
THE ROLE OF HIERARCHIES

IN DISCUSSION AND ANNOTATION

Thesis submitted in accordance with the
requirements of the University of Liverpool

for the degree of Doctor in Philosophy.

BY

MAHMOUD MOH'D MHASHI

B.S, Yarmouk University, 1984
M.S, University 01 eo lorado at Boulder, 1988

Department of Computer Science
University of Liverpool November 1991.

ABSTRACT

Networked, graphical workstations allow people to collaborate in ways hereto

fore not possible, and one of the common tasks which such computer-supported col

laborative work addresses is document production. In many settings people work as

teams in discussing, writing, and annotating documents. This thesis explores the

requirements for such a system with an emphasis on the knowledge structures, par

ticularly hierarchical knowledge structures, which people want. In developing these

requirements, a rapid prototype and test methodology was used. Two software sys

tems, called HERD and MUCH, were created to support multiple experiments and

case studies.

HERD (Hypertext Environment for Reasoned Discourse) is a specialized,

issue-based information system which represents a discussion as a hierarchical net

work. In a controlled experiment, HERD well supported an informal discussion

about requirements documents. A case study was also performed in which HERD

was used to annotate approximately 600 paragraphs of an on-line hypertext.

Although HERD provides a useful environment for discussion, it is not especially

suitable for annotation.

The MUCH (Multiple Users Creating Hypertext) system was developed to sup

port collaborative authoring and includes features for discussing, authoring, and

annotating. The Annotation subsystem was tested by performing an experiment on a

few sections of the same on-line hypertext used in the HERD experiments. The

users found the MUCH system to be significantly better than the HERD system in

supporting annotation.

Additionally, word-based indexing strategies were applied to the discussion and

annotation texts, and indices were automatically produced. An algorithm developed

by Mili organized these index terms into a hierarchical, semantic net. According to

human subjects the semantic net correctly reflected meaningful relationships among

the texts. Users were able, via the semantic net, to effectively browse and search

the texts.

A theoretical model of hypertext, based on the above explorations and analyses,

has been suggested. In combining discussion and annotation, this model facilitates

the design of a single computer system for both discussion and annotation. Systems

based on this model would support efficient discussion and annotation activities and

provide users with functionalities that other hypertext models do not.

November 27, 1991

ACKNOWLEDGEMENTS

I would like to express deep gratitude to my supervisor Professor Roy Rada for his
continued and invaluable advice, help and encouragement throughout the period of
this research.

I would like to acknowledge the funding support given to me by Mu'tah University,
Jordan.

I am grateful to my all colleagues and all the members of staff in the Department of
Computer Science at liverpool University for their assistance.

Finally, I would like to acknowledge the unending patience, influence and under
standing shown by my parents, my wife Asma K/oub, and my children Salsabil,
Tasnim, /sizrag, and Noor.

Table of Contents

Chapter 1 -- Introduction ••••..•••••••••.•••••••••••••••••••••••••••.••••.•••.•••••••••••••••••••••.••••••••••• 1

Background .. .
Literature Review
Aims and Objectives .. .

Tool Development
Experimentation with Human Users
Studies in Cognitive Science ...
Theoretical Modeling ..

Preview of Topics

Chapter 2 - Hypertext Systems ...
2.1. Introduction
2.2. Hypertext Functions

2.2.1. Primitive Functions
2.2.1.1.
2.2.1.2.
2.2.1.3.

Creating Nodes ..
Creating links
Structures .. .

2.2.1.4: Annotating ..•..................................
2.2.1.5. Reading

2.2.2. High-l..evel Functions
2.2.2.1. Discussion Systems .. .
2.2.2.2. Authoring Systems ~
2.2.2.3. Annotation Systems
2.2.2.4. Browsing and Searching Systems .. .

2.3. Existing Hypertext Systems ... ;
.. 2.3.1. Emacs INFO

2.3.2. EUCUD
2.3.3. gIBIS

...
..

... 2.3.4. Hyperties
2.3.5. IBIS ..

... 2.3.6. InterNote
2.3.7. KMS ...
2.3.8. Outline Processor ~ .. .
2.3.9. Quilt ...
2.3.10. SYNVIEW ..
2.3.11. WE ...

2.4. A Model of Hypertext

1
3
7
9
9
10
11
13
13

14

14
15
16
16
16
17
17
18
19
19
21
22
22
25
25
27
28
30
32
33
36
38
39
40
41
42

Chapter 3 - Discussion in Hypertext Systems ..
3.1. Introduction
3.2. HERD Tool .. .

3.2.1. Data Model
3.2.2. High-Level Functionalities

3.2.2.1. Discussion Function •..•..................
3.2.2.2. Authoring Function
3.2.2.3. Browsing Function

Case studies ..•................................... 3.3.
3.3.1.
3.3.2.

Case Study 1: Requirements Discussion
Case Study 2: Decomposition

3.3.3. Case Study 3: HERD as an Annotation System
3.4. HERD Experiment .. .

Chapter 4 - Annotation in Hypertext Systems •..........................•..........•.........•
4.1. Introduction ...•
4.2. MUCH System

4.2.1.
4.2.2.

Overview
Data Model ...

4.2.3. System Functions ...

4.3.
4.4.

4.2.3.1.
4.2.3.2.

Accessing
Annotation an.d Discussion ...•..

4.2.3.3. Writing
Case Study: MUCH as a Discussion System
Annotation Node lYPes

4.5. Investigations of Annotational Organization and Content
4.5.1. Experiment 1: Annotation Organization
4.5.2. Experiment 2: Annotation Content

Chapter 5 - Browsing and Searching •..
5.1. Introduction
5.2. Algorithms

5.2.1.
5.2.2.
5.2.3.

Indexing Algorithm
Mili's Algorithm

..
... , .. .

The RELATION Algorithm ..
5.3. Experiments ~~ > •••••••••••••••• ' ••

5.3.1. Accuracy and Usefulness of indexing and STATBUILDER ...
5.3.1.1. Experiment 1 .. .
5.3.1.2. Experiment 2 .. .

5.3.2. Usefulness of Index Terms and Relationships Experiments
5.3.2.1. Experiment 1 .. .
5.3.2.2. Experiment 2 .. .

5.3.3. Similarities of Discussion and Annotation
5.3.3.1. Experiment 1 .. .
5.3.3.2. Experiment 2 .. .

45

45
48
49
50
50
52
54
58
59
63
64
67

70

70
72
72
74
77
77
79
82
84
89
93
94
103

106

106
109
109
111
113
114
115
116
116
119
120
121
121
122
123

Chapter 6 - A Discussannotation Hypertext Model ..
6.1. Introduction
6.2. General Requirements

6.2.1. Re-analysis of Previous Work
6.2.1.1.
6.2.1.2.

Discussion Handiling
Annotation .. .

6.2.1.3. Similarities of Discussion and Annotation
6.2.2. User Environment for the Model

Practical Issues .. . 6.3.
6.3.1.
6.3.2.
6.3.3.
6.3.4.

The Storage Issue ..
The Presentation Issue
The Storage and Presentation Specification
The User-Model Interaction

Chapter 7 - Discussion, Conclusions, and Future Work
7.1.
7.2.

General Discussion
Discussion of Results

..
7.2.1. Discussion Hypertext Systems
7.2.2. Annotation Hypertext Systems
7.2.3. Browsing Hypertext Systems ..
7.2.4. Discussannotation Hypertext Model ...

7.2.4.1.
7.2.4.2.

Hierarchy and Efficiency of the Model
The Power of the Model .. .

7.3. General Conclusions .. .
7.4. Future Work .. .

References

Appendix 1: List of Figures

Appendix 2: Glossary- .. .

Appendix 3: HERD Algorithms

Appendix 4: MUCH Algorithms .. .

Appendix 5: Indexing Algorithms : .. .

129

129
132
133
134
136
138
141
146
150
154
158
163

166

166
168
169
178
188
190
191
194
195
197

201

209

211

213

235

240

CHAPTER 1

Introduction

1.1. Background

The widespread use of computer technology and its applications is growing very

rapidly in the modern workplace. Because of this it has become increasingly impor

tant that computer hypertext systems are designed to be easy to learn and use, and

to satisfy user needs. Many hypertext models have been designed, many hypertext

systems have been developed, and several universities have created laboratories for

research on hypertext.

The complexity of software systems is one of the major problems of hypertext

systems. The two key issues associated with this problem are:

1) transfer of user control: sometimes users need to access the function of a

second tool while using one tool. This is considered to be an aggravation and a

waste of time, regardless of the ease or difficulty associated with the switch and

2) transfer of data: sometimes users may need to transfer data from one tool into

another tool to be used for additional tasks. Users can become annoyed by this

transfer of data, irrespective of the ease or difficulty of the transfer.

BullenBullenl990 observed thai a lack of integration is a barrier to the use of

some systems that have been designed to support collaborative work.

In order to build a hypertext system that is easy to learn, easy to use, and satisfies

the users' needs, the number of functions in a system needs to be made as large as

possible. In other words, the number of functions of a system needs to be maxim

ized. Furthermore, the knowledge needed to operate these functions needs to be

November 27, 1991

Chapter 1: Introduction Page 2

made as simple as possible by minimizing its cognitive complexity. This might be

done by designing one model that supports these different functions.

From an examination of the existing hypertext systems it can be seen that both

Discussion and Annotation are manipulated as different activities; both of them,

however, are needed in document creation. Most of the problem solving systems do

not explicitly support making Annotation and some of the Annotation systems (such

as Quilt) do not support Discussion either. This raises some questions such as:

1) How similar are Discussion and Annotation?

2) Is combining them in a single system useful for collaborative work or not?

3) Is combining both of them in one single system possible or not?

4) If so, then what kind of constraints (such as node and link types) need to be

imposed on the combined system?

This led to the exploration of the differences and similarities between Discussion

and Annotation, with the goal of developing a hypertext model for supporting both.

In existing Discussion and Annotation systems, different strategies can be

found, such as those for supporting structure and node and link types. Current

hypertext systems and models either support only hierarchy, non-hierarchy, or both.

In the same manner, current hypertext systems support a range of typing strategies.

There may be no support for typing at all, or support for a fixed set of node and link

types, or users may be given the option to use whatever they want. Thus, the ques

tion is suggested: what is the best strategy for supporting structuring and typing? In

other words, is it possible to come up with a strategy that can satisfy all or most

options in structuring and typing? This leads to the examination of issues such as

the role of hierarchy in Discussion and Annotation hypertext systems and models.

November 27, 1991

Chapter 1: Introduction Page 3

1.2. Literature Review

Hypertext systems also help users organize information for the writing task.

They can also help in tasks for organizing information into representations more for-

mal than those used in writing. Such tasks include analyzing policy decision-making,

capturing early design decisions, and computer-aided design.Jordan1989 Three main

subprocesses- planning, translating, and reviewing - are identified in the problem

solving aspect of writing. Streitz1989 These processes are not subsequent stages but

they show up during the whole course of writing.Kellog1987

In the writing task, initially, a Discussion occurs to set up an agenda and to

determine the general goals and requirements. After the first draft of the document

is prepared, annotations are collected to guide revision of the document. Radal991a

Many hypertext systems and models have been developed and implemented. Most

of these hypertext systems support either Discussion or Annotation such as

IBIS Kunz1970 , gIBIS, Conklin1988 SYNVIEW,Lowe1985 Quilt, Fish1988 and

InterN ote. Catlin 1989

Some hypertext systems were designed for facilitating Discussion such as gIBIS,

but they do not support making Annotation. On the other hand, some hypertext sys

tems were designed for making Annotation such as Quilt, but they do not support

Discussion. The hypertext systems that partly support making Annotation in addi

tion to other activities are very few: One such system is KMS.Aksc88 But there is no

hypertext system nor any hypertext model that fully supports both Discussion and

Annotation.

Examining the existing hypertext systems and models, different variations can

be found. One of these variations is the node and link typing strategy. Some hyper

text systems (such as IBIS, gIBIS, and InterNote) support using a fixed set of node

November 27, 1991

Chapter 1: Introduction Page 4

and link types. Some systems (SYNVIEW and Quilt) do not support using node and

link types at all. Others left node and link typing as an option for the users. So,

what is the best strategy for supporting node and link types in hypertext?

Another important variation is the kind of structure that is supported by the

existing hypertext systems and models. Some of them support hierarchical structures

only such as, SYNVIEW and Quilt. Some other systems support only non

hierarchical structures, such as HypertiesShneiderman1986, and others support both

hierarchical and non-hierarchical structures such as gIBIS. So, what kind of struc

ture will best represent hypertext?

The directionality is sometimes important for the links, which can distinguish

between the hierarchical and the non-hierarchical structures. One of the latest

definitions of hierarchy made by Mark AddisonAddisonl991 was that the hierarchy is

essentially a directed edge labeled graph which consists of a pair (V,E) and a root

where

1) V is non-empty and

2) the element of E constitutes a directed edge, of not necessarily distinct ele-

ments of E, E ~ Vx V.

In addition each edge e E E has an associated label. The term root may define the

upper-most level in a hierarchy or may be used to define all nodes in a forest of

trees. Thus, the systems should support ~o types of root node: natural root (the

first node created in time) and defined roots (user-defined roots).

The term hierarchy refers to different types such as hierarchical

decompositionsCooper1989, hierarchical abstractions.Rasmussen1985, and hierarchical

trees.Acarl990 Hierarchy has also been used in different ways. In artificial intelli

gence, hierarchical structures have been used to reveal different details of reasoning

November 27, 1991

Chapter 1: Introduction Page 5

and explanation. In other fields of study, for instance in physics, hierarchies present

efficient methods of storing information and data at relevant levels.

Therefore, it is important to be precise about the way in which the concept of

hierarchy is being used. The type of hierarchy that has been adopted here is

hierarchical trees. It can be defined with respect to a syntax and a semantics:

1) the syntax of hierarchical tree as defined by KnuthKnuth1973 is a finite set T of

one or more nodes such that:

a) there is one specially designated node called the root of the tree and

b) the remaining nodes, excluding the root, are partitioned into m ;::: 0 dis

joint sets T 1, ••• , T m and each of these sets in turn is a tree. The trees

T 1, ••• , T m are called the sub trees of the root.

2) the semantics of the hierarchy is the set of full meaning relationships which

connect the nodes with each other such as a Position responds to an Issue or an

Argument supports a Position. The node's content and type should be con

sistent. If the node type is a Position, then the text should be written in the

form of answering an Issue). The link which connects the two nodes should be

created according to the defined set of relations which connect the nodes with

each other. Furthermore, the two nodes and the link which connects them

should be consistent (i.e if the two nodes are Issue and Position, then the con

tent of the Position should responds to the content of that Issue).

However, both kinds of structures (hierarchy and non-hierarchy) are important

in the hypertext systems. Discourse theorists have identified a host of stable pat·

terns that writers employ on every level of text. These range from sentences and

paragraphs, up to grand schemas that outline the structure of an entire text, such as

a fairy tale, a resume or a policy argument.Trigg1986a They have described heuristics

November 27, 1991

Chapter 1: Introduction Page 6

which support navigational browsing between the hierarchical and nonhierarchical

links. Empirical studies of reading comprehension confirm that readers understand

and learn from texts more easily when the information is set out in well-defined

structures. The text should also provide clear signals of transition from one part to

the next. Charney1987 To read such a document one not only has to make sense of the

text at each node, the document must be navigated without confusion. When the

text is unstructured, readers can lose track of where they are in the network (and

where they have been). As a result, they often read a great deal of material that is

not relevant to their purpose.Yankelovich1985 A large body of research suggests that

readers construct hierarchical representations of the text they read. Hierarchical

representation is well-suited for writers who wish to argue a single point and pro

vides the reader with a sense of the whole by including high-level

overviews. Krzywiec1983

Frank Halasz, one of the developers of NoteCards, gathered 1577 nodes. Con

necting these nodes were a total of 3460 links, 2521 of which syntax hierarchical

links, 261 of which were syntax non-hierarchical, and the remainder were mail links.

This example suggests that hierarchical structures are very important in organizing a

hypertext network but non-hierarchy is needed also.Conklin1987b The disorientation

problem, which is less likely in the hierarchical structures, is a major usability prob

lem with the non-hierarchical structures. However, despite the advantages of the

hierarchical structures, many hypertext systems support only non-hierarchical struc

tures.

The non-hierarchical structures are important and sometimes are required, but

are less common than the hierarchical structures. Some users would like to see mul

tiple perspectives of the same arguments consisting of arbitrary granularities and lay

outs. The meaning of the arguments can be seen through the relationships between

November 27, 1991

Chapter 1: Introduction Page 7

them. Such relationships can not be represented by the hierarchy alone. With the

important value of the non-hierarchical structures, some hypertext systems support

only hierarchical structures. On the other hand, some of the hypertext systems sup

port both hierarchical and non-hierarchical structures. However, most of these

hypertext systems do not specify when the hierarchical or the non-hierarchical struc

tures should be used and when not.

Finally, two general functions are associated with hypertext systems:

1) the ability to retrieve information in a large information space and

2) the ability to create non-sequential text.Knuthl990

The most common method of retrieving information in the hypertext systems is

browsing via link traversal. Hypertext systems permit users to easily traverse a large

network of nodes containing text, graphics, and/or images. A link might guide the

reader to an appropriate node. When a jump to a node is made, the reader can

continue to follow further links. Since jumps can be disorienting, it is important that

the readers have a clear sense of where they are jumping to and that they can easily

return to where they have jumped from. Faloutsosl990 So, is there any other method

except for using the link that can guide readers to the desired information?

1.3. Aim sand Objectives

The objectives for this research can be listed as follows:

1) To make a survey of existing hypertext systems and models and to make a com

parative analysis in terms of their data models, functionalities, and user inter

face;

2) To test what kind of structure will best represent of Discussion and Annotation;

November 27, 1991

Chapter 1: Introduction PageS

3) To test which strategy is the best for supporting node and link types. In other

words, should the system support a fixed set of node and link types, or should

the users be given an option to use whatever node and link type they want, or a

combination of both these strategies;

4) To examine the role of hierarchies in both Discussion and Annotation;

5) To develop a new method for browsing;

6) Applying the new browsing method on the regular text, Discussion text, and

Annotation text;

5) Exploring the similarities and the differences between Discussion and Annota

tion.

6) Defining the general requirements for combining both Discussion and Annota-

tion in one single computer system.

7) Developing a hypertext model that supports both Discussion and Annotation.

There will be many advantages in achieving these aims and objectives, such as:

1) The complexity of the system, which is one of the major problems of hypertext

systems, will be diminished by reducing the number of modes. Particularly, the

two key issues that are mentioned in Section 1.1; transfer of user control and

transfer of data; will be eliminated;

2) The quality of the produced document will be increased by using the three

activities; document creation, Annotation, and Discussion; in one single hyper

text system; and

3) The user satisfaction will be increased by increasing the number of system func

tionalities.

November 27, 1991

Chapter 1: Introduction Page 9

1.4. Overview of the Methodology

In order to achieve the aims and objectives that are mentioned earlier, different

strategies were formulated. Two software systems were implemented and a set of

experiments and case studies were performed to test a set of different issues regard

ing Discussion and Annotations. Three different algorithms were used to develop a

new browsing method and to examine different issues regarding the similarities and

the differences between Discussion and Annotation. Finally, a model of hypertext

was developed with the consideration of the results from this and other work.

Different methods were used to measure the success in resolving the problems.

Some of these methods are: quantitative assessment, statistical tests, and efficiency

measurement. Some of were made automatically and others made manually. The

key-strokes might be one way to measure the efficiency.

1.4.1. Tool Development

Most of the hypertext systems, not only focus on one activity such as Discussion

or Annotation, but also support only one strategy, such as supporting one kind of

structure, hierarchical or non-hierarchical. A Discussion system and an Annotation

system were developed and implemented to be used as tools to test a set of different

issues in Discussion and Annotation.

A system called HERD was developed by the author. HERD (Hypertext

Environment for Reasoned Discourse) is an issue-based information system (IBIS)

which supports informal Discussions about requirements documents. HERD is simi

lar to most existing hypertext systems in that the text is attached to the nodes.

HERD supports hierarchical structures and the semantics of non-hierarchical struc

tures. A set of case studies and experiments were performed using HERD to

November 27, 1991

Chapter 1: Introduction Page 10

examine the role of hierarchy in a Discussion and to explore issues related to Dis

cussion.

The author has participated in the development of a system called MUCH.

The author was responsible for the sub-system which supports making Annotation.

MUCH supports authoring and Annotation. Some experiments and case studies

were performed to explore of issues regarding Annotation, to answer some questions

about Annotation, and to examine the role of hierarchy in Annotation.

1.4.2. Experimentation with Human Users

In order to test different issues and to answer different questions regarding Dis

cussion and Annotation, two sets of experiments and case studies were performed

using HERD and MUCH. In the experiments, prior knowledge about the

hypothesis means that it is possible to predict whether or not it will be supported.

In the case studies in the other hand, the lack of prior knowledge about the

hypothesis means that it is not possible to make such a prediction. This is the key

difference between the experiments and the case studies.

The first set of experiments and case studies tests the different issues regarding .

Discussion, while the second set tests the different issues regarding annotation. The

first set consists of three case studies and one experiment (Sections 3.3 and 3.4

respectively). The first case study (Section 3.3.1) tests:

1) using the semantics of hierarchy in discussing requirements,

2) using a fixed set of node and link types strategy, and

3) the role of hierarchy in Discussion within one group.

The second case study (Section 3.3.2) tests using the hierarchy in Discussion within

more than one group. The third case study (Section 3.3.3) tests using the Discussion

November 27, 1991

Chapter 1: Introduction Page 11

system HERD as an Annotation system in a task involving creating annotations.

The experiment (Section 3.4) tests:

1) using both the syntax and the semantics of hierarchy and

2) using the opened optional of node and link types strategy.

The second set consists of one case study and two experiments (Sections 4.3

and 4.5 respectively). The case study tests:

1) the usefulness of using the Annotation system MUCH in a task of creating

annotations and making Discussion and

2) the strategy of allowing the user to choose the fixed and/or user-defined node

and link types strategy.

The first experiment (Section 4.5.1) tests:

1) using a fixed set of node and link types,

2) the usefulness of using a specific set of Annotation node types, and

3) the role of hierarchy in Annotation.

Finally, the second experiment (Section 4.5.2) tests:

1) the strategy of allowing the user to define node and link types and

2) the importance of using three different approachs for making annotations.

1.4.3. Studies in Cognitive Science

Hypertext augments text by connecting it to a semantic net. In MUCH (Sec

tion 4.2), a collaborative authoring hypertext system, text points to links (instead of

nodes) in the semantic net. Building a semantic net, or a knowledge base, is a

time-consuming, conceptually challenging task.Rada1987 Further, connecting text to a

semantic net consists of no less than conceptual content analysis, an equally chal-

November 27, 1991

Chapter 1: Introduction Page 12

lenging task. Information retrieval research has shown the value of indexing stra

tegies based on word frequencies in textual documentsSalton1983 Such methods have

the advantage of practicality and ease of implementation. However, they describe

documents by a flat set of index terms, instead of relationships between concepts as

required by MUCH. An algorithm developed by Mili organizes a set of index terms

in a hierarchy based on frequencies of co-occurrences in document indices.Mili1987

In Chapter 5, the extent to which word-frequency indexing may be augmented with

Mili's method to provide both a relational indexing for documents,. and a semantic

net for browsing was explored.

Two software algorithms- Salton's and Mili's algorithms- were used to build a

semantic net. The first algorithm (Section 5.2.1) was used to index text blocks for a

draft textbook entitled "HYPERTEXT from Text to Expertext", Discussion text,

and Annotation text. The second algorithm (Section 5.2.2) was used to organize the

set of index terms in a hierarchical semantic net. Another algorithm (Section 5.2.3)

developed by the author was applied to the semantic net and the index vocabulary to

draw the relationships among the text blocks.

Six experiments (Section 5.3) were performed to test the new method of brows

ing and its application on regular text, Discussion text, and Annotation text. The

first two experiments (Section 5.3.1) were performed to test the accuracy of the first

two algorithms. The next two experiments (Section 5.3.2) were performed on regu

lar text to test the accuracy of the new method of browsing. The last two experi

ments (Section 5.3.3) were performed to test the application of this method of

browsing on both Discussion and Annotation with the goal of finding some similari

ties and/or differences between the two.

November 27, 1991

Chapter 1: Introduction Page 13

1.4.4. Theoretical Modeling

The number of similarities between Discussion and Annotation was significant
(

and this led to the development of a Discussannotation model (Section 6.3) which

supports facilitating Discussion and making annotations. The requirements that have

been placed on this Discussannotation model (Section 6.2) come from the results of

this work and the general literature on hypertext systems. This model is more effi

cient in some respects and has greater functionality than other models. Such func-

tionalities are necessary for document creation.

1.5. Preview of Topics

In this Chapter the topics, the objectives, and the methodology are previewed.

Chapter 2 presents a comparative analysis for some of the existing hypertext systems

and models, and an overview of a model of hypertext. Chapter 3 explores some

issues and answers some general questions about Discussion in hypertext systems.

In a similar manner, Chapter 4 explores some issues and answers some general

questions about Annotation in hypertext systems. A new method of browsing and its

application on both Discussion and Annotation has been described and tested in

Chapter 5. Additionally, further explorations regard the similarities and the differ

ences between discussion and Annotation have been made in this Chapter. In

Chapter 6, a model of Discussannotation hypertext which supports both Discussion

and Annotation, and its general requirement specifications were described. Discus

sion and conclusions are presented in Chapter 7, together with directions for future

work arizing from this thesis.

November 27, 1991

CHAPrER2

Hypertext Systems

2.1. Introduction

Hypertext is a valuable contribution to the information age, allowing readers to

access related information through machine-supported links. Zellweger1989 Yet, there

is a lack of consensus as to a specific definition of hypertext.Begorayl990

ConklinConklin1987 defined hypertext in terms of its features. These include: A net

work of textual or graphical nodes;

2) Windows correspond to nodes on one-to-one basis;

3) Window operations are supported (repositioned, resized, etc.);

4) Any number of link icons on each window;

5) The ability for the user to easily create new nodes and links; and

6) The ability to browse the database by following links, searching and navigating

using browser.

Smith and WeissSmith1988 defined hypertext as an approach to information

management in which data is stored in a network of nodes connected by links.

Akscyn and YoderAkscyn1988 suggested a set of features for defining hypertext.

These included information chunked into small units interconnected by links; users

build information structures by creating units and they might access these units

simultaneously; and users navigate by selecting links. MaurerMaurerl990 defined

hypertext as a graph of nodes and links, and software for its management and view

ing. Knuth and BrusshKnuthl990 defined hypertext in terms of its features. They

have acknowledged that it is impossible to find a set of features other than browsing

November 27, 1991

Chapter 2: Hypertext Systems Page 15

and authoring which were embodied by all hypertexts.

Many hypertext systems have existed and new hypertext systems are appearing.

The hypertext systems can be classified according to their applications area: macro

literary systems; problem exploration tools; browsing systems; general hypertext

technology; information presentation systems; and information collection and

management tools. Conklin 1987, Carlsonl990, Begorayl990 Another method of classifying

hypertext is to consider the cognitive activities they support: reading; annotating; col

laborating; and learning.Carlsonl990

From an examination of the hypertext systems, it would appear that there is no

hypertext system which fully supports the various activities needed in document crea

tion: namely Discussion; Authoring; Annotation; Browsing and Searching. Further

more, as already mentioned in Chapter 1, there are many varieties of hypertext sys

tems and supported text models. To help understand the different functions sup

ported by the hypertext systems, Section 2.1 provides a description of the low-level

and the high-level functions while Section 2.3 provides details of how the hypertext

systems currently being used to implement these functions and highlights their varia

tions. One of the latest models of hypertext will be described in the Section 2.4.

2.2. Hypertext Functions

To help clarify the ambiguous nature of hypertext systems, Section 2.2.1 pro

vides a general definition of the primitive functions and related terminology. Section

2.2.2 provides a classification of hypertext systems in terms of their high-level func

tionalities, and provides a general definition for these functions.

November 27, 1991

Chapter 2: Hypertext Systems

2.2.1. Primitive Functions

Page 16

This Section provides some definitions that identify the basic hypertext objects

and their interrelationship within hypertext systems.

2.2.1.1. Creating Nodes

Hypertext consists of a number of interconnected nodes. Each node mayor

may not contain one or more text blocks. In other words, the text might be attached

to the node and it might be attached to the links. Each node might have a title, a

type, or a name. Nodes appear on the screen in windows. A node might be larger

than the window or it might be constrained to the size of the screen or window. In

the first option, the hypertext systems must provide some mechanism for scrolling

through the node's content.

Nodes are sometimes called something different such as Frame in KMS or Card

in HyperCard. Composite nodes is a mechanism for aggregating related information

in hypertext. By using this mechanism, several related nodes may be 'glued'

together into composite nodes, and treated as a single node. The composite node

has its own name, type, and identifier.

2.2.1.2. Creating Links

linking is the essence of hypertext. links are sometimes called relations.

Each node may be linked to one or more nodes. The text might be attached to the

link rather than be attached to the node. The links between nodes can be directed,

bidirected, or undirected. The direction encodes whether the specified endpoint is

to be considered a source of a link, a destination of a link, both a source and a desti-

November 27, 1991

Chapter 2: Hypertext Systems Page 17

nation, or neither a source nor a destination. The endpoint might be a single point

or a text block. Links may be described by a type, a name, an identifier, or all three.

The links between the nodes allow a user to move from node to node accessing the

information the nodes contain. When a node is displayed, the user requires some

mechanism for activating any links they select. Some mechanisms used by the dif

ferent hypertext systems include a touch-screen, a mouse, menus, or key word

searches. Begorayl990

2.2.1.3. Structures

The purpose of hypertext is to collect nodes about one or more topics and link

them together. Such a collection of linked nodes may be considered as a graph

which may be a hierarchical or non-hierarchical, or perhaps both. Structures other

than a hierarchy can cause user disorientation regarding where they are and where

to go next. To avoid this, some mechanism must be provided by the system for

traversing the graph.

2.2.1.4. Annotating

A prerequisite for annotating text is that the text should be already created.

The hypertext Annotation systems or those hypertext systems that support making

annotations allow users to annotate others work. Computer annotation facilities

may vary radically in the interface style. In one simple approach, the original docu

ment is in one file and all comments are in a separate file. In another approach

each annotation is a separate file and may be directly linked to that part of the origi

nal document to which they most pertains. In viewing such annotations, windows

are appropriate, and each comment appears in its own window with an explicit link

November 27, 1991

Chapter 2: Hypertext Systems Page 18

to another window that contains the relevant portion of the original document.

A relatively straightforward alternative to annotative windows involves allowing

an annotator to make changes to the original copy. However, all changes are

recorded so that either the original document or any of the changes can be

recovered. The system records the activities of the annotator and separately main

tains an unmolested version of the original document. Radal991a

2.2.1.5. Reading

Reading implies the traditional sequentia~ line-by-line coverage of a document

from page 1 to the end, in an unbroken stream. As with annotating, prerequisites

for reading are:

1) text should be already created and

2) it should be possible to locate a point of interest, bring the text to the screen,

and to start reading from that point.

However, on-line hypertext systems present texts non-linearly. Thus, the readers are

required to specify what information that want to read and in what order. Browsing

and searching help readers to find the required information. Browsing can be more

or less focussed. It may range from open curiosity about any or all of the elements

within a hypertext collection, to a constrained search for one particular element.

Searching is understood in the relatively strict sense of starting with a specific ques

tion in mind and interacting with an information base to find the answer in a fraily

straightforward mannerDuchastel1990

November 27, 1991

Chapter 2: Hypertext Systems

2.2.2. High-Level Functions

Page 19

Hypertext systems can be classified according to their functions. There are

four broad activities supported by the developed hypertext systems: Discussion;

Authoring; Annotation; and Browsing and searching. This Section provides a brief

description for each one of these activities.

2.2.2.1. Discussion Systems

Discussion systems might include models for planning and problem-solving.

The planning model would support the determination of document requirements and

general goals,Radal991a the setting up of an ·agenda, and the co-ordination of the

whole authoring activities. Thus, the planning space contains the overall goal struc

ture and plans for the writing process.Streitz1989 The author has the option to stay

with his/her original intentions or he/she is free to change and modify his/her initial

decisions. Haye1979

The Problem-solving model might serve as the medium for exploring the cap

ture of design history (the decisions, rejected options, and tradeoff

analysis).Conklin1987 Or it might serve as a conversation among the stakeholders

(designers, authors, or discussants), in which they bring their respective expertise and

viewpoints to the resolution of design problems.Kunz1970 The generated arguments

can be ordered and related to a specific problem based on their validity and

relevance. The assessment is done by a type of quantitative voting.Lowe1985 Thus,

the discussion systems should be able to collect votes from users to support

decision-making.

The decision-making is one of the most important issues in Discussion systems.

If a conflict happened between users, the decision-making is the best solution for

November 27, 1991

Chapter 2: Hypertext Systems Page 20

such a conflict. Also, assigning a decision to a node will be useful in facilitating the

reading process. If decisions are assigned to nodes, participants can go directly to

those issues which are not yet resolved, and to continue the Discussion there.

Decision-making involves two or more persons elaborating on the nature of a

problem, generating and evaluating potential solutions, and formulating strategies for

their implementation. Each of these persons is characterized by his or her own per

ceptions, attitudes, motivations, and personality,Desanctis1987

Four types of group decision making can be observed:

1) a single decision maker within a collective decision environment,

2) non-cooperative decision making,

3) cooperative decision making,Tung1984 and

4) consultation.

In the first type, a particular decision maker ultimately makes the decision and

assumes responsibility for his/her direction. Other decision makers can either sup

port or object to the decision. In the second type of group decision making, the

decision maker plays the role of antagonist or disputant. Objection and competition

are common forms of non-cooperative decision making. In a cooperative environ

ment, the decision makers attempt to reach a common decision in a friendly and

trusting manner, and share the responsibility. Consensus, negotiation, voting

schemes, and recourse to a third party to resolve differences are examples of this

type of group decision making. Finally, the consultation is similar to the first type of

group decision making in that it has only one decision maker. The decision maker

must consult the other participants for their opinions, arguments, etc, in a friendly

and trusting manner. Ultimately, he will make the final decision, after taking into

account the other participants opinions and attitudes.

November 27, 1991

Chapter 2: Hypertext Systems Page 21

Sometimes voting constitutes the end of the decision process, but in most deci

sion situations votes serve the intermediate role of helping to identify areas where

consensus is lacking.Kraemer1988 When confidence measurement is introduced to

weigh votes of individuals, greater interpretive information is available for assessing

the meaning of the votes. Voting is predicated on the assumption that pluralities

signify substantial collective confidence in a given choice. There are more than five

methods of voting such as: 1) yes/no; 2) agree/disagree; 3) percentage; 4) multiple

choice; and 5) rank order.Liou1989

2.2.2.2. Authoring Systems

Authoring can be divided into three phases: preauthoring, preparing a first

draft, and reworking subsequent drafts. Each phase can involve four categories of

processes: collecting, planning, translating, and annotating.Kellogg1987 Hypertext

authoring systems are generally intended to help users organize information for the

writing task,Jordan1989 analyze policy decision making,Marshall1987 capture early

design decisions,Conklin1987 and computer-aided designpelisle1986

Authoring is one of the major functions of hypertext. Systems primarily

designed for authoring focus on tools that allow users to create node and links, edit

them, and organize them into network structures and revise these structures and

their content. Some examples of authoring tools are: TEXlNETTrigg1986 for idea

processing, WESmith1987 for document preparation, and NeptuneDelisle1986 for sup

porting the design and documentation of large scale software systems.

November 27, 1991

Chapter 2: Hypertext Systems

2.2.2.3. Annotation Systems

Page 22

Annotation is one of the most important activities in authQring. Annotating

concerns reading the evolving text, evaluating the text and plans, and correcting

errors.Kellogg1987 Annotation hypertext systems focus on recording ideas dynamically

generated while reading text, including critique, explaining difficult passages, sorting

user-produced mnemonic aids, and communicating with the library manager and/or

other users. Carlson 1990

Some examples of Annotation systems are:

1) QuiltFish1988 for supporting social roles and providing annotations and messag

ing among the users;

2) InterNoteCatlin1989 helps users making annotations on each other's documents;

and

3) PREpNeuwirthl990 for supporting a variety of co-authoring and commenting

relationships for scholarly communication.

2.2.2.4. Browsing and Searching Systems

Browsing via link traversal is the most common method of retrieving informa

tion in a hypertext environment and it is the primary characteristic that distinguishes

hypertext from a traditional database.~uthl990 Browsing and Searching are two dif

ferent styles of access to hypertext. Browsing involves jumping from place to place

and only reading small segments in each of those places. Searching occurs when a

user knows the label for some information and wants only that specific

information. Radal991a

The textual nodes and links that are stored in databases can be browsed in dif

ferent ways by using either the graphical browser and windows, windows and link

November 27, 1991

Chapter 2: Hypertext Systems Page 23

icons, or a combination of both. Conklin1987 In hypertext systems which include a

graphical browser and windows, the browser often provides a graphical structure to

the nodes and their interconnecting links on the screen (see Figure 1). 'Clicking' on

a node in the browser causes the text attached to the selected node to be displayed.

In the second method that using windows and link icons, the data attached to the

selected node will be displayed on the screen in a separate window. If that node is

linked to one or more nodes, then the link icons will appear on that window. 'Click

ing' on that link icon causes a new window to be created and filled with the text that

is attached to the node to which the link icon points. In the method using a graphi

cal browser and link icons, the content of a node can be displayed on the screen

either by 'clicking' on a node in the graph or by 'clicking' on the link icons in a win

dow.

November 27, 1991

Chapter 2: Hypertext Systems Page 24

r-----------'r----------------,
(N4)

el ~e5
~e3~
~

Nl
•••••••••••••••••••••••••••
•••••••••••••••••••••••••••
•••••••••••••••••••••••••••

•••••••••••••••••••••••••••
•••••••••••••••••••••••••••
•••••••••••••••••••••••••••

Nl
•••••••••••••••••••••••••••••

N3

•••••••••••••••••••••••••
e1 ••• 11 ••••••••••••••••••••

••••••••••••••••••••••••• ffi-
• ••••••••••••••••••••••••

-0
• ••••••••••••••••••••••••••••

, L __ + _____________ ~
•••••••••••••••••••••••••••
•••••••••••••••••••••••••••

L ________ __ '\-...1
Display screen with browser "

\
\
\
\
\
\
\ ,

\ , ,
\
\ .,.

\ ,

\ Display screen without browser , , , , , , , , , , , , , , , , , , t--------,
, I

I
I
I
I
I
I

r
I
I
I
I
I
I
I
L ------ _______________ ...1

Hypertext Database

Figure 1 "Viewing nodes and links": The links and the nodes in the data
base, as in "Hypertext Database", can be viewed by: 1) using graphic
views as in "Display screen with browser", 2) windows and link icons as in
"Display screen without browser", or 3) a combination of both graphics
and link icons.

November 27, 1991

Chapter 2: Hypertext Systems Page 25

2.3. Existing Hypertext Systems

Some hypertext systems have focused more on the development of the user

interface issues, while others have focused on the storage issues. Table 1 identifies

various functions of the different hypertext systems which have been implemented.

2.3.1. Emacs INFO

Emacs INFOStallman1981 is a powerful editing subsystem. It is heavily used in

research facilities that run the UNIX operating system. It has a simpler set of stan

dard commands, and its control input is done by single letters or short commands

typed at the keyboard. It is primarily syntax hierarchical, but a user can jump to a

different node in the hierarchy by typing the name of the destination node.

In Emacs-INFO a link to text that is an expansion of a particular topic may be

presented on a menu, which consists of a list of node names. When a menu item is

selected, the INFO program searches for the required node and presents its content

on the screen. At the top of a node, call it node X, are labels that begin with either

ttPrev:'~ ttNext:'~ or HUp:" (see Figure 2). Following the colon is the title of another

node. Prev: points to a node meant to be sequentially previous to the node X. Con

versely, Next: points to the node sequentially following X. The Up: label is followed

by the name of the node that contains the menu entry for X. An option exists to

jump to any node in the system by giving its node name. Additionally, the user may

request via a "previous-in-time" command to see the node last visited. If the user

had been at node Y before going to node X, then activating the "previous-in-time"

option returns the user to node Y.

November 27, 1991

F
U
N
C
T
I
o
N
S

Annotation

Discussion

Authoring

Syntax
Hierarchy

Non-
Hierarchy

Discussion
Types

Annotation
Types

Link

Types

Node
Types

Graphical
Browser

String
Search
Browser

Attributes

Composition

Anchoring

Emacs EUCUD glBIS
Info

X X

X X

X X X

X X X

X X X

X

X

X

X

SYSTEMS

Hyperties IBIS InterNote KMS Outline Quilt SYNVIEW WE HERD MUCH Dexter

Processor

X X X X

X X X X X X

X X X X X X X X

X X X X X X X X X X

X X X X X

X

X X X X

X X

X X

X X X

X X X X

X X

X

Table 1 "Hypertext Systems and their functions-.

Chapter 2: Hypertext Systems

o
o

Prev: ... , Next: ~p:

.~ (!) G·
Menu

~ !J •• . ' :.::::

o

Figure 2 "Emacs INFO": The Emacs INFO structure is suggested by
these 3 rectangles which represent nodes of text and links. The links are
indicated by circles and solid arrows. The dotted arrows go from the
name of a link type to the placement of that link in a node.

2.3.2. EUCLID

Page 27

EUCUDSmolensky1987 presents a hypertext system designed to support a

specific task: development of reasoned discourse. EUCUD's environment provides

a canvas on which the user may construct arguments and a palette of tools from

which to choose building blocks for the arguments. The EUCUD computer screen

is controlled by a constraint-based layout system and the palette is defined in the

"Argument Representation Language" (ARL). EUCUD does not attempt

automatic reasoning. While argumentation is the application of EUCUD, it could

equally apply to developing papers or decision-making. The project aims to develop

a powerful general framework in which hypertext systems may be defined. In con

structing an argument, two kinds of knowledge are brought to bear: knowledge of

the subject domain, and knowledge of the argumentation per se. A general purpose

argumentation tool helps the user by virtue of its knowledge of argument structure,

not argument content. "The DIVIDE" separates content information at the bottom

November 27, 1991

Chapter 2: Hypertext Systems Page 28

from structure information at the top. An example of assertions below the Divide

is:

Zero interest rates lead to bull markets.

An example of statement above the Divide is:

Claim Cl supports claim C2'

The meaning of information below the divide is difficult abstractly to characterize,

while the information above the divide is hypothesized to be similar across people

and domains. The ARL statement corresponding to "Claim C1 supports Claim C2"

uses the formal term claims and relates two such terms with the formal predicate

supports. Other ARL terms include argument and author. Other ARL predicates

include asserts and main-point. Since the content of each claim is not expressed for

mally but as natural language, ARL is a semi-formal language.

The nature of EUCUD applications requires many small nodes with as many

as several hundred nodes displayed at once. This is too large for people to con

veniently represent without the help of a data manager. EUCUD allows multiple

perspectives of the same argument consisting of arbitrary granularities and layouts.

For instance, the support for a given argument can be easily displayed.

2.3.3. glBIS

Jeff Conklin and Michael Begman have developed the IBIS method to explore

Issue-based methodologies for capture of design rationale, and to support computer

mediated team workConklin1988 One of the radical extensions to IBIS in gIBIS is

the adding of some more node and link types to those which already exist such as:

November 27, 1991

Chapter 2: Hypertext Systems Page 29

1) surrogate type of node that contains non-IBIS material;

2) Positions can be generalized or specialized by other Positions, and likewise with

Arguments; and

3) an escape mechanism for participants who cannot find a way to express a

thought within the IBIS.

However, these node and link types, in both IBIS and gIBIS, are fixed and the user

cannot change them by modifying them or by adding new node and link types.

The Discussion system gIBIS uses color to indicate the type of IBIS nodes and

links, and relational database to facilitate building and browsing through typed IBIS

network. gIBIS uses four windows interface:

1) a graphical browser to provide a visual presentation of the IBIS graph structure;

2) a node index window to provide an ordered, hierarchical view of the nodes;

3) a control panel which is composed of a set of buttons which extend the tool's

functionality beyond simple node and link creation; and

4) an inspection window in which the attributes and contents of nodes and links

can be viewed.

The gIBIS system uses special browsers to display global and local views of graphs,

and the user can 'zoom' and 'pan' across a graph.

The resolution of an issue can be represented and displayed by combining with

the aggregation in Issue-Position-Argument nodes, and then one can indicates that

the Issue is resolved. This is done by changing the value of the resolved field to

TRUE and indicating which of the Issue's Positions was the one selected as the

resolution. In gIBIS, there is no specific node type for goals and requirements, nor is

there particular support for making a decision (or reaching consensus) among the

various positions of an issue. There is also no way of indicating that such a decision

November 27, 1991

Chapter 2: Hypertext Systems

has been made.

Page 30

Finally, gIBIS supports both kind of syntax structures- hierarchical and non-

hierarchical. Filtering the secondary links from a canonical IBIS subnet results in a

syntax hierarchy, and this syntax hierarchy is the basis for the index window's struc

tured linearization. The primary link is the first link which connects a node into the

network. The secondary links are the subsequent links which connect a node to oth

ers in the network.

2.3.4. Hyperties

The development of HypertiesShneiderman1986 began in 1983 at the University of

Maryland. It was developed for browsing instructional database and to serve as a

platform for investigation hypertext interfaces.

In Hyperties the basic units are short articles (50-1000 words), which are inter

connected by any number of links. The links are highlighted words or phrases in the

article text. The user activates the links by touching them with a finger- on a

touch-sensitive screen or using the Arrow-jump keys to jump to them. The AITow

jump keys allow the cursor to jump to the closest highlighted string in the direction

pressed.

Each article is divided into three fields: a title, a definition (which briefly

describes the article), and the body of the article. When a user selects a Hyperties

link, the destination article's title and short description are shown in a separate win

dow. Confirming the selection causes the source article's display to be replaced by

the destination article (see Figure 3). An article about a topic may be one or more

screens long. As users traverse articles, Hyperties keeps the path and allows rever

sal. Users can also select articles from an index.

November 27, 1991

Chapter 2: Hypertext Systems

Introduction

Hyperties is based on the jump-cursor

model of screen interaction. The user

selects a highlighted term and is

then offered a definition at the bottom

of the screen for the related artie/e.

NEXT PAGE CONTENTS

Introduction

Hyperties is based on the jump-cursor

model of screen interaction. The user

selects a highlighted term and is

then offered a definition at the bottom

of the screen for the related article.
Screen Interaction: human-computer interaction
NEXT PAGE CONTENTS

Page 10f2

INDEX

Page 10f2

INDEX

Screen Interaction Page 1 of 1

The screen carries information between
the user and the computer. Methods of

interaction include menus and commands.

NEXT PAGE CONTENTS INDEX

Figure 3 "Hyperties Example":. In the top screen the the italicized
(highlighted) terms are 'screen interaction', 'article', 'NEXT PAGE',
'CONTENTS', and 'INDEX'. If the user selects 'screen interaction', then
the next screen differs from the first only by the addition of a brief note
near the bottom of the screen about 'screen interaction'. If the user now
activates this brief note, then the next screen is the article with that term
as its title.

November 27, 1991

Page 31

Chapter 2: Hypertext Systems Page 32

2.3.5. IBIS

Werner Kunz developed Issue-Based Information Systems (IBIS) to handle sys

tems analysis in the face of 'wicked problems'. Kunz11970 Kunz describes wicked

problems as problems which cannot be solved by the traditional systems analysis

approach - define the problem, collect data, analyze the data, and construct the

solution. IBIS guides the identification, structuring and settling of issues raised by

problem solving groups, and provides information pertinent to the Discussion. Ele

ments of the IBIS model are topics, Issues, questions of fact, Positions, Arguments,

and model problems.

The IBIS model uses a fixed set of node and link types. It uses three types of

nodes; Issues, Positions, and Arguments; and nine types of relationships to link the

nodes - responds-to, questions, suggests, supports, objects-to, specializes, generalizes,

refers-to, and replaces.

IBIS supports both hierarchical and non-hierarchical structures in conjunction

with each other. It does not provide methods to convert non-hierarchical structures

into hierarchical structures. Furthermore, it does not distinguish between the struc

ture on the display and the structure in the storage.

An issue is resolved by selecting one of the positions that responds to it as being

the best answer. There is, however, no specific way of registering that an issue has

been resolved by agreement upon some position, nor is there a stopping rule other

than for considerations that are external to the problem. The goals of the Discus

sion are for each of the participants to try to understand the whole problem better,

to exchange information and to argue his or her viewpoint, ideas, concerns, in order

to persuade others of one's own point of view.

November 27, 1991

Chapter 2: Hypertext Systems Page 33

2.3.6. InterNote

The InterNote is one of the hypertext systems which is designed mainly to sup

port Annotation. InterNote helps groups of annotators comment on each other's

annotations and satisfies a set of requirements.Catlin1989 Some of these require

ments are:

1) annotations can be created with any available editing tools, including those for

creating text, graphics, and animation;

2) annotations may be added to annotations;

3) any number of annotators may simultaneously add annotations to a given docu-

ment;

4) the author may easily incorporate an annotation into the document. The

author may also merge or sort annotations; and

5) multiple interfaces are available for viewing annotations.

For instance, the user may see simultaneously the source document and the annota

tion. The user may also see other users' annotations.

For creating an annotation, the user makes a selection in a document and

selects the 'Create Annotation' command. An annotation consists of two frames:

the Incorporation Frame which fills the top portion of the Note window and the

Commentary Frame which fills the bottom portion of the Note window (see Figure

4). When a Note is first created, the Incorporation Frame initially contains an exact

COpy of the material from the article which has been elected to annotate. The anno

tator may edit the contents of the Incorporation Frame and, in the Commentary

Frame may include general suggestions for revising the document. Authors can

incorporate the contents of the Incorporation Frame automatically and they must use

'copy' and 'paste' to incorporate the contents of the Commentary Frame.

November 27, 1991

Chapter 2: Hypertext Systems

Article

Hypertext History

Annotation
Author V ate

Hypertext History

The article title
mal be accurate but
isn t catchy enough.

Page 34

Incorporation
Frame

Commentary
Frame

Figure 4 "InterNote Screen": Depiction of InterNote Annotation struc
ture. Original text is on the left. The annotation is on the right.

In InterNote, links, called the local anchor and the remote anchor, are made

between document objects. To traverse a link, a user selects a link and picks the

"Follow" command. To transfer data across this link, a user selects the link and

issues the Push or Pull command (see Figure 5). The Push command copies the

Contents of the local anchor and pastes it at the other end of the link, replacing the

Contents of the remote link anchor. Pull has the opposite effect and copies the con

tent of the remote anchor over the local anchor.

November 27, 1991

Chapter 2: Hypertext Systems

document A document B

B~EJ

Figure 5 "Push or Pull": In the top diagram, the rectangle in document A
is linked to the ellipse in document B. Document A contains the 'local
anchor' and a pull will move the ellipse from document B to document A.
Conversely, a push will move the rectangle from document A to document
B.

Page 35

In viewing such annotations, windows are appropriate, and each comment

appears in its own window with an explicit link to another window that contains the

relevant portion of the original document. Internote has different strategies in link

ing one annotation to another annotation or to the base document. In addition to

using the links for navigation, they can be used to transfer data. On the other hand,

InterNote does not allow users to modify the existing Annotation node and link

types, nor to add new node and link types.

InterNote supports two major types of annotations: suggested changes in the

same data type as the original document, and textual commentary for notes com

ments, non-specific suggestions, and justification. Finally, both syntax hierarchy and

non-hierarchy are supported by this system. The annotator can either make a navi

gationallink from or to an existing annotation or annotate an existing annotation.

November 27, 1991

Chapter 2: Hypertext Systems Page 36

2.3.7. KMS

KMS (Knowledge Management System)Akscyn1988 is a commercial version of

ZOG system developed at Carnegie Mellon University from 1972 to 1985. KMS is

designed to help organizations manage their knowledge. At Knowledge Systems

KMS used for different aspects including document production, product design, and

Software engineering.

A KMS database consists of a set of interlinked, screen sized workspaces called

frames; what is called in other hypertext systems nodes. There is only one type of

frame in KMS. Frames is a unit of combination of text, graphics, and image items,

each of which may be linked to another frame. While any kind of link can be used,

KMs particularly supports syntax hierarchical links. Users interact with the data

base by navigating from frame to frame, manipulating the contents of frames, and

creating new frames. Tools also exist for inheriting characteristics from one frame

to another and for importing material from other sources, such as text files, into

frames.

Each frame may have six different functional parts (see Figure 6) includes:

1) The frame title describes the frame topic;

2) The frame name is a unique identifier for the frame, as a page number is a

unique identifier for a page in a book;

3) The frame body expands on the topic of the frame;

4) The Tree buttons link to frames at the next lower level of the hierarchy;

S) The Command buttons initiate actions, such as exiting KMS; and

6) The Annotation buttons begin with an '@' and provide notes or cross

references.

November 27, 1991

Chapter 2: Hypertext Systems Page 37

The workstation screen is normally split into two windows, each of which shows a

frame.

Fr title body Fra e name

Registration Packets Cont'24 Exhibit hall diagram Conf30

Tree
buttons

Checklist of items for registration A rough draft of the exhibit hall has
been provided.

o Cover letter

o Registration form

o Exhibit hall diagram

@ Other activities

Command
buttons

o Booth sizes

o Electric outlets

@Previous problems

Save Exit Next Home

Annotation
buttons

Figure 6 "KMS Screen": An illustration of a prototypical screen in
KMS.Akscynl988 Tree buttons are preceded by a hollow circle, while anno
tation buttons are preceded by an '@' sign.

In addition to specifying within a frame the children of that frame, KMS pro

vides only one other view of the contents-a listing of the entire hierarchy of frame

titles. There is no graphical browser. The outline of the database is not presented

on the screen as a two-dimensional graph. In early versions of KMS graphical views

Were available, but studies showed that the graphical views were rarely used.

The source for a KMS link can be any region of text in a frame. The destina

tion of a link can be another entire frame. The destination of a link can also be

computer program in that when the link is activated, the program is executed. A

frame is considered to be a small enough unit that the whole frame, rather than any

November 27, 1991

Chapter 2: Hypertext Systems Page 38

part of it, can sensibly serve as the link destination. In KMS there are two types of

links: tree and annotation. Tree links point to lower-level frames in a hierarchy, such

as a Chapter of a book. Annotations point to peripheral material, such as com

ments. These two link types distinguish between structural relationships and purely

associative relationships. Unks may be more than one line of text and allow the

author to provide substantial semantic information about the link.

The KMS user interface is based on the direct manipulation paradigm. Users

navigate from frame to frame by pointing the mouse cursor at an item linked to

another frame and clicking the mouse button. Editing and browsing are done in the

same mode. By exploiting contextual constraints, over 90 per cent of the user's

interaction requires a single point-and-click. The average time per meaningful

operation is less than it would be for pull-down menus.

2.3.8. Outline Processor

Outline ProcessorHershey1985 is a word processing tool which is specialized for

organizing blocks of text and processing outlines, in that its main commands deal

with movement among, creation of, and modification of outline entities. Because

text is a critical part of the final product, outline processor incorporates some text

editors and do some text formatting, so that the user can use the same tool to go

from outline to finished document. One of the most powerful features of the outline

processing is the ability to collapse or expand an outline at any headline level. The

users can view the top n levels, or they can open up just those entities that are useful

to the idea that they are working on. Each entity in the outline can have a textual

body of any length associated with it, and the users can make this text appear or

disappear with a single keystroke.

November 27, 1991

Chapter 2: Hypertext Systems Page 39

Most outline processors are personal computer tools, and they are growing in

popularity. Their range of capabilities varies widely. ThinkTank and Executive

Writer/Executive Filer offer slightly different solutions to the problem of managing

textual information. ThinkTank presents a method of organizing ideas into a struc

ture for writing. Executive Filer has a flexible retrieval system for large volumes of

information, and Executive Writer is a powerful word processor. Most outline pro

cessors do not support inter-entity references, and only a few others provide win

dows for nodes. None of them provide explicit "mousable" link icons.

2.3.9. Quilt

QuiltFish1988 is a computer-based tool for collaborative writing, which provides

annotation facilities to support information sharing among the collaborators on a

document. In addition, sets of social roles are used to provide views of a document

tailored to individual collaborators of the document based upon their position in a

permission syntax hierarchy.

In Quilt, three social roles are defined- author, commenter, and reader- as well

as six objects- base document, suggested revision, directed messages, private com

ment, public comment, and history. The set of editing operations include creation,

modification, deletion, reading, browsing, searching, copying, moving and attaching

Comments and messages. Quilt uses information social roles to determine the types

of activities that are allowed on the types of objects by various types of collabora

tors. Quilt defines three types of collaboration types:

1) exclusive, in which only the author of a Section in the base document can

modify it;

2) shared, in which any author can modify any Section; and

November 27, 1991

Chapter 2: Hypertext Systems Page 40

3) editor, in which a designated editor can modify any Section and other authors

may only make suggested revisions.

Quilt supports syntax hierarchical structures, in which the base document can

be annotated and annotations can be annotated recursively. As Quilt supports dif

ferent types of annotation, but it does not support node and link types. Finally,

Quilt supports browsing. When browsing through a Quilt document, the user is

shown the structure of annotations associated with an object, either using an outline

or a graphical overview of the links between the nodes.

2.3.10. SYNVIEW

The SYNVIEW system was introduced by David Lowe.Lowe1985 It allows users

to maintain a Discussion and to indicate their degree of support for each item in the

Discussion. The method is similar in concept to IBIS, but the direction is different.

The participants have to assess previous postings as to their validity, in addition to

posting items. For example, if a participant posting an issue and one of the others

responds with an argument, he or she should assign a grade to his response. If the

argument makes a good point but is not really a direct response to that issue, a

"10,-10" grade (where 10 is a high validity rating and -10 is a low relevance rating)

might be assigned for that argument.

Users can request certain types of changes to the structure or content of the

Discussion and submit these changes for assessment by the other participants.

Depending upon the significance and the relevance of each item of information to

each topic, the users can choose the depth to which they wish to examine these

structures for the purposes at hand. Where SYNVIEW gives its users some gui

dance as to which depth they can choose, IBIS and gIBIS leave that as an open

November 27, 1991

Chapter 2: Hypertext Systems Page 41

option to its users to choose whichever they prefer.

The goal of the Discussion in SYNVIEW is to collect the best available evi

dence on each issue which is at hand. Another more radical goal is to organize the

content of many evidences on any given issue into a single syntax hierarchical struc

ture. However, there is no way of indicating that such evidence has been reached.

2.3.11. WE

WESmith1987 is a hypertext writing environment that can be used to create both

electronic and printed documents based on a specific cognitive model of the writing

activity. The reading activity is described as the process of taking the linear stream

of text. The text that is comprehended is a hierarchy integrated into a network of

long-term memory. The writing activity involves the iterative and recursive applica

tion of the cognitive modes (prewriting, organizing, and writing and editing) to a

series of intermediate products.

WE contains two major view windows, one graphical and one hierarchical, and

lllany commands for moving and structuring material. Using the prewriting mode,

the writer can create nodes and title them. The writer can also position a represen

tation of the node anywhere in the network window. The tree mode helps the user

build a single, integrated hierarchical structure for the document. Nodes created in

either the non-hierarchy or the tree are just titles representing ideas. The editor

lllode provides access to a standard text editor by selecting a node in either the

non-hierarchy or tree modes and selecting the edit option. In the text mode, the

document is presented in linear form.

November 27, 1991

Chapter 2: Hypertext Systems Page 42

2.4. A Model of Hypertext

DexterHalaszl990 has provided one of the more recent hypertext models. The

goal of the model was to provide a principled basis for comparing systems as well as

for developing interchange standards. This model has three layers: a runtime layer,

a storage layer, and a within-component layer, as illustrated in Figure 7. The

storage layer concerned with the network of nodes and links. The run time layer

concerned with the mechanisms that support the user's interaction with hypertext.

The within component layer covers the content and structures within hypertext

nodes.

The storage layer is composed of a finite set of a hierarchy components and

two functions, a resolver function and an accesser function which are jointly respon

sible for retrieving components. The components are interconnected by relational

links. A component is either an atom (node), link, or a composite component. A

node contains generic data such as chunk of text, graphics, images, or animations.

This model is different from some other models in that the text is attached to the

node not to the link. Composite components are constructed out of other com

ponents. Each component may have arbitrarily many attribute-value pairs. A link is

divided into parts, each of which points to a node (see Figure 7).

November 27, 1991

Chapter 2: Hypertext Systems

Unk22

Atom 77

Runtime Layer

Presentation Mechanism

Storage Layer

Anchoring Mechanism

Within Component Layer

Storage
Layer

Within
Component
Layer

Figure 7 "Dexter Model": Depiction of link connecting two nodes in
upper part of Figure. The components in the storage layer contain vari
ous attribute-value pairs. The lower part of the Figure shows the layers
and their interfacing mechanisms for the Dexter model.

Page 43

Between the storage and runtime layers is a "presentation mechanism" and

between the "storage" and ''within-component'' layers is an "anchoring mechanism".

Anchors are a mechanism which provide the function of linking between two docu·

Inents or between two spans of characters in different documents while maintaining

a clean separation between the storage and within component layers. The presenta·

tion mechanism presents the hypertext to the. user. The way in which a component

is presented to the user can be a function of the specific hypertext tool that is doing

the presentation. It can also be a property of the component itself and/or of the

access path taken to that component.

The network structure can be accessed, viewed, and manipulated through the

runtime layer. This is done by using the "instantiation" of a component which is the

fundamental concept in the runtime layer. A copy of the component is cached in

November 27, 1991

Chapter 2: Hypertext Systems Page 44

the instantiation, the user views and/or edits this instantiation, and the altered cache

is then written back to the storage layer. Important attribute-value pairs for group

text applications include authors and time/date of creation.

November 27, 1991

CHAPTER 3

Discussion in Hypertext Systems

3.1. Introduction

Discussion as a function of hypertext systems is supported in a number of sys

tems, such as SYNVIEW, gIBIS, IBIS, WE, and Outline Processors (see Chapter 2).

SYNvIEW, gIBIS, and IBIS implement issue-based information, and can be used to

discuss requirements specification documents. Research on requirements specifica

tion is important from both the artificial intelligence and software engineering

perspective. Charney1987 Many of the problems of software system development can

be traced to poor understanding or specification of what the system is supposed to

do.Yeh1980 The earliest phase of requirements acquisition involves a "skull session"

whose goal is to achieve consensus among end users about what they want and need

from the software system.Radal991a

The major phases of software requirements specification are 1) Discussion, 2)

requirements, 3) design, 4) production, 5) testing, and 6) maintenance [Rada1990a]

(see Figure 8). This sequence emphasizes the need to meet the overall defined

requirement; the need for each step to meet the specifications of the previous step;

and the importance of reworking an earlier stage in the light of a later stage. The

Discussion phase was typically neglected in software engineering literature but is

now appreciated as a crucial phase. The key personnel in a company commissioning

the development of a large system must agree on the purpose of the system and

what the features of the system are to be.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems

requirements Discussion

design production

Figure 8 "Software life cycle": The software life cycle often goes from Dis
cussion to requirements to design to production to testing to maintenance
and then again to Discussion as a new system is envisaged.

Page 46

maintenance

testing

From an examination of the Discussion hypertext systems, it would appear that

producing a requirements' specification documents report at the end of the Discus

sion is not one of the goals of some systems. Additionally, there is no particular

method of representing and displaying the resolution, nor is there particular support

for making a decision between the various nodes in the network which represent the

Discussion. Furthermore, there are some variations in what these systems support,

such as:

1) the kind of structure;

2) the node and link types; and

3) the goal of the Discussion.

SUch variations led to the development of a system called HERD. This system

addresses a number of design issues, particularly issues concerning:

1) the kind of network that will best represent the Discussion (hierarchical, non

hierarChical, or both);

2) node and link types issues such as to support or not to support typing, or which

node and link types will best represent Discussion;

3) how the resolution can be represented and displayed;

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 47

4) how the discussant can be assisted in linking new information to the existing

structure; and

5) how the system can assist the reader who wants to browse text on a specific

topic, or wants to find one particular piece of information.

A Discussion might be described as a search through hierarchy of knowledge

states, with the ultimate goal being to provide a solution to the problem. A

knowledge state is the information researchers know or postulate when they are at a

particular stage in their search for a solution. Each state reached in the hierarchy

contains a little more knowledge about the issue than that reached previously and

thus Discussion knowledge states are incremental.

Another way of describing Discussion might be in terms of planning in order to

reach a goal. The goal can be decomposed into sub-goals, which in turn are defined

in terms of their sub-goals, until some basic level is reached at which further decom

Position is not needed. The final goal is often reached by establishing and achieving

a series of sub-goals that represent partial solutions.

Additionally, the Discussion might be described as issue-based information. A

Discussion may begin with someone posting an Issue and another person may post a

Position in response to this Issue. An issue may represent a problem, concern, or

question needing Discussion. A position is a statement or assertion which resolves

an issue. The goal of the Discussion might be to resolve an issue. The resolution of

the issue should enable each of the participants to understand the whole problem

better, exchange viewpoints, and persuade others to adopt alternative points of view.

The focus in this thesis will be on this last aspect (i.e issue-based information

DiSCUssion). As described earlier, the Hierarchy of a Discussion consists of syntax

and semantics. In the hierarchy, a node is a text block which has a label. Both the

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 48

text block and the label might be created separately. Each text block should have a

label but the converse is not necessarily true (i.e a label might be created without

creating a text block). A label might be an Issue, Position, Argument or Comment.

The semantics of the hierarchy is the set of full meaning relationships which connect

the nodes with each other such as a Position responds to an Issue or an Argument

supports a Position

This Chapter provides an introductory description of the HERD tool which is

given in Section 3.2. A description of three case studies to evaluate the system and

to explore some issues about Discussion are described in Section 3.3. In order to

explore more issues about Discussion, one experiment was performed, as described

in Section 3.4.

3.2. HERD Tool

The Hypertext Environment for Reasoned Discourse (HERD) is an issue-based

information system, whose goal is to provide an environment that effectively sup

ports informal Discussion. HERD users may include designers, researchers,

authors, or any intellectual laborers who are analyzing information or processing

ideas. A basic subset of the features of issue-based information systems was incor

porated in the HERD system.

In this Section, the basic features for the HERD system will be described and

illUstrated with simple examples. The HERD system is implemented under Unix on

lIewlett Packard 9000-300 computers. The system makes heavy use of Xwindows,

Emacs, Unix Documenters Workbench, and Xdvi. Xwindows provides a quick

means of developing a mouse-driven user interface. Xdvi is a screen driver which

allows typeset text and graphics to be viewed on the users' computer screen. In

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 49

describing the system, a description of the data model will be discussed first (Section

3.2.1), then the HERD functions: Discussion; Authoring; and Browsing will be

described (Section 3.2.2).

3.2.1. Data Model

Since the syntax hierarchical structures facilitates reading process and dimin

ishes the disorientation (see Section 1.2), HERD supports the hierarchical structures

and the semantics of non-hierarchical structures. The storage is composed of a syn

tax hierarchy of nodes. Nodes contain the chunks of text, graphics, or images.

Nodes are treated as generic containers of data, and there is no differentiation

between text components and graphics components. There is no restriction on the

number of text blocks that a node might contain. Nodes are described by types and

unique identifiers (i.e each node has a unique identifier and a type). Links are

described by types only.

HERD supports a fixed set of node and link types, and the user has no option

to add new types nor to modify the current types. The current prototype supports

three types of links: responds-to, generated-by, and other (see Figure 9), and supports

three types of nodes: Issue, Position, and Argument. Positions can be linked to an

issue by the responds-to link. An issue is generated by a position and may represent

a problem, concern, or a question that needs· Discussion. Each issue is a root for a

SUbtree and can have one or more positions linked to it. A position is a statement or

an assertion that resolves an issue, and can have one or more arguments linked to it.

An issue can be linked to a position by the generated-by link. Arguments are linked

to any kind of nodes with the other link.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems

Issue

ted-by genera responds-to

Position

other

Argument

Figure 9 "HERD's nodes and links": Each of the three node types can be
linked with a subset of the three available link types.

3.2.2. High-Level Functionalities

Page 50

This Section provides a brief description for the different functions supported

by this system: Discussion; Authoring; and Browsing.

3.2.2.1. Discussion Function

The Discussion using HERD might serve as a planning and problem-solving

function. Discussion starts at an initial root node being posted, and proceeds in the

following fashion: users who wish to respond to the text that is already in the tree

construct a new node by filling in a form to write their response and linking this to

the existing node to which it relates most closely.

Discussion using HERD forms a tree, whose nodes are pieces of text (com-

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 51

ments). The structural relationship between the nodes signifies the semantic rela

tionship between the comments. In a typical session with HERD, a user might post

an Issue, such as "What kind of computers our department should by?". A Position

Can be created by that user or another user, such as "We should buy Unix worksta

tions". An Argument can be created, such as "A lot of good software are being

developed for Unix workstations". Another discussant browsing the information

might post another Position in responds to the first Issue, such as "Our department

should by personal computers". The last Position might be supported by an Argu

ment posted by a discussant, such as "Buying low-cost personal computers would

allow everyone to have their own computers".

Initially the scope of the problem may not be well understood and various

issues and opinions may be vague, confused and changeable, and so users of HERD

may create 'proto-nodes'. A proto-node is an arbitrary text block which is not expli

citly linked to any other text block. Each proto-node is tagged with the name of the

person Who wrote it and the time it was written. Thus users can search through the

database of proto-nodes through the author and time tags.

Once an issue (problem or question) has been isolated as the topic for a Dis

cussion, that Discussion is constrained in the HERD system to be part of a hierarch

ical structure. This hierarchical organization may help focus attention and facilitate

decision_ making.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 52

3.2.2.2. Authoring Function

Authoring is another major function of hypertext systems. It focuses on the

information creating and linking aspects. The authoring function allows a user or a

group of users to create and edit the storage of nodes. This function provides the

Emacs editor and the Unix Documenters Workbench in which the text can be writ

ten. Emacs is an extensive text editor that includes a liSP-like programming

language for text and document manipulation. The Unix Documenters Workbench

is a document formatting language in which proportional text, figures, tables and

graphics can be described.

The users enter the HERD system using menus. All the basic features for

HERD are selected by pressing and holding the right button, using the mouse to

highlight the desired choice, and releasing the button. To create a new node, users

select from the menu the "Create-Node". This causes a file (the name of the file is

"fill_form" concatenated to the user-id of the user) to be displayed in a separate

Window. As shown in Figure 10, this file contains four fields:

1) NOde-Parent: the content of this field is the word "Root" if this is the first node

(users will be asked for the project name before this node can be linked). Oth

erwise it is a number appearing on a node on the graph;

2) Edge-type: the content of this field should be one of the edge types mentioned

in Section 3.2.1;

3) Title: an abstraction for what the users want to write in the "Text" field; and

4) Text: users use this field to write their text in response to the contents of the

parent node.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems

Would you please fill this form; you can exit after you

have finished by typing: CTRL x CTRL s then CTRL x CTRL c

_R~e!!!.be!. t~ f2!!0!!!nL _

(1) Node-parent must be a number existing in the graph, or the
word 'Root' if it Is the first node.

(2) Edge-type must be one of the following words or letters:
'R Responds-to G Generated-by other'.

(3) If the node you want to create Is an Issue then, Edge-type
should be 'G' or 'Generated-by'.

(4) If the node you want to create is a Position then, Edge-type
should be 'R" or 'Responds-to'.

(5) If the node you want to create is an Argument then, Edge-type
should be 'other'.

(6) Leave a space after each occurrence of ':' In the fields.

Page 53

OTHERWISE YOU WILL GET AN ERROR MESSAGE
@@@

Node-parent: 1.1.1
Edge-type: Responds-to
Title: Abstract
Text:

IBIS, gIBIS, and SYNVIEWare hypertext tools Implementing Issue-based
Information systems, and they might be used . to discuss the
requirements specification documents. Some of these tools support
only hierarchical structures (for example, SYNVIEW), others (such as

Figure 10 "HERD's Fill-form screen": This screen gives the user some in
formation regarding the rules of connecting nodes and links. At the bot
tom of the screen, four fields need to be filled according to the informa
tion at the top.

To link a node, users select from a menu the "Link-Node" option. If there is

no error in the contents of the fields the node will be automatically linked into the

existing network of nodes. An error might be that the content of the field "Node

Parent" does not exist, or the content of the field "Edge-type" does not follow the

set of legal rhetorical moves in HERD (see Figure 9). In the case of such an error

occurring, an error message will be displayed on a separate window on the user's

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 54

screen which explains:

1) what the error was and

2) what the user has to do.

linking a node to the existing network of nodes causes a unique identifier to be

assigned to that node. Each identifier will be used as a reference to a specific node,

so it can be referred to whenever the user wants to perform an operation on that

node.

3.2.2.3. Browsing Function

The browser allows users to traverse the storage of nodes created by the

authoring function. It provides different facilities to help the users browse the

storage. There are currently three facilities provided: Search; Index; and Author and

Date. They can be selected from a menu. The search facility allows a string search

of the storage. When a user selects the option "Display-Title-Inf', this causes the

titles of all nodes to be displayed on a separate window (see Figure 11). The node

title window provides an ordered, hierarchical view of the nodes in the current

HERD structure. The Issues, Positions, and Arguments are given unique sequence

numbers. The nodes can be selected by searching on these unique identifiers.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 55

******* Title-Information-File ******* r------------------------,
~------ I ~~------------i

NAME TITLE L ______ ~ ________________ ~

I [1]
P[1.1]
I [1.1.1]
P[1.1.1.1]
A [1.1.1.1.1]
P[1.1.102]
A[1.1.102.1]
P[1.1.1.3]
A[1.1.1.3.1]
I [1.1.1.3.1.1]
A [1.1.1.1.3.102]
A[1.1.1.3.102.1]
A[1.1.1.3.102o2]
A [1.1.1.3.102.3]
A[1.1.1.3.102.3.1]
A[1.1.1.302)
A[1.1.1.3.2.1]
A[1.1.1.3.2.2]

What do we want to discuss?
HERD Requirements Guidelines
What main Sections?
Requirements for Scacchi paper
Comments on Scacchi's form
Layout from KBRA
Comment on KBRA's req. form
65CS Req. Layout
Comment on 65CS req. form
What extensions required?
Extension of 65CS req form
Comment on comment on 65cs
Difference with 1.1.1.5
Appealing for finalizing
Reminder for finalization
Nomination of 65cs approach
It is no conclusion
No nomination yet

Figure 11 "HERD's Title-Information": This screen shows the title for
each node. The nodes are ordered according to what each node most per
tains.

The HERD users also have the option of checking the names of the authors of

the nodes, and the nodes' times of creation by selecting the option 'Display-Author

Date-Inf. They can ascertain which issue a participant was addressing and they can

quickly learn whether another participant has responded to their arguments, posi

tions, and issues as well as learn who made responses and when the responses were

lllade (see Figure 12).

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 56

******* Author-Date-InCormation-File *******
Note:

lst = First name or initial, Last = Last name, or surname.
D = Day, M = Month, d = day as a number, and
hh:mm:ss = hours:minutes:seconds • . ---------------------------,

I NODE I

~------ I I -----------,
I ~ Author I DATE I
I NAME -------+-----------,
I 1st Last I D M d hh:mm:ss Year I L ______ ~ _______ ~ ___________ ~

I [1] Mahmoud Mhashi Sat May 20 14:19:40 1989
P[1.1] Akmal Zeb Sat May 20 14:36:07 1989
I [1.1.1] Akmal Zeb Sat May 20 14:58:40 1989
P[1.1.1.1] Kenny Sat May 20 18:04:40 1989
A[1.1.1.1.1] Kenny Sun May 21 17:21:53 1989
P[1.1.1.2] Akmal Zeb Sat May 20 18:46:54 1989
A[1.1.1.2.11 Kenny Mon May 22 11:21:34 1989
P[1.1.1.3] Akmal Zeb Sat May 20 19:12:32 1989
A[1.1.1.3.1] Kenny Mon May 22 11:28:12 1989
I [1.1.1.3.1.1] Akmal Zeb Tue May 23 13:25:27 1989
A[1.1.1.3.1.2] Judith Barlow Sun May 21 18:05:20 1989

Figure 12 "HERD's Author-Date-Information": This screen shows when
each node had been created and who created which node.

Users can easily find out who has added related arguments and positions. They

lllay choose to view a quick summary of added nodes (see Figure 13) or view the full

text of the nodes by selecting the "Display-Text" option (see Figure 14). Selecting

the "Print" option instead of the "Display" option causes the contents of the files

"A uthor-Date-Iof', "Text", and "Title-Iof' to be sent to a printer, depending on the

fll e that the user select.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems

HERD: A Hypertext Ttl for Reasoned Discourse

I [1]

What do ~e want to discuss?

I

Page 57

I d.3] I
P[1.1]

P[1.2]

HERD RequFrements Spec.

G
Discussion on use of HERD

R

HERr Requirement Guidelines

I [1.1.1]
G

What main Sections?

P[l. .1.3]
p[1.r.1.2] R

R 65cs Req. Layout PI .1.1.1]

I P[1.J.l.S]
P[1.1.1.4] R

R Proposal of Req. Doc. form
Req. Layout from Sommerville

R Layout from KBRA
Req. form Scacchl paper~~~~------------------------"

P[1 .. 1.6]
R

Store layout here

A[1.1t1.1]
other

Comments on Scacchl's form

A[l. .1.2.1]
other

Comment on KBRA's req. form

Figure 13 "HERD's Discourse representation structure": This screen
shows how the Discussion can be presented as a graph.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 58

•••••••••••••••••••• TEXT FILE ••••••••••••••••••••

.......... Beginning of node 1[1]

Node-name: 1[1]
Text: What should be the Discussion on HERD?
.......... End of node 1[1]
.......... Beginning of node 1[1.1]

Node-name: P[1.1]
Text: This part of the Discussion will be used to
discuss the requirement guidelines for HERD.
The format for the final document will be discussed.
.......... End of node P[1.1]
.......... Beginning of node 1[1.1.1]

Node-name: 1[1.1.1]
Text: What should be the layout for the main Sections
for the Discussion on the requirement guidelines for HERD?
.......... End of node 1[1.1.1]

Figure 14 "HERD's text screen": This screen shows how the text of the
nodes is presented on the screen. The nodes are ordered in the same way
as the title information ordered.

3.3. Case studies

Three case studies were performed. In the first case study (Section 3.3.1),

IIERD was used. The second case study (Section 3.3.2) was performed manually.

In addition to discussing different software requirement guidelines, a number of

issues were tested, such as:

1) what kind of structure will best represent a Discussion;

2) how is it useful to restrict the users with a set of node and link types; and

3) what is the role of decomposition in the Discussion of software requirements.

In the third case study (Section 3.3.3), HERD was tested as an Annotation system.

The goal of this case study was to explore some similarities between Discussion and

Annotation. Furthermore, the goal was to evaluate the use of HERD by comparing

the results from this case study with the results from the first case study (Section

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 59

3.3.1) which was performed to discuss the software requirements.

3.3.1. Case Study 1: Requirements Discussion

The requirements document establishes the boundaries on the solution space

for the development of useful software systems. It is used as the basis for:

1) the communication among users, experts, analysts, and designers;

2) supporting design validation; and

3) controlling the operations and evolution of the system it specifies.

A good requirements document should have the following characteristics:

1) clear, unambiguous, and understandable: since the requirements document must

serve such a variety of people, every requirement should have only one possible

interpretation;

2) complete: the requirements document must be complete in that all constraints

and assumptions are explicitly stated;

3) traceable: one should be able to begin with a requirement and trace it forward

through the design and into the implementation to see that the product will

satisfy that requirement;

4) mOdifiable: sometimes, clients can change their minds, or some requirements

cannot possibly be met. It is often possible to renegotiate a requirement, yet
,

still be satisfactory to the client. These changes must be documented; and

5) consistent: it should not be contradictory.Steward1987

Five subjects were asked to discuss guidelines for a requirements' document

Using the HERD system. The five subjects included three computer science gradu

ate students and two computer science academic staff, all aged between 28 and 38

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 60

years. All five had workstations in their offices, and were familiar with their use.

The participants had experience with the Emacs editor and worked daily on the

machines used in the exercise. The subjects were given background to the problem

before doing the exercise. They had participated in seven face-to-face meetings to

discuss the strengths and the weaknesses of different models of guidelines for a

requirements' document. '

At the seventh face-to-face meeting the decision was taken to move the Discus

sion to the HERD system. The face-to-face meetings had not led to documented

conclusions, and the HERD system was seen as a tool which might facilitate the

achievement of written conclusions. All the subjects were asked to participate in

this Discussion by creating some nodes in their own time. After two months, parti

cipants were no longer adding comments to the Discussion. A meeting was then

held, and the group agreed that the Discussion had reached a natural end, and that a

satisfactory conclusion about a good requirements document outline was evident.

After this, the participants were asked to write their evaluation of HERD.

The structure of the Discussion in terms of node types and their connection to

other node types is shown in Figure 15. It can be clearly seen in that figure that the

majority of nodes are of the type "Argument". A tally of the link types shows that

of the 57 links, 40 are of the type "Other" and go from "Argument" largely to itself

(see Figure 16). During the two months of Discussion on HERD 59 nodes were

created that corresponded to 20 pages of text. The contents of these nodes ranged

from one sentence to four paragraphs. Also, four subjects selected the option
,cC

reate-Prato-Node" and there was no facility to register how many times this

a f P Ion was selected by each subject.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems

Figure 15 "Diagram of Discussion".

8 other·

Figure 16 "Predominant Links": The four most frequently occurring
node-link-node triples are indicated in this figure. The number followed
by a link type and a link specifies the frequency of occurrence.

Page 61

A counter was maintained by the program to show how often each of the dif

ferent views of the Discussion was selected and revealed:

1) the text view was selected 74 times;

2) the title view was selected 82 times; and

3) and the author-date view was selected 116 times.

At the end of the exercise, the subjects were asked by the facilitator, in a face

to-face meeting, to write their evaluation of HERD by creating one or more nodes

uSing HERD. The four subjects who completed the evaluation of HERD all said

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 62

that they found the tool helpful. Comments included:

"HERD's hierarchical structure was found to be effective for supporting

the Discussion in that it forced the users to structure their ideas and

organize their thoughts"

Two subjects noted that they sometimes got confused and that a restructuring of the

information was needed. Since there was only one link type between Argument and

Position available to the users, it was not clear whether a user was responding in

SUpport of an issue or was offering some criticism. Also, decision-making was not

explicitly supported.

The data of the Discussion was analyzed and the semantics of hierarchy was

tested and assessed by two experts who know IBIS and the requirements. Generally,

in the first 32 nodes that were created, the subjects were using the non

decomposition strategy, and they were using the decomposition strategy in the next

27 nodes. The total number of links was 58 (46 hierarchical links and 12 non

hierarchical links). Eleven of the non-hierarchical links were in the non

decomposition part. In contrast there was just one non-hierarchical link in the

decomposition part. Six nodes were used to conclude an intermediate summary and

to restructure the information in order to carry on the Discussion. All of the 6

nodes were in the non-decomposition part. In the non-decomposition part also, one

node was completely reused. One issue was posted and never responded to. A node

Was created which was not necessary to the Discussion. Finally, some text in some

nodes Was not related. Thus, it can be seen that using decomposition diminishes the

non-hierarchical links and the disorientation problem. Furthermore, it leads to a

faster conclusion in that all the nodes which are discussed in the decomposition part

are needed. In contrast, in the non-decomposition part, some nodes were discussed

when they were not needed.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 63

Ten nodes were created by one of the most important subjects (a Doctor) and

eight of these nodes were responded to by some of the less eminent subjects (post

graduate). Both the date and the time for all these nodes (i.e. the nodes created by

the Doctor and the nodes created by the postgraduates in response to the Doctor's

nodes) were analyzed. All the nodes created by the Doctor responded to first by the

postgraduates. The perceived importance of the Doctor is demonstrated by the high

priority given by other subjects to the nodes he/she created.

3.3.2. Case Study 2: Decomposition

In the last exercise, the advantages for using decomposition were tested within

one group. In this case study, an attempted was made to test whether or not the

decomposition would be preferable than the non-decomposition to a set of groups of

users.

In a software engineering course for undergraduates at the University of liver

pool, the students were taught about the software life cycle, the requirement guide

lines, and the requirement documents, by a professor of computer science. As part

of the course exam, the 68 students were divided into 23 groups of 2 to 5 students

each. Each group was asked to develop a requirements' specification for a computer

game and to begin by discussing the requirements. Each group had to document

both the Discussion and the requirements. Based on the results from the HERD

eXercise, one might hypothesize that decomposing the problem into its sub-problems

first and then resolving these sub-problems will be regarded by the groups as prefer

able to resolving the sub-problems as they arise.

The data collected from the students at the end of the class was analyzed.

Four groups discussed the problem of what to put into the requirements by resolving

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 64

sub-problems as they arose. Five groups documented the Discussion as a conversa

tion, and did not explicitly identify problems or resolutions. Finally, in 14 groups (or

61% of the groups) the students first decomposed the problem into its sub-problems

and then resolved these sub-problems.

3.3.3. Case Study 3: HERD as an Annotation System

To evaluate the use of a Discussion system for Annotation, results from two

case studies were compared. One case study involved using the HERD system for

Annotation. The other case study was performed to test what kind of network

would best represent the Discussion (Section 3.3.1). This latter case study was con

ducted in collaboration by Eevi E. Beck and others;Mhashil991 it involved using

HERD as an Annotation system to annotate approximately 600 paragraphs of an

on-line hypertext book. The hypothesis was that the process of Annotation and Dis

cussion are sufficiently similar for a support Discussion system for some aspects such

as the node and link types to serve equally well in the support of Annotation.

Seven volunteers from a research group in computing agreed to participate in

the case study. The participants were all familiar with the operating system and

electronic mail; however, their experience with the HERD system ranged from

extensive to none at all. The volunteers met regularly over a period of 2-3 months

to revise preliminary drafts for a book.

The facilitator created an outline on HERD for a Discussion about the book.

One Node was created for each Chapter, and participants were expected to make

conunents about the book linked to the appropriate node outline. Mter that stage,

they started posting nodes onto the structure which was set by the facilitator.

The group progressed with HERD slowly. Participants had expected that using

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 65

a system which allowed asynchronous Discussion would eliminate the need for face

to-face meetings. Contrary to this original expectation, however, meetings were still

felt to be necessary. A lot of time was spent on these meetings. A reorganization

of the work then emerged from the group itself. The participants agreed to work in

a more synchronized way (such as reading the same Chapter at the same time), even

if they didn't have time to complete their task. By this point, dissatisfaction with the

HERD system, relating to speed, and in particular the time taken to link a node had

been expressed.

The output from the group in terms of feedback on the book was low - 55

nodes were created. In addition to the top-level nodes corresponding to each

Chapter, a separate node on administration had been created. Eleven of the 55

nodes were on administrative topics. The fact that annotations were about the book

but the book was not connected to HERD was a fundamental source of difficulty. It

Was only partially alleviated by the breakdown of the top-level issue into sub-issues

based on the Chapter headings of the book.

Four of the participants had read parts of the book and had commented beyond

thOse comments expressed in the node tree, without entering these into HERD.

The long time taken to create and link a node, and the general reluctance to express

thOughts in writing, were given as reasons. The participants in the case study also

had some difficulties making the necessary distinction between node types in HERD,

i.e., classifying their comment as an argument, position or issue.

The subjects were interviewed separately at the end of the case study and they

Were asked about the use of HERD as an Annotation system. The four subjects

Who participate in both HERD as a Discussion and as an Annotation system made

COlllments that included,

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 66

"HERD was not as suitable for Annotation as it was for Discussion. "

However, creating the Annotation in a form of hierarchy facilitated the revising pro

cess (see Figure 17).

In the node tree arising from the Discussion, the maximum horizontal spread

(Le., the maximum number of children of anode) was 6 steps. The maximum verti

cal distance (Le., distance between a parent and its furthermost child) was 7 levels.

On the other hand, for Annotation, the maximum horizontal spread was 9 steps,

while the maximum vertical distance was 4 levels. In the Discussion, the number of

nodes with at least one child at least four levels further down the tree was 42 nodes,

while for Annotation it was only 4 nodes. Thus the tree structure for the Discussion

Was deep and narrow, while for Annotation it was broad and shallow.

Hypertext book revision
Chapter 0 - Preface

Ref. to hypertext
Target audience
Preface "user satisfaction"
Preface has preview (p.2)
Preface imply structure

Chapter 1 - Text
Chapter 2 -Microhypertext

Chapter 3 - Grouptext
Chapter 4 - Macrohypertext

Chapter 5 - Expertext

Chapters 6 & 7 - Conclusion & Exercise
General & information comments

Figure 17 Annotation outline using HERD": Part of the Annotation out
line from a case study which was performed using the Discussion system
HERD.

November 27, 1991

Chapter 3: Discwsion in Hypertext Systems Page 67

3.4. HERD Experiment

In the first case study (Section 3.3.1), the semantics of hierarchy was tested and

it was found to be preferable to the users than the non-hierarchy. The four subjects

who wrote their evaluation about the hierarchy (both syntax and semantics) were

also in favor of using the hierarchy. However, there was not an option to use the

syntax of non-hierarchy. In this experiment, the syntax of both hierarchy and non

hierarchy was tested.

The subjects who participated in this experiment were four of the subjects who

had participated the HERD exercise. They were given some mechanisms to allow

them to 'chain' the current tree structure according to their needs (i.e to use

hierarchical and non-hierarchical structures). The current tree structure is the one

which was produced by doing the HERD's exercise.

The tree structure was drawn on paper. Each node was named and titled, and

each link was labeled. Each subject was given a paper copy of the tree structure and

a letter explaining what they should do. The letter explained that the subject should

feel free to restructure the Discussion manually, so as to make it easy to read,

browse, and to facilitate producing the conclusion that they are looking for. The res

tructuring could be done by adding/deleting one or more links and modifying any

One of the link types (labels) using one of the current set link types or a new link

type. All the subjects had access to the text of the Discussion which was stored in

the computer. Each subject was asked to restructure the tree independently from

the others.

The data was comparatively evaluated as follows: There were 11 non

hierarchical links added to the tree structure which had 58 hierarchical links. One

link Was deleted and one link type had not been used (other), and 12 new link types

November 27, 1991

Chapter 3: Discussion in Hypertext Systems Page 68

had been added. A link is considered as a non-hierarchical link if it does not satisfy

both the syntax and the semantics of the hierarchy definition. The link types that

were added to the current tree structure were: summarizes, comments, decision

made, supports, suggests, criticizes, clarifies, objects, replaces, contains, extends, and

answers. The relation between the node types and the link types after users' modifi

cations can be seen in Figure 18.

The contents of the nodes which were connected by the nonhierarchical links

Were analyzed. Three nodes which had 6 non-hierarchical links were created as a

SUmmary for the other few nodes, and they were those most likely to be related to

more than the parent node. Two nodes were created, each of them responded to

two nodes. Such nodes should be connected to· the two nodes to which they

responded. One non-hierarchical link represented the difference between the con

tents of two nodes. Two nodes were created, each one of them contained more than

two paragraphs, and they are most likely to be related to more than the parent node.

Therefore, all the reasons which cause the non-hierarchical links can not be elim

inated.

November 27, 1991

Chapter 3: Discussion in Hypertext Systems

Issue ..-

generates responds
summarizes

Position ~

supports criticizes
objects suggests

decis ion-made

Argument I-t-

comments
clarifies
contains
replaces
extends
answers

Figure 18 "Suggested links": The relation between the node and the link
types after users' modifications.

November 27, 1991

Page 69

CHAPTER 4

Annotation in Hypertext Systems

4.1. Introduction

The Annotation function is supported by many hypertext systems (see Chapter

2). Many issues are manipulated in different ways by these hypertext systems, such

as:

1) How can collaborators share information and supervise each other?

2) How can collaborators review (commenting, questioning, and criticizing) docu

ments?

3) Should the annotations be placed in the documents or in a separate record?

4) What Annotation node and link types should there be?

5) What kind of structures and outlines should there be?

Many of these issues are tackled by the literatureLeland1988, CatIin1989 but other are

not. Such issues led to the development of a system called MUCH.

Before starting to build the system, a set of questions about Annotation was

encountered, such as:

1) Should the Annotation node and link types be completely supported by the sys

tem, by the user, or by both?

2) What are the precedence factors in presenting the annotations to the readers,

who are the authors and annotators, or in performing some operations on the

annotations?

An author is a person whose name will appear on the document and who has the

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 71

responsibility regarding the content (text) of the document. An annotator is a per

son who reads a document and intends to contribute to that document or to the sys

tem; but his name will not appear on the document as a co-author. However,

his/her name might appear at the end or beginning of the document (i.e Ack

nowledgement Section).

People working together to create documents ranging from small information

networks to entire on-line books is a common occurrence in a wide range of discip

lines including scientific research. A document might be a software engineering

requirement, software design, information for use in the classroom, instruction

material, a scientific paper, or a book. In some scientific fields sixty five percent of

articles are explicitly co-authored, even when only one author's name appears on the

final version of the document.Fish1988

The annotative collaboration process is started by first producing a draft of a

document. Every portion of the document may be open to Annotation by any

member of the group, or there may be restrictions on which parts each member can

annotate. The role of Annotation is to bring forward the views of reviewers. These

reviewers may include the author(s). Through their annotations, they assess the

appropriateness of the current version of the document with respect to its intended

message and audience.Hahn1989 Annotation can be defined as a text block which has

a label or is itself a label pointing to the Triple (document, Discussion, or Annota

tion) that is to be interpreted by authors as a guide to modifying the document, by

the system designers as a guide to modifying the system, or is to be left as histories

of Comments for readers (all authors can be readers but not vice versa). Some of

the annotation labels might be considered as a name, a unique identifier, and a node

type such as "check-spelling'. The annotations text blocks can be connected to the

Triple via links. These links might have labels and types.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 72

The goal of this Chapter is to explore and analyze some issues concerning the

role of hierarchies in Annotation. The next Section provides a description of

MUCH system. A case study in which MUCH used as a Discussion system is

described in Section 4.3. Suggested Annotation node types are described in Section

4.4. Two experiments were then performed (Section 4.5) to test the usefulness of

these annotation node types and to explore further issues regarding Annotation. The

first experiment concerned document organization and the second experiment was

concerned with the document content.

4.2. MUCH System

The MUCH system supports document "authoring", "accessing", and "annotat

ing". An overview will be given in Section 4.2.1. The data model will be described

in Section 4.2.2, followed by a description for the above functions and the implemen

tation issues in Section 4.2.3.

4.2.1. Overview

The MUCH system has been developed to support the various phases of writ

ing a document: exploring, organizing, and encoding. In the exploration phase

knowledge is acquired, brainstorming occurs, and unstructured notes are made.

Next, the unstructured notes are organized into an outline. In the encoding phase

the prose for the final document is written. Radal990a

MUCH is being developed on a network of graphical workstations using public

dOll1ain software tools including Unix, Xwindows, Emacs, Unix Document Work

bench, and Xdvi. MUCH has four main functions: 1) exploring, 2) accessing, 3)

Writing, and 4) Annotation and Discussion. A five window screen is used as a

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 73

common user interface. All the functions have some variations on the usage of win

dows for their own purposes. The system also provides a key menu within the whole

Screen to indicate the meaning of function keys under different functions. A skele

ton of the entry screen is shown in Figure 19.

~ IS tho rol. of hl ... rchiC411 structll'. In DiSCUSSion and I"D-RoI.-of-HI:tv-I,...DI..,....i..,...~tion
ItUII t.tlon? To ",**,"s this ~ation •• sot of OXporl_U and cae I ,..I.ted tat

II. _. _FCIrMd and t..o 10Ft-. S\l&t.s __ cra.ted to I ts 1fHIr21.,.I ..
~t tho '_I_tS and C4II8 .tudl ... The t..o soFt-. S\l&t- I .xtlN! "'-
D -. I£RD hi tUH. t£RD < t.xt UNIr..-.t for Re.soned I hoi tlD-titl 1UtIIor .::::::-> IS .. IS---"; inF_tlon S\I&- "'iell aHoctl\lOl~ I hoi trlCt
f ts InF_I Dlscultl_ ibout ~i,...,t. doc:I.-.U. t£RD _ I heo IQHIrefICO
h"""d to wort. ... 11 br,j CQNtrl i.' , tho Di~- :on with the I heo IUHIciuDolada-lts
"::;"eIIIC4I1 relltl_. A.,.. study _ porfonoed In "'leII t£RD _ I hoi tlD-lntrocb:tion
Al to tata ~i .. taly 600 1*" of,...Ii taxt. I heo tlD-Dlocuaalon
~ OD Pf'O\Ildn • ...rul I..-t For DISCUSSion. It IS not 1--- boat. rr-: Ifr_ WlndawIt -T ---------

~lll1y sultabl. For IWIotation. The tUH <~Itipll Usrs trutlng I->notel
n. to ~~tl 1\1&- _ deIIO lepad to &fIIIOF't CO II aborlt I \10 IUtIIor Ing. I t.hou!;It
"" 1\1& __ ta doc:I.-.t craotlon and Includes Futurn for I

authoring". " __ I "dlscuuing" • and "..notating". The I
::tatian so.bevo- _ tilted br,j porforalng .. a_l_t on • F.. I
n. tiona of tho __ ..,...11 taxt UMd In the t£RD a_l_ta. I _s .no UMd both t£RD and tUH Found the tUH S\I&- to ba I
~lfi_tlW batt .. v... the t£RD .".- In &fIIIOF'ting IWIotation. I
PrrottlO S\l&t.s ____ and the dati of DllCUlllon and I
,...F tltlon c_ studl .. __ Iyzed. hthr .. t of "_I_ts _ I
IIId ~ hi • conaidorobl of al.llrltl .. ba~ Discuulon I
Itr tatlon __ fOlrd. Addltl lly. ~ ,,'CIoxi.. I
11;~t. .. -- opplled to the DI_Ion and IWIotation texts. ~ 1-- nota rr-: ta IMli ... --All--------
hi .. I"" deIIOloped br,j "Ill ~I_ •• t of Indox t In I 1->IID-RoI.-of-HI .. rch.ri,...DISCUUi..,...~tltlon
Ir.u~· t" opplylng thll 10ft-. .1 ltI'Io to the doc:I.-.t I tlxt
lIuilCOl • I _tic ... t _ built f",. ..,iell .. ItU.t _ to I 1fHIr21.,.I ..
be~1n out I I The _tic ... t ,..cog,II ... the relltlClnlhips I AlHlr21.,.I ..
_00 tho aoc.-.ta. "til the _tiC ... t and the Indices lloa(] I All.,.,..,....

-bacs: If" •• T.xtl (hfFl---Top-------------- PII-_
AII~_

All-fix
ItHfIot

All-Interpret
PII-_
AII-concern

"IHitlu.r
"D-btrlCt
AII-obstrlCt -tlettr
PII-__ IbatrICt-tlettr

AR-lbatrlCt-ftI .. ~
IIIH'!-ef ICO
1UHIciuDo1..-..nu

1--- outll .. : et. !Mil ... -TrQop,---------
IF1: _to-fr_11'IIbI
IF2: ~tat-wll'llbl
IF3: _to-tat-autIl 11'IIbI

FS: Irlte"fWlCtlan
F6: -m-fWlCtlon
F7: IfWIIItItIM"fWlCtlon

<lroFf)-~II-------' - Iflfttion ~ --------------

Figure 19 "First MUCH screen": The first MUCH screen contains six la
beled subwindows. From top to bottom on the right side: the 'Frames
Window' shows one frame of the document; the 'Note Outline' shows a
list of links and nodes for notes; the 'Text Outline' shows the outline of
the document; and the 'Function Keys' gives a menu of function keys and
their actions. On the left side are two Emacs subwindows: 'Paragraph
Text' displays a text block of the document, and 'Note Text' shows a text
block of a note. When the user points to a term on the right half of the
Emacs window and hits carriage return, then the associated text appears
on the left half.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 74

The MUCH system is a homogeneous distributed collaborative authoring sys

tem, that has been developed on HP-9000/300 workstations. Emacs and Xwindows

constitute the front end while Ingres serves as the back end of the system. The user

interface is controlled by an emacs-lisp program. This program makes calls to a C

program which runs on the file server along with Ingres. The C program contains

embedded SQL commands that are used to access, store, and update data kept by

Ingres. The Lisp program sends requests to the C program. The C program

translates these requests into SQL queries which are sent to Ingres. Ingres executes

the queries and returns any required data to the C program which, in turn, sends it

to the Lisp program. The Lisp program manipulates the data and displays it on the

screen. In the next Section a description of the MUCH's data model is provided,

followed by a description for the three main functions.

4.2.2. Data Model

With MUCH, multiple authors can collaboratively create text, annotate both

the text and the annotations, and generate a semantic net. The semantic net is

decomposed into frames which are internally coherent and made up of text

emphasized terms. Each frame corresponds to a node of the semantic net and the

links emanating from it and each frame is represented as a list whose first element is

the name of the frame. The remainder of the frame consists of sublists with two

basic components: link and target-frame. The link labels an edge of the semantic net.

'Ibe target-frame is the node of the semantic net (or frame) to which the edge points.

'Ibe directionality of the links is defined by the author by specifying a source and

destination frame for each link. The MUCH system has blocks of text associated

With the edges of the semantic net. A node in the semantic net can be linked to

lllore than one node. Two nodes connected with a link form a link object. The link

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 75

object in the semantic net should be unique.

There is no restriction on the number of lines that a text block might contain,

and the collaborators can create notes as well as annotations. Notes are neither

connected to the semantic net nor to each other. The author creates annotations by

creating nodes and linking them to frames in the semantic net. These annotations

have predefined names in order to distinguish them from the frames in the semantic

net. The text of annotations is attached to the node, not to the link. Annotations on

annotations are allowed by creating an annotation node and linking it to the existing

annotation nodes. The links which connect annotations to frames (within the seman

tic net) or to other aruiotations have a predefined directionality. That is, the newly

created annotation is always the source of the link. The destination of the link can

be either a frame or an existing annotation. The structure of the Annotation is dif

ferent from the structure of the document. This occurred because the Annotation

function was not clear, at this early stage, for anything more than making comments

on a text block.

The MUCH system is based on a relational database model. The database

holds the frames and links of the semantic net, the text blocks, the annotations

attached to frames, notes, and information about the authors and creation dates of

text blocks. Text blocks are stored in tables, one tuple per line. The database

model of the system consists of 5 entities: text block, note, link, frame, and Annota

tion. An entity/relationship model of the system can be seen in Figure 20.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 76

Con, blVI-----'iG:~~S>
I ~

I I
I I
I I
I I

Figure 20 "MUCH entity/relationship": The MUCH entity/relationship
model. The solid straight lines indicate a 1: 1 (one-to-one) relationship.
The delta notation indicates a l:n (one-to-many) relationship. The dashed
straight lines imply that occurrences of adjacent entities may exist without
taking part in the relationship.

The above entities have been further refined through normalization and their

internal representation consists of tables in 3NF (Third Normal Form). These tables

along with their attributes are listed in Table 2.

r--

t-:".... Table names Attributes
I-Text Inf link name, author, date, index terms
~t Block link name, text line, line order
Uilk link name, author, source frame t-.;::;

I-Unk Date link name, date, destination frame
r!!.,ame Author frame name, author
r!!:ame Date frame name, date
~te note name, author, date
~e Text note name, text line, line order
~ot Text frame name, annot name, text line, line order
~ot Date frame name, annot name, date
~ot Author frame name, annot name, author
~ot Frame link frame name, annot name, annot link name
Ariiiot link frame name, source annot, destination annot, annot link name

Table 2: MUCH entities and their attributes.

'!be above tables have common attribute names. Some of these attributes have dif

ferent interpretations, depending on the entity. The link_name attribute has the for

Illat "Source jrame • link - destination jrame", it is unique and indicates the link

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 77

where the text block is located. In the Annotation tables annot}ink _name is merely

the name of the link. The author attribute is the author's login name and it has the

same interpretation within all the tables. The date attribute indicates the date that

an author created a text block, a link, a frame, a note, or an Annotation. The

index_terms attribute consists of a sequence of index terms associated with a text

block. The text_line attribute contains a line of a text block, note, or Annotation.

The line_order indicates the order of appearance of each line of text within the text

block, note, or Annotation. Source_frame, destination_frame, and frame_name

represent the name of a frame in the semantic net. The note_name is a unique

identifier for a specific note. Finally, annot_name indicates a predefined name for

an annotation.

4.2.3. System Functions

In this Section a brief description will be given of the functions which are

related to the Annotation and Discussion. In particular, a description will be given

to the accessing and Annotation functions. The writing function which is created by

the PhD student Geeng-Neng You, is described here because it will be reused for

making Annotation and Discussion. The description of the other functions of this

sYstem, such as exploration, can be found in the literature.Mhashil990

4.2.3.1. Accessing

AcceSSing a document in MUCH consists of three functions: 1) reading, 2)

brOWSing, and 3) searching. Zebl991 The following operations can be performed in

the accessing part of the MUCH system:

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 78

1) Browsing annotations. This operation can be performed by selecting an annota

tion from the Annotation outline.

2) Reading an annotation for updates.

3) Browsing a text block. A text block can be either a paragraph of the original

document or a note. Browsing a paragraph can be performed by selecting a

frame either from the *Text Outline* window or from the *Frames Window * .

A note can be browsed by selecting a note name from the list provided in the

Note Outline window.

4) Reading a text block for update. The text block, in this case, can also be a text

paragraph or a note.

5) Searching a specific text block. An outline of the index terms is provided in a

window *Index Terms* (which replaces the *Note Outline* window). If the

USer selects any index term from that outline, all the text paragraphs are

searched for that index term and a list of frames is displayed which contains

that index term. The user can now look at any or all of the text blocks which

contain that index term.

MUCH provides an outline (a hierarchical table of contents) of a document to

help readers and writers visualize the structure of that document.Radal990a One can

define a document as a set of link objects which form the final version (e.g., a scien

t'r
1 iC paper, a book, or a report) of what the users intend to produce at the end of

the document creation process. The link objects of the document are organized

according to levels of abstraction, so that the contents of a text block which is

attached to a link object lead naturally to the contents of the following text block.

The traditional outline consists of terms or headings in a hierarchy. In colla

borative authoring, generating an outline in further detail enables the authors to dis-

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 79

Cover the missing parts of the document, the Sections of the document which require

more work, and the inconsistent Sections. In the current version of MUCH, the text

outline (displayed in the *Text Outline* window) and the index terms are both gen

erated manually. The intention is to develop a dynamic outline generator. Similarly,

a word-frequency based indexing system will be introduced to create index terms

automatically. These index terms will also be used as cross-references in order to

make the browsing of related text blocks easier and faster.

4.2.3.2. Annotation and Discussion

Annotations are meant to be interpreted by others as a guide to changing a

paragraph, link, or a frame. The Annotation facility enables users to write com

ments in the form of criticisms or suggestions about specific parts of an evolving

document. The annotations are argumentative. Accordingly, there is a need for

SUpporting the creation of "Link" instances. Annotations can be connected to the

" annotated" blocks of text using simple labeled links. Both the destination and the

r nile type should be determined by the user. Each annotation can be linked to more

than one annotation.

In this system, there is no restriction on the link types and the node types,

WhiCh are different from the node names which are assigned automatically by the

system. In this system, each annotation is separated from the others. A relatively

straightforward alternative to annotative windows allows an annotator to copy some

lllaterial from the original paragraph and make changes to it.

The MUCH system can support Discussion, since MUCH supports annotations

on annotations. A Discussion is similar to annotations on annotations except that

there does not have to be a document which is at the root of the annotations.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 80

Furthermore, one may want to define Annotation so that it only points directly to a

document. In this case, a comment on an annotation immediately becomes an

instance of a Discussion.

The "Annotation mode" option brings forward a screen through which the user

can perform the Annotation operations (see Figure 21). In order to create an anno

tation, the cursor should be in one of the two windows "*Frames Window*" or

u* Annotation Outline*". The output of all reading operations will be displayed in a

window called "* Annotation Text*". The following operations can be performed in

the Annotation mode:

1) Create Annotation: Annotations can be created on a frame or on an annotation.

If a frame has to be annotated, the cursor should be pointing to that frame

either in "*Frames Window" or "*Text Outline" window. In order to create an

annotation on an annotation, the cursor should be in the "* Annotation Out

line*" window and pointing to the annotation that is to be annotated. The user

is asked to label the node and link of the annotation and is given an option to

create descriptive text which will be associated with the node and link. In this

way the annotation can point to the document or to other annotations. A user

may request annotations associated with a node of the document's semantic net

or annotations created by certain users or at certain times.

2) Create Annotation Link: This function can be used to create new links between

existing annotations and frames or between two annotations. (These links are

extra links to give a meaningful look to the Discussion phase of the Annotation

function.)

3) Show Annotation Outline: This function produces an outline of all the annota

tions on a frame to which the cursor is pointing. The cursor should be in "*Text

Outline*" or "*Frames Window*". The outline for annotations is displayed in

November 27, 1991

Chapter 4: Annotation in Hypertext Systems

.. _ Text for Mode: phas •• _ ...
So..rc. Fr_ no-. : grouptext

~:~ht S~st .. s he Ip groups of peepl.
CtP. and ICC." text ,n three pha ••••
The 'd,sc _
pi.,. UU'on phase occur. first II peepl. bralnstor. and For .. late
.IP. as to how the or,t'ng should proc-ed.

In the I thor •
'doa. and IU he Ing pha ... block. af text .. e attlChed to a networl< of
.IP. t net k IS tr_sed to _at. a doc.-.t.
The ana I nn._
the oak - of rolding in t ... colllbor,tiwe sense IS
on • cb:"9 af notes ~ a group af peepl.
...... 1 '-it. ThIS I..,.,tatlwe- phase
cOOooon:~ l'ld to a r""lsed ~t II the amltators ,ncarpor,t. the"
.LP ,nto the or'g,nal ~t.

Igrouptext
I has five
I has gr~.
I us. phase.
I ,nclude definition
I has grouptext_" I.tor~
I 1I,pl~ _1IOIIe1
I past ~_crl""
I past Ii",d .. ~t
I p.at ~tonJiYl'
I has 19700_e_i...t
1---- !:10m< 11-_: Ifr_ lIirodooole ---Top
I ajd349k90-lCtian-r2aut I ine
I twolladoer--~I.tar'\j
1_ltI"" rl_oct 1_
Ir2outll "1lbJecu-50_ 1
1"1604--.__352_ 1
I shof2-comectton-thaffI rano
1.1....,...~i.....-.:trls2
I tHt--tHt.--119_..,.,
I
I

Page 81

1---- ..,.,t trooonr: IIWiotation ~tli ---Iot---------
-"-r- I re.dIna..IIOIIeI_functiona
.... The :: "' ... ~ Tut. 8:1Sp. Plod (.... offl----AII--------------- ------ control_IYI'-

allowing 11 the text for ..,.,tn,on r2outline--obJoct.-!JO_oI...t" - -*1na..ICU>letlon
I thougnt . rHdlbllltlj
"-' T we h.d .eed ta r"", .. the grouptext s~t_ as a r"",... ABStO_ cut_out
aut,,;" ~t -Id .. an that ... do ,.,t fall"" the ,.,. .. 1 AlStO_ I_cut_out
I PI"opo a ,ntrocb:tlon. lit .. ,brl r""' thod . results. orltll'9_1IOIIe1
COnelu s. that we bISlcIII~ create an ,ntroc1.ct,on and anclent_hl.t..."

Slon ta the eXist'ng grouptext .~t .. s soct,on.it'''9-IIOIIeLfr--'t
phon
reaclr _1IOIIe1

extend_Cori t ing_1IOIIe I
-edi ..
goals

AlStO_klm\j_cut_out
AlStO_tOrlll

I t.xLllIIt_
1---- outline: IText ~tlt_ --- 3%---
1Ft: ~_-outllne F!i: crMtr-'Uon
I F2: ~..,.,t -tIorlUthar F6: Cl"MtrllftluUan-link

--"-E 1F3: ~..,.,t-tlordate F7: MldlfV--'Uon
Illes: IArnotlt'on Textl 8:1Sp. Plod (liraffl----All ------------------- ---- lfuncUon ~ ---8:1Sp. flail

The widespread use of (QrJ1)Uter tednology am its applications iI powi~ YItIY

rapidly in the modern workpIac:e, and becalM of dis it bas become inmai19Y

imPQ'tant that OOfI1JUter hypertext systems are de5igned to be easy to learn and use,

Figure 21 "Annotation mode": MUCH Screen. The large window near
the center of the screen is the Emacs window which looks into the docu
ment and Annotation. Through command options of the Emacs interface,
the user can open other windows, such as the one near the bottom of the
screen which shows the formatted version of the document. The Emacs
window contains several, labeled subwindows. From top to bottom on the
right side: the "Frames Window" shows one frame; the "Annotation Out
line" shows a list of links and nodes (in thjs case, as the result of a request
for aU annotations by one user); the "Text Outline" shows the outline of
the document; and the "Function Keys" gives a menu of function keys and
their actions. On the left side are two Emacs subwindows: "Paragraph
Text" displays a text block of the document, and "Annotation Text" shows
a text block of an annotation. When the user points to a term on the right
half of the Emacs window and hits carriage return, then the associated
text appears on tbe left balf.

the u* Annotation Outline*" window. The user can browse through the outline

by using the cursor keys. The text for a particular annotation can be read by

pressing the < Return> key on that annotation. Text for that annotation is

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 82

displayed in the "* Annotation Text*" window.

4) Show Annotations (by Author or by Date:) "show-annot-by-author" can be used

to obtain a lis't of all the annotations created by a particular author. The

author's login name is required for this purpose. "show-annot-by-date" is used

to get all the annotations created before, on, or after a specific date.

5) Modify Annotation: Modifying the contents of an existing annotation can be

achieved by using this function. The cursor must be pointing to the required

annotation in the "* Annotation Outline*" window. The user can save the

changes by pressing the "store-in-database" key.

4.2.3.3. Writing

The writing function was created by the PhD student Geeng-Neng You and

incorporates several features to help the writers in creating and updating hypertext.

It aims to support writers who are involved in large and complex documents gen

erating task. Its multiwindow user interface is consistent with other MUCH func

tions and allows the writers to view various referential information like frames, out

lines and other texts while entering the target text paragraph. It also provides notes

processing facilities for the writers to put their notes into the system. Other features

inclUde the outline generating capability and comprehensive indexing support for the

Writers.

To utilize these features, the writers can have their ideas recorded by using the

notes processing tools to create, update and reference them. When the writers want

to w' fIte the real text paragraph for the document, they have to create frames and

link names for a specific paragraph before entering text for this paragraph. This

step allows the writers to explicitly organize the hypertext as they wish. There are

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 83

also functions to handle the updating of the structuring entities such as frames and

links, as well as real text entities like notes and text paragraphs. Under such writing

environment, the support for the writers in the whole writing procedure becomes

more organized and further strengthened.

The following is a brief description of the operation of this function:

1) The five windows for the writing function differ from the entry window by the

""'Note Text"''' window being replaced by the ""'Write Text"''' window. The

""'Text Paragraph"''' window is used for reference texts while the other three

windows are still used for displaying referential information about the frames

and outlines. These frames and outlines are manipulated by the writer during

the writing process.

2) The referential information on the windows, other than the ""'Write Text"'''

window, should be brought up or generated to help the writer obtain a clear

idea about the current status of the hypertext document. The writer can thus

select the write-function entry from the main menu to get into the writing func

tion. The whole function is divided into two major parts, writing and updating.

3) Suppose the writer selects the creating function. The writer can choose to

either enter the notes first by selecting the create-note option or be more

straightforward by directly entering frames, links and the associated actual text

paragraphs through help from the manipulation of the referential information

in other windows. Options to enter indices before storing the text paragraph

are also available.

4)
If the writer chooses the updating function, functions to modify notes, text

paragraphs, links or frames are provided. Again the updating process can be

assisted from the manipulation of the referential information windows.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 84

4.3. Case Study: MUCH as a Discussion System

Some literature and the results from the previous Chapter emphasize the

importance of node and link types in the Discussion hypertext systems. In this study

an attempt was made to explore some issues concerning Annotation and to find a

Suitable set of node and link types for Annotation. Being Allowed one to annotate

an annotation was considered to be an instance of Discussion. Thus, the hypothesis

Was that the node and link types for Discussion are suitable for Annotation. The

Users were given an option to use:

1) their own node and link types;

2) a suggested fixed set of node and link types; and

3) both 1 and 2.

The usefulness of the suggested fIXed set of node and link types for Discussion had

been approved in some hypertext systems as well as in former work at liverpool

University. Thus, the hypothesis will be supported or refuted based on what the

users are going to use.

Furthermore, an attempt was made to test issues such as: Should the system

prOvide a fixed set of node and link types, or should users be given the option to add

their own? Should a particular kind of structure be supported? Finally, the struc

ture of the document is different from the structure of the Annotation. In the struc

ture of the document, the text is attached to the link. By contrast, in the Annotation

structure, the text is attached to the node. Thus, in this case study, an attempt was

lllade to discover the advantages and the disadvantages of using different structures

for document on the one hand and Discussion and Annotation on the other hand.

In this study, 9 students were asked to use MUCH, for one week, making

Annotation on a Chapter in an on-line hypertext book, and to add annotations to

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 85

annotations (i.e an instance of Discussion). The Subjects had never used the system

before the experiment. They were given one lecture on the topic of Annotation, and

a 45 minute tutorial on the Annotation facilities of the system. They were also given

guidelines about selecting a full meaning name to an annotation and to a link that

Connects two annotations. Some of the link types that were presented to them were:

responds, generates, supports, objects, comments, clarifies, questions, and suggests.

Also some of the node types that were explained to them were: Issue, Position, Argu

ment, and Comment. They were asked to use these node and link types, or their

own. The subjects were asked to create at least two annotations; one linked to the

book, and the second linked to an annotation. It was expected that they would use

the second annotation in resolving one or more issues collaboratively.

The subjects were given the option to create the annotations in either a hierar

chy, or in a non-hierarchy (by creating cross-links between the existing annotations).

The Users were given the option of creating a link between any two existing annota

tions, for the purpose of nonhierarchical structure.

After one week, a total of 19 annotations had been created. Each students

created two annotations which was adequate to answer the exercise. One student

created three annotations. Seven annotations pointed to the Chapter as a whole.

1'wo Pointed to specific Sections of the Chapter, and the others were created as an

annotation on an annotation (see Figure 22).

November 27, 1991

Chapter 4: Annotation in Hypertext Systems

119_ anno--comment--grouptext
119 anno on anno--solves--119 anno - -
179annot--comment--grouptext _Interface_principles

179annot annot--comment--179annot

PETERannotl--comment--MUCH
PETERannotl--comment-PETERannotl
agree--comments--slmonannotate
balladeer--answer--history
chrisl--answerla--reader model
chrls2--answerl b--chrls 1
history--questlon-grouptext
lssue-generates--grouptext

martyn--describes--grouptext
position--respond--Issue

shatl--connection--shamrano

shamrano--comment---grouptext
simon _annotat--simon _ ann--119 _ anno

simon _ reply--simon }ink--chris2

simon_ annotate--slmon }ink--grouptext

Figure 22 "Experiment Annotation outline": The Annotation outline. The
format of each entity is source--link--target.

Page 86

The structure was a tree, but it was very shallow (two levels) and one cannot infer

from this result that the supported structure in Annotation is a tree (see Figure 23).

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 87

....

grouptext ,
include imply include

grouptext _ systems reader_model grouptext lrinciPles I include I answer 1 a I jnclude

collaborative authoring systems chris1 grouptext _technology yrinclples

Ijnel~e - l,,,,werlb Ineem

MUCH ChJ~ - grouptext interface principles I eommen' I simon Jink - I eom~en'
PETERannotl simon_reply 179annot

tommen, I comment

PETE nnotl 179annot_annot

question comment generates describes

h story

/answer

balladeer

119 anno
1

issue martyn

'solves
119 anno on anno

I simmon_ann
simon annotat

comment

shaffirano

/eo", .. e'lon

shafl

simon link

simon annotate

leommen"

agree

I responds

position

Figure 23 "Experiment Annotation tree": The Annotation tree structure

The data was collected and analyzed. The annotations that were created can

be classified as follow:

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 88

1) system annotations: one annotation raised an issue, three annotations tried to

resolve this issue, and five annotations concentrated on the advantages and the

disadvantages of the system itself;

2) document annotation: four annotations raised issues about the the content of

the Chapter, and two annotations tried to resolve some of these issues; and

3) nonsensical annotations: four annotations were nonsensical.

Of the presented link types, 68 percent were used by the subjects with a fre

quency ranging from 1 to 7. The remaining (i.e 32 percent) were added by the sub

jects. Regarding the suggested node types, only eight percent were used. This could

be due to a discussion not having been created. The subjects raised some issues

regarding the Chapter and the system, but they did not try to resolve any of these

issues. However, the node and link types which were added by the subjects were

giVen to two experts who knew the book to test the usefulness of these node and link

types. They found that 40 percent of the link types were useful, 40 percent were

Illis-used, and 20 percent were similar to those that were presented. In contrast, all

the node types which were added by the subjects were meaningless.

One of the problems concerned the structure Annotation: annotation pointing

to a frame not to a link object. Subjects didn't always mention the link object in

their texts. This caused some difficulty in specifying the text block which the anno

tations referred to. Another problem found in this structure was generating one out

line for both the document and the Annotation. In the current structure, two

separate outlines were generated, one for the document and another for Annotation.

It Was difficult to go back and forth between two different outlines. It would be

helpful to see the outline for both the text and the Annotation in conjunction with
n

each other, and this is not possible when using different structures.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 89

4.4. Annotation Node Types

In the previous case study (Section 4.3) which was performed to test the useful

ness of using some Discussion node types for Annotation, they were found to be less

Useful for making Annotation than they were for use in Discussion. This led to the

exploration of some Annotation node types, define their meaning, and show how

they might work in a document.

A document can be divided into two kinds: evolving document (i.e., a draft) and

a published document (such as scientific papers or books) both of which are stored

electronically in a form of hypertext. Documents contain two major types of infor

Illation: content and organization. Content refers to the words and pictures that are

the subject of the document. Organization specifies the order in which topics are

preSented and the relationships between them. Organization determines that topic

)(is a sub-topic of topic Y or that topic A precedes topic B,Horton1989, Walker1988

Changing a document is dependent on the kind of document and the user. In terms

of the evolving document, the change will include both types of information (content

and organization). In contrast, the changes regarding the published document will

be Illade only on viewing the organization of the document for presentation on the

screen (i.e the original organization of the document in the storage will not be

affected at all).

Most of the annotations created by users might be related to the two types of

inforlllation embedded in a document. Annotator~ may create annotations suggest

ing What the author(s) should do, but they do not suggest how they should do it.

For example, annotators see the word "Hypertexf' in a document and suggest that

this Word should be defined, but they do not suggest a definition for "Hypertext",

nOr do they provide guidance to the author(s) about defining the term "Hypertext".

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 90

Sometimes, however, some users suggest both what should be done, and how the

author(s) should do it.

Two groups of Annotaton node types are suggested, based on the proceeding

information. Of course, the following set of Annotation node types will not cover all

the possibilities of annotations; some of these Annotation node types might be

ignored and some new types might be added during the next experiments and case

studies. The suggested Annotation node types are as follows:

1) Organization Annotation node types which include Good-Organization (GO),

Bad-Organization (BO), Bad-Suggests-Organization (BSgO) and

2) Content Annotation node types which include Good-Content (GC), Bad

Content (BC), Bad-Suggests-Content (BSgC), Worse-Content (WC), and

Worse-Suggests-Content (WSgC).

GOOd-Organization Annotation type means that the entity in the outline (table of

Contents) which is attached to that annotation should be moved next to the previous

entity with a Good-Organization Annotation type. If the first one which is attached

to it is a Good-Organization, then it should be moved up to become the first entity in

its level of the outline. For example, as in (B) Figure 24, the entity "Introduction"

should be moved to the top of its level in the outline as it is in (C). While the entity

!'Discussion" in (C) should be moved next to the entity "Annotation" as it is in (D).

November 27, 1991

i

I
f

!
t,

I
I
I

I
I

Chapter 4: Annotation in Hypertext Systems

Annotation

Comparison

Discussion

Introduction

Annotation And Discussion

Conclusion

Indexing

(A) Outline before Annotation

Introduction
Good-Organization

Annotation
Good-Organization

Comparison

Bad-Organization
Discussion

Good-Organization
Annotation And Discussion

Bad-Organization
Indexing

Bad-Organization
Conclusion

Bad-Organization

(C) Second round of Annotation

Annotation
Bad-Organization

Comparison
Bad-Organization

Discussion
Bad-Organization

Introduction
Good-Organization

Annotation And Discussion
Bad-Organization

Conclusion
Bad-Organization

Indexing
Bad-Suggests-Organization

(B) First round of Annotation

Introduction
Good-Organization

Annotation
Good-Organization

Discussion

Good-Organization
Comparison

Good-Organization
Annotation And Discussion

Good-Organization
Indexing

Good-Organization
Conclusion

Good-Organization

(D) Final round of Annotation

Figure 24 "Re-organization example": Affect of Annotation on the organi
zation of a document.

Page 91

Adding the word "Bad" in the annotation type, means that a user has made a

Suggestion in the text which is attached to that annotation, and that this is concerned

With What the author(s) should do, but offers no suggestion as to how it should be

done. Adding the word "Suggests" means that a user suggested in the text attached,

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 92

both what should be done, and how it should be done. A Good-Content Annotation

node type means the text attached to the link object is good (consistent with its

heading, coherence, no English errors nor spelling mistakes, and needs no modifica

tion). A Bad-Content Annotation node type means the opposite of Good-Content

Annotation node type. A Worse-Content Annotation node type means the text which

is attached to the link object should be cut out, or needs a lot of work prior to fixing.

Systems provide an outline (a hierarchical table of contents) of a document to

help annotators visualize the structure of that document. In MUCH, users can view

individual frames or hierarchically organized frames following outlines that are

automatically generated by traversals of the semantic net. However, the user should

explicitly define a linear ordering of the links and specify a starting frame name to

generate an outline. The outline consists of the nodes related to the document and

Annotation. The two can be distinguished from each other by looking to the first

letter to see whether it is a lower-case (for text) or the letter "A" (for Annotation).

A good document should have good content, good organization, and a good

relationship between the headings and the text. Having one of them is not, in itself,

enough for a good document. An example will make this point clearer. If we

assume that all the scientific papers published in journals are good documents, we

Cannot similarly assume that a good document will result by taking an organizational

Structure which is good (according to the assumption) and replacing its text with

texts from different papers. This is will not result in a good paper, because the rela

tionship between the headings and the text will not be consistent. These three fac

tors might be used by authors as an indication of whether they are close to, or far

from, reaching a good document. This can be done by looking at the document they

are creating to see whether the four factors are satisfied or not.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 93

One might ask: Could the computer help authors in satisfying some, or all, of

these factors? Computers might help authors in the organization. This may be

done by attaching annotations to the different parts of the document. In terms of

the organization, users attaching the Annotation types Good-Organization and Bad

Organization to the different parts of a document, might allow the computer to help

in reorganizing the document, so that it becomes closer to a good organizational

state, which is one of the most important factors for a good document. In the next

Section, two experiments are reported which test this hypothesis, test the usefulness

of the suggested Annotation types, and explore some issues and new node and link

types concerning Annotation.

4.5. Investigations of Annotational Organization and Content

A case study which was performed to test the usefulness of Discussion node

and link types for Annotation (Section 4.3), has shown that it is difficult to perform

certain operations when different structures and different interfaces are used. It has

also shown that it is difficult to read annotations when their outline is separate from

the outline of the document. In order to solve some of these problems, a single

structure and interface for the document, Annotation, and Discussion was used. The

writing document function (Section 4.2.3.3) was used also for Annotation and Dis

CUSSion. But, how could a user distinguish between document, Annotation, and Dis

CUSSion? As a temporary solution, the user might type the name for a node related

to the text in small letters. For the Discussion and Annotation, the user might add

the capital letter "0" or "A" at the beginning of the node name, to denote the

beginning f D" Ann' . I o a ISCUSSlon or an otatlOn respectIve y.

In the previous structure of Annotation (annotation pointing to a frame), a user

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 94

should mention the link object in the annotation text. In this new structure (annota

tion pointing to a link object), if a text block consists of two or more paragraphs and

the USer wants to make an annotation on a specific part of the text, the user should

specify that fact by explicitly writing (eg. "paragraph 2, line 3") in the text of the

created annotation.

In the following two Sections, two experiments were performed. The first

experiment concerned the organization of a document and the second experiment

concerned the content of a document. In addition to the exploration of some issues

about Annotation in both experiments, the usefulness of using Annotation organiza

tion node types was tested in the first experiment. In the second experiment, the

usefulness of using Annotation content node types was tested and a comparison

between three different approaches of making annotations on a document was made.

4.5.1. Experiment 1: Annotation Organization

In this experiment, we tested the role of hierarchies in Annotation by trying to

answer the question: Could the computer help an author(s) satisfy one or both docu

Illent requirements of good content and organization? If an author wants to create

a gOod document (such as a scientific paper, book, or report), then that document

should contain good content and organization. During the writing process, an author

Wants to know how close he/she is to reaching the final document. An author wants

to decide whether the final document has been reached or not. Some more ques

tions need to be answered during the writing process. Some of these questions are:

What are the most important parts of the document that should be written first?

What are the priorities for making a response to some annotations made on the

dOcument? This experiment was performed in order to answer such questions and

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 95

concerns, and in order to test the organization Annotation types which are suggested

in the previous Section.

It was hypothesized that authors could be provided with indications about the

quality of their documents. This is would be achieved by by moving the entities,

including the text, which is also associated to the links, with the "Good

Organization" Annotation node type to the top of its level in the outline; and by

using the "Bad-Organization" and "Bad-suggests-Organization" to move an entity

from one place to another would give an indication to author(s) about the quality of

that document. Assume that we have a good Chapter from a book and the organi

zation of that Chapter is changed. In such a case, the hypothesis can be tested

before modification by comparing the outline produced by the subjects at the end of

the experiment to the original outline of the Chapter. If the two outlines are identi

Cal, then the hypothesis is fully supported. Otherwise, a statistical test might be

needed. Whether or not the hypothesis will be supported depends on how close the

produced outline is to the original outline of that Chapter.

Before going to the experiment, one important issue needs to be resolved. If

two users disagree: one attaches to an entity in the outline the Good-Organization

Annotation type and the other attaches the Bad-Organization, then the following

qUestion might be asked: How could the computer decide whether that entity in the

outline is good or bad organization? In answering such a question, different

Illethods might be applied:

1) User importance: the users are authors and annotators. An author is more

important than an annotator and the user who has the higher degree is more

important than the other, hence a Professor is more important than a Doctor.

The authors might then be divided into two groups. Authors can make changes

by consulting others before the changes are implemented, and authors can

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 96

make changes without consultation. The annotators also might be divided into

two or more groups based on the relation between the annotators and the

authors. For instance, annotations made by an annotator who has received

assurance that his name will appear in the acknowledgement Section might be

different from annotations made by annotators who do not expect acknowledge

ment. Thus, a system supports user importance, then the annotation created by

the more important user will be considered.

2) User access: The user who has ''write-access'' to the document has priority over

a user who has "read-access" only to that document. A system that supports

the access privileges will consider the annotation that is created by a user who

has that ''write-access''.

3) Argument support: one user might add an argument supporting his response,

While the other does not. In such cases, the annotation that is supported by an

argument is considered. If both users add an argument and these arguments

are considered, and one of them uses mathematical, experimental, or psycho

logical proof, mathematical proof is considered strongly than experimental or

psychological proof.

4) Date: the annotation that was created most recently would be considered more

important than others. For example, a user creates an annotation before a

requested modification takes place, and later another user creates an annota

tion after the modification takes place. The last annotation might be more

accurate than the previous one.

S) Voting scheme: this method is a solution for the following cases. First, when a

system has no support for anyone of the methods described above. Second,

when the two annotations have the same properties: both annotations created

by two users with the same degree and access, both annotations contain

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 97

arguments (mathematical, experimental, or psychological), or both annotations

were created on the same date. In the case of voting Yes/No, there is no prob

lem if there are an uneven number of users. Where there are an even number

of users, they can decide from the beginning what should be considered in such.

The subjects participating in this experiment were 4 postgraduate students.

Three of the students had read the book before the experiments began, and each

one of them is an expert about part of the book. They had annotated different parts

of the book. By contrast, the fourth subject had not read the book. Thus, three stu

dents might be considered as experts as opposed to the fourth subject who might be

Considered as a novice.

A Chapter was selected randomly from an on-line hypertext book. The first

two levels of the outline for the selected Chapter were chosen for use in the experi

lllent. The structure of these two levels of the outline had been changed and some

Se .
chons from different Chapters selected and randomly added, to make sure that

the organization of that outline was completely changed (see Figure 25).

The outline shown to the subjects appears in Figure 26. A tutorial was given to

the SUbjects explaining the use of the Annotation types by demonstrating some

eXamples, and explaining some other related issues such as how a decision can be

lllade when an objection occur to a specific organization of two entities in the out

line. The subjects were asked, in their own spare time, to follow one of the three

cases concerning annotation:

1)

2)

Creating an annotation with "Good-Organization" type and linking it to an

entity about which they are sure of the order of the outline;

Creating an annotation with "Bad-Organization" or "Bad-Suggests

Organization" type (depending on whether or not they know the reason for

November 27, 1991

i
~

Chapter 4: Annotation in Hypertext Systems

expertext
include figure
include definition
has Dynabook _history
include expertext "principles

past expert_system _trends
example INTERNIST
include synergism
include expertext }ink "principles
include distributed_expert "principles

include expertext _systems
include microexpertext_ systems
include macroexpertext _systems
include groupexpertext_systems
example inteUigent_ requirements_tools

include expertext _requirements
extend artificiatintelligence
use semantic_net Jeasoning
use procedures
use collaborative_authoring
use network _ consrtuction
use knowledge_bases

include expertext_ exercises
apply inheritance
has outline
apply metric
apply resolution_algorithm
apply logic _ microexpertext
apply proceduratmicroexpertext
apply adaptive_weights
apply com puter-assisted Jnstruction
apply spreading_activation
apply groupexpertext_ messaging

Figure 25 "Organization experiment outline" (A): The first two levels of
the outline for Chapter "expertext" before modification.

Page 98

mOving a specific entity after or before another entity), and linking it to an

entity in the outline. This case might be used when the first case is not valid or

when there is the need for objection against assigning an annotation to an

entity; and

3) Creating no annotation at all if the subjects are not sure about a specific order

for an entity.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems

expertext
include expertext_ systems

example intelligentJequirements _tools
include macroexpertext _systems
include groupexpertext _systems
include microexpertext _systems
has microexpertext_system _creation

include figure
has textyrinciples
include definition
include expertext Jequirements

use network_construction
extend artificial Jntelligence
use knowledge_bases
use procedures
use collaborative_authoring
use semantic_net_reasoning

has Dynabook _history
include expertext yrinciples

has text yrinciples
include synergism
include distributed_ expertyrinciples
example INTERNIST
past expert_system_trends
include expertext)ink yrinciples

include expertext_ exercises
apply groupexpertext_ messaging
apply resolution_algorithm
apply inheritance
apply metric
has outline
apply logic _ microexpertext
apply procedurat microexpertext
apply adaptive_weights
apply computer-assisted Jnstruction
apply spreading_activation

Figure 26 "Organization experiment outline" (B): The first two levels of
the Chapter "expertext" outline after modification.

Page 99

Creating one annotation by one user and linking it to an entity is enough if that

annotation is the same option for all the others. Otherwise, such as in the case of

an objection, a Discussion might be needed. If there is no consensus, then all the

oPinions should be expressed by creating an annotation and linking it to that entity,

in order to make a decision by using the Yes/No voting scheme.

The re-organization process will be made manually by the facilitator in two

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 100

phases. In the first phase the outline will be re~organized in terms of the "Good

Organization" Annotation type so that the entities at a specific level in the outline

with the "Good-Organization" Annotation types should be moved to the top of that

level in the hierarchy, and the others moved to the bottom. In the second phase, the

Outline will be re-organized in terms of the "Bad-Organization" or "Bad-suggests

Organization". In this phase the facilitator should read the text of that annotation,

which is attached to the link, and change the order according to to this text. As a

result of the re-organization process, a new outline can be generated automatically.

The process could be repeated several times; where "several times" can be deter

lllined either by reaching a state where all the entities are annotated with a "Good

Organization" Annotation type, or by a time limit. To avoid the experiment ending

at an unsuitable point, the subjects were asked to create annotations on the first two

levels of the outline. After that, if they still had time to make more contributions,

then the same process would be continued on the remaining levels. Of course the

Subjects were not restricted to a specific starting level (i.e the users could make their

annotations hierarchically or nonhierarchically).

After three days, 9 nodes, 23 links, and 9 blocks of text had been created.

l'hree different types of annotations were used (see Figure 27. All the annotations

that Were attached to an entity were ordered by time (i.e the annotation which is

next to an entity is created before the others). At the time of conducting this exper

Unent, the name of the user who created a" node name was added to the Annotation

nOde name (such as AGO tony). The subjects started creating their annotations on

the first level of the outline, then they began to continue making annotations on the

seCond level. However, because most of the subjects had no time to continue the

eXperiment, they did not finish making annotations on the second level.

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 101

The outline was re-organized twice. Firstly, the outline was re-organized in

terms of the "Good-Organization" Annotation type. Secondly, the outline was re

organized in terms of "Bad-Organization" Annotation type. In the first phase of the

re-organization process, all the entities are searched from the top of the first level of

the outline to the bottom. All the entities that were attached to them, the "Good

Organization" Annotation type were moved to the top of its level. For each Anno

tation "Bad-Organization" that was attach to an entity, the text that was attached to

the link was read. The entity was moved to the place according to the text attached.

Each subject then started expressing his opinion by creating an annotation and

attaching it to the intended entity. Some of the entities had just one annotation

attached to them. Some of the entities had two, and others had more. With those

entities that had one or two annotations attached to them there was no objection to

their organization. On the other hand, there was objection to the others, and every

Subject had expressed his opinion by creating an annotation for the voting scheme

Purpose.

The subjects agreed in a face-to-face meeting before they began the experiment

that where a Yes/No voting scheme threw up a 50:50 result about an entity being

"G Ood-Organization", applying that scheme on the first level of the outline would

not necessitate any more re-organization. So, as we see in Figure 27, the structure

of the produced outline was different from the original outline before modification

(see Figure 25). ' According to the testing 'plan, a statistical test is needed to test the

Significance of the number of interchanges which are needed to make the produced

outline identical to the original outline. Since only one entity needs to be changed,

compared with eight entities which are the same as the original, it is clear that there

is no need for a statistical test. Thus, one can conclude that the Annotation organi

Zation node types can be used as a viable method of giving an author an indication of

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 102

the good quality, good content and organization of the document (assuming the con

tent is good).

expertext
include figure

corrects AGO_tony
suggests ABO _ kenny _ cut_out
corrects AGO akmal
corrects AGO wang

include defmition -
corrects AGO tony

has Oynabook _history
corrects AGO_tony
suggests ABO _ kenny _ cut_out
corrects AGO akmal
corrects AGO wang

include expertextyrlnciples
correct AGO tony

include expertext r~quirements
suggest ABO_tony
corrects AGO_tony
suggests ABO _ akmal
corrects AGO _kenny
suggests ABO_wang

include expertext systems
suggest ABO)ony
corrects AGO_tony
suggests ABO _akmal
corrects AGO _kenny
suggests ABO_wang

include expertext exercises
suggests ABO_tony
corrects AGO tony

has textyrinciples -
suggests ABO_tony _ cut _out

Figure 27 "Organization experiment outline" (C): Part of the first level of
the outline for the Chapter "expertext'? at the end of the experiment.

Some problems were faced in using the system in this experiment. The subjects

needed to enter most of the information by typing. It was also sometimes for the

SUbject to remember all Annotation node types. In addition to this the system was

Slow, especially in generating the outline, which is the most important operation in

this method. This is because the modification cannot be seen unless the outline is

re'generated. The greatest disadvantage of this method is that without any control

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 103

on making annotation, a side-effect might occur. For example, assuming that the

entity "K" is the latest entity with "Good-Organization" at the first level, one subject

intends to put entity "L" next to entity "K" and another subject intends to put entity

"M." next to entity "K", The subject who' performs the operation first will cause

Confusion to the other subject.

4.5.2. Experiment 2: Annotation Content

In this experiment, a task has been created for the purpose of making annota

tions on this dissertation. The subjects were the author and the advisor. The goal of

this test is to improve the first draft of this dissertation by making annotations and

to explore some issues about Annotation. This experiment occurred in three phases.

In the first phase the annotations were made on the paper version of the disserta

tion. In the second phase the annotations they were entered into an ascii file and in

the third phase annotations were entered directly into the MUCH system. The

hypothesis being that using the computer will diminish the need for face-to-face Dis

cussion.

The comments on paper were made over a period of 4 days and took about 5

hOurs of the advisor's time. There were 102 annotations and they could be directly

transcribed into approximately an equal number of lines of text. In other words,

each annotation was very short and derived some of its strength from the pointer to

the relevant part of the dissertation which was being critiqued. The annotations

were classified into five groups based on the level of organization in the document to

Which they pointed. The 120 annotations could be classified as: 13 concerning the

WhOle document, 13 about Chapters, 20 about Sections, 26 about paragraphs, and 30

about a specific region or term. In response to two annotations, the subjects had a

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 104

Discussion that lasted for two hours and there was nothing documented at the end

of the Discussion.

To avoid going back and forth between the screen and the paper copy when

making a response, the annotations from the paper version were entered manually

into an ascii file. Some difficulties were found in determining the pros and cons of

annotation. There were different strategies for making annotations on the paper

version which were difficult to implement in the ascii file.

The total number of annotations in this approach was 140 annotations (256

lines of text) including most of the annotations from the paper version. Some diffi

Culties were found in making annotations in the ascii file. Some of these difficulties

are:

1) The difficulty of representing the history of annotation (such as making first

annotation, response on that annotation, response on response, and so on);

2) The difficulty of making annotation on a group of text blocks; and

3) The difficulty of finding the new responses.

OUring 45 minutes working on a flat ascii file, 30 minutes of this time was face-to

face Discussion to explain how the response can be found. However, understanding

the annotations which were created in this phase needs less Discussion than the

Paper approach, and more detailed information was written.

The difficulties in both paper and flat ascii file led to the use MUCH system.

1'he electronic version of the dissertation was automatically loaded into the MUCH

sYstem and then the annotations which were not responded to in the paper version

Were manually entered into MUCH. This manual transcription proved somewhat

tedious, particularly when entering 30 annotations which were concerned with

SPecific parts of paragraphs. The MUCH system did not allow the user to mark

November 27, 1991

Chapter 4: Annotation in Hypertext Systems Page 105

parts of a paragraph and then point the annotation at those parts. Rather the anno

tation could only point to the semantic net and then within the text of the annotation

there could be explanation of the part of the paragraph to which the comment was

applied.

About 5 hours were spent over several days with the two subjects both making

Comments through the MUCH system. Only 24 annotations were created but they

occupied 460 lines of text. Eight of these annotations led to a Discussion. These

annotations varied widely in size, as one contained over 40 lines of text and another

Contained no other text beyond the node and link label. The link types which were

applied also varied widely and included "comment", "support", "suggest", and "bad'.

The Annotation process stimulated verbal Discussion which occupied a large

percentage of the 5 hours. Seven of the 24 annotations addressed the weaknesses of

the MUCH system itself, rather than the weaknesses of the dissertation. In one

hOur long session, after the users had properly initiated the MUCH system and

prepared to type comments, they then instead spent the final period of 45 minutes in

Verbal Discussion, of which 35 minutes concerned the features of the Annotation

system rather than the document.

Version management became a problem as the two users were modifying the

dOcument during the same period of time that annotations were being made. In this

Way, two of the annotations became impossible to understand, as the text to which

they Were referring had been removed.

November 27, 1991

CHAPTERS

Browsing and Searching

5.1. Introduction

The browsing function of hypertext systems enable the reader to inspect the

node contents and to navigate through the network by selecting the path to follow,

on the basis of interests emerging along the way.Lucarellal990 This function is sup

ported by all the hypertext systems (see Chapter 2). However, there is a striking

consensus among many of the experts in the hypertext field that navigation is the

greatest difficulty for users of hypertext.McKnight1991 The function offered by most

hyPertext systems does not meet the needs of readers who are unfamiliar with the

information being presented. ZeUweger1989 Different researcher have different ideas

about how a hypertext should be navigated. Each new implementation of a hyper

text browser works slightly different from previous ones.Furuta1989 This Chapter

eXplores a new method for browsing and searching a single document by:

1) uSing word-based indexing of paragraphs for searching and

2) automatically arranging the so-derived index terms in a hierarchical semantic

net for browsing.

Macrotext emphasizes the links that exist between many documents rather than

Within one document. Microtext is a single document with explicit links among its

components. In many situations a single document must serve a wide range of

users, and the user's needs determine the style of access. Browsing and searching

are two different styles of access to a document.

November 27, 1991

Chapter 5: Browsing and Searching Page 108

Discussion, Annotation and the draft textbook. It was hypothesized that the statisti

cally derived index terms were important indicators of the paragraphs' contents.

The first set of experiments performed on regular text proved the accuracy of the

frequency.based index terms and the usefulness of STADBUILDER in recognizing

the relationships between the text blocks. The relationships between the text blocks

drawn by applying an algorithm called RElA nON to the index terms and the

hierarchical semantic net.

The positive results encouraged the testing of the following hypothesis: the

Word·based indexing of paragraphs and the automatically derived semantic net could

be helpful in hypertext searching and browsing. Two additional experiments were

performed to assess the usefulness of the statistically-generated index terms and the

relationships between them for searching and browsing. The results suggest that

Word-based indexing of paragraphs and the automatically derived semantic net are

Useful also for browsing and searching.

The accuracy of word-indexing text blocks and the automatically derived

hierarchical semantic net and their usefulness for browsing and searching led us to

Use Milrs algorithm to test the similarity of the Discussion and Annotation. Two

further experiments were performed. The first experiment tests the similarity

between the text of the Discussion and the text of the Annotation. The second

experiment tests the similarity between the Discussion nodes relationship and the

Annotation nodes relationship. '

In Section 5.2, the different algorithms: Indexing, STA TBUILDER, and RElA-

110N will be described. The accuracy of these algorithms will be tested in Section

5.3.1. The new method of browsing and searching will be tested in Section 5.3.2.

Finally, the application of this new method of browsing and searching on the two

functions Discussion and Annotation will be tested as well as testing the similarities

November 27, 1991

Chapter 5: Browsing and Searching Page 107

A semantic net whose nodes point to blocks of text may support both microhy

pertext and macrohypertext. In the microhypertext case, the blocks of text may be

of paragraph size, while in the macrohypertext case, the blocks of text are entire

dOCUments. The semantic net of hypertext is an important foundation for browsing

and searching, but is also notoriously difficult to develop.Rada1987 It is this difficulty

that motivated the search for strategies based on word-frequency.Rada1989b

While the knowledge in people's minds is structured more like a semantic net

than like prose, Kintsch1988 people have little training in directly representing seman

tic nets. Researchers in natural language processing have been working for decades

on the problem of translating documents into semantic nets or other knowledge

representations. The parsing of natural language has been successful in narrow

dOlllains where the computer could be provided with a substantial knowledge of that

domain Carbonell1984 and some success has been attained in the automatic augmen-

t~· . Ion of knowledge bases from text.LeboWltz1986

Research in information retrieval has shown the value of word-frequency stra

tegies for indexing and searching.Salton1983 Word-frequency indexing takes advan

tage of the observation that terms which occur relatively frequently in a document

are important indicators of that document's content. Luhn1958 Patterns of co

OCCUrrence of terms may also give important indicators of relationships among

terms.Raghavan1979 MiliMili1987 went a step further and proposed an algorithm that

Organizes a set of index terms into a hie'rarchy based on their frequency of co

OcCurrences in documents' descriptions.

Salton's aigorithmSalton1983 was applied to index Discussion text blocks, Anno

tation text blocks, and the paragraphs of a draft textbook entitled Hypertext written

by Roy Rada using MUCH. Then, Mili's algorithmMili1987 was used to organize the

derived indexing vocabulary in a hierarchical semantic net separately for the

November 27, 1991

Chapter 5: Browsing and Searching Page 109

between these two activities in Section 5.3.3.

5.2. Algorithms

A key feature of hypertext systems is that they enable users to browse through

semantically related parts of a document. To this end, one must provide the means

for: 1) describing the contents of the various parts of a document to allow direct

access to those parts, and 2) describing the various semantic relationships that exist

between the parts of a document to allow content-based browsing. In this Section, it

will be shown how: 1) frequency-based methods can be used to extract content

descriptors from textual units and 2) Mili's algorithm can be used to organize these

Content descriptors into a hierarchical semantic net, thus providing semantic access

Paths between the parts of a document. In Section 5.2.1, a frequency-based content

analysis method that is commonly used in information retrieval systems is described,

and its applicability to this case is discussed. In Section 5.2.2, Mill's algorithm is

described, followed by a description for the RElATION algorithm in Section 5.2.3.

5.2.1. Indexing Algorithm

Two of the existing basic approaches to document content analysis are the inter

Pretative and structural approaches. In the interpretative approach, semantic infor

Ihation is provided about the domain and ~ften about the English language itself, so

that the document may be understood before it is indexed.Kaplanl990 In contrast, the

Structural approach uses the frequency of usage of words in natural text as an indica

tOr of content relevance, and no semantic interpretation is assigned to any word.

l'he index selection can also take into account other structural information such as

Word adjacency. The structural approach is based on the observation that writers

November 27, 1991

Chapter 5: Browsing and Searching Page 110

usually repeat certain words as they advance or vary their arguments and as they

elaborate on an aspect of a subject. This approach has motivated a number of

automatic indexing algorithms for information retrieval systems.Salton1983 The

advantages of these algorithms are practicality and ease of implementation. A struc

tural approach, and use a variant of frequency-based indexing will be applied.

A typical frequency-based indexing algorithm proceeds as follows:Salton1983

1) Identify all the unique words in the document set.

2) Remove all common function words included in a stop listRijsbergen1979 (such as

"a", "the", "and", "is", ... , etc.)

3) Remove some suffixes and combine identical word forms (stems). This reduces

a variety of different forms such as analysis, analyzing, analyzer, and analyzed,

to a common word stem "analy."

4) Determine the frequency of occurrences of the resulting word stems,

5) Give a range of frequencies for terms to be considered for indexing. All terms

that are within the range are used as index terms.

More elaborate filtering mechanisms exist that use entropy-based measures that

attest to the extent to which a given index term discriminates between documents in

the document set.Salton1983 Terms with poor discriminatory power are disregarded.

Variations of the above algorithm have been used extensively in information

retrieval systems, despite harsh criticisms from the proponents of knowledge-based

interpretive indexing. Salton argued that the interpretive methods have yet to justify

their added complexity,both computationally and conceptually, by provably better \

retrieval performance.Salton1986 However, there remains a major problem in this

case: While frequency-based indexing generates a flat description, i.e., an unordered

Set of index terms for each document, MUCH documents are indexed by binary

November 27, 1991

Chapter 5: Browsing and Searching Page 111

relationships between terms. For example, a document that defines semantic nets

might be characterized by the phrase "*a semantic net* IS-A *graph*", where *a

semantic net* and *graph* are both frames (see § 3.3). Salton's algorithm might

identify *a semantic net* and * graph * as index terms for that document, but it

Would not specify the relationship between them. Therefore, the decision was made

to index the documents in two stages:

1) Identify the important content descriptors for each document, and

2) Apply Mill's algorithm to identify the relationships between co-occurring index

terms

Mili's algorithm is described in the next Section.

5.2.2. Mili's Algorithm

The algorithm developed by MiliMili1987 is based on the widely accepted

hyPothesis that words (or terms) that often co-occur in textual documents tend to be

related according to some relationship important to the document space.

l.eskl
969, Soerge11974, Raghavan1979 He goes one step further, using empirical data from

[I<ap1an1990] and [Jones 1980], showing that the most commonly used content

descriptors within a document collection tend to be more general. He then

hYpothesized that the most dominant relationship between related terms with dif

ferent scopes (or degrees of generality) is . "Broader-Term." However, he provides

no heuristics for identifying other kinds of relationships, either hierarchical or non

hierarchiCal, that may be equally important to the document space. His algorithm

Called STATBUIIDER, organizes a set of content descriptors (or index terms) into

ahi erarchy using the above hypotheses.

November 27, 1991

Chapter 5: Browsing and Searching Page 112

STATBUIIDER relies on the availability of frequency information consisting

of;

1) the number of times each content descriptor is used in the document set. This

information is used to infer the "scope" of the various content descriptors.

2) and the number of times two content descriptors are used jointly to describe a

document, for all pairwise combinations of content descriptors.

This information is embodied in a matrix MAT, where MAT(~j) is the frequency of

co-occurrence of term ti with term tj. MA T(i,i) is the number of documents in

Which ti was used. The rows and columns of the matrix are organized by decreasing

order of MAT(i,i) so that for j < i, tj has a broader scope than ti. The algorithm is

as fOllows (assuming N index terms);

1) Normalize the elements of the matrix M by dividing M(i,j) by the square root

of M(i,i) x MO,j).

2) Choose the terms to be included in the first level of the hierarchy. Make these

terms ~int to the root of the hierarchy. The purpose of the root node is to

connect the 1st level terms. The root node can be called anything; call it

KBROOT (Knowledge Base ROOT). Assume that the terms tk through tkl

Were chosen to be included in the fIrst level.

3) For i = kl + 1 through N

3.1) Find the maximum of the elements M(i,l) through M(i,i-1). Note that

because of the ordering of rows and columns (step 2), these are the fre

quencies of co-occurrences of tj with the terms whose occurrences are

higher than that of ti.

3.2) Create a link between the term ti and all the terms tj such that j < i and

M(i,j) is the maximum found in 4.1.

November 27, 1991

Chapter 5: Browsing and Searching Page 113

Mill reported an experiment where STATBUIIDER was tested on a set of

index terms used to describe articles from biochemistry literature.Mili1987 The

resulting hierarchy- call it STA TKB, was inspected for the predominance of

"B roader-Term" relations. About 50% of the hierarchical links were indeed

"B roader-term". To assess the significance of the remaining links, STATKB was

evaluated for the extent to which it could be effectively referenced by a semantic-net

based concept-matching algorithm- called DISTANCE, which measures the

relevance between documents and queries.Rada1989a DISTANCE's measurements

were compared to people's relevance assessments for the same set of documents and

qUeries. The DISTANCE evaluation correlated well with the human evaluation and

Suggested that the statistically-derived relations were cognitively meaningful.Mili1987

In this case, the relationships generated by STATBUIIDER would be used to

replace the statistically-derived flat set of index terms used to describe each docu

lllent by <terml Broader-Term term2> triples. For example, if a document 0 were

indexed by the set I={*a semantic net*,*graph*}, and if STATBUIIDER identified

a broader-term relationship between *a semantic net* and *graph*, then I would be

replaced by the singleton I' = {< *a semantic net*,Broader-Term, *graph* >}. While

this Would account for neither all the terms in an index set, nor all the relationships

between these terms, it would provide a useful partial description of the document's

Contents.

5.2.3. The RELATION Algorithm

Salton's algorithm identifies the important content descriptors for each text

block. Applying Mill's algorithm to these descriptors identifies the relationships

between them. The REl.ATION algorithm identifies the relationships between the

November 27, 1991

Chapter 5: Browsing and Searching

indexed text blocks. Assuming that:

Page 114

1) there are n text blocks (TBn) where each text block is indexed by a set of index

terms (IND) and

2) the derived semantic net is produced by applying STATBUIlDER to the index

terms and their co-occurrences.

The relationships in the derived semantic net will be in the form termk isa KB (i.e

the index terms which are chosen to be included in the first level) or termj isa

termrn , where termj +termrn (those index terms which are in the second level or

lOwer). The REIATION algorithm goes as follows:

1) For i = 1 through K

1.1) Find all the text blocks which are indexed by termk.

1.2) If there is no link created between any two text blocks· in 1.1, then create a

link.

2) For i = 1 through j

2.1) Find all the text blocks which are indexed by termj and termm•

2.2) If there is no link created between any two text blocks TBj and TBm in

2.1, then create a link.

An output from this algorithm can be seen in Figure 30.

5.3. Experiments

In this Section, three groups of experiments were conducted using the index

terms generated by Salton's algorithm and the relationships identified by Mill's algo

rithm. In the first group of experiments, the accuracy of indexing and the usefumess

of the hierarchical semantic net were tested in recognizing the relationships between

November 27, 1991

Chapter 5: Browsing and Searching Page 115

different text blocks of a document. However, the relationships which are identified

by Mill's algorithm may nevertheless prove useful in the context of hypertext sys

tems, in the same way that Mili showed the usefulness of his hierarchy in the context

of information retrieval.Mili1987 The second group of experiments were conducted

to assess the usefulness of the semantic net generated by STATBUIlDER for typi

Cal hypertext tasks. All the hypotheses in these experiments were supported. This

led to the use of the index terms and the hierarchical semantic net relations as a

testing tool. In the third and final group of experiments, the similarities and differ

ences between Discussion and Annotation were tested.

5.3.1. Accuracy and Usefulness of indexing and STATBUILDER

In this Section, two experiments are described. In the first experiment, the

aCCuracy of indexing was tested by trying to answer the following question:

Given that a document D was assigned the index terms t1 and t2 by

Salton's algorithm, and given that Mili's algorithm identified a relationship

between t1 and t2, does D "talk" about a relationship between t1 and t2'

I\. Positive answer would validate both the index terms generated by Salton's aJgo

rithm, and the relationships between them identified by Mili's algorithm. In the next

experiment, the usefulness of both the index terms and the hierarchical semantic net

Was tested in recognizing the relationships between different groups of text blocks.

November 27, 1991

Chapter 5: Browsing and Searching Page 116

5.3.1.1. Experiment 1

This experiment tests the accuracy of indexing derived from a combination of

Salton's algorithm and Mill's algorithm. A random sample of 20 paragraphs was

Used, and these were assigned index terms by Salton's algorithm, so that Mili's algo

rithm identified a relationship between two of the terms. For example, a document

D With index terms {tht2,t3} such that STATBUIIDER generated the relation <t3

Broader-Term t1> was a candidate for this experiment. The purpose of this experi

Illent Was to determine the extent to which D truly describes a relationship between

t3 and t1.

The 20 paragraphs and their related pairs of index terms were given to experts

Who were familiar with the topic area. The subjects were asked to read each para

graph and to decide whether that paragraph described a relationship between the

Pair of index terms. The subjects found that 75 percent of the documents did indeed

describe a relationship between the related pairs of index terms.

5.3.1.2. Experiment 2

This experiment tests the accuracy of Mili's algorithm and the index terms in

recognizing the relationships between different groups of text blocks by trying to

answer the following question:

Given that three text blocks TB1, TB2, and TB3 were assigned the index

terms ttt t2, and t3 respectively by Salton's algorithm, and given that Mill's

algorithm identified a relationship between t1 and t2 only, do TB1 and TB2

exist in one Section and does TB3 exist in a different Section.

A. POsitive answer would validate the accuracy of both the index terms and the

November 27, 1991

Chapter 5: Browsing and Searching Page 117

derived semantic net in recognizing the relationships between the text blocks. The

relationship between the text blocks can be drawn by applying the RELATION algo

rithm to the index terms and the hierarchical semantic net.

In this experiment frequency-based indexing algorithm was applied to 7 Sec

tions (see Figure 28) which were selected randomly from different Chapters con

tained in Rada's book Hypertext.

Section Order Number Text block
1 3, 12, 14

2 1,2

3 5,6, 7, 15

4 8,9, 10, 13, 16, 17

5 11, 18,20

6 4, 19,21

Figure 28 "Sections correspondent text blocks": shows the Sections which
are used in this experiment. Each Section consists of a group of text
blocks. The text blocks numbers are the order of the text blocks as they
appear in the directory.

'Ibe initial number of potential index terms was 44, with frequencies ranging from 1

to 4. STATBUILDER generated a two-level hierarchy, with 45 relationships; some

of these relationships can be seen in Figure 29.

November 27, 1991

Chapter 5: Browsing and Searching Page 118

Figure 29 "Docu~ent hierarchy": Part of the text book hierarchy generat- ' ,
ed by STATBUILDER.

'Ibe RElATION algorithm was applied to these hierarchy relationships and the

index terms. The result of this algorithm can be seen in Figure 30. In the com

Parison between the input as in Figure 28 and the output as in Figure 30, four Sec

tions were completely recognized; the other two Sections were also recognized but

One text block was disconnected from each one. Furthermore, four Sections were

Completely separated, while the other two were linked with each other through one

relation only.

November 27, 1991

Chapter 5: Browsing and Searching

@I 2

I

~
Figure 30 "Document relationships": the relationships between the text
blocks of a document which are produced by applying the REl.A TION al
gorithm on the index terms and the hierarchical semantic net. The dashed
line means only one relationship between the two text blocks. The solid
line means more than one relationship.

Page 119

5.3.2. Usefulness of Index Terms and Relationships Experiments

In this Section, two experiments have been described. In the next two experi

Illents, the usefulness of the index terms and the relationships to support a variety of

hYpertext tasks were tested. In particular, the first experiment tests the value of flat

index sets to measure the similarity between two documents. Such a measure may

be Used to support searching. The second experiment tests the usefulness of relation

sh'
IPS generated by STATBUILDER to relate documents. Such relationships may be

used for browsing.

November 27, 1991

Chapter 5: Browsing and Searching Page 120

5.3.2.1. Experiment 1

Searching involves concept matching. In keyword-based searching, the user

enters one or more keywords, usually separated by logical connectives, and the sys

tem returns the set of documents that have those keywords in their indices. When

none of the documents of the database completely matches the query (Le., has all

the required keywords), a retrieval system might rank the documents that match the

query partially, by degree of match, and present them to the user in that order.

Depending on the quality of indexing, that order may correspond to the order in

Which the user might like to consult the documents.

In this experiment, a variation on the above method was tested, and it explored

the extent to which word-frequency based indexing could support similarity measure

ments between paragraphs. A similarity measure "SIMILAR" between two docu

ments was defined as follows:

Let dOCI and doc2 be two documents with index sets 11 and 12, respec

tively. The similarity between dOCI and d2 is measured by:

2 x (card(11nI2 »
SIMlIAR (dOCI, doc2) = card(11) + card(12) ,

Where card(X) is the cardinality of set X.

Note that this measure is normalized, i.e. SIMIIAR(doCi, docj) = 1 when 11 = 12,

and less than one otherwise.

A random sample of 20 paragraphs, PI through P20 was selected, and computed

SIMlLAR(PitPj), for all 1 :5 i < j :5 20. The values ranged from 0 and 0.26. The

same 20 paragraphs were given to subjects who were asked to read the paragraphs

and to assign a measure of similarity between 0 and 1 to each pair of paragraphs.

'l-L 20(20-1)
... nus, for the 20 paragraphs, the 2 numbers produced by SIMIIAR were

November 27, 1991

Chapter 5: Browsing and Searching Page 121

compared to those produced by people using a correlation coefficient testAlvo1985

let X = the similarity produced by the experts.

let y = the similarity produced by the machine.

(EX)(EY)
EXY - n

r = ----------------------------------~1

[[EX2 _ <E;2) [Ey2 _ <E;2)] 1:

By substitution in the above formula, r = 0.45. Thus the correlation between the

manUal'method and the automatic method is supported at the 5% level.

5.3.2.2. Experiment 2

In this experiment, it was hypothesized that an author with a set of index terms

for a paragraph and the derived semantic net could find a related paragraph. To

Validate this hypothesis, a random sample was taken of 18 pairs of paragraphs

(Pl,P2) so that STATBUILDER identified a relationship between a term indexing
p

1 and a term indexing P2' These pairs were given to subjects familiar with the
to .

PIC area, and they were asked to assess the relatedness of the paragraphs within a

pair. The subjects found that 84 percent pairs of paragraphs were, indeed, related.

5
03.3. Similarities of Discussion and Annotation

The index terms and relationships which are generated by Salton and Mili's
al ' "

gOflthms prove useful in recognizing the relationships between the index terms and

the d'f"C
1 terent text blocks, Also, they prove useful for browsing and searching. So,

the index terms and the relationships have been used as a testing tool to test the
Sinn

I arity of the text for both Discussion and Annotation. In this Section an attempt
t .
o explore similarities of Discussion and Annotation was made. Two experiments

November 27, 1991

Chapter 5: Browsing and Searching Page 122

Were performed. In the first experiment, the similarity between the text of the Dis

cussion and the text of the Annotation was tested. In the second experiment, the

similarity of the relationships between the Discussion text blocks and the relation

sh'
IpS between the Annotation text blocks was tested.

5.3.3.1. Experiment 1

Discussion focuses on an unresolved issue, whereas Annotation points to a

document. In other words, Discussion text blocks are more likely to be related to

one another than ar~ Annotation text blocks. To examine this point from a quanti

tatiVe perspective, word-frequency based measures of relatedness are applied.

The text associated with each node in HERD can be indexed with some of the

terms in the text. Given two index terms, term! and term2, which frequently co

OCCUr in the text associated with different nodes, it might be hypothesize that term!

is related to term2. Furthermore, it might be said that a node whose text is indexed

With term! is related to a node whose text is indexed with term2' The STAT·

aUILDER algorithm extends the above approach by organizing a set of index terms

into a h' lerarchy based on the frequency of co-occurrences of index terms in

teXts.Mili1987, Mhashil990

let x and y be ideas, terms, or concepts. Two nodes are related if one of the

nOdes Contains x and the other contains x arid y. The text of Annotation is similar to

the text of Discussion, if there is no significant difference between the percentage of

related nodes in the tree resulting from the Discussion and the percentage of related

nOdes in the tree from the Annotation.

The contents of the 55 Annotation nodes were examined. The size of each

nOde
ranged from one sentence to four paragraphs. Each node was characterized by

November 27, 1991

Chapter 5: Browsing and Searching Page 123

a set of index terms. The index terms were produced for these nodes manually.

The number of terms in the final indexing vocabulary was 96, and the frequencies

ranged from 1 to 5. STATBUIIDER generated a two-level hierarchy containing 40

relationships. 34 pairs of nodes were suggested by STATBUIIDER, where there

Was a relationship between the two nodes in each pair. All the nodes were given to

Subjects familiar with the topic area, and they were asked to assess the relatedness

of the nodes. The meaning of relatedness was explained: Two nodes are related if

they have something in common, such as both of them being concerned with an

idea, concept or term. It was found that 29 pairs of nodes were, indeed, related to

each other (i.e 53 percent of the nodes were related to each other).

The text associated with the first 29 Discussion nodes from case study one were

also manually indexed. STATBUIWER was then applied to this collection and sug

gested that 26 pairs of nodes were related to each other. When the 26 pairs of

nOdes - in addition to the 3 nodes which STATBUIIDER suggested were unrelated

to any node _ were given to the experts, they found that 26 pairs were, indeed,

related to each other (i.e 89 percent of the nodes were related).

5.3.3.2. Experiment 2

In this Section two experiments were performed. The same procedure which

Was performed in Section 5.3.1.2, was repeated again here, but with regard to the

text of Discussion and Annotation rather than the text of a document. An attempt

Was made to test the similarity between the relationships among the Discussion text

blocks on one hand and the relationships between the Annotation text blocks on the

Other hand.

In the Discussion on requirement guidelines, 59 nodes were created. The

November 27, 1991

Chapter 5: Browsing and Searching Page 124

frequenCY-based indexing algorithm was applied to the first 29 nodes. The initial

number of potential index terms was 66, with frequencies ranging from 1 to 9.

Terms that occurred less than 2 times, were eliminated which reduced the set of

index terms to 20 terms. STATBUILDER generated a three-level hierarchy, with

27 relationships; some of these relationships can be seen in Figure 31.

Figure 31 "Discussion hierarchy": Part of the Discussion hierarchy gen
erated by STATBUILDER.

'fhe RElATION algorithm was applied to these relationships and index terms.

'fhree text blocks were completely disconnected. The remaining 26 text blocks were
l'
Inked to each other through various relationships. A part of the graph can be seen

in Figure 32. The number of relationships which connected the nodes ranged from 6

relationships to 22 relationships.

November 27, 1991

Chapter 5: Browsing and Searching

Figure 32 "Discussion relationships": shows part of the relationships
between the text blocks of the Discussion which are produced by RElA·
TION algorithm.

Page 125

In an Annotation case study (Section 5.3.1), 55 nodes were created. The rela
t'
lOUships between these text blocks as they were originally created can be seen in

Figure 33.

November 27, 1991

Chapter 5: Browsing and Searching

Figure 33 "Annotation tree"; This shows how the relationships between
the Annotation text blocks were originally created by the users.

Page 126

,

54 55

The frequency-based indexing algorithm was applied to the 55 nodes which were

created in the Annotation case study (Section 5.3.1). The initial number of potential

index terms was 96, with frequencies ranging from 1 to 4. Terms that occurred less

than 2 times, were eliminated which reduced the set of index terms to 23 terms.

S1'A1'BUUDER generated a two-level hierarchy, with 39 relationships; some of

these relationships can be seen in Figure 34.,

November 27, 1991

Chapter 5: Browsing and Searching

Figure 34 "Annotation hierarchy": Part of the Annotation hierarchy gen
erated by STATBUILDER.

Page 127

l'he RELATION alg~rithm was applied to these relationships and index terms. The

relationships among the annotations can be seen in Figure 35. Thirty three annota

tions Were completely disconnected. The remaining 22 annotations were divided into
e' h
Ig t groups. The number of Annotation text blocks in these groups ranged from 3

to 5.

November 27, 1991

Chapter 5: Browsing and Searching

Figure 35 "Annotation relationships": shows the relationships between the
text blocks of Annotation which are produced by RElATION algorithm.

November 27, 1991

Page 128

CHAPTER 6

A Discussannotation Hypertext Model

6.1. In trod uction

We have seen that both the literature (Chapter 2) and the previous experiments

and Case Studies (Chapters 3 and 4) suggest that the Discussion and Annotation are

important and needed in collaborative document writing. A Discussion supports the

resolution of conceptual conflicts and the selection of conceptual and thematic alter

natives. Once themes have been identified and initial drafts of the document writ

ten, Comments or annotations on the document guide modifications that can be

Inade.

Research on Discussion systems has taken many approaches. Fischer's work

with JANusFischer1989 has shown that Discussion and construction (or authoring)

are two separate phases of collaborative activity. A knowledge base of rules was

added to JANUS to help connect the information in a Discussion to the information

COntents of a document. Work with graphical Issue-Based Information Systems has

ShoWn the value of color as a tool to guide people in their understanding of

biscussion. Conklin1989 Experimentation with the COlAB Discussion system has

ShoWn that people need constraints to help them focus the Discussion. Stefik1987 Stu

dies of argumentation have shed light on the means by which Discussions can lead to

Conclusions. Berns~ein1989, Streitz1989

Most of the Discussion systems do not support making annotations, whether

these annotations are made with regard to the document or to the procedures and

conVentions for use in the system itself. In the issue-based information Discussion

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 130

systems, such annotations need to be treated as issues and their argumentations, but

such annotations are very difficult to be classified as issues or arguments. Some sys

tems, like KMS,Aksc88 support making Annotation, but it does not support making

an annotation on an annotation. If a user has created an annotation and another

User Wants to create an annotation objecting to the first one, then how can such a

case be manipulated? It can therefore be seen that support for both Annotation and

Discussion is needed.

The Colab 'idea organizer' divides a meeting into three phases: brainstorming,

organizing, and evaluating. In the evaluating phase, participants review the structure

of the linked ideas and eliminate peripheral ideas. The system prepares an outline

by traversing the idea graph. Is the organization of the outline generated by travers

ing the idea graph always perfect? If a user wants to make some annotations on the

generated outline, then how are such annotations represented?

In addition to these considerations, the Discussion systems ranged from sup

Porting of node and link types such as gIBIS to none at all such as SYNVIEW and

WE. The difficulty of using just three nodes and three link types was seen (Section

3.3.1). Furthermore, the Discussion systems which are supporting node and link

types, are designed for Discussion, not for Annotation, and it was seen in Section

3.3.3 that the Discussion node types are not as useful for Annotation as they are for

bisCUSsion. It is suggested that while supporting the making of Annotation, the Dis

CUSsion system should support Annotation node types as well as Discussion node

types.

Considering another perspective, the InterNote Annotation system supports

both review and revision processes and does not support Discussion making. How

eVer, there are many issues raised during the revision process which need Discussion.

If there is a set of annotations created by different users on a specific term, then

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 131

which one of these annotations needs to be considered or incorporated? On the

other hand, if one annotation has been made and the effect will be seen in more

than one location in the document, how then can the users decide which locations

need to be changed according to that annotation. So, how might such issues be

resolved without a Discussion? One method for resolving such issues is to have a

Discussion and then vote. Of course, the Discussion might be either a face-to-face

Discussion or a Discussion system.

Some Annotation systems (such as Quilt) focus on making annotations only. In

QUilt, creating an annotation on annotation is not supported. If there is some infor

Ination in the document which has been written incorrectly and one user had created

an annotation which leads to a Discussion (making an annotation on an annotation),

then how can such a case be resolved? If the users want to make a plan about what

they did or what they are going to do, then how can such a plan be made?

Furthermore, as in the Discussion systems, the Annotation systems are ranged

from non-supporting Annotation node types such as PREP to systems which support

sOme Annotation node types. The requirements Discussion Case Study (Section

3.3.1) proved that supporting node types in the Discussion systems are important.

'!bus, as in the Discussion systems, in order to make Annotation systems support a

DiScussion, Discussion node types should be supported as well as Annotation node

types. As a result, the Discussion systems do not achieve their objectives without

Us'
lng Annotation. Also, the Annotation systems do not achieve their objectives

Without using Discussion.

Additionally, One of the major problems of human-computer interaction is the

ever-growing complexity of software systems. The problem is compounded when

uSers must cope with a multitude of systems that have inconsistent data models.

Systems that support collaborative writing have a rich design space and present

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 132

deSigners with many agonizing tradeoffs.Akscyn1988 In the implementation, designers

rnay avoid facing up to these tradeoffs and thus permit the system to become too

complex. This complexity affects the efficient use of the system. One way to reduce

SUch complexity is to decrease the number of modes in the system. This can be

done by combining two or more functions. This Chapter addresses the issue of com

bining SUpport for Discussion and support for Annotation, which are currently avail

able as separate activities, into a single integrated support facility.

In terms of supporting Discussion and Annotation on document creation, exist

ing hypertext systems differ from one to another regarding the level of support for

rnaking Annotation and Discussion on a document creation. However, there are no

hyPertext systems which support Annotation and Discussion on all the different com

Ponents of a document (such as Section, Chapter, or a whole document) and which

generate different outlines. Nor is there any proposed system for the creation of

Annotation and Discussion on system or administrative matters.

In summary, a model that combines Discussion and Annotation which is easy to

deSign is suggested. The requirements for combining both Discussion and Annota

tion in one single system are described in Section 6.2. The model and a descriptiori

of its main components: the storage level; the presentation level; and the storage

preSentation specification, and the user interaction are presented in Section 6.3.

6.2. General Requirements

From both the literature (Chapter 2) and this work (Section 3.3.3 in Chapter 3,

Section 4.3 in Chapter 4, and Section 5.3.3 in Chapter 5), many similarities and some

differences between Discussion and Annotation have been found. Based on these

sUnilarities and differences, a set of requirements and designing issues to facilitate

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 133

the design of a single computer system for supporting both Annotation and DiScus

sion are described. Thus, the aim of this Section is to explore the boundaries of the

partly overlapping processes of Annotation and Discussion and to consider the impli

Cations of these processes for computer support. Section 6.2.1 identifies the high

level functional requirements. Section 6.2.1 presents the implementation require

lllents for such high-level functions.

6.2.1. Re-analysis of Previous Work

The results of the experiments and Case Studies that were performed in the

Chapters 3, 4, and 5 suggest that the following are general requirement specifica

tions for a Discussannotation mode1.

1) Both Discussion and Annotation activities should be supported.

2) The model should support a specific set of Annotation and Discussion types

with the option for the user to modify (delete or add) them.

3) The model should support a specific set of node and link types with the option

for the user to modify them.

4) Both hierarchical and non-hierarchical structures should be supported with the

Option to convert a non-hierarchical structure to a hierarchical structure.

S) Decision-making, different views, and browsing should be supported.

SUch requirements need to be addressed in the design of such a model.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model

6.2.1.1. Discussion Handiling

Page 134

In the document creation context, different Discussions need to be created.

DisCUssions need to be created on documents, on the Annotations, with regard to

the system itself, and with regard to the administrative matters (Section 3.3.3). So,

the Discussion could be divided into two major types:

1) document Discussions: the Discussions which are intended to resolve some

issues in the document and

2) non-document Discussions: these are Discussions which are intended to resolve

issues which are not in the document. For example, they may include Discus

sions for making a plan about what should be done next, or who should do

What, or Discussions about the system, or administrative matters.

Most hypertext systems have a variety of node and link types (such as IBIS,

gIllIS, NoteCards).Halasz1987 Some systems have only one type of node. For exam

Ple, KMs has only one frame type, and is similar in that respect to

liYperCard.Akscyn1988 Sometimes, restricting the user to a set of node and link types

causes difficulty for the user (Section 3.3.1). On the other hand, using specific types

of node and links may be useful for automatic operations and intelligent processes

(see Case Study 1 Section 3.3.1). Therefore, the system should support a specific set

of nOde and link types with the option to modify the existing types and to add some

lllore. From the experiment Section 3.4, it would appear that the following are use

ful link: types: summarizes, comments, decision-made, supports, suggests, criticizes,
clQriifi es, objects, replaces, contains, extends, and answers.

A collection of linked nodes may be considered as a graph which may be a

hierarchical structure. Using hierarchy and decomposition is useful for Discussion.

Some of the advantages of using hierarchy and decomposition are (see Case Study 1

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model

Section 3.3.1):

Page 135

1) it diminishes the disorientation problem (there was no restructuring or drawing

of intermediate conclusions by summarizing);

2) it reduces the non-hierarchical links (one non-hierarchical link in the decompo

sition versus 11 non-hierarchical links in the non-decomposition part); and

3) it leads to a conclusion more quickly than other approaches do. All the nodes

and the data which are created in the decomposition part are needed, while

some nodes and data are unnecessary in the non-decomposition part.

The results of Case Study 1 (Section 3.3) suggest that the hierarchical decom

POSition structure is preferable to the non-hierarchical structure. It is also essential

for making Annotation and Discussion to specify the boundaries of a group of text

blocks (such as Sections, Chapters). However, the hierarchical structure does not

Satisfy all user needs in the storage nor on the display. Thus, supporting the

hierarchiCal and non-hierarchical structures separately or in conjunction with each

Other on the display and in storage is necessary. Furthermore, understanding the

problem and how it can be decomposed is a pre condition of using hierarchy and

decompOsition. One of the solutions might be to use a face-ta-face discussion or

l<.ullZ's method. Kunz1970

The hierarchical structure may help focus attention and facilitate decision

lllaking. There are many advantages for using decision-making in Discussion sys

tellls (see Case Study 1 Section 3.3.1). Two of these advantages are:

1) AsSigning a decision to a node will be very useful in facilitating the reading pro-

cess. All the issues will be clear, whether a specific issue has been resolved,

discussed, or postponed. The participants can go directly to those issues which

are not yet resolved, and they might be given an option to list all resolved or

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 136

unresolved issues. Unlike IBIS, and gIBIS, the users should try to find out

Whether an issue is resolved or not. This is done by finding either an aggrega

tion of Issue-Position-Argument nodes, or the occurrence such of a "break

through" where there is no need for further Discussion.

2) Decision-making forces users to focus on a specific issue and encourages them

to contribute as best they can. Also, it encourages users to participate in the

Discussion. As a result, the conclusion will be more accurate and more power

ful than having a Discussion without decision-making.

Finally, authors may want to modify the text which they have written. A good

authoring system allows these changes while keeping a record of what was originally

present. The strategies for version control are, however, not relevant to a Discus

sion system because the Discussion structure is intended to reflect the dynamics of

the user interactions. To allow an author to change a node which had said "We
sh .

auld have peace" so that it then says "We should have war" would place any pre-

ViOUsly recorded responses in an incorrect context.

6.2.1.2. Annotation

The system should suggest a set of Annotation node and link types to the users.

Most of the link types for Discussion are useful for Annotation, while the Discussion

nOde types might be considered as a complement to the Annotation node types.

l'he structure of the Annotation should be similar to the structure of the document

and the User should be able to generate one outline for both the document and the

Annotation (Case Study Section 4.3).

In document creation" different Annotations need to be created on the docu

lllent inVOlved as well as the medium (see experiment 2 Section 4.5.2). The annota-

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 137

tions can be divided, according to their contents, into two broad major types:

1) Triple Annotation: the annotation which is pointing to a document, another

annotation, or Discussion and the content of the Annotation also intended to

change the corresponded node and

2) non-Triple Annotation: the annotation which is pointing to the Triple, but the

Content intended to change non-Triple activities such as annotations pertaining

the system or the administrative matters.

Each one of these Annotation types, in turn, can be divided into a number of

Annotation sub-types. For example, the annotation about document can be divided

into Annotation Organization and Annotation Content node types. These Annotation

nOde types approved to be useful for giving an author an indication of the good qual
ity.

, gOOd content and organization; of the document (experiment 1 Section 4.5.1).

lberefore, the users should be given an option to reorganize the different entities in

the outline by using the Annotation Organization node types.

A good hypertext system matches the structure in the database (hierarchy and

non-hierarchy) and the structure on the display when the users want to view the data
Stor d . ' . .

e In the database. Non-hierarchy can be converted to a hierarchy by different

lllethods (such as depth-first and breadth-first). Applying the Organization Annota
tion

node types on an outline generated by one of the traversal methods was found to

be a Useful method (experiment 1 Section 4.5.1) in that it allows users to view the

data in the storage according to one or more different perspectives.

Indicating which part of the document was being annotated is very important in

the Various methods of making annotations (experiment 2 Section 4.5.2). So, Anno-
t . '
ahons should point directly to the document. Annotator should be able to create an

annotation and link it to any part of a document, such as a specific term, a region of

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 138

text, a text block, a group of text blocks, or the whole document (Section 4.5.2).

Therefore, the system should support the Composite nodes method (described in

Section 4.5.2).

6.2.1.3. Similarities of Discussion and Annotation

The electronic computer has opened wide new vistas for the collaborative work

of Writing a document. The links between the documents, between the people, and

between the systems must be united in order to serve the collaborative

work. Radal991b One way to satisfy this is to combine Discussion and Annotation,

Which are both needed in collaborative work when writing a document. Collabora

tive work systems for document writing help groups of people create and access text

in three phases.

1) The Discussion phase occurs first as people brainstorm and formulate plans as

to how the writing should proceed.

2) In the authoring phase, blocks of text are attached to a network of ideas and

the network is traversed to generate a document. • I

3) In the Annotation phase where the analogue of reading in the collaborative

sense is the making of notes by a group of people working together on a docu-

ment. This Annotation phase may also lead to a revised document as the anno

tators incorporate their comments into the original document.

1bus, the first common point between Discussion and Annotation is that both of

them are essential activities in one area, which is the collaborative writing of a docu

ment. Annotations and Discussion need to be created on documents, with regard to

the system itself, and with regard to the administrative matters. Annotations need

to be created on Discussions, and Discussions need to be developed from

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 139

Annotations (experiment 2 Section 4.5.2).

Both Discussion and Annotation systems could be in a hypertext form such as

the hYPertext Discussion system gIBIS and the hypertext Annotatio~ system Inter

note. So both Discussion and Annotation systems could have nodes and links.

'!bese nodes and links could have types, names, and identifiers. A problem can be

reSolved using a Discussion system, Lowe1985, Smith1986, Hershey1985 or it might be

reSolved by using an Annotation system which uses ar~entative annotations (i.e

each annotation can be annotated). Ldand1988 A starting point is necessary for a Dis

cussion as well as for an annotation. The starting point for a Discussion might be an

iSSue or it might be an annotation to a document. When reviewing the contributions

Illade by colleagues, a writer may want to know· who has made what contribution

oVer a period of time. Accordingly, the recording of author and date for each node

in both Discussion and Annotation is important.Radal990b

A node in many Discussion and Annotation systems is an arbitrarily large or

sIllall text block or other information, such as graphics. Systems such as KMS fix

the size of a node to the amount of information which fits on the screen, but for

DiSCUSsion or Annotation more flexible solutions 'might be appropriate. A limited

Illenu of responses may be helpful in certain circumstances, for instance, a 'yes' or

'n ' o Vote could be the contents of a node, or the contents might be empty (Case

StUdy 1 Section 3.3.1 and experiment 2 Section 4.5.2).

Unk types provide information about the nature of the relationship between

two nodes and may support some automated processes. Some hypertext systems

have a predefined set of link types such as HERD, but some let the user define the

types (i.e typing was left open for the user) as does MUCH. A sma1~ fixed set of

link types may help users (Case Study 1 Section 3.3.1). The same set of link types

Were not enough and did not satisfy the users' needs (Case Study 3 Section 3.3.3).

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 140

In another Case Study, Section 4.3, a set of node and link types was suggested to the

Users, but they didn't have to use them. The results from this Case Study suggest

that users fmd link types difficult to understand or to systematically apply. Thus, a

balance between these two situations is necessary. In other words, the system

should support a set of link types for both Discussion and Annotation· with the

OPtion to add and modify the current types.

For creating or viewing an Annotation or Discussion node, the user should be

able to see the source of the Annotation/Discussion and the Annotation/Discussion
s·
unUItaneously. Regardless of whether he/she is making Annotation or Discussion

on the hierarchy of a document (such as Sections or Chapters) the user should be

able to see the outline for the corresponding part. The user should be able to either

annotate an existing annotation or make a non-hierarchical link to or from an exist

ing node in the document, Annotation, or Discussion (experiment 2 Section 4.5.2).

As shown in MUCH and HERD, the annotator or discussant should perform a

nUIllber of steps to create a very simple node. Therefore, one of the major require

ments for the annotator or discussant is that the creation of Annotations or Discus

sions h s ould be a one step process. By making a selection and issuing a single com-

mand, an annotator or discussant has to be able to create a node or to enter his/her

text.

The results of experiments 1 and 2 (Section 5.3.2) suggest that word-based
iOd .

eXlllg of text blocks (generated by Salton's algorithm) and the automatically

derived hierarchical semantic net (generated by STATBUIlDER) are useful for

brOWsing and searching. This new method of browsing and searching is working well

00 the regular text (see experiment 1 and 2 Section 5.3.2) and the Discussion text

(See experiment 1 Section 5.3.3.1). However, it is not useful on the Annotation text

(See experiment 5.3.3.2). This is because the relationships between the Anootation

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 141

text blocks are not strong enough. Therefore, this method and the similar methods

of browsing and searching could be applied only on the regular text and Discussion

text only.

6.2.2. User Environment for the Model

One of the requirements for the user who has a write-access is the ability to

edit the document without making annotations, such as spelling correction or sen

tence rewording. This might, however, cause a side effect. For example, if the user

is UPdating a text block' in the document, Discussion, or Annotation, at the same

time as another user is annotating it, the first user may end up with annotations and

Corrections that are out-of-place. This might happen when making good/bad organi

Zation annotations on the outline. If two users create two "good organization"

Annotation types on different entities in the outline, one of them might end up with

ent'r lIes on an out-of-place outline. In such cases, the system has to be able to

resolve these types of edit/annotate collisions and allow multiple users to annotate

the text block or outline simultaneously.
" , ~;r

The users have to be able to view a document and its outline simultaneously

frorn different perspectives. Therefore, a user should be able to change the organi

Zation of the document, but these changes should be stored as information on the
l' '
ll1k and should not effect the original organization of the document. In such a case,

USers should not be able to change the text according to individual changing of the

organization. Users also should be able to make comments of themselves and make

a COpy for some parts of the document. For example, if a reader wants to include a

qUOtation from that document in his/her work, then he/she should be able to copy

that qUotation rather than retype it.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 142

Users have to be able sort Annotation or Discussion nodes so that they could

view one user's Annotation or Discussion nodes at a time, view Annotation or Dis

CUssion nodes by date, according to their types, by the hierarchy of the document, or

view only the annotations that had not yet been incorporated or the issues that had

not yet been resolved. Users such as authors have to be able to merge the Annota

tion or Discussion so that they could be viewed in the order in which they appear in

the document, to incorporate suggested changes to the document, and to keep track

of which annotations had been incorporated and which issues had been resolved.

Furthermore, authors should be able to delete some Annotations or Discussions

nOdes, delete the reference to the Annotation and Discussions, but still save it some

Where.

When viewing these Annotation and Discussion types, a user might want to

view each one of these types separately, or in conjunction with the document.

lberefore, the method for creating and viewing Annotation and Discussion types

had to be identical across all applications. The users, therefore, need to learn a set

of features which are the same for the document, Annotation, or Discussion. The

developers should also be able to write new applications which can be applied to

dOCUlllent, Discussion, or Annotation.

Manipulating the text and the heading separately will make this model more

effiCient than other models in some aspects and as efficient as others in some other

aspects. If it is assumed that there are some hypertext systems and models that sup

Port or can support text and headings creation, then the comparison here will be

between such models and this Discussannotation model. The set of functions in this

mOdel is not the same as the set of functions in other models. The primary opera

tions for creating a text block in this model are: create node, create link, and create

text block. On the other hand, in the other systems, the primary operations are:

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 143

create node and create link. Create node, however, includes the two attributes:

heading attribute and text attribute. Create node of course, is dependent on the

phase (such as create node in Annotation means create Annotation node, and so

on).

For simplicity, the task can be divided into sub-tasks. The set of sub-tasks

includes: creating new text blocks, adding new text blocks with headings which are

the same as some of those already created, creating headings without text, creating

Annotations and Discussion on headings, creating Annotations and Discussion on a

specific term or a span in a text block, creating Annotations and Discussion on a text

block, creating Annotations and Discussion on a group of text blocks, and generating

an Outline. Since the Discussion is also composed of headings and text, then all the

SUb-tasks for making Annotation on the different components of the text might need

to be made on the Discussion as well.

For making a primary operation in this model, it can be assumed that a user

needs two key-strokes for each operation, one to select the function and one to store

the data. In the other systems, it can be assumed that a user needs three key

Strokes to creating a node; one to select the function, one to store 'the heading attri

bUte value, and one to store the text attribute value, even if no text is entered. To

create a link, two key-strokes are needed which is the same as in this model.

To do the task by using this model~ the following key-strokes are needed:

6-(d+A+D) key-strokes are needed for creating new text blocks and new headings.

Wbere 6 is the number of key-strokes which are needed to create one text block and
cd'

t 'N, and '0' are the number of new text blocks which need to be created in a

dOcument (such as a paper, a book, or a report), Annotation, and Discussion respec

tiVely. 4*(d'+A'+D') key-strokes are needed for adding new text blocks with reuse

of some of the target headings which have already been created, where 4 is the

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 144

number of key-strokes which are needed to add one text block, and d', A', and D'

are the number of text blocks which need to be added to the structure in a docu

ment, Annotation, and Discussion respectively. To illustrate this point, it can be

assUmed the two headings 'DOCl' and 'DOC2' were created. Also, the heading

'Abstract' was created and connected with the heading 'DOCl'. Now, if the abstract

needs to be created for 'DOC2', then a link needs to be created between 'Abstract'

and'DOC2' (2 key-strokes), and 2 key-strokes for the text.

4' (d" + A" + D") key-strokes are needed to create new headings without text

(SUch as Chapter headings), where 4 is the number of key-strokes which are needed

to create a new heading, and d", A", and D" are the number of headings which

need to be added to the structure in a document, Annotation, and Discussion

respectively. 2'(d"'+A"'+D"') key-strokes are needed for reuse of headings which

already exist by linking these headings with different nodes (where 2 is the number

of key-strokes which are needed to link a heading with another heading, and d"',

A'" , and D'" are the number of headings which need to be linked in a document,

Annotation, and Discussion respectively).

To do the task using other models the following key-strokes·· are needed:

S '" (d + A + D) key-strokes are needed for creating new text blocks. 5 * (d' + A' + D')

keY-strokes are needed for adding new text blocks with headings which are the same

as some of those already created. 5*(d"+A~'+D") key-strokes are needed for creat

ing headings without text. Headings can not be re-used and new nodes need to be

created. So, 5*(d'" + A'" + D"') key-strokes are needed for creating headings even

though they have been created before, because the text is different.

So to do the task by using this model, the total number of key-strokes is:

6*(d+ A+ D) +4*(d' + A' + D' +d" + A" + D")+2*(d'" + A'" + D"') key-strokes.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 145

'Ibe total number of key-strokes which is needed to do the task by using the other

tnodels is:

5*(d + A + D + d' + A' + D' + d" + A" + D" + d'" + A'" + D"') key-strokes.

One of the differences between the two models is the number of key-strokes which

are needed for each individual sub-task. The number of key-strokes for each sub

task is unknown. So, it cannot be decided whether this model is more efficient than

the others or vice versa in performing the whole task. On the other hand, a predic

tion Can be made as to whether this model is more efficient or not in a specific sub

task or a group of sub-tasks according to the number of key-strokes which are

needed for each function. For example, this model is less efficient than the other

tnodels in creating a set of new text blocks and new headings (6* (d + A + D) vs.

S-(d+A+D», while this model is more efficient when the the number of Annota

tion and Discussion nodes which need to be created are greater than the number of

dOcument nodes, such as for novice users.

In Discussions and Annotations, most of the headings can be reused such as

'Bad-Content' node Annotation which can be linked with all Sections that have bad

Content, whateve~ the number is. In the Annotation also, sometimes both the head

ing and the text can be reused. Furthermore, in the case of working on more than

one document at a time where the headings of the documents are similar (for exam

Ple, almost all papers have title, authors, "abstract, introduction, literature review,

experiments, Discussion, conclusion, and references), such headings can be re-used.

In SUch cases, this model is more efficient than the other models. However, there

are lllany factors, suggesting that Discussion and Annotation are very important and

are needed for document creation. Examples of this are the different existing hyper

text systems which have been created especially for creating Discussion, for making

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 146

Annotations, for supporting both Discussion and Annotation, and the experience of

this work as well.· In Section 3.5.2, the number of Annotation and Discussion head

ings which are created on a document are much more than the number of the docu

Illent headings itself. This indicates that this model is mo~e efficient than the other

Illodels. However, in the case of creating a document with few Annotations and

biscussions, such as in the cas~· of writing a document by experts, the other models

are more efficient than this model.

6.3. Practical Issues

The proposed Discussannotation hypertext model is a computer-based tool that

SUpports both Discussion and Annotation in the creation of documents by one or

Several users. Discussion is a set of link objects. Each link object has a node and
II . . .
. Ilk. A link may be attached to it a text block. Each node has a label such as Issue,

POSition, and Argument . . If the node in a link object is an Issue, then the text block

that is attached to that link is text in form of a question. If the label is a Position,

then the text block that, is attached to that link is some text written in a way to

answer an Issue • . If the label is an Argument, then the block of text that is attached

to that link is some text written in a way to support or to object to a Position or

another Argument.

Annotation is a set of link objects that are connected to the Triple. Each node

in an annotation link object has a label. A text block that is attached to an annota~
tion link object is created for many purposes such as:

1) to question, clarify, critique, or to suggest changes to a text block, a particular

term in it text block, a group of text blocks, or a heading in the document

and/ or in the discussion;

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 147

2) to suggest changes to the system; or

3) to comment on the administrative matters.

-
Storage

Level

r-----------,
I Storage-Presentation I Presentation

Specification
I

L. ___________ ..I

Figure 36 "Discussannotation Levels": Levels of the Discussannotation
Model

Level

The Discussannotation hypertext model divides a system into two major levels,

the Storage level and the Presentation level, as illustrated in Figure 36. The storage

level is concerned with the text of documents, the text of annotations, and the text of

Discussions. The Presentation level is concerned with how the Triple in the storage

should be presented to a user on the screen. The interface between the Storage and

the Presentation levels is accomplished by the Storage-Presentation Specification.

The storage level describes a database that is composed of a hierarchy and

non~hierarchy of nodes which are interconnected by relational links. The term node

corresponds here to various alternative terms used in existing hypertext systems and

mOdels: frame in KMS, node in gIBIS and IBIS, card in NoteCards and HyperCards,

c0111ponent in Dexter, document in Augment and Intermedia, and article in Hyper

ties. In most of the hypertext systems and models, nodes contain chunks of text,

graphics, images, and animations, and constitute the basic content of the hypertext

network.Halaszl990 This is one of the main differences between this model and the

Other models, in that the chunks of text is attached to the link, not to the node.

l'hus, in the Discussannotation model, the heading and the text can be created

separately. While in the others, each time a node is created, the heading and the

teXt attributes should be created together.

November 27t 1991

Chapter 6: A Discussannotation Hypertext Model Page 148

The storage level focuses on the mechanisms by which the nodes and links are

glued together to form hypertext networks for the Triple. The relationship between

these different activities is illustrated in Figure 37. A user might start creating a

document or a Discussion to determine the goals or make plans. After creating a

Part of a document, annotations can be created on the different parts of the docu

lllent. Such annotations might be developed for a Discussion.

Annotation

I

I
I

1 I
•

Discussion

1
~---- Document

~ Initial state

Storage
Level

Figure 37 "Activities Relationships": The relationship among the different
activities in the storage level can be started by creating a document, make
Annotation, then make a Discussion. Another method is to start creating
a Discussion for making a plan.

The Triple which is stored in the database hierarchically and non-hierarchically,

needs to be presented on the screen according to the user's need. A user might

Want to view a subset of document, Discussion, and Annotation non-hierarchically or

hierarchically in different ways according to different perspectives, or in terms of a

SpeCific attribute such as author, date, or version. In order to specify in which way

the hYPertext network should be presented to a user, the presentation level needs to

access the information in the storage-presentation specification.

The storage-presentation specification focuses on providing information for:

1)
making Annotations and Discussions on a group of text blocks and on a specific

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 149

region or term within a text block; and

2) viewing the Triple in the database hierarchically on the screen.

The Annotations and Discussions on a group of text blocks can be implemented by a

method called Composition, while Annotations and Discussions on a specific term

can be implemented by a method called anchoring. These two methods are different

from composition and anchoring as they described in Dexter model. A description

for these two methods will be given in Section 6.3.3.

Both the presentation level and the storage-presentation specification are very

important for different reasons. One of these major reasons is that the documents

that are stored hierarchically and non-hierarchically, are dynamic and unspecified

(i.e the Sections, Chapters, and the starting nodes are unknown). Thus, in order to

prodUce a linear document (report, paper, book), viewing such documents hierarchi

Cally is necessary for making Annotations and Discussions on the different com

Ponents of a document. If a user wants to make an annotation on a Section or

Chapter, then the boundaries of that Section or Chapter should be both determined

and known.

Since such boundaries are unknown in the hypertext systems storage, there

should then exist some methods to determine the boundaries and present them on

the Screen to the users. The Triple can be viewed hierarchically on the screen as the

Storage-presentation specification provides the necessary information about the

boundaries of the different components of the document. Then, Annotation and

biscussion can be made easily on a specific group of text blocks.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 150

6.3.1. The Storage Issue

The storage level is at the bottom of the different levels of the model and it

deals with all the traditional issues of information storage. It is necessary to store

large amount of information on various computer storage devices like hard disks or

Optical disks. Furthermore, the database level should handle other traditional data

base issues, like multi-user access to the information and various security considera

tions.

The storage describes the structure of a hypertext as a semantic net that is

composed of a finite set of link objects where each link object's functions are:

1) to point to a node or a set of nodes that contain source or target terms,

2) to point to a text block or a group of text blocks, and

3) to point to an individual term, word, or region in a text block.

Furthermore, each link object has several attribute-value pairs, including attributes

fOr author, date of creation, link-type, and phase. In this Section, some issues have

been addressed including: How can a document text block be created? How can a

biscussion text block can be created? How can an Annotation text block can be

created? How a Discussion and Annotation can be made on headings?

The storage focuses on creating a text of a document, Annotation and Discus

sion and their headings. A small set of operations has been defined in order to

create a text block or heading. For creating Annotations and Discussions on a group

of text blocks, headings, or on a specific term or region within a text block, the

boUndaries for such a group and some necessary information, which cannot be deter

nuned in the storage only, need to be specified. Such information and boundaries

will be discussed in the next Sections.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 151

The set of operations can be classified into two groups: 1) operations within the

activities (document, Annotation, and Discussion) such as creating a document text

block and 2) operations among the activities such as making Discussion on an anno

tation or making annotation on the document. As mentioned earlier,' in Section 4.4,

the Annotation node types regarding the documents were classified into two groups:

Annotation node types about the content of the document and Annotation node

types about the organization of the document. Any Discussion node connected to an

annotation node will be considered as an initiation for a Discussion. In such a case,

SUch a Discussion node type should be an issue.

The set of operations within the activities are the following:

1) Creating a text block for a document: to create a text block, a node should be

created first (such as 'abstract' in Figure 38. Then, that node should be con

nected to the existing semantic net by creating a link from a source node (such

as 'Annotation-and-Discussion') to the destination node (such as 'abstract'). A

text block can be created after specifying the source node, the destination node,

and the link between both of them. In MUCH, this mechanism is referred to

as "link object". One of the advantages of attaching the text to the link, as

illustrated in Figure 38, is that a node (such as 'abstract') that is related to

more than one node will be created only once. Of course, information such as

date, time, author name, and access privileges can be taken automatically by

the computer, and users don not have to enter such information. In the docu

ment, a node has a name but it has no type. A link has a label, and a direction

(determined by specifying the source and the destination) but no type.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 152

Annotation-and-Discussion

Should two

separate computer systems

one Supporting Discussion

word-frequency-based-indexing-and-authoring

and one supporting Annotation,

or one Annotation and Discussion

system to support both Annotation

and Discussion be created

abstract

Can word frequency indexing
be helpful in hypertext
authoring?

Figure 38 "Document Text Block": illustration of creating a text block.

2) Creating a text block for Discussion: to create a text block for a Discussion, the

'link object' mechanism is used in a way similar to the way it is used in creating

a text block for a document. The nodes in the Discussion have a type and a

name. A node name may be used as a name, a heading, and a unique identif

ier. A link has a type that depends on the type of the node. For example, if

the link type is generates, the destination node is an issue. The Discussion types

(see Section 4.5.2) should be specified by the user.

3) Creating a text block for Annotation: to create a text block for Annotation, the

'link object' mechanism will be used in the same way as it is in the document

and Discussion. A node in the Annotation is similar to a node in the Discus-

sion in that it has a type and a unique identifier. The node types in the Anno

tation are different from the node types in the Discussion. A link has a type.

Most of the link types can be used for both Discussion and Annotation (such as

suggests and responds for more detail regard the link types see Section 2.5).

The Annotation types (see Section 4.5.2) should be specified by the users.

lne set of operations among the different activities are the following:

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 153

1) 1. .. !vJ.aking Discussion and Annotation on a heading: the only operation that can be

made among the different activities without any need for specifying boundaries

is making Annotation and Discussion on a heading. For making an Annotation

on a heading, the 'link object' mechanism will be used, in the same way as it is

in the previous operations (i.e Within activities operations). The node type for

.. , Annotation, however, should be one of the content Annotation node types.

Then a Discussion can be created by creating an Issue (see Figure 39).

Annotation~and~Discussion

- - - ./}as

~ ---text ock HERD~C:e-StudY

Figure 39 "Discussion and Annotation on heading": illustration of making
Annotation and Discussion on a heading. ABC means an Annotation
node about content with the type 'Bad-Organization'.

" ..

2) 'Making an Annotation and a Discussion on one or more text blocks: In order

to. make Annotations and Dis~ssions on a group of text blocks, the boundaries

for that group should be defined (see Figure 41). Then the composition

lIlethod should be applied (see Figure 42). The methods of making Annota

tions and Discussion on the content or on the organization of a group of text

blocks are similar, but in the first, the Annotation node types should be about

the text itself (such as Section 'N should be re-written).

3)
Making Annotation and Discussion on a region or on a specific term within a

text block: 'creating Annotation and Discussion on a region or on a specific

November 27, 1991

..

Chapter 6: A Discussannotation Hypertext Model Page 154

term within a text block can be made by using a method called anchoring

(described in Section 6.3.3). The text block should be specified and presented

On the screen. A text block can be specified by determining the link to which

that text block is attached. A link can be specified by determining the source

and target nodes, as illustrated in Figure 39. One further step is needed which

is specifying the term or the region after displaying the text block on the screen.

6.3.2. The Presentation Issue

The Triple is stored in the database hierarchically and non-hierarchically. The

l'riple needs to be presented on the screen according to the users' needs for the

review and revision processes. The users could then make a response by reviewing

the Triple, making Discussion, making Annotations, or adding some text to the

dOcument. The Triple should be presented on the screen in a way that facilitates

the reading process and satisfies the users' needs.

The users may want to view the Triple hierarchically or non-hierarchically. For

eXample, in order to make a decision about a specific matter, users might need to

view the Discussion about that issue hierarchically.' They might also need to view

the relationship between the different nodes of the Discussion (i.e non-hierarchy), so

that they can understand the resolution better. This might affect their decision

making. The users want to view the Triple. hierarchically according to a specific fac

tOr Or a combination of different factors such as:

1) Type: users want to view the Discussions/Annotations which are created on the

document, the medium, or administrative matters separately or as a combina

tion of these,

2) Logic: users want to view the Triple according to their logic. For example, a

November 27, 1991

Chapter 6: A Discmsannotation Hypertext Model Page 155

User wants to view the Discussions/Annotations made, first on the whole docu

ment, then Chapters, then on Sections (i.e start from the most important to the

least important),

3) Version: users want to view Discussions/Annotations on a specific version of

the document during its life cycle development,

4) Date and user importance: a user wants to view the most recent

Discussions/Annotations which have been created by the most important user,

in order to make a response. The most important user also wants to evaluate

who made a contribution and what contribution over a specific period of time,

and

S) Perspective: a user wants to view the Triple according to his/her own perspec

tive which is different from others' perspectives. Also, a user wants to view the

Triple according to the most important user perspective.

The question might be asked: How could the Triple activities in the storage

Which are stored hierarchically and non-hierarchically be presented on the screen

aCCording to the user perspective and desire? The answer for such a question will

be found in the next procedure. This procedure will show: '1) how a graph will be

conVerted to a hierarchy of outline and 2) how the hierarchy of outline can be

Presented on the screen according to the user's desire and perspective.

1) Converting a graph to a hierarchy of outline: depth-first and breadth-first are two

ll1ain traversal techniques for converting a graph to an outline. Ghaoui1991 The algo

rithllls can be described as follows and Figure 40 shows an example traversal of a

Sill1ple graph. The first algorithm searches through the graph (via the nodes) in a

depth-first manner. Once a node has been arrived at, it will be printed in the out

Put. Then the search will continue to the next node in a depth-first manner. The

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 156

number of levels will be increased by one which can be represented by indenting the

output to the right few spaces. From Figure 40, the search would start at the node

A. Node A will be printed, then the depth-first takes over and moves to node B.

NOde B will be printed in the output, intended a few spaces, and the process will

COntinue until the last child, which is E in the graph. This will be followed by back

tracking and further searching visits of all of other nodes in the graph.

The second algorithm searches through the graph in breadth-first manner.

lienee, in Figure 40, the search starts at A and it will be printed in the output. Then

the search will go to the node B and backtracking to the next sibling until all chil

dren will be printed out. After printing all the siblings, the algorithm will move in a

depth-first manner which is node E in the Figure.· Then it backtracks again for all

the siblings.

Method #1 traversal Method #2 traversal

Figure 40 "Traversal": shows how a graph can be converted to an outline
by using depth-first (method #1 traversal) or breadth-first (method #2
traversal) techniques.

looking to the Figure 40, we see that each one of these outlines is a traversal

fOr the whole graph. In our case, the whole graph contains data for the document

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 157

and for the various types of Discussion and Annotation. The question might be

asked: Is it possible to view part of such a graph? Such a question leeds to the

second step in this procedure. Furthermore, in the Figure two different outlines

Which are traversed from one graph can be seen. Assuming that this graph is a part

of a bigger graph, a user might then want to view this part of the graph as in the

Outline which is traversed by the first technique. Another user might want to view

the graph as in the outline which is traversed by the second technique. Others might

Want to view the graph in a way which is different from both outlines. Is it possible

to satisfy all users? This question leeds to the third step in this procedure.

2) Hierarchy of outline and user's desire: In the previous step, an outline can be

traversed for the whole graph which might consist of different data such as data for

a document and various types of Discussions and Annotations. One user may want

to view the document, the Discussion, or the Annotation only. Other users may

Want to view the Discussions made regarding the medium or the Discussions which

are developed from Annotations only. In order to satisfy such desires, the algorithm

Which traverses the graph should access the information associated with the links

and the nodes before printing out the nodes in the output. If the information which

is associated with that node satisfies the user desire, then that node will be printed in

the output, otherwise it will be skipped. Thus, the result at the end of this step is an

Outline according to the user's desire. However none of them might satisfy the

user's perspective (i.e the organization of the outline should be modified).

3) Hierarchy of outline and user's perspective: In the previous two steps, a graph

Can be traversed into an outline by one of the described techniques and according to

the user's desire. In order to satisfy the user's perspective the outline should be re

Organized. By using the "Annotation-Organization-Node-Types" algorithm which is

described in Section 4.5.1, a user will be given an option to move an entity in the

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 158

OUtline from one place to another. Applying that algorithm to the outline produced

from the previous two steps, causes that outline to be in accord with the user's per

Spective.

6.3.3. The Storage and Presentation Specification

In document creation, Annotation and Discussion on a group of text blocks are

needed. A group of text blocks might be a sub-Section, Section, Chapter, document,

a group of these groups (such as a group of Chapters), or the whole documents in

the storage. This Section focuses on specifying the boundaries of a group of text

blocks and determining the necessary information for making Annotation and Dis

CUssion on a group of text blocks and on a region or a term within a text block.

Annotation or Discussion may be concerned with the content or the organization.

In this Section, some issues have been addressed, such as: How can a Discussion and

Annotation be made on the organization of a group of text blocks? How can a Dis

CUssion and Annotation be made on the text of a group of text blocks?

The boundaries of a group of text blocks are variable and 'undefined in the

non~hierarchical structures or in both the hierarchy and non-hierarchical structures.

As illustrated in Figure 41 part A, a user might consider Node 1 as a starting node.

Another user might consider Node3 as a starting node. A user might want to view

the document in the storage (part A) hIerarchically as in the outline (part B).

AnOther user might want to view the document as in the outline (part C). The two

groups of text blocks which are bounded by the nodes 4 and 8 are different from

each other in the outlines (B) and (C). So, the same graph can be viewed in dif

ferent ways and the boundaries can be different from one view to another.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 159

Nodel

It· I~~"~ I ~ ,

Nodel
Node2

NodeS
Node6

Nodel
Node2
Node3

'/ m, '
I ~ ,

Node2 t ~ ~ Node4

~,'\t1f\ Node3 /IJ,/ \\
"\l.U\ I \
l! 8 \

NOdeS Node6 Node7 NodeS

(A)

o Node

Node3
Node4

Node7
NodeS

(8)

Figure 41 "Different views and undefined boundaries": illustration of dif
ferent views for the same graph as in (B) and (C). The group of text
blocks which is bounded by nodes Node4 and Node8 might include Node7
or the nodes 5,6, and 7. It is difficult to determine these boundaries from
the graph. In contrast they can be determined easily from the outline.
The nodes here are headings and the text is attached to the link, not to
the nodes.

Node4
NodeS
Node6
Node7
NodeS

(C)

In order to make Annotation and Discussion on a group of text. blocks, whether

the annotation concerns the text itself (such as Section 'A' needs to be re-written) or

the organization (such· as Section 'A' sh~)Uld precede Section 'B'), the boundaries

ShOUld be determined and known. So, the operations concerning a group of text
b . .
locks are dependent on both the presentation level and the storage level. The

Presentation level is needed to determine the boundaries of a group of text blocks,

\Vhile the storage level is needed to store the data of the Annotation and Discussion.

Creating Annotations and Discussions on a group of text blocks can be implemented

by a method called composition, as illustrated in Figure 42. In this method, the

boundaries of the group of text should be determined (i.e the two nodes which form

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 160

the two ends of a Section should be determined and called composite nodes). Then,

the link object of Annotation will be linked to the composite nodes in the same pro

cedure described in the "Storage Level" Section.

The composition method here is different from the one in the Dexter. Some of

these differences including the fact that in this mode~ an outline should be gen

erated first by using either depth-first or breadth first techniques. The boundaries

Can then be determined by selecting two entities from the outline. Also, most of the

Operations will be made on the entities of the outline not on the actual text. By con

trast, in the Dexter model, all the nodes which need to be included in the composi

tion should be determined. Generating an outline is not necessary and the opera

tions are made on the nodes which are contain the text.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model

nodel
---------7

<

I
I

, , ,

nodel
node2

node3
node4

nodeS
node6
node 7

Page 161

,
·Outline-Window.

o

, , , , --, -- " (J 0
node3

o
node4 node6 node 7 Annotation node

[] text block

o A node

Figure 42 "Composition": illustrates how an annotation can be made on a
group of text blocks by using the composition method. An outline should
be generated first by using one of the traversal techniques such as depth
first. Assume that the nodes node1 and node7 are the composite nodes.
From the graph, the annotation seems on the nodes 1, 5, and 7, but from
the outline, it is clear on the whole graph.

The ~ qu~stion might be asked: How could the prese~tati~n level determine the

boundaries of a group of text blocks? In order to answer such a question, there

shoUld be at least one technique to perform the traversal of the hypertext network

and produce an outline (table of contents) such as parts 'B' and 'C' in Figure 41.

liowever, there are many traversal techniques to produce a linear text from a hyper

text network such as depth-first and breadth-first. After generating an outline for a

hYpertext network, determining the boundaries of a group of text block is straight

forward.

1'0 make Annotation or Discussion on a specific term or region in a text block,

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 162

the anchoring method should be used. In the anchoring method, the text block

shOuld be displayed first on the screen. Then the term or a region should be speci

fied. The link to which the text block is attached and the two nodes on both sides of

the link (i.e the source and the target) should also be determined as illustrated in Fig

ure 43.

document node link document node
o----~~~~~~--~··O Gex7 block - ,

I I
L ___ ...I

r-,
I block I

link I of I
I text I
L_...1

Annotation node

Figure 43 "Anchoring": illustration of how an annotation can be made on
a specific term in a document text block by using the anchoring method.
To determine the text block of the document, the two document nodes
should be determined first. The target might be a term or a region.

Figure 44 illustrates the importance of the storage-presentation specification

tnecbanism. In this Figure, there is a hypertext network (A) stored in the database.

'this network can be accessed by two different users, user 'A' and user 'B'. When

user 'A' . . wants to View the network, the network should be brought up as the outlme

in (B). By contrast, when user 'B' wants to view the same network, the network

ShOUld be brought up as the outline in (C). In order to separate these two cases and

sillliIar cases, the presentation level needs to access storage-presentation information

enCOded into the links in the network. This can be applied to the Annotations and

biscu .
SSlOns made on a specific outline. For instance, when the outline (B) is

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 163

displayed on the screen, all the related Annotations and Discussions concerning this

Outline can be displayed if they are needed. The outline needs to be involved in this

lllethod, but this is not necessary in the Dexter Model.

r---------------, I Node! I
I I
I I
I
I NOdel I
I I
I I
I I
I I
I I __ !o!.e5 _______ ..J

~TextBlock
OA node

(A)

r- --,
I user 'A' I L ____ .J

Node! Node!

Nodel Node4

NodeS NodeS
Node3 Nodel

Node3 Node3
NodeS NodeS
Node4 Node3

Node4 Node4

NodeS NodeS

(B) (C)

r- --,
I user 'B' I L ____ .J

Figure 44 "storage-presentation importance": illustration of the need for
presentation specifications on the access path.

6.3.4. The User-Model Interaction

In an automaton model of the system, the user creates a text block or goes

frOIl}
one block to another with a single command. The automaton model to be

USed here includes:

K, a finite set of states,

~, User actions,

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model Page 164

s ~ K, the set of initial states, and

8, a transition function from K x ~ to K.

The rules according to which the automaton M picks the next state are encoded into

the transition function. Thus if M is in state q and the symbol entered by the user is

17, then S(q, 0") C K is the uniquely determined state to which M passes. More

specifically in the model M:

K == {Document, Annotation, Issue, Position, Argument}

S == {Document, Issue}

E == {edit, view}

and S can be inferred from Figure 45.

The automaton model describes a language. Users can be asked to engage in

biscussion and Annotation. In a system in which Discussion and Annotation are not

Connected, the user has to jump from the document to the Discussion system to dis

CUss an issue and go back again to the document to proceed with the Annotation

Process. This could cause disorientation.

November 27, 1991

Chapter 6: A Discussannotation Hypertext Model

Document ~-----... Annotation

Issue

Argument M-------I Position

, Initial state

Figure 45 "Discussannotation Model": In going from one state to the oth-
er state the user may choose to either view or edit. Such commands are
dependent on the context, such as view a Discussion or a document text
block. The Annotation node types do not appear on the model because
most of the relationships between the Annotation and the others, I not' r·

among the Annotation nodes themselves. The issue could be of type
Triple-issue or non-Triple-issue (medium or administrative matters). The
Annotation also could be Triple Annotation or non-Triple Annotation.
Such types need to be determined by users.

Page 165

Users' behavior can be compared to that predicted by the model. Based on

this user data, modifications could be made to the model. The model could also

guide the monitoring of the users' actions. For instance, a computer program based

on the Illodel might prevent a user from creating an argument or a position while the

user' .
IS :m. an Annotation state.

November 27, 1991

CHAPTER 7

Discussion, Conclusions, and Future Work

7 1 . · · General Discussion

The aim of the research· described in this thesis has been to investigate the role

of hierarchy in Discussion and Annotation. The starting point for this work was a

reCognition of the significant differences between the different hypertext systems

Which support Discussion or Annotation. These differences, which relate to the

nature of the data model and the sets of functionality, impose an important set of

Objectives upon the design of a single Discussannotation hypertext model which sup

Ports both Annotation and Discussion.

In exploring the fundamental differences between Discussion and Annotation:

1)
case studies and experiments were performed;

2) different software algorithms were examined; and

3) different systems were explored.

bisCUSsion and Annotation were ~ested in different levels. They were tested in the

interface style, structure, and creating and viewing them. It was noted that:

1) Annotation cannot be independent. It is completely dependent on other activi

ties, and thus the annotations should point to other activities even when they

are intended to change something else, such as the system. by contrast, Discus

sion can be independent of or dependent on other activities such as Annotation;

and

2) Annotation is a natural path from document to Discussion, and the Discussion

node and link types could be considered as a complement to the Annotation

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 167

node and link types.

Additionally, the test went further down, to the word level. The algorithms

indexing, STATBUIIDER, and RELATION were applied to the document text,

Discussion text, and Annotation text (Section 5.3 in Chapter 5). It was found that:

1) the relatedness between text of the Annotation's nodes is much less than it is

between the text of the Discussion's nodes, and

2) the relationships between the Discussion's text blocks were much stronger than

they were between the Annotation's text blocks.

The considerable number of similarities between Discussion and Annotation

(see Section 5.4) and the small number of differences, lead to the suggestion of a

Discussannotation hypertext model which supports both functions. The model

developed in this research is different from the existing hypertext models in· many

aSpects such as:

1) it supports making Discussion and Annotation on the different components of

the document. It also supports making Discussion and Annotation regarding

the medium and administrative matters;

2) it supports generating different outlines such as generatin~ outline for the docu

ment, Annotation, or Discussion separately or in conjunction with each other;

3) Users can view the document in different ways according to their perspectives

and according to different attributes such as author and date;

4) it SUpports converting a network into an outline by using different techniques

Such as depth-fIrst or breadth-first. However, the output of these techniques

separately or in conjunction with each other could not generate an outline

Which would be in accord with the user's desire and perspective, individually or

altogether. Such an outline can be generated by applying the Annotation

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 168

organization node types technique to the output of any current existing traversal

techniques; and

5) it can manipulate the regular text and the headings separately. This aspect is

for the Triple. This manipulation is one factor that makes the model more effi

cient than other models in some aspects. This manipulation also facilitates gen

erating different outlines for the Triple. Such outlines facilitate making the

composition mechanism. Such a mechanism resolves many problems in Anno

tation and Discussion.

The next Section discusses the various issues relating to the implementation of

the systems and algorithms and discusses the general strategy adopted. The conclu

sions to be drawn from this work are given in Section 7.3. Finally, Section 7.4 makes

SUggestions for a discussion of possible future work.

7.2. Discussion of Results

This Section discusses the strengths and the weaknesses of the use of the sys

tems and discusses the results of the experiments and case studies. Section 7.2.1

diScusses the results of the experiments and case studies that were performed in

Chapter 3. This Section also discusses the strengths, weaknesses, and uses of

llERD. Section 7.2.2 discusses the results of the experiments and case studies that

\Vere performed to test the various issues in the Annotation hypertext systems, while

Section 7.2.3 discusses the results of the experiments that were performed to test

sOme issues in browsing systems. The power and efficiency of the Discussannotation

Illodel will be discussed in Section 7.2.4.

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 169

7.2.1. Discussion Hypertext Systems

There are many variations in the current Discussion systems (see Table 1). In

order to test such variations and to explore some issues regarding Discussion, the

fIERD system was created and three case studies and one experiment were per

formed. The HERD system enables its users to target several abilities. Some of

these abilities are: (1) the ability to use the computer from the project's beginning,

and (2) the ability to critique and complete some work requirements. Having a Dis

CUssion on the computer using the HERD system allows the user to read Discussion

text in their own time and to prepare thoughtful responses. This type of discipline

appears to encourage a more meaningful dialogue. Unlike the situation of face-to

face Discussions, it was clear which issue a participant was addressing and there was

a Written report at the end of the Discussion. On the other hand, after seven meet

ingS of face-to-face Discussion (more than 15 hours) there was no report, nor an

agreement about a guideline for software requirements specification.

In Section 3.3.1, the semantics of hierarchy and non-hierarchy were tested. The

results suggest that the semantics hierarchical structure is preferabl~ to the non

hierarchical structure but the latter is important and sometimes needed. Selecting

the hierarchical structure to represent the Discussion facilitates the reading process

and diminishes the disorientation problem. Adding the decomposition to the

hierarchical structure not only facilitates the reading process, but also eliminates the

disorientation problem, diminishes the need for the non-hierarchical links, and leads

to a conclusion faster than other approaches such as using non-decomposition. Since

there Was just one group of subjects participating in this exercise, it could not be

conclUSively ascertained that the decomposition is preferable to non-decomposition.

111 order to test this, another case study (Section 3.3.2) was performed. The results

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 170

of this case study suggested that the decomposition is preferable to the non

decomposition (61 percent decomposition versus 39 percent dialog and non

decomposition).

Section 3.3.1 reveals how very difficult it is to produce the requirements specifi

cation documents report at the end of the Discussion without using specific node

types for resolution. It also reveals how difficult it is to know whether or not the

Discussion was completed and how difficult it is to display the resolution without

sUPPOrting decision-making. Furthermore, using just three types of links in the exer

c·
ISe causes many problems. For example, one user's response to an issue may not

be clear to other users, who may be unclear whether the user who made the

resPOnse was offering some criticism or was responding in support of an issue. In

addition to these problems, some of the operations were difficult to implement in

the absence of some necessary link types. In spite of the usefulness of using a small

Set of node and link types, it is not a good typing strategy. Other strategies might be

USeful such as the system supports a big set of node and link types, or the system

dOes not support typing and this is to be left as an open option to the user.

In order to test whether the syntax of hierarchy 'is preferable to non-hierarchy

and Whether or not the hierarchical structure will satisfy all user needs, an experi

lllent (Section 3.4) was performed. This experiment suggests that the syntax of the

h'
lerarchical structure is more preferable than the non-hierarchical structure but as

s .
een in Section 3.3.1, the syntax of non-hierarchical structure is important. As a

reSUlt of both the exercise and this experiment, the Discussion systems should sup

POrt both hierarchical and nonhierarchical structures for both the representation on

the display and in the storage. Therefore, the Discussion systems should have the

abU'
lty to convert the hypertext network (stored in the database) into a hierarchy for

Presentation on the screen, and thus techniques such as the depth-first and breadth-

November 27, 1991

Chapter 7: Discussion, Conclusions, and Futwe Work Page 171

first techniques should be supported by Discussion systems. One more thing

revealed by both Sections 3.3.1 and 3.4 was that suggesting a set of node and link

types to the users and giving them an option to add more link and node types is a

goOd strategy. It cannot be certain, however, whether it is the best strategy. Some

other options had not been tested at this time, such as the open user option (i.e typ

ing to be left open for the user).

In terms of exploring issues about Discussion (Section 3.3.1) based on the

analysis made on the titles and the text of the nodes, the data from a Discussion was

found to be similar to the regular text, in that the data from the Discussion has

headings and content. Therefore, the data from the Discussion should be manipu

lated like normal text in this aspect. So in the data model, the Discussion heading

should be distinguished from the content. Also, viewing the heading of the text is

lllore important than viewing the text itself (the heading file was viewed 84 times,

While the text file was viewed 74 times).

Furthermore, a test was carried out, of users' responses to the created Discus

sion nodes and to how they viewed them, in terms of seniority. Thus a node created

by a Professor has a higher priority than one created by an undergraduate. This test

Was done by registering the date and the time for each node. Also, by registering

When and who created which n~de. It was found that the nodes which are created

by the most important subject were responded to before the others. Additionally,

VieWing when and who created a node is ~ore important than viewing the heading

and the text (116, 84, and 74 times) respectively.

In exploring the fundamental differences between Discussion and Annotation, a

case stUdy (Section 3.3.3) was performed. The initial hypothesis was that the

Processes of Annotation and Discussion are sufficiently similar, for a Discussion sys

tem Such as HERD to serve equally well in the support of Annotation node and link

November 27, 1991

Chapter 7: Discussion, Conclusions, and FutW'e Work Page 172

types. In the case study (Section 3.3.1), HERD was used in the discussing of

requirements document outlines. In the case study (Section 3.3.3), the same Discus

sion system was used to support the Annotation of approximately 600 paragraphs of

an online book. The hypothesis that the Discussion system would serve equally well

as an Annotation system was refuted.

The requirement that each node and link be classified into a small set of candi

dates did not seem difficult to follow for those in the 'Discussion' case study Section

3.3.1. Labeling nodes as issues, positions, and arguments, and labeling links as gen

erates, responds-to, or other were natural for those in the Discussion. On the other

hand, When using HERD for Annotation, such labeling of nodes and links was not

easy to apply. As an annotation was a comment on a Chapter it was not always

natural to classify it as an issue, position, or argument nor to classify the link types as

generates, responds-to, or other.

Data from the two case studies Sections 3.3.1 and 3.3.1, were comparatively

eValuated as follows: There were similar numbers of nodes in total (59 vs. 55). Of

these, the same number (11) were in both cases used administratively, i.e. to organ

ize the Discussion or the Annotation. Of the rest, ·10 percent (6 nodes) were part of

a seCondary discourse in the Discussion case study. In the Annotation, four nodes

Were not classified as either issue, position or argument.

The features of the HERD system requiring users to type classify their node

into an issue, position, or argument suited the two ~es differently. A common find

ing seemed to be that users had greater problems distinguishing between the use of

PaS't'
lIOns and arguments than between issues and either of those two. For Discus-

Sion, Users expressed little dissatisfaction with this feature of the HERD system,

Whereas there were signs that the Annotation group had more problems. When the

Structures of the two node trees resulting from the case studies were examined, it

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 173

Was found that the Discussion would progress from one or a few initial issues, with

several positions and arguments to each issue.

A Discussion is similar to annotations on annotations, except that there does

not have to be a document which is at the root of the annotations. Furthermore,

one may want to define Annotations such that they only point directly to a docu

lllent. In this case, a comment on an annotation immediately becomes an instance

of a Discussion. In the Annotation case study, four Discussions were made and each

one of them started with an issue which was actually a comment and thus Annota

tion could lead to a Discussion.

In the Discussion the one root issue led to several sub-issues which in turn led

to other sub-issues. In the Annotation the top level issues were essentially prompt

ing for comments on a Chapter, and there was one such issue for each Chapter.

C°llUnents on a Chapter tended to point directly to the top-level issue of 'What do

You think of the Chapter?'. This structuring of the annotations facilitates the gen

eration of high-level comments on the Chapters of the book but does not exploit the

organization of the book into Sections within a Chapter. To comment on a Section

an annotator would need to somehow specify the Section as issue.

Many observations had been noticed in the case studies, experiment, and on the
lise f '. .

o HERD. Some of the observations are:

l'he usefulness of hierarchical structures and decomposition.

'Ibe same HERD users who supported and recommended this system didn't

liSe it to discuss the requirements specification documents for another system called

MtJCH. It seems there is a contradiction, but actually there is not. The subjects

attended more than seven face-to-face meetings to discuss a guideline for software
teqUj .

rements specification before doing the case study Section 3.3.1. In this case

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 174

study, eXamining the fIrst 32 nodes, the non-decomposition method was used and

more than 70% of the links were hierarchical. Confusion, restructuring of the infor

mation, and the adding of unnecessary nodes were also happened in this part of case

study. By contrast, in the examination of the next 27 nodes, there was just 4 percent

of non-hierarchical links, no restructuring information, and all the nodes were

related. Thus attending 7 more face-to-face meetings and using non-decomposition

strategy in the fIrst half of the case study helped the subjects in understanding the

problem and how to decompose it. It might be conclude that a pre condition of

Using hierarchy and decomposition is understanding the problem and how it can be

decomposed.

The usefulness of using 'proto-node'.

A Discussion using HERD forces the users to structure their ideas and organ

ize their thoughts in order to incorporate the new information within the existing

Structure. However the early phases of the Discussion are fragile and critical, and

an issue, is sometimes vague and the response is unclear. To override such prob

lems, a proto-node might be used (eighty percent of the subjects used this option,

Section 3.3.1) as a private space for recording notes, segmenting the mucks, identify

ing their types, and linking them to the current structure.

Sometimes, while users are reading literature to prepare a response for an

issue, some useful information might be found for another issue intended to be

created. Sometimes also, while a user is typing a response, some thoughts and ideas

lllight come to his/her mind. In the non-hierarchical structures, shifting to another

Place and linking such thoughts and ideas to the most appropriate place might be

easy. On the other hand, the hierarchical structure can be seen as one body, and

SUch thoughts and ideas should be placed in the right place. If in the hierarchical

Structure the right place is not yet ready, then the proto-node is the right place for

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work

such thoughts and ideas to be recorded.

Capturing the Resolution.

Page 175

When people participate in a long Discussion, they discuss many things and

create many nodes. Some of these nodes are organizing nodes, others might not be

relevant to the Discussion itself, and the others might be comments. As a result, the

actual nodes which discuss the problem are hard to see, and the users may experi

ence Confusion as to their current whereabouts in the Discussion. One of the major

problems confronting HERD users is that of capturing the resolution. Also, there is

no efficient method in the IBIS systems to represent the resolution for a specific

issue, nor for the whole problem. When HERD users become confused about the

latest result of a Discussion of a specific issue, they restructure the information from

different nodes and add a new node. They then carry on the Discussion starting

frorn that node.

The literature did not show how resolution can be extracted from the different

nOdes of a Discussion. The following is a possible solution for capturing the resolu

tion problem. Assuming that a problem can be divided to a number of issues, and

that each issue can be divided to a number of sub-issues. The resolution of the

WhOle problem consists of the resolution of all the sub-issues. The resolution of

each issue is the resolution of that issue, besides being the resolution of the sub

isSues linked to that issue. To capture the ~esolution, at least three types of link are

lleeded: responses, objects, and supports. The following algorithm can be applied to

a Problem, issue, or sub-issue in order to capture the resolution.

1) The contents of all Positions attached to an Issue should be included in

the resolution.

2) The content of all Arguments attached to a Position with the link "supports"

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 176

should be added to the contents of that Position. Also, all arguments linked

transitively via a sequence of "supports" links should be added to the content of

that Position.

3) All or part of a Position or Argument should be removed from the resolution if

it has been rejected by an Argument with the link "objects".

4) For a series of objections the following rules can be applied:

a) Odd (objection) is an objection.

b) Even (objection) is a support (i.e The Argument or Position will be

accepted). For example (see Figure 46) let A = Argument, P = Position,

and I = Issue. Then, If both P1 and P2 respond to 11, A1 and A2 sup

ports P1, A3 objects to P2, A4 objects to A1, and AS objects to A4, in that

case P2 will not be included in the resolution for 11. The resolution will

be the contents of P1, A1, and A2.

l'he usefulness of decision-making.

lbis observation shows how a decision might be made on resolving an issue.

One of the problems encountered in HERD is that users may have finished discuss-'. ..:. ~ ';' '.

ing a Specific issue, but most of the users will be unsure as to whether the Discus-

Sion is finished or not. Conversely, some users might think that a specific issue was

reSOlVed, but actually it is not. Using decision-making might solve such a problem.

Thus, a decision should be assigned f~r each issue; in particular, those issues

Which Will be included in the final resolution of the problem.

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 177

Issue: What is the definition of hypertext? 1-1----,
Pt ,.....,,;;:,

a
responds I

I

lIyPertext is an approach to
Inronnation management in

Which data Is stored In a

network of nodes connected
-!!I links.

• I •
I

I supports

At I
....,;,J

The essence of
hyPertext Is its

supports I
I
I
I

All

P2

a
I responds
I

Hypertext Is non-sequentially linked
pieces of Information. Information
Is chunked Into small units. Units
may contain textual Information,
graphics, bitmapped Images, sound
and animation.

• I objects
I A3

This is the definition of hypermedia?

ability to perform

hlghspeed, branching
transactions on

~xtual chunks.

Perhaps a better description
for the essence of hypertext
is: a computer-based medium

• for thinking and communications •

I
I objects

I

This Just a Jist of its ingredients.
•

AS I objects

- I
Any thing can be described by listing

Jts ingredients.

Resolution

Hypertext is an approach to
information management In

which data Is stored In a

network of nodes connected
by links. The essence of
hypertext Is Its ability to
perform highs Peed, branching

transactions on textual chunks.
Perhaps a better description

for the essence of hypertext
Is: a computer-based medium

resolves

for thinking and communications.

Figure 46 "Capturing resolution": An example explains capturing resolu
tion.

One of the possible solutions to this problem is the Consultation decision method.

1nere are two cases in this method:

1) single decision making and

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 178

2) multiple decision making.

In the first case, the decision-maker has the authority to assign any type of decision-

POsitive or negative, to any type of node- Issue, Position, Argument, or Surrogate, at

any time. This should be done after the necessary consultation has been made with

the participants. Unfortunately, the system cannot force the decision-maker to con

sult the other participants, or to take their opinions into account.

In the second case, the decision will be assigned to a specific node by the Dis

CUssion leader, if a consensus has been made to that node. Otherwise, one of the

VOting schemes should be executed, and the decision type will be assigned by the sys

tem to the selected node. Of course, the discoursers should be given the option of

Changing the decision attached to a node, and the system should be able to make

SUch a change.

7.2.2. Annotation Hypertext Systems

One of the major problems, may be, is the distinction between the headings

and t~e text. In Section 3.3.1, it was easier to respond to the text than the heading,
t '. I ."

because the heading is embedded in the text. Another problem exists in HERD and

that is the distinction between the structure on the display and the structure in the

database. In order to arrive at a solution for such problems, a hypertext system

called MUCH has been created (Section 4.2).

The ability to make annotation on the headings and the text of a document in

~tJCH was tested. Results suggested that it was easy to annotate the headings of a

dOCument. On the other hand, it was difficult to do the same to the text of a docu

lllent. However, assuming that the classification of the hypertext systems divides

into two groups (creating document systems and browsing systems). then annotations

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 179

to the heading and to the contents of a document in the first group of hypertext

(dOCUment creation) might be needed. However, Annotation to only the headings in

the second group of hypertexts (browsing systems) might be needed. So, attaching

the text to the node does not satisfy the document creation hypertext systems, nor

the browsing systems. On the other hand, attaching the text to the link does satisfy

the brOWSing hypertext systems (assuming the content is perfect).

A set of node types has been suggested for Annotation (Section 4.4). In order,'

to test these node types and to explore some issues about Annotation, an experiment

(Section 4.5.1) was performed. This experiment was concerned with the organiza

tion of the document. The hypothesis that restructuring the entities in the outline by

USing the Organization Annotation node types would give the author an indication

about the quality of that document was fully supported. It confirmed the usefulness

of Using the organization of Annotation types. However, the method suggests that

1ll0ving an entity from one place to another might work automatically only at the

same level of outline, but moving an entity from one level to another needs to be

done manually.

In hypertext systems, there are many issues with regard to viewing published

dOcuments (such as papers or books) stored in the database (see Section 6.3.2).

1bese issues concerning the viewing of a hypertext might be satisfied by registering,

in the re-organization process; the history of what a user selects to view next, which

nOde Was selected to be the first in the outline, and the necessary information about

each reader which reflects his importance. This information can be registered for

each version of a hypertext. Thus, the Annotation organization node types might

facilitate viewing one hypertext from different perspectives. Decisions about the

remOVal and retention of such annotations will be dependent on their purpose. For

e](ample, if published documents are stored in database on a form of hypertext and

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 180

readers want to view them from different perspectives, then such annotations might

Continue as long as the documents exist.

A hypertext can be viewed in different ways (Le different outlines could

represent one hypertext). If someone wants to view a hypertext, then this raises the

fOllOwing question: What are the precedence factors for presenting an outline which

represents a version of hypertext to a reader? In answering such a question, the

readers who would like to view a hypertext, could be classified into . two groups,

depending on whether they shared in the re-organization process or not. The first

OPtion to a user who shared in the re-organization process might be the outline

Which that user selected. The selected outline can be discovered through the

registered history for each user in the re-organization process. On the other hand,

the first option for a reader who did not share in the re-organization process might

be the outline which was agreed on by the users at the end of the re-organization

Process. One or more additional options could be offered to both types of readers (

thOse who shared or didn't share in the re-organization process). These options are

dependent on different attributes. The importance of these attributes might be dif

fere f nt . rom one reader to another or from one group to another .• ,Some of these

att 'b rr utes are:

1) Date: the hypertext might be modified from one date to another. A user might

need to view a specific version of the hypertext on a specific date. Even with

the same date, the hypertext might be modified by different users at the same

time. In such a case, a user would need to specify both the date and the

author.

2) Author importance: the hypertext might be modified by different authors. So, a

user might need to view the version which was modified by the most important

author or the less important one. The author importance can be determined by

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 181

different characteristics. Some of these characteristics are: the status of the

author (such as Professor, Doctor), and the number of publications (papers,

books) that he/she has produced.

3) Demand: one version of a hypertext might be viewed by different users more

than another version. Also, one specific outline which represents a version of

hypertext might be viewed more than another outline. Furthermore, an outline

starting with a specific node might be selected more than another. In such a

case, a reader might determine which version or outline (starting with or

without a specific node) he/she wants to view, based on the number of times

that version or outline has been selected.

lbus, the hierarchy could help the readers in making a decision regarding the ver

sion of the document, its outline, and from which perspective the readers want to

View it. Also, the hierarchy could help the author of the document in deciding how

far he/she is from reaching the final version, by looking at the organization of the

lllost important parts of the document.

The results of the experiment (Section 3.3.1) might open new vistas to the

applications 'of Annotation in document creation and browsing. \. One can hypothesize

that the Annotation "content" and "organization" node types could give authors an

indication regarding the quality of a document. When most of the text blocks are

attached by both "good-content" and "good-organization", this will give the authors

an indication how far they are from reaching the final version. This will also direct

the authors to the parts of the documents which need more work than the others.

Furthermore, different documents might be generated based on these two groups of

J\nnotation node types. This is can be done by following the "good-contents" and
"
gOod~organization" Annotation node types.

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 182

The experiment (Section 4.5.2) was concerned with the content of the docu

lllent and a task of making annotations. One of the hypotheses was that using the

Computer system for making annotations on a document will diminish the need for a

face-to-face Discussion. This hypothesis was refuted. In this experiment, Annota

tions were made to this dissertation by using three different approachs: paper, flat

ascii file, and MUCH, respectively. Each has its own problems, most of which differ

from the problems of the other two approachs. When using the paper approach:

1) different strategies for making annotations are employed;

2) more than one page can be seen at the same time, tables figures are clear and

they are in the final form, so the reading process is easy;

3) annotators may make many short comments and connect them to the document

with pointers that can isolate arbitrary portions of a page; and

4) the face-to-face Discussion is concerned with the understanding of the annota

tions rather focusing on the document.

The productivity (the feed back written for the document), in the ascii file

approach, is greater than in the paper approach. The Annotation process, however,

is lllore diffi~ult: !'When using the ascii file:

1) the annotator can write more than in the paper approach, so understanding the

annotations will be easier;

2) the face-to-face Discussion is concerned with finding the annotations and their

response; and

3) there is a difficulty of pursuance of the Annotation history.

In the MUCH system approach, some of the problems which had been found

in the previous two approaches were resolved, but at the same time new problems

were discovered. Using this approach, makes it is easier to find who created which

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 183

annotation, and also, to see when an annotation was created and which· annotation

has been responded to. All the annotations can be seen through the outline which

can be generated for the Triple activities (document, Annotation, and Discussion).

The pursuance of the annotations can be traced more easily with MUCH than with

the other two approaches. The feedback for the document when using MUCH was

better than others.

On the other hand, some problems were discovered .. When using the MUCH

sYstem, many of the comments are of an administrative or system-specific type and

do not relate to the content of the document. The user is constrained in the way

that parts of the document can be connected to the Annotation. Additionally, the

MUCH system facilitates comment that is intimately linked to the semantic net or

OUtline of the document. The advantage is that the major conceptual issues of the

dOcument are the focus of attention. The disadvantage is that comments which

SOIneone might want to make are either:

1) not about the document content or

2) on a level of organization of the document distinct from its outline or semantic

net

and thus they are difficult to make.

This experiment shows how Annotation leed to Discussion; in 8 out of 24 anno

tations, each one led to a different Discussion. Some of these Discussions were

re .
glstered in the computer and some others were made face-to-face. The face-to-

face Discussion was seen as an easier way of facilitating Discussion than using the

sYstem, for two different reasons:

1) The goal of the Discussion was not to produce a written text, but to understand

an issue or to exchange viewpoints, and

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 184

2) the system is slow and it uses "typing" rather than pointing. The Discussions

that used the computer occurred in this form because the subjects were not

working in the same place at the same time. Finally, the Annotation node

types which were suggested with regard the content of the document were they

never used. They were, however, used with different words which have the

same meaning. It appears that this task was not suitable for use with suggested

Words that were the same.

An important observation of these experiments concerns the large extent to

which people may get side-tracked by a new technology system and want to enter

information into the system which is not about the task at hand, but is about the sys

tem itself. Nevertheless in the case of the Discussion with the HERD system, the

text Was usually specific to the central goal of that Discussion. Thus in some cir

CUmstances the computer support may have a focusing effect.

In exploring the fundamental differences between Annotation and Discussion, a

case study (Section 4.3) was performed. One can conclude from this case study that

lllost of the link types for Discussion are useful for Annotation, while the Discussion

nOde types might be considered as a complement to (the Annotation node types.

Furthermore, assigning a name for a procedure which does not exist or is unknown

to the users, is not useful. The opposite is also not useful (i.e using an action

Without assigning a name for it). For example, using the name 'Issue' without know

ing What the issue means, is not useful. Also, using an action such as a text block

Written in a form of question or concern which needs a resolution, without assigning

a name for such a procedure is not useful. The useful and the natural is to find the

action first, then a name should be assigned to it.

In this case study, it was difficult to specify the text block on which the annota

tion Was made, without mentioning the link object in the text by the subjects. This

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 185

Was due to a fault, namely that a node can be linked to more than one node. A

node might appear more than once in the outline, but when a subject hits 'Return'

on the same node name in different places in the outline, different texts will be

retrieved. This was due to a fault, namely that the text is attached to the link not to

the node. For example, in Figure 47, hitting "Return" on the node name "motiva

tion" in the "*Frames Window*" (or in the "*Text Outline*" window), causes the

text attached to the link between "motivation" and "preface'.' to appear in the

""'Paragraph Text*" window. In Figure 48, hitting "Return" on the same node name

" motivation" causes a different text to appear in the "*Paragraph Text*" window.

'Ibis is because the previous text is attached to a different link (the link between
I,
motivation" and ''writing tool"). Thus if a subject wants to make an annotation (or

a Discussion) on the text which is attached to a link, then the subject should mention

the link object in the text of annotation. Otherwise, it is difficult to identify the text

on Which the annotation is made.

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 186

"' '" Text for Node: motivation
Source frame name : preface

Efforts to exploit technology so as to add extra dimensions

to text have occurred throughout history, but the

electronic computer has opened new vistas. The modem

history of hypertext begins with the text 'As We May

Think' which describes an analogue computer that allowed

individuals to record and follow links among documents.

The declining costs of digital computing along with the

information explosion necessitate a reassessment of the

principles and systems which may be united to serve the

I preface
I has motivation

I has preview

I has text

I has macrotext

I
r-- "'Frames Window'"

I
I
I
I
I
I
L __ _

"'Note Outline'"
hypertext I

I ---- "'Paragraph Text'" -------1 preface

motivation
preview

text

macrotext

grouptext

expertext

focus

r - - - "'Text Outline'"

"'Note Text'" - - - - - T - - - "'Function Keys'"

Figure 47 "Text and link object (A)": This figure and the next one show
how 'clicking' on the same entity in different places in the outline, causes
different text to appear on the emacs window. In this figure clicking on
'motivation' entity causes the text attached to the link object 'preface has
motivation' to appear.

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 187

...... Text for Node: motivation
Source frame name: writing_tool

Computer writing tools have replaced pen and paper for

some people. In some situations, students who write

With computers get higher grades for their writing

products than students who write with paper.Grif86

What are the methods for writing text with a computer?

writing_tool

has motivation

has levels

need cognitive_model

include editors

r-- ·Frames Window·

I
I
I
I
I
I
I ---- ·Note Outline·
I
I

access_style

---- ·Paragraph Text· -------4 paper

physicatreadability

->

writing_tool
motivation

levels

cognitive_model

editors

I framework

r - - - ·Text Outline·

I
I
I
I
I

·Note Text· - - - - - ,- - - - ·Function Keys·

Figure 48 "Text and link object (B)": In this figure clicking on 'motivation'
entity causes the text attached to the link object 'writing_tool has motiva
tion' to appear on the emacs window.

The role of hierarchy in Annotation was both direct and indirect. The direct

COntribution of hierarchy in Annotation was very limited. The indirect contribution

Of hierarchy in the Annotation through the hierarchy of th~ document was consider

able. The hierarchy supports decision making in both creating and reading annota-

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 188

tions. The decision can be made as to which annotation needs to be read first and

responded to; which part of the document first needs the creation of an annotation,

Or from which perspective a hypertext of the document needs to be viewed, based on

the different attributes such as reader importance, the document components, or the

Unportance of the information. Finally, by making annotations on the hierarchy of

Outline, readers could view the same hypertext of the document from different per

spectives. This aspect is expected to solve most of the problems which are related to

Converting the non-hierarchical structures to a hierarchy of outline.

7.2.3. Browsing Hypertext Systems

When users move around a large information space as much as they do in

hypertext, there is a real risk that they may become disoriented or having trouble

finding the information they need. Giving the users some guidance about one or

Illore related nodes which they have the most relevant information might diminish

SUch a problem. An attempt was made to explore the extent to which the word

frequency indexing may be augmented with Mili's method to provide both a rela

tional indexing for documents and a semantic net for browsing.

Word-frequency indexing was used to analyze the contents of 600 paragraphs,

Which were part of a textbook entitled Hypertext. Mili's algorithm- called STAT

l3OILDER, was applied to the resulting indexing vocabulary to build a hierarchy.

'!be accuracy of the index terms and the derived semantic net were tested first (Sec

tion 5.3.1). Mili predicted that the relationships generated by his algorithm are

"n roader-Term"-like. Given two text blocks TB1 indexed by t1 and t2 and TB2

indexed by t3 so that STATBUILDER identified a relationship between these index

t
erlllS, it was of interest to ascertain whether TB1 did, indeed, describe a relationship

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 189

between tt and t2, and whether there was a relationship between TBt and TB2' The

results showed that 75 percent of the text blocks whose set of index terms included

the end nodes of a link generated by STATBUILDER described a relation between

those nodes. They also showed that 65 percent of different Sections were com

Pletely recognized and the rest partly recognized. Thus, it is reasonably sure that

Whenever a pair of related index terms appear in the index set of a text block, the

text block describes the relationship between the pair. Also, whenever two different

index terms appear in two different text blocks so that a relationship is identified

between the index terms, then a relationship is also identified between the text

blocks.

The ability to rank paragraphs according to their similarity to a specific para

graph using the word-frequency based indexing was tested (Section 5.3.2.1). The

results illustrated that it was feasible to use this method of indexing to measure the

silllilarity between paragraphs. Word-frequency based indexing and the derived

Selllantic net were used to attempt to find a paragraph related to another paragraph

(Section 5.3.2.2). This experiment indicated that the relationships in the derived

Selllantic net were sufficiently accurate to support browsing and thus enable the user

to Consult a related text block.

In exploring the similarities between Discussion and Annotation, two experi

ll:tents were performed (Section 5.3.3) using three algorithms- indexing, STAT

~UILDER, and RElATION. In the first ~xperiment, the similarity of the text of

DisCUssio~ and Annotation was tested. It appears that since the text blocks of

I\nnotation were not related (53 percent), but the text blocks of Discussion were

related (89 percent), Annotation and Discussion were not similar. This confirms

that Within the limits of this study, the tree structure for annotation is more concep

tUally disjointed than the same structure for a Discussion.

November 27, 1991

, J

Chapter 7: Discussion, Conclusions, and Future Work Page 190

In the second experiment, the similarity between the relationships of the Dis

cussion and Annotation was tested. The results showed that the relationships

between the Discussion text blocks are much stronger than the relationships between

the Annotation text blocks. This supports the results of the previous experiment in

that most annotations are completely dependent on the document, while the Discus

sion nodes can be independent from the document, and they address one topic.

7.2.4. Discussannotation Hypertext Model

The Discussannotation hypertext mode~ as described in Section 6.3, is as effi

cient in many aspects as other models, more effective in some aspects, and provides

more functions with respect to document creation than any existing hypertext model.

This model is the only one supporting creating Discussion and Annotation on the

various components of the document. This can be made by the virtue of the anchor

ing and the composition methods. These methods are difficult to implement without

having a hierarchy of outline.

In order to make Annotations or Discussions on a group of text blocks, deter

mining the boundaries for a group of text blocks is essential. Since the hierarchy is

dynamic and not a data storage, then determining the boundaries for a group of text

blocks by using the graph only is a difficult or sometimes impossible task. Such a

task becomes easy by the virtue of converting a graph into a hierarchy of outline.

This model manipulates the text and the headings separately. The users can

create headings or text blocks separately. This manipulation is one of the features

that make the model more efficient than any other existing model for some tasks

sUch as generating different outlines. An example of this method could be the fmd

ing that the document, Discussion, and Annotation consists of headings and text.

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 191

Since they are similar in this regard, it is possible to use one method to create them

all, minimizing the number of modes. This finding is important from both users' and

deSigners' perspectives. The number of skills which the user should learn will be

decreased. Similarly, the number of application programs which need to be made by

the designers will be reduced.

The usefulness of using typing was also proved in the literature and in this

work. This model supports presenting a set of Annotation and Discussion nodes and

link types to the users. The strategy is to present the existing node and link types to

the Users with the option to modify these types and to add new types as they arose.

'Ibe way in which the node and link types are presented to the users is important.

'Ibe presentation of such types to the users should be dynamic, and guide the user in

accomplishing the task.

Finally, the efficiency of this model ranged from negative to positive. This

lllodel is less efficient than other models when creating one document only. By con

trast, this model is more efficient when more than one document needs to be

created and Annotations and Discussions need to be made. The increase of this

effiCiency will depend on the manner in which the users cooperate.' All these issues

Will be discussed in some detail in the next Sections.

7.2.4.1. Hierarchy and Efficiency of the Model

The' assumption is made that the Discussannotation hypertext model (Section

6.3), if well designed, is more efficient than any existing hypertext system in some

SPecific tasks and for some specific users. Assuming that there are some hypertext

sYstem models which provide their users with the same functions as the Discussan

nOtation hypertext model does, then an attempt is made to prove that this model is

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 192

as efficient as the other hypertext system models in many aspects and more efficient

in some other aspects. A hypertext system 'A' is more efficient than a hypertext sys

tem 'B', if the users, by using system 'A' can perform a task 'T' in less time than

Using system 'B'.

The hierarchy of outline for the Triple needs to be viewed as a whole, or part

of it, according to the user's desires and perspectives., The cost of generating an out

line in this model will be comparing with the cost for other models. How the cost

Will be affected by the number of users and their way of working (collaboratively or

not) will also be demonstrated. Which model is more efficient than the other, and

when this is the case, will be predicted.

What is the cost for generating an outline? There are two cases:

1) the headings are' separated from the text as in this model and

2) when the headings are embedded in the text as in the other existing models.

It is assumed that a draft of the document and some Annotations and Discussion

nOdes have been created. The task is to view the Triple in the storage and to create

more Annotation, Discussion, and to bring the document forward toward the f~al
\Ie • ' . ,\', .,

rSlon. In order to perform the task, the outline needs to be generated.

, . Ass,Uming there are N nodes and each node has J paragraphs which were

created by K users. The cost for generating the outline once in the first case (head

ingS separated) is N time units where N is the number of headings. In the second

case (headings embedded in text), the cost is N * ~ where L is the number of time
U'
llits which are needed to retrieve the text block which is attached to the heading.

lhis Cost will be further increased depending on 1) how many times each user wants

to generate the outline; 2) the number of users; and 3) how the users want to work.

In many cases, a user might want to generate the outline for the Triple. Some

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 193

of these cases are:

1) at the beginning of the work;

2) switching from one part of the outline to a different part (such as switching

from the Annotation outline to the Discussion outline);

3) switching from one desire to another (such as switching from outline by author

to an outline by date);

4) Switching from one starting node to another;

S) adding one or more text blocks or headings;

6) deleting one or more text blocks or headings; and

7) modifying the organization of the document.

'!bus, it is assumed that each user wants to generate the outline G times. In such a

case, the cost for the first case will be increased from N to K*G*N. By contrast, in

the second case, the cost will be increased from N*L to K*G*N*L time units.

How the users cooperate with each other will affect on the cost of generating

the OUtline. For example, if the users are working at different times, in different

Places, and without any communication, then the cost in the first case will be

I(*G*N, while in the second case, the cost will be K*G*N*L time units. If the users

WOrk cooperatively and divide the work equally between them, the cost will be

decreased in the first case to K*(G/K)*N (i.e G*N) time units. In the second case,

the cost will also be decreased to K*(G/K)*N*L (i.e G*N*L) time units. This

assumes that they are working cooperatively in one room, that they divide the work

eqUally between them, and that they have communication between them so that one

of them will generate the outline once, after all the users finish their parts. In such

a case, the cost in the first case will be N time units. In the second case, the cost

\\ill be N*L time units. Thus, this model is always more efficient than the other

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 194

mOdels in viewing the hierarchy outline of the document. The cost of generating an

outline will also be decreased when the users are working cooperatively and they are

able to communicate with each other.

7.2.4.2. The Power of the Model

One system will be considered more powerful than another if that system pro

vides its users with more functions than the others. Power can be dermed as a

number of functions that a system provides for its users for them to be able to per

form some tasks, assuming that supporting such functions is necessary. Some func

tions facilitate the task and others are necessary for the task to be performed. One

eXample of the first group is the use of e-mail messages. Using e-mail messages

facilitates the Annotation and Discussion activities in different ways. For example,

in a case where there is no support for e-mail messages, if a user wants to know

Whether his issue has been responded to, or a specific Section has been annotated,

then the user should set up the system and find out whether his demand has been

Satisfied or not. In the case, for instance, where setting up the system needs K time

Units, if ~ha~ ~ser tried N times, then K*N time ~nits are 'need~d. By contrast, in the

case of supporting e-mail messages, and assuming the user needs to check the e-mail

messages anyhow, the user will set up the system as soon as he/she has received an

e-mail message regarding the response .for his demand (i.e K units of time are

needed).

An example of the second group is when the users are provided with a function

for creating an annotation. Such a function is necessary for document creation.

With regard to the power of the system, the functions of the second group are of

lllore interest. Based on the experiments and the case studies which were per-

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 195

formed in this research, some of the functions which are needed in document crea

tion are as follows:

1) Making Annotations on the different components of a document, Discussion,

administrative matters, or medium.

2) Creating Discussions about the documents, administrative matters, medium,

and Discussions developed from Annotations as well as creating an independent

Discussion,

3) Creating Annotations and Discussions on one or more headings, individual

terms or regions in a text block, or on one or more text blocks, and

4) Viewing the outline of the Triple or part of it (i.e viewing document, Discus

sion, or Annotation separately), according to the user's desire (such as by

author or by date) and perspective.

Some of the above functions are supported by some systems, but not all of

them. All of these functions are supported by this model. However, some systems

SUpport some functions which are not supported by this model. Such functions

lllight be facilitation functions and their existence is not essential. However, consid

ering this model overall, it can be 'seen that it supports most of the nece~sary fun~
tions for document creation.

7.3. General Conclusions

The conclusions to be drawn from this research are:

1) Making Discussion or/and Annotation on one or more groups of text blocks

(Sections, Chapters, documents, ... etc) is needed. A prerequisite for such a

task is to determine the boundaries for such groups of text blocks. It is very

difficult, if not impossible, for such a determination to be made without using

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work

hierarchical structures (see Chapter 6 Section 6.3).

Page 196

2) In document creation, including problem exploration and authoring, both Anno-

tation and Discussion activities are needed. Separating Annotation and Discus

sion from each other, or partly supporting Annotation and/or Discussion (see

Table 1), does not satisfy the goals of a hypertext system. Combining both

Annotation and Discussion in one single computer system is possible (see

Chapter 6) and hypertext systems should support these two activities.

3) A hypertext system supporting one kind of structure only, either hierarchical or

non-hierarchical, (see Table 1) does not satisfy all users' needs. Hypertext sys

tems should support both kinds of structure separately or in conjunction with

each other. Therefore, some techniques to convert non-hierarchical to

hierarchical structures is necessary.

4) In terms of system support for typing, it is not sufficient to only support a fixed

set of types, including Annotation types, Discussion types, and node and link

types. Nor it is sufficient to only support user-defined types. These design

options do not satisfy user needs. The hypertext systems should support a

specific set of types with the option to modify (add and/or delete) the existing'

types.

S) It should be possible for users to view documents stored in the system from dif

ferent perspectives, including their own. Many traversal techniques were used

to convert a graph into the hierarchy of an outline, but these techniques,

separately or in conjunction, failed to provide for all users' perspectives. How

ever, applying Annotations to the output of any traversal technique can satisfy

most users' perspectives when viewing the document.

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 197

7.4. Future Work

The final objective is to propose future work which is explained in this Section.

There are a number of ways in which the current research described in this research

could be continued. Future work can be classified into two kinds of plans: long term

plan and short term plan.

With regard to the long term plan, a number of extensions can be made to this

research. First of al~ investigation needs to be made into the knowledge structuring

strategies. Exploring such strategies will reduce the need to develop a new system

for each new task. For instance, assume there are two tasks Tl and T2, and Tl

needs hierarchical syntax structure, while T2 needs non-hierarchical syntax structure.

Having the strategy that systems should support both hierarchical and non

hierarchical syntax structure, and providing some methods to convert a non

hierarchy to a hierarchy, will facilitate developing one system that satisfies both

tasks. These strategies may apply to all phases of collaborative hypertext activity.

Sometimes the text of the Triple Activities is too large for a user to explicitly

represent without the help of a data manager. The "Argument Representation

language" (ARL) has been developed to characterize the semantics of textual con

Stituents of a discussion or argumentBernstein1989 and can be applied to the texts of

the Triple Activities. Using ARL can help users to choose building blocks for the

arguments. The ARL statement corresponding to "Claim C1 supports Claim C2"

uses the formal term claims and relates two such terms to the formal predicate sup

Ports. Presenting the different relationships in the text to the users may have impor

tant ramifications with regard to extracting the resolution from the text, and in the

accuracy of decision-making. It is difficult to make an accurate decision without

developing a shared understanding of the issues among the participants, creating a

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 198

sense of common purpose, and gaining a commitment to action. These factors

tnight be facilitated by using ARL

The decision-making might be facilitated by different factors; the hierarchy of

people might be one of these factors. It is difficult, sometimes, to arrive at a deci

sion when a decision-maker needs to consult each one of a large number of partici

pants. One solution in such a case might involve the hierarchy of people. In this

approach, participants will be divided into a number of groups, and in turn each

group might be divided into sub-groups until further division is no longer needed.

These divisions might be based on different factors such as user importance or

eXperience. Dividing the groups into sub-groups allows the decision-maker to con

SUlt the group leaders rather than consulting every user.

Looking at the hierarchy of people opens up a further area of work. The role

of the other hierarchies, such as the hierarchical structure of systems, can be exam

ined. In an approach such as this, the system can be divided into levels of abstrac

tion. The number of levels then depends on the system and on the task. The

decomposition of the system might start from its most global description and pro

gressively obtain a more and more detailed description in the hierarchy. The role 'Of .

this type of hierarchy, and others, can be explored to see how they might facilitate

Using such a ~ystem.

Using the computer, however easy it is to use, will not eliminate the need for

face-to-face discussion, though not nece~sarily in the physical sense, ego via video,

aUdio, or the telephone. Therefore, integrating some media such as video and audio

needs to be considered. Such consideration might solve many problems, but might

also cause new problems.

With regard to the short term plan, software can be developed for the different

algorithms that have arisen in this research:

November 27, 1991

Chapter 7: Discussion, Conclusions, and Future Work Page 199

1) the capturing resolution algorithm that is described in Section 6.2.1.1. The

algorithm can be tested, and then the strengths and the weaknesses of the algo

rithm can be explored. In another extension to this work, this algorithm and

ARL might be integrated;

2) the organization algorithm that is described in Section 4.5.1. It has been seen

that the re-organization process needs to be done manually, whereas generating

the outline is done automatically. After developing the software, this algorithm

needs to be tested and evaluated. It has also been explained that side-effects

such as confusion might arise, so imposing some control is necessary;

3) the RElATION algorithm that is described in Section 5.2.3 This algorithm

Was used as a testing tool, but it has not tested for browsing and searching.

STATBUILDER and the produced index terms were tested for browsing and

searching at the concept or term level. RElATION can be tested at the text

block level; and

4) the index terms that are produced manually gave more accurate results than

those index terms that are produced by Salton's algorithm. To improve the

quality of the index terms, so that they become meaningful, simple natural

language processing tools might be employed. Since grammars of natural

language are now well established and lexicons are widely available, these might

be exploited to improve the ability to detect meaningful index terms for para

graphs and to suggest relationships between those terms. Causing the index

terms to be meaningful might improve the relationships in the semantic net that

Can be generated using Mili's algorithm. Such a semantic net can be used as a

knowledge base.

Finally, after performing the short term plan and performing as much as possible of

the long term plan, the Discussannotation model that is suggested in Chapter 7

November 27, 1991

Chapter 7: Discussion, Conclusions, and Futwe Work Page 200

needs to be implemented. Such implementation needs to consider the algorithms

described, the work done in the long term plan, and some other useful mechanisms

arising at that time from the literature. The implementation needs to be done on a

fast and high resolution computer. It is then hoped that the system will be easy to

learn, easy to use, and that it will satisfy most users' needs.

November 27, 1991

REFERENCES

Acar1990.
Levent Acar and Umit Ozguner, "Design of Knowledge-Rich Hierarchical Con
trollers for Large Functional Systems," IEEE Transactions on Systems, Man,
and Cybernetics, 20, 4, pp. 791-803, 1990.

Addison1991.
M. A Addison, "Generalised Hierarchical Operators and their Implementation
in Spatial Data Processing and Other Applications," Ph.D. Thesis, Computer
Science Department, University of liverpool, liverpool L69 3BX, UK, Sep
tember, 1991.

~cynI988. \
Robert Akscyn, Donald McCracken, and Elise Yoder, "KMS: A Distributed
Hypermedia System for Managing Knowledge in Organizations," Communica
tions of the Association of Computing Machinery, 31, 7, pp. 820-835, 1988.

Alv01985.
Mayer Alvo and Paul Cabilio, "Average Rank Correlation Statistics in the Pres
ence of Ties," Communications in Statistics Theory and Methods, pp. 2095-2108,
1985.

Begorayl990.
John A Begoray, "An introduction to hypermedia issues, systems and applica
tion areas," International Joumak of Man-Machine Studies, 33, 2, pp. 121-148,
1990.

Bernstein1989.
Bernard Bernstein, Paul Smolensky, and Brigham Bell, "Design of a
Constraint-Based Hypertext System to Augment Human Reasoning," Proceed
ings Fourth Annual Rocky Moutain Conference on Artificial Intelligence, pp. 21-
30, Rocky Moutain Society for Artificial Intelligence, Denver, Colorado, June
8-9, 1989.

BUi1984. '(
Tung Bui and Jarke Matthias, "A DSS for cooperative multiple criteria group
decision making," Working Paper Series, New York Univ., New York, 1984.

BulIen1990.
Christine V. Bullen and John L Bennett, "Learning from User Experience with
Groupware," In Proceedings of the Conference on Computer-Supported Coopera
tive Work, pp. 291-301, Los Angeles,_ CA, October 1990.

Bush 1945.
Vannevar Bush, "As We May Think," The Atlantic Monthly, 176, 1, pp. 101-108,
July 1945.

Campbe111988.
Brad Campbell and Joseph M Goodman, "HAM: A General-Purpose Hyper
text Abstract Machine," Communications of the Association of Computing
Machinery, 31, 7, pp. 856-861, 1988.

Carbonell 1984.
Jaime Carbonell and R. Frederking, "Natural Language Interfaces to
Knowledge-Based Systems," in The Factory of the Futzue, ed. D Reddy, Digital
Press, 1984.

November 27, 1991

References Page 202

Carlson 1990.
Patricia Ann Carlson, "The rhetoric of hypertext," Hypermedia, 2, 2, pp. 109-
132, 1990.

Catlin1989.
T. Catlin, P. Bush, and N. Yankelovich, "InterNote: Extending a Hypermedia
Framework to Support Annotative Collaboration," Proceedings Hypertext '89,
pp. 365~378, Association of Computing Machinery, New York, 1989.

Charney 1987.
Davida Charney, "COMPREHENDING NON-UNBAR TEXT: The Role of
Discourse Cues and Reading Strategies," Hypertext '87, pp. 109~ 120, University
of North Carolina, Chapel Hill, North Carolina, November 13-15, 1987.

COnklin1987a.
Jeff Conklin and Michael Begeman, "gIBIS: A Hypertext Tool for Team
Design Deliberation," Hypertext '87, pp. 247-252, University of North Carolina,
Chapel Hill, North Carolina, November 13-15, 1987.

COnklin 1987b.
Jeff Conklin, "Hypertext: An Introduction and Survey," Computer, 20, 9, pp.
17~41, September 1987.

COnklin1988.
Michael L Begeman ,"gIBIS: A hypertext tool for exploratory policy discus~
sion," ACM Trans. Office Information Systems 6, 4, pp. 303-331, October 1988.

COnklin1989.
Jeff Conklin and Michael Begeman, "gIBIS: A Tool for All Reasons," Journal
of the American Society of Information Science, 40, 3, pp. 200-213, 1989.

COoper 1989.
~. C. Cooper, "Formal Hierarchical Object Models for Fast Template Match
Ing," The Computer Journal, 32, 4, pp. 351-361, 1989.

CZUchry1988.
Andrew J Czuchry, Jr and David R Harris, "KBRA: A New Paradigm for
Requirements Engineering," IEEE Expert, pp. 21-35, Winter 1988.

bam 1988.
Andries van Dam, "Hypertext '87 Keynote Address," Communications of the
Association of Computing Machinery, 31, 7, pp. 887-895, July 1988.

belisle1986.
Norman Delisle and Mayer Schwartz, "Neptune: a Hypertext System for CAD
Applications," Proceedings of ACM SIGMOD '86: International Conference on
Management of Data, pp. 132-139, Association of Computing Machinery, New
York, 1986.

besanctis 1987.
Gerardine Desanctis and R. Brent Gallupe, "A Foundation for the Study of
Group Decision Support Systems," Management Science, 33, 5, pp. 589-606,
May 1987.

buchaste11990.
Philippe C. Duchastel, "Examining Cognitive Processing in hypermedia usage,"

b Hypermedia, 2, 3, pp. 221-234, 1990.
urnais1988.

S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harshman,
"Using Latent Semantic Analysis to Improve Access to Textual Information,"

November 27, 1991

References Page 203

CHl'88 Conference Proceedings, pp. 281-285, ACM Press, New York, 1988.
Faloutsos 1990.

Christos Faloutsos, Raymond Lee, Catherine Plaisant, and Ben Shneiderman,
"Incorporating string research in a hypertext system: user interface and signa
ture file design issues," Hypermedia, 2, 3, pp. 183-200, 1990.

Fischer1989 ..
Gerhard Fischer, Raymond McCall, and Anders Morch, "JANUS: Integrating
Hypertext with a Knowledge-Based Design Environment," Proceedings Hyper
text '89, pp. 105-118, Association of Computing Machinery, New York, 1989.

Fish1988.
Robert S. Fish, Robert E. Kraut, Mary D. P. Leland, and Michael Cohen,
"Quilt: a Collaborative Tool for Cooperative Writing," Proceedings Conference
on Office Information Systems, pp. 30-37, Association Computing Machinery,
New York, 1988.

Frederiksen1981.
Carl H. Frederiksen and Joseph F. Dominic, "Introduction: Perspectives on
the Activity of Writing," in Writing: the Nature, Development, and Teaching of
Written Communication, Volume 2, ed. J F Dominic, pp. 1-20, Lawrence Erl
baum Associates, Hillsdale, New Jersey, 1981.

Fr~se1988. .
Mark E. Frisse, "Searching for Information in a Hypertext Medical Hand
book," Communications of the Association for Computing Machinery, 31, 7, pp.
880-886, July 1988.

}{uruta1989.
Richard Furuta and P. David Stotts, "Programmable Browsing Semantics in
Trellis," Hypertext '89 Proceedings, pp. 27-42, Pittsburgh, Pennsylvania,
November 1989.

GaIel990.
Stephen Gale, "Human Aspects of Interactive Multimedia Communication,"
Interacting with Computers, 2, 2, pp. 175-189, 1990.

Ghaoui1991.
Claude Ghaoui, Steven M. George, Roy Rada, Martin Beer, and Januz Getta ,
"Text to Hypertext and Back Again," Computers and Writing III, Edinburgh,
Scotland, April, 6-7, 1990.

liahn1989.
Udo Hahn, Matthias Jarke, Klaus Kreplin, Marisa Farusi, and Francesco Pim
pinelli, "CoAU1HOR: A Hypermedia Group Authoring Environment,"
Proceedings of First European Conference on Computer Supported Cooperative
Work, pp. 226-244, 1989. .

liaIasz1987.
Frank G. Halasz, T. P. Moran, and Randall H Trigg, "NoteCards in a Nut
shell," Proceedings of the ACM CHI + GI Conference, pp. 45-52, Toronto,
Ontario, April 1987.

lialasz1988.
Frank G. Halasz, "Reflections on Notecards: Seven Issues for the Next Gen
>~ration of Hypermedia Systems," Communications of the Association of Com
puting Machinery, 31, 7, pp. 836-855, 1988.

November 27, 1991

References Page 204

Halaz199O.
Frank Halaz and Mayer Schwartz, "The Dexter Hypertext Reference Mode},"
Proceedings of the Hypertext Standardization Workshop, pp. 95-133,. National
Institute of Standards and Technology Special Publication 500-178, U. S.
Government Printing Office, Washington, DC, 1990.

Hashim 1990.
Safaa H. Hashim, "Exploring Hypertext Programming," in Writing Knowledge
Representation and Problem-Solving Programs, ed. N Sharkey, Windcrest Books,
U.S.A, 1990.

Hayes-Roth 1979.
B. Hayes-Roth and F. Hayes-Roth, "A cognitive model of planning," Cognitive
Science, 3, 4, pp. 275-310, 1979.

Hershey 1985.
William Hershey, "Software Review: Idea Processors," BITE, pp. 337-351,
June 1985.

HOrton1989.
William K Horton, in Designing and Writing online Documentation: Help Files
to Hypertext, John Wiley & Sons, Inc., U.S.A, 1989.

Jones 1980.
Karen Sparck Jones, "A Statistical Interpretation of Term Specificity and its
Application in Retrieval," in Key Papers in Information Science, ed. Belver C
Griffith, pp. 305-315, Knowledge Industry Publications, White Plains, New
York, 1980. also appeared 1972 Journal of Documentation, 28, 1

JOrdan1989.
Daniel S. Jordan, Daniel M. Russell, Anne-Marie S. Jensen, and Russell A
Rogers, "Facilitating the development of representations in hypertext with
IDE," Hypertext '89 Proceedings, pp. 93-104, Pittsburgh, Pennsylvania,
November 1989.

I<aplan1990.
Simon M. Kaplan and Y oelle S. Maarek, Incremental Maintenance of Semantic
Links in Dynamically Changing Hypertext Systems, University" of Illinois, at
Urbana-Champaign, 1990.

l(elogg1987.
R. T. Kelogg, "Effects of topic knowledge on the allocation of processing time
and cognitive effort to writing processes," Memory and Cognition, 15, 3, pp.
256-266, 1987.

l<intsch 1988.
Walter Kintsch, ''The Role of Knowledge in Discourse Comprehension: A
Construction-Integration Model," Psychological Review, 95, 2, pp. 163-132, 1988.

l<nuth1973. '
Donald Ervin Knuth, The Art of Computer Programming, Vol. 1, Addison
Wesly, Reading (Mass.), 1973.

l<nuth1990.
Randy A Knuth and Thomas A Brush, "Results of the Hypertext '89 Design
Survey," Hypermedia, 2, 2, pp. 91-108, 1990.

l<raemerl988.
Kenneth L Kraemer and John Leslie King, "Computer-Based Systems for
Cooperative Work and Group Decision Making," ACM Computing Surveys, VoL
20, No.2, pp. 115-146, June 1988.

November 27, 1991

References Page 205

l<rzywiec1983.
Roberk K Krzywiec, "Multi ... Multi-Information," Proceedings of the 14th
Annual International Modeling and Simulation Conference, University of
Pittsburg, Pittsburg, Pennsylvania, 1983.

l(unz1970.
Werner Kunz and Horst Ritte!, "Issues as elements of information systems,"
Working paper #131, Institute fur Grundlagen der planung I.A University of
Stuttgart, 1970.

Lebowitz 1986.
Michael Lebowitz, "Integrated Learning: Controlling Explanation," Cognitive
Science, 10, pp. 219-240, 1986.

Leland 1988.
Mary D. P. Leland, Robert S. Fish, and Robert E. Kraut, "Collaborative Docu
ment Production Using Quilt," Second Conference on Computer-Supported
Cooperative Work: CSCW '88, pp. 206-215, 1988.

lesk1969.
M. E. Lesk, "Word-Word Associations in Document· Retrieval Systems,"
American Documentation, 20, 1, pp. 27-38, January 1969.

liou1989.
Yihwa Irene Liou and Jay F. Nunamaker, "A Computer Supported Cooperative
Approach to Knowledge Acquisition from Multiple Experts," Augmenting
Human Intellect by Computer Conference Proceedings, Denver, Colorado, June 8
.. 9, 1989.

Iowe1985.
David G. Lowe, "Cooperative Structuring of Information: The Representation
of Reasoning and Debate," Int'l. 1. of Man-Machine Studies, Vol 23, pp. 97-111,
1985.

luhn1958.
H. P. Luhn, "The Automatic Creation of Literature Abstracts," IBM Ir Res
Deve~ 2, 2, pp. 159-165, Apr 1958.

Marshal11987. . , ><, . ,

Catherine C. Marshall, "Exploring representation problems using hypertext,"
In: Proceedings of the Hypertext '87 Workshop, Chapel Hill, pp. 253-268, North
Carolina, November 1987.

Maurer 1990.
Hermann Maurer and Ivan Tomek, "Broadening the scope of hypermedia prin
ciples," Hypennedia, 2, 3, pp. 201-220, 1990.

MCCal11987.
R. McCall, "PHIBIS: Procedurally Hierarchical Issue-Based Information Sys
tems," Proceedings of the Conference on Architecture at the lnternatlonal
Congress on Planning and Design Theory, American Society of Mechanical
Engineers" New York, 1987.

MCCracken1984.
Donald McCracken and Robert Akscyn, "Experience with the ZOG Human
Computer Interface System," International lournal of Man-Machine Studies, 21,

\. pp. 293-310, 1984.
~VtcI<night1991.

Cliff McKnight, Andrew Dillon, and John Richardson, in Hypertext in Context,
pp. 65-87, The Cambridge Series on Electronic Publishing, November 1991.

November 27, 1991

References Page 206

Mhashi1990.
Mahmoud Mhashi, Roy Rada, Hafedh Mill, Geeng-Neng You, Akmal Zeb, and
Antonis Michailidis , "Word Frequency Based-Indexing and Authoring," Com
puters and Writing Ill, Edinburgh, Scotland, April, 6-7, 1990.

Mhashi1991.
Mahmoud M. Mhashi, Roy Rada, Eevi E. Beck, Akmal Zeb, and Antonios
Michailidis, "Computer-Supported Discussion and Annotation," Technical
Report, Department of Computer Science, University of liverpool, liverpool,
D.K, May 1991.

Mili1985.
Hafedh Mill and Roy Rada, "A Statistically Built Knowledge Base," Proceed
ings Expert Systems in Government Conference, pp. 457-463, IEEE Computer
Society Press, October 1985.

Mili1987.
Hafedh Mill and Roy Rada, "Building a Knowledge-Base for Information
Retrieval," Proceedings Third Annual Expert Systems in Government Conference,
pp. 12-18, Computer Society of the IEEE, Washington, D.C., 1987.

Nelson 1980.
T.H. Nelson, "Replacing the Printed Word: A Complete literary System'" IFIP
Proc., pp. 1013-1023, October 1980.

NeUwirth 1990.
Christine M. Neuwirth, David S. Kaufer, Ravinder Chandhok, and James H.
Morris, "Issues in the Design of Computer Support for Co-authoring and Com
menting," Proceedings of the Conference on Computer-Supported Cooperative
Work, pp. 183-195, Los Angeles, CA, October 7-10, 1990.

~ada1987.
Roy Rada and Brian Martin, "Augmenting Thesauri for Information Systems,"
ACM Transactions on Office Information Systems, 5, 4, pp. 378-392, 1987.

~ada1989a.
Roy Rada and Ellen Bicknell, "Ranking Documents with a Thesaurus," Journal
of the American Society for Information Science, 40, 5, pp. 304-310, September
1989.

~ada1989b.
Roy Rada, Barbara Keith, Marc Burgoine, Steven George, and David Reid,
"Collaborative Writing of Text and Hypertext," Hypermedia, 1, 2, pp. 93-110,
1989.

~ada1990.
Roy Rada, Mahmoud Mhashi, and Judith Barlow, "Hierarchical Semantic Nets
Support Retrieving and Generating Hypertext," Information and Decision Tech

h n%gies, 16, pp. pp 117 - 135, North-Holland, 1990.
"ada1991a.
h Roy Rada, Hypertext from Text to Expertext, , McGraw-Hill, London, 1991.
"ada1991b.

Roy F. Rada, Akmal Zeb, Geeng-Neng You, Antonios Michailidis, and Mah
moud M. Mhashi, "Collaborative hypertext and the MUCH system," Journal of

n.. Information Science, 17, pp. 191-196, 1991.
aghavan1979.

,!ijay Raghavan and C T Yu, "Experiments on the Determination of the Rela
tionships between Terms," ACM Transactions on Database Systems, 4, 2, pp.

November 27, 1991

References Page 207

240-260, 1979.
Rasmussen1985.

Jens Rasmussen, "The Role of Hierarchical Knowledge Representation in
Decisionmaking and System Management," IEEE Transactions on Systems,
Man, and Cybernetics, 15, 2, pp. 234-243, April 1985.

Remde1987.
Joel R. Remde, Louis M. Gomez, and Thomas K Landauer, "SuperBook: An
Automatic Tool for Information Exploration--Hypertext?," Hypertext '87, pp.
175-188, University of North Carolina, Chapel Hill, North Carolina, November
13-15, 1987.

Rijsbergen1979.
C J Van Rijsbergen, Information Retrieval, pp. 18-21, Butterworths, London,
1979.

Ritchie 1989.
Ian Ritchie, "HYPERTEXT--Moving Towards Large Volume," The Computer
Journal, 23, 6, pp. 516-523, December 1989.

Rizk1990.
A Rizk, N. Streitz, and J. Andre, "A Model for Hypertext-Based Information
Retrieval," in Hypertext: Concepts, Systems and Applications, pp. 81-94, The
Cambridge Series on Electronic Publishing, November 1990.

Salton1983.
Gerard Salton and Michael McGill, Introduction to Modem Information
Retrieval, McGraw-Hill, New York, 1983.

Smith1987.
John B. Smith, Stephen F. Weiss, and Gordon F. Ferguson, "A Hypertext Writ
ing Environment and its Cognitive Basis,,' Hypertext '87, University of North
Carolina, Chapel Hill, North Carolina, November 13-15, 1987.

SOerge11974.
Dagobert Soerge~ Indexing Languages and Thesauri: Construction and Mainte
nance, Wiley, New York, 1974.

Stallman1981. '
Richard Stallman, "EMACS Manual for TWENEX Users," AI Memo 555, MIT
AI Lab, Cambridge, Massachusetts, October 1981.

Stefik1987.
Mark Stefik, Gregg Foster, Daniel Bobrow, Kenneth Kahn, Stan Lanning, and
Lucy Suchman, "Beyond the Chalkboard: Computer Support for Collaboration
and Problem Solving in Meetings," Communications of the ACM, 30, 1, pp. 32-
47, 1987. .

Steward 1987.
Donald V. Steward, Software Engineering: Approach to Systems Analysis and
Design, Wadsworth Publishing, Delmont, California, 1987.

Streitz1989.
Norbert A Streitz, Jorg Hannemann, and Manfred Thuring, "From Ideas and
Arguments to Hyperdocuments: Traveling through Activity Spaces," Hypertext
'89 Proceedings, pp. 343-364, Pittsburgh, Pennsylvania, November 1989.

'rrigg1986a.
Randall Trigg, Lucy Suchman, and Frank Halasz, "Supporting Collaboration in
NoteCards," Proceedings of the Conference on Computer Supported Cooperative

November 27, 1991

References Page 208

Work, pp. 1-10, December 3-5, 1986.
'frigg1986b.

Randall H. Trigg and Mark Weiser, "TEX1NET: A Network-Based Approach
to Text Handling," ACM Transactions on Office Information Systems, 4, 1, pp.
1-23, 1986.

Walker 1988.
Janet Walker, "Supporting Document Development with Concordia," Com
puter, 21, 1, pp. 48-60, January 1988.

Yankelovich 1985.
Nicole Yankelovich, Norman Meyrowitz, and Andries van Dam, "Reading and
Writing the Electronic Book," Computer, pp. 15-30, October 1985.

Yankelovich1988.
Nicole Yankelovich, Karen E. Smith, L Nancy Garrett, and Norman
Meyrowitz, "Issues in Design a Hypermedia Document System," in Interactive
Multimedia, ed. Kristina Hooper, pp. 33-86, Harper & Row, Washington, 1988.

Yeh1980.
R. T. Yeh and P. Zave, "Specifying Software Requirements," Proceedings
IEEE, 68 (9), pp. 1077-85, 1980.

Zebl991.
Akmal Zeb, Antonios Michailidis, Geeng-Neng You, Mahmoud Mhashi, and
Roy Rada, "MUCH: A UNIX-based Hypertext System," UKUUG: Interfacing
Unix to the User Conference Proceedings, Greenbank Halls, University of Uver
poo~ July 15-17, 1991.

ZeUweger1989. .
Polle T. Zellweger, "Scripted documents: a hypermedia path mechanism,"
Hypertext '89 Proceedings, pp. 1-14, Pittsburgh, Pennsylvania, November 1989.

November 27, 1991

Figure 1 :
Figure 2:
Figure 3 :
Figure 4:
Figure 5 :
Figure 6 :
Figure 7 :
Figure 8:
Figure 9 :
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:

Appendix 1

List of Figures

Viewing nodes an.d links
Emacs INFO .. .
Hyperties Exam.ple
Intemote Screen
Push or Pull
KMS Screen .. .
Dexter Model .. .
Software life C}'cle .. .
HERD's nodes and links
HERD's Fill-form screen
HERD's Title-Information
HERD's Author-Date-Information
HERD's Discourse representation structure .. .
HERD's text screen .. .
Diagram. of Discussion
Predominant Links "' .. "'
Annotation outline using HERD
Suggested links "' .. "'
First MUCH screen
MUCH entity relationship•
Annotation mode
Experiment Annotation outline
Experiment Annotation tree
Re-organization example
Organization experiment outline (A)
Organization experiment outline (B)
Organization experiment outline (C) ' ; :;
Sections correspondent text blocks
Document hierarchy .. .
Document relationships
D!scuss!on hier~chy ,
DISCUSSIon relatIonshIPS
Annotation tree .. .
Annotation hierarchy .. .
Annotation relationships
Discussannotation I...evels
A .,' R l' h' ctlVltles e atlons lpS
Docu.ment Text Block
Discussion and Annotation on heading
Traversal
Different views and undefined boundaries
Composition
Anchoring
storage-presentation importance
Discussannotation Model

November 27, 1991

24
27
31
34
35
37
43
46
50
53
55
56
57
58
61
61
66
69
73
76
81
86
87
91
98
99
102
117
118
119
124
125
126
127
128
147
148
152
153
156
159
161
162
163
165

Appendix 1: List of Figures

Figure 46: Capturing resolution
Figure 47: Text and link object (A)
Figure 48: Text and link object (B)

November 27, 1991

Page 210

177
186
187

Appendix 2

Glossary

Anchoring
~e anchoring method defines the elements between which a link. is established.
'-l1e Source of a link. can be either a term, a span, or a region of text in a text block.
While the destination of a link. can be either as the source, a node, or a composition.

Annotation
Aft~r the first draft of a document is prepared, annotations are collected to guide
r~Vlsion of the document. Annotating concerns reading the evolving text, evaluating
t e text and plans, and correcting errors. Annotation hypertext systems focus on
~ecording ideas dynamically generated while reading text, including critique, explain
~g difficult passages, sorting user-produced mnemonic aids, and communicating with
t e library manager and/or other users.

Argument
Argument is a node type. The node's content, in IBIS method, is one or more text
hlock constructed in support or object the different Positions until the Issue is
resolved.

Browsing

~rowsing is often thought of as a relatively free-flowing meandering through the
lnformation in a hyperdocument collection. It can be characterized as going from
Where to what; presumably the readers might know where they are in the database
and they want to know what is there. '. 1.1 t. ;; !, 1\

becision-Making

If a Conflict happened between users, the decision-making is the best solution for
SUch a conflict. Decision-making involves two or more persons elaborating on the
nature of a problem, generating and evaluating potential solutions, and formulating
~trategies for their implementation. Each' of these persons is characterized by his or
er own perceptions, attitudes, motivations, and personality.

bisCUssannotation

~~ Discussannotation hypertext model is a computer-based tool that supports facili:'
S attng Discussion and making Annotation in the creation of documents by one or
~veral users. Different views and generating different outlines are supported by this
i odel. The model is different from most existing hypertext systems in that the text
S attached to the links rather than be attached to the nodes.

November 27, 1991

Appendix 2: Glossary Page 212

Discussion
A.., Discussion might be described as a search through hierarchy of knowledge states,
With the ultimate goal being to provide a solution to the problem. A knowledge
state is the information researchers know or postulate when they are at a particular
~tage in their search for a solution. Furthermore, Discussions might be described as
ISsue-based information. They might also include models for planning and problem
solving.

Issue
An Issue is a node type. The node's content is written on a form of question, such
as "What kind of computers our department should by?". Any problem or concern
can be an Issue, and may require Discussion.

Planning
The planning model would support the determination of document requirements and
general goals, the setting up of an agenda, and the co-ordination of the whole
authoring activities.

POSition
Within the context of the discussion systems, Position is a node type. The node's
Content is a statement or assertion which resolves an issue.

Problem~Solving
~e Problem-solving model might serve as the medium for exploring the capture of
esign history (the decisions, rejected options, and tradeoff analysis). it might also

~erve as a conversation among the stakeholders (designers, authors, or discussants),
~ ~hich they bring their. respective expertise and viewpoints to the resolution of
eSlgn problems. ' · " , ','

Searching
P70ple usually think of information search in the relatively strict sense of starting
With a specific question in mind and interacting with the information base to find the
answer in a fraily straightforward manner. Searching can be characterized as going
from what to where; presumably the users know what they want and they wish to fmd
Where in the database it is.

'triple

l'he discuss annotation model supports three types of entities, each of which is associ
~ted with an activity. To facilitate reference to these three entities, the term Triple
~ _':Sed and refers in this context to the three entities: document, Discussion, and
« '1Ulotation.

November 27, 1991

Appendix 3

HERD Algorithms

Main Program
jj THE MAIN PROGRAM FOR CREATING AND UNKING A NODE

;j Get a region of text, where al is the starting point and a2 is
j; the end point.

{defun get-sub-string (al a2)
(buffer-substring al a2»

;; This procedure will be invoked at the beginning of the Discussion.
;; The root should be an issue.

{defun create-root 0
(setq node-name "1[1]")

) (setq where-text-to-be-inserted "I")

;; This subroutine validates the link type connected to the root

(defun Is--this--is--the-rrrst-node (This--is--the-first-node)

..
"

)

(if (equal This--is--the-first-node "FALSE") (find-file "fillJorm")

)

Otherwise display the following error message:

find-file "error message file")
kill-line) - -
insert "there is an error in fill form file")
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-file "display the mistaKe"f - - -
kill-line 2) --
search-forward "ERROR DURING VAUDATION PROCESS" (point-max) t)
newline 2)
insert "Since this the first node, the content of Edge-type should be")
newline)
insert "G or Generated-by ")
newline)
save-buffer)
interrupt-process)

;; This validates the link type connected to an issue destination.

(dcfun Is--node-parent-an-Issue(ed~e-type-contents This--is--the-first-nodc)
Is--this--is--the-first-node This--ls--the-first-node)
find-file "type of node")
gota-char (point.:min»
search-forward Node-parent-content (point-max) t)
setq al (po!nt» (forward-char 1)
setq a2 (pomt»
setq edge-type-from-file (get-sub-string al a2»
if (equal edge-type-from-file "I") (find-file "fill form")

;; Otherwise dispfay the following error message.
find-file "error message file")
kill-line) - -
insert "there is an error in fill form file")
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-file "display the mista1:e"f - - -
kill-line 2) --
search-forward "ERROR DURING VAUDATION PROCESS" (point-max) t)
newline 2)
insert "Since the content of Edge-type is " edge-type-contents " then,")
newline)

November 27, 1991

Appendix 3: HERD Algorithms

)
)

~
insert "the Node-parent should be an Issue ") (newline)
save-buffer)
interrupt-process)

;; The project name should be identified before creating any node.
;; The node parent should be the word "Root" in the case of creating
;; the first node.

(defun No-any-node-created-yetO
find-file "error message file")
kill-line) - -

)

insert 'There is an error in fill form file'~
save-buffer) -
shell-command .cp display the mistake original display the mistakej
fmd-file "display the mistaKe")- - - -
search-forward "ERROR DURING VAUDATION PROCESS" (point-max) t) (newline 2)
insert 'There is no any node created yet. Node-parent should be the word Root")
save-buffer)
interrupt-process)

Security Function
;; The user should be known to the system.

(defun Author-error-message()
find-file "error message file")

)

kill-line) - -
insert '1'here is an error in fill form file") .
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-file "display the mistaKe"f - - -
kill-line 2) --
search-forward "ERROR DURING VAUDATION PROCESS" (point-max) t}
newline 2)
insert 'The content of the field Author should be one of the following:")
newline 2)
insert "Akmal Zeb Kenny Mahmoud Mhashi Prof. Roy Rada Judith Barlow")
newline 2)
insert "If you would like to make any modification on your name, visit the file")
newline)
insert "called cn23, then search to your name, and make the modification you want."}
newline)
save-buffer)
interrupt-process)

!finct-fUe "Link flag")
setq a1 (point» (forward-word 2)
setq a2 (point»
setq link-flag (get-sub-string a1 a2)}

;; If someone already linking a new node, then lock Link-Node option

(if jeqUallink-f1ag "Busy") (find-file "disr,lay link busy message")
beginning-of-fine) (kill-line) (insert Busy") - -
save-buffer) .
find-file "fifl form")

Validation-Function

j

se
b

arch-forward "Node-parent: " (point-max) t)
eginning-of-Iine)

setq a1 (point» (search-forward ";" (point-max) t)
setq a2 (point»

;; This validates the "Node-parent:" field.

(setq Node-parent (get-sub-string a1 a2»
(if (equal Node-parent "Node-parent:") (setq a1 (point»

{

find-file "error message file")
kill-line) - -
insert '1'here is an error in fill_form file")

November 27, 1991

Page 214

Appendix 3: HERD Algorithms

)

save-buffer)
shell-command "cp disp~ay the_mistake _original display_the _mistake")
fmd-file "display the mIstake")
search-forward "'ERROR DURING VALIDATION PROCESS" (point-max) t)
newline 2)
insert 'The first field in fill-form file should be Node-parent: ")
save-buffer)
interrupt-process)

;; This validates the "Node-parent:" field content.

~
forward-word 1) (setq a2 (point»
setq Node-parent-content (concat (get-sub-string al a2) .. "»
if (equal Node-parent-content " Root ") (find-file "type of node")

(find-file "~e of node") - -
(if (eobp) (NO=-any-node-created-yet)

goto-char (point-min»
search-forward Node-parent-content (point-max) t)
beginning-Of-ling setq al (point» forward-word 1)
forward-char 1) setq a2 (point»
setq Node-parent-from-file (get-sub-string a1 a2»
if (equal Node-parent-content Node-parent-from-file) (find-file "type of node")

(if eobp) (shell-command"cp display the mistake original display the mistake")
find-file "error message file") - - - - -
kill-line) - -
insert 'There is an error in fill form file")
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-file "display the mista"ke"f - - -
search-forward ''ERROR DURING VALIDATION PROCESS" (point-max) t)
newline 2)
insert 'The Node-parent" Node-parent-content "doesn't exist in the graph")
save-buffer)
interrupt-process)

)
find-file "error message file")
kill-line) - -
insert "there is an error in fill form file")
save-buffer) -
find-file "dIsplay the mistake")
search-forward "'ERROR DURING VALIDATION PROCESS" (point-max) t)
newline 2)
insert ''Since this is the first node, the content of field Node-parent")
newline) .
insert "in fill-form file should be the word Root")
save-buffer)
interrupt-process)

(~oto-char (point-min»
(if (equal NOde-parent-content .. Root ")

(if eobp) (setq This-is-the-first-node ''TRUE'')
find-file "error message file")
kill-line) - -

)

insert "There is an error in fill form file") .
save-buffer) -
shell-command "cp display the mistake original display the mistake'~
fmd-file "display the mistake")- - - -
search-forward "'ERROR DURING VALIDATION PROCESS" (point-max) t)
newline 2)
insert "Since this is not the first node, the content of field Node-parent")
newline)
insert "in fill-form file should be one of the numbers appearing on the graph")
save-buffer)
interrupt-process)

) (setq This-is-the-first-node "FALSE")

;; This validates the "Edge-type:" field.

November 27, 1991

Page 215

Appendix 3: HERD Algorithms

find-file "fill form")
search-forward "Edge-type: • (point-max) t)
beginning-of-line)
setq al (point»
search-forward ":" (point-max) t)
setq 81 (point»
setq Edge-type (get-sub-string al 81»
if equal Ed~e-type "Edge-type:") (setq al (point»

fmd-ftle 'error message -file")
kill-line) - -
insert 'There is an error in fill form file")
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-ftle "display the mista"Ke")- - - -
search-forward "'ERROR DURING VAUDATION PROCESS" (point-max) t)
newline 2)
insert 'The second field in fill-form file should be Edge-type: ")
save-buffer)

) interrupt-process)

;; This validates the "Edge-type:" field content.

backward-word 1) (forward-word 1)
setq a2 (point» l
end_of-line)

~tq edge-type-contents (get-sub-string al 81»
if ~eqUal edge-type-contents " R")

)

Is-node-parent-an-Issue edge-type-contents This-is-the-first-node)
if ~eqUal edge-type-contents II Responds-to")

Is-node-parent-an-Issue edge-type-contents This-is-the-first-node)
if ~eqUal ed~e-type-contents " 0")

find-file fill- form")

))

if {eqUal edlfe-type-contents " Generated-by")
find-file fill" form")
if {eqUal edge-type-contents " Supports-to")

Is-this-is-the:.first-node This-is-the-first-node)

))
)

if equal edge-type-contents " other")
Is-this-is-the:.first-node This-is-the-first-node)
find-file "error message file")
kill-line) - -
insert 'There is an error in fill form file')
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-file "display the mistaKe"f - - -
kill-line 2) --
search-forward "ERROR DURING VAUDATION PROCESS" (point-max) t)
newline 2)
insert 'The content of Edge-type" edge-type-contents " doesn't exist.")
newline)
insert "Edge type should be one of the following: ")
newline 2)
insert "R Responds-to G Generated-by Supports-to other ")
newline 2)
insert "For more information read the some memo written")
newline)
insert "at the beginning of the file called fill form.")
newline) -
save-buffer)
interrupt-process)

;; This validates the "Author:" field.

l
searCh_forward "Author: " (point-max) t)
beginning-of-line)
setq al (point»
search-forward ";" (point-max) t)
setq a2 (point»
setq Author (get-suh-string al a2»

November 27, 1991

Page 216

Appendix 3: HERD Algoritluns

(if equal Author "Author:") (setq a1 (point»
find-file "error message file")
kill-line) - -

)

insert 'There is an error in fill form file")
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-file "display the mistaKe")- - - -
search-forward ""ERROR DURING VAliDATION PROCESS" (point-max) t)
newline 2)
insert "The third field in fill-form file should be Author: j
save-buffer)
interrupt-process)

;; This validates the "Author:" field content.

l
end-of-line)
backward-word 1) (forward-word 1)
setq a2 (point»
setq Author-content (get-sub-string a1 a2»
if (equal Author-content" Akmal Zeb") (find-file "fill formj

(if (equal Author-content" Kenny") (find-file "fill fOrm")
(if (equal Author-content" Mahmoud Mhashi") (find-file "fill form"~

(if (equal Author-content • Prof. Roy Rada") (find-file "filnorm')
(if ~eqUal Author-content" Judith Barlow") -

find-file "fill form")
Author-error-message)

))

))
)

ii This validates the "Title:" field.

search-forward "Title: " (point-max) t)
beginning-of-line)
setq a1 (point»

)

search-forward ":" (point-max) t) (setq a2 (point»
~tq Title (get-sub-string a1 a2»
if equal Title "Title:")

setq a1 (point»
find-file error message file") (kill-line)
insert "There is an errorin fill form file")
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-file "display the mista"Ke"r - - -
search-forward ""ERROR DlJRING VAUDATION PROCESS" (point-max) t)
newline 2)
insert "The forth field in fill-form file should be Title: ")
save-buffer) (interrupt-process)

jj This validates the "Title:" field content.

search-forward 'Text: " (pOint-max) t)
beginning-of-line~ (setq a1 (pOint»
search-forward ": (point-max) t)
setq a2 (point»
~etq Text (get-sub-string a1 a2»
if equal1ext 'Text:")

setq a1 (point» (find-file "error message file")
kill-line) - , - -
insert 'There is an error in fill form filej
save-buffer) -
shell-command "cp display the mistake original display the mistake")
find-file "display the mista"Ke")- - - -
search-forward ""ERROR DlJRING VAUDATION PROCESS" (point-max) t)
newline 2) ,
insert "The fifth field in fill-form file should be Text: j

) save-buffer} (interrupt-process)

November 27, 1991

Page 217

Appendix 3: HERD Algorithms

Linking Function
j; Get date from the machine

delete-me "Date bur')
shell-command ''Oate > > Date bun
find-file "Date bur') -
copy-to-buffer"'''Date-but'' (point-min) (point-max»
find-file "beginning and end of node")
setq al (point» (forwaro-chai' lll) (setq 81 (point»
setq stars (get-sub-string al 81» (forward-line)

i; Get text

copy-to-buffer "Text-but" (point) (point-max»
goto-char Q>0int-min»
setq al (pomt)) (forward-line)
append-to-bu(fer "Text-but" al (point»
fmd-file "fill form")
goto-char (point-min»
append-to-buffer 'Text-but" (point-min) (point-max»

;; Get some information for later use

l
find-file "fill form'')
search-forward "Node-parent:")
setq al (point» (forward-word 1) (setq 81 (point»
setq parent (get-sub-string al 81»
setq root (get-sub-string al a2»

l
searCh_forward "Edge-type:")
setq beg (point» (end-or-line)
backward-word 1) (forward-word 1)
~o -to-buffer "edge-bur' beg (point»
if equal root • Root") (create-root)

delete-file "temp yarent")
find-file "tempearent")
insert parent ')
end-of-line)
insert-buffer "edge-buf')
save-buffer)

;; Call labeling function

(shell-command "Cal")

;j Distribute some information on different files for later use

find-me "temp child")
goto-char (point-min»
setq al (pomt»
forward-list) (setg a2 (point»
setq node-name (get-sub-string al a2»
setq al (point»
forward-word 2) (setq a2 (point»
setq old-parent-child (get-sub-string al a2»
setq al (point»)
forward-word 2) (setq a2 (point»
setq new-parent-child (get-sub-string al a2»
forward-hne 1)
setq al (point»
forward-word 1) (forward-char 1)
setq a2 (point»
setq node-number-where-text-to-be-inserted (get-sub-string al a2»
backward-char 1)
setq al (point» (forward-word 1)
forward-char 1) (setq a2 (point»
setq current-node-number (get-sub-string al a2»
backward-word 1)
setq al (point»
forward-list) (setq a2 (point»
setq node-type (get-sub-string al a2»
find-file "Parent child")
search-forward Old-parent-child (point-max) t)

November 27, 1991

Page 218

Appendix 3: HERD Algorithms

)

(if ~OIP) <$oto-char (point-max»
beginnmg-of-line)
kill-line)

)
(insert new-parent-child)
(newline) (save-buffer)

shell-command "sort Parent child -0 Parent child temp"}
find-file "move num of lines to insert titlej -
kill-line) (insert node:.number-wfiere-te"Xt-to-be-inserted)
save-buffer "move num of lines to insert title")
shell-command"cp Parent-child)emp Parent_child")
shell-command "Cal move"}
find-file "where title-to be inserted file") (be~nning-of-line)
setq a1 (point)f(forWara-word 1) (setq a2 (pomt»
setq a3 (get-sub-string a1 a2»
setq where-title-to-be-inserted (string-to-int a3»
find-file "type of node") (goto-char (point-min» (newline)
forward-line -1) -
if equal root" Root") (insert" 1 • node-name)

insert nOde-type)
save-buffer)
shell-command "sort type of node -0 temp type of node")
find-file "temp type of node") - -
search-forward'" current-node-number (point-max) t)
forward-line -1)
beginning-of-line)
forward-word 2) (backward-word 1)
setq a1 (po!nt» (forward-list)
setq a2 (pomt»

) setq where-text-to-be-inserted (get-sub-string a1 a2»

(save-buffer)

;; Get Author and Title information

l
find_fi1e "fill form")
goto-char (point-min»
search-forward "Author:"}
setq beg (point»
end-of-line)
copy-to-buffer "Author-bur' beg (point»

1
9ota-char (point-min»
search-forward "Title:")
setq beg (point}) (end-of-line)
Copy-ta-buffer title-bur" beg (point»

jj Insert the text in the TEXT file

~
s~eu-command "chmod 600 text")
find-file "text")
forward-line 1)

(if lequal root" Root") (insert-buffer "Text-bur')
search-forward where-text-to-be-inserted (point-max) t)
end-of-line)
search-forward " " (pOint-max) t)
end-of-line) ~newline) .

) insert-buffer Text-bur')

~nd-of-line)
Insert .. If node-name" "stars)
gota-char (point-min»
search-forward "@@@@@@@@@")
beginning-of-line)
setq beg (point»
search-forward "Text:")
beginning-of-line)
kill-region beg (point» (newline)
beginning-or-line)
insert "Node-name: " node-name) (newline 1)
~arch-forward " ") (end-of-line)
Insert" " node-name" .. stars)
save-buffer)

November 27, 1991

Page 219

Appendix 3: HERD Algorithms

(shell-command "chmod 444 text")

;; Insert Author information in Author_Date }nf file

shell-command "chmod 600 Author Date Inf')
find-me "Author Date Inr') -
search-forward wnere-fext-to-be-inserted)
end-of-line)
newline)
insert node-name" i
move-to-column 14)
insert-buffer "Author-bur,)
end-of-line) (insert " i
!llove-to-column 32)
msert-buffer "Date-bur')
save-buffer)
shell-command "chmod 444 Author_Date_Inr')

;; Insert Title information in Title-Inf me

shell-command "chmod 600 Title Inr')
find-file 'Title Inr') -
search-forward" where-text-to-be-inserted)
!!nd-of-line) (newline)
msert node-name" ")
move-to-column 14)
insert-buffer "title-buf')
save-buffer)
shell-command "chmod 444 Title_Inr')

;; Save title information to be used later for generating a graph

(fmd-me "title file")
(if lequal root" Root")

beginning-of-line)
goto-line where-title-to-be-inserted)

) end-of-line)(newline)

insert node-name" ")
!!nd-of-line)
Insert-buffer "edge-bur')
!!nd-of-line) . _
Insert "") (end-of-Ime)
insert-buffer "title-bur')
save-buffer)
shell-command "cp Parent_child_temp temp_Parent_child")

;; Prepare data for generating a graph

shell-command "C n I")
sheil-command "cP fm fonn fill form temp")
delete-me "fill form") - --
shell-comman3 "cp fill form original fill form")
shell-command "cp temp type of node tYPe of node")
s~ell-command "chmod 60(fCreafe flag") - -
find-file "Create flag") (kill-line) -
Insert "Not busy") (save-buffer)
shell-command "chmod 400 Create_flag")

) ;; END-IF "Link-Flag - Busy"

lfind-me "Link flag'')
~eginning-of-ITne) (kill-line)
Insert "Not busy")
save-buffer)

November 27, 1991

Page 220

Appendix 3: HERD Algorithms

Storage Function

rC n 114.c Program·/ ;. mrs PROGRAM sTORES ALL THE NECESSARY INFORMATION IN ARRAYS· /

"include < stdio.h >

MainO

{
int nparentsflOOO). Parent. childn. i, j, k, num otparents, nextyarent, pagej
int node _ index[IOOO), num _of_nodes, curren('nooe, nor_more _ unnor, temp _ childnj

int page limit[IOOO)j r k1 is the number of the first child as a parent • /
int kl, k2, last num of childn, is left any in P c, new yarent locationj
float xl, y1, xI; y2, oeUax, deltay,temp, xlocaTion[l000J, ylocatfon[l000]j
char clIOO)j
FILE fopenO, ·num _ ot childn, ·Is yarent, ·ptr Jinal_ data, ·ptr _max yagej

num of childn - fopen("Parent child", "r");
Isyarent - fopen("temp, Parenf child", "r");
ptr final data - fopen('Final daTa", "w");
pt(max.J>age - fopen("maxyage", "w");
num _ of yarents .. 0;

/. Store all parents in an array to be used later for determing
whether a specific child is also a parent or not.

./
while((fscanf(Isparent, "%d%d", &Parent, &childn) ! .. EOF) {
nparents[num_olJlarents] - Parent;
num ofyarents + -lj }
nor more unnor - 0; page limit[l]-O;
page - l;-xl - 300.0; yl --595.0; X2 - 300.0; y2 .. 540.0; num of nodes - 0;
node indexfnum of nodes] .. 1; x!ocation[num of nodes] - XZ; yfocationlnum of nodes] .. y2;
fprinff(ptr final oata, "%d %d %f %f %f %f o;nor more unnor, page, x , y1, X2,-y2);
is left anf in P- c .. 0; - -
wliile t (fseanf{num of childn, "%d%d", &Parent, &childn) ! .. EOF) {
is left any in ~ c +-1;

/. Find The firsf cmld. • /
printf(···· .. The next parent will be - [%d) • .. ······0. Parent);
ltoa(Parent,c); first child(c);
next"'parent - atoitc); current node - nextyarent;
for(I-0; i<-25; i++) {c[i).' ';}

/. Check to see which the first child as a parent. • /
j-O;
while(G + -1) < - childn) {

!'ext -'parent + -lj
1-0;
while(i < num ofjlarents) {

if (nparentsli] - - nextyarent) { break;}
i + -1; }
if (i < num ofyarents){
printf("j - %d, i - %d , nextyarent • (%d) 0, j, i, nextyarent)j

break; }

/. Calculatl the locations and store it in the Final data
If the parent is the first child, then do the folloWing
find the location of the new parent • /

i .. 0;
while(i < - num of nodes) {

if(node inoex[i) - - Parent) break;
i + -1; }

k2 - childn/5j
tem& childn - childn; Je1 - 0;
for i-O; k < temp childn; k + -s) {

. ((temp childn =k) > - 5) childn - 5;
if(k>-5j{
nor more unnor • 1;

if'{ (temp childn - Je) < 5) childn - temp childn - Je;
x2 - 90.0; - -
if(y2 - 55.2 - 10.0 < {lage limit[page]){

y2 • page _limlt[page);

November 27, 1991

Page 221

Appendix 3: HERD Algorithms

page + -1;
page limit[page] - page limit [page - 1] - 600; - -}

else
y2 -- 55.2;
fprintf(ptr final data, "%d %d %f %f %f %f 0,

nor more-unnor, page, xl, y1, x2, y2);
y1 - y2; Xl • xZ;

}

if (childn > 1)
deltax: - 420.0/(childn - 1);
if (childn - - 1) deltax: - 0.0;
if (nor more unnor - - 0) {
xl - xTocation[i); y1 - ylocation[i);

if (nor more uJnor • - 2) {
xl - xlocationliJ; y1 - ylocatlon[i);

xl - s1b.0;

/* Check the page limit here * /
if(last num of childn < 4}{
if(y2 :45.0 -- :CD.O < page hmit[page]) {

y2 - pageJimit[page);
page + -1;
pageJimit[page) - pagerlimit[page - 1)- 600;

}

if(last num of childn > 3){
if(yZ. 69]) ::- 10.0 < 'page limit[pageJ) {

y2 - page)imitlPageT;
page + -I;
page)imit[page) - pageiimit[page - 1)- 600;

fprintf(ptr _final_ dala, "%d %d %f %f %f %f 0,
nor more unnor, page, xl, y1, xl, y2);
yl ;; y2; xl - xl;

if (childn < 4){ }
deltay - 36.0/ childn;

xl - 90.0 - deltax:;
y2 • yl • 78.0 • deltay;

}

if (childn > 3){
deltay - 6O.0/childn;

xl - 90.0 • del tax:;
y2 • y1 - 102.0 • deltay;

}

/* Check the page limit here * /
if(y2 < page limitfra~e]) {

y2 - page _ Imlt[page] - 100.0;
page + -1;
page limit[page) - page limit[page • 1] • 600; - } -
nor_more_unnor - 0; last_num_otChildn - childn;

for (i - 1; i < - childn; i + -1) {
kl + -1;
xl + - deltax:;
~ + - deltay;
If(j > 1 && j <. tem) _ childn && i - - 1) { temp • y2; y2 + - deltay,

if(j > 1 && j < - temp _ childn && kl - - j) y2 - temp;
current node + -1;
num or nodes + -1; node indexr num of nodesl - current node;
xlocation[num of nodesl .. xl; yfocatlonmum or nodes} • -y2;
fprintf(ptr jinat oata, "%d %d %f %f %f %10,-

nor more unnor, page, xl, yl, xl, y2); - - }
}

if (j > temp _ childn)(

November 27, 1991

Page 222

Appendix 3: HERD Algorithms

printf('1- %d childn,. %d No any child is a parent
for)arent [%d) 0, j, childn, Parent);

if((j > temp childn && ~num of yarents - is left any in P c)
1- 0) TI (j < - (5 k2)-&~temp_chilon >-5) n - -
nor more unnor - 2; - - }

fprintf(ptr_maxyage, "%d", page);
(Clo~tr max"'page);
fclose sjiarent);
fclose tr fmal data);
fclo num _ o(childn);

}

first child(s)
char-s[I00];
{

}

int i;
i - 0;
while (s[i] 1- ' ')
sri] - \0';

atoi(s)
char s[I00];
{ .

mt 1, n;
n - 0;

+ +i;

for (i - 0; sri] > - '0' && sri] < - '9'; + + i)
n - 10 • n + sri) - '0';
retum(n);

}

itoa(n, s)
~har s[I(0);
lnt n;
{

char sl[];
lnt i, sign;

cOpy'(sl,s);
if (sign - n) < 0) n • -n;
i .0;

}

do {
sri + +] - n % 10 + '0';
~

While «n 1- 10) > 0);
if (sign < 0)

sri + + 1 • '-';
sri] - ';
reverse{s)j

reverse(s)
char s[I00]j
{

int c, i, jj
for (i - 0, j - strlen(s) - Ij i < j; i+ +,j_.) {

c • sri);

:m : ~~];
}

} ,

copy(sl,s2)
char sl[} , s2[};
{

}

int i;
i-Oj
while{{ s2[i} - s1[i]) 1- • ')

+ +i;

November 27, 1991

Page 223

Appendix 3: HERD Algorithms Page 224

• Put the titles in the right place
• Cal rnove_nurn_of_lines_to_insert_title.c •

#include <stdio.h>

rnainO

{

int old Parent, Parent, childn, nurn of lines;
FILE ~open(), ·ptr _nurn _ ot childn, ·ptr _nurn _ ot lines, ·ptr _ nurn;

}

ptr nurn of childn - fopen(tlparent childtl, "r");
ptr-nurn-ollines - fopen("rnove num of lines to insert title", "rtl);
ptr-num-. Topen(''where title tODe mserted ffie";"tlw");-
nurn of lines - 0; - - - - -
fscaru(ptr nurn of lines, tI%d", &old Parent);
while((fsC"anf(p1r Durn of childn, "%"d %d", &Parent, &childn) , - EOF'» {

nurn of lines"+ - cliihTn;
if(ola parent - - Parent) break;

fpnhtf(P~ nurn, "%d", nurn of lines);
fclose*tr Durn of childn); - -
fclose ptr-nurn-onines);
fclose t(nurnY; -

• Cal node narne.c
• THIS PROGRAM GIVES A UNIQUE IDENTIFIER TO A NODE

#include <stdio.h>
define FIRST_CHIlD 1

mainO

{
int n ..1', Parent, childn;
char edgetype[20), G[20), Generater201, R[20], Respond[20], Supports[20), other[201;
FILE ·fopenO, ·nodeJ'arent, ·node_Parent_child, ·num_otchildn, "'edge;

node J'arent - fOpen(IItemp~arent'" "r");
edge • fopen("edge type", tlr ;
node Parent child ;; fOl'en(" arent child", "r");
num,:-otchilan - fopen("temp_child", ''w");

Parent • .1;

fscanf(edge, "%s %s %s %s %s %5", G, Generate, R, Respond, Supports, other);
fscanf(nodeJ'arent, "%d %5", &nJ' , edgctype);

while((fscanf(node Parent child, "%d%d", &Parent, &childn) 1- EOF'» {
u(nJ' - - Parent) { -

childn + -1;
if(equal(edgc~e,Generate) - - 1 II equal(edgetype,G) _. 1) {

forintt(num of chlldn, "I(%d%dl %d %d %d %d 0, Parent, childn, }larent, childn· 1, Parent, childn);
(printf(num:o(childn, " %d%d %d%d J(%d%d) 0, Parent, childn· 1, Parent, childn, Parent, childn); }

if(equal(edge~e,R) -. 1 II equaJ(edgetype,Respond) •• 1) f
fprintf(num of chlldn, "pr%d%dl %d %d %d %d 0, Parent, childn, Parent, childn· 1, Parent, childn);
fprintf(nurn-olchildn, " %d%d %d%d P[%d%d1 0, Parent, childn· 1, Parent, childn, Parent, childn); }

if(equal(edge~e,other) • - 1 II equal(edgetype,Support5) - - 1){
fprintf(num of childn, "Ar%d%dl %d %d %d %d -0, Parent, childn, Parent, childn • 1, Parent, childn);
fprintf(num-olchildn, " %d%d %d%d A[%d%d) 0, Parent, childn· 1, Parent, childn, Parent, childn); }

breik:-
}

if(nJ' 1- Parent) {
}

if(equal(edge~e,Generate) • - 1 II equal(edgetype,G) - - 1){
fprintt(nurn_otchlldn,"I[%d%d] %d %d %d

November 27, 1991

%d

Appendix 3: HERD Algorithms

O,n-p,FIRST CHILD,n.,p,FIRST CHILD,n ~,FIRST CHILD);
fprintf(num:'of_childn, %d %d%d I[%d%""dJ o,n-f,fl"'p,FIRsT_CHILD,n"'p,FIRST_CHILD);

if(equal(edge~e,R) - - 1 II equal(edgetype,Respond) - - 1) {
fprintt(num of chlldn,"Pf%d%d] %d %d %d

O,n-p,FI~ST"'tRILD,n.,p,'F1RST CHILD,n~,FIRST CHILD);
fprintf(num:'of_childn, %d %d%d P[%d%d] o,nf,ii"'p,FIRs't_CHILD,n"'p,FIRST_CHILD);

ifC equal(edge~e,other) - - 1 II equal(edgetype,Supports) • - 1) {
fprintf(num of chlldn,"Af%d%d] %d %d %d

O,n-p,FI~ST"'tRILD,n .,p,tIRST CHILD,n ~,FIRST CHILD);
fprintf(num:' of_ childn, %d %d%d A[%d%d] O,n "'p;ilr,FIRST _ CHIID,n"'p,FIRST _CHILD)j

}

}

fclose~node ~arent)j
fclose node -Parent child);
fclose num':-0tchilan);

equal(s!, s2)
char sIn, sZ[];
{

}

int i;
i - 0;
while (sl[i] - - s2[i1) + + i;
if(strIen(s1) < i) return(l);
else

return(O);

Interface Function
;; w38.c

#include <stdio.h>
#include <starbase.c.h>
#include <sys/~es.h>
#define EndOtLine FALSE
define MAXUNE 1000
define MAX 40

float sb xmax,sb ymax;
float sb: xmin;

int sb _ num "'pens;

char ·getenv()j

maine argc,argv)
int argcj char ·argv[];
{

int fildes;
int j,q;
int n-Z,Ioops c 2;
float xm, ym;
float x,y,inc-40.0j
float ri,imax;
float ptsfZOI;
float ~ad.O.O;
float ptr;
int flags;
float pl[Z][3],pl[3],p2[3],resolution[31;

float xl, yl, x2, y2;
char lineiMAXUNE), nname[MAX), edge[MAX];
FILE ·fopenO, ptr to location, ·ptr to title,

~tr Final data,-'ptr final data, "Ptr-old "'page f,
. ·pt(current "'page J, "ptr Jo Title, ·pir _max "'pagej
mt p, nor_more_unnor, num_oCfar"'parenls, page,

current "'page, old "'page, max "'pagej

/. The following part just to determine the current page ./

November 27, 1991

Page 225

%d

%d

Appendix 3: HERD Algorithms

ptr old ""page f - fopen{"old ""page f', "r");
Ptr-max~age - fopen{"max,)'age"; "r");
fsCan~ ptr old ""page f, "%d , &old""page);
fscan~ tr-max""page, "%d", &max""page);

if(old""page < max""page) current""page - old""page + 1;
else

current --'page - max ""page;
fc1ose(ptr 010 --'page 1);
ptr oldyage T - fopenrold J'age f', "w");
fpilntf(ptr oTd ""page f, %d' ,current ""page);

fclose(ptr Old ""page 0;
fclose(pt(max ""page);

/- The following part to fmd out the data for the current page - /

ptr to title - fopen("title file", "r");
ptr-to --fitle - fopen('Titfe file", "w");
ptr-Pmal data - fopen("Fmal data", "r");
ptr-final oata - fopen("final aata wIt, "w");
whne((t'Scanf(ptr Final data;-"%d%d%f%f%f%f',

&nor more-unnor, &page, &x1, &y1, &x2, &y2) ! - EOF» {
if{nor more unnor - - 0) fgets(line, MAXUNE, ptr to title);

ff(current""page - - page){ - -
if(curren~age > - 2) {

y1 + - (600.0 (current""page - l~;
y2 + - (600.0 - (current--.page - 1) ;}

fprintf(ptr final data, "%d %0 %f %f of %f 0,
nor more-unnor, page, xl, yl, x2, y2);

if(nor_more_uniior - - 0) fprintf(ptr_to_Tttle, "%s 0, line);

}

fc1ose~tr Final data);
fclose ptr-finaloata);
fclose tr-to tUle);
fclose t(to :ritle);

/. The following part is used to draw the grih
which represents the reasoned discourse -

if ({fildes - gopen(getenv("SB OUTDEV'~,
OUTDEV, getenv("SB _ OU'IDRIVER '),INIT». - -1)

{ printf ("error during gopenOO);
exit (1);

}
num of far "parents - 0.0;

inquire slZes(fildes,pl,resolution,pl,p2,&sb num""pens);

:~-~~: : ~\\~}~~\;; -
if '(p1[OJ(1] > pll1ll])

sbymax - PIIOUl];
else sbJlllax - pi 1)[1]; r flldes • Sbopen(argc,argv,OUTDEV,INIT); • /
xm-sb xmax;
ym-sb:Jmax;
Imax - (xm > ym ? ym / 2 : xm / 2);

r SET UP VIEWING TO FULL DEVICE liMITS • /
vdc extent{fildes,0.O,0.O,O.O,xm/ym,1.O,1.0);
vieW _ window(fildes,O.O,O.O,xm,ym);

j- TRY MOVING CURSORS (IN VDC'S)·j
echo type(fiIdes,l,l,O.O,O.O,O.O);
for (n-O.O; ri < - 1.0; ri + - 0.01)

echo update(fildes,l,ri,ri,ri);
echo _ type(fildes,l,O,O.O,cr.O,O.O);

background color index{fildes,2 % sb numyens);
intenor _styfe{fildes,INT _ SOUD,TRUE);

clear view surface(fildes);
character neight(fiIdes,l~.O);
character -width(tUdes,6.0);

text_alignment(fildes, TA_CENTER, TA_CAP, 0.0,0.0);

November 27, 1991

Page 226

Appendix 3: HERD Algorithms

}

q • 0; ri=O.O;

r TRY TEXT AND REcrANGLES • /
rectangle(fildes,O.O, 0.0, 600.0, 600.0);
text_co!or)ndex(fildes,(q+ +) % sb_num"pens);

if(current"page • - 1)
text2d(fildes, 300.0,595.0, "PESIS", WORlD_COORDINATE_TEXT, EndOfLine);

ptr to location - fopen("final data w", "r");
ptr)o _Title - fopen('Title _file"; "r");

line_color)ndex(fildes,(int)ri % sb_num"pens);

while (fscanf(ptr to location,"%d %d %f %f %f %f',
&enor moreunnor, &p, &x, &y, &x1, &y1) I-EOF) {

if(nor more unnor - - 1){
move2o(fildes, x , y);

draw2d(fildes, 12.0, y);
draw2d(fildes, 12.0, y1);
draw2d(fildes, xl, y1);

if(nor more unnlr - - 2)f
if(num- of far "parents - - 15) num_ otfar "parents - 0.0;
num oT far ..,p.arents + -1;

move2d(nldes, x , Y - 3.0);
draw2d(fildes, 600.0 - (num of far ~arents • 2.0), Y - 3.0);

draw2d(fildes, 600.0 - (num oIfar"parents 2.0), y1);
draw2d(fildes, xl, yl); --

. }
if(nor more unnor -. O)!
fscanf(ptr tOlitle, "%s %s, nname, edge);
fgets(hne,"MAXUNE, ptr to Title);

move2d(fildes, x , y}; - -
draw2d(fiIdes, xl, y);

draw2d(fiIdes, xl, y1 + 39.0);
text2d~fildes, xl , y1 + 12.0, line, WORLD COORDINATE TEXT, EndOtLine);
text2d fildes, xl , yl + 24.0, edge, WORLIJ' COORDINATE TEXT, EndOfLine);
text2d fildes, xl , y1 + 36.0, nname, WORLD COORDINATE TEXT, EndOfLine); }

} - -
gawk (fildes,3000);

fclose(ptr to location);
fclose(ptr -to litle);

gclose{'filoes);

gawk(fildes,sec)
tnt fiJdes,sec;
{

}

make yicture current(fildes);
sleep(sec); -

fgetss~s, n, lop)
char s;

int n;
register FILE ·iop;
{

register int c;
register char ·cs;

cs - s;
while (-·n > 0 && (c • getc(iop» 1- EOF)

if « .cs+ + - c) -. '0)
break;

·cs - ' ';

}
retum«c - - EOF && cs •• s) ? NULL: s);

fputs(s, iop)
register char ·s;
register FILE ·iop;

November 27, 1991

Page 227

Appendix 3: HERD Algorithms

{

register int c;

while (c • ·s+ +)
putc(c, iop);

}

Browsing Function
This program has the menu which controls most of the HERD features

WarpCursor
BorderWidth 2
TitleFont "9x15"
MenuFont "8xU"
IconFont "8x13"

Color
{

BorderColor "red"

BorderTileForeground "yellow"
BorderTileBackground "yellow"

TitIeForeground "black"
TitIeBackground "PaleGreen"

MenuForeground "white"
MenuBackground "CadetBlue"

MenuTitleForeground "white"
MenuTitleBackground ''ComFlowerBlue"
MenuShadowColor "black"

}

IconForeground "white"
lconBackground "cadetblue"
IconBorderColor "green"
IconManagerForeground "black"
IconManagerBackground "thistle"

Monochrome
{

}

BorderColor "black"
BorderTileForeground "black"
BorderTileBackground "white"
TitleForeground "black"
TitleBackground "white"

ResizeFont "fIXed"
NoTitleFocus
Zoom /I 20
RandomPlacement

IconifvByUnMapping
Dont!conifyByU nmapping

{ "Xmh"
}

ShowlconManager
IconManagerGeometry
IconManagerFont

"-15OxlO+742+10"

Unknownlcon
IconDirectory
ForceIcons
Icons
{

}

''xfig"
"xterm"

"·new century schoolbook-medium-r-normal-12."

"woman"
"jcsjcrosby jmdb jusr jinclude/Xlljbitmaps"

"xfig.icon"
"xterm.icon"

November 27, 1991

Page 228

Appendix 3: HERD Algorithms

NoTitle
{

'TWM"
"xpostit"
"topBox"
"xclock"
"xbifr'

}

"xload"
"xckmail"
"Digital Clock"
"Analog Clock"

NoHighlight
{

}

"xclock"
"xckmail"
"dclock"

AutoRaise
{

"xterm"
}

DefaultFunction f.menu "default-menu"
I-WindowFunction f.function "blob"

I-Button • KEYS: CONTEXT: FUNCTION
I- ------
Buttonl • : root : f.menu "buttonl"
Button3 - : root : f.menu "button3"
Button2 • : root : f.menu "button2"
Button2 • : iconmgr : f.function "de-raise-n-focus"

Buttonl •
Button2 •
Button3 •

Buttonl •
Button2 •
Button3 •

Buttonl •
Button2 •
Button3 •
Buttonl • m
Button2 • m
Button2 • c
Button3 • m

"Break" •
"Break" •

"KP Fl"
"KP""F2"
"KP""F3"

"Fl" •
"Fl" •

"F2" •
"F2" •

"F7" •
"F?" •
"F7" •
"Fr' •

"FS" •
"FS"

"Clear" •
"Clear" •
"Clear" •

: title : f.raiselower
: title : f.lower
: title : f.move

: frame : f.raise
: frame : f.lower
: frame : f.move

: Icon : f.lconify
: icon : f.raiselower
: icon : f.move
: icon : f.raise
: icon : f.lower

: root : f.function "beep-beep"
: icon : f.move

: window : f.iconify
: icon : f.lconify

•
•

: "Xmh" : f.iconify
: "hpfcra" : f.iconify
: "hpfcdq" : f.iconify

: window: f.raise
: title : f.raise

: window: f.lower
: window: f.lower

: window: f.function "Print-Screen"
: icon : f.function "Print-Screen"
: root : f.function "Print-Screen"
: title : f.function "Print-Screen"

: window: f.function "Print-Window"
: title : f.function "Print-Window"

window: f.refresh
icon : f.refresh
title : f.refresh

November 27, 1991

Page 229

Appendix 3: HERD Algorithms

"Clear" - : root : f.refresh

"ClearLine" -
"ClearLine" -

: window: f.winrefresh
: title : f.winrefresh

"Cancel" - sc: window : f.quit
"Cancel" - sc : root : f.quit
"Cancel" - sc : icon : f.quit
"Cancel" - sc : title : f.quit

Function "beep-beep"
{

}

f.beep
f.beep
f.beep
f.beep
f.beep

Function "de-raise-n-focus"
{

}

f.deiconify
f.raise
f.focus

Function "raise-n-focus"
{

}

f.raise
f.focus

Function "blob"
{

}

f.deiconify
f.raise
f.focus
f.lower

menu "buttonl"

!< < Useful Window Ops > >" f.title
" Print Window" f.function "Print-Window"
" Print Screen" f.function "Print-Screen"
" New Xterm Window" !''xterm -fn 8xl3 -fb 8x13bold -n xterm-aroni -sk -sb -51 &"

Page 230

" New HPterm Window" !"hpterm -n hpterm-aroni -T hpterm-aroni -sb &"
" New Emacs Window" !"emacs -fn 8xl3 -name Emacaroni -title Emacaroni newfile aroni &"
" Calendar" !''xterm -e month -A &" -
"< < Calling on Friends> >" f.title
" Call Hpf" !"xterm -e telnet hpl &"
" Call Chadl" !"xterm -e telnet chad! &"
" Call Chad2" !"xterm -e telnet chad2 &"
" Call Crosby" !''xterm -e telnet crosby &"
" Call Dingle" !''xterm -e telnet dingle &"
" Call Everton" !''xterm -e telnet everton &"
" Call Formby" "'xterm -e tel net formby &"
" Call Orion" !''xterm -e tel net orion &"
"< < Other Useful Junk> >" f.title
" Run C shell" !''xterm -e csh &"
• Run Bourne shell" !"xterm -e sh &"

}

menu "button2"

lwindow Ops"
·Show Icon Mgr"
"Hide Icon Mgr"
"Refresh"
"Refresh Window"
"twm Version"
"Focus on Root"
"Source .twmrc"

f.title
f.showiconmgr
f.hideiconmgr
f.refresh
f.winrefresh
f.version
f.unfocus
f.twmrc

November 27, 1991

Appendix 3: HERD Algorithms

"Cut File" f.cutfile
"(De)Iconify" f.iconify
"DeIconi!y' f.deiconify
"Move Wmdow" f.move
"ForceMove Window" f.forcemove
"Resize Window" f.resize
"Raise Window" f.raise
"Lower Window" f.lower
"Raise or Lower" f.raiselower
"Focus on Window" f.focus
"Raise-n-Focus" f.function "raise-n-focus"
"Kill twm" f.quit
}

menu "button3"

!PESIS: A Hrrertext for all Reasoned Discourse"
" Proto-Node f.function "proto-node"
" Create-Node" f.function "create-node"

f.title

" Link-Node" f.function "link-node"
" Display • - - - .. - - - - - • - - - - - - - - - - - - - - - - - • - - - > > > >"
"BrowslJ1g - - - - - - - - -. - > > > >"
"Search - - - - - - - _:. - - - - - - _. - - - - - - _. - - - - - - - - > > > >" "PMt----------------------------------»»" " font windows" f.menu "pulley"
" Destroy Window" f.destroy
" Stop Xwindows" f.quit
}

menu "display"

! DISPlAY f.title "
"Content " {.function "disp-content"

f.menu "dis~Author-or-Title" " Information _ .. - > > "
" Graph "
}

f.function "disp-graph

menu "disp-Author-or-Title"

S Author-Date-or-Title-Inf" f.title
Author-Date-Information "f.function "Display-Author-Date"

"Title-Information "f.function "Display-Title"
}

menu ''browsing"

! BROWSING "
" Page "
}

f.title
Uunction "brows-graph"

menu "search"

! SEARCH "f.title
" Text " f.function "search-text"
" Information " f.function "search-information"
}

menu "print"

S PRINT "f. title
" Report " f.function "print-report"
" Sub-report _ •• " f.menu "sub-report"
}

menu "sub-report"

! SUB-REPORT " f.title
Content "

" Information - - - > >"
"Graph "
}

f.function "sub-re~ort-content"
f.menu sub-report-information"

f.function "sub-report-graph"

menu ·sub-report-information"

{

November 21, 1991

Page 231

f.menu "display"
f.menu "browsing"
f.menu "search"
f.menu "print"

Appendix 3: HERD Algorithms Page 232

" Sub-Report-Author-or-Title" f.title
"Print-Author-Date-Inf "f.function "Print-Author"
" Print-Title-Inf "f.function "Print-Title"
}

menu "pulley"

Jemacs window"
"xterm window"
}

menu "efonts"

JSmall font"
"medium font"
"large font"
''bold font"
}

menu "xfonts"

JSmaIl font"
"medium font"
'1arge font"
''bord font"
}

menu "pull-right"

!window Ops"
"Refresh"
"Refresh Window"
"twm Version"
"Focus on Root"
"Source .twmrc"
"Cut File"
"(De)Iconify"
"Move Window"
"Resize Window"
"Raise Window"
"Lower Window"
"Focus on Window"
"Destroy Window"
"Kill twm"
}

menu "default-menu"

loefault Menu"
"Refresh"
"Refresh Window·
"twm Version"
"Focus on Root"
'Source .twmrc"
"Cut File"
"(De)Iconify"
"Delconio/'
"Move Wtndow"
"ForceMove Window"
"Resize Window"
"Raise Window"
"Lower Window"
"Focus on Window"
"Raise-n-Focus"
"Destroy Window"
"Zoom Window"
''FullZoom Window·
"Kill twm"
}

Function "Print-Window"
{

f.menu "efonts"
f.menu "xfonts"

!"emacs -name E-macaroni -fn 6x13 -T E-macaron new-file-aroni &"
!"emacs -name E-macaroni -T E-macaroni -fn 8x13 new-file-aroni &"
'"emacs -fn 9xlS -name E-macaroni -T E-macaroni new-file-aroni &"
!"emacs -fn 8x13bold -name E-macaroni -T E-macaroni new-file-aroni &"

!''xterm -fn 6x13 -name eye-strain -T eye-strain -sk -sb -sl &"
!''xterm -fn 8x13 -name Xterm-aroni -T Xterm-aroni -sk -sb -sl &"
!''xterm -fn 9xlS -name FATSO -T FATSO -sk -sb -sl &"
I''xterm -fn 8x13bold -name BRAZEN -T BRAZEN -sk -sb -sl &"

f.title
f.refresh
f.winrefresh
f.version
f.unfocus
f.twmrc
f.cutfile
f.iconify
f.move
f.resize
f.raise
f.lower
f.focus
f.destroy
f.quit

f.title
f.refresh
f.winrefresh
f.version
f.unfocus
f.twmrc
f.cutfiIe
f.iconify
f.dciconify
f.move
rJorcemove
f.resize
f.raise
f.lower
f.focus
(.function "raise-n-focus"
r.destroy
!.zoom
f.fullzoom
f.quit

November 27, 1991

Appendix 3: HERD Algorithms

!''xwd I xpr -device Ijet -density 100 -tv Ilpr -ddvijet & "
}

Function "Print-Screen"
{

!"xwd -root I xpr -device Ijet -density 100 -tv Ilpr -ddvijet & "
}

Function "hpfcdq"

{ !''xterm -8Ox48 + 150+50 -bg palegreen #+964+4 -e rlogin hpfcdq &"
}

Function "hpfcra"
{

}
!"xterm -8Ox48 +200 + 100 -bg lightblue #+903+4 -e rlogin hpfcra &"

Function "hpfccb"
{ .

!"xterm -8Ox48 +200 + 100 -bg palegreen # +903+4 -e rlogm hpfccb &"
}

Function "hpfcat"
{

!''xterm - 8Ox48 + 200 + 100 -bg thistle # + 903+ 4 -e rlogin hpfcat &"
}

Function "disp-content"
{

}
!"emacs text -geomet!), 69x44+0+19O &"

Function "Display-Author-Date"
{

!"emacs Author Date Inf -geometry 69x41+0+224 &"
} - -
Function "Display-Title"
{

!"emacs Title)nf -geometry 69x39+0+258 &"
}

Function "sub-report-content"
{

!"Ip -djet text &"
}

Function "Print-Author"

{ !"Ip -djet Author Date Inf &"
} - -
Function "Print-Title"
{

!"Ip -djet Title Inf &"
} -
Function "link-node"
{

I"emacs -I cn16 -kill &"
}

Function "create-node"
{

I"emacs fill form -geometry 69x44 +0 + 190 &"
} -
Function "disp-graph"
{

!"rw ..sraph &"
}

Function "brows-graph"
{

November 27, 1991

Page 233

Appendix 3: HERD Algorithms Page 234

!"rw scroll &"
}

Function "proto-node"
{

!''xterm -n Proto Node -geometry 55x9+419+5 &"
} -

November 27, 1991

Appendix 4

MUCH Algorithm

Annotation Function
jj Show Annotation Outline and Read Annotations

(defun show-annot-or-read-annot 0
"select the current node to show annotations"

l

interactive)
setq book-browser-buffer-flag t)
setq outline-buffer-flag t)
if lstring-equal (buffer-name) "·Frames Window·")

setq book-browser-buffer-flag nil»
(if string-equal (buffer-name) current-outline-buffer)

setq outline-buffer-flag nil»

(if (and book-browser-buffer-flag outline-buffer-flag)
disp-message)
setq buffer-read-only nil)
begtnning-of-line)
if book-browser-buffer-flag (do-nothing)
forward-word 2) (backward-word 1)
setq start (point»
forward-word 1) (setq selected-node-name

uffer-substring start (point»)

find-window ". Annotation Text·")
find-file (coneat user name • lannot-outIine-history"»
setq last-outline (butTer-string»
ill-line) (insert selected-node-name)

goto-char (point-min» (save-buffer)
setq current-outline-buffer selected-node-name)
find-file (coneat user name "/emaes-ing"»
setq buffer-read-onlfnil)
kill-re~on (point-mtn) (point-max»
insert 'show annotations") (newline)
insert selected-node-name) (newline)
save-buffer)
switch-to-buffer "·Annotation Text·")
find-file (coneat user name" ling-emacs1"»
setq buffer-read-only-nil) (kifl-region (point-min) (point-max»
save-buffer)

j
find-file ·-/.in~-emacsl")
insert-file -Itng-emacs")
goto-char (point-max»
save-buffer)
while (bohp) •

~
message "%s" "Waiting for output from database ")
sleep-for l?,
insert-file' -ling-emacs") (goto-char (point-max»

(save- uffer) .
)

switch-to-buffer •• Annotation Text·")
find-window last-outline)
find-file (coneat user name "/" selected-node-name»
setq buffer-read-only-nil)
insert-file .-ling-emacsl") (save-buffer)
setq buffer-read-only t)

;; The following shell command is used to make sure "ing-emacs· file is empty
jj and not to get every time the question whieh asked for old/new version.

)
(shell-command Mcp -/t -ling-emacs")

November 27, 1991

Appendix 4: MUCH Algorithms

(if outline-buffer-flag (do-nothing)
setq frame-n (buffer-name»
forward-word 1) (backward-word 1)
setq a (point» (forward-word 1) ;(end-of-line)
setq s-annotation (buffer-substring a (point)))
forward-word 1) (backward-word 1)
setq a (point» (forward-word 1) ;(end-of-line)
setq link (buffer-substring a (point)))
forward-word 1) (backward-word 1)
setq a (point» (forward-word 1) ;(end-of-line)
setq d-annotation (buffer-substring a (point)))
find-window "·Annotation Text·")
fmd-file (concat user name "/emacs-ing"»
setq buffer-read-onlrnil) (kill-region (pomt-min) (point-max»
insert "read-annotatIon") (newline)
insert frame-n) (newline)
insert s-annotation) (newline)
save-buffer)
fmd-file (concat user name ·/ing-emacsl'~)
setq buffer-read-only-nil) (kill-region (point-min) (point-max»
save-buffer)

l
find-file s-annotation)
kill-region (point-min) (point-max»
insert-file "- ling-emacs")
goto-char (point-max»
save-buffer)
while (bobp)

~
message "%s" "Waiting for output from database)
sleep-for 9
insert-file' -ling-emacs") (goto-char (point-max»

(save- uffer)

~) cOJ?Y-to-buffer II. Annotation Text·" (point-min) (point-max»
SWitch-to-buffer ··Annotation Text·")
shell-command "cp -It -ling-emacs")

?
)

(defun disp-message ()
(message ·Wrong cursor position, try again)
(sleep-for 5)

)

;; Show Annotations ordered by author

(defun show-annot-by-author 0
"find annotations were created by a specific author"
interactive)

Page 236

setq author (read-from-minibuffer "Enter author name (user-login-name): H)~
setq frame (read-from-minibuffer "For a specific frame enter frame name. Otherwise press return: "»
find-window "·Paragraph Text·"} (other-window 1)
find-file (concat user name "jemacs-ing"»
setq buffer-read-onlrnil}
kill-re~on (point-mm) (point-max»
insert 'show-annotations-by-author") (newline)
insert author } (newline~
if (string-equal trame Iff' (do-nothing)
insert frame) (newline (save-buffer)

) ~find-file (concat user name "/ing-emacs1'~)
setq buffer-read-only-nil) (kifl-region (point-min) (point-max»
save-buffer)

kill-region (point-min) (point-max»
insert-file "-ling-emacs")
goto-char (point-max»
save-buffer) l
find_file 11-ling-emacs1"}

while (bobp)
(message "%s" "Waiting for output from database)
(sleep-for 1)

November 27, 1991

Appendix 4: MUCH Algorithms

(insert-file "-ling-emacs") (goto-char (point-max»
(save-buffer)
)

l
~oto-char (point-min»
msert 'These are the annotations were created by the author "author)
newline) (goto-char (point-min» ~save-buffer)
cO)?Y-to-buffer "·Annotation Text·' (point-min) (point-max»
SWltch-to-buffer "·Annotation Text·"}
shell-command .cp -It -ling-emacs")

)

;; Show Annotations ordered by date

(defun show-annot-by-date ()
"find annotations were created at, after, or before a pecific date"
interactive)

Page 237

setq b-o-a (read-from-minibuffer "Enter (b for before) (0 for on) (a for after) date: "»
setq dates (read-from-minibuffer "Enter date on format (day/mon/year) : "»
setq frame (read-from-minibuffer "For a specific frame enter frame name. Otherwise press return: "»
find-window "·Annotation Text·")
find-file (concat user name "/emacs-ing'~)
setq buffer-read-only-nil)
kill-re~on (point-mm) (point-max»
insert ,show-annotationS-]-date,,) (newline)
if string-equal b-o-a "b" insert "before"»
if string-equal b-o-a "0" insert "on"»
if ~string-equal b-o-a "a"~ insert "after"» (newline)
insert dates) (newline)

)

if (string-equal frame "") (do-nothing)
insert frame) (newline)

save-buffer)
find-file (concat user name "/ing-emacsl'~)
setq buffer-read-onlf nil) (kiil-region (point-min) (point-max»
save-buffer)
find-file "-/ing-emacs1")
kill-region (point-min) (point-max»
insert-Tile" ling-emacs")
goto-char (point-max»
save-buffer}
while (bobp)

)
!
message "%s" "Waiting for output from database ")
sleep-for 1)
insert-file -ling-emacs") (goto-char (point-max»
save-buffer)

)

~oto-char (point-min»
msert 'These are the annotations were created ")
if ~string-eqUal b-o-a ''b''~ ~insert ''before''»
if string-equal b-o-a "0" insert "on"»
if strinft-equal b-o-a "a" insert "after"»
insert " dates) (newline)
goto-char (point-min» (save-buffer)
cO)?Y-to-buffer "·Annotation Text·" (point-min) (point-max»
SWltch-to-buffer ··Annotation Text·")
shell-command "cp -It -ling-emacs") .

;; Store Annotations in Database

(defun store-in-database ()

l
interactive)
find-window ". Annotation Text·")
goto-char (point-min»
while (search-forward" : "(point-max) t)

~
setq a (point»)
begmning-of-fine)
kill-region (point) a)

~setq temr. (buffer-~ubstring (point-min) (point-max»)
find-file -/emacs-mg")
kill-region (point-min) (point-max» (insert temp) (save-buffer)

November 27, 1991

Appendix 4: MUCH Algorithms

(kill-buffer (current-buffer»
(kill-region (point-min) (point-max»

)

;; Creating Annotation Function

(defun create-annotation 0
"select the current node for annotation"
(interactive)
;; book-browserbuffer-flag represents the ·Book Browser·
;; outline-buffer-flag represents the ·Outlinell window
;; paragraph-buffer-flag represents the ·Paragraph Text· window

l
setq book-browser-buffer-flag t) (setq outline-buffer-nag t)
setq paragraph-buffer-flag t)
if (string-equal (buffer-name) "·Frames Window·")
setq book-browser-buffer-flag nil»
if (string-equal (buffer-name) current-outline-buffer)
setq outline-bufter-flag nil»

;;(if (string-equal (buffer-name) "·Paragraph Text·")
;;(setq paragraph-buffer-flag nil»

~
setq buffer-read-only nil)
begtnning-of-line)
if book-browser-buffer-flag (do-nothing) (forward-word 2) (backward-word 1)

Page 238

(setq start (point» (forward-word 1)
(setq selected-node-name (buffer-substring start (point))) (setq annotation-outline selected-

node-name))
(if outline-buffer-flag (do-nothing) (forward-word 1) (setq a (point» (backward-word 1)

(setq selected-node-name (buffer-substring (point) a» (setq annotation-outline (buffer-
name»)

(setq buffer-read-only t)
(create-window-for-annotation "test")

)

(defun do-nothing ()
)

(defun create-window-for-annotation (string)

)

;; ·Search forward in ·Paragraph Text· for a string"
interactive ·s You want to create-an annotation: yes")
find-window ". Annotation Text·")
setq link (read-from-minibuffer "Enter link-type: "»
setq last-number (concat "-/Iast number " annotation-outline»
find-me (concat user name"/" fast-numoer» (soto-char (point-max»
if (bobp) (insert "-1"» (goto-char (point-min» (save-buffer)
setq last-annotation-name-plus-l)
setq last-annotation-name-plus-1 !bUffer-string»
setq last-annotation-name-plus-1 string-to-int last-annotation-name-plus-1»
setq last-annotation-name-plus-l 1 + last-annotation-name-plus-l»
setq last-annotation-name-plus-l int-to-string last-annotation-name-plus-l»
goto-char (point-min» (kill-line)
tnsert last-annotation-name-plus-l)
goto-char (point-min» (save-buffer)
setq last-annotation-name-plus-l (concat "annot" last-annotation-name-plus-1»
find-file (concat user name" /" annotation-outline»
setq buffer-read.only-nil)
goto-char (point-max»
msert" "last-annotation-name-plus-1 "." link "-" selected-node-name)
end-of-line) (newline) (save-buffer)
switch-to-buffer ··Annotation Text·") .
kill-re~on (point-min) (point-max»
insert 'Function Name : create-annotation") (newline)
insert "Frame Name : "annotation-outline) (ncwline)
insert "So Annotation : • last-annotation-name-plus-l) (newline)
insert "D. Annotation : .. selected-node-name) (newline)
insert "Annotation Link Name : "link) (newline)
insert "Author Login Name :" (user-login-name» (newline)
insert "Date Created Annot. :")
shell-command "date '+%m/%d/%y'" t)
end-of-line) (newline 2); date

;; Creating Link Function

November 27, 1991

Appendix 4: MUCH Algorithms

(defun create-annotation-link 0
"Create annotation link"
interactive)
setq frame-n ~uffer-name»)
find-window" Annotation Text·")

ill-region (point-min) (point-max»
setq s-annotation (read-from-minibuffer "Enter the source-annotation: ')
setq d-annotation (read-from-minibuffer "Enter the destination-annotatton: "»
setq link (read-from-minibuffer "Enter the link-tyPe: "»
insert "Function Name : create-annotatIon-link")
newline) ; Function Name
insert "frame Name : "frame-n) (newline) ; frame name
insert "So Annotation : "s-annotauon) (newhne) ; S. annotation
insert "D. Annotation : • d-annotation) (newline) ; d. annotation
insert "Annotation link Name : "link)
newline 2) ; annotation link name

)

;; Modification Function

(defun modify-annotation 0
"modify annotation"
(interactive)
(setq frame-n (buffer-name» (beginning-of-line)

fotward-word 1) (backward-word 1)

)

setq a (point» (fotward-word 1)
setq s-annotation (buffer-substring a (point)))
find-window "·Annotation Text·")
find-file ,,- jemacs-ing")
kill-re~on (p-oint-min) (point-max»
insert modIfy-annotation") (newline) ; Function Name
insert frame-n) (newline) ; frame name
insert s-annotation) (newline) ; annotation name
save-buffer)
find-file "-/ing-emacs1"}
kill-region (point-min) (point-max»
insert-file "-jing-emacs"}
goto-char (point-max» (save-buffer)
while (bobp)

{

message "%s" "Waiting for output from database ")
sleep-for 9
insert-file' - ling-emacs") (goto-char (point-max»

(save-buffer)

Jnd-file .-ling-emacs1")
setq temp (buTfer-substrin~ (point-min) (point-max)))
switch-to-buffer •• AnnotatIOn Text·")
kill-re~ion (point-min) (point-max»
insert 'Function Name : modified-annotation")
newline) ; Function Name
insert "frame Name : • frame-n }
newline) ; frame name
insert "Annotation Name : "s-annotation}
newline} ; annotation name
insert temp}
shell-command "cp -It -ling-emacs")

(defun retum-to-main-menu 0 .
"this function is used to go back from annotation to the top level menu"
interactive)

)

find-window "·Paragraph Text·") (other-window 1)
find-file (concat user name "jannot-outline-histoly'~)
setq last-outline (butTer-strinfo»
switch-to-buffer ··Note Text ")
find-window last-outline)
switch-to-buffer "·Note Outline·") (define-function-keys)
function-key-crib} (c1ear-message-line)

November 27, 1991

Page 239

Appendix 5

Indexing Algorithm

Indexing

;; Main program to produce a semantic net
;;----------------

;; This program should be executed from the directory -mhashijIND/semantic-net/mail

I
Shell-command "cp -r -rada/open/pps2 .")
shell-command ·cd pps2")
shell-command "1s > pps2d")
find-file "-mhashi/IND/semantic-net/mail/pps2/pps2d'1
goto-char (point-max» (forward-line -1)
kill-line 1) (save-buffer) (goto-char (pomt-min»

;; the following command will remove some of the troff commands
(load-file "-mnashi/IND /semantic-net/mail/rm-tr")

;; the following command changes each paragraph to a word-file
(load-file "-mhashi/IND /semantic-net/mail/stpO")
; you are in the pps22 dir.

!
Shell-Command "ls > pps22d")
fmd-fIle "-mhashi/IND/semantic-net/mail/pps22/pps22d")
goto-char (point-max» (forward-line -1)
kill-line 1) (save-buffer) (goto-char (pomt-min»

;; the followin~ command will add spaces at the end of each line
;; remove s" from the end of each word
;; remove "ed" from the end of each word
(load-file ·-mhashi/IND/semantic-net/mail/add-spaces")

;; the followin~ command fIX the side effect which results from removing
;; "s • and ned • In addition, some of multiple forms for a specific
;; word will be converted to a one form. For instance: documentation will be
;; chan~ed to document, indexing to index, browsing to browse,.... etc.
(load-file "-mhashi/IND /semantic-net/mail/add-spaces1")

;; The following command finds the frequency for the unique words and sort them
;; in decending order.
(load-file ·-mhashi/IND /semantic-net/mail/stpl")

;; The following command finds the term frequn~ and the co-occurunce
load-file ·-mhashi/IND/semantic-net/mail/stp2' ~
find-file "-mhashijINDjsemantic-netjmailjfreq1 ')
sort-lines nil (point-min) (point-max»
goto-char (pomt-max» (backward-word 1) ~orward-line 1)
kill-re~ion (point) (point-max» (save-buffer
load-flle "-mhashi/IND /semantic-net/mail reverse-uniq")
shell-command "uniq -f -c < file2 > tile3")
shell-command "cp freq1 freq-temp") .
shell-command "sort -r -0 freq1 file3")
shell-command "a.out freq1 occurl > sem-net")

;; Put the documents which are in
;; a directory into a flat file
;; ------... -------------

(defun add-seaces 0

!
setq not-eof "t")
while not-eof
end-of-line) (insert" "
if (eobp) (setq not-eo~ nil)

(forward-line 1)

19oto-char (point-min»

November 27, 1991

Appendix 5: Indexing Algorithms

)

"
MAINPROGRAM

~
hell.command" cd -mhashi/mail/pps2 i Is > ht ")

find·file "-mhashi/mail/pps2/ht") (klll.line 1)
goto-char (point-max» (backward-word 1) (end-of-line)
kill-region (point) (point-max»
oto-char (point-mm»

add-spaces) (save-buffer)

ii add spaces to make the word uniqe and remove
;; Os" and "ed" from the end of each word.
;; -------------
(defun get-sub-strin~ (a1 &2)

(buffer-substnng a1 &2)
)

(defun do-nothing ()
)

(defun add-spaces ()

!
setq not-eof "t")
while not-eof

)

insert" ") (end-of-line) (insert" ")
forward-line 1)
if (eobp) (setq not-eof nil»)
goto-char (pomt-min» (save-buffer)

(defun remove-s ()
(replace-string "5 " " '')
(goto-char (point-min» (save-buffer)

)
(defun remove-ed 0

(replace-string lied" " ")
(goto-char (point-min» (save-buffer)

)

" MAIN PROGRAM

~
find-file "-mhashi/IND/semantic-net/mail/pps22/pps22d")
~oto-char (point-min»
if (eobp) (setq not-eof-ht nil)

(setq not-eof-ht "t")

} while not-eof-ht
find· file "-mhashi/lND/semantic-net/mail/pps22/pps22d',)
setq a1 (point» (forward-word 1) (setq &2 (point»)
setq file-name-in (get-sub-strin~ a1 a2)
setq file-name (concat "-mhashl/IND/semantic-net/mail/pps22/" file-name-in»
forward-line 1)

)

if (eobp) (setq not-eof-ht nil»
find-file file-name)
goto-char (point-min»
add-spaces)
remove-s) (remove-ed)

;; Prepare freq input file
;;---------------
(defun get-sub-strin~ (a1 &2)

(buffer-substrmg a1 112)
)

(dcfun do-nothing ()
)

(dcfun conv-freq1-freq2-int ()
(setq freql (string-to-int freq1»
(setq freq2 (string-to-int freq2»

}

November 27, 1991

Page 241

Appendix 5: Indexing Algorithms

(defun conv-freq1-freq2-str ()
(setq freq1 (int-to-string (req1»
(setq freq2 (int-to-string freq2»

ldefun write-this-line 0

)
~
find-file 0)
insert" • freq1 " "word1 " ")
newline 1) (save-buffer)

(defun find-diff 0
(setq freq1 (- freq1 freq2 »

)

;; MAIN PROGRAM

l
setq fl "sorted-freq-word-file")
setq f2 ·occur3")
setq 0 "diff')
setq not-eofl Nt")
find-file fl) (goto-char (point-min»
while not-eon

find-file fl)

)

forward-word 1) (backward-word 1)
setq a1 (point» (forward-word 1)
setq freq1 (get-sub-string a1 (pomt»)
forward-word 1) (backward-word 1)
setq a1 (point» (forward-word 1)
setq word1 (get-sub-string a1 (point)))
forward-line 1)
if (eobp) (set'! not-eofl nil»
setq not-eof2 t")
(setq freq1 (string-to-int freq1»

(find-file f2) (goto-char (point-min»
(while not-eof'2

find-file f2)
forward-word 1) (backward-word 1)
setq a1 (point» (forward-word 1)
setq freq2 (get-sub-string a1 (pomt»)
forward-word 1) (backward-word 1)
setq a1 (point» (lorward-word 1)

)

setq word2 (get-sub-string a1 (point)))
setq freq2 (string-to-int freq2»
if (equal word1 word2) (find-diff»
forward-line 1)
if (eobp) (setq not-eof2 nil»
setq freq2 (int-to-string freq2»

(setq freq1 (int-to-string freq1»
(if (string-Ies..t;p "0" freql) (write-this-line)
)

;; Remove-Stop-Ust File
;;----_._------_.-

(defun get-sub-string (al a2)
(buffer-substring al a2)

)

(defun kill-that-word ()
(find-file file-name1)
(beginning-of-line) (kill-line 1)

)

(defun word-length (a1 a2)
(setq word-l (1+ (- a2 a1)))
)

(defun check-2 0
(find-file fife-namel)

)

;; MAIN PROGRAM

November 27, 1991

Page 242

Appendix 5: Indexing Algorithms

goto-char (point-min»
setq not-eol' "til) l
rmd-file "1")

while not-eof

setq a1 (point» (forward-word 1) (setq a2 (point»
setq whOle-word (get-sub-string a1 a2) l
forward-word 1) (backward-word 1)

setq whole-word (concat H II whole-word" "»~
find-file "suf-file") (goto-char (point-min»
if (search-forward whole-word (point-max) t) (kill-that-word)

(setq step2 "t")
).
(if step2 (check-2»

;; Remove-suf file
;;----------
(defun get-sub-strin~ (a1 a2)

(burfer-substnng a1 &2)
)

(defun do-nothing ()
)

(defun check-spelling 0
(setq first-part1 (get-sub-string a1 a2»
(if ~speu-region a1 a2) (kill-region a2 aJ)

backward-char 1)
if (speU-re~ion a1 (point» (kill-region (point) aJ)

(do-nothtng)

)
)

)

" MAIN PROGRAM

l
setq file-name "2")
find-file file-name)
goto-char (point-min»
setq not-eol' "til)
while not-eof

l
setq a1 (point»)
forward-word 1)(setq aJ (point»
backward-char 1) (setq a2 (point»
setq s-or-d (get-sub-string a2 aJ»
if (equal s-or-d "S") (klll-region a2 aJ)

(if (equals-or-d "d") (check-spelling)
(dO-nothing)

)

~forward-line 1)
(if (eobp) (setq not-eof nil»

)

;; Reverse Unique
;;--------------

(defun get-sub-strin~ (a1 a2)
(buffer-substnng a1 a2)

)

(defun do-nothing 0
)

;; MAIN PROGRAM

l
setq n "file1")
setq f2 "file2")
find-file fl)
~oto-char (point-min»
If (eobp) (setq not-eof nil)

(setq not-eof Ittlt)
)

November 27, 1991

Page 243

Appendix 5: Indexing Algorithms

(while not-eof
forward-word 1) (backward-word 1)
setq a1 (point» (forward-word 1)
setq freq (get-sub-string a1 (point»)
forward-word 1) (backward-word 1)
setq a1 (point» (end-of-line)
setq word (get-sub-string a1 (point»)
find-file 1'2)
while (string-Iessp "0" freq)

!
insert word) (newline 1)(save-buffer)
setq freq ~string-to-int freq»
setq freq 1- freq»
setq freq int-to-string freq»

) .

~
find-ftle fl)
forward-line 1)
if (eobp) (setq not-eof nil»

)

;; Remove-spaces file
;;------

~
find-file "freq1")
goto-char (point-min» (setq not-done "ttl)
while not-done

!
delete-char 1) (end-of-line)
backward_char 1) (delete-char 1)
forward-line 1)
if (eobp) (setq not-done nil»

)
(save-buffer)

;; Create-set2 file
;;------------

(defun get-sub-strin~ (a1 82)
(buffer-substnng a1 82)

)

(defun do-nothing ()
)

" MAIN PROGRAM

l
find-file "-mhashijINDjsemantic-netjmaiIjfreql")
goto-char (point-max»(setq a1 (point»
setq not-done "t")
while not-done

search-backward "Index terms for file "(point-min) t)
end-of-line)(backward-word 1) (setq a3 (point»
forward-word 1)(setq setl-file (get-sub-string a3 (point)))
beginning-of-Iine)
setq ind-term (get-sub-strin~ (point) a1))
setq setl-filename (concat " mhashl/INO/semantic-net/mail/similar/set2j" set2-fiIe»
find-file setl-filename)
insert ind-term) (save-buffer)
find-file ·-mhashi/IND /semantic-net/mail/freq1")
setq a1 (point»
if (bobp) (setq not-done nil»

)

;; Find_similarity file

(defun get-sub-strin~ (a1 a2)
(buffer-substnng a1 a2)

)

(defun do-nothing ()
)

(defun add-one-to-this-intersection 0
(setq count! (1 + count1»
(find-file "-mhashi/IND / semantic-net/mail/ similar/similar-temp 1 ")

November 27, 1991

Page 244

Appendix 5: Indexing Algorithms

)
(insert setl-term " , ")(save-buffer)

(defun consider-this-intersection 0

~
find-file "-mhashijIND /semantic-net/mail/similar /similar-templ")
~oto-char (point-min»

)

if (eobp) (setq similar-tempI "til)
(setq similar-tempI nil)

lif Similar-tem~1 (do-nothing)
end-of-line (backward-char 2) (kill-region (point) (point-max»
save-buffer
find-file 11-mhashifIND /semantic-net/mail/ similar / similar-temp2")
kill-region (point-min) (point-max»
insert':file 11-mhashi/INO /semantic-net/mail/similar /similar-templ ")
save-buffer)
setq the-siMilar-document next-setl-file)
setq count2 countl)

find-file "-mhashi/IND/semantic-net/mail/similar/similar-documents")
insert "------") (newlIne 1) !
defUn the-similaraty-is-null 0

insert 'There is no any document similar to the document"
file-naMe-in " which has the following index terms:")

(newline 1) (insert-file file-name)
(newline 2) (save-buffer)
)

!
defUn the-similaraty-is-not-nuU () .
find-file "-mhashi/IND/semantic-net/mail/similar/similar-documents")
insert "-----------") (newline 1)
insert "The document" the-siMilar-document " is the most

similar one to the document" file-name-in)

!
newline 1) (insert 'The intersection set of index terms is:")
newline 1) (insert "{ ") (end-of-line)
insert-file "-mhashilI'Nb / semantic-net /mail/ similar /similar-temp2'1
end-of-line) (insert }")(end-of-line) (newline 2) (save-buffer)

)

jj MAIN PROGRAM

find-file "-mhashi/IND /semantic-net /mail/ similar / similar-documents")
ill-region (point-min) (point-max»(save-buffer) r
tq setl-eor nil) (setq max "5'1

find-file "-mhashi/IND/semantic-net/mail/similar/setl/setld")
~oto-char (point-min»
if (eobp) (&etq not-eof nil)

(setq not-eof "ttl)

) while not-eor
find-file 11-mhashi/IND /semantic-net /mail/ similar/similar-temp 1")
kill-region (point-min) (point-max»(save-buffer)
find-file 11-mhashijIND /semantic-net/mail/ similar / similar-temp2")
kill-region (point-min) (point-max»(save-buffcr)
find-file ,,-mhashi/IND I semantic-net /mail/ similar /setl /set Id")
setq al (point» (forward-word 1) (set~ a2 (point»
setq file-name-in (get-sub-strin~ a1 a2» ,
setq file-name (concat "-mhashl/IND/semantic-net/mail/similar/setl/" file-name-in»
forward-line 1)
if (eobp) (setq not-eof nil»
rrod-file file-name)
goto-char (point-min»

" Here is the beginning or the file from set!
jj Make sure that it is not empty
(setq setl-eof nil)
(if (eobp) (setq setl-eor nil)

(setq setl-eof "til) (setq set2-eor "t")
)
(setq next-setl-file 0) (setq count2 "0")

~
while setl-eor
setq countl O)(set'l~tl-eor "t'1
find-file lI-mhashi/lND/semantic-net/mail/similar/similar-templ'1

November 27, 1991

Page 245

Appendix 5: Indexing Algorithmr

~
ill-regiOn (point-min) (point-max»(save-buffer)

setq next-set2-file (1 + next-set2-file »
setq next-set2-file (int-to-string next-set2-file»
setq set2-filename (concat "-mhashijIND/semantic-net/mail/similar/set2/" next-set2-file»
find-file set2-filename) (goto-char (point-min»

;; If the doc. in set is empty there is no need for the comarision
(if (eobp) (setq setl-eof nil»
;; Be careful not to compare the program in set1 with itself in set2
if (string-equal file-name-in next-set2-file) (setq seU-eof nil»
find-file file-name) (goto-char (point-min»
while set1-eof
find-file file-name)
setq a1 (point» (end-of-line)
setq setl-term (get-sub-string a1 (point)))
forward-line 1)
if (eobp) (setq setl-eof nil»
fmd-file set2-filename) (goto-char (point-min»
if (search-forward setf-term (point-max) t)

(add-one-to-this-intersection»)
setq countl (int-to-string count1»
if (string-lessp count2 count!) (consider-tbis-intersection»
if (string-equal next-set2-file max) (setq set2-eor nil»
setq next-set2-file (string-to-int next-set2-file »
setq countl (string-to-int countl»)
find-file "-mhashi7IND/semantic-net/mail/similar/similar-temp2")
beginning-of-line)
if (eobp) (the-slmilaraty-is-null)
the-similaraty-is-not-null)

1
;; Sort-and-Uniq file
;;------------

(defun get-sub-strin~ (a1 a2)
(buffer-substrmg a1 a2)

)

(defun do-nothing ()
)

(defun write-this-line ()

l
filld-file file-name2)
setq as (int-to-string a»

)

insert" .. as first" ")(newline 1)
setq not-eof nil)
save-buffer)

(defun write-first ()

l
if (eobp) (setq not-eof nil»
find-file file-name2)

)

setq as (int-to-string a»
insert" .. as first " ")(newline 1)
save-buffer)

(defun remove-spaces ()

l
find-file file-name2)
~oto-char oint-mm»
if (eobp) (Psetq not-eof nil)
setq not-eot "t")

) (while not-eor (end-or-line)

gust-one-space)
forward-line 1)
if (eobp) (setq not-eor nil»

»
;; MAIN PROGRAM

l
setq file-name1 "occur3")
setq file-name2 "occur")
set a 0)
find-file file-name1) (beginning-or-buffer)

November 27, 1991

Page 246

Appendix 5: Indexing Algorithms

sort-lines reverse (pOint-min) (point-max»
save-buffer) !
setq reverse "t")

if (eobp) (setq not-eof "t")
(setq not-eof nil)

)

; get flrst line
(if not-eof (setq not-eof nil)

)
l
setq a1 (point» (end-or-line)
setq flrst (get-sub-string a1 (point»)
setq a (1 + a» (forward-line 1)
if (eobp) (write-this-line)
setq not-eor "t"))

(while not-eor

l
find-file file-name1)
setq a1 (point» (end-or-line)
setq second (get-sub-string a1 (point)))
if (equal first second) (setq a (1 + a»

~
write-first)
setq first second)
setq a 1)

)
(find-file file-namel)
(forward-line 1)

(if (eobp) (write-first))
)

remove-sp-aces)
find-file' occur")
gota-char (point-max»
backward-word 1) (forward-line 1)
kill-region (point) <point-max»
gota-char (point-mm»
while (search-forward" 1 " (point-max) t)

(beginning-of-line) (kill-line 1)

~) gota-char (point-min»
delete-blank-lines)
save-buffer)

;; Sort file

~
find-file "freq1") (gota-char (point-min»
sort-numeric-fields -1 (point-min) (point-max»
save-buffer)

November 27, 1991

Page 247

	317204_001
	317204_002
	317204_003
	317204_004
	317204_005
	317204_006
	317204_007
	317204_008
	317204_009
	317204_010
	317204_011
	317204_012
	317204_013
	317204_014
	317204_015
	317204_016
	317204_017
	317204_018
	317204_019
	317204_020
	317204_021
	317204_022
	317204_023
	317204_024
	317204_025
	317204_026
	317204_027
	317204_028
	317204_029
	317204_030
	317204_031
	317204_032
	317204_033
	317204_034
	317204_035
	317204_036
	317204_037
	317204_038
	317204_039
	317204_040
	317204_041
	317204_042
	317204_043
	317204_044
	317204_045
	317204_046
	317204_047
	317204_048
	317204_049
	317204_050
	317204_051
	317204_052
	317204_053
	317204_054
	317204_055
	317204_056
	317204_057
	317204_058
	317204_059
	317204_060
	317204_061
	317204_062
	317204_063
	317204_064
	317204_065
	317204_066
	317204_067
	317204_068
	317204_069
	317204_070
	317204_071
	317204_072
	317204_073
	317204_074
	317204_075
	317204_076
	317204_077
	317204_078
	317204_079
	317204_080
	317204_081
	317204_082
	317204_083
	317204_084
	317204_085
	317204_086
	317204_087
	317204_088
	317204_089
	317204_090
	317204_091
	317204_092
	317204_093
	317204_094
	317204_095
	317204_096
	317204_097
	317204_098
	317204_099
	317204_100
	317204_101
	317204_102
	317204_103
	317204_104
	317204_105
	317204_106
	317204_107
	317204_108
	317204_109
	317204_110
	317204_111
	317204_112
	317204_113
	317204_114
	317204_115
	317204_116
	317204_117
	317204_118
	317204_119
	317204_120
	317204_121
	317204_122
	317204_123
	317204_124
	317204_125
	317204_126
	317204_127
	317204_128
	317204_129
	317204_130
	317204_131
	317204_132
	317204_133
	317204_134
	317204_135
	317204_136
	317204_137
	317204_138
	317204_139
	317204_140
	317204_141
	317204_142
	317204_143
	317204_144
	317204_145
	317204_146
	317204_147
	317204_148
	317204_149
	317204_150
	317204_151
	317204_152
	317204_153
	317204_154
	317204_155
	317204_156
	317204_157
	317204_158
	317204_159
	317204_160
	317204_161
	317204_162
	317204_163
	317204_164
	317204_165
	317204_166
	317204_167
	317204_168
	317204_169
	317204_170
	317204_171
	317204_172
	317204_173
	317204_174
	317204_175
	317204_176
	317204_177
	317204_178
	317204_179
	317204_180
	317204_181
	317204_182
	317204_183
	317204_184
	317204_185
	317204_186
	317204_187
	317204_188
	317204_189
	317204_190
	317204_191
	317204_192
	317204_193
	317204_194
	317204_195
	317204_196
	317204_197
	317204_198
	317204_199
	317204_200
	317204_201
	317204_202
	317204_203
	317204_204
	317204_205
	317204_206
	317204_207
	317204_208
	317204_209
	317204_210
	317204_211
	317204_212
	317204_213
	317204_214
	317204_215
	317204_216
	317204_217
	317204_218
	317204_219
	317204_220
	317204_221
	317204_222
	317204_223
	317204_224
	317204_225
	317204_226
	317204_227
	317204_228
	317204_229
	317204_230
	317204_231
	317204_232
	317204_233
	317204_234
	317204_235
	317204_236
	317204_237
	317204_238
	317204_239
	317204_240
	317204_241
	317204_242
	317204_243
	317204_244
	317204_245
	317204_246
	317204_247
	317204_248
	317204_249
	317204_250
	317204_251
	317204_252
	317204_253
	317204_254

