.7 is similar to Figure 10.6 except that the leg 

diameter has reduced to 1.Oft (O.3048m). As a result, the inaccuracies 
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have increased to a maximum of 8%. Again, the structure with the larger 

diameter is more real istic and hence it can be concluded that the 

inaccuracies are less than 3% (up to an H. of 35ft (10.7m». 

The results of the above investigations show that the polynomial 

approximation method is very satisfactory and that for realistic . 
structures, inaccuracies are expected to be less than 3%. Obviously, 

there is need for further investigation of the model with regard to 

various responses of a real jacket structure. The computer time spent 

for calculating expectations of the form E[Fj2Flk] and E[FjFlkF.] has 

reduced by about 28 times in comparison with Burrows' model (analytical 

sol ut ions). Therefore, wi th reference to Table 10.1, it is expected 

that the number of nodes can be increased from 40 to about 85. That is 

a great achievement; however, the model is not yet adequate for 

analysis of complicated structures. A more drastic reduction in 

computer run-time is required so that the number of nodes can be 

increased to well above one hundred nodes. 

10.3.2 FORCE-CORRELATION METHOD 

10.3.2.1 Theoretical Considerations 

Burrows' model and the polynomial approximation model have one point 1n 

common; both of them are based on the assumption that due to the non

Gaussian distribution of forces, expectations of functions of two, 

three or four forces cannot be calculated directly from parameters 

describing the inter-relationship between forces themselves. Instead, 

they have resorted to the Gaussian-distrfbuted partfcle kinematics. 

Burrows' model has applied the analytical solution to the expectations 

of Gaussian-distributed random variables as far as possible; the other 

has introduced polynomial approximations at an earlier stage to ease 
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the computer run-time. In this section an intuitive attempt has been 

made to calculate the expectations of different combinations of forces 

using parameters describing the forces and the inter-relationship 

between-the forces themselves. 

The important parameters in describing an individual nodal load are its 

standard deviation and kurtosis. The most important parameter 

describing the relationship between loads at different nodes is the 

correlation coefficient between the two forces. These three parameters 

have been used in obtaining approximate solutions to expectations 

involving two, three or four nodal forces. These approximate solutions 

consist of two parts multiplied by each other. The first part is based 

on the assumption that forces are Gaussian distributed and calculates 

the expectation disregarding the fact that the kurtoses of forces are 

more than three (which is the kurtosis of a Gaussian random variable). 

The second part introduces functions of forces' kurtoses to compensate 

for this wrong assumption. The intuitive approximation for the general 

case of E [FiFlkF1] is 

where 

(10.19b) 

Pi refers to the kurtos is of Fj and Pi; refers to the corre lat 1 on 

coefficient between ~ and ~. Examination of the above equation shows 

that when the four nodal forces are Gaussian distributed, the equation 

is exact, i.e. G = 1 and Equation (10.19a) will reduce to 

(10.20) 
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which is the analytical solution to the expectation of the product of 

four Gaussian distributed random variables. Equation (10.19a) is exact 

for another specific condition, too. That is, when Fi , Fi, Fk and FI are 

linearly related. When this is the case, Pi • Pi = Pk • PI· P and the 

following relationships hold true. 

(10.21) 

where Ql' Q 2 and Q 3 are constants. Therefore 

When the nodal forces are 1 inearly rel ated, Pij • Pik • Pil • Pjk • Pjl • PkI 

= 1 and considering that Pi = Pj • Pk • PI = p, from Equation (10.19a), 

E[FJlkFll for this particular condition will be the same as that of 

Equation (lO.22). That is 

(10.23) 
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Therefore, for two particular conditions, the approximation introduced 

in (10.19a) will be exact, a) when forces are Gaussian distributed, b) 

when the correlation coefficients between the forces is ± 1. These two 

specific conditions relate to this study in the following way. 

1. When H. i s small, the inert i a component of Mori son's force 

dominates and hence the forces are nearly Gaussian distributed. 

This means that for low values of H., the force correlation method 

(Equation (10.19a) is a good approximation. 

2. On the other extreme, when H. is very large, the associated wave 

lengths will be very large and therefore correlation coefficients 

between nodal forces which are not far apart will be close to 

one. Hence for very high values of H., the force correlation 

method is expected to be a good approximation, too. 

Combining the above two comments, the following conclusion may be made. 

For low values of H., the force correlation method is good. As H. 

increases, the departure from Gaussian distribution increases, too, but 

so does the correlation coefficients between nodal forces. It is 

expected that the second factor can partially compensate for the first 

one so that the inaccuracies may remain within acceptable limits. 

Another point to be considered is that it is the accuracy of E E[Fl;FkFll 

which is of importance not the accuracy of individual expectations. 

Expectations with high correlation coefficients between their 

constituent forces are expected to be much larger than those with low 

correlations and hence they are expected to contribute significantly to 

E E[Fl;FkF,l. On the other hand, these expectations are the more accurate 

ones; hence the level of accuracy for E ~~Fk~ should be much better 

than the level of accuracy for some of the individual expectations, 
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which may suffer large inaccuracies. Finally, if the inaccuracies prove 

to be of a random nature (some underestimation, some overestimation) 

then they may cancel each other out so that E E[Fl;FkF,l wi 11 have a 

better level of accuracy. 

As previ ously stated, the force correlati on approximat·; JO for the 

general case of E[~~Fk~l is 

(l0.23a) 

From the above equat ion, expectations of the other combi nat ions of 

nodal forces will be 

(l0.23c) 

(10.23d) 

10.3.2.2 Developing the Computer Model 

The foundation of the force-correlation method is based on the argument 

that for low values of H., the approximation is good. As H. increases, 

the departure from Gaussian distribution tends to cause an increase in 

the 1 eve 1 of i naccurac i es, but on the other hand, the increased 

correlation coefficients between nodal loads tend to bring the 

inaccuracies down. Therefore, it is expected that maximum inaccuracies 

should occur in the middle range of H. where departure from Gaussian 

distribution is relatively high, but the correlation coefficients are 

not high enough to cause a significant improvement in the level of 
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inaccuracies. It was decided to test this theme before developing a 

full model based on the force-correlation method. 

Figure 10.8 shows the results of such an investigation for a two-legged 

structure with 50ft (15.2m) distance between its two legs. The 

approximate values of E[F j
3Fj ] have been compared against their exact 

values for different combination of the 12 nodal loads. The following 

points can be noticed. 

1. As HI increases, the correlation coefficient between nodal loads 

increases, too. 

2. At low levels of HI' inaccuracies are very low. For example for 

HI less than 10ft, the maximum inaccuracy occurs for E[F1
3F7] 

which is only 1.5%. 

3. The maximum inaccuracy occurs in the range 20ft < H. < 40ft where 

correlation coefficients are in the middle range (less than 0.70) 

but kurtoses are high. 

4. For very high values of correlation coefficients, the 

inaccuracies are very low, although the kurtoses is high. For 

example, the maximum inaccuracy for E[FaF12 ] is 1%. Also consider 

the case of E[F1
3F7 ] for H. > 60ft. 

5. Comparison of inaccuracies for E[F/F10 ] and E[F1
3F7 ] shows that 

although P1.7 ish i gher than P1.10' the 1 eve 1 of inaccuracy is 

higher for E[F1
3F7]. This is believed to be due to the lower 

kurtosis of F10 in comparison with F7 due to its higher depth of 

immersion. It will later be demonstrated that as the distance 

between the legs increases, the level of inaccuracies will 

increase, too. The great majority of offshore structures have 
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inclined legs so that the distance between the legs increase with 

depth of immersion. On the other hand, the forces become more 

inertia dominated and closer to Gaussian distribution. The 

increased distance between the legs has an adverse effect on the 

results of the force-correlation method; on the other hand, the 

reduced values of kurtoses tends to improve the results. The two 

effects are expected to cancel each other out. The conclusion is 

that it is the dimension of the structure at the water surface 

which serves as a measure of the inaccuracies rather than its 

dimension at mudline. The dimension at water surface is expected 

to be less than 150ft (z45m). 

The above observations do not contradict the foundation upon which the 

force correlation method is based. It was therefore decided to develop 

the model and test it for the same structures used in testing the 

polynomial approximation model. The correlation coefficient between 

nodal forces is determined by calculating E[~~] analytically as was 

done in both Burrows' model and the polynomial approximation model. 

10.3.2.3 Testing the Model for a Few Sample Structures 

One-leg Structure 

Figure 10.9 shows that the level of inaccuracy increases with H. and 

then decreases. The sum of the expectations involving four different 

nodal forces is the most inaccurate one but still the level of 

inaccuracy is below 3.6%. As expected, the model is less accurate than 

the polynomial approximation one with a level of inaccuracy below 1% 

(for r 5j5j5k51 E[FjFjFkF,]) for the same structure {Figure lO.3}. 

445 



Two-leg Structure 

Figure 10.10 shows the effect of increasing H. on the inaccuracies for 

a two-legged structure with a spacing distance of 50ft between its two 

legs. Again, it is observed that inaccuracies increase with H. and then 

decline. The sum of the expectations involving four different nodal 

loads is the least accurate one with a maximum inaccuracy of less than 

3.5%. 

The effect of horizontal spacing between the legs on E ~~Sk~E[~~Fk~] 
(the least accurate expectations) is investigated in Figure 10.11. It 

1s observed that increasing distance between the legs has an adverse 

effect on the level of accuracy. However, the reasonable range for 

horizontal spacing between the legs is below 150ft and therefore, it 

can be concluded that the highest level of inaccuracy 1s less than 8%. 

Figure 10.12 is similar to Figure 10.11 except for the leg diameter 

which has reduced from 2.5ft to 1.0ft. For a horizontal spacing of 

100ft (30.5m), the inaccuracies have increased from 8% to 12% and for 

a spacing of 200ft (61m), the increase has been from 12% to 36%. As was 

previously stated, legs of 1.0ft diameter are not realistic and 

therefore it can be concluded that the inaccuracies for more realistic 

conditions are less than 8% (compare with 2% for polynomial 

approximation method). 

Four-leg Structure 

Two four-legged structures as shown in Figures 10.13 and 10.14 were 

investigated. Figure 10.13 shows that for a dimension of 300ft (91.5m) 

and a leg diameter of 2.5ft, the inaccuracies are limited to 11%. 

Figure 10.14 is similar to Figure 10.13 except that the leg'diameter 
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has reduced to 1.0ft. As a result, the inaccuracies have increased to 

a maximum of 25%. Again, the structure with the larger diameter is more 

realistic and hence it can be concluded that the inaccuracies are less 

than 11%. 

The results of the above investigations show that the force-correlation 

method is satisfactory and that for realistic structures (reasonable 

dimensions, member diameters) the inaccuracies in kurtosis (fourth 

moment) are expected to be less than 11%. The computer time spent for 

calculating expectations of the form E[F j
2Flkl and E[FJlkF.l has reduced 

by about a thousand times in comparison with Burrows' model (analytical 

solutions) so that the number of nodes can be increased from 40 to 

about 200 nodes. Obviously, further investigation is required to 

validate the model with regard to various responses of a real jacket 

structure. 

Summary and Conclusion 

Two different models have been developed for reducing the computer run

time. The polynomial approximation model reduces the computer run-time 

by about 28 times in comparison with Burrows' model (analytical 

solutions) while the reduction for the force-correlation model is about 

1000 times. As a result, the number of nodes can be increased from 40 

(in Burrows' model) to 85 and 200, respectively (within the 30 minute 

run-time available on the ICL 1906S computer used by Burrows). For the 

test structures used in this study, the maximum level of inaccuracy in 

the kurtosis (fourth moment) was below 3% and 11% for the first and 

second models, respectively. In view of uncertainties in the input data 

to the model (such as environmental conditions, Morison's coefficients, 

etc.) these levels of inaccuracy are not significant. Furthermore, it 
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must be recognised that even the results of analytical model are only 

approximations to the observed values. It can therefore be concluded 

that for engineering purposes all three models are equally 

satisfactory. However, as previously mentioned, further investigation 

is required to validate the two approximate models with regard to 

various responses of a few typical jacket structures. 

Ideally, the above models must be used at two different levels. In the 

first stage, a refined model of the structure with hundreds or even 

thousands of nodal loads will be used to calculate the variance of the 

response accurately. In the second stage, a coarser model of the 

structure (say, 200 nodes) will be used to estimate the fourth moments 

of the important responses. The second and the fourth moments of the 

response are then used to establish its probability distribution, which 

is required for calculating the extreme peak response. 
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Number of Nodes 
E{F/} E{F/q} 

E{Fp3Fq} E{F/Flr } E{FpFqF,F.} 

n 

1 
2 
3 
4 
5 

10 
12 
15 
20 
30 
40 
50 . 100 

E {F p 4} E{F/F/} 

n(n-l} n(n-l }(n-2) n(n-l)(n-2)(n-3) 
n n(n-l) 

2 2 4! 

1 0 0 0 0 
2 1 2 0 0 
3 3 6 3 0 
4 6 12 12 1 
5 10 20 30 5 

10 45 90 360 210 
12 66 132 660 495 
15 105 210 1,365 1,365 
20 190 380 3,420 4,845 
30 435 870 12,180 27,405 
40 780 1,560 29,640 91,390 
50 1,225 2,450 58,800 230,300 

100 4,950 9,900 485,100 3,921,225 

TABLE 10.1. 
NUMBER OF EXPECTATIONS OF DIFFERENT COMBINATIONS OF 

NODAL FORCES FOR A SYSTEM WITH n NODES 
(BURROWS, 1982) 
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01:>0 
U1 
o 

Data Set 
Number 

1 

2 

3 

4 

5 

Matrix of Correlation Coefficients of Xi' Xi' Xk , XI Matrix of cross-covariances of Xi' Xi' Xk , XI 

o .1000E+Ol O.OOOOE+OO 0.2697£+00 O.OOOOE+OO 0.1660E+05 O.OOOOE+OO 0.76202+03 
O.OOOOE+OO 0.1000E+Ol O.OOOOE+OO 0.6736E-Ol O.OOOOE+OO 0.7400E+09 O.OOOOE+OO 
0.2697E+00 O.OOOOE+OO 0.1000E+Ol O.OOOOE+OO 0.7620E+03 O.OOOOE+OO 0.4810E+03 
O.OOOOE+OO 0.6736E-Ol O.OOOOE+OO 0.1000E+Ol O.OOOOE+OO 0.1520E+07 O.OOOOE+OO 

0.1000E+Ol 0.2697E+00 0.2341E+00 0.2072E+00 0.1660E+05 0.7620E+03 0.4360E+03 
0.2697E+00 0.1000E+Ol 0.9683E+00 0.9060E+00 0.7620E+03 0.4810E+03 0.3070E+03 
0.2341E+00 0.9683E+00 0.1000E+Ol 0.9798E+00 0.4360E+03 0.3070E+03 0.2090E+03 
0.2072E+00 0.9060E+00 0.9798E+00 0.1000E+Ol 0.2620E+03 0.1950E+03 0.1390E+03 

0.1000E+Ol O.OOOOE+OO 0.2697E+00 O.OOOOE+OO 0.1660E+05 O.OOOOE+OO 0.7620E+03 
O.OOOOE+OO 0.1000E+Ol O.OOOOE+OO 0.3755E-Ol O.OOOOE+OO 0.7400E+09 O.OOOOE+OO 
0.2697E+00 O.OOOOE+OO 0.1000E+Ol O.OOOOE+OO 0.7620E+03 O.OOOOE+OO 0.4810E+03 
O.OOOOE+OO 0.3755E-Ol O.OOOOE+OO 0.1000E+Ol O.OOOOE+OO 0.2920E+06 O.OOOOE+OO 

0.1000E+Ol O.OOOOE+OO 0.2697E+00 0.2341E+00 0.1660E+05 O.OOOOE+OO 0.7620E+03 
O.OOOOE+OO 0.1000E+Ol O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 0.7400E+09 O.OOOOE+OO 
0.2697E+00 O.OOOOE+OO 0.1000E+Ol 0.9683E+00 0.7620E+03 O.OOOOE+OO 0.4610E+03 
0.2341E+00 O.OOOOE+OO 0.9683E+00 0.1000E+Ol 0.4360E+03 O.OOOOE+OO 0.3070E+05 

0.1000E+Ol 0.9683E+00 0.9060E+00 0.8348E+00 0.4810E+03 0.3070E+03 0.1950E+03 
0.9683E+00 0.1000E+Ol 0.9798E+00 0.9358[+00 0.3070[+03 0.2090[+03 0.1390E+03 
0.9060E+00 0.9798[+00 0.1000E+Ol 0.9869E+00 0.1950E+03 0.1390E+03 0.9630E+02 
0.8348E+00 0.9358E+00 0.9869E+00 0.1000E+Ol 0.1310E+03 0.9680E+02 0.6950E+02 

TABLE 10.2a. 
MATRIX OF CORRELATION COEFFICIENTS AND CROSS-COVARIANCES FOR DATA SETS 

USED IN CHECKING THE EXPECTATIONS OF TABLE 10.2b 

O.OOOOE+OO 
0.1920E+07 
O.OOOOE+OO 
0.6880E+06 

0.2620E+03 
0.1950E+03 
0.1390E+03 
0.9630E+02 

O.OOOOE+OO 
0.2920E+06 
O.OOOOE+OO 
o .8170E+05 

0.4360E+03 
O.OOOOE+OO 
0.3070E+03 
0.2090E+03 

0.1310E+03 
0.9680E+02 
0.6930E+02 
0.5120E+02. 



"" 01 
I-' 

Expectation s 

E [xjXjx/J 

E [Xj4 XjXkJ 

2 3] E [xjXj xk 

E [Xj3Xj4Xk] 

E [Xj2Xj3 Xk 3] 

E [Xj3Xj3Xk 4] 

E [XjXjXkXa 

E (xjXjXkX,3J 

E [x,x,xk 3X,3] 

E [X,X,3Xk 3X,3] 

E [X,3Xj3 Xk 3X,3] 

First Set of Data Second Set of Data Third Set of Data Fourt h Set of Da ta 

Analytical Numerical Analyt ical Nume r ical Anal ytical Numerica 1 Analytical Numer ical 
Solution Value Solution Va lue Solut i on Value Sol ut ion Value 

O.OODOEOO -0 . 3110E-24 0.4270E+05 0.4270E+05 O. oOoOEoO 0. 000 o.oOoOEoo O. OOOoEoO 

O.ooOOEoo 0.2522E-18 0. 32ooE+1 2 0.32 ooE+12 O.oOOoEOO 0. 000 O. oooOEOo o. OOOOEOO 

0 .8137E+15 0.8137E+15 0. 6714[+09 0.6714E+09 0 .8137[15 0.8137[+15 0.8137[15 0.81 37E1 5 

0.6234E+26 0. 5234E+26 0.8996E+14 0.8995E+14 0. 6234E25 0.5234E26 0.5234E25 0. 6234E26 

O. OOOOE+OO O. 2515E-11 0 . 1040[+14 0. 1040E14 O. OOOOEOO 0.000 O. OOOOEOO O. OOOOEOO 

O. OOOOE+OO -0 .9052E-08 0 .8255E+17 0.8255E17 O. OOOOEOO 0 .000 O. OOOOEOO O.OOOOEOo 

0.1158[+10 0. 1158E+I0 0.2714E+06 0. 2714E+06 0.2225E+09 O. 2225[ +09 O. OOOOEOO -0.1955E-24 

0.2391E+16 0. 2391E+16 o .1210E +09 0 . 1210E+09 0. 5454E14 0. 5454E14 O.OOOOEOO 0.5785E - 22 

o. 3450[ + 19 0.3450[+19 0. 1779[+12 0 .1 779E+12 0. 7869El7 0. 7870E17 O. OOOOEOO -0 .2290E-19 

0. 7681E+28 0. 7581[+28 0.7491E+15 0. 7491E+15 0.1749E27 0 .1 749E27 O. OOOOEOO o .411 6E - 09 

0 .4011E+33 0.4011E+33 0.4310[+20 0.4308[+20 0.9131[+31 0.9131[31 O. OOOOEOO 0 . 1332E-03 
---- ---

TABLE IO.2b. 
CHECKING ANALYTICAL SOLUTIONS TO EXPECTATIONS BY COMPARING 

THE RESULTS WITH THE RESULTS OF NUMERICAL INTEGRATION 

Fif t h Set of Data 

Analytica l Nume r ical 
Solu t ion Value 

0.83 77E+05 0.8377E+05 

0.4420E+09 0.4420E+09 

0. 5904E+08 0.5904[+08 

0. 426 1E+12 0.4261E+1 2 

0. 1258E+12 0. 1258E+12 

0.23 14E+15 0. 2314E+15 

0.5836E+05 0. 5836[+0 5 

0. 1424E+08 0.1424E+08 

0.9563E+Ol 0.9663E+l0 

0. 1774E+14 0.1773E+1 4 

0.826 1E+1 7 0 .8257 E17 



,j::. 

U1 
f\J 

Matrix of Correlation Coefficients of Matrix of Cross-Covariances of 

1.000 

0.000 

0.2692 

0.000 

X 2i-1 ' X 2i ' X 2'·1' X2' X 2i•1 ' X 2i ' 

0.000 0.2692 0.000 0.1664*105 0.000 0.7620*103 

1.000 0.000 0.6747*10.1 0.000 0.7398*109 0.000 

0.000 1.000 0.000 0.7620*103 0.000 0.4815*103 

0.6747*10.1 0.000 1.000 0.000 0.1522*107 0.000 
--- ----_._-

TABLE lO.3a. 
MATRIX OF CORRELATION COEFFICIENTS AND CROSS-COVARIANCES 

FOR DATA SETS USED IN CHECKING EXPECTATIONS OF TABLE 10.3b. 

0.000 

0.1522 

0.000 

0.6876*106 



T Terms 

T7 

T8 

T9 

T,o 

T" 

T12 

T13 

T'4 

T'5 

T'8 

T17 

T'8 

T'9 

)20 

T2, 

T22 

T23 

T24 

T25 

T28 

T27 

Polynomial Analytical Solution & Percentage Difference 
Approximation Numerical Integration 

(1)-(2) 
(3) • 

(1) (2) (2) 

0.3889E17 0.3882E17 0.18% 

0.000 0.000 0.00% 

0.000 0.000 0.00% 

0.3377£16 0.3377EI6 0.00% . 
0.000 0.000 0.00% 

0.1264E16 0.1264£16 0.00% 

0.4379£16 0.4103E16 6.73% 

0.000 0.000 0.00% 

0.5920E07 0.5559E07 6.49% 

0.000 0.000 0.00% 

0.000 0.000 0.00% 

0.1522E07 o .1522E07 0.00% 

0.9208EI5 0.9208E15 0.00% 

0.5712£15 0.5712E15 0.00% 

0.000 0.000 0.00% 

0.5146£15 0.5146£15 0.00% 

0.5133E15 0.5133E15 0.00% 

0.000 0.000 0.00% 

0.000 0.000 0.00% 

0.000 0.000 0.00% 

0.9008£13 0.8439£13 6.74% 

TABLE 10.3b. 
CHECKING THE RESULTS OF POLYNOMIAL APPROXIMATION FOR 

EXPECTATIONS USED IN E[F,3Fjl, E[FiFjl, E[Fi2F/l 
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"'"' U1 

"'"' 

Data Set 
Number 

1 

2 

3 

0.1000£+01 
0.2000£+00 
0.3000£+00 
0.4000£+00 
0.5000£+00 
0.6000£+00 
0.7000£+00 
0.8000£+00 

0.1000£+01 
0.2692E+OO 
0.2339£+00 
0.2072£+00 
0.1853£+00 
0.1656£+00 
0.1478£+00 
0.1325£+00 

0.1000£+01 
O.OOOOE+OO 
0.2339£+00 
0.2072£+00 
0.1853£+00 
0.1656£+00 
0.1478£+00 
0.1325£+00 

Matri x of Corre 1 at i on C,oeffi c i ents between x2i-1 • x2i • X2;-1' X2i' X2k-1t X2k • X21-1 • X21 

0.2000£+00 0.3000£+00 0.4000£+00 0.5000£+00 0.6000£+00 
0.1000£+01 0.3500£+00 0.4500£+00 0.5500£+00 0.6500£+00 
0.3500E+00 0.1000E+Ol 0.2800E+00 0.3800£+00 0.4800E+00 
0.4500£+00 0.2800£+00 0.1000£+01 0.3200£+00 0.4200£+00 
0.5500£+00 0.3800£+00 0.3200£+00 0.1000£+01 0.7200£+00 
0.6500£+00 0.4800£+00 0.4200£+00 0.7200£+00 0.1000£+01 
0.7500£+00 0.5800£+00 0.5200£+00 0.8200£+00 0.2500£+00 
0.8500£+00 0.6800£+00 0.6200£+00 0.9200£+00 0.3500£+00 

0.2692£+00 0.2339E+00 0.2072E+00 0.1853£+00 0.1656£+00 
0.1000£+01 0.9683£+00 0.9059£+00 0.8375£+00 0.7674£+00 
0.9683£+00 0.1000£+01 0.9800£+00 0.9365£+00 0.8810£+00 
0.9059E+00 0.9800E+00 0.1000E+Ol 0.9866£+00 0.9537£+00 
0.8375E+00 0.9365E+00 0.9866£+00 0.1000£+01 0.9896£+00 
0.7674£+00 0.8810£+00 0.9537£+00 0.9896£+00 0.1000£+01 
0.6991£+00 0.8210£+00 0.9099£+00 0.9640£+00 0.9921£+00 
0.6377£+00 0.7635£+00 0.8636£+00 0.9314£+00 0.9736£+00 

O.OOOOE+OO 0.2339E+00 0.2072£+00 0.1853£+00 0.1656£+00 
0.1000£+01 O.OOOOE+OO 0.0000£+00 0.0000£+00 O.OOOOE+OO 
0.0000£+00 0.1000[+01 0.9800£+00 0.9365E+00 0.8810£+00 
0.0000£+00 0.9800£+00 0.1000£+01 0.9866£+00 0.9537£+00 
0.0000£+00 0.9365E+OO 0.9866£+00 0.1000£+01 0.9896£+00 
0.0000£+00 0.8810E+00 0.9531£+00 0.9896E+00 0.1000£+01 
0.0000£+00 0.8210£+00 0.9099E+00 0.9640E+00 0.9921£+00 
0.0000£+00 0.7635E+00 0.8636E+00 0.9314E+00 0.9736E+00 

----

TABLE lO.4a. 
MATRIX OF CORRELATION COEFFICIENTS FOR CH£CKING EXPECTATIONS 

USED IN E[F/F;F"l (TABLE 10.4c) AND E[F;F;F"Fll (TABLE 10.4d) 

0.70002+00 
0.7500£+00 
0.5800£+00 
0.5200£+00 
0.8200£+00 
0.2500£+00 
0.1000£+01 
0.4500£+00 

0.1478£+00 
0.6991£+00 
0.8210£+00 
0.9099£+00 
0.9640E+00 
0.9921£+00 
0.1000£+01 
0.9945£+00 

0.1478£+00 
0.0000£+00 
0.8210£+00 
0.9099£+00 
0.9640E+00 
0.9921£+00 
0.1000£+01 
0.9945E+00 

0.8000£+00 
0.8500£+00 
0.6800£+00 
0.6200£+00 
0.9200£+00 
0.3500£+00 
0.4500£+00 
0.1000£+01 

0.1325E+00 
0.6377£+00 
0.7635£+00 
0.8636£+00 
0.9314E:+00 
0.9736£+00 
0.9945£+00 
0.1000£+01 

0.1325£+00 
0.0000£+00 
0.7635£+00 
0.8636£+00 
0.9314£+00 
0.9736£+00 
0.9945E+00 
0.1000[+01 



~ 
Ul 
Ul 

Data Set 
Number 

1 

2 

3 

0.1660E+05 
0.2287E+05 
0.2204E+04 
0.1186E+05 
0.3678E+04 
0.5028E+04 
0.2606E+05 
0.9021E+05 

0.1664E+05 
0.7620E+03 
0.4361[+03 
0.2623E+03 
0.1710[+03 
0.1180[+03 
0.8582E+02 
0.6602[+02 

0.1664E+05 
O.OOOOE+OO 
0.4361E+03 
0.2623[+03 
0.1710E+03 
0.1180E+03 
0.8582[+02 
0.6602[+02 

Matrix of Cross-Covariances of X 2i-" X 2i ' x2j_" X2i' X 2k-" X 2k ' X 21_" X 21 

0.2287E+05 0.2204E+04 0.1186E+05 0.3678E+04 0.5028E+04 
0.7880E+06 0.1771E+05 0.9196E+05 0.2788E+05 0.3753E+05 
0.1771E+05 0.3250E+04 0.3675E+04 0.1237E+04 0.1780E+04 
0.9196E+05 0.3675E+04 0.5300E+05 0.4206E+04 0.6289E+04 
0.2788E+05 0.1237E+04 0.4206E+04 0.3260E+04 0.2674E+04 
0.3753E+05 0.1780E+04 0.6289E+04 0.2674E+04 0.4230E+04 
0.1924E+06 0.9555E+04 0.3459E+05 0.1353[+05 0.4698E+04 
0.6604[+06 0.3393[+05 0.1249[+06 0.4597[+05 0.1992[+05 

0.7620E+03 0.4361E+03 0.2623E+03 0.1710[+03 0.1180E+03 
0.4815E+03 0.3071[+03 0.1951E+03 0.1315[+03 0.9303[+02 
0.3071[+03 0.2089[+03 0.1390[+03 0.9683E+02 0.7035E+02 
0.1951E+03 0.1390[+03 0.9631[+02 0.6927E+02 0.5171[+02 
0.1315E+03 0.9683[+02 0.6927E+02 0.5118E+02 0.3911E+02 
0.9303E+02 0.7035[+02 0.5171E+02 0.3911E+02 0.3052E+02 
0.6905E+02 0.5341[+02 0.4019E+02 0.3104E+02 0.2467[+02 
0.5405[+02 0.4262E+02 0.3274[+02 0.2574[+02 0.2078E+02 

O.OOOOE+OO 0.4361[+03 0.2623[+03 o . 1710E+03 0.1180E+03 
0.7398E+09 0.0000[+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 
0.0000[+00 0.2089[+03 0.1390[+03 0.9683E+02 0.7035[+02 
O.OOOOE+OO 0.1390E+03 0.9631[+02 0.6927[+02 0.5171E+02 
O.OOOOE+OO 0.9683E+02 0.6927[+02 0.5118[+02 0.3911E+02 
O.OOOOE+OO 0.7035E+02 0.5171E+02 0.3911E+02 0.3052[+02 
O.OOOOE+OO 0.5341[+02 0.4019E+02 0.3104E+02 0.2467E+02 
O.OOOOE+OO 0.4262E+02 0.3274[+02 0.2574E+02 0.2078E+02 

TABLE 10.4b. 
MATRIX OF CROSS-COVARIANCES FOR CHECKING EXPECTATIONS 

USED IN E[F!~Fk] (TABLE 10.4c) AND E[Fj~Fk~] (TABLE 10.4d) 

0.2606E+05 
0.1924E+06 
0.9555E+04 
0.3459E+05 
0.1353E+05 
0.4698E+04 
0.8350E+05 
0.1138[+06 

0.8582E+02 
0.6905E+02 
0.5341E+02 
0.4019E+02 
0.3104[+02 
0.2467E+02 
0.2026[+02 
0.1729E+02 

0.8582E+02 
O.OOOOE+OO 
0.5341[+02 
0.4019[+02 
0.3104E+02 
0.2467E+02 
0.2026E+02 
0.1729[+02 

I 

0.9021E+05 
0.6604E+06 
0.3393E+05 
0.1249E+06 
0.4597E+05 
0.1992E+05 
0.1138E+06 
0.7660E+06 

0.6602E+02 
0.5405E+02 
0.4262E+02 
0.3274E+02 
0.2574E+02 
0.2078E+02 
0.1729E+02 
0.1492[+02 

0.6602E+02 
O.OOOOE+OO 
0.4262E+02 
0.3274E+02 
0.2574E+02 
0.2078E+02 
0.1729E+02 
0.1492E+02 



~ 

U1 
0'\ 

Expectations 

T 28 

T29 

T30 

T31 

T32 

T33 

T34 

T35 

T36 

T31 

T38 

T39 

Polynomial 
Approxima tion 

0.304 6E17 

0.3704E15 

0. 1328E16 

0 . 170BE14 

0.2077EI4 

0.2697E12 

0 .8692E12 

0. 1186E12 

-
-

-

-

First Data Set Second Data Set Third Data Se t 

Analytical Solution Percentage Polynomial Analyt ical Solution Percentage Polynomial Analyti ca l Solut ion Percentage 
and/or Numerical Difference Approximation and/o r Nume rical Difference Approximation and/o r Numerical Difference 

Integration Integral ion Integrat ion 

0.3031£! 7 0. 49% 0.3327E14 0.3351E14 -0.72% 0.3327 E14 0.3351E 14 -0 .72% 

0.3649E15 1. 51% 0.1762E13 0. 1732£13 1. 73% o . 1762E13 0.1732[1 3 1.73% 

0. 1326E16 0.15% 0.8225E12 0.8040E12 2.30% 0.B225E12 0. 8040E12 2 30% 

0. 170BE14 0. 00% 0. 4913E11 0. 4913E11 0.00% 0.4913E11 0.4913£11 0.00% 

0.2043E14 1.66% 0. 5987E08 0.6232E08 -3.93% 0.2197E14 0.217BE14 0.B7% 

0.2642£!2 2. 08% 0 . 2761E07 0. 2830E07 -2 . 44% 0. 1242E13 0.1207E1 3 2.90% 

0.8611£12 0.94% 0. 1215£07 0. 1233E07 -1 . 46% 0.6051E12 0. 5876E1 2 2.98% 

o . 1185E 12 0.00% 0 .6119E05 0.6119E05 0. 00% O. 3825E 11 0.3825EII 0.00% 

- - - - - 0.000 0.000 0.00% 

- - - - - 0.000 0.000 0.00% 

- - - - - 0.000 0.000 0.00% 

- - - - - 0.000 0.000 0.00% 
---_.-

TABLE lO.4c. 
CHECKING THE RESULTS OF POLYNOMIAL APPROXIMATIONS FOR EXPECTATIONS USED IN E[Fi2~Fk] 



~ 
U1 
--.) 

Expec tat ions 

T.o 

T •• 

T' 2 

T43 

T 4. 

T 4S 

T 48 

T., 

T.a 

T '9 

Tso 

T 5. 

T., 

TS3 

Ts. 

T 55 

Po lynomia I 
Approximat ion 

0 . 1998El8 

-

0 . 1549£16 

0.9271£13 

o 7385U6 

-

0 . S561El4 

0 . 3582El2 

0 .5802El6 

-
0. 445 5£14 

-

0.2 105[15 

-
0. 1541[ 13 

0.1067£ 11 

First Data Set Second Data Set Third Data Set 

Analytical So lut ion Percentage Polynomial Analytical Solution Percentage Po lynomia I Analytical Solution Perc entage 
and/or Numerica I Difference Approximat ion and/or Numerica I Difference Approximation and/or Numerical o i f f erence 

Integrat ion Integral ion Integra t ion 

0 . 2048El8 -2 . 44% 0.3486Ell 0 . 3561£11 -2 . 11% O. 3486E 11 0.3561£11 -2 . I IX 

- - 0.2673£10 0 . 2731E10 -2 . 12% 0 . 2673ElO 0.2731[10 -2 . 12% 

O. I 580El6 - 1. 96X 0.1440£10 0 . 1462E10 -1. 50% 0 . 1440ElO 0 . 1462£10 - I 50% 

0 . 9191[13 +0 87% 0 . 1218£09 0 . 1217£09 +0.08% 0 . 1218£09 0 . 1217£09 +0 08X 

0 . 7658£16 -3. 56% 0 . 6658£09 0 . 6762£09 -1. 54% 0.6658£09 0 . 6762£09 - 1 . 54% 

- - 0.5491£08 0 . 5498[08 - 0.13% 0.5491E08 0.5498£08 -o. 13X 

0 . 5668[14 - 1. 89% 0 . 3026£08 0 . 2994£08 + 1. 07% 0 . 3026£08 0 . 2994£08 1 . 07 Y. 

0 . 3613El2 - 0 . 86% 0 . 2730[07 0 . 2659£07 +2.67% 0.2730£07 0 . 2659£07 2 . 67 Y. 

0 . 5957El 6 -2. 60% 0 . 1l97E09 0 . 1253£09 -4.47% 0.000 0.000 O. OOY. 

- - 0 . 9 159[07 0 . 9578[07 -4 . 37% 0 . 000 0.000 O. OOX 

0. 446 1E14 -0 . 13% 0 . 4977[07 0 . 5171[07 - 3.75% 0 . 000 0 . 000 O. OOX 

- - 0 . 4194[06 0 . 4281[06 -2 . 03% 0 . 000 0.000 O. OOX 

0 .2 171[15 - 3 . 04% 0 . 2381[07 0 . 2481£07 -4.03% 0.000 / 0 . 000 O. OOX 

- - 0 . 1964[06 0 . 2015£06 -2.53% 0 . 000 0 . 000 O. OOX 

0 . 1528[1 3 +0 .85" 0 . 1096£06 o . 1l13E06 -1. 53% 0 . 000 0 . 000 O. OOX 

0 . 1067[) I 0 . 00% 0 . 9893£04 0 . 9893[04 0 . 00% 0 . 000 0 . 000 O. OOX , 

TABLE IO.4d. 
CHECKING THE RESULTS OF POLYNOMIAL APPROXIMATIONS FOR EXPECTATIONS USED IN E[FiFlkF
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FIGURE 10 . 8 LEVEL OF INACCURACY IN E (F~ FJ ) 

DERIVED FROM FORCE CORRELATION METHOD 
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Chapter 11 

Conclusions 



Wave Loading on Flexible Cylinders 

The objective of this study was to assess the suitability of the 

relative motion form of Morison's equation in describing random wave 

loading on flexible cylinders. The data base for this study was eleven 

17D-minute runs taken from an experimental programme on wave loading on 

and the response of a flexible (compliant) cylinder at Chrlstchurch 

Bay, UK (1987). Furthermore, different methods of determining Morison's 

coefficients from the analysis of wave load data have been critically 

assessed. The following conclusions have been made. 

1. The eleven data sets have been divided into two groups, low

intensity runs with a significant wave height of H. = I.Sm and 

high-intensity runs with a significant wave height of H. = 3.75m. 

2. While close to Gaussian distribution, the surface elevation time 

series show departures consistent with finite amplitude effects. 

3. The Rayleig~ distribution based on significant wave height (H. • 

4a~) can lead to an overestimation of 7 to 14% for the upper 5% 

quantile of the wave heights at Christchurch Bay. The modified 

Rayleigh distribution (incorporating the factor 0.925) provides 

an improved fit. 

4. Near the peak of the wave spectrum, the sea is almost long

crested with high powers of s in the full circle cosine-power 

spreading function (12 < s < 24). At twice the peak frequency, 

the sea is more sho'rt-crested with sin the range of 2 to 6. 
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5. Data for the cylinder collected in the lower sea-state 

corresponds to Keulegan-Carpenter numbers (K) in the range 

8.5 < K < 12 and Reynolds numbers (R.) in the range 1.5*105 < R. 

< 2.7*105
• The shear layers are expected to be turbulent under 

the effect of three-dimensional wave-induced flow. The reduced 

velocity is between 0.60 < ur < 3.4 so that synchronisation is not 

highly possible. In-line forces are inertia-dominated and hence 

Cd values are not reliable. 

6. Data for the cylinder collected in the higher sea state 

corresponds to Keulegan-Carpenter numbers in the range 

21 < K < 37 so that in-line forces are in the drag-inertia 

regime. The Reynolds numbers lie in the range 

3.6*105 < R. < 5.7*105
; therefore the shear layers are turbulent. 

The reduced velocity ranges from 4.9 to 7.2; hence 

synchronisation is expected. This expectation was confirmed by 

the analysis of transverse forces. 

7. Neglecting the relative motions between the fluid and the 

cylinder (rigid cylinder assumption) Cd and Cm were determined by 

the method of moments. It was shown that ignoring the 

directionality of the sea has a small effect on the values of Cd 

and Cm so that the assumption of uni-directionality for the waves 

in derivation of Cd and Cm ;s justified. Furthermore, it was 

~n that higher order moment~ such as E[uB
] needed in the 

method of moments must be calculated based on the assumption that 

water particle kinematics are Gaussian distributed. The use of 

observed values of higher order moments leads to unstable 
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results. The rigid cylinder assumption leads to Cm values which 

are higher (1.8-2.2) than would normally be anticipated for these 

conditions based on Re and K. 

8. To derive drag and inertia coefficients from the relative motion 

form of Morison's equation, it was necessary to shift water 

particle kinematics from their point of measurement to the 

cylinder axis. It was shown. that the effect of phase angle errors 

(introduced as a result of the shifting process) on the values of 

Cd and Cm determined from the method of moments is negligible. 

9. From the evidence presented in Appendix A, it is believed that 

the cylinder displacement at about cylinder's natural frequency 

(after the sign of cylinder displacement was reversed) has the 

wrong Sign. It was shown that the effect of this error on the Cd 

and Cm values determined from the method of moments is 

negligible. 

10. A new relationship, which puts upper and lower limits on the 

correlation coefficient between two random processes when their 

frequency spectra are known, has been presented. 

11. The Least Square Error Method has been critically assessed. It 

was proved that this method and Bearman's method lead to 

predicted forces with smaller variances than those of the 

observed forces. In particular, the two methods are not suitable 

for analYSing long records of wave data, where the fit between 

the observed and predicted forces cannot be expected to be very 

good. 
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12. A new method, named Maximum Correlation method, has been 

introduced which has all the advantages of the Least Square Error 

Method but 1 eads to predicted forces with variances equal to 

those of the observed forces. 

13. It has been suggested that whatever method is used in derivation 

of Morison's coefficients, the results must be adjusted so that 

the variance of the observed and predicted forces are equal. It 

is expected that this exercise will eliminate some of the 

di screpancy between the reported resul ts from di fferent 

investigators. 

14. Due to large phase angle errors in the high-frequency components 

of shifted water particle kinematics, it was decided to eliminate 

them in the time-domain analysis of the wave records. Removing 

the high-frequency components has the extra advantage that Cd and 

Cm values are not affected by the sign error in the high

frequency components of the cylinder displacement. 

15. The Cd and Cm values from Maximum Correlation Method are higher 

than those of the Least Square Error Method. The average increase 

is about 10% for high-intensity runs and 35% for low-intensity 

runs (based on Level 3 and Level 4 results). 

16. Time-domain Morison's coefficients have been obtained from the 

analysis of filtered data. It was therefore necessary to a adjust 

them to the full-frequency range. The adjustment was carried out 

by equating the variance of the observed and predicted forces 
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(full-frequency) so that Cm/Cd ratio would be the same as that 

obtained from the analysis of the filtered data. 

17. The resultant Cd and Cm values from both method of moments and 

Maximum Correlation Method do not show a clear trend with basic 

hydrodynamic parameters. However, the Cm values decrease with 

increasing values of acceleration parameter (ratio between the 

standard deviations of the cylinder and water particle 

accelerations) when the cylinder's response is considered in the 

derivation of Morison's coefficients. When the response is 

ignored (rigid cylinder assumption), the Cm values show a 

tendency to increase with increasing values of acceleration 

parameter. The data base of this study does not allow a similar 

investigation to be carried out with regard to the variation of 

Cd with the velocity parameter (ratio between the standard 

deviations of the cylinder and water particle velocity). 

18. The acce 1 erat i on parameter (u,luu) is dependent on the rat i 0 

between the wave frequency content and the cyli nder' s natural 

frequency. Therefore, it is expected that Cm values should 

decline with fw/f, where fw is the most energetic wave frequency 

and f, is the cylinder's natural frequency. However, the 

cyl i nder' s response is dependent on the ent i re wave frequency 

content and therefore, the correlation of Cm with fw/f, is not as 

good as its correlation with the acceleration parameter. 
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19. Based on the results of this study, the following values for 

Morison's coefficients are recommended. Cm is recommended to be 

read from Figure 9.5S. For low-intensity runs, a Cd value of 1.0 

and for high-intensity runs, Cd values in the range of 0.70 to 

0.S5 are recommended. 

20. The extreme peaks of the predicted forces (from method of moments 

and Maximum Correlation Method) are lower than those of the 

observed forces by as much as 40%. However, applying the 

predicted forces to the cyl inder the predicted and observed 

extreme peaks of the response are in reasonable agreement. One 

possible explanation for this phenomenon is that the extreme peak 

forces are not well correlated along the length of the cylinder 

and therefore, they do not lead to corresponding extreme 

responses. 

21. There is a tendency for Cd values to reduce from Level 2 to Level 

4, in agreement with previous Christchurch Bay studies. The 

reason behind this observation is not known. 

22. It has been shown that the 1 i nearisat ion coeffi ci ent used in 

spectral techniques (c • VS/7r) is not appropriate. The 

appropriate value for this coefficient is c -v'3. 

23. The overall conclusion of this study is that the relative motion 
~ -- .. --.-~.---

form of Morison's equation with appropriate Cd and Cm values.~~n 

adequately describe the response of an offshore structure exposed 

to random wave loading. Obviously further investigation is 
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required to establish the validity of this conclusion with regard 

to more complex structures. 

Probabilistic Analysis of Offshore Structures 

Risk analysis of offshore structures exposed to random wave loading 

calls for the establishment of the long-term peak distribution of 

critical responses. This, in turn, depends on the short-term 

distribution of the response itself, which is of the Pierson-Holmes 

(P/H) type. 

The P/H distribution is fully defined by its first four statistical 

moments. In the absence of current, the first and third moments are 

zero, and hence the distribution is defined by its second and fourth 

statistical moments. These moments are functions of different 

combinations of nodal forces, which (according to Morison's equation) 

. are functions of the (Gaussian-distributed) water particle kinematics 

at the nodes. 

The existing model, developed by Burrows (1983), is based on the 

analytical solution to these expectations. However, due to excessive 

computer run-time, only a coarse model of the structure can be used in 

the analysis (say 40 nodes), which is not, enough for the adequate 

description of the continuous wave loading on the structure. The 

objective of this study was to reduce the computer run-time by 

introducing appropriate approximations so that a more refined model of 

the structure (more nodes) can be used. Two different methods have been 

used for reducing the computer run-time, as explained below, and the 

following conclusions have been made. 
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1. In the first method, terms of the form xlxl have been 

approximated by a cubic polynomial so that the second and fourth 

moments of xlxl and the polynomial apprOXimation are equal 

(Bruce, 1985). The resulting model is referred to as the 

polynomial approximation model. 

2. In the second method, the expectations of different combinations 

of nodal forces are intuitively assumed to be functions of the 

kurtoses and standard deviations of individual nodal forces 

together with correlation coefficients between them. The 

resulting model is referred to as the force correlation model. 

3. In both models, only the fourth moment is calculated according-to 

the above approximations. The second moment 1s calculated 

analytically, as in Burrows' model. 

4. . In_~rder to check how good the two approximate models are, they 

were appl ied to a few sample structures and the results were 

compared with the results of Burrows' model. The test structures 

used in this study include a one-leg, a two-leg and a four-leg 

structure. Cd and Cm were assumed to be 0.70 and 2.00, 

respectively. The response investigated was base shear, which was 

defined as the sum of all the nodal loads. The effect of member 

diameter, significant wave height and jacket dimensions (the 

distance between the legs) on the accuracy of the two models have 

been investigated. 

S.For structures with a relatively small number of nodes (say less 

than 12), the number of expectations involving one or two nodal 
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the fourth moment of response. However, as the number of nodes 

increases, the number of expectations involving three or four 

different nodal forces grows rapidly so that it is possible that 

the major part of the fourth moment of the response is accounted 

for by these expectations. Now, the number of nodes in our test 

structures are not high; therefore, the comparison of the fourth 

moment (or kurtosis) from the two approximate models against its 

accurate value from Burrows' model is not a good indicator of the 

accuracy of the models. Instead, it is more reasonable to compare 

E Sj2SjSk E[F/Flkl and E SjSjSkSI E[FllkF,l from the two approximate 

models against their corresponding values from Burrows' model. 

6. It was shown that E SjSjSkSI E[FjFlkF1] is the less accurate one of 

the above two summations for both models (as may be intuitively 

expected). Therefore, it was decided that E ~~Sk~ E[~~Fk~] was 

the best indicator'of the accuracy of the approximate models. , 

7. It was shown that as the member diameter decreases (kurtoses of 

i nd i vi dua 1 nodal forces increase) , the 1 eve 1 of inaccuracy, 

increases for both models. 

8. It was shown that increasing distance between the legs (i.e. 

decreasing correlation coefficients between nodal forces) has an 

adverse effect on the level of accuracy of both models. 

9. The great majority of offshore structures have inclined legs so 

that the distance between the legs increases with increasing 

depth of immersion. As a result, the correlation coefficients 
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between nodal forces on the lower parts of the legs decrease. 

This has an adverse effect on the level of the accuracy of the 

two approximate models. On the other hand, the kurtosis values 

for nodal forces on the lower parts of the legs are smaller than 

those for the nodal forces on the upper parts. This has a 

positive effect on the level of accuracy of the approximate 

models. It was, therefore, argued that it is the dimension of the 

structure at the water surface which serves as a measure of 

inaccuracy rather than its dimension at mudline. The dimension at 

water surface is ordinarily less than 150 ft (4sm). 

10. It was shown that for realistic structures (main member diameters 

> 2.5 ft, L < 150 ft) and realistic environmental conditions (H. 

<35 ft), the maximum level of inaccuracy (in E SjSjSkS, E[FjF;FkF,]) 

is below 3% and 11% for the polynomial approximation and the 

force correlation models, respectively. 

11. In view of the uncertainties in the data input to the models 

(such as environmental conditions, Morison's coefficients, etc.) 

these levels of inaccuracy are not significant. Furthermore, it 

must be recognised that even the results of analytical model are 

only approximations to the observed values. It can therefore be 

concluded that for engineering purposes all three models are 

equally satisfactory. However, as previously mentioned, further 

investigation is required to validate the two approximate models 

against typical real jacket structures. 

12. The polynomial approximation model reduces the computer run-time 

by about 28 times in comparison with Burrows' model {analytical 
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solutions) while the reduction for the force-correlation model is 

about 1000 times. 

13. As a result of the reduction in the computer run-time, the number 

of nodes can be increased from 40 (in Burrows' model) to 85 for 

the polynomial approximation model and to 200 for the force 

correlation model (within the 30 minute run-time available on the 

ICL 1906S computer used by Burrows). 

14. Ideally, the above models must be used at two different levels. 

In the first stage, a refined model of the structure with 

hundreds or even thousands of nodal loads wi 11 be used to 

calculate the variance of the response accurately. In the second 

stage, a coarser model of the structure (say, 200 nodes) will be 

used to estimate the fourth moments of the important responses. 

15. It is emphasised that the above models do not account for the 

presence of current or the intermittency of members in the splash 

zone. Furthermore, the structure must be rigid enough so that 

dynamic effects can be ignored. 

484 



REFERENCES 

Battjes, J.A. (l970) "Long-Term Wave Height Distribution at Seven 
Stations Around the British Isles". National Institute of 
Oceanography, Godalming, Internal Report No A44. 

Bearman, P.W., Chaplin, J.R., Graham, J.M.R., Kostense, J.K., Hall, 
P.F. and Klopman, G. (1985) "The Loading on a Cylinder in Post
Critical Flow Beneath Periodic and Random Waves". Proceedings of the 
4th International Conference on the Behaviour of Offshore Structures. 
pp. 213-225. 

Bearman, P.W. (1988) "Wave Loading Experiments on Circular Cylinders 
at Large Scale". Proceedings of the 5th International Conference on 
the Behaviour of Offshore Structures. pp. 471-487. 

Bendat, J.S. (l964) "Probability Functions for Random Responses: 
Prediction of Peaks, Fatigue Damage and Catastrophic Failures". Los 
Angeles : Measurement Analysis Corporation. 

Bendat, J.S. and Piersol, A.G. (1971) "Random Data: Analysis and 
Measurement Procedures". London: Wiley-Interscience. 

Bishop, J.R. (l979) "Measurements of Wave Particle Motion at the 
Christchurch Bay Tower Using a Perforated Ball Instrument". National 
Maritime Institute Report No R55 (Also Department of Energy Report OT-
R-7942). . 

Bishop, J.R. (1980) HA New Coefficient for Total Wave Force". National 
Maritime Institute Report No R77 (Also Department of Energy Report OT
R-801l) . 

Bishop, J.R., Tidell, R.G. and Gallagher, K.A. (1980) "The UK 
Christchurch Bay Project: a Review of Results". Proceedings of the 
18th Offshore Technology Conference, Houston, Texas. Paper No OTC 
3796, PP. 9-23. 

Bishop, J.R. (1982) "Wave Force Investigations at the Second 
Christchurch Bay Tower". National Maritime Institute Report No R177. 

B~shop, J.R. and Chalk, R.F. (1982) "Feasibility Study for Experiments 
wlth a Compliant Cylinder at the Christchurch Bay Tower". National 
Maritime Institute Report No R142. 

Bishop, J.R. and Shipway, J.C. (1984) "Wave Force Coefficients from 
the Second Christchurch Bay Tower". National Maritime Institute Report 
No R178 (Also Department of Energy Report OT-0-82101 Part 1). 

Bishop, J.R. (1988) "Compliant Cylinder Project (Christchurch Bay 
Tower): Final Report for Participants on British Maritime Technology 
Basic AnalYSis Work". British Maritime Technology (Commercial in 
Confidence). 

Borgman, L.E. (1963) "Risk Criteria". ASCE, Journal of Waterways and 
Harbours DiViSion, Volume 91, No WW3, pp. 65-90. 

485 



Borgman, L.E. (1967) "Random Hydrodynamic Forces on Objects". The 
Annals of Mathematical Statistics, Volume 38, pp. 37-51. 

Borgman, L.E. (1969a) "Directional Spectra Models for Design Use". 
Proceedings of the 1st Offshore Technology Conference. Paper No OTC 
1069, pp. 721-746. 

Borgman, L.E. (1969b) "Ocean Wave Simulation for Engineering Design". 
ASCE, Journal of Waterways and Harbours Division, Volume 95, No WW4, 
pp. 557-583. 

Borgman, L.E. (1972) "Statistical Models for Ocean Waves and Wave 
Forces". in Ven Te Chow (Ed) Advances in Hydroscience, London : 
Academic Press, Volume 8, pp. 139-181. 

Borgman, L.E. (1977) "Directional Wave Spectra from Wave Sensors". in 
M.D. Earle and A. Malahoff (Ed) Ocean Wave Climate. New York: Plenum 
Press, pp. 269-300. 

Bound, A.D. (1984) "The Idealisation of Wave Loading in the 
Probabilistic Analysis of Offshore Structures". Master of Science 
Thesis: University of Manchester. 

Bruce, R.L. (1985) "Quasi-Static Response of Jacket Platforms Subject 
to Non-Linear Wave Loading". Proceedings of the 4th International 
Conference on the Behaviour of Offshore Structures, PP. 899-905. 

Burrows, R. (1977) "Quasi-Static Response of Offshore Structures using 
Probabilistic Methods". Applied Mathematical Modelling, Volume 1, PP. 
325-332. 

Burrows, R. (1979) "Probabilistic Description of the Response of 
Offshore Structures to Random Wave Loading". in T.L. Shaw (Ed) 
Mechanics of Wave Induced Forces on Cylinders. London: Pitman Advanced 
Publishing Program, PP. 577-595. 

Burrows, R. (1982) "Wave Loadi ng on Offshore Structures: A 
Probabilistic Approach". Unpublished Doctoral Thesis, Civil 
Engineering Department, Liverpool University. 

Burrows, R. (1983) "Expected Value Analysis for the Quasi-Static 
Response of Offshore Structures". Appl ied Mathematical Modell in9, 
Volume 7, PP. 317-328. 

Burrows, R. (1989) "Fundamentals of Ocean Wave (and Windspeed) 
Statistical Prediction Methods". CEEC COMET Seminar on Wave and Ice 
Forces on Offshore Structures, Dept. of Civil Engineering, University 
of Sal ford, U.K, PP. 1-25. 

Cartwright, D.E. and Longuet-Higgins, M.S. (l956) liThe Statistical 
Distribution of the Maxima of a Random Function". Proc. Ray. Soc. A, 
Vol. 237, PP. 212-232. 

Chaplin, J.R. (1988a) "Loading on a Cylinder in Uniform Oscillatory 
Flow: Part 1 - Planar Oscillatory Flow". Applied Ocean Research, 
Volume 10, pp. 120-128. 

486 



Chaplin, J.R. (1988b) "Loading on a Cylinder in Uniform Oscillatory 
Flow: Part 2 - Elliptical Orbital Flow". Applied Ocean Research, 
Volume 10, pp. 199-206. 

Dawson, T.H. (1983) "Offshore Structural Engineering". New Jersey: 
Prentice-Hall. 

Dean, R.G. (1976) "Methodology for Evaluating Suitability of Wave and 
Wave Force Data for Determining Drag and Inertia Coefficients". 1st 
International Conference on the Behaviour of Offshore Structures, 
Trondheim, Volume 2, pp. ~0-64. . 

Foster, E.T. (1967) "Statistical Prediction of Wave Induced Responses 
in Deep Ocean Tower Structures". University of California, Berkeley, 
Hydraulics Engineering Laboratory, Report HEL 9-14. 

Haring, R.E. and Spencer, L.P. (1979) "The Ocean Test Structure Data 
Base". ASCE, Civil Engineering in the Oceans IV, Volume 2, pp. 669-
683. 

~edges, 1.S. (1987) "Combination of Waves and Currents: an 
lntroduction". Proceedings of the Institution of Civil Engineers, 
Volume 82, Part 1, pp. 567-585. 

Heidman, J.C., Olsen, O.A., and Johannson, P.I. (1979) "Local Wave 
Force Coefficients (Ocean Test Structure)". ASCE, Civil Engineering in 
the Oceans IV, Volume 2, PP. 684-699. 

Houmb, O.G. (1981) "Latest Developments in Wave Statistics" in P. 
Brunn (Ed) Port Engineering. Houston, Texas: Gulf Publishing Company, 
PP. 253-270. 

Inglis, R.B., Pijfers, J.G.L. and Vugts, J.H. (1985) itA Unified 
Probabilistic Approach to Predicting the Response of Offshore 
Structures, Including the Extreme Response". Proceedings of the 4th 
International Conference on the Behaviour of Offshore Structures. PP. 
95-109. 

Kendall, M.G. and Stuart, A. (1969) liThe Advanced Theory of 
Statistics" Vol. 1, London: Charles Griffin and Company Limited. 

King, R., Prosser, M.J. and Verley, R.L.P. (1976) "The Suppression of 
Structural Vibrations Caused by Currents and Waves". 1st International 
Conference on the Behaviour of Offshore Structures, Trondheim, Norway, 
Vol. 1, PP. 263-284. 

King, R. (1977) "A Review of Vortex Shedding Research and its 
Application". Ocean Engineering, Vol. 4, PP. 141-171. 

Lin, Y.K. (1967) "Probability Theory of Structural Dynamics". New 
York: Krieger Publishing. 

Longuet-Higgins, M.S. (1952) "On the Statistical Distribution of the 
Heights of Sea Waves". Journal of Marine Research, Volume 11, pp. 245-
266. 

487 



Longuet-Higgins, M.S. (1980) "On the distribution of Heights of Sea 
Waves: Some Effect of Non-Linearity and Finite Band Width". Journal of 
Geophysical Research, Volume 85, No C3, pp. 1519-1523. 

Miller, K.S. (1964) "Multi-dimensional Gaussian Distributions". 
London: John Wiley & Sons. 

Mitsuyasu, H. et al. (1975) "Observations of the Directional Spectrum 
of Ocean Waves using a Cloverleaf Buoy". Journal of Physical 
Oceanography, Volume 5, pp. 750-760. 

Morison, J.R., O'Brien, M.P., Johnson, J.W. and Shaaf, S.A. (1950) 
"The Force Exerted by Surface Waves on Piles". ASME, Petroleum 
Transactions, Volume 189, pp. 149-154. 

Newland, D.E. (1975) "An Introduction to Random Vibrations and 
Spectral Analysis". London: Longman. 

Nolte, K.G. (1973) "Statistical Methods for Determining Extreme Sea 
States". Proceedings of the 2nd International Conference on Port and 
Ocean Engineering Under Arctic Conditions, University of Iceland, pp. 
705-742. 

Ochi, M.K. (1973) "On Prediction of Extreme Values". Journal of Ship 
Research, PP. 29-37. 

Papoulis, A. (1965) "Probability, Random Variables and Stochastic 
Processes". London: McGraw-Hill Book Company. 

Penzien, J. (1976) "Structural Dynamics of Fixed Offshore Structures". 
1st International Conference on the Behaviour of Offshore Structures, 
Volume 1, Trondheim, Norway, PP. 581-592. 

Pierson, W.J. (1955) "Wind Generated Gravity Waves". Advances in 
Geophysics, Volume 2, pp. 93-178. 

Pierson, W.J. and Holmes, P. (1965) "Irregular Wave Forces on a Pile". 
ASCE, Journal of the Waterways and Harbors Division, Vol 91, No WW4, 
pp. 1-10. 

Pierson, W.J. and Moskowitz, L.J. (1964) "A Proposed Spectral Form for 
Fully-Developed Wind Seas Based on the Similarity Theory of S.A. 
Kitaigorodskii". Journal of Geophysical Research, Volume 69, No. 24, 
PP. 5181-5190. 

Price, R. (l958) 
Gaussian Inputs". 
IT-4. 

"A Useful Theorem for Non-U near Dev1 ces havi ng 
IRE Transactions on Information Technology, Volume 

Price, W.G. and Bishop, R.E.D. {l974} "Probabilistic Theory of Ship 
Dynamics". London: Chapman and Hall. 

Raj~b1. F. (1979) "Hydroelastic Oscillations of Smooth and Rough 
Cyllnders in Harmonic Flow". Ph.D. TheSis, Naval Postgraduate School, 
Monterey, California. 

488 



Sarpkaya, T. (197Ga) "Vortex Shedding and Resistance in Harmonic Flow 
about Smooth and Rough Circular Cylinders at High Reynolds Numbers". 
Report No NPS-595L7G021, Naval Postgraduate School, Monterey, 
California. 

Sarpkaya, 1. (197Gb) "In-line and Transverse Forces on Smooth and 
Sand-roughened Cylinders in Oscillatory Flow at High Reynolds Numbers". 
Report No NPS-69SL 76062, Naval Postgraduate School, Monterey, 
California. 

Sarpkaya, 1. and Isaacson, M. (1981) "Mechanics of Wave Forces on 
Offshore Structures". London: Van Nostrand Reinhold. 

Shipway, J.C. {l984} "An Investigation into Tidal Current, Current 
Induced Loadings and Zero Readings at Christchurch Bay Tower. National 
Maritime Institute Report No R181. 

Streeter, V.L. and Wylie, LB. {l979} "Fluid Mechanics". London: 
MCGraw-Hill Book Company. 

Starsmore, N. (1981) "Consistent Drag and Added-Mass Coefficients from 
Full-Scale Data". Proceedings of the 13th Offshore Technology 
Conference, Houston, Texas. Paper No OTC 3990, PP. 357-365. 

Tickell, R.G., Burrows, R. and Holmes, P. (l976) "Long Term Wave 
Loading on Offshore Structures". Proceedings of the Institution of 
Civil Engineers, Volume 61, Part 2, PP. 145-162. 

Tickell, R.G. (l977) "Continuous Random Wave Loading on Structural 
Members" The Structural Engineer, Volume 55, No 5, pp. 209-222. 

Tickell, R.G. and Elwany, M.H.S. (1979) "A Probabilistic Description 
of Forces on a Member in a Short-Crested Random Sea". in T.L. Shaw, 
(Ed) Mechani cs of Wave- Induced Forces on Cyli nders, London: Pitman 
Advanced Publishing Program, PP. 561-576. 

Tickell, R.G., Elwany, M.H.S. and Holmes, P. (1982) "Christchurch Bay 
Tower - Probabilistic Analysis of Data Recorded During September 1976". 
Department of Energy, Report No OT-R-8114. 

Tickell, R.G. and Bishop, J.R. (1985) "Analysis of Waves and Wave 
Forces at the Christchurch Bay Tower". Proceedings of the 4th 
International Offshore Mechanics and Arctic Engineering Symposium, Vol. 
1, PP. 142-150. 

Tickell, R.G., Burrows, R. and Salih, B. (l987) "Advanced 
Probabilistic Properties of Wave Climates". in Society of Underwater 
Technology (Ed) Advances in Underwater Technology, Ocean Science and 
Offshore Engineering, London: Graham and Trotman, Volume 12, PP. 13-
30. 

Tickell, R.G. and Burrows, R. (1988) "Christchurch Bay Tower Compliant 
Cylinder Project: An Interim Report on the Analysis of Data". 
Unpublished Report, Civil Engineering Department, Liverpool University. 

489 



Tickell, R.G. and Burrows, R. (1989) "Christchurch Bay Tower Compliant 
C~linder Project". Unpublished Report, Civil Engineering Department, 
Llverpool University. 

Tung, C.C. (1975) "Statistical Properties of Wave Force". ASCE, 
Journal of Engineering Mechanics, PP. 1-11. 

Tung, C.C. and Huang, N.E. (1976) "Interactions Between Waves and 
Currents and their Influence on Fluid Forces". 1st International 
Conference on the Behaviour of Offshore Structures, Trondheim, PP. 129-
143. 

V~n Heteren, J., Keijser, H. and Schaap, B. (1988) "Comparison of Wave 
Dlrectional Measuring Systems". Applied Ocean Research, Volume 10, No 
3, pp. 129-143. 

Wilson, J.F. (1984) "Dynamics of Offshore Structures". New York: John 
Wil ey. 

490 



Appendix A 

An Investigation into the Phase 
Relationship Between Hydrodynamic 
Forces and Cylinder Displacements 



A.I OBJECTIVE 

It is the objective of this Appendix to investigate whether there is an 

ambiguity of some sort in the hydrodynamic forces and/or cylinder 

displacements supplied to the study. 

A.2 BACKGROUND 

Assuming that the compliant cylinder is a single degree of freedom 

system, one expects that the external hydrodynamic loadings and the 

cylinder displacements to be in phase for frequencies much smaller than 

the natural frequency of the cylinder (Bendat and Piersol, 1971). The 

natural frequency of the cyl i nder in its most fl exi b 1 e mode (F6 

setting) is about 0.46Hz. Thus for frequencies less than 0.20Hz or 

periods greater than 5 seconds, the two time series must be more or 

less in phase. However, comparing the time series plots of the forces 

and displacements, it was noted that for large periods, they were out 

of phase (Figure A.l). This gave the impression that either the forces 

or the displacements had the wrong sign. 

In order to remove the disguising effect of the higher frequencies, all 

the frequencies above 0.20Hz were filtered out. For all the runs, the 

correlation coefficients between the filtered forces and displ~cements 

at Level 3 in the x direction are given in Table A.l. 

With the exception of Runs 08 and 09, all the coefficients are close to 

-1.0, confirming that the displacements and forces are out of phase. 

Figures A.2 and A.3 compare forces and displacements for frequencies 

between 0.05Hz and 0.15Hz in the x and y directions, respectively, and 

give a visual observation of the phenomenon. The results of Table A.l 
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and Figures A.2 and A.3 served as strong evidence for the suggestion 

that either forces or displacements had the incorrect sign. 

TABLE A.1 

CORRELATION COEFFICIENTS BETWEEN HYDRODYNAMIC FORCES AND CYLINDER 
DISPLACEMENTS AT LEVEL 3 IN THE X DIRECTION FOR FREQUENCIES LESS THAN 
0.20Hz. 

RUN NQ CORRELATION DAMPED NATURAL 
COEFFICIENTS FREQUENCY "Hz" 

01 -0.76 1.69 

02 -0.70 1.27 

06 -0.93 0.46 

07 -0.81 0.49 

08 -0.14 0.73 

09 -0.08 0.93 

13 -0.98 0.46 

14 -0.99 0.46 

15 -0.99 0.47 

16 -0.99 0.48 

23 -0.98 0.49 

In order to determine which signal had the incorrect sign, the 

following steps were taken. Mean forces and mean currents at level 3 in 

both x and y direction, and the correlation coefficients between forces 

and shifted water particle kinematics in the x direction at level 3 

were calculated and are listed in Tables A.2 and A.3, respectively. The 

positive correlation between mean forces and currents in all cases 

indicate that the forces have the right sign. Furthermore, according to 

Morison's equation, the correlation coefficients between forces and 
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water particle kinematics must be positive. The results of Table A.3 

shows that this is the case with the excepLion of correlation 

coefficients between forces and shifted velocities for Runs 01, 02 and 

09. However, these runs are strongly inertia dominated and hence are 

very sensitive to small errors in water particle velocity due to 

shifting. The positive correlation between forces and water particle 

kinematics proves that forces cannot have the incorrect sign. 

Al so, it was noted that for Run no. 01 (the most rigid case), the 

correlation between end reaction forces and hydrodynamic forces (Table 

A.4) were close to +1.0, rather than -1.0 as expected. Thus, one can 

argue that it must be hydrodynamic forces, not the displacements, which 

have the wrong sign. However, the alternative explanation is that both 

the displacements and the end reaction forces have the incorrect sign. 

This seems more plausible because, if one assumes that the hydrodynamic 

forces have the wrong sign, then the currents and water part i cl e 

kinematics must also have the incorrect sign. 
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TABLE A.2 

MEAN FORCES AND CURRENTS AT LEVEL 3 IN BOTH X AND Y DIRECTIONS 

X DIRECTION Y DIRECTION 
RUN N2 

mean force mean current mean force mean current 
IIKNII IIm/sec ll 11 KN 11 IIm/see ll 

01 0.0031 0.144 0.0313 0.439 

02 0.0044 0.181 0.0345 0.478 

06 0.0040 0.167 0.0393 0.475 

07 0.0043 0.168 0.0366 0.466 

08 0.0035 0.161 0.0346 0.456 

09 0.0034 U .141 0.0302 0.455 

13 -0.0034 -0.047 -0.0018 -0.020 

14 -0.0054 -0.138 -0.0095 -0.068 

15 -0.0174 -0.193 -0.0283 -0.229 

16 -0.0177 -0.280 -0.0371 -0.350 

23 0.0282 0.141 0.0931 0.557 
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TABLE A.3 

CORRELATION COEFFICIENTS BETWEEN FORCES AND WATER PARTICLE KINEMATICS 
AT LEVEL 3 IN THE X DIRECTION 

CORRELATION COEFFICIENT BETWEEN FORCE AND SHIFTED 
RUN NQ 

Water Particle Water Particle 
velocity (m/sec) acceleration (m/sec**2) 

01 -0.01 0.52 

02 -0.05 0.54 

06 0.14 0.50 

07 0.14 0.57 

08 0.02 0.61 

09 -0.01 0.56 

13 0.61 0.45 
14 . 0.65 0.43 

15 0.69 0.39 

16 0.71 , 0.37 

23 0.73 0.22 

TABLE A.4 

CORRELATION COEFFICIENTS BETWEEN END REACTION FORCES AND HYDRODYNAMIC 
FORCES FOR RUN NUMBER 01 (X DIRECTION) 

HYDRODYNAMIC FORCES Top Bottom 
Description Shear Shear 

Level 2 Level 3 Level 4 Force Force 

Top shear 
Force 0.92 0.92 0.83 1.00 0.98 

Bottom shear 
force 0.89 0.95 0.90 0.98 1.00 
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Based on the above arguments, it was decided that the cylinder 

displacements needed amendment and hence their signs were reversed. The 

amended data were used· in determining force coefficients from the 

relative kinematics form of Morison's equation. 

The question of the sign of the cylinder displacement was raised again 

when it was noted that for Run numbers 13 and 15, the hydrodynamic 

forces and cylinder accelerations (at level 3 in both x and y 

directions) were positively correlated in the frequency range of 0.40-

O.60Hz (Table A.5). This is contrary to what one expects from the 

analysis of the relative kinematics form of Morison's equation. The 

relative kinematics form of Morison's equation is 

(A.l) 

since the natural frequency of the cylinder is well above the frequency 

content of water particle kinematics for all the runs, the frequency 

content of the hydrodynami c forces around the natural frequency is 

mostly due to cylinder acceleration (contribution from cylinder 

velocity is negligible as previously shown in the main text). 

Therefore, 

F around natural frequency Z - C.k;i" (A.2) 

According to the above relationship, the correlation coefficients 

between forces and cylinder accelerations must be highly negative at 

around the natural frequenc; es. However, these correlations for the 

amended data is positive, as mentioned before, indicating that for this 

frequency range the cylinder displacements did not need any amendment. 
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Table A.6, which lists the correlation coefficients between forces and 

cylinder displacements at around natural frequencies at level 3 in the 

x direction, reveals that this is the case for all the runs. Note that 

cylinder displacements and accelerations are out of phase. Thus, 

negative correlations between forces and displacements indicate that 

forces and cylinder accelerations are positively correlated. 

TABLE A.S 

CORRELATION COEFFICIENTS BETWEEN FORCES AND CYLINDER ACCELERATIONS AT 
LEVEL 3 IN FREQUENCY RANGE OF O.40-0.60Hz IN BOTH X AND Y DIRECTIONS 
(AMENDED DATA) 

CORRELATION COEFFICIENT 

Run NI Direction 

X Y 

13 0.89 0.84 

15 0.88 0.88 
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TABLE A.6 

CORRELATION COEFFICIENTS BETWEEN FORCES AND CYLINDER DISPLACEMENTS AT 
AROUND THE NATURAL FREQUENCIES (LEVEL 3, X DIRECTION, AMENDED DATA) 

RUN Ni CORRELATION FREQUENCY RANGE DAMPENED NATURAL 
COEFFICIENT "Hz" FREQUENCY "Hz" 

01 -0.99 1. 60-1. 80 1.69 

02 -0.93 1.20-1.40 1.27 

06 -0.96 0.40-0.60 0.46 

07 -0.94 0.40-0.60 0.49 

08 -0.96 0.60-0.80 0.73 

09 -0.82 0.80-1.00 0.93 

13 -0.92 0.40-0.60 0.46 

14 -0.88 0.40-0.60 0.46 

15 -0.89 0.40-0.60 0.47 

16 -0.87 0.40-0.60 0.48 

23 -0.83 0.40-0.60 0.49 

This led to the intriguing suggestion that somehow the cylinder 

displacements had the wrong sign for low frequencies (0.00-0.20Hz) but 

the right sign for frequencies around the natural frequencies. 

Therefore, if there is a mistake in the displacements, it cannot be 

amended by a sign reversal. 

In order to fully appreciate what has gone wrong, it was decided to 

review all the steps taken in measuring and calculating the 

hydrodynamic forces and cylinder accelerations and displacements. 

. ... 
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A.3 HORIZONTAL CYLINDER ACCELERATIONS AND DISPLACEMENTS 

Horizontal cylinder accelerations and displacements have been derived 

from measured accelerations (Bearman's comment on Tickell et al, 1988). 

A.3.l Acceleration Measurement 

Accelerations were measured at three different levels, known as Levels 

2, 3 and 4, in both ~ and y directions by duplicate accelerometers 

located in the force sleeve sections (Bishop et al, 1982). 

A.3.2 Relationship Between Measured & Horizontal Cylinder Accelerations 

As shown in Figure A.4, the measured acceleration (b) has two 

components: one due to horizontal cylinder acceleration (x), and the 

other is due to gravity (9). Thus at point (l) , 

b = xcos(S} + gcos(~/2 - S} (A.3a) 

or 
b = xcos(9) + gsin(S) (A.3b) 

where S, the local tilt of the cylinder, is the angle between the z 

axis and the tangent to the cylinder at point (I). 

For small deflections of the cylinder, S is a small angle. Therefore, 

cos(9) :::: 1.0 (A.4a) 

and 
sinS:::: S :::: tanS = (dx/dz) (A.4b) 

Substituting Equations (A.4a) and (A.4b) into Equation (A.3b) leads to 

the following relationship between the measured and horizontal cylinder 

accelerations. 

b = x + g*(dx/dz} (A.S) 
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A.3.3 Calculating Horizontal Cylinder Displacements and Accelerations 

Since accelerations are measured at three different levels, 

displacements can, at best, be represented by three sinusoidal modal 

shapes (Figure A.S). Hence 

x(z,t) = ~ an(t) * sin(nnz/l) 
n=1 (A.6) 

where an(t) (n = 1,2,3) are modal amplitudes, and l is the length of the 

cylinder. 

The second derivative of x with respect to time, X, is the horizontal 

cylinder acceleration and is equal to 

X(z,t) = ~ an(t) * sin(nnz/L) 
n=1 (A.7) 

The local tilt is 

a = (dx/dz) = ~ (nn/l) * an{t) * cos(nnz/l) 
n=1 (A.S) 

Introducing Equations (A.7) and (A.B) into Equation (A.5) leads to 

b(z,t) = ~ [an(t) * sin(nnz/L) + 9 * (nn/l) * an(t) * cos(nnz/l)] 
n=1 (A.9) 

Taking Fourier Transforms of both sides results in 

or, 

B(z,w) = ~ {_w2 An(w) * sin(nnz/l) + (nng/l) * An(w) 
n=1 

* cos(nnz/L)} 

B(z,w) = ~ [_w2 * sin(nnz/l) + (nng/l) 
n=1 

* cos(nnz/L)] * An(w) 
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where 8(z,w) and An(w) are the Fourier Transforms of the measured 

accelerations and modal amplitudes, respectively. 

If Fourier Transforms of measured accelerations at levels 2, 3 and 4 

are denoted by B2(w), B3(W) and 84(w), respectively, then 

82 (w) = L: [-w2*sin(n~z2/l) + (n~g/l) * cos(nxz2/l)] * An(w) 
n=1 

= L: Ql.n * An(w) 
n=l (A.12a) 

83 (w) = L: [-w2*sin(n~zJll) + (nxg/l) * cos(nxzJll)] * An(w) 
n=l 

= r3 Q2,n * An(w) 
n=1 (A.12b) 

84 (w) = r3 [-w2*sin(n~z4/l) + (nxg/l) * cos(nxz~L)] * An{w) 
n=1 

= r Q3,n * An{w) 
n=l . (A.12c) 

where Qi.j * Aj(w) (i,j = 1,2,3) refers to the contribution of the jth 

modal shape to measured acceleration at level (i+l), and is equal to 

(A.13) 

The first term of the above relationship is due to horizontal cylinder 

acceleration, and the second term is due to gravitational acceleration. 

An examination of this equation reveals that while the gravity term is 

independent of frequency, the cylinder acceleration term is a function 

of frequency squared. Thus, in a qualitative sense, for small 
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frequencies, the gravity term dominates, and for large frequencies, the 

cylinder acceleration term is dominant. 

In matrix notation, Equations (A.I2) are represented as 

(A.I4) 

The unknown quantities [A]3'1 are calculated from the following 

relationship 

(A.IS) 

solving the above equation leads to [A], i.e. the Fourier Transforms of 

the modal amplitudes. Taking the inverse Fourier Transforms of [A], one 

can calculate the modal amplitudes, [a(t)], and hence the cylinder 

displacements through Equation (A.6). [an(t)] is similarly derived by 

taking the Inverse Fourier Transform of -w2[A]. This paves the way for 

calculating horizontal cylinder accelerations from Equation (A.7). 

The following points can be noticed from the examination of Equations 

(A.I2) to (A. 15). 

l. If the measured accelerations have the incorrect sign, their 

Fourier Transforms and consequently the Fourier Transforms of the 

modal amplitudes will also have incorrect signs. This leads to 

wrong signs for modal amplitudes, which in turn reverses the sign 

of the cylinder displacements and accelerations. 

2. In 8earman's (1988) comment on the interim report, the terms due 

to gravitational accelerations in Equations (A.I2) and (A.I3) 

have incorrect signs. If the sign of these terms in BMT's 
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calculations are wrong, then the contribution of the jth mode to 

measured acceleration at level (i+l) will be, 

. ai,i * Aj(w) .. -w2*sin(j1rzi+,/L) * Aj(w) - (j1rg/L) * 

cos(j1rzi+,/L} * Aj(w} (A.I6) 

where A(w} (j = 1,2,3) refers to the Fourier Transforms of the modal 

amplitudes and are obtained from the following relationship, 

(A.l7) 

or, 
(A.18) 

The ratio between Qi,i(w} and ai,i(w), denoted by ei,j(w), is 

Q·.(W) I,) -w2*sin(j1rzi+,/L) + (j1rg/L) * cos(j1rzi+,/L} .. 
-w2*sin(j1rzi+,/L} - (j1rg/L) * cos(j1rzi+,/L) 

(A.I9) 
a· .(fJJ) I,) 

Dividing both the numerator and denominator by -41r2cos(j1rzi+,/L), leads 

to 

e·· (f) = I,) 

f2*tan (j1rzi+,/L) - (jg/41rL) 

f2*tan (j1rzi+,/L) + (jg/41rL) (A.20) 

For frequencies smaller than a specific amount, fey, the absolute value 

of the term containing 9 will be greater than that of the other term, 

i . e. , 

(A.2I) 
or, 

(A.22) 
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For f<f\i' ei,i is negative, indicating that eri,J and ai,J are of opposite 

signs. The values of fO
w are given in Table A.7. 

TABLE A.7 

FOR FREQUENCIES LESS THAN f·w "Hz", ew(f} IS NEGATIVE 

fO .. "Hz" 
Level 

I,) 

1st mode 2nd mode 3rd mode 

2 0.132 0.471 0.438 

3 0.114 0.551 0.361 

4 0.224 0.179 0.658 

For frequencies greater than the largest f·w (O.658Hz), the a terms will 

be different from er terms only in their magnitude, but their signs will 

be the same. For frequencies smaller than the smallest f·w (0. 114Hz), 

they will be different in both their magnitudes and signs while for 

frequencies between the two limits, they will all be different in 

magnitude, but only some of them will change sign. 

If for frequencies less than 0.114Hz only the sign of [a] terms were 

different from [er] ones, it could be concluded that the terms in [a]-' 

woul d be the negat i ve of the terms in [err', and hence the modal 

amplitudes and displacements would change sign, too. However, because 

of the change in the magnitude of these terms, one cannot conclude 

rigorously that the resulting displacements will have incorrect signs. 

Nevertheless, for cases when the first mode 1s dominant or for very 
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small frequencies, the resulting displacements will be of opposite 

sign. 

The main conclusion from the above argument is that in a qualitative 

sense, the g term with wrong sign will cause displacements which are 

different from real ones in magnitude, for all frequencies, though more 

significantly for low ones, and in the direction for low frequencies. 

This conclusion can explain the problems encountered in the examination 

of the displacement time series, i.e., it explains why, for low 

frequencies, the displacements appear to have incorrect signs while for 

higher frequencies (around cylinders natural frequencies) they seem to 

have correct signs. This view was further strengthened when it was 

noted that for a frequency range of O.20-0.40Hz, the forces and 

displacements at Level 3 in the x direction were positively correlated 

as expected from theory unlike the frequency range of O.OO-O.20Hz 

(Table A.S). 
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TABLE A.8 

CORRELATION COEFFICIENTS BETWEEN HYDRODYNAMIC FORCES AND CYLINDER 
DISPLACEMENTS AT LEVEL 3 IN THE X DIRECTION FOR FREQUENCY RANGE 
O.20-0.40Hz 

Run NQ Correlation Damped Natural 
Coefficient Frequency "Hz" 

01 0.35 1.69 

02 0.67 1.27 

06 0.28 0.46 

07 0.37 0.49 

08 0.63 0.73 

09 0.41 0.93 

13 0.19 0.46 

14 0.13 0.46 

15 0.16 0.47 

16 0.24 0.48 

23 0.33 0.49 

Further evidence for this view was obtained by comparing the standard 

deViations of the measured and horizontal cylinder accelerations for 

Runs 13 and 15 (Table A.9). Since the correlation coefficients between 

measured accelerations of Levels 2 and 4 for both x and y directions in 

frequency range of 0.40-0.60Hz are virtually one (0.998), the response 

in this frequency is dominaLed by the first mode. This implies that for 

Level 2 the measured accelerations must be greater than the horizontal 

cylinder accelerations (because the gravity components and cylinder 

accelerations are in the same direction) while for Level 4 the opposite 

must be true. The results of Table A.9 indicate that in the x 

direction, measured accelerations are greater than cylinder 

accelerations when they are expected to be smaller and vice versa. This 
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suggests that the sign of the g term is wrong. However, the results of 

the y direction indicate that the sign of the g term is right. 

TABLE A.9 

THE RATIO BETWEEN MEASURED AND HORIZONTAL CYLINDER ACCELERATIONS IN 
FREQUENCY RANGE O.40-0.60Hz 

X Direction Y Direction 

Level Run No. 

13 15 13 15 

2 0.94 0.95 1.10 1.10 

4 1.005 1.001 0.97 0.97 

Extensive analysis thus far has shown that neither the assumption of 

the right sign for g nor the assumption of the wrong sign can explain 

the cylinder disp1acements obtained based on the intuitive shape of the 

cylinder. 

A.4 FORCE MEASUREMENT 

Forces are measured at three different 1 eve 1 s by force measurement 

sleeves, 535mm long each. As shown diagrammatically in Figure A.6, each 

sleeve has three force measuring links, which are situated in the water 

filled space between the outer force sleeve and the inner structural 

column. The links are equally disposed around the circumference of the 

central tube. 

The x and y components of the forces measured by the links are obtained 

from the known geometry of the system, thus 
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Fx = (FA)x + (FB)x + (FC)x 

Fy = (FA)y + (FB)y + (FC)y 

(A.23a) 

(A.23b) 

where FA, FB and FC refer to the forces measured by measurement links 

A, Band C, and {FA)x' (FA)y,"" etc., are their corresponding 

components on the x and y"directions, respectively. When the links are 

under tension, they measure positive forces. Therefore, when they are 

reading positive values, the direction of forces exerted by them on the 

central tube are as shown in Figure A.6. Based on the geometry of the 

system, the components of these forces on the x and y directions must 

be of the signs listed in Table A.IO. These signs were checked against 

the signs of the coefficients used in calculating Fx and Fy from FA, FB 

and FC by BMT (Bishop and Shipway, 1984), to ensure that Fx and Fy refer 

to the forces exerted by the links on the central tube rather than on 

the outer sleeve. 

The movement of the force sleeve in either x or y directions can be 

represented by a single degree of freedom system as illustrated in 

Figure A.7. Consequently, the restoring forces, i.e., the forces 

exerted by the links on the outer sleeve are -Fx and -Fy. 

TABLE A.IO 

SIGNS OF THE COMPONENTS OF THE POSITIVE FORCES MEASURED BY THE THREE 
LINKS ON X AND Y DIRECTIONS 

Measurement Link 
Direction 

A B C 

x + + -
y - + + 
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If the motion of the outer sleeve is represented by r., and the inner 

tube is fixed (rigid cylinder), the equation of the equilibrium of the 

system is 

Fh - kr - cr - mF = 0 • • • (A.24) 

where Fh is the external hydrodynamic loading, and -kr., -~r. and -mF. 

are the restoring, damping and inertia forces, respectively. 

If the cylinder is flexible and the inner tube itself is moving, then 

the force measurement system is represented by a si ngl e degree of 

freedom system in wh i ch effect i ve external load i ng is due to both 

hydrodynamic loading and foundation movement. If the movement of the 

inner tube with respect to a fixed reference system is represented by 

r, then the equation of the equilibrium of the force sleeve is 

Fh - mF - kr. - cr. - mF. = 0 (A.25) 

In the above equation, r. is the displacement of the force sleeve with 

respect to the inner tube and -mF is the effective external loading due 

to movement of the inner tube. The mass of the system, m, is equal to 

(A.26a) 

in which m. is the mass of the force sleeve and mw is the mass of the 

water between the inner tube and the force sl eeve. k is a factor 

allowing for the fact that only part of the inertia force of the 

internal water acts on the internal surface of the force ring.·The rest 

acts on the central column. The factor k can be calculated (Bishop, 

1982). 
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When the natural frequency of the force sleeve system is well above the 

frequency of excitation (both external hydrodynamic loading and the 

cylinder frequency), the system can be treated as a quasi-static one 

and the damping force, -cr., and the inertia force, -mr., will be much 

smaller than the restoring force, -kr •. Therefore, Equation (A.25) will 

reduce to 

Fh - mr - kr ... 0 (A.26b) 

The components of -kr., the restoring force, in the x and y directions 

are -Fx and -Fy, respectively, which are obtained from Equation (A.23). 

The above equation can be written as two separate equations for x and 

y directions, i.e. 

( Fh)x - mrx - (kr.}x .. 0 (A.27a) 

(Fh}y - mF -y (kr.)y .. 0 (A.27b) 

or, 
(Fh}x .. Fx + mFx (A.28a) 

(Fh}y = Fy + mry (A.28b) 

where (Fh}x' Fx and Fx are the components of the hydrodynamic force, 

measured force, and cylinder acceleration in the x direction. (Fh}y' Fy 

and Fy refer to similar terms in the y direction. 

BMT's equations reported in their final report (Bishop, 1988) are as 

follows 

(Fh)x = -Fx + mFx 

(Fh)y = -Fy + mFy 

(A.29a) 

(A.29b) 

However, in an earlier report (Bishop, 1982), they have reported 

equations of the form of Equations {A.28}. Comparison of time series 
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plots of measured forces and hydrodynamic forces (Figure A.S) reported 

in BMT's final report reveals that the two forces are in phase at low 

frequencies. This implies that the sign of Fx cannot be wrong in BMT's 

calculations. 

If the hydrodynamic force is represented by the relative kinematics 

form of Morison's equation, then 

(A.30) 

substituting the above equation into Equation (A.28a), the measured 

force will be 

(A.31) 

Comparison of Equations (A.30) and (A.31) indicates that the frequency 

spectrum of the measured force must be 1 arger than that of the 

hydrodynamic force at frequencies near to the cylinder's natural 

frequency. 

If the sign of the cylinder displacement is wrong or if mr has got the 

wrong sign in BMT's equations, then, in effect, BMT has used the 

following equation for calculating hydrodynamic forces. 

(A.32) 

If this was the case, then from Equation (A.31), the calculated 

hydrodynamic force will be 

(A.33) 

According to the above equation, the frequency content of the 

hydrodynamic force must be greater than that of the measured force at 
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frequencies near to the cylinder's natural frequency. However, BMT's 

report shows that this is not the case (Figure A.9). This shows that 

BMT has used the right equations, i.e. Equations (A.28), in calculating 

hydrodynami c forces from measured forces. Furthermore, as ment i oned 

earl ier, the positive correlation between forces and shifted water 

particle kinematics indicate that forces have the right signs, at least 

at low frequencies. 

A.S SUMMARY AND CONCLUSION 

Examination of force and displacement time series has shown that for 

low frequencies, they are out of phase against what is expected from 

the analysis of a single degree of freedom system. However, at around 

cylinder's natural frequency, the phase relationship agrees with the 

prediction of the relative kinematics form of Morison's equation. If 

the measured accelerations had the incorrect signs, the phase 

relationship between forces and displacements must have been wrong for 

all frequencies. Since this is not the case, the assumption of the 

wrong sign for measured acce 1 erat ions cannot exp la in the problem. 

Furthermore, it was shown in Section A.4 that the hydrodynamic forces 

cannot have the incorrect signs. Consequently, the only possible 

explanation is that the gravity correction term, used in the 

calculation of the horizontal cylinder accelerations from measured 

accelerations, might have incorrect sign. 
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Appendix B 

Analysis of Random Variables 



INTRODUCTION 

The purpose of this Appendix is to outline the essential concepts and 

statistical parameters used to describe continuous random phenomena. No 

attempt has been made to produce a comprehensive or rigorous account of 

all such concepts or parameters. 

B.1 DETERMINISTIC AND RANDOM PHENOMENA 

Any physical phenomenon can be broadly classified as being either 

deterministic or random. 

Deterministic phenomena are those which can be predicted exactly in 

terms of known parameters of the problem. 

Random phenomena must be described in terms of probability statements 

or statistical averages. In these cases, for time varying quantities, 

the value of the quantity of any point in time is unknown but it is 

Possible to say that there is a certain probability that it will exceed 

a particular value. 

B.2 DESCRIPTIVE PROPERTIES OF RANDOM VARIABLES 

The properties of time varying random variables may be described in 

either the time, frequency or amplitude domains. The time and frequency 

domains are outlined below, a more detailed account being given by 

Bendat and Piersol (1971). Description in the amplitude domain concerns 

probability theory which is covered in Section B.3. 

B.2.1 TIME DOMAIN 

B.2.1.1 Basic statistical Parameters 

Given the time history of a random variable x(t) as demonstrated in 

Figure (B.1), the following parameters are basic 
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the MEAN value 

1 T 
i = 1 im - I x(t) dt 

r GO T t=o 

the MEAN SQUARE value 

1 -I 

J/J/ = 1 im I x2 (t) dt 
r oo T t=o 

and the VARIANCE 

1 T 
U.} = 1 im - I (x(t) - X)2 dt 

r GO T t=O 

where Ux is the STANDARD DEVIATION 

(B.l ) 

(B.2) 

(B.3) 

These parameters are considered to be basic because they are sufficient 

to fully define most theoretical probability distributions used to 

describe continuous random variables, for example, the Gaussian 

distribution. However, this is not the case for all probability 

distributions and so it may be necessary to consider higher order 

parameters, as follows: 

The n-th order (statistical) moment is defined as 

1 T 
Mn = 1 i m - I x" (t) dt 

r oo T t=O 

with M1 = x and M2 lie l/J/ 

(B.4) 

The n-th order central moment, or n-th order moment about the mean, is 

defined as 
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1 T 
Mcn=lim f {x-xtdt 

roo T t=O 

with M = a 2 c2 x· 

8.2.1.2 Auto-correlation Function 

(B.5) 

The general dependence of values of x{t} at one time to those at 

another time, 1 units later, is described by the auto-correlation 

function 

1 T 
Rx(1} = lim f x(t) x(t + 1) dt 

roo T t=O 

which has the properties 

8.2.1.3 Cross-correlation Function 

(B.6) 

(8.7) 

(B.8) 

The inter-relationship between two sets of random variables x,(t) and 

x2(t) can be described by the cross-correlation function 

1 T 
Rx'x2(1) = lim - f x,(t) x2 (t + 1} dt 

T"" T t=O 

which has the properties 

= Rx2x ' (1) 

and if Rx1x2 (O) = 0, then x, (t) and x2 (t) are uncorrel ated. 
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8.2.1.4 Auto-covariance Function. Cross-covariance Function and 

Correlation Coefficient 

Auto-covariance and cross-covariance functions are s imil ar to the 

corresponding correlation function but include an adjustment for the 

mean as follows: 

Cx ( T) = 1 i m 1 J [x (t) - x] [x (t + T) - x] d t 
roo T t=o (B.ll) 

and 

1 T 
Cx1x2 (T) = lim - J [x1(t) - x,] [x2(t + T} - x2] dt 

re» T t=o 
(B.12) 

These expressions revert to Rx(1} and Rx1x2 (T), respectively, when the 

random variables are mean zero (x, = x2 = 0). 

The correlation coefficient is defined as 

(B.13) 

8.2.1.5 Stationarity and Ergodicy 

A random variable, x(t), is stationary if its statistical properties, 

described below, are independent of the time origin. 

A stationary random variable is ergodic if its statistical properties 

calculated from one sample record, of the form of Figure B.l, are equal 

to those calculated from other samples of x(t) taken during the same 

time interval. 

Random data representing stationary physical phenomena are generally 

ergodic and hence the properties of stationary random phenomena can be 
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estimated correctly from a single observed time history record, if the 

finite time :nterval, T, considered is sufficiently long. 

8.2.2 FREQUENCY DOMAIN (SPECTRAL APPROACH) 

8.2.2.1 Power Spectral Density Function 

The power spectral density fUnction (or autospectral density function) 

of a random variable, x(t), describes the distribution of the mean 

square value as a function of frequency. 

The mean square value of the portion of x(t) within the frequency band 

between wand w + Aw is given by 

1 T 
1/J/(w, Aw) z 1 im - I x2 (t, w, Aw) dt 

r oo T 0 

where w is in radian measure. 

As Aw ~ 0 the power spectral density function may be defined as 

1 
G)()((w) = 1 im 1/J/ (w, Aw) 

Aw-+O Aw 

(B.14) 

(8.15) 

For a stationary random process, the spectral density function and the 

correlation fUnction, Equation (B.6), are related by a Fourier 

transform 

2 ID 

G)(x(w) = I R)((r) e-iwT dr 
7\' 0 

2 ID 

= I R)((r) cos wr dr 
7r 0 (B.16) 
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The mean square value of x(t) is obtained from the inverse relationship 

and setting T = 0 

co 

Rx(O) = l/J/ = I Gxx(W) dw 
o (8.17) 

and is thus equal to the area under the spectral density function or 

I spectrum' . 

B.2.2.2 Spectral Moments 

The n-th order moment of Gxx(w) with respect to the origin, w = 0, is 

defined as 

co 

mn = I wn Gxx (w ) dw 
o 

and hence mo = l/J/ = Rx(O). 

8.2.2.3 Spectral Bandwidth 

(8.18) 

The spectral bandwidth E is used in connection with the probabilistic 

properties of the random variable, x(t), giving a measure of the number 

of 'extrema' or peaks of the process in relation to the number of 

cross i ngs of the mean amplitude 1 eve 1, x, and is defi ned as (see 

Section 8.3.4.4) 

B.3 PROBABILITY THEORY 

8.3.1 ONE RANDOM VARIABLE 

(8.19) 

Consider a continuous time-varying random variable, x(t), as sketched 

over a time interval from 0 to T in Figure 8.2. 
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B.3.1.1 Probability Density Function (pdf.l 

The pdf. p(x), describes the probability that x(t) will take a value 

within some defined range (x, x + ~x) at any instant of time 

and 

Tx 
Prob[x ~ x(t) S x + ~x] - lim (-) 

I'" T 

1 Tx 
p(x) - lim [lim (-)] 

~x~- ~x ,OO T 

This density function has the properties that 

p(x) ~ 0 

and 
Cl) 

J p(x) dx = 1 
-Cl) 

B.3.1.2 Cumulative Probability Distribution Function (cdf.> 

(B.20) 

The cdf. describes the probability of x(t) having a value less than or 

equal to a given value of x 

x 
P(x) = Prob[x(t) S x] = J pea) da 

-Cl) 

This distribution function has the properties that 

and 

o ~ P(x) ~ 1 

dP(x) 
p(x) = 

dx 

B.3.1.3 Statistical Moments 

(B.21) 

The n-th order moment of the pdf. about the origin is defined as 
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(I) 

E{x"} = I x" p(x} dx 
-(I) (B.22) 

where E{ } is the expected value operator and represents the expected 

value, or expectance, of its argument. 

With reference to the description of the time domain in Section B.2.1. 

M" == E{x"} (B.23) 

and in particular, the mean value is 

x = M, = E{x} (B.24) 

and the mean square value 

(B.25) 

The n-th order moments of the pdf. about the mean are defined as 

(I) 

E{(x - x}"} = J (x - x)" p(x) dx 
-(I) (B.26) 

and again with reference to Section B.2.1. 

Men = E{ (x - x)n) (B.27) 

and in particular 
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By the linear nature of E{ } the central moments Mcn may be expressed 

in terms of the moments Mn by expanding the arguments as follows: 

Mc2 = E{x2 - 2x5( + 5(2} 

= E{x2} - 25( E{x} + 5(2 

= E{x2} _ 5(2 

as given in Equation (B.3). 

Similarly 

Mc3 = M3 - 3M2M, + 2M,3 

Mc4 == M4 - 4M3M, + 6M2M1
2 - 3M1

4 

etc. 

B.3.1.4 Expected Values of Functions of a Random Variable 

(B.28) 

(B.29) 

(B.30) 

Consider the arbitrary functions 9,(X) and 92(X) and constants k, and 

k2 , then by the linearity of E{ } we may write 

(B.31) 

B.3.1.5 Properties of Gaussian (or normal) Random Variables 

A random variable is Gaussian (or normally) distributed if its density 

function is of the form 

1 {x - 5()2 
exp{ - - * --- } 

(J 2 

1 

2 x 

as sketched in Figure (B.3a). 

532 

(B.32) 



It is clear that p(x) is symmetrical with mean, mode and median values 

coincident (see Figure B.3) and is fully defined by the first two 

statistical moments, Ml and M2 with reference to Equations (8.24) and 

(B.28), as indicated in Section B.2.1.1. 

If x(t) is mean zero the moments may be expressed as 

. { 1.3 
Mn = E{xn} = 0 

(n - I) ux
n for n even 

for n odd (B.33) 

and the 'absolute' moments are 

E{lxl n
} = k = integer { 

1.3 ... (n - 1) ux
n for n = 2k 

. V2/1f 2k.k! ux
n fer n = 2k + 1 

B.3.1.6 Properties of a Random Variable Following the Rayleigh 

Distribution 

The Rayleigh density function is given by 

X x2 

p(x) ... exp {- -} 
lk2 2lk2 

x ~ 0 

and is sketched on Figure (B.3b). Its moments are 

nlk" for n odd 
Mn = E{x"} = 

(B.34) 

(8.35) 

{ 

V1f/2.1.3 ... 

2k k !lk2k for n = 2k = even 
(8.36) 

hence 

Ml = X = lk V1f/2 

and 
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Thus the Rayleigh distribution is an unsymmetrical one-parameter 

distribution, being fully defined by its first moment, M" through a. 

B.3.2 MULTIPLE RANDOM VARIABLES 

The concepts outlined in this Section are covered in more depth by 

Papoulis (1965). 

B.3.2.1 Mult1-var1ate cdf. 

The cumulative distribution for n random variables x1 (t), ... , xn(t) is 

defined as 

P(x" ... , xn) = Prob{x,(t) ~ X1 , ... , xn(t) S xn} (8.37) 

This distribution is described as the n-th order multi-variate cdf. of 

random variables x, to xn' 

8.3.2.2 Mult1-var1ate pdf. 

The corresponding density function has the same interpretation as in 

the uni-variate case considered in the previous section and is obtained 

by differentiation. 

p (x" ... , xn) = 
8x" ... , (8.38) 

and 
X, xn 

P(x" ... , xn) = f ' ... , f p(x" ... , xn) dx" ... , dXn 
-Cl) o Cl) 

with 
(8.39) 

(8.40) 
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8.3.2.3 Marginal pdf's 

Variables can be integrated out of the multi-variate pdf. as follows 

(1) 

p(x" ••• , xn.,} =f p(x1t ••• t xn) dXn 
-(1) (8.41) 

Hence the uni-variate or marginal pdf. of a particular random variable 

can be obtained from the n-th order multi-variate pdf. for example 

(1) (1) 

p(x1 ) = J f p(x" ... , xn) dx2 , ... , dXn 

(n-1)fold (8.42) 

8.3.2.4 Conditional pdf.s 

The conditional density function describes the probability of a sub-set 

of random variables each having a prescribed value when the values of 

the remaining set of variables are fixed. Hence 

p(x" ... , xn ) 

p (x" ... , xkl xk+1' ... , xn) = 
p (Xk+ l' ... , Xn) (8.43) 

is the conditional density of x" ... , xk assuming values for 

8.3.2.5 Expected Values of a Function of n-Random Variables 

By analogy to the definition of the expected value operator in the uni

variate case, the expected value of function g(Xl' ... , xn) is 

(1) Cl) 

E{g(x1 , ... , xn)} = f J g(Xl' ... , xn) p(x" ... , xn) dx" ... , dXn 
-(1) -Cl) 

n-fold (B.44) 
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8.3.2.6 Conditional Expected Values 

The conditional expected value of function g(x" ... , xk) given the 

values of xk+', ... , xn is obtained from the conditional pdf. as 

co co 

E{g(x" .•. , xk)lxk+" ... , xn} '" f f g(x" ... , Xk) * 
-co -co 

k-fold 

8.3.2.7 Independent Random Variables 

Random variables x" ... , xn are said to be independent if the events 

(x,(t) ~ x,}, ••. , (xn(t) ~ xn} are independent for any values of x" 

... , xn· If this condition is satisfied. 

P(x, , 

p (x, , 

... , 

... , 
Xn) = P(x,) 

xn) = p(x,) 

and for arbitrary functions gj(Xj) 

(8.46) 

(8.47) 

It can be shown that Gaussian random variables are independent if they 

are uncorrelated (see Section B.2.1.3.) 

8.3.2.8 Cross-correlation and Cross-covariance 

The jOint moment E{x,x2 } is the expected value of the product of x, and 

x2 and, with reference to Section 8.2.1.3. 

(8.48) 
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where R12 will be defined as the cross-correlation between Xl and x2. 

Similarly, the joint moment £{(Xl - Xl) (X2 - x2 )}, with reference to 

Section 8.2.1.4. is 

(B. 49) 

where C'2 will be defined as the cross-covariance between x, and x2 and 

C'2 = R'2 when x, = x2 = o. 

B.3.2.9 Transformations of Random Variables 

Consider the two sets of random variables Yl(t), ... , Yk(t) and 

x,(t), .•• , xn(t) for which the multi-variate density p(x" •.• , xn) is 

known, together with the set of functions 

i = 1, k (8.50) 

The problem to be solved is to determin p the multi-variate density of 

the set y" •.. , Yk. 

Following the procedure from Papoulis (1965), 

If k > n, the unknown density is singular and it is necessary to 

first compute the density of Yl - Yn. 

If k < n, auxiliary variables must be defined, for example 

The multi-variate density of Yl(t}, ... , Yn(t) for a given set of values 

y" ... , Yn is obtained by solving the system of simultaneous equations 

for the values of Xl' ... , xn • If this system has a single real solution 

then 
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p(y" ... , Yn } = 

IJ(x" ... , xn}I (B.Sl) 

where J(.) is the Jaeobian of the transformation matrix given by 

-, .... , 
8x, 8xn 

J(x" ... , xn} = Det 

-, ... , -
8x, 8xn 

Det represents the Determinant and the values of Xi on the right hand 

side of the equation are expressed as functions of Yi' the solutions of 

Equations (B.50). 

If auxiliary variables are required,' they may be removed by integration 

IX) IX) 

p(y" ... , Yk} = I, ., I p(y" ... , Yk} dYk+" ... , dYn 
-IX) -IX) 

(n-k)fold 

B.3.3 MULTIPLE GAUSSIAN RANDOM VARIABLES 

B.3.3.1 Multi-variate pdf. 

1 

(21r}n/YDet[e] 

where {x} = (x x ) " ••• , n 

(B.52) 

1 
exp {- {x} [er' {X}T} 

2 (B.53) 

[c] square matrix of cross-covariances, see Equation (B.49) 

C,,, ... , 
C',n I 
Cnn 

.. 
... , 
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8.3.3.2 Conditional pdf.s and Moments 

The conditional uni-variate pdf.s obtained froln the multi-variate 

Gauss i an pdf. are also Gauss i an and are, therefore, defi ned by the 

correspondi ng conditional mean and vari ance. For exampl e, the 

conditional pdf. of Xo from the set of random variables xo, ... , xn is 

1 1 
p(xolx" ... , xn} = exp {-

V'2i (le 2 

(Xo - Xoc}2 
----) 

2 
(lOc 

It can be shown that the conditional mean xoc is given by 

where ~ are obtained from the solution to 

[R] {a} = {Ro} 

(B.54) 

(B.55) 

(B.S6) 

in which [R] is the matrix of cross-correlations Rij of variables, x1 to 

xn (see Equation B.48) 

{Ra} is the vector (Rop R02 ' ... , 
{a} is the vector (a1 , ••• , an}T 

The conditional variance or second central moment, (loc
2

, is 

(lo/ = E{(xo - xoc}2Ix 1 , ••• , xn) 

= Roo - (a1 R01 + ... +an Ran) (B.57) 

and conditional second moment is 

(B.58) 
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8.3.3.3 Price's Theorem and Joint Moments 

Pri ce' s theorem (1958) states that for a set of Gauss i an random 

variables x" .•. , Xn and arbitrary functions 9,(x,), ... , 9n(Xn) 

n 
ak E{ n 9i(XJ} 

;=1 

N k 
n (a Cr 11 ) m 

m=1 mm 

1 
( -) 
2 

n 
L 

m=' n 0 
E{ n 9i (Xi)} 

i=1 

(B.59) 

where rm , sm; m = 1, ..• , N, are integers lying between 1 and n 

inclusive and are not necessarily distinct; 

Cr s is the co-variance of Xr and Xs (see Equation (8.49)); mm m m 

N 
km are positive integers with k = L km; 

m=l 

N 
& = L f im km where f im is the number of time i appears in (rm' sm); 

i=1 

9j6(XJ denotes the cS-th derivative of 9i(X), taken at Xi; and 

This expression has been investigated in the bi-variate domain by 

Papoulis (1965) who states that for an arbitrary function 9(x,x2) the 

theorem may be expressed as 

an E{g (x,x2)} a2n 9 (x,x2 ) 

---- = E{ } 
aXn ayn (B.60) 
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Joint or bi-variate moments may be determined by a recursion formula 

developed from this equation. Consider jOint moment E{X l
k x/}, from 

Equation (B.60) 

(B.61) 

If C12 = 0 then Xl and x2 are independent, and 

(B.62) 

Therefore, integrating Equation (B.61) and using (B.62) we obtain the 

required formula 

(B.63) 

B.3.4 PROBABILISTIC CHARACTERISTICS OF THRESHOLD CROSSINGS AND PEAK 

VALUES 

The probabil ity theory covered in the previous sections has been 

concerned wi th the characteri st i cs of the bas i c cont i nuous random 

variable, x(t) of Figure B.2, enabling solution to questions of the 

form; what will be the probability that x(t) exceeds a certain 

threshold level x? or, for what proportion of the time will the 

magnitude of x(t) exceed x? 

In many problems involving continuous random variables additional 

probabilistic characteristics are required, namely: 

1) Threshold crossings - description of the number of times that 

x(t) crosses a certain threshold x in a given period of time. 
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2) Peak di stri but ions - descri pt i on of the number of peaks (pos it i ve 

or negative peaks; maxima or minima; crests or troughs) in x(t) 

which exceed a certain threshold x in a given period of time. 

The following sections outlining these concepts have been extracted 

from a more detailed account given by Lin (1967) and Bendat (1964). 

8.3.4.1 Threshold Crossings 

For a continuous random variable, x(t), Lin (1967) has shown that the 

expected rate of threshold crossing of the level x, E{N(x}}, is given 

by 

IX) 

E{N(x)} = I Ixl p(x, x) dx 
-IX) (B.64) 

where p(x, x) is the bi-variate pdf. of x(t) and its first time 

derivative x(t), itself a continuous random variable. 

The rate of threshold crossing from below is required in some 

applications and since, for such crossings, the slope must be positive 

IX) 

E{N+(x)} = I x p(x, x) dx 
o 

1 
= - E{N(x)} for stationary random variables 

2 (8.65) 

8.3.4.2 Threshold Crossings for a Mean-Zero Gaussian Process 

If x(t) is stationary and mean zero following a Gaussian distribution, 

its derivative x(t) will be statistically independent of x(t) and using 

Equation (8.53) the bi-variate pdf. may be expressed as 
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1 1 x2 x2 

p(x, x) = --- exp{- - (- + -) 
2 (J2 (J.2 

x x (8.66) 

and 

exp{-
(8.67) 

The expected rate of zero crossings from below is, therefore, given by 

(B.68) 

This may be expressed in terms of the relevant spectral density 

functions since from the Equation (B.17), when x = 0 

and 

Hence 

to 

(J/ = Rx(O) = I Gxx(W) dw = mo 
o 

to 

(J/ = I w2 Gxx(W) dw = m2 
o 

(B.69) 

(B.70) 

2~ (B.71) 

8.3.4.3 Peak Distributions 

A positive peak on the time history of x(t) corresponds to the 

condition of zero slope, x(t) = 0, and a negative value to the second 

derivative of x, x(t). Using this criterion, Lin (1967) has shown that 

the number of posit{ve peaks per unit time of magnitude greater than or 

equal to x is 

to 0 
E{M(x)} = - I I x p(x, 0, x) dx dx 

X -to (B.73) 
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and the total number of positive peaks is, therefore 

10 0 
E{Mr} = - J J x p(x, 0, x) dx dx 

-GO -GO (8.74) 

where p(x, x, x) is the tri-variate pdf. of x(t) and its first two time 

derivatives. 

The ratio of E{M(x)} to E{Mr } gives the proportion of the total number 

of peaks that exceed the threshold level x. Using the heuristic 

assumption that this ratio may be related to the probability 

distribution of the peaks, the cdf. of the peaks of x(t) is obtained as 

E{M(x}} 

E{Mr } 

and the corresponding pdf. is 

-1 0 J x p(x, 0, x) dx 
E{Mr} -GO 

8.3.4.4 Peak Distributions for a Mean-Zero Gaussian Process 

(8.75) 

(8.76) 

With the same requirements as those made in Section B.3.4.2. the tri

variate Gaussian pdf. can be expressed, using Equation (8.53), in terms 

of the variances of x(t) and its first two derivatives, which may be 

expressed in terms of the spectral density functions using Equations 

(8.69) and (8.70) and 

GO 

(J/ = J w4 Gxx(w) dw = m4 

o 

The expected total number of peaks per unit time is 
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--=-

and the ratio of the number of zero-crossings from below to the number 

of positive peaks is 

et = 
E{N+(O)} 

E[MT] 

and the spectral bandwidth, defined in Equation (8.19), is 

Wideband Processes 

(8.78) 

(8.79) 

If E = 1, (et = 0) the process is described as being wideband and there 

are many more positive peaks than zero-crossings. 

Narrow-band Processes 

If E = 0, (et = 1) the process is described as being narrow banded. Each 

threshold crossing with positive slope leads to a single positive peak 

and all positive peaks have positive magnitudes. Under these conditions 

the peak distribution may be simplified to 

E{N+(x)} 

E{N+ (O)} (8.80) 

Furthermore, for the narrow band case, Lin (1967) has shown that this 

peak distribution is Rayleigh, as described in Section B.3.1.6., where 

X x2 

= - exp(- --) 
(] 2 2(] 2 

x x (B.81) 
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B.3.4.5 Approximate Peak Distributions for Non-Gaussian Narrow Band 

Processes 

Equation (B.80) makes no restrictions on the distribution of the 

underlying narrow band process and can thus be employed when x(t) is 

non-Gaussian 

I Ixl p(x, x) dx 
'00 

J Ixlp(O, x) dx 
·00 

to give the narrow band 'type I' cdf. 

A further simplification can be made when x(t) is independent of x(t) 

since 

p(x, x) • p(x) p(x) 

for which we have 

and 

co 

E{N+{O)} = p(O) I Ixl p(x) dx 
o 

p(x) 

p(O) 

termed the 'type 2' narrow band cdf. 

where p(O) 1s the pdf. of x(t) evaluated at x = 0 
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x (t) 

X(t) 

OL---------------~--------------------~_. t 
T 

FIGURE 8.1 - SAMPLE TIME HISTORY OF RANDOM VARIABLE x 

n 
Tl:: ~Ati 

i: I 

~----------~~------~--~----~----~-+t 
T 

FIGURE B.2 - A CONTINUOUS TIME-VARYING RANDOM VARIABLE x 
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(A) GAUSSIAN pdf . (8) RAYLEIGH pdf . 

Mean x = E{x} 

Mode xp represents the peak of the pdf. given by [dp(x)/dx] = 0 

' Median xe divides the area under the pdf. into two and is given by 

X m 

P(x) = 0.5 = Je p(x) dx = J p(x) dx 

FIGURE B.3 GAUSSIAN AND RAYLEIGH PROBABILITY DENSITY FUNCTIONS 
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Appendix C 

Statistical Errors in 
Random Data Analysis 



C.I INTRODUCTION 

Records of water particle kinematics, hydrodynamic forces, etc. used in 

this study are of finite duration (about 17 minutes). Various 

probabil i ty measures such as means, standard devi at ions, frequency 

spectra and probability distributions have been calculated from these 

finite-length records based on the assumption that each one is a sample 

function (realization) of a stationary and ergodic random process. 

However, it should be recognised that these statistics are subject to 

sampling variability, i.e. they vary from one realization to another 

one. Thus, they only serve as estimators for their corresponding 

parameters calculated from an ensemble of infinite realizations or a 

sample record of infinite length. It is, therefore, desirable to 

establish how close these estimated (from finite-length records) 

statistics are to their true values (calculated from an infinite length 

record) by studying their probabilistic properties. 

The probabilistic properties of the statistics calculated from finite 

length records are very complex and the few statements which have been 

establ ished (Bendat and Piersol, 1971) are somewhat restricted in 

application. In contrast, these statistics when calculated from 

statistically independent discrete observations (for example, from a 

large number of realizations at the same instant) are well established 

and will be presented in Section C.2. However, a large number of 

realizations are not practically available. Hence, the best approach is 

to establish a method to convert each sample record into an equivalent 

number of statistically independent random observations. All intuitive 

method is presented in Section C.3. Section C.4 is devoted to the study 

of the effect of sampling variability on various statistics used in 

this study, where it is shown that Cd and Cm values are not 
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significantly affected by sampling variability and hence are reliable. 

The sampling variability for probability distributions and frequency 

spectra will be discussed in Sections C.5 and C.G, respectively. 

C.2 SAMPLING VARIABILITY OF STATISTICS 

Variance of Statistics 

The jth order absolute statistical moments of a random process, {x}, 

are defined as 

GO 

Ni = E[xi] = f = xip(x)dx 
-00 

(C.l) 

where p(x) is the probability density function of the process. The jth 

order moment may be estimated from a sample of N independent 

observations of the random process (all at the same instant) as follows 

A 1 N • 
N. = _ }; Xl. 

I N j-1 I 

This estimate is unbiased, i.e., 

(C.2) 

(C.3) 

Assumi ng that the observat ions are stat i st i ca lly independent, the 

variance of the estimate would simply be (Kendall et al, 1969) 

(C.4) 

In a similar way, the jth order central moments of the random process, 

{x}, are defined as 
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+-

mJ = E[(x - X)J] = f(x - X)J p(x)dx 

--
(C.5) 

where x is the mean of the random process. The cental moments may be 

estimated from a sample of N independent observations of the random 

process in the following manner 

(C.6) 

and 

(C.7) 

The expressions for the variance of the central moments are more 

complex than those for the absolute moments because the mean itself is 

subject to sampling variability. An approximate expression is 

(C.8) 

From Equations (C.4) and (C.8), the variance of the first four absolute 

and central moments are 

var(M1 ) :: (M2 - M{) IN:: o21N 
var (M2) = (M4 - M22) IN 
var(M3 ) = (M6 - M32 ) IN 
var (M,) = (Ma - M4

2
) IN 

var (D}l) = 0 

var(D}2) == (m4 - m22) IN = (P - 1) o'/N 
var(D}3) == (m6 - m3

2 
+ 9mi - 6~m4)/N 

var(D},) == (ma -mt + 16m2m; - 8m3mS ) /N 
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The variance of the standard deviation and the coefficient of variation 

are (Kendall et al, 1969)0 

(ColO) 

For Gaussian-distributed populations, the following relationships hold 

true 

var{m2 ) = 2a4/N 
llar{m3 ) = 6a6/N 

var{m4 ) = 96a9/N 
var{a) = a2/2N 
var{X = mjmil2) = 6/N 

varO = mJm2
2

) = 24/N 

var{ v = a/M) = ~ [1 
1 2N 

V 2~ v
2 

+ 2{-) ::::-
100 2N 

(ColI) 

The variance of the correlation coefficient between two random 

processes {x} and {y} is 

__ li var{p) 
N [ 

m222 

m'l 

1 m40 
+ - (-

4 m;o 
2m22 ) _ ( m31 

m20m02 m'lm20 
m ] + 13) 

m"m02 

(Co12) 

where N is the number of pairs of observations and mr, is defined as 

mrs = E [ (x - X) r (y - .Y) S] 

(Col3) 
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for the bivariate normal distribution the above equation reduces to 

(C.14) 

The above equation indicates that the variance of the correlation 

coefficient decreases as the correlation coefficient becomes higher. 

It is noted that in the above equations, the vari ance of different 

statistics are functions of different population parameters, which are 

usually unknown. However, in a qualitative sense, if the sample size is 

large, the estimated values of these parameters from the sample, can be 

used instead of the parameters themselves. It should be obvious that 

larger samples are needed for estimating the variance of higher order 

statistics since their variance is dependent on the population moments 

of twice the order and these high-order moments are very unstable, i.e. 

they have large sampling variances. 

Standard deviation of the sampling distribution of a statistic is 

referred to as the standard error of that statistic. 

Probability distribution of statistics 

According to central limit theorem, under very general conditions, the 

sum of N independent variables, distributed in whatever form, tends to 

normality as N tends to infinity. Now many of the ordinary statistics 

can be expressed as the sum of variates, e.g. all the moments, and many 

others may also be shown to tend to normality for large samples 

(Kendall et al, 1969). Therefore, in practice the following steps are 

taken to establish the probability distribution of the statistics: 
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a) Calculate the mean and the variance of the statistic's sampling 

distribution using the known values of the statistics from the 

sample rather than the unknown corresponding population parameter 

values. 

b) Assume that the distribution is normal and hence determine 

probabil it i es from the normal integral with the aid of the 

sampling mean and the sampling variance. 

Just how large N must be for the above procedure to be valid 1s not 

always easy to say. For some distributions, particularly that of the 

mean, quite a satisfactory approximation is given by low values of N, 

say N>30, for others N has to be much higher before the approximation 

begins to give satisfactory results, e.g. for correlation coefficient 

even values as high as 500 are not good enough in samples from a normal 

population. In fact, the form of the parent distribution as well as the 

statistic considered, influences the rapidity of approach of the 

sampling distribution to the normal form. 

C.3 Equivalent Number of Independent Observations for a Sample Record 

of length T 

Tickell et al (1982) used the relationships in Section C.2 to calculate 

the variance of different statistics (moments) from sample records of 

N = 14538 data pOints. However, recognising that the data points could 

not be considered to be independent observations and since their time 

series had been subjected to low-pass filtering of 3Hz, they argued 

that the number of data points must be reduced to N = (3/12.76)*14536 • 

3418 where 12.76Hz was the digitizing frequency (the author believes 

that, in the above calculation, the Nyquist frequency of 6.38Hz should 

have been used rather than the digitizing frequency of 12.76Hz). The 

above procedure is based on the assumption that the important frequency 
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range of the analysed signals covers all the frequencies from zero to 

3Hz. However, the important frequency range for waves and wave forces 

are significantly less than 3Hz and hence the above procedure can be 

unconservative (lead to high estimates of N). The author' suggests the 

following intuitive method for calculating the equivalent number of 

data points of a sample record based on the following arguments: 

a) If the random process (x(t)} has a uniform spectral density 

between 0 and fnyq , the approximate variance of its estimated mean 

is O//(2*fnyq*T) where T is the length of the sample record and 

ux
2 is the variance of the random process (Bendat and Piersol, 

1971) . 

b) If we consider N = 2*fnyq*T independent observations from a random 

variable {x}, according to Equation (C.9), the variance of the 

estimated mean is u//(2*fny/T). 

c) Comparing (a) and (b), it can be concluded that when the spectral 

density is uniform between 0 and fnyq , the sample record can be 

considered to be composed of N = 2*fnyq*T independent data points. 

d) when the frequency spectrum, G(f), is not uniform between 0 and 

fnyq , the equivalent number of independent data points can 

intuitively be determined according to the following 

relationship. 

f,.,~. 

I VG(f) df 
Neq = -:--0 ____ * 2fnyq 

f_ ,--_ 

J /G(fp ) df 

f ••• ,..--__ _ 

T = 2T J /G(f)/G(fp ) df 
o 

o 

(c.15) 
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where fp is the frequency at which G(f) is maximum. Examination of the 

above relationship leads to the following conclusions: 

G !fpl --- -------------------1 

>
!::: 
VI z 
UJ 
o 
...J 
et 
a: 
I
u 
UJ 
Cl.. 
VI 

fnyq 

FREOUENCY 1Hz) 

1) The equation takes account of the fact that the upper limit of 

the important frequency range can be 1 ess than the Nyqui st 

frequency. This is because according to the above equation, the 

contribution of frequencies between the upper 1 imit of the 

important frequency range and the Nyquist frequency to N~ turns 

out to be small. 

2) the relationship takes account of the shape of the frequency 

spectrum by giving smaller Neq values for narrow-band spectra in 

compari son with broad-band spectra. Furthermore, when G( f) is 

uniform between 0 and fnyq , then N~ '" 2fnyq T, as expected. 

3) the reason for the square root in the above relationship is that 

the frequency spectrum is proport i ona 1 to the square of its 

components' amplitudes. 
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The above equation is intuitive and there is room for further 

improvement. For example, it does not account for the position of the 

peak frequency (of the frequency spectrum) with respect to the Nyquist 

frequency; that is in its present form, if the frequency spectrum is 

shifted along the frequency axis as long as its upper limit is below 

the Nyquist frequency, there will be no change in N~. It is possible 

to account for this effect by including an appropriate ('unction of the 

spectral bandwidth (this is because shifting a given spectrum along the 

positive frequency axis leads to a reduction in spectral bandwidth). 

However, further investigation of this topic is beyond the scope of 

this work. 

C.4 EFFECT of SAMPLING VARIABILITY ON DIFFERENT STATISTICS USED IN 

THIS STUDY 

In Section C.3 an intuitive method for determining the equivalent No. 

of independent data points of a finite-length sample record (N~) was 

discussed. Following that method, the equivalent numbers of independent 

data points for water surface elevation for typical low-intensity and 

high-intensity runs (Runs 01 and 15) were determined to be 840 and 500, 

respectively. In view of the similarity between water surface elevation 

and water particle kinematics' spectra and also because of the 

approximate nature of the method used in determining Noq , it is assumed 

that Neq for water particle kinematics are equal to those of the 

corresponding water surface elevations. A similar study for in-line 

forces (at Level 3) yields Noq values of 840 and 550, respectively. 

Based on these values of Neq, standard errors and confidence bands for 

various statistics used in this study have been calculated. The results 

for in-line water particle velocities and in-line forces are presented 
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in Sections C.4.1 and C.4.2, respectively. In addition, when relevant, 

comments have been made on the effect of sampling variability of these 

statistics on Cd and Cm values. 

It should be noted that in the following calculations, the parent 

distributions (i.e. the distribution of an infinite-length record) are 

assumed to be of the Gaussian form so that the much simpler equations 

{Equation C.ll} can be used in determination of the standard errors. 

This assumption is justifiable because of the approximate nature of 

these calculations and also because the deviations of in-line water 

particle kinematics and hydrodynamic forces from Gaussian distribution 

are not excessive. 

C.4.1 IN-LINE WATER PARTICLE KINEMATICS (X DIRECTION. LEVEL 3) 

High-Intensity Runs 

The e~timated mean and standard deviation of water particle velocity 

for Run 15 are M1 = -0.193 m/sec and Uu = 0.823 m/sec. From Equation 
A 1/2 (C.9), the standard error of the mean is a{M1) = 0.823/{500) • 0.037, 

leading to the following normalised standard error for the sample mean, 

fr = la{M1)/M11 = 0.19. Assuming that the sample mean is Gaussian 

distributed, the 95% confidence band for M1 is, -0.265 < M1 <-0.120. 

it is observed that the normalised standard error of the mean is large. 

This may give the impression that the effect of sampling variability of 

the mean (current) on Morison's coefficients could be significant. 

However, it should be noted that it is the value of hi = lal/au = 

0.193/0.823 = 0.23 which is important and since this number is small, 

even relatively large variations in its value will have a small effect 

on the resulting Cd and Cm values. 
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From Equation (C.11), the standard error of the standard deviation is 

a{Bu) = 0.823/{2*500)1a = 0.026 and the corresponding normalised 

standard error is Er = 0.026/0.823 .. 0.032. The normalised standard 

error is small and hence the effect of the sampling variability of the 

standard deviation on Morison's coefficients would be small, too. 

From Equation C.ll, the standard errors of the skewness and kurtosis 

for a typical high-intensity run are 

a{i) = (6/500)1a = 0.109 

a{») = (24/500),a = 0.219 

and therefore, the corresponding 95% confidence bands are 

Low-Intensity Runs 

i - 0.21 < A < i + 0.21 

» - 0.43 < ~ < » + 0.43 

The estimated mean and standard deviation of water particle velocity 

for Run 01 are M1 = 0.144 m/sec and Bu '" 0.293 m/sec. Calculations 

similar to those for Run 15 leads to the following results: a(M1) = 

0.005 m/sec; Er = 0.035 and the 95% confidence band for M1 is, 0.134 < 

M, < 0.154. In this case, Er is small and hence the effect of sampling 

variability of the mean on Morison's coefficients would be small. 

The standard error and the normalised standard error for the standard 

deviation are calculated to be: a(BU> = 0.007 and Er = 0.024. The 

normalised standard error is small and hence Morison's coefficients are 

insensitive to the sampling variability of the standard deviation. 
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The standard errors of the skewness and kurtosis for a typical low

intensity run are (Equation C.II) 

a(i) = (6/840),n = 0.084 

a(j) = (24/840},n • 0.169 

and therefore, the corresponding 95% confidence bands are 

i - 0.16 < A < i + 0.16 

~ - 0.33 < P < ~ + 0.33 

C.4.2 IN-LINE HYDRODYNAMIC FORCES ex DIRECTION. LEVEL 3) 

High-Intensity Runs 

The standard deviation of the in-line hydrodynamic force for Run 15 is 

0.168 KN. The standard error and the normalised standard errors ~re 

calculated to be a(~) = 0.005 KN and Er = 0.030. As observed, Er is 

small and hence Cd and Cm are not affected by the sampling variability 

of the standard deviation of the force. 

The standard error of the skewness and kurtosis for a typical high

intensity run are 

a(i) • 0.104 

a(fl) • 0.209 

and the corresponding 95% confidence bands are 

i - 0.20 < A < i + 0.20 

~ - 0.41 < P < ~ + 0.41 

According to Equations (9.1Sa) and (9.1Sb), Morrison's coefficients, 

when determined from the method of moments, are dependent on the value 

of (P - 3). For Run 15, the estimated value of kurtosis is 4.62, which 
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corresponds to (p - 3) = 1.62 • Cd is dependent on (p_3}1~, whose value 

for the estimated value of p is 1.13 • The lower and upper limits of 

the 95% confidence band for p lead to values of 1.05 and 1.19 for (P-

3}1~. This is equivalent to a few percent variation in the value of Cd' 

which is not significant. On the other hand Cm is dependent on (1 -

0.34(p_3)1n}1n, which is equal to 0.75 for the given value of p. Its 

value for the lower and upper limits of the confidence band are 0.79 

and 0.72, respectively. Again, the variation is not significant and 

hence Cm values can be considered to be stable. 

In the time-domain methods, Morison's coefficients are proportional to 

the correlation coeffi ci ents between hydrodynami c forces and water 

particle kinematics (Equations 9.72b and 9.73b). Therefore, the effect 

of the sampling variability of the correlation coefficients on Cd and 

Cm values must be assessed. In the case of high-intensity runs, the 

correlation coefficients are in the order of 0.70. From Equation 

(C.14), the corresponding standard error is u(p} • (1-0.702)/(500)1/2 • 

0.023, when Neq is assumed to be 500. This leads to a normalised 

standard error of Er = 0.023/0.70 = 0.033 and the correspond i ng 95% 

confidence band will be 0.655 < p < 0.745. Since the normalised 

standard error is small, It can be concluded that for high-intensity 

runs, both Cd and Cm values are only slightly affected by the sampling 

variability of the correlation coefficients and hence are reliable. 

Low-Intensity Runs 

The standard deviation of the in-line hydrodynamic force for Run 01 is 

0.0621 KN. The standard error and the normalised standard errors are 

calculated to be u(uf ) = 0.00152 KN and Er = 0.024, which are very small. 
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Therefore, the effect of the sampling variability of the standard 

deviation of the force on the Cd and Cm values is negligible. 

The standard error of the skewness and kurtosis for a typical high

intensity run are 

u(~) = 0.084 

u(~) = 0.169 

and the corresponding 95% confidence bands are 

~ - 0.16 < A < ~ + 0.16 

~ - 0.33 < P < ~ + 0.33 

The estimated value of kurtosis for Run 01 is 3.30. The lower and upper 

limits of the 95% confidence band for P lead to values of 0.0 and 0.89 

for (p_3)1~. Therefore, the resultant variation in Cd values is large 

and hence it can be concluded that for the low-intensity runs, Cd values 

are unstable and unreliable. On the other hand, the lower and upper 

limits of the 95% confidence band for P lead to values of 1 and 0.85 

for (1 - 0.34(P_3)1/2)1/2. Since the variation is not very large, it can 

be concluded that for the low-intensity runs, Cm values are stable and 

hence reliable. 

In the case of low-intensity runs, the correlation coefficients between 

hydrodynamic forces and water particle accelerations are high (0.70 or 

higher). On the other hand, the correlation coefficients between forces 

and water particle velocities are low (say, 0.20). Again, Neq is 

conservatively assumed to be 500. As was shown for the case of high

intensity runs, p = 0.70 leads to reliable Cm values. However, when 

p = 0.20, the standard error of the correlation coefficient is u(p) = 
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(1-0.202}/(500}'/2 = 0.043, leading to a normalised standard error of 

Er = 0.043/0.20 = 0.21. The corresponding 95% confidence band will be 

0.116 < p < 0.284. As observed, Er is large and hence for the case of 

(inertia-dominated) low-intensity runs, Cd values are significantly 

affected by the sampling variability of the correlation coefficients 

and hence are unreliable. 

C.S CONFIDENCE INTERVALS FOR CUMULATIVE DISTRIBUTION FUNCTIONS 

The cumulative distribution of the sampled data may be compared with 

the theoretical distribution which has been fitted in some way to the 

data. In deciding whether to accept the theoretical model (PT(x)), 

confidence limits are established in the following way {Tickell et al, 

1982}. 

The probability of exceeding a level x. is 

Q = I Pr{x}dx = 1 - Pr (x.) 
x. 

(C.16) 

If we consider a sample of N independent observations from a population 

with probability distribution PT(x), on average NQ values in the sample 

would be found to exceed x •• However, because of sampling variability, 

the number of observations exceeding x. can vary between 0 to N. In 

terms of the binomial distribution, the probability of observing M 

values above x. in a sample of N independent observations when the rate 

of success for each trial is Q is given by: 
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M=o, ••• ,N 

(C.I?) 

where (~) is the binomial coefficient defined as 

(Z) = N! 
(M!) (N-M) ! 

(where N! is factorial N) 

(C.I8) 

Now, if a confidence limit of 1 is desired, calculate J such that 

1 = prob(M = NQ) +l:{., [prob(NQ - 1) + prob{NQ + 1)] 

(C.19) 

The above relationship states that the probability of observing K 

values above x., when K is any integer number in the range NQ±J 

inclusive, is 1. N0W if there is (NQ - J) values above x. in a sample 

of N observations, the probability of any random observation from the 

sample (xJ, be less than or equal to x. is 

= 1 - NQ -J = (I-Q) 
N 

J = probT(xj sx.) + -
N 

J J 
+ - = p + -

N N 

(C.20) 

Similarly, if there are (NQ + J) values above x. in a sample of N 

observations, the probability of any independent observation from the 

sample (x;) be less than or equal to x. is 
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= 1 _ NQ +J = 1 -Q _ J = P _ J 
N N N 

J = probr(xj ~ x.) -
N 

(C.21) 

In summary, the probability of having K values above x. when K is in the 

range NQ ± J and the population from which the sample of N observations 

is chosen has a probability distribution of PT(x), is 1 (Equation C.19). 

On the other hand, from Equations (C.20) and (C.21), the calculated 

probability from the sample would be in the range P ± J/N. Therefore, 

the probability of the calculated distribution being out of the range 

of P ± J/N is (1 - 1). Hence, if the calculated probability deviates 

from the theoretical probability by more than ± J/N, the hypothesis 

that PT is the theoretical distribution is rejected at a level of 

significance of 1-1. 

It should be noted that in evaluating (C.19) the two components in the 

summation are not evaluated beyond the limit (NQ - I) • 1 or (NQ + I) 

.. N. 

Finally, having computed ~ and Pu about Q, the hypothesis that PT(x) 

describes the sample data is rejected at a level of significance of 1-1 

if the cdf of the observed data at x., P(x.), lies outside the ~ to Pu 

range for any x. within the range of X. Table C.1 (Tickell et al, 1982) 

gives some typical values for the confidence band as a function of 1 

and N. These figures have been used in establishing confidence 

intervals for some of the probability distributions in Chapters 4 and 

9. 
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C.6 CONFIDENCE INTERVALS FOR SPECTRAL ESTIMATES 

Spectral estimates obtained from the analysis of records of length T 

from one random process are subject to sampling variability and hence 

are different from one record to another. The di stri but i on of each 

spectral estimate is approximately equal to a chi-square distribution, 

xn
2

, with two degrees of freedom (Bendat and Piersol, 1971). This means 

that the standard deviation of the spectral estimate is equal to its 

mean and hence the accuracy is poor. It is important to recognise that 

increasing the record length does not lead to an improved accuracy in 

the spectral estimates. It only increases the number of spectral 

components between 0 and the Nyquist frequency. In other words, the 

spectral bandwidth (liT = the distance between two successive spectral 

components) decreases. 

In practice, the random error of a spectral estimate is reduced by 

smoothing the calculated spectrum in two different ways. The first way 

is to smooth over an ensemble of estimates. This can be done by 

computing individual estimates from q independent sample records and 

averaging the q spectral estimates at each frequency. The second way is 

to smooth over frequency. This can be done by averaging together the 

results for r adjacent spectral components obtained from a single 

record. Of course the two methods can be combined so that the resultant 

smoothed spectral estimates are chi-distributed with n=rq degrees of 

freedom. It should be noted that the latter procedure leads to an 

increase in effective bandwidth, that is, Af' = rAf = r/T. 

Once the distribution of the spectral estimates are known, their 

confidence i nterva 1 s can be determi ned by referri ng to appropri ate 

tables. The (1 - a) confidence interval is given by 
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n:(f) S G(f) S 

xn: al2 

nG(f) 
2 

Xn : 1 - al2 

(C.22) 

where G(f) and G(f) refer to sample and ensemble frequency spectra, 

respectively. In this study six segments of each record have been Fast-

Fourier transformed (q=6) with five point frequency smoothing (r=5). 

Thus spectra have 60 degrees of freedom (Tickell and Burrows, 1989) and 

the 95% confidence intervals are 

60 G{f) S G(f) S 60 G{f) 
83.30 40.48 

o r 

0.72 G(f) s G(f) S 1.48 G(f). 

(C.23) 

The above relationship has been used to establish 95% confidence bands 

for typical frequency spectra in Chapters 4 and 9. 
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