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Abstract

The work described in this thesis addresses the problems of monitoring the 

execution of modem, high-level language software and, in particular, problems 

associated with the provision of high-level control over target program execution 

with an acceptable performance degradation.

The state of the art indicates that the development of execution monitoring tools has 

largely avoided the issue of higher-level control, probably due to the lack of 

machine support for these facilities and the inevitable excessive performance 

overhead which would result. Only in the field of real-time monitoring has suitable 

machine support been described, usually consisting of specialised electronics.

We describe a monitoring environment which lends itself to the monitoring of 

high-level software, and enables monitoring software to provide the level of control 

required through the use of appropriate software structures and a set of monitoring 

primitives, for which suitable support can be provided.

A set of abstract-level events is introduced which can be monitored by the use of a 

single type of monitoring primitive and the inspection of the target process state at 

single instants in time. A notation is introduced for representing sequences of these 

events as a directed graph, where the arcs indicate a chronological ordering, 

enabling the monitoring of higher-level concepts and information which is not, in 

general, preserved during execution. To provide these facilities at an acceptable 

level of performance degradation, means of implementing architectural support is 

examined.

An experimental implementation of the directed graph mechanism and a microcoded 

version of architectural support for a virtual memory machine is outlined, as is an 

analysis of the performance of the system. The performance figures obtained 

indicate that it is possible to provide monitoring facilities for high-level software 

which performs with an acceptable performance overhead and is applicable to a 

wide range of machines.
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1. Introduction

1.1. Software Development

The software development cycle is usually represented as consisting of six 

stages: specification, functional decomposition, coding, testing, debugging and 

evaluation [Johnson78b]. At all stages of the cycle reliability of the final 

product is an important factor.

The specification of a system attempts to prepare, in a complete and 

consistent manner, the intentions of the user, thus providing a basis for the 

design and implementation of the system [Martin88] [Gerrard90]. A number 

of techniques have been developed to aid in this specification stage of the 

development cycle. Since the first complete technique for system analysis, 

SOP [IBM61], many others have followed, including methods which use 

languages to describe relationships between objects and activities. Examples 

of such languages include TAG [Head71], JSP [Jackson75], PSL 

[Teichrow77], RSL [Alford77], SADT [Ross77] and GIST [Balzer81]. Details 

of these methods can be found in [Fairley85]. The reliability of a system can 

be better guaranteed if a complete specification is provided, which is 

produced more easily and clearly if a formal specification technique is used 

[Quirk85].

The second and third stages of the development cycle, functional 

decomposition and coding, have, perhaps, had most attention paid to them. 

Software reliability has been improved through the advocacy of structured 

programming and the design of high-order languages.
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Many authorities have noted that the latter stages of the development cycle 

have not kept up with the pace of change of the former stages [Evans66] 

[Zelkowitz71] [Glass80] [Plattner81] [Deutsch82] [Gramlich83] [Plattner84]. 

One reason for the apparent lack of interest in the testing and debugging 

stages is the research into formal proofs for program correctness. Such 

proofs include symbolic execution and evaluation [King76] [Cheatham79] 

[Kishimoto83a] [Young88] and the use of flow expressions [Shaw78]. 

However, it can be assumed, from the literature, that it will be some time 

before formal proofs are ready to replace the testing and debugging phases in 

the software development cycle [Kopetz79] [Lauesen79] [Plattner81] 

[Deutsch82]. Thus, it is still important for all programs to enter the testing 

and, if necessary, the debugging stages of development.

Testing techniques attempt to execute the code with enough sets of input 

data to infer a degree of confidence in the code. In all but the simplest cases 

it would be impossible to test all possible sets of input data and so the 

strategy is to develop a system which generates sets of input data which 

adequately test the program [Liskov86] [Weyuker86]. There are many 

criteria for the selection of test data. One method relies on programmer 

experience to choose input data which tests known problem areas [Bauer77]. 

Another method, the acceptance test, uses ’real’ input data, assuming that the 

user, being the only one who has authentic knowledge of the intended use of 

the software, is best able to pick test cases from the actual use of the system 

[Kopetz79]. The former method does not take into account the intended use 

of the product and the thoroughness of the test is likely to vary from one
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programmer to another. The acceptance test provides only statistical data on 

the reliability of the software and is more likely to test only main execution 

paths, thus neglecting the more obscure conditions. A further testing strategy 

is structural testing, where the input data is chosen from examination of the 

program structure [Fairley85] [Ntafos88]. Knowledge of the program 

structure, together with the results of the test, builds the basis of inductive 

evidence for the correctness of software [Kopetz79]. Structural testing occurs 

in a number of forms: for example, all instructions of the program are 

executed at least once, every branch point is tested, in each direction, at least 

once, or all control paths are tested. Research into methodologies for test 

data generation can be found in [Howden75] [Ramamoorthy76] [Clarke83] 

[Girgis85] [Cantone87] [Clarke89]. The ability of such testing tools to 

produce adequate testing strategies can be shown using symbolic traces 

through program instrumentation [Huang78] [Huang80].

Testing reveals the point o f detection of an error, or "bug". This recognition 

of a bug, however, does not immediately reveal the point o f origin of the bug; 

it is the debugging stage of the development cycle which performs the 

necessary diagnosis [Brown73] [Johnson78b] [Fairley85]. It is also suggested 

that the debugging process incorporates the correction of any bugs. To aid in 

the debugging of software many systems provide some sort of debugging tool. 

However, advances in structured programming techniques and high-level 

languages have increased the semantic gap between debugging tools and the 

view the programmer holds of the software. Most debugging tools of today 

still lend themselves more to the debugging of assembly language code than
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high-level language programs. This means the high-level language 

programmer is required to know extra information such as the operating 

system and compiler memory allocation techniques. The inadequacy of tools 

[Gramlich83] has resulted in the continual advocacy of the insertion of special 

probe statements, into the software source, as a debugging method [Bauer77] 

[Deutsch82].

Once all the known bugs have been removed and the program has been 

tested to the required degree of confidence then, if necessary, the evaluation 

stage is entered to highlight areas of inefficient code. The three software 

performance evaluation methods are: selection evaluation, in which 

performance is included as a criterion in the decision to obtain a system; 

performance projection, in which performance is estimated for a system 

which does not yet exist; and performance monitoring, which provides data 

on the actual performance of a system [Lucas71]. Performance monitoring is 

the only technique which applies to an existing piece of software. 

Historically, only hardware performance was evaluated but with larger and 

more complex software systems residing on the hardware it is important that 

the software is as efficient as possible.

12. Execution Monitoring

One requirement which appears to be common to the testing, debugging and 

evaluation stages is the ability of the software developer to be able to view 

the internal execution steps of a process.

"Program testing with execution monitoring is not only used to verify the correct
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operation of a program, but is also very useful when the exact cause of an observed 

malfunction must be determined, when internal details must be understood by 

somebody who is not yet familiar with a program, or when software must be optimised 

to increase execution speed." [Tiberghien86:384]

The technique employed to enable the viewing of the internal steps of a 

process is known as execution monitoring and is based on observability and 

controllability [Kopetz79] [Plattner84]. Observability implies that the internal 

steps of execution, or the flow of both control and data, can be viewed by the 

programmer. Controllability allows the programmer to specify conditions 

which, when they arise, enable interaction with the executing program 

[Seidner83]. Both observability and controllability should be defined in terms 

of the semantics of the language in use [Evans66].

Execution monitoring tools are required because it is difficult to visualise the 

steps involved in program execution [Gramlich83].

"-Whilst we, on the one hand, write and percept our programs as linear sequences of 

text, the actual path taken through the program by control during its execution is far 

from straightforward. It is often difficult to foresee all the possible ways in which 

control can sweep through the program and at the same time see all the consequences 

this can have for program results.

-Not only that the actual development of program execution depends on the state of. its 

data, it is the manipulation of data alone which is the main and only task of the 

program execution. Because of the great variety of ways in which the respective data 

items can be influenced, it is very difficult to assess the actual impact of individual
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operations." [Babcicky80:11]

The implementation of execution monitoring tools can be divided into two 

broad categories: those developed for real-time software and those developed 

for non real-time software. In the case of real-time software, where the code 

is dependent on time, special hardware is used to extract information from 

the executing program and to exert control over it, without upsetting the time 

dependency. This hardware can take the form of simple machine bus probes 

[Fryer73] [Gentleman83] [Tsai90], complex circuitry which allows some form 

of monitoring at the abstract level of the high-level language [Goossens83] 

[SmaI185] [Rijks87], or even the use of a second computer, faster than the 

target machine [Plattner81] [Plattner84].

The implementation of execution monitoring tools for non real-time software 

is based on the fact that there is usually little or no support provided by the 

machine. Historically, execution monitoring was performed via post-mortem 

dumps, snapshot dumps and simple trace facilities [Evans66]. These often 

provided masses of data in hexadecimal, requiring knowledge of the machine 

and, in the case of high-level languages, the compiler. Even today 

interpretation [Evans66], preprocessors [Balzer69] [Cohen77] [Foxley78], or 

simple break-and-examine tools [Pierce74] [Atkinson78] provide the basis for 

most execution monitoring tools.

The high-level language programmer views his program at the abstract level 

of the language in use and, for this reason, any tool designed to aid in the 

development of a program should operate at that same abstract level. Simply
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allowing the programmer to use an assembly language tool via source 

symbols does not create high-level language tools. It is thus necessary to 

incorporate features such as recursion, procedure calling chains, execution 

paths and dynamic variables into development tools, and especially the 

execution monitor. Those systems which do offer a degree of high-level 

abstraction do so at the expense of execution speed, something which is not 

always tolerated by the programmer. On the other hand, real-time execution 

monitors do not delay target process execution but the cost of such 

implementations is usually prohibitively high.

1J. Alms of this thesis

The aim of the work described in this thesis has been to investigate methods 

of providing execution monitoring facilities at the abstract level of the 

language in use, but without incurring either heavy execution overheads or 

requiring extensive hardware support.

The evolution of execution monitoring tools from early hexadecimal dumps 

and traces is given in chapter 2, as is a set of requirements for the monitoring 

of software and, in particular, high-level language software.

Chapter 3 describes a monitoring environment for software monitoring at the 

level of the source. This includes the variety of commands which can arise 

when monitoring high-level language software and also a description of high- 

level language features, such as procedures and recursion, and their effect on 

monitoring. A set of monitoring primitives is introduced which, with 

appropriate monitoring software, is capable of implementing high-level
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monitoring.

The software structures required by monitoring software and the algorithms 

employed to implement the execution monitoring facilities outlined in chapter 

3 are discussed in chapter 4. A number of examples of possible monitoring 

scenarios are also given.

Chapter 5 reviews the current state of architectural support for execution 

monitoring and describes possible methods of implementation of the 

monitoring primitives of chapter 3. A technique for the implementation of 

the monitoring primitives which makes use of the virtual to physical 

translation mechanism, common to many multitasking machines, is described 

and its effect on execution speed discussed.

An experimental implementation of the monitoring software and architectural 

support described in chapter 4 and chapter 5 is described in chapter 6. This 

also includes a section devoted to the analysis of the performance 

interference caused by monitoring activity. Methods of overcoming much of 

this degradation are also described.
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2. Execution Monitoring

2.1. Introduction

Execution monitoring is the viewing of the internal steps taken during 

program execution [Plattner81] [Burkhart84] [Plattner84], This involves both 

the execution of instructions and the accessing and updating of program 

variables. Without the use of a technique to aid in the process of execution 

monitoring a programmer can only infer the internal workings of an 

executing program from the output it produces. For example, output during 

program execution indicates that the process has reached a particular point in 

the code, and the output of program variables gives their values at that 

particular time, but the workings of the rest of the process, the intermediate 

steps which make up the observable effects, are often a complete mystery.

In the testing, debugging and evaluation of programs the execution path is 

often required, something which is impossible with most programs which 

output only a fraction of the required information.

Many current testing methods involve some sort of structural testing 

[Howden75] [Clarke83] [Weyuker86] [Cantone87] [Ntafos88] or data flow 

examination [Huang79] [Girgis85] [Frankl88] [Clarke89] [Weyuker90]. In 

both these cases the adequacy of the testing technique can be determined by 

"watching" the internal steps taken during program execution. During 

structural testing, questions which require answering include: How many 

times did a particular loop iterate, which branch did a conditional take or, 

how many times was a particular procedure called recursively ? Data flow
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examination, on the other hand, requires knowledge of the sequence of 

assignment of values to variables.

The process of debugging asks very similar questions to that of testing and, 

again, these can be answered by an execution monitor. For example: When 

does a variable get assigned an incorrect value or, when does execution 

proceed along an incorrect path ? Knowing exactly where an error occurs 

usually leads to the reason why.

The evaluation stage of program development is concerned with frequency 

counts and timing statistics about the executing code. For example: How 

many times does the memory allocation routine get called or, which routine 

is responsible for the greatest amount of execution time ?

Execution monitoring is also useful when a programmer needs to understand 

a piece of code that he wrote some time ago or code which was written by 

someone else. It has been suggested that the best way of presenting the 

programmer with a complete understanding of a piece of code is via static 

analysis of the program [Tischler83] [Fairley85]. The reasoning behind this is 

that dynamic information concerns only one specific execution run, whereas 

static analysis explores and summarises all possibilities. However, all source 

code must be available to make use of this method and bugs in compilers or 

system software cannot be detected so easily. Thus, it is the view of the 

author and others [Barra83] [Ambras88b] that dynamic information has a 

role to play in the conveying of program workings.

Perhaps the most obvious and easiest implementation of an execution
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monitor is the insertion of monitoring statements into the program source 

code. This method of monitoring is proposed as early as 1951 [Wilkes51] and 

still has a following today [Winder88]. It has a number of applications, 

including testing [Huang79] [Lauesen79] [Huang80], debugging [Ferguson63] 

[Mann73] [Aral88a] [Winder88] and, program profiling and evaluation 

[Huang80]. The manual insertion of monitoring statements requires no 

special machine features or additions to the language translator/interpreter. 

Further to this, the programmer requires no extra knowledge of a separate 

monitoring language and can insert just enough code to perform the 

necessary tasks. The extra code added by the programmer for monitoring 

purposes would take the form of print statements, giving a trace of the flow 

of control, or values of variables. Performance evaluation is possible by the 

addition of extra variables, called monitoring variables, which can be used as 

frequency counters or timers.

Whilst the method of inserting extra code, as described by the above authors, 

is an effective and adequate monitoring technique it does have its flaws and 

limitations. In order to add monitoring statements the programmer must 

have access to the original source code and the resources for recompilation of 

the amended program. It is thus not possible to monitor library routines or 

production code for which the source is not available to the programmer, or 

code on machines for which the language translator is not provided. 

Secondly, because this method involves the insertion of code prior to 

recompilation and execution there is no provision for the flexibility of 

responding to earlier monitoring output. This flexibility means that a
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programmer, during the monitoring of execution, can, if he wishes, alter the 

objects being monitored based on the results obtained from previous 

monitoring statements. Whilst this may be feasible in an interpretive 

environment it is non-trivial for compiled code, although this approach has 

been implemented through the use of an incremental compiler [Fritzson83].

Like any other code the extra monitoring statements take CPU time to 

execute and thus the overall effect is to increase the execution time of the 

monitored, or target, program. Extensive monitoring, requiring the addition 

of many monitoring statements, can seriously degrade performance leading to 

user disapproval of the method [Johnson82]. More seriously, any method 

which leads to a relatively large performance degradation cannot be used in 

conjunction with programs which are in any way time dependent. Also, from 

the viewpoint of the user, the performance degradation must also include the 

cost of recompilation.

Apart from a performance degradation, the addition of monitoring 

statements can have other side-effects on the target program, not least of 

which is the introduction of errors. For example, it is possible, in some 

languages, to reference variables anonymously. This can occur, for instance, 

when array indexing is not checked for bound violations at run-time. Thus, 

accessing an element of the array outside of the declared bounds will 

anonymously reference other areas of memory. VAld addressing occurs when 

the correct value is obtained but from the incorrect location; thus, the 

program appears to function correctly but is logically incorrect. The insertion 

of extra monitoring variables can thus alter the functionality of the target
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program, which is to be avoided if the monitoring system is to be non­

interfering.

The occurrence of the, perhaps, obscure conditions described above is not 

necessary for the introduction of errors. Simple typing errors can ruin a 

whole run, resulting in the inconvenience of corrections and recompilation. 

Similarly, the programmer, when inserting statements, must be careful to 

adhere to the syntax and semantics of the programming language in use. For 

example, amending the code fragment in figure 2.1 may be performed 

erroneously, giving the code fragment in figure 2.2. Although the print 

statement in this amended fragment appears to belong to the conditional 

unit, the actual structure of the code is shown in figure 2.3, with the print 

statement being executed regardless of the state of the boolean in the 

conditional.

if( boolean ) 
statement1 ; 

statement2 ;

Figure 2.1

When the errors outlined above are disregarded the method of inserting 

monitoring statements into the target source still has its limitations. Any 

code which passes through the language translator/interpreter must conform 

to the scope rules of the programming language in use; this restriction limits 

the kind of information which can be extracted from the executing program.
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if( boolean ) 
statementl ;
printf("branch taken") ; 

statement2 ;

Figure 2.2

if( boolean ) 
statementl ;

printf("branch taken") ; 
statement2 ;

Figure 2.3

Further to the above flaws and limitations the technique described is also 

prone to voluminous output. Monitoring statements in loops and frequently 

called procedures can lead to a lot of output, swamping the programmer. 

The code required to limit the amount of monitoring output can often be 

complex and involve the addition of code in more than one place. The 

addition of more code increases the chance of errors and also makes the 

cleaning up process more difficult and error prone. This cleaning up process 

involves the removal of the additional monitoring statements in order to 

create either a production version of the program, or a starting position to 

monitor other aspects of the program.

Some of the problems associated with the insertion of monitoring statements 

can be avoided if the target language provides the extensions for monitoring. 

Variable associations [Hanson76] and event associations [Hanson78] provide
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language extensions for SNOBOL4 enabling user-defined functions to be 

associated with the act of referencing a variable or the occurrence of an 

event respectively.

It can be concluded that the insertion of monitoring statements into the 

target source is far from adequate. There is need for a tool which gives the 

programmer an insight into the internal states of a process, but without the 

restrictions and problems outlined above. The tool must, therefore, work 

without the inconvenience of user-addition of statements and recompilation 

stage, and work outside of the normal restrictions of the specific language ;u  

use.

22. Classical Tools 

22.1. Background

The first computer programs were written in assembly language; this having a 

direct relationship to the code executed on the machine. The method, 

outlined in the previous section, of inserting monitoring statements into the 

source code is, in general, highly unsuitable when applied to assembly 

language programs. The first reason for this is that at the assembly level of 

programming the simplest high-level language construct (for example, a print 

statement) can be made up of many instructions. Secondly, there is often a 

requirement that certain registers and condition flags are preserved between 

statements; this is sometimes made even more complicated due to an often 

complex programming style.
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Both the above make it difficult for a programmer (especially a programmer 

who needs to monitor code he did not write) to modify source in order to 

insert monitoring code. A tool is required which inflicts no interference on 

the preservation of information between instructions and is invoked simply 

and quickly. The first monitoring tools, developed primarily to aid in the 

debugging of assembly language programs, are now referred to as classical 

monitoring tools. Whilst primitive in their operation they implemented a 

much needed software development tool, and many of the monitoring 

systems available on present computers are still based heavily upon them.

In the early days of computing programming was performed at the machine 

console in an interactive manner. With the introduction of multi-user 

systems the programmer interacted with the machine via a job queue in a 

batch processing approach. Thus, two styles of monitoring systems evolved 

for the two differing methods of operation. Post-mortem monitoring systems 

were developed for the programmer in a batch processing environment where 

the program is submitted along with a complete set of input data to the job 

queue. Results from execution are delivered back to the programmer once 

execution has completed. Conversational monitoring systems were developed 

for the other mode of operation, that is, interactive at the machine console 

or, as developed later, in a time-sharing environment. Results from 

execution, in the interactive mode, are supplied to the programmer as they 

are produced and the input data given on demand. Thus, the input data can 

be modified according to program events.
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22 2 . Conversational monitoring system

The conversational, or break-and-examine, tool allows the programmer to 

interact with and extract information from the executing program. The same 

tools are described as "on-line” tools by Evans and Darley [Evans65] 

[Evans66] to distinguish them from tools for batch processing environments.

Conversational tools were first developed for monitoring at the computer 

console and evolved from the use of switches and lights [Evans66] 

[Johnson77]. The method of utilising console switches and lights involved 

altering machine memory and registers by setting the switches appropriately 

and observing execution through the console lights. A relatively modern 

: approach to using this method is described by Hurst [Hurst84], In this 

system the lights indicate execution within a range of addresses, and the 

switches allow the programmer to alter the ranges associated with the lights. 

Thus, the programmer is able to monitor program behaviour dynamically.

Classical conversational software tools often offer the following facilities 

[Evans65] [Bauer77]:

• Setting/resetting of code breakpoints.

• Examination/modification of memory/registers.

• Insertion/deletion of source lines.

• Search of memory for bit pattern.

Code breakpoints cause suspension of the user’s program and return control 

to the software monitor when a specified location is reached during 

execution. The programmer is thus able to control program execution by the
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setting of code breakpoints at appropriate points in his code. Once control is 

passed to the monitor the examination and modification of memory and 

registers can be used to locate bugs or test that routines are functioning as 

expected.

Conversational systems differ in the way that commands are entered and in 

the control of the display. MONITOR [Gladstone76] allows memory 

addresses to be entered as hexadecimal numbers or ASCII characters with 

the added benefit of expression evaluation. Further to this is the ability to 

use indirect addresses and the user-defined symbols found in the assembly 

language source. The display, however, consists of only hexadecimal or 

ASCII values of machine registers and main memory. The programmer is 

restricted to the use of only four breakpoints, which the designer of the tool 

states is sufficient because multiple breakpoints only confuse the 

programmer. A facility not always found in conversational systems is 

provided by the trace command. With this operating, the values of the 

machine registers are saved after the execution of each instruction. Thus, a 

history of execution is available after execution has completed.

DDS [North77] is a similar tool to that of MONITOR but allows the user to 

specify that instructions are to be displayed in the mnemonic form as used in 

the assembly source. The display in DDS is updated automatically during 

execution with the update step defined by the user. This also displays the 

currently executing instruction. Both DDS and MONITOR offer a single 

step facility whereby the programmer regains control via the conversational 

tool after the execution of only a single instruction. This facility is only
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practical for examining small segments of a program due to the time 

involved; it is assumed that the programmer has narrowed down the area of 

the program to be monitored using the breakpoint facility. DDS also offers 

the programmer a facility that is not often found in assembly language 

monitors; namely a breakpoint on the accessing or updating of memory 

locations.

A tool called DEBUG [Evans65], based on TIC and DDT, offers facilities as 

described above but attempts to overcome problems associated with patching 

code in symbolic assembly language and the production of a "clean" version 

logically equivalent to the patched program.

Assuming that the machine hardware provides no support for the 

implementation of code breakpoints there are two main methods of 

implementation:

1. Replacement of the instructions at the specified address with a jump to 

subroutine instruction, the call address being that of the debugging 

routine.

2. Replacement of the instructions at the specified address with a trap 

instruction which causes an interrupt. The address of the debugging 

routine is picked up from the interrupt vectors, the transfer of control 

performed by the hardware or the operating system.

It is important that the execution of the program is not altered in any way by 

the interference of the monitor execution. For this reason all machine 

registers, which must be preserved between between instructions, are saved to
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a scratch area of memory prior to the transfer of control to the monitor. On 

specifying continuation of the program, control is transferred back to the 

calling point by restoring the saved resources from the scratch area and then 

executing the replaced instruction(s) before performing a return from 

subroutine or interrupt.

2 2 3 . Post-mortem monitoring system

Post-mortem monitoring tools, developed primarily for batch processing 

environments, provide execution information for analysis when program 

execution has either ended normally or with a fatal error. Because program 

execution is activated as a job on a queue any input must be supplied prior to 

job initiation. This also applies to user-specified input for the monitoring 

routines. The transfer of control at code breakpoints is performed in the 

same way as described in the last section for conversational tools. However, 

instead of a routine which converses with the programmer, the post-mortem 

routines use the pre-specified commands from the programmer to extract the 

required execution information.

There are four main tools developed within this class of monitoring system 

[Ferguson63] [Bauer77]:

1. The post-mortem dump or system dump is probably the simplest of the 

tools to implement, and is usually used to gain information at the point 

of a fatal error. When a fatal error occurs during program execution, 

control is passed to the post-mortem dump routine which prints the 

values of machine registers and memory locations of the monitored
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program at the point of the error. The output, however, is usually 

produced in either hexadecimal or octal with no attempt at conciseness.

2. The snapshot dump is similar to the post-mortem dump above, except 

that the output occurs as soon as a programmer-specified address is 

reached and not upon process termination. Usually the programmer is 

able to specify as many snapshot points as required and also the 

information to be placed in the dump. When a snapshot point is 

reached during execution a jump to the appropriate monitoring routine 

occurs and the desired information is extracted from the process 

memory and is output. Execution of the monitored program 

commences with the instruction replaced by the code breakpoint 

instruction. This tool relieves the programmer of the need to insert 

monitoring statements into the program source.

3. A trace facility produces output on execution of each instruction, usually 

within a programmer-specified range. The information produced in this 

case would typically consist of the program counter, other important 

registers and the instruction currently being executed. This facility is 

typically implemented by entering an interpretive mode which extracts 

the necessary information before realising the instruction in software. 

Interpretation is resorted to in this case as otherwise the monitoring 

system would need to set code breakpoints on every instruction.

4. The traceback monitoring tool indicates how control reached the current 

point of execution, the output triggered by an error. This facility
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requires that appropriate information is extracted at instructions where a 

transfer of control occurs. The information required is usually the 

values of the machine registers. The traceback tool could also show 

where and to what value memory locations are altered.

22.4. Assessment

In giving a degree of insight into an executing program the classical 

monitoring tools release the programmer from the burden of inserting 

monitoring statements into the source code but do not solve all the problems 

associated with execution monitoring.

One of the greatest drawbacks to the classical tools is the amount and format 

of the generated output. This is often in hexadecimal or octal and can be 

extremely voluminous, making analysis of it difficult. Unless the programmer 

is able to specify exactly what information is to be displayed in a dump 

facility then the output will consist of the working space of the program. 

Even if the data generated in a dump can be tailored to the user’s 

requirement, it is quite easy for the amount of output to exceed that which 

can be easily analysed. This can happen, for instance, with the snapshot 

dump, when the snapshot points, specified by the programmer, are executed 

many times, for example, in a loop or frequently used subroutine. This can 

be overcome by a condition attached to the snapshot point which indicates 

either a maximum number of times it can be acted upon or how many times 

it is ignored before being recognised. A similar method of reducing the 

volume of output can be applied to the trace tool, where only a specified
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number of executions of a particular location cause any output. This would 

be in addition to restricting the trace to between two specified locations.

The use of an interpreter for the trace facility causes severe performance 

degradation as the execution of each instruction is performed by software. 

This can be reduced significantly if the range specified by the programmer is 

the only area to be interpreted, with execution outside this area proceeding as 

normal. The post-mortem dump adds no overhead to program execution 

times and the snapshot dump can add very little if used sparingly.

The displaying of memory and addresses as hexadecimal or octal values can 

be very tiresome for the programmer as the view of the program during the 

monitoring stage is different to that of the coding stage, where symbols are 

used. It is thus helpful if instructions in memory can be displayed as 

mnemonic values and addresses be displayed as symbols used by the 

programmer in the assembly language source. The lack of readable output is 

even more confusing for the high-level language programmer 

[Satterthwaite72]. An increase in the use of structured high-level languages 

has led to an increase in the number of programmers who know little about 

the compiler for memory allocation and instruction generation, and even less 

about the workings of the underlying machine. It is also apparent that these 

programmers are not prepared to learn the skills necessary to use classical 

tools for high-level language monitoring [Ferguson63].

Perhaps the simplest approach to making the classical monitoring tools more 

appealing to the high-level language programmer is to use program source
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symbols in commands and output. Post-mortem dumps for high-level 

languages [Bayer67] [Satterthwaite72] show the failure point in terms of a 

"stack" of procedure calls and the values of variables local to each procedure 

invocation. The latter system for the programming language ALGOL W 

[Satterthwaite72] also provides a high-level language trace facility which 

displays the current point of execution as a source code line number. Also 

displayed are the values of any variables used in expressions. The 

performance is quoted as 50-150 times slower when tracing. Another 

approach to the problem of providing post-mortem dumps for high-level 

languages is performed by STABDUMP [McGregor80], a symbolic dump 

interpreter. The STABDUMP dump analysis program picks up the 

monitored program’s symbol table information and the store image of the 

program at the point of failure, and returns values for all variables including 

the contents of data structures such as arrays and records. This is performed 

in addition to the "unwinding" of the procedure call stack. One advantage of 

this method over previous methods is that interpretation of the classical 

dump does not incur a performance overhead during program execution.

The use of compile-time symbol tables for the production of symbolic 

monitoring output has also been applied to conversational systems. DEBUG 

[Atkinson78] for the programming language BCPL is a break-and-examine 

tool which allows symbols to be used for breakpoints on entry to program 

functions. However, breakpoints of a finer granularity require a machine 

address, as does the examination and alteration of program variables. Thus, 

the programmer must have knowledge of the compilers memory allocation
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routine. DDS [Pierce74] is a similar break-and-examine tool with the extra 

feature of allowing symbolic names to be used to refer to program variables 

and line numbers to indicate particular source statements. The system, 

however, compromises its high level language functionality by regarding 

multidimensional arrays as vectors, the programmer having to work out the 

correct subscript to access an element. DDS also allows symbolic patching of 

the original source code.

The classical monitoring tools have also been improved upon for assembly 

language debugging and testing. ALADDIN [Fairley79] allows the assembly 

language programmer to set assertions that describe logical relations among 

various components of the program state. This feature is described as a 

"location independent breakpoint facility". Because ALADDIN must take 

control between execution of successive instructions, execution of the 

monitored program is interpreted, leading to a performance degradation of 

100 or more. FADEBUG-I [Itoh73] is a module testing facility for assembly 

language programs. The programmer uses SET statements to prepare a set 

of input data and uses a CHECK statement to ensure that the correct results 

are obtained after module execution. The programmer is also able to obtain 

a listing of all the physical routes in a module from entry to exit. Graphbug 

[Davies86] provides a graphical display to a conventional conversational tool. 

The display can show areas of memory, register values and the next 

instruction to be executed; this is updated during execution but all values are 

in hexadecimal.

The classical monitoring tools, even with the modifications described above,
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are of little use to the high-level language programmer writing programs with 

high-level concepts such as procedures, recursion, local variables and 

dynamically allocated memory.

23. High-Level Language Monitoring

2.3.1. Requirements

Many of the requirements of monitoring systems were identified as early as 

1966 [Evans66]. From this, and also subsequent studies including [Bauer77] 

[Lauesen79] [Tratner79] [Glass80] [Seidner83] and [Burkhart84], the 

following major themes emerge:

1. The monitoring system must provide the user with full flexible control 

over the execution of his program. This requirement is perhaps best 

described using the method of Plattner and Nievergelt [Plattner81]. A 

process, created by program execution, can be thought of as the 

trajectory of a point moving through space. The space, through which 

the point moves, is the state space of the process, and is a cartesian 

product defined by the program being monitored and the semantics of 

the programming language it is written in. This state space is a set of 

states which includes all potential states of the process, and deliberately 

includes states which will never be reached, as it is, in general, 

impossible to decide whether a given process will ever reach a particular 

state. Each state of the process state space consists of the following two

components:
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(i) A control component which reflects the active points of control. 

This ranges from the program counter in the simplest of languages 

to a dynamic stack structure for a more complex language 

incorporating procedures and recursion.

(ii) A data component which consists of all input data and internal data 

currently belonging to the process. Again, the complexity of this 

process state component depends on the complexity of the 

programming language.

The point describing a trajectory through the process state space 

indicates the current process state and moves through the state space 

according to the statements within the target program.

The requirement that the user is allowed full, flexible control maps onto 

the concept described above as the provision of a facility for the 

highlighting of a set of states. This highlighting produces two regions 

within the state space of the process. In one region, the monitoring 

predicate which defines the two regions, is false and in the other region 

it is true. Monitoring is thus the "watching" of the trajectory of the point 

as it moves through the state space of the process; the monitoring action 

is performed when the point crosses the boundary of the region yielding 

true for the monitoring predicate.

2. In order for the programmer to be able to fully observe the execution 

steps of the monitored program the entire working space of the process 

must be visible to him. This includes being able to see the current point
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of control in terms of which source statement is currently being executed 

and the procedure invocations undertaken in order to reach this point; 

all program data must be accessible, even program variables which are 

currently out of scope and thus not visible to the executing code.

It may be the case that program execution up to the desired point of 

observation is expensive in execution time. The process of debugging, in 

such a situation, would require that as many bugs as possible were found 

in each run [Lauesen79]. For this reason it is desirable that the 

programmer can alter the values of erroneous program variables in 

order that execution can continue normally to find the next bug. This 

altering of the process workspace has other uses, including the setting up 

of variables for testing and evaluation purposes. As with the 

examination of the process workspace it must be possible for the 

programmer to alter any location within the entire state space including 

values of variables not visible to the executing code.

Further to the above facility of examination and alteration of program 

variables is the examination and alteration of the program source code. 

This can be implemented easily within an interpretive environment, as 

the source code provides the executable code directly. The same facility 

is obviously more difficult to implement when a translation phase is 

used, as the source code is not directly executed but produces executable 

code via the compiler. Within earlier monitoring systems it was often 

impossible to alter the code executed unless the programmer was 

prepared to delve into the assembler version of the high-level source
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[Evans66], A primitive facility would allow the programmer to insert 

patches into the executable code using source language terms [Pierce74]. 

This, however, does not, in general, give executable code equal to the 

code which would be generated from the amended source code. The 

use of an incremental compiler, where each source statement is 

compiled separately, allows the programmer to make alterations to the 

program source which are reflected immediately in the executable code 

[Fritzson83]. The automatic updating of the source is also discussed by 

Ferrante [Ferrante83], Another method of implementing dynamic 

changes is to alter the source code, recompile it using the standard 

compiler and then change the current core image to incorporate the new 

code and data [Cook83].

3. Due to the proliferation of high-level languages and common run-time 

environments found on many machines it is possible to write program 

modules in different languages and then link them together to form a 

multilingual process. It would thus be beneficial to the programmer to 

have a single monitoring system to service all languages [Elliott82] 

[Beander83]. It would also prove more economical to write and 

maintain a single system, with the programmer having the benefit of a 

consistent interface [Victor77] [Hart79].

The diversity of languages means that a language independent 

monitoring system in an interpretive environment is infeasible 

[Johnson78b]. Language independence is achieved to a certain degree 

through the use of compiled code, as the object code produced is the



- 30 -

same for all languages. However, in order that the programmer can 

monitor programs using the symbols found in the source code the 

monitoring system must have access to the symbol table generated 

during translation. There are two approaches to supplying a language 

independent monitoring system with the necessary generated symbol 

tables. Either a common format symbol table is generated for all 

languages enabling the monitoring system to access them in a consistent 

manner [Beander83] [Cardell83] [Walter83] or else, the monitoring 

system has a number of language interfacers, one for each language it 

supports, which access the symbol table in the required way and pass the 

information to the monitoring system in a consistent manner [Victor77] 

[Johnson78b].

Language independence by itself, however, is of most benefit to the 

designer and developer of the monitoring system rather than to the 

programmer performing the monitoring. In order to specify monitoring 

commands for a number of different languages the programmer would 

need to use a monitoring language which looks like none of the 

individual languages but incorporates features from all of them 

[Elliott82]. This would be both unnatural for the programmer (writing 

programs in one language and monitoring them in another) and also 

require the learning of the new monitoring language. A  better 

technique would be to make the monitoring system language 

independent but appear language dependent to the programmer; this we 

call language sensitive [Johnson77] [Goodman82] [Beander83]
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[Gramlich83]. For each language supported the monitoring system 

would need to know the syntactic and semantic rules of the language 

including: scope rules, referencing of structures, and the procedural, 

arithmetic and conditional logic which makes up language expressions.

A  problem arises when programming languages are used as the 

command language for the monitoring system in that most languages do 

not possess features to enable the specification of, for example, 

breakpoints. Because of this the language sensitive command language 

of the monitoring system needs extensions for unsupported monitoring 

facilities [Ashby73]. It is possible and, in fact, desirable that these 

extensions are common to the entire set of supported languages, giving a 

natural and consistent view of the system to the programmer. The two 

extremes when providing a set of language extensions for monitoring are 

reflected by the UNIX debugger cdb [Cdb(l)], which provides a large 

number of single and two letter commands, each providing a different 

monitoring facility, and DISPEL [Johnson81] which looks like an 

algorithmic programming language and is provided for the writing of 

routines from primitives, which are then called upon when required.

4. Program optimisation during program translation retains the 

functionality of the original program but can alter the structure or 

intermediate results to save time and/or space [Hennessy82]. The 

ability to monitor optimised code is advantageous for a number of 

reasons. Firstly, it can be the case that it is impossible to obtain a 

working, unoptimised version of the program. Reasons for this include
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the compiler performing certain optimisations during normal operation, 

even with no optimisation specified, and the code being optimised 

because of timing or size constraints. Secondly, even if it is possible to 

generate a special unoptimised version of the code it may be the case 

that the error is no longer apparent, due to timing or structural 

differences.

Optimisation occurs in many forms but usually involves the elimination, 

duplication or relocation of code; the elimination or relocation of 

variables; or the simplifying of subexpressions [Ferrante83] [Seidner83] 

[Zellweger83] [Richardson89]. It is the altering of the code in this way 

that affects source level monitoring; the correspondence between the 

source program and the optimised executable version is often very 

complex. Problems occurring during the monitoring of optimised code 

include:

• Trying to set breakpoints on removed code (monitor would respond 

with no such code).

• Tracing of relocated code (trace would show code in different 

order).

• Resuming execution at duplicated code (execution can resume at a 

number of different points).

• Tracing relocated or eliminated variables (expected references 

and/or updates would be missing from the trace).

There are two methods of overcoming the problems of source level
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monitoring of optimised code. Either the monitor exhibits: (i) correct 

behaviour, or (ii) transparent behaviour. Correct behaviour means that 

the monitor responds with, in source program terms, the relevant 

changes caused by the optimisation at the execution point. The 

programmer would, in this case, receive messages from the monitoring 

system informing him of, for example, code movement or the removal of 

variables. A better solution, transparent behaviour, responds as if the 

program were compiled without optimisation. Thus, the programmer 

does not see the effects of optimisation during monitoring. Navigator 

[Zellweger83] attempts to provide transparent behaviour for inline 

procedure expansion (code duplication) and cross-jumping (code 

elimination). It does this by replacing the usual tables generated during 

translation with two tables; one mapping source code to object code and, 

the other, object code to source code. The problems of optimisation 

and, in particular, code motion and variable relocation are discussed by 

Hennessy [Hennessy82], as are algorithms for overcoming them.

The objectives of the above requirements are to create a monitoring system 

which is able to monitor in terms of high-level concepts but does not require 

the programmer to learn a new language or large set of commands. Other 

features which can improve a monitoring system include a user interface 

driven by windows and menus and the ability of the monitoring system to be 

applied to a program at any point, that is, before execution has started, 

during execution, or even after a fatal error has caused termination.
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2.3.2. Monitoring with interpreters

Interpreter based systems have been, and still are, a means of implementing 

monitoring facilities for high-level languages. The reason behind the relative 

ease of implementation lies in the fact that execution of the target program is 

performed by software. Thus there is no complicated hardware to interact 

with in order to provide even simple facilities, such as breakpoints. The 

monitoring software required in order to implement monitoring tools can be 

inserted into the language interpreter at the appropriate place. For example, 

a facility for the tracing of updates to a particular variable can be 

implemented simply by checking identifiers within the code which emulates 

variable assignment. This same feature in a translator environment is non­

trivial to implement as many machines do not provide facilities in hardware 

for the trapping of updates to memory locations and, consequently, many 

monitoring systems resort to either machine instruction single stepping or 

interpretation.

In the 1960’s debugging features appeared for on-line LISP implementations 

for the MAC time sharing system, the M-460 system, the SDC time sharing 

system, the Berkeley system, the DEC PDP-6, and the DEC PDP-1. The 

QUICKTRAN system implements debugging tools for interpreted 

FORTRAN programs [Evans66].

The MAC and M-460 systems made the tracing facilities of batch processing 

systems available to on-line users, with an extended capability of making the 

tracing conditional. Along with this was a program which allowed the editing
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of the internal representation of LISP programs, permitting the modification 

of the program, and thus, by way of inserting control transfers, implementing 

breakpoints. This editor uses the LISP language itself for adding extra code 

making the addition of complex conditional monitoring events easy compared 

to assembly language systems.

The QUICKTRAN system allows modification of the FORTRAN program 

and facilitates non-conditional breakpointing by including a statement which, 

when reached, transfers control to the user. As with the LISP systems 

tracing is featured; in this system on assignment and control transfer. 

Further to this are diagnostics to inform when code is never executed, 

variables never set, or variables never used.

Monitoring systems implemented in an interpretive environment do not ail 

date from the 1960’s. More recently interpretation has been used to 

implement a debugging facility for the Chill Compiling System by providing 

virtual machines through high-level emulation of hardware independent code 

trees [Goodman82]. MicroScope [Ambras88a] [Ambras88b] builds a data 

base on a LISP program and allows the programmer to monitor execution, 

display data changes and control flow dynamically with execution performed 

via interpretation.

Two major problems arise when monitoring is implemented using an 

interpretive environment: the introduction of errors and the degradation of 

execution performance. Both of these are, however, of minimal importance 

if the environment used to implement monitoring facilities is the same
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environment which is used to run production versions of the program. Thus, 

the problems only manifest themselves to a significant degree if interpretation 

is resorted to for monitoring only.

The switching from a translator environment to one involving interpretation 

introduces a significant performance overhead because the desired effects are 

realised in software rather than directly in hardware. This is something 

which the programmer may not be willing to endure and is unacceptable for 

software which must conform to timing constraints.

The second problem which arises with the use of interpreters is the 

introduction of erroneous behaviour. The writing of an interpreter for a 

given language is a non-trivial task and there is a chance that programs 

interpreted will vary in functionality from the corresponding translated code. 

Errors occurring in program execution may thus be limited to only one of the 

environments, leading to mistrust in the system [Mikelsons83].

2.3.3. Monitoring with preprocessors

A high-level language monitoring system can be implemented by passing the 

source code through a preprocessor which inserts monitoring statements at 

the appropriate places. The monitoring statements which are added can 

perform simple tasks such as recording entry to a particular procedure or 

more complex actions requiring conditionals based on program and monitor 

variables.

There are two approaches to monitoring with automatically inserted 

monitoring statements via a preprocessor. Either the monitoring statements
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output information during execution, which are then analysed by the 

programmer in order to find program bugs or ascertain correctness, or the 

extra monitoring statements output information to a database which can then 

be interrogated by the programmer, using an inquiry language, after 

execution has terminated.

Ctrace [Steffen84], BUGTRAN [Ferguson63] and two other systems 

[Arisawa80] [Clark83] are examples of the first variety. Ctrace is a 

preprocessor for the C programming language which prints the executing 

statement, in the form of a source statement, and also the values of variables 

the current statement uses or modifies. This particular tool is proposed as a 

portable monitoring tool because all monitoring code passes through the 

normal C compiler and is thus translated with the rest of the program into 

appropriate machine dependent code. A graphical system for Pascal 

[Clark83] performs essentially the same function as Ctrace except the 

information is presented in the form of diagrams based on Nassi- 

Shneiderman charts.

BUGTRAN is a tape-to-tape prepass debugging aid for FORTRAN. This 

system differs slightly from the previous monitoring tools in that the user 

inserts monitoring commands into the source, which are translated into 

appropriate FORTRAN statements by the preprocessor. The programmer, 

using BUGTRAN, can specify the type of checking or information required 

and also restrictions on when the BUGTRAN statement is effective. 

Information available includes the printing of variables updated in 

expressions, statements executed, snapshot dumps or entry and exit to and
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from subroutines or functions. This can be restricted to a region of the 

program, defined by statement numbers; at a particular depth of subroutine 

call; and whilst an arithmetic expression yields a value true. A similar system 

called STAR [Arisawa80] uses language extensions to implement recursive 

subroutines, as well as assertion, variable dump and snapshot facilities. 

Particular attention is paid to the reporting of messages in terms of the 

original source program and not the version after the preprocessor stage.

Of the systems which collect information for presentation upon termination, 

one of the simplest is probably SCAMP [Foxley78]. This is a profiling system 

for ALGOL68 R programs. Given a syntactically correct program an 

amended program is produced which when executed gives frequency counts 

for five ALGOL68 constructs: blocks, routine bodies, if, case and do 

statements. Restrictions placed on the source by the preprocessor include: if 

and case clauses must be written in the full form; externally defined and 

library routines must be called indirectly, via dummy procedures; but 

implicitly called system routines cannot be monitored. The increase in 

execution is estimated to vary from 5 per cent to 100 per cent. Frequency 

counts can be a help in the improvement of efficiency in code but do not 

show any kind of control or data flow from the executing program.

Another approach to providing monitoring facilities via a preprocessor is to 

create a database or history tape of a program’s execution and then allow the 

programmer to access it using an inquiry language. One such system for 

ALGOL60-like programs [Cohen77] uses a source translator with the 

resulting instructions interpreted. The database created consists of an array
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of label trajectories which hold the information on the label code, the 

variables updated and the operators used. The inquiry language can then be 

used to answer questions such as: what is the value of a variable at a 

particular label and at what label does a variable attain a certain value ?

A similar system, EXDAMS [Balzer69], was developed to satisfy three 

requirements: to test proposed, but unimplemented, debugging and 

monitoring facilities; as an extendable facility to which new monitoring aids 

could be added easily; and as a system to provide independence of a 

particular machine, the implementation of the language, and also the source 

language used.

EXDAMS is a four-phase system: program analysis, which creates a model of 

the program source (that is, all the static information), and inserts the 

necessary monitoring statements to create a history tape at run-time; 

compilation of the modified source by the standard translator; run-time 

history-gathering where the compiled code is executed (the inserted 

statements building the history tape); and debug-time history-playback to 

respond to programmers monitoring requests.

Included in EXDAMS is flowback analysis, a facility to aid in the debugging 

of programs. Given a particular value this shows how execution proceeded to 

produce the specified value; appearing in the form of a tree, each node 

representing a source language assignment, the links giving the nodes of sub­

expressions.

The addition of new monitoring aids requires only an addition to the
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command language, the appropriate code to request information from the 

information retrieval routine, and process the information for displaying to the 

programmer. Balzer attributes the attractiveness of EXDAMS to the ability 

to run programs at variable speed, in either direction, together with the 

ability to stop execution, switch monitoring tools, and continue.

Systems like EXDAMS which create history tapes or databases are I/O  

bound; the considerable amount of information being placed in these tapes 

causing a severe performance degradation. A solution put forward by Cohen 

and Carpenter [Cohen77] is for the programmer to specify which program 

variables or operators need to be stored in a given run. EXDAMS tries to 

reduce I/O  by using the model to interpret what has been stored in the 

history tape as opposed to storing both values and identifiers of variables.

The problems associated with monitoring systems, based on preprocessors, 

are basically the same as those for the manual insertion of monitoring 

statements. The use of preprocessors does, however, reduce the problem of 

errors in the actual monitoring statements and also solves the problem of 

removing monitoring statements after a session of monitoring. A restriction 

which arises with any system that applies pre-specified monitoring requests to 

an execution run is the inability to alter monitoring requests, variable values 

or the point of control during execution.

2.3.4. Conversational monitoring systems

Simple monitoring systems developed for high-level languages implemented 

on small machines [Pierce74] [Atkinson78] are little more than the classical
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conversational tool described in section 2.2.1. These systems allow code 

breakpoints on source statements or program procedures and enable the 

programmer to examine or alter program variables. However, it is often the 

case that the programmer must know the memory allocation and code 

generation techniques of the compiler. Due to the decrease in cost of 

computer memory it has become more and more feasible, over the years, for 

larger, more complex monitoring systems to reside on machines and also for 

the storage of translation information generated by the compiler, which 

would normally be discarded once translation had completed.

Source level, conversational monitoring systems, allowing programmer 

interaction with an executing program are now commonplace on many 

machines. Dbx [Dbx(l)], found on 4.2BSD UNIX machines, provides 

symbolic debugging for C and FORTRAN programs. The programmer is 

able to trace source statements, procedure or function entry, and variable 

update. It is also possible to restrict the tracing to a particular procedure or 

function invocation, as well as associating a condition with the monitoring 

command which must evaluate to true for the information to be reported. 

Halting of the target process is specified in terms of a source statement, 

procedure or function entry, or variable update, all with an optional condition 

which must yield true if a halt of the target process is to be performed. 

Other commands enable the single stepping of source statements, as well as 

the displaying and altering of program variables. A similar system to Dbx, 

called Cdb [Cdb(l)], provides essentially the same facilities as Dbx, with extra 

facilities for the monitoring of procedure invocations at different depths on
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the procedure call stack. However, the procedure invocation on the stack is 

specified by an absolute value which restricts the ability of the programmer to 

perform complex monitoring associated with procedure calling chains. Most 

commands have an optional command list associated with them, enabling 

commands to specify further commands, and thus allowing more complex 

monitoring, although the programmer must handle all the levels of control 

himself. The command language of Dbx uses meaningful words such as 

"stop" and "trace", whereas cdb uses only single or two letter commands 

which can, in the opinion of the author, be easily forgotten making the system 

tiresome.

It is the author’s experience that one of the easiest and most useful 

monitoring systems is VAX DEBUG [Digital86]. The command language 

consists of meaningful words with consistent qualifiers. As with cdb, 

commands can be associated with breakpoints, thus allowing complex 

monitoring predicates, although again, the programmer must handle 

housekeeping duties. For example, local variable monitoring requires that a 

breakpoint is set on entry to the appropriate procedure. The action of this 

trap is to calculate the absolute address of the required variable and to set a 

trap on updates to this location. At the same time a breakpoint must trap 

the exit from the procedure so that the variable update trap can be deleted. 

VAX DEBUG allows for the accessing of out of scope variables via a facility 

which qualifies identifiers with their enclosing blocks. None of the above 

systems, however, provide easy to use facilities for the required monitoring 

control described in section 2.3.1.
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A monitoring tool which has a significant following is reverse execution. The 

programmer using a reverse execution tool is able to execute up to a point in 

the program where a fault or other event becomes apparent and then execute 

the code in reverse to see exactly how the current state came about. This is 

similar to flowback analysis except the program states are not simply 

recorded for analysis but are stored so that a previous state can be restored 

in order that reverse execution can be performed interactively during a 

program run.

IGOR [Feldman88], Recap [Pan88] and the reverse execution tool described 

by Zelkowitz [Zelkowitz71] use checkpointing to implement reverse 

execution. This technique involves saving the current process state at regular 

intervals which can be restored in order to achieve a "backing-up" of the 

process. For this to work only those parts of the process address space which 

have changed need be checkpointed, thus saving memory space.

A different approach is discussed by Kishimoto [Kishimoto83a] 

[Kishimoto83b]. Here a programming environment provides a reverse 

execution facility by obtaining the necessary information from a database 

which allows the different tools of the environment to communicate with 

each other, and is updated by a technique called data-driven symbolic 

execution which supplies both normal and symbolic execution results. The 

use of a relational database to support software development is also 

described by Powell [Powell83]. Debugging of programs is thus reduced to 

the performing of queries on the database, where all execution information is

stored.
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Recap, mentioned above, is primarily for use with parallel programs. This is 

an area of program monitoring which has received increased attention in 

recent years. The Parasight debugging system [Aral88a] [Aral88b] monitors 

programs in a shared-memory multiprocessor by creating observer programs, 

called "parasites", which dynamically patch jump operations, called "scan 

points", into the executing binary, to bring about the necessary transfers of 

control. GRIP [Venables89] enables the "watching" of Occam channels, 

displaying the results graphically using a folding display. This in effect 

provides a method of altering the area, and consequently the granularity, of 

the view. The Parallel °rogram Debugger (PPD) [Miller88] uses incremental 

tracing to provide a system based on flowback analysis: Incremental tracing 

is achieved by two logs generated during execution: a prelog and a postlog. 

These are implemented by appropriate code generated by the compiler/linker 

and indicate those variables which will be accessed in the block about to be 

executed, and the values of those variables changed during execution of the 

block.

A debugger for the MuTEAM language [Baiardi83] uses behavioural 

expressions constructed from event specifications to allow the programmer to 

monitor concurrent programs. The event specifications enable the 

programmer to specify communication events, process termination events, or 

variable update events, for which monitoring action is required. Events are 

also used in DISDEB [Lazzerini86] to enable interactive debugging on a 

multi-microprocessor system constituting a node of the Selenia Mara 

architecture. The event specification identifies a process and a memory
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location or input/output channel for which a supplied value range must hold 

true for the monitoring action to be performed. A different approach is 

undertaken by Voyeur [Socha88]. The Voyeur prototype supports graphical 

visualisations of parallel program executions by allowing the parallel 

programmer to easily construct application-specific, visual views of parallel 

programs. Algorithm animation [Feldman89] also provides facilities for an 

application-specific execution view.

Research into the area of program monitoring has not focused entirely on the 

problem of providing high-level control over program execution. One area of 

research into making monitoring systems more useful and easier to use looks 

at multilingual capability. Possibly the easiest approach to multilingual 

monitoring is to provide a new monitoring language which possesses features 

from many languages but resembles no single language in particular. This is 

the technique used by Elliott for the monitoring of PL/I, FORTRAN and 

BASIC [Elliott82]. However, the monitoring system appears more natural to 

the programmer if the monitoring language changes to reflect the 

programming language being monitored. Systems which provide a language 

sensitive facility include RAIDE [Johnson78b], AIDS [Hart79] and VAX 

DEBUG [Beander83] [Digital86]. The first of these, RAIDE, enables 

language interfacers to be attached to the monitoring system so that further 

programming languages can be monitored. An algorithmic monitoring 

language, called DISPEL [Johnson81], allows complex monitoring procedures 

to be written from a minimal set of primitives, and via a virtual machine 

called SPAM. AIDS and VAX DEBUG also provide language sensitive
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monitoring but executing compiled code on the actual target machine. Other 

multilingual systems which monitor compiled code without the need for 

specially altered source includes: DELTA [Walter83], SWAT [Cardell83] and 

DAD [Victor77]. Of these DELTA and SWAT achieve this via a common 

symbol table format, whereas DAD provides language interfacers along the 

lines of RAIDE.

Research into graphical interfaces has attempted to show that current 

monitoring facilities are approximately the correct ones, despite being low 

level ones, and that a good interface is a necessity for effective monitoring 

systems [Winder88]. Joff [Cargill83] [Cargill85] is a graphical debugger for C 

programs on the Blit, a multi-processing bitmap terminal. Windows, or 

layers, are associated with different processes and are used to separate the 

different classes of information; for example, source code, program output, 

monitoring output. In addition a pop-up menu system allows the 

programmer to interact with joff with little need to resort to use of the 

keyboard. The processes which control terminal activity run asynchronously 

to the target program on the host machine and thus receive information by 

downloading.

The graphical interface to the Ups debugger [Bovey87], for C and 

FORTRAN, provides a window display with a  set of ''buttons" for activities 

such as quitting the debugger or obtaining help. The menu system is a postfix 

system whereby the menu of available commands depends on the object 

selected. This helps to reduce the number of commands in the menu.
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Dbxtool [Adams86], a frontend interface to dbx, provides five windows and 

six command "buttons". The five windows provide the current state of the 

debugging process (for example, target file name and line number), the 

current locus of execution, the current setup for the command "buttons" 

(which can be altered to suit a particular monitoring task), a command 

dialogue area, and a display of values of selected variables. A similar 

approach is taken by JDB [Winder88]. Again this is a frontend interface, but 

in this case to sdb. The window system offers very much the same facilities 

as dbxtool, the difference between the two systems being in the adaptability 

of JDB. There are three levels to the system: beginner, intermediate and 

expert. At the beginner level all interaction is via the menu system with a 

tree structure of commands, the object being that the programmer is led, by 

the system, through a hierarchy of options. At the other extreme, the expert 

level, commands are entered via the command line window with the menu 

offering a fast access facility to the most common commands.

2.4. Summary

The execution monitoring tool provides controllability and observability over 

the target process, thus enabling the programmer to view the internal 

execution steps taken by a program. Execution monitoring has applications 

in program testing, to establish test data coverage and to uncover data flow 

anomalies; in program debugging, to locate and identify program bugs; and in 

performance analysis.

Implementations of execution monitors have varied over the years. Still
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widely in use today is the method of inserting monitoring statements, written 

in the target language, into the program. This, when compiled and executed, 

outputs the desired information. However, problems and limitations have led 

to other methods of monitoring.

The classical monitoring tools, developed primarily for assembly language 

programmers, enabled the programmer to "dump" the required process state 

information and, when using conversational tools, to execute the target 

program with traps which cause suspension of the target process and the 

transfer of control to an interactive facility allowing the exi ruination of the 

process state. Although these tools are satisfactory for'assembly language 

programs they are unsuitable for high-level language programmers.

Methods of implementing high-level language monitoring systems have 

included the adaptation of interpreters, the use of preprocessors to 

automatically insert monitoring statements into the target program, and the 

use of a second process to monitor the target process. Problems and 

limitations are to be found with all of these methods, but we believe that the 

use of a second monitor process controlling the target process offers the 

possibility of high-level and non-intrusive monitoring. Current systems which 

use a monitor process have attempted to increase their usefulness by making 

them easier to use.

Because many programming environments allow multilingual processes, 

monitoring systems have been designed to be language independent, thus 

allowing a single consistent system to be used for all languages. An
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additional approach to language independence is language sensitivity where 

the monitoring system is language independent but appears language 

dependent. Systems now exist which provide a language sensitive facility 

either by a common symbol table format or via a set of language interfacers.

To avoid the learning of an often large and complex command language 

graphical user interfaces have been added to monitoring systems. These 

consist of windows to split the different classes of monitoring and program 

information, and the use of menus and buttons to allow the easy entering of 

monitoring commands. However, adding a graphical user interface to a 

simple break-and-examine monitoring system is not sufficient for the 

monitoring of high-level language concepts such as procedures and dynamic 

variables. Rather than placing the onus of translating high-level monitoring 

requests into machine-level traps onto the programmer this could be made 

part of the control structures of the monitoring system. Most current systems 

still only offer a break on source statement execution or entry to a specified 

procedure. More complex monitoring requirements must be handled by the 

programmer. An assertion facility is to be found on a few monitoring 

systems, allowing the programmer to monitor full expressions involving 

program variables. These are often implemented, however, at a performance 

cost by a mechanism such as machine instruction emulation or the trapping 

of execution after every instruction.

The problem of performance degradation is one which few researchers, 

outside of the real-time environment, have confronted. However, if a 

practical high-level language monitoring system is to be implemented then it



- 50 -

is essential that the system does not incur an unacceptable performance 

overhead.

From the above, the state of the art in execution monitoring is defined by 

conversational tools which require no special software hooks within the target 

source, assertion facilities allowing quite complex monitoring expressions, and 

a graphical interface which shields the user from the command language. 

The significant issues not fully addressed in current systems include the 

performance degradation incurred by complex monitoring expressions, 

completeness in dealing with language constructs, and language sensitivity. 

We will go on to address these issues by considering the structure of a 

generalised high-level monitoring environment.
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3. Monitoring Environment

3.1. Introduction

In the previous chapter (section 2.3.1) the requirements of an ideal program 

monitoring system were identified. Basically, these requirements consist of a 

high-level, language sensitive monitoring command which provides full 

control over target program execution, and the displaying of the target 

process state in a high-level, language sensitive manner. The ability to port 

the monitoring system to different machines would benefit both the 

implementor and user; the system implementor need write only one portable 

version of the system and the user benefits from a consistent monitoring 

system across all machines. Whilst the implementation of a fully portable 

system is unrealistic, the implementation of a modular design would enable as 

much of the system as possible to be ported to another machine.

In this chapter we examine a possible organisation for a monitoring 

environment with these aims. We postulate a division of the environment 

into three units: The user interface unit (UIU), process control unit (PCU), 

and machine control unit (MCU). These units interact as shown in figure

3.1.

machine ♦ -̂------> MCU«--------»PCU«--------- > UIU<--------

: M onitoring Environment
*........................  ............................. ✓

■»user

Figure 3.1
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The UIU performs two functions: the interconversion of information between 

a language sensitive form and a language independent form, and the 

exchange of information with the user. Because compiler writers introduce 

non-standard and machine dependent facilities, the implementation of 

language sensitive monitoring commands requires a separate language 

interfacer for each language compiler supported [Victor77]. Using the 

appropriate language interfacer the UIU transforms language sensitive 

commands into a corresponding language independent version, which is 

passed to the PCU. Similarly, process state information obtained from the 

target process is passed, in a language independent form, to the UIU from 

the PCU. This can be converted into a language sensitive form by, again, use 

of the appropriate language interfacer (figure 3.2).

The second function of the UIU, the exchange of information with the user, 

includes the output of program source statements and variable values, the 

output from the executing target program, and the input of monitoring 

commands from the user. Modern graphical displays can greatly simplify the 

task of using a monitoring system through the use of windows for the
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partitioning of different classes of information, and the displaying of options 

in menus.

The PCU performs two functions. Firstly, it takes language independent 

monitoring predicates from the UIU and controls the execution of the 

process, "watching" for the predicate arising, using functions in the MCU. A 

second task of the PCU is to extract required information from the current 

process state and pass it to the UIU in a high-level but language independent 

form.

The first task, "watching" for high-level monitoiing predicates, involves 

following target program execution which, in general, requires duplication, 

within the PCU, of those control structures of the' target process which affect 

the monitoring predicate. It is the PCU of the environment which performs 

translation of program symbols into machine addresses. It is thus necessary 

that all relevant compile-time information be retained [Johnson79]. The four 

classes of information required are:

(i) descriptions of all symbolic data

(ii) descriptions of all code segments

(iii) descriptions of all optimisations

(iv) the source program conveniently, but not necessarily, broken into lexical 

tokens.

The generation of an internal symbol table via a common format compile­

time table is largely infeasible due to the use of compilers from many 

different sources, for which the compiler writers adhere to no standard
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symbol table format. It must therefore be a function of the UIU to allow the 

accessing of the required symbol table information via the appropriate 

language interfacer.

Because the target program executes directly on the target machine, via a 

translation phase, all control of the target process must be performed at this 

same machine level. Thus machine information obtained from the program 

symbol table is used to invoke monitoring primitives within the MCU.

The second task of the PCU is the extraction of process state information 

from the executing target program and also the altering of that state 

information. At a higher level this is the examination and alteration of 

program variables. Because the method of one process extracting process 

state information from a second process varies between machines, portability 

requires modules for interfacing machine dependent portions of the 

monitoring environment. In most cases this will be the relevant operating 

system calls.

The MCU takes machine addresses from the PCU and applies them to the 

requested monitoring primitive, which "watches" either control flow or data 

flow. The interaction between the units is shown in figure 3.3.

Whilst the above discussion of the monitoring environment units is 

implementation independent, particular implementations appear more 

appropriate than others. The implementation is also influenced by the 

necessity for performance degradation to be kept to a minimum.

The functions of the UIU favour an implementation in software, with any
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M C U

graphical facilities undertaken in an appropriate graphical management 

system. The problem of performance degradation is not critical for the user 

interface; in most cases user input will govern the performance overhead of 

the UIU, and the cost of performing the language conversion will be 

negligible in relation. The functions of the PCU also suggest an 

implementation in software as the duplication of the control structures of the 

target process, in hardware, would be prohibitively expensive. The 

implementation of the MCU, however, is more critical. The machine level 

traps which arise from the functions of the MCU incur a continuous 

monitoring overhead. This is the performance overhead imposed upon each 

statement executed, and is required to be kept to a minimum. It would be 

therefore be advantageous for the MCU to be implemented in hardware or 

firmware. This would also be advantageous because the process interactions 

which the MCU is attempting to "watch" also occur at the hardware or. 

firmware level. However, machines without the necessary monitoring 

primitives implemented in hardware or firmware would still be able to carry 

the monitoring system if the appropriate functions were available in software
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(figure 3.4).

M CU«----------------- >PCU<------------------- H JIU

u  u
architectural monitoring

support softvare

Figure 3.4

Modularisation of the monitoring environment can also ease the problem of 

monitor interference. The target process may, for example, be running on a 

relatively small microprocessor with limited memory, and by moving as much 

of the above monitoring environment to a connected machine there will be 

less target machine memory claimed by a monitor. Similarly, the running of 

the target program and the monitor in parallel, on two processors, would 

decrease the execution overhead of monitoring. The running of the two 

processes in parallel is, however, limited by the necessity for synchronisation 

between the processes. The setting of traps and the inspection of the target 

process state, resulting from previously set traps, should occur with the target 

process halted, thus preventing a state change before the required action. If 

the connection between the two processes was asynchronous then incorrect 

values could be extracted from variables or traps set too late to catch a 

particular machine-level event.

One method for the implementation of parallel monitoring makes use of a 

FIFO queue and a phantom memory [Plattner84]. Memory transactions are 

recorded in the FIFO queue, which connects the target processor with the
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monitor processor. A phantom memory duplicates the target memory by 

accessing the FIFO queue for memory changes. Any access of the target 

process state, by the monitor system, is performed on the phantom memory 

whilst the FIFO queue is locked. Once monitoring activity has completed, 

the queue is unlocked and the phantom memory once again updated. This 

method obviously restricts the monitor to examination of the process state 

only, preventing the alteration of the target memory space. A further 

problem with the above method is the need for a monitoring machine which 

is at least as fast as the target machine and with enough memory to 

implement the phantom memory.

In the following sections we examine each of the units of the monitoring 

environment described above.

32 . User interface

The user interface exists to enable communication between the user and the 

PCU or monitoring software; taking commands, in the notation of the target 

programming language, from the user and supplying the monitoring software 

with a language independent version.

In general the monitoring software system requires a language independent 

monitoring command of the form:

WHEN < monitoring condition > PERFORM < monitoring action >

The monitoring action indicates the user requirements when the monitoring 

predicate is satisfied. It may specify, for example, statistics gathering, data 

value recording, user notification of predicate satisfaction, or the halting of
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the target process and the transfer of control to a conversational tool 

allowing the user to examine and possibly alter the current state of execution.

The monitoring condition defines the point of execution at which the 

monitoring action is to be performed. In general the point of execution 

involves a  control component which specifies the necessary flow of control 

through the target program, and a data component which indicates the 

required values of program data. In this section we examine the range of 

predicates the user may wish to specify and suitable notation for the language 

independent command. We do so not in order to define a monitoring 

language as such, but rather so as to identify language-related problems 

which will influence the design of the process control unit.

At one extreme, the monitoring predicate could be specified by the user 

giving ranges of values for all of the N variables in the N dimensional state 

space. This is, however, totally impractical for the large values of N arising 

from even modestly sized programs written in a modern high-level language. 

A more practical approach is to identify those constructs, within high-level 

languages, which require support for monitoring, and to provide a suitable 

notation with which they can be incorporated into the monitoring condition of 

the above WHEN command.

There are two categories of constructs which require monitoring support: 

textual or static constructs, and dynamic constructs. The textual problems 

include uniquely identifying all variables, data structures, arrays and pointers, 

and the dynamic constructs consist of procedure-calling chains, recursion and
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unpreserved state information.

The principal problem in defining static constructs for monitoring in a high- 

level program is in distinguishing program objects with the same identifier. 

The occurrence of the variable identifier "x" in a monitoring condition 

involves a degree of ambiguity. There may be many instances of the variable 

"x", declared globally, local to procedures or in some languages any program 

block, all quite distinct from one another. In a broader sense this is a 

problem of specifying out of scope variables or uniquely identifying all 

program variables.

It may be observed that the correct variable is always used during execution 

and so the language compiler must "know" which variable to use. However, 

compilers usually only refer to variables currently in scope, with the 

declaration of two variables with the same identifier, in the same block, 

causing an error. If a monitoring system were to adopt this approach then all 

references to variables could be unambiguously specified simply by the 

appropriate identifiers. However, a variable which is not currently in scope is 

still part of the programmer’s abstract view of execution and thus, in general, 

it would not be unusual for the user to want to examine, alter or involve in a 

monitoring condition variables which are out of scope.

Specifying out of scope objects can be achieved by qualifying each program 

identifier with its surrounding block. The usual cause of scope restrictions is 

the inclusion of procedures in a program and so the identifier of the 

procedure becomes the obvious choice of qualifier [Bruegge83a]
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[Bruegge83b] [Plattner84]. For example, a variable X local to a procedure 

procA is denoted by procA/X.

The textual nesting of procedures, giving rise to procedures local to other 

procedures can also be denoted by the above mechanism. procA/procB/Y 

specifies the variable Y local to procedure procB which, in turn, is local to 

the procedure procA.

Languages also exist which allow objects to be declared local to unnamed 

blocks, some allowing declarations at any point in the code. In these cases 

the unnamed part of the unique identifier is filled by a line 

number/statement offset pair. The line number relates to the position within 

the source code of the beginning of the region of scope; the statement offset 

is appropriate when more than one statement occurs on the line in question. 

This assumes that translation phase information includes the relevant object 

code mappings for these high-level concepts. A shorthand notation could be 

adopted to reduce the length of the monitoring command. One approach 

would be that simply specifying the variable identifier refers to the variable 

"nearest" in scope.

Other language dependent problems which occur at the textual level include 

the handling of data structures, arrays and pointers. A single language 

independent syntax for dealing with fields of structures, elements of arrays 

and referenced objects of pointers is required which encompasses all 

operations allowed in the target programming languages. For example, array 

slicing is possible in languages like Algol68 and must therefore exist in the
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language independent syntax even though languages such as C and Pascal do 

not have this facility. Using the above notation all program objects can be 

unambiguously identified at the textual level.

The second category of monitoring support deals with dynamic constructs. 

Specifying a source statement, as a monitoring predicate, for which some 

monitoring action is to be performed when execution reaches that statement 

does not necessarily define the path of execution followed to reach that 

particular point. An extreme approach would require the user to specify as a 

predicate the exact sequence of statements which define a path of control 

through the program. As before, this extreme approach is impractical and so 

we attempt to identify the dynamic aspects of program execution which may 

be of interest to the monitoring system user. The first of these is the notion 

of a procedure-calling chain. In general it is possible to reach a source 

statement by a number of different execution routes; these differing by the 

sequence of procedure calls made. A user of the system may wish to halt 

and inspect the target process when a procedure is entered, but only if called 

from a second specified procedure. Thus a notation is required which defines 

sequences of calls through the program.

Plattner [Plattner84] uses the structure of the process state space to indicate 

a sequences of calls. A graphical representation, in the form of a multiway 

tree, has procedure calls as nodes. If the edges to child nodes are numbered 

sequentially starting at one, the flow of control through procedure calls can 

be denoted by an appropriate list of numbers relating to the edges traversed 

of the state space tree. This method not only defines the sequence of calls
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but also distinguishes between sequences where calls originated in different 

places. For example, the multiway tree shown in figure 3.5 is derived from 

the code segment in figure 3.6. i

m a i n ( )
{

B() ; 
A() ; 
B() ;

1

A()
{

1

B( )
{ A() ;
1

Figure 3.6

The statement list 3:1 indicates entry to procedure B, from the second call in 

the main program, followed by the call to procedure A in procedure B. 

However, in most cases indicating the source of a call would be of a finer
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granularity than that required by the user. A mechanism is needed whereby 

a procedure calling chain can be specified with an optional facility for 

indicating the source of the call.

Cohen and Carpenter [Cohen77] develop an inquiry language for use with a 

history database which can be searched by label, such that specific labels 

occur before and after it. For example, L1:L2:L3 searches for label L2 with 

previous label LI and next label L3. Using this notation a procedure calling 

chain could be denoted by 

procA:procB:procC

This would halt the target process on entering procedure procC called from 

procedure procB, which, in turn, was called from procedure procA. If the 

source of the call is required then an optional line number-statement offset 

pair (that is, the source statement of the call) would be associated with the 

appropriate procedure identifier.

Path expressions [Bruegge83a] [Bruegge83b] use a similar mechanism for 

accessing specific instances of variables. For example,

M.P>Ml.foo.i

denotes the variable i in the routine foo in module M l called from routine P 

in module M.

Recursion exists in most modern high-level languages and adds an extra level 

of complexity in specifying monitoring conditions. Both notations by Bruegge 

[Bruegge83a] [Bruegge83b] and Plattner [Plattner84] can handle recursion, 

but in a long winded way.
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As an extension to specifying n procedure identifiers in a procedure calling 

chain, the user can specify just the identifier with a depth of recursion 

indicator n. A syntax for the referencing of variables local to recursive 

procedures is probably most useful if it allows them to be referenced as an 

offset from the current depth of recursion. For example, procA/x(0) = 

procA/x(l) specifies a condition which is satisfied when the value of the 

current variable x local to procedure procA is equal to the variable x local to 

the procedure procA which called the current invocation.

Information concerning procedure calling chains and recursion is preserved 

from one call to the next whereas otner monitoring conditions, supplied by 

the user, may not always possess this property. This would occur, for 

example, if monitoring were required through a series of conditional 

statements. A monitoring command of the form:

WHEN <statement A>; sta tem ent B> PERFORM...

would perform the associated monitoring action when statement B is 

executed after the execution of statement A. However, once execution has 

reached statement B it is, in general, impossible to tell whether statement A 

was executed or not. This chronological ordering of sub-predicates could also 

be applied to the flow of data as well as the flow of control.

A further monitoring mechamsm, which can be used in conjunction with the 

features described above, is the ability to restrict monitoring predicates to a 

particular region of the target program. This can be used for a number of 

reasons, including the monitoring of variables whilst a particular statement is
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executing and the monitoring of the number of times a particular statement is 

executed whilst execution remains in a specified region of the program. This 

latter example could be used for the monitoring of loop iterations, with the 

first statement of the loop monitored whilst control remains in the scope of 

the loop. DISPEL [Johnson77] has a mechanism, as does Bruegge 

[Bruegge83a] [Bruegge83b], for accessing, within a debugging procedure, the 

number of times a routine or statement has been executed. These can be 

used to implement monitoring facilities similar to those above.

A rather contrived example, which involves some of the mechanisms outlined 

above, is given below.

WHEN procA:procB{20;24;28}:(40)procC{procB/y=procA/x} PERFORM...

This "watches" for an entry to procedure procA, followed by a call to 

procedure procB, in which, the statements on lines 20,24 and 28 are executed 

in that order. This followed by a call to procedure procC, from the call at 

source line forty, in which the variable y local to procedure procB attains the 

same value as the variable x local to procedure procA.

3.3. Software monitor

The monitoring software takes language independent monitoring commands 

and performs the necessary tasks to monitor the target process in the 

required way. The complexity of monitoring high-level language program* is 

related to the complexity of the programming language and, in particular, the 

complexity of the structure of the process states arising from that language. 

Thus, an inspection of process states arising from a variety of programming
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monitor them. -

Listed by Plattner [Plattner84] are the structures of the control and data 

components generated by a variety of types of programming language.

A simple programming language which has no concept of procedures or 

dynamic allocation of variables exhibits a static structure in both the control 

and data components of the process state. The control component is simply 

the current point of execution in terms of source statements, and the data 

component is the set of variables declared. The structure of the process state 

can be determined by examination of the program text.

A more complex language allowing procedures, but denying recursion extends 

the control component of the process state into a stack-like structure which is 

bounded in size by the number of procedure declarations. The data 

component, however, remains a static structure with variables retaining values 

across procedure calls.

A language with procedures and associated dynamic local variables, but still 

denying recursion, extends the data component into a stack-like structure 

which is again bounded in size. In this type of language the values of local 

variables are not retained across procedure calls. Allowing recursion 

produces unbounded stack structures in both the control and data 

components, which grow in proportion to the number of procedure 

invocations. '

Some high-level languages allow the user to dynamically allocate and free
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memory during execution (HEAP in Algol68 or malloc in C). These user 

controlled dynamic variables release the data component from its stack-like 

structure, which occurs in the control component when the language has a 

concurrent computation facility.

From the above it is obvious that modern high-level languages, which offer 

procedures, recursion and user controlled dynamic variables, require more 

complex monitoring structures than those found in classical monitoring 

systems. For the remainder of this work we assume the process state 

structure is of the more complex type, although we assume the language does 

not provide a concurrent computation facility.

Basically, there are two methods of providing high-level language monitoring 

facilities. The first method involves trapping only part of the monitoring 

predicate and then, once this trap occurs, the rest of the predicate can be 

evaluated by reconstruction of the high-level image from the process state. 

In the case of a chronological ordering of sub-predicates (for example, a 

procedure calling chain), the part trapped would be the final part in the list. 

There are, however, three main problems with this approach. Firstly, it can 

be difficult to reconstruct the high-level image from a process state, resulting 

in quite complex monitoring routines. Secondly, not all information is 

available prior to execution, making it difficult to set traps. Examples of this 

include addresses of dynamic variables local to procedures, and the address of 

any memory space allocated to user controlled dynamic variables. Dynamic 

variables are usually referred to as offsets, in the program symbol table; these 

are added to the base address of the procedure invocation environment at
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run-time. The address of the memory space that user controlled dynamic 

variables reference is, by their very nature, under the control of the user and 

is again assigned at run-time. The third problem which is encountered with 

the above method of reconstructing the high-level image is the inability to 

monitor information which is not preserved during state changes. For 

example, the monitoring of the path through a series of program statements 

cannot be performed by simply trapping the final statement in the path; the 

required information (that is, the sequence of statements executed) is, in 

general, lost by the time execution reaches the final statement. The second 

and third problems added to the performance degradation caused by 

unnecessary trapping makes this method unsuitable for the monitoring of 

predicates outlined in the previous section.

We thus examine a second method of providing the required high-level 

language monitoring facilities. Instead of attempting to reconstruct the high- 

level image in order to evaluate the monitoring predicate, execution is 

mirrored within the monitoring software. Thus, the monitoring software 

recognises each part of the predicate as it is satisfied. The main difference 

between the two methods described is the need for the monitoring software, 

in the second method, to be able to dynamically set and reset machine-level 

traps, enabling each part to be monitored in turn.

We next examine how the predicates outlined in the previous section can be 

monitored using the method of mirroring execution. Procedure calling chains 

can be monitored by "watching" for the entry to each procedure, in the chain, 

in turn. As each one is satisfied then the focus of attention moves to the



next. One important point to note is that the return from the procedure 

must also be "watched". This enables the focus of attention to revert to the 

previous procedure in the chain. There is also the possibility of intermediate 

calls, whereby a call to an unspecified procedure occurs between two 

procedures in f the chain. One method of overcoming this problem is to 

"watch" the entry point of all procedures in the target program, so that any 

unspecified ones occurring can be recorded by the monitoring software. This 

method, however, can be extremely inefficient if many "invalid" procedure 

calls occur. A better method "watches" for entry to a procedure at a 

particular depth of procedure calls. Thus, in a procedure calling chain each 

procedure is required to occur at a depth one greater than the previous 

procedure. Consequently an indicator is required of the current depth of 

procedure calls. This is also useful for restricting predicates to a particular 

region of code. The monitoring software, in this case, "watches" the entry 

and exit points of the region; once execution is within the region then the 

specified predicate can be "watched", but required at a particular depth of 

procedure call to avoid intermediate procedure calls.

The monitoring of unpreserved information is easily performed using the idea 

of monitoring sub-predicates in sequence. For example, the monitoring of a 

predicate where the execution of one statement follows another is performed 

by first "watching" the earlier statement and then, when this is executed, the 

second statement. Although information about the execution of the first 

statement may no longer be available in the process state once it has 

occurred, the monitoring software has already recorded the fact and can
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proceed with the rest of the predicate.

The idea of monitoring one part of the predicate after another can also be 

applied to the monitoring of program data flow. Dynamic variables local to 

procedures can only be monitored once the appropriate procedure has been 

entered and the address of the variable calculated. Similarly, user controlled 

dynamic variables can only be monitored when the memory space is assigned 

to the variable. The method of following target program execution, in the 

monitoring software, allows the moment, when the above variables become 

active, to be monitored, prior to the monitoring of the variables themselves.

Because of the stack-like structures of the control and data components (with 

the extension of the data component where user controlled dynamic variables 

are defined) it is possible for more than one line of execution to be satisfying 

the monitoring predicate. For this reason the monitoring software must also 

be able to stack the different lines of execution, such that, if any of them 

satisfy the predicate then the monitoring action is performed.

The monitoring method outlined above will be examined in greater detail in 

chapter 4.

3.4. Architectural support

The target program is compiled and executed directly on the target machine, 

and thus all monitoring of the target program must also be performed at the 

same machine level. It is possible to design and implement abstract level 

monitoring facilities in hardware [Goossens83] [Rijks87] but they are often 

complex and specialised towards a particular monitoring feature. The
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environment described in this chapter requires a set of monitoring primitives 

which are minimal, yet sufficient, to enable the monitoring software to 

monitor the predicates described in section 3.2. For reasons of performance 

it would be advantageous for the monitoring primitives to have architectural 

support.

Examination of the machine level reveals three main operations: execution of 

a machine instruction, reading of a memory location, and writing to a 

memory location. We denote the primitives which trap the above operations 

as: the code breakpoint, the data breakpoint, and the watchpoint, respectively. 

It is assumed that these primitives are invoked with an absolute machine 

address and respond, when trapped, with that same absolute address and type 

of primitive. The monitoring software of the previous section is responsible 

for interpreting this at a higher level. It is possible to implement other 

primitives [Johnson82] but the three primitives described above are sufficient 

for monitoring all the high-level constructs which we have identified. 

Architectural support for the three primitives is examined, and possible forms 

of implementation described in chapter 5.
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4. Monitoring Software

4.1. Introduction

4.1.1. General ;;!

Monitoring software performs two functions. Firstly, it must take commands
•p 1

supplied at the user level and translate these into controls over target 

program execution. It does this by use of the monitoring primitives in such a 

way as to "watch" for user-supplied conditions arising. For example, at the 

user level the tracing of variables is specified by the variable identifier, 

whereas at the machine level, this translates to the tracing of an absolute 

memory location, using a watchpoint primitive. The second task of 

monitoring software is the reverse of the above and involves the translation of 

execution information into a symbolic high level form for presentation to the 

user. For example, the displaying of a variable involves the extraction of 

information from a memory location in the form of a bit pattern. It is the 

task of the monitoring software to use any symbolic information supplied, to 

display this bit pattern in an appropriate form. Similarly, requesting the 

current point of execution should not result in a list of program counter 

values, which have been stored as a result of procedure calls. As in the 

above example, symbolic information is used to effect a transformation from 

the machine level to a higher level representation which, in this example, 

might result in a procedure-calling chain being displayed.

As stated earlier, monitoring software is located between the user level and



the machine level of the monitoring environment. The high level command, 

issued from the user level, is discussed in section 3.2 and is assumed to take 

the form of a generalised WHEN statement.

Each WHEN statement is a predicate-action pair; the action being performed 

when the predicate is found to be true. The strength of the monitoring 

software lies in the diversity of types of predicate which can be monitored. 

From examination of structured programming languages a list of 

programming concepts which might be allowed in the predicate can be made. 

In section 3.2 we identified the following as some of the concepts for which 

monitoring support is required: procedures, variables local to procedures or 

program blocks, procedure calling chains, recursion, user-controlled dynamic 

variables and also control and data flow which , is not generally preserved 

within the target process state. The action associated with the predicate 

takes the form of a recording operation, a notification operation or a target 

process halt operation, from which a conversational tool allowing target 

process state examination can be entered.

In section 3.4 we identified a minimal set of monitoring primitives for use by 

the monitoring software in controlling the target process. Monitoring the 

flow of control requires the code breakpoint which monitors the execution of 

an instruction at a particular memory location. Monitoring the flow of data 

requires two primitives: the data breakpoint, which monitors accesses (reads) 

of memory locations, and the watchpoint, which monitors updates (writes) to 

memory locations.

- 7 3 -
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4.1.2. Basic features of a software monitor

Monitoring software is concerned with the use of the monitoring primitives to 

bring about monitoring of the user-specified high-level condition. We define 

a basic software monitor as one which performs simple monitoring by a 

minimum amount of processing. The facilities available thus resemble the 

monitoring primitives more closely than the high-level facilities outlined in 

chapter 3.' ; "

The minimum amount of processing required of high-level language 

monitoring software is the translation of user-supplied program identifiers to 

machine-level addresses. This allows the user to state watchpoints and 

breakpoints in terms of the high-level source code. Translation of identifiers 

to addresses is simple given that the information produced at compile time is 

not discarded. Most symbol tables which are built during compilation give 

machine addresses for global variables, procedures and labels but only offset 

values for local variables. The basic monitoring software described requires 

that, not only is this information retained, but also machine addresses for 

each program line or even program statement are available. Using this table 

the monitoring software can "watch" for the execution of a program line or 

statement and the update or access of global variables.

The mechanism, within the monitoring software, for transferring control 

, between the monitoring process and the target process is also simple. After 

setting the appropriate monitoring primitives the monitoring software 

resumes execution of the target process and waits for one of the traps to be
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taken. When a trap is taken an interrupt-like mechanism halts the target 

process and informs the "sleeping" monitoring process. The monitoring 

software can now enter a conversational tool which allows the state of the 

target process to be examined and monitoring primitives to be set or 

removed.

To provide additional features within the monitoring software requires an 

increase in the amount of processing performed. The monitoring software 

still sets primitive monitoring traps statically (the user explicitly sets and 

resets them) but now has the ability to access target process state information 

on transfer of control. As an example consider the command:

WHEN X = 0 ... 'V'"."'

For this condition the monitoring software must invoke monitoring primitives 

to "watch" for updates to the variable X, and keep a record of the expression 

for checking during execution. When a trap is taken and control is passed 

from the target process to the monitoring process the monitoring software 

uses the stored expression to access variable values and check if the 

expression is satisfied. If the expression is satisfied then the respective 

monitoring operation is performed, otherwise control is passed back to the 

target process and the monitoring process waits once more for a trap to 

occur. Using this system it is possible to monitor expressions involving global 

variables, execution of procedures or source statements, and also procedure­

calling chains. Conditions involving chains of procedure calls can be 

monitored as the necessary information is available in the target process state
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! as a set of return addresses. A breakpoint on the entry point to the final 

procedure in the chain is set and then, when taken, the monitoring software 

can check the stack of return addresses for the correct calling chain. The 

user is never notified of transfers of control for which the monitoring record 

was not satisfied, and thus only sees the conditions specified in the original 

command.

This basic monitoring software does, however, have its limitations and 

problems. The major limitation is linked to the fact that ail primitive 

monitoring functions are invoked statically and so traps cannot be added or 

removed during the course of execution unless explicitly done so by the user. 

This means that the system is incapable of monitoring local variables or user 

controlled dynamic variables (variables which are assigned space via the use 

of, for example, HEAP in Algol68 or malloc in C). Conditions involving 

information which is not preserved within the target process state are also 

incapable of being monitored using this basic monitoring software.

Apart from the above limitations there is also the possibility of a 

performance loss due to transfers of control. This arises, particularly with 

procedure calling chains, when the condition being "watched" by the primitive 

monitoring functions occurs many times, causing a transfer of control, but the 

monitoring record stored within the monitoring software is not satisfied.

4.1.3. Higher-level monitoring

Predicate-action monitoring systems allowing the monitoring of abstract 

high-level concepts are not new. DISPEL [Johnson81] is an event-action



-  77 -

language providing primitives and a mechanism to define debugging 

procedures. The primitives from which the debugging procedures are built 

consist of keyboard interrupts, run-time errors, entry and exit of statements 

or routines and the access or update of variables. Two system functions 

indicate the number of times a variable has been accessed and the number of 

times a particular code segment has been entered. It is not clear that 

DISPEL has the ability to monitor complex predicates involving, for example, 

paths and local variables at differing depths of recursion.

Generalised Path Expressions [Bruegge83a] [Bruegge83b] is the result of a 

modification of a system designed for the synchronisation of concurrent 

processes. Path expressions are specified by the operators repetition, 

sequence and exclusive selection; and operands called path functions. For 

example,

Path(Open;(Read | Write) *;Close)End;

specifies that a file has to be opened first before an arbitrary sequence of 

alternating read and write operations, followed by a close operation.

The history variables REQ, ACT and TERM can be applied to any path 

function and indicate the number of times the function has attempted to be 

performed, started to be performed and terminated respectively. Debugging 

with generalised path expressions takes one of two forms: either the specified 

execution sequence is looked for and the path action defines what to do if the 

sequence occurs, or the execution sequence is enforced and the path action 

defines what to do if a violation occurs. For example,
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FINDPATH BeginLoop
WhileLoop [ACT(PostIine) = N and ACT(PlaceIines) = 1] 

looks for activation of WhileLoop when PostUne has been called N times

and PlaceLines once.

Alternatively,

CHECKPATH Loop
{ WhileLoop [ACT(WhileLoop) < 6] | PlaceLines }* 

enforces that WhileLoop should not be executed more than six times before a

call to PlaceLines occurs. •

The implementation of generalised path expressions uses a prologue/epilogue 

approach. If a path function is called then a prologue is entered which 

updates the history variable ACT. It is then determined whether the call is 

an allowed transition in the execution sequence by checking the current path 

expression state. Upon exit an epilogue updates the TERM history variable 

and state transition is checked again.

Whilst the monitoring of the flow of control allows the inclusion of abstract 

high-level concepts such as procedure calling and paths, generalised path 

expressions are less able to monitor the flow of data during executioa

An event definition language (EDL), described by Bates and Wileden 

[Bates82] [Bates83], provides users with a means of obtaining a behavioural 

abstraction from a distributed system’s event stream. The user can 

hierarchically construct events on top of primitive events or earlier event 

definitions, but EDL cannot distinguish between the request, activation and 

termination of primitive events. There is also only constructs for event
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detection and not for actions.

To improve on the basic monitoring software described and the above event- 

action languages a mechanism is required whereby the monitoring software 

can mirror the run-time calculations performed by the machine during 

execution. Using this system both local variables and user controlled dynamic 

variables can be monitored. Local variables are stored as offsets in the 

program symbol table, and the absolute address is calculated by adding this 

offset to the base address of the current procedure activation record on the 

stack. Monitoring of local variables thus requires the monitoring software to 

perform this same calculation which can only be done on entry to the 

appropriate procedure. Similarly user controlled dynamic variables have no 

address until the space allocation routine is called and an area of memory is 

set aside for them. Again, calculation of machine addresses for these 

variables must be mirrored by the monitoring software. The monitoring of 

information which is not generally preserved within the target process state is 

slightly different, in that inspection for calculation is not needed but some 

sort of record within the monitoring software, which can be appropriately 

updated as the sequence of execution points are reached; that is, a 

generalisation of the history variables of Bruegge.

In the basic monitoring software all primitives are invoked statically thus 

leaving the user in charge of setting and resetting them. However, if the 

monitoring software was able to dynamically set and reset primitive 

monitoring functions then the intermediate points of control, highlighted 

above, could be trapped, calculations performed and then execution resumed.
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Plattner [Plattner84] describes monitoring software which is able to include 

local variables in monitoring expressions. Each monitoring statement is given 

a unique identification and stored in the monitoring statement list. This 

consists of three fields: the predicate, the action and a boolean value which 

indicates whether the monitoring statement is available for evaluation. The 

monitoring statement evaluation list contains, for each state variable reference 

occurring in a predicate, a list of identifications of monitoring statements that 

must be checked when the corresponding state variable is written to. Thus 

each entry possibly references into many entries of the monitoring statement 

list. The structure which is used to monitor procedure calls and returns is the 

potential procedure activation tree. This takes the form of a multiway tree 

created by the recursive algorithm:

"starting at the current node, scan the program text of the associated procedure. If this 

procedure calls another procedure, create a new successor node, label it with the name 

of the called procedure, and make this new node the current node. Then execute this 

! algorithm again." [Plattner84:758]

Execution of the target process can be viewed as a tree walk in the multiway 

tree described. Using a pointer to point to the current procedure activation 

node of the tree a procedure call is the moving of this pointer to the 

appropriate child node and a procedure return is the moving back to the 

parent node.

On procedure calls any local variables have their absolute addresses 

calculated and appropriate breakpoints are set. Also monitoring statements
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are marked available for evaluation if the evaluation condition of then- 

predicates is fulfilled. The evaluation condition of a predicate is satisfied 

when the node pointer is on or beyond the node which guarantees that all the 

necessary procedures have been called for the local variables in the predicate 

to exist.

The above proposal, however, does not solve the problem of monitoring user 

controlled dynamic variables or the inclusion of information which is not, in 

general, preserved within the target process. For example, the monitoring of 

a sequence of source statements requires more than examination of the 

target process at a single instant in execution.

4.1.4. Levels of monitoring

None of the systems studied offers a complete solution to the general 

problem of execution monitoring. To help analyse this problem, we identify 

three levels at which monitoring predicates may be specified:

Primitive level ■

At this level monitoring predicates take the form of the execution of 

instructions at machine addresses or the access/update of memory 

locations.

Abstract level

This level builds on the primitive level by introducing high-level language 

concepts. Examples of predicates at this level are the call of a 

procedure or the assignment to a variable. Only one type of primitive is
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required to monitor each abstract level predicate but further information 

may be necessary to check whether it is satisfied.

Conditional level

This is the level at which the user specifies monitoring commands; it 

differs from the previous level in that it cannot, in general, be monitored 

by simple inspection of the target process at a single instant as it may 

imply a sequence of abstract level predicates. For example:

WHEN 11;12;13 PERFORM < monitoring action >

which performs the monitoring action when the source statements on 

lines 11, 12 and 13 are executed.

The monitoring software must break the user specified commands (at the 

conditional level) into the necessary sequence of abstract level predicates. A 

representation of the conditional level is thus required which shows the 

sequence of abstract level predicates or events needed to bring about 

satisfaction of the user-specified condition. A facility is also required 

alongside this which enables the mirroring of the run-time calculation of 

machine addresses. Rather than just following a sequence of events a 

conditional level predicate often requires a "going back in time" facility. This 

occurs when an event is monitored until a second event occurs. At this point 

all monitoring primitives must be set to look as they did before monitoring of 

the first event commenced. The representation of the conditional level 

predicate must be able to show this "going back in time."

We define an event-graph as a directed graph representation of the sequence
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of events needed. The nodes of the graph represent the events of the 

monitoring condition and the arcs indicate the sequence of events. An arc 

which forms a cycle in the event-graph represents the "going back in time" to 

a previous state. As execution of the target program proceeds and traps are 

taken in the target process, then the monitoring software traverses the event- 

graph, setting and resetting monitoring primitives accordingly. The 

conditional level predicate is satisfied when the terminal node of the graph is 

traversed. However, it is not necessary for all of the nodes to have been 

visited for the monitoring condition to be satisfied.

For example, consider a monitoiing condition which is satisfied if an 

assignment occurs and a specified procedure is in the current procedure 

calling chain. The event-graph representation for this is shown in figure 4.1.

Figure 4.1 .

The CALL» RETURN and WATCH events represent procedure entry, 

procedure exit and variable assignment respectively. From the above 

representation monitoring begins with the CALL event. When this is 

satisfied the event-graph is traversed by following the outgoing arcs, giving
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the next events in the sequence to be monitored. In this case monitoring 

switches to the exit point of the procedure and the assignment of the variable. 

If the WATCH event is satisfied then the event-graph has been fully 

traversed and the monitoring operation associated with the condition is 

performed. However, the cycle around the CALL and RETURN events 

indicates a "going back in time" and so when the RETURN event is satisfied 

the arc going backwards in the sequence requires that the monitoring

primitives are set just as they were when the CALL event was first visited.
__1 /
That is, we no longer require monitoring of the abstract level events found 

further along the sequence than the CALL event. From the representation 

for this example it can be seen that under no circumstances could the 

monitoring operation be performed unless the exact sequence of program 

events required for condition satisfaction had occurred. By the suitable use 

of a larger set of events it is possible to represent conditional level predicates 

using the event-graph structure. We will go on to describe the software 

structures necessary to implement monitoring using event-graphs.

4.2. Monitoring structures 

4.2.1. Overview

In this section we describe data structures sufficient to represent each of the 

nodes or events of the event-graph defined in the previous section. 

Information within the event structure falls into two categories, the first of 

which is concerned with housekeeping. Fields in this category are not directly 

responsible for representing high-level concepts but are used to aid in the
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representation of a conditional-level predicate as an event-graph. The second 

category of field information is used directly to describe high-level 

abstraction. i'r . ^  -V.. ■■

In total we will define eight fields associated with an event structure, shown 

in figure 4.2.

Nesting Enable Local Event Local
ActionIdentifier Type Level

Control
Control Variable

Stack
Expression Action

Figure 4.2

The housekeeping fields are the identifier, action and enable control fields. 

The identifier field, which can be a simple integer, enables the monitoring 

software to associate monitoring primitives with events and also locate a 

particular event within the event-graph. The relationship between machine- 

level primitives and events of the event-graph is maintained by the monitoring 

software using the event identifier. Machine-level primitives are invoked with 

an absolute machine address and are independent of the event which invoked 

them. When traps are taken, control is passed to the monitor process, which 

is informed of the type and machine address of the primitive responsible. It 

is thus a function of the monitoring software to associate the relevant events 

with the traps taken. One possible method of doing this is by keeping a list 

of event identifiers which correspond to particular primitive types and 

machine addresses. One consequence of this is that only one primitive of any
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one type and address need be set for all events which require it. Events 

which need to invoke primitives for which the machine trap is already set, 

simply have their event identifiers appended to the list of identifiers (held by 

the monitoring software) which correspond to the trap. The removal of 

monitoring primitives is also performed via the list of event identifiers, with 

the identifier removed from the list, but the machine trap is only removed if 

no further event identifiers are associated with it. The addition and removal 

of identifiers from the lists can be thought of as the setting and resetting of 

logical primitives.

The action , field provides the means by which the event-graph takes its 

structure. This field implements the arcs in the event-graph by referencing 

successor events. A further field (not shown) is used to allow multiple 

outgoing arcs. By using this field to link common successors all "actions" of 

an event can be found by firstly, following the action field to reference the 

first successor and then within the successor events by following this extra 

field.

The third field in the housekeeping category is the enable control field. This 

field is included primarily for reasons of efficiency. After visiting a node of 

the event-graph and before looking at any successor nodes the usual course 

of action is for the monitoring software to remove any primitives associated 

with the node. However, it may be the case that the event is required to 

remain active even when satisfied. An example of this would be the tracing 

of a variable or entry to a procedure, where all instances need to be 

monitored, not just the first. The easiest and most efficient method of



implementing this requirement is a simple boolean field which indicates it.

Fields in the second category are true event fields, in that they are 

incorporated into the event structure for the purpose of implementing 

abstract programming concepts rather than implementation of the 

representation.

The type field indicates which abstract programming concept the event is 

monitoring. For example, CALL» RETURN and WATCH in the previous 

section are all types of events. In total we will define thirteen different types 

of event required for monitoring purposes. This field informs the monitoring 

software how to interpret the rest of the event structure, and in particular the 

event expression field, and is also used to determine which monitoring 

primitive to invoke to monitor the event. Only one type of monitoring 

primitive is ever used with a particular type of event.

To enable the run-time calculation of addresses the local action field contains 

the local variable offset found in the target program symbol table. The 

calculation is performed when the associated event is satisfied.

The nesting level of a process state refers to the depth of procedure calls. 

Thus the nesting level control field allows events to be tied to certain nesting 

levels.

The event expression field references the machine information necessary for 

the invocation of monitoring primitives, and the local variable stack is used to 

store this information. In the simplest of cases the local variable stack is 

superfluous to requirements but is included in the event structure for more

-  87 -
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complex conditions.

4.2.2. Event types

The type field of the event structure indicates the function of the abstract 

level event thus determining how the rest of the fields of the event structure 

are to be interpreted. When invoking monitoring primitives this field is 

accessed to find which of the three primitives is appropriate. Each of the 

different types of event monitors using just one of the three types of primitive 

and in most cases using only a single primitive.

There are thirteen types of event falling into three categories. The first 

category monitors the flow of control through the target program and 

comprises five types. The CALL and RETURN events are most commonly 

used as a pair ensuring that successor events in the event-graph are 

monitored only when a specified procedure is active. The usual arrangement 

of these two types in the event-graph is shown in figure 4.3.

Figure “1.3

A CALL event, which monitors procedure entry, is succeeded in the event-
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graph by a RETURN event and the rest of the predicate representation. 

When entry to the procedure occurs, the rest of the predicate is monitored, 

as is procedure exit. If a return from the procedure occurs then the 

monitoring software reverts to monitoring the procedure entry and stops 

monitoring the rest of the predicate.

Similar to the CALL and RETURN events are the ENTRY and EXIT events 

(figure 4.4).

1 F ig u re4.4 ■

These events are used when a code segment, other than a procedure, is to be 

active before monitoring of successor events is to occur. The necessity for

two pairs of events, which appear to perform the same function, is linked. , | ; . ( ,

with the nesting level field. When entry to a procedure occurs, the nesting 

level is incremented and thus the monitoring software must monitor 

procedure entry (CALL event) at a nesting level one greater than for an 

ENTRY event. This will become clearer when examples are described in a 

later section.

To allow simple source statement monitoring an event of type CODE is



provided. All the events in this category make use of the code breakpoint 

monitoring primitive "watching" for instruction execution.

The second category consists of six types of event and facilitates the 

monitoring of data flow. The flow of data during execution includes variable 

assignment and variable reference, both with either local, global or user 

controlled dynamic variables. Consequently there is an event type for each 

possible combination. WATCH events monitor updates to local variables and 

WATCHSTAT for global variables. Two different events are required here 

because of the different ways in which the machine address to be monitored 

is calculated. Similarly DATA and DATASTAT monitor both types of 

variable but for variable reference rather than update. DATAUCDV and 

WATCHUCDV provide facilities for monitoring references and updates to 

user controlled dynamic variables. The variable assignment types use the 

watchpoint primitive whereas the reference types use the data breakpoint.

The third category of events enables the monitoring of expressions. An 

expression consists of operators, variables and constants. A type 

EXPRESSION is used to root an expression tree with constants held in 

events of type CONSTANT and variables included in types WATCH or 

WATCHSTAT. As an example consider the expression: X + Y = Z  - 1  where 

X and Y are local variables and Z is globally declared. An expression tree 

for this appears in figure 4.5 and the corresponding event-graph structure in 

figure 4.6.

- 90 -
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1x y z
Figure 4.5

EXPRESSION

EXPRESSION EXPRESSION

WATCH x WATCH y  WATCHSTATz CONSTANTI

4.2.3. Run-time calculations

The local action field is used to mirror the run-time calculations performed 

by the machine. Primarily for use in calculating addresses for local variables, 

local actions are most often used in conjunction with events of type CALL 

and ENTRY. This is the case because CALL and ENTRY events monitor 

entry to code segments and thus the activation of new local variables. The 

local action field contains a list of local action structures, which consist of. a 

local variable offset (found in the program symbol table) and a stack 

structure. This stack structure is used to hold the machine addresses 

calculated at run-time (figure 4.7).

Figure 4.6
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local action local action
structure structure

offset stack

action

Figure 4.7

The local variable offset is static in nature and can thus be stored in the 

event-graph before execution commences. The absolute machine address is 

calculated by adding this offset to the current procedure stack frame base; 

the result of which is stacked in the appropriate local action structure. 

Maintaining a list of local action structures allows more than one local 

variable, declared in the same program block, to be monitored. The storage 

space for the calculated address is a stack structure due to the possibility of 

recursion. Each time the code segment is entered recursively a new address 

is calculated and stacked, and popped off again when the segment is exited. 

Successor events can then access the appropriate local action structure for 

the machine address to set monitoring primitives (figure 4.8).
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action local action structure

Figure 4.8 : ’

4.2.4. Nesting level

The nesting level control field consists of a boolean which indicates whether 

the field is to be used for this particular event and a nesting level value. The 

nesting level of a process refers to the depth of procedure calls; that is, the 

number of procedures currently active. Thus any active procedure is at a 

nesting level one greater than the routine that called it. By storing a nesting 

level value in the nesting level control field, and then checking this against the 

current nesting level value when traps are taken, events can be tied to 

particular nesting levels thus removing the problem of intermediate 

procedure calls.

As an example consider the event-graph representation for the assignment to
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a variable while textually confined to a particular procedure. Example code 

for this is shown in figure 4.9.

int x ; proc A()
{

B ( )  ;x = expr ; A() ;
)proc B()
{ x = expr
1

Figure 4.9

The event-graph representation for the monitoring of updates to the global

variable X, but only those confined to the textual region of procedure A, is 

given in figure 4.10.

Figure 4.10

The CALL and RETURN events monitor entry to and exit from procedure 

A and the WATCHSTAT event monitors the global variable X. If the 

nesting level field were omitted from the event structure then the update to
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variable X, in procedure B, when called from A, would also result in the 

monitoring action. By placing the nesting level value which occurs on entry 

to procedure A in the nesting level control field of the WATCHSTAT event, 

and then checking this value, against the current nesting level value, when the 

variable is updated, the update in procedure B can be ignored (figure 4.11).

NLC

Figure 4.11

This is so because the update in procedure B will execute at a nesting level 

one greater than that stored in the WATCHSTAT event, as the call to 

procedure B will increment the current nesting level value.

Due to recursion it is possible for the intermediate procedure call to result in 

the monitored procedure being entered again. Because of this, the nesting 

level value must be stored in a stack structure in the nesting level control 

field. This allows the WATCHSTAT event to monitor updates to the 

variable X for the recursive call to procedure A, but enables the nesting level 

value of the first call to be restored when the recursive call exits (figure 4.12).
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Figure4.12

4.2.5. Machine information

The event expression field holds all the machine level information needed for 

invoking monitoring primitives. The type field indicates how this field is 

interpreted. In the simplest case static information, which is known before 

execution, is referenced by the event expression field (figure 4.13).

EE ■

absolute machine address 
or constant value

Figure 4.13

In the cases where machine addresses are calculated at run-time (DATA and 

WATCH) the event expression field references the structure created by the 

local action field of the appropriate event (figure 4.14). The event expression
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field of WATCHUCDV and DATAUCDV events reference a second event, 

which will be explained by an example later in this chapter.

LA EE

Figure 4.14

Events of type EXPRESSION have an event expression field which 

references an expression structure, consisting of an operator and pointers to 

two other events, thus forming an expression tree (figure 4.15).

EE

left operand right operand

Figure 4.15

The local variable stack is used to hold machine information for consumer 

events of addresses calculated at run-time. We refer to the event which gives 

rise to the stack of calculated addresses as the producer event and the event 

which accesses the addresses via the event expression field as the consumer

event.



Consumer events use the addresses accessed through the event expression 

field to invoke monitoring primitives and also copy them to the local variable 

stack (figure 4.16).
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LA EE LYS

Figure 4.16

The necessity for the local variable stack arises when events are placed 

between the producer and consumer events in the event-graph and 

consequently the local action stack does not necessarily indicate the addresses 

monitored by the consumer event. This will be further investigated in the 

next section with reference to an example.

4.3. Monitoring with a directed graph

Monitoring software handles each event in a uniform manner with the overall 

structure of the event-graph having no influence over the way in which 

individual events are monitored. The monitoring of a conditional level 

predicate is, however, determined by the event-graph structure and the 

degree to which the predicate is satisfied is indicated by how much of the 

event-graph has been traversed. Traversal is based on the traps taken and
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the information contained within the event structures. The predicate 

specified in the monitoring condition is found to be satisfied without any user 

interaction being necessary.

We identify two phases in the monitoring of individual events which will be 

referred to as examination and evaluation. In the simplest terms 

examination of an event results in traps being set on the target process and 

evaluation which occurs in response to traps taken results in the examination 

of successor events. More fully, examination of an event occurs as a result of 

evaluating its predecessor or, in the case of the start event, when the 

examination phase is explicitly applied to the event. There are two functions 

that the examination phase must perform; firstly, a nesting level value is 

stacked in the nesting level control field, whether the field is marked active or 

not. The nesting level value stored is the value which is required for the 

event to be satisfied during evaluation. The second function of the 

examination phase is different for different types of event but, in general, 

involves accessing the event structure to get machine information for the 

setting of monitoring primitives.

Evaluation of an event accesses the event structure information to check 

whether it is satisfied or not. Satisfaction of an event occurs if the trap was 

taken at the correct nesting level. If the event is found not to be satisfied 

then no further action is taken, except a transfer of control back to the target 

process. If an event is found to be satisfied then appropriate traps are 

removed and stacks within the event structure popped as required. A final 

function of evaluation is the examination of successor events.
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The detailed working of the examination and evaluation phases for the 

different event types is best described with a set of examples. Where 

necessary a C-like language will be assumed, although the monitoring is not 

language-specific.

Example 1

Consider the monitoring command:

WHEN <line 6> PERFORM < monitoring action >

When applied to the code fragment in figure 4.17 the monitoring action is 

performed when the specified source statement is reached in execution. The 

event-graph representation of the above monitoring command is shown in 

figure 4.18.

■ line 
nos
5 statements ;
6 statement2 ;
7 s ta te m e n ts

Figure 4.17

<start>---------- * CODE----- > < monitoring action >
<line 6>

Figure 4.18

An event of type CODE indicates that a code breakpoint is to be set at the 

location specified by the event expression field; the trap taking effect when 

execution reaches it. The location stored in the event expression field is 

taken from the symbol table, held by the software monitor, which lists
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addresses for source statements. The successor event of the CODE event is 

the monitoring action event.

There are two other fields within the CODE event which alter the way in 

which monitoring proceeds. The nesting level control field, if set, requires 

that the machine-level trap is taken at a particular depth of procedure call for 

the event to be satisfied during evaluation. Traps taken at any other nesting 

level are ignored. The other field which alters the effect of the event-graph is 

the enable control field. If this is set then all occurrences of the event result 

in the monitoring action, otherwise only the first satisfaction performs this 

and then the event becomes inactive. Without further qualification from the 

user the default setup for the event-graph would monitor all occurrences of 

the condition and at any nesting level.

Monitoring of this event-graph commences with examination of the CODE 

event. The event expression field is accessed for a machine address and a 

code breakpoint is set at the address. Control is then passed to the target 

process and execution continues normally until the breakpoint is reached. At 

this point control is passed to the monitor process which relates any 

machine-level traps to abstract-level events. Evaluation of the CODE event 

now takes place. With a default setting the event is always satisfied and the 

monitoring action is performed with the event and associated trap left active.

Global variable monitoring would use a similar graph but with an event of 

type WATCHSTAT and an event expression field containing the address of 

the variable. The resultant trap from examination of this event would be a



watchpoint for monitoring updates to machine locations.

Example 2

WHEN 10{11;16) PERFORM < monitoring action >

The monitoring condition in the above command requires that the statement 

at line 11 is executed, followed by execution of the statement at line 16, with 

monitoring restricted to the block beginning at line 10. When applied to the 

code fragment in figure 4.19 the monitoring action is performed when control 

firstly passes through < statement 1> (expression-A results true) and then 

<statement4> (expression-B results false) for any one execution of the 

conditional block. Sequences such as: execution of line 11, line 15, then an 

iterative execution of line 12, followed by line 16 do not result in the 

monitoring action.
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line 
nos i
10 if( expressionÀ )
11 statementi ;
12 else statement2 ;13
14 i£( expressionB )
15 statement3 ;
16 else statement4 ;

Figure 4.19

The event-graph representation of the above monitoring command is shown 

in figure 4.20.

The inclusion of the ENTRY/EXIT event pair enables monitoring to be 

restricted to the code fragment. The event expression field of the ENTRY
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event is the address of the first instruction of the code fragment and the same 

field of the EXIT event holds the address of the instruction executed 

following the code fragment. The event expression fields of the two CODE 

events hold the appropriate addresses for the specified source statements. As 

in the previous example the state of the nesting level and enable control 

fields can alter the effect of the event-graph. If the user requires the 

monitoring action for all occurrences of the predicate then the enable control 

field of the ENTRY event is set, otherwise only the first instance of the 

predicate will result in the monitoring action. The state of the nesting level 

control field of the ENTRY event determines whether the monitoring 

predicate is restricted to the nesting level applying when the command was 

specified, or not; the latter case allowing intermediate procedure calls. In the 

following we assume the event-graph monitors all occurrences at any nesting 

level.

The ENTRY/EXIT event pair prevents iteration of the code fragment from 

causing invalid monitoring actions. This is because the EXIT event restores
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the state of the event-graph as if the code fragment had not been entered, 

removing any traps on the specified source statements. Iteration cannot now 

cause execution of the first source statement < sta tem en ts on one iteration 

and the execution of <statement4> on another, to result in the monitoring 

action.

The EXIT event must monitor the flow of control leaving the code fragment 

at a particular nesting level (nesting level control field is active), with only the 

first instance monitored (enable control field is not active). The two CODE 

events also have the nesting level control field active and the enable control 

field not active. This enables the event-graph to monitor the correct flow and 

distinguish between recursive calls. The effect is that on any one pass 

through the code fragment, <sta tem en ts must be executed followed by 

<statement4>, for the monitoring action to be performed.

Traversal of the graph commences with the examination of the ENTRY 

event. This results in a code breakpoint being set at the entry point to the 

code fragment. Control is now transferred to the target process, which 

executes normally until the instruction at the code breakpoint is executed. 

Control now passes back to the monitoring process which relates the trap 

taken to the event which set it. This results in the evaluation of the ENTRY 

event. Successful evaluation of the ENTRY event results in the examination 

of its two successor events.

Examination of the EXIT event places the current nesting level value in the 

nesting level control field and sets a code breakpoint at the exit point of the
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code fragment. Similarly, examination of the first CODE event places the 

current nesting level value in the nesting level control field and a code 

breakpoint at the address of the source statement <statementl>. Assuming 

a current nesting level value of NL  i, the resulting state of the event-graph is 

shown in figure 4.21.

Figure 4.21

Execution of the target program now continues until a trap occurs, causing a 

transfer of control to the monitoring process.

Assuming that the execution of < statement 1> caused the transfer of control 

then the CODE event is evaluated, which is satisfied if the current nesting 

level value is still N L \. If the trap occurred after a recursive call then 

evaluation fails and target program execution continues. If, however, 

evaluation succeeds then, because the enable control field is not active, the 

code breakpoint, set by this event, is removed and the nesting level control 

stack popped, and the successor event is examined.
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This successor event is the second CODE event, the examination of which 

stacks the nesting level value in the nesting level control field and sets a code 

breakpoint at the address of the source statement < sta tem en ts (figure 

4.22).

Figure 4.22

Evaluation of the second CODE event would occur in a similar way to the 

first CODE event and, if satisfied, would result in the monitoring action.

If the ENTRY event is evaluated again, following a recursive invocation of 

the sequence, then its two successor events are examined for a second time. 

This proceeds in a similar way to the first time, with the new nesting level 

value (say N L 2 ) stacked in the nesting level control field (figure 4.23).

One difference does exist between the two examination phases. Because all 

addresses in the event expression fields of the events are static, only one 

monitoring primitive is needed for each event. Thus, each recursive call 

which results in the code fragment being executed can use the previously set 

trap. The removal of the primitive only occurs when the nesting level control
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Figure 4.23

stack is popped empty, implying the primitive is not required any more. 

Similarly, primitives need only be set when a nesting level value is stacked on 

an empty nesting level control stack. Thus, in the above example, a second 

primitive is not required on the EXIT point of the code fragment.

The stacking of the nesting level enables the monitoring software to follow 

multiple traversals of the graph. The values stacked indicate the extent to

which the predicate is satisfied at each of the levels.

If, in the above state of affairs, the code fragment is exited, then evaluation 

of the EXIT event takes place. For successful evaluation the trap must have 

occurred at a nesting level value of N L 2. If this is the case then the nesting 

level control stack is popped, but the primitive set on the exit point of the 

code fragment is not removed as the stack is not empty. A further function 

of evaluation, in the case of EXIT events, is the restoration of the event-
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graph to the state applying before the ENTRY event had occurred. This 

involves searching through the event-graph for events which have nesting 

level values stacked of the appropriate value, and removing this nesting level 

value and any primitives set. In the above example the first CODE event 

does have a nesting level value, on the stack, of the required value and so this 

entry must be removed. The nesting level control stack is popped and 

because it becomes empty the code breakpoint, set by this event, is removed 

(figure 4.24).

r 'S

Figure 4.24

Example 3

WHEN B:A{/x} PERFORM <monitoring action>

When applied to the code fragment in figure 4.25 the monitoring action is 

performed when the global variable x is updated, within procedure A, but 

only if this is called from procedure B.

The event-graph representation of the above monitoring command is shown
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int x ; 
proc A()
< ■ .x = expr ;
> .proc B()
{

A ( )  ;
)

Figure 4.25

in figure 4.26.

The CALL and RETURN events act in a similar way to the ENTRY and 

EXIT events of the previous example. Different types are used for 

procedures, however, as the nesting level is influenced by procedure calls and 

returns. Thus, whereas ENTRY and EXIT events "watch" for a nesting level 

of, for instance NL, CALL events are "watching" for NL +1 and RETURN 

for NL  -1 . ■' ,■

The first CALL event, which will be referred to as CALL-B, is used to 

monitor. entry to procedure B. The event expression field of this event is
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loaded with the address of the first instruction of procedure B. The nesting 

level control and enable control fields produce the same effect as in the 

previous example for the ENTRY event.

The second CALL event, which will be referred to as CALI ̂ A, is assigned 

the first instruction of procedure A to the event expression field. To preserve 

the procedure calling chain of procedure B followed by procedure A, the 

nesting level control field is active and the enable control field not active. 

Thus only the first occurrence, at a particular nesting level, of procedure A is 

monitored. If the nesting level control field were not active then the 

procedure calling chain of procedure B followed by procedure A would allow 

any number of intermediate procedure calls between them.

The WATCHSTAT event monitors updates to the global variable x and thus 

the event expression field is loaded with the machine address of the variable. 

Different monitoring effects are again seen depending on the setup of the 

enable control and nesting level control fields.

The nesting level control field of the WATCHSTAT event has a rather subtle 

effect on monitoring. If it is set, thus requiring a particular nesting level for 

successful evaluation of the event, then the monitoring action is performed 

for updates to the variable x, but only if they occur at the nesting level of 

procedure A; that is, the statement which causes the update of the variable is 

within the textual scope of procedure A. The other effect, caused by the field 

not being set, results in the monitoring action if procedure A is called from 

procedure B, and possibly followed by any number of intermediate procedure
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The two RETURN events are each set up to monitor only one occurrence of 

procedure return at a particular nesting level. In this example the RETURN 

events will always occur at the correct nesting level (assuming the code 

generated by the compiler adheres to the nesting of procedure calls) but, in 

general, CALL/RETURN pairs "watching" the same procedure can occur 

any number of times within the event-graph and so it is essential that the 

correct RETURN for a particular CALL is recognised. The RETURN 

events are required to monitor exits from the procedure identified in the 

associated CALL event. This could be achieved by monitoring the final 

instruction of the procedure. However, there may be many "final" 

instructions if the target programming language allows returns from 

procedure to be explicitly included as program statements. A better method 

may be to monitor the first instruction after the return from procedure has 

occurred. This enables the monitoring of a single machine address, but 

means there is no static machine address which can be assigned to the event 

expression field of the RETURN event. Instead, the return address is, in 

most architectures, to be found in the procedure stack frame environment. 

The access of the return address would thus be a function of the operating 

system modules (introduced in chapter 3) attached to the process control 

unit, or monitoring software, of the monitoring environment.

Traversal of the event-graph commences with the examination of the CALL- 

B event, resulting in a code breakpoint at the entry point to procedure B. 

Execution of the target program now resumes until the machine-level trap is

calls. . 1 ^
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taken and control passes, once again, to the monitor process. The CALL-B 

event is evaluated as a result of this leading to examination of the two 

successor events. Examination of the RETURN event, paired with the 

CALL-B event, places the current nesting level value (say, N L ^  minus one 

on the nesting level control stack, and sets a code breakpoint at the return 

address (say, RA i) found in the stack frame environment. To allow for 

recursion the return address, at which the code breakpoint is set, must be 

stored in the event structure. The reason for this will become apparent later 

in this example. The local variable stack is used to hold the procedure return 

addresses (figure 4.27).

Examination of the second successor of the CALL-B event, the CALL-A 

event, places the current nesting level value plus one on the nesting level 

control stack, and sets a code breakpoint at the entry point to procedure A 

(figure 4.28).

If procedure A is entered then evaluation of the CALL-A event takes place,
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<addi x >

■ Figure 4.28

which checks the current nesting level value against that stored in the nesting 

level control field. Evaluation is only satisfied if they are the same and thus 

no intermediate procedure calls have occurred, resulting in the examination 

of the two successor events.

Examination of the second RETURN event, paired with the CAT J^ A event, 

occurs in a similar way to the first RETURN event. Assuming a return 

address of RA 2 the new state of the event-graph is shown in figure 4.29. 

Examination of the second successor, the WATCHSTAT event, results in the 

current nesting level (NL i +1) being stored in the nesting level control field 

and the address in the event expression field (machine address of global 

, variable x) used to invoke a watchpoint primitive (figure 4.30). This traps 

execution when the address is updated.

There are now four traps set, one for each event except for the CALL-A 

event. Assuming a recursive call to procedure B occurs, then evaluation of
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the CALUB event occurs. This results in the examination of the successor 

events once again. This occurs in a similar way to the first time. Assuming a 

current nesting level value of ML 2 the state of the event-graph is shown in 

figure 4.31. As in the previous example the two threads of monitoring can be 

seen by inspection of the nesting level control field. However, a difference 

between the two examination phases of the RETURN event exists. Athough
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a primitive is set on the new return address, it is not possible for the first 

return address to occur at the correct nesting level and so the breakpoint 

monitoring it, can be removed.

A return from procedure B, at the correct nesting level, results in the 

successful evaluation of the RETURN event paired with the CALL-B event. 

As with evaluation of the EXIT event, in the previous example, the 

evaluation of the RETURN event restores the state of the event-graph to

that applying before the procedure call. Thus all events succeeding the 

CALL event, paired with the evaluated RETURN event, are visited and if 

they possess nesting level values of the appropriate value then these are 

removed, as are any primitives set by them (figure 4.32).

A return from procedure A at the correct nesting level would bring about 

evaluation of the RETURN event paired with the CALUA event. A similar
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phase, as described above, for the return from procedure B is entered which, 

again, restores the event-graph as if the procedure call had never occurred 

(figure 4.33).

Figure 4.33
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Example 4

Consider the monitoring command:

WHEN /X /y  PERFORM < monitoring action >

When applied to the code fragment in figure 4.34 the above monitoring 

command performs the specified monitoring action for updates to the 

variable y, local to the procedure X.

proc X()
{ int y ; 

y = expr ;

Figure 4.34

The event-graph representation of this command is given in figure 4.35.

The CALL and RETURN events perform the same function as in previous 

examples; that is, restricting the rest of the predicate to the scope of the 

specified procedure. In addition to this the CALL event performs a local 

action. This is performed on each successful evaluation of the CALL event, 

and in this example the machine address of the local variable y is calculated



- 118 -

and stacked for use by the WATCH event.

The WATCH event is similar to the WATCHSTAT event except that the 

event expression field holds a pointer to the stack of calculated addresses, 

and not a static machine address. A structure located between the WATCH 

event and the local action structure, called the local variable access structure, 

enables the user to specify options appropriate to monitoring local variables 

(figure 4.36). This structure consists of an offset, indicating how far down the 

stack of addresses the WATCH event looks for an address, thus allowing 

variables from a specific instance of a recursively called procedure to be 

included in a monitoring predicate; and a flag which indicates whether only a 

single instance of the variable is to be monitored, or all instances.

Traversal of the condition graph commences with the examination of the 

CALL event, which results in a code breakpoint at the entry point to 

procedure X. When the CALL event is evaluated, and before examination of
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the successor events takes place, the local action is performed. In this 

example, the offset in the local action structure (variable offset obtained from 

the symbol table) is added to the current stack frame pointer, and the result 

(say, L V i)  stacked in the same local action structure (figure 4.37). It may be 

the case that more than one variable, local to a procedure, is found in the 

monitoring predicate, in which case, the local action performs the above 

calculation and stacking function for each local action structure in the list.

Examination of the two successor events can now take place. Examination

of the WATCH event involves the stacking of the current nesting level value

in the nesting level control field and the setting of a watchpoint primitive at

the machine address of the local variable. This machine address is obtained
/

from the local action stack via the local variable access structure. The offset 

in this structure is used as an offset from the top of the local action stack. 

Thus, if this offset was anything other than zero then no machine address 

would be available and consequently no primitive set. A final function of 

examination is the copying of any machine address accessed, to the local
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variable stack. The resultant event-graph is shown in figure 4.38.

J

• • ♦

If procedure X is recursively entered then the CALL event is evaluated for a 

second time, resulting in the same sequence of operations as for the first 

evaluation. A machine address (say, L V 2) for the variable y, local to the 

recursively called procedure X, is calculated and stacked in the local action 

stack. Examination of the two successor events results in the examination of 

the RETURN event which proceeds as in the previous example. The 

examination of the WATCH event, for the second time, stacks the nesting 

level value and accesses a machine address via the local variable access 

structure. If the flag, in this structure, indicates that only one instance of the 

variable is to be monitored, then the primitive set on LV i is removed and a 

watchpoint set on the new machine address L V 2. If, however, the flag 

indicates that all instances of the local variable are to be monitored, then the 

first primitive is left active. The event-graph resulting from the above and 

assuming a new nesting level of N L 2 and return address of R A 2 is shown in 

figure 4.39.
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If an update to the monitored variable occurs then the WATCH event is 

evaluated, and if successful, results in the monitoring action. Successful 

evaluation of the WATCH event occurs in the same way as for other events, 

in that, the trap must be taken at the correct nesting level, if the nesting level 

control field is active.

Evaluation of the RETURN event occurs when a return from procedure X 

occurs. The reverting of the event-graph to a previous state must now occur, 

and in a similar way to the previous examples (figure 4.40).

The necessity for the copying of the machine address, of the local variable, is 

not apparent in this example, as the local variable stack is a direct copy of the 

local action stack. In general, however, this is not the case. Any events 

between the producer event (CALL) and the consumer event (WATCH) can 

cause the stacking of machine addresses at the producer event which are
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Figure 4.40

irrelevant to the consumer event. As an example the event-graph shown in 

figure 4.41 represents local variable monitoring where an event occurs 

between the consumer event and the producer event.

Figure 4.41

■» < monitoring action >

Figure 4.42 shows the above event-graph part traversed.

From the state of the stacks in this event-graph it is possible to infer the flow 

of execution (as it pertains to the monitoring command) which led to the 

current state. The three machine addresses stacked at the CALL event show 

that procedure X was twice called recursively. The two machine addresses
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stacked at the WATCH event show that the first and third call to the 

procedure resulted in the execution of the required code statement, whereas 

the second call did not.

The need for the local variable stack (apart from the stacking of return 

addresses) can be shown by a return from procedure X. This occurs if the 

trap at return address RA 3 is taken resulting in the popping of stacks and 

removing of primitives, to give the event-graph shown in figure 4.43.

If the flag, in the local variable access structure, indicates that only one 

instance of the variable is to be monitored at any one time then, when 

removal of the primitive at address LV 3 occurs, a primitive must be 

reinstated on a former address. As can be seen from the event-graph in 

figure 4.43 the local action stack does not give the correct machine address
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for reinstating a primitive. The correct address is located on the local 

variable stack of the consumer event (WATCH).

Example 5

Consider the monitoring command:

WHEN /A /x = /y + 1 PERFORM <monitoring action>

When applied to the code fragment in figure 4.44 the monitoring action is 

performed when the variable x, local to procedure A, is equal to the global 

variable y plus one. The event-graph representation of this is shown in figure

4.45.

int y ; 
proc A()
< int x ; 

x - expr ; 
y - expr ;

> '•
Figure 4.44

The CALL, RETURN, WATCH and WATCHSTAT events examine and



evaluate in the same way as previous examples. The EXPRESSION and 

CONSTANT events arc, however, processed in a different way to the other 

event types. Neither of these events set monitoring primitives and are thus 

never evaluated. Examination of the EXPRESSION event occurs when a 

variable is updated, and results in the checking of the expression in the 

monitoring predicate (that is, the expression tree in the event-graph). If the 

expression tree yields a result of true then the monitoring action is 

performed, otherwise control is passed back to the target process and 

execution Continues.

Traversal of the event-graph commences with the examination of the CALL 

event, which results in a code breakpoint at the entry point to procedure A. 

When this trap is taken the CALL event is evaluated, which is successful if 

the trap is taken at the required nesting level, or if the nesting level control 

field is not active. Successful evaluation causes the stacking of a machine 

address (say, LV{) in the local action stack and leads to the examination of
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the three successor events.

Examination of the RETURN event places the current nesting level value 

(say, NL'i) minus one on the nesting level control stack and accesses the 

current procedure stack frame environment for a return address (say, R A X), 

at which a code breakpoint is set.

Examination of the WATCHSTAT event results in the current nesting level 

value being stacked in the nesting level control field and a watchpoint 

primitive being set on the static address in the event expression field.

Examination of the WATCH event involves the stacking of the current 

nesting level value in the nesting level control field and the setting of a 

watchpoint primitive at the machine address of the local variable, which is 

obtained from the local action stack via the local variable access structure. 

The resultant event-graph is shown in figure 4.46.

Figure 4.46
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A return from, or recursive call to, procedure A is handled in exactly the 

same way as in the previous example. However, an update to either the 

global variable y or the local variable x results in the examination of the first 

EXPRESSION event. This involves traversing the expression tree, checking 

each of the logical or arithmetic subexpressions. Constant events return the 

constant value stored in the event expression field; WATCHSTAT and 

WATCH events return the value stored in the machine address of the event 

expression field or local variable stack, respectively; and EXPRESSION 

events return the result of applying the operator to the operands. In the 

above example the examination of the EXPRESSION event checks the valuei
of the local variable x against the value of the global variable y plus one.*

Only if the first EXPRESSION event returns true is the monitoring action 

performed.

Example 6

W H E N /A /i PERFORM < monitoring action >

When applied to the code fragment in figure 4.47 this monitoring command 

performs the monitoring action when the memory pointed to by pointer i is 

updated. The event-graph representation of this is shown in figure 4.48.

proc A()
' ' ! {■ ■ int *i ;

i ■ malloc() ;
L ! ■ *i « expr ;

' ' .■ ■ ■ ■  ■ ■■ ! ... . ) .

Figure 4.47

The CALL, RETURN and WATCH events examine and evaluate in the
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< monitoring action >

same way as previous examples. The WATCHUCDV event monitors 

updates to the memory location referenced by the address, obtained via the 

event expression field.

Traversal of the event-graph commences with the examination of the CALL 

event, which results in a code breakpoint at the entry point to procedure A, 

When this trap is taken evaluation of the CALL event occurs, resulting in the 

same sequence of events as the previous examples. After examination of the 

two successor events the state of the event-graph is shown in figure 4.49.
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An update to the variable i results in the evaluation of the WATCH event. 

In order to correctly monitor the location referenced by the variable i, then 

all updates to the variable i must cause successful evaluation of the WATCH 

event, and consequently the nesting level control field of the WATCH event 

is not active. Because of this the WATCH event is always successfully 

evaluated, resulting in the examination of the WATCHUCDV event. This 

involves storing the current nesting level value in the nesting level control 

field, and accessing a machine address via the event expression field. The 

machine address accessed is the top of the local variable stack of the event 

referenced by the event expression field. However, this address is the 

address of the pointer and must be dereferenced to get the location 

referenced by the pointer (say, *LV{). A watchpoint is set on this location, 

which is also stored on the local variable stack (figure 4.50).

Figure 4.50

A recursive call to procedure A causes a stacking of the new machine address 

for the variable i and also the examination of the two successor events. The 

state of the event-graph after this is shown in figure 4.51.
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Figure 4.51

Assigning memory to the latest instance of the variable i causes the 

evaluation of the WATCH event. This results in the examination of the 

WATCHUCDV event which, in turn, leads to the stacking of the new 

location referenced by the address in the WATCH event (figure 4.52).

The traps set by the WATCH event are left active in order to catch any 

changes to the variable i. This would occur if the pointer i was changed to 

reference a different area of memory. Again this would result in the 

evaluation of the WATCH event and the subsequent examination of the 

WATCHUCDV event. However, the effect required of the examination 

phase is different in this case. Instead of stacking another address, one of the 

addresses on the stack must be changed. This occurs for user controlled 

dynamic variables because, as described in chapter 3, they release the data 

component, of the process state, from a purely stack-like structure.
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Figure 4.52

Examination of the WATCHUCDV event compares the number of 

addresses stacked in the local variable stack of each of the WATCH and 

WATCHUCDV events and, if they are equal then the evaluation of the 

WATCH event was due to the reassignment of the pointer, and not the 

introduction of a new pointer. However, if the stacks are unequal in size 

then it is a recursive call to procedure A, and the introduction of a new 

variable, which has caused the evaluation of the WATCH event.

4.4. Summary

In this chapter we have described three levels of monitoring: the primitive 

level, the abstract level, and the conditional level. Predicates at the 

conditional level define the monitoring of high-level concepts such as 

procedure-calling chains, local variables, user controlled dynamic variables 

and also process state information which is not generally preserved within the



- 132-

process state. A conventional method of implementing the conditional level 

would probably involve checking the predicate at regular intervals such as 

after each machine instruction. This can, however, result in an unacceptable 

performance overhead. In order to monitor a conditional level predicate as 

efficiently as possible we have introduced the idea of a directed graph of 

abstract level predicates or events. These events, when monitored in the 

specified sequence, monitor the conditional level predicate. By defining 

thirteen types of event and two phases: examination and evaluation, we have 

been able to demonstrate the monitoring of the high-level concepts indicated 

above. Event types, primitives used and the actions taken during examination 

are summarised in table I.

The types of predicate which the event-graph supports are to a certain extent 

supported by an abstraction mechanism described by Lazzerini and Lopriore 

[Lazzerini89]. This enables a programmer to construct abstract predicates, 

for monitoring, from a number of simple predicates. Simple predicates can 

include target variables and instruction address (_ia) variables. The 

debugging system associates an _ia variable with a monitored block of the 

target program; blocks being denoted by a colon separated list of identifiers, 

indicating the nesting structure of the block. During execution the _ia 

variable is assigned the statement label (automatically assigned by the system 

and denoted by $1,$2 ..$A) of the currently executing statement. When 

execution leaves a particular block the _ia variable retains the label of the 

final statement to be executed. This enables control flow to be monitored 

where the path taken cannot be determined by simple inspection of the
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Table I
Event Type Primitive Used Action During Examination

ENTRY code breakpoint Store NL, 
uses 1 primitive

EXIT code breakpoint Store NL, 
uses 1 primitive

CALL code breakpoint Store N L  + 1, 
uses 1 primitive

RETURN code breakpoint Store NL - 1, 
uses multiple primitives

CODE code breakpoint Store NL, 
uses 1 primitive

WATCH watchpoint

Store NL,
uses multiple primitives . 

depending on flag in local 
variable access structure

DATA data breakpoint

Store NL,
uses multiple primitives 

depending on flag in local 
variable access structure

WATCHSTAT watchpoint Store NL, 
uses 1 primitive

DATASTAT data breakpoint Store NL, 
uses 1 primitive

WATCIIUCDV watchpoint Store NL,
uses multiple primitives

DATAUCDV data breakpoint Store NL,
uses multiple primitives

EXPRESSION - Do not store NL, 
Uses no primitives

CONSTANT - Do not store NL, 
Uses no primitives

process state. As an example consider the monitoring of two statements LI

and L2 which must be executed in that order for the predicate to be satisfied. 

The required monitoring commands are:

conditional CL1 = (B_ia = = LI) 
conditional CL2 = (B_ia = = 12) 
conditional on CL1L2 = CL1 & CL2 
origin CL1L2 at CL1 
break on CL1L2



The above commands set simple predicates "watching” the execution of each 

of the two statements, and a compound predicate which links these simple 

predicates. The origin at command prevents CL1L2 from becoming true if 

an event connected with CL2 occurs before an event connected with CL1.

In order to update the _ia variables a transfer of control to the monitor is 

required after the execution of each source statement, in each of the blocks 

involved in a predicate. Additionally the monitoring of a program involving 

recursion, and consequently the following of multiple instances of a predicate, 

appears not to be supported.

There are problems with the event-graph implementation, the first and not 

least of which, is the possibly large numbers of primitives which can arise 

from even a simple graph. This requires an efficient implementation of the 

monitoring primitives if execution rates are not to be lowered to the point 

where the system becomes unusable.

A second problem which involves performance degradation is that of 

unnecessary transfers of control. This occurs, for example, when monitoring 

procedure calling chains and also arises in a basic monitoring system. The 

problem arises, in the event-graph system, when the first procedures in the 

chain are frequently called but do not call the next procedure in the list. 

Unnecessary transfers of control arise with the basic monitoring system when 

the final procedure in the chain is called frequently but the sequence of calls, 

to fulfil the procedure calling chain, have not occurred. If the performance 

degradation associated with the event-graph system were to become
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intolerable then it might be possible to combine both methods in order to 

minimise performance degradation.

We now examine the possible implementations of the three monitoring 

primitives, attempting to minimise the performance overhead associated with 

them, thus allowing the event-graph system to invoke as many primitives as 

required.



5. Architectural Support

5.1. Introduction

Architectural support for monitoring implies using existing architectural 

features or adding extra hardware and/or firmware to decrease the 

performance degradation caused by monitoring. Much of the literature 

proposing architectural support for monitoring addresses the problem of 

performance interference in a real-time environment. Real-time software 

differs from other software in that it is functionally dependent on time, 

usually interacting with external devices or objects. For this reason real-time 

monitoring systems must not introduce delays into target process execution. 

There are, however, two types of delay: bounded and unbounded [Plattner81]. 

A bounded delay occurs when the delay is independent of the number of 

target program statements executed, but may well depend on the number of 

predicates to be monitored. An unbounded delay, however, is one which 

grows indefinitely with the duration of the target process, each predicate 

evaluation adding to the total delay. Although the monitoring system must 

not incur unbounded delays it is possible for real-time monitoring to endure 

bounded delays.

Because the target process is shared between the monitor processor and 

target processor the system cannot allow mutually exclusive access of the 

target process [Plattner84], as this incurs unbounded delays. For this reason 

monitoring systems for real-time software access the target process state, 

without performance interference, by capturing process state information at
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some point in the hardware where it is available (for example, the pins of the 

CPU or memory bus). However, it is the interpretation of the hardware 

activities in terms of source-level events that introduces delays. This is 

tackled, in the literature, by specialised hardware support for logic analysers 

[Plattner84] [Bemmerl86] [Rijks87], and is discussed in a later section.

Software which does not have strict timing constraints (as real-time software 

does) does not require a monitoring system which adheres to bounded delays. 

Because of this, the interpretation of hardware activities to source-level 

events can be relegated to software and architectural support provided only 

for monitoring primitives. However, monitoring must incur a minimal 

performance overhead if the system is not to become unusable, and so the 

implementation must strive to incur a delay, associated with a monitoring 

function, only if that function is active [Johnson82]. We also wish to 

minimise the continual performance overhead imposed by the presence of an 

active monitoring function, such as a breakpoint; the intermittent cost of 

responding to a breakpoint invocation is, conversely, not so significant in a 

non-real-time system.

In this chapter we examine possible methods of implementing support for 

monitoring, with different architectural resources, and describe an 

implementation for use in a virtual memory environment that incurs a low 

continual overhead.



- 138-

5.2. Implementations 

5.2.1. Simulation

The three primitives of the monitoring environment outlined in chapter 3 are 

the code breakpoint, the data breakpoint and the watchpoint. The code 

breakpoint traps to the monitor process when the instruction at a specified 

location is executed. A similar trap occurs for the data breakpoint when a 

specified memory location is accessed and for the watchpoint when the 

location is updated.

It is possible to implement the three primitives with no architectural support 

for program monitoring. In this case the implementor can resort to 

simulation of the underlying machine [Huang84]. Predicate evaluation for 

the primitives is thus performed in software as is emulation of machine 

instructions. Simulation is the most flexible method of implementation 

[Saal72] allowing easy tailoring to a specific need [Melvin86]. There are, 

however, disadvantages to implementation via simulation. The performance 

overhead can be considerable; Agarwal, Sites, Horowitz [Agarwal86] and 

Melvin [Melvin86] quote a possible 1000:1 execution overhead. The 

production of a functionally accurate simulator is also non-trivial and is thus a 

source of expense. The serious drawback, however, is the performance 

degradation because the user will dispense with the monitoring system if it 

runs too slowly [Johnson82].
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5.2.2. Non-intrusive hardware monitoring

It is obvious from the previous section that simulation is not usually a 

practical implementation proposal and is useless in a real-time environment. 

The monitoring of real-time software requires some form of non-intrusive 

hardware support so that monitoring can proceed with no delays incurred in 

the target process. Thus the timing dependencies with the target program 

are not disturbed.

For some time logic analysers have been used to extract information from 

executing programs by collecting machine state information on the machine 

bus via a set of signal probes [Fryer73] [Lloyd80] [Gentleman83]. The logic 

analyser is then able to compare or store the detected signals as appropriate. 

The collection and storage of machine state information is performed with no 

delay to the executing program. Hamilton [Hamilton83] describes a system 

whereby both event occurrences and duration for blocks of memory and 

sections of code can be measured. It allows a number of modes of operation 

including program activity, memory activity and module duration. A 

debugging monitor for the Bell System 1A processor [Witschorik83] allows 

real-time monitoring by taking snapshot views of the processor state 

information. Storage in the system enables the recording of 512 snapshots. 

However, both of these systems record and present to the user information at 

the machine level rather than at the program language level.

The ASDS memory bus monitor [Lyttle90] provides a symbolic debugging 

system for real-time embedded Ada software. The halting of the target
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process is performed by the bus monitor placing appropriate signals on the 

memory bus. Real-time constraints are met, however, by restricting the 

monitoring of variables to statically declared variables only. Thus, ASDS 

cannot monitor variables local to procedures or dynamic variables under the 

control of the user.

As it becomes more feasible and economical to code real-time systems in a 

high level language [Hill83] the real-time monitor must incorporate high-level 

monitoring techniques. In a lot of cases monitoring at the level of the basic 

block is sufficient to infer program activity, thus avoiding the re-creation of 

the high level view, which introduces delays for logic analysers [Plattner81]. 

RED [Hill83] is a real-time monitoring system for use with a high-level 

statement orientated language. During execution the entry to each basic 

block causes an entry into a history record indicating the basic block and the 

exact time of entry. After execution the history record together with 

compile-time information can be used to create a source level display 

showing which blocks were executed and at what time. A hardware probe 

implementation is described whereby the target memory is expanded to 

contain tag bits denoting which instructions begin basic blocks.

The SOVAC system [Lemon79] provides breakpoints on access of location, 

value in location and event counter reaching pre-defined value. High speed 

data selection and logging places information in a FIFO queue for later 

access by a software front end. As an instruction executes, the results of the 

previous instruction are stored in the FIFO, thus the monitoring processor 

must be able to store all relevant information in the time it takes to execute



the shortest instruction.

The detection of a high-level event often requires the detection of a number 

of sub-events [Gentleman83]. This is a similar principle to that described in 

chapter 4 where high-level events are broken up into a directed graph of 

sub-events. When monitoring variables local to procedures it is the entry to 

and exit from the particular procedure which constitute the extra sub-events, 

whilst for user controlled dynamic program variables it is the call to the 

memory allocation routine. The HP64340A [Small85] from Hewlett Packard 

is a software analyser add-on which can follow the execution of a program by 

using cross-reference data, special hardware and post-capture data reduction. 

Low-level address and data recognisers are armed with, for example, the 

procedure entry and stack-setup instruction address to monitor a local 

variable. The analyser allows nine hardware breakpoints and the counting of 

256 different events.

Circuitry for the monitoring of local variables is proposed by Goossens, Rijks, 

Tiberghien and Vermeesch [Goossens83] [Rijks87]. The idea is to provide a 

tag memory which removes the need for a second filter processor which has a 

speed an order of magnitude higher than the target processor. This tag 

memory is a normal memory of the same length as the memory of the 

system under test. Each entry of this tag memory can hold an operation 

code which indicates the action to be performed when the target system’s 

processor places the particular address on the bus. When monitoring local 

variables entry to the appropriate procedure is "watched" for, resulting in the 

stack base register being stored for later use. Subsequent accesses of
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memory result in this stack base register being subtracted from the address 

on the bus. A relative tag memory in the analyser circuitry indicates any 

operation to be performed for the particular access. To enable the 

monitoring of variables local to recursive procedures the storage for the base 

register is a stack structure and the activate/deactivate block, which indicates 

when execution is within the specified procedure, is transformed into a 

counter which is incremented on procedure entry and decremented on 

procedure exit. However, the monitoring of variables in different procedures 

requires that the circuitry be replicated for each block with a variable to be 

monitored. A tag system is also used for the monitoring of user controlled 

program variables. An appropriate operation is associated with the tag entry 

corresponding to the locations of the instructions for the calls to the memory 

allocation routine. When this call occurs the bus is monitored for an 

assignment to the dynamic variable. This assignment associates storage area 

to the dynamic variable thus providing the monitor with the memory location 

and thus the tag location of the variable.

The monitoring of instruction execution and variable update is also examined 

by Bemmerl [Bemmerl86]. Circuitry is described which provides code 

breakpoints and data breakpoints without slowing the target process. Local 

and dynamic variables are monitored by storing the run-time address in the 

hardware monitor when the procedure prologue instruction is executed and 

removed when the corresponding procedure epilogue instruction is executed.

The approach adopted by Plattner and Nievergelt [Plattner81] [Plattner84] 

also uses a second memory with size equal to the target memory. However,
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in this case the memory is a copy of the target memory and is termed the 

phantom memory. To decouple the target processor from the monitor 

processor and consequently the target memory from the phantom memory a 

FIFO queue is inserted between them. A conventional low-level "bus 

listener" is used to detect signals on the target bus and places the necessary 

information in the FIFO. At the other end of the FIFO is the monitor 

processor which rebuilds an image of the target state in the phantom 

memory. Predicate evaluation by the monitor processor results in the locking 

of the FIFO queue whilst the phantom memory is accessed. During this 

interval any memory transactions on the target system bus are queued in the 

FIFO. Thus, the queue must be large enough to hold the information queued 

whilst the FIFO is locked for a reasonable period of time. Secondly, the 

monitor processor must be of a speed which is capable of clearing the queue 

once it is unlocked. To speed up the monitor process a breakpoint bitmap is 

connected to the output of the FIFO, which reports to the monitor any 

memory transactions referencing a location belonging to a previously defined 

set of memory locations.

5.23. Built-in hardware support

Simulation and logic analysers represent the extremes of support for program 

monitoring. In the following we look at ways of implementing architectural 

support for the three monitoring primitives without the cost of expensive 

circuitry. However, the implementation of primitives which trap absolute 

addresses requires that the high-level functionality is provided by the
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monitoring software. The architectural support thus reduces the performance 

degradation associated with predicate evaluation at the machine level.

The primitive requiring the least sophisticated architectural support is 

probably the code breakpoint. If the implementor has the ability to alter the 

process instruction space code breakpoints can be provided which allow all 

other regions of the program to execute at a normal rate. The location at 

which the breakpoint is required is accessed, the instruction found there 

saved within the software monitor, and a "jump" instruction stored in its place 

[Johnson82] [McLear82] [Abramson83]. The destination of the "jump" is the 

monitor routine. This method, however, requires that the monitor is a part 

of the target process instruction space. To avoid the interference that this 

causes, operating system support is required which allows the monitor to be 

executed as a separate process. This support takes the form of a trap 

instruction which causes suspension of the target process and a transfer of 

control to the monitor process. There are drawbacks to this method: it must 

be possible to modify the target instruction space and consequently it is not 

possible to set code breakpoints in ROM; sections of code cannot be shared 

amongst users, and the monitoring software must emulate the instruction 

replaced by the trap instruction.

The importance of the code breakpoint has led to many machines being built 

with architectural support for them. The IBM System/370 and the SPAM 

architecture [Johnson82] allow groups of instructions to be specified, resulting 

in a trap if an instruction in the group is executed. This facility is often 

implemented using bounds registers which are checked on instruction
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execution. Using only one set of bounds registers limits the user to one 

breakpoint region leaving the monitoring software to check traps to enable a 

finer granularity.

Extending main memory to incorporate a trap bit can be used to implement 

code breakpoints but this requires either special memory or a reduction in 

the useable instruction length. The COBOL virtual machine implementation 

on the NCR Criterion supports this facility but only allows breakpoints of 

paragraph granularity [Johnson82]. Associative memories and bitmaps may 

also be used to implement breakpoints but are likely to be costly and are thus 

not to be found in common use.

It is possible to implement code breakpoints using data breakpoints 

[Abramson83]. In this implementation it is the access of the instruction 

which causes the trap and not its execution. The problems of monitoring 

ROM and sharing code amongst users are removed for this implementation 

but other disadvantages take their place. In particular, accessing an 

instruction does not necessarily mean that it will be executed. This occurs, 

for example, in instruction caching where a number of instructions are loaded 

with one access. For this reason, and because the problems of sharing code 

and monitoring ROM are unlikely to be of significance at the development 

stage, the simpler method of replacing instructions by trap instructions 

appears to be the most satisfactory implementation for the code breakpoint 

primitive. Means of overcoming the performance degradation associated 

with the emulation of the replaced instruction will be examined in a later

section.
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Implementation of data breakpoints and watchpoints is not as simple as code 

breakpoints as it is not possible to replace the location contents with a trap 

value. Because of this many debugging and monitoring systems either cannot 

monitor data flow or have to resort to the use of code breakpoints and single 

stepping.

An often used implementation of breakpoints is the trapping to monitoring 

software after the execution of each instruction [Groll78]. A list of 

breakpoints is thus checked after each instruction. The VAX T-bit facility 

[Digital82] and the 68000 trace bit [Motorola82] cause a trap after the 

execution of each instruction allowing the monitoring software to take control 

and perform predicate evaluation. An interrupt-driven facility for trapping 

execution is described by Smith [Smith82]. The performance degradation 

associated with the single stepping of machine instructions approaches that of 

simulation.

Another approach to the implementation of data traps is through the use of 

instruction counters [Cargill87] [Mellor-Crummey89]. The basic idea is to 

stop the target process periodically by loading the instruction counter with a 

predetermined instruction step and then checking the "watched" location. If 

the value has changed since the last trap occurred then the data trap must 

have occurred in that time span. The target process is restarted, either from 

scratch or from a checkpoint, and executed to a point midway in the above 

region. By performing this procedure enough times the region under 

observation is reduced until the instruction causing the memory update is 

found. When using this method a compromise must be found between small
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instruction steps, giving frequent transfers of control but fewer restarts to find 

the update, and large instruction steps, giving fewer transfers of control but 

more restarts to find the update. The performance overhead with the above 

method can be considerable if the program is restarted many times. The use 

of checkpoints reduces restart execution time somewhat, but update 

information must be stored resulting in both memory and execution rate 

interference. A further disadvantage with the use of instruction counters is 

that only watchpoints can be detected and not data breakpoints.

The periodic transferral of control to the monitor process also enables the 

implementation of other tools. The Mesa Spy [McDaniel82] provides a 

performance analysis toolkit via a technique based on PC sampling. This . 

method "grabs" control at regular intervals and extracts information from the 

process state, enabling the monitor to determine for what execution time 

routines are responsible.

Possibly the simplest hardware support for data breakpoints and watchpoints 

is the provision of a machine register which is checked on each memory 

reference; a match of register value and memory reference location causes an 

interrupt-like trap of the kind described previously. The AIDS monitoring 

system [Hart79] allows for a single watchpoint to be implemented in 

hardware using a reserved data update register. If the system is used on a 

machine which does not support a data update register or more than one 

watchpoint is required then interpretation of the target program is used. 

Machines which support a data update trap include SYMBOL and the IBM 

System/370 [Johnson82]. Performance degradation associated with a single
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watchpoint using a data update register would be negligible as the 

comparison could in most cases be performed in parallel with the memory 

access. However, it is apparent from the discussion in chapter 4 that more 

than one watchpoint will often be required in a high-level monitoring 

condition. For example, the monitoring of an array, a variable local to a 

recursive procedure, or an expression involving more than one variable will 

all require more than one watchpoint and consequently more than one data 

update register.

One solution to this problem is to increase the number of registers available 

to the monitoring system. However, there is usually a limited number of 

registers available in a machine and having dedicated data update registers 

may not be practical as "spare" registers are often allocated to program 

variables. To avoid conflict for machine registers an additional bank of 

registers in the form of an associative memory can be added to the system. 

Performance degradation is still minimal because all elements of the memory 

are compared in parallel. Thus each memory reference still has only a 

performance overhead of a single register comparison which as in the single 

register case may be performed in parallel with the memory access. 

However, only small true associative memories are available and these are 

expensive. Manufacturers adding a register array would thus be more likely 

to use it to improve performance than to implement monitoring facilities.

An inexpensive solution to the provision of a data update memory is to use a 

section of normal main memory. Performance degradation with this method 

is increased considerably. If watchpoints are stored in no particular order in
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the memory then a sequential search is required, needing, on average, a 

number of memory accesses equal to half the watchpoints currently set. 

Sorting the watchpoints in the memory will require fewer additional accesses 

in general but adds the overhead of implementing a search routine for the 

sorting method used. If the area of main memory is only reserved when the 

monitoring system is invoked then this is also a source of interference to the 

target program execution. A separate, possibly faster, block of memory 

would reduce the performance overhead and remove the memory 

interference problem.

Some machines have existing features which can be used to implement 

watchpoints and data breakpoints. Descriptor based machines [Bishop81] 

perform all memory references via descriptors. This alone encourages 

software reliability [Johnson82] as the descriptor contains attribute 

information concerning the entity it describes. In most cases the descriptor 

can be easily extended to indicate a data trap on the data item. Performance 

degradation is minimal as the descriptor is referenced whether monitoring is 

being performed or not. The overhead is simply a comparison on the data 

trap flag in the descriptor. However, this implementation is restricted to 

those machines which reference memory via descriptors.

VAX DEBUG [Digital86] implements data breakpoints and watchpoints 

using exception handlers combined with the memory protection mechanism 

[Beander83]. An exception handler is simply a routine which is executed 

whenever an exception is raised. A system of priority levels of exception 

handlers means that the monitoring exception handlers can always "grab"
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control when the need arises. Data breakpoints are implemented by 

invalidating the protection status of the page of memory in which the location 

resides. Any reference to this page will raise an exception and the 

monitoring software can take control and check for a breakpoint. 

Watchpoints are implemented in a similar way but the page is write-protected 

so only memory location updates cause an exception to be raised. The 

performance degradation associated with this implementation can be 

considerable. A single watchpoint causes the software monitor to be entered 

whenever a location on the same page as the watchpoint is referenced. With 

a common page size of 512 words a reference to any one of up to 512 

variables will raise an exception and cause the software monitor to be 

invoked.

High-level language computer architectures are designed with a particular 

language or type of language as the target language of the machine, and it 

might be expected that such computers would be more effective at 

monitoring programs written in that target language. However, Ditzel and 

Patterson [Ditzel80] concludes that the machine organisation itself does not 

necessarily help in the implementation of high-level monitoring facilities and 

that "the goal should be to provide machines that allow the creation of 

efficient systems with excellent diagnostics".

All the methods of implementing data breakpoints and watchpoints described 

in this section are not entirely satisfactory for one reason or another. Either 

the expense involved is too great or the performance degradation is 

impractical, or the implementation is restricted in other ways. Many of the
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methods examined do not allow data breakpoints or do not differentiate 

between data breakpoints and watchpoints.

In the following sections we describe a method of implementing code 

breakpoints, data breakpoints and watchpoints in a virtual memory machine 

which is relatively inexpensive but incurs an acceptably low continual 

overhead.

5.3. Virtual to Physical Translation 

5.3.1. Background

In the early days of computers it was the programmer’s job to divide his 

program up into a number of small pieces, or overlays which would fit into 

the available memory. It was also the responsibility of the programmer to 

store each overlay in an appropriate place in secondary memory, and arrange 

for the loading of overlays from secondary memory into main memory and 

vice versa. Using this method programs could be written which were larger 

than the available memory in the computer.

In 1961 a group at Manchester University devised a method whereby the 

above process of breaking large programs into overlays and transporting them 

between main and secondary memory was performed automatically. This 

method is now called virtual memory. The idea behind virtual memory is to 

allow the programmer to program in terms of virtual address space which is 

independent of the size of the actual memory in the machine but does 

depend on the size of the address field of the machine. Thus a machine with
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a 16 bit address field can reference 216 or 65536 words no matter what the 

size of the actual machine memory. The illusion of a large memory exists 

because the virtual memory technique always loads the correct chunk of 

program from secondary memory into main memory when a memory 

reference occurs.

One common technique for the implementation of virtual memory is called 

paging. Equal sized chunks of program, called pages, are read in from 

secondary memory and placed in similar sized pieces of main memory called 

page frames. Pages are chunks of virtual address space and page frames or 

blocks are chunks of physical address space or main memory. The mapping 

of virtual address space onto physical address space is performed by means of 

the memory map. In the paging technique this mapping is performed by 

means of a page table. The page table for a given program has as many 

entries as there are pages in the virtual address space. Common page sizes 

are 512, 1024 or even 4096 words, but always a power of two. This means 

that the size of the page table is equal to the virtual address space size 

divided by the size of each individual page, and is thus, itself, a power of two 

in size. From this an example 16 bit machine with pages of 1024 words has a 

virtual address space of 65536 words and 64 page table entries.

The reason for all sizes being restricted to a power of two is for ease of 

translation, which becomes apparent when virtual addresses are examined. 

Using the above example machine it can be seen that the top six bits of a 

virtual address indicate the page number and the bottom ten bits the word 

offset within that page. When translating virtual addresses to physical



- 153-

addresses the page number is calculated simply by taking the top six bits of 

the address and this value is then used to index the page table to find the 

corresponding page frame value or block number in actual machine memory. 

The bottom ten bits of the address or word offset are carried across 

unchanged to form the within block offset.

The page table used in the translation process must contain at least three 

fields: a flag to indicate whether the page is currently loaded into a physical 

address space page frame, the page frame number if the flag in the previous 

field indicates that the page is loaded, and a secondary memory address 

which gives the location of the page in secondary memory. The size of the 

page frame field depends on the amount of actual memory in the machine. 

For example, a machine with 16K of memory split into page frames of 1024 

words would have sixteen page frames and a page frame field width of four 

bits. A virtual to physical address translation for this example machine is 

shown in figure 5.1.

Multitasking machines use a set of page tables, one for each process residing 

on the machine. In practice page table entries of real machines have some 

sort of protection status field, which may indicate, for example, page is read­

only, page is out of bounds, or page is not loaded into memory. Other 

information held within the page table entries is used to speed up 

housekeeping duties. An example of this is the modified flag. This is set if 

the page loaded into main memory is updated during program execution. 

When the page frame is overwritten by another page being loaded into 

memory it need only be written out to secondary memory if the modified flag
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16 -bit Virtual Address 
0110011001110110

v------ » 25

63

Page Frame

1 0 1 0

10101001110110 
14-bit Physical Address

Figure 5.1 Virtual to Physical Translation

is set.

To achieve a fast translation the page tables can be implemented as a fast 

associative register array. However, large register arrays are expensive and 

therefore impractical, so page tables are usually held as software structures. 

If the translation were performed entirely in software the performance 

degradation would make the system intolerably slow and so modestly sized 

associative register arrays and fast caches are often employed to hold the 

most recently used entries of the page tables. Using a fast access memory 

means that the translation can be overlapped with other CPU activity to 

make the translation time acceptable.

The use of a caching technique or translation buffer introduces a two-level
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page fault mechanism. A page fault interrupt occurs if the page table entry 

protection is in some way violated. Operating system intervention is required 

in this case to either load the page from secondary memory, acquire more 

memory for the process, or signal an illegal memory reference. A lower level 

page fault can also arise. This occurs if the page table entry is not cached in 

the translation buffer. The caching of the page table entry is performed at 

the architectural level either by hardware or firmware. For a more detailed 

study of virtual memory techniques refer to [Watson70] [Lorin81] 

[Tanenbaum84] [Maekawa87].

5.3.2. Im plem entation o f  breakpoints in a virtual memory architecture 

5.3.2.1. D ata breakpoints and watchpoints

In this section a method for providing architectural support for data 

breakpoints and watchpoints in a virtual memory machine is described. This 

takes the form of additional hardware in the virtual to physical translation 

unit which causes an interrupt-like trap, similar to that caused by a code 

breakpoint, which results in a transfer of control to the monitor process.

A method of this nature is used by Abramson and Rosenberg [Abramson83] 

for the MONADS II computer. The address translation unit of MONADS II 

is rather unusual, consisting of a hash table held in very fast addressable 

memory, a hashing unit and a comparator. Each virtual address to be 

translated is used by the hashing unit to find a chain of cells in the hash table. 

The hardware searches this chain of cells until either the page number is
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found or the end of the chain is reached. The added architectural support 

consists of an extra field of the hash table and a fast breakpoint memory. 

The extra field of the hash table is used to index the breakpoint memory 

which holds lists of within-page displacements.

Each virtual address translation consults the extra link field of the hash table. 

If this field is found to be empty then the translation proceeds normally, 

otherwise the memory reference is suspended and the breakpoint memory 

accessed at the location indicated by the link field. The chain of within-page 

displacements is now searched until a match is found or the end of the chain 

is reached. If a match is found then an interrupt occurs. Fields also exist 

within the breakpoint memory to implement breakpoints on ranges of 

locations, breakpoints associated with particular processes and also to 

indicate whether the breakpoint is a watchpoint or a data breakpoint.

The address translation mechanism of the MONADS II computer is unusual 

in that the hardware translator is not a cache for the most recently used 

addresses but holds all the translation information for main memory resident 

pages. As described in the previous section the more commonly found 

mechanism is that of an associative store or fast memory which caches virtual 

to physical translations with appropriate protection bits. In this section we 

describe support for the data breakpoint and watchpoint which will be more 

widely applicable than the more specific implementation described for 

MONADS II.

The architectural support we describe here consists of an extra flag within the
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protection status of the page table entry, and a breakpoint memory. The 

additional protection status bit, termed the monitor bit, causes a memory 

access fault to be raised in much the same way as for an invalid or illegal 

reference. The low-level page fault mechanism tests the protection bits in 

the page table entry to either cache the page table entries from the software 

structures or cause an interrupt to the operating system for software 

intervention. Additional architectural support is inserted into the low-level 

caching mechanism to test the monitor bit. If the cause of the access fault is 

not the monitor protection bit then the access fault mechanism proceeds as 

normal. However, if the monitor bit is the reason for the access fault then 

the additional breakpoint memory is accessed.

The breakpoint memory should preferably be a block of fast memory but 

could equally be implemented in main memory with a slight performance 

loss. Access to the breakpoint memory is made using the word-in-page offset 

of a virtual address, thus requiring the memory to have as many entries as 

there are words in a page. However, to accommodate breakpoints on the 

same word-in-page offset but different page numbers extra entries are 

required to store any conflicts for entries.

Each entry of the breakpoint memory consists of five fields: an entry enabled 

flag, a page number, a data breakpoint flag, a watchpoint flag, and an 

overflow link field (figure 5 .2 ).

The entry enabled field indicates whether the particular breakpoint memory 

entry contains valid information. The page number field holds the page 

number of the data breakpoint or watchpoint, and is checked when a trap
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Figure 5.2 Breakpoint Memory

occurs to ensure that the entry is the correct one for that particular 

breakpoint. All entries can be uniquely identified in this way as the page 

number field, together with the word-in-page index, reconstructs the original 

virtual address. The data breakpoint flag indicates that a memory access to 

the particular location is to be trapped and the watchpoint flag indicates that 

a memory update is to be trapped. The overflow link field links together all 

breakpoints which are currently set on any one particular word-in-page but 

on different pages.

The setting of a data breakpoint or watchpoint is very simple. The word-in­

page offset of the breakpoint address is used as an index into the breakpoint 

memory. In most cases the indexed entry of the breakpoint memory will not 

contain a previously set breakpoint and will thus have the enabled flag not 

set. If this is the case then the page number of the breakpoint is stored in 

the page number field and the appropriate flag indicating a data breakpoint 

or watchpoint is set. The enabled flag for this entry can now be set activating
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the breakpoint. Figure 5.3 shows the setting of a data breakpoint on location 

6676H in an imaginary 16 bit machine.

Figure 5.3 The setting of a breakpoint

The situation may arise, however, that the entry indexed by the word-in-page 

offset is already in use, leading to a conflict for the particular entry. It may 

be the case that a number of breakpoints have been set at this word-in-page 

offset and so the generalised process for the setting of a breakpoint involves 

the indexing of the breakpoint memory and the subsequent following of the 

overflow link until either an entry is found with the enabled flag not set or a 

null overflow link. Entries with the enabled flag not set occur in the chain of 

entries when a breakpoint has been removed. This method of deleting 

breakpoints simply by removing the enabled flag allows time consuming 

housekeeping duties such as reorganisation of the overflow chain to be
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performed at non-critical times.

When an entry is found with the enabled flag not set then the sequence of 

events for setting a breakpoint is performed on this empty breakpoint 

memory slot. If, however, the end of the chain is reached and no entries 

have been found which are not in use then a new entry must be linked to the 

end of the chain to hold the relevant information. Figure 5.4 shows the state 

of the breakpoint memory before a watchpoint is set and figure 5.5 the new 

state of the memory.

Breakpoint memory

Virtual Address 
0110011001110110

vord-in- 
page offset

+ 276H

Overflov
entries

14H TRUE TRUE TRUE

17H TRUE FALSE TRUE Z

Figure 5.4 Example state of breakpoint memory

In addition to the updating of the breakpoint memory the monitor bit of the 

page table entry for the page on which the trap is to be set must be set to 

force the access fault when a reference occurs.

References to locations in pages with no data breakpoints or watchpoints will
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Breakpoint memory

Virtual Address 
0110011001110110

vord-in- 
page offset

■>276H

Overflov
entries

14H TRUE TRUE TRUE

17H TRUE FALSE TRUE

19H TRUE FALSE TRUE /

i - '

J
Figure 5.5 Setting of a vatchpoint vith contention

thus proceed at a normal rate. However, references to locations in pages 

with traps will be slowed in proportion to the number of traps with the same 

word-in-page displacement. The breakpoint memory is accessed using the 

word-in-page offset as an index and the overflow link followed as necessary 

until a match is found between the page number field and the page number 

of the referenced location. When a match is found the data breakpoint and 

watchpoint flags are checked against the mode of access and an interrupt-like 

trap forced if appropriate. The trap is required, however, at the end of the 

executing instruction as a context switch to the monitor process would not be 

allowed by most machines midway through an instruction.

In most cases only one breakpoint will be found per entry of the breakpoint 

memory thus contributing only a slight overhead, this being reduced still
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further if the first breakpoint memory access is performed in parallel with the 

translation buffer look-up. The architectural support described above is 

shown in figure 5.6.

Figure 5.6 Architectural support for breakpoints

5.3.2.2. Code breakpoint

As previously discussed, the simplest and most effective implementation of a 

code breakpoint is achieved by the instruction at the appropriate location 

being replaced by an instruction which causes an interrupt-like trap to the 

operating system. This section is concerned with reducing the execution 

overhead associated with this form of code breakpoint. Due to the method
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of implementation there is no continual overhead on program execution; 

unaltered regions of the instruction space execute at normal rates and only 

those locations replaced by trap instructions cause a performance 

degradation. Aside from software evaluation of monitoring predicates there 

is a performance degradation more directly associated with code breakpoints. 

This is the cost in execution speed of the time it takes to either emulate the 

replaced machine instruction in software, or else put back the original 

instruction, single step it and then replace it again by the trap instruction. 

Support to reduce the time involved with either of the above two procedures 

is not to be found in the literature. This is possibly because the interference 

of the monitoring software overshadows the degradation caused by the 

implementation of the breakpoint. However, a high-level monitor such as 

that described in chapter 4 may return control to the target process almost 

immediately. This would occur, for example, if the code breakpoint caused a 

trap at an undesired nesting level. In this case the performance degradation 

associated with executing the original instruction may contribute considerably 

to the overall degradation and so support is required.

The architectural support described in this section consists of a breakpoint 

memory similar to that used for data breakpoints and watchpoints, and a 

special machine instruction to be used as the trap instruction. Each entry of 

the breakpoint memory consists of four fields: an entry enabled flag, a page 

number, a machine instruction, and an overflow link field (figure 5.7).

The entry enabled field, the page number field, and the overflow link field 

perform the same functions as in the previous section, for data breakpoints
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Figure 5.7 Breakpoint Memory

and watchpoints. The machine instruction field, however, is unique to the 

code breakpoint case, and holds the instruction which is replaced by the trap 

instruction. This is the instruction which, in conventional monitoring systems, 

is emulated or temporarily reinstated at the location of the code breakpoint.

The setting of a code breakpoint occurs in the same way as for data 

breakpoints and watchpoints except that, instead of setting flags to indicate 

the type of reference, the machine instruction at the breakpoint location is 

accessed and stored in the appropriate field of the breakpoint memory.

The breakpoint instruction is a special instruction which performs a 

breakpoint memory access prior to causing an interrupt-like trap to the 

operating system. The access of the breakpoint memory is performed using



- 165-

the word-in-page offset and involves following the overflow link field, in much 

the same way as when setting breakpoints, until an enabled entry is found 

with an appropriate page number field, that is, one which matches the page 

number of the currently executing location. On finding the entry which 

matches this breakpoint the original instruction for that location can be 

extracted from the appropriate field. Rather than reinstating the instruction 

in the target program instruction space the instruction can be loaded directly 

into the processor instruction register for execution. Thus, when the 

monitoring process is ready to transfer control back to the target process it 

need not perform any instruction emulation or "juggling".

In most cases only a single breakpoint memory access will be required to find 

the instruction replaced by the code breakpoint trap instruction. Also 

contributing to the speed of the breakpoint memory access is the method of 

access. Extracting the word-in-page offset from the virtual address is a 

quicker generator of an index than the use of a hash unit, for example.

5.3.2.3. Firmware monitoring

There is scope in the methods described in this chapter for a firmware 

implementation. Thus, it may be possible to implement the scheme without 

adding hardware to the machine, but by simply changing the firmware of the 

machine. A requirement of this process is a writeable control store which 

has enough extra RAM for the additional microcode.

Firmware monitoring systems have been described in the literature over the 

past twenty years but these have been orientated to low-level monitoring.



- 1 6 6 -

Tracing of instructions [Barnes74] [DeBlasi77] [AgarwaI86], opcode counts 

[Saal72] and sampling systems [Armbruster79] all create large machine-level 

records. The advantages of using a firmware monitor include the flexibility, 

small expense and high speed associated with microprogramming. There are, 

however, problems associated with microprogramming: the useage of control 

store is often complicated [Gratsch81], it may not be possible to modify all 

sections of the standard instruction set due to memory limitations or timing 

restrictions [Agarwal86], many firmware resources are often global across the 

machine resulting in only one user being able to operate the system at any 

one time [Melvin86], and tools for the development of microprograms are 

often at the assembly language level, making the effort involved in developing 

and debugging microcode quite high [Gratsch81] [Melvin86].

A microcoded implementation of the above proposals has been performed on 

the HLH Orion, the procedure and results of which are described in the next 

chapter.

5.4. Summary

The monitoring of real-time software must not introduce unbounded delays 

and consequently it relies on expensive circuitry and monitoring processors to 

incur only bounded delays. Software which does not necessarily have to 

adhere to real-time rules must also be monitored with as sm all' a 

performance overhead as possible. However, the use of expensive electronics 

to incur only bounded delays is not feasible and so less expensive methods 

must be sought whilst keeping the performance overheads to a minimum. To
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this end an economical implementation of the three monitoring primitives is 

sought.

The virtual to physical translation method proposed in this chapter attempts 

to do this. It has many advantages over other implementations, such as those 

involving the use of register arrays, bitmaps and descriptors. A major 

advantage is that only memory references to pages which contain breakpoints 

are delayed. It is only these pages which cause the low-level access fault 

mechanism to be invoked other than normally occurring access faults such as 

uncached entries or page faults. References to pages without breakpoints 

proceed as normal. Other methods which perform a memory look-up or 

some sort of check when a memory reference occurs do so for every memory 

reference.

It is unlikely that many breakpoints will be set with the same word-in-page 

displacement and so references to pages which do contain breakpoints will 

only be delayed for a short time. Thus very little time is wasted traversing 

the list of breakpoints if a breakpoint is not found. It may also be possible to 

perform the first index into the breakpoint memory and the original memory 

reference in parallel thus incurring a negligible delay if only a single 

breakpoint is located on the particular word-in-page displacement. This is in 

contrast to the implementation proposed by Abramson and Rosenberg 

[Abramson83] where the translation cache must be accessed to obtain the 

breakpoint memory index, and the two accesses cannot be overlapped.

In contrast to other look-up methods, such as a breakpoint bitmap
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implementation, the index into the breakpoint memory is not calculated 

specially for monitoring purposes. The index used for the access of the 

breakpoint memory is the word-in-page displacement which is calculated by 

the virtual to physical translation mechanism in a normal virtual to physical 

translation.

Implementations such as the descriptor-based method can restrict the class of 

objects which can be monitored. The method proposed in this chapter allows 

any virtual address to be monitored including the instruction space, data stack 

and heap.

Finally, an inexpensive implementation of the proposed mechanism can be 

applied to most virtual memory machines. The cost of the implementation is 

further reduced if a microcoded version is possible.

There are, however, some disadvantages and problems to be found with the 

proposed implementation of the monitoring primitives. Firstly, unlike 

[Abramson83] breakpoint ranges cannot be supported and so breakpoints 

must be set on each element of arrays or structures for example. Thus the 

monitoring of large arrays or structures leads to the first indexed elements of 

the breakpoint memory being used and consequently gives rise to many more 

conflicts and overflow entries. However, it would still be the case that only 

those pages which contain breakpoints would be delayed and so the problem 

is not considered a serious one.

Perhaps a more serious problem is associated with the inclusion of 

performance enhancing features on many machines. These take the form of
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fast memory caches for accessing memory. By placing the most recently used 

variable in a fast cache the machine does not need to access slower main 

memory as often. If the caching occurs on physical addresses then no 

problem arises but if it is virtual addresses which are cached then the virtual 

to physical translation may not take place. An extreme case of this occurs in 

RISC machines where large register arrays are used to hold program 

variables. The problem arising from the use of a data cache can be 

overcome if the caching mechanism prevents monitored locations from being 

cached. However, the problem is more serious in a RISC machine as 

performance may suffer considerably if the reference of program variables in 

the register array is performed in main memory. To overcome this the 

machine must feature the ability to trap on access or update of a register in 

the register array. The transfer of program variables between main memory 

and the register array must be "watched" so that appropriate registers can be 

monitored when necessary.

The practicality and performance of the monitoring methods outlined in this 

chapter are further examined in an experimental system described in the 

following chapter.
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6 . Implementation and Analysis 

6.1. Monitoring Software

6.1.1. Requirements

There are three basic requirements of the monitoring software apart from 

the implementation of the software structures and graph traversal algorithms 

described in chapter 4. Firstly, two processes are required: the monitor 

process and the target process. The target process should be created exactly 

as it would be if no monitoring were specified. Thus it should require no 

more resources than any other process on the machine or cause execution of 

the target program to differ from a normal execution. Secondly, the 

monitoring software must provide the monitor process with full control over 

the target process. This consists of starting the target process when the 

monitoring software requires it and suspension of the target process through 

the use of monitoring primitives. Finally, the monitoring software must 

invoke two way communication between the monitor process and the target 

process. This involves communication of variable values and trap locations.

An experimental system of this form has been implemented to validate and 

study the performance of the monitoring structures and primitives introduced 

in chapters 4 and 5. The machine used to implement the experimental 

system is the High Level Hardware Orion running 4.2BSD UNIX. In order 

to make full use of the facilities offered by the UNIX operating system the 

implementation language used is the C programming language [Kernighan78].
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Input from the user is parsed using a set of YACC grammar rules 

[Johnson78a] with actions in C which perform appropriate functions or build 

the necessary directed graph for the monitoring software. Selected 

procedures from the implementation can be found in appendix A.

6.12. Processes and Control

The creation of the target process and control over it by the monitor process 

is achieved by UNIX system calls from the monitor process, resulting in a 

parent-child relationship between the two processes. The four system calls 

used to invoke the two processes with the appropriate control and 

synchronisation are the fork, exec, ptrace and wait system calls.

The fork system call [Fork(3)] invokes an exact copy of the calling process 

resulting in two processes executing the same code at the same time. The 

replacement of one process by another is performed by the exec family of 

system calls [Exec(3)]. These two calls allow the monitoring software to 

firstly replicate itself and then overlay one copy with a process of the 

executing target program. However, the execution of two processes in 

parallel is not sufficient to meet the requirements of the monitoring system. 

The monitor process must have control over the target process, halting it via 

the use of monitoring primitives and restarting it when appropriate. A 

degree of synchronisation is also required, such that only one of the two 

processes is executing at any one time. Thus, the suspension of the target 

process causes the monitor to restart and vice versa.

Control and synchronisation of the two processes is achieved through the use
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of UNIX signals [Signal(3)] and the two system calls: ptrace and wait. The 

ptrace system call [Ptrace(2)] allows the monitor to start the target process at 

will, whilst the wait system call [Wait(2)] causes suspension until an 

appropriate signal is generated.

The code fragment in figure 6.1 constitutes the basis for synchronised 

monitoring with the required control.

ii< (pid - forkO) -= o ) {
/* executed by target process */ 
ptrace( PT_SETn?C. 0,0,0) ; 
exec( filename ) ;

) else {
/* executed by monitor process */ 
do (

vait( S.status ) ;
stopped() ; \

> while ( ptrace( PTCONTIN.pid. (int*)l. 0 ) I- -1 ) ;

Figure 6.1 Skeleton routine for synchronised monitoring

The first line of the code segment invokes a copy of the current process. At 

this point both processes are executing in parallel and perform the test in the 

conditional. The test against zero is true in the case of the child or target 

process and false in the case of the parent or monitor process. It is this test 

which allows the two processes to be separated. The code between the first 

pair of braces is executed by the child process, while the parent process 

executes the code between the second pair. The variable pid acquires the 

child process identification number for use in later system calls.
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The child process executes the ptrace system call which informs the operating 

system of the parent-child link. The second statement, the exec system call, 

replaces the current process with the execution of the target program. At the 

same time as this the parent process is executing the do loop in the second 

part of the conditional. The went statement suspends this monitor process 

until the target process suspends itself and generates a signal. Examples of 

such a signal include the execution of an illegal instruction, an interrupt 

generated at the keyboard or a memory fault. Because of the parent-child 

link made by the child process earlier the target process does not terminate 

but merely suspends itself. Thus when a signal is generated the monitor 

process resumes execution and enters the procedure stopped.

This procedure contains all the necessary monitoring software to perform the 

high-level monitoring described in chapter 4. The status variable which 

acquires the signal identifier by the wait system call can be tested to 

determine the reason for the target process suspension. The monitor process 

transfers control back to the target process when ready by returning from the 

procedure stopped. The ptrace system call in the while statement resumes 

execution of the child at the point where it halted and the monitor process 

executes the loop to wait once again for a generated signal.

Using this system only one process is active at any one time, thus satisfying 

the synchronisation condition. Further, the monitor process is able to 

perform any number of monitoring functions before it passes control back to 

the target process, thus satisfying the conditions of control.
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6.1.3. Communication

Communication between the two processes must be two way. The monitor 

process must be able to communicate locations and types of monitoring 

primitive to the target process to enable the setting of traps within the 

executing program. Similarly the target process must be able to 

communicate locations and types of monitoring primitive back to the monitor 

process in order that it can determine the cause of suspension. As well as 

the need to communicate trap information the monitoring process must be 

able to update target process memory and also receive target process 

memory values. This implements, at the user level, the setting and 

examination of target program variables.

The reading and writing of target process memory is implemented using the 

ptrace system call, which also allows the reading and writing of target process 

registers. The communication of monitoring primitives also uses the ptrace 

system call. By assigning an area of memory for the purposes of 

communication between the two processes we can realise memory mapped 

monitoring primitives. Effectively, the writing to one area of memory sets 

monitoring primitives and the reading of another area allows the 

identification of traps which have occurred since the last transfer of control, 

which will be the traps which caused the current transfer of control. In the 

cases where a special, fast memory is used for monitoring purposes it is 

necessary for the monitoring process to be able to read and write to it. This 

will in most cases require the implementation of customised instructions.



- 175 -

6.1.4. Monitoring Functions

The user of the monitoring system operates it via an interface constructed 

from YACC grammar rules. On the experimental implementation this is 

restricted to the setting and displaying of program variables, the tracing of 

procedure calls during execution, the single stepping of source statements, 

and the building of directed graphs according to specified WHEN commands.

All program objects, such as variables and procedures, are specified using the 

source code symbols with the extra option to use line numbers for the setting 

of code breakpoints. The facility of using symbols to refer to program 

objects is provided via the program symbol table. This is stored as part of 

the executable file when the debug option is given at compile time. It is 

stored in the file as symbol-type-address triples enabling the monitor to print 

information in the correct format and also allowing monitoring functions 

which perform operations on groups of objects of the same type. For 

example, accessing all procedure names allows the monitor to trace 

procedure calls during execution, or accessing all parameter variables allows 

the monitor to print the values passed to a particular procedure. The 

relevant information is extracted from the file and stored internally to the 

monitor process.

62. Architectural Support

6.2.1. Requirements

In chapter 5 it was stated that a feasible implementation of the required
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architectural support for monitoring is possible using microcode. This section 

describes such an implementation for the HLH Orion, a user 

microprogrammable machine.

The Orion CPU consists of the following main components [HLH84]:

• Control Store

• Microprogram Sequencer

• Map Tables

• Arithmetic and Logic Unit (ALU)

• Cache Memory

• Virtual Memory Translation Buffer

All but the ALU, eight AMD AM2901C 4-bit bitslice microprocessors linked 

in parallel, have some bearing on the implementation.

To enable a realistic implementation of the required support the control store 

(that is, the high speed memory in which the microprogram resides) must be 

large enough to hold the standard microcode together with any additional 

code required for monitoring purposes. Many microprogrammable machines 

have only a limited free space in the control store thus requiring very careful 

coding [Agarwal86]. However, the control store in the Orion CPU, which 

was designed for microcode development, consists of 32K 64-bit words of 

RAM divided into 4K word pages. This is easily sufficient for the 

implementation of the support described in chapter 5.

There are four main areas where the microcode is altered or added to:
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(i) A code breakpoint instruction is required, which causes an interrupt-like 

trap to the operating system, after obtaining the original instruction from 

the breakpoint memory. This original instruction is placed in the 

instruction register prior to the transfer of control so that it is the first 

instruction to be executed on a return. A further action of the code 

breakpoint instruction is the placing of the location and type of primitive 

in the reserved area of memory for communication to the monitor 

process (section 6.1.3).

(ii) Because the top of scalar stack is cached in a fast memory, separate 

from main memory, it is necessary to alter the instructions which access 

this cache so that they access the appropriate area of main memory as 

well, thus making all variable accesses use the virtual to physical 

translation mechanism.

(iii) The use of an area of memory reserved for communication with the 

monitoring system was mentioned above, and will be discussed further in 

a later section.

The area of memory is reserved during the process start-up microcode 

and is not visible to the executing process. The reserved memory is 

allocated from the bottom of the vector stack, chosen because of the 

ease of implementation.

The final action of the revised start-up microcode causes an interrupt­

like trap back to the operating system so that the monitor process can 

take control and prompt the user prior to target process execution.
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(iv) To enable the monitoring of memory references the code which handles 

access faults during references is altered. Firstly, the extra protection 

bit, or monitor bit (section 5.3.2.2), is implemented which causes the 

necessary access faults whenever monitored pages are accessed. The 

extra code to access the breakpoint memory can now be added at this 

point in the access fault code to determine if a primitive exists on the 

referenced location. If this is the case then the location and type of trap 

is stored in the reserved area of memory. Once this has been 

performed an interrupt-like trap to the operating system is required and 

is achieved by loading an illegal instruction opcode into the instruction 

register. When this is decoded the interrupt mechanism saves the 

context of the executing process and restores the kernel context with the 

appropriate trap code. Because of the parent-child link made by the 

monitoring software the operating system sends the illegal instruction 

signal generated to the monitor process which performs a return from 

the wait system call it is currently executing.

622 . Microprogram Sequencer

The microprogram sequencer controls the order in which microinstructions 

are fetched from the control store and executed. Most of the sequencer 

functions perform some kind of a control transfer such as jump or jump to 

subroutine. One of the sequencer functions performs the decoding of machine 

instruction opcodes which introduces a problem for the implementor on the 

HLH Orion and similar machines. The implementation requires that an
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interrupt-like trap to the operating system occurs when a code breakpoint, 

data breakpoint or watchpoint is encountered and, whilst this is easily 

achieved for code breakpoints through the use of a special instruction, data 

breakpoints and watchpoints must cause a transfer of control to the operating 

system after the execution of the machine instruction performing the memory 

reference. However, in most cases the offending memory reference will 

occur in the middle of a machine instruction. To overcome this problem the 

microcode which "watches" for references to monitored memory locations 

sets a flag, the data trap flag, which indicates that a monitoring primitive has 

been observed. This flag can then be tested after the execution of each 

instruction emulation routine.

The use of a sequencer function to decode opcodes along with instruction 

caching means that there is no single routine which performs the usual fetch- 

decode-execute phase for each instruction. Instead, up to four instructions 

may be executed before the microcode to perform another fetch is entered. 

The sequencer function in question takes the value in the instruction register 

and performs a look-up in a fast internal memory which holds machine 

instruction opcodes and their respective emulation routine addresses in the 

control store. The reloading of the instruction register from the instruction 

cache is performed by a line of microcode which is found in every emulation 

routine.

In most cases there will be two solutions to the above problem. The first 

involves changing the microcode such that all machine instruction opcode 

decoding performs a check on the data trap flag. The HLH Orion has
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sufficient control store to facilitate the altering of the required code but the 

task is still non-trivial due to the, often, complicated structure of microcode 

routines. Implementations on machines without the free control store space 

would have to compromise and insert the code to check the data trap flag in 

the most frequently executed piece of code. In most cases this would be the 

routine which performs the instruction caching. The granularity of the trap 

mechanism is thus determined by the number of instructions cached.

A multiple instruction bank feature of the HLH Orion is utilised in the 

experimental implementation to realise a routine, which is executed after the 

execution of each emulation routine, and requires only minimal changes to 

the existing microcode but does not incur a heavy execution overhead. This 

mechanism is described in the next section.

6.2.3. Map Tables

The map tables provide a mechanism by which abstract machine opcodes can 

be quickly decoded. An instruction register is loaded with the opcode to be 

decoded, after which a specific sequencer function causes this value to be 

used as an index into the map tables. The value found in this fast memory is 

the address of the first microinstruction in the machine instruction emulation 

routine. This mechanism is shown in figure 6.2.

An instruction set occupies a pair of map tables, each allowing the decoding 

of 256 opcodes. Current implementations of the HLH Orion have four such 

pairs of map tables, allowing entirely independent instruction sets to reside in 

the machine simultaneously.
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Figure 6.2 Decoding of opcodes via map tables

The multiple instruction bank feature enables the implementation of a 

microcode routine which is executed after every instruction emulation 

routine. This in turn enables the implementation of the data trap flag and 

the trap back to the operating system. One pair of map tables is initialised to 

the same control store address, to which all opcodes will decode. The routine 

stored at this particular control store address performs the check on the data 

trap flag and also decodes the original opcode in the correct instruction bank 

(figure 6.3).
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Figure 6.3 Use of multiple instruction banks to implement data trap flag

6.2.4. Cache Memory

The cache memory on the HLH Orion provides a large bank of fast registers 

internal to the CPU. However, at the microcode level the cache is simply a 

randomly addressable memory, separate from the main system memory. It 

presents itself as an obvious implementation for the breakpoint memory
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introduced in chapter 5.

The cache memory is divided into pairs of 512 word sections with the current 

implementation of the machine having two such pairs. The standard 

instruction set makes use of one cache bank, leaving the second at the 

disposal of the microprogrammer.

The use of a cache memory as a fast access memory for the top of stack 

introduces a problem for the implementor, as discussed in section 5.4. By 

using a cache the usual virtual to physical translation required to access 

program variables is not performed, thus bypassing any microcode which is 

added to "watch" for accesses to monitored locations. Fortunately the 

caching mechanism on the HLH Orion is performed entirely in microcode 

and so the problem can be resolved by the microprogrammer.

There are two solutions to the above. Firstly, all the microcode which 

accesses the fast cache memory could be removed and replaced with the 

corresponding code which accesses main memory. This would involve the 

rewriting of large amounts of microcode. A simpler method, and the one 

used in the final experimental implementation, is to continue to use the top 

of stack cache, thus leaving the original microcode intact, but to add code 

which performs the corresponding virtual to physical translation. The actual 

main memory reference is not required for the generation of the necessary 

access faults and because the translation can, in most cases, be performed in 

one cycle the performance overhead is not excessive.

The second cache bank is used to contain the breakpoint memory. However,
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the cache is not large enough to hold any overflow entries or entries for code 

breakpoints and so these must be relegated to storage in the main system 

memory. The provision of a much larger fast memory would improve the 

implementation of the breakpoint memory by allowing overflow entries and 

code breakpoint entries to be stored in the fast memory. Because, for code 

breakpoints, replaced instructions are stored in the breakpoint memory the 32 

bit entries in the cache memory are not, in this case, large enough to hold all 

of the associated fields. The whole of the breakpoint memory for code 

breakpoints is therefore implemented in main memory. This situation is not 

as detrimental to the performance as it appears to oe. Each breakpoint 

memory entry requires only two words of main memory which can be 

accessed with a routine only one cycle longer than for a single word access. 

It was also found that with the less cramped breakpoint memory structure, 

fields could be extracted with less code than for the corresponding fast 

memory entries.

6.2.5. Virtual Memory Translation Buffer

The primary component in the HLH Orion memory management hardware 

is a fast memory, internal to the CPU, known as the translation buffer. In the 

standard system the translation buffer is treated purely as a cache for the 

memory-based page tables. The selection of an appropriate microoperation 

uses the virtual address in the virtual address register as an index into the 

translation buffer, resulting in the output of the corresponding physical 

address and six bits of protection information (figure 6.4).
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Figure 6.4 Virtual to physical translation

The states of these six protection bits determine the states of two condition 

flags, one registering a read fault and the other a write fault. It is these flags 

which are tested, by microcode, during a memory reference to check for an 

illegal translation. If the relevant flag is set then a microcode library routine 

is entered which attempts to solve the problem or, if this is not possible, it 

resorts to high level intervention by the operating system. For those cases 

which can be solved by microcode intervention alone, the library routine 

restarts the memory reference and returns to the original code as if nothing 

had happened.

The translation buffer and associated fault mechanism lend themselves to 

alteration for monitoring purposes, and in particular the monitoring of 

references to "watched" memory locations via data breakpoints or 

watchpoints. The translation mechanism operates at the page level as
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described in section 5.3.1 and so alterations are made to enable the trapping 

of references to "watched" pages, with the breakpoint memory employed to 

reduce this to a word granularity. To achieve this the translation buffer and 

memory-based page tables effectively require an extra protection bit which, 

when set, indicates a monitoring primitive is currently active on that 

particular page. As all six protection bits are required for other purposes, the 

effect of an extra bit is reproduced by an area of memory 6K words in size, 

forming a bitmap representation of the extra protection bit. The translation 

of addresses which have monitoring primitives set on them must, however, 

cause the two fault flags to be set and is something which cannot be 

accomplished with a bitmap. To overcome this one of the existing protection 

bits, the accessed bit, takes on the extra role of indicating a "watched" page. 

The standard use of this protection bit is to indicate a translation buffer entry 

which is invalid due to it not being cached. This situation arises because of 

the many-to-one mapping of the caching process, causing an entry of the 

translation buffer to not correspond to the supplied virtual address but to one 

of the other pages which cache onto it.

The library routine which is called when a translation fault occurs attempts to 

rectify the fault, using microcode, so that software intervention is not 

required. It is at this point that the bitmap entry for the referenced page is 

checked to determine if monitoring is the cause of the fault. However, even 

if the monitoring bit is set in the bitmap an uncached buffer entry cannot be 

ruled out. Thus the bitmap check is performed after the caching of the 

translation buffer entry. If the extra protection bit, accessed in the bitmap, is
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set then a monitoring primitive is known to exist on that particular page and 

so the accessed bit of the memory based tables and the translation buffer is 

reset. This results in all subsequent references to the page causing another 

access fault. At this point the breakpoint memory must be accessed to 

determine whether monitoring is active on the referenced location rather 

than just the page. If the breakpoint memory indicates that the location is 

being monitored and the type of primitive active matches the initial mode of 

reference (whether read or write) then the data trap flag is set, which will 

ultimately result in a transfer of control to the monitoring process.

6.3. Single Instruction Degradation

In this section we examine the effect of the additional monitoring microcode 

on the performance of the machine. It is assumed that the microcode uses 

only main memory storage and does not make use of fast access memory 

internal to the CPU. The effect of using fast memories and other features 

which aid the architectural support is examined in a later section.

The cost of the code breakpoint primitive is negligible when compared with 

the monitoring software overhead, which is incurred on transfer of control, 

and so only data breakpoint and watchpoint primitives are considered. We 

begin by calculating the cost of the monitoring support when executing a 

typical machine instruction. Whilst the results may not reflect the 

performance degradation during program execution they will indicate 

monitoring cases which require hardware support for a more efficient 

implementation.
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The instruction chosen, on which to base the performance figures, is the "load 

word from memory" (ll_w) instruction [HLH85]. This takes a word operand, 

accesses it as a memory location and places the value found there on the top 

of the stack. The ll_w instruction is one of the more commonly found 

instructions, and is of medium length, and so may be taken to be typical.

Performance figures were obtained manually by adding up the timings for the 

individual microinstructions in each of the routines. The problem of 

conditionals and iterations in the microcode routines was resolved by taking 

the average time.

In total seven different monitoring conditions were examined and, in all 

cases, it is assumed that a monitoring primitive is never active on the actual 

location referenced by the instruction. Thus, we are measuring the 

interference of the monitoring microcode when a transfer of control will not 

occur; that is, the continual overhead. The timings of the seven cases are 

based on the following routine timings:

a) 1260ns for the instruction emulation routine.

b) 1125ns for the checking of the data trap flag between instructions.

c) 6450ns for the library routine which handles access faults.

d) 12775ns for the access of the bitmap.

e) 2925ns for the resetting of the accessed bit & access of the breakpoint 

memory.

f) 1950ns for the access of overflow entries in the breakpoint memory.
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The cases:

(i) The instruction is executed in the standard instruction set with no 

additional code for monitoring purposes. It is also assumed that all 

memory references performed by the instruction proceed with no faults, 

thus not making use of the access fault code. This case is simply the 

execution time of the emulation routine, ie. 1260ns, giving a base for 

examining degradation in other cases.

(ii) The instruction is executed in the instruction set modified for monitoring 

purposes, resulting in a timing of 2385ns, which includes the routine 

which checks the data trap flag after each instruction. This case 

indicates that the execution time of the instruction is almost doubled 

even when monitoring primitives have not been set and access faults do 

not arise. Support for the checking of the data trap flag could thus 

halve the execution time of the individual instruction and would greatly 

improve execution times of target programs.

(iii) This case is the same as the previous case except that a monitoring 

primitive is active, but on a page other than that referenced by the 

instruction. This does not add further degradation to the performance 

and the total execution time is again 2385ns. It is a feature of the 

monitoring system not to increase target process performance overheads 

for monitoring primitives active on pages which are not referenced.

(iv) This case is the same as case (iii) except that a monitoring primitive is 

now located on the page referenced by the instruction. This is the first



- 190-

case where the access fault code is entered, resulting in the access of the 

bitmap and the breakpoint memory. The total execution time is thus 

2385 + 6450+12775 + 2925ns, giving 24535ns. It is apparent that the 

referencing of locations on monitored pages gives rise to an immense 

overhead. This is due mainly to the implementation of the extra 

protection bit as a bitmap representation. Support for this by the 

provision of a monitoring bit in the page table entries would reduce this 

to a more practical level.

(v) This case is a generalisation of case (iv). A monitoring primitive is 

located on the page referenced by the instruction and X monitoring 

primitives are located on the same word-in-page as the referenced 

location. This generalised case incurs the overhead of case (iv) with the 

additional calculation of an overflow entry for each of the X primitives 

on the same word-in-page. The execution time is obtained as 

24535 + 195QAms. This shows that the performance overhead of a 

breakpoint memory contention is relatively small, thus allowing the 

monitoring software of the monitoring environment to set as many 

primitives as required.

The next two cases highlight the effect on performance of having to cache a

translation buffer entry in the monitoring environment.

(vi) This is the same as case (i) except that the memory reference causes an 

accessed fault due to an uncached translation buffer entry. The standard 

instruction set emulation routine involving the access fault code executes
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in 7710ns.

(vii) This is the same as case (ii) except that, as above, the memory reference 

causes an accessed fault due to an uncached translation buffer entry. 

This involves checking the data trap flag and the bitmap representation, 

and totals 21610ns. Access faults in a monitoring environment thus 

almost triple the execution time. This is due to the checking of the 

bitmap, but is made more serious because of the number of access faults 

which occur during program execution. Context switches and the 

implementation of a LRU paging algorithm both reset the accessed bit, 

causing many more faults than would occur due to tag mismatches. As 

with case (iv) a monitor bit in the protection field of the page table 

entries would reduce this overhead considerably.

The calculated execution times for the single instruction cases described 

above are summarised in table II.
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Table II

Case Time(ns) Degradation(%)

i 1260 -

ii 2385 89

iii 2385 89

iv 24535 1847

V 24535+ 1950X 1847+155X

vi 7710 -

vii 21610 180

6.4. Program Degradation

In this section we examine the effect of the microcode monitoring support on 

overall program execution times. The program constructed to obtain the 

timings was written specifically for this purpose, and is shown in figure 6.5.

The program was run under nine different monitoring conditions, with the 

timing obtained, in each case, by taking the average of ten runs. The first 

five cases are illustrations of cases (i) to (v) in section 6.3. The remaining 

four cases show the effect of monitoring predicates on the execution time of 

the monitoring software.

(i) The program was compiled to run in the standard instruction set and 

was thus not affected by the monitoring microcode.

(ii) The program was compiled to run in the modified instruction set and
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1 «define PAGE 4096
2 «define FILLER 1588
3
4 char arrayO[FILLER] ;
5 char arrayl[PAGE] ;
6 char array2[PAGE] ;
7 char array3[PAGE] ;
8 char array4[PAGE] ;
9 char array5[PAGE] ;

10 char array6[PAGE] ;11
12 int i.j.k ;
13
14 main()
15 {
16 for( 1 - 0 ; 1 < 500000 ; 1++ )
17 arrayl[1] - 0 ;
18 for( i = 0 ; i < 100 ; i++ )
19 array2[l] - 0 ;
20
21 proca() ;
22
23 for( i - 0 ; i < 100 ; 1++ )
24 procb() ;
25 }
26
27 procb()
28 {
29 int r ;
30 }
31
32 proca()
33 {
34 int x.y.z ;
35
36 for( i - 0 ; i < 500000 ; i++ ) x - 0 ;
37 for( i « 0 ; i < 100 ; i++ ) y * 0 ;
38 }

Figure 6.5

was thus affected by the additional microcode, but was run with no 

monitoring predicates and thus no active primitives.

(iii) This case was similar to (ii) except that a watchpoint was set on element 

zero of the variable arrayó. This variable is not referenced by the 

program, thus showing the effect of monitoring a page other than that 

referenced.

(iv) The primitive set in case (iii) was now set on a page which is referenced. 

This was achieved by setting a watchpoint on element zero of the
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variable array 1. The page, on which this element is stored, is accessed 

500000 times by the loop on line 16.

(v) This case shows the effect of contention for breakpoint memory entries 

on the execution time of the target program. Watchpoints were set on 

element zero of the variables arrayl, array3, array4, and array5. 

Because each of these arrays begins on a page boundary and is declared 

to be exactly one page in length, element zero of each array is located 

on the same word-in-page. Again arrayl causes the access faults due to 

the loop on line 16, and so the page is accessed 500000 times with four 

entries contending for the same breakpoint memory location.

The next four monitoring conditions show the impact of the monitoring 

software on performance. All transfers of control to the monitoring software 

which do not interact with the user produce a non-negligible performance 

degradation. Examples of conditions which produce such transfers of control 

include the monitoring of local variables, where the address of the variable is 

calculated by the monitoring software at run-time, and the monitoring of 

expressions, where this must be evaluated at run-time due to any updates to 

the specified variables, whether local or global.

(vi) A monitoring predicate was specified which monitors the value of 

element zero of the variable array2. The user is notified when it attains 

the value one. This predicate causes 100 transfers of control because of 

the loop on line 18, but never actually becomes true.

(vii) This monitoring case produces figures to show the cost of monitoring
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local variables. A predicate was specified which builds a graph to 

monitor the variable r local to the procedure procb. This variable is 

never accessed and so only the cost of calculation of the run-time 

location of the variable is obtained. The calculation is performed by the 

monitoring software on entry to the procedure through the use of code 

breakpoints as described in chapter 4. The loop on line 23 means this is 

performed 100 times.

(viii) Case (vii) was performed again but on the variable z local to procedure 

proca. The performance figures show the effect of monitoring local 

variables, as both the variables x and y are located on the same page. 

There will, thus, be one transfer of control to calculate the address of 

the variable z and then 500100 access faults because of the loops on line 

36 and 37.

(ix) The final monitoring case examines the cost of predicates which monitor 

the value of local variables. A monitoring predicate was specified which 

monitors the value of variable y local to the procedure proca. The user 

is notified when it attains the value one. This predicate causes one 

transfer of control to calculate the run-time address of the variable, 100 

transfers of control to check the valae of the variable when it is updated 

on line 37, and 500100 access faults because of the loops on line 36 and 

37.

The execution times (in seconds) obtained are shown in table III.
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Table III

Case Monitoring S/w Target program

i - 12.30

ii - 28.65

iii - 28.70

iv - 40.35

V - 40.40

vi 1.50 29.30

vii 6.40 31.75

viii 0.10 39.85

ix 1.60 40.55

By comparing each of the above cases against either the standard instruction 

set case (case (i)) or the monitoring microcode case with no active primitives 

(case (ii)), the performance degradation caused by that particular monitoring 

case can be determined. These are examined below.

1) A comparison of case (i) with case (ii) shows the degradation produced 

by the monitoring microcode when no primitives are active. This 

degradation is approximately 133%, which is caused by the checking of 

the data trap flag after each machine instruction and the accessing of 

the bitmap during access faults. This overhead will vary in proportion to 

the number of access faults arising.

The clock granularity of one-sixtieth of a second made it not possible to
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get meaningful timings for the monitoring software. This is also the 

case when constructing up to twenty directed graphs. Thus the 

degradation produced by the monitoring software on start-up may be 

assumed to be negligible.

2) The single instruction calculations of the last section indicate that cases

(ii) and (in) should record the same timings. That is, a primitive set on 

a page other than those referenced by the target program does not 

affect the performance. The recorded target program timing for case

(iii) shows only a 0.17% increase on the timing recorded for case (ii) 

which can be attributed to the slight differences in execution runs and 

the granularity of the timings.

3) The comparison of case (iv) and (ii) shows the performance degradation 

associated with referencing a page which contains an active monitoring 

primitive. An increase in execution time of 11.70 seconds is 

accumulated over 500000 access faults, which is an increase of 23400ns 

per fault; c.f. the expected value of 22150ns calculated in the previous 

section.

4) The comparison of cases (v) and (ii) indicates the effect of contention 

for breakpoint memory entries. The increase, per fault, calculates to 

23500ns, and the overall degradation rises from 228% to 228.5%. Thus, 

as expected, the degradation due to contention for breakpoint memory 

entries is negligible.

5) Case (vi) shows the effect of transfers of control between monitor
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process and target process, with the monitoring software performing the 

expression evaluation each time. The resulting increase in execution 

time of 0.65 seconds corresponds to a 6.5ms per fault increase. This 

relatively large rise is due to the transfers of control and an increase in 

the number of access faults. The rise in the number of access faults 

occurs because the translation buffer is cleared on each transfer of 

control thus undoing the caching mechanism during normal operation.

The monitoring software execution time is approximately 1.5 seconds 

more than the negligible setup and graph construction time. It can be 

assumed therefore, that the 1.5 seconds is attributable to the 100 

transfers of control and expression evaluations. This is likely to remain 

the same for most evaluations, but increasing for more lengthy 

expressions involving program variables.

6) The results obtained in case (vii) show the setup overhead of monitoring 

local variables. This setup time involves a transfer of control on 

procedure entry, followed by the calculation of the variable address and 

the setting of monitoring primitives, on this address and the return 

address of the procedure call. The measured execution times reveal an 

approximate 6.4 second increase for the 100 transfers of control and 

address calculations.

The slight increase in target program execution time is probably caused 

by references to the stack frame environment (stack pointers and return 

addresses) of the monitored procedure.
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7) Examination of the results for case (viii) indicates an 11.2 second 

increase on case (ii) which, because it is over 500100 access faults, gives 

a 22396ns increase per fault, in line with the predicted value of 22150ns.

The software degradation represents the setup time of the graph and the 

calculation of a local variable address during a single transfer of control. 

A value of 0.1 seconds compared to the previous case appears to 

indicate a higher initial overhead with a somewhat lower figure for any 

subsequent transfers of control.

8) Case (be) shows the effect on performance of monitoring expressions 

with local variables. The overhead consists of 1.5 seconds for the 100 

transfers of control to check the value of the variable when it is updated 

and 100ms for the calculation of the run-time address.

The examination of results in this section has verified that performance 

figures determined for the single instruction case are confirmed in program 

execution, within the bounds of experimental error. However, the 

transferring of control does affect this generalisation by causing extra access 

faults due to uncached translation buffer entries. A further point indicated by 

the figures is that the affect of the monitoring software is also fairly 

predictable, with standard degradation factors for each monitoring event.

6.5. Monitoring Hardware

Examination of the figures, both calculated and generated, in the two 

previous sections highlight the areas which contribute most to performance 

degradation. In this section we examine the impact of possible hardware
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support for these areas.

The figures for the hardware cases introduced below are calculated in the 

same way as for the single instruction cases in section 6.3, with estimates for 

the routines which cannot be implemented.

The two main causes of degradation are the checking of the data trap flag 

after every machine instruction emulation routine and the accessing of the 

bitmap representation of the monitor bit in the protection status of a page 

table entry.

Hardware 1

The checking of the data trap flag almost doubles the execution time of a 

target program, even if no monitoring primitives are active. In order to 

create an efficient monitoring system it is essential that hardware support is 

provided to implement the data trap flag.

The provision of a flag which can be set and used as a condition code in 

conjunction with the microprogram sequencer functions will remove most, if 

not all, of the performance degradation associated with the checking of the 

data trap flag.

The microcode version with no primitives in section 6.4 (case ii) increased the 

execution time by 133%. This would be reduced to only 44% if the above 

hardware were provided. Similarly the degradation for case (iv), in section

6.4, where 500000 access faults occur, is reduced from 228% to 139%.
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Hardware 2

The above hardware proposal is most effective in those monitoring cases 

where few access faults arise. However, for those cases where many access 

faults occur it can be seen that the prime cause of the performance 

degradation is the checking of the bitmap representation of the extra 

protection bit.

Reserving a bit in the protection status of a page table entry for monitoring 

purposes removes the need for a bitmap and consequently the code to access 

it. The extra monitor bit in the protection status is tested for in the same 

way as the other protection status bits are tested, to determine the reason for 

an access fault. Performance savings are made in two areas. Firstly, access 

faults due to an uncached translation buffer entry or a tag mismatch do not 

need to access and check the bitmap, and secondly, monitored pages which 

are cached do not need to perform the caching mechanism unnecessarily.

Applying these figures to the program execution in section 6.4 gives an 

overall degradation, for case (iv), of 156% instead of 228%.

Hardware 3

By applying both of the above hardware proposals a system can be 

constructed which incurs a negligible performance overhead in all cases 

except when a monitored page is referenced.

Applying these figures to the program in section 6.4 gives a zero performance 

overhead for the cases where a monitored page is not referenced. The case 

where monitored pages are referenced (case iv) incurs only an 18% overhead,
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in comparison with 228% for the standard microcode implementation. 

Hardware 4

The performance degradation of hardware 3, above, is now solely based on 

the breakpoint memory access and the checking of the contents of 

appropriate entries. This access can be made faster through the use of a fast 

memory.

Applying this to the program of section 6.4 gives a target program increase, 

for case (iv), of 1.8 seconds, resulting in an overall degradation of only 15%.

However, the fast memory available on the Orion is a global resource, 

requiring either a reload on a context switch or the limiting of the system to 

one user at a time. If the reloading option is taken then this will affect the 

performance advantage of using the fast memory.

Table IV shows the calculated timings for the single instruction case and the 

corresponding timings for the hardware introduced, and table V gives the 

figures for the percentage degradatioa
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Table IV

Timings(ns)

Case Microcode Hardware 1 Hardware 2 Hardware 3 Hardware 4

(i) Base 1260 1260 1260 1260 1260

(ii) Mon. O/head 2385 1260 2385 1260 1260

(iii) Unref. prim 2385 1260 2385 1260 1260

(iv) Ref prim 24535 23410 6835 5710 4835

(v) Contention 24535+1950X 23410+1950X 6835 + 1950X 5710+1950X 4835 + 275X

(vi) Base fault 7710 7710 7710 7710 7710

(vii) Mon. fault 21610 2048O 8835 7710 7710

This examination of possible architectural support has shown that with minor 

hardware modifications it is possible to implement monitoring primitives 

which incur a very modest overhead. One of the main requirements for 

architectural support, outlined in chapter 5, is that monitoring must not incur 

a performance overhead until a monitoring primitive is active. This is 

satisfied by the architectural support outlined in this section.

In the worst case, when a monitoring primitive is active on the page 

referenced, then the performance degradation is still quite modest, incurring 

less than a 300% overhead for a typical instruction performing the reference. 

All other cases, including access faults, incur either zero or negligible
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overheads.

Table V

Degradation(%)

Case Microcode Hardware 1 Hardware 2 Hardware 3 Hardware 4

(i) Base - - - - -

(ii) Mon. O/head 89 0 89 0 0

(iii) Unref. prim 89 0 89 0 0

(iv) Ref prim 1847 1758 442 353 284

(v) Contention 1847+155X 1758+155X 442+155X 353+155X 284 + 22X

(vi) Base fault - - - - -

(vii) Mon. fault 180 166 15 0 0

6.6. Case Studies

In this section we examine the impact of monitoring on the execution of two 

programs. This will include the performance degradation imposed by the 

experimental monitoring system, implemented on the HLH Orion, and also 

the estimated impact if the hardware, described in the previous section, was

available.
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Case 1

A cross-referencer program is executed with the following six different

monitoring conditions.

(i) Execution under the standard instruction set with no support for 

monitoring.

(ii) Execution under the monitoring microcode with no monitoring 

primitives active. Performance is affected by the bitmap access on 

access faults and the checking of the data trap flag.

(in) As case (ii) but a global variable is monitored. This variable is never 

updated but does cause 93712 access faults, due to references to the 

monitored page.

(iv) A global variable is monitored as part of a monitoring expression. This 

requires monitoring software intervention to perform the expression 

evaluation each time the variable is updated. The monitored page is 

accessed 423565 times causing the same number of access faults, whilst 

the monitored variable is updated 208 times.

(v) A local variable is monitored, requiring monitoring software intervention 

to calculate the address of the local variable on procedure entry. This 

occurs 178 times with 19704 access faults.

(vi) A local variable is monitored as part of a monitoring expression. The 

variable is updated only once during execution of the procedure but the 

procedure is called 138 times, and 417 access faults take place.

As in previous sections the degradation can be explained by the number of
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access faults for the target program and the number of transfers of control 

for the monitoring software. Table VI shows the above results and the 

estimated timings assuming the availability of architectural support described 

as "hardware 4" in the previous section.

Table VI

Microcode Hardware

Case Software Target Target deg Overall deg Target Target deg Overall deg

(sec) (sec) (%) (%) (sec) (%) (%)

i - 6.30 - - 6.30 - -

ii - 13.45 113 113 6.30 0 0

iii - 15.90 152 152 6.65 6 6

iv 4.50 23.35 271 342 7.80 24 95

V 14.55 16.65 164 395 6.35 1 232

vi 11.35 15.50 146 326 6.30 0 180

The above figures show that the execution time of the target program can be 

lowered to an acceptable level through the use of hardware support (a 

maximum increase of only 24%). However, the influence of the monitoring 

software becomes the dominant factor in the overall degradation. Thus the 

performance is determined by the number of transfers of control to the 

monitoring software and not the execution time of the target program.
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Case 2

A benchmark program is executed with the same six conditions as for the 

first program above. However, the benchmark program consists of fewer 

variables updated in loops, thus causing a higher number of access faults per 

second of execution. The six monitoring conditions are given below.

(i) Execution under the standard instruction set with no support for 

monitoring.

(ii) Execution under the monitoring microcode with no monitoring 

primitives active.

(iii) As case (ii) but a global variable is monitored. This variable is never 

updated but does cause 3601265 access faults, due to references to the 

monitored page.

(iv) A global variable is monitored as part of a monitoring expression. The 

monitored page is accessed 300008 times causing the same number of 

access faults, whilst the monitored variable is only updated once.

(v) A local variable is monitored, requiring monitoring software intervention 

to calculate the address of the local variable on procedure entry. This 

occurs only once with 8821267 access faults.

(vi) A local variable is monitored as part of a monitoring expression. The 

variable is updated 150 times during execution of the procedure, which is 

called only once, and 8821561 access faults take place.

Table VII shows the above results and the estimated timings assuming the 

availability of architectural support described as before, i.e. "hardware 4".
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Table VII

Microcode Hardware

Case Software Target Target deg Overall deg Target Target deg Overall deg

(sec) (sec) (%) (%) (sec) (%) (%)

i - 37.30 - - 37.30 - -

ii - 90.05 141 141 37.30 0 0

iii - 171.60 360 360 50.15 34 34

iv 0.05 97.60 162 162 38.35 3 3

V 0.11 283.30 660 660 68.85 85 85

vi 2.90 284.35 662 670 68.85 85 92

In contrast to the first case the impact of the monitoring software is 

negligible and the overall degradation is due to the high number of accesses 

to monitored pages, resulting from the clustering of target program variables 

and the number of references to them.

6.7. Cost of Monitoring

The microcoded implementation described in this chapter has shown a 

monitoring overhead of between 113% and 141% even with no monitoring 

primitives active. For the same case studies this overhead increases to 

between 152% and 360% when a primitive is active. The use of architectural 

support, as described in chapter 5, removes any overhead when monitoring
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primitives are not active and reduces the overhead for the case when a 

primitive is active. For the case studies in this chapter the overhead was 

reduced to between 6% and 34%. This level of performance degradation is 

likely to be acceptable in most non real-time environments.

Architectural support for the three monitoring primitives does not, however, 

affect the overhead incurred by the monitoring software. One of the case 

studies showed a performance degradation of over 200% for local variable 

monitoring, even after the assumption of architectural support for the 

monitoring primitives. A similar monitoring predicate for the other case 

study showed an overhead of less than 100%, and so it is difficult to predict a 

general percentage overhead for the monitoring software. This overhead, 

however, is incurred only when primitives are invoked, and almost any system 

of monitoring (without the use of expensive parallel hardware) is likely to 

lead to significant overheads at this stage.



- 2 1 0 -

7. Conclusions

The research described in this thesis has been directed towards the design of 

software tools and hardware support for program execution monitoring. 

Execution monitoring has applications in program testing, to establish test 

data coverage and to uncover data flow anomalies; in program debugging, to 

locate and identify program bugs; and in performance analysis. In recent 

years, however, the emphasis has been on the writing of correct code, with an 

increase in the use of specification aids, structured programming techniques, 

and research into formal methods of establishing program correctness.

Despite these developments it would appear that it is still necessary for 

software to enter the testing, debugging and evaluation stages of 

development. However, there has been less research into these stages than 

other stages have enjoyed. Due to an increase in the use of modern high- 

level languages the semantic gap between the programmer’s abstract view of 

the software and the execution monitoring tools available has increased. 

Monitoring systems developed for assembly language programs are now 

totally unsuitable for high-level language monitoring.

In chapter 2, the requirements for an execution monitoring tool, operating at 

the level of modern software, were identified. These include the provision of 

full control over target program execution, the ability to view the entire 

working space of the target process, the ability to monitor in a language 

independent but language sensitive manner, and the ability to monitor 

programs which have had optimisation techniques applied to them during
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compilation. Research into the latter two requirements has produced systems 

which are language sensitive (for example, RAIDE and VAX DEBUG) and 

can monitor optimised versions of programs (for example, NAVIGATOR). 

However, the level of control and observability offered by many monitoring 

systems still resembles that of the classical monitoring tools, developed for 

assembly language programs. Monitoring methods still involve the setting of 

simple code breakpoints on source statements and the tracing of global 

variables. Systems which do offer monitoring facilities for high-level software 

often resort to extremely inefficient modes of operation such as simulation or 

the single-stepping of machine instructions.

Facilities for the kind of control required have been implemented to some 

extent for software in a real-time environment. Due to the nature of this 

software it is important that monitoring is non-intrusive, and so this often 

results in specialised parallel hardware, which is prohibitively expensive in 

most circumstances.

The aim of the work described in this thesis was to examine ways of 

providing monitoring facilities allowing the required level of control over the 

the target process and with an acceptable performance overhead, and without 

the need for extensive hardware support.

In chapters 3 and 4, the software structures required to implement a 

monitoring environment with these requirements were examined. The 

general requirement for user-level interaction was postulated to take the 

form of a WHEN command which performs some monitoring action when a
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monitoring predicate is satisfied. To enable the monitoring of a general 

predicate, three levels were identified at which monitoring predicates may be 

specified. These are the primitive level, expressed in terms of the execution 

steps taken at the machine level; an abstract level, expressed in terms of the 

notation and semantics of the high-level language in use; and a conditional 

level, which describes a process state involving sequences of abstract level 

predicates.

At the primitive level it was found sufficient to provide a set of three 

monitoring primitives: the code breakpoint, the data breakpoint and the 

watchpoint. A predicate at the abstract level can be implemented simply by 

translating it into one or more of the monitoring primitives. This requires 

information defining the relationship between source and object program and 

also in certain cases the mirroring of the stack operation of the target 

process. At the conditional level, the translation is further complicated by the 

absence, in general, of any representation of the condition as a single 

monitoring primitive or set of primitives. For this reason we introduced the 

idea of an event-graph for monitoring conditional level predicates. Each 

node of the graph represents an event, or specific state of the process control 

and data space, which can be recognised by simple inspection of the target 

process state using one of the monitoring primitives. The arcs of the event- 

graph indicate the chronological sequencing of the events, enabling predicates 

to be monitored which do not, in general, preserve the process state 

information during execution. It has been shown that the form of event- 

graphs introduced in this work enables a representation of the monitoring of
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program conditions involving procedures, recursion, dynamic variables and 

other features of high-level language programming.

To enable a practical implementation of the above system it was necessary 

for the monitoring primitives to incur only a small performance overhead. 

Methods of implementing architectural support for the primitives were 

examined in chapter 5 and a method described for use with a virtual memory 

architecture. This method involved altering the virtual to physical translation 

mechanism to "watch" for monitored locations. An additional monitor bit 

was added to the page table entries of the virtual memory management 

system which indicates a primitive located on that particular page. A 

breakpoint memory could be accessed if this was the case to determine 

whether a breakpoint was active on the word of the page, and if so a trap-like 

interrupt was caused to enable the transfer of control to the monitor process.

An experimental system to determine the effectiveness of the ideas 

introduced was implemented on the High Level Hardware Orion, a user- 

microprogrammable machine. The monitor and target process 

synchronisation was provided by fairly conventional means, using UNIX 

system calls. The monitoring software structures and associated algorithms 

were implemented in the C programming language and the support for the 

monitoring primitives provided in microcode.

Evaluation of the effectiveness of the methods implemented was performed 

for a typical machine instruction; an actual program, run under the 

experimental system, to determine whether the results from the single
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instruction case could be generalised to program execution; and two case 

studies.

The results obtained were encouraging, showing that the experimental 

implementation offers high-level monitoring for a reasonable performance 

cost. The figures, however, showed that performance degradation could be 

substantially reduced by the provision of simple hardware support, consisting 

of: an extra condition flag, indicating a trap is to be taken; an extra monitor 

bit in the page table entries; and a fast memory implementation of the 

breakpoint memory. The typical "background" interference (caused by 

references to monitored pages), with this support in place, is estimated at 

only 15%. This figure might even be tolerated in a real-time environment 

where a slight performance degradation during development is usually 

acceptable.

The design of the high-level notation required for interaction with a program 

for the purpose of execution monitoring was largely outside the scope of the 

research described here. However, the implementation of a complete 

monitoring system using the structures developed in this work requires the 

definition of a suitable form of user interface. Particular issues in the design 

of this include the use of graphical images, and the method of making the 

system available to a number of high-level languages.
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Appendix: Selected code fragments

This appendix contains selected procedures from the experimental system 

described in chapter 6.

The procedure ‘takejprimitive’ is called due to a transfer of control from the 

target process. The address and type passed to this procedure is obtained via 

the area reserved for communication between the two processes (see section 

6.1.3). The list of logical traps associated with the actual trap is traversed, 

the trap identifier accessed and passed to a procedure ‘taketrap’ which 

performs the necessary actions within the event-graph.

The procedure ‘set_primitive’ takes as parameters the trap ide itifier, address 

and type. A logical primitive is set by adding the identifier to the list of 

logical traps. Only if necessary is an actual primitive set.

The procedure ‘databrkpt’ takes an address and updates the bitmap 

representation of the additional monitor bit, and adds an entry to the 

breakpoint memory.
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take_primitive( address,type ) 
unsigned address ; 
int type ;
{

/* T h is  p r o c e d u r e  a tte m p ts  to  f i n d  a  trap  ta ken  by  th e  m a ch in e  in  th e  
l i s t  c o n s tru c te d  b y  so ftw a re . I f  n o  tra p  ex is ts  th e n  w e  c a n n o t 
c o n tin u e  a s  m a c h in e  a n d  so ftw a re  a re  o u t o f  sy n c  * /.

int index ; 
in t found ; 
struc t trap *temp ;

found = FALSE ;
index = address & WORD IN PAGE ; 
temp = table_of_traps[type][index] ;

while( temp != null_trap ) {
/* S e a rc h  th ro u g h  lis t  o f  tra p s  w ith  sa m e w o rd —in -p a g e  fo r  the

a d d re s s  g iv e n . A n y  fo u n d  a re  p a s s e d  to  th e  p ro c e d u re  ' ta k e tra p ' * 
if( ((’ temp).address — address ) {

taketrap( (*temp).trap_number,address ) ; 
found = TRUE ;

}
temp = (*temp).overflow ; 

if( ¡found ) {
printf("***FATAL ERROR in take_primitive** *W) ; 
printf(’Took machine trap for which no software trap existedV) ; 
printf("address = %x\ttype = %sVT,address, print_type[type]) ;

}

ta kep rim itive
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set_primitive( trap_no,address,type )
Int trap_no ; 
u n si gne d address ; 
int type ;
{ int index ; 

int set ;
struct trap *temp ;

/* S e t a  p r im it iv e  a t  th e  a d d re s s  g iv e n  a n d  o f  th e  ty p e  g iven .
T h is  p r im it iv e  is  id e n tifie d  b y  th e  n u m b er g iven .
A n  a c tu a l p r im it iv e  is  o n ly  s e t i f  o n e  do es n o t a lready  exist, 
o th e r w ise  th e  id e n tifie r  is  s im p ly  a d d e d  to  th e  lis t o f  
id e n tif ie r s  f o r  th a t p r im itiv e  * /

index = address & WORD_IN PAGE ; 
set = TRUE ;
temp = table_of_traps[type][index] ;

while( (temp != null_trap) && set ) {
/* S e a rc h  th e  l i s t  o f  id e n tifie r s  to  see  i f  a  tra p  is  a lready  

a c tiv e  a t  th a t a d d re s s  * / 
if( (*temp).address == address ) set = FALSE ; 
temp = (*temp).overflow ;

}
/* A d d  th e  id e n tif ie r  to  th e  l i s t  o f  id en tifiers * / 

temp = ( struct trap * ) malloc ( sizeof( struct trap ) ) ; 
(*temp).address = address ;
(*temp).trap_number = trap_no ; 
if( type =  PRIM_CODE )

(*temp).instrs = ptrace( MRD,pid,address,0 ) ;
(*temp).overflow = table_of_traps[type][index] ; 
tab!e_of_traps[type][index] = temp ;

ir( set ) {
/* A  p r im itiv e  is  re q u ire d  a t th e  lo c a tio n  sp e c ifie d  * I  
switch( type ) { 
ca se PRIM_CODE :

/* s e t  a  c o d e  b re a k p o in t a n d  rep la ce  in s tru c tio n  by  th e  code  
b re a k p o in t in s tru c tio n  * / 

codebrkpt( address,ptrace( MRD,pid,address,0 ) ) ; 
ptracef MWR,pid,address,TRAP ) ; 
b r e a k  ;

case PRIM DATA :
I*  s e t  a  d a ta  b re a k p o in t * I  

databrkpt( address ) ; 
b r e a k  ;

case PRIM WCH :
/* s e t  a  w a tc h p o in t * / 

watchpt( address ) ; 
b r e a k  ;

}

se tp rim itive

}
}
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databrkpt( address) 
un si gne d address ;
{ u n s i g n e d  index ; 

u n s i g n e d  entry ; 
u n s i g n e d  memval ; 
u n s i g n e d  bitmap ; 
u n s i g n e d  mask ;

/* S e t a  d a ta  b re a k p o in t a t  th e  a d d re s s  g iven  * /

/* P la c e  s e g m e n t b its  (2  M S B its )  a t  to p  o f  p a g e  * / 
if( address & 0x80000000 )

bitmap = address I 0x08000000 ;
else

bitmap = address & *0x08000000 ; 
lf( address & 0x40000000 )

bitmap = bitmap I 0x04000000 ;
else

bitmap = bitmap & *0x04000000 ;

bitmap = bitmap »  10 ; /* R e m o v e  w o r d - in -p a g e  b its * /
mask = bitmap & Oxlf ; /* 'm a s k ' c o n ta in s  b o tto m  5  b its  o f  p a g e  n u m b er * /
bitmap = bitmap »  5 ; /* R e m o v e  th ese  5  b its  * I
bitmap = bitmap & Oxlfff ; /* 'b itm a p ’ co n ta in s  o ffse t in to  th e  b itm ap

rep resen ta tio n  * /
bitmap = bitmap + BITMAP ; /* A d d  'b itm a p ' to  th e  a d d ress o f  th e  b itm ap

rep resen ta tio n  * /
mask = 1 «  mask ; /* 'm a s k ' is  a  3 2 - b i t  w **d  w ith  th e  a p p ro p ria te  b it s e t

f o r  a ccess in g  th e  b itm ap  represen ta tion  * / 
ptrace(MWR,pid,bitmap,ptrace(MRD,pid,bitmap,0) I mask) ; /* S e t th is  b it

using the  
'p tra c e ' sys tem  
ca ll * 1

index = address & WORD_IN_PA G E ; /* 'in d e x ' co n ta in s  w o r d - in -p a g e  o f
o r ig in a l a d d ress * /

entry = DATATABLE + index ; /*  'e n tr y ' c o n ta in s  th e  a d d ress  o f  the
b rea kp o in t m em o ry  en try  to  a c cess  * / 

memval = ptrace(MRD,pid,entry,0) ; /* 'm e m v a l ' c o n ta in s  th e  breakpoin t
m em o ry  en try  a t th is  a d d ress

whlle( ( memval & ACTIVE ) != 0 ) {
/* S e a rc h  b re a k p o in t m e m o ry  (fo l lo w in g  o ver flo w  ch a in  i f  necessary) 

f o r  e ith e r  th e  e n d  o f  th e  c h a in  o r  an  en try  w h ich  is n o t a c tive  * / 
if( ( memval & OVF ACTIVE ) =  0 ) b r e a k  ; 
entry = DATAOVFLOW + ( ( memval »  1 ) & OVF_MASK ) ; 
memval = ptrace(MRD,pid,entry,0) ;

If( ( memval & ACTIVE ) =  0 ) {
/* I f  a n  e n tr y  is  fo u n d  w h ic h  is  n o t a c tive  th e n  in ser t th e  n ew  

e n tr y  h e re  * /
memval = memval I ACTIVE I DATABIT I (address & PAGE) ; 
ptrace(MWR,pid,entry,memval) ;

else {
/* A d d  a  n e w  lin k  to  th e  o v e r flo w  c h a in  a n d  in se r t th e  new  en try  * / 

memval = memval I ( datastackptr « 1 ) 1  OVF_ACTTVE ; 
ptrace(MWR,pid,entry,memval) ; 
entry = DATAOVFLOW + datastackptr ;
ptrace(MWR,pid,entry,(ACTIVE I DATABIT I (address & PAGE))) ; 
datastackptr-M- ;

}
1

databrkpt
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