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Abstract

The work described in this thesis addresses the problems of monitoring the
execution of modern, high-level language software and, in particular, problems
associated with the provision of high-level control over target program execution
with an acceptable performance degradation.

The state of the art indicates that the development of execution monitoring tools has
largely avoided the issue of higher-level control, probably due to the lack of
machine support for these facilities and the inevitable excessive performance
overhead which would result. Only in the field of real-time monitoring has suitable
machine support been described, usually consisting of specialised electronics.

We describe a monitoring environment which lends itself to the monitoring of
high-level software, and enables monitoring software to provide the level of control
required through the use of appropriaté software structures and a set of monitoring
primitives, for which suitable support can be provided.

A set of abstract-level events is introduced which can be monitored by the use of a
single type of monitoring primitive and the inspection of the target process state at
single instants in time. A notation is introduced for representing sequences of these
events as a directed graph, where the arcs indicate a chronological ordering,
enabling the monitoring of higher-level concepts and information which is not, in
general, preserved during execution. To provide these facilities at an acceptable
level of performance degradation, means of implementing architectural support is
examined.

An experimental implementation of the directed graph mechanism and a microcoded
version of architectural support for a virtual memory machine is outlined, as is an
analysis of the performance of the system. The performance figures obtained
indicate that it is possible to provide monitoring facilities for high-level software
which performs with an acceptable performance overhead and is applicable to a

wide range of machines.
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1. Introduction

1.1. Software Development

The software development cycle is usually represented as consisting of six
stages: specification, functional decomposition, coding, testing, debugging and
evaluation [Johnson78b]. At all stages of the cycle reliability of the final

product is an important factor.

The specification of a system attempts to prepare, in a complete and
consistent manner, the intentions of the user, thus providing a basis for the
design and implementation of the system [Martin88] [Gerrard90]. A number
of techniques have been developed to aid in this specification stage of the
development cycle. Since the first complete technique for system analysis,
SOP [IBM61], many others have followed, including methods which use
languages to describe relationships between objects and activities. Examples
of such languages include TAG [Head71), JSP [Jackson75], PSL
[Teichrow77], RSL [Alford77], SADT [Ross77] and GIST [Balzer81]. Details
of these methods can be found in [Fairley85]. The reliability of a system can
be better guaranteed if a complete specification is provided, which is
produced more easily and clearly if a formal specification technique is used
[Quirk85}.

The second and third stages of the development cycle, functional
decomposition and coding, have, perhaps, had most attention paid to them.
Software reliability has been improved through the advocacy of structured

programming and the design of high-order languages.
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Many authorities have noted that the latter stages of the development cycle
have not kept up with the pace of change of the former stages [Evans66]
[Zelkowitz71] [Glass80] [Plattner81] [Deutsch82] [Gramlich83] [Plattner84].
One reason for the apparent lack of interest in the testing and debugging
stages is the research into formal proofs for program correctness. Such
proofs include symbolic execution and evaluation [King76] [Cheatham79]
[Kishimoto83a] [Young88] and the use of flow expressions [Shaw78].
However, it can be assumed, from the literature, that it will be some time
before formal proofs are ready to replace the testing and debugging phases in
the software development cycle [Kopetz79] [Lauesen79] [Plattner81]
[Deutsch82]. Thus, it is still important for all programs to enter the testing

and, if necessary, the debugging stages of development.

Testing techniques attempt to execute the code with enough sets of input
data to infer a degree of confidence in the code. In all but the simplest casés
it would be impossible to test all possible sets of input data and so the
strategy is to develop a system which generates sets of input data which
adequately test the program [Liskov86] [Weyuker86]. There are many
criteria for the selection of test data. One method relies on programmer
experience to choose input data which tests known problem areas [Bauer77).
Another method, the acceptance test, uses 'real’ input data, assuming that the
user, being the only one who has authentic knowledge of the intended use.of
the software, is best able to pick test cases from the actual use of the system
[Kopetz79]. The former method does not take into account the intended use

of the product and the thoroughness of the test is likely to vary from one
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programmer to another. The acceptance test provides only statistical data on
the reliability of the software and is more likely to test only main execution
paths, thus neglecting the more obscure conditions. A further testing strategy
is structural testing, where the input data is chosen from examination of the
program structure [Fairley85] [Ntafos88]. Knowledge of the program
structure, together with the results of the test, builds the basis of inductive
evidence for the correctness of software [Kopetz79]. Structural testing occurs
in a number of forms: for example, all instructions of the program are
executed at least once, every branch point is tested, in each direction, at least
once, or all control paths are tested. Research into methodologies for test
data generation can be found in [Howden75] [Ramainoorthy76] [Clarke83]
[Girgis85] [Cantone87] [Clarke89]. The ability of such testing tools to
produce adequate testing strategies can be shown using symbolic traces

through program instrumentation [Huang78] [Huang80).

Testing reveals the point of detection of an error, or "bug". This recognition
of a bug, however, does not immediately reveal the point of origin of the bug;
it is the debugging stage of the development cycle which performs the
necessary diagnosis [Brown73] [Johnson78b] [Fairley85]. It is also suggested
that the debugging process incorporates the correction of any bugs. To aid in
the debugging of software many systems provide some sort of debugging tool.
However, advances in structured programming techniques and high-levei
languages have increased the semantic gap between debugging tools and the
view the programmer holds of the software. Most debugging tools of today

still lend themselves more to the debugging of assembly language code than



-4.

high-level language programs. This means the high-level language
programmer is required to know extra information such as the operating
system and compiler memory allocation techniques. The in;idequacy of tools
[Gramlich83] has resulted in the continual advocacy of the insertion of special
probe statements, into the software source, as a debugging method [Bauer77]
[Deutsch82].

Once all the known bugs have been removed and the program has been
tested to the required degree of confidence then, if necessary, the evaluation
stage is entered to highlight areas of inefficient code. The three software
performance evaluation methods are: selectionv evaluation, in which
performance is included as a criterion in the decision to obtain a system;
performance projection, in which performance is estimated for a system
which does not yet exist; and performance monitoring, which provides data
on the actual performance of a system [Lucas71). Performance monitoring is
the only technique which applies to an existing piece of software.
Historically, only hardware performance was evaluated but with larger and

more complex software systems residing on the hardware it is important that

the software is as efficient as possible.

1.2. Execution Monitoring

One requirement which appears to be common to the testing, debugging and
evaluation stages is the ability of the software developer to be able to view

the internal execution steps of a process.

“Program testing with execution monitoring is not only used to verify the correct
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operation of a program, but is also very useful when the exact cause of an observed
malfunction must be dctermined, when internal details must be understood by
somebody who is not yet familiar with a program, or when software must be optimised

to increase execution speed.” [Tiberghien86:384)

The technique employed to enable the viewing of the internal steps of a
process is known as execution monitoring and is based on observability and
controllability [Kopetz79] [Plattner84]. Observability implies that the internal
steps of execution, or the flow of both control and data, can be viewed by the
programmer. Controllability allows the programmer to specify conditions
which, when they arise, enable interaction with the executing program
[Seidner83]. Botk observability and controllability should be defined in terms

of the semantics of the language in use [Evans66].

Exccution monitoring tools are required because it is difficult to visualise the

steps involved in program execution {Gramlich83].

"-Whilst we, on the one hand, write and percept our programs as linear sequences of
text, the actual path taken through the program by control during its execution is far
from straightforward. It is often difficult to foresee all the possible ways in which
control can sweep through the program and at the same time see all the consequences

this can have for program results.

-Not only that the actual development of program execution depends on the state of its
data, it is the manipulation of data alone which is the main and only task of the
program execution. Because of the great variety of ways in which the respective data

items can be influenced, it is very difficult to assess the actual impact of individual



operations.” [Babcicky80:11]
The implementation of execution monitoring tools can be divided into two
broad categories: those developed for reai-tirne software and those developed
for non real-time software. In the case of real-time software, where the code
is dependent on time, special hardware is used to extract information from
the executing program and to exert control over it, without upsetting the time
dependency. This hardware can take the form of simple machine bus probes
[Fryer73] [Gentleman83] [Tsai90], complex circuitry which allows some form
of monitoring at the abstract level of the high-level language [Goossens83]
[Small85] [Rijks87], or even the use of a second computer, faster than the

target machine [Plattner81] {Plattner84].

The implementation of execution monitoring tools for non real-time software
is based on the fact that there is usually little or no support provided by the
machine. Historically, execution monitoring was performed via post-mortem
dumps, snapshot dumps and simple trace facilities [Evans66]. These often
provided masses of data in hexadecimal, requiring knowledge of the machine
and; in the case of high-level languages, the compiler. Even today
interpretation [Evans66)], preprocessors [Balzer69] [Cohen77) [Foxley78), or
simple break-and-examine tools [Pierce74] [Atkinson78] provide the basis for
most execution monitoring tools.

The high-level language programmer views his program at the abstract level

of the language in use and, for this reason, any tool designed to aid in the

development of a program should operate at that same abstract level. Simply
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allowing the programmer to use an assembly language tool via source
symbols does not create high-level language tools. It is thus necessary to
incorporate features such as recursion, procedure calling chains, execution
paths and dynamic variables into development tools, and especially the
execution monitor. Those systems which do offer a degree of high-level
abstraction do so at the expense of execution speed, something which is not
always tolerated by the programmer. On the other hand, real-time execution
monitors do not delay target process execution but the cost of such

implementations is usually prohibitively high.

1.3. Aims of this thesis

The aim of the work described in this thesis has been to investigate methods
of providing execution monitoring facilities at the abstract level of the
language in use, but without incurring either heavy execution overheads or

requiring extensive hardware support.

The evolution of execution monitoring tools from early hexadecimal dumps
and traces is given in chapter 2, as is a set of requirements for the monitoring

of software and, in particular, high-level language software.

Chapter 3 describes a monitoring environment for software monitoring at the
level of the source. This includes the variety of commands which can arise
when monitoring high-level language software and also a description of high-
level language features, such as procedures and recursion, and their effect on
monitoring. A set of monitoring primitives is introduced which, with

appropriate monitoring software, is capable of implementing high-level



monitoring.

The software structures required by monitoring software and the algorithms
employed to implement the execution monitoring facilities outlined in clapter
3 are discussed in chapter 4. A number of examples of possible monitoring

scenarios are also given.

Chapter S reviews the current state of architec;ural support for execution
monitoring and describes possible methods of implementation of the
monitoring primitives of chapter 3. A technique for the implementation of
the monitoring primitives which makes use of the virtual to physical
translation mechanism, common to many multitasking machines, is described

and its effect on execution speed discussed.

An experimental implementation of the monitoring software and architectural
support described in chapter 4 and chapter S is described in chapter 6. This
also includes a section devoted to the analysis of the performance
interference caused by monitoring activity. Methods of overcoming much of

this degradation are also described.



2. Execution Monitoring

2.1. Introduction

Execution monitoring is the viewing of the internal steps taken during
program execution [Plattner81] [Burkhart84] [Plattner84). This involves both
the execution of instructions and the accessing and updating of program
variables. Without the use of a technique to aid in the process of execution
monitoring a programmer can only infer the internal workings of an
executing program from the output it produces. For example, output during
program execution indicates that the process has reached a particular point in
the code, and the output of program variables gives their values at that
particular time, but the workings of the rest of the process, the intermediate

steps which make up the observable effects, are often a complete mystery.

In the testing, debugging and evaluation of programs the execution path is
often required, something which is impossible with most programs which

output only a fraction of the required information.

Many current testing methods involve some sort of structural testing
[Howden75] [Clarke83] [Weyuker86] [Cantone87] [Ntafos88] or data flow
examination [Huang79] [Girgis85] [Franki88) [Clarke89] [Weyuker90]. In
both these cases the adequacy of the testing technique can be determined by
"watching”" the internal steps taken during program execution. During
structural testing, questions which require answering include: How many
times did a particular loop iterate, which branch did a conditional take or,

how many times was a particular procedure called recursively ? Data flow
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examination, on the other hand, requires knowledge of the sequence of

assignment of values to variables.

The process of debugging asks very similar questions to that of testing and,
again, these can be answered by an execution monitor. For example: When
does a variable get assigned an incorrect value or, when does execution
proceed along an incorrect path ? Knowing exactly where an error occﬁrs

usually leads to the reason why.

The evaluation stage of program development is concerned with frequency
counts and timing statistics about the executing code. For example: How
mahy times does the memory allocation routine get called or, which routine

is responsible for the greatest amount of execution time ?

Execution monitoring is also useful when a programmer needs to understand
a piece of code that he wrote some time ago or code which was written by
someone else. It has been suggested that the best way of presenting the
programmer with a complete understanding of a piece of code is via static
analysis of the program [Tischler83] [Fairley85S]. The reasoning behind this is
that dynamic information concerns only one specific execution run, whereas
static analysis explores and summarises all possibilities. However, all source
code must be available to make use of this method and bugs in compilers or
system software cannot be detected so easily. Thus, it is the view of the
author and others [Barra83] [Ambras88b) that dynamic information has a

role to play in the conveying of program workings.

Perhaps the most obvious and easiest implementation of an execution
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monitor is the insertion of monitoring statements into the program source
code. This method of monitoring is proposed as early as 1951 [Wilkes51] and
still has a following today [Winder88]. It has a number of applications,
including testing [Huang79] [Lauesen79] [Huang80], debugging [Ferguson63]
[Mann73] [AraiSSa] [Winder88] and, program profiling and evaluation
[Huang80]). The manual insertion of monitoring statements requires no
special machine features or additions to the language translator/interpreter.
Further to this, the programmer requires no extra knowledge of a separate
monito;ing language and can insert just enough code to perform the
necessary tasks. The extra code added by the programmer for mohitoring
purposes would take the form of print statements, giving a trace of the flow
of control, or values of variables. Performance evaluation is possible by the

addition of extra variables, called monitoring variables, which can be used as

frequency counters or timers.

Whilst the method of inserting extra code, as described by the above authors,
is an effective and adequate monitoring technique it does have its flaws and
limitations. In order to add monitoring statements the programmer must
have access to the original source code and the resources for recompilation of
the amended program. It is thus not possible to monitor library routines or
production code for which the source is not available to the programmer, or
code on machines for which the language translator is not providéd.
Secondly, because this method involves the insertion of code prior to
recompilation and execution there is no provision for the flexibility of

responding to earlier monitoring output. This flexibility means that a
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programmer, during the monitoring of execution, can, if he wishes, alter the
objects being monitored based on the results obtained from previous
monitoring statements. Whilst this may be feasible in an interpretive
environment it is non-trivial for compiled code, although this approach has

been implemented through the use of an incremental compiler [Fritzson83].

Like any other code the extra monitoring statements take CPU time to
execute and thus the overall effect is to increase the execution time of the
monitored, or target, program. Extensive monitoring, requiring the addition
of many monitoring statements, can seriously degrade performance leading to
user disapproval of the method [Johnson82). More seriously, any method
which leads to a relatively large performance degradation cannot be used in
conjunction with programs which are in any way time dependent. Also, from
the viewpoint of the user, the performance degradation must also include the

cost of recompilation.

Apart from a performance degradation, the addition of monitoring
statements can have other side-effects on the target program, not least of
which is the introduction of errors. For example, it is possible, in some
languages, to reference variables anonymously. This can occur, for instance,
when array indexing is not checked for bound violations at run-time. Thus,
accessing an element of the array outside of the declared bounds will
anonymously reference other areas of memory. Vld addressing occurs when
the correct value is obtained but from the incorrect location; thus, the
program appears to function correctly but is logically incorrect. The insertion

of extra monitoring variables can thus alter the functionality of the target
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program, which is to be avoided if the monitoring system is to be non-
interfering.

The occurrence of the, perhaps, obscure conditions described above is not
necessary for the introduction of errors. Simple typing errors can ruin a
whole run, resulting in the inconvenience of corrections and recompilation.
Similarly, the programmer, when inserting statements, must be careful to
adhere to the syntax and semantics of the programming language in use. For
example, amending the code fragment in figure 2.1 may be performed
erroneously, giving the code fragment in figure 2.2. Although the print
statement in this amended fragment appears to belong to the conditional
unit, the actual structure of the code is shown in figure 2.3, with the print

statement being executed regardless of the state of the boolean in the

conditional.

if( boolean )
statementl ;
statement2 ;

Figure 2.1

When the errors outlined above are disregarded the method of inserting
monitoring statements into the target source still has its limitations. Any
code which passes through the language translator/interpreter must conform
to the scope rules of the programming language in use; this restriction limits

the kind of information which can be extracted from the executing program.
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if( boolean )

statementl ;

printf ("branch taken") ;
statement2 ;

Figure 2.2

if( boolean )

statementl ;
printf("branch taken®) ;
statement2 ;

Figure2.3

Further to the above flaws and limitations the technique described is also
prone to voluminous output. Monitoring statements in loops and frequently
called procedures can lead to a lot of output, swamping the programmer.
The code required to limit the amount of monitoring output can often be
complex and involve the addition of code in more than one place. The
addition of more code increases the chance of errors and also makes the
cleaning up process more difficult and error prone. This cleaning up process
involves the removal of the additional monitoring statements in order to
create either a production version of the program, or a starting position to
monitor other aspects of the program.

Some of the problems associated with the insertion of monitoring statements

can be avoided if the target language provides the extensions for monitoring.

Variable associations [Hanson76] and event associations [Hanson78] provide
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language extensions for SNOBOLA enabling user-defined functions to be
associated with the act of referencing a variable or the occurrence of an
event respectively.

It can be concluded that the insertion of monitoring statements into the
target source is far from adequate. There is need for a tool which gives the
programmer an insight into the internal states of a process, but without the
restrictions and problems outlined above. The tool must, therefore, work
without the inconvenience of user-addition of statements and recompilation

stage, and work outside of the normal restrictions of the specific language in

use.

2.2. Classical Tools

2.2.1. Background

The first computer programs were written in assembly language; this having a
direct relationship to the code executed on the machine. The method,
outlined in the previous section, of inserting monitoring statements into the
source code is, in general, highly unsuitable when appiied to assembly
language programs. The first reason for this is that at the assembly level of
programming the simplest high-level language construct (for example, a print
statement) can be made up of many instructions. Secondly, there is often a
requirement that certain registers and condition flags are preserved between
statements; this is sometimes made even more complicated due to an often

complex programming style.
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Both the above make it difficult for a programmer (especially a programmer
who needs to monitor code he did not write) to modify source in order to
insert monitoring code. A tool is required which inflicts no interference on
the preservation of information between instructions and is invoked simply
and quickly. The first monitoring tools, developed primarily to aid in the
debugging of assembly language programs, are now referred to as classical
monitoring tools. Whilst primitive in their operation they implemented a
much needed software development tool, and many of the monitoring

systems available on present computers are still based heavily upon them.

In the early days of computing programming was performed at the machine
console in an interactive manner. With the introduction of multi-user
systems the programmer interacted with the machine via a job queue in a
batch processing approach. Thus, two styles of monitoring systems evolved
for the two differing methods of operation. Post-mortem monitoring systems
were developed for the programmer in a batch processing environment where
the program is submitted along with a complete set of input data to the job
queue. Results from execution are delivered back to the programmer once
execution has completed. Conversational monitoring systems were developed
for the other mode of operation, that is, interactive at the machine console
or, as developed later, in a time-sharing environment. Results from
execution, in the interactive mode, are supplied to the programmer as tﬁey
are produced and the input data given on demand. Thus, the input data can

be modified according to program events.
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2.2.2. Conversational monitoring system

The conversational, or break-and-examine, tool allows the programmer to
interact with and extract information from the executing program. The same
tools are described as "on-line" tools by Evans and Darley [Evans65]

[Evans66) to distinguish them from tools for batch processing environments.

Conversational tools were first developed for monitoring at the computer
console and evolved from the use of switches and lights [Evans66)
[Johnson77]. The method of utilising console switches and lights involved
ai‘ering machine memory and registers by setting the switches appropriately
 and observing execution through the console lights. A relatively modern
-approach to using this method is described by Hurst [Hurst84]. In this
system the lights indicate execution within a range of addresses, and the
switches allow the programmer to alter the ranges associated with the lights.
Thus, the programmer is able to monitor program behaviour dynamically.
Classical conversational software tools often offer the following facilities
[Evans65] [Bauer77):

o Setting/resetting of code breakpoints.

o Examination/modification of memory/registers.

o Insertion/deletion of source lines.

e Search of memory for bit pattern.
Code breakpoints cause suspension of the user’s program and return control
to the software monitor when a specified location is reached during

execution. The programmer is thus able to control program execution by the
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setting of code breakpoints at appropriate points in his code. Once control is
passed to the monitor the examination and modification of memory and
registers can be used to locate bugs or test that routines are functioning as
expected.

Conversational systems differ in the way that commands are entered and in
the control of the display. MONITOR [Gladstone76] allows memory
addresses to be entered as hexadecimal numbers or ASCII characters with
the added benefit of expression evaluation. Further to this is the ability to
use indirect addresses and the user-defined symbols found in the assembly
language source. The display, however, consists of only hexadecimal or
ASCII values of machine registers and main memory. The programmer is
restricted to the use of only four breakpoints, which the designer of the tool
states is sufficient because multiple breakpoints only confuse the
programmer. A facility not always found in conversational systems is
provided by the trace command. With this operating, the values of the
machine registers are saved after the execution of each instruction. Thus, a

history of execution is available after execution has completed.

DDS [North77] is a similar tool to that of MONITOR but allows the user to
specify that instructions are to be displayed in the mnemonic form as used in
the assembly source. The display in DDS is updated automatically during
execution with the update step defined by the user. This also displays the
currently executing instruction. Both DDS and MONITOR offer a single
step facility whereby the programmer regains control via the conversational

tool after the execution of only a single instruction. This facility is only
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practical for examining small segments of a program due to the time
involved; it is assumed that the programmer has narrowed down the area of
the program to be monitored using the breakpoint facility. DDS also offers
the programmer a facility that is not often found in assembly language
monitors; namely a breakpoint on the accessing or updating of memory
locations.

A tool called DEBUG [Evans65], based on TIC and DDT, offers facilities as

described above but attempts to overcome problems associated with patching

code in symbolic assembly language and the production of a "clean" version
logically equivalent to the patched program.

Assuming that the machine hardware provides no support for the

implementation of code breakpoints there are two main methods of

implementation:

1. Replacement of the instructions at the specified address with a jump to
subroutine instruction, the call address being that of the debugging
routine.

2. Replacement of the instructions at the specified address with a trap
instruction which causes an interrupt. The address of the debugging
routine is picked up from the interrupt vectors, the transfer of control
performed by the hardware or the operating system.

It is important that the execution of the program is not altered in any way by

the interference of the monitor execution. For this reason all machine

registers, which must be preserved between between instructions, are saved to
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a scratch area of memory prior to the transfer of control to the monitor. On
specifying continuation of the program, control is transferred back to the
calling point by restoring the saved resources from the scratch area and then
executing the replaced instruction(s) before performing a return from

subroutine or interrupt.

2.2.3. Post-mortem monitoring system

Post-mortem monitoring tools, developed primarily for batch processing
environments, provide execution information for analysis when program
executién has either ended normally or with a fatal error. Because program
execution is activated as a job on a queue any input must be supplied prior to
job initiation. This also applies to user-specified input for the monitoring
routines. The transfer of control at code breakpoints is performed in the
same way as described in the last section for conversational tools. However,
instead of a routine which converses with the programmer, the post-mortem
routines use the pre-specified commands from the programmer to extract the
required execution information.

There are four main tools developed within this class of monitoring system

[Ferguson63] [Bauer77]:

1. The post-mortem dump or system dump is probably the simplest of the
tools to implement, and is usually used to gain information at the point
of a fatal error. When a fatal error occurs during program execution,
control is passed to the post-mortem dump routine which prints the

values of machine registers and memory locations of the monitored
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program at the point of the error. The output, however, is usually

produced in either hexadecimal or octal with no attempt at conciseness.

The snapshot dump is similar to the post-mortem dump above, except
that the output occurs as soon as a programmer-specified address is
reached and not upon process termination. Usually the programmer is
able to specify as many snapshot points as required and also the
information to be placed in the dump. When a snapshot point is
reached during execution a jump to the appropriate monitoring routine
occurs and the desired information is extracted from the process
memory and is output. Execution of the monitored program
commences with the instruction replaced by the code breakpoint
instruction. This tool relieves the programmer of the need to insert

monitoring statements into the program source.

A trace facility produces output on execution of each instruction, usually
within a programmer-specified range. The information produced in this
case would typically consist of the program counter, other important
registers and the instruction currently being executed. This facility is
typically implemented by entering an interpretive mode which extracts
the necessary information before realising the instruction in software.
Interpretation is resorted to in this case as otherwise the monitoring

system would need to set code breakpoints on every instruction.

The traceback monitoring tool indicates how control reached the current

point of execution, the output triggered by an error. This facility
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requires that appropriate information is extracted at instructions where a
transfer of control occurs. The information required is usually the
values of the machine registers. The traceback tool could also show

where and to what value memory locations are altered.

2.2.4. Assessment

In giving a degree of insight into an executing program the classical
monitoring tools release the programmer from the burden of inserting
monitoring statements into the source code but do not solve all the problems
associated with execution monitoriné

One of the greatest drawbacks to the classical tools is the amount and format
of the generated output. This is often in hexadecimal or octal and can be
extremely voluminous, making analysis of it difficult. Unless the programmer
is able to specify exactly what information is to be displayed in a dump
facility then the output will consist of the working space of the program.
Even if the data generated in a dump can be tailored to the user’s
requirement, it is quite easy for the amount of output to exceed that which
can be easily analysed. This can happen, for instance, with the snapshot
dump, when the snapshot points, specified by the programmer, are executed
many times, for example, in a loop or frequently used subroutine. This can
be overcome by a condition attached to the snapshot point which indicates
either a maximum number of times it can be acted upon or how many times
it is ignored before being recognised. A similar method of reducing the

volume of output can be applied to the trace tool, where only a specified
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number of executions of a particular location cause any output. This would

be in addition to restricting the trace to between two specified locations.

The use of an interpreter for the trace facility causes severe performance
degradation as the execution of each instruction is performed by software.
This can be reduced significantly if the range specified by the programmer is
the only area to be interpreted, with execution outside this area proceeding as
normal. The post-mortem dump adds no overhead to program execution
times and the snapshot dump can add very little if used sparingly.

The displaying of memory and addresses as hexadecimal or octal values can
be very tiresome for the programmer as the view of the program during the
monitoring stage is different to that of the coding stage, where symbols are
used. It is thus helpful if instructions in memory can be displayed as
mnemonic values and addresses be displayed as symbols used by the
programmer in the assembly language source. The lack of readable output is
even more confusing for the high-level language programmer
[Satterthwaite72]. An increase in the use of structured high-level languages
has led to an increase in the number of programmers who know little about
the compiler for memory allocation and instruction generation, and even less
about the workings of the underlying machine. It is also apparent that these
programmers are not prepared to learn the skills necessary to use classical

tools for high-level language monitoring [Ferguson63).

Perhaps the simplest approach to making the classical monitoring tools more

appealing to the high-level language programmer is to use program source
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symbols in commands and output. Post-mortem dumps for high-level
languages [Bayer67] [Satterthwaite72] show the failure point in terms of a
"stack" of procedure calls and the values of variables local to each procedure
invocation. The latter system for the programming language ALGOL W
[Satterthwaite72] also provides a high-level language trace facility which
displays the current point of execution as a source code line number. Also
displayed are the values of any variables used in expressions. The
performance is quoted as 50-150 times slower when tracing. Another
approach to the problem of providing post-mortem dumps for high-level
languages is performed by STABDUMP [McGregor80], a symbolic dump
interpreter. The STABDUMP dump analysis program picks up the
monitored program’s symbol table information and the store image of the
program at the point of failure, and returns values for all variables including
the contents of data structures such as arrays and records. This is performed
in addition to the "unwinding" of the procedure call stack. One advantage of
this method over previous methods is that interpretation of the classical

dump does not incur a performance overhead during program execution.

The use of compile-time symbol tables for the production of symbolic
monitoring output has also been applied to conversational systems. DEBUG
[Atkinson78] for the programming language BCPL is a break-and-examine
tool which allows symbols to be used for breakpoints on entry to progra;xl
functions. However, breakpoints of a finer granularity require a machine
address, as does the examination and alteration of program variables. Thus,

the programmer must have knowledge of the compilers memory allocation
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routine. DDS [Pierce74] is a similar break-and-examine tool with the extra
feature of allowing symbolic names to be used to refer to program variables
and line numbers to indicate particular source statements. The system,
however, compromises its high level language functionality by regarding
multidimensional arrays as vectors, the programmer having to work out the
correct subscript to access an element. DDS also allows symbolic patching of
the original source code.

The classical monitoring tools have also been improved upon for assembly
language debugging and testing. ALADDIN [Fairley79] allows the assembly
language programmer to set assertions that describe logical relations among
various components of the program state. This feature is described as a
"location independent breakpoint facility". Because ALADDIN must take
control between execution of successive instructions, execution of the
monitored program is interpreted, leading to a performance degradation of
100 or more. FADEBUG-I [Itoh73] is a module testing facility for assembly
language programs. The programmer uses SET statements to prepare a set
of input data and uses a CHECK statement to ensure that the correct results
are obtained after module execution. The programmer is also able to obtain
a listing of all the physical routes in a module from entry to exit. Graphbug
[Davies86] provides a graphical display to a couaventional conversational tool.
The display can show areas of memory, register values and the n;:xt
instruction to be executed; this is updated during execution but all values are

in hexadecimal.

The classical monitoring tools, even with the modifications described above,
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are of little use to the high-level language programmer writing programs with

high-level concepts such as procedures, recursion, local variables and

dynamically allocated memory.

2.3. High-Level Language Monitoring

2.3.1. Requirements

Many of the requirements of monitoring systems were identified as early as

1966 [Evans66). From this, and also subsequent studies including [Bauer77]

[Lauesen79] [Tratner79] [Glass80] [Seidner83] and [Burkhart84], the

follnwing major themes emerge:

1.

The monitoring system must provide the user with full flexible control
over the execution of his program. This requirement is perhaps best
described using the method of Plattner and Nievergelt [Plattner81]. A
process, created by program execution, can be thought of as the
trajéctory of a point moving through space. The space, through which
the point moves, is the state space of the process, and is a cartesian
product defined by the program being monitored and the semantics of
the programming language it is written in. This state space is a set of
states which includes all potential states of the process, and deliberately
includes states which will never be reached, as it is, in general,
impossible to decide whether a given process will ever reach a particular
state. Each state of the process state space consists of the following two

components:
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(i) A control component which reflects the active points of control.
This ranges from the program counter in the simplest of languages
to a dynamic stack structure for a more complex language

incorporating procedures and recursion.

(ii) A data component which consists of all input data and internal data
currently belonging to the process. Again, the complexity of this
process state component depends on the complexity of the
programming language.

The point describing a trajectory through the process state space

indicates the current process state and moves through the state space

according to the statements within the target program.

The requirement that the user is allowed full, flexible control maps onto
the concept described above as the provision of a facility for the
highlighting of a set of states. This highlighting produces two regions
within the state space of the process. In one region, the monitoring
predicate which defines the two regions, is false and in the other region
it is true. Monitoring is thus the "watching" of the trajectory of the point
as it moves through the state space of the process; the monitoring action
is performed when the point crosses the boundary of the region yielding
true for the monitoring predicate.

In order for the programmer to be able to fully observe the execution

steps of the monitored program the entire working space of the process

must be visible to him. This includes being able to see the current point
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of control in terms of which source statement is currently being exeéuted
and the procedure invocations undertaken in order to reach this point;
all program data must be accessible, even program variables which are

currently out of scope and thus not visible to the executing code.

It may be the case that program execution up to the desired point of
observation is expensive in execution time. The process of debugging, in
such a situation, would require that as many bugs as possible were found
in each run [Lauesen79]. For this reason it is desirable that the
programmer can alter the values of erroneous program variables in
order that execution can continue normally to find the next bug. This
altering of the process workspace has other uses, including the setting up
of variables for testing and evaluation purposes. As with the
examination of the process workspace it must be possible for the
programmer to alter any location within the entire state space including

values of variables not visible to the executing code.

Further to the above facility of examination and alteration of program
variables is the examination and alteration of the program source code.
This can be implemented easily within an interpretive environment, as
the source code provides the executable code directly. The same facility
is obviously more difficult to implement when a translation phase is
used, as the source code is not directly executed but produces executable
code via the compiler. Within earlier monitoring systems it was often
impossible to alter the code executed unless the programmer was

prepared to delve into the assembler version of the high-level source
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[Evans66]. A primitive facility would allow the programmer to insert
patches into the executable code using source language terms [Pierce74].
This, however, does not, in general, give executable code equal to the
code which would be generated from the amended source code. The
use of an incremental compiler, where each source statement is
compiled separately, allows the programmer to make alterations to the
program source which are reflected immediately in the executable code
[Fritzson83]. The automatic updating of the source is also discussed by
Ferrante [Ferrante83]. Another method of implementing dynamic
changes is to alter the source code, recompile it using the standard
compiler and then change the current core image to incorporate the new

code and data [Cook83].

Due to the proliferation of high-level languages and common run-time
environments found on many machines it is possible to write program
modules in different languages and then link them together to form a
multilingual process. It would thus be beneficial to the programmer to
have a single monitoring system to service all languages [Elliott82]
[Beander83]. It would also prove more economical to write and
maintain a single system, with the programmer having the benefit of a

consistent interface [Victor77] {Hart79).

The diversity of larguages means that a language independent
monitoring system in an interpretive environment is infeasible
[Johnson78b]. Language independence is achieved to a certain degree

through the use of compiled code, as the object code produced is the
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same for all languages. However, in order that the programmer can
monitor programs using the symbols found in the source code the
monitoring system must have access to the symbol table generated
during translation. There are two approaches to supplying a language
independent monitoring system with the necessary generated symbol
tables. Either a common format symbol table is generated for all
languages enabling the monitoring system to access them in a consistent
manner [Beander83] [Cardell83] [Walter83] or else, the monitoring
system has a number of language interfacers, one for each language it
supports, which access the symbol table in the required way aud pass the

information to the monitoring system in a consistent manner [Victor77]

[Johnson78b].

Language independence by itself, however, is of most benefit to the
designer and developer of the monitoring system rather than to the
programmer performing the monitoring. In order to specify monitoring
commands for a number of different languages the programmer would
need to use a monitoring language which looks like none of the
individual languages but incorporates features from all of them
[Elliott82]. This would be both unnatural for the programmer (writing
programs in one language and :nonitoring them in another) and also
require the learning of the new monitoring language. A bett.er
technique would be to make the monitoring system language
independent but appear language dependent to the programmer; this we

call language sensitive [Johnson77] [Goodman82] [Beander83]
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[Gramlich83]. For each language supported the monitoring system
would need to know the syntactic and semantic rules of the language
including: scope rules, referencing of structures, and the procedural,

arithmetic and conditional logic which makes up language expressions.

A problem arises when programming languages are used as the
command language for the monitoring system in that most languages do
not possess features to enable the specification of, for example,
‘breakpoints. Because of this the language sensitive command language
of the monitoring system needs extensions for unsupported monitoring
facilities [Ashby73]. It is possible and, in fact, desirable that these
extensions are common to the entire set of supported languages, giving a
natural and consistent view of the system to the programmer. The two
extremes when providing a set of language extensions for monitoring are
reflected by the UNIX debugger cdb [Cdb(1)], which provides a large
number of single and two letter commands, each providing a different
monitoring facility, and DISPEL [Johnson81] which looks like an
algorithmic programming language and is provided for the writing of
routines from primitives, which are then called upon when required.

Program optimisation during program translation retains the
functionality of the original program but can alter the structure or
intermediate results to save time and/or space [Hennessy82). The
ability to monitor optimised code is advantageous for a number of
reasons. Firstly, it can be the case that it is impossible to obtain a

working, unoptimised version of the program. Reasons for this include
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the compiler performing certain optimisations during normal operation,
even with no optimisation specified, and the code being optimised
because of timing or size constraints. Secondly, even if it is possible to
generate a special unoptimised version of the code it may be the case
that the error is no longer apparent, due to timing or structural
differences.

Optimisation occurs in many forms but usually involves the elimination,
duplication or relocation of code; the elimination or relocation of
variables; or the simplifying of subexpressions [Ferrante83] [Seidner83]
[Zellweger83] [Richardson89)]. It is the altering of the code in this way
that affects source level monitoring; the correspondence between the
source program and the optimised executable version is often very
complex. Problems occurring during the monitoring of optimised code
include:

e  Trying to set breakpoints on removed code (monitor would respond

with no such code).
e Tracing of relocated code (trace would show code in different
order).
¢ Resuming execution at duplicated code (execution can resume at a

number of different points).

e Tracing relocated or eliminated variables (expected references

and/or updates would be missing from the trace).

There are two methods of overcoming the problems of source level
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monitoring of optimised code. Either the monitor exhibits: (i) correct
behaviour, or (ii) transparent behaviour. Correct behaviour means that
the monitor responds with, in source program terms, the relevant
changes caused by the optimisation at the execution point. The
programmer would, in this case, receive messages from the monitoring
system informing him of, for example, code movement or the removal of
variables. A better solution, transparent behaviour, responds as if the
program were compiled without optimisation. Thus, the programmer
does not see the effects of optimisation during monitoring. Navigator
[Zellweger83] attempts to provide transparent behaviour for inline
procedure expansion (code duplication) and cross-jumping (code
elimination). It does this by replacing the usual tables generated during
translation with two tables; one mapping source code to object code and,
the other, object code to source code. The problems of optimisation
and, in particular, code motion and variable relocation are discussed by

Hennessy [Hennessy82], as are algorithms for overcoming them.

The objectives of the above requirements are to create a monitoring system
which is able to monitor in terms of high-level concepts but does not require
the programmer to learn a new language or large set of commands. Other
features which can improve a moniioring system include a user interface
driven by windows and menus and the ability of the monitoring system to l;e
applied to a program at any point, that is, before execution has started,

during execution, or even after a fatal error has caused termination.
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2.3.2. Monitoring with interpreters

Interpreter based systems have been, and still are, a means of impiementing
monitoring facilities for high-level languages. The reason behind the relative
ease of implementation lies in the fact that execution of the target program is
performed by software. Thus there is no complicated hardware to interact
with in order to provide even simple facilities, such as breakpoints. The
monitoring software required in order to implement monitoring tools can be
inserted into the language interpreter at the appropriate place. For example,
a facility for the tracing of updates to a particular variable can be
implemented simply by checking identifiers within the code which emulates
variable assignment. This same feature in a translator environment is non-
trivial to implement as many machines do not provide facilities in hardware
for the trapping of updates to memory locations and, consequently, many

monitoring systems resort to either machine instruction single stepping or
interpretation.

In the 1960’s debugging features appeared for on-line LISP implementations
for the MAC time sharing system, the M-460 system, the SDC time sharing
system, the Berkeley system, the DEC PDP-6, and the DEC PDP-1. The
QUICKTRAN system implements debugging tools for interpreted
FORTRAN programs [Evans66)].

The MAC and M-460 systems mace the tracing facilities of batch processing
systems available to on-line users, with an extended capability of making the

tracing conditional. Along with this was a program which allowed the editing
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of the internal representation of LISP programs, permitting the modification
of the program, and thus, by way of inserting control transfers, implementing
breakpoints. This editor uses the LISP language itself for adding extra code

making the addition of complex conditional monitoring events easy compared

to assembly language systems.

The QUICKTRAN system allows modification of the FORTRAN program
and facilitates non-conditional breakpointing by including a statement which,
when reached, transfers control to the user. As with the LISP systems
tracing is featured; in this system on assignment and control trans’er.
Further to this are diagnostics to inform when code is never executed,
variables never set, or variables never used.

Monitoring systems implemented in an interpretive environment do not ail
date from the 1960’s. More recently interpretation has been used to
implement a debugging facility for the Chill Compiling System by providing
virtual machines through high-level emulation of hardware independent code
trees [Goodman82). MicroScope [Ambras88a] [Ambras88b] builds a data
base on a LISP program and allows the programmer to monitor execution,

display data changes and control flow dynamically with execution performed

via interpretation.

Two major problems arise when monitoring is implemented using an
interpretive environment: the introduction of errors and the degradation of
execution performance. Both of these are, however, of minimal importance

if the environment used to implement monitoring facilities is the same
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environment which is used to run production versions of the program. Thus,

-the problems only manifest themselves to a significant degree if interpretation

is resorted to for monitoring only.

The switching from a translator environment to one involving interpretation
introduces a significant performance overhead because the desired effects are
realised in software rather than directly in hardware. This is something
which the programmer may not be willing to endure and is unacceptable for

software which must conform to timing constraints.

The second problem which arises with the use of interpreters is the
introduction of erroneous behaviour. The writing of an interpreter for a
given language is a non-trivial task and there is a chance that programs
interpreted will vary in functionality from the corresponding translated code.
Errors occurring in program e*ecution may thus be limited to only one of the

environments, leading to mistrust in the system [Mikelsons83].

2.3.3. Monitoring with preprocessors

A high-level language monitoring system can be implemented by passing the
source code t'hrough a preprocessor which inserts moniforing statements at
the appropriate places. The monitoring statements which’ are added can
perform simple tasks such as recording entry to a particular procedure or
mdre complex actiohs requiring conditionals based on program and monitor
variables. |

There are two approaches to monitoring with automatically inserted

monitoring statements via a preprocessor. Either the monitoring statements
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output information during execution, which are then analysed by the
programmer in order to find program bugs or ascertain correctness, or the
extra monitoring statements output information to a database which can then
be interrogated by the programmer, using an inquiry language, after
execution has terminated.

Ctrace [Steffen84], BUGTRAN [Ferguson63] and two other systems
[Arisawa80] [Clark83] are examples of the first variety. Ctrace is a
preprocessor for the C programming language which prints the executing
statement, in the form of a source statement, and also the values of variables
the current statement uses or modifies. This particular tool is proposed as a
portable monitoring tool because all monitoring code passes through the
normal C compiler and is thus translated with the rest of the program into
appropriate machine dependent code. A graphical system for Pascal
[Clark83] performs essentially the same function as Ctrace except the
information is presented in the form of diagrams based on Nassi-
Shneiderman charts.

BUGTRAN is a tape-to-tape prepass debugging aid for FORTRAN. This
system differs slightly from the previous monitoring tools in that the user
inserts monitoring commands into the source, which are translated into
appropriate FORTRAN statements by the preprocessor. The programmer,
using BUGTRAN, can specify the type of checking or information required
and also restrictions on when the BUGTRAN statement is effective.
Information available includes the printing of variables updated in

expressions, statements executed, snapshot dumps or entry and exit to and
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from subroutines or functions. This can be restricted to a region of the
program, defined by statement numbers; at a particular depth of subroutine
call; and whilst an arithmetic expression yields a value true. A similar system
called STAR [Arisawa80] uses language extensions to implement recursive
subroutines, as well as assertion, variable dump and snapshot facilities.
Particular attention is paid to the reporting of messages in terms of the

original source program and not the version after the preprocessor stage.

Of the systems which collect information for presentation upon termination,
one of the simplest is probably SCAMP {Foxley78]. This is a profiling system
for ALGOL68 R programs. Given a syntactically correct program an
amended program is produced which when executed gives frequency counts
for five ALGOL68 constructs: blocks, routine bodies, if, case and do
statements. Restrictions placed on the source by the preprocessor include: if
and case clauses must be written in the full form; externally defined and
library routines must be called indirectly, via dummy procedures; but
implicitly called system routines cannot be monitored. The increase in
execution is estimated to vary from 5 per cent to 100 per cent. Frequency
counts can be a help in the improvement of efficiency in code but do not

show any kind of control or data flow from the executing program.

Another approach to providing monitoring facilities via a preprocessor is to
create a database or history tape of a program’s execution and then allow the
programmer to access it using an inquiry language. One such system for
ALGOL60-like programs [Cohen77] uses a source translator with the

resulting instructions interpreted. The database created consists of an array
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of label trajectories which hold the information on the label code, the
variables updated and the operators used. The inquiry language can then be

used to answer questions such as: what is the value of a variable at a

particular label and at what label does a variable attain a certain value ?

A similar system, EXDAMS [Balzer69], was developed to satisfy three
requirements: to test proposed, but unimplemented, debugging and
monitoring facilities; as an extendable facility to which new monitoring aids
could be added easily; and as a system to provide independence of a
particular machine, the implementation of the language, and also the source
language used.

EXDAMS is a four-phase system: program analysis, which creates a model of
the program source (that is, all the static information), and inserts the
necessary monitoring statements to create a history tape at run-time;
compilation of the modified source by the standard translator; run-time
history-gathering where the compiled code is executed (the inserted
statements building the history tape); and debug-time history-playback to
respond to programmers monitoring requests.

Included in EXDAMS is flowback analysis, a facility to aid in the debugging
of programs. Given a particular value this shows how execution proceeded to
produce the specified value; appearing in the form of a tree, each node
representing a source language assignment, the links giving the nodes of sub-

expressions.

The addition of new monitoring aids requires only an addition to the



-40-

command language, the appropriate code to request information from the
information retrieval routine, and process the information for displaying to the
programmer. Balzer attributes the attractiveness of EXDAMS to the ability
to run programs at variable speed, in either direction, together with the

ability to stop execution, switch monitoring tools, and continue.

Systems like EXDAMS which create history tapes or databases are I/O
bound; the considerable amount of information being placed in these tapes
causing a severe performance degradation. A solution put forward by Cohen
and Carpenter [Cohen77] is for the programmer to specify which program
variables or operators need to be stored in a given run. EXDAMS tries to
reduce I/O by using the model to interpret what has been stored in the

history tape as opposed to storing both values and identifiers of variables.

The problems associated with monitoring systems, based on preprocessors,
are basically the same as those for the manual insertion of monitoring
statements. The use of preprocessors does, however, reduce the problem of
errors in the actual monitoring statements and also solves the problem of
removing monitoring statements after a session of monitoring. A restriction
which arises with any system that applies pre-specified monitoring requests~ to

an execution run is the inability to alter monitoring requests, variable values

or the point of control during execution.

2.3.4. Conversational monitoring systems

Simple monitoring systems developed for high-level languages implemented

on small machines [Pierce74] [Atkinson78] are little more than the classical
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conversational tool described in section 2.2.1. These systems allow code
breakpoints on source statements or program procedures and enable the
programmer to examine or alter program variables. However, it is often the
case that the programmer must know the memory allocation and code
generation techniques of the compiler. Due to the decrease in cost of
computer memory it has become more and more feasible, over the years, for
larger, more complex monitoring systems to reside on machines and also for
the storage of translation information generated by the compiler, which

would normally be discarded once translation had completed.

Source level, conversational monitoring systems, allowing programmer
interaction with an executing program are now commonplace on many
machines. Dbx [Dbx(1)], found on 42BSD UNIX machines, provides
symbolic debugging for C and FORTRAN programs. The programmer is
able to trace source statements, procedure or function entry, and variable
update. It is also possible to restrict the tracing to a particular procedure or
function invocation, as well as associating a condition with the monitoring
command which must evaluate to true for the information to be reported.
Halting of the target process is specified in terms of a source statement,
procedure or function entry, or variable update, all with an optional condition
which must yield true if a halt of the target process is to be performed.
Other commands enable the single stepping of source statements, as well‘as
the displaying and altering of program variables. A similar system to Dbx,
called Cdb [Cdb(1)], provides essentially the same facilities as Dbx, with extra

facilities for the monitoring of procedure invocations at different depths on
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the procedure call stack. However, the procedure invocation on the stack is
specified by an absolute value which restricts the ability of the programmer to
perform complex monitoring associated with procedure calling chains. Most
commands have an optional command list associated with them, enabling
commands to specify further commands, and thus allowing more complex
monitoring, although the programmer must handle all the levels of control
himself. The command language of Dbx uses meaningful words such as
"stop" and "trace", whereas cdb uses only single or two letter commands
which can, in the opinion of the author, be easily forgotten making the system

tiresome.

It is the author’s experience that one of the easiest and most useful
monitoring systems is VAX DEBUG [Digital86]. The command language
consists of meaningful words with consistent qualifiers. As with cdb,
commands can be associated with breakpoints, thus allowing complex
monitoring predicates, although again, the programmer must handle
housekeeping duties. For example, local variable monitoring requires that a
breakpoint is set on entry to the appropriate procedure. The action of this
trap is to calculate the absolute address of the required variable and to set a
trap on updates to this location. At the same time a breakpoint must trap
the exit from the procedure so that the variable update trap can be deleted.
VAX DEBUG allows for the accessing of out of scope variables via a facility
which qualifies identifiers with their enclosing blocks. None of the above
systems, however, provide easy to use facilities for the required monitoring

control described in section 2.3.1.
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A monitoring tool which has a significant following is reverse execution. The
programmer using a reverse execution tool is able to execute up to a point in
the program where a fault or other event becomes apparent and then execute
the code in reverse to see exactly how the current state came about. This is
similar to flowback analysis except the program states are not simply
recorded for analysis but are stored so that a previous state can be restored

in order that reverse execution can be performed interactively during a

program run.
IGOR [Feldman88], Recap [Pan88] and the reverse execution tool described
by Zelkowitz [Zelkowitz71] use checkpointing to implement reverse
execution. This technique involves saving the current process state at regular
intervals which can be restored in order to achieve a "backing-up" of the
process. For this to work only those pétrts of the process address space which
have changed need be checkpointed, thus saving memory space.

A different approach is discussed by Kishimoto [Kishimoto83a]
[Kishimoto83b]. Here a programming environment provides a reverse
execution facility by obtaining the necessary information from a database
which allows the different tools of the environment to communicate with
each other, and is updated by a technique called data-driven symbolic
execution which supplies both normal and symbolic execution results. The
use of a relational database to support software development is also
described by Powell [Powell83]. Debugging of programs is thus reduced to

the performing of queries on the database, where all execution information is

stored.
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Recap, mentioned above, is primarily for use with parallel programs. This is
an area of program monitoring which has received increased attention in
recent years. The Parasight debugging system [Aral88a] [Aral88b] monitors
programs in a shared-memory multiprocessor by creating observer programs,
called "parasites”, which dynamically patch jump operations, called "scan
points", into the executing binary, to bring about the necessary transfers of
control. GRIP [Venables89] enables the "watching" of Occam channels,
displaying the results graphically using a folding display. This in effect
provides a method of altering the area, and consequently the granularity, of
the view. The Paral'el rogram Debugger (PPD) [Miller88] uses incremental
tracing to provide a system based on flowback analysis: Incremental tracing
is achieved by two logs generated during execution: a prelog and a postlog.
These are implemented by appropriate code generated by the compiler/linker
and indicate those variables which will be accessed in the block about to be

executed, and the values of those variables changed during execution of the

block.
A debugger for the MuTEAM language [Baiardi83] uses behavioural

expressions constructed from event specifications to allow the programmer to

monitor concurrent programs. The event specifications enable the

programmer to specify communication events, process termination events, or
variable update events, for which monitoring action is required. Eveﬁts are
also used in DISDEB [Lazzerini86] to enable interactive debugging on a
multi-microprocessor system constituting a node of the Selenia Mara

architecture. The event specification identifies a process and a memory
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location or input/output channel for which a supplied value range must hold
true for the monitoring action to be performed. A different approach is
undertaken by Voyeur [Socha88]. The Voyeur prototype supports graphical
visualisations of parallel program executions by allowing the parallel
programmer to easily construct application-specific, visual views of parallel
programs. Algorithm animation [Feldman89] also provides facilities for an
application-specific execution view.

Research into the area of program monitoring has not focused entirely on the
problem of providing high-level control over program execution. One area of
research into making monitoring systems more useful and easier to use looks
at multilingual capability. Possibly the easiest approach to multilingual
monitoring is to provide a new monitoring language which possesses features
from ma;ny languages but resembles no single language in particular. This is
the technique used by Elliott for the monitoring of PL/I, FORTRAN and
BASIC [Elliott82]. However, the monitoring system appears more natural to
the programmer if the monitoring language changes to reflect the
programming language being monitored. Systems which provide a language
sensitive facility include RAIDE [Johnson78b], AIDS [Hart79] and VAX
DEBUG [Beander83] [Digital86). The first of these, RAIDE, enables
language interfacers to be attached to the monitoring system so that further
programming languages can be monitored. An algorithmic monitoriﬁg
language, called DISPEL [Johnson81), allows complex monitoring procedures
to be written from a minimal set of primitives, and via a virtual machine

called SPAM. AIDS and VAX DEBUG also provide language sensitive
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monitoring but executing compiled code on the actual target machine. Other
multilingual systems which monitor compiled code without the need for
specially altered source includes: DELTA [Walter83], SWAT [Cardell83] and
DAD [Victor77]. Of these DELTA and SWAT achieve this via a common
symbol table format, whereas DAD provides language interfacers along the

lines of RAIDE.

Research into graphical interfaces has attempted to show that current
monitoring facilities are approximately the correct ones, despite being low
level ones, and that a good interface is a necessity for effective monitoring
systems [Winder88]. Joff [Cargill83] [Cargill85] is a graphicalh debugger for C
programs on the Blit, a multi-processing bitmap terminal. Windows, or
layers, are associated with different processes and are used to separate the
different classes of information; for example, source code, program output,
monitoring output. In addition a pop-up menu system allows the
programmer to interact with joff with little need to resort to use of the
keyboard. The processes which control terminal activity run asynchronously
to the target program on the host machine and thus receive information by

downloading.

The graphical interface to the Ups debugger [Bovey87], for C and
FORTRAN, provides a window display with a set of "buttons" for activities
such as quitting the debugger or obtaining help. The menu system is a postfix
system whereby the menu of available commands depends on the object

selected. This helps to reduce the number of commands in the menu.
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Dbxtool [Adams86], a frontend interface to dbx, provides five windows and
six command "buttons". The five windows provide the current state of the
debugging process (for example, target file name and line number), the
current locus of execution, the current setup for the command "buttons"
(which can be altered to suit a particular monitoring task), a command
dialogue area, and a display of values of selected variables. A similar
approach is taken by JDB [Winder88]. Again this is a frontend interface, but
in this case to sdb. The window system offers very much the same facilities
as dbxtool, the difference between the two systems being in the adaptability
of JDB. There are three levels to the system: beginner, intermediate and
expert. At the beginner level all interaction is via the menu system with a
tree structure of commands, the object being that the programmer is led, by
the system, through a hierarchy of options. At the other extreme, the expert
level, commands are entered via the command line window with the menu

offering a fast access facility to the most common commands.

24. Summary

The execution monitoring tool provides controllability and observability over
the target process, thus enabling the programmer to view the internal
execution steps taken by a program. Execution monitoring has applications
in program testing, to establish test data coverage and to uncover data flow
anomalies; in program debugging, to locate and identify program bugs; and in
performance analysis.

Implementations of execution monitors have varied over the years. Still
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widely in use today is the method of inserting monitoring statements, written
in the target language, into the program. This, when compiled and executed,
outputs the desired information. However, problems and limitations have led

to other methods of monitoring.

The classical monitoring tools, developed primarily for assembly language
programmers, enabled the programmer to "dump" the required I;rocess state
information and, when using conversational tools, to execute the target
program with traps which cause suspension of the target process and the
transfer of control to an interactive facility allowing the ex:mination of the
process state. Although these tools are satisfactory for ‘assembly language

‘programs they are unsuitable for high-level language programraers.

Methods of implementing high-level language monitoring systems have
included the adaptation of interpreters, the use of preprocessors to
automatically insert monitoring statements into the target program, and the
use of a second process to monitor the target process. Problems and
limitations are to be found with all of these methods, but we believe that the
use of a second monitor process controlling the target process offers the
possibility of high-level and non-intrusive monitoring. Current systems which
use a monitor process have attempted to increase their usefulness by making

them easier to use.

Because many programming environments allow multilingual processes,
monitoring systems have been designed to be language independent, thus

allowing a single consistent system to be used for all languages. An



-49 -

additional approach to language independence is language sensitivity where
the monitoring system is language independent but appears language
dependent. Systems now exist which provide a language sensitive facility

either by a common symbol table format or via a set of language interfacers. .

To avoid the learning of an often large and complex command language
graphical user interfaces have been added to monitoring systems. These
consist of windows to split the different classes of monitoring and program
information, and the use of menus and buttons to allow the easy entering of
monitoring commands. However, adding a graphical user interface to a
simple break-and-examine monitoring system is not sufficient for the
monitoring of high-level language concepts such as procedures and dynamic
variables. Rather than placing the onus of translating high-level monitoring
requests into machine-level traps onto the programmer this could be made
part of the control structures of the monitoring system. Most current systems
still only offer a break on source statement execution or entry to a specified
procedure. More complex monitoring requirements must be handled by the
programmer. An assertion facility is to be found on a few monitoring
systems, allowing the programmer to monitor full expressions involving
program variables. These are often implemented, however, at a performance
cost by a mechanism such as machine instruction emulation or the trapping

of execution after every instruction.

The problem of performance degradation is one which few researchers,
outside of the real-time environment, have confronted. However, if a

practical high-level language monitoring system is to be implemented then it
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is essential that the system does not incur an unacceptable performance

overhead.

From the above, the state of the art in execution monitoring is defined by
conversational tools which require no special software hooks within the target
source, assertion facilities allowing quite complex monitoring expressions, and
a graphical interface which shields the user from the command language.
The significant issues not fully addressed in current systems include the
performance degradation incurred by complex monitoring expressions,
completeness in dealing with language constructs, and language sensitivity.
We will go on to address these issues by considering the structure of a

generalised high-level monitoring environment.
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3. Monitoring Environment

3.1. Introduction

In the previous chapter (section 2.3.1) the requirements of an ideal program
monitoring system were identified. Basically, these requirements consist of a
high-level, language sensitive monitoring command which provides full
control over target program execution, and the displaying of the target
process state in a high-level, language sensitive manner. The ability to port
the monitoring system to different machines would benefit both the
implementor and user; the system implementor need write only one portable
version of the system and the user benefits from a consistent monitoring
system across all machines. Whilst the implementation of a fully portable
system is unrealistic, the implementation of a modular design would enable as
much of the system as possible to be ported to another machine.

In this chapter we examine a possible organisation for a monitoring
environment with these aims. We postulate a division of the environment
into three units: The user interface unit (UIU), process control unit (PCU),
and machine control unit (MCU). These units interact as shown in figure

3.1

maching e——— MCU é——— PCU ¢ » UIU ————— user

Monitoring Environment

Figure 3.1
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The UIU performs two functions: the interconversion of information between
a language sensitive form and a language independent form, and the
exchange of information with the user. Because compiler writers introduce
non-standard and machine dependent facilities, the implementation of
language sensitive monitoring commands requires a separate language
interfacer for each language compiler supported [Victor77]. Using the
appropriate language interfacer the UIU transforms language sensitive
commands into a corresponding language independent version, which is
passed to the PCU. Similarly, process state information obtained from the
target process is passed, in a language independent form, to the UIU from
the PCU. This can be converted into a language sensitive form by, again, use

of the appropriate language interfacer (figure 3.2).

Language Language
Independent Sensitive

rocess state information
D — 2UIU ¢ » user

U S =
monitoring commands
\Lll
LI;

Language
L:l’ Interfacers
LI,

Figure 3.2

The second function of the UIU, the exchange of information with the user,
includes the output of program source statements and variable values, the
output from the executing target program, and the input of monitoring
commands from the user. Modern graphical displays can greatly simplify the

task of using a monitoring system through the use of windows for the
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partitioning of different classes of information, and the displaying of options
in menus.

The PCU performs two functions. Firstly, it takes language independent

monitoring predicates from the UIU and controls the execution of the

process, "watching" for the predicate arising, using functions in the MCU. A

second task of the PCU is to extract required information from the current

process state and pass it to the UIU ina high-level but language independent

form.

The first task, "watching” for high-level monitoiing predicates, involves

following target program execution which, in general, requires duplication,

within the PCU, of those control structures of the target process which affect

the monitoring predicate. It is the PCU of the environment which performs

translation of program symbols into machine addresses. It is thus necessary

that all relevant compile-time information be retained [Johnson79]. The four

classes of information required are:

(i) descriptions of all symbolic data

(ii) descriptions of all code segments

(iii) descriptions of all optimisations

(iv) the source program conveniently, but not necessarily, broken into lexical
tokens.

The generation of an internal symbol table via a common format compile-
time table is largely infeasible due to the use of compilers from many

different sources, for which the compiler writers adhcre to no standard
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symbol table format. It must therefore be a function of the UIU to allow the

accessing of the required symbol table information via the appropriate

language interfacer.

Because the target program executes directly on the target machine, via a
translation phase, all control of the target process must be performed at this
same machine level. Thus machine information obtained from the program

symbol table is used to invoke monitoring primitives within the MCU.

The second task of the PCU is the extraction of process state information
from the executing target program and also the altering of that state
information. At a higher level this is the examination and alterz;tion of
program variables. Because the method of one process extracting process
state information from a second process varies between machines, portability
requires modules for interfacing machine dependent portions of the
monitoring environment. In most cases this will be the relevant operating
system calls,

The MCU takes machine addresses from the PCU and applies them to the
requested monitoring primitive, which "watches" either control flow or data
flow. The interaction between the units is shown in figure 3.3.

Whilst the above discussion of the monitoring environment units is
implementation independent, particular implementations appear more.
appropriate than oihers. The implementation is also influenced by the

necessity for performance degradation to be kept to a minimum.

The functions of the UIU favour an implememation in software, with any
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Machine - Level High- Level

process state information
MCU PCU ¢ » UIU

~ monitoring primitives
\ os,
\ OS; | Operating
0OS; } system
e | modules
0S,
Figure 3.3

graphical facilities undertaken in an appropriate graphical management
system. The problem of performance degradation is not critical for the user
interface; in most cases user input will govern the performance overhead of
the UIU, and the cost of performing the language conversion will be
negligible in relation. The functions of the PCU also suggest an
implementation in software as the duplication of the control structures of the
target process, in hardware, would be prohibitively expensive. The
implementation of the MCU, however, is more critical. The machine level
traps which arise from the functions of the MCU incur a continuous
monitoring overhead. This is the performance overhead imposed upon each
statement executed, and is required to be kept to a minimum. It would be
therefore be advantageous for the MCU to be implemented in hardware or
firmware. This would also be advantageous because the process interactions
which the MCU is attempting to "watch" also occur at the hardware or.
firmware level. However, machines without the necessary monitoring
primitives implemented in hardware or firmware would still be able to carry

the monitoring system if the appropriate functions were available in software
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(figure 3.4).

MCU & J Pff € - UIU
architectural monitoring
support softvare
Figure 3.4

Modularisation of the monitoring environment can also ease the problem of
monitor interference. The target process may, for example, be running on a
relatively small microprocessor with limited memory, and by moving as much
of the above monitoring environment to a connected machine there will be
less target machine memory claimed by a monitor. Similarly, the running of
the target program and the monitor in parallel, on two processors, would
decrease the execution overhead of monitoring. The running of the two
processes in parallel is, however, limited by the necessity for synchronisation
between the processes. The setting of traps and the inspection of the target
process state, resulting from previously set traps, should occur with the target
process halted, thus preventing a state change before the required action. If
the connection between the two processes was asynchronous then incorrect
values could be extracted from variables or traps set too late to catch a

particular machine-level event.

On: method for the implementation of parailel monitoring makes use of a
FIFO queue and a phantom memory [Plattner84]. Memory transactions are

recorded in the FIFO queue, which connects the target processor with the
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monitor processor. A phantom memory duplicates the target memory by
accessing the FIFO queue for memory changes. Any access of the target
process state, by the monitor system, is performed on the phantom memory
whilst the FIFO queue is locked. Once monitoring activity has completed,
the queue is unlocked and the phantom memory once again updated. This
method obviously restricts the monitor to examination of the process state
only, preventing the alteration of the target memory space. A further
problcr.n with the above method is the need for a monitoring machine which
is at least as fast as the target machire and with enough memory to

implement the phantom memory.

In the following sections we examine each of the units of the monitoring

environment described above.

3.2. User interface

The user interface exists to enable communication between the user and the
PCU or monitoring software; taking commands, in the notation of the target
programming language, from the user and supplying the monitoring software

with a language independent version.
In general the monitoring software system requires a language independent
monitoring command of the form:

WHEN <monitoring condition> PERFORM <monitoring action>

The monitoring action indicates the user requirements when the monitoring
predicate is satisfied. It may specify, for example, statistics gathering, data

value recording, user notification of predicate satisfaction, or the halting of
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the target process and the transfer of control to a conversational tool

allowing the user to examine and possibly alter the current state of execution.

The monitoring condition defines the point of execution at which the
monitoring action is to be performed. In general the point of execution
involves a control component which specifies the necessary flow of control
through the target program, and a data component which indicates the
required values of program data. In this section we examine the range of
predicates the user may wish to specify and suitable notation for the language
independent command. We do so not in order to define a monitoring
language as such, but rather so as to identify language-related problems

which will influence the design of the process control unit.

At one extreme, the monitoring predicate could be specified by the user
giving ranges of values for all of the N variables in the N dimensional state
space. This is, however, totally impractical for the large values of N arising
from even modestly sized programs written in a modern high-level language.
A more practical approach is to identify those constructs, within high-level
languages, which require support for monitoring, and to provide a suitable
notation with which they can be incorporated into the monitoring condition of

the above WHEN command.

There are two categories of constructs which require monitoring support:
textual or static constructs, and dynamic constructs. The textual problems
include uniquely identifying all variables, data structures, arrays and pointers,

and the dynamic constructs consist of procedure-calling chains, recur sion and
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unpreserved state information.
The pfincipal problem in defining static constructs for monitoring in a high-
level program is in distinguishing program objects with the same identifier.
The occurrence of the variable identifier "x" in a monitoring condition
involves a degree of ambiguity. There may be many instances of the variable
“x", declared globally, local to procedures or in some languages any program
block, all quite distinct from one another. In a broader sense this is a
problem of specifying out of scope variables or uniquely identifying all
program variables.
It may be observed that the correct variable is always used during execution
and so the language compiler must "know" which variable to use. However,
compilers usually only refer to variables currently in scope, with the
declaration of two variables with the same identifier, in the same block,
causing an error. If a monitoring system were to adopt this approach then all
references to variables could be unambiguously specified simply by the
appropriate identifiers. However, a variable which is not currently in scope is
still part of the programmer’s abstract view of execution and thus, in general,
it would not be unusual for the user to want to examine, alter or involve in a

monitoring condition variables which are out of scope.

Specifying out of scope objects can be achieved by qualifying each program .
identifier with its surrounding block. The usual cause of scope restrictions is
the inclusion of procedures in a program and so the identifier of the

procedure becomes the obvious choice of qualifier [Bruegge83a]
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[Bruegge83b] [Plattner84]. For example, a variable X local to a procedure

procA is denoted by procA/X.

The textual nesting of procedures, giving rise to procedures local to other
procedures can also be denoted by the above mechanism. procA/procB/Y

specifies the variable Y local to procedure procB which, in turn, is local to

the procedure procA.

Languages also exist which allow objects to be declared local to unnamed
blocks, some allowing declarations at any point in the code. In these cases
the unnamed part of the unique identifier is filled by a line
number/statement offset pair. The line number relates to the position within
the source code of the beginning of the region of scope; the statement offset
is appropriate when more than one statement occurs on the line in question.
This assumes that translation phase information includes the relevant object
code mappings for these high-level concepts. A shorthand notation could be
adopted to reduce the length of the monitoring command. One approach
would be that simply specifying the variable identifier refers to the variable
"nearest” in scope.

Other language dependent problems which occur at the textual level include
the handling of data structures, arrays and pointers. A single language
independent syntax for dealing with fields of structures, elements of arrays,
and referenced objects of pointers is required which encompasses all
operations allowed in the target programming languages. For example, array

slicing is possible in languages like Algol68 and must therefore exist in the
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language independent syntax even though languages such as C and Pascal do
not have this facility. Using the above notation all program objects can be

unambiguously identified at the textual level.

The second category of monitoring support deals with dynamic constructs.
Specifying a source statement, as a monitoring predicate, for which some
monitoring action is to be performed when execution reaches that statement
does not necessarily define the path of execution followed to reach that
particular point. An extreme approach would require the user to specify as a
predicate the exact sequence of statements which define a path of control
through the program. As before, this extreme approach is impractical and so
we attempt to identify the dynamic aspects of program execution which may
be of interest to the monitoring system user. The first of these is the notion
of a procedure-calling chain. In general it is possible to reach a source
statement by a number of different execution routes; these differing by the
sequence of procedure calls made. A user of the system may wish to halt
and inspect the target process when a procedure is ente-red, but only if called
from a second specified procedure. Thus a notation is required which defines
sequences of calls through the program.

Plattner [Plattner84] uses the structure of the process state space to indicate
a sequences of calls. A graphical representation, in the form of a multiway
tree, has procedure calls as nodes. If the edges to child nodes are numbered
sequentially starting at one, the flow of control through procedure calls can
be denoted by an appropriate list of numbers relating to the edges traversed

of the state space tree. This method not only defines the sequence of calls
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but also distinguishes between sequences where calls originated in different
places. : For example, the niultiway tree shown in figure 3.5 is derived from

.. the code segment in figure 36..

Figure 3.5 -

main()
B() ;

A() .
B() ;

CA()
T

B()
{
A
} ‘

- Figure36 .

. -
t

The statement list 3:1 indicatés éntry to prdcedure B, from the second call in
the main prbgram,‘ followed by the call to procedure A in procedure B.

However, in most caSes indicating the source of a call would be of a finer
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granularity than that required by the user. A mechanism is needed whereby
a procedure calling chain can be speciﬁed with an optional facility" for
‘indicating the source of the call.

Cohen and Carpenter [Cohen77] develop an inquiry language for use with a
“history database which can be searched by label, such that specific labels

occurxbef(.)re and after it. For example, L1:1.2:13 searches fof label 1.2 with
previous lebel L1 and next label 13 Using this notation a procedure calling
chain could be denoted by

" procA:procB:procC
"This would halt the target proeess v(')n entering procedure procC called from
‘procedine procB, which, in turn, was called from pfocedure pfocA. If the .
}sour‘ce of ‘the cnll ie required then an optional line number-statement offset
pair (that is, the seufee stafement of the call) would be associated with the
appropriate procedure identifier.
‘Path expressions [Bruegge83a] [Bruegge83b] use a similar mechanism for
accessing specific instances of variables. For example, |

M.P>Mi;foo.i |
denotes the var1ab1e i in the routine foo in module Ml called from routine P
in module M | o
Recur51dn exists in most modern hlgh-level languages and adds an extra level
| of complexlty in specxfymg momtormg condmons Both notations by Bruegge i
[Bruegge83a] [Bruegge83b] and Plattner [Plattner84] can handle recursion,

but in a long wmded way
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As an e;ttension to specifying n procedure identifiers in a procedure calling |
chain, the user can specify just the identifier with a depth of recursion
indicator n. A syntax for the referencing of variables local to recursive -
procedures is probably most useful if it allows them to be referenced as an -
offset from the current depth of recursion. For example, procA/x(0) =
procA/x(1) §pecifies a condition which is satisfied when the value of the
current variable x local to procedure procA is equal to the variable x local to
the procedure procA which called the current invocation.
Information concerning procedure celling chains and recursion is presewed
from one call to the next wherea§ ot.ler monitoring conditions, supplied by
the user, rnay not always possess this property. This would occur, for
e)rample, if monitoring were required through .a series of conditional
statements. A monitoring command of the‘form:

'WHEN <statement A>; <statement B> PERFORM...

would ‘perform the associated monitoring | action when statement B .isv
executed after the execution of statement A. However once executlon has
reached statement B it IS,' in general, 1rnp0551ble to tell whether statement A
was executed or not. Thrs chronological ordering of sub-predicates could also

be ‘applied to the flow of data as well as the ﬂow of eontrol.

A further momtormg mechamsm, whrch can be used in conjunctlon w1th the
”features descnbed above is the ablhty to restrrct momtormg predicates to a
partlcula.r regron of the target program Thrs can be used for a number of

reasons, mcludmg the momtorlng of varrables whﬂst a partlcular statement is
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executing and the monitoring of the number of times a particular statement is
executed whilst execution remains in a specified region of the program. This
latter example could be used for the monitoring of loop iterations, with the
first statement of the loop moru'tored whilst control remains in the scope of
the ‘loop. DISPEL [Johnson77] has a mechanism, as does Bruegge
[Bruegge83a] [Bruegge83b], for accessing, within a debugging procedure, the
number of tirnes a routine or statement has been executed. These can be
used to implement monitoring facilities similar to those above.

A rather contrived example, which involves some of the mechanisms outlined
above, is given below.

WHEN procA:procB{20;24;28}:(40)procC{procB/y=procA/x} PERFORM...
This "watches" for an entry to procedure procA, followed by a call to
procedure ,meB; in which, the statements on lines 20,2{ and 28 are executed
in that order. This tollowed ‘by a call to proeedure procC, from the call at
source line forty, in whioh the variable y local to procedure procB attains }the

same value as the variable x local to procedure procA. -

3.3. Soﬂware monitor

The momtormg software takes laoguage 1ndependent momtorlrlg commands
- and performs the necessary tasks to monitor the target process in the
reqmred way. The complexity of momtormg high-level Ianguage programs is
related to the complexity of the programmmg language and, in partlcular the
complex1ty of the structure of the process states ansmg from that language.

Thus, an inspection of process states arising from a variety of programming
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languages is required. prior. to the definition of ‘the ‘structures needed ’to
monitor them. | |

Listed by Plattner- [Plattner84] are the structures of the control and data

components generated by a variety of types of programming language.
"A simple programming language which has no concept of procedures or
dynamic aliocation of variables exhibits a static structure in both the control
-‘and data components of the process state. - The control component is simply
the current po1nt of execution in terms of source statements, and the data
| component is the set of variables declared. ‘ The structure of the process state
can be determined by examination of the program text.
A‘more complex langUage allowing procedures, butdenying recursion extends
the control component of the process state into a stack—hke structure which is
bounded in size by the number of procedure declaratrons The data
kcomponent, however, remains a static structure with variables retaining values
| across procedure calls. | |
A'language with procedures and associated dynamic local variables, but still |
denying recursion, extends the data cornponent into a stack-like structure
* which is again bounded in size. In this type of language the values of local
| variables are mnot retained across procedure calls. ~Allowing recursion
" lproduces', unbounded stack structures m lboth the ‘control‘ and data
components, which grow in proportion to the number of procedure
| :invocations‘.‘

" Some high-level languages allow the user to dynamically allocate and free
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memory during execution (HEAP in Algol68 or malloc in C). These user
controlled dynamic variables release the data component from its stack-like
structure, which occurs in the control component when the language has a
concurrent computation facility. -

From the above it is obvious that modern high-level languages,‘which offer |
p‘rocedures,“recursiort and user controlled dynamic variables‘,’ require’ mote
~ complex monitoring structures than those found in classical monitoring
~ systems. - For the remainder of this work we assume the process state
structure is of the more complex type, although we assome the language does

not provide a concurrent computation facility.

| Basmally, there are two methods of prov1dmg hlgh-level language momtormg
fac1ht1es The f1rst method mvolves trappmg only pa;rt of the momtormg
pted1cate and then, once this trap occurs, the rest of the predicate can be
evaluated by reconstructlon of the h1gh-1eve1 unage from the process state.
In the case of a chronological ordering. of .sub-predicates. (for’ eXarriple, a
‘pr:ocedure calling cham), kthe part trapped would be the final part in the list.
| Tltere are, however, three main problem§ with this approach. = Firstly, it can
be difficult to recoostruct the high-level image from a process state, resulting
in’ ‘quite complex monitoring routines.” Secondly, not all information is
available prior to execution, making it difficult to set traps. Examples of this
,  include addresses of dynamic variables local to procedures, and the address of .
any memory space allocated to user controlled dynamic variables. Dynamic

‘ varlables are usually referred to as offsets in the program symbol table; these

are added to the base address of the procedure invocation environment at
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" run-time. The address of the memory space that user controlled dynamic
- variables reference is, by their very nature, under the control of the user and

is again assigned at run-time. The third problem which is encountered with

- the above method of reconstructing the high-level image is the inability to

| ‘momtor information wh1¢h is not preserved during  state - changes. - For
" example, the monitoring of the path through a series of progfam‘étatements -
* cannot be performed by simply trapping the final statement in the p‘ath; the
requhedihformation (that is, the sequence of statements executed) ié, m
v general, lost by the time execution reaches the final statement. The second
i and :third problems added to the - performance degradation caused by
' unnecessary trapping makes this. method unsuitable. for the menitoring of
‘ predieates outlined in the previous section.
" 'We thus examine a seeond methed of | providing the fequired high;level
" language monitoring facilities;" Instedd of ‘Vattempting' tt) .r‘e'c‘onstt'u'et the high-
level hhage in order to evaluate the ‘momtoring ‘predicate, execution is
b fnﬁrereti ‘within ‘the ‘rr‘i‘o‘nito‘rﬂi:hg‘ so'ft“:/are.” “Thus, the mohitoring Softwe.re
' recognises each part of the ptedicate as it is satisfied. The main difference
between the two methodé described is the need for the monitoring software,
" in the second method, to be able to dynamically set and reset machine-level
'~ traps, enablrihg each paft to be monitored m tarn. -
B We next examine how the predicates outlined in the ‘pfe‘xfioue section can be
3 momtored usmg the method of mxrrormg execution.  Procedure calhng chains
can be momtored by "watchmg for the entry to each procedure, in the chain,

""in turn.” As ‘eéeh one is satisfied then the focus of attention' ‘moves to the
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| next. g One. important point to note is that the return from the procedure
must also be "watched". This enables the focus of attention to revert to t_he‘ ,
' previous procedure in the chain. There is“also the possibility of intermediate
calls, ‘whereby a call to an unspecified procedure occurs between two
procedures inthe chain. One method of overcoming this problern is to
| "watch" the entry pomt of all procedures in the target program, 'so that any S
unspecified ones occurring can be recorded by the monitoring software.. Th1s |
method; 'however, can be extremely inefficient if many “invalid" procedure
calls occurt A better method "watches" for entry to ‘a procedure at a
: particular depth of procedure calls. Thus, in a procedure calling chain each

v procedure‘ 1s revduired to occur at a depth‘ one greate-r than the previous
procedure.. Consequently an indicator is required of the current depth of | ‘
| procedure calls ThlS is also useful for restrrctlng predlcates to a parncular
reglon of code The momtormg software, in thrs case, watches“ the entry
‘c and exit pornts of the regron once executlon 1s within the reglon then the -
spec1f1ed predrcate can be watched" but requtred at a partlcular depth of

: procedure ca]l to avord 1nterrned1ate procedure calls

The monitoring of nnpreserved information is easily performed using the idea
of rnonitoring' sub-pr'edicates in sequence. For example, the monitoring of a
predrcate where the executlon of one statement follows another is performed
by flI'St "watchmg" the earlier statement and then, when this 1s executed, the.
‘ second statement. Although mformatron about the executlon of the: first
statement may no longer be available in - the ' process state once it has

occurred, -the monitoring software has already recorded the fact and can -
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proceed with the rest of the predicate.
The idea of monitoring one part of the predicate after another can also be
‘applied to the monitoring of ‘program data flow. Dynamic variables local to
brbcedure‘s‘Can only be monitored once the appropriat¢ procedure has been
entered and the address of the variable calculated. Similarly, user controlLed
dynamic variables can only be monitored when the memory space is assigned
to the variai)le. - The method of following target program execution, in the
monitoring software, allows the moment, when the above variaBles become

active, to be monitored, prior to the monitoring of the variables themselves.

Iéeéausé of tﬁe stack-like structures of the control and;data COmponenté (with
the extension of the data component Whére user controlled dynamic vafiables
are defined) it is bossiblé for more than one line of execution to be safisfying |
‘thé monitoring predicate. Fo”r! this reason the monitoring software must also
be ablve‘wt‘o‘ stack the different lines of execution, s‘uch"t'hat, if any of them
isvati‘sfy the pfedicate then the monitoring 'actiOI.i is performed.
Tli.e;.rnohitvozririg rhethéd outhned abovewﬂl Be examined in gteatéf detail in

Ehaptér 4.

3.4. Architectural support

. The target pfogram is compiled and executed directly on the target machine,l
" and thus all monitoring of the target program must also be performed at the
same machine level. It is possible to design and implement abstract level
monitoi*ingfacilities in’hardware [Goossens83] [Rijks87] but they are often

complex and - specialised - towards a particular monitoring feature. The
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environment described in this chapter requires a set of monitoring primitives
which are mlmmal, yet sufficient, to enable the monitoring software to
rﬁ(;nitdf the ’pr‘ed‘icates described in se;:tion 3.2. For reasons of performance
i‘t‘would be advantageous for the monitoring primitives to have architec_tural
support. ”
E}}(an}‘inatipﬁofy the machine level reveals thrég main operations: execption of
a machine ir;strqgtion, vr‘ead.i‘r‘lg of a memory chatiop, ~and wr1tmg to a
Iﬁen;éry location. We depotc; the pthives which trap the abqve operations
as: "thve code breakpoint, the data breakpoint, and the Wétchpoint, réspectively.
It is assumed that thése pri;nitivés are iﬁvoked with an absolute inachine
a(‘i:‘dries? and réspond, w{yhenkt‘ra.ppcd, w1th that same al;solute address and type |
of‘ ‘pr‘imiti‘vc.. The mor‘lit’(;)vr.ingvsqft’vgare of"the‘ prevjous section is ‘rvcsponsiblke
for interpreting this at a highelf level. It is pos§ible to implement other
prinﬁti\}es [Johnson82] but the .three primitives deséribéd above are sufficient
fmf, moxliforing ; ‘all ‘the high—lévei _construc‘f‘sbl ‘which we »hav¢ identified.
Ar‘;’:‘hirtgc‘tuxzralksupport‘ forthe three primitives is examined, aﬁd pQSSible forms
of implementation described m chapter 5. - |

|
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4, Monitoring Software

4.1. Irrtroductfon
4.11. General
‘Momtormg software performs two functrons F1rst1y, it must take commands
‘supphed at ”the user level and translate these into controls over target
program execution. It does this by use of the monitoring primitives in such a
VWay as to "watch" for user-supplied conditions arisingl. For example, at the
| rlser letfel the trac‘in‘g‘ of variables is specified by the variable identifier,
whereas at the machine level, this translates to the tracing of an absolute
- memory location, using a watchpoint primitive. The second task of _
morlitoring software is thelreVerse of the above and involves the translation of
executlon information into a symbohc high level form for presentatlon to the
user. For example the dlsplaymg of a vanable mvolves the extraction of
mformatron from a memory location in the form of a bit pattern. It is the
task of the monitoring software to use any symbolic information supplied, to’
display this bit patterrr in an appropriate form. Similarly, requesting the
~current ‘point of execution should not result in a list of program counter
values, which" have been storeo as a result of procedure calls. As in the
aboize example, symbolie information is used to effect 2 transformationfrom
the machine level to a higher level‘representation which, in this example,

might result in a procedure-calling chain being displayed. -

As stated earlier, monitoring software is located between the user level and
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- the machine level of the monitoring environment. The high level command,
. issued from the user level, is discussed in section 3.2 and is assumed to take

. the form of a generalised WHEN statement.

' Each WHEN statement is a predicate-action pair; the action being performed
when the preiiicate is found to be true.- The strength of the monitoring
software lies in the diversity of types of predicate which can be monitored;
‘.E’Ffom ’ éxaimination of structured programming languages a list of
programirling concepts which might be allowed in the predicate can be made; |
- In section 3.2 we identified the following as some of ihe concepts for which
3 monitoring' support is required: procedures, variabies local to procedurés or
- program blocks, piocedure calling chains, recursion, user-controlled dynamic‘
: variables and also éonirol and data flow which.is not generally preserved
within the target process state. The action assogiated with the predicate
takes the form of a recording operation, a notificatioriibperation or a target -
process halt operation, from which a conversational tool ailowing ‘target
1 pr'ocess‘ étate éxamiriatidh can be entered. k

" In section 3.4 we identified a minimal set of monitoring primitives for use by

' ' the monitoring software in controlling the target process. Monitoring the

- flow of controlv réquires the code breakpoint which monitors the execution of
" _an instruction at a particular memory location. Monitoring the ﬂbw of data
‘ irequirés two primitives: the data breakpoint, which monitors' accesses (rgads)
: of memory iocétions, and the watchpoint, which monitors updates (writes) to

memory locations.
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4.1.2. Basic features of a software monitor -+ -

Monitoring software is concerned with the use of the monitoring primitives to -
bring about‘ monitoring of the user-specified high-level condition.” We deﬁné 5
a basic software monitor as one which performs simple monitoring by a
minimum amount of processing. The facilities available thus resemble the

\ monitoring primitives more closely than the high-level facilities outlined in
‘chapt’er 3.

' The minimum amount of processing required of “high-level language
~ monitoring software is the translation of user-supplied program‘ identifiers to
machine-level addresses. ThlS “allows ' the user to state ‘watchpoints and
breakpoiﬁts in terms Qf the high-level sour‘ce‘cyode. Translation of identifiers
to addresses‘is sirnple given that the information produced at compile time is
not discarded.y ‘Most symbol tables which are built during compilation give
machine addresses for globai variables, procedures and laﬁéis but only offset

‘ values‘for‘lo‘cal valjiables. The basic_monitoriné software described _requires :
that, not only is this ‘jnfo.rmation retained, but also machine addresses for
eachw brograrn line or even progfam statement are available. Using this table
the monitoring software can "watch" for the execution of a program line or
statement and thé update or access of global variables.

"Ihe mechanism, -within the monitoring softwére, for transferring control
. between the monitoring process and the target process is also ‘simple. After
setting the appropriate i monitoﬁﬁg “primitives the monitoring software

resumes execution of the target process and waits for one of the traps to be
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taken. : When a trap is taken an interrupt-like mechanism halts the target
process ‘and informs the "sleeping” monitoring process.  The monitoring

, software can now enter a conversatiorral tool which allows the state of the
target process to.be exarnined and . monitoring primitives - to - be . set or

‘removed.

~ To provide ‘additional features within the monitoring software reqlrires an
increase in the amount of processing performed.  The monrtoring software
still sets primitive monitoring traps statically (the user explicitly‘ sets l and -
rese\ts, them) but now has the ability to access target process state information

~on transfer of control. As an example consider the command:

" WHENX =0..
For this }co:ndit'ion’tl‘le momtormg soft\‘&r’are must invoke momtormg primitives
to";'watCh" qfor’ uipdates‘ to the variabie X, and keep a re‘lcor"d’ of the expression '
for checkmg during execution. " When a trap is taken and control is passed
from ‘the‘ target 'process to the‘ rrlonrtoring process. the “‘moru'toring software
uses the stored expression to access ‘variable values and check ‘if the
expression' is satisfied. ‘If the expressior’r is satisfied then the respective -
momtormg operatlon is performed otherwise control is passed back to the
target process and the monitoring process waits once more for a trap to
B occur. Using this system it is possible to monitor expressions involving global
variables executiony of procedures or source statements, and‘also procedure-

calhng chams Condmons mvolvmg chains of procedure calls can be

momtored as the necessary mformauon is avarlable in the target process state



:76 -
.as a set of return addresses. A breakpoint on the entry point to tne final
- procedure in the chain is set and then,; when taken, the monitoring software |
oy can check the stack of:ret.urn addresses for the correct calling cham 'TI’IC;
:-‘u’ser is never notified of transfers of control for which the monitoring record’
- was not satisfied, and thus only sees the conditions specified in the original -
command. . | |
' This basic monitoring ' software "does, however, ‘have its limitations and
’prooiems. ~'The 'major ' limitation is linked to the fact that ail primitive
- monitoring functions are invoked statically and so traps cannot be added or’
‘removed du;ing the course of execution unless explicitly done so by the user.
- This means that the system is incapable of monitoring local variables or user
: controlled dynamic variables (variables which are assigned space'via the use .
‘ of for example HEAP in Algol68 or malloc m C) Conditions involving
mformatlon Wthh is not preserved within the target process state are also

| incapable of bemg momtored usmg thxs ba51c monitoring software. o

'Apart frorn_ the Mabove hrmtatlons there IS ~also the possibility of a
'pe‘rfo'rmance”loss due to transfers of control. This arises, particularly with
| procedure calling chains, when the condition being ';watched" by the primitive |

- monitoring functions occurs many times, causing a transfer of control, but the

- monitoring record stored within the monitoring software is not satisfied.

'4.1.3. Higher-level monitoring
Predicate-action monitoring systems allowing the monitoring of abstract

" high-lé{él concepts are not nmew. DISPEL [Johnson81] is an event-action
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language providing primjtives cand a mecham's_m to define debugging
procedures. The primitives from which the debu‘ggingv prqcedures are built
consist of keyboard interrﬁpts, run-timc;, errors, entry and exit of statements
or foufines énd the access or update of variables. Two system functions
indicate the number of times a variable has been accessed and the number of
times a partic;hlar code ‘segment has been entered. It is not clear that
DISPEL has the ability to“ monitor complex predicafes involving, for examf)le,

paths and local variables at differing depths of recursion.

Generalised Path Expressions [Bruegge83a] [Bruegge83b] is the result of a
modification of a system designed for the synchronisation of concurrent
processes. Path  expressions are specified by the“ operators ' repetition,
sequence and exclusive selection; and operands called path functions. For

-example,
Path(Open;(Read | Write)*;Close)End;

specifies that a file has‘.fo be opened first before an arbitrary sequence of
aitérnating read and write operations, followed by a close operation.

The history vaﬁéibles ‘REQ, ACT and TERM ‘Jcar‘l be ‘applied to any path
function and indicate the number of times the"function has attempted to be
performed, "sfartéd to be performed and terminated respectively. Debugging
~ with generalised path expressions takes one of two forms: either the specified
» exec_ﬁtion sequence is looked for and the path action defines what to do if the
sequence occﬁrs; .or‘ the execution sequence is enforced and the path action

defines what to do if a violation occurs. For example,



- 78 -

' FINDPATH BegmLoop
Whlleloop [ACT(PostLine) = N and ACT (PlaceLmes) = 1]

looks for activation of WhlleLoop when Posthe has been called N times

and PlaceLmes onee
Alternatlvely,

CHECKPATH Loop )
"{ WhileLoop [ACT (Whlleboop) < 6] | PlaceLmes }*

enforces that WhileLoop shquld not be executed more than six tlmes’ before a
call t(”)‘PlaceLines occurs. .« 1 i
The ﬁnplementation of generalised path expressions uses a prplogue/ epilogue
approach. - If a path function is called then a‘prologue is ' entered which
‘ updates the hlstory vanable ACT. Tt is then determined whether the call is
an allowed transmon 1n thc execution sequence by checklng the current path
expression state.: Upon exit an epilogue updates the TERM history variable
and state transition is checked again. R |
. Whilst the monitoring of vthe flow of control aIIOVQs the inclusion of abstract’
Ingh-level concepts such as procedure calhng and paths generahsed path |
expressmns are less able to monitor the flow of data durmg execution.’
A‘n‘ ;e"vefu ‘defi‘nitio.n‘ la_dguage (EDL),descnbed by ‘Bates and“ ‘Wileden( |
. [BafesSi] ‘[Bates‘83j, p‘roVides"u‘ser:s‘ with a means of obtaining a behavioural
" abstraction from a distributed system’s event stream. The user can
hiera'r‘chic‘:ally construct events on top of primitive events or earlier event -
definition_s, but‘ EDL cannot distinguish‘ between‘ the fequest, activation and

termination of primitive events. ' There is also only constructs for event
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detection and not for actions.

To improve on the basic monitoring software described and the above event- -

action languages a mechanism is’ requu'ed whereby the monitoring software
can mirror the run-time calculations performed by the machine during
‘execution. Usirig this system both local variables and user contfolled dynamic
?ariébles cz"m be monitored. ILocal variables are storéd as offsets‘ m the
| program symbol table, and the absolute address is calculated by adding this -
offset to the base address of the current procedure activation record on the
stack. " Monitoring of local variables thus requires the monitoring software to
perform this same :éalcu‘lation‘ which’"can only be done Qn entry to the
apbropria’tey procedu:e. _Silnﬂarly user controlled dyﬁa:nic variables héve no
address until the space allocation routine is called and an area of memory is ‘
- set aside for them. - Again, calculation of machine addresses for these
variables must be mirrored by the monitoring sof&éfé‘."'I‘he monitdring of
infqrmation which is not genéfally preserved within the target proycess’ state is
| slightly'differeht, in that inspéctidn for calculatioh is not needed but some |
~ sort of_‘recor‘d” withiil the monitoring software, which can be appropriately
~.updated as the sequence of execution points are reached; that is, a -
generalisation of the history variables of Bruegge.

: ‘In the ba51c mopitoring software all priinitives are ‘invoked statically thus
leaving the user in charge of setting and resetting them. However, if t:he |
monitqring software was - able to. dynamically set. and‘ reset . primitive
morﬁt(.);iﬁguf‘unctions ‘then the intermediate points of control, _highlighted

above, could be trapped, calculations performed and then execution resumed.
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| Plattner [Plattner84] describes monitoring software which is able to include
local variables in monitoring expressions. . Each monitoring statement is given
a unique identification’ and stored: in the monitoring statement list. . This
~consists of three fields: the predicate, the action and a boolean value which -
indicates whether the mbm'tbring statement is available for evaluation, The
monitoringls‘tatement evaluation list contains, for each st‘ate variable referenee
occurring in a predicate, a list of identifications of monitoring statements that
must hl‘)e ehecked when the corresponding state variable is written to. Thus
each entry possibly references into many entries of the monitoring statement
list. The structure which is used to monitor procedure calls and retui‘ns is the
‘ ’potential procedﬁre activation tree. This takes the form of a multiway tree
crea_ted’by the recurswe elgerithm:
- "stgetiné ‘at thc‘cul;l"e‘t‘lt r;ed‘e, scen the prbgram text of the associated procedure. ' If this
;‘)recedu‘re"cal‘l‘s eﬂother ;;r}‘)‘cédﬁre, creefe ‘a ne‘w‘ successorm r‘x(‘)d'e,‘ label it with the name‘
| “ ef the called procedure,and make this new noee ‘the cereenf ’no‘de. Then execute this
. algorithm again® [Plattner84:758] -
| Exeeﬁtion of fhe’target process’ can be viewed as a tree walk m the multiway
tree de‘skcri‘bed. Using é pointef to point to the current procedure activation
node of the tree a procedure call is the moving of this pbinter to the
- vappropr‘iate child ‘node a.nd a procedure return is the moving back to the
) parent node.
On procedure calls “'any“' local Kv"ci‘rialt)yles‘ i'lylax./e their absolute eddresses’

calculated and appropriate breakpoints are set. Also monitoring statements
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are marked available for . evaluation if the evaluation condition of  their
predicates is fulfilled. - The evaluation condition of a predicate is satisfied
.when the node pointer is on or beyond the node which guarantees that all the
necessaryprocedures have been called for the local variables in the predicate
toexlst.“" | i

The above proposal hovtzever does not solve the problem of momtormg user
' ‘controlled dynamlc variables or the mclus1on of mformatlon wh1ch is not, in
general preserved w1thm the target process For example the monitoring of

a sequence of SOUI'CC statements requlres more than exammatlon of the

target process at a single instant in execution. "

4.1.4. Levels of monitoring
None of the systems stud1ed offers a complete solut1on to the general

problem of executron momtormg To help analyse thlS problem we 1dent1fy

three levels at whleh momtormg predreates may be specified:

Primitive level
At th15 level rnomtormg predrcates take the form of the execution of
" instructions ~at machme ‘addresses or the access/update of memory

locatlons

Abstract level
This level builds on the primitive level by introducing high-level language
. concepts. ' Examples :of predicates at this level are the call of a

. procedure or the assignment to a variable. Only one type of primitive is
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required to monitor each abstract level predicate but further information

may be necessary to check whether it is satisfied.

Condit;eﬁal level

This is the le§e1 at which the user speclfles momtormg commands; 1t‘

‘dlffers from the previous level in that it cannot, in general, be momtored

~ by simple 1}nspec‘t1‘or‘1‘ of the target process at _a‘ smg}e instant as it may
hﬁply a sequence of abstrect level predicates. For example:
WHEN 11;12;13 PERFORM <monjtoripg action>

which performs the monitoring actioq when the source statements on

lines 11,4 12 and 13 are exeeu_ted.
The monitoring software must break the user specified commands (at the '
conditional level) into the necessary sequence of ab<tract level predicates. A
representation of the conditional level is thus reqmred which shows the
sequence of abstract level predlcates or events needed to bring about
satisfaction of the usef-Specifiea condition. A facility is also required
alongeide this whieh enables ‘the mirroring of the run-time calculation of
machine ad&esses. Rather than just following a sequence of events a
conditional level predicate often requires a "going back in time" facility. This
- occurs when an event is monitored until a secend event occurs. At this point
;all monitoring prirhjtives must be set to look as they did before monitoring ef
the first event commenced. - The Fepresentation of the conditional level

predicate must be able to show this "going back in time."

We define an event-graph as a directed graph representation of the sequence
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~of events needed. "The nodes of the graph represent ihe events of the
monitoring condition and the arcs indicate the“ sequence of gVents. An arc
Which forms a cycle in thé évent-graphﬂ repres_ents tﬁe "going back in time" to
‘ ‘a previoﬁs state. vAs. execution‘ Qf the target prdgrém proceeds and fraps are‘
.taken in the targ‘e"t proéess, then the monitoring software ‘traverses the eventQ
'gra'ph, setting and reéetting fnonitori_ng pfimitiygs accordingly.‘ The
conditional level predicate‘ is satisfied when the ternﬁnal node of the graph is
travé;sed. However, it is not necessary for all of the nodes to have been
| visited for the monitoring condition to be satisfiéd.
For e'xample,‘ "consider a monitoiing condition which isl satisfied "if an

assignment occurs and a specified procedure is in the current procedure

RETURN J '

<strt> ———3 CALL

WATCH —————> < monitoring action >

- Figure 4.1

The CALL, RETURN and WATCH events represent procedure entry,

procedure exit and variable assignment respectively. From the above
representation monitoring begins with the CALL event. When this is

satisfiéci the event-graph is traversed by following the outgoing arcs, giving



-84 -
the next events in the sequence to be monitored. In this case monitoring
switches to the exit point of the procedure and the assignment of the ‘variable.’
If the WATCH event is satisfied then the event-graph has been fully
traversed . and : the , monitoring operation associated with the condition” ‘is
performed. - However, the cycle around the CALL and RETURN eventsd

indicates a v"going back in time" and so when the RETURN event is satisfied
the arc going. backwards 1n the sequence requrres that the momtormg
prmntrves are set _]ust as they were when the CALL event was flrst v1s1ted

That is, we no longer require monitoring of the abstract level events found‘
further along the sequence than the CALL event. From the representation‘
for .this example " itHCan be_ seen that under no ‘circurnstances could the
momtormg operatlon be performed unless the exact sequence of program
events requrred for condmon satlsfactlon had occurred By the sultable use
~of a larger set of events 1t is possrble to represent cond1t10na1 level predlcates
usmg kt_h‘e event-graph structure. We will gowon to‘des_cribe the software

structures necessary to ir'npylement monitoring using event-graphs.

4.2. Monitoring structures

4.2.1. Overview . .

* In this section we describe ”data structures sufficient to represent each of the
‘. nodes - or events ‘of the event-graph defined in the previous section.
Information within the event structure falls into tvvo categories, the first of
~which is concerned with housekeeping. Fields in this category are not directly

responsible for representing high-level concepts but are used to aid in the
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representation of a conditional-level predicate as an event-graph. The Seéond |
category . of field ' information is used directly to  describe high-leyel
abstraction, 1 .
| In total we will define eight fiélds associated With an event ‘structure, shown

 infigure 42,

Nesting| gyapte | Local | peemt | Local
Identifier | Type | Level Variable : o | Attion |
| 7 | controt | S0P “gipcy | EXPreSion Action | 777

Figure 4.2

The hbuseké‘eping fields are the‘identzﬁer, “action and enable control fields.
~ The identzﬁéf field, which can be a simple integer, enables the‘ monitoring
s'oftwa;ré tol‘kass‘('iciate' 'mbnito:ing primitives with events and also locate a
particulaf eveﬁt within the event-graph. ‘The relationshib between machine-
level prﬁnitives and events of the everit—graph"is maintained by the monitoring
éoft\!’varg using the event' identifier. Machiné-level primitives are invoked with
an absoluté machine address and are independent of the event which invoked
‘them. When traps ére taken, confrdl is passed to the moﬁitor process, which
is informed of the type and machine address of the primitive responsible. It
" is thus a function of the monitoriﬁg software to associate the relevant events
with the trapé faken. ‘One possible method of doing this is By keeping a list
~of event identifiers which correspond to particular primitive types and

machine addresses. One consequence of this is that only one primitive of any‘
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one type and address need be set for all events which require it. Events
| wh1ch need to invoke primitives for which the machine trap is already set,
' simply have their event identifiers appended to the list of identifiers (held by
“the monitoring software):'which corresp0nd to the trap. The removal_ of
‘monitoring prirm'tives is also performed via the list of event identifiers, with
the identifier removed from the hst, bnt the machine trap is only remoyed if
no further event identifiers are associated with it. The addltlon and rernosral
- of identiﬁers from the lists can be thought of as the setting and resetting of |
logieql prinritives. - .

The  action . fieId -provides the means by which the event~graph takes . its
structure. This fleld nnplements the arcs in the event-graph by referencing
’succ‘es’sor‘ events. A further field (not shown) is used to allow multiple
outgoing arcs. By using this field to link common successors all “actions" of
an event can be found ‘hy"‘flirstl‘y, followrng the vactio..n‘ Hfiel‘d to referenee the
first v,sucyces{s{orand ‘then within the ‘successor‘, events by following this extra -
fiel‘dt e |
The third field ’in the housyel‘(eeping,category is the enable control field. ThIS
field is inciuded primarily for reasons of efficiency. After visiting a node of
theevent-graph and hefore looidng at any successor nodes the usual ’course
: of action is for the momtormg software to remove any prnmtrves assomated
" w1th the node. However it may be the case that the event 1s requlred to
remam act1‘V‘e eren when satlsfled An example of th1s would be the tracing
of a vanable or. entry to a procedure where all mstances need to be

momtored not Just the first. The ea51est and most eff1c1ent method of
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implementing this requirement is a simple boolean field which indicates it.

Fields in the second category are true event fields, in that they are .
mcorporated 1nto the event structure for the purpose of unplementlng

i

abstract programrmng concepts rather than nnplementatron of ' the

representatlon.

The typeu fleld rndlcates whlch abstract programmlng concept the event is
momtormg For example CALL RETURN and WATCH 1n the prevrous‘
sectlon are all types of events. In total we w111 defme thlrteen dlfferent types
of event requlred for momtorlng purposes ThlS fleld mforms the momtormg |
software’ how to mterpret the rest of the event structure, and in particular the ,
event expressmn f1e1d, and 1s also used to determme wh1ch momtorlng |

prlnntlve to 1nvoke to momtor the event Only one type of momtorlng

prnmtrve is ever used wnh a partlcular type of event

To enable the run—tlme calculatlon of }addresses the local Mactlon freld contams
the local vanable offset found in the target program symbol table. . The
calculatlon is performed when the associated event is satisfied.

“The nesting level‘ ofa proCess state'refers to the depth of procedure calls.w‘
Thus the nesting level COntrol field allows events to be tied to certain nesting
levels’. - | |
The event éxpression field references the machine information necessary for
. the invocation of Inonitoring primitives and the local variable stack is used to
'store this information.. In the snnplest of cases the local variable stack is

superﬂuous to requlrements but is 1ncluded in the event structure for more
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complex conditions,

; 4.2.27 Eyent types |
The type field of the event structure indicates the function of the abstract
level event thus deterrmmng how the rest of the flelds of the event structure
are to be mterpreted When mvokmg momtormg prnmtrves thrs f1eld 1s
accessed to fmd wh1ch of the three primitives is appropnate Each of the
dlfferent types of event monitors using just one of the three types of prumtlve

and in most cases using only a smgle pr1rn1t1ve.

There are thlrteen types of event falhng into ‘three categorres The first
[

category momtors the ﬂow of control through the target program and
comprises f1ve types The CALL and RETURN events are most commonly -
used as a pair ensuring that successor events in the event-graph are

momtored only when a specified procedure is active.” The usual arrangement

| of these two types in the event-graph is shown in figure 4. 3',

——>CALL

. Figure 4.3 +.

A CALL event, which monitors procedure entry, is succeeded in the event-
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graph by a RETURN event‘and the rest of the predicate representation.
When entry to the procedure occurs, the rest of the predicate is monitored,
as is procedure exit. If a return from the procedure occurs then the
monitoring software  reverts to monitoring the procedure entry and Stops,
monitoring the rest of the predicate. v

Similar to the CALL and RETURN events are the ENTRY and EXIT events

(figure 4.4).

i EXIT ——J

— ENTRY

Figure4.4

These events are used when a code segment other than a procedure ‘1‘s to‘b‘e

‘ actlve before momtormg of | successor events 1s to occur The nece551ty for

tvvo palrs ‘of events ’whlch appear to perform the same functlon, is hnked

w1th the nestmg level f1eld When entry to a procedure occurs, the nestmg
| R

level is mcremented and thus the momtormg software must momtor

: procedure entry (CALL event) at a nestmg level one greater than for an

ENTRY event, Thrs w111 become clearer when examples are descrrbed ina

later section.

To allow simple source statement monitoring an event of type CODE is



-90 -

provided. * All the events in this category make use of the code breakpoint'
monitoring primitive "watching" for instruction execution. |
The second category consists of six | types of event and facilitates the
monitoring of data flow. The flow of data during execution includes variable
assignment and variable reference, both with- either local, global or user
controlled dynarnic variables. Conseduently there is an event type for each
p0551b1e combmatton WATCH events momtor updates to local varlables and
WATCHSTAT for global varxables Two drfferent events are requlred here
because of the dlfferent ways in which the rnachme address to be momtored
is"caleulated Similarly’” nATA and DATASTAT monitor both types of
vanable but for variable reference rather than update DATAUCDV and
‘ WATCHUCDV provide facrhtres for momtormg references and updates to
user controlled dynamic variables. ~The variable assignment types use the
watchpoint prirnitive whereas the reference types use the data breakpoint.

The thlrd category of events enables the momtormg of expressmns An
expresswn con515ts of operators varrables and constants. A type :
EXPRESSION 1s used to root an expressron tree. wrth constants held 1n
events of type CONSTANT and varlables mcluded in types WATCH or
WATCHSTAT As an example consrder the expressmn X +Y Z 1 where
R X and Y are local varlables and Z is globally declared An expressron tree
for this appears‘ in flgure 4.5 and the correspondmg event-graph structure in -

- figure 4.6.
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EXPRESSION

A R peSION “EXPRESSION

v WATCHy -~ WATCHSTATz - CONSTANT 1

' Figure 4.6

4.2.3. ‘Ru‘xi-timé éalculations

,Th‘e‘local action ”field is used to mirrof the run-time calculations perférmed
»by. the machiné. Primarily for_use in calculating addresses for local variables,
local actiqi;s are most often used in copjﬁnction with events of type CALL
and ENTRY. This is the case because CALL and ENTRY events monitor
| enfry to code Segments and thus the activation of new local variables. The
| locél action field contains a list of local actidn :structures, which consist of a
. local _variable (.)ffset‘ (found in the program symbbl table) and a stack
structure. ThlS Sfack ‘ structﬁfc is "used to hbld the ‘machine‘ addresse’s'

 calculated at run-time (figure 4.7).
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local action ' “local action
; structure SRR ‘ structure -~ ©
~ offset stack
—_ —t—
1M
: | local
" - action
Figure 4.7

The local varrable offset is static in nature and can thus be stored in the
event-graph before executlon commences. The absolute machme address is
calculated by addmg th1s offset to the current procedure stack frame base;
the . result -of which is stacked in the. approprrate local . action structure.
Manrtarmng a hst of local action structures allows more than one local '
varlable, oeclared in the same program block, to be momtored The storage
space for the calculated address is a stack structure due to the possrblhty of ‘
recurs1on‘ Each t1me the code segment is entered recursrvely a new address

is calculated and stacked and popped off agam when the segment is ex1ted

»;)!l

, Successor events can then access the approprrate local actlon structure for

the machme address to set momtormg pnrmtlves (frgure 4, 8)
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stack of -
L | calculated
T o T | T machine
| B | | addresses
I l
| ; > [ N B
"eventrequiringa run-tin_;e
“ogal e address accesses appropriate o
action 4 local actionstructure
" Figure4.8 - T

424 Nestmg lex"el ‘

The nesting level control field censists of a boolean Wthh indicates whether
the ‘f‘ield is to be used fof this partlcular event' and a nestlng level value. The
nesting level of a proces‘s refers to the depth of procedure calls; that is, the
‘ nurnber ‘of ptocedures cufrently active’. Thus any active proceclure is at a
nesting level one greater than the routine that called it. By storing a nesting
level value in the nesting leVel control field, and then checking this against the
- current nestlng level value when traps are taken, events can be t1ed to
partlcular nestmg levels thus removmg the problem of mtermed1ate _
procedure calls. | ‘

As an example consider the event-graph representation for the assignment to
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a variable while textually confined to a particular procedure.  Example code

for this is shown in figure 4.9.

- int x ;

. proc A()

1 ‘

LoBO G
X = expr

proc B()
e LSRR

| X = exXpr .;.

)

. Funue49 .

'

The event-graph representation for the monitoring of updates to the global
variable X, but only those confined to the textual region of procedure A, is -

given in figure 4.10.

RETURN ——J

' <sant>———» CALL

WATCHSTAT —> e 0 »

Figwe4.10

- The CALL and RETURN events monitor entry to and ex1t from procedure
A and the WATCHSTAT event monitors the global vanable X. If the

" nesting level field were omitted from the event structure then the update to
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variable X, in procedure B, whencalled from A, would also result in the
| monitoring action. By plaeing the' rlesting level value which occurs on entry
" to procedure A in the rresthrg ‘levelu co‘rltroi‘ ‘fiel‘d‘ of the WATCHSTAT event,
and then checking this Value, agamst the current nesting level value, wherl the

variable is updated, the update in procedure B can be ignored (figure 4.11). -

NLC
WATCHSTAT |‘. :

true SR
| place current nesting
l level valus onstack

| for comparison when
NI, trap is taken

 Figure4.11

.- 'This 1s SO because the update in procedure B will execute at a nesting level
one greater than that stored in the WATCHSTAT event, as the call to !
_procedure B will increment the current nesting level value. |

Due to recursion it is possible for the intermediate procedure call to result in
the monitored procedure being entered ‘again. Because of this, the nesting
” level valrle 'mrrst be stered in a staekﬁstructrrre in the nesting level control
field. ~This allows the WATCHSTAT 'evenr to monitor updates to the
'varrable X for the recurswe call to procedure A, but enables the nestmg level

s value of the f1rst call to be restored when the recursive call exits (figure 4.12).
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. v NLC
[warcnstat| | | |

true

NI, | nesting level value

fromrecursive call

NI ] original nesting level
1/ | value whichcanbe
restored by popping
J thestack

Figure 4.12

! 4.2.5. - Machine information -

' The event expre551on f1e1d holds all the machine level mformatlon needed for
mvokmg momtormg prlmmves. The type fleld 1nd1cates how thlS fleld is
- interpreted. In the simplest case static 1nformat10n, which is known before

execution, is referenced by the eveh‘t“expresvsier‘l field (figﬁte 4.13).

EE

!

' absolute machine address
or constant value

F1gure 4 13

- In the cases where machine addresses are calculated at run-time (DATA and
WATCH) the event expression field references the structure created by the

" local action field of the appropriate event (figure 4.14). The event expression
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ﬁeld of WATCHUCDV and DATAUCDYV events reference a second event,

“which will be explained by an examplé later in this chapter.

L] e

calculated
machine
address

~

“+ " Figure 4.14

Events ' of " type  EXPRESSION have an event expression field which
~ references an expression structure, consisting of an operator and pointers to

“two other events, thus forming an expression tree (figure 4.15).

EE

| —_—
l | expression
o I / I operatorl :I structure

" - gvent for ' event for
left operand right operand

Figure 4.15

The local variable stack is used to hold machine information for consumer
events of addresses calculated at run-time. We refer to the event which gives
' fise to the stack of calculated addresses as the producer event and the event
which access‘e‘s"t‘he ‘addresses via the event expression field as the consumer

event.
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.. Consumer events use the addresses accessed through the event expression

field to invoke monitoring primitives and also copy them to the local variable

stack (figure 4.16).
LA EE LVS
IR ’ TN |
l L e ' J l machine address
¢ accessed through
L o | EE field is copied
l _ ' to the local
dculatad variable stack
calcula e
machine
address

. Figure 4.16

'Ihe ‘neces‘sity for the locai‘ ?atiable ‘stack arises when events are placed
between the producer and cons;umer events in the event;graph and
consequently the local action stack does not necessanly mdlcate the addresses
| momtored by the consumer event ThlS will . be further mvesngated in the

next section with reference to an example.

4.3. Monitoring with a directed graph

" Monitoring software handles each event in a uniform manner with the overall
" structure of the event-graph having no influence over the way in which
" individual events are monitored. The monitoring of a conditional level .
~ predicate is, however, determined by the event-graph strncture and the
degree to which the predicate is satisfied is indicated by how much of the

»event-graph has been traversed. Traversal is based on the traps taken and
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the information contained: withiﬁ ‘the event structures. The predicate
| specified in the monitoring condition is found to be satisfied without any user
interaction being necessary.

We identify two phases in the monitoring of individual events which will be
' referred to as examination and evaluation. In the simplest terms
examination Qf‘ an event results in traps being set on the target process and
evaluétion whiéh occufs in response to traps taken results in the examination
of sucées.Sbr évents.‘ More fully, examihaﬁon 6f an event occurs as a result of
ex}‘él‘uat‘ing' its ‘predé‘c‘es‘sof or, in the case of the start event, when the
examination phase ‘is‘e'xipli‘citl‘y appliéd to fhe event. There are two functions
that the examination phasé must pérfdffn; firstly, a nééting level value is
stacked in the‘n‘esting level contfol field, whether the field is marked active or
not. The nesvting level value stored is the value which is required for the
event to be satisfied during evaluation. The seco;1d' function of the
examination phase is different for different tYpés of ex)ent but, in general,
involves acééssing the event structure to get machine information for the

setting of monitoring primitives.

Evaluation of an event accesses the event structure information to check
whether it is satisfied or not. Satisfaction of an event occurs if the trap was
takeh at the “co.rvrecl:vt nesting level.ﬂ If the event is found not to be satisfied
t}_ien no furthe‘r'action is taken, except a transfer of control back to the target
" process. If an évenf is found to be satisfied then appropriate traps are
refﬁoved apd stacks w1thm the event structure popped as required. A finé.l

function of evaluation is the examination of successor events.
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The detailed working of the examination and evaluation phases for the
-different event  types is best described with a set of examples. Where

necessary a C-like language will be assurned, although the monitoring is not
language-specific.
Example1
| Consuier tne monitoring command

WHEN <line 6> PERFORM <momtor1ng act10n>
-When applied to the __lcode fragment in figure 4.17 the monitoring action is
performed when the specified source statement is reached in execution. The

event-graph representation of the above monitoring command is shown in

figure 4.18.

. line

nos
.5 statementi ;
6 statement2 ;
7 statement3 ;

’_ Figure4.17

< start> ————> CODE —— < monitoring action >
<line 6>

Figure 4.18

An event of type CODE indicates that a code breakpomt is to be set at the
) locatlon spec1f1ed by the event expressmn f1e1d the trap takmg effect when
‘executlon reaches it. The location stored in the event expression field is

taken from the svmbol table, held by the software monitor, which lists
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addresses for source statements. The successor event of the CODE event is

the monitoring action event.

There are th other fields within the CODE event which alter the way in
Wthh momtoring proceeds The nesting level control field, if set, requires
that the machme-level trap is taken ata partlcular depth of procedure call for
the event to be satisfied durmg evaluation. "Traps taken at any other nesting
level are 1gnored The other field which alters the effect of the event-graph is |
the enable control field. If this is set then all occurrences of the event result
in the rnonitoring‘ action, otherwise ‘oniy the first satisfaction performs this
and then the event becomes inactive. Without further quahﬁcation from the N
user the default setup for the event-graph would momtor all occurrences of

the condition and at any nestmg Ievel.

Momtormg of )this event- graph commences with examination of the CODE
event. The event expression f1e1d is accessed for a machme address and a‘
code breakpoint is set at the address Control is then passed to the target
process and execution contintles normally until the breakpoint is reached. At
this point control is passed to the monitor process "which relates any
-machine-level traps to abstract-level events. Evaiuation of the CODE event
now takes.place. With a default setting the event 1s always satisfied and the

monitoring action is performed with the event and associated trap left active.

Global variable monitoring would use a similar graph but with an event of
- type WATCHSTAT and an event expression field containing the address of -

the variable. The resultant trap from examination of this event would be a
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. watchpoint for monitoring updates to machine locations.

: ‘Exambleiz

WHEN vflO{(ll;16}L PERFORM < monitoring action>
B The momtormg condltion in the‘ above command requires that the statement
at hne 11 is executed, followed by execution of the statement at line 16, with
f momtormg restricted to the block begmmng at hne 10 When applied to the
code fragment in figure 4.19 the monitoring action is performed when control |
‘ fl;ratly‘: passes through ;<statement1> (expression-A results true) and then
‘<statement4> (expressmn—B results false) for any one execut1on of the
‘condmonal block Setluences such as: execut1on of line 11, line 15 then an‘

iterative execution of line - 12, followed by line 16 do not result in the

monitoring action.

line
; nos i ‘ ‘ t
+10 .+ 1f( exXpressionA )
= 11 - statementl ;.
+12 ~ else statement2 ;
13 , 5
14 ' " if( expressionB )
15 statement3 ;

716 else statement4 ;-

_ Figwed.19

.':The event graph representatlon of the above momtormg command is shown
m f1gure 4 20

vThe mclu51on of the ENTRY/EXIT event paJI enables monitoring to be

restncted to the code fragment 'Ihe event expressmn ﬁeld of the ENTRY
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EXIT ———J

<line17>

<str> ——3 ENTRY
<line 10>

¥ CODE ———— CODE —— <moniwring sction>
<line 11> -+ <linel6>

0. . Figwed20

event is the address of the ﬁrst mstructron of the code fragment and the same
, f1e1d of the EXIT event holds the address of the rnstructlon executed
followmg the code fragment The event expressron fields of the two CODE
events hold the appropriate addresses‘ for the specified source statements. As
| in the previous example the state of the‘nesting‘ level and enable control
fields can alter the effect of the event-graph It the user requires the
momtorrng action for all occurrences of the predrcate then the enable control
f1e1d of the ENTRY event is set otherwrse only the first instance of the
predrcate w111 result in the momtormg actlon The state of the nestmg level
control f1e1d of the ENTRY event deterrmnes whether the monitoring
predtcate is restrlcted to the nestlng level applymg when the command was‘
specrﬁed, or not the latter case allowmg mtermedrate procedure calls. In the
}followmg we assume the event-graph momtors all occurrences at any nesting
“levelr . -

The ENTRY/ EXIT event pair prevents fteration of lthe code fraément from

causing invalid monitoring actions. This is because the EXIT event restores
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the state of the event-graph as if the code fragment had not been entered,
removing any traps on the specified source statements. - Iteration cannot now
cause execution of the first source statement <statementl> on one iteration
and the execution of <statement4> on another, to result in the monitoring
action.

The EXIT event must monitor the flow of control leaving the code fragment
at a particular nesting level (nesting level control field is active), with only the
first ir;stance monitored (enablé cpﬁtrol field is not active). The two CODE
events also héve the nesting level cdntrol field active and the enable control
field not active. This enables the event-graph to monitor the correct flow and
- distinguish between feéﬁrsive calls Tl;e‘ effect 1s filét ‘yon any oné | pass‘
through the code fragment, <staiement1> must be exeéuted followed by

<statement4 >, for the monitoring action to be performed.

Traversal of the graph commences with the examin‘a'ti“(.)h of the ENTRY
event. This results in a code breakpoint being set at' the entry point to the
code fra.gr‘nent.l Co.ntrol. is now transferred to the target procesé, which
executes normally until the instruction at the code breakpoint is executed.
Control now passes back to the monitoring process which relates the trap
taken to the event which set it. This results in the evaluation of the ENTRY
v‘éver‘lt. Successful evaluation of the ENTRY event results in the examination

of its two successor events. -

Examination of the EXIT event places the current nesting level value in the

nesting level control field and sets a code breakpoint at the exit point of the



- 105 -

code fragment. Similarly, examination of the first CODE event places the
current nesting level value in the nesting level control field and a code
breakpoint at the address of the source statement <statementl>. Assuming

" a current nesting level value of NL1, the resulting state of the event-graph is

shown in figure 4.21.
‘ EE NLC I
(ExiT [, [0 1
l hd
EE
[ENTRY] | | [ - ° >
<line 10>
‘ EE NLC EE - _
[CoDE|, | Iy] l—}—>ICODE]iI [ T T g
<line 11> ﬁil <line 16>
‘Figure 4.21

Execution of the target program now continues until a trap occurs, causing a

transfer of control to the ‘mdnitpring process. .

Assuming tha; the execution of <statementl> caused the transfer of control

then the CODE event is evaluated, which is satisfied if the current nesting

level value is still NLy. If the trap occurred after a recursive call then

.- evaluation falls and target program execution continues. If, however,
evaluation succeeds then, because the enable control field is not active, the
code breakpoint, set by this event, is removed and the nestihg level control

stack popped, and the successor event is examined.
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This successor event is the second CODE event, the examination of which
stacks the nestmg level value in the nestmg level control field and sets a code

breakpoint at the address of the source statement <statementd> (ﬁgure

- 4.22).
EE NLC l
[Exn‘]il TR
<line 17> }}'I'l B
; "ER i
. [ENTRY[ ] 1.
<line 10> EE NLC EE NLC ‘
lcomz]i[ 71 vr]-ff————arcoozlil L T g—>ee-
<line 11> S <tine 16> [NI,
 Figured4.22 =

‘Evaluation of the second CODE event would oceur 1n a similar wasl to the
_first CODE event and, if satisfied, would result in the monitortng action. -, -

If theENTRY euent’is »evalu:ated again, fohowing a recursive invocation of
the sequence, then its two successot events ‘ar'e‘examined for a second time.

This proceeds in a sumlar way to the first t1me with the new nestmg level

| value (say NL2) stacked in the nestmg level control ﬁeld (ﬁgure 4. 23)

¥ One dlfference does emst between the two exammatlon phases. ‘ Because all
| addresses in the event expresswn flelds of the | events are static, ’only one’
vmomtormg prumtlve ‘1s needed for each event Thus each recurswe call
whlch results in the code fragment bemg executed can use the prev10usly set

trap. The removal of the prumtlve only occurs when the nesting level control
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4 ) el
‘ RR NLC T l
CexiT [y 1 [y 1 |

! Jr
<line 17> [N,
] e P . o
- M O
[ENTRY[ | | M t
,,1<1ine10>
" EE NLC " U BEY NLC

[copE] ] [,] lj——WCODEliI [yl [ —1—>eee

W hd

<line 11> {NIL, : <line 16> [NI4

~ Figure4.23

stack is popped empty, 1mp1y1ng the primitive is not required any more.
5 Sumlarly, prmntlves need only be set when a nesting level value is stacked on
an empty nesting Ievel control stack. Thus in the above exarnple a second

‘primitive is not requlred on the EXIT pomt of the code fragment

The stacking of the nestliog level enables the monitoring sottWa.re to follow
moltiple traversals of the graph. The values stacked indicate the extent to
which the predicate is satisfied at each of the levels,

If,‘ in tlte above state of affairs, the code fragment is exited, then evaluation
of the EXIT event takes place.” For successful evaluation the trap must have
kockcurre.d at a ’nesting leQel value of NL,. If thlSlS the case then the nesting
. ‘_leyel‘b control stack is popped, but the primitive set on the exit point of the
;'eode‘fragment is not rernoved“as the stack is not empty. A further function

of evaluation, in the case of EXIT events, is the restoration of the event-
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graph to the state atpplying before the ENTRY everlt had occurred.‘ Thls
- involves searching through the eveht-gr:;ph for events which have nesting
: levelk values stacked of the appropriatte t}alue, and removing this nesting ievel :
value and any primitives set. In the etoove example the first CODE event ,
does have a nesting level value, on thestack,of the required value ‘a“ldvsf? th]s : |
“entry must be removed. The nesting level control stack is popped and

because it becomes empty the code breakpoint, set by this event, is removed

 (figure 4.24).
- EE NLC
- ETLTT] |+—]
“: <line 17> [NI;
| EE e
[BENTRY] | | |
<line 10> - ‘
EE NLC - " EE NLC
LcopE|l | 1 I—F——-*@ODEIJ | e X R
ol | o
<line 11> REATICI B . <line 16> Nll
~ Figure 4.24
Exarnplé 3

" WHENB: A{ /x} PERFORM <momtor1ng action>
:When apphed to the code fragment in fxgure 4 25 the momtormg actlon‘ is
performed when the global varlable x is updated within procedure A, but
only if thlS is called from procedure B | |

The event-graph representatlon of the above monitoring command is shown
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int x
proc A()
A

x = expr f
}
proc B()

A() :
Y

Figure 4.25

- in figure 4.26.

'RETURN —————J
RETURN ——J

<snn>——§»CALl.

Py
o

" WATCHSTAT — < monitoring action >

- Figure 4.26

The CALL and RETURN events act in a similar way to the ENTRY and

- EXIT. events of the prev10us example leferent types are used  for :

procedures however, as the nesting level is mﬂuenced by procedure calls and
. returns. Thus, whereas ENTRY and EXIT events "watch", for a nesting level
- of, for instance NL,‘ CALL events are "watching" for NL +1 and RETURN
. for NL-1. | |

The first CALL ev'ent,'which will be referred to as 'CALL-B, is used to

monitor,entry to procedure B. The event expression field of this event is
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~ loaded with the address of the firsf instruction of procedure B. The nesting
| level control and enable control fields produce the same effect as.in.the
previous example for the ENTRY event. |
‘T1“1e second CALL event, which will be referred to as CALL-A, is assigned .
the firsf instruction of procedure A to the event expression field. To preserve
~ the procedure calling chain of procedure B followed by procedure A, the -
. nesting ylevel control field is active and the enable control field not active.
Thus oﬁl& the first occurrence, at a particular nesting level, of proceduré Ais
monifored.‘ -If the nesting level control field were not active then thg:‘
‘ procedure calling chain of procedﬁrg B followed by procedure A would allow
any number of intermediate procedure calls between therﬁ. |
Thé WATCHSTAT everit monftors updates to :t‘he globai variéble X and thus
the ex;ént expression field is Io’ad’ed with the machl:ne' address of the 'vbariable'.'b
Differentmonitofing effects a:é‘ again seexj depending on the setup of the
enable control and nésting level control fields. |
The n‘es‘ting level control fiel& of the WATCHSTAT event has a rather sui)tle '
effecf oﬁ m(;nitofing. If it is set, thﬁs“requiriﬁg a particular nesting level for
successful evaluation éf the evenf, then the monitoring écﬁon is Vp:erforr’ned |
fof ilpdéteg to ‘thé“variablé x,‘ but ohly if they oceur at | fhe ’nes‘tir‘i‘g level of
prdv'cédi;‘r‘e‘lA; that isi, the étatéméht which causes the update‘ of thé variable is _
w1th1n the textual gcope of prbcedufe A. The other effecl:t‘,} caused by the field
R néf being set, results 1n the monitoring aﬁtion if procedure A is called from

procedure B, and possibly folloWed by any number of intermediate procedure
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The two RETURN events are each set up to monitor only one occurrence of
procedure return at a particular nesting tevel. ‘In this example the RETURN
events will always occur at the correct nestittg le\rel (asstmﬁng the code
“generated by the compiler adheres to the nesting of procedure calls) but, in

general, CALL/RETURN pairs "watching" the same procedure can occur
'~ any number of times within the event-graph and so it is essential that the
correct RETURN for a particular CALL is recognised. The RETURN
eVents are required to monitor exits from the procedure identified in the
associated CALL event.. This could be achieved by monitoring the final
itlstructionv of the procedure. . However, there mey be many "final"
instructions if the target p’r(‘)grarnming langliage allows returns from
procedure to be explicitly included as program statements. A better method
Ihéy"be td 'rn(')nlitor the first 1nstruct10n after the ’rethrt‘i"friom procedure has
occurred. “"I'his enabies the monitoring of a single ‘machine address, - but
means there is nd statich machine eddress which can be assigned to the event
expressmn f1e1d of the RETURN event. Instead the return ‘address is, in
 most archrtectures to be found in the procedure stack frame environment.

The ‘access of the return address would thus be a function of the operatmg |
. system modules (mtroduced in chapter 3) attached to the process control
,unit,"or monitoring software, of the ntonitoring ehvironrheht. | |

Tratlersal of vthe event-gréph commences with the examination of the CALL-
B event, féstﬂtmg in a code brea.kpoint at the entry point to procedure B.

Execution of the target program now resumes until the machine-level trap is
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taken and control passes, | once ‘again, to the monitor process | The CALL-B |
event is evaluated as a result of thls leadmg to examination of the two
successor  events. Exammatron of the RETURN event, paired with the
CALL—B event, places the current nestmg level value (say, NL 1) minus one
on the nestmg level control stack, and sets a code breakpoint at the return‘ ‘
address (say, RA,) found in the stack frarne environment. To allow for

| recursron the return address at wh1ch the code breakpomt is set, must be
stored in the event structure. The reason for this will become apparent later

in thrs example The local var1able stack is used to hold the procedure return

- addresses (f1gure 4.27).

1

‘ o NLC Lvs I - '
|, EETURNLT 1T ] s : , |
I TR / 1:1111 RA; ] ,
EE : |
[eAarTT ] T RETURN] J T T ] ,

<addr B>

EE .
(eatt [, T T T [}

<eddr A> C
R EE

. WATCHSTAT[, T T T T ==

‘<addrx>‘ :

Figure 4.27

. Examination of the second successor of the CALL-B event, the CALL-A
event places the current nesting level Value plus one on the nesting level
”“control stack, and sets a code breakpomt at the entry pomt to procedure A
(figure 428) o

If procedure A is entered then evaluation of the CALL-A event takes place,
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B NLC LVS l |
‘ » [RETURN] [ T, T I
: Nlli RA{ : AR
EE - :
[CALL T, ] 7] [RETURN]_ T T T 1] ‘
. <addr B> R
EE NLC

[caL [, T [, [.]

<addr A> [NI
' + EE

[WATCHSTAT] | | | | | —1T—> see

<addr x>

. Figure 4.28

’ Wthh checks the current nestmg level value agamst that stored in the nestmg'
‘level contro! f1e1d Evaluatlon is only satlsfled if they are the same and thus
no mterrrredlate procedure calls have occurred resultmg in the examination
. of the two successor evehts | | o |
"Examination of the secorrd RETURN event, pa1redw1th “the CALL—A event,
occurs ‘in a similar way tothe ﬁrst RETURN event. Assurning a return
‘address of RA the new state of the event-graph is shown in figure 4.29.
Erramination of the second successor, the WATCHSTAT fevent, results in the
current nesting level (NL1 +1) belng stored in the nesting level control field
and the address in the event expression field (machine address of global
.variable x) used to invoke a watchpoint primitive (figure 4.30). This traps
execution when the address is updated. |
" There are now four traps set," one for each event except for the CALL-A

" event. - Assuming a recursive call to procedure B occurs, then evaluation of
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E <addr A
i EE

[WA’ICHSTATI | [ l [ —}—) soe

<addrx>- .
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: e ‘ REORNL L I L 1T
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[CALL T e - _[RETURR[ T 1] 1—1—J
; EE

- EE NLC

IWATCHSTAT, T T4 T T = o--
<eddr x> NI,
R +1

Figure 4.30

the CALL-B event occurs. This results in the examination of the successor
events once agam ThlS occursm ‘a‘ sumlar way tothe ﬁrst tune Assummg a
current nestmg 1eve1 value of NL2 the state of the event-graph is shown in
| flgure 4 31 As in the prev10us example the two threads of momtormg can be
seen by mspectron of the nestmg level control fleld However a dlffererlce

e !

between the two exammatlon phases of the RETURN event ex15ts Although
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a primitive is set on the new return address, it is not possible for the first
return address to occur at the correct nesting level and so the breakpoint “

monitoring it, can be removed. .-

- { n
g NLC - LYS
[RETURN]; [ T, 1 1 =

ha A4

: R o
gV NI [ra, NLC LVS ’
[CALL T ] | = RETORN T [T 1 .

\L v h 4 B
<eaddr B> : NI, RA;|
T .. BEE NLC .

-~ [CcALL] |J |
<addr A> f‘;’[z ‘ ‘ ’
G [ s L BE O NLE o
[(WATCHSTAT[ [ T, [ | -1 ¢°°
- <addr x> N’il
‘ ‘ : e +1
Figure4.31

A return from procedure B, at ‘the ' correct “nesting level results in the
“ successful evaluatlon of the RETURN event palred W1th the CALL-B event ‘
As w1th evaluatlon of the EXIT event in the previous example the
evaluatlon of the RETURN even(t‘restores the state of the event-graph to
that apnlying before the procedure call. " Thus all events succeeding the
CALL event, paired with the evaluated RETURN ‘event, a.re ‘visited‘ and if |
“they possess nesting level values of the appfopriate value then these are
L renloved, as are any 'primitives set by them (figure 4.32). |
A return from procedure A at the correct nesting level would bring about

evaluatlon of the RETURN event paired with the CALL-A event. A snmlar
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S o o NLC LVS l : | |
L R Dy o [RETURNIG T T 1 1 ‘ o
. P e T, NI. — .
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4

<addr x> NI -
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Figwe4.32

phése, as described above, for the return from procedure B is entered which,

- again, restores the event-graph as if the procedure call had never occurred

(figure 4.33).

NLC LVS' '
[RETURN(, | | l

R / - [N [rag ) ]
A EE . g L )
(AL T 7] LRETURNJ [ 1

o\ w0
- <addr B>

©. .\ -~ EE NLC
‘ : [CALLIlI T F'W\‘

N
<addr A> N]‘_1
‘ +1

EE ‘
[WATCHSTATL L 1 | | *°°

<addr x>

- Figure 4.33 -
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Example 4 .
Consider the monitoring command:
~“WHEN /X/y PERFORM <monitofing actiod>
‘When applied to the code fragment in figure 4.34 ’the above monitoring
eorriiiiand performs the sp'eeified monitoring action for ‘upd’a‘tes to fhe

variable y, local to the procedure X.

’proc X()
O ( .

int y
Yy = expr

 Figwre4.34

The event-graph representation of this command is given in figure 4.35.

RETURN ——J &

<swn>—— CALL

L' WATCH —_—e monitoring action >
o .

" Figwe4.35

The CALL and RETURN events perferm the same function as in previous
examples; that is, restricting the rest of ‘the predicate to the scope of the

| .specified procedure. In addition to this the CALL event performs a local

o actzon ThlS is performed on each successful evaluatlon of the CALL event,

and in thls example the machme address of the local varlable y is calculated
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and stacked for use by the WATCH event. '

a'ﬁI’he 'WATCH event is similar to the WATCHSTAT event except that the
~event expression field holds a pointer to the stack of calculated addresses,
and not a static machiue address. A structure located between the WATCH
‘event and the local action structure, called the local variable access structure,‘
eriables' the user to specify options appropriate to monitoring local variables
(flgure 4.36). This structure consists of an offset, mdlcatmg how far down the
‘\stack of addresses the WATCH event looks for an address, thus allowmg
variables from a specific instance of a recursrvely called procedure to be
- | mcluded ina momtormg predlcate and a flag which mdrcates whether only a

siiigle instance of the var1ab1e is to be monitored, or all instances.

EE LA

CALL||| | S
- | offset |flag (—-J L
1 i local variable
l | run-time access structure
Sy | addresses . o
 Figure4.36

: Traversal of the cond1t1on graph commences w1th the examination of the
CALL event whxch results in a code breakpomt at the - entry pomt to

procedure X When the CALL event is evaluated ‘and before examination of
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‘the successor events takes place, the local action is performed. In this
~ example, the offset in the local action structure (varlable offset obtained from |
,. the symbol table) is added to the current stack frame pomter and the result
(say, LV) stacked in the same local actlon structure (ﬁgure 4.37). It may be
| , the case that more than one varlab]e local to a procedure is found in the |
momtormg predicate, in Wthh case, \the Ioca’lw action performs the above

calculation and stacking function for each local action structure in the list.

[RETORN] 1] M;ﬂ——J

Examination of the two successor events can now take place. ‘Examination‘
of the WATCH event involves the stacking of the current nesting level value
in the nestmg Ievel control field and the settmg of a watchpoint primitive at
| the machme address of the local variable. This machme address is obtained
Ifrom thelocal action stack via the local vanable access structure. The offset
in this structure is used as an yoffset from the top of the local action stack.
§ ”Th‘us,‘ if this offset was anything other than zero then no machine address
would be available and consequently no primitive set. A final function of

examination is the copying of any machine address accessed, to the local
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variable stack. The resultant event-graph is shown in figure 4.38.

/el U NLC LVS O l
' [RETURN] l . l :I
NLI RA1
EE LA
:l

[CALLI|[ b1

<at1drA> l
NLC LVS

LWA'I’CHlll | |I nl—l-—)"°

ﬁl

<offset y>

\=

Figure 4.38

N If procedure X is recurswely entered then the CALL event is evaluated for a
second tune resultmg in the same sequence of operat1ons as for the f1rst
evaluatlon. A machlne address (say, LV2) for the varlable v, local to the
| recurswely called procedure X, is calculated and stacked in the local actlon
stack Exammatnon of the two successor events results in the exammatlon of
the RETURN event wh1ch proceeds as in the previous example. The
examination of the WATCH event, for the second time, stacks the nestmg.
level value and accesses a machme address via the local varrable access
‘ structure‘ If the ﬂag, in thls structure 1nd1cates that only one mstance of the
var1able is to be momtored then the prun1t1ve set on LV1 is removed and a
‘watchpomt set on the new machme address LVZ If however the flag
mdlcates that all mstances of the local varrable are to be momtored, then the
l'fust ‘prumtwe is left active. The event-graph resultmg from the above and
assuming a nevv"neSting level of NL2 and return address of RA2 is shovvn in

figure 439.
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If an update to the monitored variable o‘ccurs. then the WATCH event is
'evaluated, and if Successful, results in the monitoring action. Successfnl
evalnation of »the WATCH event occurs in the same “wa'y as for other events
in that, the trap must be taken at the correct nestmg level, 1f the nesting level
| control fleld is actlxre - |

Evaluation’ of | the RETURN event occurs when a return from procedure X
occurs. The revertiné of tvhe event-.graph;to.a previous state must now occur,
andina ‘similar way to the previous examples (figure 4.40).

The necessny for the copymg of the machine address of the local varlable is
‘not apparent in this example as the local variable stack is a direct copy of the
" local action stack In general however ‘this is not the case. Any events
between the producer event (CALL) and the consumer event (WATCH) can

cause the stackmg of machme addresses at the producer event which are
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L NLC LVS ’
; “[RETURNL T T, T 1
Sl . 1
i ER uﬂ

[CALL||I 1 L

<addr A> l

NLC LVS
E?Z] lwmnm =
- ~‘<ofrsety>
h ﬂl

EE

Fxgure 440

1rrelevant to the consumer event.  As an example the event graph shown in
vflgure 441 represents local varlable momtormg where an event occurs

between the consumer event and the producer event.

k RETURN——"r

-

csmt> — 3 CALL

CODE —— WATCH —— < monitoring scton>

Figwe4.41

- Figure 4.42 shows the above event-graph part traversed.
From the state r)f the stzicks in this event-graph it is possible to infer the flow
“of execution (as it pertains to the monitoring command) which led to the

current state.. The three machine addresses stacked at the CALL event show

that procedure X was twice called recursively. The two machine addresses
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e
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s‘tacked at the‘ vWATCH event show that the fir.st‘ and third call to the
procedure resulted in the execution of the required‘ code statement, whereas
the second call’di‘d not. | |

The need for the local variable stack (apart from the stacking ‘of return
addresse_s) can be shown by a return frcm,procedure X. This occurs if the
trap at return ‘address RA3 is taken resulttng in the popping of stacks and
removmg of prnmtlves, to glve the event-graph shown in figure 4.43.

.If the flag, in the local varlable access structure indicates that only one
mstance of the varlable is to be mcmtcred at any one time then, when
“removal‘ of the primitive at address JL‘V3 cccurs a primitive must be
remstated on a forrner address As can be seen from the event- graph in

flgure 443 the local actlon stack does not glve the correct machine address
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for feinstating ‘a primitive. - The correct address is located on the local -

 variable stack of the consumer event (WA"I‘CH).“

Examplé 5

Consider the monitoring command:

: WHEN JA/x = /y + 1 PERFORM <monitoring action>

When appiiéd to the "codc‘e" fragrﬁent 1n figure 4.44 the monitoring action is
| performed when thewvariable X, ‘local‘ to procedure A, is équal to the global
‘ variable y plus éne. The even”c-‘graph‘ representation of this is shown in figure

445, .

Gl Dt s Aty s
proc A()

int x .

X = expr ;
Y = expr ;

' Figwe4.44

The CALL, RETURN, WATCH and WATCHSTAT events examine and
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RETURN ——J

<strt>—— 5 CALL | WAT%HSTAT — EXPRESSION—> < moniwring action >

A =
| o N
: WATCH EXPRESSION
caTcx ¢ . - }t \
 consTANT
Figure 4.45

evaluate in the same way as prevrous examples The EXPRESSION and

. CONSTANT events arc, however processed in a drfferent way to the other

| event types Nerther of these events set momtorlng prrrmtlves and are thus
never evaluated Exammatlon of the EXPRESSION event occurs when a
| varrable is updated and results in the checkmg of the expressron in the
‘Inonrtorlng’predmate (that is, the expressmn tree in the event- graph) If the
express1on tree y1elds a result of true then the momtormg action 1s

performed, otherwrse control is - passed back to the target process and

CXCCUthIl contlnues.

'

‘Traversal ’of‘ the event graph commences w1th the exammatlon of the ‘CA‘LL
..event, Wthh results in a code breakpomt at the entry pornt to procedure A
When this trap is taken the CALL event. is evaluated whrch is successful 1f
| the trap is taken at the requlred nestlng level or if the nestmg level control
field is not active. Successful evaluation causes the stacking of a machine

address (say, LV1) in the local action stack and leads to the examination of
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the three successor events.

* Examination of the RETURN event places the current nesting level value
(say, NL;) minus one on ‘the nesting level control stack and accesses the
eﬁrrent“ procedure stack frame environment for a return address (say, RA ),
at which a code breakpoint is set.

Examination of the WATCHSTAT event results in the curfeht hestin‘gg‘ level
va.lue bemg stacked in the nestmg level control field and a watchpomt

prumtlve bemg set on the static address in the event expressmn f1e1d

Exammatlon of the WATCH event mvolves the stackmg of the current
nestmg level value in the nestmg level control f1eld and the settmg of a
watchpomt prumtlve at the machlne address of the 10ca1 varlable wh1ch is

obtamed from the local actlon stack via the local varlable access structure

The feshltant event-graph is shown in figure 4.46. -

) .
Dy e RLE LYS l o
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_ 4]

"VA

EE * NLC " EE
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L~
<offsety>(—E LEV ‘ .

oy

" EE  NLCLVs
llVA'ICHTII ] 1l 1[71

!
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ﬂ. | ) LCONSTANTliL 11

1
- Figure4.46 S
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A return from, or recursive call to, procedure A is handled in exactly the
same way as in the prevrous example ‘However, an update to either the
| global variable y or the local varlable X results in the examination of the first
EXPRESSION event Tlus involves traversrng the expression tree, checking
each of the log1ca1 or arithmetic subexpressions. Constant events return the
constant va.lue stored in the event expressron freld WATCHSTAT ‘and
WATCH events return the value stored in the machme address of the event
expressron field or local variable stack, respectively; and EXPRESSION
events return the result of applying the operato‘r‘“ to the "ope‘rands.‘ In the
. al)‘o\‘ze" exarriple th;e"exarxtination of tlie EXPRESSION event checks the value
of the loc‘al‘variab;lex against the value of the globali variable y plus one.
Only if the first E)&RESSION event returns true 1s the monitoring action

performed.

Exaniple 6

~ WHEN /A/i PERFORM <monitoring action>
When applied to the code fragment in figure 4.47 this monitoring command
kperforrns the rnonitoring aetion Whe‘n the memory pointed to by pointer i is

updated. The event-‘graplirepresentation of this is shown in figure 4.48.

proc A()
1nt *i

. 1 =malloe() .
P *i = expr ;
) -

Figure 447

The CALL, RETURN and‘ WATCH events examine and evaluate in the
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o ,RET_URN_——Jf — S

WATEH — WATCH}JCDV-—) < monitoring action >

" Figwe4.48 -~

- same way as previous"‘ examples. The | WATCHUCDV_ _event monttors
updates to the memory location referenced by the address, ohtained via the
event e)‘(press’i(‘)‘n field. | - -

 Traversal of the event-graph commences with the examination of the CALL
event, which results in a _cbde ‘breakpoint at the entry point to procedure A.
~ When thistrap is taken evaluation ef the CALL event' eccurs, resulting in the
same sequence of events as the prev10us examples After examination of the

- tWO successor events the state of the event graph is shown in f1gure 4.49.

e NLC LVS
e Inawnm T .r:»——J:
EE LA~

!CALLI|| [ |

<addrA> -
: EE  NLCLVS BB

lWAmHll[ I 1l .l—}—aﬁmHUCDV}.I [T TT—ee

~ e

Fxgure 4.49

: <on‘set i>

H E
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‘An update to the variable i results in the evaluation of the WATCH event.
v In order to correctly monitor the locatron referenced by the varlable i, then
all updates to the variable i rnust cause successful evaluation of the WATCH
event, and consequently the nesting level control field of the WATCH event
is not active Because of this the WATCH event is always successfully
evaluated resultmg m the exammatlon of the WATCHUCDV event. This
‘ mvolves stormg the current nestmg level value /in the nestrng level control '
field, and accessmg a machine addrves‘smvla the event expression field. The
‘machine address accessed is the top of the local variable stack of the event
' referenced by the event expression tield. However, this address is the

address of the poi’nter_‘ and must be derefer_encedi to get the location
“ referenced_by the pointer (say, *LV1). A watchpoint is set on this location,

which is also stored on the local variable stack (figure 4.50).

NLC LVs

ﬁﬁ

RETURN

L EE ”LA
rCALL Il I |
‘ <addr | ‘ ‘
EE  NLC LVS EE NLC LVS
j:l%lZJ lWA’DCHIlI 1 ,] .1—‘}—>[WA'ICHUCDVI|] T T3>
<ofrsetl> TV J v 4
- 1 NLyj [LYV,] : LY,
e - B =
- Figure 4.50

A recursive call to procedure A causes a stackmg of the new machme address

L

for the varrable i and aJso the examination of the two successor events., The

state of the event-graph after thlS is shown in flgure 4.5 1
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= BE
Figure 4.51

* Assigning memory to the latest instance of the variable i causes the
evaluation of the WATCH event. This results in -the examination of the
WATCHUCDV event which, in- turn, leads to the stackmg of the new

location referenced by the address in the WATCH event (f1gure 4.52).

The traps set by the‘WATCH event are. left active in order to catch any ,
« changes to the variable i. This wouid occur- if the pointer i was changed to
reference a different area of memory. Again this would result in the
eyaluation of qthe WATCH event and the ‘subsequent examination of the
WATCHUCDV event. However, the effect required of the examination‘
‘phaselis different in thls case Instead of stacking another address, oneof the‘
adctresses on the "stacl‘< must he changedv This occurs for user controlled‘
dynanuc vanables because as descrlbed in chapter 3, they‘ release the data

component of the process state from a purely stack-hke structure
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Examination of the WATCHUCDV event compares the number of
addresses stacked in the local variable stack of each of the WATCH and
~ WATCHUCDV events and, if they are equal then the evaluation of the -
WATCH event was due to the reaSsignnient of the pdiﬁtér, and not the
i‘ntﬂroducti.on‘ of a new pbinter. However, if tl;e stacks are unequal in 'siie.
then it is a recursive‘ caﬁ to procedure A, and the introduc.:ti_on of a new

variable, which has caused the evaluation of the WATCH event.

| 4f4., Summary |

. In this chapter we have described. three levels of monitoring: the.prirm'tive

~level, the abstract level, and the conditional level. Predicates at the
'iconditional level define the mbﬁitoring of hjgh-ievel concepts such as

- procedure-calling chains, local variabies, user controlled dynamic variables

and also process state information which is not generally preserved within the
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process state. - A conventional method of nnplementmg the conditional level -
would probably mvolve checkmg the predrcate at regular mtervals such as
after each machme mstructron ThlS can, however result in an unacceptable ‘

performance overhead In order to ‘monitor a condrtronal level predrcate as -

'

eff1c1ently as possrble we have 1ntroduced the 1dea of a drrected graph of
abstract level predrcates or events. These events when momtored in the
specrfred sequence momtor ‘the condrtronal level predrcate By defrmng ‘:
thlrteen types of event and two phases exammatron and evaluatron, we have
been able to demonstrate the momtonng of the hrgh level concepts mdrcated :
above Event trpes, pr1m1t1ves used and the actrons taken durlng exammatron

are summarrsed in table 1.
|

| The types of‘ predicate which the eventgraph supports are to a certain extent

supported by an abstractron mechamsm descrrbed by Iazzenm and Loprlore :
[I.azzeruu89] . This enables a programmer to construct abstract predrcates
: for momtormg, from a number of srmple predrcates Srmple predrcates can'k‘_
‘ mclude target varrables and znstmctzon address ( 1a) varrables  The :
debuggmg system assocrates an _ia variable with a momtored block of the
target program blocks bemg denoted by a colon separated list of 1dent1f1ers

mdrcatmg the nestrng structure of the ‘block Durmg execuuon the _ia
varrable is assrgned the statement label (automat1cally assrgned by the system
and denoted by $1 $2 $° ) of the currently executing statement. When
Alexecutron leaves a partrcular block the 1a variable retains the label of the

final statement to be executed Tlns enables control flow to be monitored

where the path taken cannot be deterrruned by simple inspection of the
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Table I

Event Type Primitive Used =~ | Action During Examination
‘ b Store NL,
ENTRY . . code breakpornt uses 1 primitive
. o . .. ... Store NL,
~EXIT. + . | code breakpoint " lses 1 primitive
‘ ‘ . Store NL +1,
.- CALL code breakpoint uses 1 primitive
o . |. . StoreNL-1, .
. RETURN . .| . code breakpoint .|« - multiple primitives
) B . ~ Store NL,
- CODE code breakpoint uses 1 primitive
‘ _ | ~ Store NL,
. uses multiple pr1m1t1ves
‘ WATCH L watchpoint depending on flag in local
variable access structure
T T v v Store NL, -
SER R uses multiple primitives
- DATA L ‘.,‘da‘t;?: breakpomt .| . depending on flag in local .
| ' o variable access structure
 WATCHSTAT watchpoint Store NL,
. « : -uses 1 primitive
 DATASTAT = | data breakpoint <+ Store NL,
‘uses 1 primitive
 WATCHUCDV | ‘Watchpoint Stqre NL.’ . :
: - ‘ -uses multiple primitives
- PRI AR TR . Store NL,
DATAUCDV ‘ data breakpoint uses multiple primitives
 EXPRESSION . Do not store NL,
B : Uses no primitives
Do not store NL,
CONSTANT i Uses no primitives

process state. As an example con51der the momtormg of two statements L1
and L2 whrch must be executed in that order for the predlcate to be satlsfled
The requlred momtormg commands are:

condmonal CL1 (B ia == L1)
- conditional C12 = (B_ia == 12)
conditional on CL1L2 CL1 & CL2
. origin CL1L2 at CL1 - ’
break on CL112
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. The above commands set simple predicates "watching" the execution of each .
H‘:-Qf the two siaiements, and a compound predicate which links these simole
predioates. h Iiie origin at command p_reVonts CL112 from becoming true if
- ‘an evont connected with Cl2 occurs‘before an event connocted with CLli.‘
. I order tovn‘pdatie the _in: Yaiiai)los a transfer of oontiol to the monitor is
|  required after the execution of each source statemént, in each of the blocks
involved in é predicate. Additionally the monitoring of a program involving |

- recursion, and consequently the following of multiple instances of a predicate,

appears not to be supported.

There are pfoblems with the event-graph implementation, the 'first and not
loast of vi/hich,-‘is the possibly large numbers of primiiives which can arise
from evon a simple graph. ThlS requires an efficient implementation of the
monitoring primitives if execution rates are not to be lowered to the ‘point

~ where fhe sys'tem becomes unusable. | .‘ |

A second problem which involves performance degradaiion is that of

unnecessa.rs" transfers of control. This occurs, for example, w}ien monitoring |

procedure calling chains aind also arises in a basic monitoring system. The
problem arises, in the event-graph system, when the first procedures in the
~ chain are frequently called but do not call the next procedure in the list.

’ ‘Unnecesséry transfers of oontfol arise with the ba.sicmonitoring system when
tho final procedure in the chain is called frequently but the sequence of calis,
io‘fulfil the piocedure calling chain, have not occurred. If the performance

‘degradation“ associated with the . event-graph system were to become
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intolerable then it might be possible to combine both methods in order to

minimise performance degradation.

Do

We now examine the possible implementations of the three monitoring

prrmmves attemptmg to minimise the performance overhead assoc1ated with

: i
i .

them thus allowmg the event-graph system to mvoke as many prrrmtrves as ‘.

i
o

requlred
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5. Aféhifecturél Supf)ort Y

Architectural ‘ support for * monitoring  implies - using  existing - architectural
features ‘or  adding - extra ' hardware and/or ﬁrmware to decrease the
- performance - degradation caused ' by monitoring. * Much of the literature
proposing afchite‘ctural support  for monitoring addresses ‘the‘ problem  of
performance interference in a real-time enﬁronﬁent. Real-time softWare
differs from other software in that it is functionally dependent on ‘tim'e,
usually interacting with external devices or objects. For this reason real-time
'monitd;'ing syStefns must not introduce delays into target process executioh.
Thcre are, howéver, two types of deléy: bounded and unbounded [Plattner81].
A bounded delay occurs when the delay is mdépeﬁdent of the nﬁruber of
tafget program statements executed, but méy well dépeﬂd on the number of
predicates to be monitofed. An ‘unbo‘unded delay, howevér, is one which
‘gr(‘)Ws indcfirﬁtgly with the duration of the target process,’ each predicate -
" evaluation adding to the total delay. Although the monitoring system must
‘I‘I‘Qt incur unbounded delays it is possible for feal-ﬁme m;)nitoring to endure
bounded delays. | |

'Because the farget process ' is sharéd between fhe' monitor processor and
target ‘processo‘r the system cannot allow mutually exclusive ’écces’s of t'he‘
v'ta.r’get process [Plattner84), as this incurs unbounded delays. For this reason
mohit()ring systems vfyor re‘al“-timé‘ soft\;vare access the target process State,

without performance interference, by capturing process state information at
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some point in the har_d&are where it is available (for example, the pins of the
“v‘CPU or rﬁemory bﬁs). However, it is the interpretation of the hardware
activities in terms of source-level events that introduces delays. This 1s
| tackled,k in the literature, by specialised hardware support for logic analysg:rs

" [Plattner84] [Bemmerl86] [Rijks87], and is discussed in a later section.

Softwﬁre Which does not have strict timing constraints (as ;eal-time software
does) does not require a monitoring system which ‘adhereé to bounded delays.
Becaﬁse‘: of this, the interpretation bf hardwaré activitiés td s‘ource-level‘
events can be relegated to software and architectural support provided oniy ‘
fof mqnitoring “primitives., However, monitoring must incur a rmmmal
‘ perfdrménce ovérheﬁd 1f ‘the syStein‘is not to become unusable, and so the
implementation must strive to incur a delay, associated with a monitoring
functi(‘)n,k only if that funétion‘” is éctive | [Johnson'82].‘ We  also Wish to
 minimise the continual performance overhead irnposed b).r the presence of an
active monitori‘ng function, such as a breakpoint; the intermittent co‘st‘ of
respondiﬁg tb a bréakpoint ’inV(’)cation is, convérsely, not so significant in a
ﬁon—real-time system. o

In this éhapter MV“’C examine péséible methods of implernéntiﬁg supporf for
monitoring, - with - different architectural - resources, *and - describe an
 implementation for use in a virtual memory envﬁonment that incurs a low

continual overhead.
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5.2. ' Implementations

52.1. Simulation

The three prunrtrves of the momtorm{‘;‘ envrronment outhned in chapter 3 ‘are
the code breakpomt the data breakpomt and the watchpomt The code
breakpomt traps to the momtor process when the 1nstructlon at a spectfled
locatlon 1s executed A slmllar trap occurs for the data breakpomt when a
specrfred memory location is accessed and for the watchpomt when the
locatlon is updated | . |
It 1s p0551b1e to unplement the three pr1m1t1ves with no architectural support
| | for’ prograrn momtorlng In thls case the 1mp1ementor can resort to“
sunulatton of the underlylng machme [Huang84] Predtcate evaluat1on for
| the prrmmves 1s thus performed m software as is emulatlon of machme
mstructlons Slmulatlon is the most ﬂexrble rnethod‘ ‘of unplementatlon
‘[Saal72] allowmg easy tarlorlng to a spec1frc need [Melv1n86] There are,
however dlsadvantages to 1mplementat10n via srrnulatlon. The performance
overhead can be con51derab1e, Agarwal Sltes Horowrtz [Agarwa186] and
Melvm [Me1v1n86] quote a p0551b1e 1000 1 executlon overhead The
productlon of a functlonally accurate 51mulator 1s also non—trlvral and is thus a
source of expense The serious drawback, however 1s the | performance

degradatron because the user w111 dlspense w1th the momtormg system if it

. runs too slowly [J ohnson82]
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- 8.2.2. Non-intrusir'e hardware monitoring

It is obvious from the previous section that simulation is not usually a
practical implementation proposal and is useless in a real-time e_nvironment.
The monitoring of real-time software requires some form of non-intrusive
hardware support so that monitoring can proceed with no delays incurred in -
the target process. : Thus the timing dependencies with the target program
e kare not ‘disturbed. | ;
Forsome time logic analysers have been used to extractv information from
executing programs by collecting machine state information onthe machine
bus via a set of signal probes [Fryer73] [Lloyd80] [Gentleman83]. The logic

| ;‘anal)‘l‘ser is then able to compare or'store the detected signals as appropriate.
‘The cbllection and storage of machine state information is performed with no
delay to the executmg program ' Hamilton [Hamllton83] descrlbes a system
whereby both event occurrences ' and duratlon for blocks ‘of memory and
sections of code can be measured It allows a number of modes of operation
mcludmg program act1v1ty, ‘memory actrvrty -and - module duratlon | A
debuggmg monitor for the Bell System lA processor [Witschorik83] allows
 real-time momtorrng by taklng ‘snapshot views of the processor state
irrformatiom Storage in the syStern enables the recording of 512 snapshots.
HoweVer, both of these systems record and present to the user information at

the machine level rather than at the program language level.

" The ASDS memory bus monitor [Lyttle90] provides a symbolic debugging

- system ' for real-time’ embedded Ada software. The halting of the target
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‘ process is performed by the bus monitor placing appropriate signals on the -
memory bus | lieal-time constraints ‘are rnet, however, by restricting the’
: monitoring of variables to statically declared variables ‘only. Thus, ASDS
cannot mOnitor variables local to procedures or dynarmc variables under the “
‘ control of the user. | -

As it becomes more feas1ble and economical to code real-tnne systems in a”

S hlgh level language [H11183] the real-tlme momtor must mcorporate high-level

momtormg techmques In a lot of cases momtormg at the level of the ba51c
block is suff1c1ent to 1nfer program act1v1ty, thus avordmg the re-creation of'
“ the high level v1ew Wthh 1ntroduces delays for Iogrc analysers [Plattner81]

RED [Hﬂl83] is a real-tlme momtorlng system for use with a high-level
statement ortentated language Durlng execution the entry to each ba51c"
block causes an entry 1nto a history record indicating the basic block and the -
exact time of entry After execution the history record together with
complle-time mformation can be used to create a source level display
showing Which blocks were executed and at what time.” A hardware probe
nnplementanon 1s described whereby the target "memory is expanded to‘
- contain tag bits denoting which instruCtions begin basic blocks.

The SOVAL system [Lemon79] prov1des breakpomts on access of locatlon,

value in location and event counter reaching pre- deﬁned value ngh speed |
'data selection and loggrng places 1nformatron in a FIFO queue for later
" access by a software front end As an mstrucuon executes, the results of the

prev10us mstruction are stored in the FIFO, thus the momtormg processor

must be able to store all relevant mformation in the tune it takes to execute
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the shortest instruction. o

‘The detectlon of a high- level event often requires the detectron of a number'_ r

of sub-events [Gentleman83] ThlS is a sumlar prrncrple to that descrrbed in . "' "

chapter 4 where h1gh-level events are broken up into a dlrected graph of
sub events. When momtormg varrables local to procedures it is the entry to .
~and exit from the partrcular procedure whrch constltute the extra sub-events
- whilst. for user controlled dynarmc prograrn‘varrables 1t is the call to the
‘memory allocation routine. The HP64340A [Smal8s] from Hewlett Packard
is a software analyser add-on which can follow the execution of a program by
usmg ‘cross-referenc}e data, special hardware and post-capture data reduction. |
Low-level address and data recogmsers are armed wrth for example the
procedure entry ‘and stack—setup mstructron address to momtor a local
variable. The analyser allows nine hardware breakpomts and the countmg of
256 different events. . |
»Circuitry for the :‘rnonitorin‘g‘ ‘of local variables is proposed by Goossens, Rijks,
Tiberghien and Vermeesch [Goossens83] [RiijS’;].‘ The idea is to provide a »h ‘
tag mernory which removes the nee.d for a‘ second filter processor which has a
‘speed an order of vmagn‘itude higher than the target processor. "I'his‘tag’
memory is a normal memory of the same length‘ as the memory of the
system 'under test “ Each‘entry of this tag kmemory‘ can hold an operation‘
code which indicates the action to be performed when the target systems '
- processor places the partlcular address on the bus. When monitoring local
varrables entry to the appropriate procedure is "watched" for, resulting in the

stack base register being stored for later use. Subsequent accesses of
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memory result in this stack base register being subtracted from the address
on the bus. A relative tag memory in the analyser circuitry indicates any
operation to be performed for the particular access. To enable the
monitoring of variables local to recursive procedures the storage for the base
register is a stack structure and the activate/deactivate block, which indicates
when execution is within the specified procedure, is transformed into a
counter which is incremented on procedure entry and decremented on
procedure exit. However, the monitoring of variables in different procedures
requires that the circuitry be replicated for each block with a variable to be
monitored. A tag system is also used for the monitoring of user controlled
program variables. An appropriate operation is associated with the tag el‘ltryt
corresponding to the locations of the instructions for the calls to the memory
allocation routine. When this call occurs the bus is monitored for an
assignment to the dynamic variable. This assignment associates storage area
to the dynamic variable thus providing the monitor with the memory location

and thus the tag location of the variable.

The monitoring of instruction execution and variable update is also examined
by Bemmerl [Bemmerl86]. Circuitry is described which provides code
breakpoints and data breakpoints without slowing the target process. Local
and dynamic variables are monitored by storing the run-time address in the
hardware monitor when the procedure prologue instruction is executed ar;d

removed when the corresponding procedure epilogue instruction is executed.

The approach adopted by Plattner and Nievergelt [Plattner81] [Plattner84]

also uses a second memory with size equal to the target memory. However,
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in this case the memory is a copy of the target memory and is termed the
phantom memory. To decouple the target processor from the monitor
processor and consequently the target memory from the phantom memory a
FIFO queue is inserted between them. A conventional low-level "bus
listener" is used to detect signals on the target bus and places the necessary
information in the FIFO. At the other end of the FIFO is the monitor
processor which rebuilds an image of the target state in the phantom
memory. Predicate evaluation by the monitor processor results in the locking
of the FIFO queue whilst the phantom memory is accessed. During this
interval any memory transactions on the target system bus are queued in the
FIFO. Thus, the queue must be large enough to hold the information queued
whilst the FIFO is locked for a reasonable period of time. Secondly, the
monitor processor must be of a speed which is capable of clearing the queue
once it is unlocked. To speed up the monitor process a breakpoint bitmap is
connected to the output of the FIFO, which reports to the monitor any
memory transactions referencing a location belonging to a previously defined

set of memory locations.

5.2.3. Built-in hardware support

Simulation and logic analysers represent the extremes of support for program
monitoring. In the following we look at ways of implementing architectural
support for the three monitoring primitives without the cost of expensive
circuitry. However, the implementation of primitives which trap absolute

addresses requires that the high-level functionality is provided by the
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monitoring software. The architectural support thus reduces the performance

degradation associated with predicate evaluation at the machine level.

The primitive requiring the least sophisticated architectural support is
probably the code breakpoint. If the implementor has the ability to alter the
process instruction space code breakpoints can be provided which allow all
other regions of the program to execute at a normal rate. The location at
which the breakpoint is required is accessed, the instruction found there
saved within the software monitor, and a "jump'; instruction stored in its place
[Johnson82] [McLear82] [Abramson83]. The destination of the "jump" is the
" monitor routine. This method, however, requires that the monitor is a part
of the target process instruction space. To avoid the interference that this
causes, operating system support is required which allows the monitor to be
executed as a separate process. This support takes the form of a trap
instruction which causes suspension of the target process and a transfer of
control to the monitor process. There are drawbacks to this method: it must
be possible to modify the target instruction space and consequently it is not
possible to set code breakpoints in ROM; sections of code cannot be shared
amongst users, and the monitoring software must emulate the instruction

replaced by the trap instruction.

The importance of the code breakpoint has led to many machines being built
with architectural support for them. The IBM System/370 and the SPAM
architecture [Johnson82] allow groups of instructions to be specified, resulting
in a trap if an instruction in the group is executed. This facility is often

implemented using bounds registers which are checked on instruction
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execution. Using only one set of bounds registers limits the user to one
breakpoint region leaving the monitoring software to check traps to enable a

finer granularity.

Extending main memory to incorporate a trap bit can be used to implement
code breakpoints but this requires either special memory or a reduction in
the useable instruction length. The COBOL virtual machine implementation
on the NCR Criterion supports this facility but only allows breakpoints of
paragraph granularity [Johnson82). Associative memories and bitmaps may
also be used to implement breakpoints but are likely to be costly and are thus

not to be found in common use.

It is possible to implement code breakpoints using data breakpoints
[Abramson83]. In this implementation it is the access of the instruction
which céuses the trap and not its execution. The problems of monitoring
ROM and sharing code amongst users are removed for this implementation
but other disadvantages take their place. In particular, accessing an
instruction does not necessarily mean that it will be executed. This occurs,
for example, in instruction caching where a number of instructions are loaded
with one access. For this reason, and because the problems of sharing code
and monitoring ROM are unlikely to be of significance at the development
stage, the simpler method of replacing instructions by trap instructiops
appears to be the most satisfactory implementation for the code breakpoint
primitive. Means of overcoming the performance degradation associated
with the emulation of the replaced instruction will be examined in a later

section.
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Implementation of data breakpoints and watchpoints is not as simple as code
breakpoints as it is not possible to replace the location contents with a trap
value. Because of this many debugging and monitoring systems either cannot
monitor data flow or have to resort to the use of code breakpoints and single
stepping.

An often used implementation of breakpoints is the trapping to monitoring
software after the execution of each instruction [Groll78]. A list of
breakpoints is thus checked after each instruction. The VAX T-bit facility
[Digital82] and the 68006 trace bit [Motorola82] cause a trap after the
execution of each instruction allowing the monitoring software to take control
and perform predicate evaluation. An interrupt-driven facility for trapping
execution is described by Smith [Smith82]. The performance degradation

associated with the single stepping of machine instructions approaches that of

simulation.

Another approach to the implementation of data traps is through the use of
instruction counters [Cargill87] [Mellor-Crummey89]. The basic idea is to
stop the target process periodically by loading the instruction counter with a
predetermined instruction step and then checking the "watched" location. If
the value has changed since the last trap occurred then the data trap must
have occurred in that time span. The target process is restarted, either from
scratch or from a checkpoint, and executed to a point vrnidway in the above
region. By performing this procedure enough times the region under
observation is reduced until the instruction causing the memory update is

found. When using this method a compromise must be found between small
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instruction steps, giving frequent transfers of control but fewer restarts to find
the update,' and large instruction -steps, giving fewer transfers of control but
more restarts to find the update. The performance overhead with the above
method can be considerable if the program is restarted many times. The use
of checkpoints reduces restart execution time somewhat, but update
information must be stored resulting in both memory and execution rate
interference. A further disadvantage with the use of instruction counters is

that only watchpoints can be detected and not data breakpoints.

The periodic transferral of control to the monitor process also enables the
implementation of other tools. The Mesa Spy [McDaniel82] provides a
performance analysis toolkit via a technique based on PC sampling. This .
method "grabs" control at regular intervals and extracts information from the
process state, enabling the monitor to determine for what execution time

routines are responsible.

Possibly the simplest hardware support for data breakpoints and watchpoints
is the provision of a machine register which is checked on each memory
reference; a match of register value and memory reference location causes an
interrupt-like trap of the kind described previously. The AIDS monitoring
system [Hart79] allows for a single watchpoint to be implemented in
hardware using a reserved data update register. If the system is used on a
machine which does not support a data update register or more than one
watchpoint is required then interpretation of the target program is used.
Machines which support a data update trap include SYMBOL and the IBM

System/370 [Johnson82]. Performance degradation associated with a single
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watchpoint using a data update register would be | negligible as the
comparison could in most cases be performed in parallel with the memory
access. However, it is apparent from the discussion in chapter 4 that more
than one watchpoint will often be required in a high-level monitoring
condition. For example, the monitoring of an array, a variable local to a
recursive procedure, or an expression involving more than one variable will

all require more than one watchpoint and consequently more than one data

update register.

One solution to this problem is to increase the number of registers available
to the monitoring system. However, there is usually a limited number of
registers available in a machine and having dedicated data update registers
may not be practical as "spare" registers are often allocated to program
variables. To avoid conflict for machine registers an additional bank of
registers in the form of an associative memory can be added to the system.
Perfofmance degradation is still minimal because all elements of the memory
are compared in parallel. Thus each memory reference still has only a
performance overhead of a single register comparison which as in the single
register case may be performed in parallel with the memory access.
However, only small true associative memories are available and these are
expehsive. Manufacturers adding a register array would thus be more likely

to use it to improve performance than to implement monitoring facilities.

An inexpensive solution to the provision of a data update memory is to use a
section of normal main memory. Performance degradation with this method

is increased considerably. If watchpoints are stored in no particular order in
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the memory then a sequential search is required, needing, on average, a
number of memory accesses equal to half the watchpoints currently set.
Sorting the watchpoints in the memory will require fewer additional accesses
in general but adds the overhead of implementing a search routine for the
sorting method used. If the area of main memory is only reserved when the
monitoring system is invoked then this is also a source of interference to the
target. program execution. A separate, possibly fastér, block of memory
would reduce the performance overhead and remove the memory

interference problem.

Some 1machines have existing features which can be used to implement
watchpoints and data breakpoints. Descriptor based machines [Bishop81]
perform all memory references via descriptors. This alone encourages
software reliability [Johnson82) as the descriptor contains attribute
information concerning the entity it describes. In most cases the descriptor
can be easily extended to indicate a data trap on the data item. Performance
degradation is minimal as the descriptor is referenced whether monitoring is
being performed or not. The overhead is simply a comparison on the data
trap flag in the descriptor. However, this implementation is restricted to

those machines which reference memory via descriptors.

VAX DEBUG [Digital86] implements data breakpoints and watchpoiqts
using exception handlers combined with the memory protection mechanism
[Beander83]. An exception handler is simply a routine which is executed
whenever an exception is raised. A system of priority levels of exception

handlers means that the monitoring exception handlers can always "grab”
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control when the need arises. Data breakpoints are implemented by
invalidating the protection status of the page of memory in which the location
resides. Any reference to this page will raise an exception and the
monitoring software can take control and check for a breakpoint.
Watchpoints are implemented in a similar way but the page is write-protected
so only memory location updates cause an exception to be raised. The
performance degradation associated with this implementation can be
considerable. A single watchpoint causes the software monitor to be entered
whenever a location on the same page as the watchpoint is referenced. With
a common page size of 512 words a reference to any one of up to 512
variables will raise an exception and cause the software monitor to be

invoked.

High-level language computer architectures are designed with a particular
language or type of language as the target language of the machine, and it
might be expected that such computers would be more effective at
monitoring programs written in that target language. However, Ditzel and
Patterson [Ditzel80] concludes that the machine organisation itself does not
necessarily help in the implementation of high-level monitoring facilities and
that "the goal should be to provide machines that allow the creation of

efficient systems with excellent diagnostics".

All the methods of implementing data breakpoints and watchpoints described
in this section are not entirely satisfactory for one reason or another. Either
the expense involved is too great or the performance degradation is

impractical, or the implementation is restricted in other ways. Many of the
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methods examined do not allow data breakpoints or do not differentiate

between data breakpoints and watchpoints.

In the following sections we describe a method of implementing code
breakpoints, data breakpoints and watchpoints in a virtual memory machine

which is relatively inexpensive but incurs an acceptably low continual

overhead.

5.3. Virtual to Physical Translation

5.3.1. Background

In the early days of computers it was the programmer’s job to divide his
program up into a number of small pieces, or overlays which would fit into
the available memory. It was also the responsibility of the programmer to
store each overlay in an appropriate place in secondary memory, and arrange
for the loading of overlays from secondary memory into main memory and
vice versa. Using this method programs could be written which were larger

than the available memory in the computer.

In 1961 a‘group at Manchester University devised a method whereby the
abové process of breaking large programs into overlays and transporting them
between main and secondary memory was performed automatically. This
method is now called virtual memory. The idea behind virtual memory is to
allow the programmer to program in terms of virtual address space which is
independent of the size of the actual memory in the machine but does

depend on the size of the address field of the machine. Thus a machine with
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a 16 bit address field can reference 2!® or 65536 words no matter what the
size of the actual machine memory. The illusion of a large memory exists
bec.ause the virtual memory technique always loads the correct chunk of
program from secondary memory into main memory when a memory

reference occurs.

One common technique for the implementation of virtual memory is called
paging. Equal sized chunks of program, called pages, are read in from
secondary memory and placed in similar sized pieces of main memory called
page frames. Pages are chunks of virtual address space and page frames or
blocks are chunks of physical address space or main memory. The mapping
of virtual address space onto physical address space is performed by means of
the memory map. In the paging technique this mapping is performed by
means of a page table. The page table for a given program has as many
entries as there are pages in the virtual address space. Common page sizes
are 512, 1024 or even 4096 words, but always a power of two. This means
that the size of the page table is equal to the virtual address space size
divided by the size of each individual page, and is thus, itself, a power of two
in size. From this an example 16 bit machine with pages of 1024 words has a

virtual address space of 65536 words and 64 page table entries.

The reason for all sizes being restricted to a power of two is for ease .of
translation, which becomes apparent when virtual addresses are examined.
Using the above example machine it can be seen that the top six bits of a
virtual address indicate the page number and the bottom ten bits the word

offset within that page. When translating virtual addresses to physical
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addresses the page number is calculated simply by taking the top six bits of
the address and this value is then used to index the page table to find the
corresponding page frame value or block number in actual machine memory.
The bottom ten bits of the address or word offset are carried across

unchanged to form the within block offset.

The page table used in the translation process must contain at least three
fields: a flag to indicate whether the page is currently loaded into a physical
address space page frame, the page frame number if the flag in the previous
field indicates that the page is loaded, and a secondary memory address
which gives the location of the page in secondary memory. The size of the
page frame field depends on the amount of actuél memory in the machine.
For example, a machine with 16K of memory split into page frames of 1024
words would have sixteen page frames and a page frame field width of four
bits. A virtual to physical address translation for this example machine is

shown in figure 5.1.

Multitasking machines use a set of page tables, one for each process residing
on the machine. In practice page table entries of real machines have some
sort of protection status field, which may indicate, for example, page is read-
only, page is out of bounds, or page is not loaded into memory. Other
information held within the page table entries is used to speed up
housekeeping duties. An example of this is the modified flag. This is set if
the page loaded into main memory is updated during program execution.
When the page frame is overwritten by another page being loaded into

memory it need only be written out to secondary memory if the modified flag
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Figure S.1 Virtual to Physical Translation
is set.

To achieve a fast translation the page tables can be irnplemented as a fast
associative register array. However, large register arrays are expensive and
therefore impractical, so page tables are usually held as software structures.
If the translation were performed entirely in software the performance
degradation would make the system intolerably slow and so modestly sized
associative register arrays and fast caches are often employed to hold the
most recently used entries of the page tables. Using a fast access memo.ry
means that the translation can be overlapped with other CPU activity to

make the translation time acceptable.

The use of a caching technique or translation buffer introduces a two-level
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page fault mechanism. A page fault interrupt occurs if the page table entry
protection is in some way violated. Operating system intervention is required
in this case to either load the page from secondary memory, acquire more
memory for the process, or signal an illegal memory reference. A lower level
page fault can also arise. This occurs if the page table entry is not cached in
the translation buffer. The caching of the page table entry is performed at
the architectural level either by hardware or firmware. For a more detailed
study of virtual memory techniques refer to [Watson70] [Lorin81]

[Tanenbaum84] [Maekawa87].

5.3.2. Implementation of breakpoints in a virtual memory architecture

5.3.2.1. Data breakpoints and watchpoints

In this section a method for providing architectural support for data
breakpoints and watchpoints in a virtual memory machine is described. This
takes the form of additional hardware in the virtual to physical translation
unit which causes an interrupt-like trap, similar to that caused by a code

breakpoint, which results in a transfer of control to the monitor process.

A method of this nature is used by Abramson and Rosenberg [Abrarhson83]
for the MONADS II computer. The address translation unit of MONADS II
is rather unusual, consisting of a hash table held in very fast addressable
memory, a hashing unit and a comparator. Each virtual address to be
translated is used by the hashing unit to find a chain of cells in the hash table.

The hardware searches this chain of cells until either the page number is
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found or the end of the chain is reached. The added architectural support
consists of an extra field of the hash table and a fast breakpoint memory.
The extra field of the hash table is used to index the breakpoint memory

which holds lists of within-page displacements.

Each virtual address translation consults the extra link field of the hash table.
If this field is found to be empty then the translation proceeds normally,
otherwise the memory reference is suspended and the breakpoint memory
accessed at the location indicated by the link field. The chain of within-pége
displacements is now searched until a match is found or the end of the chain
is reached. If a match is found then an interrupt occurs. Fields also exist
within the breakpoint memory to implement breakpoints on ranges of
locations, breakpoints associated with particular processes and also to

indicate whether the breakpoint is a watchpoint or a data breakpoint.

The address translation mechanism of the MONADS II computer is unusual
in that the hardWare translator is not a cache for the most recently used
addresses but holds all the translation information for main memory resident
pages. As described in the previous section the more commonly found
mechanism is that of an associative store or fast memory which caches virtual
to physical translations with appropriate protection bits. In this section we
describe support for the data breakpoint and watchpoint which will be more
widely applicable than the more specific implementation described for

MONADS II.

The architectural support we describe here consists of an extra flag within the
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protection status of the page table entry, and a breakpoint memory. The
additional protection status bit, termed the monitor bit, causes a memory
access fault to be raised in much the same way as for an invalid or illegal
reference. The low-level page fault mechanism tests the protection bits in
the page table entry to either cache the page table entries from the software
structures or cause an interrupt to the operating system for software
intervention. Additional architectural support is inserted into the low-level
caching mechanism to test the monitor bit. If the cause of the access fault is
not the monitor protection bit then the access fault mechanism proceeds as
normal. However, if the monitor bit is the reason for the ac:ess fault fhen

the additional breakpoint memory is accessed.

The breakpoint memory should preferably be a block of fast memory but
could equally be implemented in main memory with alslight performance
loss. Access to the breakpoint memory is made using the word-in-page offset
of a virtual address, thus requiring the memory to have as many entries as
there are words in a page. However, to accommodate breakpoints on the
same word-in-page offset but different page numbers extra entries are

required to store any conflicts for entries.

Each entry of the breakpoint memory consists of five fields: an entry enabled
flag, a page number, a data brcakpoint flag, a watchpoint flag, and an
overflow link field (figure 52).

The entry enabled field indicates whether the particular breakpoint memory
entry contains valid information. The page number field holds the page

number of the data breakpoint or watchpoint, and is checked when a trap
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Entries accessed using
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| Overflow entries accessed
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Figure 5.2 Breakpéint Memory

occurs to ensure that the entry is the correct one for that particular
breakpoint. All entries can be uniquely identified in this way as the page
number field, together with the word-in-page index, reconstructs the original
virtual address. The data breakpoint flag indicates that a memory access to
the particular location is to be trapped and the watchpoint flag indicates that
a memory update is to be trapped. The overflow link field links together all
breakpoints which are currently set on any one particular word-in-page but

on different pages.

The setting of a data breakpoint or watchpoint is very simple. The word-in-
page offset of the breakpoint address is used as an index into the breakpoint
memory. In most cases the indexed ehtry of the breakpoint memory will not
contain a previously set breakpoint and will thus have the enabled flag n;)t
set. If this is the case then the page number of the breakpoint is stored in
the page number field and the appropriate flag indicating a data breakpoint

or watchpoint is set. The enabled flag for this entry can now be set activating
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the breakpoint. Figure 5.3 shows the setting of a data breakpoint on location

6676H in an imaginary 16 bit machine.

Pag®| Yot | Dpt lenable link
no. ! : i ;

Virtual Address

0110011001110110
N \e—p—

vord-in-
page offset

276H| 19H |[FALSE|TRUE|TRUE
page number )

Figure 5.3 The setting of a breakpoint

The situation may arise, however, that the entry indexed by the Word-in—page
offset is already in use, leading to a conflict for the particular entry. It may
be the case that a number of breakpoints have been set at this word-in-page
offset and so the generalised process for the setting of a breakpoint involves
the indexing of the breakpoint memory and the subsequent following of the
overflow link until either an entry is found with the enabled flag not set or a
null overflow link. Entries with the enabled flag not set occur in the chain ‘of
entries when a breakpoint has been removed. This method of deleting
breakpoints' simply by removing the enabled flag allows time consuming

housekeeping duties such as reorganisation of the overflow chain to be
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performed at non-critical times.

When an entry is found with the enabled flag not set then the sequence of
events for setting a breakpoint is performed on this empty breakpoint
memory slot. If, however, the end of the chain is reached and no entries
have been found which are not in use then a new entry must be linked to the
end of the chain to hold the relevant information. Figure 5.4 shows the state
of the breakpoint memory before a watchpoint is set and figure 5.5 the new

state of the memory.

Breakpoint memory

VYirtual Address

0110011001110110
[ S —)

word-in-
page offset

276H| 14H |TRUE | TRUE |TRUE | —1

17H |TRUE |FALSE| TRUE

Qverflow
entries

Figure 5.4 Example state of breakpoint memory

In addition to the updating of the breakpoint memory the monitor bit of the
page table entry for the page on which the trap is to be set must be set to

force the access fault when a reference occurs.

References to locations in pages with no data breakpoints or watchpoints will
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Breakpoint memory

Yirtual Address
011001to01110110
e ——

word-in-
page offset

27¢H| 14H |TRUE | TRUE [TRUE | —1—

17H |{TRUE [ FALSE|{ TRUE

o
N
Overflow | (J

entries
19H |TRUE | FALSE| TRUE

L

Figure 5.5 Setting of a watchpoint vith contention

thus proceed at a normal raté. However, references to locations in pages
with traps will be slowed in proportion to the number of traps with the same
word-in-page displacement. The breakpoint memory is accessed using the
word-in-page offset as an index and the overflow link followed as necessary
until a match is found between the page number field and the page number
of the referenced location. When a match is found the data breakpoint and
watchpoint flags are checked against the mode of access and an intermpt;like
trap fofced if appropriate. The trap is required, however, at the end of the
executing instruction as a context switch to the monitor process would not be

allowed by most machines midvzay through an instruction.

In most cases only one breakpoint will be found per entry of the breakpoint

memory thus contributing only a slight overhead, this being reduced still
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further if the first breakpoint memory access is performed in parallel with the

translation buffer look-up. The architectural support described above is

shown in figure 5.6.
protection
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Figure 5.6 Architectural support for breakpoints

5.3.2.2. Code breakpoint

As previously discussed, the sirhplest and most effective implementation of a
code breakpoint is achieved by the instruction at the appropriate location
being replaced by an instruction which causes an interrupt-like trap to the
operating system. This section is concerned with reducing the execution

overhead associated with this form of code breakpoint. Due to the method
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of implementation there is no continual overhead on program execution;
unaltered regions of the instruction space execute at normal rates and only
those locations replaced by trap instructions cause a performance
degradation. Aside from software evaluation of monitoring predicates there
is a performance degradation more directly associated with code breakpoints.
This is the cost in execution speed of the time it takes to either emulate the
replaced machine instruction in software, or else put back the original
instruction, single step it and then replace it again' by the trap instruction.
Support to reduce the time involved with either of the above two procedures
is not to be found in the literature. This is possibly because the interference
of the monitoring software overshadows the degradation caused by the
implementation of the breakpoint. However, a high-level monitor such as
that described in chapter 4 may return control to the target process almost
immediately. This would occur, for example, if the code breakpoint caused a
trap at an undesired nesting level. In this case the performance degradation
associated with executing the original instruction may contribute considerably

to the overall degradation and so support is required.

The architectural support described in this section consists of a breakpoint
memory similar to that used for data breakpoints and watchpoints, and a
special machine instruction to be used as the trap instruction. Each entry of
the breakpoint memory consists of four fields: an entry enabled flag, a pa.ge

number, a machine instruction, and an overflow link field (figure 5.7).

The entry enabled field, the page number field, and the overflow link field

perform the same functions as in the previous section, for data breakpoints
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Figure 5.7 Breakpoint Memory

and watchpoints. The machine instruction field, however, is unique to the
code breakpoint case, and holds the instruction which is replaced by the trap
instruction. This is the instruction which, in conventional monitoring systems,

is emulated or temporarily reinstated at the location of the code breakpoint.

The setting of a code breakpoint occurs in the same way as fof- data
breakpoints and wétchpoints except that, instead of setting flags to indicate
the type of reference, the machine instruction at the breakpoint locétion is
accessed and stored in the appropriate field of the breakpoint memory.

The breakpoint instruction .‘is'é special ihstruétidﬁ which performs a
bteakpoint memory access prior to éausing an intefrupt-like trap to.the

operating system. The access of the breakpoint memory is performed using
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the word-in-page offset and involves following the overflow link field, in much
the same way as when setting breakpoints, until an enabled entry is found
with an appropriate page number field, that is, one which matches the page
number of the currently executing location. On finding the entry which
matches this breakpoint the original instruction for that location can be
extracted from the appropriate field. Rather than reinstating the instruction
in the target program instruction space the instruction can be loaded directly
into the processor instruction register for execution. Thus, when the
monitoring process is ready to transfer control back to the target process it

need not perform any instruction emulation or "juggling’.

In most cases only a single breakpoint memory access will be required to find
the instruction replaced by the code breakpoint trap instruction. Also
contributing to the speed of the breakpoint memory access is the method of
access. Extracting the word-in-page offset from the virtual address is a

quicker generator of an index than the use of a hash unit, for example.

5.3.2.3. Firmware monitoring

There is scope in the methods described in this chapter for a firmware
implementation. Thus, it may be possible to implement the scheme without
adding hardware to the machine, but by simply changing the firmware of the
machine. A requirement of this process is a writeable control store which

has enough extra RAM for the additional microcode.

Firmware monitoring systems have been described in the literature over the

past twenty years but these have been orientated to low-level monitoring.
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Tracing of instructions [Barnes74] [DeBlasi77] [Agarwal86], opcode counts
[Séal72] and sampling systems [Armbruster79] all create large machine-level
records. The advantages of using a firmware monitor include the flexibility,
small expense and high speed associated with microprogramming. There are,
however, problems associated with microprogramming: the useage of control
store is often complicated [Grdtsch81), it may not be possible to modify all
sections of the standard instruction set due to memory limitations or timing
restrictions [Agarwal86], many firmware resources are often global across the
machine resulting in only one user being able to operate the system at any
one time [Melvin86], and tools for the development of microprograms are
often at the assembly language level, making the effort involved in developing

and debugging microcode quite high [Gritsch81] [Melvin86].

A microcoded implementation of the above proposals has been performed on
the HLH Orion, the procedure and results of which are described in the next

chapter.

5.4. Summary

The monitoring of real-time software must not introduce unbounded delays

and consequently it relies on expensive circuitry and monitoring processors to

incur only bounded delays. Software which does not necessarily have to

adhere to real-time rules must also be monitored with as small "a
performance overhead as possible. However, the use of expensive electronics

to incur only bounded delays is not feasible and so less expensive methods

must be sought whilst keeping the performance overheads to a minimum. To
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this end an economical implementation of the three monitoring primitives is

sought.

The virtual to physical translation method proposed in this chapter attempts
to do this. It has many advantages over other implementations, such as those
involving the use of register arrays, bitmaps and descriptors. A major
advantage is that only memory references to pages which contain breakpoints
are delayed. It is only these pages which cause the low-level access fault
mechanism to be invoked other than normally occurring access faults such as
uncached entries or page faults. References to pages without breakpoints
proceed as normal. Other methods which perform a memory look-up or
some sort of check when a memory reference occurs do so for every memory

reference.

It is unlikely that many breakpoints will be set with the same word-in-page
displacement and so references to pages which do contain breakpoints will
only be delayed for a short time. Thus very little time is wasted traversing
the list of breakpoints if a breakpoint is not found. It may also be possible to
perform the first index into the breakpoint memory and the original memory
reference in parallel thus incurring a negligible delay if only a single
breakpoint is located on the particular word-in-page displacement. This is in
contrast to the implementation proposed by Abramson and Rosenber.g
[Abramson83] where the translation cache must be accessed to obtain the

breakpoint memory index, and the two accesses cannot be overlapped.

In contrast to other look-up methods, such as a breakpoint bitmap
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implementation, the index into the breakpoint memory is not calculated
specially for monitoring purposes. The index used for the access of the
breakpoint memory is the word-in-page displacement which is calculated by
the virtual to physical translation mechanism in a normal virtual to physical

translation.

Implementations such as the descriptor-based method can restrict the class of
objects which can be monitored. The method proposed in this chapter allows
any virtual address to be monitored including the instruction space, data stack

and heap.

Finally, an inexpensive implementation of the proposed mechanism can be
applied to most virtual memory machines. The cost of the implementation is

further reduced if a microcoded version is possible.

There are, however, some disadvantages and problems to be found with the
proposed implementation of the monitoring primitives. Firstly, unlike
[Abramson83] breakpoint ranges cannot be supported and so breakpoints
must be set on each element of arrays or structures for example. Thus the
monitoring of large arrays or structures leads to the first indexed elements of
the breakpoint memory being used and consequently gives rise to many more
conﬂiéts and overflow emries. However, it would still be the case that only
those pages which contain breakpoints would be delayed and so the problem

is not considered a serious one.

Perhaps a more serious problem is associated with the inclusion of

performance enhancing features on many machines. These take the form of
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fast memory caches for accessing memory. By placing the most recently used
variable in a fast cache the machine does not need to access slower main
memory as often. If the caching occurs on physical addresses then no
problem arises but if it is virtual addresses which are cached then the virtual
to physical translation may not take place. An extreme case of this occurs in
RISC machines where large register arrays are used to hold program
variables. The problem arising from the use of a data cache can be
overcdrne if the caching mechanism prevents monitored locations from being
cached. However, the problem is more serious in a RISC machine as
performanc¢ may suffer considerably if the reference of program variables in
the register array is performed in main memory. To overcome this the
machine must feature the ability to trap on access or update of a register in
the register array. The transfer of program variables between main memory
and the register array must be "watched" so that appropriate registers can be

monitored when necessary.

The practicality and performance of the monitoring methods outlined in this
chapter are further examined in an experimental system described in the

following chapter.
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6. Implementation and Analysis

6.1. Monitoring Software

6.1.1. Requirements

There are three basic requirements of the monitoring software apart from
the implementation of the software structures and graph traversal algorithms
described in chapter 4. Firstly, two processes are required: the monitor
process and the target process. The target process should be created exactly
as it would be if no monitoring were specified. Thus it should require no
more resources than any other process on the machine or cause execution of
the target program to differ from a normal execution. Secondly, the
monitoring software must provide the monitor process with full control over
the target process. This consists of starting the target process when the
monitoring software requires it and suspension of the target process through
the use of monitoring primitives. Finally, the monitoring software must
invoke two way communication between the monitor process and the target

process. This involves communication of variable values and trap locations.

An experimental system of this form has been implemented to validate and
study the performance of the monitoring structures and primitives introduced
in chapters 4 and 5. The machine used to implement the experimental
system is the High Level Hardware Orion running 4.2BSD UNIX. In order
to make full use of the facilities offered by the UNIX operating system the

implementation language used is the C programming language [Kernighan78].
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Input from the user is parsed using a set of YACC grammar rules
[Johnson78a] with actions in C which perform appropriate functions or build
the necessary directed graph for the monitoring software. Selected

procedures from the implementation can be found in appendix A.

6.1.2. Processes and Control

The creation 6f the target process and control over it by the monitor process
is achieved by UNIX system calls from the monitor process, resulting in a
parent-child relationship between the two processes. The four system calls
used to invoke the two processes with the appropriate control and

synchronisation are the fork, exec, ptrace and wait system calls.

The fork system call [Fork(3)] invokes an exact copy of the calling process
resulting in two processes executing the same code at the same time. The
replacement of one process by another is performed by the exec family of
system calls [Exec(3)]. These two calls allow the monitoring software to
firstly replicate itself and then overlay one copy with a process of the
executing target program. However, the execution of two processes in
parallel is not sufficient to meet the requirements of the monitoring system.
The monitor process must have control over the target process, halting it via
the use of monitoring primitives and restarting it when appropriate. A
degree of synchronisation is also required, such that only one of the two
processes is executing at any one time. Thus, the suspension of the target

process causes the monitor to restart and vice versa.

Control and synchronisation of the two processes is achieved through the use
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of UNIX signals [Signal(3)] and the two system calls: ptrace and wait. The
ptrace system call [Ptrace(2)] allows the monitor to start the target process at
will, whilst the wait system call [Wait(2)] causes suspension until an

appropriate signal is generated.

The code fragment in figure 6.1 constitutes the basis for synchronised

monitoring with the required control.

it{ (pid = fork()) == 0 ) {
/* executed by target process */
ptrace( PT_SETTRC,0,0,0) :
exec( filename ) ;
} else {
/* executed by monitor process */
do
wvait( &status ) ;
stopped() . i
} vhile( ptrace( PT_CONTIN,pid, (int*)1,0 ) I= -1 )

Figure 6.1 Skeleton routine for synchronised monitoring

The first line of the code segment invokes a copy of the current process. At
this point both processes are executmg in parallel and perform the test in the
conditional. The test against zero is true in the case of the chlld or target
process and false in the case of the parent or monitor process. It is this test
which allows thé two processes to be separated. The code between the first
pair of braces is executed by the child process, while the parent process
executes the code between the second pair. The variable pid acquires the

child process identification number for use in later system calls.
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The child process executes the ptrace system call which informs the operating
system of the parent-child link. The second statement, the exec system call,
replaces the current process with the execution of the target program. At the
same time as this the parent process is executing the do loop in the second
part of the conditional. The wait statement suspends this monitor process
until the target process suspends itself and generates a signal. Examples of
such a signal include the execution of .an illegal instruction, an interrupt
generated at the keyboard or a memory fault. Because of the parent-child
link made by the child process earlier the target process does not terminate
but merely suspends itself. Thus when a signal is generated the monitor

process resumes execution and enters the procedure stopped.

This procedure contains all the necessary monitoring software to perform the
high-level monitoring described in chapter 4. The status variable which
acquires the signal identifier by the wait system call can be tested to
determine the reason for the target process suspension. The monitor process
transfers control back to the target process when ready by returning from the
procedure stopped. The ptrace system call in the while statement resumes
execution of the child at the point where it halted and the monitor process

executes the loop to wait once again for a generated signal.

Using this system only one process is active at any one time, thus satisfying
the synchronisation condition. Further, the monitor process is able to
perform any number of monitoring functions before it passes control back to

the target process, thus satisfying the conditions of control.
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6.1.3. Communication

Communication between the two processes must be two way. The monitor
process must be able to communicate locations and types of monitoring
primitive to the target process to enable the setting of traps within the
executing program. Similarly the target process must be able to
communicate locations and types of monitoring primitive back to the monitor
process in order that it can determine the cause of suspension. As well as
the need to communicate trap information the monitoring process must be
able to update target process memory and also receive target process
memory values. This implements, at the user level, the setting and

examination of target program variables.

The reading and writing of target process memory is implemented using the
ptrace system call, which also allows the reading and writing of target process
registers. The communication of monitoring primitives also uses the ptrace
system call. By assigning an area of memory for the purposes of
communication between the two processes we can realise memory mapped
monitoring primitives. Effectively, the writing to one area of memory sets
monitoring primitives and the reading of another area allows the
identification of traps which have occurred since the last transfer of control,
which will be the traps which caused the current transfer of control. In the
cases where a special, fast memory is used for monitoring purposes it is
necessary for the monitoring process to be able to read and write to it. This

will in most cases require the implementation of customised instructions.
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6.1.4. Monitoring Functions

The user of the monitoring system operates it via an interface constructed
from YACC grammar rules. On the experimental implementation this is
restricted to the setting and displaying of program variables, the tracing of
procedure calls during execution, the single stepping of source statements,

and the building of directed graphs according to specified WHEN commands.

All program objects, such as variables and procedures, are specified using the
source code symbols with the extra option to use line numbers for the setting
of code breakpoints. The facility of using symbols to refer to program
objects is provided via the program symbol table. This is stored as part of
the executable file when the debug option is given at compile time. It is
stored in the file as symbol-type-address triples enabling the monitor to print
information in the correct format and also allowing monitoring functions
which perform operations on groups of objects of the same type. For
example, accessing all procedure names allows | the monitor to trace
procedure calls during execution, or accessing all parameter variables allows
the monitor to print the values passed to a particular procedure. The

relevant information is extracted from the file and stored internally to the

monitor process. -

6.2, Architectural Support

6.2.1. Requirements

In chapter 5 it was stated that a feasible implementation of the required
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architectural support for monitoring is possible using microcode. This section
describes such an implementation for the HIH Orion, a user
microprogrammable machine.

The Orion CPU consists of the following main components [HLHS84]:

¢  Control Store

e  Microprogram Sequencer

e  Map Tables

e  Arithmetic and Logic Unit (ALU)
e Cache Memory

e  Virtual Memory Translation Butfer

All but the ALU, eight AMD AM2901C 4-bit bitslice microprocessors linked

in parallel, have some bearing on the implementation.

To enable a realistic implementation of the required support the control store
(that is, the high speed memory in which the microprogram resides) must be
large enough to hold the standard microcode together with any additional
code required for monitoring purposes. Many microprogrammable machines
have only a limited free space in the control store thus requiring very careful
coding [Agarwal86]. However, the control store in the Orion CPU, which
was designed for microcode development, consists of 32K 64-bit words of
RAM divided into 4K word pages. This is easily sufficient for tl.le

implementation of the support described in chapter 5.

There are four main areas where the microcode is altered or added to:
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A code breakpoint instruction is required, which causes an interrupt-like
trap to the operating system, after obtaining the original instruction from
the breakpoint memory. This original instruction is placed in the
instruction register prior to the transfer of control so that it is the first
instruction to be executed on a return. A further action of the code
breakpoint instruction is the placing of the location and type of primitive
in the reserved area of memory for communication to the monitor

process (section 6.1.3).

Because the top of scalar stack is cached in a fast memory, separate
from main memory, it is necessary to alter the instructions which access
this cache so that they access the appropriate area of main memory as
well, thus making all variable accesses use the virtual to physical

translation mechanism.

The use of an area of memory reserved for communication with the
monitoring system was mentioned above, and will be discussed further in

a later section.

The area of memory is reserved during the process start-up microcode
and is not visible to the executing process. The reserved memory is
allocated from the bottom of the vector stack, chosen because of the

ease of implementation.

The final action of the revised start-up microcode causes an interrupt-
like trap back to the operating system so that the monitor process can

take control and prompt the user prior to target process execution.
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(iv) To enable the monitoring of memory references the code which handles
access faults during references is altered. Firstly, the extra protection
bit, or monitor bit (section 5.3.2.2), is implemented which causes the
necessary access faults whenever monitored pages are accessed. The
extra code to access the breakpoint memory can now be added at this
point in the access fault code to determine if a primitive exists on the
referenced location. If this is the case then the location and type of trap
is stored in the reserved area of memory. Once this has been
performed an interrupt-like trap to the operating system is required and
is achieved by loading an illegal instruction opcode into the instruction
register. When this is decoded the interrupt mechanism saves the
context of the executing process and restores the kernel context with the
appropriate trap code. Because of the parent-child link made by the
monitoring software the operating system sends the illegal instruction
signal generated to the monitor process which performs a return from

the wait system call it is currently executing.

6.2.2. Microprogram Sequencer

The microprogram sequencer controls the order in which microinstructions
are fetched from the control store and execﬁted. Most of the sequencer
functions perform some kind of a control transfer such as jump or jump .to
subroutine. One of the sequencer functions performs the decoding of machine
instruction opcodes which introduces a problem for the implementor on the

HLH Orion and similar machines. The implementation requires that an
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interrupt-like trap to the operating system occurs when a code breakpoint,
data breakpoint or watchpoint is encountered and, whilst this is easily
achieved for code breakpoints through the use of a special instruction, data
breakpoints and watchpoints must cause a transfer of control to the operating
system after the execution of the machine instruction performing the memory
reference. However, in most cases the offending memory reference will
occur in the middle of a machine instruction. To overcome this problem the
microcode which "watches" for references to monitored memory locations
sets a flag, the data trap flag, which indicates that a monitoring primitive has
been observed. This flag can then be tested after the execution of each

instruction emulation routine.

The use of a sequencer function to decode opcodes along with instruction
caching means that there is no single routine which performs the usual fetch-
decode-execute phase for each instruction. Instead, up to four instructions
may be executed before the microcode to perform another fetch is entered.
The sequencer function in question takes the value in the instruction register
and performs a look-up in a fast internal memory which holds machine
instruction opcodes and their respective emulation routine addresses in the
control store. The reloading of the instruction register from the instruction

cache is performed by a line of microcode which is found in every emulation

routine.

In most cases there will be two solutions to the above problem. The first
involves changing the microcode such that all machine instruction opcode

decoding performs a check on the data trap flag. The HLH Orion has
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sufficient control store to facilitate the altering of the required code but the
task is still non-trivial due to the, often, complicated structure of microcode
routines. Implementations on machines without the free control store space
would have to compromise and insert the code to check the data trap flag in
the most frequently executed piece of code. In most cases this would be the
routine which performs the instruction caching. The granularity of the trap

mechanism is thus determined by the number of instructions cached.

A multiple instruction bank feature of the HLH Orion is utilised in the
experimental implementation to realise a routine, which is executed after the
execution of each emulation routine, and requires only minimal changes to
the existing microcode but does not incur a heavy execution overhead. This

mechanism is described in the next section.

6.2.3. Map Tables

The map tables provide a méchanism by which abstract machine opcodes can
be quickly decoded. An instruction register is loaded with the opcode to be
decoded, after which a specific sequencer function causes this value to be
used as an index into the map tables. The value found in this fast memory is
the address of the first microinstruction in the machine instruction emulation
routine. This mechanism is shown in figure 6.2. |

An instruction set occupies a pair of mép tables, each allowing the decoding -
of 256 opcodes. Current implementations of the HLH Orion have four such

pairs of map tables, allowing entirely independent instruction sets to reside in

the machine simultaneously.
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Figure 6.2 Decoding of opcodes via map tables

The multiple instruction bank feature enables the implementation of a
microcode routine which is executed after every instruction emulation
routine. This in turn enables the implementation of the data trap flag and
the trap back to the operating system. One pair of map tables is initialised to
the same control store address, to which all opcodes will decode. The routine
stored at this particular control store address performs the check on the data

trap flag and also decodes the original opcode in the correct instruction bank

(figure 6.3).
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Figure 6.3 Use of multiple instruction banks to implement data trap flag

6.2.4. Cache Memory

The cache memory on the HLH Orion provides a large bank of fast registers
internal to the CPU. However, at the microcode level the cache is simply a
randomly addressable memory, separate from the main system memory. It

presents itself as an obvious implementation for the breakpoint memory
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introduced in chapter 5.

The cache memory is divided into pairs of 512 word sections with the current
implementation of the machine having two such pairs. The standard
instruction set makes use of one cache bank, leaving the second at the

disposal of the microprogrammer. -

The use of a cache me.rnory as a fast access memory for the top of stack
introduces a problem for the implementor, as discusseC in section 5.4. By
using a cache the usual virtual to physical translation required to access
program variables is not performed, thus bypassing any microcode which is
added to "watch" for accesses to monitored locations. Fortunately the
caching mechanism on the HLH Orion is performed entirely in microcode

and so the problem can be resolved by the microprogrammer.

There are two solutions to the above. Firstly, all the microcode which
laccessés the fast cache memory could be removed and replaced with the
corresponding code which accesses main memory. This would involve the
rewriting of large amounts of microcode. A simpler method, and the one
used in the final experimental implementation, is to continue to use the top
of stack cache, thus leaving the original microcode intact, but to add code
which performs the corresponding virtual to physical translation. The actual
main memory reference is not required for the generation of the necessary
access faults and because the translation can, in most cases, be performed in

one cycle the performance overhead is not excessive.

The second cache bank is used to contain the breakpoint memory. However,
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the cache is not large enough to hold any overflow entries or entries for code
breakpoints and so these must be relegated to storage in the main system
memory. The provision of a much larger fast memory would improve the
implementation of the breakpoint memory by allowing overflow entries and
code breakpoint entries to be stored in the fast memory. Because, for code
breakpoints, replaced instructions are stored in the breakpoint memory the 32
bit entries in the cache memory are not, in this case, large enough to hold all
of the associated fields. The whole of the breakpoint memory for code
breakpoints is therefore implemented in main memory. This situation is not
as detrimental to the performance as it appears to ve. Each breakpoint
memory entry requires only two words of main _memory which can be
accessed with a routine only one cycle longer than for a single word access.
It was also found that with the less cramped breakpoint memory structure,

fields could be extracted with less code than for the corresponding fast

memory entries.

6.2.5. Virtual Memory Translation Buffer

The primary component in the HLH Qrion memory management hardware
is a fast memory, internal to the CPU, known as the translation buffer. In the
standard system the translation buffer is treated purely as a cache for the
memory-based page tables. The selection of an appropriate microoperation
uses the virtual address in the virtual address register as an index into the
translation buffer, resulting in the output of the corresponding physical

address and six bits of protection information (figure 6.4).
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Figure 6.4 Virtual to physical translation

The states of these six protection bits determine the states of tWo condition
flags, one registering a read fault and the other a write fault. It is these flags
which are tested, by microcode, during a memory reference to check for an
illegal translation. If the relevant ﬂag is set then a microcode library routine
is enfered which attempts to solve the problem or, if this is not possible, it
resorts to high lei'el intervention by the operating system. For those cases
which can be solved by microcode intervention alone, the library routine

restarts the memory reference and returns to the original code as if nothing

had happened.

The translation buffer and associated fault mechanism lend themselves to
alteration for monitoring purposes, and in particular the monitoring of
references to ‘"watched" memory locations via data breakpoints or

watchpoints. The translation mechanism operates at the page level as
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described in section 5.3.1 and so alterations are made to enable the trapping
of references to "watched" pages, with the breakpoint memory employed to
reduce this to a word granularity. To achieve this the translation buffer and
memory-based page tables effectively require an extra protection bit which,
when set, indicates a monitoring primitive is currently active on that
particular page. As all six protection bits are required for other purposes, the
effect of an extra bit is reproduced by an area of memory 6K words in size,
forming a bitmap representation of the extra protection bit. The translation
of addresses which have monitoring primitives set on them must, however,
cause the two fault flags to be set and is something which cannot be
accomplished with a bitmap. To overcome this one of the existing protection
bits, the accessed bit, takes on the extra role of indicating a "watched" page.
The standard use of this protection bit is to indicate a translation buffer entry
which is invalid due to it not being cached. This situation arises because of
the many-to-one mapping of the caching process, causing an entry of the
translation buffer to not cbrrespond to the supplied virtual address but to one

of the other pages which cache onto it.

The library routine which is called when a translation fault occurs attempts to
rectify the fault, using microcode, so that software intervention is not
required. It is at this point that the bitmap entry for the referenced page is
checked to determine if monitoring is the cause of the fault. However, e\;en
if the monitoring bit is set in the bitmap an uncached buffer entry cannot be
ruled out. Thus the bitmap check is performed after the caching of the

translation buffer entry. If the extra protection bit, accessed in the bitmap, is
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set then a monitoring primitive is known to exist on that particular page and
so the accessed bit of the memory based tables and the translation buffer is
reset. This results in all subsequent references to the page causing another
access fault. At this point the breakpoint memory must be accessed to
determine whether monitoring is active on the referenced location rather
than just the page. If the breakpoint memory indicates that the location is
being monitored and the type of primitive active matches the initial mode of
reference (whether read or write) then the data trap flag is set, which will

ultimately result in a transfer of control to the monitoring process.

6.3. Single Instruction Degradation

In this section we examine the effect of the additional monitoring microcode
on the performance of the machine. It is assumed that the microcode uses
only main memory storage and does not make use of fast access memory
internal to the CPU. The effect of using fast memories and other features

which aid the architectural support is examined in a later section.

The cost of the codé breakpoint primitive is negligible when compared with
the monitoring software overhead, which is incurred on transfer‘ of control,
and so only data breakpoint and watchpoint primitives are considered. We
begin by calculating the cost of the monitoring support when executing a
typical machine instruction. Whilst the results may not reflect the
performance degradation during program execution they will indicate
monitoring cases which require hardware support for a more efficient

implementation.
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The instruction chosen, on which to base the performance figures, is the "load
word from memory" (II_w) instruction [HLH85]. This takes a word operand,
accesses it as a memory location and places the value found there on the top
of the stack. The Il w instruction is one of the more commonly found

instructions, and is of medium length, and so may be taken to be typical.

Performance figures were obtained manually by adding up the timings for the
individual microinstructions in each of the routines. The problem of
conditionals and iterations in the microcode routines was resolved by taking

the average time.

In total seven different monitoring conditions were examined and, in all
cases, it is assumed that a monitoring primitive is never active on the actual
location referenced by the instruction. Thus, we are measuring the
interference of the monitoring microcode when a transfer of control will not
occur; that is, the continual overhead.‘ The timings of the seven cases are

based on the following routihe timings:

a) 1260ns for the instruction emulation routine.

b) 1125ns for the checking of the data trap flag between instructions.
¢) 6450ns for the library routine which handles access faults.

d) 12775ns for the access of the bitmap. |

e) 2925ns for the resetting of the accessed bit & access of the breakpoint

memory.

f)  1950ns for the access of overflow entries in the breakpoint memory.
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The cases:

Q)

(i)

The instruction is executed in the standard instruction set with no
additional code for monitoring purposes. It is also assumed that all
memory references performed by the instruction proceed with no faults,
thus not making use of the access fault code. This case is simply the
execution time of the emulation routine, ie. 1260ns, giving a base for

examining degradation in other cases.

The instruction is executed in the instruction set modified for monitoring
purposes, resulting in a timing of 2385ns, which includes the routine
which checks the data trap flag after each instruction. This case
indicates that the execution time of the instruction is almost doubled
even when monitoring primitives have not been set and access faults do
not arise. Support for the checking of the data trap flag could thus
halve the execution time of the individual instruction and would gréatly

improve execution times of target programs.

This case is the same as the previous case except that a monitoring

primitive is active, but on a page other than that referenced by the

- instruction. This does not add further degradation to the performance

()

and the total execution time is again 2385ns. It is a feature of the
monitoring system not to increase target process performance overheads

for monitoring primitives active on pages which are not referenced.

This case is the same as case (iii) except that a monitoring primitive is

now located on the page referenced by the instruction. This is the first
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case where the access fault code is entered, resulting in the access of the
bitmap and the breakpoint memory. The total execution time is thus
2385+6450+12775+2925ns, giving 24535ns. It is apparent that the
referencing of locations on monitored pages gives rise to an immense
overhead. This is due mainly to the implementation of the extra
protection bit as a bitmap representation. Support for this by the
provision of a monitoring bit in the page table entries would reduce this

to a more practical level.

(v) This case is a generalisation of case (iv). A monitoring primitive is
located on the page referenced by the instruction and X monitoring
primitives are located on the same word-in-page as the referenced
location. This generalised case incurs the overhead of case (iv) with the
additional calculation of an overflow entry for each of the X primitives
on the same word-in-page. The execution time is obtained as
24535+1950Xns. This shows that the performance overhead of a
breakpoint memory contention is relatively small, thus allowing the
monitoring software of the monitoring environment to set as many

primitives as required.
The next two cases highlight the effect on perforinance of having to cache a
translation buffer entry in the monitoring environment.

(vi) This is the same as case (i) except that the memory reference causes an
accessed fault due to an uncached translation buffer entry. The standard

instruction set emulation routine involving the access fault code executes
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in 7710ns.

(vii) This is the same as case (ii) except that, as above, the memory reference
causes an accessed fault due to an uncached translation buffer entry.
This involves checking the data trap flag and the bitmap representation,
and totals 21610ns. Access faults in a monitoring environment thus
almost triple the execution time. This is due to the checking of the
bitmap, but is made more serious because of the number of access faults
which occur during program execution. Context switches and the
implementation of a LRU paging algorithm both reset the accessed bit,
causing many more faults than would occur due to tag mismatches. As
with case (iv) a monitor bit in the protection field of the page table

entries would reduce this overhead considerably.

The calculated execution times for the single instruction cases described

above are summarised in table II.
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Table 11

Case Time(ns) Degradation(%)

i 1260 -
ii 2385 89
iii 2385 89
iv 24535 1847

\' 24535+1950X 1847+ 155X

vi 7710 ' -

vii 21610 180

6.4. Program Degradation

In this section we examine the effect of the microcode monitoring support on
overall program execution times. The program constructed to obtain the
timings was written specifically for this purpose, and is shown in figure 6.5.

The program was run under nine different monitoring conditions, with the
timing obtained, in each case, by taking the average of ten runs. The first
five cases are illustrations of cases (i) to (v) in section 653- The remaining
four cases show the effect of monitoring predicates on the execution time of

the monitoring software,

(i) The program was compiled to run in the standard instruction set and

was thus not affected by the monitoring microcode.

(i) The program was compiled to run in the modified instruction set and
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zdefine PAGE 4096
sdefine FILLER 1588

char arrayO[FILLER]
char arrayl(PAGE] ;
char array2[PAGE]
char array3[PAGE] :
char array4[PAGE] .
char array5[PAGE]
char array6[PAGE]

(WY
COBDNRANDWNEF

int i,3j.k :

[Ty
W R

14 main()
{
16 tor( 1 =0 ; 1 < 500000 ; 1++ )
17 arrayi[1] = 0 :
18 for( i = 0 ; i < 100 ; i++ )
19 array2[(i] = 0 ;
21 proca() ;
23 for( i = 0 ; i < 100 ; i++ )
24 procb{) :
25 1}
27 procb()
{

29 y int r ;

32 proca()
(
34 int x.v.z ;

36 for( i = 0 : 1 < 500000 ; i++ ) x = 0 ;
37 ) for( 1 = 0 ; i < 100 ; i++ )y =10 ;

Figure 6.5

was thus affected by the additional microcode, but was run with no
monitoring predicates and thus no active primitives.

(iif) This case was similar to (ii) except that a watchpoint was set on element
}zero of the variable array6. This variable is not referenced by the
program, thus showing the effect of mbnitoring a page other than that'

referenced.

(iv) The primitive set in case (iii) was now set on a page which is referenced.

This was achieved by setting a watchpoint on element zero of the
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variable arrayl. The page, on which this element is stored, is accessed
500000 times by the loop on line 16.

(v) This case shows the effect of contention for breakpoint memory entries
on the execution time of the target program. Watchpoints were set on
element zero of the variables arrayl, array3, array4, and arrays.
Because each of these arrays begins on a page boundary and is declared
to be exactly one page in length, element zero of each array is located
on the same word-in-page. Again arrayl causes the access faults due to
the loop on line 16, and so the page is accessed 500000 times with four

entries contending for the same vreakpoint memory location.

The next four monitoring conditions show the impact of the monitoring
software on performance. All transfers of control to the monitoring software
which do not interact with the user produce a non-negligible performance
degradation. Examples of conditions which produce such transfers of control
include the monitoring of local variables, where the address of the variable is
calculated by the monitoring software at run-time, and the monitoring of
expressions, where this must be evaluated at run-time due to any updates to

the specified variables, whether local or global.

(vi) A monitoring predicate was specified which monitors the value of
element zero of the variable array2. The user is notified when it attains
the value one. This predicate causes 100 transfers of control because of

the loop on line 18, but never actually becomes true.

(vii) This monitoring case produces figures to show the cost of monitoring
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local variables. A prc;dicate was specified which builds a graph to
monitor the variable r local to the procedure procb. This variable is
never accessed and so only the cost of calculation of the run-time
location of the variable is obtained. The calculation is performed by the
monitoring software on entry to the procedure through the use of code
breakpoints as described in chapter 4. The loop on line 23 means this is

performed 100 times.

(viii) Case (vii) was performed again but on the variable z local to procedure
proca. The performance figures show the effect of monitoring local
variables, as both the variables x and y are located on the same page.
There will, thus, be one transfer of control to calculate the address of
the variable z and then 500100 access faults because of the loops on line

36 and 37.

(ix) The final monitoring case examines the cost of predicates which monitor
the value of local variables. A monitoring predicate was specified which
monitors the value of variable y local to the procedure proca. The user
is notified when it attains the value one. This predicate causes one
transfer of control to calculate the run-time address of the variable, 100
transfers of control to check the valuae of the variable when it is updated
on line 37, and 500100 aécess faults because of the loops on line 36 ar_ld

37.

The execution times (in seconds) obtained are shown in table IIL
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Table III

Case || Monitoring S/w | Target program
i - 12.30
ii - 28.65
fii | - 28.70
iv - 40.35
v - 40.40
Vi 1.50 29.30
vii - 640 3175
viii 0.10 39.85
ix 1.60 40.55

By comparing each of the above cases against either the standard instruction

set case (case (i)) or the monitoring microcode case with no active primitives

(case (ii)), the performance degradation caused by that particular monitoring

case can be determined. These are examined below.

1) A comparison of case (i) with case (ii) shows the degradation produced
by the monitoring microcode when no primitives are active. This
degradation is approximately 133%, which is caused by the checking of
the data trap flag after each machine instruction and the accessing ;)f
the bitmap during access faults. This overhead will vary in proportion to

the number of access faults arising.

The clock granularity of one-sixtieth of a second made it not possible to
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get meaningful timings for the monitoring software. This is also the
case when constructing up to twenty directed graphs. Thus the
degradation produced by the monitoring software on start-up may be
assumed to be negligible.

The single instruction calculations of the last section indicate that cases
(ii) and (iii) should record the same timings. That is, a primitive set on
a page other than those referenced by the target program does not
affect the performance. The recorded target program timing for case
(iii) shows only a 0.17% increase on the timing recorded for case (ii)
which can be attributed to the slight differences in execution runs and
the granularity of the timings.

The comparison of case (iv) and (ii) shows the performance degradation
associated with referencing a page which contains an active monitoring
primitive, An increase in execution time of 1170 seconds is
accumulated over 500000 access faults, which is an increase of 23400ns
per fault; c.f. the expected value of 22150ns calculated in the previous
section,

The comparison of cases (v) and (ii) indicates the effect of contention
for breakpoint memory entries. The increase, per fault, calculates to
23200ns, and the overall degradation rises from 228% to 228.5%. Thus,
as expected, the degradation due to contention for breakpoint memory

entries is negligible.

Case (vi) shows the effect of transfers of control between monitor
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process and target process, with the monitoring software performing the
expression evaluation each time. The resulting increase in execution
time of 0.65 seconds corresponds to a 6.5ms per fault increase. This
relatively large rise is due to the transfers of control and an increase in
the number of access faults. The rise in the number of access faults
occurs because the translation buffer is cleared on each transfer of

control thus undoing the caching mechanism during normal operation.

The monitoring software execution time is approximately 1.5 seconds
more than the negligible setup and graph construction time. It can be
assumed therefore, that the 1.5 seconds is attributable to the 100
transfers of control and expression evaluations. This is likely to remain
the same for most evaluations, but increasing for more lengthy

expressions involving program variables.

The results obtained in case (vii) show the setup overhead of monitoring
local variables. This setup time involves a transfer of control on
procedure entry, followed by the calculation of the variable address and
the setting of monitoring primitives, on this address and the return
address of the procedure call. The measured execution times reveal an
approximate 6.4 second increase for the 100 transfers of control and

address calculations.

The slight increase in target program execution time is probably caused
by references to the stack frame environment (stack pointers and return

addresses) of the monitored procedure.
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7) Examination of the results for case (viii) indicates an 11.2 second
increase on case (ii) which, because it is over 500100 access faults, gives

a 22396ns increase per fault, in line with the predicted value of 22150ns.

The software degradation represents the setup time of the graph and the
calculation of a local variable address during a single transfer of control.
A value of 0.1 seconds compared to the previous case appears to
indicate a higher initial overhead with a soméwhat lower figure for any

subsequent transfers of control.

8) Case (ix) shows the effect on performance of monitoring expressions
with local variables. The overhead cons'sts of 1.5 seconds for the 100
transfers of control to check the value of the variable when it is updated

and 100ms for the calculation of the run-time address.

The examination of results in this section has verified that performance
figures determined for the single instruction case are confirmed in program
execution, within the bounds of experimental error. However, the
transferring of control does affect this generalisation by _causing extra access
faults due to uncached translation buffer entries. A further point indicated by
the figures is that the affect of the monitoring software is also fairly

predictable, with standard degradation factors for each monitoring event.

6.5. Monitoring Hardware

Examination of the figures, both calculated and generated, in the two
previous sections highlight the areas which contribute most to performance

degradation. In this section we examine the impact of possible hardware
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support for these areas.

The figures for the hardware cases introduced below are calculated in the
same way as for the single instruction cases in section 6.3, with estimates for

the routines which cannot be implemented.

The two main causes of degradation are the checking of the data trap flag
after every machine instruction emulation routine and the accessing of the

bitmap representation of the monitor bit in the protection status of a page

table entry.

Hardware 1

The checking of the data trap flag almost doubles the execution time of a
target program, even if no monitoring primitives are active. In order to
create an efficient monitoring system it is essential that hardware support is

provided to implement the data trap flag.

The provision of a flag which can be set and used as a condition code in
conjunction with the microprogram sequencer functions will remove most, if

not all, of the performance degradation associated with the checking of the

data trap flag.
The microcode version with no primitives in section 6.4 (case ii) increased the
execution time by 133%. This would be reduced to only 44% if the above

hardware were provided. Similarly the degradation for case (iv), in section

6.4, where 500000 access faults occur, is reduced from 228% to 139%.
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Hardware 2
The above hardware proposal is most effective in those monitoring cases
where few access faults arise. However, for those cases where many access
faults occur it can be seen that the prime cause of the performance
degradation is the checking of the bitmap representation of the extra

protection bit.

Reserving a bit in the protection status of a page table entry for monitoring
purposes removes the need for a bitmap and consequently the code to access
it. The extra monitor bit in the protection status is tested for in the same
way as the other protection status bits are tested, to determine the reason for
an access fault. Performance savings are made in two areas. Firstly, access
faults due to an uncached translation buffer entry or a tag mismatch do not
need ‘to access and check the bitmap, and secondly, monitored pages which

are cached do not need to perform the caching mechanism unnecessarily.

Applying these figures to the progr.am execution in section 6.4 gives an

overall degradation, for case (iv), of 156% instead of 228%.

Hardware 3

By applying both of the above hardware proposals a system can be
constructed which incurs a negligible performance overhead in all cases
except when a monitored page is referenced.

Applying these figures to the program in section 6.4 gives a zero performance
overhead for the cases where a monitored page is not referenced. The case

where monitored pages are referenced (case iv) incurs only an 18% overhead,
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in comparison with 228% for the standard microcode implementation.

Hardware 4

The performance degradation of hardware 3, above, is now solely based on
the breakpoint memory access and the checking of the contents of
appropriate entries. This access can be made faster through the use of a fast
memory.

Applying this to the program of section 6.4 gives a target program increase,
for case (iv), of 1.8 seconds, resulﬁng in an overall degradation of only 15%.
However, the fast memory available on the Orion is a global resource,

requiring either a reload on a context switch or the limiting of the system to

one user at a time. If the reloading option is taken then this will affect the
performance advantage of using the fast memory.

Table IV shows the calculated timings for the single instruction case and the
corresponding timings for the hardware introduced, and table V gives the

figures for the percentage degradation.
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Table IV
Timings(ns)
Case Microcode | Hardware 1 | Hardware 2 | Hardware 3 | Hardware 4
(i) Base 1260 1260 1260 1260 1260
(ii) Mon. O/head 2385 1260 2385 1260 1260
(iii) Unref. prim 2385 1260 2385 1260 1260
(iv) Ref prim 24535 23410 6835 5710 4835
(v) Contention |{24535+1950X | 23410+ 1950X | 6835+1950X | 5710+1950X | 4835+275X
(vi) Base fault 7710 7710 7710 7710 7710
(vii) Mon. fault 21610 2048> 8835 7710 7710
I

This examination of possible architectural support has shown that with minor
hardware modifications it is possible to implement monitoring primitives
which incur a very modest overhead. One of the main requirements for
architectural support, outlined in chapter 5, is that monitoring must not incur
a performance overhead until a monitoring primitive is active. This is

satisfied by the architectural support outlined in this section.

In the worst case, when a monitoring primitive is active on the page
referenced, then the performance degradation is still quite modest, incurring
less than a 300% overhead for a typical instruction performing the reference.

All other cases, including access faults, incur either zero or negligible
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overheads.
Table V
Degradation(%)
Case Microcode | Hardware 1 | Hardware 2 | Hardware 3 | Hardware 4
(i) Base - - - - -
(ii) Mon. O/head 89 _0 89 0 0
(iii) Unref. prim 89 0 89 0 0
(iv) Ref prim 1847 1758 442 353 284
(v) Contention || 1847+155X | 1758+155X | 442 + 155X | 353+155X | 284+22X
V) Base fault - - - - .
(vii) Mon. fault 180 166 15 0 0

6.6. Case Studies

In this section we examine the impact of monitoring on the execution of two

programs. This will include the performance degradation imposed by the

experimental monitoring system, implemented on the HLH Orion, and also

the estimated impact if the hardware, described in the previous section, was

available.
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Case 1

A cross-referencer program is executed with the following six different

monitoring conditions.

(M)

(if)

(iif)

()

v)

Execution under the standard instruction set with no support for
monitoring.

Execution under the monitoring microcode with ' no monitoring
primitives active. Performance is affected by the bitmap access on

access faults and the checking of the data trap flag.

As case (ii) but a global variable is monitored. This variable is never
updated but does cause 93712 access faults, due to references to the

monitored page.

A global variable is monitored as part of a monitoring expression. This
requires monitoring software intervention to perform the expression
evaluation each time the variable is updated. The monitored page is
accessed 423565 times causing the same number of access faults, whilst

the monitored variable is updated 208 times.

A local variable is monitored, requiring monitoring software intervention
to calculate the address of the local variable on procedure entry. This

occurs 178 titnes with 19704 access faults.

A local variable is monitored as part of a monitoring expression. The
variable is updated only once during execution of the procedure but the

procedure is called 138 times, and 417 access faults take place.

As in previous sections the degradation can be explained by the number of
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access faults for the target program and the number of transfers of control
for the monitoring software. Table VI shows the above results and the
estimated timings assuming the availability of architectural support described

as "hardware 4" in the previous section.

Table VI
Microcode Hardware
Case || Software | Target | Target deg | Overall deg | Target | Target deg | Overall deg
(sec) (sec) (%) (%) (sec) (%) (%)
1 - 6.30 - - 6.30 - .
ii - 13.45 113 113 6.30 0 0
iii - 15.90 152 152 © | 665 6 6
iv 4.50 23.35 271 342 7.80 24 95
v 14.55 16.65 164 395 6.35 1 232
vi | 1135 | 1550 146 326 6.30 0 180

The above figures show that the execution time of the target program can be
lowered to an acceptable level through the use of hardware support (a
maximum increase of only 24%). However, the influence of the monitoring
software becomes the dominant factor iu the overall degradation. Thus the
performance is determined by the number of transfers of control to the

monitoring software and not the execution time of the target program.
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Case 2

A benchmark program is executed with the same six conditions as for the
first program above. However, the benchmark program consists of fewer
variables updated in loops, thus causing a higher number of access faults per

second of execution. The six monitoring conditions are given below.

(i) Execution under the standard instruction set with no support for
monitoring.
(ii) Execution under the monitoring microcode with no monitoring

primitives active,

(iif) As case (ii) but a global variable is monitored. This variable is never
updated but does cause 3601265 access faults, due to references to the

monitored page.

(iv) A global variable is monitored as part of a monitoring expression. The
monitored page is accessed 300008 times causing the same number of

access faults, whilst the monitored variable is only updated once.

(v) A local variable is monitored, requiring monitoring software intervention
to calculate the address of the local variable on procedure entry. This

occurs only once with 8821267 access faults.

(vi) A local variable is monitored as part of a monitoring expression. The
variable is updated 150 times during execution of the procedure, which is
called only once, and 8821561 access faults take place.

Table VII shows the above results and the estimated timings assuming the

availability of architectural support described as before, i.e. "hardware 4",
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Table VII
Microcode Hardware
Case || Software | Target | Target deg | Overall deg | Target | Target deg | Overall deg
(sec) (sec) (%) (%) (sec) (%) (%)
i - 3730 - - 3730 - -
i - 90.05 141 141 37.30 0 0
i - 171.60 360 360 50.15 34 34
iv 0.05 97.60 162 162 3835 3 3
v 0.11 283.30 660 660 68.85 85 85
vi 2.90 284.35 662 670 68.85 85 R

In contrast to the first case the impact of the monitoring software is
negligible and the overall degradation is due to the high number of accesses
to monitored pages, resulting from the clustering of target program variables

and the number of references to them.

6.7. Cost of Monitoring

The microcoded implementation described in this chapter has shown a
monitoring overhead of between 113% and 141% even with no monitoring
primitives active. For the same case studies this overhead increases to
between 152% and 360% when a primitive is active. The use of architectural

support, as described in chapter 5, removes any overhead when monitoring
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primitives are not active and reduces the overhead for the case when a
primitive is active. For the case studies in this chapter the overhead was

reduced to between 6% and 34%. This level of performance degradation is

likely to be acceptable in most non real-time environments.

Architectural support for the three monitoring primitives does not, however,
affect the overhead incurred by the monitoring software. One of the case
studies showed a performance degradation of over 200% for local variable
monitoring, even after the assumption of architectural support for the
monitoring primitives. A similar monitoring predicate for the other case
study showed an overhead of less than 100%, and so it is difficult to predict a
general percentage overhead for the monitoring software. This overhead,
however, is incurred only when primitives are invoked, and almost any system
of monitoring (without the use of expensive parallel hardware) is likely to

lead to significant overheads at this stage.
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7. Conclusions

The research described in this thesis has been directed towards the design of
software tools and hardware support for program execution monitoring.
Execution monitoring has applications in program testing, to establish test
data coverage and to uncover data flow anomalies; in program debugging, to
locate and identify program bugs; and in performance analysis. In recent
years, however, the emphasis has been on the writing of correct code, with an
increase in the use of specification aids, structured programming techniques,

and research into formal methods of establishing program correctness.

Despite these developments it would appear that it is still necessary for
software to enter the testing, debugging and evaluation stages of
development. However, there has been less research into these stages than
other stages have enjoyed. Due to an increase in the use of modern high-
level languages the semantic gap between the programmer’s abstract view of
the software and the execution monitoring tools available has increased.
Monitoring systems developed for assembly language programs are now

totally unsuitable for high-level language monitoring.

In chapter 2, the requirements for an execution monitoring tool, operating at
the level of modern software, were identified. These include the provision of
full control over target program execution, the ability to view the entire
working space of the target process, the ability to monitor in a language
independent but language sensitive manner, and the ability to monitor

programs which have had optimisation techniques applied to them during
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compilation. Research into the latter two requirements has produced systems
which are language sensitive (for example, RAIDE and VAX DEBUG) and
can monitor optimised versions of programs (for example, NAVIGATOR).
However, the level of control and observability offered by many monitoring
systems still resembles that of the classical monitoring tools, developed for
assembly language programs. Monitoring methods still involve the setting of
simple code breakpoints on source statements and the tracing of global
variables. Systems which do offer monitoring facilities for high-level software
often resort to extremely inefficient modes of operation such as simulation or

the single-stepping of machine instructions.

Facilities for the kind of control required have been implemented to some
extent for software in a real-time environment. Due to the nature of this
software it is important that monitoring is non-intrusive, and so this often

results in specialised parallel hardware, which is prohibitively expensive in

most circumstances.

The aim of the work described in this thesis was to examine ways of
providing monitoring facilities allowing the required level of control over the

the target process and with an acceptable performance overhead, and without

the need for extensive hardware support.

In chapters 3 and 4, the software structures required to implement a
monitoring environment with these requirements were examined. The
general requirement for user-level interaction was postulated to take the

form of a WHEN command which performs some monitoring action when a
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monitoring predicate is satisfied. To enable the monitoring of a general
predicate, three levels were identified at which monitoring predicates may be
specified. These are the primitive level, expressed in terms of the execution
steps taken at the machine level; an absiract level, expressed in terms of the
notation and semantics of the high-level language in use; and a conditional
level, which describes a process state involving sequences of abstract level

predicates.

At the primitive level it was found sufficient to provide a set of three
monitoring primitives: the code breakpoint, the data breakpoint and the
watchpoint. A predicate at the abstract level can be implemented simply by
translating it into one or more of the monitoring primitives. This requires
information defining the relationship between source and object program and
also in certain cases the mirroring of the stack operation of the target
process. At the conditional level, the translation is further complicated by the
absence, in general, of any representation of the condition as a single
monitoring primitive or set of primitives. For this reason we introduced the
idea of an event-graph for monitoring conditional level predicates. Each
node of the graph represents an event, or specific state of the process control
and data space, which can be recognised by simple inspection of the target
process state using one of the monitoring primitives. The arcs of the event-
graph indicate the chronological sequencing of the events, enabling predicatc;,s
to be monitored which do not, in general, preserve the process state
information during execution. It has been shown that the form of event-

graphs introduced in this work enables a representation of the monitoring of
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program conditions involving procedures, recursion, dynamic variables and

other features of high-level language programming.

To enable a practical implementation of the above system it was necessary
for the monitoring primitives to incur only a small performance overhead.
Methods of implementing architectural support for the primitives were
examined in chapter 5 and a method described for use with a virtual memory
architecture. This method involved alt.ering the virtual to physical translation
mechanism to "watch" for monitored locations. An additional monitor bit
was added to the page table entries of the virtual memory management
system which indicates a primitive located on that particular page. A
breakpoint memory could be accessed if this was the case to determine
whether a breakpoint was active on the word of the page, and if so a trap-like

interrupt was caused to enable the transfer of control to the monitor process.

An experimental system to determine the effectiveness of the ideas
introduced was implemented on the High Level Hardware Orion, a user-
microprogrammable machine. The monitor and target process
synchronisation was provided by fairly conventional means, using UNIX
system calls. The monitoring software structures and associated algorithms
were implemented in the C programming language and the support for the

monitoring primitives provided in microcode.

Evaluation of the effectiveness of the methods implemented was performed
for a typical machine instruction; an actual program, run under the

experimental system, to determine whether the results from the single
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instruction case could be generalised to program execution; and two case

studies.

The results obtained were encouraging, showing that the experimental
implementation offers high-level monitoring for a reasonable performance
cost. The figures, however, showed that performance degradation could be
substantially reduced by the provision of simple hardware support, consisting
of: an extra condition flag, indicating a trap is to be taken; an extra monitor
bit in the page table entries; and a fast memory implementation of the
breakpoint memory. The typical "background" interference (caused by
references to monitored pages), with this support in place, is estimated at
only 15%. This figure might even be tolerated in a real-time environment

where a slight performance degradation during development is usually

acceptable.

The design of the high-level noiation required for interaction with a program
for the purpose of execution monitoring was largely outside the scope of the
research described here. However, the implementation of a complete
monitoring system using the structures developed in this work requires'the
definition of a suitable form of user interface. Particular issues in the design
of this include the use of graphical images, and the method of making the

system available to a number of high-level languages.
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Appendix: Selected code fragments

- This appendix contains selected procedures from the experimental system
described in chapter 6. | |
The procedure ‘take_primitive’ is called due to a transfer of control from the
target process. The address and type passed to this procedure is obtained via
the area reserved for communication between the two processes (see section
6.1.3). The list of logical traps associated with the actual trap is traversed,
the trap identifier accessed and passed to a procedure ‘taketrap’ which
performs the necessary actions within the event-graph.

The procedure ‘set_primitive’ takes as parameters the trap ide 1tifier, address
and type. A logical primitive is set by adding the identifier to the list of
logical traps. Only if necessary is an actual primitive set.

The procedure ‘databrkpt’ takes an address and updates the bitmap
representation of the additional monitor bit, and adds an entry to the

breakpoint memory.
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take_primitive

take primitive( address,type )
unsigned address ;
int type ;
{ .
/* This procedure attempts to find a trap taken by the machine in the
list constructed by software. If no trap exists then we cannot
continue as machine and software are out of sync * /.

int index ;
int found ;
struct trap *temp ;

FALSE ;
address & WORD_IN_PAGE ;
temp = table_of_traps[type][index] ;

while( temp != null_trap ) {
[* Search through list of traps with same word—in—page for the

address given. Any found are passed to the procedure “taketrap”™ * |
if( ((*temp).address == address ) {

taketrap( (*temp).trap_number,address ) ;

found = TRUE ;

temp = (*temp).overflow ;

if( !found ) {
printf("***FATAL ERROR in take_primitive***\n") ;
printf("Took machine trap for which no software trap existedn”) ;
printf("address = %x\type = %s\n",address, print_type[type]) ;
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set_primitive( trap_no,address,type ) set_primitive
int trap no ;

unsigned address ;
int type ;
{

int index ;
int set ;
struct trap *temp ;

/* Set a primitive at the address given and of the type given.
This primitive is identiﬁed by the number given. )
An actual primitive is only set if one does not already exist,
otherwise the identifier is simply added to the list of
ldenuﬁers Jor that primitive * [

index = address & WORD_IN_PAGE ;
= TRUE ;
temp = table_of_traps[type](index] ;

while( (temp != null_trap) && set ) {
[* Search the list of identifiers to see if a trap is already
active at that address * /
if( (*temp).address == address ) set = FALSE ;
temp = (*temp).overflow ;

/* Add the identifier to the list of identifiers * |
temp = ( struct trap * ) malloc ( sizeof( struct trap ) )
(*temp).address = address ;
(*temp).trap_number = trap_no ;
If( type == PRIM_CODE )
(‘nemp) instrs = ptrace( MRD,pid,address,0 ) ;
(*temp).overflow = table_of_ traps[type][index] ;
table_of traps[type][mdex] temp ;

M( set ) {
/* A primitive is required at the location specified * |
switch( type ) {
case PRIM_CODE :
/* Set a code breakpoint and replace instruction by the code
breakpoint instruction * |
codebrkpt( address,ptrace( MRD,pid,address,0 ) ) ;
ptrace( MWR pid,address, TRAP ) ;
break ;
case PRIM_DATA :
/* set a data breakpoint * |
databrkpt( address ) ;
break ;
case PRIM_WCH :
/* set a watchpoint * |
watchpt( address ) ;
break ;



databrkpt(address)
unsigned address ;

{

unsigned
unsigned
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index ;

entry ;

unsigned memval ;
unsigned bitmap ;
unsigned mask ;

/* Set a

data breakpoint at the address given * |/

/* Place segment bits (2 MSBits) at top of page * |

if( address
bitmap
else
bitmap
if( address
bitmap
else
bitmap

&

&

]

0x80000000 )
address | 0x08000000 ;

address & ~0x08000000 ;
0x40000000 )
bitmap | 0x04000000 ;

bitmap & ~0x04000000 ;

bitmap = bitmap >> 10 ; /* Remove word—in—page bits * |

mask = bitmap & OxIf ;

bitmap

bitmap = bitmap & OxIfff ; /* “bitmap® contains offset into the bitmap

representation * |

bitmap = bitmap + BITMAP ; /* Add ‘bitmap’ to the address of the bitmap

mask = 1 << mask ; /* ‘mask’ is a 32-bit word with the appropriate bit set

representation * [

for accessing the bitmap representation * [

ptrace(MWR ,pid,bitmap,ptrace(MRD,pid,bitmap,0) | mask) ; /* Set this bit

using the
‘ptrace” system
cal */

index = address & WORD_IN_PAGE ; /* ‘index’ contains word-in-page of

original address * |

enry = DATATABLE + index ; /* “entry” contains the address of the

breakpoint memory entry to access */

memval = ptrace(MRD,pid,entry,0) ; /* ‘memval’ contains the breakpoint

memory eniry at this address * |/

while( ( memval & ACTIVE ) != 0 ) {
I* Search breakpoint memory (following overflow chain if necessary)
for either the end of the chain or an entry which is not active * [
if( ( memval & OVF_ACTIVE ) == 0 ) break ; .
enry = DATAOVFLOW + ( ( memval >> 1 ) & OVF_MASK ) ;
memval = ptrace(MRD,pid,entry,0) ;

)
i ( memval & ACTIVE ) == 0 ) {
[* If an entry is found which is not active then insert the new
entry here * |/
memval = memval | ACTIVE | DATABIT | (address & PAGE) ;
ptrace(MWR ,pid,entry,memval) ;

else {

/* Add a new link 1o the overflow chain and insert the new entry %/
memval = memval | ( datastackpr << 1 ) | OVF_ACTIVE ;
ptrace(MWR,pid,entry,memval) ;

entry = DATAOVFLOW + datastackptr ;
ptrace(MWR,pid,entry,(ACTIVE | DATABIT | (address & PAGE))) ;
datastackptr++ ;

/* ‘mask’ contains bottom 5 bits of page number * |/
bitmap >> 5 ; /* Remove these 5 bits */

databrkpt
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