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The concept of a database occurs now to some extent in almost every area of 

information processing. However, the extension of database technology to new appli

cations like engineering design, office automation, software engineering environ

ments, AI applications, scientific applications, image processing promotes the need 

for more expressive models and new functionalities [Su86], [StaI86], [Wied86], 

[KarI88], [Gibb83], [WoeI86], [Hitc87], [Gray88], [Pato88], [Moha88], [Jaga89]. 

These new emerging applications require management of databases that are more 

complex than those in traditional business applications such as banks and airline 

reservation systems. The requirements of these applications include (i) support for 

complex objects (ii) support for abstract data types (iii) support for higher-level 

interfaces (iv) support for integrity (v) schema evolution and version control (vi) 

complex relationships (Le. spatial, temporal, procedural relationships (vii) types 

which describe behaviour rather than purely structure. 

The relational data model is well known but over the last fIfteen years there has 

been considerable research to replace the relational model with one having addi

tional semantic constructs. Some of these constructs can be listed as follows: 

(a) enriched collection of objects 

entities, attributes and relationships [Chen 76] 

classes [Hamm81] roles [Bach77] 

set-valued attributes [Zani83] 

unnormalized relations [Lum85] 

aggregation [SmSm77] 
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molecular objects [Bato84] 

(b) types of relationships 

is-a hierarchies [SmSm77] 

part-of hierarchies [Katz85] 

convoys [Hamm81] 

referential integrity (inclusion dependencies) [Date81] 

( c) other constructs 

ordered relations [Ston83b] 

long fields [Lori83] 

hierarchical objects [Lori83] 

multiple kinds of nulls [Zani84] 

multiple kinds of time [Snod85] 

parameterized versions [Bato85] 

table names as a data value [Lohm83] 

recursion or at least transitive closure [Ullm85] 

universal relations [Kort84] 

unique identifiers [Codd79] 

4 

From the above list the following conclusions are evident: (1) there is a large 

collection of constructs, each relevant to one or more application specific environ

ments. (2) the union of these constructs is impossibly complicated to understand and 

probably infeasible to implement with finite resources. The next generation database 

management system should aim to provide a support system that simulates the most 

important constructs. 

Two developments which have attempted to resolve these difficulties are the 

semantic data models and the object-oriented paradigm. 
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1.2 Semantic Data Models 

Semantic data models contain some general semantic constructs for defining 

the structural relationships, constraints, as well as behavioral aspects of data. They 

allow database designers and users to more explicitly define the semantic properties 

of their data They provide a higher level of data representation than normalized 

relations in the relational model. A DBMS which uses this type of model, will be 

able to make use of the semantics of data captured in the schema of the database to 

behave more intelligently such as automatically resolving ambiguities in user queries, 

providing explanation to the user, and enforcing the constraints automatically to 

keep the database in a consistent state. 

1.3 Object-Oriented Paradigm 

There are several different programming paradigms, procedure-oriented, 

object-oriented, logic-oriented, rule-oriented, and constraint-oriented. The matura

tion of software engineering has led to the development of object-oriented analysis, 

design, and programming methods, all of which address the issues of programming

in-the-Iarge. The object model provides the conceptual framework for object

oriented methods and it encompasses the following features:-

1.3.1 Object identity 

Objects exist and can be uniquely identified independent of their representa

tions or any of their properties. This implies a requirement for system-generated 

unique object identifiers. Pointers or array subscripts are inadequate as object iden

tifiers because they force certain representation. "Primary keys" as used in relational 

database systems whose values are object properties, are inadequate as well because 

they are subject to changes by users. "Surrogates" as defined in RM/T [Codd79] and 

database systems that implement entity-oriented data models provide satisfactory 
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identification mechanisms. 

1.3.2 High-level data abstraction 

Complex objects found in engineering design and manufacturing tasks, for 

example, can be explicitly defined in terms of other objects. For example, a design 

object such as an automobile can be defined in terms of objects such as chassis, 

body assembly, engine assembly, wheel and brake assembly and so forth. The object, 

such as the body assembly, can in turn be defined by such objects as top, doors, inte

rior, and so forth. The user of an object-oriented system is able to address the com

ponents as independent objects as well as the complex object defmed by the top 

level of abstraction. Engineers can directly define and manipulate objects they deal 

with in their applications instead of dealing with the implementation representation 

of objects such as relations in a relational DBMS. 

1.3.3 Uniform representation and communication 

All things of interest in a complex application such as physical devices (tools, 

machines, computers, manufacturing parts etc. ), and software entities ( control pro

grams, procedures, functions, and low-level system entities such as buffers, stacks, 

and queues) can be uniformly treated and represented as objects. Each object has its 

own private memory and public interface. Communication among objects is by mes

sage passing, but the procedure call mechanism of traditional programming 

languages can be used. 
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1.3.4 Separation of object specification and dermition 

In an object-oriented system, the specification of an object class in terms of an 

object class name, super class and subclass relationships, instance variables, opera

tions and parameters, and so on are all separated from the class definition, which 

contains the actual procedures and functions (Le. methods) for executing the opera

tions. This separation allows not only the ease of changing the implementation stra

tegies (Le. the procedures and functions) without affecting the user's view of the 

object classes, but it also provides the next very important property of the object

oriented paradigm. 

1.3.5 Information hiding 

The abstraction mechanism of the object-oriented approach provides an exter

nal view of objects and operations while hiding their representation and implementa

tions. For complex objects, it provides a view of the object in terms of its aggregate 

characteristics while hiding the internal structure of the object in terms of its com

ponents. The ability to describe objects at mUltiple levels of abstraction encourages 

the decomposition of a problem into independent subproblems by hiding the details 

of lower level implementation (storage structures and algorithms). In order to make 

use of an object, the user (human user or program ) only needs to know the specifi

cation part of the object class and not the inner workings of procedures and func

tions of that class. The user does not need to know in which programming languages 

the procedures and functions are written and in what hardware system the program 

runs. This information hiding property not only simplifies user programming tasks, 

but also allows accessing and sharing of the procedures and functions implemented 

by different people and organisations. 
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1.3.6 Inheritance 

In the object-oriented paradigm, the objects of a subclass can automatically 

inherit the attributes and operations of its superclasses. This is similar to the con

cepts of generalization and generalization hierarchy introduced by Smith and Smith 

[SmSm77]. This concept can be extended so that constraints and knowledge rules 

associated with objects and object classes can also be inherited. If a new object class 

can be inserted into a proper place in an object class hierarchy, the structure proper

ties, operational characteristics, and knowledge rules associated with its superclass 

can automatically be inherited without tedious respecification and definition. Furth

ermore, the implemented procedures and functions for performing the operations 

and for enforcing constraints and rules of these superclasses can also be used. This 

leads to the next very important property of the object-oriented systems. 

1.3.7 Reusable codes 

Programs written for an object-oriented systems are broken down into indepen

dent modules with well-defined interfaces. These modules are treated as objects and 

can be activated by passing the proper messages to them. They can be reused and 

incorporated into other programs since the functionalities and interfaces are well

defined. Thus, in a sense, programming in an object-oriented system involves com

posing a new program using the existing coded modules and adding new codes. Also, 

programs coded for an object class can be inherited by its subclasses. Thus, recoding 

of these programs for the subclasses is not necessary. 
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1.3.8 Polymorphism 

An operator, function, or procedure in an object-oriented system can be imple

mented in different codes and can operate differently depending on the type of 

object to which the message is sent. For example, an operation PRINT can be 

implemented by two different procedures to print a character string or an integer, 

depending on whether the object to be printed is a character string or an integer. 

Instead of naming the procedures differently, they are given the same name (opera

tor overloading). The proper procedure of the PRINT operation is dynamically 

bound to an object at run-time once the type of the object is known. This feature 

gives the user greater flexibility in naming operations associated with object classes 

and relieves the user from the burden of remembering different operations for dif

ferent objects. 

1.4 The Relational Data Model 

Although the relational model has some limitations in supporting non

traditional applications, it has the following desirable features:-

1.4.1 Data independence 

The independence of users and programs from details of the way the data is 

stored and accessed is critically important for at least two reasons: (1) it is important 

for application programmers because, without it, changes to the structure of the 

database would necessitate corresponding changes to applications programs. (2) it is 

important for end-users because, without it, direct end-user access to the database 

would scarcely be possible. 
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1.4.2 Sound theoretical base 

Relational systems are based on a formal theoretical foundation. As a result, 

they behave in well-defined ways; and users have simple model of that behaviour in 

their mind that enables them to predict with confidence what the system will do in 

any given situation. This predictability means that the user interfaces are easy to 

learn and use. 

1.4.3 Small number of concepts 

The relational model is notable for the small number of concepts it involves. 

There can be little doubt that relations are easy to understand. The basic data con

struct is one, namely the relation or table; all information in the database is 

represented using this one construct, and more over this construct is both simple and 

highly familiar since people have been using tables for centuries. 

1.4.4 Relational languages 

The relational languages have the following desirable features:-

1.4.4.1 Set-level operators 

Relational data manipulation operations such as SErnCf, UPDAlE, etc., in 

SQL (or RE1RIEVE, REPlACE, etc., in QUEL) are set-valued operations. 

They are declarative and provide control abstraction. This fact means that users 

simply have to specify what they want, not how to get to what they want. 
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1.4.4.2 Closure property 

The result of any operation of the relational algebra. or equivalent language, is 

itself a relation, which allows us to write nested relational expressions. 

1.4.4.3 Symmetric exploitation 

Relational languages generally provide symmetric exploitation, i.e., the ability to 

access a relation by specifying known values for any combination of attributes, 

seeking the values for its other attributes. Symmetric exploitation is possible 

because all information is represented in the same uniform way. 

1.4.5 Compatibility 

It is obvious that the user wants to view the same entity at sometime object

wise and at other times relational-wise. For example a design object which lends 

itself to object-oriented view needs storage of traditional business data for cost 

evaluation. 

1.4.6 Relationships 

Most object-oriented approaches support only one type of relationship among 

objects, IS-A, relating object sub-types to their super-types. Several other relation

ships have been proposed for engineering applications, including COMPONENT

OF, INSTANCE-OF, VERSION-OF [Bat085]. Instead of building in a few fIXed 

relationships, systems must be capable of supporting user-defined relationships. 
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1.5 OQUEL System 

Neither the relational nor the 0-0 approach is best for all applications. A 

DBMS is needed which provides several styles for describing and manipulating data. 

We want to argue for combining features from three areas; semantic models, 

object-oriented paradigm, and the relational data model in a new model called 

OQUEL since it extends QUEL with object-oriented features. 

OQUEL has the following features:-

It extends the data structures and operations of the relational data model and 

provides the desirable features of the OOPL paradigm and semantic data models 

such as improved semantics, data abstraction, reusability of data structure and code, 

extensibility, complex object support, schema evolution and ADT domains. 

OQUEL introduces the object identifer (OlD) to improve the semantics and 

reduce the space to store the database. OlD captures the uniqueness of entities in 

the real world and allows modeling of complex objects. OlD may be used to refer to 

an object instead of copying it. 

OQUEL extends the relational model by inheritance to allow for sharing of 

data structures and operations and this improves the productivity of the program

mer. 

OQUEL provides two access modes for the database. One through the rela

tional interface which helps to formulate unpredictable queries and provide flexible 

selection of a target list through different combinations of attributes - this is due to 

the no-information-goal-dependency of the relational formalism -. The other is a 

method-based interface which improves reliability by providing semantic integrity, 

managing complex objects and propagating updates through different semantic refer

ences, providing information hiding and operations for naive users. 

OQUEL provides structuring for complex objects through specialized attributes 
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and provides operations through methods to enforce the integrity of the complex 

objects. Abstracting complex objects through tuples and relations provides for organ

isation of data by object or relation. 

OQUEL provides extension for the domains of the relational model which sim

plifies queries and provides a more natural interface for spatial and temporal data. 

OQUEL provides operations to manipulate evolution of structure as well as 

content. These make use of Ingres and C+ + [Str086], which provides object

oriented extensions to C language. We have provided an interface between C++ 

and Ingres. 

1.6 Outline of the Thesis 

Current database management systems and their data models which are dis

cussed in chapter two, are limited in their support for these nontraditional applica

tions. The requirements for these applications are discussed in chapter three as well 

as the limitations of the current data models and their implementations. 

Motivated by the need for more powerful data models to capture and control 

more of the meaning of data stored in the database a number of semantic data 

models have been proposed. Most semantic data models were influenced by seman

tic networks and they are generally object oriented. These data models contain some 

general semantic constructs such as generalization (is-a), classification (instance-o!), 

aggregation (part-of), for defining the structural relationships, and constraints. 

These models are discussed in chapter four. 

The object-oriented paradigm, which was introduced in programming languages 

such as Simula, Small talk, C++, etc., can be extended to provide the basis for the 

development of more powerful database management systems. Several key concepts 

of the object-oriented paradigm are important and useful for a wide variety of data

base applications. These concepts are discussed in chapter five. 
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In chapter six we discuss the different approaches which include extensions to 

data models or systems in databases or object-oriented programming languages ( 

OOPLs) to provide structural, behavioral, or full object-oriented databases. 

In chapter seven we discuss the design and implementation of OQUEL model 

which combines features from semantic models, object-oriented paradigm and the 

relational model. 

In chapter eight we illustrate through examples from the geological domain the 

applicability of OQUEL The conclusions and suggestions for further research are 

discussed in chapter nine. 

OQUEL architecture and OQUEL listings are contained in appendices 7A and 

7B respectively. 

, 
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Chapter 2 

Basic Concepts and Characteristics 

2.1 Introduction 

We begin this chapter by giving a brief history and evolution of databases from 

the early file structures. Then we discuss the classical data models , Hierarchical, 

Network, and Relational Data Models. We discuss their power and limitations which 

motivate the needs for more advanced models which will be considered in chapters 

four and six. Then we discuss three approaches to data modeling from a philosophi

cal perspective. 

2.2 Pre-Database Models 

When the automated data processing era began in the 1950s and early 1960s, 

many organisations started transferring their manual operations to computerized sys

tems that offered economical, high-speed, accurate data processing.Initially these 

were based on fragmented application dependent filing systems. A need for 

integrated access to the information gave rise to the concept of a generalized data

base management system. The DBMS is hence a general-purpose software system 

that facilitates the process of defining, constructing, and manipulating a database. A 

number of characteristics distinguish the database approach from the traditional 

approach of programming with files. 

2.2.1 Self-contained Nature of a Database System 

A fundamental characteristic of the database approach is that the database sys

tem contains not only the database itself but also a complete definition or descrip

tion of the database. In traditional file processing, data definition is typically part of 

the application programs themselves. Hence, these application programs are 
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constrained to work with only one specific database whose structure is declared in 

the application programs. 

2.2.2 Insulation between Programs and Data 

In traditional file processing, the structure of data files is embedded in the 

access programs, so any changes to the structure of a file may require changing all 

programs that access this file. By contrast, DBMS access programs are written 

independently of any specific files. The structure of data files is stored in DBMS 

catalogues which are separate from the access programs. 

2.2.3 Data Abstraction 

The DBMS should provide users with a conceptual representation of data that 

eliminates most of the details of how the data is stored. A data model is a type of 

data abstraction that is used to provide this conceptual representation. The data 

model uses logical concepts, such as objects, their properties, and their interrelation

ships, which may be easier for most users to understand than computer storage con

cepts [Shav81]. Hence, the data model hides storage details that may not be of 

interest to most database users. 

2.2.4 Support of Multiple Views of the Data 

A database typically has many users, each of whom may require a different per

spective or view of the database. A view may be a subset of the database or it may 

contain virtual data that is derived from the database files. 

The DBMS has the following intended uses and advantages (1) Controlling 

Redundancy (2) Sharing of Data (3) Restricting Unauthorized Access to Data (4) 

Providing Multiple Interfaces (5) Representing Complex relationships (6) Enforcing 

Integrity Constraints (7) Providing Backup and Recovery (8) Reduced Application 
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Development Time 
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2.3 Classical Data Models 

Classical data models include hierarchical, network, and relational data models. 

These models are discussed in sections 2.3.1-2.3.3. 

2.3.1 Hierarchical Data Model 

The hierarchical data model is the oldest traditional data model. Most of the 

model's development and implementation has been done by IBM in its information 

management system IMS software package. This model was developed to model the 

many types of hierarchical organisations that exist in the real world [Tsic76]. Hierar

chies in the physical and natural world have been recognized and analysed for centu

ries. Humans have used hierarchical organisation for information to help them 

better understand the world. There are many examples such as classification 

schemes for species in the plant and animal world and classification schemes for 

libraries and governmental hierarchies. 

2.3.1.1 Hierarchical Data Model Structures 

The hierarchical model captures the relationships in terms of hierarchical defm

ition trees. Figure 2.1 illustrates a possible hierarchical definition tree for the 

university example. The relationship between two entities is denoted by the parent

child arc. The parent-child relationship automatically supports referential integrity in 

the sense that no instance of a child record can exist without the existence of a 

parent record. 
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courses 

grades students 

Figure 2.1 Hierarchical Definition Tree 

2.3.1.2 Operations in the Hierarchical Data Model 

The manipulation of data in the hierarchical model is record-at-a-time, unlike 

the relational model which is set-at-a-time. This model makes extensive use of the 

parent-child relationship and the ordering of subtrees for navigation. 

2.3.1.3 limitations 

The hierarchical view leads to an asymmetrical perception of the universe in 

two respects: (1) The tree structure implies the relationship between entities have 

direction. The concept of father and son enforces this. (2) Things of the real world 

are classified as entities or attributes. There would appear to be no rationale for this 

distinction. Consider the colour of a plant. The colour is of as much interest to an 

artist as the plant to a gardener. The asymmetry of the view leads to asymmetric 

models and, to asymmetric implementation of access paths through data models. 

For example, deleting a parent record instance automatically deletes all correspond

ing child-record instances. Depending upon the application being developed by the 

hierarchical model, the data contained in the child-record mayor may not need be 

retained. In addition the handling of some queries can be difficult if the queries do 

not conform to the hierarchical structure. 
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2.3.2 Network Data Model 

The network model uses additional pointers to add flexibility to the hierarchical 

model. In its most general form, a network is a collection of nodes with links possi

ble between any nodes. These links can be assigned meanings and the creation of 

links between nodes can be constrained in various ways. The hierarchical model for 

instance, is a special case of the network model where each node is linked to a 

parent node. In a pure hierarchy, each node may have only one parent although it 

may itself be the parent of more than one lower-level node. In a hierarchy, there is 

only one path between any two nodes, whereas in a network, there may be a number 

of paths. Figure 2.2 illustrates a network model for the university example. 

courses 

Figure 2.2 Illustrates a network model with two sets for university example 

2.3.2.1 Network Model Data Structures 

The basic data structures in the network model are records and sets. 

Record, Record Types, and Data Items 

An analogy can be drawn between network terminology and the relational 

model terms as follows : 
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Logical Record Format 

Logical Record 

Logical Record Type 

Data Item 

Relational Scheme 

Tuple 

Relation Name 

Attribute 
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However, there is an important distinction between tuples of relations and records 

of a record type. In the value-oriented relational model, tuples are nothing more 

than the values of their components. Two tuples with the same values for the same 

attributes are the same tuples. On the other hand, the network model is object

oriented, at least to the extent that it supports object-identity. Records of the net

work may be viewed as having an invisible key, which is in essence the address of 

the record i.e. its object identity. This unique identifier serves to make records dis

tinct, even if they have the same values in their corresponding fields. The reason it 

makes sense to treat records as having unique identifiers, independent of their field 

values, is that physically, records contain more data than just the values in their 

fields. In a database built on the network model they are given physical pointers to 

other records that represent the relationships in which their record type is involved. 

These pointers can make two records with the same field values different, and we 

can not make this distinction if we thought of only of the values in their fields. The 

distinction between tuples and records tells us a great deal about the ways in which 

each of the two data models - relational and network - excels. The relational model 

gives us the ability to use component values in arbitrary ways, whether or not they 

are the ways that were expected by the database designer when the scheme was first 

created. However, in the network model, where languages only allow us to follow 

links, there is no convenient way to express some queries. 

Since the result of an operation on relations is a relation, we can build a com

plex expression of relational algebra easily. However, the result of operations on 
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networks is not generally a network, or even a part of one. It has to be that way, 

because the invisible pointers and unique identifiers for records cannot be referred 

to in a network query language. Thus a new network cannot be constructed by 

queries; they must be constructed by the data definition language. 
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2.3.3 Relational Data Model 

The objective of the relational model was (1) to provide a high degree of data 

independence, (2) to provide a simple community view of the data, so that a wider 

community of users in an enterprise ranging from the most computer naive, to the 

most computer sophisticated can interact with a common view, (3) to introduce a 

theoretical foundation into database management, (4) to lift the database application 

programming to a new level- a level in which sets are treated as operands instead of 

being processed element by element. 

2.3.3.1 Relational Model Concepts 

Relations, tuples, attributes 

The fundamental structural concept of the relational model is the table. A rela

tion is a two dimensional table of values where the columns of the table are called 

attributes and the rows are called tuples. Classical data-processing terms are similar, 

substituting data elements for attributes, records for rows, and flat files for relations. 

In Codd's view, a relational database system must support several structural features. 

The first feature is relations of degree n, that is tables with some arbitrary number n 

of attributes, in which the ordering of rows or columns is not relevant to the model. 

Tables are of four types. 

Base Tables 

Query Tables 

View Tables 

Snapshot Tables 

Base tables are the actual data stored in the database, while query tables are the 

result of any query, which may at the user's option be saved in the database for 
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further operation. A relational database system is thus a mathematically closed sys

tem, i.e. all operations on relations in the database produce more relations. View 

tables are the dynamic result of one or more relational commands operating on the 

base tables to produce another table,called the view. These are virtual tables that do 

not actually exist in the database although their definition is stored in the system 

catalog tables but are produced upon request by a particular user, at the time of 

request. Snapshot tables are the resultant evaluation of view table invocation materi

alized at any particular time. 

All information in a relational database is represented explicitly at the logical 

level and in exactly one-way by values in tables. That is why the relational model is 

called value-oriented compared with objectj entity-oriented. 

Domain 

Another structural concept is the domain, which is the set of values from which 

individual columns (attributes) can be defined. The domain concept is important 

because it allows the user to define in a central place the meaning and source of 

values that attributes can take on. As a result more information is available to the 

system when it undertakes the execution of a relational operation, and operations 

that are semantically meaningless can be excluded. An example of a nonsensical 

operation is a join between the weight of a car and the age of a person 

Key 

Another fundamental structural concept is the key, which provides associative 

access to records (tuples) in a relation without specifying the actual method by 

which such access is physically accomplished. The primary key is a combination of 

attributes whose values uniquely address each record in a relation. There should be 

a primary key for each relation in the database. Most existing products do not 



chapter 2 26 

support the primary key concept. A foreign key is an attribute in one relation table 

which can serve as a primary key into another table. Support for these concepts 

allows for all the associativity of the network data model independent of implemen

tation. 

Integrity 

In the view of most information managers, data integrity is of pre-eminent 

importance in database management systems, and the more facilities that can be 

embedded in the DBMS product the better the guarantee of good data quality. 

There are three kinds of integrity : 

Entity Integrity 

Referential Integrity 

User-Defined Integriy Constraints 

Entity integrity guarantees the existence of a primary key for each record in a 

table. For example, if Social Security number is a primary key in a personal record, 

there can not be a record without a value for the Social Security number. 

Referential integrity guarantees the existence of references to any foreign key. 

For example, if in a personnel record, an employee works in the payroll department, 

there must be a payroll department record in the table of departments. 

User-defined integrity constraints are those specified by the users or database 

administrators. Having constraints stored in the DBMS catalog has the advantages 

of centralized control and enforcement. In the event of a constraint change, the 

change and enforcement will be performed in the catalog, without having to rewrite 

any of the applications. Also, because all constraints are stored only once, there will 

be no chance of having multiple versions of constraints, each enforced by different 

application programs. 
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2.3.3.2 Operations in the Relational Data Model 

There are two rather different kinds of notations used for expressing operations 

on relations: 

1. Algebraic notations, called relational algebra, where queries are expressed by 

applying specialized operators to relations, and 

2. Logical notations, called relational calculus, where queries are expressed by writ

ing logical formulas that the tuples in the answer must satisfy. One of the interesting 

facts about these notations for relational databases is that they are equivalent in 

expressive power, that is, each can express any query that the other can express. 

Using selection and projection many natural questions can be asked about sin

gle relations. Many more queries are expressed by navigating among relations, that 

is, by expressing connections among two or more relations. It is fundamental to the 

relational model that these connections are expressed by equalities (or sometimes 

inequalities) between the values in two attributes of different relations. It is both 

the strength and weakness of this model that connections are expressed this way. It 

allows many varied paths among relations to be followed than in other data models, 

where, particular pathways are favoured by being built-in to the scheme design, but 

other paths are hard or impossible to express in the languages of these models. 

2.3.3.3 Normalization 

There are guidelines in the relational theory for database design that govern the 

"well-formedness" of relation schema, the so-called normal forms. These normal 

forms are designed to prevent data duplication, inconsistency, and update anomalies. 

Normalization is a step-by-step process for converting data structures into standard 

form relational tables. This standard form then satisfies the following constraints : 

1. Each entry in a table represents one data item (no repeating group) 
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2. All items within each column are of the same kind 

3. Each column has a unique name 

4. All rows are unique (no duplicates) 

5. The order of viewing the rows and columns does not affect the semantics of any 

function using the table. 

2.3.3.4 Merits of the relational model 

Declarative Languages:- The relational model gets its popularity perhaps from 

the way it supports powerful, yet simple and declarative languages with which 

operations on data are expressed. We may trace these capabilities to the fact 

that, unlike competing models, the relational model is value-oriented. That fact, 

in turn, leads to our ability to define operations on relations whose results are 

themselves relations. These operations can be combined and cascaded easily 

using relational languages. This property is lacked by Object-Oriented models 

because the result of a useful operation is often a new type. Such a type needs 

to have operations defined for it, so it can not become immediately the operand 

of another operation. 

Data Independence:- In physical data independence we have the important 

notion of separation of the physical storage and performance aspects from the 

logical structures of data that an application program sees. Application pro

grams remain logically unimpaired whenever any changes are made in either 

the storage representation or access methods. If, for example, the database 

administrator decides to drop an index on a column in a table , computer pro

grams that access that table should continue to run without recompilation or 

any modification whatsoever. In many non-relational systems, a change to phy

sical structure brings to a halt the working of applications programs that 

operate on the data. Thus, database modifications on such systems to tune 
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performance cause enormous overhead in requiring consequent application 

modifications to adjust to changes. Physical data independence allows database 

administrators full freedom to tune performance of the RDBMSs and to rear

range the physical organisations such as clustering tables or creating different 

kinds of indexes etc., without affecting running applications. 

Logical data independence provides yet another level of insulation of applica

tion programs from the structuring of data Under this concept, even the logical 

structure of the database may be altered, if done in such ways so as to preserve 

all information, without affecting the running applications. Key to this concept 

is the view structure which hides the logical structure alteration. For example, 

if two tables are combined without information loss, views can be defined which 

are projections of the combined table, leaving the appearance to the user with 

the impression that no change has taken place. 

2.3.3.5 Limitations 

The major contribution of the relational model lies in the elimination of data 

dependency and the successful formulation of high-level logical languages, both 

deriving from the uniform representation of information in terms of attributes. But 

the uniformity also implies the elimination of ways to express explicit relationships 

among objects which are so essential to the meaning of the world of objects, hence 

this is an overkill of data dependency. The semantic difficulty of classical models 

will be discussed in chapter three. 
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2.4 Philosophical Perspective to Data Modeling 

The following data modeling approaches have been identitified for their impor-

tance in the data modeling field:-

Entity-based approach 

Rule-based approach 

Frame-based approach 

2.4.1 Entity-based approach 

"Entities are a state of mind, no two people agree on what real world view is;" [Metaxides] 

Entity-based approaches to data modeling are so called because of the primacy 

given to the notion of an entity. That is, the central core of these approaches is the 

entity and its associated concepts. An entity, in this context, is the representation of 

an object of the real world, about which there is a desire to record information. Its 

associated concepts are the attributes and relationships, where the former describes 

properties possessed by entities and the latter association between entities. This 

category includes the semantic models. The entity-based approach to data modeling 

tends to follow in the steps of objectivist tradition. Under this tradition a data model 

is like a mirror or picture of reality. Reality is given "out there" and is modeled by 

entities. Entities have properties. Both entities and their properties have an objective 

existence. Entity-based approaches implement a picture theory of meaning i.e. data 

corresponds to facts, and it is these that entity-based approaches seek to model. 

The entity-based approach can be classified into two broad approaches; the 

Entity-attribute-relationship (EAR) approach which includes ER model [Chen 76] 

and the Binary Relationship approach (BR). There are three general types in the 

BR approach; (a) entity-relationship, (b) entity-attribute, and (c) entity-function. 

Category (a) approaches function with the two primitives entity and relationship; 

examples include SDM [Hamm81], SAM [Su83]. Category (b) approaches possess 
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the primitives entity and attribute, an example of which is the relational model 

[Codd70]. Category (c) approaches are a variant of the other two using the primi

tives entity and function. An example of this category is the functional data model 

[Ship81]. The importance of entity, function and binary relationships for the concep

tual schema has also been emphasised in [Shav81]. 

Although entity-based approaches have been widely used in information system 

development they have been criticized by the following (1) if there is a unique and 

objectively given reality there should be a unique way of modeling it. Yet the pro

ponents of the entity-based approaches have not agreed upon one. For instance, in 

one model relationships are allowed to have attributes; in others it is illegal. (2) In 

the entity-based approaches, the meaning of each instance of an entity, attribute or 

relationship class is defined by a reference to the object or property it is to depict. 

However, defining meaning in terms of reference is inadequate. (3) In the realist 

theory the meaning of a sentence is said to be correct if it corresponds to an actual 

state of affairs. However, correspondence would have to be established through the 

social uses of words and symbols. This approach is disscussed in chapter four. 

2.4.2 Rule-based approach 

The rule-based approaches to data modeling are heavily influenced by the sub

jectivist tradition. Their proponents see the main task of data modeling as formaliz

ing the meaning of messages and actions to be followed among a professional com

munity. The expression of meanings must follow socially determined rules which 

facilitate the comprehension of what is communicated. Data can at best convey 

meaning from someone to someone, but they cannot have any objective meaning. 
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2.4.3 Frame-based approach 

Central to the object-oriented approach is the concept that the objects of 

interest in the real world can most effectively be modeled through recording them 

together with the operations which are permitted upon them. In this way a move is 

made from representing purely structural aspects towards more integrated 

behavioural view combing both structure and operations. This approach is 

represented by SmallTalk [Gold83]. This approach can be used to implement both 

entity-based and rule-based approach. This approach is discussed in chapter five. 
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Data is at the heart of any information system and as computing becomes more 

widely available, each discipline will come up with its unique requirements. Thus the 

potential for the application of database technology is expanding continually. In this 

section we wish to identify two major categories of applications outside the realm of 

traditional business type applications that are presenting good opportunities as well 

as a great challenge to database technology. The special modeling requirements of 

each application area will be highlighted and then the shortcomings of the classical 

models and their implementation are discussed. In chapters four and six some previ

ous proposals for addressing these problems will be discussed while in chapter seven 

our approach is described in detail. 
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3.2 Requirements of Non-Traditional Applications 

3.2.1 Computer_Integrated _Manufacturing (CIM) 

Existing data models - such as relational, network, and hierarchical models -

and the commercially available DBMSs based on these models are not entirely suit

able for managing databases in a CIM environment. The reason is that these 

models and systems are designed mainly for managing business-oriented databases. 

As discussed later, many data types and semantic properties useful in CIM applica

tions are not considered in these models. This inadequacy has motivated much 

research work in semantic data models in recent years, including the work by Chen 

[Chen76], Smith and Smith [SmSm77], Su [Su 86], Wiederhold [Wied84], Codd 

[Codd79], Hammer and McLeod [Hamm81], Shipman [Ship81], Brodie [Brod81a]. 

In the following we discuss the various modeling needs for CIM :-

3.2.1.1 Complex data types 

Perhaps the most obvious inadequacy of existing business-oriented DBMSs for 

CIM applications is their very limited data typing capability. Only a few basic data 

types such as integer, real, character are recognized. More complex data types such 

as vector, matrix, set are not handled by the model or the DBMS, but by the appli

cation programs through some host programming language. Data with these data 

types is very common and is treated as a collection of basic data objects in 

CAD/CAM applications. For this reason the data should be processed by the 

DBMS directly using operators proper to these data types. For example, a vector of 

three elements determines the coordinates of a position in the working space of a 

robot. It should be allowed to be stored as the value of an attribute having a data 

type Vector _3 in a record, and an operator should be introduced to test the value of 

a coordinate to determine if the record should be retrieved or processed. 
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3.2.1.2 Complex relationships 

These include temporal, positional, and procedural relationships. Modeling tem

poral dimensions in database systems has drawn considerable attention in database 

research for example in work by Bubenko [Bube77], Anderson [Ande82], Snodgrass 

[Snod85], Navathe [Nava88a], Tansel [Tans86], Ariav [Aria86], Abn [Ahn86] , Gadia 

[Gadi88]. In design and manufacturing environments, the order in which operations 

or activities take place is extremely important, since it can represent the temporal, 

positional, or procedural relationships of the data objects. For example, a workpiece 

passing through a number of workstations is operated on and modified by the equip

ment at those workstations. The data that describes the workpiece is continually 

changing. The sequence of these workpiece descriptions is important to a parts 

inspection system that attempts to identify the time, place, or step at which a defect 

occurs. Temporal, positional, and procedural relationships need to be captured not 

only at the low-level data elements by domains that contain ordered sets of integers 

or names, but also at high-level data elements by ordered sets of records, files, or 

subdatabases, which record data generated or processed by some ordered events or 

operations. 

3.2.1.3 Complex objects 

Many of the new applications deal with highly structured objects: parts in a part 

hierarchy may be composed of other parts, complex geographic features may be 

composed of other features, documents are composed of sections and front pages, 

etc. Facilities are needed for representing the internal structure of a complex object, 

while at the same time permitting the manipulation of the entire object as a whole. 

Facilities are also needed for capturing complex constraints and interrelationships 

among the components of a complex object (e.g. rules for mapping operations on 
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the object into operations on its individual components without violating any con

straints on their interrelationships). 

3.2.1.4 Schema evolution 

Since CAD applications are such that they vary in their structure and content, 

the model must support an evolving design data. It is also necessary to keep old ver

sions and create new versions of the same object. 
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3.2.2 Knowledge_Based Systems 

Computers are tackling new and exciting tasks such as diagnosing, planning, 

scheduling, monitoring processes, etc. These applications have transformed the way 

we think about computing and brought a new perspective to programming - a 

knowledge perspective. They introduced a new type of database, an expert database -

that stores not only values but "chunks" of knowledge. Knowledge can be embodied 

in a program as a procedure or as a data structure. This distinction corresponds to 

the philosophical difference between knowing how to and knowing that. 

The primary use of knowledge in knowledge-based systems is reasoning, 

broadly defined as the accessing of information implicit in the knowledge base. The 

module that does the reasoning is known as the inference engine. 

Knowledge bases may not seem to differ from databases. Both are data struc

tures, or sets of data structures, in which information is stored and from which infor

mation is retrieved. Yet intuitively, knowledge bases and databases are not quite the 

same. There is no intrinsic difference between a knowledge base and a database. 

The difference is one of perspective. To view a set of data structures as a database is 

to be concerned with data-level issues: What data structures are used to store infor

mation ? What mechanisms are used to manipulate and access these structures ? 

Are they efficient ? Do they meet performance standards? How is the data's 

integrity maintained ? 

To view the structures as a knowledge base is to be concerned with 

knowledge-level issues: What do the data structures tell us about the world? What 

kinds of knowledge are represented ? What does the system know at any time ? 

What follows from what it knows ? 

Traditional databases, however, are primitive when viewed from the 

knowledge-level. Their expressive powers are weak; they are limited to positive 

instances of predicates and relations of individuals, and they exclude disjunction and 
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negation. Their inferencing capabilities are restricted to retrieval and the elements of 

reasoning are numerical comparisons and counting. 

From the database perspective, however, knowledge bases are primitive. They 

are not particularly large, and they tend to be bound to applications; therefore they 

are not as public nor as persistent as databases. 

Database and knowledge-based technologies can no longer ignore each other. 

Knowledge is information at a higher level of abstraction, typically generated by 

experts in some domain of expertise. The knowledge is used to define, control, and 

interpret data. 

DBMSs provide two kinds of knowledge representation capabilities: extensional 

( explicitly stored facts in the database ) and intensional ( defined as views or by 

queries over the stored database). 

Extensional knowledge includes the stored facts ( specific facts about individual 

objects, e.g. airplane no. KRT123 consumed 3000 gallons of fuel on May 17 ); and 

metadata ( schemas that describe general facts about classes of objects, e.g. air

planes consume fuel on missions). Extensional knowledge is represented using the 

data model of the DBMS. 

Intensional knowledge is a collection of constraints (e.g. an airplane can be 

scheduled on a mission only in its range) and rules for deriving new data (facts) 

from stored data. In existing DBMSs, these rules are expressed as view definitions in 

the query language. The key problem in knowledge representation in DBMSs is that 

existing languages are too weak to capture all the essential intensional knowledge. 

Specifically, since existing query languages are first order, they are incapable of 

expressing recursion. As a result, this knowledge has to be embedded in application 

programs, and is unavailable to the DBMSs for optimization. On the other hand, 

logic-based AI languages such as PROLOG do permit recursive definition in rules. 

AI applications requires not only the representation of complex objects such as 
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lists, trees; but also the representation of frames which incorporate both structural 

and procedural knowledge. They need the storage of facts and rules so as to be 

shared. They require the ability to introduce new object types, add new attributes 

and methods to existing objects and also add new specialization to existing types. 

They require access to objects from their key properties and access from object to 

related objects [Gray88]. 

As computers tackle new tasks in new domains, a new way of thinking about 

databases is required. A shift from the view of data as values - sets of uniformly for

matted data types - to a view of data as chunks of knowledge. In object-orientation, 

( see chapter five ) the chunks are viewed not as passive objects merely to be stored, 

retrieved, and manipulated, but as active objects. The stored object has declarative 

and procedural knowledge. The database user makes requests of an object, and it 

responds on the basis of its knowledge. 
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3.3 Limitations of the Classical Models and their Implementations 

3.3.1 Record-Orientation 

Record structures reflect the attempt to fmd efficient ways to process data 

They do not reflect the natural structure of information. Historically, database sys

tems evolved as generalized access methods. They address the issues of enabling 

independent programs to cooperate in accessing the same data. As a result, most 

database systems emphasize the questions of how data may be stored or accessed, 

but they ignore the question of what the data means to the people who use it. The 

record-based approach is such an ingrained habit of thought that most of us fail to 

see the limitation it forces on us. It didn't matter in the past, because business appli

cations was record processing almost by definition. Much of the meaning of a 

record is supplied by the mind of the user, who intuits many real world implications 

which naturally follow from the data. If we look at the semantics which inherently 

reside in the record construct, we find the following presumptions about the nature 

of information: 

* Any thing has exactly one type -- because a record has exactly one record 

type. We are not prepared for multiple answers to" what kind of thing is that?" 

* All things of the same type have exactly the same naming conventions and the 

same kind of attributes -- because all records of the same type have the same fields. 

* The kinds of names and attributes applicable to an entity are always predict

able and don't change much -- because our systems presume stable record descrip

tion in the catalog or dictionary. 

* There is a natural and necessary distinction between data and data descrip

tions. We are accustomed to having record descriptions in catalogs and programs 

quite separate and different from data files. 

* The name of the relationship occurring between two entities is not 
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information, since it does not occur in the data file. 

* A record, being the unit of creation and destruction, naturally represents one 

entity. Any thing not represented by a record is not an entity. 

* Such entities are the only things about which we have data. The key field of a 

record identifies one such entity; all other fields provide information about that 

entity and not about any other entity. 

* All entities have identifiers. Or at least, all entities are distinguishable from 

each other. For any two entities we must know some fact which is different about 

them, which we can use to tell them apart. 

* Each kind of fact about an entity always involves entities or attribute values 

of a single type. We don't expect different kinds of entities to occur in the 

"employer" fields of two people's records; the record system does not have any way 

of telling us which type is occurring in that field for a particular record occurrence. 

* The entities or attribute values involved in a given kind of fact all have the 

same form of name representation. We do not have selfdescribing records which tell 

us which data type or format is being used in this particular record occurrence. 

* There is an essential difference between entities and attribute values, and 

between relationships and attributes. The difference seems to correlate with the 

things which are or aren't represented by records. If there is a record, then the thing 

it represents is an entity, and a reference to it in a field comprises a relationship. 

But if there is no separate record for the thing, then a reference to it involves nei

ther an entity nor a relationship; it is simply an attribute value. 

* Relationships are not distinct constructs to be represented in a uniform way. 

Many-ta-many relationships are usually entities in their own right. And the associa

tions implied by multivalued attributes are also entities, even though they are not 

relationships. This all follows from being represented by distinct records. But one-
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to-many relationships are usually not entities. 

3.3.2 Type Definition 

Most database systems supply a fixed set of primitive types such as integers, 

reals, and character strings and perhaps a few specialized types such as date and 

money. However, the lack of abstract data types in the current systems is perhaps 

the most significant type of weakness. There is no way to define a new abstract type 

in terms of its abstract properties and then define its implementation in terms of 

existing types. This kind of abstraction becomes even more important for complex 

objects that represent spatial and temporal data. 

The constructors for higher-level types are also limited. The relational model 

supports tuples and sets of homogeneous tuples (relations). The hierarchical model 

supports segments and trees of segments, the network model has records and owned 

lists of records (CODASYL set). A value in a record itself can not be a structured 

data item , except for limited support of repeating fields. 

The operations for higher-level types are induced by the type constructors and 

can not be extended. The operators are similar in the models: access or set a field 

in a tuple, segment or record; traverse a relation, tree or list in some order; select a 

record from a structured data item based on boolean condition. In addition, the rela

tional model supports operations on entire relations such as project or join. Even so 

the set of operations can not be augmented within the database systems. 

Database systems do not separate cleanly the type definition from data declara

tion. For example, in relational systems, it is seldom to define a relation type 

(scheme) independently of declaring a relation to be of that type. Thus redundant 

specification is necessary to declare several relations as instances of that type. 
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3.3.3 Structural Limitations 

The data structuring capabilities of current database systems do not adequately 

support the complexity and variation that occur in the real world. Records of a given 

type must be identical in the structure. Every record of a given type must have the 

same fields and a field must draw its values from the same type in each record. At 

best there is allowance for null values or missing fields. 

3.3.4 Modeling Power 

Whenever data structures in a database system will not support the actual 

structure of information in the real-world - then the form of the real-world infor

mation gets over-simplified in the database, or it must be encoded into the available 

data structures. If the structure of the real-world is over-simplified, the utility and 

reliability of data is compromised. For example, if a database scheme only allows for 

a single name middle name, two people who are distinguished by middle name 

might become indistinguishable in the database. When information is encoded, such 

as flattening a set-valued field into several tuples, applications programs must deal 

with the encoding. Encoding information also means that a database needs extra 

integrity constraints to ensure that only legitimate encodings appear. 

In the relational model we have ambiguity of the concept of key. The concept 

of key which plays the double role of identifying and describing entities is based 

upon two premises, that is, first an entity is identified by a selected set of attributes, 

and second, the selection can be made not for each individual entity but for type of 

entities. 

In the relational model, by definition, relations represent relationships among 

domains. This means that, at instance level, tuples assert facts about attnbute 

values. A close look at the relational calculus reveals that tuples are actually treated 

as objects rather than facts as firstly, they maintain identities through changes of 
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nonkey attribute values, and secondly, quantifications are applied not to attribute but 

to tuple variables. 

Commercial database systems have not supported a hierarchy of types. We can 

not exploit the similarities between say, employees and managers so as define com

mon operations. Type hierarchies are common in AI systems as have been suggested 

for data modeling by Smith and Smith[SmSm77]. 

Another problem with current systems is that update commands are machine

oriented commands which insert, delete, and modify parts of data items. Such 

changes do not necessarily correspond to any possible change in the real world, such 

as changing an employee's birthdate. Changes in the real world typically involve 

updates to several database objects. Hiring an employee could involve insertions in 

several relations. Being able to model real world changes is a powerful capability for 

a database system. 

3.3.5 Separation of Languages 

In the past, computer systems have placed more emphasis on programs than 

data. That focus manifests itself in the design of traditional programming languages, 

where data that exists for the life of the program (variables) is treated differently 

from data that persists after execution (files). Files generally provide for much less 

data structure that program variables, requiring user-generated encodings for struc

tured values written to meso In the database world, data manipulation languages do 

not support arbitrary computation on database objects, necessitating an interface to 

a general-purpose programming language. One language must be embedded in the 

other. The problem with having two languages is impedance mismatch. One 

mismatch is conceptual - the data language and the programming languages might 

support widely different programming paradigms. One could be declarative language 

while the other is procedural. The other mismatch is structural - the languages do 
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not support the same data types, so more structure is reflected back at the interface. 

For example, we can access a relational database using QUEL from C, but when the 

time comes to do some computation, C can only operate at the tuple level. The rela

tional structure is lost. 
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Early database research concentrated on the physical structure of the database. 

Uttle attention was given to the user's perception of the data. The hierarchical and 

network models offer the user the means to navigate the database at the record 

level. The relational model adds a data structure level, eliminating the necessity of 

performing record level manipulation of the database. Modeling capabilities with 

these classical models are still closely related to the record structure of the database. 

In the middle of the seventies, researchers attempted to simplify the design and 

use of databases by providing modeling structures that were capable of supporting 

the user's view of the data [Chen76], [SmSm77]. In response, a wide literature on 

semantic data modeling has arisen and several specific semantic data models have 

been proposed. Many of these models were introduced as schema design aids. For 

this reason the predominant emphasis was placed on providing explicit representa

tion for much of the meaning associated with data in a database. A schema could 

first be designed in a high-level semantic model and then translated into one of the 

traditional models for ultimate implementation [MacG85], [Lyng86], [Lyng87], 

[Rumb88]. The emphasis of the initial semantic models was to provide mechanisms 

and constructs that mirror the prevalent kinds of relationships that arise frequently 

in typical database applications. Semantic models provide a richer set of data 

abstraction primitives for specifying databases than record-oriented models. Thus, 

semantic models simplify database conceptual design in that they allow the designer 

to easily capture more of the meaning or semantics of an application environment. 

This is where the name "semantic modeling" comes from. 

Four principles of semantic database modeling can be identified. The most 
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basic is that data about objects, and relationships between them, should be modeled 

in a direct manner. As first introduced by the Entity Relationship Model [Chen76], 

such entity-based modeling allows the database designer and users to think in terms 

of their objects without the indirection resulting from the symbolic identifier necessi

tated by records and pointers. As highlighted by the Functional Data Model, a 

second basic precept of semantic modeling is that many relationships recorded in a 

database are functional in nature. Such relationships have also been termed 

"has _attributes". A third precept is the significance of the IS _A relationships, which 

specify the fact that one set of objects must be a subset of another set of objects as 

illustrated in figure 4.1.a. The final precept of semantic data modeling is to provide 

hierarchical mechanisms for building object types out of other object types. Perhaps 

the best known of these are aggregation (i.e. cartesian product) and grouping or 

association (i.e. finitary power set). For example automobile might be the aggrega

tion of motor, body, wheels; and motor might be the aggregation of engine, radiator 

and battery, as illustrated in figure 4.1.b. As an example of grouping or association 

we have the means of transport of Paul's family as illustrated in figure 4.1.c. 

The field of semantic modeling has begun to draw interest as more than just a 

conceptual design and documentation tool and is now being studied all along the 

research spectrum from theoretical analysis to physical design [Chan82], [King84] , 

[Fram85], [Nix087], [AbHu87]. A Database Management System based on a seman

tic model will facilitate the design and use of databases by producing modeling struc

tures that are capable of supporting the user's view of the data However, one prob

lem inherent in modeling any subset of the real world is the difference between the 

human's perception of the enterprise and the computer's need to organize the struc

ture in a particular way for efficient storage and performance. 
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means of transportation 

Figure 4.1.a Generalization Hierarchy 

Figure 4.1.b An Aggregation Hierarchy 

4.2 Semantic models and AI formalisms 

Semantic modeling has its roots in semantic network research in artificial 

intelligence. A semantic network models knowledge as a collection of objects. The 

objects are interrelated by three types of relationships (is-a, is-instance-of, is-part) 

representing subtypes, memberships, and attributes. The major differences between 

semantic networks and semantic data models are that semantic networks mix 

schema and data and they do not provide a convenient way of abstracting the struc

ture of data from the data itself. In a database a separate schema is necessary for 
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aircrafts _ ofyaul's Jamily 

Figure 4.1.c An Association Hierarchy 

handling a large amount of similarly structured data. Another difference is that a 

semantic network generally does not embody a data manipulation language. 

4.3 Semantic models and OOPL 

Semantic modeling relates to work in abstract data types and object

oriented programming. Semantic models encapsulate structural aspects of objects, 

whereas object-oriented languages encapsulate behavioral aspects of objects. 

Object-oriented languages are characterized by three principal features. (1) Explicit 

representation of object classes. Objects are identified by surrogates rather than 

their values. (2) Encapsulation of operations within objects. (3) Inheritance of 

methods from one class to another. The major difference between object-oriented 

models and semantic models are : (1) object-oriented models do not have the rich 

type constructors of semantic models. (2) the inheritance of methods is different 

from the inheritance of attributes. Semantic modeling differs from abstract data 

types in that an abstract data type operator is typically associated with only a single 
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type of object. A semantic model, on the other hand, typically supports operators 

which may be used directly to relate objects of different types. 

4.4 Advantages of semantic data models 

Semantically based data models and systems provide the following advantages 

over traditional, record-oriented systems. 

(1) Increased separation of conceptual and physical components 

In the record-oriented models the access paths available to end users tend 

to mimic the logical structure of the database schema directly. In the relational 

model a user must simulate pointers by comparing identifiers in order to traverse 

from one relation to another. In contrast the attributes of semantic models may be 

used as direct conceptual pointers. 

(2) Semantic overloading 

Semantic models provide several constructs for representing data interre

lationships whereas record-oriented models provide just two or three constructs for 

representing such interrelationships. As a result, constructs in record-oriented 

models are semantically overloaded. In the absence of integrity constraints the data 

structuring primitives of the relational model are not sufficient to model the dif

ferent types of commonly arising data relationships accurately. A primary objective 

of many semantic models has been to provide a coherent family of constructs for 

representing in a structural manner the kinds of information that the relational 

model can represent only through constraints. Indeed, semantic modeling can be 

viewed as having shifted a substantial amount of schema information from the con

straint side to the structure side. 
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(3) Abstraction mechanism 

Semantic models provide a variety of convenient mechanisms for viewing 

and accessing the schema at different levels of abstraction. One dimension of 

abstraction provided by these models concerns the level of detail at which portions 

of a schema can be viewed. On the most abstract level, only object types and is-a 

relationships are considered. At a lower level the structure of complex objects is 

considered. At further lower levels details about attributes and derivation rules are 

considered. A second dimension of the abstraction provided by semantic models is 

the degree of modularity they provide. Information about a given type, its subtypes, 

and its attributes can be easily isolated. Semantic connections can be easily followed 

to find closely associated object types. The above mechanisms are very useful in 

schema design and browsing. A third dimension of abstraction is provided by 

derived schema components, that permit the user to identify a specific subset of the 

data. 

Examples in figure 4.1.d and figure 4.1.e summarize the abstraction concepts 

and provide an example based on the integrated abstraction concepts respectively. 
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4.5 Prominent Semantic Models 

Semantic models can be classified into the following categories:-

1) Extensions of the relational database model 

2) Binary database model 

3) Functional database models 

4) Entity / Association database models 

5) Behavioral database models 

4.5.1 Extensions of the relational database model 

4.5.1.a ~~ 

RM/T (Tasmanian model) [Codd79] is an extension of Codd's relational 

model [Codd70], attempting to capture more meaning in a conceptual model 

through the introduction of relationships and integrity rules. The relational model 

provides a tabular conceptual model in which all relationships between the tables are 

dynamically formed on the basis of data values in the tables. RM/T represents a 

means of enhancing the semantic expressiveness of the relational model while main

taining its fundamental character. For example, a type is represented by a unary 

relation that contains a symbolic unique identifier for every type member. Attributes 

of type members are represented in a separate n-ary relation that relates every 

unique identifier with a set of values for its attributes. 

The orientation of this model is model is slightly different from that of other 

semantic models. RM/T arose out of the desire to handle database inconsistencies 

arising from insertion and deletion of tuples connected through interrelational 
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dependencies. Thus the model is information structure oriented, as is the relational 

model. Most other semantic data models provide similar modeling abstractions, but 

at the higher, conceptual level distinct from the underlying information structures. 

RM/T, however, still qualifies as a semantic model since the deflnition of these 

semantics not only gives more meaning to these relationships, but provides the data 

structures necessary to utilize the ususal data modeling abstractions. 

This model, however, lacks the encapsulation of structure and behaviour, and 

modeling of complex objects with unpredictable structure. 

4.S.1.b GEM 

This model support entities and relationships as well as subtyping and 

non_atomic attributes. GEM [Zani83][Tsur84] is an attempt to provide a semantic 

front end that is compatible with existing relational DBMSs and to assess the useful

ness of relational database machines in supporting semantic models. like RM/T, 

this model lacks treatment of complex objects with unpredictable structure as well as 

encapsulation aspects. 

4.S.2 Binary database models 

The binary models attempt to supply a small universal set of constructs 

that are used to build more powerful structures. These models are based on the 

notion of "object-relationship-object". The structure of such models contains a collec

tion of nodes and a set of binary links connecting them. Binary database models 

represent and treat data and the description of data uniformly. The binary relation

ship approach is appropriate to logic-based and fact-based systems as well as func

tional database systems. Interest in a binary approach arose from an awareness of 

the inadequacies of the record oriented approach. These inadequacies include the 
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following three points: (1) The record-oriented approach attempts to represent non

homogeneous objects (entity sets and relationship sets ) in a homogeneous structure, 

the record or relation. (2) The relational approach represents a single type of object 

- the relationship - in various ways e.g. as an attribute, as a relation, and as a foreign 

key. (3) A particular object may be represented in one way as an attribute in one 

context, and in another way as an entity in some other context. The binary relation

ship approach does not have these limitations; its primary advantage is its generality 

and flexibility. Many things are simpler when we can deal with things pairwise, two 

at a time. Binary relations fit a simple linguistic model, two objects connected by a 

relating verb: people own cars, employees are assigned to departments, etc. They 

also lend themselves to a natural picture; a line connecting two points or nodes 

People ._own __ . cars 

However,the binary approach forces everything into this pattern, even when 

more than two things are involved. This exploits the fact that relationships are them

selves entities, which can then in turn be related to other things. So, if three things 

are involved, we first link two of them to generate a new entity, which then gets 

linked to the third thing. There happen to be three ways of doing this. And the 

structures get more complex than they need to be, especially if even more than three 

things are involved. Another disadvantage with this approach is the difficulty of 

implementing efficient systems to manage data represented in this way. 

The representative example in this family is SBDM [Abri74]. 
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4.5.3 Functional database models 

The functional data model DAPLEX was developed by Shipman [Ship81]. It is 

based on the notion of entities and functions from entities to entities. The signifi

cant contribution of the model is that it combines the computational power of appli

cation programming with the data defInition and abstraction facilities provided by 

the database languages. The ideas of Shipman are based on the artificial intelligence 

notion of a semantic net. This is a structure which is used to represent association 

between objects. For each object of a given type there is a corresponding collection 

of functions which are applicable to it. Some of these provide a single value, but the 

results of others are found by following arcs in the net, which connect objects to 

other objects of various types. Functions can be applied in turn to these objects, thus 

exploring a network of associations. Usually the network is represented as a list 

structure with many pointers. The essential difference from relations is that instead 

of a set of explicit object data values we have a set of nameless objects whose pro

perties may be given either as data values or as pointers to other objects. The pro

perties can be obtained only through function application and if the results point to 

other objects, then further functions must be applied, thus resulting in a composition 

of functions. 

The notion of a function is basic in mathematics. Functions may take objects of 

one type and produce a result of another type. The functional model generalizes the 

idea that the result is functionally dependent on the arguments, but it does not 

specify the precise representation of the arguments or results, only their types. The 

functional model works in two classes of items - entities and scalar values. Scalar 

values are single atomic values which have a literal representation. An entity is some 

form of token identifying a unique object in the database and usually representing a 

unique object in the universe of discourse. Thus two entities with identical com

ponent values can still be distinguished by having distinct references. Functions 
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defined over entities may return scalar values, entities or set entities. The data 

language DAPlEX [ShipS1] was the first data definition and access language formu

lated entirely in the high-level terms provided by an object-oriented semantic data

base model. The most appealing property of the functional data model is its attrac

tive and simple query facility based on functional composition. ADAPlEX [Chan83] 

is an experiment in efficiently implementing a semantic database using general

purpose operating system ftles and in embedding a semantic database language 

DAPIEX in the programmming language Ada. 

The functional model is related to abstract data types. The notion of abstract 

data types is that a type is defined implicitly by the operations on it; only these 

operations are allowed to be applied to instances of that type, and only these opera

tions have access to its inner structure and know the details of its representation. 

The functional data model uses this approach to define an entity. Instead of saying 

that it is represented by a record with certain contents, or by a tuple in a B-tree, it 

says which functions are defmed on it. The functional model supports generalization 

which gives a hierarchy of subtypes and aggregation. 

The functional model removes the sharp distinction between data and program 

and especially between objects in secondary storage and objects created in memory 

during the running of a program. We have just two kinds of functions : computable 

functions, like sum, max, etc which are better not tabulated, and stored functions, 

like Name(Person), which are not easily calculated. The functional model is related 

to the binary model, and thus allows one to add extra binary relations, representing 

new entities or relationships after the database has been in use for some time and 

hence providing extensibility. The EFDM [Kulk86] used a persistent language (PS

Alogl) as database implementation tool for an extended functional data model. 

DAPIEX has served as the basis of several object-oriented data models including 

IRIS [Fish86], Exodus [Care88], PDM [Man086], which will be discussed in chapter 
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six. 

4.5.4 Entity/Association database models 

ER, SDM, and SAM* data models defme a database as a collection of 

entities and relationships among entities. Typically a diagrammatic technique 

represents database schemas, and contains different sets of nodes and arcs 

corresponding to entities and kinds of interrelationships. Certain abstraction and 

information encapsulation primitives are utilized to organize database schemas, to 

support conceptual database design, or to provide a meaning_based user interface. 

4.5.4.a Entity-Relationship Model 

The Entity-Relationship (ER) Model,was proposed by [Chen76] as a 

schema design aid, permitting users to design schemas using a high-level object

based approach. The primary modeling constructs are the entity and the relation

ships. Schemas of this model have a graph-based representation and consist of types 

and relationships interconnecting these types, along with printable attributes of the 

types and relationships. The model provides strong support for a multiplicity of con

straints (1: 1,many: 1,many:many). The ER schemas are translated into either the 

relational or the network model. The only abstraction directly supported in the origi

nal ER model is aggregation, although there are proposals to extend the model to 

include generalization [Teor86), categorization [Elma85), Object-Orientation 

[Nava88b). 
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4.S.4.b SDM 

SDM [Hamm81] introduces a single abstraction, the class, to incorporate 

a wide range of modeling constructs. The intent is to permit the database designer 

to express the meaning of the database clearly with mechanisms designed to map 

directly onto the designer's concepts. Where most other semantic models provide 

primitives from which the designer can construct more conceptual objects, SDM 

attempts to offer a full set of modeling facilities. Classification and association have 

greater emphasis in SDM than aggregation and generalization An SDM database is 

a collection of instances organized into classes or types. The designer dermes classes 

and within this framework specifies member and class attributes, interclass connec

tions, and derivations. SIM is a subset of this model which was implemented recently 

by Unisys. This model, however, lacks behaviour and encapsulation aspects. 

4.S.4.c SAM* 

SAM· [Su 86] is a semantic model designed originally for scientific -sta

tistical databases and later extended to explicitly support computer-integrated 

manufacturing applications. In the SAM· the database can be modeled by a network 

of interrelated concepts. There are two types of concepts: atomic and non-atomic. 

An atomic concept, which can not be decomposed, is an observable physical object, 

abstract object, event, or any data element that the database user regards as a fun

damental information unit. That is, its meaning is assumed to be commonly under

stood, and thus, it does not need to be defined in terms of other concepts. A nona

tomic concept is a physical object, an abstract object, or an event whose meaning is 

described or defined in terms of other atomic or nonatomic concepts. To meet the 

requirements of CIM the following types and their operations are built into SAM· : 

(1) sets (ordered and unordered ), (2) vectors and matrices, (3) time and time

series, (4) text, (5) G-relations (generalized relations). 
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The G-relation is an extended relation whose attributes may be of any valid 

SAM· types, including relation. Seven association types are distinguished in SAM * . 

(1) Membership association (M):- used to define a domain of values, i.e. to 

group together a set of similar atomic concepts. The types of these concepts 

can be simple or complex. 

(2) Aggregation association (A):- used to define an object type ( atomic or 

nonatomic) as a grouping of a set of characteristic attributes. Each attribute is 

usually defmed by an M-association. It can also be any other association type. 

(3) Interaction association (1):- if a set of events or facts are the result of some 

interactions (actions or relationships) among the occurrences of independent 

entity types defined by an aggregation association, then the entity types can be 

grouped together to form an interaction association. 

(4) Generalization association (0):- used to group objects together according 

to their generic nature to form a more general concept type in a similar way to 

the generalization abstraction mechanism. 

(5) Composition association (C):- a grouping together of similar or dissimilar 

object types to form a more general concept type. It is used to model the 

semantics of IS-PART-OF, i.e. aggregation abstraction mechanism. The com

position association groups together concept types, while the aggregation associ

ation groups together attributes. 

(6) Crossproduct association(R) :- a grouping of some concept types to form a 

new concept, the occurrences of which are the occurrences of the cross-product 

of the component concept types. 

(7) Summarization association (S):- essentially useful in statistical databases, it 

is used in conjunction with the cross-product association. This model also lacks 

encapsulation aspects. 
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4.5.5 Behavioral database models 

4.5.5.a The Event Data Model 

The Event Model [King82] is a semantic data model that defines the con

cept of 'events' to model database dynamics. This model provides integrated facili

ties for database specification, design, and manipulation. A subtype relationship is 

used to organize the static schema into a set of hierarchies. Membership in a sub

type is defined using predicates evaluated on attributes. This model is not appropri

ate for applications in which the flow of information is not fixed or routine. 

4.5.5.b SUM + 

The Extended Semantic Hierarchy Model (SHM +) [Brod84] is a 

behavioral database model addressing the problem of modeling the static and 

dynamic portion of an application. Specification of data objects and associated tran

sactions are performed using an abstract data type philosophy. The basic modeling 

constructs of SHM + are primitive objects and operations, composition rules for 

hierarchically forming more complex objects and operations, and constraints to be 

applied to all primitives, composition rules, and hierarchies. The most important 

aspects of SHM + are its contribution to dynamic data modeling and a consistent 

modeling methodology for both dynamic and static schemas. 

4.5.5.c TAXIS 

TAXIS [Borg85] is a language for the design of interactive database sys

terns that places emphasis on classification and generalization/specialization hierar

chies. The data model combines ideas from programming languages and database 

theory in order to support the following capabilities: (1) data encapsulation (2) 

semantic data modeling. Specialization is extended from the static to dynamic 
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portion of the database definition. Transactions are modeled as classes within the 

same taxonomic framework as object classes. Transactions are therefore closely 

related to the abstraction hierarchy of the data with refmement by specialization. 

4.6 Summary 

Although there are thus many conceptual modeling approaches they agree that 

the main objective of semantic data modeling is to facilitate the modeling of and use 

of the database. They also agree that two important steps towards this objective are 

that a semantic model should provide relationships between objects that support the 

manner in which the user perceives the real world, and that, for these relationships, 

a semantic model should contain semantics that specify the acceptable states, transi

tions, and responses of the database system. 

The model developers vary in their perceptions of the following: 

(i) whether models should be application independent or targeted toward specific 

environments, such as SAM·. 

(ii) whether the relationships should be highly developed packages with all semantics 

built in (insertion/deletion constraints, cardinality constraints, etc.) as in SAM* or 

whether the database designer should have the option to specify the semantics of 

each relationship in an explicit manner as in ER. 

(iii) whether relationships should be complex or primitive in their structure such as 

binary models. 

(iv) whether relationships are distinguished from entities at the conceptual level. In 

ER models relationships act as primary modeling elements with semantics which 

differ from those of entities. On the other hand, in the functional model both enti

ties and relationships are represented as functions. 

(v) which abstraction (e.g. classification, aggregation, generalization ) should be 
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emphasised. Certain models stress one or two abstraction as their primary modeling 

tools. SDM for example makes heavy use of classification and aggregation, whereas 

TAXIS stresses generalization hierarchies. 

(vi) what approaches to dynamic modeling should be followed. SAM· provides 

abstract data types, in contrast to the generalization hierarchy approach in TAXIS 

and the flow of information approach of the event model. 

Object-oriented database models which will be discussed in chapter six are fun

damentally different from semantic models in that they support forms of local 

behaviour in a manner similar to object-oriented programming languages. This 

means that a database entity may locally encapsulate a complex procedure or func

tion for specifying the calculation of a data operation. This gives the database user 

the capability of expressing, in an elegant fashion, a wider class of derived informa

tion than can be expressed in semantic models. On the other hand, object-oriented 

models are similar to semantic models in that they provide mechanisms for con

structing complex data by interrelating objects. 
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Object-Oriented models have appeared under many different guises. They have 

evolved independently in the areas of programming languages, database systems, and 

knowledge representation [Gutt80], [Card85], [Stef86], [Pete87], [Schr87], [Stro88], 

[Meye88], [Thom89], [Maie86], [Blo087], [Kim89], [Atki89], [Sheu88], [Pate90). Only 

in the past few years have researchers in these areas recognized the similarities and 

differences among object-oriented paradigms. 

In sections 5.2-5.4 we present the evolution of object-oriented models in each of 

these computer science disciplines including a discussion of unique features and limi

tations. Then in section 5.5 we discuss the basic concepts of the object-oriented 

paradigm and the implications of introducing these concepts in the database field. 

Section 5.6 concludes the chapter by commenting on the limitations of the object

oriented paradigm. 

5.2 Object-Orientation in Programming Languages 

Statements, modules, and types are associated with three distinct paradigms of 

computation, namely the state transition, communication, and classification para

digms. The state transition paradigm views a computation as a sequence of states 

that are transformed by computation. The communication paradigm views the world 

as a collection of communicating agents. The classification paradigm views compu

tation as a classification process that progressively refmes the class in which a value 

must lie. Object-Oriented programming languages (OOPL) are characterized by 

their methods for structuring and processing data Class data structures are the main 

data type, and hierarchies of classes and subclasses are constructed using language 
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primitives. Classes are instantiated to produce specific instances of class objects. A 

goal of OOPL, derived from the study of data abstraction, is to manage class objects 

as self contained entities or objects. Objects interact with each other through well

defined interfaces. A class is defined by its own attributes and also inherits attri

butes from its superclasses. likewise, subclasses inherit procedures for manipulating 

instances. The internal structure of objects, and methods for processing objects are 

hidden within an object's defInition, realizing the concept of abstract data types 

(ADT). 

Simula, developed in 1967 as an extension of Algol-60, is one of the pioneer 

OOPL The successor to Simula and purest OOPL is Smalltalk [Gold83]. Unlike its 

predecessor which includes traditional data types as integers, reals, strings and 

arrays, the only data types which Smalltalk supports are classes and instances. The 

internals of an object, namely its properties and processing routines, are hidden from 

other objects. In Smalltalk all computations are performed by message transmission, 

therefore the message-passing paradigm has come to be closely associated with 

OOPL;. 

An OOPL entails other features such as overloading, late-binding, and interac

tive interfaces. These capabilities however further describe the functionality of an 

OOPL, they are not requisite definitional properties such as object-identity, data 

abstraction, property and method inheritance, and message-passing. 

S.3 Object-Orientation in Knowledge-Based Systems 

Knowledge-Based systems allow us to organize the explicit knowledge of 

experts about a given universe of discourse not only to retrieve the explicit 

knowledge, but also to extract implicit knowledge by means of an inference mechan

ism. 

The general notion of an object in the sense of modeling real-world 
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phenomena, then, clearly applies to knowledge-based systems as well. Experts iden

tify the entities of interest in the universe of discourse, and state facts and general 

rules about them. 

According to Mylopoulos [Mylo84], knowledge representation considers the 

world as a collection of individuals and as a collection of relationships that exist 

between them. The collection of all individuals and relationships between them at 

anyone time constitutes a state, and there can be state transformations that cause 

the creation and destruction of individuals or that change relationships between 

them. Depending on whether the starting point for a representation scheme is 

individuals/relationships, true assertions about states, or state transformations, we 

have a network, logical, or procedural scheme. 

Logical representation schemes employ the notion of constant, variable, func

tion, predicate, logical connectives to represent assertions about states as logical for

mulas. An important advantage of these schemes is the availability of inference rules 

in which one can define proof procedures for information retrieval, semantic con

straint checking, and problem solving. The most serious drawback is the lack of 

organisational principles which keeps structure from being imposed on the set of 

axioms, so that a flat knowledge base of several thousands axioms becomes unintelli

gible to a reader. 

Procedural representation schemes view a knowledge base as a collection of 

active agents or processes. In doing so they deal with two issues : the activation 

mechanism offered for processes, and the control structures for them. Thus the 

knowledge base contains assertions and a collection of demons that watch over it 

and are ac~ivated whenever the database is modified. The control structures have to 

deal with search and backtracking strategies. As a draw back , procedural schemes 

are difficult to understand and modify. 

A semantic network represents knowledge in terms of a collection of objects 
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(nodes) and binary assertions (edges), where the former stands for individuals or 

concepts, and the latter stands for binary relationships over them. Many of the con

cepts like classification, generalization, inheritance have arisen in semantic networks 

so as to provide organisation for knowledge. 

Frame-based representation languages result from research into semantic net

works. A frame is a complex data structure for representing a stereotypical situation. 

The frame has slots for the objects that play a role in the stereotypical situation, as 

well as relations between these slots. Attached to each frame are different kinds of 

information such as how to use it, what to do if something unexpected happens, and 

default values for slots. What differentiates frame languages from database 

languages is inheritance. What also distinguishes frame languages from database 

languages is that certain inference mechanisms can be associated with frames, and 

automatic classification of new objects may be provided. 

Frames [Mins75] represent a way to combine declarations and procedures 

within a knowledge representation environment. The fundamental organizing princi

ple underlying frame systems is the package of knowledge. In packaging and 

representing knowledge, frames provide five major functions. These functions are: 

(1) Naming: A unique name is assigned to each object. (2) Describing: The body of 

an object is composed of a number of attributes that have values. The attributes 

describe properties of the object or link different objects together. (3) Organizing: 

Each object except the top-level in the hierarchy has one or more parents, providing 

an inheritance mechanism. (4) Relating: the values of object attributes may be other 

objects. Objects may thus be related by having one object as the value of an attri

bute in another object. Objects may also be related to rules. (5) Constraining: Each 

attribute in an object may have attached predicates, which are invoked whenever the 

attribute is read or modified. 
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5.4 Object-Orientation in Database Systems 

In the field of databases "object-oriented" used to be synonymous with "entity

oriented" and is best contrasted with the relational model. In the relational model 

data organisation is based on the mathematical definition of a relation : the cartesian 

product of two or more domains. A database relation modeling a real world situa

tion contains a subset of the crossproducts of domain values of relevant attributes. 

Each element of the subset corresponds to a relation tuple. Data items or tuples are 

accessed primarily by the relation name and secondarily by values of attributes 

within the relation. Tuples in a single relation can only be distinguished by values of 

the composite attributes. To retrieve a complete description of an entity may require 

accessing many relations and selecting only the tuple whose values correspond to 

some key for the entity in question. 

An entity-oriented database, however, associates a unique identifier with a real 

world entity. Data retrieval is based primarily on object identity. Once an entity is 

accessed, attribute values and relationships components can be selected. 

The Entity-Relationship model was originally developed as a database design 

tool to model reality in terms of entities and relationships among entities. Although 

the original goal of the ER model was to conceptually unify the hierarchical, net

work, and relational models [Chen76], the ER model has gained its own recognition 

and is the foundation for many object-oriented database management systems 

(OODBMS) [Ditt87], [Nava88b]. 

Three approaches to object-orientation in databases are identified. These 

include structural, behavioural, and full object-orientation. These approaches are 

characterized as follows:- (1) In structural object-orientation more complex data 

structures are available to model more complex structures of objects in applications. 

Applications manipulate data structures and are sensitive to changes in the struc

tures used to implement the application. (2) Behavioural object-orientation allows 
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applications to be expressed in terms of operators which are semantically meaningful 

to the application domain, but without benefit of complex data structures that might 

improve the efficiency of the application. Applications can be designed in object

oriented fashion, yet implemented with methods that map to conventional data 

storage such as files and relational data structures. Such applications are relatively 

data independent, and enjoy most of the benefits of object-orientation: ease of 

development, extensibility, maintainability, adaptability, etc. They can be migrated 

to more efficient implementation, including various forms of structural object

orientation as they become available, in object-oriented fashion by altering the 

methods that implement the operators. (3) Full object-orientation combines the 

structural and behavioural approaches. These approaches will be discussed in chapter 

six. 



chapter 5 73 

5.5 Basic Features 

In this section we discuss the fundamentals concepts of object-orientation and 

the implications of introducing them in the database field. 

5.5.1 Object Identity 

A fundamental and powerful object-oriented concept is object identity. Object 

identity has long existed in programming languages. The concept is more recent in 

databases [Khos86]. An identity is a "handle" which distinguishes one entity from 

another. In a model with object identity, each object will be given an identity that 

will be permanently associated with the object, immaterial of the object's structural 

or state transitions. For example, each of us as a person undergoes structural or 

state transitions. We grow older, we graduate from several schools and then start a 

professional career. We acquire new attributes such as a spouse, children, or excess 

weight. We might change our name. Yet, no matter how many additional attributes 

we acquire, modify or drop, there is presumably something unique about each one of 

us that is permanently associated with us. 

Object identity brings these characteristics of the real world to languages and 

computation. Without object identity it will be awkward if not impossible to assign 

attributes or instance variables to a self-contained object. Also without object iden

tity it will be awkward to make the same object a component of multiple objects if 

required. 

Most programming and database languages use variable names to distinguish 

objects. This confuses addressability and identity. Addressability is external to an 

object. Its purpose is to provide a way to access an object within a particular 

environment and is therefore environment dependent. Identity is internal to an 

object. Its purpose is to provide a way to represent the individuality of an object 

independently of how it is accessed. Address-based identity in programming 
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languages compromises identity. 

5.5.1.1 Identity in the Relational Model 

In the relational model an identifier key is some subset of the attributes of an 

object that is unique for all objects in the relation. For example, year and model of a 

car. Using identifier keys as object identity confuses identity and data values or 

object state. There are three problems with this approach: 

Modifying identifier keys: 

Identifier keys will not be allowed to change, even though they are user

specified descriptive data. For example, a department's name may be used as the 

identifier key for that department and replicated in employee objects to indicate 

where the employee works. But the department name may need to change under a 

company reorganisation, causing a discontinuity in identity for the department as 

well as update problems in all objects that refer to it. 

Non-uniformity: 

The choice of which attributes to use for an identifier key may need to change. 

For example, Company X may use employee numbers to identify employees, while 

Company Y may use social security numbers for the same purpose. A merger of the 

two companies would require one of these keys to change, causing a discontinuity in 

identity for the employees of one of the companies. 
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Unnatural join: 

The use of identifier keys causes joins to be used in retrievals instead of path 

expressions, which are simpler. For example, suppose we have an employee relation 

Employee(EmpName,SS#,Salary,CompName) and a company relation 

Company(Name,Budget,Location) and the CompName attribute establishes relation

ships between an employee and a company. Using identifier keys, CompName would 

have as its value the identifier key of the company, for example, Name. A retrieval 

involving both tuples would require a join between the two tuples. 

For example, in SQL to retrieve for all employees the employee name and the 

location the employee works in, we would use 

SELECf Employee.EmpName, Company. Location 

FROM Employee, Company 

WHERE Employee.CompName = Company.Name 

The point here is that joins are unnatural; in most cases what the user really 

Wants instead of the CompName is the actual company tuple. With normalization 

the user is restricted to a fixed collection of base types and is not allowed to assign 

and manipulate tuples, relations, or other complex object types of attributes. Hence, 

normalization loses the semantic connectives amongst objects in the database. In 

fact, relational languages such as SQL incorporate additional capabilities like foreign 

key constraints to recapture the lost semantics. 

Non-First Normal Form Models allow a more direct and intuitive representa

tion of object spaces. Consider the normalized representation of persons with 

Spouses, education, and children as described in figure S.2.1.a. If we allow relation

Valued attributes, we can have a more compact representation for Education, which 

becomes a nested relation [Sch086]. This is illustrated in figure S.2.1.b. However, 
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the children are still represented separately, since each child pertains to both 

parents. Furthermore, the spouses refer to each other through a foreign key. 

Persons Name Age Address Spouse 

John 35 20 Park Road Mary 
Mary 32 20 Park Road John 

Education Person Degree University Year 

John M.Sc. Leeds 1981 

John Ph.D. York 1985 

Mary M.Sc. Manchester 1979 
Mary Ph.D. York 1986 

Children Person CName CAge 

John Tim 5 
John Jane 3 
Mary Tim 5 
Mary Jane 3 

Figure 5.2.1.a Normalized representation of persons with spouses, children and education 

In the vast majority of cases the user wants to directly reference the Children, 

Spouses and Education of a person. The first normal form constraint of the rela

tional model forces the programmer to normalize everything. Non-First Normal 

Form models provide a partial solution. What is needed is the ability to share 

objects. The concept of sharing is somewhat confusing and has been used in 
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Persons Name Age Address Spouse Education 

Degree University Year 
John 35 20 Park Road Mary 

M.Sc. Leeds 1981 

Ph.D. York 1985 

Mary 32 20 Park Road John 
Degree University Year 

M.Sc. Manchester 1979 
Ph.D. York 1986 

Children Person CName CAge 

John Tim 5 
John Jane 3 

Mary Tim 5 
Mary Jane 3 

Figure 5.2.1.h NFNF representation of persons with spouses, education and children 

different connotations by AI, Object-Oriented programming languages, and database 

communities. 

In a database framework, sharing relates to synchronizing concurrent access to 

objects to ensure the consistency of information shared in the database. In an 

object-oriented framework, sharing relates to the support and maintenance of the 

references of the shared objects. A reference to an object implies shared ownership 

by all referencing objects. 

So unlike the database perspective, where the users of an object could be 

thought of as concurrently executing transactions, the users in the object-oriented 

world are themselves objects owning or referencing the same shared entity. 

Object identity supports and enables the referential sharing of objects. The 
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persons example with object identity is illustrated in figure 5.2.1.c. (Note 01 and 02 

stand for objects and * stands for sets). Thus arbitrary graph structured object 

spaces are easily represented. 

• 

IJ,-------------s-po-m-e-----------------, 

01 ~I ______________________________ ~ 

tion 

chil ren 
John 35 20 Park Road 32 

• 

de~m 
M.ScLeeds 1981 

• 

de ee ·v Y' r 

M.Sc. Manch. 1979 

Tim 5 Jane 3 

Figure 5.2.t.c Representation of persons with spouses, education and children ming object identity 

5.5.1.2 Identity in the Network Data Model 

The idea of identity in object-oriented systems is shared with the earlier net

work data models (e.g. CODASYL). However, there are many other features that 

are required for object-oriented database systems that are not present in network 

models. For example, network models have not considered support for behavioural 

encapsulation or for any sort of inheritance or type hierarchy. 
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5.5.1.3 Identity in Temporal Models 

Several researchers have argued for a temporal model to support historical ver

sions (e.g.[Clif83], [Khos86]). The reason is that most real-world organisations deal 

with histories of objects, but they have little support from existing systems to help 

them in modeling and referencing historical data. Strong support of identity is 

important for temporal data models, because a single retrieval may involve multiple 

historical versions of a single object. Such support requires the database system to 

provide a continuous notion of identity throughout the life of each object, indepen

dent of any descriptive data or structure that is user modifiable. This identity is the 

common thread that ties together these historical versions of an object. 

5.5.2 Encapsulation 

The early development of the concept of an object can be traced to the 

programming language Simula where an object was thought of as a self contained 

program having its own data and procedures. In modem programming languages 

such as Smalltalk an object contains both a private memory and the set of opera

tions which can be validly applied to the contents of that memory. Encapsulation 

collects the private data and the set of operations into a single entity. Furthermore, 

it hides the private memory and the internal procedures from the external world so 

that the only way of communicating with the object and influencing the state of the 

memory is by way of external methods. In other words, encapsulation prevents 

objects from being manipulated except via its defined external operations. 

The technical reasons for encapsulation are quite obvious : if one is only 

interested in behaviour the representation can be ignored, and by divorcing the two 

the representation may be freely modified and adjusted to factors such as better 

algorithmic solutions or new hardware technology. 

However, prespecifying all operations by a fIXed set of methods is a rigid 
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constraint for evolving databases. In some cases users may want to access the 

representations (i.e. attributes of tuples ). 

Implications of encapsulation 

Object-oriented systems emphasize object independence by encapsulation of 

individual objects. Database systems, on the other hand, emphasize data indepen

dence by separating the world into two independent parts, namely the data and 

applications operating on them. The independence boundary is between the database 

and the rest of the world. The separation serves many purposes, but the most impor

tant effect is that the responsibility of the database system is well defined, and con

sequently the database interface can be relatively simple. Object independence is 

fundamental to object-oriented systems, just as data independence is fundamental to 

database systems. If database techniques are to be relevant to object management, 

we must ask whether these two principles can co-exist? 

Consider, for example, the design of a large application. If we believe in data 

independence then we must split our application into persistent, uninterpreted data, 

and the programs that manipulate and share them. An object-oriented approach, 

however, would lead to a design composed entirely of objects. Manipulation of 

objects is via their interfaces, and sharability is implicit in the message-passing para

digm. It seems clear that the two approaches lead to very different designs. 

Relational systems allow many relationships, but they are completely static, 

based on contents and operations like join. Contents, however, are generally hidden 

in objects due to encapsulation. Also in the relational model, tuples do not have a 

visible identifier. They are identified by their contents, via primary or secondary 

keys. If an object's contents are properly encapsulated, they cannot be expected to 

provide a means for identification. Databases traditionally provide operations based 

on selection by contents. This is especially true in relational systems, when all 
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relationships between entities are represented by contents, and all operations are 

based on contents. In an object-oriented system an object's contents are typically 

encapsulated. We are not supposed to know the values of an object's variables. Even 

when objects advertise visible attributes, we may not know whether they are real, or 

virtual attributes computed by the object upon request. How can we take advantage 

of existing indexing mechanisms and content-oriented selection in database systems 

for object selection? Since objects encapsulate behaviour, they should also be 

selectable in terms of their behavioural aspects. 

5.5.3 Types/Classes 

A type, in an object-oriented system, summarizes the common features of a set 

of objects with the same characteristics. It corresponds to the notion of an abstract 

data type. It has two parts: the interface and the implementation. Only the interface 

part is visible to the users of the type, the implementation of the object is seen only 

by the type designer. The interface consists of a list of operations together with their 

signatures (i.e. the type of the input parameters and the type of the result). 

The type implementation consists of a data part and an operation part. In the 

data part, one describes the internal structure of the object's data. Depending on the 

power of the system, the structure of this data part can be more or less complex. 

The operation part consists of procedures which implement the operations of the 

interface part. 

In programming languages, types are tools to increase programmer produc

tivity, by ensuring program correctness. By forcing the user to declare the types of 

the variables and expressions he/she manipulates, the system reasons about the 

correctness of programs based on this typing information. Types are mainly used at 

compile time to check the correctness of programs. 

The notion of class is different from that of type. Its specification is the same as 
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that of a type, but it is more of a run-time notion. It contains two aspects: an object 

factory and an object warehouse [Cox86]. The object factory can be used to create 

new objects, by performing the operation new on the class. The object warehouse 

means that attached to the class is its extension, i.e. the set of objects that are 

instances of the class. The user can manipulate the warehouse by applying opera

tions on all elements of the class. Classes are not used for checking the correctness 

of a program but rather to create and manipulate objects. 

According to the principle of classification objects which have the same 

properties i.e. the same kind of private data and operations, are collected into an 

object class which corresponds to a specific type. Objects which belong to an object 

class are called instances of this class. An Object class actually serves two purposes : 

it functions (a) as an abstract data type for its instances and (b) as the object which 

represents the set of its instances. 

When regarded as an abstract data type (ADT) an object class defmes the 

private structure and the operations of its instances by instance attributes and 

instance method specifications. In addition it defines a public interface and therefore 

determines the behaviour of all its instances which can be described together at a 

higher level. Unlike instance attributes which may take different values in different 

instances, an ADT also specifies all the attributes which are constant for all 

instances. These attributes are called class attributes and should be located for 

economical reasons at the object class. 

In addition, an object class will itself be treated as an object that represents the 

set of all its instances. As such it has its own set-oriented attributes and operations. 

Treating an object class also as an object leads to a very homogeneous model. 

Object class objects differ from elementary objects in carrying type information. Or 

in other words, an object class object additionally has a special kind of property 

representing the abstract data type information. 
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5.5.4 Inheritance 

If you describe a tiger, you can say it is a big cat with stripes. You do not think 

of it as individual ears, wiskers, paws and a tail. While these features may be impor

tant they are not things which distinguish it from a cat next door. Looking at the 

world in this sort of way is one of the bases of object-oriented programming. The 

object-oriented approach to writing software is described as being closer to reality 

than traditional methods, which work at the kit-of-parts rather than the hierarchy of 

cats level. 

Inheritance has two advantages: it is a powerful modeling tool, because it gives 

a concise and precise description of the world and it helps in factoring out shared 

specifications and implementations in applications. 

An example will help illustrate the interest in having the system provide an 

inheritance mechanism. Assume that we have Employees and Students. Each 

Employee has a name, an age above 18 and a salary, he or she can die, get married 

and be paid. Each Student has an age, a name and a set of grades, He or she can 

die, get married and have his or her OP A computed. 

In a relational system, the database designer defines a relation for Employee, a 

relation for Student, writes the code for the die, many and pay operations on the 

Employee relation, and writes the code for the die, many and GPA computation 

operations for the Student relation. Thus the application programmer writes six pro

grams. 

In an object-oriented system, using the inheritance property, we recognize that 

Employees and Students are Persons; thus, they have something in common (the 

fact of being a Person), and they also have something specific. We introduce a type 

person, which has attributes name and age, and we write operations die and many 

for this type. Then, we declare that Employees are a special type of Persons, who 

inherit attributes and operations, and have a special attribute, salary, and a special 
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operation pay. Similarly, we declare that a Student is a special kind of Person, with a 

specific set-of-grades attribute and a special operation GPA computation. In this 

case, we have a better structured and more concise description of the schema(we 

factored out specification) and we have only written four programs (we factored out 

implementation). Inheritance helps code reusability, because every program is at the 

level at which the largest number of objects can share it. 

The types of inheritance include: substitution inheritance, inclusion inheritance, 

constraint inheritance and specialization inheritance. 

In substitution inheritance, we say that a type t inherits from a type t " if we 

can perform more operations on objects of type t than on objects of type t '. Thus 

any place where we can have an object of type t " we can substitute for it an object 

of type t. This kind of inheritance is based on behaviour and not on values. 

Inclusion inheritance corresponds to the notion of classification. It states that t 

is subtype of t " if every object of type t is also an object of type t'. This type of 

inheritance is based on structure and not on operations. An example is a square type 

with methods get, set(size) and a type filled-square, with methods get, set(size), and 

fill (colour). 

Constraint inheritance is a subcase of inclusion inheritance. A type t is a sub

type of a type t " if it consists of all objects of type t which satisfy a given constraint. 

An example of such inheritance is that a teenager is a subclass of person: teenagers 

don't have any more fields or operations than persons but they do obey more 

specific constraints (their age is restricted to be between 13 and 19). 

With specialization inheritance, a type t is a subtype of a type t', if objects of 

type t are objects of type t' which contains more specific information. Examples of 

such are persons and employees where the information on employees is that of per

sons together with some extra fields. 

Inheritance encourages the development of small, reusable classes that become 
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building blocks for more sophisticated classes. This approach results in less code to 

maintain and test and more rapid development from prototype to final application. 

There is reason to believe that the use of hierarchies of data abstractions 

will lead to a system with improved performance over systems using more traditional 

DBMSs (e.g. relational ). Firstly, all the physical aspects of representation of infor

mation by data are user-transparent in the object models. This creates greater 

potential for optimization; more things may be changed for efficiency considerations, 

without affecting the user programs. The relational model has more data indepen

dence than the older models. The object models have even more transparency. 

Secondly, in the object models, the system knows about the meaning of the user data 

and about the meaningful connections between such data. This knowledge can be 

utilized to organize the data so that meaningful operations can be performed faster 

at the expense of less meaningful or meaningless operations. Traditional DBMSs 

typically support a simple static data structure such as a table. When they are used 

in an application, the data from the application must be forced into this structure 

whether appropriate or not. By using hierarchies of data abstractions, the data can 

be organized into meaningful groups for the application system. Thus data that is 

likely to be used together will be stored together and can be retrieved with a single 

operation. 

5.5.5 Overloading & Late Binding 

There are cases in which the user wants to use the same name for different 

operations. Consider, for example, the display operation: it takes an object as input 

and displays it on the screen. Depending on the type of the object, we want to use 

different display mechanisms. If the object is a picture, we want it to appear on the 

screen. If the object is a person, we want some form of a tuple printed. Finally, if 

the object is a graph, we will want its graphical representation. Consider now the 
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problem of displaying a set, the type of whose members is unknown at compile time. 

In an application using a conventional system, we have three operations: display

person, display-bitmap and display-graph. The programmer will test the type of each 

object in the set and use the corresponding display operation This forces the pro

grammer to be aware of all the possible types of the objects in the set, to be aware 

of the associated display operation, and to use it accordingly. We could represent 

this by the pseudo-code: 

for x in X do 

begin 

case of type(x) 

end 

end 

person: display(x); 

bitmap: display-bitmap(x); 

graph: display-graph(x); 

In an object-oriented system, we define the display operation at the object type 

level. Thus, display has a single name and can be used indifferently on graphs, per

sons and pictures. However, we redefine the implementation of the operation for 

each of the types according to the type (Le. overriding). This results in a single name 

(display) denoting three different programs (i.e. overloading). To display the set of 

elements, we simply apply the display operations to each one of them, and let the 

system pick the appropriate implementation at run-time. We could represent this 

new approach by the much more concise pseudo code: 

for x in X do display(x) 
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However, the use of object-dependent binding complicates the analysis of the 

ultimate behaviour of a method when it is called, and this makes optimization of 

methods a complex task. 

5.5.6 Composite Objects 

This is the ability to define new composite objects from previously defined objects 

in a nested or hierarchical fashion. 

Many application domains, including CAD/CAM, Spatial Applications, Office 

Automation and Knowledge Bases, require direct representation and efficient mani

pulation of arbitrary complex objects. 

Most database data models do not have the capability to directly represent and 

manipulate composite objects e.g. the relational model. Relational systems impose 

the first normal constraint. Thus the objects must be mapped onto a collection of 

flat relations. With this approach much of the inherent semantics of complex object 

composition is lost. 

In the relational model we have tuple and set constructors. Sets are important 

because they are a natural way of representing collections from real world. Tuples 

are critical because they are a natural way of representing properties of entities. 

Bowever, the model lacks the list or array constructor to capture the order, which 

Occurs in the real world, and which also arises in many scientific applications, when 

people need matrices and time series. The constructors of the relational model are 

not orthogonal, because the set construct can only be applied to tuples and the tuple 

construct can only be applied to atomic values. There have been several attempts to 

address this issue. Some extend existing database systems [XSQL] [Lori83] , others 

extend relational models by relaxing the first normal form constraint [NF2-relations] 

[Dada86], other extend semantic models [Damokles][Ditt87]. These approaches will 

be discussed in chapter six. 
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5.6 Limitation of Object-Oriented Definition 

The problem of defining real world entities in all their sufficient and necessary 

attributes and operations is well known in philosophy. This problem faced Plato 

when trying to define a table in terms of its necessary and sufficient attributes and 

he contended with the definition of an ideal table. This problem occurs because of 

the existence of natural kinds of objects which can not be defined in terms of other 

things. However, it is practical to define our technical objects in terms of partial 

VIews. 

Another problem is that objects are configured according to one particular 

view, which renders sharing of information complicated. Indeed, it can be very hard 

for another application to deal with an object format that is not adequately struc

tured. The second application would have to recognize, extract, and reformat 

appropriately the information in such an object base. 

Thirdly, queries generally follow predefined links and tend to operate on indivi

dual objects. Thus, the processing of queries involoving large and arbitrary sets of 

data is not well supported. 
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[Ditt86] and [Ditt88] introduce a classification of object-oriented data models: if 

a model supports complex objects, it is called structurally object-oriented; if extensi

bility is provided, it is called behaviorally object-oriented; a fully object-oriented 

model has to offer both features. While the record-oriented approach to data 

management provides simple objects and generic operations, the object-oriented 

approach - influenced by database systems and programming languages - provides 

three variants as illustrated in figure 6.1. 

The central notion in structural object-orientation is that of a complex 

object [Lorie and Plouffe 1983] [Lori83] or of a molecule [ Batory and Kim 1985] 

[Bat085], reflecting the fact that objects in the world of interest are composed of 

parts that among themselves undergo a variety of other relationships. Some 

researchers start from the relational model and extend it to impose clustering on the 

set of tuples. One way in which this is done is by introducing an abstract pointer 

mechanism for interconnecting the tuples from one or more relations that together 

make up a cluster object [Lori85], Another approach avoids the pointers by directly 

building the tree structure into a relation: in contrast to the standard relational 

model where attribute values are atomic, these values may themselves be relations. 

Nesting of relations may thus occur to an arbitrary depth. This model is called NF2 

(Non-First-Normal-Form) [Dada86]. Other researchers start from the entity rela

tionship model. From a technical perspective this model could hardly be classified as 

object-oriented because all it does is to introduce basic building blocks called entities 

and establish relationships between them. Its success as a method for database 

design is due to the naturalness with which many real-world phenomena can be 
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mirrored as entities and relationships, By grouping several entities, and the relation

ships among them, into a cluster and treating the cluster again as entities one 

obtains a fairly general structurally object-oriented model. Two examples are the 

complex entity-relationship model (CERM) [Ditt87], and molecular objects 

[Bato84], 

database systems 
influence 

composite objects + 
generic operations 

simple objects + 
generic operations 

composite objects + 
definable operations 

record-orientation 

programming language 
influence 

simple objects + 
definable operations 

beha 'oral 
ob'ect

or' ntation 

Figure 6,1 Approaches to object-orientend data management 
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6.2 Structural Object-Orientation 

Models exhibiting this form of object-orientation fall into two categories: Those 

based on data model extensions (described in sections 6.2.1-6.2.2 ) and those based 

on systems extensions ( section 6.2.3). We will use the cell description in figure 6.2 

for comparing the different approaches. Note that CELL3 is composed of four 

instances of CELLI (Le. 11-14), one instance of CELU (i.e. 15), and six paths (Le. 

PI-P6). The path P3 in turn is composed of three segments (i.e. SI-S3). 

CELLI CELL2 

CELL3 

15 
Pl P2 

f----

f---

Sl 

P3 P4 
S2 

S3 
11 12 13 14 

P5 I I~ tr 
Figure 6.2 Cell description 
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6.2.1 Relational Model Extensions 

Database systems that recognize objects have the advantage of allowing object 

operations to be specified more easily and executed more efficiently. However, the 

introduction of objects into the relational model if not done properly will destroy the 

symmetry, simplicity and elegance of the relational model. Should objects be treated 

as full members of the relational model with the same status as tuples and relations? 

Answering yes implies that a complete set of operations must be provided to 

manipulate objects. One reason for the popularity of the relational database systems 

is their guarantee that any information stored in the database can be extracted using 

a nonprocedural query. This property should not be sacrificed by the introduction of 

objects. 

Answering no implies that relational database objects can treat those objects as 

a useful lUXUry. The system will be complete because all the data in a database is 

stored in tuples and relations, and the traditional relational algebra can be used to 

manipulate the data. Objects will exist but only as abstract collections of tuples and 

relations. 

The introduction of objects means that data can be organized and stored by 

relations or objects. When data is organized by relations, global searches of all tuples 

in a relation are easy to specify and more efficient to execute. Organizing data by 

objects simplifies specification of operations that address a particular object and 

improves their efficiency. In the following sections we discuss the different rela

tional model extensions to provide structural object-orientation: 
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(a) The NF2 Data Model 

The NF2 (non-first-normal form) model, as introduced by [Sche86] , is 

based on the nonnormalized relational model. AIM-P [Dada86] is an implementa

tion of the NF2 model that is being developed at the IBM Scientific Center, Heidel

berg. It supports composite attribute types, which can be either tuple valued, that is, 

one tuple, or relation valued, that is a set of tuples. A composite attribute could also 

be a list of possibly composite elements. All these structures can be arbitrarily 

nested. The NF2 data model implicitly incorporates references to tuples of different 

relations. Thus it is really a hybrid of the relational and the hierarchical data model. 

Again we note that there is a problem with data redundancy. The extended query 

language is nontrivial because of its nested nature. This model does not provide for 

application-specific operations. An example of NF2 representation for figure 6.2 is 

shown in figure 6.3. 

(b) QUEL as a data type 

Stonebraker [Ston84] has proposed representing an object as a QUEL 

query stored in the field of a relation. This query, when executed, retrieves all the 

data in the object. Thus, the object is stored conceptually in a field, but physically as 

a set of tuples in one or more separate relations. Figure 6.4 shows the cell relation 

for the database in figure 6.2 using Quel queries to represent objects. 
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{CELL} 

{INSTANCE} {PATH} cdata 

cell id cell name {SEGMENT} 
inst id m cell idata path_id 

I sdata 
pdata 

segJd 

CI ~ELLl 1111111111111111111111111111111 1111111111111111111111 ••••••••••••••••• xxxx 

C2 ~ELL2 111111 ••••••••• 111111 •••• 11111. I .. 111111 •••• 111 ••••••••••••• yyyy 

C3 ~ELL3 ~ 
7ZZZ 

PI I - I 
11 Cl aaaa P2 I ••• I 

12 Cl bbbb P3 Sl tttt 
[ mmm 

13 Cl eccc S2 ~uuu 
S3 vvvv 

14 Cl dddd 
15 C2 eeee P4 

I == I 
nonn 

P5 0000 
P6 pppp 

- - ••••••••••••••••••••••••••••••• 111 ••••• 11111.11111 •••••••••••••• • ••• -
Figure 6.3 NF2 Representation of the CELL data 

(c) Relational/Network Model 

Haynie's model [HaynSl] allows an attribute of a relation to contain a 

pointer to another relation. This scheme divides a database into many small rela

tions, each of which contains part or all of the data in an object. For example figure 

6.2 would be changed as shown in figure 6.5. 

CELL 

cell name cdata INSTANCE PATH 

CELLl xxxx @lO . @20 

CELU yyyy @30 @40 

CELL3 7ZZZ @50 @60 

Figure 6.S The CELL relation using the Relational/Network Model 
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CELL 

cell id cell name instances paths cdata - -
C1 CELL! xxxx 

C2 CELL2 yyyy 

C3 CELL3 7XZZ 

retrieve retrieve 
(INST ANCE.all) (PATH. aU) 

where cell = "C3" where cell = "C3" 

INSTANCE SEGMENT 

inst id cell m cell idata seg_id path seg# cdata 

11 C3 C1 aaaa S1 P3 1 tttt 

12 C3 C1 bbbb S2 P3 2 uuuu 
13 C3 C1 eccc S3 P3 3 vvvv 

14 C3 C1 dddd 

15 C3 C2 eeee 

PATH 

path id cell segments pdata 

P1 C3 kkkk 
P2 C3 III 
P3 C3 retrieve (SEGMENT.all) where path = "P3" mmmm 
P4 C3 nnnn 

P5 C3 0000 

P6 C3 pppp 

Figure 6.4 The CELL relation using QUELjPOSTQUEL as a data type 

(d) ADT -Ingres 

ADT-Ingres was proposed by Stonebraker et aI. [Ston83a] and imple

mented as an experimental prototype on top of existing DBMS Ingres. In this propo

sal the object is represented in a field of a tuple as an abstract data type supplied by 

a conventional programming language. Operations for the type are implemented as 

procedures within the programming language and can be called by the DBMS. 
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ADT -Ingres provides a novel way of specifying new data types and corresponding 

operators in a database management system and these operators can be arbitrarily 

complex. However, the penalty of this flexibility is that the user has to be familiar 

with two quite different systems (1) the database language Quel and (2) the pro

gramming language C. Another limitation of this approach is that the internal 

representation of ADT must fit in the length of the field provided by Ingres DBMS. 

In this approach each ADT is mapped completely into an attribute and the internal 

representation of the object does not reflect the external structure of the object. 

Furthermore, it lacks support for the hierarchical data structure that occurs fre

quently in object-intensive applications. ADT-Ingres provides some facilities for 

behavioral object-orientation by allowing the database users to define application 

specific ADT operations. However, these operations are quite tedious to implement 

because the model is not structurally object-oriented. Figure 6.6 shows the ADT

Ingres representation for the cell data. 

CELL 

cell name cell data INSTANCE PATH 

CELL! xxxx ·ADT· ·ADT· 

CELL2 
yyyy ·ADT· ·ADT· 

CELL3 7XZ2 ·ADT· ·ADT· 

Figure 6.6 The CELL database using abstract data types 

In this approach the hierarchy of ADT is not considered and the inheritance of 

common operations and use of overloading concepts are not considered either. 
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6.2.2 ER Model Extensions 

(a) Complex-entity-relationship model (CERM) 

This model has been realized in the DAMOKLES database system proto

type [Ditt87]. DAMOKLES has been developed as the basic information manage

ment component for a software engineering environment. CERM is an extended 

entity-relationship data model which, since it is no longer just a semantic framework, 

includes a full-fledged set of operators. The main structural features of CERM 

include the following: 

- molecular entities (complex objects ) which may be built recursively and 

which may also overlap (i.e a subentity is part of two or more superentities)( note 

figure 6.7.a), 

- versions of structured objects, 

- arbitrary n-ary relationships between objects of any structure or versions. Figures 

6.7.b and 6.7.c show alternative models for the cell description using CERM. 

--
............. 

...-c: > 
~ 

a <::::~ 
~ 

Figure 6.7.a 
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Ipi CELL3 CELL! 

IP2 
11 

P3 
rnJ[gJ[g] 12 

Ip4 13 

IpS 14 

Ip6 15 CELL2 

Figure 6.7.h 

Ipi CELL3 CELL! 

1P2 
11 

P3 
rnJ[gJ[g] 12 

Ip4 13 

IpS 14 

Ip6 15 CELL2 

Figure 6.7.c 

(b) Molecular Aggregation 

Batory and Buchmann [Bato84] introduced a molecular aggregation 

model as an attempt to provide constructs that are necessary when dealing with 

complex objects in a variety of applications. This model allows an attribute to be a 

set-valued container of foreign keys. Each tuple containing the set-valued attribute is 

made the root of an object, and the keys are used to identify the other tuples in the 

object. Figure 6.8 shows the cell relation using this model. 
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CELL 

cell name cell data INSTANCE PATH 

CELL! xxxx 11111 ••••• • ••••••••• 
CELL2 yyyy 1111111111 1111111111 

CELL3 zxzz 
{ @123000301, { @123000306, 

@123000302, @123000307, 
@123000303, @123000308, 

~123000304 @123000309, 
123000305} ~123000310} 

123000311 

Figure 6.8 CELL objects using Molecular Object Model 

6.2.3 System Extensions 

(a) The Complex Object Model (System R extension) 

This is one of the extensions to enhance System R [Astr76] to support 

technical applications. In Lorie's proposal [Lori83] a complex object is a hierarchical 

cluster of tuples of different relations logically connected together. It corresponds to 

a 1:N relationship. The hierarchical relationship between tuples is expressed by attri

butes of type "component-of'. General N:M relationships are expressed by attri

butes of type "reference". The main difference between the two reference types is 

that the data model provides built-in support to access all tuples belonging to a 

component-of relationship by physically clustering the data and manipulating 

pointers to the component tuples. The association of tuples is achieved via surrogate 

attributes. Figure 6.9 illustrates the Complex Object Model representation for the 

cell data. 
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CELL 

PID TID cell name cdata 

@OQOOOOOOO @123000100 CELLI xxxx 

@OOOOOOOOO @123000200 CELL2 yyyy 
@OOOOOOOOO @123000300 CELL3 7XlZ 

INSTANCE 

PID TID m cell idata 

@123000300 @123000301 @123000100 aaaa 

@123000300 @123000302 @123000100 bbbb 

@123000300 @123000303 @123000100 cccc 

@123000300 @123000304 @123000100 dddd 

@123000300 @123000305 @123000200 eeee 

PATH SEGMENT 

PID TID pdata PID TID sdata 

@123000300 @123000306 kkkk @123000308 @123000312 qqqq 

@123000300 @123000307 llll @123000308 @123000313 rrrr 

@123000300 @123000308 mmmm @123000308 @123000314 ssss 

@123000300 @123000309 nnnn 

@123000300 @123000310 0000 

@123000300 @123000311 pppp 

Figure 6.9 Complex Object Model description of the CELL 

6.3 Behavioral Object-Orientation 

Behavioral object-orientation of database systems has mostly originated from 

the programming area, with an attempt to extend programming languages with per

sistency. Examples of this category include 02[Banc88][Lecl88][Lecl89], 

CACTIS[Huds86][Huds87], Trellis/Owl[O'Br86] , OOPS [Schl88]. Early approaches 

stuck closely to Smalltalk and hence lack the clustering concepts; one such develop

ment is Gemstone [Cope84]. 
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6.3.1 OOPL Model Extensions 

(a) GemStone 

The OPAL language that constitutes both the data definition and data manipu

lation of GemStone is very similar to Smalltalk. OPAL introduces a selection block 

construct for special types of objects called constrained collection. Any instance of 

Collection is a collection of objects such as a set or a bag, or a dictionary. A collec

tion that is a set is similar to a table in a more conventional database query language 

such as SOL However, one immediate distinction between a language such as SOL 

and a novel untyped language such as Smalltalk is that the former specifies a partic

ular type for each of its columns that corresponds to the instance variables of the 

elements of the collection in Small talk. In Smalltalk, corresponding instance vari

ables can assume different types and the same instance variable can be updated to 

indicate a different type of object. SOL implementations make heavy use of the type 

constraint in storage organisation, query optimization, and indexing. OPAL intro

duces constrained collections for similar reasons. OPAL violates encapsulation in 

two respects (1) accessing instance variables directly through dot notation, (2) specif

ication of indexes explicitly on instance variables. More recent approaches adopt 

many of the ideas from Smalltalk but combine these with some clustering facilities 

[Banc88] , [Bane87a]. However, clustering is essentially restricted to assembling 

objects into sets so that much of the expressiveness provided by relationships is still 

missing. 
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6.4 Full Object-Orientation 

This approach combines the merits of both behavioral and structural object

orientation. Some extend the structural model with behavioral features [Kemp87], 

others extend the behavioral model with structural features [Bane87a]. However, 

some extend classical models with both structural and behavioral features [Ston86c]. 

6.4.1 Relational Model Extensions 

(a) POSTGRES Data Model 

This data model was proposed by Stonebraker and Rowe [Ston86c][Rowe87] as 

a successor of Ingres. The goals of the POSTGRES project are the following :- (1) 

provide support for complex objects, time varying data, (2) user extensibility for data 

types (3) facilities for active databases (i.e. alerters, triggers and rules ), (4) make as 

few changes to the relational model as possible. The POSTGRES data model is a 

relational model extended to support semantic modelling constructs:- (1) abstract 

data types [Ston86d] (2) data of type procedure [Ston87] (3) rules [Ston88]. 

Features of the POSTGRES Data Model include the following:- (1) support for pri

mary keys (2) inheritance of data and procedures (3) attributes that reference tuples 

in other relations. 

POSTQUEL is the POSTGRES query language and differs from Quel in :- (1) 

from-clause to define tuple variables, (2) relation-valued expressions may appear any 

place that a relation could appear in Que~ (3) transitive closure and execute com

mands have been added, (4) set operators have been included 

An important aspect is complex object support. An ADT facility proposed by 

Stonebraker [Ston83] meets the needs of a variety of object management applica

tions. However, it fails in three important situations: (1) objects with many levels of 

subobjects (2) objects with unpredictable composition (3) objects with shared 
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subobjects. 

Consider an application which stores data about a particular building in a data

base. An object in such a database might be an office desk. However, the desk is in 

turn constructed of subobjects (drawers). which are in turn constructed of subobjects 

(e.g. handles). This "part-of' hierarchy is prevalent in many non-traditional applica

tions. A user often wishes to "open up" an object and access specific subobjects. For 

example, he might want to find the handle on the lower left-hand drawer. The ADT 

proposal would force a user to write an operation for each such access he wanted to 

perform. A very large number of operations would result that would be exceedingly 

hard to use. In summary, a user wants the query language to assist with "opening up" 

complex objects and searching for qualifying subobjects; he does not want an opera

tor for each particular search. 

The second problem concerns the unpredictable composition of objects. Sup

pose the database contains objects that are on top of desks in the example building. 

In particular, some desks have flowers, some have phone sets. In this case a sUbob

ject of a desk may be one or more objects from a large set of possible desk acces

sories. It is unreasonable to require a user to write an operation to extract any 

object from such unpredictable collections. 

The third problem concerns shared subobjects. Consider a heating duct in the 

building that is accessible from several rooms in the building. One would want to 

store the duct once, and then have it as a shared subobject in higher level objects 

(rooms). The ADT proposal has no ability to share subobjects in this fashion. 

The Postgres proposal for storing Postquel as a field in the relation solves these 

problems but has its limitations as discussed in the data model comparison section 

(See section 6.4). 
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(b) R2D2 (Relational Robotics Database System with Extensible Data Types ) 

R2D2 [Kemp87] lies in the category of full object-oriented database systems. 

This is achieved by integrating the concept of abstract data types into the data defm

ition and manipulation language of a structurally object-oriented DBMS. Thus the 

database user can defme data types that correspond to application-specific objects. 

The structural basis for R2D2 is formed by an extended NF2 data model, which 

allows nested relations whereby hierarchical relationships among subobjects can be 

modeled. 

6.4.2 Functional Model Extensions 

(a) IRIS 

The IRIS [Fish86] data model is based on a semantic data model that supports 

ADT. It is based on the DAPLEX data model. It has much in common with the 

PROBE data model (PDM)[Man086] (see subsection (b) below). The IRIS data 

model contains the main construct objects, types, and functions. Objects in IRIS are 

used to represent entities and concepts. Types have unique names and are used to 

categorize objects into sets that are capable of participating in specific functions. 

Objects serve as arguments to functions and may be returned as results of functions. 

A function may only be applied to objects that have the types required by the func

tion. Types are organized in a cyclic type graph that represents generalization and 

specialization. A type may be declared as a subtype of another type. Attributes of 

objects, relationships among objects, and computation on objects are expressed in 

terms of functions. Unlike mathematical functions IRIS functions may have side 

effects. The IRIS model clearly separates the concepts of objects, types and func

tions. This is reflected in the following: (1) objects may acquire and lose types. (2) 

objects of a given type are not required to participate in every function defined on 



chapter 6 106 

that type. (3) functions over a given type may be created and destroyed at any time. 

This results in schema evolution without affecting existing applications. 

(b) PDM 

PROBE Data Model (PDM)[Man086] is an extension to the DAPLEX data 

model. It incorporates multiargument functions and computed functions into the 

mode~ and extensions to the model to deal with objects having spatial and temporal 

semantics. As we have pointed out in section 4.5.3 the functional model has many 

features associated with object-oriented data models. These include (1) the concept 

of an entity or object that has existence independent of any properties or relation

ships with other entities. (2) objects and set-valued properties allow the complex 

objects to be modeled. (3) an entity class or type concept together with generaliza

tion hierarchy. (4) functions provide a method for incorporating behaviour and 

derived properties. The cell description using the functional approach is illustrated 

in figure 6.10. 

inst id 

m ceO 

idata 
INSTANCE 

CELL 

segJd 

cell id 

o name 

cdata 

PATH 
path id 

pdata 

sdata SEGMENT 

FJgUI'e 6.10 CeO description 
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6.4.3 OOPL Model Extensions 

(a) ORION 

ORION [Bane87a] extends the Smalltalk concept by adding composite objects. 

In ORION, all conceptual entities are modeled as objects. An ordinary integer or 

string is as much an object as is a complex assembly of parts, such as an aircraft. 

Following the paradigm of encapsulation, an object consists of some private memory 

of instance variables that holds its state , and a set of methods that manipulate or 

return the state of an object. The domain of an instance variable is a class. Methods 

are part of the definition of the object. Objects communicate with one another 

through messages. Similar objects are grouped together into a class, and classes are 

organized into class hierarchies. Inheritance involves the instance variables and 

methods specified for a class. In ORION a class can have more than one superclass, 

generalizing the class hierarchy to a lattice. For clustering, ORION introduces the 

notion of composite object that captures the is-part-of relationship between an 

object and objects it references. A composite object has a single root object, and the 

root references multiple children objects each through an instance variable. Each 

child object can in turn reference their own children objects, again through instance 

variables. A parent object exclusively owns children objects, and as such the 

existence of children objects depends on the existence of their parent. However, the 

model and implementation of composite objects as presented in [Kim87] and imple

mented in ORION, suffer from the following shortcomings: 

First, the model restricts a composite object to a strict hierarchy of exclusive 

component objects; that is a component object is only part of one composite object. 

This is certainly the right model for a physical part hierarchy, in which an object can 

not be part of more than one object. However, this is not acceptable for a logical 

part hierarchy; for example, an identical diagram or illustration may be a part of two 
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different books. 

Second, the model forces a top-down creation of a composite object; that is, 

before a component object may be created, its parent object must already exist. This 

prevents a bottom-up creation of objects by assembling already existing objects. 

Third, the model requires that the existence of a component object depends on 

the existence of the parent object; that is, if an object ceases to exist, all its com

ponent objects are also deleted. This feature is sometimes desirable, since it frees 

the applications from having to search and delete all nested components of a deleted 

object. Sometimes, however, it impedes reuse of objects in complex design environ

ments. 



chapter 6 109 

6.5 Comparison of the Data Models 

We use the following metrics to compare the different data models. We have 

not tried to identify all possible metrics, but have included those that we feel are 

important and that allow direct comparison between the data models. The metrics 

fall into four classes: (1) implementation metrics (2) semantics metrics (3) represen

tation metrics, and (4) structure metrics 

6.5.1 Implementation metrics 

The implementor of a relational database system for objects should be able to 

choose whether to cluster tuples into objects or relations. Organisation by relation 

will make relation-oriented operations more efficient, while organisation by object 

will make object-oriented operations more efficient. Both organisations are possible 

for the complex object model, molecular aggregation. A by-relation organisation of 

the complex model is trivial. A by-relation organisation of the molecular aggregation 

object model can be made using link relations to replace the set-valued attributes in 

the root tuple of an object. A by-object organisation of both models is possible in a 

database system such as System R that allows tuples of one relation to be stored 

with the tuples of another relation. 

A by-relation implementation of Haynie's relational/network model [Hayn81] is 

possible through collecting similar small relations into one large relation using an 

additional attribute to identify the small relation to which each tuple belongs. A by

object implementation of the QUEL/POSTQUEL as a data type model [Ston84]/ 

[Ston86c], is more difficult because the component tuples of an object can only be 

identified by executing the query that defines the object. Thus, when a new tuple is 

inserted into a database these queries may have to be executed to find the object 

that owns the new tuple. 

The object-in-a-field or ADT scheme described by Stonebraker and R2D2 uses 



chapter 6 110 

abstract data types from a programming language to represent an object. Since the 

data in an object must be accessed via this programming language, it must be 

clustered and stored in that object, making a by-relation organisation difficult to 

implement. 

In the NF2 scheme the data in an object is described by a tree of tuples. A by

relation organisation of this model must provide access to each of the tuples via 

their relation and via the object. This organisation is difficult to implement effi

ciently. A by-object organisation of this model, by contrast, needs only to provide 

access to the tuples in an object via the tuple containing that object in one of its 

fields. Hence, a by-object organisation is much easier to implement. Databases 

designed round the Smalltalk paradigm like GemStone, Orion use by-object organi

sation The functional model extensions like PDM, IRIS can be implemented as 

traditional databases using binary relation or CODASYL style sets. However, unless 

a distinction is made between functions that connect data in the same object and 

functions that connect independent objects in relationships, this scheme is difficult to 

implement as a database organized into objects. For example, in the functional 

model the department of the designer of a cell might be accessed using an expres

sion such as cell. designer. department. In this expression, department and cell could 

be disjoint objects but the notation does not show that a boundary of any object has 

been crossed. Therefore, unless there is a method for making this distinction, the 

system will not know that department values should not be clustered around cell 

objects. 
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6.5.2 Semantics metrics 

At least three types of semantic information can be identified: application 

semantics deals with the meaning of the data as used by the application programs, 

structural semantics deals with the integrity of the data structure used to implement 

the object, and operational semantics identify the valid operations that may be 

applied to an object. 

Usually application semantics is handled by the application programs that use 

the database. As a result, important considerations for application semantics are the 

interface between application programs and the database systems, and the work 

required to retrieve an object from the database. As discussed in Zaniolo [Zani85], 

there is often an impedance mismatch between programming languages that deal 

with one record at a time and an object database that deals with an object (multiple 

tuples) at a time. Sometimes objects must be retrieved tuple by tuple, degrading per

formance and making the database system hard to use. The abstract data type 

approaches of Stonebraker and R2D2, and Smalltalk extensions like Orion, Gem

Stone are best at avoiding these problems because they are extensions of program

ming languages that include the concept of an object. The Complex Object, 

Relational/Network, Molecular Aggregation schemes are poor. They offer very little 

more than the traditional tuple-at-a-time interface of a relational database system. 

With the NFl scheme an object can be retrieved at once, but a special programming 

language is required to manipulate the object. 

Structural semantics is included to varying degrees in all the data models. The 

ADT approach uses it perhaps the most since a user can not directly modify the 

structure of an object once created and stored in a field. Smalltalk extensions like 

Orion, GemStone are also good; the operation for creating and modifying an object 

can include code to verify that the integrity of the object structure is maintained. 

The functional model extensions like PDM, IRIS appear to be the weakest since 
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they do not clearly define the boundary, and hence the structure of an object. There

fore, it may be possible to connect two values and form an illegal object. 

The data models vary in the degree to which they allow expression of opera

tional semantics. All of the models allow operations for objects to be expressed. 

However, transaction modeling is needed to handle complex precedence relation

ships between operations and it is not discussed in these models except in Orion and 

PDM. 

6.5.3 Clarity of representation 

This concerns the ability of a data model to precisely define objects and rela

tionships between them. These metrics measure the ease with which a user can 

determine the meaning of the object in the different models. 

Some mechanism must be used to represent arbitrary relationships between 

objects in a database. In addition, a mechanism is needed to represent the connec

tion between a root tuple of an object and its components. If the same mechanism is 

used to do both things, then it may no longer be clear which connection represents 

relationships and which represents the components of an object. In this case the 

boundary of the object may not be clear. 

In a complex object database, the root of an object is connected to its com

ponents using tuple identifiers (TIOs). If the TID of a tuple is its only key, a rela

tionship between this tuple and another tuple must be modeled by storing the TID 

of this tuple in the other tuple. Hence the distinction between component objects 

and other relationships to tuples in other objects may be weak. To control integrity, 

Lorie has recommended that the TIDs used to link the tuples in an object be hidden 

from the user. Hence, the user will have to give each tuple another key. This elim

inates the potential for confusion, but the system must now provide the user with a 

function for fmding the tuples within an object, implying that a complex object 
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database must contain operations that are not in the basic relational algebra. 

The object-in-a-field models (ADT-Ingres, R2D2) connect tuples in the same 

object by placing them in the same abstraction. This technique does not use foreign 

keys, so there is no potential for confusion. The relational/network model makes 

the boundary of an object clear, because all the data in a small relation belongs 

exclusively to an object. The Quel/Postquel-as-a-data-type model provides the fuzzi

est connection, because a Quel query must be executed to fmd the tuples in an 

object. The functional model extensions (PDM, IRIS) are weak in distinguishing the 

boundary of each object, because they make no distinctions between connections 

that link objects to attributes and connections that link objects to objects. Smalltalk 

paradigm extensions (GemStone, Orion) arrange data into objects. Therefore, the 

boundary of an object is clear if a single object is used to represent each application 

object. In practice, however, the Smalltalk applications often represent large objects 

as a network of smaller objects, and then the boundary of the application object is 

less clear. 

6.5.4 Object structure 

(a) Gt!neraiization/ Aggregation 

Complex object model, NF2, molecular aggregation, and relational/network 

models have only one abstraction mechanism. Therefore, the distinction between an 

abstraction that is an aggregation and an abstraction that is generalization may 

sometimes be fuzzy. On the other hand, a single definition can be used to represent 

an abstraction that has both aggregate and generic qualities, meaning that a data 

structure may be completed with fewer defmitions. 

In functional model extensions (IRIS, PDM) a subtyping mechanism exists for 

defining generalization hierarchies. Therefore, the two types of abstractions can be 
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distinguished if functional connections are used to model aggregation only and sub

types are used to model generalizations. 

ADT-Ingres and R2D2 abstract data type schemes use abstract data types from 

programming languages to represent objects, so they can represent generalization 

using a variant data structure. 

Smalltalk extensions (PDM, IRIS) allow generalization to be defmed using 

object type hierarchy. Each component of the generalization is defmed as a speciali

zation of the more generic object. An attractive feature of this approach is that the 

properties and operations of the generic object are inherited by the specialization 

unless they are overridden by a new property or operation. Aggregation is defined in 

the Smalltalk paradigm by using the instance variables within an object to reference 

component objects. The Smalltalk paradigm makes a clear distinction between the 

two types of abstraction while allowing both to be mixed in the defmition of one 

object. 

(b) Disjoint/Overlap 

In all the schemes, overlapping objects can be modeled by creating separate 

subobjects for the parts of the objects that overlap. The overlapping objects can then 

refer to these subobjects using foreign keys. In the complex object model, the 

foreign keys are the TIDs of the objects. All the models except the ADT in a field 

approach are also able to represent overlapping objects using the same technique 

used to represent a disjoint object. For example, a component tuple in a molecular 

object could be linked to two root tuples. 
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(c) Flexibility 

Flexibility to adapt to changing requirements is an important feature for data 

models. All data models allow some flexibility. The ADT-in-a-field is relatively 

inflexible with respect to alterations. If an aggregate domain is expanded to include 

new attributes, all instances of data items in that domain must be found and 

expanded. The functional model may be the most flexible; new data and relation

ships can be added without affecting the existing sets and relationships. 
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7.1 OVERVIEW OF OQUEL 

Neither the relational nor the 0-0 approach is best for all applications. For 

example, a design object is seen by an engineer in an object-oriented fashion while it 

is viewed by an accounting department in a traditional relational form. A DBMS is 

needed which provides several styles for describing and manipulating data. We pro

pose a model which combines the features of OOP~ semantic data models and the 

relational data model. Since it extends INGRES/QUEL with object-oriented 

features we called it OQVEL OQVEL has the following features:-

• It extends the data structures and operations of the relational data model and 

provides the desirable features of the OOPL paradigm and semantic data models 

such as improved semantics, data abstractions,reusability of data structure and code, 

extensibility, complex object support, schema evolution and ADT domains. 

• OQVEL introduces the concept of an object identifier (010) to improve the 

semantics and reduce the space required to store the database. 010 captures the 

uniqueness of entities in the real world and allows for modeling complex objects. An 

OlD may be used to refer to an object instead of copying it. 

• OQUEL extends the relational model by inheritance to allow for sharing of 

data structures and operations and this improves the productivity of the program

mer. 

• OQVEL provides two access modes for the database. One is through the 

relational interface which helps to formulate unpredictable queries and provide flexi

bility in the selection of a target list through different combinations of attributes -

this is due to the no-information-goal-dependency of the relational formalism. The 

other is a method-based interface which improves reliability by providing semantic 

integrity, managing complex objects and propagating updates through different 

semantic references, providing information hiding and operations for naive users. 

• OQUEL provides structuring for complex objects through specialized 
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attributes and provides operations through methods to enforce the integrity of the 

complex objects. Abstracting complex objects through tuples and relations provides 

for organisation of data by object or relation 

* OQVEL extends the domain of the relational model by making provision for 

abstract data types (ADTs) which simplify queries and provide a more natural 

interface for spatial and temporal data. 

* OQVEL provides operations to manipulate the evolution of structure as well 

as content. 

* We have also provided an interface between C++ and Ingres to provide free

dom for the implementation of any required methods. 

* We can summarize by saying that OQVEL incorporates the concepts of 

object identity, complex objects, data abstraction/encapsulation, types/classes, inher

itance, extensibility, overloading, computational completeness, schema evolution and 

ADT domains. We have not dealt with concepts such as multiple inheritance, 

upward inheritance, and complex object versions due to time constraints. The inter

face between C++ and Ingres, however, is an additional new feature of the imple

mentation 
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7.2 1YPES IN OQUEL 

7.2.1 PHIWSOPHIES OF TYPE 

Programming languages, database systems, and artificial intelligence systems all 

have the notion that entities can be classified into types. As might be expected, how

ever, the usage of the notion of types is not the same through or even within these 

areas. The way in which entities are classified into tyves depends on the purpose of 

the type classification. In a broad sense, all entities belonging to a type share a com

mon set of properties. In particular, the set of properties that can be used to distin

guish types is restricted (a) to fit the purpose for which types were introduced and 

(b) to allow simple testing for membership in a type. 

Types in programming are generally used and thought of as a means of charac

terizing values that arise dynamically in the course of computation. For instance, a 

value that is to be computed by a program may be represented by a name or an 

expression, and although the particular value to which this expression refers may not 

be known in advance, other information concerning the value might be available. 

This information could be an indication of the meaning of the expression or it might 

be a constraint describing a property that the value must have. 

The algebraic approach to types is set oriented; in an algebra, a type is a set of 

individual elements upon which operations of the algebra are defmed. A typing sys

tem can help support efficiency objectives, provide a language framework capable of 

guiding a system designer's conceptualizations, and verify the descriptive information 

provided explicitly and implicitly by a program. 

The concept of type plays different roles and is perceived differently by dif

ferent people. The following is collection of some definitions :-

* System evolution (object-oriented) view: 

Types are behaviour specifications that may be composed and incrementally 
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modified to form new behaviour specifications. Inheritance is a mechanism for incre

mental behaviour modification. 

* System programming (security) view: 

Types provide a filter for the interpretation of raw data. They are a suit of 

clothes that protects raw information from unintended interpretations. 

* Type checking view : 

Types impose syntactic constraints on expressions so that operators and 

operand are compatible. 

* Type inference view: 

A type system is a set of rules for associating with every subexpression a unique 

most general type which reflects the set of all possible contexts in which the subex

pression may be interpreted. 

* Application programmers (classification) view : 

Types organize values into classes with common attributes and operations. 

* Verification view : 

Types determine behavioural invariants that instances of the type are required 

to satisfy. 

* Implementation view : 

Types specify a storage mapping for values. 

Despite the apparent variety, the above mentioned views are in fact comple

mentary since they view the same thing at different levels of abstraction. The pur

pose of a data abstraction is to model a "thing" without specifying more of its struc

ture and properties than should be externally visible. A "thing" can be viewed as hav

ing two aspects: (a) an identity which is invariant over time and which allows one to 

investigate the same thing at different points in time and (b) a substance which may 

be investigated. Substance includes both content and structure. Typically the means 
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of investigating the substance of a "thing" is to perform some applicable operation on 

the "thing" or to send it one or more messages and to interpret the responses that 

are returned. 

The solution to the overspecification implicit in data models representation (e.g. 

relational ) is to augment the chosen representation with a set of integrity con

straints. The notion of constraint is very much the same as the notion of invariants 

in the implementation of data abstractions in programming languages. Both con

straints and invariants defme a subspace of the modeling space which is sufficient to 

represent the entities being modeled. Transaction is the analogue of the data 

abstraction operation. Given this similarity, it makes sense to encapsulate the 

representation in the data model with a set of operations that define data abstraction 

whenever possible. 

To preserve the capability of handling unanticipated queries, this encapsulation 

need not be total. To ensure the constraints are satisfied, it is only necessary that all 

operations that change the state of the representation be part of the encapsulation. 

It is possible and appropriate to let some or all of the standard data model opera

tions for querying show through the encapsulation in a semi-transparent way. Semi

transparency means that some of the operations applicable to the representation of a 

data abstraction are exported directly as operations applicable to the data abstrac

tion itself. 

Both objects and types provide a uniform framework within which to under

stand and manipulate entities. 
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7.2.2 PRIMITIVE COMPONENTS OF THE OQUEL MODEL 

Objects 

Objects represent entities and concepts from the application domain being 

modeled. They are unique entities in the database with their own identity and 

existence, and they can be referred to regardless of their attribute values. Each 

object has an assigned, system-wide, unique object identifier, or OlD. This supports 

referential integrity and is a major advantage over record-oriented data models in 

which the objects, represented as records, can be referred to only in terms of their 

attributes. The creation of objects is considered in sections 7.5 and 7.8. 

Classes 

The process of classification involves classifying similar objects into object 

classes. We can now describe the classes rather than the individual objects them

selves. Beside the function of a class to define structure and behaviour of objects, 

the following property is important : a class represents the set of objects of a type ( 

the instances ) stored in the database. Instantiation is the inverse of classification. 

An object instance is related to its object class by a relationship that may by called 

"instance-of' relationship. Classes in OQUEL are discussed in sections 7.4 and 7.5. 

Methods 

The behaviour of an object is encapsulated in methods. Methods consist of code 

that manipulate or return the state of an object. Methods are part of the definition 

of the object. However, methods and attributes, are not visible from outside the 

object. Objects can communicate with one another through messages. Messages con

stitute the public interface of an object. For each message understood by an object, 

there is a corresponding method that executes the message. An object reacts to a 
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message by executing the corresponding method, and returning an object. (See Sec

tion 7.6). 

Inheritance 

Objects are classified into classes as fIrst order classifIcation and classes are 

classifIed into subclasses as second order classifIcation. Objects in subclasses inherit 

attributes and methods from their superclasses, but may have additional attributes 

and methods (horizontal inheritance) or specialized attributes and methods (vertical 

inheritance). Inheritance facilitates incremental deflnition and reusability of code. 

Subtypes (is-a) are defined such that if 

B subtype of A, 

instances of B are also instances of A (See Section 7.4) 

Relationships 

In addition to the classification, instantiation, and generalization mentioned 

above, there are other important relationships such as aggregation and association. 

Aggregation is an abstraction concept for building composite objects from their 

components objects. This relationship can be called is-part-of. An association relates 

two or more independent objects. An association may have one or more attributes 

and methods. This relationship can be called is-associated-with. (See Section 7.8). 
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7.3 TRANSFORMATION OF AN OBJECf SCHEMA TO A RELATIONAL 

SCHEMA 

In this section we will discuss the following abstraction concepts which are used 

to form an OQVEL schema, their mapping to the relational schema and the neces

sary relational structures to help the mapping. These abstraction concepts include :-

7.3.1 Identification 

7.3.2 Classification 

7.3.3 Generalization 

7.3.4 Association 

7.3.5 Aggregation 

7.3.6 Methods 

7.3.1 Identification 

This is different from the other abstractions in that, while the other concepts of 

aggregation, generalization, classification and association are used to build a schema 

by grouping the various object classes, the concept of identification is used to 

uniquely identify the object structures that have been formed. In order to enable the 

user to uniquely identify an instance of a class, the primary key concept of the rela

tional model is supported, i.e. an attribute whose values uniquely identify the 

instances of the class is designated as the users object's identifier. However, internal 

to the system, an OlD is generated by the system for every object to maintain its 

unique identity globally. An object can play different roles and therefore can appear 

as an instance of many classes. However it will be supplied with a unique object 

identifier (OlD) when it is first introduced to the system. This object identifier 

allows objects to be shared, and association among objects can be modeled by relat

ing the corresponding objects. The following relation, 'oid reI', was used to maintain 
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the object identification. It has one attribute which holds the current value of the last 

generated object identifier. 

oid reI 

oid 

1()(1} 

7.3.2 Classification 

Found in almost every existing data or knowledge representation, classification 

is the most important and the best understood form of abstraction. It is achieved by 

grouping objects that have common properties into a new object for which uniform 

conditions hold. Describing a model in terms of specific factual information is how

ever hardly satisfactory. Frequently it might be important to abstract the details of 

each object and to treat them in a more generic form, without having to worry about 

the specific values of each property. Classification provides an important means for 

introducing such generic information by allowing the modeler to refer to the class as 

a representative or prototype of its instances. 

Classification is based on the notion of a set. Including this concept explicitly in 

data modeling forces a distinction to be made between individual instances and a 

class of those instances. Therefore, if there are certain properties that are applicable 

to the group as a whole, they can be modeled as attnbutes of the class, called class 

attributes. This abstraction can be used in two ways. In the fIrSt case if the consti

tuent objects are individual instances, they can be abstracted to form a set or class 

of those instances with the aim of focusing on the common properties shared by all 
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those instances. On the other hand if the constituent objects are themselves classes, 

this abstraction gives us the ability to model the important notion of a metaclass i.e. 

a class all of whose instances are classes. 

OQUEL divides the database into classes, each class representing some proper

ties and behaviour common to a set of real world objects. Unlike object-oriented 

programming languages which recognize only object classes and class hierarchy, 

OQUEL explicitly distinguishes several structural relationships such as generaliza

tion, aggregation, and association. Each of these structural relationships has different 

semantic properties associated with itself. 

An OQUEL class is defined by the following:-

(1) Name :- this is the name of the class or the object type it represents. 

(2) Structure :- this is defined by the association of the class with other classes. 

(3) Operations :- these are valid operations or methods that are associated with the 

. class or the instances of the class. 

A class in OQUEL serves the following roles :- (1) it captures the definition of 

a prototypical object and (2) it refers to a set of instances of real world objects that 

conform to the prototypical definition. Each instance is therefore a representation of 

a real world object and consists of the actual values of properties modeled by the 

class, along with the global unique identifier of the object. The inverse of classifica

tion, instantiation, can be used to obtain objects that conform to the constraints 

associated with the properties specified by the class. Classification object classes can 

interact with each other by means of aggregation, generalization, association or clas

sification. A classification object class can be formed from constituent object classes 

which can be aggregation, generalization, association, classification or any combina

tion of these four. Aggregate operations like count, average, sum, min etc. can be 

formed for the class attributes of classification object classes. 
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By inserting objects and expressing the belief that they are instances of any 

classes, the system has the capability to reason exactly about the internal structure of 

these objects. For example, by expressing that a particular object is an instance of an 

oil_ we14 the model can infer that this object has location, drilling_company, depth, 

etc. It might be important to point out here this view of classification and instantia

tion does not correspond to the one supported by conventional database models. In 

database systems, the belief that an object is an instance of a class is not explicitly 

represented in the model, and can not for that reason, be queried. 

Mapping of object classes 

1) For each class C in the OQUEL schema we create a relation R that includes all 

simple attributes of C and object identifiers for composite attributes. 

2) We add an object identifier (OlD) as an additional attribute to identify every 

instance of the class. 

3) The following relation, 'cl_ cattr', has been used to hold information about the 

class attributes and their domain to help query translation. This will be discussed 

later. 

cl cattr 

cI name cattr name cattr_type -

person oid 100 

person name c20 

person dob date 
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7.3.3 Generalization/Specialization 

Two or more object classes can be generalized to form a higher level object 

class, or one can use the inverse of generalization, namely, specialization, whereby 

new object classes can be defined to be subclasses of one or more object classes. 

The two are complementary to each other in the sense that generalization is a bot

tom up abstraction process with the object structure inherited up the hierarchy, 

while specialization is a top down abstraction process with object structure being 

inherited down the hierarchy. The construct used to model it is the object class of 

the type superclass or subclass. The set/subset constraint between each defining 

object class and its subclass is implicit in the model. 

The most commonly used form of generalization involves a generic class that 

has subsets which are non-overlapping (N) and total (T) and as such would be 

labeled (N,T) as in figure 3.1. Other variants of generalization are non-overlapping 

and partial (N,P), or overlapping and partial (O,P) as in figure 3.2. and figure 3.3 

respectively. 

TEACHING 
ASSISTANT 

Figure 3.1 
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EMPLOYEE 

(N,P) 

TYPIST 

Figure 3.2 

PERSON 

Figure 3.3 

Mapping Generalization/Specialization 
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There are several options for mapping a number of subclasses that together 

form a specialization. We use Attrs(C) to denote the attributes of the object class C 

and Did to denote the object identifier. 

We convert each specializtion with m subclasses {S 1, S 2, ... .sm} and general

ized superclass C, where the attributes of C are {oid,a 1 , .. .an} into relation schemas 

using one of the following options:-

(1) Create a relation L for C with attributes 

Attrs(L) = {oid,a It ... .an}. 

Also create a relation L; for each subclass S; 1 <i <m , with the attributes 
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Attrs(L;) = {oid}U {Attrs(S;)}. 

(2) Create a relation L; for each subclass S;, 1 <i <m , with the attributes 

Attrs(L;) = {Attrs(S;)} U {oid,al, ... an } 

(3) Create a single relation L with attributes 

Attrs(L) = {oid,alo ... ,an } U{Attrs(S In U ... U{Attrs(SmnU{t}. 
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This option is for specialization whose subclasses are disjoint, and t is a type attri

bute that indicates the subclass to which each object instance belongs. 

(4) Create a single relation schema L with attributes 

Attrs(L) = {oid,alo ... ,an } U { Attrs(S 1) }U ... U{Attrs(Sm)}U {tl, ... ,tm }. 

This option is for specialization whose subclasses are overlapping and each t;, 

1 <i <m, is a boolean attribute to indicate whether or not an object instance belongs 

to subclass S i. This option has potential for creating a large number of null values. 

Option(1):- creates a relation Li for each subclass Si. L; includes the specific attri

butes of S; plus the OlD of the superclass C, which is propagated to L; and 

becomes its OlD. Another relation L is created for the superclass C and its attri

butes. An EQUDOIN operation on the OlD between any L; and L produces all the 

specific and inherited attributes of the object instances in Si. This option is illus

trated in figure 3.4.a Option(1) works for any constraints on the specialization 

(N,O,T,P). 

Option(2):- In this option the EQUIJOIN operation is built into the schema and the 

relation L is done away with as illustrated in figure 3.4.b. This option works well only 

with both the disjoint and total constraints on the specialization. If the specialization 

is not total we lose any object instance that does not belong to any of the subclasses 

Si . If the specialization is not disjoint, then an object instance belonging to more 

than one of the subclasses will have its inherited attributes from the superc1ass C 
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stored redundantly in more than one L;, causing update anomalies. With option(2) 

we do not have any relation that holds all the objects in the superclass C; we need to 

apply an OUTER UNION operation to the L; relations to retrieve all the objects in 

C. Also, whenever we search for an arbitrary object in C, we must search all the m 

relations L;. 

Option(3) and (4)( note figure 3.4.c, figure 3.4.d) create a single relation to 

represent the Superclass C and all its subclasses. Any object that does not belong to 

some subclasses will have null values for the specific attributes of these subclasses. 

If few specific subclass attributes exist, these mappings are preferable to options (1) 

and (2), because they do away with need to specify EQUIJOIN and OUTER 

UNION operations and hence can result in a more efficient implementation. 

EmElo~e 

(a) IOid I Name Bdate Address JobType 

Driver T~ist Engineer 

IOid I LicenseNo IOid I Speed I I oid I EngType 

Car 

(b) IOid I UcPlate I Price MaxSpeed I NoOfPassengersl 

Truck 

I oid I LicPlate I Price NoOfAxles Tonnage 

(c) 

Person 

(d) IOid I Name Bdate I Address I Ulag roOfLani Mftag I Qualifl 

Figure 3.4 Illustrating Options for Mapping Specialization/Generalization 

The following relation, 'inh_rel', is used to represent the relationship between a 

class and its superclasses. This relation is populated when a new type with an 

inherit clause is created. This relation can be manipulated directly by inserting and 

deleting such relationships to support schema evolution which will be discussed later. 
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inh reI -

class name superclass 

student person 

employee person 

3.4 Mapping of Association 

When a relationship between two or more objects is of interest to an applica

tion and when the relationship itself takes properties, then such a relationship is 

modeled in OQUEL as an object relationship. The following mapping is used, based 

on the cardinality relationships:-

(1) for each binary 1: 1 relationship R, we identify object classes S and T that 

correspond to the object classes participating in R. We choose one of the object 

classes, S say, and include in S the object identifier of T. It is better to choose an 

object class with total participation in R in the role of S. We include all the simple 

attributes of R as attributes of S, and the OlD of composite ones. 

(2) for each binary l:N relationship R, we identify the object class S that represents 

the participating object class at the N-side of the relationship. We include in S the 

object identifier of the object class T, that represents the other object class partici

pating in R. This is because each object instance on the N-side is related to at most 

one object instance on the I-side of the relationship. We include any simple attri

butes of the l:N relationship as attributes of S. 

(3) For each M:N binary relationship R, we create a new relation S to represent R. 

We include in S the object identifiers of the participating object classes. We also 
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include any simple attributes of the M:N relationship as attributes of S. 

(4) For each n-ary relationship R, n>2, we create a new relation S to represent R. 

We include in S the object identifiers of the object classes participating in the rela

tionship. We also include any simple attributes of the n-ary relationship as attributes 

of S. 

3.5 Aggregation 

It may happen that we want to consider two or more classes, possibly con

nected by relations, as a higher order class with its own relations. This is represented 

as an aggregation. Aggregation is a tool to represent n-ary relationship. The aggre

gation concept corresponds to the notion of property in the sense of composition, 

since it expresses the idea that, for example, a computer consists of ( cpu, main

memory, peripheral devices). More stringently, we can say that the aggregation con

cept describes the necessary properties, that an object must own, in order to exist 

consistently. Clearly, it is hard to imagine a computer without a cpu. The aggrega

tion concept treats a collection of element objects as properties of a single higher 

level object. These properties, also called part-of properties, express relationships 

which usually do not change with time and which must be non-null in order to 

characterize objects completely. Applying aggregation recursively over the objects, 

an aggregation hierarchy is built, having the atomic objects as its leaves. 

(1) For each aggregation we create a relation R. We include in R the simple attri

butes and object identifier of complex objects. 

(2) For each multivalued attribute A, we create a new relation R that includes an 

attribute corresponding to A plus the object identifier of the relation that represents 

the object class. 
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3.6 Methods and the behaviour of objects 

As mentioned in chapter five the operational knowledge of an object on how to 

manipulate and interpret the values of attributes is organized as a set of methods. 

Attributes can be read or written only by applying appropriate methods. The 

methods consist of a definition part and an implementation part. The definition of 

the method consists of the specification of the method selector ( operation name ), 

the arguments and their corresponding types and the result type, if any. These 

determine the method interface. The implementation of the method represents the 

functionality of an operation. In general methods will be defined with an object class. 

Their functionality is common for all instances of an object class. Therefore both the 

method interface and implementation need not be stored for each instance for econ-

omy. 

We use the following relation, 'cl_ methods', to store the definition and imple

mentation of the methods and their respective classes. 

cl methods -

class name method name method code - - -

person get_dob range of r is person 

retrieve(r.dob)where r.name = $1 

person get_age @getage 
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7.4 lYPE DEFINITION 

OQUEL type definition is powerful and flexible. It captures data abstraction as 

a special case when there are only operations (methods) and no properties. It cap

tures records as a special case when there are only properties and no operations 

(methods). The inheritance mechanism allows the new type to be defined incremen

tally by specifying only the operations and properties in which the new type differs 

from previously defined types. Since methods may be viewed as special kinds of 

properties and properties may be specified by a pair of get and put methods, we 

could specify object types in terms of just a set of methods or just a set of proper

ties. But there are advantages in expressive power in allowing both methods and 

properties in specifying object types. 

In this section we will illustrate through examples the syntax we use to capture 

the various structural concepts used to build an OQUEL schema, such as generaliza

tion, classification, instantiation, aggregation, and association. The behavioral aspects 

will be discussed in the method section (See section 7.6). 

7.4.1 Generalization 

In order to capture the generalization relationship between classes the inherit 

construct is introduced. The following examples illustrate its usage:-

Svntax:-

derme type type_name (attr = dom, ... ) inherit ( type _ name1, .. ) 

examples:

Example 7.4.1 
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define type person 

( 

name = c20, 

dob = date 

) 

When the syntax used in example 7.4.1 is parsed, it results in the following 

actions:-

a) The definition of each class is extended by an object identifier (OID). 

b) The catalog relation 'cl_cattrs' which represents the classes and their member 

attributes is populated as follows:-

cl cattr -

cl name cattr name cattr_type -

person oid i4 

person name c20 

person dob date 

Example 7.4.2 
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define type student 

( 

gpa = f4, 

dept = Department, 

course = Course, 

level = c20 

) inherit ( Person ) 

Example 7.4.3 

derme type employee 

( 

jobtitle = c20 , 

dept = Department, 

manager = Employee, 

sal = i4 

)inherit 1 Person) 
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When the syntax used in example 7.4.2 is parsed, it results in the following 

actions:-

a) The definition of each class is extended by an object identifier (OID). 

b) The catalog relation 'cl_cattrs' which represents the classes and their member 

attributes is populated as follows:-
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cl cattr -

cl name cattr name cattr_type -

person oid i4 

person name c20 

person dob date 

student oid i4 

student gpa /4 

student dept Department 

student course Course 

student level c20 

c) The inheritance relation 'inh Jet' which captures the generalization relationship 

between classes is populated as follows:-

inh reI -

class name - superclass 

student person 

4.2 Aggregation 

Aggregation is represented through the (attr = dom, ... ) sequence. Beside the 

value attributes which are used to represent atomic properties of classes, we use 

reference attributes to capture relationship between objects. These references can be 

shared or exclusive, dependent or independent, according to the intended semantics. 

The reference attributes will be used to provide navigational access which will be 
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illustrated in section 7.8 of this chapter when the support for complex objects is dis

cussed. 
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7.5 OBJECT CREATION AND MANIPULATION 

7.5.1 CREATING OBJECT INSTANCES 

Support for Classification/Instantiation 

Separating a type and its extension allows for type reusability. This facility is 

lacking in database systems although it is extensively used in programming 

languages. The aim can be achieved by the following construct in which 

'relation_name' is the generic type, and 'type_name' is type of any instance. Note 

that the generic type may be a subset of a larger class. 

Svntax:-

create relation_name { type_name } 

Example 7.5.1 

create people {person} 

create students { student } 

create postgrads { student } 

create undergrads _{. student} 

To create an instance of a class the following syntax is used:-

Syntax:-

add instance_of class_name ( attr = val, ... ) 

Example 7.5.2 
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add instance of eo Ie name = ''Tom'' dob = "10 

This command is translated as follows:-

a) An oid is generated by incrementing the relation which holds the oid counter as 

follows :-

I replace oid reI (oid = oid + 1) I 

range of tmp is oid Jel 

Example 7.5.3 

add instance_of students (course = tIcs 1",level = "grad") where 

people. name = ''Tom'' 

This command is translated as follows :-

a) Since a student instance is assumed to be a person and hence has an occurrence 

in the relation people, the oid of the student is retrieved as follows:-

range of person is people 

retrieve tm rson.name = ''Tom'' 

b) using the oid which has been retrieved, a new tuple is added to the sub-class rela-

tion. 

range of tmp 1 is tmp 



chapter 7 144 

7.5.2 UPDATING OBJECT INSTANCES 

s tax is used:-

modi instance of < class name> to contain < tar et list> where < 

Example 7.5.4 

modify instance_of students to contain (course ="AI") where students.oid = 

people.oid 

and people. name = ''Tom''; 

7.5.3 RETRIEVING OBJECT INSTANCES 

Databases traditionally provide operations based on selection by content. This is 

especially true in relational systems, where all relationships between entities are 

represented by contents, and all operations are based on contents. These facts can 

be drawn from Codd's 12 golden rules for evaluating relational systems [Date86]. 

1) Rule1:- The Information Rule 

All information in a relational database is represented explicitly at the logical 

level in exactly one-way, by values in tables. 

2) Rule2:- Guaranteed Access Rule 

Each and every atomic value in a relational database is guaranteed to be logi

cally accessible by resorting to a combination of table name, primary key value, and 

column name. 

In object-oriented systems object contents are typically encapsulated i.e. hidden. 

We are not supposed to know the values of an object's attributes. By using methods 

which are discussed in section 7.6 an object can be manipulated through methods. 

However, there is a need to access objects through more flexible syntax and to 

make the the object internally transparent at least to some categories of users 

(e.g.type implementer) and to allow for formulation of unpredictable queries. To 
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achieve this goal we provide the following retrieval syntax:-

retrieve < target_list> where < qual> ; 

<qua1>::= <adt_qua1> I <complex_obLqua1> 

< adt _ qua1 > :: = < spatia1_ qual> I < geol_time _ qua1 > 

(See Sections 7.8 and 7.9 of this chapter). 
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7.5.4 REMOVING OBJECT INSTANCES 

The following syntax is used to remove an object from the database. 

Syntax:-

remove instance_of class _name where qual ; 

Example 7.5.5 

remove instance_of student where student.course = "AI" ; 

Since the removal of a complex object will also necessitate the removal of its 

unshared component objects and the removal of an instance of a class will also imply 

the removal of the instance from each of the related subclasses, an overloaded syn

tax is used which achieves the removal of different objects through methods. For 

example, removing an object from the academic-people class will result in its remo

val from the student and staff classes. The following relation, 'cl methods' shows the 

implementation of remove method for the class academic-people. 
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cl methods -

class name method name method code -

academic-people remove range of s is students 

range of p is academic-people 

range of as is academic-staff 

delete students where s.oid = p.oid and 

p.name = $1 

delete academic-staff where as.oid = p.oid and 

p.name = $1 

delete academic-people where p.name = $1 

Example 7.5.6 In order to remove Tom from the class academic-people we use the 

When this command is executed the parameter $1 in the remove method of the 

class academic-people will be replaced by Tom and the query is executed as will be 

discussed in sections 7.6 and 7.10. 



chapter 7 148 

7.6 SPECIFICATION AND MANIPULATION OF METHODS 

Associating methods with schema types provides a mechanism for defining 

derived attributes. Managing objects through methods enables the enforcement of 

semantic integrity. Accessing the schema only via its methods makes the schema 

type an abstract data type in its own right. In OQUE~ we have two types of 

methods, one type is written in Ingres/Quel with parameters, while the other is writ

ten in C++ with embedded Quel commands. The latter type is motivated by the 

fact that Quel like the other current query languages is not computationally com

plete. 

7.6.1 Quel Methods 

The implementation of methods involves an initial definition, storage of that 

definition, the ability to call (execute) the method, the display of methods for check

ing purposes and, lastly, deletion. These facilities are illustrated in the following 

examples:-

Methods Creation 

Svntax:-

create class name method method name ( method code) - - -

Example 7.6.1 

create people method get _ dob ( range of person is people retrieve (person.dob) 

where person.name = $1 ) 
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Methods Storage 

The OQUEL relation 'cl_methods' is used for the storage of methods. Thus the 

example above will be recorded in the following form: 

cl methods -

class name method name method code -

person get_doh range ofr is people 

retrieve (r.dob) where 

r.name = $1 

Methods execution 

Syntax:-

1 Execute (type,method name,object); 1 

et dob David 

Answer:-

110/10/671 

Methods display 

Svntax:-

display < class_name> methods 
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Answer:-

I get dob I 

Methods removal 

remove elass name method where method name = $1 

Example 7.6.4 

remove people method where method name = "p;et dob" 

7.6j. C+ + METHODS 

Problems with DML 

Most database query languages are not computationally complete. A computa

tionally complete DML, will make it possible to do more computation in the data

base, unfortunately, this power may however make it difficult to do query optimiza

tion unless the properties of the operations like associativity, commutativity and 

other algebraic properties are specified to the query optimizer. 

C++ Methods creation 

These methods are written in C++ with embedded Quel code and stored in a 

fIle. The pathname of the fIle is stored in the method relation 'el_methods' by the 

following command:-

Syntax:-



'1' 151 -'- .... 

create class name method method name ( method yathname ); - -

C++ Methods Storage 

c1 methods -

class name method name method code -

people get_age @getpersonage 

Methods execution 

Syntax:-

I Execute (type, method name,object); I 
Example 7.6.6 

A simple example of a user-defined datatype is the non-metric measurement 

system based on feet and inches. In this system, 3' 11" + 1" = 4' ( 3 feet 11 inches 

plus 1 inch equal 4 feet ). 

However, conventional DBMSs do not have a datatype for feet and inches and 

thus do not understand the concept of feet and inches. Therefore, this data must 

somehow be converted into a format understood by the database. 

One option is to store the measurement either as decimal or floating point 

data. In either case, the values must be approximated. In the example above, the 

data would be stored as 3.91666 and 0.08333 feet in the database. However, adding 
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3.91666 and 0.08333 in floating point arithmetic gives you 3.99999 rather than 4. So, 

not only does this solution have a very unnatural user interface, it also sacrifices 

database integrity and precision. 

In OQUEL, we have provided C+ + methods to express more complex opera

tions on data. For example, let us have the following relation ( road ) which holds 

information about road number ( road_no ) and road width ( width ). Suppose the 

road width is measured in feet and inches. Let us have the following requirements:-

User Requirements:-

" Increase the width of road no. 10 by 3' 10 ? 

OQUEL Query:-

execute (road,increase _ width, 10); 

The system will use the class_name ( i.e. road ) and the method name ( i.e. 

increase_width ) to extract the pathname to the method_code from the cl_ methods 

relation ( i.e. @increase_width ). 

cl methods 

class name method name method code -

road increase width @increase_width 

The following steps are taken to include the methods into the system:-

1. The file road.h has been preprocessed by eqc preprocessor 

2. The file @increase_width is renamed and compiled with C++ compiler 

3. A new OQUEL system is formed by compiling and linking a version of OQUEL 

and the output of the C++ file @increase_width 

4. The new OQUEL system is run. These steps are done through system calls. 
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When @increase_width is executed the system will interact with the user as follows:-

OQUELjUser Interaction :-

OQUEL: road_no increment ? 

User: 10 3:10 

The road relation will be as follows:-

i) Before execution of the method:-

road 

road no width -

10 23:11 

20 17:9 

ii) After execution of the method:-

road 

road no width 

10 27:9 

20 17:9 
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IIFlLE @increase_width Iithis file contains a call to the method increase_width 

I I this file is renamed by the system and passed to the C++ compiler through system calls 

#include ·road.h· 

#include"/usr/include/CC/stream.h" 

mainO 

road rd(O, ''OJ; 

int rd_no; 

char incr[20]; 

I I create a road object 

1/ declare a road no. 

I I and the increment to the road width 

printf("enter road_no, increment j; I I enter the values 

scanf("%i 'los ", &rd _ no,incr ); 

rd.increase _ width(rd _ no,incr); Ilcall the method increase_width 

IIFlLE ROAD.H I I this file contains the definition of the method increase_width 

#include <stream.h> 

#include <string.h> 

static char ·strsave(char· s) I I allocate memory for the members 

char .p; 

extern char ·mallocO; 

p = newchar[strlen(s)+l]; 

strcpy(p,S ); 

return(p); 

class road 

public: 

char· road _width; 

int road_no; 

road(int rdno,char· wdth); I I a constructor for the road class 

\Oid increase _ width( int rd _ no,char· width); I I a method to increase the road width 

}; 

road::road(int rdno, char· wdth) 

{ 

road_no = rdno; 

road_width=wdth; 

void road::increase _ width(int rd _ no,char· width) / / define increase_width method 
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char °Ot,of2t; / / variables to hold extracted no. of feet from increment and the old road width 

char °ilt, °i2t; / / variables to hold extracted no. of inches from increment and the old road width 

char °13t, °i3t;/ / variables to hold the formatted total no. of feet and inches resp. 

char str2(21); / / C+ + variable to hold the new road width 

char str3(22); / / C++ variable to hold the old road width 

int O,f2,13; / /no. of feet in the increment, no. of feet in the old width, and no. of feet in the new width. 

int il,i2,i3; / /no. of inches in the increment, old road width, and the new road width resp. 

road _ no=rd _no; 

road _width = strsave(width); 

char cwidth(21); / / ingres variable to hold the road width 

/ / ingres variable to hold the road no. 

rdl_no=rd_no; 

r # line 38 "road.h" • / 

{ 

r ingres • / / / open ingres database 

IIingopen(O,"oodb",(char ·)0); 

r # line 39 "road.h" • / r range·/ 

} 

IIwritedb("range of rzroad"); 

I1syncup«char ·)0,0); 

r # line 40 "road.h" • / r retrieve • / / / retrieve the road width to be modified 

/ / in the variable cwidth given the road no. 

I1writedb("retrieve(cwidth. r.width)where r.road _no z"); 

Ilsetdom(1,30,4,&:rdl_ no); 

I1writedb(" "); 

I1retinit«char ·)0,0); 

if (IIerrtestO !z 0) goto IIrtEl; 

I1rtBl: 

while (llnextget() 1= 0) { 

IIretdom(1,32,O,cwidth): 

if (I1errtest() ,., 0) goto I1rtBl; 

} r I1nextget • / 

I1f1ush«char ·)0,0); 

I1rtEl:; 

} 

r # line 41 "road.h" • / r host code • / / / calculate the new road width 

Ot - new char(10); / / create a buffer to hold the no. of feet from the increment variable 

Ot • &trtok(width,":"); / / use strtokO from the standard library to pull out the no. of feet 

o = atoi(Ot); / / from the incerement variable and convert to integers 

ill • new char{lO); / / create a buffer to hold the no. of inches from the increment variable 
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i It = strtok(O,O); 

it = atoi(ilt); 

strcpy( str3,cwidth); 

streat( str3,'\ 0'); 

f2t = new char(10); 

/ / use strtokO to strip off the inches and 

/ / convert to integers 

/ / copy the old road width from the ingres variable 

/ / into C+ + variable and terminate with null 

/ / create a buffer to hold the no. of feet from the old road width 

f2t = strtok(str3,":"); / / use strtokO to pull out the no. of feet 

f2 = atoi(f2t); / / convert to to integers 

i2t = new char(20); / / create a buffer to hold the no. of inches 

i2t = strrchr(cwidth,':');/ / locate the colon and return a pointer to it 

i2t+ +; / / return a pointer to the inches 

i2 = atoi(i2t); / / convert to integers 

f3 = n + f2 + (it + i2) / 12; / / calculate the total feet and 

i3 = (il +i2) % 12; / / total inches 

·str2 = '\0'; 

f3t = new char(10); 

sprintf(Ot,,,%i",f3); 

int j = strlen(f3t); 

f3tU + 1) = '\0'; 

strcat( str2,f3t); 

streat( str2,":"); 

ilt = new char(10); 

sprintf(i3t, ,,%i ",i3); 

int k ... strlen(ilt); 

ilt[k + 1) = '\0'; 

strca t( str2,i3t); 

strcpy( cwidth,str2); 

/ / create a buffer and fill it with 

/ / the total no. of feet 

/ / return the length of the buffer 

/ / terminate the string 

/ / concatenate the total no. of feet to str2 

/ / add colon in the appropriate place 

/ / create a buffer and fill it with 

/ / the total no. of inches 

/ / return the length of the length of the string in the buffer 

/ / terminate the string 

/ / concatenate the total no. of inches in the appropriate place 

/ / copy from C+ + variable to ingres variable 

/ / replace the old road width with the new road width 

r # line 52 "road.h" • / r range • / 

{ 

I1writedb("range ofr - road"); 

IIsyncup«char ·)0,0); 

r # line S3 "road.h" • / r replace·/ 

} 

I1writedb("replace r(width .. "); 

IIsetdom(I,32,0,cwidth); 

I1writedb(" )where r.road _no""); 

IIsetdom(I,30,4,&:rdl_ no); 

I1writedb(" "); 

IIsyncup«char ·)0,0); 
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/* # line 54 'road.h' • / /* exit' / 

lIexit(); 

/* # line S5 "road.h' • / r host code • / 

It is noteworthy to mention here that we use the same syntax and storage struc

ture for both Quel methods and C+ + methods. However, we introduce the special 

character (@) as a prefix for C+ + methods to differentiate them from Quel 

methods in the preprocessing. 

7.6.3 Examples of applications of methods 

Methods and Semantic Integrity 

When we design a schema for a particular database application, one of the 

important activities is to identify the integrity constraints that must hold in the data

base. We usually implement a database to store information about some part of the 

real world about which we have many integrity constraints. We want to specify 

many of these constraints to the DBMS and if possible have the DBMS be responsi

ble for enforcing them. In any data model, there are some types of integrity con

straints that can be specified and represented directly in the database schema of that 

model. These are called the implicit constraints of the data model, and are specified 

using DDL Each data model includes a different set of implicit constraints that can 

be directly represented in its schema. However, no data model is capable of 

representing all types of constraints that may occur in an application. Hence, it is 

usually necessary to specify additional explicit constraints on each particular data

base schema that represents a particular application. 

Support and enforcement of semantic integrity is a weak point of many existing 
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RDBMSs. Examples of state constraints that occur frequently in database applica

tions are (a) value set constraints, (b) attribute structural constraints, (c) relational

ship structural constraints, (d) superclass/subclass constraints, (e) general semantic 

constraints that do not fall in any of the above categories. 

We are interested in category (e) of the constraints. An example is the con

straint II the salary of an employee must not be greater that the salary of the 

manager of the department for whom that employee works ". Another example 

could be II the total number of hours that each employee works on all his projects 

should not exceed 45 hrs per week". These constraints and other explicit constraints 

can not be specified directly in the schema using the DDL 

In OQUEL, we propose a technique for handling explicit constraints by encod

ing them as part of the methods that are encapsulated with objects. Storing these 

constraints in the DBMS will provide applications with the opportunity to refer to 

these constraints and thus provide semantic integrity control. We are, in effect, 

allowing applications to share the semantics of the database. Since the values asso

ciated with constraints may change with time, we propose storing constraints in a 

relation so that the constraints can be updated without affecting the methods access

ing them as parameters. 

Example 7.6.7 

Suppose we need to raise the salary of an employee and we have the following 

constraint:-

1. the total salaries of employees < dept.budget 

This requirement can be achieved by implementing the method raise _sal as 

illustrated below: 
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employee 

emp_oid dep_oid sal 

4001 2000 950.00 

4002 2000 900.00 

dep_cnstr 

dep_oid budget 

2000 10000.00 

3000 8000.00 

cl methods 

class name method name method code 

employee raise sal range or rl is employee 

range or r2 is dep _ costr 

replace rl (sal = r1.sal + $2) where rl.emp_oid = $1 

and sum(r1.sal) < r2.budget 

and r2.dep _ oid = r1.dep _ oid 

This technique will provide flexibility since the department budget can be 

increased without affecting the code of the method and it provides semantic integrity 

since all applications will use the same method for raising the salary of an employee. 
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6.3.2 Management of Complex Objects 

The use of methods allows the user to express more meaningful operations at a 

higher level. Even the traditional update operations (i.e. delete, modify, etc) can be 

overloaded to manipulate the complex objects using parameterized operations. 

Let us have a complex· object CELL3 which is composed from instances of CELLI, 

instances of CEll2 and instances of P A lH, which are in tum composed of 

instances of SEGMENT. This information is represented in figure 6.1. 

CELL 
PID TID cell name cdata 

@OOOOOOOOO @123000100 CELLI xxxx 
@OOOOOOOOO @123000200 CELL2 yyyy 
(nlf •••••••• @123000300 CELL3 ZXl'2 '= 

INSTANCE 
PID TID m cell idata 

@123000300 (0)123000301 @123000100 aaaa 

@123000300 @123000302 @123000100 bbbb 
@123000300 @123000303 .@123000100 cccc 
@123000300 @123000304 @123000100 dddd 
@123000300 @123000305 @123000200 eeee 

PATH SEGMENT 
TID pdata PID TID sdata 

123000306 kkkk qqqq 

123000307 lID rrrr 

@123000308 mmm ssss 
@123000309 nnnn 
@123000310 0000 

@123000311 pppp 

Figure 6.1 Complex Object Model description of the CELL 

Let US have the following intended semantics:- deleting an instance of a CELL 

implies removing all its components from the INSTANCE and PAlH relations, and 

removing a PAlH implies removing all its components from a SEGMENT relation. 

This semantic can be expressed in OQUEL as a delete method. This method is 
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stored in the relation 'el_methods' as a list of Quel commands with parameters. 

These parameters are supplied through the interface. 

Example 7.6.8 

User requirement: 

Delete CELL3 

OQUEL query: 

execute (CE~delete,CELL3); 

When this method is executed the $1 parameter in figure 6.2 is replaced by 

CELL3 and the method is executed with deletion propagated to the component 

objects to achieve the desired semantics. 

cl methods 

class name method name method code 

CELL delete range or rlls CELL 

range or r2 Is INSTANCE 

range or r3 Is PATH 

range or r4 Is SEGMENT 

delete r4 where r4.PID = r3.TID 

and r3.PID = rl.TID and rl.ceU_name=$l 

delete r3 where r3.PID=rl.TID and rl.ceU name=$l 

delete r2 where r3.PID= rl.TID and rl.ceU_name=$l 

delete r1 where rl.ceU name=$l 

Figure 6.2 
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7.7 Schema Evolution 

7.7.1 Introduction 

7.7.2 OQUEL Schema 

7.7.3 Schema operations 

Addition of Attributes 

Deletion of Attributes 

Modification of Attributes Names 

Addition of Methods 

Deletion of Methods 

Modification of Methods 

Addition of Types 

Deletion of Types 
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7.7.1 Introduction 

One of the important requirements of advanced applications is schema 

evolution - the ability of the user to change the database schema. The types of 

changes required include creation and deletion of a class, addition and deletion 

of attributes and methods. In object-oriented databases there are two types of 

schema evolution: one involves the class definition and the other involves the 

generalization hierarchy. 

Existing database systems allow only few types of schema changes. For 

example, they allow only creation and deletion of relations and no addition or 

deletion of attributes. This is mainly because the applications they support are 

conventional record-oriented business applications which do not require more 

than a few types of schema changes and also the data models they support are 

not as semantically rich as object-oriented data models. 

7.7.2 OQUEL Schema 

In OQUEL, a database schema is a set of class definitions connected by 

the superclassjsubclass relationship. It is represented by a class lattice. Subc

lasses do not necessarily partition the instances of the superclasses. Therefore, 

the set of instances in subclasses are not necessarily disjoint. Orthogonal to the 

generalization hierarchy is the composition hierarchy. Composite object classes 

are dermed using references to other classes. The referencing attributes have 

non atomic values. The value domains are the sets of instances of the refer

enced classes. 
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7.7.3 Schema operations 

Operations which change schemas fall into the following categories. 

1) class definition changes 

2) class relationship changes 

In the fIrst category we have the following changes:-

addition of attributes 

deletion of attributes 

modification of attributes name 

addition of methods 

deletion of methods 

modifIcation of methods 

In the second category we have the following changes:-

addition of types 

deletion of types 

In this section we will discuss the implementation of some changes to the 

schema and their effect on the data in the database. 

Addition of attributes 

We use the following syntax to add attributes to the class defInition 

extend type < type name> < attr spec> I 
For example, if we have a class C1, with attributes a 1, and a2, the follow

ing description will appear in the catalog relation 'cl_cattr':-
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cl cattr 

cl name attr name attr_type 

Cl al c20 

Cl a2 cIO 

Suppose we want to add a new attribute aJ to the class Cl. We use the follow

ing command to make this change 

extend type Cl ( aJ = c15 ) 

the effect of this command is as follows:-

1) change the description of Cl in the catalog table 'cl_cattr' to look as follows 

:-

cl cattr 

cl name attr name attr_type 

Cl al c20 

Cl a2 cIO 

Cl a3 cIS 

2) a temporary relation tmp is created from this description by the following 

command 

I create tmp { Cl } I 
3) the old class Cl extension is copied to the tmp relation with null values for 

the newly added attribute (i.e aJ). 

4) the old class Cl is destroyed 
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5) the tmp class is renamed as C1 

Deletion of attributes 

The followin s tax is used to remove an attribute from a class. 

contract name> < attr s 

the effect of this command is as follows:-

1) The attributes in the specification list are removed from the catalog relation 

'cl cattr'. 

2) A new tmp class is created from the updated description in the catalog using 

the following command:-

I create tmp { type name } I 
where type_name refers to the updated description in the catalog. 

3) The tmp class is populated from the old class by the desired attributes 

4) The old class is destroyed 

5) The tmp class is renamed as the old class 

Modification of attributes name 

1) A new tmp class is created with the desired attribute names 

2) The tmp class is populated from the old by the respective attribute names 

3) The old class is destroyed 

4) The tmp class is renamed as the old class 
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Addition of methods 

tax for QUEL methods 

create < class name> method < method name> < method code> . 

tax for C++ methods 

create < class name> method < method name> < method athname>· 

Deletion of methods 

remove <class name> method where <method name> = $1 

Modification of methods 

~ax:-

modify < class_name> method ( < method name> = $1, < method code> = 

$2 ) 

where < method name> = $3 

Addition of types 

Syntax:-

create < class name> subtype of < class name> 

Deletion of types 

Syntax:-

remove < class name> from < class name> 
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7.8 Support For Complex Objects 

7.8.1 Introduction 

7.8.2 Complex object deflnition 

7.8.3 Complex object schema 

7.8.4 Operations on complex objects 

7.8.5 Mapping complex object schema to relational schema 

7.8.6 Mapping object-oriented queries to relational queries 
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7.8.1 Introduction 

Many application areas of computing such as artificial intelligence, office 

automation, computer-aided design, exhibit a unifying requirement of support

ing complex objects. Support for complex objects will provide the user with the 

ability to define and manipulate a set of objects as a single logical entity for the 

purpose of semantic integrity and efficient storage and retrieval. 

7.8.2 Complex object definition 

In OQUEL we represent an arbitrary complex object as a recursively 

nested object. The class of an object may be defined as the domain of an attri

bute and the domain class, unless it is a primitive class, may in tum possess 

attributes and so on The internal state of an object consists of the values of all 

its attributes. The value of an attribute is an instance of its domain, if the 

domain is a primitive class; and a reference to an instance of the domain other

wise. If the domain of an attribute is a class, the value of that attribute will be a 

set of object identifiers. 

7.8.3 Complex object schema 

In figure 8.1, we show the schema of a COMPUTER class in terms of the 

attributes, c _cpu, c _main_memory, c yeripheral_ devices, c _manufacturer, 

c _software, c _users, and c _ name. The domain of the c _ cpu attribute is the class 

CPU, the attribute c _ main _memory has the class MAIN_MEMORY as its 

domain, the domain of c yeripheral_ devices is PERIPHERAL_DEVICE, the 

domain of c_manufacturer is COMPANY, the domain c_software is the class 

SOFIW ARE, the domain for the attribute c _users is COMPUTER_USERS, 

and the domain of the c_name is the primitive class S1RING. The 

nonyrimitive classes like CPU, MAIN_MEMORY, PERIPHERAL_DEVICE, 
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COMPANY, SOFIWARE, COMPUTER_USERS, each consist of their own 

sets of attributes, which in turn have associated domains. 

CPU 

name 

COMPUTER 

PER DV MAINM 
c name 

size 

price manuf 
c main m 

manuf EMPLOYEE COMPANY 

name name 

location address 

manager dept 

SOFfW 

name 

release 

price 

date 

MAIN 

Generalization 

Aggregation 

Figure 8.1 

7.8.4 Operations on complex objects 

The nesting of an object through the domains of its attributes immediately 

suggests that to fully fetch an instance, the instance and all objects it references 

through its attributes must recursively be fetched In order to fetch one or 

more instances of a class, the class and all classes specified as non "'primitive 

domains of the attributes of the class must be recursively traversed. For 
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example to fetch an instance of a COMPUTER from the example in figure 8.1 

the classes which need to be traversed include CPU, MAIN_MEMORY, 

PERIPHERAL_DEVICE, COMPANY, SOFIW ARE, COMPUTER_USERS, 

as well as the non yrimitive domains of these classes. 

However, a query may be formulated against an object_oriented schema, 

which will fetch only the instances of a class which satisfy certain search cri

teria. A query may restrict the instances of a class to be fetched by specifying 

predicates against any attributes of the class. 

An example of a query against the schema of figure 8.1 is the following:

Example 7.8.1 

User Requirement: 

Find all computers manufactured by a company located in London 

and which have cpu clock rate equal to 10 mhz. 

OQUEL query: 

computer get r ( r manufacturer location = "London" ) 

and( r cpu clock_rate = 10) 

In OQUEL, in order to transform object-oriented queries into relational 

queries we require first the transformation of the object-oriented schema into 

an equivalent relational schema. Queries against the object-oriented schema 

can then be formulated as semantically equivalent queries against the relational 

schema. This provides us with techniques for building an object-oriented front 

end to relational systems. 
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7.8.S Schema transformation 

A class is modeled by a relation, and the class definition is mapped into a 

relation having the same name as the class's. The set of instances of a class is 

mapped into tuples of the relation. The attributes of the class are mapped into 

columns of the relation. Further the class is augmented with a system defmed 

oid column. The value of this column in each tuple is the unique identifier of 

the tuple. 

Transformation of the object-oriented schema of figure 8.1 yields the fol-

lowing relations, one for each class:-

CPU (oid,name,clock _rate) 

MAIN_MEMORY (oid,size,manufacturer) 

PERIPHERAL_DEVICE (oid,transmission _ speed,price) 

COMPANY (oid,name,location,manager) 

SOFIW ARE (oid,name,release,price,date) 

COMPlITER _USERS (oid,userid,address,quota) 

EMPLOYEE (oid,name,address,dept) 

A set attribute requires the creation of an additional relation. If an attri

bute A of a class C is a set attribute whose domain is the class D, a relation 

C A is created with two columns C DID and D DID. If an instance of C has 

an n _element set for the value of its attribute A, there will be n tuples in the 

relation C _ A, and for each of these tuples the C _ DID column will contain the 

DID of the instance of C. The n _tuples will have distinct values for the D _DID 

column, such that each value is the OlD of an instance of the class D. 
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7.8.6 Query transformation 

In OQUEL, we transform an object-oriented query into an equivalent 

relational query. For example, we use the following syntax to retrieve an object 

using a complex predicate. 

object get 0 ( 0 Al A2 A3 ... An comp-op const ) 

where 

object: refers to the target object class 

get: is a message sent to the object 

o : refers to a range variable 

Al,A2, .... An: refer to nested attributes whose domains are Dl,D2, .... Dn. 

comp-op: is comparison operator 

const: is a constant string or number. 

The above syntax is translated to the following QUEL syntax:

retrieve (r.oid) where 

r.Al = D1.oid and D1.A2 = D2.oid and D2.A3 = D3.oid 

.... and Dn-l.An comp-op const 

It is worth mentioning that these joins are hidden from the users and the 

system makes use of meta data to navigate the structure, resulting in a simpli

fied user interface. 
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7.9.1 ADT and domain concepts in the relational model 

In the relational model for databases, a relation is defined as a subset C of 

the cartesian product D 1 x D 2x .. Dn , where the D; are domains which are not 

necessarily distinct. No mention is made of what data types should or should 

not be allowed; the definition simply states that the values that appear in the 

relation in column i must be drawn from the set D;. In order to distinguish 

between columns defmed over the same domain, attribute names are intro

duced. Attribute names within a relation must be distinct. It is these attribute 

names that are used to express dependencies and are referenced in queries. 
, 

Current query languages for relational databases usually are fIXed i.e. they 

provide only a fIXed set of data types and operations. It is usually not possible 

to extend this set by user defined data types or functions. Yet, there is a con

tinuing requirement as database languages evolve to extend these languages to 

incorporate new data types. 

7.9.2 ADT Domain Semantics 

Extending the domain of a relation to include instances of ADT or com

plex objects, requires us first to specify the required semantics of the domain. 

What kind of operations should be performed on instances of the domain ? 

These semantics can be specified in abstract terms independent of implementa

tion details, stating, for example, what kind of comparison operations, conver

sion operations, computational operations, assignment operations, etc are 

allowed. 
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Semantics of ADT in Spatial and Temporal data 

In this section we address two important types of data and show how they 

can be supported in our system. These are spatial and temporal relationships. 

(a) Spatial data :-

In applications such as geophysical surveys, CAD/CAM , cartography, etc. 

it is important to model the space domain. The space semantics is captured by 

three common representations:-

1) solid representation- the space is divided up into pieces of various sizes. The 

spatial characteristics of an entity are then represented by the set of these 

pieces associated with that entity. 

2) boundary representation- the spatial characteristics are represented by line 

segments or boundaries. 

3) abstract representation- relationships with spatial semantics are used, such as 

above, near, behind, to associate entities. 

While it is clear that many applications would benefit from such facilities, 

different application domains have varying requirements. For example, in VLSI 

application space is two dimensional, basic objects to be stored are points, line 

segments, rectangles and polygons. In solid modeling for most manufacturing 

applications and geological applications - space is three dimensional. The opera

tions relevant to each application area are also different. 



chapter 7 177 

Example of support for spatial data 

In geological applications, like other CAD/CAM applications, we need to 

define complex attributes and operations on them. It is useful to define the fol

lowing data types as a first step:-

rectangle (Xb = int, Yb = int, X t = int, yt = int ) 

point (X = int, Y = int ) 

horizontal line ( Y = int ) 

vertical_line (X = int ) 

It makes no sense to define ADT without defining operations on them. We 

define the following operations on rectangles. 

1) Exact rectangle search 

To find a rectangle R1 that matches given rectangle R2, the equality 

operation is used. We define (R1 EQUAlS R2) by the query 

(R1Xb = R2Xb) and (R1.Yb = R2.Yb) and (RIXt = R2Xt ) and (R1.Yt = 

R2.yt) 

2) Point search 

All rectangles R from a given set of rectangles that contain a given point P 

will satisfy the operation (R ENCLOSES P), which is defined by the query: 

(RXb < = P.X) & (R.Yb < = P.Y) & (RXt > = P.X) & (R.yt > = P.Y) 

3) Overlap detection 

All rectangles R1 that overlap a given rectangular area R2 will satisfy the 

operation (R1 OVERlAPS R2), defmed as (RIXb < R2Xt ) & (R1.Yb < 

R2.yt) & (RIXt > R2Xb) & (R1.yt > R2.Yb) 

4) Abutting rectangles 

The operation (Rl ABUTS-lEFT' R2) may be used to find any rectangle 
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R 1 that touches the left edge of a given rectangular area R2. The operation is 

defined by the query (RIXt = R2Xb) & (R1.Yb < R2.Y() & (Rl.Y( > R2.Yb) 

The operation (Rl ABUTS-RIGHT R2) may be used to fmd any rectan

gle R1 that touches the right edge of a given rectangular area R2. The opera

tion is defined by the query (RIXb = R2Xt ) & (R1.Yb < R2.Y() & (R1.Yt > 

R2.Yb) 

The operation (R1 ABUTS-BOTfOM R2) may be used to fmd any rec

tangle R 1 that touches the bottom edge of a given rectangular area R2. The 

operation may be defmed by the query (R1.Y( = R2.Yb) & (RIXb < R2Xt ) & 

(RIXt > R2Xb) 

The operation (Rl ABUTS-TOP R2) may be defined to fmd any rectangle 

R1 that touches the top edge of a given rectangular area R2. The operation is 

defined by the query (R1.Yb = R2.Yt ) & (RIXb < R2Xt ) & (RIXt > R2Xb) 

5) Containment search 

All rectangles Rl that are fully contained within a given rectangle R2 will 

satisfy the operation (Rl CONTAINED-IN R2), defined as (RIXb > = R2Xb) 

& (Rl.Yb > = R2.Yb) & 

(RIXt < = R2Xt ) & (R1.Y( < = R2.yt) 

6) Upper/Lower & Left/Right rectangles 

To find all rectangles R that lie above a horizontal-line H, the operation 

(R ABOVE H) is defined as follows (R.Yb > = H. Y) 

To fmd all rectangles that lie below a horizontal-line H, the operation (R 

BEWW H) is defined as follows (R.Y( < = H.Y) 

To find all rectangles R that lie to the left of a vertical-line V, the opera

tion (R LEFT-OF V) is defined as follows (RXt < = V.X) 

To find all the rectangles R that lie to the right of a vertical-line V, the 
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operation (R RIGHT-OF V) is defined as follows (RXb > = V.X) The other 

operations can be expressed in a similar manner. 

(b) Temporal data :-

Temporal information is a special one-dimensional case of spatial informa

tion. Temporal aspects built into databases must include three types of support 

for time : time points, time intervals, and abstract relationships involving time 

i.e before, after, during etc. 

7.9.3 ADT Domain Implementation 

Implementation of an ADT domain requires decisions about internal 

representation, operator implementation and host language interfacing. In 

OQUEL, we extend the relational system Ingres by an interface layer. The 

interface simulates the extended model by converting schemas and queries into 

their relational counterpart. The attraction of such an approach lies in its inex

pensive implementation using reliable existing technology. In OQUEL, we 

used a field of text data type in the relational system Ingres to store instances of 

ADT domains and we translated the operations on ADT domains to operations 

on text data types supported by Ingres. Since Ingres query languages like other 

relational systems are not computationally complete, there is a need to resort to 

a host language to perform other computational operations. We chose C+ + 

since it has the merits of OOPLs and was already incorporated in OQVEL 

through the provision of methods for certain complex objects. Some of the mer

its of the OOPL approach include :- (1) the existence of an IS-A hierarchy 

among domains to establish operations inheritance. (2) the possibility to use 

existing code to implement new operations. 
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7.9.4 ADT Domain Syntax 

Inclusion of an ADT domain in the relational system implies extensions to 

the external language interface syntax to defme, manipulate, and query 

instances of ADT domains. In OQUEL we have proposed extensions to define, 

manipulate and query object-extended schema. 

Syntactic extensions 

In the following section we illustrate through examples the handling of 

ADT domain attributes and their inclusion in queries. 

Example 7.9.1 :-

A gravity survey class ( abbreviated as gr _surv) is created as follows :-

define type gr _surv (reading = f4, time = date, elevation = f4 , location 

= coad) 

This class contains four attributes where the first three are supported by 

the database system and the last one is a complex domain defined as an ADT. 

The location attribute takes its values from the cood domain which is defined 

as a list of two values i.e. < Latitude,Longitude > and stored as a text data type. 

A class gravity_survl will be created from the above defmition using the com

mand :-

create gravity survl { gr surv } - -
Instances may be added to gravity survl as follows:-

add instance of gravity survl ( reading = 12.4 , time = "10/10/89", eleva-- -
tion = 122.5, location = "23,60" ) 

Let us suppose the following gravity_survl class resulted from the above popu

lation 
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gravity surv1 

reading time elevation location 

124 10/10/89 1225 23,60 

13.4 10/10/89 121.2 23,61 

14.1 10/10/89 124.1 22,60 

15.3 10/10/89 125.3 20,62 

16.2 10/10/89 1227 23,63 

Supporting ADT domains implies the needs for extensions to restriction predi

cates, joins, and projection clauses. 

a) predicate extensions 

Example 7.9.2 

User requirement: 

Which points have coods east of "23,61"? 

OQUEL query: 

range or r is gravity_surv1 

retrieve (r.all) where r.location east "23,61" 

This query with its extended predicate is translated into an equivalent relational 

query with operations on the ADT cood translated into operations on an 

equivalent text data type. Operations are provided in the Ingres system to 

manipulate text data types such as concatenation, extraction,length of text etc. 

Example 7.9.3 

Let us suppose we have an application in which rectangles form an 
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important abstraction for the representation of information. A rectangle is 

represented by its left lower corner (Xb JIb) and top right corner (Xt Jlt). This can 

be defined in OQUEL as follows:-

define type < drawing> (colour = c20,rect = rectangle) 

A design1 class can be created from the above deftnition as follows:

create design1 {drawing}; 

Design1 can be populated as follows:-

add instance of design1 (colour = "red",rect="10,20,30,30") 

Let us have the following extension for the design1 class. 

design1 

oid colour reet 

1001 red 10,20,30,30 

1002 green 15,20,35,50 

1003 yellow 10,30,40,50 

1004 red 20,20,50,60 

1005 black 15,20,40,40 

1006 orange 5,30,40,60 

The following queries can be formulated against the stored data:

Example 7.9.4 

User requirement: 

Which rectangles from the given set of rectangles overlap 

"10,20,30,40" 

OQUEL query: 
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range of r is design1 

retrieve(r.all) where r.rect overlap "10,20,30,40"; 

Example 7.9.5 

User requirement: 

183 . 

Which rectangles from the given set of rectangles abut "20,20,30,40" 

from left? 

OQUEL query: 

range of r is design1 

retrieve (r.all) where r.rect abuts_left: "20,20,30,40"; 

Example 7.9.6 

User requirement: 

Which rectangles from the given set of rectangles are contained in 

"10,10,60,60" 

OQUEL query: 

retrieve (r.all) where r.rect contained_in "10,10,60,60"; 

b) join extensions 

Suppose we have the following class for a resistivity survey (abbreviated as 

resis_surv ) with the following extension :-
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resis surv1 -

reading loe 

45.3 23,64 

228 22,63 

34.6 23,60 

45.7 22,60 

44.5 23,61 

Example 7.9.7 

User requirement: 

Which gravity readings and resistivity readings share the same coods 

? 

OQUEL query: 

range of g is gravity_surv1 

range of r is resis _surv1 

retrieve (g. reading, r .reading, r.loe ) 

where r.loc equals g.location 
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7.10 OQUEL ARCHITECTURE 

In this section we describe the architecture of COVEL The description 

consists of the hierarchies of menu interfaces used, the syntax of COVEL, the 

algorithms used for the implementations, and the meta data used to support the 

implementation. Appendix 7A comprises a summary of COVEL architecture. 

7.10.1 Class Attributes: Type definition and evolution 

7.10.1.1 

define type <type name> (attr; =domj, .... ) I 
This statement is used to define the type in terms of its attributes. This 

statement is parsed and the information about the class name, its attributes, 

and their domains are stored in the catalog relation <cl_cattr> as in figure 

7 A24 of appendix 7 A This information in the catalog relation < cl cattr> will 

be used to create a relation to hold instances of the type as illustrated in sec

tion 7.10.2. 

7.10.1.2 

define type <type name> (attrj =domj, .... ) inherit ( <type name> .... ) I 
This statement is similar to the above except for the inheritance part. The 

inherit 'construct is used to capture the generalization hierarchy. When this con

struct is parsed the information about the relationship between the type and its 

supertypes is stored in the <inh _reI> as in figure 7A24 of appendix 7A 

7.10.1.3 

extend type < type name> ( < attr specs » I 
This statement is used to extend the type definition held in the catalog 

relation <cl_cattr> as in figure 7A24 of appendix 7A The old type definition 
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is augmented with new attributes and their domains and any new classes 

defined from this type will use the new extended definition. This statement is 

parsed and an Ingres command is formulated to extend the catalog relation 

<cl_cattr> with the <class_name>, <cl_cattrs>, and their domains. 

7.10.1.4 

contract type < type name> ( < attr comma list» I 
This statement is used to contract the definition of < type_name> and the 

attributes specified in < attr _comma_list> are dropped from the definition of 

the type and any new relation created from the type will use the contracted 

definition. This statement is parsed and an Ingres command to delete the speci

fied attributes from < cl_ caUr> of figure 7 A24 in appendix 7 A is formulated. 

7.10.2 Class Instances 

7.10.2.1 

create < class name> { < type name> } I 
This statement is used to create < class name> to hold a set of instances 

of the < type_name> . When this statement is parsed the description of the 

< type_name> is retrieved from the < cl_ caUr > of figure 7 A24 appendix 7 A 

An Ingres file <instance.f> with commands to create a relation with name 

< class _name> and description as retrieved from < cl_ caUr > catalog relation is 

formulated. A C file < instance.c > is constructed with a system call to Ingres 

and to the C complier, and which takes input from < instance.f>. The program 

< instance.c > is compiled and its output < instance. out > is executed. 

7.10.2.2 

add instance of < class name> < aUr value list> 

This command is parsed and an equivalent Ingres command is formulated. 
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If an object instance already exists, its OlD is retrieved; if it is a new object an 

OlD is created for it by updating <oidJel> of figure 7A24 appendix 7A The 

modified command is written to an Ingres file <instance.f>. A C file 

< instance.c > is constructed with system calls to Ingres and to the C compiler 

and which takes input from <instance.f>. <instance.c> is compiled and its 

output < instance.out > is executed. 

7.10.2.3 

modi 

This command is parsed and an equivalent Ingres command is formulated 

and written to Ingres file < instance.f>. A C file < instance.c > with a system 

call to Ingres and to the C compiler, and which takes input from <instance.f> 

is formulated. < instance.c > is compiled and its output is executed. 

7.10.2.4 

remove instance of < class name> where < 

A similar algorithm to the modify command (i.e 7.10.2.3) is used for this 

command. 

7.10.3 Class Methods 

7.10.3.1 

create < class name> method < method name> < method code> . 

This command is used to create Quel methods and to store them in tex

tual fields in Ingres. The catalog relation < cl_ methods> figure 7 A24 of 

appendix 7A is used to store the <class_name>, <method_name> and 

< method code>. This command is parsed and an Ingres command is created 

to add the method to the class designated by < class_name>. The Ingres com

mand is then stored in the Ingres file < instance.f>. A C file < instance.c > is 
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created with a system call to Ingres which takes input from <instance.f>. The 

program < instance.c > is compiled and executed. 

7.10.3.2 

modify <class name> method «method_name> =$1, <method_code> =$2) 

where < method name> = $3; 

This command is parsed and an equivalent Ingres command is generated 

and stored in the fIle <instance.f>. A C fIle <instance.c> which takes input 

from < instance.f> is created. < instance.c > is compiled and executed. 

7.10.3.3 

remove < class name> method where < method name> = $1 

This command is handled in a similar manner to the above command (i.e. 

7.10.3.2). 

7.10.3.4 

display < class name> methods I 
This command is parsed and an Ingres query is formulated and stored in 

<instance.f>. A C fIle <instance.c> is created which includes a system call to 

Ingres and takes input from < instance.f>. The program < instance.c > is com

piled and executed. 

7.10.3.5 

I execute ( < class name>, < method name>. < params »; I 
When this method is parsed the < method_name> associated with the 

given < class_name> is retrieved from the catalog relation < c1_ methods> in a 

long C variable. The formal parameters of the method are replaced by the 

actual parameters through a string substitution process. The modified method is 

stored in the file <instance.f>. A C file <instance.c> is created with system 

calls to Ingres and to the C compiler, and which takes input from < instance.f> . 
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The program < instance.c > is compiled and its output is executed. 

7.10.4 Class Hierarchy 

7.10.4.1 

create < class name> subtype of < class name> 

7.10.4.2 

remove < class name> from < supclass name> 
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These commands are parsed and equivalent Ingres commands are formu

lated and sent to Ingres for execution. 

7.10.5 Complex Objects 

7.10.5.1 

< object class> get < range var> < complex qual > 

This command is parsed and the information in the catalog relation 

<cl_cattr> of figure 7A24 appendix 7A is used to establish joins between rela

tions using OIDs. Equivalent Ingres commands are constructed with implicit 

joins converted to explicit joins. The constructed query is stored in the Ingres 

file <instance.f>. A C program <instance.c> is constructed with system calls 

to Ingres and to the C compiler, and taking input from < instance.f>. The pro

gram < instance.c > is compiled and executed. 

7.10.6 Abstract data types (ADTs) 

7.10.6.1 

of < var > is < class name> retrieve < tar et list> where < adt 

<adt_qual> ::= <spatial_qual> I <geol_time_qual> 

< spatial_qual> :: = < operand 1> < spatial_operator> < operand2 > 
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< spatial_operator> :: = 

north 

south 

east 

west 

overlap 

contained in 

abuts_top 

abuts bottom 

abuts _right 

abuts left 

< geol time qual > - -
< operandI> < geol_ time_operator> < operand2 > 

I <geol_time_operator> (operandl , operand2) 

< geol_time _operator>:: = 

before 

after 

between 
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ADTs like points, rectangles, geological time domain are stored in textual 

data types. When these commands are parsed the operations over ADTs are 

translated into primitive operations over a text data type. The modified query is 

stored in an Ingres flle <instance.f>. A C fue <instance.c> which takes input 

from < instance.f> is constructed with system calls to Ingres and to the C com

piler. The program <instance.c> is compiled and its output is executed. 
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7.11 Comparsion of OQUEL with related work 

In the following section we will compare RM/T[Codd79], OSQL[Beec88], 

and OQUEL approaches to provide object-orientation from the relational 

model. We will use the following "golden rules" introduced in [Atki89] for 

comparisons:-

7.11.1 Complex Objects 

Unlike RM/T and OSQL, OQUEL has provided techniques for modeling com

plex objects and operations for dealing with these objects at different levels of 

abstraction. We have also modeled objects with unpredictable structure as 

parameterized QUEL methods which compose objects from different relations. 

In OQUEL we have simplified operations on complex objects through methods 

which capture the semantics of complex objects and preserve the integrity of 

complex objects (e.g. deletion propagation ). 

7.11.2. Object Identity 

All these models support identity of objects which persists through time, 

independent of properties of objects which may change. This identity is 

represented by system-generated, unique, immutable object identifiers (oids) ( 

e.g. OQUEL, OSQL) or surrogates (e.g. RM/T). Objects may be explicitly 

created and destroyed. In RM/T the database contains one E-relation for each 

entity type. The E-relation for a given entity type is a unary relation that lists 

the surrogates for all entities of that type currently existing in the database. The 

property types for a given type are represented by a set of P-relations. Unlike 

RM/T, in OQUEL we do not insist on one E-relation plus zero or more 

separate P-relation(s) for each entity type, but rather allow all of those rela

tions to be collapsed into a single relation. 
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7.11.3. Encapsulation 

The idea of encapsulation comes from (i) the need to cleanly distinguish 

between the specification and the implementation of an operation and (ii) the 

need for modularity. There are two views of encapsulation: the programming 

language view and the database adaptation of that view. The idea of encapsula

tion in programming languages comes from abstract data types. In this view, an 

object has an interface part and an implementation part. The interface part is 

the specification of the set of operations that can be performed on the object. It 

is the only visible part of the object. The implementation part has a data part 

and a procedural part. The data part is the representation or state of the object 

and the procedure part describes the implementation of each operation. The 

database translation of the principle is that an object encapsulates both pro

gram and data. Encapsulation provides a form of "logical data independence": 

we can change the implementation of a type without changing any of the pro

grams using that type. 

RM/T lacks this concept. In OSQL we have three types of functions ( 

stored, derived, or foreign). The extension of the stored functions corresponds to 

our relational tables which store the representation of instances of the type. 

Derived functions correspond to our QUEL methods while foreign functions 

correspond to our C++ methods. 

7.11.4. Types/Classes 

All these models have types or classes. RM/T provides an entity classifica

tion scheme. Entities are divided into three categories: (1) Kernel entities: ( i.e. 

independent existence entities ), (2) Characteristic entities: (Le. existence depen

dent entities ), (3) Associative entities: ( representing a many-to-many relation

ship). Kernels corresponds to our object classes, while characteristics and 
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associative entities correspond to our association in OQVEL The primary pur

pose of entity classification is to impose some structure on the real world, 

which might otherwise appear to be just an amorphous jumble of facts. A 

secondary purpose is to introduce some discipline into the integrity enforce

ment. Both aspects are of major significance in database design. 

In OSQL types are used to categorize objects into sets that are capable of 

participating in a specific set of functions. 

7.11.5. Inheritance 

Inheritance has two advantages: it is a powerful modeling tool, because it 

gives a consise and precise description of the world and it helps in factoring out 

shared specifications and implementations in applications. All these models 

have type hierarchies. However, in RM/T inheritance is restricted to attributes 

since methods are not applicable. 

7.11.6. Overloading! Late Binding 

In OQVEL, we have access to C+ + which supports overloading of func

tions and operators and late binding. The basic idea behind operator overload

ing is to redefine a commonly used symbol so that it applies to a new set of 

values. The capacity to overload operators enhances the extensibility of the 

language. The idea behind function overloading is that several functions with 

the same name can represent different pieces of code. Using overloaded func

tions we can dispense with the sometimes awkward code that is needed to 

choose one implementation of a function over another and we no longer need 

to give functions unnatural names. 
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7.11.7. Extensibility 

The ways in which programming languages provide extensibility include 

allowing the programmer to define new types from scratch ( such as 

enumerated data types ), to combine existing types to create new ones, and to 

define procedures by using procedure and control structures. Databases usually 

limit extensibility to domain and record defmition Operations are limited to 

query, insert, delete, and replace. The three update operations deal with only 

relation or view. In OQUEL, in addition we have provided a mechanism for the 

definition, storage, and execution of complex operations on objects through 

QUEL and C+ + methods. In OSQL foreign functions are provided to perform 

complex operations while RM/T provided only a predefmed set of generic 

operations. 

7.11.8. Computational Completeness 

Since QUEL is not computationally complete, there are certain computa

tions that cannot be expressed as QUEL methods. However, C+ + methods 

provide a mechanism for incorporating such computations into the system. 

While RM/T operations are confined to creation, retrieval and updates, OSQL 

has included foreign junctions, similar to our C++ methods, which are written 

and compiled outside the system. 
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ChapterS 

Application of OQUEL to a Geological Domain 

8.1 Introduction 

The integrated interpretation of data used for petroleum exploration 

requires access to a variety of data. These include: 1) seismic data used to map 

subsurface formation and depths to these formations exploiting the different 

acoustic properties of these formations. 2) gravity data used to map subsurface 

structures using the density contrast property. 3) magnetic data used to del

ineate subsurface structures based upon magnetic characteristics. 4) strati

graphic data collected from geophysical logs used for correlation, basin evalua

tion, selection of prospective stratigraphic intervals, as well as areas for detailed 

study. These data are, usually, presented as maps and cross-sections. Maps and 

cross-sections help in the following respect: i) visualizing the physical picture of 

the earth's strata ii) determining local and regional structures iii) determining 

the origin of rock strata iv) working out rock sequence v) constructing geologic 

history. 

Since the geological data are characterized by a wide range of data types 

and complex relationships in time and space, the need for a data model with 

rich semantics and support for abstract data type domains is obvious. In this 

chapter we will show how OQVEL handles some of the geological data 

requirements. 
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8.2 Information hiding 

The basic idea in object-oriented models is that the user should not have 

to wrestle with computer-oriented constructs such as records and fields, but 

rather should be able to deal with objects and operations that closely resemble 

their counterparts in the real world. For example, instead of thinking in terms 

of a DEPT tuple plus a collection of EMP tuples that include foreign key 

values that reference that DEPT tuple, the user should be able to think directly 

of a department "object" that actually contains a set of employee "objects". 

Similarly instead of (e.g.) having to add a tuple into the employee relation with 

appropriate DEPT# (foreign key) value, the user should be able to create a 

new employee object and include it in the relevant department object directly. 

In other words, the fundamental idea is to raise the level of abstraction. The 

idea of dealing with a database that is made up of "encapsulated objects" (a 

department object that "knows what it means" to add an employee or to cut the 

budget), instead of having to understand relations, tuple updates, foreign keys, 

etc., is naturally much more attractive from the user's point of view. 

In CJQUEL, we have provided a hybrid object/relational model to provide 

a flexible environment. The designer of a database will choose one solution or 

the other according to his needs. On one side he will have inheritance and 

encapsulation and on the other side easy manipulation of sets using declarative 

language. Because of encapsulation, we will separate the designer view of the 

database, that is the classes implementation, from the user view which contains 

the class interface. 
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8.2.1 Designer view 

The designer creates a class by giving it a name, a type, and a set of 

methods, by describing its interface and eventually by establishing a hierarchical 

relationship with other classes. 

8.2.2 The user's view 

As mentioned before, users are not aware of the object implementation. 

They will receive information or modify objects via methods made available to 

them by the designer. 

In the geological domain for example, a manager of a petroleum explora

tion company will view a geological database concerning the exploration activi

ties in terms of meaningful operations as illustrated in figure 8.1. 

Geophysical surveys are usually conducted along lines which are composed of 

segments and those segments are composed of points at which readings are 

taken. For instance to get the cost of a gravity survey between two points in a 

survey line (note figure 8.2) , the manager will execute a get _cost method asso

ciated with the line and will be prompted for the relevant parameters and the 

cost will be calculated. 

We use the following relations to illustrate this situation. 
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LINE POINTS 

points cood 

elevation 
surveyers 

date 
accounts 

contracts 

GR DATA 

gr data 
time 

instrmnt rdgs 

surveyers pt no 

Figure 8.1 An Example of Object Modeling in Geological Domain 

distance 

line no from_pt to_pt distance order -

Ll ptlOO ptlOl 30.000 1 

Ll ptlOl ptlO2 45.000 2 

Ll ptlO2 ptlO3 90.000 3 

Ll ptlO3 ptl04 55.000 4 

Ll ptl04 ptlO5 35.000 5 
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LSS L6S 
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LSS3 L6S 
lAS3 L3S4 

LlSl 
Figure 8.2 Illustrating geophysical survey lines 

survey_costs 

type price_kin 

gravity 10000. ()()() 

seismic 20000. ()()() 

resistivity 15 ()()(). ()()() 

Example 8.1 

User requirement: 

What is the cost of gravity survey between points ptl01 and ptl04 ? 

OQUEL query: 

execute (line,get_ cost,Ll); 

OQUEL/User Interaction: 

OQUEL: ( from: to: type-of-survey:) ? 
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User: ptlOl ptl04 gravity 

OQUEL: The total cost is :- totalcost 

Example 8.2 

User requirement: 
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What is the cost of seismic survey between points ptl02 and ptl04 ? 

OQUEL query: 

execute (line,get_ cost,Ll); 

OQUEL/User Interaction: 

OQUEL: ( from: to: type-of-survey:) ? 

User: ptlOl ptl04 seismic 

OQUEL: The total cost is :- totalcost 

Since the cost changes with time and survey lines are extended with time, 

sophisticated methods can be written to compute the actual costs of surveying. 

The main point here is that all this information is hidden from naive users. 

8.3 Temporal Modeling in a Geological Domain 

Geological objects are highly complex and embedded in time and space. 

The time dimension in geological data has two aspects. One is the calendar 

time which is studied in many temporal models and the other is the geological 

time. As an illustration of the application of 0-0 systems, and OQUEL in par

ticular, we give an account in this section of the extension of the work in tem

poral models to geological time and provide some operators for geological time 

qualification. 
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Geological Time Scale 

era period beginning of period (m Yrs) ordinal no -

Quaternary Holocene .012 16 

Pleistocene 2 15 

Tertiary Pliocene 7 14 

Miocene 26 13 

Oligocene 38 12 

Eocene 54 11 

Palaeocene 65 10 

Mesozoic Cretaceous 135 09 

Jurassic 195 08 

Triassic 225 07 

Upper Palaeozoic Permian 280 06 

Carboniferous 345 05 

Devonian 395 04 

Lower Palaeozoic Silurian 440 03 

Ordovician 500 02 

Cambrian 570 01 

Archaeozoic Precambrian 4,600 00 
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geo _history 

sample age 

s1 cambrianO 1 

s2 permian06 

s3 jurassic08 

s4 cretaceous09 

s5 carboniferous05 

s6 silurian03 

s7 pliocene 14 

s8 pliocene 14 

Example 8.3 

User requirement: 

Which samples were formed after cretaceous ? 

OQUEL query: 

range of r is geo _history 

retrieve (r.sample) where r.age after cretaceous 

Answer:-

sample 

s7 

58 

203 
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OQUEL to QUEL Translation:

range of r is geo _history 

retrieve (r.sample) where right(r.age,2) > 09 

Direct QUEL Implementation:

range of r is geo _ history 

retrieve (r.sample) where r.age code> 09 

204 

It is noteworthy that in the direct implementation case the user has to 

remember the implementation codes compared with more natural OQUEL 

query. 

Example 8.4 

User requirement: 

Which samples was formed during Mesozoic era ? 

OQUEL query: 

range of r is geo history 

retrieve (r.sample) where r.age between devonian and pennian 

Answer:-

OQUEL to QUEL Translation:-

sample 

s2 

s5 
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range of r is geo history 

retrieve (r.sample) where right(r.age,2) > = 04 

and right(r.age,2) < = 06 

Direct QUEL Implementation:

range of r is geo _ history 

retrieve (r.sample) where r.age code> = 04 

Example 8.5 

User requirement: 

Which samples were formed before silurian ? 

OQUEL query: 

range of r is geo _ history 

retrieve (r.sample) where r.age before silurian 

Answer:-

OQUEL to QUEL Translation:

range of r is geo _history 

sample 

sl 

retrieve (r.sample) where right(r.age,2) < 03 

Direct QUEL Implementation:-

205 
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range of r is geo _ history 

retrieve (r.sample) where r.age_code < 03 

8.4 Spatial Data in a Geological Domain 

Geological samples are collected from the field and their locations are 

plotted in two dimensional maps. These samples are studied for various pro

perties and characteristics (geophysical, geochemical, etc. ) and from macro 

level to crystal level. Discovering particular properties of a sample a geologist 

might want to further study samples in the vicinity of that sample or might want 

to see if there is any alignment with other samples having similar characteris

tics. Hence he/she needs to pose queries against the data using coordinates 

qualification. For example a geologist might use the data in the following table 

to retrieve samples within a given rectangle (note figure 8.3) or located north, 

south, etc. of a given sample. 

geot samples 

sample_no location 

s4 55,12 

s5 50,20 

s9 30,15 

s22 20,15 

These can accomplished by the following queries:

Example 8.6 

User requirement: 
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Figure 8.3 Latitude/Longitude Map with Geological Samples 

• 

Which geological samples are contained in the grid "10, 15,30,30"? 

OQUEL query: 

range of r is geol_samples 

retrieve(r.all) where r.location contained_in "10,15,30,30" 

OQUEL to QUEL Translation:-

range of r is geol_samples 

retrieve (r.a1l) where 

left(r.location,2) > = 10 and 

left(right(r.location,size(r.location)-3),2) > = 15 and 

left( r .location,2) < = 30 and 

left(right(r.location,size(r.location)-3),2) < = 30 

207 
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Direct QUEL Implementation:

range of r is geol_samples 

retrieve (r.all) where 

r.x > = 10 and r.x < = 30 and r.y > = 15 and r.y < = 30 

208 

It is worth mentioning that in the direct implementation we have two columns 

for x and y coordinates while in OQUEL we have one column for x and y coor

dinates. In addition the OQUEL query is more briefer and user friendly. 

Example 8.7 

User requirement: 

Which samples are located south of latitude 20 ? 

OQUEL query: 

range of r is geol_samples 

retrieve(r.all) where r.1ocation south "30,20" 

OQUEL to QUEL Translation:

range of r is geol_samples 

retrieve (r.all) where 

left(r.1ocation,2) < left("30,20",2) and 

left( right( r .location( r .location,size( r .location)-3,2) = right("30,2O",2) 

Direct QUEL Implementation:

range of r is geol_samples 

retrieve (r .sample) where 

r.latitude < 30 and r.longitude = 20 
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Same comments as for example 8.6 are applicable. 

8.5 Complex Objects in a Geological Domain 

There seem to be two main reasons for using a hierarchical tree structure 

in a complex geological description. One is the need to specify clearly what is 

being described and to set it in its geological context. The other is the economy 

of thought that can be achieved by using the same terms for analogous situa

tions in a variety of contexts. "Medium grained" for instance, has different 

meanings when applied to a siltstone and to a congolomerate. Properties such 

as size, shape, orientation, proportion and arrangement can be observed, and 

can often be described by the same terminology, in entities of a wide range of 

size and character, such as continents, depositional basins, geological forma

tions, facies, beds, sedimentary structures, fossils, grains, crystals, or even 

molecules. As can be seen, one of the above entities could be a component of 

another. Thus grains and fossils might be components of a bed, which in tum 

was part of a formation and so on. 

Clearly, in any description, the object under consideration must be clearly 

identified and its relation to its components and to the entity of which it is itself 

a component must be indicated. The statement that an object is rather large, 

reddish-purple, ellipsoid in a plan view, elongated in a north-south direction, is 

of little value unless it is known whether the object is a fossil or a basin of 

deposition. If the latter, it would be important to know which basin it is, and 

whether rocktypes mentioned elsewhere are part of it. 

The following description of a hypothetical rock unit provides an example 

of a written description showing hierarchical relationships that can be readily 

structured as a tree. 

IThe basal six feet of strata comprise sandstone and shale. The sandstone 
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is cross bedded, medium-grained, somewhat coarser towards the base. It con

tains occasional, scattered, sub-angular grains of purplish quartz. The shale 

forms thin partings which contain flattened thin-shelled lamellibranchs". Having 

specified in the first sentence the set of objects under consideration (the basal 

six feet of strata), the geologist subsequently considers a class of objects drawn 

from the set (sandstone), then certain constituents of the sandstone (quartz 

grains). In the next sentence, another class of objects is considered (shale) 

drawn from the six feet of strata. Then one of its constituents is mentioned 

(lamellibranchs), and their attributes described (flattened, thin-shelled). 

If a complete measured section is described in such a way that each bed is 

represented by a tree, the complete description comprises a set of trees (note 

figure 8.4). 

Gmesto~ 

Figure 8.4 Object Modeling of An Intrusion 

Written English, which is a string of words, is itself a somewhat artificial 

medium for representing a tree structure. VariOllS devices are needed to allow 
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the reader to mentally organize the data, choosing an appropriate structure as 

the data are presented. Summaries, headings, subheadings, sentences and para

graph construction, and connective words, phrases and sentences may all be 

required to help the reader in this task. 

In OQUEL we have simplified queries against complex objects by allowing 

joins of objects without explicit join-predicates. For example we can pose the 

following query against the complex object database in figure 8.5. 

V 
Employee 

Company name 

Man~er salary 

Address children 
Contract 

OIL-WELL 

Well-id 
r- Map 

Drilling-Company 

~ 
~uccesslOn 

Succession Seq-id 
Vnlltng-Hlstory 

Age 

Depth-to-top 

Depth-to-bottom 

'-- Geoloirical-MaD ~ 
geological history :sedimentary Igneous 
tectonic-features environment m~a-type 

grain-size colour 

~ /""-
Figure 8.5 Object Modeling of An Oil Well 
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Example 8.8 

User requirement: 

Which oil-wells are drilled by a company whose manager salary is 

more than 11000 ? 

OQUEL query: 

oil_wells get r ( r drilling_company manager salary > 110(0) 

OQUEL to QUEL Translation:

range of r is oil_wells 

retrieve (r.oid) where 

r.drilling company = company.oid and company. manager 

employee.oid and employee.salary > 11000 

Direct QUEL Implementation:

range of r is oil_wells 

range of c is company 

range of e is employee 

retrieve (r.oid) where 

r.drilling_ company = c.oid and c.manager = e.oid and 

e.salary > 11000 

= 

In OQUEL we have shifted the join operations to the system and hence it is 

possible to express queries against the object-oriented schema more simply. 

Figure 8.6 shows an example of a taxonomic hierarchy of tectonic features 

and figure 8.7 shows its relational mapping. 
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Figure 8.6 Taxonomic Hierarchy of Tectonic Features 

F oldinR 

Teet feat id age Fold-type trend dip 

20014 Cretaceous anticline N10W 1j4E10N 

20015 Carooniferrous anticline E12N 1/3N12W 

Fl' au tlll& 

Teet feat id aRC Fault-type . direction displacment 

20011 Cretaceous nonnal N22E 2OOD.SE 

20012 Cretaceous ~rse E42N 140 

20017 Triassic nonnal E44N ISO 

Tectonic-Features 

Teet feat id age 

20010 Cambrian 

20016 
Cretaceous 

20018 Carooniferrous 

20019 Carooniferrous 

Fipre 8.7 Horizontal Partioning ofTec:tonic Features Data 

From this example it is obvious that there is a need for viewing data at dif

ferent levels of abstraction and there is a need for a union construct to build 

such view. For example, to get all tectonic features we need a union of the 

three horizontally partioned relations in figure 8.7. However, this can also be 
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achieved by associating a method such as get all tectonic feature at a higher - - -
level in the hierarchy to collect tuples from the respective relations. 

To conclude this section we believe that the object-oriented approach pro

vides a considerable flexibility for modeling a complex domain such as the geo

logical domain, and the examples given in this chapter, although they are sim

ple, illustrate how OQVEL provides capabilities to model and query data in 

such a complex domain. 
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Chapter 9 

Conclusions and Directions for Further Research 

9.10QUEL 

Neither the relational model nor the object-oriented model is suitable for 

all database applications. We have proposed a hybrid object-relational model 

(OQUEL) that employs the object-oriented paradigm concepts such as objects, 

classes, methods, inheritance, and object-identity. Some previous extensions of 

the relational model such as complex objects, derived attributes, abstract data 

types, and generalization are also supported in our model. OQUEL is 

engineered from an existing relational system (Ingres), the C language and its 

object-oriented extension (C+ +). OQUEL shows that it is possible to offer the 

benefits of an object model without sacrificing the facilities of the current rela

tional model. OQUEL has the following features:-

* It extends the data structures and operations of the relational data model 

and provides the desirable features of the OOPL paradigm and semantic data 

models such as improved semantics, data abstraction, reusability of data struc

ture and code, extensibility, complex object support, schema evolution and ADT 

domains. 

* OQUEL introduces the concept of an object identifier (OlD) to improve 

the semantics and reduce the space required to store the database. OlD cap

tures the uniqueness of entities in the real world and allows for modeling com

plex objects. An OlD may be used to refer to an object instead of copying it. 

* The built-in support of object-identity and domains in the conceptual 

object model simplifies queries because most join operations are replaced by 

simpler path traversals. However, these joins are still performed by the 
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underlying relational system because OQUEL queries are transformed into 

pure relational implementation. Using indexing techniques on OIDs will 

enhance these join operations. 

• OQVEL provides two access modes for the database. One is through 

the relational interface which helps to formulate unpredictable queries and pro

vide flexibility in the selection of a target list through different combinations of 

attributes - this is due to the no-information-goal-dependency of the relational 

formalism. The other is a method-based interface which improves reliability by 

providing semantic integrity, managing complex objects and propagating 

updates through different semantic references, providing information hiding and 

operations for naive users. 

• OQVEL provides structuring for complex objects through specialized 

attributes and provides operations through methods to enforce the integrity of 

the complex objects. Abstracting complex objects through tuples and relations 

provides for organisation of data by object or relation. 

• OQUEL extends the domain of the relational model by making provi

sion for abstract data types (ADTs) which simplify queries and provide a more 

natural interface for spatial and temporal data. This and the next points are 

considered in more detail in the next section. 

• OQVEL provides operations to manipulate the evolution of structure as 

well as content. 

• OQUEL extends the relational model by inheritance to allow for sharing 

of data structures and operations and this improves the productivity of the pro

grammer. 

• We have also provided an interface between C+ + and Ingres to provide 

freedom for the implementation of any required methods. 
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9.1.1 Abstract Data Types and Methods 

Traditional relational database systems are not able to support objects 

such as coods and boxes, and hybrid scientific units such as the "feet inches" 

system as atomic objects. However, ADTs provide the capability to extend the 

basic types of the database system with user-defmed data types and related 

operations. In OQUE~ we considered the introduction of ADTs in a relational 

context from two orthogonal points of view: (a) granularity of types:- ADTs 

granularity (relation / domain), (b) the description of operations:- language to 

implement ADT operations ( database language / OOPL with data access ). 

In OQUE~ an object-oriented database can be viewed basically as a rela

tional database in which tuples contain not only primitive data values, but also 

methods and pointers to other objects. However, for efficiency reasons, 

methods applicable to the relation instances are physically grouped together 

into separate catalog relation. Thus viewing a relation as an ADT provides a 

high level of abstraction, data protection, and integrity. 

The operations to manipulate objects are expressed into two languages: (1) 

QUE~ and (2) C+ + with embedded QUEL commands. These approaches 

have the following limitations:-

QUEL methods:- QUEL methods are stored in a long field of type text. 

These methods have to be retrieved from the database and the formal parame

ters have to be replaced by the actual parameters and the resultant query is 

sent back to Ingres for execution. Although we have accessed Ingres more than 

once QUEL methods can be optomized by the dbms since they are expressed 

in pure relational language. 

C++ methods:- Relational query languages restrict operations that can be 

invoked on stored data to selection, updates, joins and projections. Complex 

data specific operations need to be decomposed into these simple operations, 
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but this is not always possible since a query language is not computationally 

complete. In OQUEL, objects can be associated with class-specific methods 

that are written in C++ with Ingres access and which can be invoked by users 

to perform complex operations on objects. The cost of this approach is that 

Ingres is accessed more than once. Firstly to retrieve the path name of the 

C++ code. Secodly to retrieve the data associated with the C++ method. In 

the case of an update Ingres is accessed once more. Since C++ is operating at 

tuple-at-a-time level we are still having the impedance-mismatch problem. 

In OQUEL, we have tried a feasible way of implementing ADTs at the 

domain level on top of existing DBMS. To achieve this we have extended the 

QUEL dialect to accommodate new operators. These operators are 

transformed through query modification to equivalent Ingres expressions. Per

formance improvement from the use of ADTs at the domain level can be real

ized from from the following:- (1) manipulation of a smaller number of 

columns. For example, a rectangle can be retrieved as a single column rather 

than four constituent parts. (2) Simplification of queries due to the introduction 

of new operators. This is especially noticeable in spatial and temporal window

ing. 

In the case in which the operations on an ADT domain cannot be formu

lated in terms of query language expressions we manipulate such domains 

through C++ methods. 

9.2 Relationship or Object-Oriented Models to other Data Models 

Object-oriented models have relationships to other data models and the 

application of the object-oriented paradigm to databases has a significant 

impact on the architecture of database systems. These aspects are reviewed in 

the follOwing sections. 



chapter 9 220 

9.2.1 Hierarchical and Network Models 

There are at least two types of similarity between object-oriented and 

hierarchical or network databases. One important similarity is the nested struc

ture of objects in object-oriented databases, and the nested structure of records 

in hierarchical databases. However, although both databases admit objects 

(records) which refer to other objects (records) for the values of their attri

butes, there is an important difference. The nested object schema in object

oriented databases contains cycles; although hierarchical databases can admit 

cycles, they require artificial record types to be introduced in the schema. 

Another similarity is between the object identifiers in object-oriented databases 

and the record pointers in hierarchical databases. However, an object-identifier 

is a logical pointer and is never reused, and as such may be used for enforcing 

referential integrity. A record pointer is a physical pointer and is reused. How

ever, there are major differences that distinguish object-oriented databases 

from hierarchical and network databases. Object-oriented databases support 

such concepts as a class hierarchy, inheritance, and methods; hierarchical and 

network databases obviously do not include these concepts. 

9.2.2 Functional Models 

There have been attempts to construct database systems based on func

tions instead of relations, and a driving force behind such attempts was to 

address some of the shortcomings of the original relational model. The func

tional model shares certain ideas with the 00 approach, including its naviga

tional style of addressing objects that are functionally related to other objects. 

However, this compromises the encapsulation objectives. 

The function in the functional model is typically nota mathematical func

tion at all; for example it may be allowed to return multiple values. In fact 
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considerable violence has to be done to the function in order to make it capable 

of doing all things needed in the functional data model context. 

9.2.3 Semantics Models 

The basic idea behind semantic modeling is to try to identify a set of con

structs that seem to be generically useful, in the sense that they recur in some 

form or shape in a wide variety of applications. If we can identify and formalize 

such constructs, and operations for them, we can build them into the database 

systems and make them more intelligent. 

The object-oriented approach to intelligence differs. The intelligence 

resides not in generically understood constructs, but rather in encapsulated 

objects that some technical specialist has had to derme. When we say that a 

department object "knows" what it means to add an employee, we mean that 

some specialist has written code to perform the operation. 

9.2.4 Nested Relations 

The basic idea here is to increase the utility and functionality of the rela

tional model by dropping the requirement that the relations be normalized. 

These models address the shortcomings of the relational models and hence 

share the same objectives of the object-oriented approach. However, they differ 

in that they have a rigorous mathematical theoretical foundation which is 

lacked by the object-oriented approach at the present time. Unfortunately, they 

also lack the concept of inheritance which is fundamental in the object-oriented 

approach. 
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9.2.5 Extensible Systems 

It will never be possible to provide built-in features that will directly sup

port everything that users will ever want to do; hence, there is a need to allow 

users to tailor the system in various ways by defming their own data types, func

tions, access methods, storage structure and so forth. And, of course, the objec

tive of the object-oriented approach is to allow the users to build their own 

tailored systems. If a database system is implemented in an object-oriented 

style or in an object-oriented programming language, then it tends to make it 

easier to add new database functionality than if it is implemented in a conven

tional programming style. The notion of inheritance is what makes systems 

implemented in object-oriented style potentially extensible. 

9.3 The Impact or Object-Oriented Concepts on the Architecture or a Data

base System 

9.3.1 Generalization Hierarchy and Aggregation Hierarchy 

The generalization and aggregation hierarchy relationships which are 

inherent in object-oriented data models but which do not exist in relational 

database management systems have required a reexamination of a number of 

architectural concepts including schema evolution, query languages, indexing, 

storage structures, and authorization. 

9.3.1.1 Schema Evolution 

The database schema for an object-oriented database has two dimensions. 

One dimension is the class hierarchy which captures the generalization relation

ships between a class and its subclasses. Another dimension is the class compo

sition hierarchy which represents the aggregation relationships between a class 
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and its attributes and the domains of the attributes. In other words, every class 

in an object-oriented database simultaneously belongs somewhere in the class 

hierarchy and somewhere in the composition hierarchy. The semantics of the 

class hierarchy is what complicates schema changes. For example, when a class 

is dropped, all its subclasses will lose the attributes and methods they had 

inherited from the class, and therefore instances of the subclasses will lose the 

values of the attributes. Furthermore, when a new class is added the class will 

inherit attributes and methods from existing classes specified as its superclasses, 

and will also provide attributes and methods for its subclasses to inherit from it. 

The class hierarchy also gives rise to a number of meaningful schema changes 

beyond those possible under the relational model. For example, making an 

existing class a new superclass of another existing class is a meaningful opera

tion. 

9.3.1.2 Queries 

Because of the nested structure of the deftnition of a class, one may use 

the nested relational model as the starting point for deftning a query model for 

object-oriented databases. However, the theory of nested relations is inadequate 

as a model of queries for object-oriented databases. There are a few important 

reasons for this. First, the definition of a class may form a directed acyclic 

graph, while the nested relational model deals with a strict hierarchy of rela

tions. Second, the current theory of nested relations has not taken into account 

some of the object-oriented concepts. 

Object-oriented systems model every real-world entity as an object with a 

unique identifter; the object belongs to a class, and a class has a position some

where in the class hierarchy. These simple principles impose some difficult con

straints on the query model for object-oriented databases. In relational 
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databases, the result of a query is itself a relation. This situation is not so sim

ple for object-oriented databases, because of the nested definition of classes. 

Despite the differences in the data models, object-oriented queries may be 

evaluated on top of relational systems as illustrated by OQUEL 

9.3.1.3 Storage Structures 

Relational database systems represent the database schema in the form of 

a set of relations, including a relation for all other relations in the database, a 

relation for all columns of each relation, and so on. It is more difficult to 

represent and maintain the schema of an object-oriented database since the 

schema is no longer a simple collection of largely independent relations, but a 

collection of classes which are interrelated to one another through the generali

zation and aggregation relationships. 

9.3.1.4 Authorization 

The concepts of inheritance and encapsulation introduce new dimensions 

to the authorization model. For example, who is allowed to inherit from which 

classes ? Who is allowed to access which methods ? 

9.4 Integration of Programming Languages and Database Systems 

Object-oriented programming techniques are rapidly gaining support for 

applications where conventional procedural programming paradigms limit 

development. The benefits are straightforward: Object-oriented programming 

reduces the cost and time required to produce complex applications by support

ing the development of reusable code, which is easier to maintain and enhance. 

Implementing systems using the object-oriented conceptual model results 

in: (1) type specific representation , (2) insulation of the application from 
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changes (encapsulation), (3) guaranteed consistency between the operations 

executed on objects of a given type by different applications, (4) dramatic 

reduction in the cost of developing new applications because of code inheri

tance from predefmed object types. 

The combined notions of a class, attributes, and a class hierarchy mean 

that the semantic data modeling concepts instance-of, aggregation, and general

ization are inherent in the object-oriented paradigm. This means that the gap 

between applications implemented in an object-oriented programming language 

and an object-oriented database is much narrower than that between an 

object-oriented application and a non-object-oriented database. In particular, 

one of the problems with implementing object-oriented applications on top of a 

relational database system is that a relational system does not directly support a 

class hierarchy and the nested definition of a class, and as such the application 

programmer must map these constructs to relations. 

However, there is another type of impedance mismatch caused by the 

record-at-a-time orientation of 00 languages which is a throwback to the days 

of prerelational systems. The solution to this problem is to introduce set-level 

facilities into programming languages. 

9.5 Information Hiding 

Information hiding is unquestionably a good idea in many cases: The twin 

concepts of (a) concealing irrelevant details from the user (thus allowing those 

details to be changed, when necessary, in a controlled and comparatively pain

less manner), and (b) providing disciplined access to objects through a public 

interface only, are clearly appropriate for many users and many applications. 

Thus, it would seem desirable to extend existing relational DBMSs, to support 

such facilities. However, there will always be a need to access data in 



chapter 9 226 

unforeseen ways for the purposes of ad hoc query, and thus the notion of only 

being able to operate via predefined methods is not acceptable in some situa

tions. 00 systems tend to be too rigid in this regard. OQUEL proposes two 

modes of access. (1) A Method-based access in which an object responds 

according to its procedural and declarative knowledge, and (2) A relational

based access supported by Ingres. 

00 systems and languages, and therefore object-oriented concepts, have 

been developed largely independently of any consideration of very large data

bases; that is, they have assumed that all objects reside in a large virtual 

memory. This means that object identifiers have been used as the sole means of 

specifying desired objects; the notion of a query for selecting an arbitrary set of 

objects that satisfy an arbitrary combination of search predicates has been an 

alien concept to the designers of 00 languages. In OQUEL, we have proposed 

relaxation of encapsulation to provide visible attributes and hence content-based 

selection 

9.6 Complex Objects 

It might be true that the object-oriented approach eliminates the "need to 

normalize" in the sense that it directly supports unnormalized objects. However, 

it does not follow that it automatically eliminates the problems that unnormal

ized objects cause. Normalization is still needed unless we are prepared to 

tolerate bad database design 

The object-oriented approach represents "complex objects" as hierarchies, 

but not all such objects actually have a hierarchic structure in the real world. 

The object-oriented approach has difficulties over many-to-many relationships. 

In fact, all the old arguments made against the hierarchic approach in the 1970s 

can now be made again. In particular, hierarchic structures tend to simplify 
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some applications at the expense of others. 

OQUEL proposes two approaches to complex objects. One approach is to 

store abstract data types such as rectangles in a relation attribute of type "text", 

and to provide operations for their manipulations and to extend the query 

predicates for qualifications. The other approach is to build complex objects on 

top of relations, not including them within relations as attribute values. This is 

achieved by using parameterized methods written in QUEL and stored in 

Ingres. 

9.7 Directions for Further Research 

Object-Oriented databases are still a fertile ground for research. We now 

offer some thoughts on future research directions. 

9.7.1 Nested Relation Model + Inheritance 

There is a clear need to formalize or at least standardize object-oriented 

concepts if a true foundation for object-oriented databases is to be laid. The 

notions of inheritance and queries are topics for future theoretical research. In 

view of the fact that the importance of an object-oriented approach is founded 

on the reusability and extensibility it offers, it is obvious that more research 

should be directed to the notions of inheritance. The proposals on query 

languages for the nested relational model should be extended to account for 

class hierarchy or inheritance. 
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9.7.2 Database Design Tools 

The richness of an object-oriented data model is a mixed blessing. On one 

hand, it makes it easier for the users to model their applications. On the other 

hand, the complexity of an object-oriented schema significantly complicates the 

problem of logical and physical database design. Thus the need for friendly and 

efficient design aids for the logical and physical design of object-oriented data

bases is significantly stronger than that for relational databases. There is the 

problem of clustering object-oriented databases, and the need for class

hierarchy indexes to expedite the evaluation of object-oriented queries. It might 

be useful to extend the storage structures of non-first-normal-form (NF2) rela

tional databases for the physical design of object-oriented databases. 

9.7.3 Semantics Modeling 

The work in temporal data models has been mainly on extending the rela

tional data model to support the time dimension of information. Hence, a 

number of temporal query languages has been proposed (e.g. TQVEL, TSQL ). 

It is interesting to investigate the temporal extensions to the relational model in 

object-oriented context and to develop object query languages with temporal 

support. 

Incomplete information has been studied in the relational model and dif

ferent types of nulls has been identified It is worth to reconsider these in the 

object-oriented models which support aggregation and generalization and to see 

how inheritance eliminates some types of nulls (i.e. inapplicable). 
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9.8 Closing Remark 

Object-orientation from the relational model is viable and gives an evolu

tionary approach to relational database systems. However, many issues should 

be reconsidered by introducing object-oriented extensions to the relational data

bases. Both the relational view and the object-oriented view have their natural 

applications. A system which supports both views gives its users a wider selec

tion which leads to a better match between database problems and an 

appropriate implementation. 
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OQUELMENU has menu class attrs 

class attrs create 

class instances extend 

class methods contract 

class instances 

complex objects create 

adt domain add 

remove 

modify 

class methods 

create 

modify 

remove 

display 

execute 

create 

modify 
Figure 7A.l 
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class attrs syn.l.1.0 

create 
define type <type_name> (attri=domi, .. ) 

extend 

contract syn.1.1.1 

define type <type_name> (attri=domi, .. ) inherit «inher_list» 

syn.1.2 

syn.1.3 

Figure 7A.2 
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uses h algorithm 

cl cattr parse 

append _ ct cattr 

Figure 7A3 

cI cattr parse 

inh reI 

Figure 7A.4 
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cl cattr parse 

Figure 7A.5 

cl cattr parse 

delete cl caUr 

Figure 7A.6 

cl caUr open Ingres 

Figure 7A.7 
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class instances menu 

create 

add 

rem~ 

modify 

cl cattr 
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syntax2.1 

syntax2.2 

syntax2.3 

syntax2.4 

modify instance_of <class_name> <target_list> where <qual> 

Figure 7A.8 

1. parse the command 

2. retrieve the description of the < type_name> from 

the catalogJel < cl_ cattr> 

3. construct Ingres file <instance.f> with commands 

to create relation with name as < class name> 

4. construct C file < instance.c > with system call to 

Ingres and taking input from < instance.!> 

5. compile <instance.c> with <instance.out> as output 

6. execute < instance.out > 

Ftgure 7A.9 
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syntax2.2 syntax2.3 

1. parse the command 

2. modify the command into an equivalent 

Ingres command and write it to Ingres 
me < instance.f> 

3. construct C file <instance.c> with system call 
to Ingres and taking input from < instance.f> 

4. compile <instance.c> with <instance.o> as output 

5. execute < instance.o > 

Figure 7A.I0 
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class methods menu 

create 

modify 

remove 

display 

execute 
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syntax3.1 

syntax3.2 

modify <class_name> method ( <method_namc> = $1, 

<mcthod_code> = $2) where <method_name> = S3 

syntax3.3 

syntax3.4 

display < class_name> methods 

syntax3.5 

eurute ( < class_name>, < method_name>, < params > ) 

Figure 7A.ll 
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syntax3.1 

has algorithm has algorithm 

parse the command cl methods open Ingres 

append cl_ methods 

Figure 7A.12 Figure 7A.13 

syntax3.2 I 
has algorithm 

1. parse the command 

2. modify the command into an equivalent Ingres command 
and store it into an Ingres fIle < instance.f> 

3. construct C fIle < instance.c > with system call to Ingres 
and taking input from < instance.f> 

4. compile <instance.c> with <instance.o> as output 

5. execute < instance.o > 

Figure 7A.14 
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cl_methods 

Figure 7A.15 

cl methods 

Figure 7A.16 

cl methods 

Figure 7A.17 

1. parse the command 

2. delete < cl_ methods> with < qual> 
taken from the parse command 

1. parse the command 

2. retrieve methods associated with the 
given type from the ct methods 

1. parse the command 
2. retrieve method code into a C variable 

3. replace parameters with object identifiers 

4. construct Ingres file <instance.f> with the 

modified method 
5. construct C file <instance.c> with system 

call to Ingres and taking input from 
< instance.f> ' 

6. compile < instance.c > giving < instance.o > 

as output 
7. execute <instance.o> 
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syntax4.1 

create < class_name > subtype_of < class_name> 

class_hierarchy 

create 

remove 

syntax4.2 

remove < class_name> from < superclass _name> 

Figure 7A.18 

syntax4.1 

1. parse the command 

2. modify the command to its Ingres equivalent 
3. open Ingres 
4. update < inh Jel> accordingly 

Figure 7A.19 
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complex_object 

get_object 
has syntax 

Figure 7A.20 

syntax5.1 

cl caUr 

Figure 7 A.21 
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syntax5.1 

object get range _ var < complex_qual > 

1. parse the command 

2. use information in < cl cattr> to establish 

join between relations using object_ids 

3. construct an equivalent Ingres command 

converting implicit join to explicit join 

4. store the query in Ingres me <instance.f> 

5. construct a C program <instance.c> with 
system call to Ingres and taking input from 
< instance.f> 

6. compile and execute <instance.c> 
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adt domain 

l retrieve 

Figure 7A.22 

syntax6.1 
I has_algorithm 

I 

Figure 7A.23 

cl cattr 

cl methods 

inh rei 

oid rei 

FJgUrc 7A.24 
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syntax6.1 

retrieve < target_list> where < spatial_qual > 

< temporal_qual 

<complex qual~ 

1. parse the command 
2. translate the operation over the adt_ domain 

to primitive operations supported by the 
system i.e. operations on text data type 
used to represent adt 

3. store the modified command in Ingres file 
< instance.f> 

4. construct C file <instance.c> with system 

call to Ingres and taking input from 

<instance.f> 
5. compile <instance.c> with <instance.o> as 

output 
6. execute <instance.o> 

cI name caUr name 

cI name 

cI name 

oid 
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1. write C++ program with embedded 
quel commands 

2. preprocess the embedded quel 
commands using eqc 

3. use C++ to compile and link 
with Ingres libraries 

4. execute the resulting code 

Figure 7A.25 
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OQUEL Ustings 
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1* oquel.c *1 
#include<stdio.h> 

#include<ctype.h> 

1*-----------------------------------------------
definitions 

-----------------------------------------------* I 
#define BOOL int 

#define EQUAL 0 

#define FALSE 0 

#define TRUE 1 

#define lULL 0 

#define EOS '\0' 

1*------------------------------------------------
geol_time definitions 

------------------------------------------------* I 
#define CAMBRIA! 0 

#define ORDIVICIA! 1 

#define CARBOIIFEROUS 2 

#define CRETACEOUS 3 

#define TERTIARY 4 

1*------------------------------------------------
macro definitions 

------------------------------------------------* I 

#define iswhite(c) «e)==' , II (c)=='\t') 

#define islparen(e) «e)=='(') 

#define isrparen(e) «c)==')') 

#define iseomma(e) «c) = = , , ') 

#define isequa.l(e) «e)=='=') 

#define isleurlb(e) «e)=='}') 

#define isrcurlb(e) «e)=='}') 

#define isquote(e) «c) = = .... ) 

1*--------------------------------------------------
program limits 

--------------------------------------------------* I 

#define IAMELEI 21 

'define BUFM1X 800 
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/. ---------------------------------------------------
token definitions 

---------------------------------------------------./ 
#define ADD -1 

#define ADT -2 

#define CREATE -3 

#define DEFUE -4 

#define DELIMITER -6 

#define DISPLAY -6 

#define EID -7 
#define EXECUTE -8 

#define FIIISHED -9 
#define FROM -10 
#define URERIT -11 

#define USTAlCE_OF-12 

#define METHOD -13 

#define MODIFY -14 
#define lUMBER -16 
#define REF -16 
#define REMOVE -17 
#define RESERVED -18 
#define SELECT -19 
#define SOME -20 
#define STRIllG -21 
#define SUBTYPE_OF -22 

#define TYPE -23 

#define WHERE -24 

#define VARIABLE -26 

/ *-----------------------------------------------
error code definitions 

-----------------------------------------------* / 

#define SYITAX 1 

#define WROPTIOI 2 

char token[IAMELEI]; /* holds string rep. of token */ 

char tok; /* holds internal rep. of token */ 

char token_type; /* contains type of token */ 

char obj_typ; 

char vord[IAMELEI]; 
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char loperand[NAMELEN]; 

char roperand[IAMELEN]; 

char operand2[IAMELEI]; 

char operator[IAMELEI]; 

char logicalopr[IAMELEI]; 

static char *cmd_Iptr; 

static char *method_ptr; 

static char mcode[8001]; 

static char methodpath[30]; 

char *txt; 

char *get_vord(); 

char *str_replace(); 

char type_name[IAMELEI]; 

char supclass_name[IAMELEI]; 

char method_name[IAMELEI]; 

char method_code[BUFMAX]; 

char attr_val_Iist[BUFMAX]; 

char vhere_clause[BUFMAX]: 

char rest_of_cmd[BUFMAX]; 

char inherit_var1[IAMELEI]; 

char inherit_var2[IAMELEI]; 

static struct commands { 

char reserved[20]; 

char tok; 

} table[] = { 

"add", ADD, 

"adt", ADT, 

"create", CREATE, 

"define", DEFIlE, 

"delimiter", DELIMITER, 

"display", DISPLAY, 

"execute", EXECUTE, 

"finished", FIIISHED, 

"from", FROM , 
"inherit", UHERIT, 

"method", METHOD, 

"modify", MODIFY, 

"number", lUMBER, 

"ref", REF, 

"r.mov .... REMOVE. 
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"reserved", RESERVED, 

"select", SELECT, 

"some", SOME, 

"string", STRIIJG, 

"subtype_of" , SUBTYPE_OF, 

"type", TYPE, 

"variable", VARIABLE, 

"where", WHERE 

}: 
static struct dict { 

char attr_name[20]: 

char attr_type[20]: 

} dc [20]; 

static atruct dict dc1[20]; 

static struct geo_table { 

char geo_time_name[20]; 

char geo_time_code[3]; 

} geo_time[] = { 

"holocene", "16", 

"pleistocene", "16", 

"pliocene", "14", 

"miocene", "13", 

"oligocene", "12", 

"eocene", "11", 

"palaeocene", "10", 

"cretaceous", "09", 

"jurassic", "08", 

"triaSSic", "07", 

"permian", "06", 

"carboniferous", "06", 

"devonian", "04", 

"silurian", "03", 

"ordivician", "02", 

"cambrian" "01" 

"precambrian" , "00" 

}; 

char In[120] : 

char str [BUFMAI + 1] ; 

struct inh_dict{ 

char super_name[20]; 

} inh_de [3] : 
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int lnctr=O; 

int attr3tr=O; 

int k=O; 

int inh_ctr=O; 

int err_flag; 

int ch; 

char .. ; 
char dbname[11MELEI]; 

char 01 [21] ; 

char 02 [21] ; 

void g.t_line() •• kip_lpar.n() •• kip_rparen() •• kip_comma().skip_equal().skip_white(). 

clear.cre.n() •• kip_lcurlb().skip_rcurlb().get_buff(); 

mainO 
{ 

FILE .fp1 •• fopen(); 

int ch.option; 

cl.arscr.en() ; 

printf( ................................. \n .. ); 

prinU(". .\n"); 

prinU(". Ent.r database name .please .\n"); 

prinU(". .\n"); 
printf(" ••••••••••••••••••••••••••••••• \n"); 

.canfC .. Yo .... dbname); 

fp1=fop.n(" out.c ........ ) ; 

prinU (fp1 ... Yo .... dbname) ; 

clear.cr.enC) ; 

do { 

printfC ................................................. \n"); 

printfC". .\n"); 

printfC"· 

printfC"· 

printfC"· 

printfC". 

printf(". plea.se enter one of the following option. 
printf(". (1) class_attribute. 

printf(". (2) cla •• _in.tance. 

printf(". (3) cla. .. _method. 

.\n"); 

.\n"); 
*\n"): 
*\n"): 
.\n"): 
*\n"): 
*\n"); 
*\n"); 
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} 

printf(". (4) class_heirarchy 

printf(". (5) adt_domain 

printf(". (6) complex_objects 

printf(". (7) quit 

printf(". 

printf(". 

printf(". 

265 

.\n"); 

.\n") ; 

.\n") ; 

.\n"); 

.\n") ; 

.\n") ; 

.\n"); 
printf(" ••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

scanf("Yod" ,toption); 

nitch(option) 

{ 

case 1 

class_attributes(); 

break; 

case 2 : 

class_instances(); 

break; 

case 3 : 

class_methods () ; 

continue; 

case 4 : 

class_heirarchy(); 

break; 

case 6 : 

adt_domainO; 

break; 

case e : 
complex_objects(); 

break; 

ease 7 : 

quitO; 

break; 

default : 

}; 

err_flag = 1 ; 

break; 

} while(option<=O); 

felose(fpl) ; 
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/. --------------------clas s _ at tr i bu t es -----------------./ 

class_attributes() 

{ 

int option; 

clearscreen(): 

do { 
printf(" •••••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". .\n"); 

printf(". .\n"); 

printf(". .\n"); 

printf(". Please Enter One Of The Following Options .\n"); 

printf(n. (1) 

printf(n. (2) 

printf(". (3) 

printf(n. (4) 

Create class attributes 

Add class attributes 

Delete class attributes 

Quit 

.\n") ; 

.\n") i 

.\n") ; 

.\n") ; 
printf(". .\n"); 

printf (n. .\n") i 
printf(n •••••••••••••••••••••••••••••••••••••••••••••• \nn); 

.canf("y'd".toption); 

awitch(option) 
{ 

case 1 

cue 2 

create_class_attr(); 

break: 

add_class_attr(): 

break: 

case 3 : 

delete_class_attr(): 

break; 

ca.e 4 : 

quitO: 

break: 

default: 

}: 

err_flag = 1 ; 

break: 

} while(option <=0): 
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} 

/. --------------------creat e_ c las s _ at tr----------------. / 

/. define type type_name ( attri=domi, ... ); ./ 

/. define type type_name ( attri=domi, •.. ) inherit (ti, .. ); ./ 

create_class_attr() 
{ 

char .cp; 

int i; 

cleuscreen(); 
printf(" •••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". define type type_name (attr1 =val1, ... ) .\n"); 

printf(". or .\n"); 

printf(". define type type_name (attr1 =va11, .. ) inherit.\n"); 

printf(". (type_name1, .. ) .\n"); 
printf(" •••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

get_line 0 ; 
cmd_lptr = In; 

get_token(); /. define word ./ 

if (token_type != RESERVED) 
{ 

error(U) ; 

return; 
} 

get_token(); /. type word ./ 

if (token_type != RESERVED) 
{ 

error(i2): 

return; 
} 

get_token(); /. class name ./ 

if (token_type != VARIABLE) 
{ 

error(i3) ; 

return; 
} 

strcpy(type_name,token); 

while (.cmd_lptr != ')') { 
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akip_white(icmd_lptr); 

akip_lparen(icmd_lptr); 

get_toltenO; 

atrcpy(dc[attr_ctr].attr_name,token); 

akip_white(icmd_lptr); 

get_tokenO; 

akip_equal(icmd_lptr); 

akip_white(icmd_lptr); 

get_tokenO; 

atrcpy(dc[attr_ctr].attr_type,token); 

akip_white(icmd_lptr); 

akip_comma(icmd_lptr); 

attr_ctr+ +; 
}; 

akip_rparen(icmd_lptr); 

akip_vhite(tcmd_lptr); 

if (*cmd_lptr = = '; » 

{ 

} 

else 
{ 

}; 

append_cl_cattr() 

exit (0); 

get_tokenO; 

if (atrncmp(token, "inherit", 7) = =0) 
{ 

}; 

akip_vhite(icmd_lptr); 

akip_lparen(icmd_lptr); 

akip_vhite(icmd_lptr); 

while (*cmd_lptr != I»~) { 

get_tokenO; 

atrcpy(inh_dc[inh_ctr].auper_name,token); 

akip_vhite(icmd_lptr); 

akip_coama(icad_lptr); 

akip_vhite(tcad_lptr); 

inh_ctr+ +; 

}; 

append_cl_cattr(); 

append_inh_rel(); 
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} 

/* -------------------- append class common attributes ------*/ 

append_cl_cattr() 

## { 

int i; 

## char cln[20].can[20].cat[20]; 

## ingres oodb 

strcpy(cln,type_name); 

for (i=O;i<attr_ctr;i++) 

{ 

strcpy(can.dc[i].attr_name); 

strcpy(cat.dc[i].attr_type); 

## append cl_cattr(cl_name = cln. cattr_name =can, cattr_type = cat) 

}; 

## exit 

## } 

/*--------------------append inheritance relation------------. / 

append_inh_rel() 

## { 

int i; 

## char cln[20],super_n[20]; 

## ingres oodb 

strcpy(cln,type_name); 

for (i=Oji<inh_ctrji++) 

{ 

atrcpy(auper_n,inh_dc[i].auper_name); 

## append inh_rel(claaa_name=cln.super_name=super_n) 

}; 

## exit 

## } 

add_cla8s_attr( ) 

{ 

clearscreen(); 
printf( .............................. • •••••••••••• • •••••••• \n .. ); 

printf(... .\n") j 

printf( ... add type <type_name> <attr_specs> 

printf( .. . 

printf(". 

.\n"); 

.\n"); 

.\n") ; 
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} 

printf(" •••••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

get_lineO; 

cmd_Iptr = In; 

get_token(); /. get add keyword ./ 

skip_white(tcmd_Iptr); 

get_token(); /. get type keyword ./ 

skip_white(tcmd_Iptr); 

get_token(); /. get type_name ./ 

strcpy(type_name.token); 

while(.cmd_lptr != I)') { 

skip_white(tcmd_Iptr); 

skip_Iparen(tcmd_Iptr); 

get_token(); /. attribute name ./ 

strcpy(dc[attr_ctr].attr_name,token); 

skip_white(tcmd_Iptr); 

get_tokenO; 

skip_equal(tcmd_Iptr); 

skip_white(tcmd_Iptr); 

get_tokenO; 

strcpy(dc[attr_ctr].attr_type,token); 

skip_white(tcmd_Iptr); 

skip_comma(tcmd_lptr); 

attr_ctr+ +; 

}; 

append_cI_cattr(); 
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delete_class_attr() 

{ 

clearscreen() ; 
printf(" ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". .\n"); 

printf(". delete type <type_name> <attr_comma_list> 

printf(". 

printf(". 

.\n") ; 

.\n"); 

.\n"); 
print1(" ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

get_line 0 ; 
cad_Iptr - In; 
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get_tokenO; 

get_tokenO; 

get_tokenO; 

/. get delete keyword ./ 

/. get type keyword ./ 

/. get type name 

strcpy(type_name,token); 

} 

while(.cmd_lptr != 1)1) { 

skip_white(icmd_lptr); 

skip_lparen(icmd_lptr); 

get_tokenO; 

strcpy(dc[attr_ctr).attr_name,token); 

skip_white(icmd_lptr); 

skip_comma(icmd_lptr); 

attr _ctr + + ; 

}; 

delete_cl_cattr(); 

delete_cl_cattr() 

## { 

int i; 

## char cln[20),can[20); 

## ingres oodb 

strcpy(cln,type_name); 

for(i=O; i<attr_ctr; i+ +) 

{ 

printf(IYos",dc[i).attr_name); 

strcpy(can,dc[i).attr_name); 

## range of r is cl_cattr 

## delete r where r.cl_name = cln and r.cattr_name=can 

}; 

## exit 

## } 

modify_class_attr() 

{ 

} 

/ .--------------------clas s _ ins tances---------------------. / 

{ 

int option; 
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} 

cleuscreen(); 

do { 

printf(" •••••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". .\n"); 

printf(". .\n"); 

printf(". .\n"); 

printf(". Please Enter One Of The Following Options .\n"); 

printf(". (1) 

printf(". (2) 

printf(". (3) 

printf(". (4) 

printf(". (6) 

printf(". 

printf(". 

Create class instances 

Add class instances 

Remove class instances 

Modify class instances 

Quit 

.\n") ; 

.\n") ; 

.\n") ; 

.\n") ; 

.\n") ; 

.\n") ; 

.\n") ; 
printf(" •••••••••••••••••••••••••••••••••••••••••••••• \n"); 

scanf("%d",*option); 

svitch(option) 

{ 

case 1 

case 2 

create_class_instances(); 

break; 

add_class_instances(); 

break; 

case 3 : 

remove_class_instances(); 

break; 

case 4 : 

modify_class_instances(); 

break; 

case 6 : 

quitO; 

break; 

default: 

}; 

err_flag = 1; 

break; 

} while(option <=0); 
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/.--------------------------create_class_instances----./ 

/. create relation_name { type_name } 

create_cla88_in8tance8() 

## { 

FILE .fp1,.fopen(); 

char .cp; 

int flag; 

## char ta_name[21],ta_type[21]; 

## char a_name[21],a_type[21]; 

## char cla_name[21],typ_name[21]; 

## char .ptyp_name; 

## int co; 

.str"" '\0': 

clear8creenO; 
printf(" •••••••••••••••••••••••••••••••••••••••••••••• \n"): 

printf(". create class_name { type_name} 

printf(". 

.\n"); 

.\n") : 
printf(" •••••••••••••••••••••••••••••••••••••••••••••• \n"): 

get_lineO; 

cmd_lptr = In; 

get_token(); /. create vord ./ 

8kip_vhite(acmd_lptr); 

/. class name ./ 

8trcpy(cla_name,token); 

printf(IIY,8 \n".cla_name); 

8kip_vhite(acmd_lptr); 

get_tokenO; 

skip_lcurlb(tcmd_lptr); 

8kip_vhite(tcmd_lptr): 

get_token(): /. type name ./ 

atrcpy(typ_name.token): 

ptyp_name=typ_name: 

skip_vhite(acmd_lptr); 

skip_rcurlb(acmd_lptr): 

skip_vhite(aemd_lptr): 

strcpy(str,"create "): 

strcat(str.ela_name ): 

atrcat(atr."("): 

flag=TRUE; 

flag = ! flag: 
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## ingres oodb 

## range ot r is cl_cattr 

## retrieve (co=count(r.all» 

## vhere r.cl_name = ptyp_name 

## retrieve (a_name=r.cattr_name ,a_type=r.cattr_type) 

## vhere r.cl_name= ptyp_name 

## { 

it ('flag) 

{ 

} else 
{ 

} 

## } 

strcat(str,OI,OI): 

strcpy(ta_name,a_name): 

strcpy(ta_type,a_type): 

strcat(str,ta_name); 

strcat(str,OI = 01): 

strcat(str,ta_type): 

strcpy(ta_name,a_name); 

strcpy(ta_type,a_type): 

strcat(str,ta_name): 

strcat(str,OI = 01): 

strcat(str,ta_type): 

Uag = ! flag: 

strcat(str,OI)OI): 

fpl =fopen( OI instance .t Ol
, OIVOl): 

fprintf(fpl,OIy's Ol,str): 

fprintf(fpl, OI\n\ \go\nOl ): 

fclose(fpl): 

call_ingres(): 

## exit 

## } 

call_ingres () 

{ 

FILE .fpl,.fopen(): 

fpl =fopen("instance. c", "v"); 

fprintf(fpl, "maino\n"): 

fprintt(fpl, "{\n"); 
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}; 

fprintf(fpl."system(\"/ingres/bin/ingres/ "); 

fprintf (fpl. "Yos II .dbname); 

fprintf (fpl." -s < instance. f\") ;") ; 

fprintf(fpl."}\n") ; 

fclose(fpl) ; 

system( "cc -0 instance. out instance. c "); 

system("instance.out") ; 

int return_code: 

char .oldname •• nevname ; 

oldname=methodpath: 

newname = "ccin. q" : 

return_code=rename(oldname.newname): 

system("eqc ccin.q"): 
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system("CC -0 ccin.o ccin. c /ingres/lib/libqlib /ingres/lib/compatlib -1m -le -lc") 

system("ccin.o") : 

oldname = "ccin. q": 

newname=methodpath; 

return_code=rename(oldname.newname); 

}; 

/. --------------------add_ clas s _ ins tanc es ____ eo_eo. / 

/. add instance_of class_name (attrl=vall •.. ) ./ 

add_class_instances() 

{ 

char .cp; 

int i=O; 

FILE .fp •• fopen(); 

.str= '\0': 
clearscreenO; 

printf( .................................................. \n"); 

printfC". add instance_of clasa_nUle (attrl =val1 •.. ) .\n"); 

printfC"· .\n"); 
printf( .................................................. \n"); 

get_lineO: 

cac1_lptr = In; 
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} 

get_token(); /. get add keyword ./ 

skip_white(tcmd_lptr); 

get_token(); /. get instance_of keyword ./ 

skip_white(tcmd_lptr); 

get_token(); /. get type name ./ 

strcpy(type_name,token); 

while(.cmd_lptr != .). ){ 

attr _ val_list [i + + ] = .cmd_lptr + + ; 

}; 

attr_val_list[i+ +] =')'; 

strcat (str , II append ") ; 

strcat(str,type_name ); 

strcat(str, attr_val_list); 

fp=fopen("instance. fll, "W"); 

fprintf(fp, "Yos" ,str); 

fprintf(fp, "\n\\go\n"); 

fclose(fp) ; 

call_ingresO; 

/.----------------remove_class_instances--------./ 

/. remove instances_of class_name where qual 

{ 

char .cp: 

int i=O: 

FILE .fp, .fopen(): 

.str= '\0'; 

clearscreen(): 

printf( ...... ••• ••••••••••••••••••••••••••••••••••••• \n .. ); 

printf(". remove instance_of class where qual : 

printf(". 

.\n"): 

.\n"): 
printf( .. ••••••••••••••••••• ••••••••••••••••••••••••• \n .. ); 

get_line 0 ; 
cmd_lptr = In: 

get_token(); /. get remove keyword ./ 

akip_white(icmd-lptr); 

get_token(): /. get instance_of keyword ./ 
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} 

skip_white(tcmd_lptr): 

get_token(): /. get type_name ./ 

strcpy(type_name,token): 

while(.cmd_lptr != ':') { 

where_clause [i + +] = .cmd_lptr + + : 

}; 

strcat(str, "range of "); 

strcat(str,type_name); 

strcat(str, " is "): 

strcat(str,type_name): 

strcat(str," II); 

strcat (str, " delete "); 

strcat(str, type_name); 

strcat(str,vhere_clause); 

fp=fopen("instance. f", "v"); 

fprintf(fp,"%s",str); 

fprintf(fp,"\n\\go\n"); 

fclose(fp) ; 

call_ingres(); 

modify_class_instances() 
{ 

int i=O; 

FILE .fp, .fopen(): 

.str = '\0'; 

clearscreenO; 

printf(" •••••••••••••••••••••••••••••••••••••••••••••••••••• \n"): 

printf(". .\n"): 

printf(". modify inst_of <class_name> <target_list> 

printf(". vhere <qual>; 

printf(". 

.\n"); 

.\n"); 

.\n"); 
printf(" •••••••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

get_lineO; 

cmd_lptr = In; 

get_token(); /. get modify keyvord ./ 

skip_white(acmd_lptr); 

get_token(); /. get inst_of keyvord ./ 

skip_white(acmd_lptr): 

get_token(); /. get class_name ./ 
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} 

strcpy(type_name,token); 

whileC.cmd_lptr != ';') { 

rest_01_cmd[i+ +] = .cmd_lptr+ +; 

}; 

strcat(str," range of .. ); 

strcat(str,type_name); 

strcat(str," is .. ); 

strcat(str,type_name); 

strcat(str," replace "); 

strcat(str,type_name); 

strcat(str,rest_of_cmd); 

fp=fopen("instance,f" ,"w"); 

fprintf(fp, "1.s" ,str); 

fprintf(fp, "\n\ \go\n"); 

fclose(fp) , 

call_ingres(); 

/. ---------------------c las s _methods ----------------------. / 

clus_methods() 
{ 

int option; 

cleuscreen(); 

do { 
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printf( ................................................ \n"); 

printf(". .\n"); 

printf(". .\n"); 

printf(". .\n") ; 

printf(". Please Enter One Of The Following Options .\n") ; 

printf(". (1) Create class methods .\n"); 

printf(". (2) Modify class methods .\n") ; 

printf(". (3) Remove class methods .\n") ; 

printf(". (4) Display methods .\n") : 
print!(". (6) Execute methods .\n") : 
printf(". (6) Quit .\n"): 
printf(". .\n"): 
printf( ................................................ \n"): 

scanf("y'd".toption): 

I.itch(option) 
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} 

{ 

case 1 

create_class_methods(): 

break; 

case 2 : 

modify_class_methods(): 

break; 

case 3 : 

remove_class_methods(): 

break; 

case 4 : 

display_class_methods(); 

break; 

case 6 

continue; 

/. break; ./ 

case 6 : 

quitO; 

break; 

default: 

}; 

err_flag = 1; 

break; 

} while(option <=0); 

/. --------------------creat e_ clas s_methods------. / 

/. create class_name method method_name ( ) ./ 

create_class_methods() 

{ 

char .cp: 

int i=O; 

clearscreenO; 
printf(" ••••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". .\n"); 

printf(". create class_name method method_name ( 

printf(". 

) .\n") ; 
.\n"); 

printf(" ••••••••••••••••••••••••••••••••••••••••••••••••• \n"); 
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} 

get_lineO; 

cmd_lptr = In; 

get_tokenO; 

get_tokenO; 

/* get create keyword */ 

/* get class name */ 

strcpy(type_name,token); 

get_token(); /* get method keyword */ 
get_token(); /* get_method_name */ 

strcpy(method_name,token); 

skip_white(icmd_lptr); 

skip_lparen(icmd_lptr); 

while (*cmd_lptr != )') { 

lIethod_code [i + +] = *clld_lptr + + ; 
}; 

lIethod_code [i] = ) \0) ; 

append_cl_method(); 

/ * ------------------append_ cl_method ---------------* / 

append_cl_method() 

##{ 

## char cln[20],clID[20],cmc[BUFMAX]; 

## ingres oodb 

strcpy (cln,type_name); 

strcpy (clID,method_name); 

strcpy (cllc,method_code); 

## append cl_lIethods(elass_name=cln,method_name=clID,method-eode=cmc) 

## exit 

##} 

/ *-------------------modify _ elas s _methods-------* / 

modify_class_methods() 

{ 

char el_n[20].emn[20]; 

int i=O; 

char str2[900]; 

FILE *fp, *fopen(); 

.str2 = '\0); 

clearsereenO; 
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} 

printf(" ••••••••••••••••••••••••••••••••••••••••••••••••••• \n")j 

printf (". .\n") j 

printf (". modify cl_name method ( method_name = $1. 

printf(". method_code = $2 ) where method_name = $3 

printf(". 

.\n") j 
.\n") : 

.\n") j 
printf(" ••••••••••••••••••••••••••••••••••••••••••••••••••• \n")j 

get_lineO j 

cmd_lptr = In: 

get_token(): /. get modify keyword ./ 

get_token(): /. get class name */ 

strcpy(cl_n.token): 

get_token(): /* get method keyword */ 

skip_white(tcmd_lptr): 

while (*cmd_lptr ! = I) I) { 

attr _ val_list [i + + ] = .cmd_lptr + + : 
}: 
attr_val_list [i] =') I j 

skip_rparen(tcmd_lptr); 

get_token(): /. get where keyword ./ 

get_token(); /* get method_name keyword ./ 

get_token(): /. get equal sign ./ 

get_totenO; 

strcpy(cmn.toten): 

strcat(atr2. "range of r is cl_methods "): 

strcat(atr2. II replace r II); 

strcat(str2. attr_val_list); 

strcat(atr2. II where r.method_name = "): 

strcat(str2. "\"11): 
strcat(str2. cmn): 

strcat(str2."\nn): 

strcat(str2. II and r.class_name = II): 

strcat(str2."\"I) ; 

strcat(str2, cl_n): 

strcat(atr2."\nn); 

1p=1open("inatance .1", nail): 

1print1(1p,"Yos",str2)j 

1printf(fp.l\n\\go\n"); 

fclose(fp) ; 

ealLingresO; 
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/.-------------------remove_class_methods--------./ 

/. remove class_name method where method_name 

{ 

## char cl_n[20].cmn[20]; 

char .cp; 

cleuscreen(); 
printf( .................................................... \n .. ); 

printf(". remove clau_name method where method_name = $1.\n"); 

printf( .................................................... \n .. ); 

get_lineO; 

cmd_lptr = In; 

get_tokenO; 

get_tokenO; 

/. get remove keyword ./ 

/. get type name ./ 

strcpy(cl_n.token); 

get_token(); /. get method keyword ./ 

get_token(); /. get where keyword ./ 

skip_white(tcmd_lptr); 

skip_equal(tcmd_lptr); 

skip_white(tcmd_lptr); 

get_tokenO; 

strcpy(cmn.token); 

II ingres oodb 

## range of r is cl_methodd 

## delete r where r.class_name = cl_n and r.method_name = cmn 
## exit 

} 

/. -------------------clisplay _ cIas s _methods------. / 

/. display class_name methods 

display_class_methods() 

{ 

char str2[900]; 

PILE .fp •• fopen(); 
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clearscreen(); 
printf(" •••••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". display class_name methods 

printf(". 

*\n")j 

.\n"); 
printf(" •••••••••••••••••••••••••••••••••• * •••••••••• *\n"); 

.str2= '\0'; 

} 

get_line 0 ; 
cmd_lptr = In; 

get_tokenO; /. get disply keyword ./ 

/* get class_name */ 

strcpy(type_name,token); 

get_token(); /. methods ./ 

strcat(str2, " range of r is cl_methods "); 

strcat(str2, "retrieve (methodname = "); 

strcat(str2, " r.method_name ) II); 

strcat(str2, II where r.class_name = "); 

strcat(str2, "\""); 

strcat(str2, type_name); 

strcat(str2, "\""); 

fp=fopen("instance. fll ,"W"); 

fprintf(fp,"%s", str2); 

fprintf(fp, "\n\\go\n"); 

fclose(fp); 

call_ingresO; 

/ * -------------------execu t e_ clas s _methods------. / 

/. execute (type,method_name,object); 

execute_class_methods() 

{ 

char atrO[8001] ; 

char atr2 [8001] ; 

char *cp; 

char *cp1; 

char obj_typ1; 

char obj_typ2; 

## char atr1[8001]; 

## char clname [21] ; 

## char methodn[21]; 
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FILE .fp,fpl,.fopen(); 

.str2= '\0'; 

clearscreen() ; 
printf( ......................................... \n .. ); 

printf(". execute(type,method_name,obj); .\n"); 

printf(". .\n") ; 
printf( ......................................... \n .. ); 

fp=fopen("instance. f", .. w .. ); 

get_line 0 ; 
ClDd_lptr = In; 

get_tokenO; /. get execute keyword ./ 

skip_white(iclDd_lptr); 

skip_lparen(icmd_lptr); 

/. get class ./ 

strcpy(type_name,token); 

strcpy(clname,type_name); 

skip_comma(iclDd_lptr); 

strcpY(lDethod_name,token); 

strepY(lDethodn,lDethod_name); 

skip_comma(ielDd_lptr); 

get_token(); /. get object ./ 

strepy(ol,token); 

obj_typl= token_type; 

## ingres oodb 

## range of r is cl_lDethods 

## retrieve (strl= r.lDethod_code) where r.class_name 

## and r.method_name=lDethodn 

## exit 

strepy(str2,strl); 

if (strnclDp(str2, ",",1) = =0) 

{ 

strncpY(lDethodpath,str2,30); 

call_ceO; 

} else { 

/. ep= atr_replace(ltr2,"ol",ol);./ 

strcpy(atrO,cp); 

strcat(atrO,";"); 

lDethod_ptr = cp; 

akip_comma(iclDd_lptr); 

get_tok.nO; 

clname 
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} 

} 

obj_typ2= token_type; 

obj_typ=obj_typ2; 

strcpy(02.token)j 

cp1 =str_replace(str2. "02" .02); 

obj_typ=obj_typl; 

strcpy(strO.cpl); 

strcat(strO.";"); 

cp = str_replace(strO."ol".o1); 

fp=fopen("instance .f". "a"); 

fprintf(fp. "Yos" .cp); 

fprintf(fp. "\n\ \go\n"); 

fclose(fp); 

call_ingres(); 

/ .---------------------clas s _he irarchy--------------------. / 

class_heirarchy() 
{ 

int option; 

clearscreen(); 

do { 

printf(" •••••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". .\n"); 

printf(". *\n"); 

printf(". *\0"); 

printf(". 

printf(". 

printf(". 

printf(". 

printf(". 

printf(". 

printf(". 

Please Enter One 

(1) Create class 

(2) Remove class 

(3) Quit 

Of The Following 

heirarchy 

heirarchy 

Options *\n"); 

.\n"); 

.\n"); 

.\n"); 

.\n") ; 

.\n") ; 

.\n"); 
printf(" •••••••••••••••••••••••••••••••••••••••••••••• \n"); 

scanf("Yocl",toption); 

svitch(option) 
{ 

ca.e 1 : 
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} 

create_class_heirarchy(); 

break; 

case 2 : 

remove_class_heirarchy(); 

break; 

case 3 : 

quitO; 

break; 

default: 

}; 

err_flag = 1 ; 

break; 

} while(option <=0); 

/.----------------create_class_heirarchy---------./ 

create_class_heirarchy() 
{ 

## char cln[20],supcn[20]; 

char .cp; 

clearscreenO; 
printf(" •••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". create class_name subtype_of class_name .\n"); 

printf(". .\n"); 
printf(" •••••••••••••••••••••••••••••••••••••••••••••••• \n"): 

get_line 0 : 
cmd_Iptr = In; 

get_tokenO; 

get_tokenO; 

strcpy(cln,token); 

/. get create keyword ./ 

/. get class naae ./ 

get_token(); /. get subtype_of keyword ./ 

get_token(); /. get superclass name ./ 

strcpy(supcn.token): 

#1 ingres oodb 

## range of r is inh_rel 

II append inh_rel(class_name=cln.super_name=supcn) 
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## exit 

} 

/. ---------------remov e_ clas s _he irarchy----------. / 

remove_class_heirarchy() 
{ 

## char type_name[20].supclass_name[20]; 

char .cp; 

clearscreen(); 
print:f(" ••••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

print:f(". remove class_name :from supclass_name .\n"); 

prinU (". .\n") ; 
print:f(" ••••••••••••••••••••••••••••••••••••••••••••••••• \n"); 

get_line(); 

cmd_lptr = In; 

get_tokenO; 

get_tokenO; 

/* get remove keyword ./ 

/. get class name ./ 

strcpy(type_name.token); 

get_token(); /. get :from keyword ./ 

get_token(); /. get superclass name ./ 

strcpy(supclass_name.token); 

## ingres oodb 

## range o:f r is inh_rel 

2P,7 

## delete r where r.cla88_name = type_name and r.super_name=supcla8s-name 

## exit 
} 

int .loc; 

char xb[21]. yb[21]; 

char xt [21]. yt [21] ; 

char axis [21] ; 

int i; 
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char .bufptr; 

FILE .tp1 •• fopen(); 

.str= '\0'; 

clearscreenO; 

printf(" ••••••••••••••••••••••••••••••••••••••••••• \n"); 

printf(". range 01 r is <class_list> .\n"); 

printfC"· retrieve <target_list> .\n") ; 

printf(". where <spatial_qual> .\n"); 

printf(". <geo_tilDe_qual> .\n") ; 

printf(". eaat.west.north.aouth .\n") ; 

printf(". bet ore , atter, between .\n") ; 

printf(" ••••••••••••••••••••••••••••••••••••••••••• \n"); 

get_line 0 ; 
cmd_Iptr = In; 

/ •• loc = right_index (cmd_Iptr ,"where");./ 

get_tokenO; 

atrcat(str,token): 

while (strncmp(token, "where" ,6)! =OH 
get_tokenO; 

}; 

strcat(str," "); 

strcat(str.token): 

while (.emd_lptr ! = ";") { /. 13 dee ./ 

if (tok = = FlIISHED) { 

get_lineO; 

cmd_lptr = In; 

}: 

get_tokenO; 

strepy(loperand.token): 

get_tokenO; 

strcpy(operator.token): 

get_tokenO: 

it (atruemp(op.rator. "overlap" .1) = ==0 II 
struemp(operator. "contained_in" .12) = =0 II 

struemp(operator, "abuts_top", 9) == =0 II 
struemp(op.rator. "abuts_bottom" ,12) = =0 II 

.truemp(operator, "abuts_left" ,10) == -0 II 
struemp(operator, "abuts_right" ,11) = =0) 

{ 
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strcpy(xb,token); 
skip_comma(tcmd_lptr); 

get_tokenO; 

strcpy(yb,token); 

skip_comma(tcmd_lptr); 

get_tokenO; 

strcpy(xt,token); 

skip_comma(tcmd_lptr); 

get_tokenO; 

strcpy(yt,token); 
} 

strcpy(roperand,token); 
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if (strncmp(operator, "east" ,4) = =0 II strncmp(operator, "vest" ,4) = =0 ) { 

strcat(str," "); 

} 

strcat(str," right("); 

strcat(str,loperand); 

if (strncmp(operator, "east" ,4) = =0) 

strcat(str,",2) > right ("); 

else 

strcat(str,",2) < right ("); 

strcat(str,"\n"); 

strcat(str,roperand); 

strcat(str,",2) and left ("); 

strcat(str,loperand); 

strcat(str, ",2) = left ("); 

atrcat(atr, roperand); 

atrcat(str,", 2)") ; 

if (strncmp(operator, "north" ,5) = =0 II strncmp(operator, "south" ,6) = =0) { 

strcat(str," II); 

strcat(str,"left("); 

strcat(str,loperand); 

if (atrncmp(operator, "north" ,6) = =0) 

atrcat(atr,",2) > left("); 
elae 

atrcat(str,",2) < left("); 
atrcat(str,"\n"); 

strcat(str.roperand); 

atrcat(str.",2) and right ("); 

atrcat(atr.loperand); 
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} 

strcat(str." .2) = right(") j 

strcat(str.roperand): 

strcat(str.".2)"); 

if (strncmp(operator. "overlap". 7) = =0 ) 
{ 

} 

strcat(str." left(")j 

strcat(str.loperand): 

strcat(str.".2 ) <"): 

strcat (str • xb) : 

strcat(str," and left(right("): 

strcat(str,loperand)j 

strcat(str.". size(It); 

strcat(str.loperand); 

strcat(str. ")-3) "); 

IItrcat(str.".2 ) <"); 

strcat(str.yb)j 

strcat(atr," and le:ft(right(")j 

atrcat(atr.loperand)j 

atrcat(atr,",aize(")j 

atrcat(atr,loperand)j 

atrcat(str,")-6),2 ) >"): 
atrcat(atr ,xt): 

strcat(atr," and left(right("): 

IItrcat(lItr,loperand): 

atrcat(str,",size(")j 

strcat(str,loperand)j 

strcat(str, ")-9) ,2»"); 

strcat(str, yt): 

if (strncmp(operator, "contained_in" ,12) = =0) 
{ 

strcat(str," left("): 

strcat(str.loperand): 

atrcat(str,",2 ) >="); 

strcat(atr. xb) j 

strcat(str." and left(right(")j 

strcat(str,loperand)j 

strcat(str.",size(")j 

strcat(str,loperand): 

IItrcat(str, ")-3) ") : 
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} 

strcat(str .... 2 ) >= .. ): 

strcat (str. yb) : 

strcat(str." and left(right("): 

strcat(str.loperand); 

strcat(str .... size( .. ): 

streat(str.loperand); 

streat(str. ")-6).2 ) <="): 

streat(str.xt) ; 

streat(str." and left(right("); 

streat(str.loperand); 

streat(str.".size("); 

streat(str.loperand); 

streat(str.")-9) .2)<="): 

streat(str.yt); 

if (strnemp(operator. "abuts_left" .10) = =0) 
{ 

} 

streat(str." left(right("): 

strcat(str.loperand); 

streat(str .... size("): 

streat(str.loperand); 

streat(str. 11)_3)"); 

strcat(str.".2 ) <"); 

streat (atr • yt) ; 

strcat(str." and left(right("); 

strcat(str.loperand); 

streat(str .... size("); 

strcat(str.loperand); 

streat(str. tI)-6).2 ) =tI); 

strcat(str.xb); 

streat(str. tI and left(right(tI); 

streat(str.loperand); 

streat(str.".size("); 

streat(str.loperand); 

strcat(str. tI)_9) .2»"); 

strcat(str.yb); 

if (strncmp(operator. II abut s_rightII .11) = =0) 

{ 

streat(str.tlleft("); 
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} 

strcat(str.loperand): 

strcat(str." .2) ="): 

strcat(str.xt): 

strcat(str." left(right("); 

strcat(str.loperand); 

strcat(str .... size( .. ): 

strcat(str.loperand): 

strcat(str. ")-3)"); 

strcat(str .... 2 ) <"); 

strcat(str.yt); 

strcat(str." and left(right("); 

strcat(str.lop.rand); 

strcat(str .... siz.( .. ); 

strcat(str.lop.rand); 

strcat(str. ")-9) .2»"); 

strcat(str.yb) ; 

if (strncmp(op.rator. "abuts_top" .9) = =0) 

{ 

} 

strcat(str." l.ft("); 

strcat(str.lop.rand); 

strcat(str .... 2 ) <"); 

strcat(str.xt); 

strcat(str." and left(right("); 

strcat(str.lop.rand); 

strcat(str.",siz.("); 

strcat(str,loperand); 

strcat(str, ")-3)"); 

strcat(str,",2 ) <"); 

strcat(atr,yt); 

atrcat(str," and left(right("); 

strcat(str,lop.rand); 

strcat(atr, II ,siz.("); 

atrcat(str,loperand); 

strcat(str,")-6),2) >"); 

atrcat(atr,xb); 

if (strncmp(operator, "abuts_bottom", 12) = =0) 
{ 

atrcat(str," l.ft("); 
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} 

strcat(str.loperand); 

strcat(str.".2 ) <"); 

strcat(str.xt); 

strcat(str." and left(right("); 

strcat(str.loperand); 

strcat(str.".size("); 

strcat(str.loperand); 

strcat(str. ")-6)"); 

strcat(str.".2 ) >"); 

strcat(str.xb); 

strcat(str." and left(right("); 

strcat(str.loperand); 

strcat(str.".size("); 

strcat(str.loperand); 

strcat(str. ")-9).2 ) ="); 

strcat (str. yb) ; 

if (strncmp(operator. "above". 6) = =0 II 
strncmp(operator. "below" .6) = =0 II 

strncmp(operator."right_of".8)==0 II 
strncmp(operator. "left_of", 7) = =0) 

{ 

strcpy(axis.token); 

if (strncmp(operator. "above" .6) = =0) 
{ 

} 

atrcat(str." left(right("); 

atrcat(str.loperand); 

atrcat(str.".aize("); 

strcat(str.loperand); 

strcat(atr." )-3) • 2)") ; 

strcat (atr. ,,> =") ; 

strcat(str.axis); 

if (strncmp(operator. "below" .6) = =0) 
{ 

atrcat(atr." left(right("); 

atrcat(atr.loperand); 

atrcat(str.".size("); 

strcat(str,loperand); 

strcat(atr." )-9) • 2)") ; 
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} 

} 

streat (str, "<= ") ; 

streat(str,axis); 

if (strnemp(operator, "left_of", 7) = =0) 

{ 

} 

streat(str," left(right("); 

streat(str,loperand); 

streat(str,",size("); 

streat(str,loperand); 

streat (str," )-B), 2)") ; 

streat(ltr ,"<= "); 

streat(str,axil); 

if (strnemp(operator, "right_of", 8) = =0) 

{ 

} 

strcat(str," lett(II); 

streat(ltr,loperand); 

strcat(str,I,2)"); 

streat (str, "> = ") ; 

streat(str,axis); 
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if (strnemp(operator,lbefore",B)==O II strnemp(operator,lafter",6)==0) 

{ 

} 

streat(ltr," II); 

streat (Itr , "right (") ; 

streat(str,loperand); 

streat(ltr. I ,1)")j 

if (strnemp(operator, Ibefore",B) = =0) 

streat(ltr," < "); 

else 

Itreat(ltr," > II); 

for(i=O; i<=4; i + +) 

if (strnemp(roperand.geo_tille[i] .geo_time_name,8) = =0) 

Itreat(atr,geo_tille[i].geo_time_eode); 

if (Itrnemp(operator,"betveen",7)==0) { 

streat(str," right("): 

streat(str,loperand): 

streat(str.",1)"); 
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strcat (str, "> = "); 

for(i=0;i<=4;i++) 
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if (strncmp(roperand,geo_time[i].geo_time_name,8)==0) 

strcat(str,geo_time[i].geo_time_code); 

} 

} 

get_tokenO; 

atrcpy(logicalopr,token); 

atrcat(atr,logicalopr); 

atrcat(str," right(II); 

atrcat(atr,loperand); 

atrcat(str,",1)"); 

atrcat(atr," <= "); 

get_tokenO; 

strcpy(operand2,token); 

for(i =0; i<=4; i+ +) 

it (strncmp(operand2,geo_time[i] .geo_time_name,8) = =0) 

strcat(str,geo_time[i] .geo_time_code); 

get_tokenO; 

skip_vhite(icmd_lptr); 

atrcpy(logicalopr,token); 

it (strncmp(logicalopr,";", 1) = = 0) break; 

else strcat(str,token); 

}; /* 13 dec */ 

fp1 = fopen("inatance.f", "v"); 

fprintt(fp1, "%a" ,str); 

fprintf(fp1, "\n\ \go\n"); 

fclose(fp1) ; 

calLingres() ; 

/ *-----------------------------complex_ob j ect a------------------* / 

complex_objecta() 

{ 

FILE *fp,*fopen(); 

char conatant[20],comparator[20].range_var[20],cl_name[20]; 

int i=O; 

## atatic int i1,j; 

## char dc2[10] [21]: 

## char att_name[21]; 
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## int n, finished; 

## char *attrptr; 

## char a_name[21],a_type[21]; 

*str='\O'; 

attr_ctr=O; 

clearscreen(); 
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printf(" ******************************************************** \n"); 
printf(1I * * \n"); 

printf(" * object get range_var qual; 

printf(" * 

printf(" * 

printf(" * 

printf(" * 

* \n"); 

* \n"); 

* \n"); 

* \n"); 

* \n"); 

printf(" ******************************************************** \n"); 

get_lineO; 

cmd_lptr = In; 

get_token(); /* get object */ 

strcpy(cl_name,token); 

get_token(); /* get get */ 

get_token(); /* range_var */ 

strcpy(range_var,token); 

get_token(); /* Iparen */ 

get_token(); /* range_var */ 

while (token_type != RESERVED ) { 

} 

get_tokenO; 

if (token_type != RESERVED) { 

strcpy(dcl[attr_ctr+ +] . attr_name, token); 

/* attr_ctr+ + ;*/ 
} 

printf("Yod \n" ,attr_ctr); 

printf("Yod \n".attr_ctr); 

for (i=O; i<=attr_ctr; i+ +) 

{ 

printf("Yos\n",dcl[i].attr_name); 
} 

strcpy(comparator,token); 

get_token() ; 

.trcpy(constant,token); 

## ingre. oodb 
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## range of r is cl_cattr 

attr _ctr--: 

for (k = 0: k<attr _ctr: k + + ) 

{ 

j=t: 

atrcpy(att_name.dc1[k] .attr_name): 

attrptr = att_name: 

## retrieve (a_name=r.cattr_name.dc2[j]=r.cattr_type 

## where r.cattr_name = att_name 
} 

strcat (atr • " range of r ia "): 

atrcat(atr.cl_na.e): 

atrcat(atr." retrieve (r.oid) where "): 

atrcat(atr.range_var): 

atrcat(atr."."): 

atrcat(atr.dc1[O].attr_name): 

atrcat(atr." = "): 

atrcat(atr.dc2[O]): 

atrcat(atr.".oid"): 

for (k=1 :k<attr_ctr:t+ +) { 

} 

atrcat(atr." "): 

atrcat(atr." and "): 

atrcat(atr.dc2[k-1]); 

atrcat(atr."."): 

atrcat(atr.dc1[t].attr_name); 

atrcat(atr." ="); 

atrncat(atr.dc2[k].atrlen(dc2[k]»; 

atrcat(atr.".oid"); 

t=attr_ctr; 

too; 

atrcat(atr." and "); 

atrcat(atr.dc2[k]); 

atrcat(atr."."); 

atrcat(atr." "): 

atrcat(atr.dc1[attr_ctr].attr_name); /. attr_ctr ./ 

atrcat(atr." ="); 

atrncat(atr.dc2[k].atrlen(dc2[k]»; 

atrcat(atr. "_") : 

atrcat(atr.dc1[attr_ctr].attr_name): 

297 



Appendix 78 

streat(str,"."); 

strneat(str,de2[k] ,strlen(de2[k]»; 

streat(atr,II_"); 

streat(str,"oid"); 

streat (atr, II and "); 

strneat(str,de2[k],strlen(de2[k]»; 

streat(str,II_"); 

streat(str,del[attr_etr] .attr_name); 

streat(str,"."); 

streat(str,eonstant); 

streat(str,"_"); 

streat(str,"oid"); 

atreat(str,"="); 

streat(str,eonstant); 

streat(str,"."); 

streat(str,"oid"); 

for (i=O; i<=attr_etr; i + +){ 

} 

/. streat(str," II); 

streat(str,eomparator); 

streat(atr,eonstant); ./ 

printf("%s ",str); 

} 

fp=fopen(lIinstanee. f", "V "); 

fprintf(fp, "%S", str); 

fprintf(fp,"\n\\go\n"); 

felose(fp); 

eall_ingres() ; 

right_index(string,substring) 

ehar .string, .substring; 

{ 

int i,j ,t; 

int loe = -1; 

for(i=O; .(string+i) ! = EOS; i+ +) 

for (j =i,t=O; (.(substring +t) ! = EOS) tt 

(.(substring +t) == .(string+j»;t++,j++) 
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if «.substring + t+1) == , , II .(substring +k+1) ==EOS) { 

loe = i + strlen(substring); 
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break; 
} 

return (1oc); 
} 

/. ---------------------ak i p_ whi t e-------------------/ 
static void skip_white(s) 

char •• s; 
{ 

} 

while (iawhite(--s» 

(-a) + +; 

/ • -----------------------ak i p _1 par en -----------------/ 
static void skip_1paren(s) 

char •• s; 
{ 

} 

while (islparen(-.s» 

(-s)++; 

/ ------------------------skip_rparen-----------------/ 

static void skip_rparen(s) 

char --a; 
{ 

} 

while (isrparen(-.s» 

(-s) + +; 

/. -----------------------aki p _lcurl b-------------------/ 

static void skip_lcurlb(s) 

char --s; 
{ 

} 

while (ialcurlb(-.s» 

(-a) + +; 

/. ----------------------sk i p_rcurl b--------------------_ / 

static void skip_rcurlb(s) 

char .-s, 
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{ 

} 

while (isrcurlb(**s» 

(*s)++; 

/ * -----------------------Ik i P _ comma--------------------* / 

Itatic void Ikip_comma(s) 

char **1; 

{ 

} 

while (ilcomma(**s» 

(*1)++; 

/ * -------------------------ski P _ equal-------------------* / 

static void skip_equal(s) 

char **s; 

{ 

} 

while (ilequal(**s» 

(*1)++; 

/ * --------------------get _ token -------------------------* / 

get_tokenO 

{ 

regilter char *temp; 

token_type = 0; 

tok = 0; 

temp = token; 

if (*cmd_lptr = = '\0' ) {/. end of file */ 

*token =0; 

tok = FlIiSHED; 

return (token_type DELIMITER) ; 
} 
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while (ilwhite(.cmd_lptr» ++cmd_lptr; /. skip over white spaces ./ 

if (Itrchr( "+-/Y..-=;(),{}<>",.cmd_lptr» { /. delimiter */ 

.temp = -cmd_lptr; 

cmd_lptr+ +; /* advance to next position */ 

temp + +; 

-temp = 0; 

/* token_type = DELIMITER; */ 

return (token_type = DELIMITER); 
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} 

} 

if (isdigit(tcmd_lptr» { It number tl 

}; 

while (! isdelimi t (*cmd_lptr» ttemp + + 

ttemp = '\0'; 

/t token_type = IUMBER;t/ 

return (token_type = lUMBER); 

if (isalpha(tcmd_lptr» { 

} 

while (! isdelimi t (tcmd_lptr» ttemp + + 

token_type = STRIIG; 

ttemp = '\0'; 
if (token_type = = STRIIG) { 

tok = look_up(token); 

} 

if (!tok) token_type = VARIABLE; 

else token_type = RESERVED; 

if (isquote(tcmd_lptr»{ 

} 

ttemp+ + = tcmd_lptr+ +; 

while ( ! isquote (*cmd_lptr» ttemp + + 

ttemp+ + = tcmd_lptr+ +; 

ttemp = '\0'; 

token_type= STRIIG; 

return token_type; 

I t-------------------------putback ( ) -------------t I 

/t return a token to input stream */ 

void putback() 

{ 

char tt; 

t = token; 

for(; tt; t + +) cmd_lptr--; 

} 

/ t --------------------look_ up ( IS ) -------------------t I 

It look_up a token in the token table tl 
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look_up(s) 

char *s; 

{ 

} 

int i,j; 

char *p; 

/* convert to a lower case */ 

p=s; 

while (*p) { 

} 

*p = tolower(*p); 

p++; 

/* see it token is in table */ 

tor (i=O; *table[i] .reserved; i+ +) 

it (!strcmp(table[i].reserved,s» return table[i].tok; 

return 0; 

/ * ------------------ i sdel imi t er----------------------* / 

/* return true it c is delimiter */ 

isdelimit(c) 

char c; 

{ 
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it (strchr(";, +_/%<>(){}=" ,C) II c= =' , II c= = '9' II c= = '\r' II c= =0) 

return 1; 

return 0; 

} 

/ * -----------------------------get _ word------------------. / 

static ehar *get_word(cp) 

char *cp; 

{ 

int wl=O; 

int tst=O; 

skip_white (aep) ; 

while(*cp aa *cpl='\n' aa iswhite{*cp)==O aa *cp !=',' ) 
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} 

{ 

} 

if (wl= =liAMELElf U fst= =0) { 

err_flag = 1 ; 

fst + +; 

} else 

word[wl+ +] = *cp+ +; 

word [wl] = '\0'; 

return (cp) ; 

/ * -----------------------------get _line-------------------* / 

static void get_line() 

{ 

} 

*In= '\0'; 

while(*ln=='\O' II *In=='\n') 

{ 

} 

if (fgets(ln,420, stdin) = =0) 

{ 

exit(l); 

} 

1nctr+ +; 

/ * --------------------------replac e _ s tr ing----------------* / 

static char *str_replace(strO,strl,str2) 

char *strO; 

char *strl, str2[]; 

{ 

11: 

char *str3, *str4; 

*str4= '\0'; 

strO=get_word(strO) ; 

if (strncmp(word,"i",l)==O II tok == FIIISHED ) goto 12; 

if (strncmp (strl,word,2)==0) 

{ 

if (obj_typ = = VARIABLE) { 

strcat(str4,"\" II); 

strcat(str4,str2); 

strcat(str4," \" ">; 
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12: 

} 

} 

} else strcat(str4,str2); 

goto 11; 

else; 

strcat(str4,word): 

strcat(str4," "): 

goto 11; 

return(str4) : 

/ • --------------------------error -------------------------. / 

error(i) 

int i: 

{ 

} 

switch (i) { 

case 1 

txt 

break; 

case 2 : 

II II. , 

txt = " II. , 

break; 

default: 

break; 

} 

/. ----------------------------cl ears creen-----------------. / 

stati~ void clearscreen() 

{ 

system("clear"); 

} 

/. --------------------------qui t -------------------------./ 

quitO 

{ 

} 

exit(O) ; 
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