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A study of leaping in prosimian primates 

By William Sellers 

Abstract 

This study investigates the biomechanics of leaping in a group of six prosimian 

primates: Microcebus murinus, Lemur cotta, Cheirogaleus major, Mirza coquerel4 

Galago garnettii and Gatago mohoii. They cover a 40 fold mass range and include 

animals from the three commonly recognized distinct prosimian leaping 

categories. The animals were filmed leaping under controlled captive conditions 

to obtain kinematic and kinetic data. This data was used to formulate a 

predictive model for leaping to enable the analysis of internal forces. 

As an integral part of this project, a large amount of technical development 

work was done to produce a complete, computerized video gait analysis system. 

This uses digital image storage and on-screen calibration and measurement to 

enable flicker free analysis at a 0.02s interval. The system is capable of 3D 

reconstruction from twin camera systems at arbitrary positions and real-time 3D 

animation of a solid rendered model. 

Counter to expectations, except for Galago moholi, the animals were found not 

to use the 45° takeoff angle predicted by a maximum efficiency hypothesis 

except for very long leaps. Even for G. mohoU, there was considerable variation 

in leaping angle, though this variation has only a minor energetic cost. A 

constant force model was found to be a reasonable predictor for the observed 

leap parameters. Hind-limb extension was seen to show strong positive 

allometry with increasing body mass. The predictive model indicated that 

leaping was mainly hip driven in all the animals with appreciable negative work 

being performed at the knee joint in all the animals except Galago moholi. It 

also showed the importance, in this model, of torque about the takeoff point. 
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A Study of Leaping in Prosimian 
Primates 

Introduction 

The object of this project was to study the design of a locomotor system 

in the context of its ecology and morphology'. Leaping was chosen for 

several reasons: there are some clear morphological correlates between 

leaping proclivity and, for example, intermembral index2 (Walker 1974); 

it as a form of locomotion that leads to very high forces on the skeleton 

compared to other forms of locomotion (Calow and Alexander 1973) and 

so is more likely to elicit structural adaptations3; in addition, leaping is a 

relatively simple form of locomotion, obeying well understood ballistic4 

principles (eg. Gibbs 1990, Norton 1987). 

Locomotor Function 

Primates are popular animals in which to study locomotion: for an order 

with a small number of species, they show a very wide range of locomotor 

behaviours, with only flight and burrowing being entirely missing, and 

1The concept of a relationship between form and function stems from the early attempts to 
understand the world in a rational way postulated by Plato (428-348 B. C. ) and continued by 
Aristotle (384-322 B. C. ). To Plato, the form of a structure, biological or otherwise, could be 
understood from its function, since it was the function that dictated the form. However, the 
philosophies of the Greek thinkers considered that ideal generalizations were true and 
unchangeable and variation was illusion: an imperfect reflection of reality. Whereas, the 
more modern concept is that the generalization is merely a convenient reflection of the 
pluralities of reality (Strickberger 1990). 
2The intermembral index is the ratio of the ulna and humerus length to the tibia and femur 
length. Its value is generally lower in primarily leaping species. 
3Prost, when attempting to establish a methodology for summarizing the locomotor 
behaviour of a species, contrasts "critical locomotor habits" with "frequent locomotor habits', 
stressing that the frequency of a behaviour may not be a valid indicator of its adaptive 
importance to the animal (Prost 1967). Leaping may be relatively infrequent, but of extreme 
importance both anatomically and ecologically. 
4Ballistics is the `science of projectiles', and has been studied with a great deal of 
enthusiasm ever since the first ballista was used to destroy the walls of a castle. 
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swimming only represented in a very minor way (Napier and Napier 

1985). Among the primates, the prosimians show the greatest degree of 

specialization ý for leaping behaviour. It includes slow quadrupedal animals 
that are never seen to leap such as Perodicticus potto (Charles-Dominique 

1977) and expert leapers such as Galago senegatensis which is reckoned 
by some authors (eg. Schmidt-Nielsen 1983) to hold the record for a 

standing vertical jump of 2.25m under well controlled conditions (Hall- 

Craggs 1965). 

Notes and observations on the locomotor behaviour of prosimian primates 

have been made sporadically since the late 19th century (eg. Shaw 1879, 

Thomas 1896). However, until, the general acceptance of the locomotor 

classification proposed by Napier and Napier (Napier and Napier 1967), 

quantitative descriptions of locomotion were hampered by ambiguities in 

descriptive terms. Indeed, even subsequently, there have been relatively 

few quantitative studies of general locomotion which has led workers 

such as Oxnard., Crompton and Lieberman (Oxnard et al. 1990), requiring 

comparative activity frequency data, to devise a semi-quantitative scoring 

system based on the descriptive terms found in the literature. 

The term vertical clinging and leaping was coined in 1967 (Napier and 

Walker 1967) to describe the general form of leaping in primates. The 

locomotion of Tarsus bancanus is perhaps the best example of this form of 

locomotion with the animal leaping between vertical supports for 61% of 

the time (Crompton and Andau 1986). However, this term is somewhat 

too restrictive, and has been expanded on morphological and behavioural 

grounds to include 3 sub-divisions: indriid-type, epitomized by Indri indrt; 

galagine-type, for example Galago senegalensis; cheirogaleine-type as in 

Microcebus murinus (Oxnard et al. 1981a, b). 
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Locomotion was initially studied as an isolated phenomenon (eg. Marey 

1874. Muybridge 1899) in laboratory environments. The gross 

correspondence between overall body proportions and locomotor 

behaviour was soon recognized by anatomists (eg. Mollinson 1911, 

Schultz 1930). Ripley's work In 1967 (Ripley 1967) treated locomotion 

as just another form of behaviour that could not be divorced from other 

behaviours such as play, feeding and social interaction. In addition, 

workers such as Napier and Napier (Napier and Napier 1967) started 

stressing the importance of the structural aspects of the environment to 

primate locomotion: in particular its continuity or discontinuity. 

Subsequent fieldworkers recorded locomotor data in the context of 

support use and overall behaviour (eg. Bearder and Doyle 1974. Fleagle 

1976, Charles-Dominique 1977). 

A parallel approach to these classical comparative studies is the study of 

biomechanics5. Here, two types of studies stand out (Emerson 1985): 

investigations into the effects of scaling in animals, specifically jumping 

in this case; analyses of muscle forces, bone stress and energy storage. 

The effects of changes in body mass were first postulated by the ancient 

Greek philosophers, and re-iterated by renaissance scholars, but perhaps 

the classic paper on scaling as it might affect the locomotor system was 

based on a "Friday Evening Discourse" given by Hill at the Royal 

Institution in the autumn of 1949 (Hill 1950). He showed that 

geometrically similar animals would be expected to leap the same 

distance regardless of size. This has been shown to be largely true in a 

5Biomechanics is simply the application of engineering mechanical principles to bilogical 
systems. The first real "biomechanicians" were probably Leonardo DaVinci, Galileo, 
Lagrange, Bernoulli and Euler (Winter 1990). Borelli was also an extremely important 
early pioneer. For a more generalized definition of the term, see the article by Hatze in the 
Journal of Biomechanics (Hatze 1974). 
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very broad sense: Schmidt-Nielsen compared the maximum jumps of 

animals varying in mass by a factor of 108 (Schmidt-Nielsen 1983). On a 

more specific level however, for example in frog species of differing sizes 
(Emerson 1978), it can be shown' that this prediction does not always 
hold up. In this case, absolute jump distance increased with body size. 

This implies either that the basic assumption of Hill's model, geometric 

similarity, may be wrong, or that some other aspect of the locomotor 

physiology may not scale appropriately. Frog body shape does appear to 

be conserved for different masses (one of the reasons why frogs were 

chosen for this study), but later work (Sperry 1981) has shown that, 

unlike the situation in mammals, the number of muscle fibres per unit 

area of muscle increases with increasing body mass in frogs which may 

account for the discrepancies. 

In addition, the effects of scale mean that the power required per 

kilogram body mass for a given jump distance increases as body size 

decreases (Bennet-Clark 1977), so that at some point, as animals reduce 

in size, it is no longer possible to leap a given distance by relying solely 

on direct muscle action. For small animals, long leaps require some form 

of elastic storage mechanism, for example the catapult action of a flea 

(Rothschild et al. 1972) using the elastic energy storage properties of 

resilin (Weiss-Fogh 1960). 

Analyses of muscle forces, bone stress and energy storage have been 

performed in several ways: in the first instance, simple observation of the 

movements of the segments of the hind-limb by high-speed cine 

photography (eg. Hall-Craggs 1964) extended by using cine-radiography 

to observe the actual positions of the bones rather than the limb outlines 

(Jouffroy and Gasc 1974). Incorporation of muscle physiological and 

anatomical data, and calculation of forces from observed accelerations, is 
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the next step in this analysis (Hall-Craggs 1977). An external force plate 

was used to greatly increase the accuracy of internal force measurements 

to investigate the jumps of frogs (Calow and Alexander 1973), a dog 

(Alexander 1974) and the kangaroo (Alexander and Vernon 1975). To 

date, perhaps the most complete investigation, using high speed 

cinematography, a force plate, and telemetered electro-myography6 all 

combined, is the work by Günther on Ga. lago moholi (Günther 1989). 

These latter approaches allow the calculation of the total forces around 

joints and the overall stresses on the skeleton. However, in most cases in 

mammals, the actions of muscles around joints are extremely 

complicated. Individual muscles combine in groups for any given action, 

with other muscles firing antagonistically to improve joint stability, so 

that, even with EMG, it is impossible to identify the precise contribution 

of each muscle at a given stage in a movement. The number of muscles 

present, (especially if one considers that each muscle may have a number 

of functionally independent bundles of fibres) is considerably greater than 

the number required to control the mechanism (Alexander 1983), so that 

it is impossible to calculate the röle of an individual muscle without 

making further assumptions. Internal forces can, be measured by 

appropriate invasive surgery. Strain gauges can be fixed internally to 

muscle tendons (Riemersa et al. 1988) so that the actual force generated 

can be measured at all stages of the movement. In a similar fashion, - strain 

gauges can be attached directly to bones (eg. Lanyon and Bourne 1979). 

However, this approach is not often practicable, and the surgery itself 

6Electro-myography, or EMG, is the recording of the electrical activity of muscles using 
implanted or surface mounted electrodes. Telemetry is simply measuring remotely, that is 
using a radio transmitter mounted on the animal to send the signals from the EMG 
electrodes to a receiver some distance away, to avoid the problem of trailing wires 
interfering with the animal's movement. 
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may cause atypical movement. It is clearly unethical to use invasive 

experimental techniques on endangered species. 

Turning the problem around: deciding on the goal of locomotion and 

then postulating mechanisms that might achieve it, is one way out of this 

problem. The first attempts to do this were by building machines that 

could mimic natural movements. For example, the first legged vehicle 

that could walk by itself under computer control was the "Phoney Pony" 

built by Frank and McGhee in 1966 (McGhee 1966). The difficulties in 

building such a machine can help highlight the actual problems in the 

natural system that it is - attempting to copy. In addition, with a 

sufficiently realistic model, measurements can be taken from the model, 

and these will have some bearing on the values to be expected in the real 

world. With the recent improvements in computing technology, it is no 

longer necessary to actually build working models for systems. They can 

be simulated in an entirely abstract form. Early work was done with 

specifically written software with highly simplified models of limb 

movement (eg. Townsend and Seireg 1972). but now, general purpose 

predictive dynamic software packages are available that can be used to 

model any mechanical system (eg. DADS 1989, ADAMS 1990). ADAMS in 

particular, has been specially adapted to allow modelling of human 

movement with a special pre-processor called ANDROID. Currently, 

much of the predictive work is being done in the fields of robotics (Paul 

1981) and in computer aided animation (Armstrong and Green 1985). 

Simulations of simple biological movements have been reasonably 

successful, but because of the severe constraints required for a true 

forward solution model, more complicated forms have not yet been 

validated (Winter 1990). 
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Locomotor Ecology I 

In a paper written in 1963. Tinbergen suggests that the ethologist should 

attempt to answer the questions of the causation, development, survival 

value and evolution of a behaviour pattern (Tinbergen 1963). These 

questions have come to be known as the "Tinbergen Why's": the first two 

involve looking for the proximate causes and the second two, the ultimate 

causes of an observed behaviour. Biomechanics specifically answers the 

causation question: how does an animal perform a particular action? It 

can also have some bearing on development, since it is known that bones 

are remodelled depending on the forces they experience during life 

(Curry 1984). However, questions about survival value and evolution must 

be viewed in the context of the other behaviours of the animal and its 

environment. This is the purpose of locomotor ecology. 

Evolution is, to a great extent, driven by natural selection, as described by 

Charles Darwin (Darwin 1859). Natural selection tends to maximize an 

individual's inclusive fitness7; that is, not only its own reproductive 

success, but also that of its kin (Hamilton 1964). In other words, its total 

genetic contribution to subsequent generations. In practice however. 

measuring inclusive fitness is extremely difficult. Simple reproductive 

success is usually a good measure (Grafen 1982), but even this requires 

long term studies and because of the complexity of the natural 

environment it is almost impossible to measure the change in fitness that 

derives from a specific behaviour pattern. 

7Fitness, as in Darwin's "survival of the fitest", was not rigorously defined by Darwin 
himself. However, it is now widely recognized by biologists to be a measure of the capacity 
to produce offspring (McFarland 1985). 
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One approach to this problem is to evaluate the costs and benefits 

associated with a particular behaviour, most behaviours (and indeed most 

aspects of an animal's biology) are a compromise between their merits 

and their disadvantages. Animals are faced with alternative options and 

they need to make a trade-off between the costs and benefits associated 

with each. From an evolutionary standpoint, it would be expected that a 

well adapted animal would make optimal choices to maximize its 

inclusive fitness, so that measuring the costs and benefits of a particular 

behaviour can allow some estimate of the real goal of measuring fitness. 

Analyzing costs and benefits requires the separation out of the 

increments and decrements to inclusive fitness ascribed to each aspect 

of the animal's internal state and behaviour. The total specification of an 

animal in these terms is its cost function which can be defined as the 

"specification of the instantaneous level of risk incurred by (and 

reproductive benefit available to) an animal in a particular internal state, 

engaged in a particular activity in a particular environment" (McFarland 

1977,1985). 

It is unrealistic to try to measure the complete cost function for an 

animal, but one can try to identify aspects that are important. 

Considering the röle of locomotion, a number of hypotheses can be 

postulated as to how its design may lead to the least cost, or greatest 

benefit: 

(1) An animal can be designed to minimize the energy cost of its 

locomotion. The less energy the animal has to use to move around, the 

more energy it will have available for other activities, such as 

reproduction, and the less food it will need to survive. 
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(2) An animal can be designed to - minimize the time - it spends 
"locomoting". In other words, it maximizes its locomotor, , performance. 
This may be because time is the major limiting factor for its other 

activities: it has plenty of energy, but insufficient time to do all that it 

would ideally want to do. Alternatively, improving performance may 

enable the animal to do' things that it otherwise could not: such as a 

cheetah being able to catch its prey; or a rabbit being able to outrun its 

pursuers. 

(3) Or. an animal may design its locomotion to maximize its safety. This 

may be accomplished by reducing the risk of physical injury or by 

reducing the chance of predation. 

Obviously, in a real world situation, the design has to take all these 

considerations into account to some degree. The optimal design will be a 

compromise, but certain factors will generally be considerably more 

important than others. Experiments on bumblebees (Heinrich 1979) 

indicate that when the animals have to travel some distance to find 

productive flowers time is the limiting factor: it is worthwhile to expend 

energy in order to save time. When foraging on relatively unproductive 

flowers, or when foraging at low temperatures, energetic efficiency 

becomes more important, and the bee slows down in order to save 

energy. Observations on squirrels eating chocolate chip cookies in a park 

(Lima et al. 1985) show that the animal is not primarily concerned with 

either time or energy: the squirrel grabs the cookie and retreats to a tree 

to eat it. This behaviour has been interpreted as minimizing predation 

risks. 

The various benefits and costs associated with leaping locomotion can be 

summarized as follows: I 
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Leaping, as a form of horizontal locomotion, is moderately expensive 
(Walton and Anderson 1988). Walking, in an appropriately designed 

animal on a level surface, is extremely cheap, with energy recovery rates 

per stride as high as 70% (Cavagna et al. 1977), and galloping and 

hopping allow elastic energy recovery between. cycles which reduces 

their energetic cost (Heglund 1985). In a three dimensional 

environment, leaping may provide a relatively, cheap way of gaining 

height. It is certainly much quicker than climbing. 

The speed of leaping depends on the takeoff angle. At its most efficient 

angle of 45°, it is relatively slow compared with galloping (Günther et al. 

1991). However, at shallower angles, it compares more favourably. In 

fact, galloping can be described as a series of connected, shallow leaps. 

The difficulty of leaping any appreciable distance at a shallow angle is 

probably one of precision. At small takeoff angles, a small change in angle 

has a very large influence on the distance leapt, and an error that led to 

too small a distance being covered could have very serious consequences. 

The main advantage of leaping is that it enables the animal to cope with 

discontinuities in the substrate. Thus, Galago mohoii can leap from tree 

to tree, instead of having to climb down one tree, move across the ground 

to the other, and climbing back up the second tree. This latter approach 

would almost certainly be both more expensive energetically and slower 

(Crompton 1984). 

As far as physical injury goes, leaping is extremely risky. There is only 

very limited scope for correcting a bad leap in mid-flight since no 

external forces can be brought into play, and the animal risks missing the 

destination substrate completely, which, in an arboreal environment, 

could lead to a possibly fatal fall (Cartmill 1985). Compared to this, the 
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risks of missing ones footing when galloping along a branch would seem 
to be lower. However leaping is a good way of avoiding predators. 

Arboreal predators, including snakes, may not be able to leap so that the 

primate can escape by leaping from one branch to another, or to another 

tree. For aerial predators, such as raptors, leaping from tree to tree does 

expose the animal. However, moving along the ground between trees 

leads to exposure to terrestrial predators as well as aerial ones, and 

would generally be much slower (Crompton 1980). 

Leaping is an extremely good means of predator avoidance. It combines a 

rapid start with poor direction predictability (Emerson 1985). A non- 

leaping animal on a branch is restricted to escaping along that branch. Its 

escape direction is easily predicted so that the chances of capture are 

higher. A leap can be off in any direction and is therefore very much 

harder to predict. The only disadvantage is that during the flight phase of 

the leap, the animal is totally committed to its choice. It has no option of 

changing mid-way. 

In addition, leaping has also been suggested as a means of prey capture. 

Insects can be captured in mid-air, or a sudden pounce can be used to 

catch animals on the ground (Crompton 1984). 
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Mechanical Considerations 

Leaping is a ballistic form of locomotion. During the takeoff phase, the 

animal applies a force to the substrate to accelerate it to the required 

takeoff velocity. During the flight phase, it acts as a projectile, moving 

through a parabolic path dependent entirely on the initial takeoff angle 

and velocity. The effect of air resistance depends on the animal's size, but 

is minimal for the prosimian range (Bennet-Clark 1977). There is some 

evidence that gliding may be used to extend the flight path a small 

amount (Günther 1991). Drag and relative rotation of parts of the body 

are used to adjust orientation during flight (Dunbar 1988). 

For efficient leaping, an animal should have very light limbs to minimize 

the energy lost in internal kinetic energy (Alexander 1983). The total 

mass of the animal should also be kept as low as possible. It is also 

important to have sufficient precision to propel the centre of mass in a 

straight line throughout the takeoff phase. This should also be chosen to 

be 45° (Emerson 1985). Any deviation requires extra energy expenditure 

to correct. The choice of substrate will also affect the energy cost. 

Ideally. a rigid start support should be used so that no energy is wasted 

bending the branch, and a flexible landing support should be used to 

dissipate the kinetic energy of the jump externally without the animal 

needing to do any negative work. 

For maximum performance, the animal needs long, strong hind-limbs 

relative to its body mass. Takeoff velocity depends both on the force 

applied and the length of time for which the force is applied. Longer 

limbs prolong the contact phase and lead to a higher takeoff velocity and 

hence a longer leap (Emerson 1985). The ideal takeoff angle depends 

upon whether the animal is trying to maximize speed or jump length. 45° 
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leads to the maximum possible jump distance, but for maximum speed, 
the shallowest angle that allows the animal to leaps the required distance 

is needed. By choosing a suitably "springy" start substrate, the animal 

may be able to store up energy from a previous jump and use the branch 

like a springboard to extend the maximum range of a leap (Günther 

1991). Landing on a rigid substrate is also generally quicker since the 

animal is able to recover its poise faster. 

For safety, an animal needs stronger, shorter limbs to reduce the chance 

of breakage. Obviously, higher performance jumps are intrinsically more 

risky, and a flexible, cushioning destination is preferable. Falling damage 

is a real risk for arboreal primates (Alexander 1989). 

As mentioned before, the overall design must be a compromise among 

these features. For example: light hind-limbs will be efficient; long and 

powerfully muscled ones will produce the longest jumps; extremely 

robust limbs will be safest. There is a trade-off between the requirements 

for the different design goals. 

Also, leaping adaptations can affect other related locomotor and non- 

locomotor activities that the animal might wish to perform. For example, 

efficient walking depends on the stride frequency being close to the 

natural pendulum frequency of the limbs (Hildebrand 1985). Leapers 

tend to have elongated hind-limbs for the reasons mentioned above. This 

makes them less efficient walkers since the natural pendulum 

frequencies of their fore and hind limbs differ. 
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Aims 

The aims of this study were five fold: 

(1) The development of a computerized system for the kinematic and 
kinetic analysis of locomotion. This system should be as flexible as 

possible, allowing two and three dimensional measurements of arbitrary 

models. The main source of raw data would be video tape, so that 

facilities to make the measurement of still video images as easy, reliable 

and rapid as possible were also required. Data output from the package 

was to be smooth running, three dimensional animations: on-screen or 

printed graphical displays; numerical data in suitable formats for import 

into spreadsheets and statistical programs. 

(2) The design, and use of an experimental protocol to investigate the 

mechanics of leaping. This had to cope with the restrictions imposed by 

working with endangered species: very limited manipulation of the 

animals, and only minimal disturbance to their cage environments. 

(3) To test the hypothesis that the animals would generally choose to leap 

in such a fashion as to minimize their energy expenditure by looking at 

the takeoff angles used by the animals. 

(4) To formulate and test the predictions of a number of simple leaping 

and scaling models by looking at the effects of varying body mass and leap 

distance on a number of measured kinematic and kinetic leap 

parameters. 

(5) To develop and test a predictive model of leaping that could in future 

be used as an investigative tool for non-observed behaviours such as 
leaping in lorises and in fossil and sub-fossil prosimian species. 
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Methods 

The basic technique I have chosen to use to look at the mechanics of 

leaping is kinematic an alysis. This is the study of motion by looking at the 

positions of all the components of a system with respect to time. This 

technique was pioneered by Muybridge in the 1880s (Muybridge 1889) 

who photographed a large number of animals using a series of still 

cameras triggered electrically. He had been asked to solve the vexing 

question as to whether all four limbs of a horse left the ground during a 

trot. He was able to get the first sufficiently good photograph on a freshly 

made wet collodion plate to freeze the motion in mid-stride. and to 

reveal that all four legs did indeed leave the ground at once. The early 

pioneers of high-speed photography followed on in a similar vein 

qualitatively describing things that happen too quickly for the unaided 

eye to follow. 

The natural extension of this is to obtain quantitative data. This involves 

calibrating the optical system being used and measuring the positions of 

interest on the resultant frames. This is a relatively simple, if rather 

time-consuming exercise since there can be many thousands of frames to 

measure. Much more recently, with the advent of cheap and powerful 

computing facilities, attempts have been made to automate the 

measurement process. Various systems are available that can recognize 

markers, but these are still extremely expensive and can be a little 

unreliable. This will doubtless all change in the not too distant future. 

Presently the options for filming are between video and photographic 
film. Each has merits and disadvantages Video is cheap, the camera gives 

instant feedback of success or failure, timing is very precise, and they can 

often function in relatively low light levels. However, normal video has a 
low resolution, and the framing rate is also low even though the shutter 
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speed can be very high. 8 Photographic film is more expensive and one 

has to wait for the film to be developed before the quality of any particular 

sequence can be assessed. It can operate at much higher framing rates, 

though the shutter speed is often a direct function of this rate so that a 

camera capable of very high rates may be required simply to freeze the 

motion. The resolution of the eventual picture is very much higher, 

though the light level required is much higher too. In addition, the 

framing rate usually has to be measured by incorporating timing marks. 

The choice between the two is thus complicated and it is not possible to 

generalize on the suitability of either. Non-standard video formats are 

overcoming some of the disadvantages of video. Both high speed and high 

definition cameras exist, though not, unfortunately, high speed and 

definition in the same unit. 9 In this study, since some of the animals were 

nocturnal zoo specimens, it was a requirement to cause as little 

disturbance to the animals as possible. This effectively ruled out using 

movie film because it would have required more too much light. This also 

gave scope to try out some innovative analysis techniques which will be 

discussed later. 

An attempt was also made to try 3D kinematic analysis. This is basically 

an extension of still stereo-photogrammetric techniques. However, it is 

not without its difficulties. Firstly, still photogrammetric cameras are 

extremely precisely built, often using glass photographic plates to insure 

a completely flat focal plane. They are carefully calibrated so that their 

8The framing rate is the number of discrete frames exposed each second. The shutter speed 
is the amount of time any particular frame is exposed to the light. Thus a high shutter speed 
is required to freeze movement, (even a still camera, can freeze movement) but a high 
framing rate is required to slow it down. 
9For an excellent review of filming techniques, and of other methods of obtaining 
kinematic data, see Winter 1990. 
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optical parameters can be described mathematically. This level of 

precision is just not possible with moving pictures with out very great 

expense. Secondly, if two or more cameras are being used to produce the 

images, they need to be exactly synchronized so that they show the 

moving subject frozen at exactly the same instant. The first problem has 

been overcome by a variety of mathematical approximations that allow 

calibration of the cameras in-situ, for example, the direct linear 

transform (DLT) equations (Shapiro 1978). The second cannot yet be 

easily countered using film cameras, but with video, a technique known 

as genlocking is used to electronically synchronize all the cameras. This 

is a standard broadcast technique because video signals need to be 

synchronized to allow mixing. 

Historically, there are a number of other techniques for analyzing motion. 

Their use currently is restricted to specialized applications. Strobe lights 

can be used to illuminate a subject moving in front of a still camera with 

its shutter held open. This produces a set of overlaid images of the 

moving target; one for each flash of the strobe. The images produced 

tend to be fairly poor quality, and the flashing strobe can be off-putting 

for the subject. However, it is very cheap, and the effective framing rate 

that can be achieved is comparatively high. Alternatively, various 

mechano-receptors can be attached to the subject's body. These can relay 

telemetered signals indicating position, bending, velocity and 

acceleration. The main advantage of these is that the measurements can 

be read directly by a computer. Also, the measurements are continuous 

rather than discrete which greatly helps mathematical analysis later on., 

Indeed, one of the biggest problems, that of getting accelerations from 

position data, is completely alleviated by measuring the acceleration 

directly. The "down-side" is that there is a great deal of interference 

with the subject wiring up all the sensors. and they are limited to 
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measuring exactly the positions where they are attached. Their accuracy 

depends on their mounting method. Direct bone mounting on 

experimental animals is extremely precise. but skin attachment to 

measure a human hip joint is much less so. 10 

X-ray photogrammetry is an obvious extension for skeletal motion 

analysis. It allows the joints to bee seen directly without having to infer 

their positions from external appearances. It has been done for a very 

limited number of primate species, and only once for a leaping prosimian 

(Jouffroy and Gasc 1974) but is currently limited by the expense and the 

limitations of the equipment. There are also problems with the radiation 

dosagell required and the limited size of the field of view. 

The Animals 

Six prosimian species were used in the study. They have a 40 fold 

variation in body mass and there is at least one representative from each 

of the three main prosimian leaping classifications. They are described 

here in order of leaping proclivity with the most frequent leaper first 

(Oxnard et al. 1981). 

Galago moholi, the lesser bushbaby. (a galagine-type leaper)12 was filmed 

at Duke Primate Centre. The individual used in the experiment, 

Viburnam, was an adult male in good health, weighing 0.21kg. The lesser 

10Again see Winter 1990 
1lgoth to the subject animal and to the human experimentor. Jouffroy describes her subject 
as suffering from `a slight radiodermatitis" after filming. Whilst this sort of exposure will 
not lead to an unduely large dose to an extremity, if given to the whole body, it is likely to 
lead to bone marrow depression which is clearly unacceptible when working with 
endangered animals. 
120xnard and his co-workers sub-divided leaping behaviour in prosimians into three sub- 
groups depending upon a multivariate analysis of a number of anatomical and behavioural 
factors. These groups are entitled indriid-type, galagine-type and cheirogaleine-type. 
(Oxnard et al. 1981, Oxnard et al. 1990) 
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bushbaby is widespread in sub-saharan Africa in a wide range of habitats 

from sea level to 1,500m (Bearder and Doyle 1974). It is about 16cm long 

and the mean wild caught weight is about 0.25kg (Rasmussen and Izard 

1988). It is mainly a gum feeder, though it also eats small animals 

(Oxnard et al. 1990). 

Microcebus murinus. the grey mouse lemur. (a cheirogalein-type leaper) 

was filmed at Duke. The subject was Bitter, a 0.066kg male. This species 

is primarily insectivorous, though with a reasonable quantity of fruit in its 

diet. It inhabits dense tangles of foliage in the forest fringe habitat. These 

tangles can, however have a markedly different vertical position, being at 

ground level in secondary forest. but 30m up in the canopy in primary 

rainforest (Oxnard et al. 1990). An average weight is approximately 

0.08kg (Harvey et al. 1987). 

Mirza coquereli, Coquerel's mouse lemur, (a cheirogalein-type leaper) was 

also filmed at Duke. The individual studied was called Seritra, was female, 

and weighed 0.35kg. It lives in the lower 6m of the forest, moving mainly 

on horizontal supports. Its diet consists mainly of animal items and fruit 

(Tattersall 1982). Interestingly, in the dry season, it survives on the 

secretions of homopteran larvae. An average weight is about 0.3kg. 13 

Galago garnettii, the greater bushbaby, (a galagine-type leaper) was also 

filmed at Duke Primate Centre. Tuff, the animal studied, was male and 

weighed 1.13kg. It has a more restricted range than Galago senegaiensts, 

being restricted to dense evergreen forest and riparian bush in south- 

central Africa where there is a plentiful supply of fruit (Bearder and Doyle 

13Mirza coquereli and Galago crassicaudatus have the same recorded leaping frequency 
(Oxnard et al. 1990). I have put them in this order because in my experiments, Mirza 
coquereli was the more enthusiastic leaper. 

A study of leaping In prosimian primates 



Methods Page (20) 

1974). Galago gamettii has an average weight of about 0.9kg (Nash and 

Harcourt 1986). Its diet consists of about equal quantities of fruit and 

animal items (Oxnard et al. 1990). 

Lemur catta. the ring-tailed lemur, (an indriid-type leaper) is rather 

larger than the other animals in this study. and is the only diurnal one. A 

group of these animals were filmed at Chester Zoo where they had been 

encouraged to leap across a 2.2m horizontal gap to a feeding site. It was 

not possible to identify individuals in the film, so a nominal figure of 

2.7kg was used for the mass (Harvey at al. 1987). Lemur catta has been 

widely studied, but its behaviour appears to be very flexible. It eats mostly 

fruit, leaves and flowers (Oxnard et al. 1990). It is fairly widespread in 

Madagascar in moist and dry forests, but not in open country (Napier and 

Napier 1985). 

Cheirogaleus major, - the greater fat-tailed dwarf lemur, (a cheirogalein- 

type leaper) filmed at Duke Primate Centre. Rapunzel was female and 

weighed 0.34kg. Very little is known about these animals in the wild. 

However, it lives in tropical rainforest in Eastern Madagascar, where it 

utilizes mostly large diameter, horizontal branches and is largely 

frugivorous. Its mean mass is 0.35kg (Napier and Napier 1985). 

4. .e 
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Filming 

Most of the filming was performed at Duke Primate Centre in North 

Carolina using the experimental setup described below. In addition, some 

film for Lemur cotta was taken at Chester Zoo. 14 

The subject was housed in a relatively large, empty cage with only two 

supports that could be conveniently used by the animal. The camera was 

placed so that the field of view covered the area on the first support from 

which, it was hoped, the animal would leap. During the course of the 

experiment, the second support was positioned at varying distances from 

the first support, and the animal was filmed whenever it leapt between 

the two supports. In this way, horizontal leaps with no height change 

over a known distance could be reliably measured. Restricting the 

number of available supports, and positioning these supports well off the 

ground improves the chances of the animal leaping the whole distance. 

The problem with floor mounted force plate type experiments with 

untrained animals is that the animal tends not to jump the desired 

distance, but hops along the floor instead (M. Günther personal 

communication). Food rewards were placed on the second support to 

encourage the animal to leap, and the animal's nest box was placed near 

the first support to encourage it to go there. Animals were moved from 

their normal cages into the experimental cage, and leaps were recorded 

over the next several weeks, as the animal explored its new environment. 

In general, there was little activity for the first few days, but eventually. 

14There was no experimental setup in this case. The animals habitually leapt across a 2.2m 
gap in a wooden causeway to get from an island to a feeding site. This provided an ideal 
position to film this animal performing a relatively large leap except for the fact that the 
camera operator had to stand in 5ft of cold water in the lake to get an orthogonal view of the 
jump! 
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the animals would leap between the supports as required, though not 

particularly frequently. 

The camera used was a standard portable CCD15 video camera with a lms 

second exposure. As the animals were nocturnal, the lighting in the 

enclosure was reverse cycled, with bright, fluorescent tube lighting from 

9 pm to 9 am. and rather dimmer, incandescent, red filtered lighting 

from 9 am to 9 pm. The fight level was rather lower than ideal for the 

camera, but minimized the stress on the animals and caused them to be 

more active. 

The camera was calibrated for each series of measurements by filming a 

reference object of known dimensions at the start of the session. This 

consisted of a rigid rod with a series of markers fixed at known intervals 

along it. The field of view was carefully chosen to be as small as possible, 

to maximize the resolution, and yet include the whole of the takeoff 

phase of the leap. The camera was positioned outside the cage, three 

metres from the takeoff position so that the effects of parallax could be 

ignored. 16 The lens quality was judged to be sufficiently good, given the 

level of other measurement uncertainties, to allow us ignore optical 

distortion. Timing' accuracy of video cameras is extremely good 

(considerably less than 1% error), and the framing rate was therefore 

assumed to be exactly 50 fields per second. 17 

15A CCD, or charge coupled device, is a solid state array of optical sensors positioned at the 
focal plane of the lens. All the receprors act in parallel to give a very fast snapshot of the 
image. Older cameras use evacuated glass "camera" tubes that have a fluorescent screen 
that is read by scanning with an electron beam. These can have very high light 
sensitivities but the scanned reading method means that the image produced is not 
instantaneous. 
16The parallax error is the ratio between the camera distance from the subject and the depth 
of the subject. In this case, it is about 1%. 
17When filming, it is customary to talk of the number of images recorded per second as 
frames per second.. However, a PAL video signal overcomes problems with limited 
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In addition, attempts were made to record the jump in 3D. Here, two 

cameras were genlocked together and the' signals were fed through a 

video mixer and recorded, as a split screen image on a single video 

recorder. The start position of the animal was arranged to be covered by 

both their fields of view. Calibration was performed using a reference 

object constructed out of a small box approximately 4cm long and wide 

and 2cm deep made of cast aluminium. 5 of its 6 faces had telescopic 

aerials attached to produce a structure similar to the diagram:. 

Diagram of the reference object used for the 3D 
measurements. 

The base of the box was attached to a photographic tripod so that the 

whole object could be maneuvered into a position where it was seen by 

both cameras. Markers were fixed at measured intervals to the telescopic 

aerials which could be extended to, fill as much of the common field of 

view as possible. The minimum number of known points required for 

DLT reconstruction is six. Tests have. shown that the more known points 

bandwidth, resolution and flicker, by incorporating two interlaced fields in each frame. The 
framing rate is 25 frames per second, but with CCD cameras switched to their high shutter 
speed modes, each field is a separate entity recorded at 50 fields per second, and sent to the 
video recorder in pairs as the complete interlaced frame. 
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measured, the better, and that these should extend throughout the 

volume of interest (Wood and Marshal 1986). Unfortunately. the results 
from this part of the study were extremely disappointing. When the 

resultant film was viewed, 4 it was discovered that the common field of 

view was such a small portion of the video frame that it was impossible to 

pick out the limb positions of the animals. 

The major experimental difficulty was the delay between activating the 

video recorder. and actually starting to record the action. Due to the 

duration of the experiment. it was not possible to keep the video 

recorder running continuously, and this meant that I had to become very 

proficient at predicting what the animals were about to do (this was not 

an easy task). 

The video signal was initially recorded onto a portable VHS recorder, and 

back at the laboratory, this was copied onto a Hi-Band SP U-matic tape 

for editing. Kinematic analysis requires sequential access to each frame of 

the film. Various methods were tried for this. In the first instance, the 

single frame advance of a VHS video recorder was used and 

measurements were made directly from the monitor screen. This proved 

unsatisfactory since, though the still frame quality was reasonably good, 

the time resolution was reduced to 25 fps since the recorder stepped by 

frames and could not resolve the individual fields. The VHS recording 

system records each frame as a single rotation of its recording head so 

that it is very easy to step between frames automatically. On still frame 

mode, one field of the image is removed from the signal so that the image 

on the screen is completely still, and not a mixture of two fields 1/50th 

of a second out of step. It is generally not possible to get access to the 

other field. To resolve individual fields, I moved to using the jog control 

on the U-matic editing equipment. On a U-matic system, the separate 
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fields are accessible sequentially, but in this case, the recording system is 

such that stepping a single field is difficult to do automatically. and the 

manual jog control means that it is difficult to get the rotating head to 

line up accurately enough on the tape to get an interference free picture. 
There was also considerable vertical displacement between individual 

frames and a problem with the machine's safety cutout coming into 

operation if a still frame was viewed for too long. 

Eventually, both these problems were solved by converting the video 

signal on the tape to a series of digital pictures on a PC. The computer 

was fitted with a Matrox PIP-1024 card that was capable of grabbing up to 

four complete video frames in real-time from a video source. These 

images could then be split up into the individual fields and displayed and 

measured on the computer monitor at leisure. Also, since the frames 

were grabbed from the moving video, the quality was excellent. The only 

difficulty was that the leaping sequences were generally about 25 frames 

long. This was overcome by designing what was basically a simplified 

modem circuit that could convert signals transmitted from the computer 

over its RS-232 port to audio tones that could then be recorded onto the 

audio track of the video tape. A program running on the PC counted the 

synchronization pulses from the video signal on the tape, and this count 

was dubbed onto the audio track. To digitize a sequence of frames from 

the tape, it was played through once and the pulse counts were displayed 

on the computer screen and the start and stop counts noted. The 

computer was then instructed to digitize in sequence, all the frames 

between these two counts, and the computer would then prompt the 
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operator to replay the section of video tape of interest 'a number of times, 

grabbing and saving its four frames on each pass. Is 

The kinematic analysis requires that the positions of the joint centres are 

measured for each frame in a leap sequence. This measurement was 

performed using the specially written Gait Analysis Program software 

(GAP). 19 This program runs on a Hewlett-Packard graphics workstation, 

and the image data acquired by the PC is passed over to it via a local area 

network link. Each image has a resolution of 512 by 256 pixels and has 

256 grey levels. GAP allows the user to display the image on the 

computer screen, optionally expanded up to 1024 by 768 to restore the 

correct aspect ratio, and points are measured using the mouse driven 

pointer. 

To assist the measurements, and to automate some of the kinematic 

calculations, the computer program requires some additional information 

from the user. This is provided in the form of a data file for each set of 

experiments. This specifies the structure of the model being used. It 

defines the names of the joints, the names of the segments, and how the 

joints are linked together by the segments. The same file also contains 

data on the masses of the segments, the relative positions of the centres 

of mass of the segments and the moments of inertia about the centres of 

mass of the segments. The names given are used as user prompts for the 

measurements required. This file can be created in a word processing 

package and saved to disk. Although it is quite tricky to set up in the first 

place, it generally requires very little alteration between experiments. 

18Details of the circuit and the computer software are given in the technical section. 
19Again, a full description of GAP is included in the technical section, along with details of 
data file formats, and operating instructions. 
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As mentioned before, the -system is calibrated by filming a reference 

object of known dimensions. This section of film is digitized to produce a 

single reference frame. The only requirement is that it should define the 

origin of the coordinate system20, and have one other known point. The 

program asks the user to select the origin from the picture, type in the 

real-world coordinates of the known point, and select this point from the 

picture. If necessary, a fiducial2l point can also be defined. This point is 

used as a registration to line up individual frames, and should be visible 

on all frames in a sequence, as well as the reference frame. It is not used 

for straightforward video work since there is virtually no jitter between 

frames when they are digitized from the moving film. However, it is 

useful for video copies of high-speed movie film where there can be 

noticeable jitter. 

The coordinate systems are converted by calculating the offset of the 

origin, a scale factor, and a rotation matrix: 

(1) 0= Sorg 

Iwrefl 
c2) S= 

I Srefl 

(3) 

(4) 

0= Sref Z Wref 

cos 0 -sin 0 
M- 

sin 0 cos A 

20The picture that is actually measured on the computer screen in arbitrary pixel diameter 
units can be thought of as a mapping of the real-world coodinate system chosen by the 
experimenter. This coordinate system needs a zero position and a scale of measurement. 
21The fiducial point is simply a point that is known not to move between individual frames 
on the film. 
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Where: 

0 is the offset vector 

Sorg is the screen coordinate vector of the reference origin 
S is the scale factor 

Wrd is the world coordinate vector for the reference point 

Sref is the screen coordinate vector reference point 
0 is the angle between the reference vectors 

M is the rotation matrix 

Measurements 

Having obtained a calibrated film sequence. a set of points to be measured 

must be defined. This choice depends on a number of factors: the points 

must be clearly visible on the film; they must relate to underlying skeletal 

structures; they must make some sort of mechanical sense. The first 

factor is obvious. If the desired position cannot be seen on the film, then 

it is not possible to measure It, no matter how desirable this may be. The 

second and third factors are tied together. Vertebrate body mechanics 

are extremely complicated indeed and it is essential that a much simpler 

model of the real system is used so that any meaningful information can 

be gleaned. To this end. a link segment model is constructed (Bresler 

and Frankel 1950). This will be discussed in more detail in the technical 

section, but it basically involves dividing up the body into a series of rigid 

links connected by joints. Each link can be considered in isolation using 

the information known about its movement to calculate the external 

forces acting upon it. These external forces must come from its contact 

with the surroundings, or, through its joints, from other links. In this 

way, the forces (both internal and external) necessary to produce the 

observed movement in the whole structure can be calculated. This 

procedure is know as inverse dynamic analysis. 
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The links chosen, and the points on the film chosen to specify them are 

as follows: 

Link: From: To: 

Fore-foot Toe tip Mid-tarsal joint 
complex 

Hind-foot Mid-tarsal joint 
complex 

Ankle joint 

Calf Ankle joint Knee joint 

Thigh Knee joint Base of ta1l22 

Lower arm Wrist complex Elbow joint 

Upper arm Elbow joint Neck23 

Head Nose tip Neck 

Torso Neck Base of tail 

Tail Base of tail Tip of tail 

These choices necessarily involve approximations. The base of the tail. as 

can be seen in lateral X-ray photographs, is reasonably close to the hip 

joint. The shoulder joint approximation is rather less good. but this is 

permissible since the role of the upper limb in leaping is far less 

important. In both cases, allowing the upper limb to share the joint 

between the head and the torso, and allowing the lower limb to share the 

joint between the torso and the tail considerably simplifies the resultant 

link segment model. Other authors have split the torso into a 

head/thorax and an abdomen (or even abdomen/tail) segment (Wells and 

DeMenthon 1987, Smith 1987). In my film, I was unable to see a reliable 

position on which to base this division, though mechanically, a split there 

22Nominal position of the hip joint. 
23Nominal position of shoulder joint. 
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rather than at the neck might well have been desirable. Also. since none 

of these authors were attempting inverse dynamic analysis, they had less 

incentive to simplify the link segment model. 

To perform inverse dynamic analysis. the following kinematic measures 

are required for each link at each time interval: 

Linear Position of centre of mass 

Velocity of centre of mass 

Acceleration of centre of mass 

Rotational Angle 

Angular velocity 

Angular acceleration 

The linear measures refer to the displacement in space of the centre off 

mass of the segment. The centre of mass is the position where all the 

mass of the whole segment can be considered to act as a point mass. It is 

defined mathematically later. The rotational measures refer to the 

internal circular movement of the segment around its centre of mass. 
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Kinematic Analysis 

Signal Processing 

The raw data obtained by measuring the joint positions contains a 

reasonable degree of random sampling error due mainly to the difficulty 

in accurately estimating the positions of the joint centres. This shows up 

as high frequency noise superimposed on the position signal. This is not 

too much of a problem when considering the position data alone, but the 

process of differentiation needed to calculate the other kinematic 

parameters of velocity and acceleration tends to amplify this high 

frequency signal to such an extent that the data becomes useless (Winter 

1990). 

To get any form of useful secondary data, the original signal needs to be 

smoothed. There are two common approaches. Firstly, a suitable 

mathematical function can be fitted to the data: various orders of splined 

polynomials are often used. Secondly, the' data can be filtered using a 

digital low-pass filter so that the troublesome high-frequencies are 

attenuated. The former approach produces perfectly smooth curves, and 

the fitted function can then be differentiated analytically to produce more 

smooth curves of velocities and differentiation. Unfortunately, the shapes 

of these curves depend more on the function chosen to fit the data than 

on the underlying mechanics of the filmed performance. Thus, the 

results obtained are only of interest if there is some mechanical 

justification for the function used. The latter approach does not smooth 

up the data as aesthetically, and certainly, there is still an appreciable 

noise level when the signal is differentiated. However, the process is 

much more robust, and the results more closely reflect the mechanics. 

The only problem can be if the framing rate is not high enough, and then 
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the degree of filtration required to get a useable signal can flatten out any 

rapid peaks in the signal. Experimental comparison of these techniques 

shows that smoothing rather than function fitting is the best approach 

(Pezzack et al. 1977). 

There are a variety of alternative digital filters (Radar and Gold 1967). 

Initially, a Butterworth second order low pass filter with a 10Hz cutoff 

was tried. This was applied twice, the second time in the reverse 

direction, to produce a fourth order zero phase shift filter (Winter et al. 

1974). However, although this technique worked well on the central 

parts of the sequence, it required approximately five frames at each end 

to stabilize which was unsatisfactory since there were generally only 

three or four frames after takeoff where the subject was still fully in the 

field of view. So, instead, a simple unweighted moving average was used. 

This is symmetrical, so only requires a single pass, and it only loses one 

frame at each end of thesequence. Its main disadvantage is that, unlike 

the Butterworth filter, it does not have well defined physical properties. 

It simply smooths the data in a non-specific way. 

The formula used was: 

Xn-1 + Xn + Xn+1 
(1) Sin= 3 

Where: 

sn is the nth smoothed value 

xt, is the nth raw value 
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Differentiation 

A simple linear integration scheme was used (this is effectively fitting a 

straight line between two data points and measuring its gradient). The 

equation for the differentiation algorithm used is as follows: 

Xn+1- Xn-1 
Vn_ to+l - to-1 

ý3) an _ 
4(xn+1- 2xn + Xn-1) 

(tn+1 - to-1)2 

Where: 

x� position at the nth sample 

vn velocity at the nth sample 

an acceleration at the nth sample 

to time at the nth sample 

Angular Properties 

As well as the positions, linear velocities and linear accelerations of the 

joints, the angles, angular velocities and angular accelerations of the 

limbs also need to be calculated. These can be obtained by considering 

each segment of the animal as a vector. For instance, the thigh can be 

represented as follows: 

(4, 
hip - Xk ee 

Yhip - Yknee 

Where: 

xioint is the x coordinate of a joint 

Yjoint is the y coordinate of a joint 
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Then the angle can be calculated as24: 

ý5) echigh = tan-1 
xhip - Xknce 
Yhip - Yknee 

Once 0 has been calculated, then angular velocities and accelerations can 

be calculated in exactly the same way as for their linear counterparts: 

On+1-en-1 
ý6ý 

to+1 - to-1 

(7) an 
4(0n+1- 20n +On-1) 

(tn+l - to-1)2 

Where: 

On angle at the nth sample 

angular velocity at the nth sample 

angular acceleration at the nth sample 

to time at the nth sample 

Centre of Mass 

Each individual segment of the model has a centre of mass. In addition, 

the_ overall model has a centre of mass that can be calculated from the 

positions of the individual centres of mass. The segment centres of mass 

can be measured or calculated geometrically as described later. The 

position of the centre of mass of a segment, In a general form, is 

expressed as it relative distance from one of the joints. Thus, a value of 

0.5 means that the centre of mass is halfway along the segment. The 

24Care must be taken to get the correct angle in this calculation since tan-1 will only give 
answers between -90° and 90°. Checks need to be made on the direction of the vector by 
looking at the signs of its x and y component and working out from this which quadrant it 
is in. Alternatively, the `C' language function atan2(y, x) will produce the correct result. 
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actual position of the centre of mass in a segment can be obtained from 

the following vector equation: 

(7) Pcm = Pjoint + RVsegment 

Where: 

Pan is the position vector of the centre of mass 

Pio; nt is the position vector of the joint 

R is the relative position of the centre of mass 

Vsegment is the segment vector 

Knowing the centre of mass position in all the segments in the model 

allows the overall centre of mass to be calculated (this is the position 

where the total mass can be considered to be a point mass as far as 

translational motion is concerned). 

n 
1 

(8) Pcm = 
lPimi 
Mt 

i=1 

Where: 

Pa, is the overall position of the centre of mass 

Mt is the total mass of the animal 

Pi is the position of the ith segment centre of mass 

m, is the mass of the ith segment 

Trajectory 

Once the overall centre of mass has been calculated for each frame of the 

film, then the trajectory of the animal (the path followed by the centre of 

mass) can be produced. This can be plotted out and the initial gradient 
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calculated. giving the takeoff angle for the animal. This is an important 

parameter, being one which the animal can alter when it wants to move 

more rapidly at the expense of energy efficiency. In practice, the takeoff 

angle was calculated by fitting a straight line to the centre of mass 

position between the start of the leap (position of maximum flexion) to 

toe off and calculating the gradient of this line. In addition, all 

trajectories were plotted to check that the straight line assumption was 

reasonable. 

The following graph shows an example trajectory: 

a. 5 

0.9 
E v 

0.2 
-0.4 -0.3 -0.2 -0.1 0.0 0.1 

X (m) 
0.2 

Graph of the trajectory of Lemur catta leaping 2.22 m. The 
origin position is arbitrary, and the last two points are after 
toe off. 
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Segment Mass Properties 

In order to perform an inverse dynamic analysis of a link segment model, 

the mass properties of the segments are needed. The actual parameters 

needed are the length and mass of the segment; the relative position of 

the centre of mass along the segment; and the moment of inertia about 

the centre of mass. The moment of inertia is a measure of the 

distribution of the mass away from the centre of mass: it is the rotational 

analogue of mass. 

These values can be measured directly but it is a time consuming 

process, and moreover, involves killing of the measured animal. It has 

also been shown that these values vary very substantially from individual 

to individual, especially for moments of inertia, which can differ by a 

factor of two or more even when body mass differences have been taken 

into consideration (Smith 1987). In humans, these values can be obtained 

by a combination of published values and allometric scaling tables, or 

from volume measurements obtained by immersion (Li 1991). However, 

there is an insufficient number of studies on prosimians to produce 

empirically derived scaling tables and immersion techniques are likely to 

be much less accurate for small and hairy animals. Since I was able to 

measure only the total mass of my experimental animals, I decided to use 

a mixed geometrical approach to estimate segment properties. 

The raw data for the distribution of the body mass among the individual 

segments in the model was obtained from the literature (Smith 1987, 

Wells and DeMenthon 1987). This gives data for Galago senegalensis and 

Eulemur fulvus. These animals are very similar in shape to Galago moholi 

and Lemur catta respectively so can be used instead. However, for the 

remaining animals in my study, there are no really good analogues. 
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Galago gamettii has been modelled using the Galago senegalensis shape in 

other places, (Günther 1989) so I did the same in my study. Since I had 

no other option, I used the Eulemurfulvus body shape for the three dwarf 

lemurs. Because of the large difference in mass between the two galagos 

and among the four lemurs, I would not expect these approximations to 

be particularly good. However, until more data on mass distribution is 

available, it is probably the best that can be managed. 

For most segments. I was able to use the relevant mass fraction from the 

literature directly and calculate the mass from the measured total mass of 

the animal. However, the choice of segments in some parts of the body 

were not the ones I wished to use. For example, I needed head and torso 

separately, and others have lumped head and upper torso together. For 

this case, I measured the volumes of the head and torso from x-ray 

photographs and estimated the mass fractions accordingly. 

Again for segment centres of mass. I took the values directly from the 

literature. Because of my re-division of the torso and head segments. I 

used a nominal value of a half. This is relatively close to the values 

calculated for the other segmental distributions as can be seen in the 

diagrams at the end of this section. 

The lengths of the segments were calculated directly from the kinematic 

analysis data for the animals. 

To calculate the moments of inertia for each segment, a purely geometric 

approach was used. Each segment of the body was treated as a conic 

section with appropriate dimensions to fit the mass, length and centre of 

mass position criteria. 
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The volume of each conic section was calculated from its mass and a 

mean figure for body density (Apkarian et al. 1989). 

m (i) V=P 

Where: 

V is the volume 

m is the mass 

p is the density 

The volume of a conic section is given by: 

(2) V= nL(R2+Rr+r2) 

Where: 

L is the length of the segment 

R is the proximal radius 

r is the distal radius 

The centre of mass of a conic segment is given by: 

L(1 + 2µ + 3µ2) 
C3) ý= 4(1+µ+µ2) 

Where: 

x is the horizontal position of the centre of mass 

And where: 

(4) 
r 

µ-R 
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So, for a given centre of mass, g can be calculated2s from by rearranging 

equation (3): 

2-4x- 48x2+48x-8 
(6) 8x-6 

And then the moment of inertia about the centre of mass is given by: 

(7) I= 
LV+BL2 

Where: 

I is the moment of inertia 

And: 

9 1+µ+µ2+µ3+µ4 
(8ý A 

24n a2 

(9) B3 
(1+4g+ 1Oµ+ 4µ3 +0 

=g C12 

(10) a=1+µ+µ2 

If necessary the actual values for R and r can be obtained by rearranging 

equations (2) and (4): 

3V 
(11) R= 

nL(1 +µ+µ2) 

The following table shows the values calculated for each of the study 

animals and the segments chosen. 

25v, A, B and a are used simply as convenient intermediate values in the calculation. 
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X. iwurinus L. cotta C. Major X. cow" i O. aorwotli! 0. iwohoti 

L. w. r am Ha. s(kg) 3.1310-3 1.35 10'1 1.70 10"2 1.7610-2 5.63 10-2 9.24 10'3 

cm 5.00 10" 1 5.0010-1 5.0010-1 5.0010-1 5.0010-1 5.00 10' 1 

MOI (kg. m2) 2.35 10-7 1.2710-4 2.7010-6 3.89 10'6 3.6010-5 1.2210-6 

Upper 1[w (kg) 2.8810-3 1.24 10'1 1.561()-2 1.61 10'2 5.40 10'2 6.721()-3 

cm 5.18 10'1 6.1810-1 5.18 10'1 6.1810-1 4.66 10 4.66 10 

HOI (kg. m2) 1.771()-7 1.1510-4 2.4610-6 3.0910-6 2.37 103 8.35 10-7 

Torn-f009 Ma.. (kg) 8.7510-4 3.78 10"2 4.7610-3 4.9010-3 2.25 10-2 4.2010-3 

cm 5.73 10 5.73 10 5.73 10 5.73 10 6.7310-1 5.7310-1 

MOI (k8"m2) 1.2610-8 5.1410-6 1.9610-7 2.1810-7 1.9710-6 2.0710-7 

Stud-foot Ma. (kg) 8.7610-4 3.781()-2 4.7610-3 4.9010-3 1.1310-2 2.5210-3 

CM 4.78 10"1 4.78 10 4.78 10 4.7810-1 4.78 10'1 4.78 10 

NOI (kg. m2) 1.3210-8 4.9410-6 2.1710-7 2.2610-7 1.41 10-6 1.3610-7 

Calf Hau (kg) 3.38 10'3 1.4610-1 1.831()-2 1.89 10'2 6.081()-2 1.391()-2 

CM 4.01 10 4.01 10 4.01 10 4.01 10-1 6.08 104 6.0810-1 

MOI (kg. m2) 3.57 10'7 1.61 10-4 6.8610-6 5.3910-6 4.0810-5 4.1510-6 

Thigh Yu. (kg) 1.0310-2 4.4310-1 5.571()-2 6.741()-2 1.37 10 4.2010-2 

CM 4.47 10'1 4.47 10 4.47 10 4.47 10 5.61 10'1 5.61 10'I 

MOI (kg. m2) 1.2610-6 7.3910-4 2.4610-6 2.8310-5 1.4810-4 1.7310-5 

Head Ma.. (k8) 6.381()-3 2.75 10 3.461()-2 3.6710-2 1.20 10'1 2.0810-2 

cm 5.00 10' 1 5.00 10-1 5.0010-1 5.0010-1 5.00 10" 1 5.00 10' I 

NOI (kg. m2) 7.30 10"7 2.8810-4 1.1610-5 1.17 10'5 7.92 10'5 3.3710-6 

Torso Ma.. (kg) 3.2610-2 1.41 10; 0 1.77 10 1.82 10 6.15 10"1 1.05 10'I 

CH 5.00 10' 1 5.0010-1 5.00 10' 1 5.00 10' 1 5.0010-1 5.0010-1 

MOI (kg. m2) 1.8210-5 9.581()-3 3.0610-4 3.0610-4 1.941()-3 1.1210-4 

Tall Y+.. (kg) 2.1910-3 9.4610-2 1.191()-2 1.2310-2 4.841()-2 5.2610-3 

CK 3.7810-1 3.78 10 3.78 10 3.78 10 3.78 10 3.78 10 

1[OI (kg. m2) 2.33 10 6 1.1310-3 4.5710-5 6.3910-5 1.11 10"4 1.06 ITS 
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In the table. mass refers to the total mass of the segment. CM is the 

position of the centres of mass as the relative distance from the distal 

end for limbs and the relative distance caudally for the axial segments. 

MOI is the moment of inertia about the centre of mass. The values for 

limbs are the sums of the values for the left and right hand sides of the 

animals as used in the computer program. 

To check that the calculated values of the moments of inertia are 

reasonable, the following graphs shows published values for Galago 

senegalensis and Eulemurfulvus and my calculated values. Also shown are 

the probable limits for the moment of inertia. The minimum is obtained 

by considering the limb as a uniform rod rotating about the middle: 

(Kleppner and Kolenkow 1973) 

(12) 
ML2 
12 

and the maximum by considering it as a barbell, with the mass 

concentrated at the ends (this is a very excessive assumption): 

(13) 
ML2 

2 
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This graph shows the moments of inertia of the limb 
segments of the geometrically derived Lemur catta (C) 
compared with those experimentally measured from 
Eulemur fulvus (F) (Wells and DeMenthon 1987)26. For 
comparison, the values for the rod and barbell models are 
given for the Lemur catta mass. The values for head, torso 
and tail use different segmental division. F includes part of 
the torso in the head segment, and the tail in the torso 
measurement. The indicated tail measurement has been 
extrapolated. 

26The results presented by Wells and DeMenthon are sufficiently detailed to be checked 
geometrically. In fact, their measured moments of inertia are higher even than those that 
would be predicted using the barbell model. This is extremely unlikely, and does suggest 
that there was some error in their calculations. 
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10-3 

10-4 

N 
-5 

0 P (0.31 kg) 
10 S (0.43kg) 

C6 ® V (0.21 kg) 
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10-7 
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This graph shows the moments of inertia of the limb 
segments of the geometrically derived Galago moholi (V) 
compared with those experimentally measured (P and S) 
(Smith 1987). For comparison, the values for the rod and 
barbell models are given for V's mass. The values for head 
and torso use different segmental division. Both P and S 
include part of the torso in the head segment. 
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Inverse Dynamics 

Inverse dynamics is a descriptive name given to the process of obtaining 
kinetic data from kinematic Information. It relies on Newton's second 
law-27 

(1) 

Where: 

F =ma 

F is the resultant force acting on a body. 

m is the mass of the body 

a is the acceleration of the body 

And the angular equivalent for when the force is not acting through the 

centre of mass of the body 

(2) 

Where: 

T=Ia 

T is the resultant torque acting on the body 

I is the moment of inertia of the body 

a is the angular acceleration of the body 

The approach used for inverse dynamic analysis of a complex, linked 

structure such as the limbs of an animal connected by joints, is to treat 

each rigid segment in isolation and to apply equations (1) and (2). Forces 

and linear accelerations can be split into their components in the 

principal axes: X. Y (and Z. if working in three dimensions). Torques, 

27Newton's laws of motion were first published in 1687 in his treatise "Principia 
mathematics". Here, they are largely descriptive, and they were not translated into a more 
precise mathematical form until Mach published The science of mathematic? in 1883. 
Before Newton, Aristotelian mechanics reigned supreme, with its basic tenet that a force 
was required to keep a body in motion. Newton, and before him, Galileo, postulated that a 
force was only required to change the movement of an object. (Kleppner and Kolenkow 1973) 
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moments of inertia and angular accelerations can be split depending on 

the plane of rotation. These planes are defined mathematically as X=O, 

Y=O and Z=O. They correspond to rotation about the X, Y and Z axes 

respectively. Thus, only the Z=O plane is involved in two dimensional 

analysis. 

This can be expressed mathematically as: (see Winter 1990) 

nn 

(3) 
YaFi 

= myai 
i=1 i=1 

nn 

ý4) 
1 

Ti =1 
i=1 i=1 

Where: 

n is the number of forces or torques acting on the segment 

Linear forces produce torques, but torques do not effect the linear 

properties, so the non-rotational problem needs to be solved first. This is 

simply a matter of knowing the mass of the free body and its acceleration 

(the right hand side of equation 1) and then summing up all the forces 

acting upon it. This is done separately in the X and Y direction. In the Y 

analysis, the additional force of gravity also acts. 
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The following diagram shows the forces present on the isolated limb 

segment 

Y 

Distal Reaction 

X 
Y 

Proximal Reaction Acceleration 
Gravity 

X 

Diagram showing the forces acting on an isolated segment 
in a link segment model. The reaction forces can be split 
into their components in the X and Y directions. Gravity 
only acts in the negative Y direction. 

So, the equation (3) becomes: 

(5) 

(6) 

Where: 

Fx1 + Fx2 = max 

Fy1 + Fy2 -mg = may 

F, cl is the x component of the proximal reaction force 

Fx2 is the x component of the distal reaction force 

Fyl is the y component of the proximal reaction force 

Fy2 is the y component of the distal reaction force 

g is the acceleration due to gravity. 

The calculation of the whole model proceeds from segments that are 

unattached at one end, such as the forearm (in this model). At these 

segments, the distal reaction force is zero. Then, there is only one 

unknown in each of the equations for the separate components. This is 
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the proximal reaction force which can now be easily calculated. This 

proximal reaction force becomes the negative of the distal reaction force 

acting on the next segment due to Newton's second law: each action has 

an equal and opposite reaction. And now, this segment has only one 

unknown in each of the X and Y directions, and its proximal reaction 

force. At joints where more than two segments meet, the rule is that the 

total of all the reaction forces should be zero (as is also the case at any 

joint). So, in my model, calculating back from the head will give one set 

of reaction forces at the neck. Calculating up the arm will give another. 

The negative of the sum of these two forces will be the reaction force 

acting on the cranial end of the torso. Calculating all the way down will 

give the reaction force acting between the tip of the toe and the ground. 

Once the linear forces are known, the rotational parameters can then be 

calculated. The rotational torques present in the linked segment model 

are shown in the following diagram: 

Distal Torque 

Angular Acceleration 

Proximal Torque 

Diagram showing the torques acting on an isolated segment 
in a link segment model. In addition, the reaction forces at 
the proximal and distal ends also apply a torque (though 
gravity does not). 

So, equation (4) becomes: 
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(7) Fx1Dy1 + Fy1Dx1 + Fx2Dy2 + Fy2Dx2 +T1 + T2 = la 

Where: 

DXl is the x distance from the proximal joint to the centre of mass 

D, 2 is the x distance from the distal joint to the centre of mass 

Dyl is the y distance from the proximal joint to the centre of mass 

Dye is the y distance from the distal joint to the centre of mass 

Ti is the torque about the proximal joint 

T2 is the torque about the distal joint 

The progression of calculation of the torques is similar to that for the 

reaction forces. From a free end, the distal torque is zero. All the linear 

forces are known, as are the distances of the joints from the centre of 

mass in both the X and Y directions. Thus, the proximal torque is the 

only unknown and can be calculated. The negative of this becomes the 

distal torque at the next segment along. When more than two segments 

meet at a joint, the total torque is again, zero, and there will be only one 

unknown torque. 

The only problem with inverse dynamic analysis is that it depends on 
knowing the linear and angular accelerations accurately. As mentioned 
before, calculating accelerations from positional data leads to a very large 

amplification of high frequency noise, and so, unless the quality of the 

data is extremely high, the results from this sort of analysis need to be 

treated with caution. However, since the equations can be solved 

analytically, producing information about forces and torques from 

artificially generated resuý ddictive model for example) is 
'gSLT '' 

extremely quick and reliab e. iy 

14TH :`,. y 
.4 

, A1ý' ý,, , 'ý`, 
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The reliability could be checked experimentally by comparing the 

external forces calculated by the analysis with forces measured with a 

force plate. This option was not available in the present study. 
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Results Section 

Leaping Trajectory 

Theory 

When choosing how to leap a gap of a particular size, an animal has two 

physical parameters that it can alter: its takeoff velocity and its angle of 

trajectory. Since leaping is a ballistic form of motion, these two 

parameters are related by the following equation for leaping with no 

height change28: 

(1) _ 
4rg. 

_ StO sin 20 

Where: 

vto is the takeoff velocity 

r is the range of the jump 

g is the acceleration due to gravity 

0 is the takeoff angle 

28A difference in height between takeoff and landing points makes the relationships 
slightly more complex and alters the value of the optimal takeoff angle but otherwise does 
not affect any of the general properties of the interaction between takeoff velocity and angle. 
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Graphically this relationship is as follows: 

6 

5 
E 

4- 

3- 

%- 2- 
4- 

a 

0- 

.Y1 
F- 

10 20 30 40 50 60 70 80 
Takeoff Angle (') 

Graph showing the theoretical relationship between takeoff 
velocity and trajectory for a1m leap. 

From this, it can be seen that the animal can either choose a shallow or a 

steep trajectory and a high takeoff velocity, or can minimize its takeoff 

velocity by choosing a takeoff angle of 45°. From an ecological standpoint, 

it is helpful to look at the differing energy costs of these options. This 

cost is simply the kinetic energy of the animal at takeoff. 

1 
(2) ERE = ynvco2 

Where: 

EKE is the kinetic energy of the animal 

So, from equations (1) and (2), the following relationship can be 

formulated: 

(3) EKE = 
mrg 

2 sin 20 
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And again, this can be shown graphically: 

Page (53) 
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Takeoff Angle (') 

Graph showing the relationship between the initial 
trajectory and the minimum energetic cost of a1m leap for 
a1 kg animal. 

From this graph, it can be seen that the most economical takeoff angle. 

the one that leads to the longest jump for the least energy expenditure, is 

45°, and one would expect that this is the takeoff angle that would be 

chosen by the animal. 

Results 

For each animal and for all jump distances, the leaping trajectory was 

calculated. For Lemur catta, which I only filmed leaping at a single 

distance, I simply calculated the 95% confidence limits of the trajectory. 

For the other 5 animals, the relationship between the leap distance and 

the trajectory was investigated by calculating the regression lines with 

95% confidence limits. 

The following graphs show the results obtained: 
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First for Lemur catta: 

Histogram of Xi : Trajectory (') 
S. - 

4. 

3 

2 

0 
30 32 34 36 38 40 42 44 

Trajectory (') 

X1: Trajectory (') 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 
1 35.308 1 3.216 1 1.017 1 10.343 1 9.108 1 10 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing 
1 30.46 1 42.32 1 11.86 353.08 1 12559.633 0 

t 95%: 9S% Lower. 95% Upper: 
1 2.301 1 33.007 1 37.609 

Histogram showing the distribution of trajectories observed 
for a set of 10 2.22 m leaps in Lemur catta. The mean 
trajectory is 35.3 ± 2.3° (95%) which is clearly less than the 
predicted value of 45°. 
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And now for the others: 

Cheirogaleus major 

. -. 
0 

to 

H 

Parameter: Value: Std. Err.: Std. Value: t-value: Probabilit : 
INTERCEPT 12.239 

SLOPE 25.255 3.153 . 884 8.01 . 0001 

Confidence Intervals Table 

Parameter: 95% Lower: 95% [Inner 90% Lower: 90% Uooer: 

MEAN XY 28.662 32.94 29.035 32.567 

SLOPE 18.63 31.879 19.787 30.722 

Graph showing the observed trajectories for a variety of 
different leaps distances in Cheirogaleus major. The 
regression line and 95% confidence limits are purely to 
illustrate that there is a significant trend, and are not to 
suggest that there is any linear relationship. 
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Galago garnettll 

L.. 

. i% 
F- 

Parameter: Value: Std. Err.: Std. Value: t-Value: Probabilit : 

INTERCEPT 9.038 

SLOPE 23.686 2.832 . 918 8.362 . 0001 

Confidence Intervals Table 

Parameter 95% Lower_ 95% (Inner: 90% Lower: 9096 UDDer: 

MEAN XY 25.15 27.666 25.377 27.439 

SLOPE 17.566 29.806 18.669 28.702 

Graph showing the observed trajectories for a variety of 
different leaps distances in Galago garnettü. The regression 
line and 950/6 confidence limits are purely to illustrate that 
there is a significant trend, and are not to suggest that there 
is any linear relationship. 
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Distance (m) 

Simple Regression XI: Distance (m) Y1: Trajectory (') 

Beta Coefficient Table 

'arameter: Value: Std. Err.: Std. Value: t-Value: Probabilit : 
INTERCEPT 40.626 

SLOPE 5.26 2.027 . 512 2.595 . 0178 

Confidence Intervals Table 
P r2mater" Qi96 I nwpr, QSOf. Ilnnar" Q(196 I nwer_ 9096 lJnnor_ 

MEAN XY 43.117 46.551 43.415 46.252 

SLOPE 1.017 9.503 1.755 8.765 

Graph showing the observed trajectories for a variety of 
different leaps distances in Galago moholi. The regression 
line and 950/6 confidence limits are purely to illustrate that 
there is a significant trend, and are not to suggest that there 
is any linear relationship. In this case the trend is 
noticeably less pronounced than for the others, and there 
are results with trajectories greater than 45°. 
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Mlcrocebus mu anus 
7C 

v 

F"' 

Distance (m) 

Simple Regression XI: Distance (m) Yi: Trajectory (") 

Beta Coefficient Table 

Parameter: Value: Std. Err: Std. Value: t-Value: Probabilit : 
INTERCEPT 2.63 

SLOPE 27.99 4.095 . 863 6.835 . 0001 

Confidence Intervals Table 
Parameter, 9546 Lower_ 9596 [Innere 4Ö% I nwerr 4Ö% IInnar- 

MEAN XY 18.231 22.484 18.606 22.109 
SLOPE 19.308 36.673 20.84 35.141 

Graph showing the observed trajectories for a variety of 
different leaps distances in Microcebus murinus. The 
regression line and 95% confidence limits are purely to 
illustrate that there is a significant trend, and are not to 
suggest that there is any linear relationship. 
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Mirza coquereli 

. -. 

I H 

Distance (m) 

Simple Regression X1: Distance (m) YI: Trajectory (') 

Beta Coefficient Table 

'arameter: Value: Std. Err.: Std. Value: t-Value: Probabilit : 
INTERCEPT 19.429 

SLOPE 15.587 1.826 . 891 8.535 . 0001 

Confidence Intervals Table 

o,. ý.., eýe. " QC4 I nwnr" OSOL IInnsr Q(106 I nwnr 9006 Ilnnnr 

MEAN XY 28.473 30.277 28.63 30.121 

SLOPE 11.764 19.41 12.429 18.746 

Graph showing the observed trajectories for a variety of 
different leaps distances in Mirza coquerelL The regression 
line and 95% confidence limits are purely to illustrate that 
there is a significant trend, and are not to suggest that there 
is any linear relationship. 

Discussion 

The main thing to note about these results is that, except for Galago 

moholi, these animals-do not leap at the energetically optimal angle of 

450. They leap at appreciably shallower angles. However, as the leap 

distance increases, they all do choose to leap at more energetically 

efficient angles and it would certainly be expected that they would all 
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have to leap at 45° for their longest leaps. Looking at the data for 

Cheirogaieus major, which is the least frequent leaper of the group, it is 

probable that 1.4 m is near its maximum leaping distance and so it is not 

surprising that it is forced to use the optimal leap trajectory. 

Since the animals are not leaping at the energetically most efficient 

angle, then there must be other benefits associated with the shallower 

trajectories. One reason could be that the animals are prepared to trade- 

off some loss in energetic efficiency for a gain in travelling speed. The 

horizontal speed of a leap is given by: 

(4) Vh = Vt0 cos 0 

Where: 

vh is the horizontal velocity 

So, from equations (1) and (4), the relationship between speed and leap 

angle can be calculated: 

rg_ (5) Vh = cos 0 
sin 28 
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And shown graphically: 
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Graph showing the relationship between the takeoff angle 
and the horizontal velocity for an animal leaping lm. 

So a "time pressurized" animal has to decide on a compromise between 

the relatively high cost of a very quick leap and the relative slowness of an 

energetically efficient one. On longer leaps, the range of choice in leap 

angle is more restricted because the minimum takeoff velocity for the 

leap is a larger fraction of the maximum takeoff velocity that the animal 

can manage and it therefore has less scope for selecting a faster, flatter 

trajectory. 

The importance of travel time depends very much on the ecology of the 

animal. If resources are widely spaced then it might be extremely 

important to travel quickly between them so that there would be plenty 

of time to exploit them once the animal has arrived. Speed is also 

important for escape behaviour, but since the study animals were not 

being chased, but were rather being induced to jump by the presence of 

food rewards, this is , unlikely to have influenced the present results. If 

the local ecology for Galago moholi is such that economy of movement is 
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much more important than speed, this would explain why it alone 

chooses to leap at more or less 4511 all the time. 

Another feature of the animal's ecology that may influence their leaping 

behaviour is the density of the vegetation in their normal habitat. The 

Cheirogaleidae live in dense undergrowth tangles where there is only 

room for shallow trajectory jumps. This may lead to an in-built 

preference for a low takeoff angle even when there is room for greater 

elevation. 

Where substrates are significantly bent by the force applied by the animal 

leaping, the optimally efficient takeoff angle may not be 45° for a leap 

with no height change. The animal will lose energy by bending the 

support. The maximum bending will occur if the force applied is 

perpendicular to the branch, and will be minimized if the force is along 

the axis of the branch since buckling requires considerably greater forces 

than bending. For a horizontal support, a shallow takeoff trajectory will 

cause less bending, and hence less energy transfer to the substrate. 29 The 

actual value of the optimal takeoff angle will depend on the resilience, 

orientation and shear modulus of the branch, but will lie somewhere 

between the branch orientation and 45°. 

Finally, leaping animals may be very vulnerable to aerial predators whilst 

leaping in the open. A flatter than energetically optimal trajectory 

ensures that they are airborne for a shorter time. Also, if an animal always 

chooses exactly the same trajectory for its leaps, then a predator would 

be able to predict the mid-air position of an animal that it has spotted 

291n the experimental setup used, the substrate was not noticeably bent by any of the animals 
and so can effectively be considered as a rigid support, causing no appreciable loss or gain 
of energy. 
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about to jump out of the cover of a tree. This would help to explain the 

relatively large amount of variation of the observed takeoff angles. 
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Distance Relationships 

Theory 

There are three key biomechanical parameters that can be readily 

measured for each leap. These are: the peak force generated during 

takeoff; the extension distance of the hind-limb; and the duration of this 

extension. For a given animal, these parameters would be expected to 

vary depending on the distance being leapt. The effect of takeoff angle 

has already been explained so that all the leap distances can be re- 

evaluated as if the leap had been done at 45°. Thus, with the trajectory 

fixed. the leap distance depends solely on the takeoff velocity. 

The relationship with extension duration can be investigated by 

considering momentum30. The change in momentum equals the impulse 

applied by the animal as shown in the following equation: 

tto 

(1) 
IF (t) dt = mvto - mvo 

to. 

Where: 

F (t) is the function of force with respect to time 

to is the time at the start of the leap 

tto is the time at takeoff 

m is the mass of the animal 

vto is the takeoff velocity 

vo is the start velocity 

30The momentum of a body is the product of its velocity and its mass. 
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This is the generic form of the equation using vectors representing the 

force function and the velocities. In the takeoff phase of a leap, the 

centre of mass of the animal moves in a straight line at the takeoff angle. 

Thus, the two dimensional problem can be simplified down to just one 

dimension. However, in doing this, it must be remembered that as well 

as applying a force to accelerate the centre of mass along this trajectory. 

the animal must also apply a vertical force to compensate for the pull of 

gravity. This force is independent of the distance leapt, and adds an 

appreciable amount to the total force that needs to be generated at lower 

distances. The results shown subsequently are for the resultant force 

derived from the acceleration of the centre of mass. The comparative 

magnitude of the peak forces required in the leap compared to the force 

due to gravity has been shown to vary from 13.5 times in the case of 

Galago moholt to 4.5 times for Lemur catta (Günther 1989). In my 

experiments, the value is about 5 for all the animals except Cheirogaleus 

major which has a value of 8. However, as will be shown at the end of the 

chapter, these values depend on the distance leapt, and one of the 

problems with calculations from kinematics instead of force plate 

measurements is that peaks tend to be missed due to the relatively 

coarse temporal resolution. 

In this case, the start velocity is zero since the animals leap from rest. 

The start time can be arbitrarily set to zero, so that the takeoff time is 

the duration of the extension. Also, for our idealized 45° leap, the takeoff 

velocity is related to the leap distance by the following equation: 

(2) Vtp= 
4 

1g 
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Where: 

r 

g 

So: 

is the range of the leap_ 

is the acceleration due to gravity 

tto 

(3) JF(t) dt = m4rg 
to 

Where: 

F(t) is the resultant magnitude force function. 

The extension distance relates to the ' takeoff force according to Newton's 

second law (acting in a straight line): 

(4) F(t) = ma 

Where: 

a is the acceleration of the centre of mass 

And since: 

(5) 

Where: 

s 

From (4) and (5) 

(6) 

des 
a= dt2 

is the extension distance 

A F(t) 
dt2 =m 

To progress any further, the function of force with respect to time needs 

to be defined. An actual force/time graph, irrespective of the mass of the 

animal or the distance being leapt has a shape something like this: 
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Graph showing the component and resultant forces31 
calculated for Lemur catta leaping 2.22 m. The mass of the 
animal was 2.7 kg and the trajectory 36°. 

For modelling purposes relatively simple force' functions can be obtained 

from the maximum recorded force for a leap as the limit for a simple 

polynomial relationship mapped to the leap duration with an arbitrary 

start time of zero. Three such functions are illustrated below:. 

(']) F(t) = Fmax 

_ 
Fmaxt 

(g) F(t) 
tco 

31The resultant force has been calculated by summing the components of the X and Y forces 
in the direction of the leaping trajectory: 

Fresuitant = FxcosO + Fycos(90 - 0) 
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(9) F(t) = 
Fmaxt2 

ttO2 

The suitability of these functions can be seen from the following graph: 

100 
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-20 
-0.2 -0.1 0.0 0.1 0.2 

Time (s) 

Graph showing the values predicted by the various force 
models that might be chosen. Zero on the time scale is 
where the takeoff phase is judged to begin since this is the 
first time when the hind-limb is seen to extend, and the 
centre of mass of the animal to have a positive velocity 
along the trajectory. 

There are a number of interesting points to note about this comparison. 

Firstly. the start of the leap is defined by when the animal starts to move 

along its takeoff trajectory. not when it first starts to produce a resultant 

force along this trajectory. This is because the animal starts its leap by 

flexing its leg muscles allowing the force of gravity to move the centre of 

mass downwards. It can then 'apply a force to decelerate this downward 

movement so that when it starts accelerating its centre of mass along the 
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takeoff trajectory, it has already generated a significant amount of tension 

in its leg muscles. This helps alleviate the slow buildup to maximum 

muscle tension, and means that a higher mean muscle tension can be 

maintained during the course of the takeoff phase. 

Since this mechanism means that the start force is appreciably higher 

than zero, the constant force model best fits the observed data. though it 

does overestimate the impulse somewhat. The linear model 

underestimates the impulse, and the quadratic model even more so. 

Since reality lies between the constant and linear force models, 

evaluating both should produce a reasonable estimate of the range within 

which observed values would be expected to fall. 

Now equation (3) can be solved for both these force models: 

Constant: 

Lto 0 
(10) 1 Fmax dt = [Finaxt] 

tto 

(11) m4rg = Fmax tt 0ff 

Linear: 

tto 
Finaxt 0 Finax t2 

(12) dt ito ko 
2tto 

0 

(13) ýj- 
1 

mV rS = ? max ttakeoff 

And likewise, equation (6) can also be solved: I 
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Constant: 

(14) 
d2s Fmax 
dt2= m 

(15) s=F 2mt2 + Ct +D 

Linear: 

des Fmaxt 
(16) dt2 - ttom 

Finaz t3 
(17) s= 6th + Ct +D 

For this problem, at t=0, both v=0 and s=0, so C=0 and D=0. Also, 

for the case in which I am interested, t= ttakeoff. so equations (15) and 

(17) both simplify: 

Constant: 

(1 S) S- 
Fmaxtto2 

2m 

Linear: 

(19) S. 
Fmaxtto2 

6m 

It is interesting to note that the two different force models do not alter 

the indices of the various powers in the eventual relationships, only the 

values of the constants. So that the relationship between the peak force, 

the extension distance and the takeoff duration will be equivalent for the 

, two cases. 

To see this relationship, equation (11) can be rearranged and substituted 

into equation (18) to eliminate tto: 
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(20) ttO2 =F 
ý8 

max2 

mrg (21) s= 2FX 

And for the linear model: 

(22) S= 
2mrg 
3Fmax 

This provides two equations relating leap distance to the three measured 

parameters. The interrelationship between these parameters is therefore 

not unique, but if we make the not unreasonable assumption that the 

animal will generally choose to use its full hind-limb extension for all 

leaps, thereby minimizing the forces needed, then a third relationship 

can be obtained: 

(23) S= Smax 

Where: 

Smax is the maximum extension of the hind-limb 

Now, from (21) and (23): 

(24) Fmax = 2sß. 

And from (24) and (11): 

(25) ito 
2Smax 

__r 
1J rg 

Similarly, for the linear model: 

(26) Fmax= 
2mrg 
3smax 
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(27) tto _ 
3smaz 

NV r$ 

Results 

The results for each animal follow. The effective distance is calculated 

from the measured takeoff velocity at a trajectory of 45°. Since we are 

assuming that the extension distance does not vary with the leap 

distance. I have used the mean value for the extension distance to 

calculate the predicted values throughout. 

Scattergram for columns: X1 Y1 ... X1 Y3 
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Graph showing the calculated peak force exerted by 
Microcebus murinus for a variety of leap distances. The two 
straight lines indicate the values predicted by the two force 
models. The significance level of the regression line is 
0.0006. 
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Graph showing the extension distance for Microcebus 
murinus for a variety of leap distances. There is no 
significant relationship. 

- Scattergram for columns: X1 Yi ... X1 Y3 - 
0 Duration (s) O Duration - Constant M... & Duration - Linear Mod... 

U. 

A 
0 

Graph showing the extension duration of Microcebus 
murtnus for a variety of leap distances. The leap distance 
has been transformed by raising it to the power minus one 
half as predicted by the model. The two straight lines 
indicate the values predicted by the two force models. There 
is no significant relationship. 
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Scattergram for columns: X1 Y1 ... X1 Y3 
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Graph showing the calculated peak force exerted by Lemur 
catta for a variety of leap distances. The two straight lines 
indicate the values predicted by the two force models. There 
is no significant relationship. 
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Graph showing the extension distance for Lemur catty for a 
variety of leap distances. There is no significant 
relationship. 
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Scattergram for columns: X1 Y1 ... X1 Y3 
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Graph showing the extension duration of Lemur catta for a 
variety of leap distances. The leap distance has been 
transformed by raising it to the power minus one half as 
predicted by the model. The two straight lines indicate the 
values predicted by the two force models. There is no 
significant relationship. It 

Scattergram for columns: X1 Y1 ... X1 Y3 
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Graph showing the calculated peak force exerted by 
Cheirogaleus major for a variety of leap distances. The two 
straight lines indicate the values predicted by the two force 
models. The significance level of the regression line is 
0.0001. 
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Graph showing the extension distance for Cheirogaleus 
major for a variety of leap distances. The significance of the 
regression line is 0.0004. 
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Graph showing the extension duration of Cheirogaleus 
major for a variety of leap distances. The leap distance has 
been transformed by raising it to the power minus one half 
as predicted by the model. The two straight lines indicate 
the values predicted by the two force models. There is no 
significant relationship. 
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Scattergram for columns: X1 Y1 ... X1 Y3 
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Graph showing the calculated peak force exerted by Mirza 
coquerell for a variety of leap distances. The two straight 
lines indicate the values predicted by the two force models. 
The significance level of the regression line is 0.0008. 
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Graph showing the extension distance for Mirza coquereli 
for a variety of leap distances. The significance level of the 
regression line is 0.0005. 

A study of leaping in prosimian primates 



Distance Relationships Page (78) 

Scattergram for columns: X1 Y1 ... X1 Y3 
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Graph showing the extension duration of Mirza coquereli for 
a variety of leap distances. The leap distance has been 
transformed by raising it to the power minus one half as 
predicted by the model. The two straight lines indicate the 
values predicted by the two force models. The significance 
level of the regression line is 0.0034. 
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Graph showing the calculated peak force exerted by Galago 
garnettii for a variety of leap distances. The two straight 
lines indicate the values predicted by the two force models. 
The significance level of the regression line is 0.0016 
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Graph showing the extension distance for Galago garnettii 
for a variety of leap distances. There is no significant 
relationship. 
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Graph showing the extension duration of Galago garnettii 
for a variety of leap distances. The leap distance has been 
transformed by raising it to the power minus one half as 
predicted by the model. The two straight lines indicate the 
values predicted by the two force models. The significance 
level of the regression line is 0.0005 
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Scattergram for columns: X1 Y1... X1 Y3 
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Graph showing the calculated peak force exerted by Galago 
mohoii for a variety of leap distances. The two straight lines 
indicate the values predicted by the two force models. The 
significance level of the regression line is 0.0001 

Graph showing the extension distance for Galago moholi for 
a variety of leap distances. There is no significant 
relationship. 
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Scattergram for columns: X1 Y1 ... X1 Y3 
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Graph showing the extension duration of Galago moholi for 
a variety of leap distances. The leap distance has been 
transformed by raising it to the power minus one half as 
predicted by the model. The two straight lines indicate the 
values predicted by the two force models. There is no 
significant relationship. 

For Microcebus murtnus. the agreement between the measured values and 

the model is reasonably good. There is a tendency to underestimate peak 

forces, especially for small, quick animals, due to the relatively slow 

framing rate used in this study. There is quite a large amount of variation 

in the hind-limb extension distance, but this is largely independent of 

the leap distance. so modelling it by a constant function seems 

reasonable. The relationship with the duration of the extension phase 

shows most of the values clumped within the expected range. It Is 

difficult to measure this duration at all precisely, and this would explain 

the poor level of correlation. 

For Lemur catta the result is also in good agreement with the model's 

predictions. For this animal, all the leap distances were nominally the 

same, with only differences in leaping trajectory and precise landing 
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points providing any variation. Thus I would not expect to see any 

significance in the correlations because measurement errors will swamp 

any distance effects. 

Cheirogaieus major, however, fits the model much less well. There is a 

notable increase of extension distance with leap range and instead, 

extension time remains more or less constant. This reversal will affect 

the predicted force curves too, with recorded peak forces being 

noticeably higher than those predicted. Qualitatively, the leaping style of 

Cheirogaieus major is different from the other animals. It is the least 

enthusiastic jumper and for the longer leaps, it curls itself up into a very 

tight ball, and uses its back muscles to throw the upper torso forward 

during the leap. 

Mirza coquereli also shows an increase in the hind-limb extension with 

leap distance. This affects the other curves much more predictably 

though with peak force at longer lengths being overestimated and 

underestimated at shorter lengths. The time curve is still relatively well 

predicted, and any errors in the force curve are relatively small. 

The predictions for Galago garnettii and Galago moholi are again 

reasonable. There is appreciable scatter about the modelled curves but it 

seems acceptable given the generally high level of noise in the data. 

Gravity Effects 

The comparative magnitude of the force due to gravity can be calculated 

from equation (1): 

tto Jng to 
(28) JF(t) dt + dt = mvto - mvo 

to to 
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Where: 

g is the acceleration vector due to gravity. 

This can be divided into its X and Y components, and using the constant 

force model as before, produces the following 2 equations: 

mvto (29) Fxtco _4r 

(30) Fyt1o = 
mvto 
_r+ 

mgtto 

So, as would be expected, gravity has no effect on the force required in 

the X direction (from equation (29)). Rearranging (30) gives: 

(31) Fy= r2t +g 
V to 

So, the importance of gravity depends on the relative magnitudes of g and 
vto 

. The value of vto depends solely on the leap distance, so that as leap 
, 1tto 

distance increases, the support component decreases. The value of tto 

depends on both the leap distance (it falls as leap distance increases) and 

on the length of the animal's hind-limbs. If the hind-limbs are longer, 

then the takeoff duration will increase. This explains why the the force of 

gravity acting on a large animal is larger proportion of the force it needs 

to apply for the leap. However, even for the largest animal in my study. 
Lemur catta, Ito has a value of approximately 4 times the value of g. j2tto 
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Mass Relationships 

Theory 

Relationships of parameters with the mass of the animal depend on the 

scaling model used. These relate linear measurements on the animal to 

the animal's overall mass for animals of similar shapes. Three so called 

"Similarity" models are commonly encountered: 

Geometric Similarity 

Linear distances are scaled isotropically (Hill 1950). The scaling with 

mass is a simple geometric relationship with all axes scaling equally. This 

can be described by the following equation: 

il) Lo cm 

Where: 

L is the characteristic length 

m is the mass of the animal 

Elastic Similarity 

Linear distances are scaled anisotropically. with characteristic lengths 

increasing less rapidly than diameters so that the bending stress on the 

skeleton due to its own weight is kept constant for animals of different 

masses (McMahon 1973). This can be described by the following 

equation: 

(2) L°`m 
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Constant Stress Similarity 

Linear distances are scaled anisotropically. with characteristic lengths 

increasing even less rapidly than diameters so that the breaking stress on 

the skeleton due to its own weight is kept constant for animals of 

different masses (McMahon 1973). This can be described by the 

following equation: 

(3) 
I 

Lam' 

The extension distance during the takeoff phase of the leap is primarily a 

function of the length of the hind-limb so can be related to the mass of 

the animal by these three equations depending which scaling model is 

more appropriate. This enables certain predictions about the mass 

dependency of the peak force. the extension distance and the extension 

duration to be made. 

Considering the geometric similarity model: 

From (1): 

(4) 

Where: 

i 
sam 

s is the extension length 

From (11) in the previous chapter. 

(5) 

Where: 

mqrg = Ftco 

r is the leap distance 
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Fmax is the peak force 

tto is the takeoff duration 

From (18) in the previous chapter. 

_ 
Finaxtto2 

(6) S= 2m 

Substituting (4) in (6) gives: 

Fmaxtto2 
(7) m 2m 

And rearranging: 
21 

2 (8) tto oc m Finax 

Substituting into (5) 
2 

(9) 
f 

cc m3 Finax2 

And rearranging: 

(10) Finax cc rgm 

By substituting (10) into (8) and rearranging: 

3 m 
(11) tcö ý 

-V rg 

Considering the elastic similarity model: 

From (2): 

(12) 
4 

sCC m 

And by a similar rearrangement as before: 
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i 

(13) Fmax a rgm 

And: 

1 
4 

m i 14) ico «4 

For the constant stress similarity model: 

(15) s« m' 

(16) Fmax « rgn 

s 
m 

(17).. tto « 

Results 

The six different species investigated covered a 40 fold' mass range so are 

eminently suitable for investigating mass dependent effects. The 

predictions of the similarity models vary by the index of the mass. To 

calculate this, the the peak force, extension distance and extension 

duration are plotted against mass on log scale graphs. The gradient of a 

straight line fitted to these transformed points is the power of the mass 

that best fits the data. The r2 value is an indication of how precisely this 

value is estimated by the data. 

All the data points have been normalized for a1m leap. This has been 

done using the modelling assumptions in the previous chapter. Thus, the 

extension distance is assumed to. be independent of the leap range; the 

peak force is divided by the effective horizontal leaping distance as this 

relationship is assumed to be linear; and the extension duration is 
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multiplied by the square root of the effective leap distance to reflect the 

power to the minus half relationship there. 
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This graph shows the relationship between the mass and the 
duration of the takeoff phase of the leap. The leap duration 
has been normalized for a1m leap. The best fit power is 
0.329 and the r2 value is 0.661 
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This graph shows the relationship between the mass and the 
peak force during the leap. The peak force has been 
normalized for a1m leap. The best fit power is 0.717 and 
the r2 value is 0.829 
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This graph shows the relationship between the mass and the 
extension distance in the takeoff phase of the leap. The 
extension has been normalized for a1m leap. The best fit 
power is 0.451 and the r2 value is 0.818 

The results for the takeoff duration are very close to the 0.33 power 

predicted by the geometric similarity model. The peak force value of 

0.72 is closer to the value predicted by elastic similarity. The extension 

distance value of 0.45 is rather larger than any of the predicted values, 

though is closest to the geometric model prediction. 

It seems that the geometric model predicts the rates of change best. 

However it is interesting to note that both the force and the extension 

distance increase more rapidly with increasing mass than would be 

predicted. One of the features of all the scaling models is that if they are 

faithfully followed by animals of different sizes then all the animals will be 

able to leap exactly the same distance. 

This can be justified as follows (based on Hill 1950): 

The maximum force that can be generated by a muscle depends upon its 

cross-sectional area. 
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(18) 

Where: 

Fnad2 

d is a characteristic diameter 

The extension distance depends upon the length of the hind limb. 

(19) s«L 

Where: 

L is a characteristic length 

Rearranging equation (21) from the previous chapter gives: 

(20) 
2 Fmax S 

r= 
mg 

So, inserting equations (18) and (19) and combining the constants gives: 

d2L 
(21) r« m 

But, no matter what scaling model is being used, d2L is always the 

volume, and the volume is always directly proportional to the mass, so r 

in this equation is constant irrespective of the mass or the scaling model. 
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So, if, as would seem likely, a larger animal wishes to be able to leap 

further than a smaller animal32, then it needs to be more specialized than 

the smaller animal and have correspondingly longer limbs and stronger 

hind-limb muscles so that both Fmax and s will increase faster with 

increasing body mass than simple scaling would predict. This is precisely 

what these results show. 

32Home range size in primates in general actually correlates positively with group mass 
(Clutton-Brock and Harvey 1977). Except for Lemur catta, the animals in this study are 
solitary, so the individual mass is equivalent to the group mass. 
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Predictive Leaping Model 

The previous three chapters have described results obtained from 

measuring the joint positions, frame by frame, in a number of video 

sequences of leaping. To check these results, over 100 graphs showing 

the position of the centre of mass of the animal against time were 

plotted. These showed sufficient similarity in their shape that it was 

decided that it might be possible to produce a general model for leaping 

based on the goal of producing a centre of mass trajectory that matched 

the ones measured: This would then be a predictive model that would 

produce dynamic joint position data from a set of static start conditions. 

This is an important objective since it would allow the analysis of the 

mechanics involved in activities that are rarely, or never seen. For 

example, leaping behaviour in fossil forms, or looking at very long leaps. 

Theory 

The model provides a method for calculating the hind-limb positions 

with time for an animal leaping a given distance. It is designed to be 

useful in situations where the dimensions of the animal are known, to 

calculate the maximum possible leaping distance, by calculating the 

power requirements, and the bone stresses. 

It has been created by considering the design goals of a leaping animal. 

For efficiency, and also maximum performance, the animal should aim to 

move its centre of mass along a straight line path inclined at 45° during 

the takeoff phase of the leap. Any deviation from this path will incur an 

energetic cost. and will lead to a reduced maximum performance. In 

addition, the animal needs to maximize the duration of the takeoff phase 

to reduce the peak forces necessary to produce the required impulse 

since it is ultimately the impulse that the animal can apply to the 
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substrate that will determine the length of the leap. However. at the 

same time, the animal needs to convert the purely rotational motion 

produced by its muscles into a linear thrust, and this becomes 

progressively less efficient as the limb is extended. Internal energy 

should also be minimized by requiring smooth movements of all the parts 

of the mechanism. 

The model incorporates the effects of change in overall centre of mass 

with the change in limb position. but assumes a uniform extension for the 

hind-limb joints, and completely ignores the röle of the tail, the upper 

limbs and torso bending. 33 

The leap model is considered to be driven entirely by extension of the 

hind-limb, and requires, as input parameters, the start position of the 

jump with the hind-limb fully flexed, and an equation describing the 

position of the centre of mass with respect to time. For the simplest 

approach, a constant force formula is used, but the model could have 

been adapted for other equations, and could, indeed, have used force 

plate data had this been available. It Is also assumed that the extension of 

the hind-limb occurs uniformly at each joint, and that at takeoff, the limb 

is approaching full extension. 

The model can best be described by following through the steps used to 

calculate the joint positions at any time during the takeoff phase: 

The hind-limb and torso of the animal are represented as a set of five 

segments linked by rotational joints. First of all, from the start position 

"Given the goals described, there are a number of different ways that the problem can be 
solved. The solution given here was obtained by considering how the movements of the 
limbs would effect the centre of mass and applying an iterative process to obtain the correct 
movement. A simpler, semi-analytical approach was tried initially, but this required 
unrealistic start conditions so had to be discarded. 
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and from the mass properties of the segments (torso, hip, calf, fore-foot 

and hind-foot), the overall centre of mass is calculated. 

O 

Stage one of the model calculation involves the 
measurement of the centre of mass position from the joint 
locations and the centres of mass of each segment at the 
start position. 

The whole structure is then rotated so that the centre of mass is 

positioned on the x axis. This is used as a local coordinate system, with 

the centre of mass moving along the x axis. The results can be converted 

back to the global coordinates as a final step simply by rotating the model 

by 45°. The toe-tip is already assumed to be positioned at the origin. 

Next, the distance of the centre of mass from the origin is measured in 

this position, and in the end position, with all the joints fully extended. 

This gives the maximum possible extension distance available for the 

takeoff. The fraction of this distance to use for the modelling run is set as 

one of the input parameters. 
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ro"N 

Start Extension 
poll, 

The structure is rotated so that the line joining the position 
of the toe tip (0,0) Is on the X axis. The start extension 
distance is the distance of the centre of mass from the toe 
tip. 

From the extension distance, and from the equation used to describe the 

force function, the duration of the takeoff phase is calculated. With this, 

and using the number of output times specified in the modelling 

parameters, a table containing a list of times of interest is built up: these 

are the times for which the program needs to find the positions of the 

joints. Again using the force equation, the distance of the centre of mass 
from the origin is calculated at each of these times. 

However, the positions of the joints cannot now be analytically calculated. 

There is no unique solution to the placement of the limbs since there are 

only two known points - the centre of mass position and the toe tip 

position - and four joints and five links between these points (Hunt 

1978). This can be overcome by using the design goal requiring smooth 

movement of the segments. Each segment is rotated from its starting 
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angle to the zero finishing angle at a rate proportional to its initial angle 

so that they all finish together. 

0 

The angles from the X axis to the segment angles for each 
separate segment are calculated. By rotating the segments at 
a speed proportional to this angle, all the segments end up 
lined up together along the X aids together: a fully extended 
position similar to the takeoff position seen with leaping 
prosimians. 

This needs to be adjusted at each step by recalculating the position of the 

centre of mass and rotating the structure to reposition it on the local x 

aids. 

ýý 
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(9) 

At each intermediate position calculated by extending the 
joints, there may be a discrepancy between the new centre of 
mass position and the X axis. This needs to be corrected for 
by rotating the structure again. 

The exact amount of extension and rotation required to produce the 

desired distance is found by repeatedly performing the calculation with 

different values and gradually improving the precision of the result. The 

algorithm used converges relatively rapidly. Full details of this process 

are given in the technical development section in the second part of this 

thesis. 
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0 

After the extension and rotation has been performed, the 
new position of the centre of mass can be measured. This is 
unlikely to be the required value the first time. so depending 
upon whether it is too large or too small, the whole process 
is repeated with a smaller or larger amount of rotation. 
This cycle is continued until the difference between the 
obtained extension distance and the desired extension 
distance is sufficiently small. 

Once the predictive modelling program has produced a list of joint 

positions at a set of times during the takeoff phase of the leap at an 

arbitrary temporal resolution and precision, this information can be fed 

into the gait analysis program as if it had been measured from an actual 

animal, and the inverse dynamic analysis can be performed to calculate 

the forces and torques that are present during the movement. The 

problems of double differentiation leading to the magnification of high 

frequency errors is minimized by choosing a reasonable compromise 

between precision and sample rate. If the sample rate is very high, then 

the errors due to the numerical nature of the solution and the rounding 

error within the computer can still lead to the actual values being 
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swamped. 30 to 100 samples at a time tolerance of 10.7 produces results with barely noticeable noise in the acceleration curves. 
alts 

Results 

Runs were performed using the mass characteristics for each of animals, but with the figures for the torso made up of f 
the test 

value plus the values for the head, tail and for 
p the original torso 

of the animal was unchanged. The foil 

forearms, so that the total mass 
owing table shows the figures actually used: 

M. murin» L calla C. mayor Y, coquersii O. Qanuttu ! 'orei oot M«@ (kg) 8 -4 7510 
0. mohai 

. 3.7810'2 4.7610-3 4.9010-3 2.2510'2 4 2010'3 cm 
5.73 10'I 5.7310-1 5.73 10'I 1 ä73l0' 

. 

7901 5.73 I0'1 5.7310-1 
(kg. m2) -8 1.2610 5.1410-6 1.9610'7 2.1810'7 "6 1 97 IO . 2.0710" 

Hind. 
foot Y&» 8.75 10 2 3.7810" 4 76103 3 . 4.9010- 1.1310"2 2.5210-3 

cm 1 4.7 810 - 4.78 10 -1 4.7810-1 4 78 10' 1 
l+[OI . 4.781o-1 4.7810-1 
(kg. ma) 

1.32 10 4.9410-6 2.1710'7 2 261o-7 . 1.4110-6 1.3510'7 
Call Ya« (kg) 3.38 10.3 1.4610-1 1 8310-2 2 

cm 
. 1.891()- 6. o810-2 1,3910-2 

4. OI IO'1 1 4.01 10' 4.0110-1 4.01 10-1 6 0610-1 
OI Hol 

(O m2) 
7 3.5710' 1.611()-4 6 86 10'6 

- 6.0810-1 

. 5.3910-6 4.08 10'5 4.15 10$ 
Thigh ]ja« 040 1.03 10-2 4 431()-1 

Cl[ 
. 5.5710-2 5.7410-2 1.37 10' 1 4.2010-2 

I 4.4710' 4.4710'1 4.4710"1 4 4710'1 . 5.6110-1 5.6110'1 mz) 1.2610 6 7M10-4 2.4610-' 2 8310'5 . -4 1.4810 1.7310-5 
Torso Mass (kg) 4.7110-2 +0 2.04 10 2 5610-1 

cm 
. 1 2.6410- 8.94 10-1 1.47 20'l 

5.0010' 1 5.0010-1 5.0010-1 5 0010'1 . 5.0010-1 1 5.0010' m m2) 1.8210-5 9.5810-3 3.0510-4 3 0610-4 ' 1.9410-3 1.1210-4 

The start position was obtained by examining one of the longest 
each species, and using the position where the animal's 

leaps 

hind-limb was 
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maximally flexed. Because of smoothing, this was the mean position from 
three consecutive frames where the animal was stationary. This was 
considered to be a good estimate of a typical leap start posture. The start 
positions used are given in the following table: 

Tip Mid- 
Tarsal Ankle Mass Hip Nose Tip say COM 
Joint 

Y. murinw 00100 

T 

" -9.62 10-3 -1.99 10-2 -5.12 10"4 -4.52 10-2 6.7710'2 -2.26 10 
Y 0010'0 O. 2.6610-3 5,72103 3.4710'2 1.7810'2 8.2210-3 1.9810"2 

L catta z 0.001040 -3.1610-2 -6.0710-2 1.7210-2 . 1.0110-1 2.49 10'1 2.1310"2 
7 0.0010'0 4.8810-3 2.0110'2 1.0510-1 8.5110"2 5.1710"2 6.9510"2 

C. major z 

- 

0.001040 -1.55 10-2 -3.07 10-2 1.7710-2 -5.38 10-2 1.01 10-1 4.7210-3 ry 
0.0010+0 

f 

1.0210"2 2.0810"2 7.0010-2 3.4610-2 1.0210- 2 M41 10-2 Y. coquerrlt z 0.0010+0 . 2.2510-2 -4.00 10-2 1.9810-2 -7.2810-2 1.04 10-1 -5.40 10-3 
7 0.001040 6.79103 1.6410'2 4.9710"2 &60 10-2 4.7110-3 3.7810-2 

0. yanistt Uz 0.00 10+0 -8.96 10-3 -4.46 10-2 2.99 10'2 -6.41 10-2 1.82 10'1 2.1610-2 
7 0.0010+0 2.4110'2 4.4910"2 9.5710-2 9.0210-2 ` 3.0310-2 6.6010-2 

O. moholi z 0.00 10+0 -2.35 10-2 -3.75 10-2 2.71 10-2 -5.20 10"2 8.52 10'2 1.9910-3 
7 0.0010+0 8.5110-3 2.6710'2 4.2910-2 5.80 107f 6.02 10"2 5.27 10'2 

iii uujLcr interesung input parameters for the model are the extension 
fraction of the hind-limb and the distance jumped. The extension 
fractions used were: 50°x6,60%, 70%, 80%ib, 90%, 95%34; the distances 
were: 1 m, 2 m, 4m and 8 m. It was soon clear that the effect of distance 
Is a simple scale factor (see following graphs), so distance effects are only 
shown for a single extension fraction, and extension fraction effects only for a single distance. 

3499% extension fraction was also tried at first, but the torque and power required for this last few percent totally swamped the other values since they all approach 100% extension asymptotically. 
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Extension Effects 

The following graphs show the effects of fractional hind-limb extension 

the model for all the subject animals: 

Microcebus murinus 

0.34 26 

0.32- 
-24 

0.30- 
E 22 v 0.28 

--f- Torque 
0.26 20 Ö --S Power 

° 0.24 L °'. 
18 

0.22- 

0.20-. 16 
40 50- 60 70 80 90 100 

L % Extension 

Graph showing the effect of hind-limb extension on the 
peak torque and the peak power generated about the hip 
joint for Microcebus murinus in a simulated 1m leap at a 
4511 trajectory. 
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Lemur cotta 
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Graph showing the effect of hind-limb extension on the 
peak torque and the peak power generated about the hip 
joint for Lemur catta in a simulated 1m leap at a 45° 
trajectory. 

Cheirogaleus major 

1.7 80 

1.6- 

E 
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70 
1.4 
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1.3 ; -+- Power 

F°- 1.2 
60 

1.1 

1.0 50 
40 50 60 70 80 90 100 

% Extension 

Graph showing the effect of hind-limb extension on the 
peak torque and the peak power generated about the hip 
joint for Cheirogaleus major in a simulated 1m leap at a 4511 
trajectory. 
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Mirza coquerell 

1.7 70 
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E 
z v 

O 
7 
I 
º. 0 

F- 

1.5 60 
v --f- Torque 1.4 n 
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Graph showing the effect of hind-limb extension on the 
peak torque and the peak power generated about the hip 
joint for Mirza coquereli in a simulated 1m leap at a 45° 
trajectory. 

Golago gameltil 
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Graph showing the effect of hind-limb extension on the 
peak torque and the peak power generated about the hip 
joint for Gaiago garnettit in a simulated 1m leap at a 4511 
trajectory. 
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Gologo moholr 
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Graph showing the effect of hind-limb extension on the 
peak torque and the peak power generated about the hip 
joint for Galago moholi in a simulated 1m leap at a 45° 
trajectory. 
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Graph showing the effect of extension fraction on the mass 
specific work done during the leap. In general there is a 
small increase with extension fraction, and it approaches 
100% asymptotically. Galago moholl has a distinct shape. 
with its dip from 80% to 90% extension. 

Varying the extension fraction from 50% to 95% causes a 500/6 change in 

both the peak torque and the peak power required for a given leap. It is 

thus an important parameter in the model. The results for all the animals 

indicate that the peak torque is minimized with an extension fraction of 

80%, but that the peak power is lowest at 70%. The total work curve is 

lowest at low extension fractions (50% in this set of results), but is very 

flat until 95% or greater extension fractions. This may seem to contradict 

the earlier statement that leaping animals need to maximize their takeoff 

distance in order to reduce the forces required to leap. However, what is 

actually happening is that during the last 20% of the leap, the animal 

needs to move the segments of its hind limb through relatively large 
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angles to produce any of the desired longitudinal movement35 and this 

large rotational movement means that the fairly small moments of inertia 

of the hind limb start to become important. The energy required simply 

to rotate the limb becomes prohibitive. It also means that the energy that 

needs to be absorbed to stop the limb from rotating may become quite 

large. This probably does not involve any work on the part of the animal 

since it can be performed by the passive structures such as ligaments that 

limit extension in the limb, but if too much energy has to be absorbed in 

too short a time then the animal is risking injury. 

The work/extension fraction curve for Galago moholt is slightly different 

from- all the others: the value for total work drops from 80% to 90% 

extension. This is due to the combined effects of positive and negative 

work about the hind-limb joints. To produce the figure for the total 

amount of work done in the leap, I have summed together the values for 

the work done at each joint. In general, for all the animals, positive work 

is done at'hip, ankle and mid-tarsal joints, and negative work is done at 

the knee joint and at the contact point. However, for Galago moholt, 

negative work is only done at the knee joint for the larger extension 

distances, and it is this increase in the negative work at the hip ; joint that 

produces the total work reduction. The handling of negative work itself is 

problematic. It can only be cancelled out by positive work elsewhere in 

the system only if the there is some sort of energy transfer mechanism. 

In the case of the hind-limb, such a röle could be postulated for the major 

two joint muscles such as the gastrocnemius muscle and the hamstrings 

35The longitudinal movement depends on the cosine of the current angle of the segment. 
from the direction that the animal wishes to go in. When almost fully extended, this angle 
is small, and for small angles, the cosine curve is very flat: a large change in angle is 
required for a relatively small change in longitudinal movement. 
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(Wells 1988). Otherwise, the negative work can be performed by muscles 

doing positive work. Unfortunately, the metabolic efficiency for negative 

work is quite different from the efficiency for positive work. Example 

figures are 0.22 for positive work (Dickinson 1929) and -1.6 for negative 

work (Abbott and Bigland 1953). Thus, some sort of scaling is required 

for calculating a total energy figure where negative work is considered to 

be important. 

The curves for peak power. peak torque and total work all have different 

shapes, with both power and torque having minima at different values. If 

the relative importance of these factors is known. then an optimal 

extension distance can be calculated. This would require knowledge of 

the forces and powers produced by the major muscles in the leg - 

information which is not available at present. A value of 80% for optimal 

extension distance was chosen largely by inspection. It is the minimum 

value for peak torque, and both the power and work curves are relatively 

flat. An equally good argument could doubtless be made for 75% or even 

70°x6 extension, but because the curves are relatively flat, this would not 

greatly affect the rest of the analysis. 

The shapes of the peak torque and power curves are very similar for all 

the animals. This is probably due to the geometrical approach used to 

obtain the mass properties of the limb segments. 

Distance Effects 

The next set of graphs show the effect of changing the leap distance. As 

can be seen from the- previous graphs, the lowest peak torque occurs 

when the extension fraction is 80%. Since the aim is to model maximum 

leaps. where peak torque required is likely to be the limiting factor, this 

extension fraction has been used for all the subsequent analysis. 
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Microcebus murinus 
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Graph showing the relationship between peak torque about 
the hip joint, the total work and the leap distance for a 
simulated leap of Microcebus murinus with an 80% hind 
limb extension and a trajectory of 45°. 
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Graph showing the relationship between peak torque about 
the hip joint. the total work and the leap distance for a 
simulated leap of Lemur catta with an 80% hind limb 
extension and a trajectory of 45°. 
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Cheirogaleus major 
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Graph showing the relationship between peak torque about 
the hip joint, the total work and the leap distance for a 
simulated leap of Cheirogaleus major with an 8096 hind 
limb extension and a trajectory of 45°. 
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Graph showing the relationship between peak torque about 
the hip joint, the total work and the leap distance for a 
simulated leap of Mirza coquereli with an 809ä hind limb 
extension and a trajectory of 45°. 
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Galago gamettii 
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Graph showing the relationship between peak torque about 
the hip joint, the total work and the leap distance for a 
simulated leap of Galago garnettii with an 80% hind limb 
extension and a trajectory of 45°. 
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Graph showing the relationship between peak torque about 
the hip joint, the total work and the leap distance for a 
simulated leap of Galago moholi with an 80% hind limb 
extension and a trajectory of 450" 
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In this model, distance has a simple linear relationship with both torque 

and total work. In reality, this may not mimic the true effect of distance 

all that closely, since the importance of the various factors involved in 

choosing the extension fraction are almost certainly a function of the 

distance: for short leaps, energetic 'efficiency is liable to be more 

important than the peak torque since the peak torque will be well below 

the maximum the animal can manage, so that a shorter extension fraction 

with its concommitant lower energy cost is more appropriate. 

Torque is only the rotational analogue of force, and in this model, will be 

proportional to it. As shown before, peak force is linearly related to the 

distance leapt. The work done depends on 'the kinetic energy required 

for the leap. This is proportional to the leap distance, again agreeing with 

the results of the model. 

The following graphs show the effect of leap distance on the peak power 

required. These have been plotted on logarithmic axes to show clearly 

that there is a simple mathematical power relationship between peak 

power and distance leapt. 
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Microcebus murinus 
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Graph showing the peak power generated about the hip Joint 
of Microcebus murinus as a function of distance for a 
simulated leap at a 450 takeoff trajectory. 38 

38RA2 in the diagram is the r2 value of the regression line. 
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Lemur cotta 
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Graph showing the peak power generated about the hip joint 
of Lemur catta as a function of distance for a simulated leap 
at a 45° takeoff trajectory. 
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Graph showing the peak power generated about the hip joint 
of Cheirogaleus major as a function of distance for a 
simulated leap at a 450 takeoff trajectory. 
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Mirza coquerell 
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Graph showing the peak power generated about the hip joint 
of Mirza coquereli as a function of distance for a simulated 
leap at a 45° takeoff trajectory. 
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Graph showing the peak power generated about the hip joint 
of Galago garnettii as a function of distance for a simulated 
leap at a 450 takeoff trajectory. 
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Gologo moholl 
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Graph showing the peak power generated about the hip joint 
of Galago moholi as a function of distance for a simulated 
leap at a 45° takeoff trajectory. 

The results for power do not quite agree with those predicted in the 

general relationships. Power can be defined as follows: 

(1) P= Fv 

Where: 

P is the power 

F is the force 

v is the velocity 

From the ballistic equations: 

(2) v cc r 

i3) Focr 
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Where: , 

vto is the takeoff velocity 

r is the leap distance 

Therefore: 

(4) P cc r 

The peak power relationship obtained is always a simple power 

relationship, but the index varies from 1.37 to 1.45. Most of this variation 

is due to the effect of mass. Equation (3) is an approximation because it 

ignores the force required to oppose gravity which becomes more 

significant with larger animals. However, when the power index is 

plotted against mass, there is still some variation in the values which 

must be attributable to the other modelling parameters: 
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Graph showing the relationship between the mass of the 
animal and the index of the power relation between the 
peak power and the distance leapt. No attempt has been 
made to fit a curve to the points, since any measure of 
significance would be largely meaningless. However the 
trend indicated is very clear: that larger animals have a 
slower increase in peak power demands for longer leaps. 
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This next graph shows the mechanical efflciency37 calculated from the 

model as a function of mass: 
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Graph showing the relationship between the mass of the 
animal and the mechanical efficiency of the leap. The 
mechanical efficiency has been calculated as the ratio of the 
useful work performed to the total work done by the animal. 

This graph indicates that the smaller animals are able to leap more 

efficiently than the larger ones. The larger animals are less efficient 

mechanically because most of the energy input that does not do useful 

work in accelerating the centre of mass of the animal to the required 

takeoff velocity is used to rotate the body segments of the animal. The 

internal rotational energy is dependent on the moments of inertia of the 

segments, and since moment of inertia depends on the 5th power of 

linear dimensions38, this cost is going to be higher for larger animals. 

37The mechanical efficiency is the mechanical work done in the model divided by the 
amount of useful mechanical work obtained. 
38The moment of inertia of a rod is proportional to the mass times the length squared. The 
mass is proportional to the volume, and the volume depends on the cube of linear 
dimensions. Therefore, the moment of inertia depends on the linear dimension to the power 
five. This relationship will only hold precisely for geometrically scaled animals. 
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Mechanical efficiency, however, provides a very incomplete picture. What 

concerns the animal more is the metabolic efficiency of the action. This 

is the metabolic (chemical) energy required to perform an amount of 

useful work. The efficiency for converting metabolic energy into useful in 

ideal conditions is about 0.22 (Dickinson 1929) However, he and others 

have shown that this efficiency depends on a large number of other 

factors. When looking at animals rather than humans, the efficiency of 

obtaining energy from food also has to be considered. The real question is 

the amount of food the animal needs to eat to perform one Joule of useful 

work. Metabolic efficiency for digestion also depend on various factors 

including diet, but is generally higher in larger animals (Martin et al. 

1985). 
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Time Dependence 

The following graphs show the time dependent data' for each joint and 

segment in the hind-limb. As before, an extension fraction of 80% has 

been chosen, and the leap distance is 1 m. This latter choice does not 

effect the shapes of the curves, though the former does. 

Microcebus murinus 

1.0.25 

E .ý Z 0.15 /* 0 
y 0 1 ------------- i 

- de 

. 
b 
o 

0.05 
_ý- ----" -' ! ,ý 

-0.054 
0.02 

. 
0.04 0.06 

Time (s) 

C. P. 

-7---M. T. J. 

-----"" Ankle 

------ Knee 

-------Hip 

Graph showing the torque about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 45° in 
Microcebus murtnus. s 

39M. T. J. is an abbreviation for mid-tarsal joint. This is a descriptive term for the joint 
complex halfway along the foot. C. P. is the contact point at the tip of the toe. 
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Graph showing the power about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 450 in 
Microcebus murinus. 
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Graph showing the bending moment about the segments in 
the hind-limb for a simulated 1m jump at a takeoff 
trajectory of 45° in Microcebus murinus. 
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Graph showing the torque about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 45° in 
Lemur catta. 
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Graph showing the power about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 45° in 
Lemur catta. 
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Graph showing the bending moment about the segments in 
the hind-limb for a simulated 1m jump at a takeoff 
trajectory of 45° in Lemur cotta. 
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Graph showing the torque about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 45° in 
Cheirogaleus major. 
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Graph showing the power about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 45° in 
Cheirogaleus major. 
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Graph showing the bending moment about the segments in 
the hind-limb for, a simulated 1m jump at a takeoff 
trajectory of 45° in Cheirogaleus major. 
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Graph showing the torque about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 4511 In 
Mirza coquerelL 
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Graph showing the power about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 4511 in 
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Graph showing the bending moment about the segments in 
the hind-limb for a simulated 1m jump at a takeoff 
trajectory of 45° in Mirza coquerelL 
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Graph showing the torque about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 45° In 
Galago garnettiL 
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Graph showing the power about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 450 in 
Galago gamettii. 
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Graph showing the bending moment about the segments in 
the hind-limb for a simulated 1m jump at a takeoff 
trajectory of 450 in Galago gamettii. 
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Graph showing the torque about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 45° in 
Galago moholi. 
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Graph showing the power about the joints in the hind-limb 
for a simulated 1m jump at a takeoff trajectory of 450 in 
Galago moholL 

A study of leaping in prosimlan primates 



Predictive Model Page (128) 

1.2 

Z 0.8 v 

0.6 

E 0.4 
x 0.2 

0 
0 0.02 0.04 0.06 0.08 

Time (s) 

Forefoot 

-----Hindfoot 

----"--" Calf 

-'---' Thigh 

----"'Torso 

Graph showing the bending moment about the segments in 
the hind-limb for a simulated 1m jump at a takeoff 
trajectory of 45° In Galago moholl. 

One of the very important assumptions of the model is the smooth 

extension at each joint in the hind limb. This is certainly an over 

simplification. The joints do not all extend together, and this will effect 

the results quite considerably. Nor is the actual force applied constant 

and this again would alter the shapes of the curves. The torque curves 

can be visually divided between two groups: Galago moholi and Mirza 

coquereli lack the two stage increase of torque with time and do not have 

the constant torque plateau seen with the other animals. Whether this is 

indeed a feature of the limb configuration or simply due to the takeoff 

position chosen is unclear. The power curves are much more convincing, 

with the power generated about each joint increasing almost linearly with 

time as the animal's velocity increases and the forces required remain 

constant. As mentioned before, the upward curve at the end of the takeoff 

is due to the effect of internal energy to rotate the segments in the hind 

limb. 

More importantly. all the curves indicate the predominance of the hip 

joint in powering the leap. It generates the highest powers, and, from 
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the area under the power/time curve, does the most work. This is not 

unexpected from a design point of view. The hip is the most proximal 

joint, so that having a large muscle mass around it will have less effect on 

the total moment of inertia of the limb. However, at least in the case of 

Galago moholi, the vastus lateralis muscle is by far the largest muscle In 

the hind-limb, but is a knee extensor (Günther 1989). This would lead to 

the conclusion that the prime motive force for a leap in this Galago 

species would be extension around the knee joint which contradicts the 

findings from the model. However, of all the animals simulated, G. moholi 

is the only one where the knee performs any appreciable amount of 

positive work. In the other animals, only negative work is performed 

about the knee joint. In a case where the main motive muscles in the leap 

were the gastrocnemius muscle which, extends the ankle and flexes the 

knee, and the hamstrings, which extend the hip and flex the knee, this 

would be unsurprising since these two joint muscles would allow the 

required energy transfer so that the negative work is simply subtracted 

from the positive work required at the ankle and hip (Wells 1988). 

Verification of this requires the contraction forces and movements to be 

measured or modelled in the muscles themselves. 

The graphs also show a significant rotational torque about the contact 

point between the animal and the substrate. The centre of mass of the 

animal is clearly not directly above the support area and without some 

form of torque here the animal will fall flat on its face! The only way to 

reduce this torque would be for the animal to accelerate off in a parabolic 

path during takeoff with the toe-off point being timed to coincide with 

the moment when the animal is inclined to the desired trajectory. This 

will, however. leave the animal with an unwanted angular velocity, and 

require very much more precise timing and coordination during takeoff. 
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In practice, most of the required torque will probably be provided by the 

action of the forelimbs, and a combination of timing and torque about the 

forefoot used to obtain the correct trajectory and minimize any rotational 

velocity on takeoff. In addition, a torque can be applied by the hind-feet 

gripping the substrate. The importance of this torque applied to the 

substrate is one of the things that cannot be measured with standard 

force plates, since they can only record the torque about a vertical axis. 

Model Performance 

To review the results of this exercise: does the predictive leaping model, 

as described here, provide any useful insight into the mechanism of 

leaping, and how might it be improved In the future? It does produce 

sets of movements that look convincing when animated on the computer 

screen, and it is relatively easy to calculate any of the desired dynamic 

results from the data produced. The results above were obtained by 

putting the data into my own gait analysis program, as described earlier, 

but they could equally have been used as an input dataset for a 

commercial, mechanical engineering dynamic analysis program such as 

DADS, or ADAMS. These typically allow much more detailed modelling of 

elastic and damping elements as well as simple force generators, and 

bending stresses are handled much more comprehensively, with links 

into finite elements packages such as ANSYS to cope with irregular 

shapes. My previous experience using one of these packages (DADS) in an 

attempt to analyze measured kinematic data was that they are not set up 

to cope with the kind of levels of uncertainty that are common when 

dealing with biological phenomena, and hence produce meaningless 

results. However, given the much higher quality of the data from a 

predictive model, I am quite sure that they would function perfectly. 
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The form of the -model shown here is necessarily rather simple, but 

certain extensions could be incorporated which would improve 

confidence in the results obtained: 

Firstly. real force plate data could be used to calculate the position of the 

centre of mass with time. Combined with a film record of the takeoff 

posture to get the starting position, this would allow a very much higher 

temporal resolution than film with very much less work (at least on the 

part of the experimenter: doing the calculations would involve quite a 

large amount of computing effort) and the precision of a force plate is 

very much higher than the accuracy with which joint positions can be 

measured. 

Secondly, the time courses of the extensions of the various joints in the 

hind-limb can be 'tweaked' to more accurately reflect those observed in a 

subject animal. These will need to be coded into the model as functions 

describing in which parts of the takeoff phase they are more or less 

rapidly extending than normal. They could be weighted to act uniformly, 

or to unusually fast or slow in the beginning, middle. or end of the takeoff 

sequence. 

And thirdly, the kinematic results produced by the model can be put into 

a commercial inverse dynamic modelling package which can be set up to 

use linear force producing engines attached between to the links and 

acting over pulleys rather than the much simpler rotational torque 

producing engines that I have used. Passive elements can also be 

incorporated, and it would also be possible, this way, to model the effects 

of the elasticity of the substrate. 

Better mass distribution data would also be a great help. This is not 

particularly difficult to measure, but does render the animal body far less 
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useful for any other anatomical work, and as carcasses of these animals 

are particularly difficult to obtain, little information of this sort is 

available. 
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Discussion 

This section discusses the points arising from the chapters of this thesis 

in the order they were raised. 

Kinematographic Measurements 

Video film was used exclusively as the source of the raw kinematographic 

data. This was viewed frame by frame, and points of interest were 

measured. This approach has a number of associated difficulties: 

The major problem with video as a recording medium is poor resolution. 

Photographic film has an extremely high resolution, and each frame can 

be easily scanned into a computer at a resolution of 4096 by 4096 or 

higher. Compare this to a normal video signal where the best that can 

generally be obtained is 768 by 576; 512 by 512 is very much more 

common, and in either case this is the combination of two fields which 

need to be separated for still motion analysis. The images I used had 

resolutions of 512 by 256. In addition, the range of contrasts that can be 

recorded is also inferior for video. 

The consequence of this is that, to get an image that shows enough detail 

to be measured, the field of view needs to be kept tightly cropped around 

the area of interest. This is a problem with leaping: the takeoff phase is 

relatively compact and the camera needs to be zoomed in so that the 

subject takes up most of the field. This means that the animal very 

quickly leaves the field of view after it has taken off. Whatever technique 

is used, differentiation loses several frames from each end of the 

sequence, so unless the film includes at least 2 frames after takeoff, no 

velocity or acceleration data can be obtained for the takeoff point. A 

number of my sequences were rendered useless because of this. 
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In addition, the ability to use video cameras in low light conditions is 

something of a mixed blessing. While the camera will indeed continue to 

function, the quality of the resultant image degenerates enormously. The 

increased gain required produces a lot more noise on the image, and 
because the light level is uniformly low, the contrast of the image falls. 

Compensating for this further increases the noise level. There is, in fact, 

no substitute for proper lighting. Even image intensifiers cannot avoid 

excessive image degeneration with current technology levels, and so for 

work which requires the level of detail required for accurate still frame 

measurement, adequate, well placed lighting, is essential. 

Filming rate is also an important variable but it needs to be assessed in 

the light of experience. Slow filming rates will tend to underestimate 

velocities and accelerations. High rates will lead to greater inaccuracies 

in velocities and accelerations due to measurement errors occurring at 

higher effective frequencies. In addition, measurement is more 'time 

consuming. The main advantage of using higher filming rates is that it 

allows for more extensive smoothing, and the precision with which 

events such as toe-off can be measured is greater. 

Leaping Trajectory 

The results for leaping trajectory are unequivocal. The animals I studied 

did not leap at a trajectory of 45° as had been expected. This has 

important implications. It implies that energetic efficiency is not of 

prime importance for these animals and that they are prepared to forego 

the benefit of a reduced energy requirement in favour of some other 

benefit. 

A study of leaping In prosimian primates 



Discussion Page (135) 

From the present study, there is no way of quantifying the other costs 

and benefits associated with the choice of leaping trajectory, but there 

are a number of possibilities: 

Firstly, flatter trajectories are quicker. Therefore by leaping at a 

trajectory less than 45°, a prosimian can move through its habitat faster. 

This will allow it to spend less time travelling between discrete food 

patches or from sleeping sites, giving it more time for beneficial activities 

such as foraging, territory defence and courtship. There is a tradeoff 

here: the faster the animal moves, the more expensive it becomes to 

move a unit of distance, and there is only limited benefit to be gained 

from the time saved. To investigate this further, it would be necessary to 

derive cost/benefit functions for the various activities that the animal 

performs with respect to the amount of time it spends doing the activity. 

For example, an animal's territory size or quality (for example, its food 

density) may be directly related to the amount of time it has available for 

territorial defence behaviour. This has been shown to be the case for the 

golden-winged sunbird (Gill and Wolf 1975). Knowing all these cost 

functions would allow an optimum travelling speed to be calculated. 

An associated factor to increased travelling speed for a flatter trajectory is 

that the time spent in the air is shorter. In general, raptors are the 

primary predator of small (<2kg) arboreal primates (Cheney and 

Wrangham 1986). However. because the presence of an observer tends to 

reduce the risk of predation, predation tends to be inferred rather than 

observed. For example, in a two year study of Galago moholi, for a 

population of 75 individuals, 3 predations were observed, 7 were 

suspected and the predation rate was estimated to be in excess of 10 per 

year (Bearder and Martin 1980). Thus, ý one might suppose that the risks 

of aerial predation would be lower when moving through undergrowth, 
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but much higher when the animal needs to leap across an exposed 
discontinuity in the substrate. It may therefore be extremely important to 

be in flight for as short a period of time as possible to minimize the 

danger. This predation argument would also go some way to explain the 

leaping trajectories chosen by Galago tnoholi. This animal was observed to 

leap at a variety of trajectories, though it was the only animal to average 

about 45° for all its jumps. This variation could be a mechanism to 

produce leaps that are more difficult for a predator to predict. If the prey 

animal always uses the same trajectory. then the raptor, seeing the 

animal preparing to leap across a gap, could judge the flight path of the 

animal and intercept it more easily. 

In addition, animals that habitually live in the undergrowth may be so 

used to having to leap in a flat trajectory to avoid other branches that 

even in situations where there is room they may be insufficiently 

behaviourally flexible to choose to use a more energetically efficient 

trajectory. Indeed, they may be so specialized for their chosen 

environment that they can no longer get into the correct posture for a 

4511 leap, or again, doing so may be so unnatural to their bodies adapted to 

flat trajectories that they may not be able to leap efficiently at this angle. 

While this may be the case for frogs where leaping for height gain is 

unimportant, it seems unlikely for the animals studied here since all 

were observed leaping nearly vertically simply to gain height on 

numerous occasions. 

There may be other environmental effects. It is more expensive to leap 

from a substrate that distorts appreciably from the forces exerted during 

takeoff due to the energy lost performing the distortion. In the case of an 

animal leaping from a horizontal branch, this distortion is most likely to 

be a shear occurring due to the bending moment from the reaction force 
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of the leap. This bending moment is only from that component of the 

reaction force that acts perpendicularly to the orientation of the branch. 

So, for a horizontal branch, the steeper the trajectory for a given leap 

distance, the more the branch is likely to bend. 40 So, for a given branch 

flexibility, the optimal leaping angle will be somewhat less than 45°. If 

the branch Is not horizontal, then the picture becomes even more 

complicated. A branch inclined at 45° will get virtually no bending torque 

from an animal leaping off at 45°. Practically the only forces will be 

compressive, and assuming the branch does not buckle, this is likely to 

have very little effect since the force required to appreciably compress a 

branch longitudinally is very high indeed. The effects of substrate are 

likely to be rather more important for larger animals due to the larger 

forces involved, and may well encourage these animals to use larger 

supports closer to the main trunk of the tree than to venture out to the 

periphery when contemplating leaping. This is precisely the sort of 

behaviour seen in Indriidae, the largest and the most habitual leapers 

among the prosimians (Oxnard et al. 1990). 

The other aspect of leaping trajectory concerns performance. All the 

animals, apart from Galago moholl which habitually leapt at 45°. leapt at 

closer to 45° as the distance they were jumping increased. Given that 

there are reasons to choose flat trajectories, this increase would be 

expected. For longer leaps, the animal has no choice but to consider the 

importance of efficiency because there are limits to the possible amount 

of energy an animal can put into a leap, and to get as far as possible on 

that amount of energy requires the animal to use the optimal energy 

40The Y component of the reaction force is actually approximately proportional to 91 0 
sin20 
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efficient trajectory. For all these arboreal primates, it is easy to envisage 

circumstances when being able to manage an extremely long leap is 

enormously advantageous. For instance, if there is a large gap between 

two trees, a single leap is almost certainly a far preferable option than 

laboriously climbing down one tree trunk, running across the ground, and 

climbing up the other tree. In general, the ground is an extremely 
dangerous place for these animals, and the loss of potential energy means 

that this option is going to be energetically costly. 

However, the substrate can also effect maximum performance. If the 

animal needs to pause before a long leap, which is the case for all the 

animals I watched when they were at all uncertain about the jump, then it 

cannot retain kinetic energy from a run up. However, provided the elastic 

properties of the branch are suitable, it can use it as a springboard, 

storing energy from a small preparatory bounce to add to the final larger 

leap (Günther et al. 1991). This is expensive because the branch will 

absorb an appreciable proportion of the energy from this first jump, but It 

may allow a greater maximal leap. In addition, the preparatory bounce 

will store energy in internal elastic structures, but although this has been 

found to be important in, for example, kangaroo rats (Biewener et al. 

1981), its relative importance in prosimians is, as yet, unknown. 

Apart from the changes in trajectory, there do not appear to be any other 

major alterations in the style of leaps with distance. Physics requires an 

increase in force and a concurrent reduction in the duration of the 

takeoff phase with increasing leap distance and this is exactly what is 

seen. There is an increase in the extension distance of the hind-limb, but 

this is not marked, and can be considered to be fairly constant over the 

jump distances observed. The fact that the observed parameters agreed 

reasonably well with the predicted ones is indicative that the 
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measurements obtained were correct. The values for forces, however, 

depending as they do on differentiating the measurements twice to 

calculate accelerations. are rather less certain. 

The obtained force curves show an increase in force on the substrate in 

addition to body weight while the animal is flexing its hind-limbs in 

preparation for takeoff. This must be due to the animal allowing its 

centre of mass to fall due to the force of gravity. It can then apply a force 

to decelerating this fall and subsequently to accelerate the animal 

upwards in the takeoff phase of the leap. One can only assume that this is 

a mechanism to pre-tense the leg muscles by getting them to do some 

negative work before they do useful work in takeoff. This will overcome 

the problem of the relative slow build-up of tension in muscles: 

mammalian muscle fibres take somewhere between 10 and 100ms to 

generate their maximum tension depending on the speed of the muscle 

fibres (Schmidt-Nielsen 1983). It will also give them the chance to store 

some energy in elastic structures in the hind-limb without the action of 

antagonistic muscles to prevent movement. It is quite possible that 

antagonistic muscle action is also involved, but inverse dynamic analysis 

can only give information on resultant forces and gives no information as 

to how they are made up. 

Species Differences 

Most of the differences observed between the different species can be 

attributed mainly to their mass difference. However Galago moholi stands 

out from all the others in a number of ways. Firstly, it was seen to leap 

habitually at the energy efficient angle of 45°. Secondly, the shape of 

curves produced by the predictive model for this animal was qualitatively 

different from the others: specifically the minimum in the total work 
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against extension graph. and the absence of appreciable amounts of 

negative work about the knee joint. Both these observations fit with the 

fact that Galago moholt is a far more enthusiastic and frequent leaper 

than the other species (Oxnard et al. 1990). This may mean that energy 

efficiency is a greater concern. Cheirogaleus major is noteworthy in being 

the least capable leaper of the group. This is indicated by the fact that it 

needs to change its leaping style to a more energy efficient one at shorter 

distances than the other animals. 

Scaling Models 

There are various models used to explain the changes in body 

proportions with size. Leaping, however, is not a continuous activity like 

walking or running, so it does not have a characteristic velocity, and 

dynamic models, such as the 'dynamic similarity hypothesis' (Alexander 

and Jayes 1983) are not applicable. However the geometric (Hill 1950), 

elastic and breaking strain (McMahon 1973) similarity models are 

applicable. None of these make any difference to the predictions about 

the power relation between force and time and body mass: they all 

predict the same relationship which the experimental data fit reasonably 

well. However each does predict a different rate of change change in 

hind-limb extension distance with mass. There is conflicting evidence 

about whether the geometric similarity model is a better predictor of 

limb length than the elastic similarity model. Comparison of limb bone 

dimensions from animals as different as shrews and elephants has 

indicated a geometric relationship (Alexander et al. 1979), but analysis of 

other datasets has supported the elastic similarity model (McMahon 

1984). In fact, none of them explain the observed results in this study at 

all well. It is not an exhaustive sample, but the indications are that the 

extension distance of the hind-limbs increases more rapidly than would 
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be predicted by any of these models. These results agree with more 

general observations on hind-limb, length in prosimians (Emerson 1985). 

which indicate that the larger animals are more highly adapted for 

maximum leap distance. 41 

In this context, it must be remembered that all the scaling models 

predict that the maximum leap distance for similarly designed animals is 

the same irrespective of body mass. By having longer than expected hind- 

limbs means that larger animals can leap further. This does not seem to 

be an unreasonable state of affairs, but why would a larger animal need to 

be a able to leap further? By expending adaptive effort on being a better 

leaper, it must be suffering in other respects, such as being a less 

efficient walker, or a less rapid runner, so there must be reasons for this 

increased capability. Increased limb length is not going to effect the cost 

of leaping very much42, but it will increase the length of the maximum 

leap that can be achieved. If the main role for long leaps is for crossing 

gaps in the substrate, then we may postulate that the discontinuities for 

larger animals are themselves larger. The tree spacing will be the same 

for all sizes of animals, but the size of the gap between trees depends on 

how far out along branches an animal can get. Smaller animals can get 

much further before they run the risk of bending or breaking branches, 

and they need to get less far towards the trunk of the target tree in order 

to get to a support suitable for landing on. Depending on the diameter 

41There are important limitations in this line of reasoning. There may be no adaptive 
significance at all in the extra length of the hind-limbs of larger prosimians. The small 
ancestral leaping form may have obtained its long legs by an increase in their growth rate 
during infancy. This could lead to an even greater increase in limb length in subsequent 
larger forms due to their increased duration of infancy. If this extra hind-limb length has 
no adaptive value (that is, it is neutrally selected) then it will tend to persist. 
42If it has any effect, increasing the length of the hind-limbs is most likely to decrease the 
energy efficiency of leaping shorter distances. The main excess cost is due to the internal 
energy of the rotating limb segments. The internal energy is proportional to the moment of 
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distribution of the branches of the tree, this may make a very big 

difference in the effective distance that the animal needs to cross. As 

mentioned before, the largest leaping prosimians, the Indriidae, leap 

preferentially from larger branches and from the trunk. This may well be 

because they are too big to reliably leap from branches away from the 

trunks. This sort of behaviour will appreciably increase the distances 

involved. Also, the smaller animals in this study can easily move through 

undergrowth tangles rather than leap across gaps much of the time. This 

positive allometry in hind-limb length appears to be peculiar to 

prosimians. Data for other jumping mammals, and even including other 

jumping vertebrates show a straightforward geometric increase in hind- 

limb length with body mass (Emerson 1985). 

Predictive Modelling 

Predictive models, in all their various forms, provide, in my opinion, one 

of the best way forward for studies of locomotion. Obviously their results 

need to be compared with those measured by more traditional methods 

and the models continuously refined to produce as convincing a set of 

output data as possible. Their advantage is that all the assumptions made 

have to be clearly set out at an early stage and their effects can be seen 

directly. Although, with a great deal of care, and extremely precise 

measurements, it is possible to calculate the torques required around the 

joints of the hind-limb by using experimentally derived kinematic data 

and inverse dynamic analysis, this does not necessarily reveal very much 

about the underlying mechanisms. However, if the same results can only 

be obtained with a predictive model using particular goal criteria, then 

inertia of the limb segment and this depends on the square of the length. Longer limbs are 
likely to have a higher moment of inertia per unit mass because of this. 
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you have some evidence that the goals chosen might well be those that 

are have been selected for in the animal. 

In addition predictive models are the only way to answer classic "What if 

type questions. What if a loris, which is never seen to leap, did actually 

try to leap a metre? Predictive modelling would allow us to calculate the 

required torques generated round its hind-limb joints and the bending 

stresses applied to its skeleton. Then, if the answer to the question is 

that its tibia would break, or that its hip extensor muscles would not be 

able to provide the necessary power, the likely reason for not being able 

to leap would be clearly identified. 

Similarly, a sub-fossil prosimian, such as Megaindri could be made to leap 

a variety, = of distances to see how its maximum - power and torque 

requirements compare with those of other prosimians. This will' allow 

the estimation of its possible maximum leap distance, which is extremely 

informative about its lifestyle. 

Extending the idea further. using more sophisticated models. the effects 

of mechanical units other than simple links and torque generators could 

be seen. Does having an elastic element in the Achilles tendon lead to 

greater efficiency/performance? What feedback mechanisms are required 

to produce the observed movement in a controlled fashion? The effects of 

altering the input parameters could be analyzed by using Monte Carlo 

approaches, where each of the parameters is sampled from a range of 

possible values and the model is run a large number of times. 
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Conclusion 

In conclusion, the mechanics of leaping in prosimian primates are not as 

straightforward as might have been thought. The expected optimal 

energy efficiency model is quite clearly not generally true except in 

certain special circumstances. The animals are seen to leap in flatter 

trajectories almost certainly due to the effects of non-mechanical factors. 

The exception to this is Galago moholi, which does appear to leap 

efficiently with respect to energy consumption. 

The detailed internal workings of the limbs during a leap are much closer 

to those predicted by simple biomechanical requirements. The centre of 

mass of the animal moves in a straight line during the takeoff phase of the 

leap. Because of pre-tensioning of the muscles immediately before the 

takeoff, the force applied to the substrate is relatively constant during 

takeoff, though it falls off very rapidly as the limb becomes fully extended. 

Predictive modelling reveals that this is because attempting to get any 

worthwhile push at the limit of limb extension is unrealistically expensive 

because of the amount of internal energy required to rotate the segments 

of the hind-limb. The degree of extension of the hind-limb is not greatly 

increased with leap distance, but the effect on the takeoff duration and 

peak force are very much as predicted by simple mathematical analysis. 

The extension distance increase with mass is noticeably bigger than 

would be predicted by any of the popular scaling models. This non- 

geometric scaling indicates that there is some selective pressure for 

larger prosimians to have longer hind-limbs. One possible reason for this 

is that the larger animals have further to leap since they can only leap 

from large supports that are closer to the trunks of the trees. 
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The predictive model with its goal oriented approach does appear to give 

sensible values for leap parameters. It indicates that leaping is mainly hip 

driven and that for all the animals, except again Galago moholi, only 

negative work is performed around the knee joint. It also shows that 

torque about the takeoff point Is important for a stationary leap. Whilst 

there are limitations in how far the results obtained from the model can 

be taken, it could certainly be used to provide answers to a number of 

postulated questions about behaviours that are not observed and further 

work will be pursued in this area. 
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Technical Development 
A suite of programs was developed for this project. The main gait analysis 

was done using a program called gap (gait analysis program) running on a 

Hewlett-Packard Unix workstation. The image grabbing was done using 

digit running on a PC clone. A program called stretchpic was used to 

enlarge the grabbed frames for analysis. This also ran on the workstation. 

The predictive modelling program. Leaping Model, runs on a Macintosh. 

This section describes how to use each of these pieces of software, and 

the following section describes the technical details of the design and 

implementation of the programs. In addition. It also describes the 

specialized interface between the computer and the video recorder that 

was also developed specifically for this project. 
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User Guide 

gap 

This program is the main kinematic analysis tool. It runs on the 

HP9000-350-SRX and the HP9000-360 TurboSRX computers fitted with 

24 planes of display memory and at least 2 overlay planes. It also requires 

a knob box and a button box. Installation requires at least some familiarity 

with the intricacies of the Unix operating system, but using the program 

requires no knowledge beyond the ability to create directories and move 

around in the directory structure. The storage requirements for the 

program are minimal but with each image requiring over 750kbytes, 

considerable hard disk space is needed for image storage. The program 

requires the Starbase graphics system and the X window system (version 

11) to be installed. In addition, recompilation requires aC compiler, a 

FORTRAN compiler and the NAG numerical libraries. 

Installing the program 

The program consists of a single executable file called gap. This should 

be placed in a directory on the user's path. 43 If the program needs to be 

recompiled, this is done by typing make in the directory containing the 

source code. The file Makefile may need to be edited so that it moves 

the new version of gap to the correct destination. If system-wide access 

to the program is desired, it should be put into the /usr/bin directory 

since this is on each user's default path. 

43The path is a list of the directories that are searched for an executable file. It is set through 
the environment variable PATH. 
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The program must be run from a directory containing the following sub- 

directories: analysis, frame, limb, node, picture. These are where the 

program expects to be able to put its output files and read its input files. 

This structure is necessary to keep track of all the files that are involved 

in an average analysis session. I used a different directory for each animal 

I was studying, and each of these contained the five required sub- 

directories. 

/users/bill/gait/data C. major analysis 

frame 

limb 

node 

picture 

t 
G. moholi analysis 

frame 

-limb 

node 

picture 

An example directory structure for gap. The program should 
be run by typing: 

gap. J 

whilst in one of the directories marked with a ". 
Alternatively. It can be run from elsewhere. and the 
working directory can be changed (using the "change 
working directory" option) to one of the marked directories. 

For analysis, the program requires: a model definition file; a calibration 

image file and a set of image files representing sequential frames in the 

film to be analyzed. The model definition file should be put in the limb 
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sub-directory and the image files (calibration and sequence) should be 

put in frame. If sequence position data is to be used that has been 

calculated from elsewhere then it should be put in node which is also 

where gap will put any it produces. The directory analysis is used for 

any data export files and picture is used for screen dumps of animations 

and graphs. 

In- Unix, all user interaction is performed through special device files that 

are created in the directory /dev using the program mknod. The 

program requires the following special files to be set up: 

Device File Description 

/dev/crt Accesses the image planes of the display. 

/dev/bbox Accesses the button box 

/dev/knobl Accesses the bottom row of three knobs 

/dev/knob2 Accesses the middle row of three knobs 

/dev/knob3 Accesses the top row of three knobs 

In addition, X windows needs to be set up to run in the overlay planes of 

the graphic display. This involves the creation of a /dcv/crto special file 

and setting up an X*screens file with /dev/crto as its first line. X Itself 

requires special files for the mouse and keyboard. These are created 

automatically, but /dev/locator, for the mouse may need, to be altered 

when the knobs and buttons are attached. All the special files needed 

depend on the exact configuration of the hardware, including the order 

of devices on the keyboard bus and the presence or absence of the dongle 

module. 44 

44FU11 details about installation of Unix device drivers, Starbase and X11 can be found in 
the relevant HP 9000 series 300 manuals (Hewlett-Packard 1988a, b, c, e) 
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Also, the following Unix environmental variables need to be set: 

SB_OUTDEV to /dev/crt and SB OUTDRIVER to hp98721 or hp98731 

depending on the graphics accelerator being used. These are the device 

and driver used in the Starbase gopen statement and they are usually set 

in the user's profile file, or they can be set by hand at the start of each 

session. 

For example: 

export SB OUTDEV=/dev/crt 

export SB OUTDRIVER-hp98721 

Setting up a model 

Setting up the model requires the creation of a . limb file. This is a text 

file that is used by gap to define the nodes and segments in the model. 

how they are linked together. and the mass properties of the segments. 

However, before this file is created, the model itself needs some 

consideration: 

First of all, the positions (nodes) on the subject that are to be measured 

need to be named and numbered. Then the nodes need to be linked up 

with segments. Nodes that link segments are joints. Each segment is 

defined by two nodes: one at each end. Measured nodes do not have to be 

associated with a segment, but each segment must be defined by two 

nodes. A node can be used as a defining point for any number of 

segments. The segments also need to be named and numbered. The 

program calculates position information for nodes and angle information 

for segments. 
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The . limb file has been designed so that it is easily produced or read by a 

FORTRAN program where file manipulation in text mode is somewhat 

limited, but normally, it is produced using a text editor such as vi or 

emacs, or alternatively, by any word processor that can save files as 

unformatted text. The line spacing is not at all important since all the 

character strings are delimited by single quotes, but the suggested line 

spacing makes the file relatively easy to read. 

Here is an example . limb file: 

'Microcebus murinus limb file (Bitters)' 
10 
0 'Forelimb tip' 
1 'Elbow' 
2 'Shoulder' 
3 'Toe tip'. 
4 'Mid-tarsal joint' 
5 'Ankle' 
6 'Knee' 
7 'Hip' 
8 'Nose tip' 
9 'Tip of tail' 
9 
0 'Lower arm' 0 1 3.13E-03 5.00E-01 2.35E-07 
1 'Upper arm' 1 2 2.88E-03 5.18E-01 1.77E-07 
2 'Forefoot' 3 4 8.75E-04 5.73E-01 -1.26E-08 
3 'Handfoot' 4 5 8.75E-04 4.78E-01 1.32E-08 
4 'Calf' 5 6 3.38E-03 4.01E-01 3.57E-07 
5 'Thigh' 6 7 1.03E-02 4.47E-01 1.26E-06 
6 'Head' 8 2 6.38E-03 5.00E-01 7.30E-07 
7 'Torso' 2 7 3.26E-02 5.00E-01 1.82E-05 
8 'Tail' 7 9 2.19E-03 3.78E-01 2.33E-06 

The first line contains a title that is used to provide more information 

about the contents of the file. It is delimited by single quotes45. The 

second line is an integer (10 here) that specifies the number of nodes in 

the model. The nodes are named on the next 10 lines: each of these lines 

starts with an incremental integral identification number running from 0 

45The single quote is the ASCII value 39. This should not be confused with the opening and 
closing single quotes provided on the Macintosh system whose ASCII values are 212 and 213. 
These are not interchangeable, and do, in fact, look quite different: ' as opposed to' or'. 
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to 9, and is followed by the actual name of the node. The names are again 
delimited by single quotes. The next integer, in this case 9, is the 

number of segments defined. The 9 subsequent lines contain, first of all, 

an incremental identification number. This is followed by the name of the 

segment in single quotes, then the identification numbers of the two 

joints at the ends of this segment. For the purposes of the program, this 

segment is considered to extend from the first numbered joint to the 

second numbered joint. So, in this case, the lower arm, runs from the 

forelimb-tip (joint 0) to the elbow joint (joint 1). The next number on the 

line is the mass of this segment in kg, and the next is the position of the 

centre of mass as a fraction of the distance from the first joint to the 

second joint. In other words, a value of 0 would indicate that the centre 

of mass was at the first joint, and a value of 1 would indicate that it was at 

the second joint. Normally, this value is not too far from 0.5. The last 

number is the moment of inertia of the segment in kg. m2. 

All the values are required though dummy values can be inserted for the 

mass properties if they are not required. Zero should not be used as a 
dummy value since it will lead to divide by zero errors in the program, 

and 0.5 should be used for dummy centre of mass positions. The 

character strings have no significance within the program except as the 

names used as prompts to the user and as labels on the output data. Extra 

nodes and segments are added by changing the integers indicating the 

total number of nodes or segments and by adding extra node or segment 

description lines. As mentioned before, a single node can be used to 

specify more than one segment, or, indeed, no segments at all, and act 

simply as a position marker. 

Only the first half of the file which defines the joints is used for the 

measurement and reconstruction phase, -so if there is an error in the 
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segment description, this can be changed after measurement as long as 

the joint definitions themselves are not altered. The other area in which 

to be careful is in defining the position of the centre of mass. It is very 

easy to get the direction sense of this fraction wrong. It Is the fraction of 

the distance from the first defined node in a segment to the second. The 

integers should be typed in as simple numbers (i. e. 1 rather than 1.0) but 

the floating point numbers can use any standard computer notation (1 1.0 

or 1. OeO). 

Running the Program 

The program is run by typing: 

gapJ 

in the directory containing the analysis, frame, limb, node, picture sub- 

directories. It needs to be run from an hpterm window running in X11 in 

overlay mode. It uses the system command zseethru to open up a 

seethru window, so this should be available on the path. The window 

selection control should be set up to use the left mouse button (the 

default), since the right hand mouse button is used for all selection (both 

menu and measurement) in the program. Menus pop-up automatically, 

and windows re-size suitably for a 1280 by 1024 display. To switch to 

another program, regain control of the mouse pointer by choosing the 

shell option on the main menu. 

Measuring the Film 

Before anything else, you need to set up the global options (select 

"options" from the main menu) for the type of measurements that you 

are ' doing. There are 3 types of reconstruction: 2D; 3D with orthogonal 

cameras; 3D with any camera position. In addition, a fiducial point can be 
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specified for each frame. This Is simply a point that is visible on all 

frames and can be used to make sure that the registration of each frame 

is constant. It is measured on each frame and if its apparent position has 

altered, then the program can shift every point it measures accordingly. 

Calibration 

Select the "digitize new sequence" option, and you will be prompted to 

load up an existing calibration file or to perform a new calibration. For 

the new calibration option, you will be prompted for an image name 

which will be displayed. Then you will be asked for a number of 

calibration points (and a fiducial point if appropriate) depending on the 

reconstruction option, and asked to type in their real world coordinates. 

The 3D options assume that both of the required views are contained on a 

single image as obtained by grabbing a split field view. It does not matter 

which is chosen as picture 1. as long as it is consistent. The brightness 

and contrast of an image can be adjusted using the first two knobs. 

After calibration, there is an option to save the calibration file. 

Measurement 

After calibration, you are taken directly to the measurement option. Here, 

you are prompted for each measurement using the names given in the 

model definition file. In 3D, the required picture is also requested. 

Measurement is simply a matter of moving the mouse pointer so that it is 

pointing to the required position on the. image and pressing the right 

button. The program will acknowledge a point by drawing a marker at the 

measured position. Occasionally, due to the multi-tasking nature of Unix, 

it will miss a mouse click because the processor was busy elsewhere. This 
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can be minimized by having as little going on in background as possible. 

This should be done in any case to avoid sluggish performance. 

There is no option to correct individual mistakes, but at the end of each 
frame, there is the option to repeat the whole frame, or to go onto the 

next one. There is also the option to finish the sequence and go back to 

the main menu. Once here, it is suggested that the sequence should be 

saved with the appropriate menu option. 

Getting Output 

Animation 

Once a sequence is in the computer's memory, either because it has just 

been measured, or because it has been loaded up from a file, the 

animation option can be selected. This allows continuous, movie style 

display, or frame by frame stepping. There is also the option to fix a 

particular joint to the centre of the field of view. 

When the animation Is running various options are available from the 

knobs and buttons. These functions are displayed on the top corners of 

the screen. The top right displays each relate to the knob in the 

geometrically similar position. It is suggested that the user experiment 

with the use of the knobs to become familiar with their effect on the 

three dimensional views. In particular, moving the target and the view 

point positions produce effects that maybe somewhat difficult to get to 

grips with. The viewpoint can be considered as a camera that is moved 

around in 3D space (top 3 knobs) with its lens always pointed at the 

target point (middle 3 knobs). Thus any combination of viewing positions 

can be achieved. The camera and target positions are limited to a4m 

cube with the origin in the centre. 
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Analysis 

The analysis selection brings up" a large menu. These options are all the 

kinematic and general kinetic measurements that are available. For each 

one, the use can select the limb segment or joint of interest. Multi-line 

graphs are possible, but, not more than 10 lines should be plotted on each 

one since this will lead to duplication of symbols. 

Once a plot has been obtained on the screen, it can be output to a plotter, 

saved as screen dump, or the data that is represented can be exported in 

a format suitable for input into a variety of other programs. In particular 

the SAS export option is -designed to duplicate the displayed graph by 

producing a SAS program that contains both the data and the required 

commands to produce the graph. 

Analysis can be performed on raw or smoothed data as chosen by the 

analysis options menu. The user defined menu option contains specific 

add-ons. At present this consists of the inverse dynamic procedures used 

in this thesis, but others can be easily added. 

Menus 

For reference. here is a complete description of the menus available in 

the current version of gap. 

Technical Development 



User Guide Page (157) 

Main menu: 

Selection Description 

Read limb file Reads in a limb file from disk. 

Read node file Reads in a node file from disk. 

Write node file Writes out the current position data to a node 
file on disk. 

Digitize new sequence Start a new digitization sequence. 

Digitize additional Add more frames to an existing digitization 
frames sequence in memory. 

Display frames Display an animated reconstruction of the data 
in memory. Goto display menu. 

Analyze gait Perform kinematic and kinetic analysis of the 
data in memory. Goto analysis menu. 

View video frames View stored images on screen. This does not 
affect any data in memory. 

Set global options Set program global options. Goto global options 
menu. 

Shell to Unix Goto the Unix command line prompt. Type: 

exit. J 

to get back to the menu. 

Exit Quit back to the Unix prompt. Also closes the 
display window and resizes the command 
window. 

Display menu: 

Selection Description 

Start sequence Start the animation 

Select options Select animation options. Coto display options 
menu. 

Exit Exit back to the main menu. 
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Display options menu: 

Selection Description 

Colour. Copper Select colour and reflectance properties for the 
surface modeller. This selection is red, metallic 
copper. 

Rubber Matt red/orange rubber. 

Plastic Bright, shiny red plastic. 

Obsidian Gloss black. 

Pottery Dull orange/brown. 

Brass Golden metallic brass. 

Style : Hollow Select fill style. Hollow shows the outlines of the 
polygons used to construct the animation. 

Raw data Raw or smoothed data for the animation. 

Variable limb radius Not implemented fully, but switches the display 
to use truncated cones rather than cylinders. 

Exit Exit back to the display menu. 
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Analysis menu: 

Selection Description 

Node position Display node position' data for selected nodes 
with respect to time. 

Node velocity Display node velocity data for selected nodes 
with respect to time. 

Node acceleration Display node acceleration data for selected 
nodes with respect to time. 

Segment angle Display segment angle data for selected 
segments with respect to time. 

Segment angular Display segment angular velocity data for 
velocity selected segments with respect to time. 

Segment angular Display segment angular acceleration data for 
acceleration selected segments with respect to time. 

Segment lengths Write out a file containing mean segment 
lengths. 

Node locus Display the locus of selected nodes. 

Forces - Display the resultant forces acting on selected 
centres of mass of segments with respect to 
time. 

Torques Display the resultant torques acting on selected 
segments with respect to time. 

Energies Display the potential, linear kinetic and, 
rotational kinetic energies of selected segments 
with respect to time. 

Options Select options for the analysis. At present, only 
whether to use raw or smoothed data. 

User specific analysis Perform specialized, user written analyses. Goto 
user specific analysis menu. 

Exit Exit back to the main menu. 
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User specific analysis menu: 

Selection Description 

Simplified 
Quadrupedal Analysis 

Perform inverse dynamic analysis on the 
simplified quadrupedal link segment model. 

Predictive Model 
Analysis 

Perform inverse dynamic analysis on the output 
of the predictive leaping model. 

Toe tip and Body COM 
output 

Write out toe tip and whole body centre of mass 
positional data to a file. 

Exit Exit back to analysis menu. 

Global options menu: 

Selection Description 

2d On Switch between two and three dimensional data 
and reconstruction. In 2D mode, the Z values of 
any data are zeroed. 

Flexible 3d Switch between orthogonal camera 3D 
reconstruction reconstruction and flexible reconstruction using 

the DLT algorithms. 

No fiducial marks Switch on or off the requirement for a fiducial 
mark on each frame measured. 

Set frame increment Set the number of frames to be skipped when 
reading in frames incrementally. 

Set filtration cutoff Set the filtration cutoff frequency as a multiple 
of the framing rate. 

Change working Change the startup directory. 
directory 

Smoothing Switch between moving average smoothing and 
low-pass digital filtration. 

Set smoothing Set the number of values over which to perform 
number moving average smoothing. 

Exit Exit back to the main menu. 
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digit. exe 

This program is used to grab sequential fields from a video film. It runs 

on a reasonably fast PC compatible (80286 or better processor) running 

MSDOS with a serial card (COM1) and a Matrox PIP-1024 board 

connected to a second monitor. The program requires minimal hard disk 

space, but each image requires over 100kbytes of storage so that 

appreciable storage space is required. 

Installation 

This program requires that the Me digit. exe be copied into a directory on 

the path, or the path can be set to include the directory containing the 

program. digit. eze is produced, by compiling digit. c and linking with the 

relevant Matrox libraries. These can generally all be kept in the same 

directory. The program is run by typing: 

digit) 

at the DOS prompt. 

The video interface needs to be connected to the COM1 port of the 

computer and the audio in and audio out'sockets need to be connected to 

their counterparts on the video recorder. When dubbing, the output level 

from the interface is constant so that any auto level control on the video 

should be turned off, and the level set manually to the 0dB level. The 

output level from the video needs to be set experimentally along with the 

input sensitivity control in the interface to produce reliable results. Since 

the signal is internally clipped, maximum volume may work best here. 

The PIP-1024 card needs to be installed normally and the video output 

from the recorder connected to channel 2. The board needs to be 
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installed at the default I/O location and memory address with interrupts 

disabled. The second monitor is connected to the board as normal. 

Running the program 

First of all, move to the directory where the image data is going to be 

saved and start the program. This will produce the following menu (items 

are selected by keying in their number): 

Selection Description 

Write Soundtrack Writes the timing sound track out to the video 
recorder. 

Read and Display Read the timing sound track from the video 
Soundtrack recorder and displays it on the computer 

screen. 

Grab Single Frame Grabs a single frame at a specific count number 
on the sound track. - 

Digitize Frames Grabs and saves a sequence of fields from the 
video recorder based on counts from the sound 
track. 

Adjust Brightness and Adjust the brightness and contrast settings for 
Contrast the frame grabber card. 

Exit Quit back to DOS. 

To digitize a- series of fields from the video, the following steps need to 

be performed: 

(1) Record a sound track on the video: 

Rewind the video tape containing the sequence. Select the write sound 

track option from the main menu. Press play on the video recorder and 

switch on sound dubbing and press the space bar on the computer 

keyboard to start the production of the sound track. The computer 

counts the video frames and sends out a digitally coded count number to 

be recorded on the sound track. When the sound track has finished, 
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press the space bar to get back to the main menu. This process only has 

to be done once for the whole tape. 

(2) Set up the brightness and contrast: 

Choose the adjust brightness and contrast option and play through the 

video sequence. Adjust the brightness and contrast using the new menu 

options until the best picture is obtained on the screen attached to the 

grabber card. then select exit to get back to the main menu. This will 

need to be done once per session. It is worth noting down the brightness 

and contrast settings so that they can be duplicated on subsequent 

sessions. 

(3) Choose the start count for the sequence: 

Rewind the video to before the start of the sequence. Select the read and 

display sound track option from the main menu. Press play on the video 

recorder. After a -short delay while the computer gets into sync with the 

video, the computer screen will display the timing counts. When the 

required start point is reached, press the space bar on the computer 

keyboard. The screen attached to the grabber card will show the frame 

that corresponds to the displayed timing count. To check whether the 

count before, or perhaps after, is a better start point, the grab selected 

frame option can be selected from the main menu, and the desired 

timing count keyed in. The video can then be rewound to before the start 

point and switched to play. The timing count will be displayed, and a 

frame will be grabbed at the required count number. 

(4) Grab and save the desired sequence: 

Select the digitize frames option from the main menu. You are then 

prompted for a file name. This should be up to 8 characters long, and is 
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the name each field is saved asp with an extension starting at . 000 and 

incrementing by 1 each time. Then key in the start timing count and the 

number of counts over which to digitize. Each count corresponds to 16 

fields (about 113 second). Then rewind the video to a point before the 

start of the sequence and press "play". For each count, the video needs 

to play through the sequence twice. since only 8 fields are stored on each 

pass. After these are grabbed, an on-screen prompt appears asking for 

the tape to be rewound. The tape needs to be rewound each time to a 

position at least 2 seconds before the start of the sequence since it takes 

about 2 seconds for the computer to re-sync to the timing track after 

"play" has been pressed on the video46. If. by accident, the tape is not 

rewound sufficiently, simply rewind the tape again and press "play". This 

may lead to the synchronization getting confused. but this is easily 

spotted since the timing counts displayed are nonsensical. If this occurs. 

just rewind and play until the correct numbers are displayed. This may 

take two or three attempts. 

The end result is a sequence of incrementally numbered files on the hard 

disk, each containing a single field digitized at 256 grey levels and at a 

resolution of 512 by 256, with an aspect ratio of 1.333 for the whole 

image so that each pixel in the stored image is 1 unit wide by 1.5 units 

high. 

stretchpic 

The image files produced by digit have a resolution of 512 by 256. gap 

can display these files, but they will appear very small on the display and 

46The easiest way to perform this repetitive rewind and play cycle is to use the shuttle and 
play controls on an edit controller. Alternatively, an in and out point can be set, and the 
required sequence of film can be cycled through using the review button. 
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will be horizontally stretched because the pixels on the workstation are 

square, and those in the image are rectangular. stretchpic, as its name 

suggests, stretches the image to 1024 by 768 pixels. Of course, this 

increases their storage requirement 6 fold, so for archive storage, images 

should be left in their unstretched form. The program currently runs 

under Unix, though, since it is a very simple program it could be 

recompiled to run under virtually any operating system. 

installation 

The executable file stretchpic can be installed anywhere on the path. As 

with gap, for system-wide access, /usr/bin is a good choice. 

Recompilation simply requires running the C compiler on the source file 

stretchpic. c. 

Running the program 

The program is run by typing: 

stretchpic fi1el file2 ... J 

where Mel el fi I e2 etc. are the names of the original image files. This 

will produce stretched image files which will replace the originals. 

Wildcards such as * and ? can be used to specify a group of files in the 

standard Unix fashion. 

stretchpic is quite slow, so the suggested action is to copy a session's 

worth of image file from archive storage into a directory and to run 

stretchpic on all of them at once before the session starts. This may take 

an hour or so to complete, but will allow the measurement session to take 

place without interruption. 
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Leaping Model 

This is the predictive leaping model program. It is given a set of 

parameters describing the required leap and the physical properties of 

the leaping animal, and it produces a set of positional data which have the 

correct kinematics to perform such a jump. This output data set is ' in the 

correct format to be read into gap for display and kinetic analysis. It has 

been tested on a Macintosh Plus running system 6.7 under multifinder, 

but should run with no problems on more recent versions of the system 

and with newer machines. The program fully supports desk accessories 

and MultiFinder, but it does not run in the background. 

Installation 

Copy the application file Leaping Model anywhere on the hard disk or 

floppies. If recompilation is required, use the the Symantec Think C 

project file Leaping Modelac. The resource file and the C source files are 

all in the same folder. 

Running the program 

The program can be started by either double clicking on the program 

icon or on one of the files produced by the program. 

Program Icon Model Icon Results Icon 

Macintosh icons for the predictive modelling program. 
Double clicking on the model icon causes that model to be 
loaded up immediately. 

There are four main menu groups: d. File, Edit and Model. The d menu 

accesses the desktop accessories and other programs running under 
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MultiFinder as well as the "about box" for Leaping Model. The Edit 

menu is only used for desk accessories and for number entry within fields 

in the dialog boxes. 

The File menu has the following options: 

New deletes the current modelling data, and restores the values to their 

defaults. Open reads in an existing modelling data file. This is the file 

that contains the input data for the program. Only modelling data files 

will be displayed in the standard file dialog box. Save saves the current 

modelling data file with its current name if it has one. Save as saves the 

current modelling data file under a different name. Write data calculates 

the kinematic data from the current modelling data and writes it out to a 

file. It is greyed out, as in this example, until a modelling data file is 

opened, or new modelling data is entered. Quit exits the program. All 

standard Macintosh data traps are implemented so that any action that 

might cause the loss of data is queried. 

The Model menu has the following options: 
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All these options pop-up dialog boxes that allow the user to type in the 

various input parameters required by the model. Start position is the for 

the positions of the joints in the fully flexed position: 47 

Start Position: HY 

Mid-Tarsal Joint 1-0.032 10.005 

Ankle 1-0.061 10.02 

Knee 10.017 0.105 

Hip 1-0.101 0.085 

Nose Tip 0.249 10.0052 

OK Cancel 

The toe tip needs to be at the origin, but otherwise, any coordinate 

system can be used provided that the units are in metres. The model is 

rotated so that the centre of mass is at a 45° inclination before calculation 

starts. As in all the dialog boxes, values can be entered in any of the 

standard numerical formats (1 1.0 1. OeO). The OK button accepts the 

47The values in the dialog boxes shown are for the Lemur catta leaping model. 
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currently displayed data. Cancel reverts back to the data displayed when 

the dialog box was first displayed. 

The start position data can be obtained from measuring a still video frame 

of the animal just before it starts to leap. 

Run parameters sets the requirements for the computer program that 

are independent of the animal being modelled (generally): 

Mass: 112.7 kg 

g: 19.81 m/s/s 

Time tolerance: 1 e-07 

Range: 8 im 
Number of times: 130 5-100 

MaHimum Iterations: 100 >10 

EHtension Fraction: 0.8 0.0-1.0 

OK Cancel 

Mass is the overall mass of the animal in kg. g is the acceleration due to 

gravity in ms-2. Time tolerance is a measure of the precision used to 

decide whether the iteration has finished. It is actually a fraction of the 

time interval but there is little reason to alter it from its default value 

given here. Range is the horizontal distance of the leap in metres. 

Number of times is the number of times required in the output data. 

Maximum iterations is the maximum number of iterations that the 

program will use to attempt to achieve the desired time tolerance. A 
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warning is issued if the number of iterations is exceeded, and the output 

data contains the best approximation currently available. Extension 

fraction is the fraction of the maximum extension distance of the hind- 

limb to be reached by takeoff. Sensible defaults are provided for all the 

values here except Mass which needs to be set for each animal. 

It is not necessary, or even desirable, to set the tolerance to a much 

lower value than the default, or to set the number of times to calculate to 

a value greater than 100. The current tolerance is close to the floating 

point accuracy of the computer, and Is easily accurate enough. The 

program is currently set with a maximum number of times of 100. This 

could easily be extended, by recompiling, but, experience has shown that 

the errors from second order differentiation simply due to rounding 

error become very noticeable if the sample frequency Is set much higher 

than this value. The default maximum number of iterations value of 100 

has been sufficient for all cases tried so far unless there has been some 

error in the input data. 
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Segments is for the mass distribution properties of the animal: 

Segments: Mass C. M. 

Fore-foot 110-0378 0.573 

Hind-foot 0.0378 10.478 

Calf 0.146 0.401 

Thigh 0.443 10.447 
Torso 2.04 I°"5 

OK Cencei 

Mass is the mass of the segment. These values can either be fractional 

masses, or actual masses in any units. The actual mass of each segment is 

calculated from the total mass of the animal. This allows a generic set of 

segment masses to be used here with only the total mass changing. C. M. 

is the fractional position of the centre of mass moving proximally and 

cranially. 

The output from Leaping Model is a text ffie with a node suffix in the 

correct format to be read into gap for further analysis. This file is a list of 

the positions of the nodes of the model for the number of times 

requested. Since each position is calculated by an iterative method rather 

than analytically, It is fairly slow, and would benefit greatly from being run 

on a Macintosh with a maths co-processor chip installed. 
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gap requires an appropriate . limb file to understand the data produced by 

Leaping Model. Here is a suitable example: 

'Microcebus murinus limb file (Bitters)' 
6 
0 'Toe tip' 
1 'Mid-tarsal joint' 
2 'Ankle' 
3 'Knee' 
4 'Hip' 
5 'Nose tip' 
5 
0 'Forefoot' 0 1 8.75E-04 5.73E-01 1.26E-08 
1 'Hind-foot' 1 2 8.75E-04 4.78E-01 1.32E-08 
2 'Calf' 2 3 3.38E-03 4.01E-01 3.57E-07 
3 'Thigh' 3 4 1.03E-02 4.47E-01 1.26E-06 
4 'Torso' 4 5 4.71E-02 5.00E-01 1.82E-05 

Only the mass properties and the title line need to be changed for each 

animal to match those used in Leaping Model. The rest of the values 

describe how the segments in the model are joined together, and this 

cannot be altered. 

i 
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Technical Description 

This section describes the programming techniques used for each of the 

computer programs. and describes how they might be customized and 

extended. None of this information is necessary to use the software. In 

addition, a full listing of the source code is given for each program. 

gap 

gap has been written in C and currently runs on Hewlett-Packard 9000 

series 300 hardware under HP-UX, a System V version of Unix. It makes 

extensive use of the HP X11 tool-kit and widget library and the HP 3D 

graphics library Starbase so that currently it could not be simply re- 

compiled to run on a different machine. It also uses the NAG numerical 

analysis libraries for some of the calculations and for plotting the results 

graphically. However, - parts of the program have already been ported to 

run on Macintosh hardware, and it is expected that the whole program 

will eventually run on any hardware that supports X11. 

The HP9000-350SRX that is used to develop the program has some 

features not commonly found on computing systems: a 3D hardware 

graphics accelerator which allows real-time animation of solid rendered 

images: knob and button boxes in addition to the normal mouse for 

extended analogue control. These features are all supported by the code. 

Features 

User Interface 

The program has been designed from the start to be as easy to use as 

possible. It is entirely menu driven, and primarily mouse controlled. The 

main compromise here is between ease of use and generality. The more 
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things are tied to menu choices, the less absolute flexibility is available. In 

an attempt to overcome' some of these problems, many of the menus are 

constructed dynamically from information in the model description. 

The main flaw is that the program has not adopted the event driven 

format that is now gaining in popularity. This is where the actions of the 

program are governed as much as possible by events generated by 

interaction with the program's user. The main advantage Is the avoidance 

of modes where the user is required to perform operations sequentially: 

first do A; then do B; and so on... This may not seem to be a problem to 

hardened computer users, and is Indeed the classical programming 

model used, but it is not, unfortunately, the way that people choose to 

operate. In general, A and B should be performed when the user 

decides/remembers that it should be done, and the software can sort out 

the required ordering internally. As can be imagined, there is an 

appreciable amount of extra work involved for the programmer. 

In addition, more use could have been made of the X11 tool-kit to 

provide dialog and message boxes instead of using the terminal emulator 

window. Again this an expedient demanded by lack of time. X11, unlike 

other graphical interfaces such as the Macintosh does not provide 

interactive design tools for its widgets and panels so that providing this 

level of interaction requires a very much larger amount of work. 

Generality 

Generality was a major functional aim of the program. Whilst the primary 

goal for this project was to look at leaping in prosimian primates, it was 

also envisaged that the same software could be extremely useful in 

looking at the mechanics of a tennis serve, or a golf swing. Thus the 

number of measurement points, their names and their connection 
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pattern are completely defined by the user. The only limitation is that 

each segment is only defined by two points and these need to be the 

joints so that, for instance, there is no facility for picking a point on an 

animal that is easy to measure and can be considered to have some fixed 

relationship to a particular joint that is, itself, very difficult to define. 

However, since the program produces a data file containing raw position 

information, the different parts of the program: data acquisition and data 

analysis can be used in isolation. 

The source code is written for clarity rather than, necessarily, efficiency 

where there was any conflict between the two. In particular, considerable 

effort was made to keep the machine specific parts of the program 

isolated so that it could be moved onto other platforms without too much 

difficulty. In addition, there is specific support for user supplied 

extensions in the analysis subroutine since it is quite impossible to 

provide all possible options that could be requested. In addition, the 

inverse dynamic module is specific for a particular limb segment 

configuration and although it is relatively easy to change the given source 

code for a different model, it is extremely difficult to provide general 

code for this. 

Scope 

The program allows the user to call up and measure a series of stored 

images. It has three calibration models: 2D with correction for rotation 

and scale; 3D from 2 orthogonally mounted cameras correcting for 

rotation and scale; 3D from 2 randomly placed cameras calibrated from at 

least 6 known points. It has interactive image enhancement of contrast 

and brightness, and can use pseudo-colours to further improve detail 

separation. Current images are 512 by 256 (stretched to 1024 by 768) by 
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256 grey levels, but this can easily be expanded depending on the 

available video display and capture equipment. All measurement is 

performed by mouse movement which is extremely time efficient and 

allows each measured position to be prompted for on-screen and to be 

marked on the image. 

Calibration data can be stored for subsequent re-use. Measurement data is 

stored unsmoothed, but is optionally smoothed by a digital filter or by a 

user selectable moving average when it is re-read. 

The program is able to present animated sequences depending on the 

linkage map set up in the original model description file. When in 3D 

mode, this is a fully Phong rendered stick figure with smoothed octagonal 

prisms representing the limb segments (Hewlett-Packard 1988d). The 

colour and surface properties of the display can be changed and the user 

is able to move the viewpoint around the model. zoom and pan in real- 

time using the knob box. In addition the animation can be single stepped, 

or allowed to run through only a user defined part of the whole sequence. 

The 3D effect is extremely convincing and can be an important 

visualization tool. 

Full kinematic analysis facilities in 2 or 3D are available within the 

program with the results output to the screen, a plotter or to data file in 

123, Excel or SAS formats. The program will calculate positions, 

velocities and accelerations of all measured points and the centres of 

mass of each segment and the overall model. It will calculate the angles, 

angular velocities and angular accelerations of each segment. Using the 

mass and moment of inertia data, it can then calculate the net force and 

torques acting on each segment, and also its potential and kinetic energy 

- both linear and rotational. 
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In the user specified analysis section it is currently set up to perform 

inverse dynamic calculations on the measured 2D model (8 segments) 

and the predictive model (5 segments). These both calculate the reaction 

forces, the torques and the work per frame at each joint, and the torque 

induced bending moment on each segment. 

Structure 

Inittallzation 

The basic structure of the program can be considered to be a tree rooted 

at the main menu level. Outside this are just the routines to initialize the 

graphics, windows and user interaction hardware at the beginning and 

the routines to disconnect them all at the end of the program. The 

function open_dev performs initialization and close_dev tidies up when 

the program has finished. 

The window arrangement is set so that text interaction occurs in the 

terminal window from which the program is called. and a so called 

seethru window is set up to allow the graphics routines to run in the 

image planes of the display. The windowing is all done in the overlay 

planes. 48 This allows the user to move and resize the graphics window 

whilst still allowing use of the high-speed hardware 3D rendering under 

Starbase. 

48The picture displayed on the video screen is obtained from a large block of video memory 
in the graphic accelerator. For each pixel, there are 24 bits (planes) of image information to 
allow 16 million colours and 4 bits of overlay information to allow 15 colours plus 
transparent so that the underlying image can be masked. 
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Data Input 

Video Display 

Image measurement is done from digitally stored images. This can be 

from any source, though the format needs to be appropriate for this 

program. The current size limits are 1024 by 768 and only 256 grey 

levels are supported. This limitation is because the image is treated 

simply as a block of data that is written over to the display hardware in an 

untranslated form. This proved to be necessary to get the images 

displayed from disc at a usably fast speed. On the current hardware it 

takes about 2 seconds. 

Once displayed. the user can modify the contrast and brightness using 

the knob box. This is done by switching the display mode to use a lookup 

table instead of the true colours used for 3D. The display look-up table 

can be re-mapped very quickly49 to change either the effective brightness 

range or the offset of the whole screen. In addition, there are facilities to 

allow the display of the image in pseudo-colours50, again by re-mapping 

the look-up table. 

On-Screen Measurement 

Data measurement is performed in the function digrd by entering a loop 

where the right mouse button status is polled. X11, by default, only uses 

49Each pixel of the image is stored as a number from 0 to 255. This number is used as the 
index to a look-up table of red, green and blue values so that, although only 256 colours can 
be displayed simultaneously, these can be chosen from a palette of approximately 16 
million. To rapidly change the appearance of colours on the display, the entries in this table 
can be altered and it will immediately effect the whole of the display. 

50pseudo-colours are where artificial colours are applied to an image instead of grey levels. 
By using colours, the effective contrast is enhanced and certain areas of the image can be 
made to stand out very clearly. 
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the left mouse button, so by using the right button, the normal X11 

window switching functions can still be supported. Within this loop, the 

knob positions are also monitored to allow real-time contrast adjustment 

whilst measuring is being undertaken. 

When a right button press is detected, the loop is ended, and a marker 

drawn on the screen to provide feedback to the user that a particular 

location has now been measured. Use has shown that this is particularly 

reassuring, and eliminates measurement errors associated with 

measuring the same point twice. The marker. and all subsequent 

calculation is done in the Starbase coordinate system rather than the X11 

coordinate system. Starbase uses floating point coordinates with the 

origin in the lower left, whereas X11 uses integers with the origin at the 

upper left. There is also some discrepancy between the perceived 

position of the cursor and the centre of the marker and this few pixel 

difference also has to be compensated for. 

2D/3D Reconstruction 

The reconstruction is handled by having two separate menu selections: 

one for starting a new series of measurements; the other for continuing 

with an existing set of measurements. The effects of both are controlled 

by the global options specifying 2D or 3D and, for 3D, orthogonal or DLT 

reconstruction. The initial calibration is performed through the initrd 

function, and subsequent measurements via the read2d and read3d 

functions. 

When starting a new series of measurements, the option is given to load 

up an existing calibration file or to produce a new calibration, which can 

then be saved as required. Calibration is achieved by finding a geometrical 

transformation that maps real world coordinates onto screen coordinates. 
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To find real world coordinates from screen coordinates is then simply a 

matter of reversing this transformation. With 2D. this is a relatively trivial 

exercise since both the display device and the real world are considered 

as parallel planes, so that only uniform scale and translation are required. 

For 3D measurements, the additional dimension means that information 

is required from another frame of reference: that is another camera. The 

complexity then depends on the restrictions placed on the camera 

positions. By having cameras placed orthogonally, one can be considered 

to be measuring the X and Y coordinates exclusively, and the other the Y 

and Z. These can then be treated as two independent 2D problems for X 

and Z and a mean can be used for the Y value. The only caveat here is that 

the cameras should be sufficiently far from the subject that this distance 

should swamp the variation in the depth of the subject so that parallax 

can be ignored. This, in itself, can be difficult to arrange. 

Completely flexible 3D reconstruction. allowing for free choice of camera 

positions, and yet calibrating from known positions in the subject volume, 

requires a more thorough understanding of the optic train. Effectively, 

each position measured on the image can be considered as defining a 

straight line in space from the point defined on the film plane of the 

camera, through the optical centre of the cameras lens, to the actual 

position of the point being measured. If this is done for two cameras, 

then two lines are defined in space and the position of the target point is 

where these two lines cross. Unfortunately, due to errors in 

measurement. these two lines will. almost certainly never actually touch. 

so some sort of nearest estimate approximation must be obtained. In 

addition, the optics of currently available lenses are such that the optical 

centre will change depending on the position on the film plane in some 

uncertain fashion (unless the camera has been specially calibrated as in 
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the case of specialist mapping stereo-photogrammetric systems), so that 

an approximation method will almost certainly give better results than 

trying to solve the problem analytically. This is where DLT reconstruction 

is useful: (Shapiro 1978. Miller et al. 1980) 

DLT Reconstruction 

The basic DLT equations derive from the standard photogrammetric 

equation, and are an approximation that lends itself easily to calculation 

and are relatively stable. 

L1X+LZY+L3Z+L4 
(1ý q-LgX+L1OY+L11Z+1 

LSX+L6Y+LIZ+Lg 
(2) r=LgX+L1OY+L11Z+1 

Where: 

p, q Camera (and hence screen) x and y coordinates 

Ll L11 DLT parameters 

X, Y, Z World coordinates 

For reconstruction use. the parameters, Li to L11 need to be calculated 

for each camera, by measuring the screen coordinates, p and q, for at 

least six sets of known world coordinates X, Y and Z. 

Rearranging as follows: 

(3) - L1X - L2Y - L3Z - L4 + L9Xq + L1OYq + L11Zq = -q 

(4) - L5X - L6Y - LIZ - L8 + LgXr + L1OYr + L11Zr = -r 

For q(1-n), r(1-n). X(1-n). Y(1-n). Z(1-n), the solution matrix becomes: 
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(5) 

-X I Y1 -Zi 4 0 0 00 9iX1 91Y1 9X1 qt 
0 0 00 -X I Y1 -Zi -1 rfX1 rlY1 riZi Li ;1 

. 
L2 
Ls 
L4 
Ls 

L= 
L9 
Li 

-X a Ya -Zn -1 0 0 00 c6Ca gqYa y, Za Lu qa 
0 0 00 -X. Y. -Za -1 raXa rata r1Za -re 

Which can be solved for Li to Li 1 by standard over-defined linear equation 

techniques. 

Once all the DLT parameters are known for each camera, then the 

unknown world coordinates of points can be calculated by measuring 

their screen coordinates in each camera where they are visible. They 

must be visible in at least two cameras. 

Rearranging the standard equations: 

(6) (qLg - L1)X + (gLlo - L2)Y + (qLl l- L3)Z = 14 -q 

(7) (rL9 - Lg)X + (rLlo - L6)Y + (rLi 1- L7)Z = Lg -r 

For a series of cameras a, b, c..., for q(a, b... ). r(a, b... ) and r41-11)(a, b... ) the 

solution matrix becomes: 

(8) 
q 9a LIa Q. -10a 

L2a QL11a Lia L4a-q 

rLL9a L5a rLL10a L6a raL1lä L7a L8a ra 

q L9b-L1b QbL10b-L2b q L11b-L3b x_ L4b-gb 

rbL9b-L5b rbL10b-L6b rbLllb-L7b Z L8b-Tb 

Which can be solved as before for X. Y and Z. 
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The NAG routine E02GCF is used to find the MINIMAX solution of the 

sets of linear equations. It is written in FORTRAN rather than C, so a 

certain amount of jiggery-pokery is required to get the two languages to 

talk to each other. and this is done via the small FORTRAN routines 

dltjarametcrs and dlt recon. 

Initial tests in the laboratory showed this to be a perfectly acceptable 

implementation of the DLT algorithm, but subsequent field trials revealed 

it to be completely unuseable with my experimental setup. 3D 

reconstruction is much more sensitive to measurement error than the 

much simpler 2D approach. Visualize shining two narrow light beams 

from torches, trying to get the position where the two beams intersect, 

and to hold the beams still enough so that this intersection position does 

not move. The point measured in the two images must be the same point 

in space. In my experiments, the operator has to estimatie the position of 

the joint, and thus getting the same position estimate from two different 

views is extremely difficult. While this error is relatively small as far as 2D 

is concerned, it equates to a much larger error in 3D. Thus, whereas 

markers are optional for 2D, they are much more important if the DLT 

method of 3D measurement is to be attempted. 

Kinematic Modelling 

The kinematic modelling is achieved by treating the model segments as a 

set of vectors running from one defined joint to another as described in 

the limb model provided by the user. Each joint has an X, Y and Z 

position. and each segment has an angle in the X=O, Y=O and Z=0 plane. 

For the 2D model, Z is always zero, so all rotation is in the Z=O plane. 

The positions of the centres of mass of the segments are found by sub- 

dividing the segment vector by the centre of mass position fraction given 
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in the model description file. The reconstruction data gives a series of 

values of position or angle at a series of discrete times. Kinematic analysis 

requires these values to be converted into velocities and accelerations: a 

process that requires differentiation with respect to time. This program 

uses a simple straight line fitting approach with or without data 

smoothing. However, the differentiation routine is isolated so that other 

approaches can be easily implemented. Differentiation is available in the 

NAG libraries for example, and in is certainly relatively easy to fit a 

smooth curve to the data and differentiate this analytically. Various 

polynomial splines are ideal in this respect because they are guaranteed 

to be continuous up to the second derivative. However the experience of 

others indicate that the values obtained by these methods reflect more 

the fitting method than the actual data; this is certainly so when used to 

find second rather than first derivatives (Pezzack et al. 1977). 

The smoothing is performed directly from the main menu loop whenever 

new data is obtained. The form is controlled by a global option and both 

the raw and smoothed data are stored internally. The choice of whether 

to use smoothed or raw data is then made from within the analysis and 

the animation sections. 

Two digital smoothing algorithms are available in the program: 4th order 

low pass Butterworth digital filtration at a variety of cutoff frequencies 

and moving average smoothing over a variable number of steps and 

moving average smoothing over a user-defined number of steps. The 

advantage of the first method is that it has a real physical meaning: 

frequencies above a certain value are reduced by 12dB per octave. so that 

if a cyclic movement is being studied, where the characteristic 

frequencies are known by examining the frequency spectrum (obtained 

by Fourier analysis, for example), a cutoff point can be set above which 
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there are no frequencies of interest. Its main disadvantage is that it takes 

an appreciable number of samples at each end of the sequence for the 

filter to stabilize, so that a relatively large number of measurements are 

lost. In my experience, the filter appeared to behave properly after about 

4 samples (in addition to the two lost due to the digital filter itself), 

which, again would not be a problem when looking at a cyclic behaviour, 

but because of the speed the animal left the field of view after takeoff. 

meant that this method was unsuitable for my experiments. Moving 

average smoothing has a less well defined physical description: there is 

more smoothing when the average is performed over a greater number of 

samples, and a greater number of samples is lost at each end. However, 

there is no settling time problem, so the number of samples lost is just 

the smoothing interval divided by two and rounded down. The minimum 

smoothing, over three values, only causes the loss of one data point at 

each end and provides a reasonable degree of smoothing. This was the 

technique that I habitually used. 

The 4th order low pass Butterworth was implemented as described by 

Winter (Winter 1991). This is achieved by running the data through a 

second order filter twice, reversing the direction for the second run to 

correct for any phase distortion that has occurred. 

The equation for the filtration function is as follows: 

(1) Fn = aOXn + aiXn-1 + a2Xn-2 + b1Fn-1 + b2Fn-2 

Where: 

Fn is the nth filtered output coordinate 

XI, is the nth raw input coordinate 

an bn are the filtration coefficients 
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The filtration coefficients used are as follows: (Winter 1991) 

fs/fc ao al a2 b1 b2 

4.0 0.2929 0.5858 0.2929 0.0000 -0.1716 
5.0 0.2066 0.4132 0.2066 0.3695 -0.1959 
6.0 0.15505 0.3101 0.15505 0.6202 -0.2404 

7.0 0.1212 0.2424 0.1212 0.8030 -0.2878 

8.5 0.0884 0.1768 0.0884 1.0011 -0.3547 
10.0 0.06745 0.1349 0.06745 1.1430 -0.4128 

12.0 0.0495 0.0990 0.0495 1.2796 -0.4776 

14.0 0.0379 0.0758 0.0379 1.3789 -0.5305 

16.0 0.02995 0.0599 0.02995 1.4542 -0.5740 

18.0 0.0243 0.0486 0.0243 1.5134 -0.6106 

20.0 0.0201 0.0402 0.0201 1.5610 -0.6414 

Where: 

fc is the cutoff frequency 

fs is the sampling frequency 

Filtration is performed in the routine filter so this can be altered 

independently if a different filtration algorithm is required. 

The moving average smoothing is performed in the routine smooth. The 

formula used is as follows: 

m 
1: 

(2) Sn 2m+ 1 
i=-m 

And: 

(3) 
N-1 

2 
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Where: 

Sn is the nth smoothed value 

N is the number of values smoothed over (must be odd) 

A certain amount of experimentation is required to get the degree of 

smoothing right, but it is closely linked to the framing rate chosen, and if 

this is fixed (for example to 50Hz for a video camera) then any smoothing 

is quite likely to remove some of the high frequency detail. 

Animation 

The animation section of the program provides the, facility to display the 

measured data as a movie sequence. This is visually very effective. and by 

removing the extraneous detail from the original recording, is often 

much more revealing. In the 3D mode, by allowing rotation of the model, 

the movement can be viewed from novel positions which can give a very 

clear picture of the important movements. Also, it immediately reveals if 

any joints have been mis-measured in any of the frames. Often, a joint is 

measured out of sequence, even with the on-screen prompting, but the 

animated display will quickly reveal, for instance, if a hip position has 

been entered as the tail-tip. It is very much harder to pick this out when 

just looking at graphs of joint positions. 

The animation technique uses double buffering to produce completely 

smooth screen updating. The original 24 planes of image memory are 

divided up into two sets of 12 planes, only one of which is displayed. The 

next frame to be displayed is drawn up on the non-visible set of planes, a 

and when the drawing has been finished, the visible plane sets are 

switched. This switching is very much quicker than the drawing (even 

with the accelerated video hardware) and can be synchronized to the 
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vertical fly-back period of the cathode ray tube51, and hence never causes 

the flickering associated with screen update while the electron beam of 

the CRT Is involved in displaying an image. 

The routine that draws up the 3D figure on the screen needs some 

explanation. Each segment is drawn as an octagonal prism extending 
from the proximal to the distal joint positions. To take advantage of the 

accelerator hardware, as much calculation as possible needs to be done in 

the accelerator, and as little as possible locally. On the SRX systems, the 

3D calculations rely on a matrix transformation stack. Any 

transformations that are to use the accelerator are pushed onto the stack 

(including the 3D to 2D conversion) and all subsequent drawing operation 

will use the combined stack transformation. When no longer required, 

transformations can be popped off in the reverse of the order in which 

they were applied. So, when the octagonal prism drawing routine, 

draw-limb is called, it actually sends the commands to draw an 

appropriately sized prism running from the origin along the X axis, a 

simple scaling exercise, and then calculates the transformation that 

would be required to put this prism in the correct place as a combination 

of aY and Z axis rotation and a translation and puts these transformation 

matrices onto the accelerator stack. The graphics hardware then draws 

the limb in the correct place. The prism is built up from a series of 

planar polygons drawn in an anti-clockwise fashion when viewed from 

outside. Phong shading, selected in displa, makes the octagonal prism 

51The vertical flyback period is when the beam of the CRT is being from the bottom of one 
frame back to the top of the screen ready to display the next frame. If all the display 
updating can be done during this period when nothing is being draw to the VDU screen, 
then the update will appear completely seamless, and the animation will appear very much 
smoother. 
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appear as a smooth cylinder. Colours and reflectance properties. along 

with light positions, are also added to improve the illusion of depth. 52 

If desired. there are options to show the model as a series of lines. to 

show how it is actually built up. Hidden line removal is performed by 

using aZ buffer. Unfortunately, this is only 16 bits deep and there are 

problems with breakthrough of what should be hidden faces at the joints 

because of the relatively poor Z resolution53. For 2D. the model is 

displayed as a series of linked rectangles. 

Graphical Data Display 

The graphical data display is all passed to the routine d_graph as a series 

of linked X and Y coordinates and labels. It then calculates the optimal 

ranges internally and lets the actual plotting be handled by the NAG 

graphical routines working on top of Starbase. This again requires the 

interface between C and FORTRAN, and some ancillary conversion code is 

required. This is all contained in the Me general. f. The main problem 

here is that in C. two dimensional arrays increase their second dimension 

fastest. In FORTRAN, the first dimension is increased first. This means 

that the order of dimension specifiers has to be reversed. In addition, 

character expressions in FORTRAN are not zero delimited as they are in 

C, so that anything dependent on the length of a string of characters is 

unlikely to work well. 

52For more details, see the Starbase manual (Hewlett-Packard 1988d). 
53Hidden line/face removal is a difficult problem. One approach is to store a depth 
associated with each pixel colour. The colour will only be overwritten by another colour if 
the depth value associated with the new colour is higher, meaning that this new colour is 
closer to the observer than the old one. The problem comes when two pixels are very close in 
depth. Because of the relatively low resolution of the Z buffer, the one that will get displayed 
may very well be dependent solely on rounding errors in the depth calculation and random 
breakthrough can occur. 
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For plots of the locus of a point, each individual position is numbered to 

allow more timing information to be displayed. This function is not 

provided in the libraries so has had to be coded explicitly using the NAG 

graphics primitives., A key is also drawn up, identifying the individual 

lines in multi-line graphs. 

Data Export 

The data export section of the program, save an, produces files that can 

be read directly Into some popular data manipulation and analysis 

packages. It is an option after a set of data has been plotted on the 

screen. The ones chosen are the text formats used by Microsoft Excel 

and Lotus 123. These are sometimes loosely known as tab delimited 

format and comma delimited format. In addition, GAP Is capable of 

producing a program file for SAS that contains the data embedded in it, 

and has the required statements to produce a very similar graph using 
SAS graph. These programs allow for analysis that is not supported 

within GAP, and can, for instance, be used to produce graphs of data 

combinations that are not supported internally. 

User Routines/Dynamic Modelling 

The routine user specific_analysis is simply a convenient point where 

all the data produced by the program is available. It is probably easier to 

add any extra analysis here rather than work from exported data because 

all the data is predefined and so no more data input routines need to be 

written. 

The inverse dynamic sections of the program are accessed from here 

because, unlike the other data manipulations, they are not general, and 

require a specific connection arrangement of limbs. The two provided: 
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simplified_quadrupedal and predictive_model are specific to the 2D 

measurements I used and my predictive model respectively. They are 
both straightforward examples of implementations of the inverse dynamic 

equations as described in the inverse dynamics chapter. The only 
difficulty is keeping track of the relatively large number of individual 

values associated, with each segment, and getting the signs right across 

joints: when more than one segment meets. 

The predictive-model routine is the more straightforward simply because 

it has fewer segments and they are only connected in a simple linear 

fashion with no branching. The calculation proceeds from the cranial end 

of the torso, since there are no forces or torques acting there, and 

calculates the forces and torques that must be acting on the caudal end to 

produce the observed angular and linear acceleration given its mass and 

moment of inertia. These forces must also apply, in an equal and opposite 

fashion in accordance with Newton, on the proximal end of the thigh. 

Knowing these forces and torques, in a similar fashion, the forces and 

torques on the distal end of the thigh are calculated. These are equal and 

opposite to the ones on the proximal end of the calf and so the distal calf 

values can be found. This process is continued until the distal end of the 

fore-foot, giving values for all the joints in the model. 

The only important difference in simplifled_quadrupedal is that there 

are 3 free ends: the hand; the nose tip; the tip of the tail. These are all 

separately treated as previously with the caudal end of the torso, and have 

no forces acting on them. In addition, the neck and hip joints have three 

segments each meeting at them. The approach here is to make sure that 

the total force and torque from the ends of the three meeting segments 

is zero. Only one segment end in each case is unknown. 
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File Formats 

. limb File 

This file has been designed so that it is easily produced or read by a 

FORTRAN program where file manipulation in text mode is somewhat 

limited, but normally. it is produced using a text editor such as vi or 

emacs, or alternatively. by any word processor that can save files as 

unformatted text. The line spacing is not at all important since all the 

character strings are delimited by single quotes, but the suggested line 

spacing makes the file relatively easy to read. 

Here is an example . limb file: 

'Microeebus aurinus lieb file (Bitters)' 
10 
0 'Forelimb tip' 
1 'Elbow' 
2 'Shoulder' 
3 'Toe tip' 
4 'Mid-tarsal Joint' 
5 'Ankle' 
6 'Knee' 
7 'Hip' 
8 'Nose tip' 
9 'Tip of tail' 
9 
0 'Lower arm' 0 1 3.13E-03 5.00E-01 2.35E-07 
1 'Upper arm' 1 2 2.88E-03 5.18E-01 1.77E-07 
2 'Forefoot' 3 4 8.75E-04 5.73E-01 1.26E-08 
3 'Rindfoot' 4 5 8.75E-04 4.78E-01 1.32E-08 
4 'Calf' 5 6 3.38E-03 4.01E-01 3.57E-07 
5 'Thigh' 6 7 1.03E-02 4.47E-01 1.26E-06 
6 'Head' 8 2 6.38E-03 5.00E-01 7.30E-07 
7 'Torso' 2 7 3.26E-02 5.00E-01 1.82E-05 
8 'Tail' 7 9 2.19E-03 3.78E-01 2.33E-06 
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The first line contains a title that is used to provide more Information 

about the contents of the file. It is delimited by single quotes54. The 

second line is an integer (10 here) that specifies the number of nodes in 

the model. The nodes are named on the next 10 lines: each of these lines 

starts with an incremental integral identification number running from 0 

to 9, and is followed by the actual name of the node. The names are again 
delimited by single quotes. The next integer, in this case 9, Is the 

number of segments defined. The 9 subsequent lines contain, first of all, 

an incremental identification number. This is followed by the name of the 

segment in single quotes, then the identification numbers of the two 

joints at the ends of this segment. For the purposes of the program, this 

segment is considered to extend from the first numbered joint to the 

second numbered joint. So, in this case, the lower arm, runs from the 

forelimb-tip (joint 0) to the elbow joint (joint 1). The next number on the 

line is the mass of this segment in kg, and the next Is the position of the 

centre of mass as a fraction of the distance from the first joint to the 

second joint. In other words, a value of 0 would indicate that the centre 

of mass was at the first joint, and a value of 1 would indicate that it was at 
the second joint. Normally, this value Is not too far from 0.5. The last 

number is the moment of inertia of the segment in kg. m2. 

All the values are required though dummy values can be inserted for the 

mass properties if they are not required. Zero should not be used as a 
dummy value since it will lead to divide by zero errors in the program. 

and 0.5 should be used for dummy centre of mass positions. The 

character strings have no significance within the program except as the 

"The single quote is the ASCII value 39. This should not be confused with the opening and 
closing single quotes provided on the Macintosh system whose ASCII values are 212 and 213. 
These are not interchangeable, and do, in fact, look quite different: ' as opposed to' or. 
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names used as prompts to the user and as labels on the output data. Extra 

nodes and segments are added by changing the integers indicating the 

total number of nodes or segments and by adding extra node or segment 

description lines. As mentioned before, a single node can be used to 

specify more than one segment, or, indeed, no segments at all, and act 

simply as a position marker. 

Only the first half of the file which defines the joints is used for the 

measurement and reconstruction phase, so if there is an error in the 

segment description, this can be changed after measurement as long as 

the joint definitions themselves are not altered. The other area to be 

careful in is in defining the position of the centre of mass. It is very easy 

to get the direction sense of this fraction wrong. It is the fraction of the 

distance from the first defined node in a segment to the second. The 

integers should be typed in as simple numbers (i. e. 1 rather than 1.0) but 

the floating point numbers can use any standard computer notation (1 1.0 

or 1. OeO). 
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This is the code segment used to read this data (NPS is defined as 2): 

/* read the data */ 

fscanf(unlt, O'%("']'*, title); 
fscanf(unit, "td", nnodes): 
for (anodes. 0; inodes<*nnodes; inodes++) 
( 

fscanf(unit, '%d '%(^lll", &inode, nodes(inodes]); 
if (inodel-modes) 
( 

printfl'Node number mismatch during file read error\n'); 
return; 

fscanf(unit, "%d", nsegs); 
for (isegs_O; iseqs<*nsegs; isegs++) 
{ 

fscanf(unit, "%d '%("')*", &iseq, segs(iseqs]); 
if (iseq! -isegs) 
{ 

printf("Segment number mismatch during file read error\n"); 
return; 

for (i-O; 1<NPS; i++) 

fscanf(unit, "ºd", snodesper seg(i](isegs)); 

] 
fscanf(unit, "ºf", iseg_mass(isegs])= 
fscanf(unit, "ºf", tseg_com(isegs]); 
fscanf(unit, '%f", Sseg_moi(isegs))= 

. node File 

This is the file containing the measurements produced by GAP. It is also 

produced as the output from leaping model. It is not expected to be 

produced by hand, but it is in an ASCII form to allow portability across 

different computer platforms, and to allow other computer programs to 

produce suitable raw data for input into the analysis sections of GAP. 

Since these files are generally quite large, and are not designed to be 

easily read by people, I will instead give the code segments both for 

writing and reading the file. 
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Writing a node file: 

/* write data */ 

fprintf(unit, "%s\n", title); 
fprintf(unit, "%e\n", fspeed); 
fprintf(unit, "%d\n", nframe); 
for (iframes-O; iframescnfran ; iframes++) 
{ 

fprintf(unit, "%d\n", iframes); 
fprintf(unit, '%d\n", nnodes); 
for (indes-0; inodes<nnodes; inodes++) 

fprintf(unit, "%d to te "e\n`, inodes, xpos[inodes)(iframes), 
ypos(anodes)(iframes), zpos(inodes)(iframesj), 

fprintf(unit, "%s\n", nodes(inodes)); 

Reading a node Me: 

/* read data */ 

fscanf(unit, "%("\nl\n", title); 
fscanf(unit, "%f\n", fspeed); 
fscanf(unit, "%d\n", nfra=); 
for (iframes-OJiframes<*nframe; iframes++) 
{ 

fscanf(unit, " %d\n", fiiframe); 
if (iframel-iframes) 
I 

printf("Frame number mismatch in node data file\n")= 
return! 

} 
fscanf(unit, "%d\n", nnodes)t 
for (inodes. 0=anodes<*nnodestinodes++) 
{ 

fscant(unit, "%d%f%f%f\n", sinode, ixpos(inodesJ(iframes], 
typos(indes)(iframea], &zpos(inodes](iframes]); 

fscanf(unit, "%("\nJ\n_, nodea(inodes]); 
if (inodet-anodes) 
{ 

printf("Node number mismatch in node data file\n"); 
return; 

it (flag 2d) zpos(inodes3(iframesj-0.0; 

Where: 

fspeed is the interval between frames in seconds 

nframe is the number of frames 

nnodes is the number of nodes 
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xpos is the X position of the nodes for each frame in metres 

ypos is the Y position 

zpos is the Z position 

. 2d . 3d1 . 3d2 Files 

These are the calibration files produced by the various different 

reconstruction models used in the program. They are almost certainly of 

no use whatsoever to any other program but their details will be given for 

the sake of completeness. 

Program segment to read . 2d flle: 

fscanf(unit, "%e%e", Afiducial x, sfiducial_y); 

fscanf(unit, "%e", az offset); 
fscanf(unit. %. e iy offset); 
fscanf(unit, "1e", &scale factor); 
fscanf(unit, "%e%e", irotation(OJ(0), &rotation(OJ(1J); 
fscanf(unit, "%e%e", srotation(1J(OJ, crotation(1)(1J); 

Program segment to read . 3d1 file: 

for (i-O; 1<ll; i++) fscanf(unit, '%e', &11(i)); 
for (i-O; i<11; 1++) fscanf(unit, '%e', &12(1)); 

fscanf(unit, '%e%e', ifiducial x, cfiducialy); 
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Program segment to read . 3d2 file: 

fscanf(unit, `te%e", &fiducial x, ifiducial_y); 

fscanf(unit, "%e", tx offset 1); 
fscanf(unit, "te", iy_offset 1); 
facanf(unit, "5e", sscale factor 1); 
fscanf(unit, "%e%e", srotation 1[0)[0), irotation 1[0J(1]); 
fscanf(unit, "%e%e", &rotation 1[1J(OJ, trotation 1[1)(1J); 
fscanf(unit, "5d", &x mirror 1); 

fscanf(unit, "5e", &x offset 2); 
fscanf(unit, '%e", iy_offset 2); 
fscanf(unit, "5e", &scale_factor_2); 
fscanf(unit, "te%e", &rotation 2[0J[OJ, &rotation 2(0)[11); 
fscanf(unit, "te %e", trotation 2[1)(OJ, irotation 2[1J[1J); 
facanf(unit, "%d", &xmirror 2); 

fscanf(unit, "%d", ax axis source); 
fscanf(unit, "%d", iy_axissource); 
fscanf(unit, "%d", is axis source); 

. OOn Fie 

This is the format of the image Me used. If the file extension is a3 digit 

number padded with zeros (. 000. . 001, . 002 etc. ) then the auto- 
increment feature of the program can be used which allows image files to 

be read in sequentially by supplying the name of the file without the 

extension, and the number of the first Me to be read in. 

Currently two formats are supported which are switchable at compile 
time. One is used by the Visilog image analysis package, and the other is 

specific to this program. There is also the option of allowing the image to 

be re-scaled as it is read in. This is not recommended unless a faster 

computer is used: I preferred to re-scale all the images that I was going 

to use in a session beforehand using stretchpic so that individual images 

were loaded into the computer as quickly as possible. Only 256 grey level 

images are supported. 
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Here is the code segment for reading in a Visilog format image: 

struct 
{ 

long 1nt magicNumber; 
long int pixelsPerLine; 
long 1nt numberOfLines; 
long int"resl; 

long int res2; 
long int res3; 
long int gridType; 
long int rest; 
long int arithmaticType; 
long int bitsPerPixel; 
long int resS; 
long int xOrigin; 
long int yOrigin; 
long 1nt res6; 
long int rest; 
long int visilogHeaderSize; 
long int userHeaderSize; 
long int rest; 
long int totaiHeaderSize; 

imageHeader; 

fread(SimageHeader, sizeof(imageeeader), 1, unit); 
xrange-imageHeader. pixelsPerLine; 
yrange-imsgeHeader. numberofLines; 
nbytes-fread(buffer, xrange*yrange, l, unit); 

And for the other option: 

xrange-qetc(unit): 
xrange. xranqe+256*getc(unit): 
yrange-getc(unit): 
yrange. yranqe+256*getc(unit): 
nbytes-freed(buff. r, xrange+yrange, 1, unit): 

. txt prn sas Files 

These files are written out by the function save an and are designed to 

be read in by other programs. Axt is for Microsoft Excel, prn is for Lotus 

123 and sas is for SAS. Sensible column labels are defined for each 

program from the names of the lines on the corresponding plot and the 

units used. 
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Code for Excel (tab delimited): 

/* write out data in ASCII form suitable for EXCEL irtport "/ 

fprintf(unit, "%s\r", title); 
for (aline-O; iline<nline: lline++) 

fprintf(unit. %s\011\011', key(iline]); 
fprintf(unit, `\r"); 
for (! line-O; lline<nline; illne++) 

fprintf(unit, "%s\Oll%s\011", x label, y_label); 
fprintf(unit, "\r'); 
for (ipoint-O; ipoint<npoint; ipoint++) 

for (aline-O; illne<nline; iline++) 
fprintf(unit, -%12.5e\011%12.5e\011", 

xjoint[iline)(ipoint), 
ypoint[iline](ipoint]); 

fprintf(unit. "\r"); 

Code for 123 (comma delimited): 

/* write out data in ASCII form suitable for LOTUS 123 import */ 

fprintf(unit, "\"%s\"\n", title); 
for (iline-O: iline<nline: lline++) 

fprintf(unit, "\"%s\" ", key(ilineJ); 
fprintf(unit, "\n"); 
for (i11ne-0; iline<nllnetiline++) 

fprintf(unit, "\"%s\" \"%s\" I, x label, y_label); 
fprintf(unit, "\n"); 
for (ipoint-0;! point<npoint; lpolnt++) 

for (! line-O: iline<nline; iline++) 
fprintf(unit, 0%12.5e 112.5e ", xjoint[ilineJ[ipoint), 

yjoint(iline)[ipointi); 
fprintf(unit, "\n"); 

break; 
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Code for SAS: 

/* write out SAS program in ASCII file */ 

fprintf(unit, "/* is */\n\n", title); 
for (iline=O; iline<nline; iline++) 

fprintf(unit, "/* col%02d - %s */\n", iline, key(ilineJ); 
fprintf(unit, "\n"); 
fprintf(unit, "/* x label - %s */\n/* y label - %s */\n\n", 

x_label, y_label); 0 
fprintf(unit, "data gait; \ninput\n"); 
for (aline-O; iline<nllne; iline++) 

fprintf(unit, "col%02d x@@ col%02d_y@@\n", iline, iline); 
fprintf(unit, "; \ncards; \n"); 
for (ipoint-O; ipoint<npoint; ipoint++) 
{ 

for (iline-O; iline<nline; iline++) 
fprintf(unit, "%10.3e %10.3e\n", xjoint(iline][ipoint], 

y point(illne](ipoint]); 
} 
fprintf(unit, "; \nrun; \n"); 

fprintf(unit, "proc gplot; \n"); 
fprintf 

(unit, "axisl label-(f-swiss j-c '%s')\nvalue-(f-simplex); \n", 

x"label); 
fprintf 

(unit, "axis2 label-(f-swiss j-c '%s')\nvalue-(f-simplex); \n", 

y_label); 
fprintf(unit, "plot\n"); 
for (iline-O; iline<nline; iline++) 

fprintf(unit, "col%02d y* col%02d x\n", iline, iline); 
fprintf(unit, "/overlay haxis-axial vaxis-axis2; \n"); 
fprintf(unit, "title f-centb '%s'; \n", title); 
for (iline-O; illne<nline; illne++) 
{ 

fprintf(unit, "symbol%-3d f-simplex i-join v-'%d'; \n", 
iline+l, iline); 

fprintf(unit, "footnotet-3d f-simplex j-1 '%3d - 1s"; \n", 
iline+l, iline, key(iline)); 

} 
fprintf(unit, "run; \n"); 

r4 

digit. exe 

Images were grabbed from moving video tape using a Matrox PIP1024B 

digitizing card. The software supplied with the card is fairly basic, and it 

has no''facilities for grabbing a sequential set of frames from the video. 

Indeed, there is no capability for separating out the two fields making up 

each frame. The card has sufficient memory to hold 4' full frames (8 
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fields), but tests showed that it could not switch between grabbing areas 

quickly enough to grab sequential frames. The best that could be achieved 

was to grab every other frame. 

The design goal was a system that could automatically recognize the 

position on the video film to a sufficient degree of accuracy to guarantee 

to be able to grab specifically identified frames on multiple passes of the 

film through the video recorder. Commercial systems are available that 

can do this by using animation controllers and SMPTE time codes 

recorded onto the unseen portions of the video image or onto one of the 

sound tracks. However, such a system was not available, so a poor man's 

imitation was designed and built. 

Software 

To get reliable grabbing of numbered video frames requires some sort of 

machine readable frame numbering system. This involves three steps. 

Firstly, a set of numbers need to be written to the sound-track of the 

film. Then, these numbers need to be displayed whilst the film is being 

played back so the operator can select the code numbers of the frames he 

or she wishes to grab. Thirdly, the required frames need to be grabbed. 

The communication between the computer and the sound-track of the 

video was achieved using a modified modem circuit attached to the serial 

port. The initial numbering- sequence was achieved by counting field 

number changes directly off the video grabbing card. For the first step. 

the video tape containing the required images is fully re-wound, the 

computer program is set to write the sound-track, and then the video 

tape recorder is set to audio dubbing mode. This means that while the 

recorder plays the video, it simultaneously records a new sound-track. 

The computer program monitors the change in field number and uses 
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this to increment a frame count. This value is then written to the serial 

port every 8 frames where the modem circuit will convert it into a set of 

coded tones that it will send to the video recorder. In this way, the whole 

of the video tape is given a sound-track that uniquely marks any section of 

the tape. 

For display, the program is switched to its display mode, and the video 

allowed to play through the sequence of film that the operator is 

interested in. The modem decodes the sound-track, and sends the values 

to the serial port of the computer. These are then displayed on the 

screen, and can be frozen as required by the user. 

For grabbing, the user types in the numbers of the first frame of interest 

and the number of sets of 16 fields that are required. The video is then 

re-wound to before the required part of the sequence, and switched to 

play. The computer again reads off the numbers coded onto the sound- 

track, but this time, when the required value is read, it grabs 8 of the 

next 16 fields (every other frame for the next 4 frames) and saves them 

to disk with their appropriate field numbers. The user then rewinds the 

tape and repeats the operation. This time, the computer delays 1 frame 

before starting its grab so that the missing 8 fields are grabbed. This 

whole process is repeated for the number of times originally selected by 

the user. The grabbing precision is perfect, but if an animation controller 

had been available, then the play/rewind/play cycle could also have been 

automated. 

Hardware 

A standard modem could probably have been used to write the sound- 
track, but when this was tried, the signal levels were found to be quite 

unsuitable for recording onto the video. In addition, only a 300 baud 
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modem was available, and this was really too slow a data rate for the very 

limited amount of time available for writing the numerical data onto the 

tape. Buying a faster modem is one option, but this does not solve the 

signal level problem, so instead. I decided to build a suitable circuit. This 

is appreciably simpler than a full modem circuit because only one set of 

signals is present at any time: it is either sending or receiving; never 

both at the same time. 55 It is based around the MC14412VP modem chip 

which does almost all the hard work. It also needs a suitable amplifier to 

convert the input analogue signal into a clipped 5V digital signal 

(approximately), and the output voltage needs to be converted from 0 to 

5V TTL levels to -12V to +12V RS232 levels. 

1 MHz XTAL 

+SV. +SV. 

+SV. r--+--1 
Audo N 11 RS232 OUT 

O 

-11- 

>LM386N 

a* fV - Cli4p*pifnmg 
11 

MC14412VP 1 MAX232CPE 1 

Modem Chip level S&tor 

Audio OUT 11 
RS232 MI 

O O 

Record 11 j 
Pryb°d 1- -E- 

Schematic diagram of the modem circuit used to record and 
read a timing soundtrack on the video recorder. The only 
additional circuitry is a stabilized +5V power supply, and 
some ancillary passive components required for the correct 
functioning of the integrated circuits. Full details are 
available in the appropriate manufacturers data sheets. 

551f two sets of signals are present, then notch filters need to be used for the input and output 
sections so that only the frequency that they are interested in is presented to them. 
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File Type 

The only file used is the image file which the program produces. This is a 
512 by 256 image in Visilog format. It needs to be processed by 

stretchpic before it is read into gap. (gap will read this image directly, 

but in the default setup, it will not alter its size. 512 by 256 looks very 

small and distorted when viewed on a 1280 by 1024 monitor. ) 

Technical Development 



Technical Description Page (206) 

This is the code segment that does the actual write: 

void FrameSave(filename, quadrant, field) 

char filename[); /* file name 
int quadrant; /* sector number 
int field; /* field number */ 
( 

FILE *unit; 
int rows-256; 
int columns-512; 
int irow; 

int ycount; 
char buffer[5121; 
struct visilogImag 

/* file unit */ 
/* number of rows in picture 
/* number of columns in picture 

/* row counter */ 
/* y coordinate counter 

/* row buffer */ 
Header fileHeader; /* visilog file header */ 

printf("Saving %s .... \n", filename); 

unit-fopen(filenan , "wb"); /* open file */ 

/* write out file header */ 

fileHeader. maglcNumber-VSsllogConvert(0x6931); 
flleHeader. pixelsPerLine=VisilogConvert(columns); 
fileHeader. numberOfLines=VisilogConvert(rows); 
fileHeader. resl-VisilogConvert(1); 
fileHeader. res2=VisilogConvert(0); 
fileHeader. res3=VisilogConvert(0); 
fileHeader. gridType=VisilogConvert(1); 
fileHeader. res4=VisilogConvert(0); 
fileHeader. arithmaticType-VisilogConvert(0x14); 
fileHeader. bitsPerPixel=VlsllogConvert(8); 
fileHeader. res5-VisllogConvert(0); 
fileHeader. xOrigin=VisilogConvert(1); 
fileHeader. yOrigin=VisilogConvert(1); 
fileHeader. res6=VisilogConvert(1); 
fileHeader. res7-VisilogConvert(0); 
fileHeader. visilogHeaderSize=VisilogConvert(76); 
fileHeader. userHeaderSize=VisilogConvert(0); 
fileHeader. res8=VisilogConvert(0); 
fileHeader. totalHeaderSize=VisilogConvert(76); 

fwrite(&flleHeader, sizeof(fileHeader), l, unit); 

/* set up to read from right part of screen 

ycount-field; 

for (crow=O; irow<rows; irow++) 
{ 

/* rectangular */ 

/* integer */ 

fg_rowr(ycount, quadrant, buffer); /* read row into memory 
fwrite(buffer, 512,1, unit); /* and write it to disk */ 

ycount++; /* increment ycount twice 

ycount++; 

fclose(unit); 
} 

/* close file */ 

The function VisilogConvcrt is to convert two byte integers which are 

written most significant byte first on Motorola 68000 based machines 
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such as the Hewlett-Packard. and least significant byte first on Intel 8086 

architecture. 

stretchplc 

This program Is extremely simple. It reads in the standard 512 by 256 

image file produced by digit, and writes out a file 1024 by 768. This 

corrects the aspect ratio so that each pixel is now square, and provides 

an image of a suitable size for display on the 1280 by 1024 workstation 

monitor. The only slight complication is that the program does not 

overwrite the existing image file directly. The target image is written to a 

temporary file that is then copied onto the original file. This means that 

if the program is interrupted for any reason, then there is always a copy 

of the data somewhere on the disk which can be recovered if necessary. 

Otherwise, an interrupt could cause the loss of the image file. 

The program runs from the command line and accepts a list of file 

names. This is to allow the program to be used in shell programs on a 

Unix machine, and to allow wildcard file specification in the normal 

fashion. 

Predictive Leaping Model 

Features 

This program is designed to permit easy explorative modelling: 

answering 'what if style questions. For this reason, ease of use is of 

prime importance. It runs on any Macintosh computer running System 

6.7 or higher with at least 1 Mbyte of RAM and a hard disk. It makes full 

use of the graphical interface, using menus, dialog boxes, and supporting 

desk accessories and the Multifinder. 
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Modelling parameters are entered into fields in various dialog boxes, with 

sensible defaults being provided where appropriate. This data is stored in 

binary files which preserves full accuracy at the expense ý- of easy 

portability. It is not envisaged that these files will be used elsewhere. The 

output is a node file suitable for GAP, where all the further analysis can 

be done. 

Structure 

Support for standard Macintosh features requires a great deal of extra 

programming. Much of the code is for initialization and operation of the 

user interface. The program is fully event driven, with functions being 

accessed of a main event loop depending on mouse clicks or command 

key combinations. Within dialog boxes, the program is modal: only 

interrupt driven system queues are active. During the modelling 

calculations, a dialog box allows cancellation, though, due to the non 

preemptive nature of multi-tasking on the Macintosh, this has a sluggish 

response on slower machines. 

The modelling calculations are performed by Calculate and 

LengthFunction. LengthFunction uses a successive approximation 

method to find the length that corresponds sufficiently closely to a 

required time interval. Here, it is modelled using a mathematical 

function, but it could equally well interpolate between experimentally 

derived data points for time and distance. This would almost certainly be 

a worthwhile addition to the program since it would overcome the 

problem of the arbitrary nature of the force function chosen in the model. 

The model data is encapsulated in a set of structures: Vector. 

Coordinate, ModelCoordinates, ModelCOMs, ModelMass and 

ModelVectors. This makes the code appreciably more readable. though 
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not necessarily more compact. It would certainly make model alterations 

quicker. It also simplifies the routines used to read and write the 

modelling ' data file. since they can simply dump the binary image of the 

contents of the relevant data structures to a disk file without any 

conversion. 
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The following code segment is used to write the modelling data file (the 

definitions for the structures are in Params. h): 

/* create and open file */ 

FSDelete(gDefinitionFile. fName, gDefinitionFile. vRefNum); 
Create(gDefinitionFile. fName, gDefinitlonFile. vRefNum, 

FILE_OWNER, FILE TYPE); 

FSOpen(gDefinitionFile. fName, gDefinitionFile. vRefNum, irefNum); 

/* write out data */ 

numBytes=(long) sizeof(gUserModel); 
FSWrite(refNum, &numBytes, (char *)&gUserModel); 

numBytes-(long) sizeof(gSegmentMass); 
FSWrite(refNum, inumBytes, (char *)&gSegmentMass); 

numBytes-(long)sizeof(gCOMs); 
FSWrite(refNum, &numBytes, (char *)&gCOMs); 

numBytes-(long)sizeof(gMass); 
FSWrite(refNum, &numBytes, (char *)&gMass); 

numBytes=(long)sizeof(g); 
FSWrite(refNum, &numBytes, (char *)&g); 

numBytes=(long) sizeof(gTlmeTolerance); 
Fswrite(refNum, znumBytes, (char *)&gTimeTolerance); 

numBytes=(long) sizeof(gRange); 
FSWrite(refNum, znumBytes, (char *)igRange); 

numBytes=(long) sizeof(gNumberofTimes); 
FSWrite(refNum, &numBytes, (char *)tgNumberofTimes); 

numBytes=(long) sizeof(gMaxIterations); 
FSWrite(refNum, &numBytes, (char *)&gMaxIterations); 

numBytes-(long) sizeof(gExtenslonFraction); 
FSWrite(refNum, &numBytes, (char *)&gExtensionFraction); 

/* close file */ 

FSClose(refNum); 

The routines FSDelete. Create, FSOpen. FSWrIte and FSClose are 

Macintosh toolbox routines for file handling. They need to be used 

instead of the very similar C library functions so that features such as 

icons can be supported. 
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Appendix - Source Code 

gap 

C Routines 

params. h 

/* This is the general include file for the gaitan set of programs */ 

/* include files */ 

#include <stdio. h> 
"include <math. h> 
"include <string. h> 

#Sfdef HP 
#include <fcntl. h> 
#include "/users/bill/include/colour. h' 
#include <starbase. c. h> 
#include <Xll/Xlib. h> 
#include <Xrll/Xrlib. h> 
#endif 

/* bological and physical constants */ 

#define DENSITY 1.0 
#define G -9.80665 

/* constant definitions */ 

#define SHELL "/bin/ksh" 

/* mean body density */ 
/* acceleration due to gravity */ 

/* shell option */ 

(define NPS 2 /* Number of nodes to define a segment 
; define STRING SIZE 80 /* Size of strings */ 

#define MAX NODES 10 /* Maximum number of nodes */ 

(define MAX_SEGS MAX_NODES /* Maximum number of segments */ 
/define MAX-FRAMES 100 /* Maximum number of frames */ 
#define MAX_LINES (MAX_NODES+MAX SECS) /* Maximum number of lines per graph */ 
(define MAX_POINTS MAX_FRAMES /* Maximum number of points per line */ 

#define MAX_REF 20 /* max number of reference points 
(define MIN REF 6 /* minimum */ 

#define DLT_FILE "dlt file" /* filename for DLT intermediates */ 

#define ASPECT RATIO 1.0 /* World dy/dx */ 

#define MENU PAGE 20 /* size of a single menu page */ 
#define GRAPHIC 

_NAME 
"Gait Analysis" /* name of graphic window */ 

#define GRAPH_WIDTH 1255 /* width of graph window */ 
#define GRAPH_HEIGHT 846 /* height of graph window 
#define XSEETHRU "xseethru -geometry 1255x846+0+0'i" 

/* xseethru window command */ 
#define TEXT WIDTH 1255 /* width of text window */ 
#define TEXT_HEIGHT 102 /* height of text window */ 
#define DEV MAX 

-X 
1280 /* max device x coordinate 

#define DEV MAX Y 1024 /* max device y coordinate */ 
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/define FILE_MAX_x 640 

#define FILE_MAX_Y 574 

"define CURSOR_OFFSET_X 5 

"define CURSOR_OFFSET_Y 5 

Nefine TOP-BORDER 27 

#define SIDE_BORDER 11 

(define BOTTOM BORDER 11 

#define DIRECTORY-ENTRIES 120 

#define LIMB-DIRECTORY 
#define LIMB_PREFIX "" 

#define LIMB-SUFFIX *. limbO 

#define NODE_DIRECTORY '" 

#define NODE_PREFIX "" 

#define NODE_SUFFIX ". node" 
#define FRAME_DIRECTORY "" 

#define FRAME_PREFIX "" 

#define FRAME_SUFFIX ww 

#define PICTURE_DIRECTORY 
#define PICTURE PREFIX "' 

#define PICTURE SUFFIX ". pic" 
#define RECON_DIRECTORY 
#define RECON_PREFIX "' 

#define RECON_SUFFIX_2D ". rec2d" 
#define RECON SUFFIX_3D1 ". rec3dl" 
#define RECON_SUFFIX_3D2 ". rec3d2" 
#define ANALYSIS_DIRECTORY ww 

#define ANALYSIS-PREFIX "" 

#define ANALYSIS_SUFFIX_123 '. prn" 
#define ANALYSIS SUFFIX EXCEL ". txt" 

#define ANALYSIS-SUFFIX-SAS ". sas" 

/* max file x coordinate */ 
/* max file y coordinate */ 

/* graphic cursor x offset */ 
/* graphic cursor y offset */ 
/* m+m top border in pixels */ 

/* mwm side border in pixels 
/* mwm bottom border in pixels */ 

#define COPPER COLOUR 0.4,0.1,0.06 

#define COPPER SURFACE 8,0.6,0.5,0.1 

#define RUBBER COLOUR 0.3,0.03,0.03 

#define RUBBER SURFACE 5,0.15,0.1,0.1 

(define PLASTIC COLOUR 0.6,0.05,0.05 

#define PLASTIC SURFACE 40,1.0,1.0,1.0 

#define OBSIDIAN_COLOUR 0.01,0.01,0.01 

#define OBSIDIAN_SURFACE 50,1.0,1.0,1.0 

#define POTTERY COLOUR 0.2,0.2,0.2 

#define POTTERY_SURFACE 5,0.2,0.2,0.2 

#define BRASS_COLOUR 0.4,0.2,0.08 

/define BRASS_SURFACE 15,0.5,0.5,0.1 

; define DEFAULT_COLOUR COPPER COLOUR 

(define DEFAULT SURFACE COPPER SURFACE 

/* number of directory entries 
/* limb data directory */ 

/* limb file prefix */ 
/* limb file suffix */ 

/* node data directory */ 
/* node file prefix */ 

/* node file suffix */ 
/* frame data directory */ 

/* frame file prefix */ 
/* frame file suffix */ 

/* frame data directory */ 
/* frame file prefix */ 
/* frame file suffix */ 

/* recon data directory */ 
/* recon file prefix */ 

/* recon file suffix for 2d 
/* recon file suffix for 3d */ 
/* recon file suffix for 3d */ 

/* analysis data directory */ 
/* analysis file prefix */ 
/* analysis file suffix for 123 */ 

/* analysis file suffix for EXCEL */ 
/* analysis file suffix for SAS */ 

/* define some 'interesting' colours */ 
/* and surface properties */ 

#define LA 0x0001 /* define some light switches */ 
#define L1 0x0002 
#define L2 0x0004 
#define L3 0x0008 

#define INIT_ZOOM 40.0 /* camera field of view */ 
#define CAMERA ZOOM MIN 2.0 /* minimum field of view */ 
#define CAMERA ZOOM MAX 90.0 /* maximum field of view 
#define INIT_VIEW POS 0.0,0.0,1.0 /* initial view position (RA) 

#define CAMERA 
_POS 

RANGE -4.0, -4.0, -4.0,4.0,4.0,4.0 /* camera position range 
#define INIT TARGET POS 0.0,0.0,0.0 /* initial target position */ 
#define CAMERA_TARGET_RANGE -4.0, -4.0, -4.0,4.0,4.0,4.0 /* camera target range 

#define K 
_SENSITIVITY 

10.0 /* # knob revolutions for range */ 
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(define DC_CHAR_WIDTH 8 

(define DC_CHAR_HEIGHT 10 

#define KEY_GRAPH 0.8 

(define VDC_CHAR_SIZE 0.01 

#define CHAR SLIM 0.75 

#define DEFAULT DIAMETER 0.01 

/* subroutine definitions */ 

P device coordinate character size 
/* device coordinate character height */ 
/* relative position of graph/key join 

/* virtual device coordinate char size 
/* character width slimming factor */ 

/* default limb diameter */ 

#ifdef HP 
; define CLEAR TEXT printf("\33h\33J\n\33h") /* clear text window */ 
#define CLEAR GRAPH clear_view surface(display), make, picture current(display)= 

/* clear graphics */ 
leise 

}define CLEAR_TEXT 

idefine CLEAR_GRAPH 
lendif 

/" external variables */ 

/* file names */ 

extern char node_file(STRING_SIZEJ; /* node file name 
extern char limb_file(STRING_SIZE); /* limb file name 

/* options flags */ 

extern int flag 2d; /* 2d only flag */ 

extern int flag simple_reconstruction; /* simple 3d reconstruction flag */ 

extern int fiducial_flag; /* fiducial mark registration flag */ 

extern int frame 
_increment; 

/* frame sequence increment */ 

extern int filtration_number; /* filtration cutoff number 
extern int flag_filter; /* filter/smooth flag */ 

extern int smooth number; /* number of values in moving average */ 

/* 3d reconstruction. values */ 

extern float 11[11]; 

extern float 12[11); 

extern int x_mirror 1; 

extern float x offset 1; 

extern float y offset 1; 

extern float scale factor 1; 

extern float rotation_1(2][2]; 
extern int x_mirror_2; 
extern float x offset 2; 

extern float y_offset 2; 

extern float scale_factor_2; 
extern float rotation_2[2][2); 
extern int x axis_source; 
extern int y axis_source; 
extern int z_axis source; 

/* 2d conversion values */ 

extern float x 
-offset; 

extern float y offset; 
extern float scale-factor; 
extern float rotation[2][2]; 

/* DLT parameters */ 

/* x mirroring flag */ 
/* x offset of picture origin 1 */ 
/* y offset of picture origin 1 */ 

/* scale factor from picture to world (m) 1 */ 
/* rotation matrix picture to world 1 */ 

/* x mirroring flag */ 
/* x offset of picture origin 2 */ 
/* y offset of picture origin 2 */ 

/* scale factor from picture to world (m) 2 */ 
/* rotation matrix picture to world 2 */ 

/* 3d axes source: 1 picture 1'x axis 
2 picture 1y axis 

/* 3 picture 2x axis 
4 picture 2y axis */ 

/* x offset of picture origin 
/* y offset of picture origin 
/* scale factor from picture to world (m) 

/* rotation matrix picture to world */ 
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/* registration values */ 

extern float flducial_x; 
extern float fiducial_y; 

extern float correction X: 
extern float correction_y; 

/* graphics device pointers */ 

extern int display; 
extern int locator; 

extern int knobsl, knobs2, knobs3; 

extern int bbox; 

fifdef HP 
/* window device pointers */ 

extern Window graphic window; 
extern Window text_window; 
extern Window menu window; 
extern Display *xdisplay; 

extern int xscreen; 

/* global x registration value */ 
/* global y registration value */ 

/* framewide x registration 
/* framewide y registration */ 

/* graphics display */ 
/* locator device (mouse) 

/* knob bog (3 rows) */ 
/* button box */ 

/* graphic window */ 
/* text window */ 
/* menu window */ 

/* x display pointer 
/* screen number */ 

/* original hpterm window parameters 

extern unsigned int orig_width, origheight; 
extern int oriq_x, orig_y; 

/* global brightness and contrast values */ 

extern float brightness; /* brightness */ 

extern float contrast; /* contrast 
fendif 

close_dev() 

#include "params. h" 

void close dev() 

/* This routine closes the various input devices */ 

{ 
/* Screen */ 

CLEAR_GRAPH; 

gclose(display); 

/* Knobs */ 

gclose(knobsl); 

gclose(knobs2); 

gclose(knobs3); 

/* button box */ 

gclose(bbox); 

/* close windows */ 

XDestroywindow(xdisplay, graphic_window); 
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mestroywindow(xdisplay, menu window); 

/* reset hpterm */ 

XFlush(xdisplay); 

XMoveWindow(xdisplay, text_window, SIDE_BORDER, TOP BORDER); 

XResizeWindow(xdisplay, text window, oriq width, oriq height); 

XFlush(xdisplay); 

XC1oseDisplay(xdisplay); 
} 

Como 
(include "params. h" 

void com(xpos, ypos, zpos, nnodes, nframes, nodes per seq, nsegs, seg_com, seq_mass, 
body_comx, body_comy, body comz, body mass, comx, comy, comz) 

/* calculate the centres of mass of the segments and the overall centres of mass */ 

float xpos[MAX NODES][MAX_FRAMES]; /* x world coordinates */ 

float ypos(MAX NODES][MAX_FRAMES]; /* y world coordinates */ 

float zpos[MAX NODES][MAX_FRAMES]; /* z world coordinates */ 

int nnodes; /* number of nodes */ 

int nframes; /* number of frame */ 

int nodes_per seg[NPS][MAX_SEGS]; " /* nodes per segment 
int nsegs; /* number of segments */ 

float seg_com[MAX_SEGS]; /* relative segment radii */ 

float seq_mass[MAX_SEGS]; /* segment masses */ 

float body_comx[MAX FRAMES]; /* x centre of mass of animal (m) 

float body comy[MAXFRAMES]; /* y centre of mass of animal (m) 

float body comz[MAXFRAMES]; z centre of mass of animal (m) */ 

float *body_mass; /* mass of animal (kg) */ 

float comx[MAX_SEGS][MAXFRAMES]; /* x component of segment COM 

float comy[MAX_SEGS][MAXFRAMES]; /* y component of segment COM 

float comz[MAX_SEGS](MAXFRAMES]; /* z component of segment COM 

{ 

int iframes; /* frame counter 
int isegs; /* segment counter 
int inps; /* nodes per segment counter */ 
int nstart, nend; /* start and end nodes for a segment */ 

/* find total mass */ 

*body_mass=0; 
for (isegs-O; lsegs<nsegs; isegs++) 
( 

*body_mass+-seg_mass[isegs); 

/* loop over frames */ 

for (iframes=O; iframes<nframes; iframes++) 
{ 

body_comx[iframes]=0.0; 
body_comy[iframes]=0.0; 
body_comz[iframes]-0.0; 

/* loop over segments */ 
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for (isegs-O; isegs<nsegs; isegs++) 
{ 

/* find start and end nodes */ 

nstart-nodes per seq(O](isegs]; 
vend-nodesper seq[1](isegs]; 

/* perform the centre of mass calculation */ 

limb_com(xpos(nstart](iframes], ypos(nstart)(iframes), 
zpos[nstart](iframesj, 
xpos[nend][iframes], ypos(nend][iframesJ, zpos(nend)(lframes), 
seq com(isegs), 
&comx[isegs](iframesJ, &comy[isegs](iframes), 
&comz(isegs](iframesj); 

body comxliframsl+-seg 
body_comy[iframes]+=seg_mass[isegs]*comy[isegs)(iframes]; 
body_comz[iframes]+=seg mass[isegs]*comz[isegs)(iframes); 

} 

body_comx(iframes) . body_comx(iframes]/(*body_mass); 
body_comy(iframes). body comy[iframes]/(*body mass); 
body_comz(iframes]-body comz(iframes]/(*body_mass); 

} 
} 

dgnodeo 

#include "params. h" 

void dgnode(title, nodes, nnodes, xpos, ypos, zpos, nframe) 

/* this routine prompts the user for the positions of the nodes named in array nodes */ 

char title(STRING SIZE]; /* file title line */ 
char nodes(MAX NODES](STRING_SIZE]; /* names of the nodes of the model 
int nnodes; /* the number of nodes */ 
float xpos[MAX NODES][MAX FRAMES]; /* the x world coordinates 
float ypos(MAX NODES][MAX FRAMES]; /* the y world coordinates 
float zpos(MAX NODES](MAX_FRAMES]; /* the z world coordinates 
int *nframe; /* the number of frames */ 

ant anodes; /* node counter */ 
ant fret; /* menu return value */ 
static char menul[J[STRING_SIZEI- /* menu 
{ 

uNext frames, 

"Repeat last frame", 

"Exit" 

/* get into right graphics mode 

CLEAR GRAPH; 

/* loop round frames */ 
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do 

/* print out file title */ 

printf("%s\n", title); 
printf("Frame #%d\n", *nframe); 

/* read in picture file */ 

readpicC); 

/* fiducial point 

if (fiducial flag) 
{ 

printf("Select fiducial point\n"); 
digrd(&correction_x, &correction_y); 

} 

/* loop round the nodes */ 

for (indes=0; inodes<nnodes; inodes++) 
{ 

/* prompt for node */ 

printf("%s\n", nodes[inodes]); 

/* read coordinates */ 

if (flag-2d--TRUE) 
{ 

read2d(&xpos(inodes][*nframeJ, iypos[inodesJ(*nframe]); 
zpos[inodes][*nframe]. 0.0; 

} 
else 
{ 

read3d(&xpos[inodes][*nframe], sypos[inodesJ[*nframe), 
izpos(inodes)(*nframe]); 

} 

while ((lret-menu("Select option: ", menul, 3))--O); 

if (ixet! -2) *nframe+el; 

} while (fret! -3); 

/* finished */ 

CLEAR GRAPH; 

L' 
different() 

#include "params. h" 

/* this routine differentiates twice by a finite difference method, the array y on x t/ 
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void different(x, y, n, dy, d2y, angle flag) 
float x(J; /* array of x values */ 
float y(J; /* array of y values */ 
int n; /* number of values */ 
float dy(J; /* diff'd values of y, minus 1 at each end */ 
float d2y1j; /* double diff'd value of y, minus 2 at each end */ 
int angle flag; /* flag for angular correction 
{ 

int i: /* counter 
float dely; /* y difference */ 
float del2y; /* y difference for 2nd order differentiation */ 

for (i-1; 1<n-1; i++) 
{ 

dely-y[1+1J-y[i-1J; 
del2y-y(i+1J-2*y[i1+y(i-1]; 
if (angle_flag) 
{ 

if (dely>M PI) dely-=(2*M PI); 
if (dely<=(-M PI)) dely+=(2*M PI); 

if (del2y>M_PI) del2y--(2*M PI); 
if, (del2y<-(-M PI)) del2y+-(2*M PI); 

dy[iJ-dely/(x[i+1j-x[i-1]); 
d2y[i)-del2y/(((x[i+1J-x[1-1])/2.0)*((x[i+1)-x[1-1))/2.0)); 

dy[0]-0.0; 
dy[n-1]-0.0; 
d2y[0]-0.0; 
d2y(n-1]-0.0; 

} 

dlgrdO 

linclude 'params. h" 

void digrd(x, y) 

/* This routine reads the position of the locator device */ 

float *x, *y; /* Position of pointer in device coords 
{ 

static char marker[9](9)- /* marker bit map 
{ 

0,0,0,0,0,0,0,0,0, 
0,0,0, -1, -1, -1,0,0,0, 
0,0,0, 
0, -1, -1,0,0,0, -l, -1,0, 
0, -1, -1,0, -l, 0, -l, -1,0, 
0, -1, -1,0,0,0, -1, -i, 0, 
0,0,0, 
0,0,0, -1, -1, -1,0,0,0, 
0,0,0,0,0,0,0,0,0 

Window window return; 
Window root_return; 
int root x, root_y; 
int win x, win_y; 
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unsigned 1nt mask; 
float colourTable[256](3]; 
float red, green, blue; 
int i; 
int offset, range; 
float grey; 
int dum, button, valid; 
float dummy; 
float oldbrlghtness-0.0, oldcontrast-0.0; 

/* wait for no buttons to be pressed */ 

do 

XQueryPointer(xdisplay, graphicwindow, &windowreturn, &root return, 
&root_x, &root_y, &win x, &win_y, &mask); 

} while (mask! =0); 

/* get pointer position etc 

do 
{ 

XQueryPointer(xdisplay, graphicwindow, &windowreturn, &rootreturn, 
&root_x, &root_y, &win x, &win_y, &mask); 

/* interactive contrast/brightness control */ 

sample_locator(knobs3,1, &valid, &brlghtness, &contrast, &dummy); 
if (brightness! -oldbrightness if contrast! =oldcontrast) 
{ 

oldbrightness-brightness; 
oldcontrast-contrast; 

offset=(int)512.0*(0.5-brightness); 
range=512*(1.0-contrast); 
if (range==0) range=1; 

for (i=0; i<256; i++) 
{ 

if (i<offset) 
{ 

grey=0.0; 
} 
else 
{ 

if (i<(offset+range)) 
{ 

grey-(float)(i-offset)/(float)range; 
} 

else 

grey=1.0; 
} 

} 

colourTable[i][01-grey; 
colourTableti][i]-grey; 
colourTable(1][2]-grey; 

} 
define 

_color 
table(display, 0,256, colourTable); 

make_picture_current(display); 
} 
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) while (mask(-Button3Mask); 
*x-(float)root x*ASPECT RATIO; 
*y-(float)(DEV MAX_Y-root_y-1); 

/if 0 

printf("(%f, %f)\n", *x, *y); 
iendif 

/* plot a marker */ 

dcblock_write(display, root_x-CURSOR OFFSET X, rooty-CURSOR OFFSET Y, 
9,9, marker, 0); 

makecicture current(display); 

displa() 

#include "params. h" 

void displa(title, nodes, nnodes, xpos, ypos, zpos, 
xpos_filt, ypos filt, zpos_filt, nframe, 
segs, nsegs, nodes_per_seg, seg radii) 

/* this routine displays the node data as defined by limb model data 

char title(STRING_SIZE]; /* file title line */ 

char nodes(MAX NODES](STRING_SIZE]; /* names of the nodes */ 

int nnodes; /* the number of nodes */ 
float xpos[MAX_NODES][MAX_FRAMES]; /* the x world coordinates */ 

float ypos(MAX_NODES][MAX_FRAMES]; /* the y world coordinates */ 

float zpos[MAX_NODES](MAXFRAMES]; /* the z world coordinates */ 

float xpos_filt(MAX NODES](MA)_FRAMES]; /* the filtered x world coordinates */ 
float ypos_filt(MAX_NODES)(MAX_FRAMES]; /* the filtered y world coordinates */ 
float zpos_filt(MAX NODES][MAX FRAMES]; /* the filtered z world coordinates */ 
int nframe; /* the number of frames */ 
char segs(MAX_SEGS][STRING_SIZE]; /* names of the segments 

int nsegs; /* the number of segments 
int nodes_per seg(NPS][MAX_SEGS]; /* nodes for each segment 

float seg_radii[NPS](MAX_SEGS]; /* relative radii of ends of segments */ 

{ 
camera arg camera; /* view camera structure 
char fname[STRING SIZE]; /* picture filename */ 

char fllename(STRING_SIZE]; /* full filename */ 
int buffer-0; /* double buffer switch */ 
int button; /* button number */ 
int dum; /* dummy value */ 
int anode; /* number of target fixed node */ 
int iframe; /* frame counter */ 
int ifix; /* fix reference point to node flag */ 
int pause; /* pause between frames flag */ 
int min_frame; /* min frame number for repeat loop 
int max_frame; /* max frame number for repeat loop 
float krange; /* knob range for frame select 
int iret; /* menu option main */ 
int icol; /* menu option colour 
static int smooth_flag=TRUE; /* smoothed data flag */ 

static int solid flag=TRUE; /* interior fill flag 

static int flag_fixed_diamete r-TRUE; /* fixed limb display radii */ 
static char menul[][STRING SI ZE]= /* options menu 
{ 

"Start sequence", 
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"Select options`, 
*Exit" 

static char menu2[][STRING SIZE]- /* colours menu 
{ 

'Colour: Copper", 
' Rubber, 
" Plastic', 
' Obsidian, 
" Pottery", 
" Brass", 
"Style : Hollow, 
"Raw data", 
"Variable limb radius", 
"Exit" 

/* get into correct graphics mode */ 

CLEAR_GRAPH; 

vdc extent(display, 0.0,0.0,0.0,1.25,1.0,1.0); 
mapping_mode(display, ISOTROPIC); 

/* enable button box events */ 

enable events(bbox, CHOICE, 1); 

/* set up knob ranges and sensitivity 

krange-(float)nframe+0.1; 

mapping mode(knobsl, DISTORT); 

mapping_mode(knobs2, DISTORT); 

mapping mode(knobs3, DISTORT): 

vdc extent(knobsl, CAMERA_ZOOM MIN, 0.05,1.05, CAMERA_ZOOMMAX, 
krange-1.0, krange); 

vdc extent(knobs2, CAMERA TARGET_RANGE); 

vdc extent(knobs3, CAMERA_POSRANGE); 

set_p1_p2(knobsl, FRACTIONAL, 0.0,0.0,0.0, K SENSITIVITY, KSENSITIVITY, 
K_SENSITIVITY); 

set_pl_p2(knobs2, FRACTIONAL, 0.0,0.0,0.0, K SENSITIVITY, KSENSITIVITY, 
K_SENSITIVITY); 

set_p1_p2(knobs3, £RACTIONAL, 0.0,0.0,0.0, K_SENSITIVITY, K SENSITIVITY, 
K_SENSITIVITY); 

set_locator(knobsl, 1, INIT ZOOM, 0.1, krange); 

set_locator(knobs2,1, INIT TARGET_POS); 

set locator(knobs3,1, INIT VIEW POS); 

/* Set up viewing position and transformation */ 

camera. upx=0.0: 
camera. upy-1.0; 
camera. upz-0.0; 
camera. front-camera. back-0.0; 
camera. projection=CAM PERSPECTIVE; 

/* Set up drawing attributes */ 

if (solid_flag--TRUE) interior style(display, INT_SOLID, FALSE); 
else interior style(display, INT HOLLOW, TRUE); 
text 

_color(display, 
RED); 

fill_color(display, DEFAULTCOLOUR); 

perimeter color(display, WHITE); 
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surface_model(display, TRUE, DEFAOLTSURFACE); 

shade_mode(display, CMAP_FULLIINIT, TRUE); 
light ambient(display, GREY); 
light source(dlsplay, l, DIRECTIONAL, LIGHT BLUE, 0.0,0.0, -1.0); 
light source(dlsplay, 2, DIRECTIONAL, LIGHT STEEL BLUE, 0.0,1.0,0.0); 
light source(display, 3, DIRECTIONAL, DARK_SLATE BLUE, 1.0,0.0,0.0); 
light switch(display, LAIL11L21L3); 

dccharacter width(display, DC_CHAR WIDTH); 
dccharacter height(display, DC_CHARHEIGHT); 

/* set up display buffering */ 

double buffer(display, TRUEIINIT, 12); 
if (hidden_surface(display, TRUE, TRUE)I-1) 
{ 

printf("\n\ninsufficient space for z buffer\n\n'); 
exit(-1); 

while ((fret=menu("Select option:  , menul, 3))! -3) 
{ 

switch (iret) 
{ 
case 1: 

/* start sequence 

if ((ifix-yesno("Fix target position to node? "))--TRUE) 

{ 
while ((anode=menu("Select node: ", nodes, nnodes))--O); 
anode--; 

} 

/* pause 7 

pause-yesno("Pause between frames? *); 

/* loop until button 32 */ 

frame_range(display, imin frame, &max frame); 
iframe=min_frame; 
do 
{ 

/* loop until button 1 or 32 */ 

do 
{ 

/* print out frame range */ 

frame_range(display, &min frame, imax frame); 

/* print out help */ 

draw help(display); 

/* test smooth flag */ 

if (smooth_flag) 
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/* move camera 

if (ifix) set_locator(knobs2,1, 
xpos filt(anode](Sframe], 
ypos_filt(anode](iframe), 
zpos filt(anode](iframe]); 

move_cam(display, &camera); 

/* draw figure */ 

draw_fig(display, xpos filt, ypos fllt, zpos filt, 
nnodes, iframe, nodes_per seg, nsegs, 
seq_radii, flag_fixeddiameter); 

} 
else 
{ 

/* move camera */ 

if (ifix) set_locator(knobs2,1, 
xpos(anode)(iframe), 
ypos(anode)[iframe), 
zpos(anode)(iframe)); 

move cam(display, &camera); 

/* draw figure */ 

draw_fig(display, xpos, ypos, zpos, 
nnodes, iframe, nodes_per_seg, nsegs, 
seg_radii, flag_fixed_diameter); 

} 

/* switch buffer plane */ 

dbuffer_switch(display, buffer.! buffer); 

/* read button box */ 

if (read_choice_event(bbox, idum, &dum, £button, idum, tdum)1=0) 
button=0; 

/* check for screen copy 

if (button==2) 
{ 

/* write out picture file */ 

printf("Input picture file name 

scanf("%s", fname); 

strcpy(filename, PICTURE DIRECTORY); 

strcat(filename, PICTURE_PREFIX); 

strcat(filename, fname); 

strcat(filename, PICTURE_SUFFIX); 

bitmap to file(display, TRUE, 0,0, filename, 
TRUE, 0.0,0.0,0,0, TRUE); 

printf("%s written successfully\n", 
filename); 

} 
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} while ((button)-l is button! -32) ii (pause--TRUE)); 

iframe++; 

if (iframe>-max_frame) iframe=min frame; 

} while (button! -32); 
break; 

case 2: 

/* select options 

do 
{ 

/* set up correct menu prompts */ 

if (solid flag--TRUE) strcpy(menu2[6], "Style : Hollow"); 
else strcpy(menu2[6], "Style : Solid"); 

if (smooth flag--TRUE) strcpy(menu2[7], "Raw data"); 

else strcpy(menu2[7], "Smoothed data"); 

if (flag_fixed_diameter--TRUE) 
strcpy(menu2[8], "Variable limb radius"); 

else strcpy(menu2[8], "Fixed limb radius"); 

icol=menu("Select option: ", menu2,10); 

switch (icol) 
{ 

case 1: 

fill_color(display, COPPER_COLOUR); 

perimeter color(display, COPPER_COLOOR); 

surface_model(display, TRUE, COPPERSURFACE); 
break; 

case 2: 
fill_color(display, RUBBER COLOUR); 

perimeter_color(display, RUBBER_COLOUR); 

surface model(display, TRUE, RUBBER SURFACE); 
break; 

case 3: 
fill_color(display, PLASTICCOLOUR); 

perimeter_color(display, PLASTIC COLOUR); 

surface model(display, TRUE, PLASTICSURFACE); 

break; 

case 4: 

fill_color(display, OBSIDIANCOLOUR); 

perimeter color(display, WHITE); 

surface_model(display, TRUE, OBSIDIAN_SURFACE); 

break; 

case 5: 
fill_color(display, POTTERY_COLOUR); 

perimeter_color(display, POTTERYCOLOUR); 

surface_model(display, TRUE, POTTERYSURFACE); 

break; 

case 6: 
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fill color(display, BRASS COLOUR); 
perimeter color(display, BRASS COLOUR); 
surface model(display, TRUE, BRASSSURFACE); 
break; 

case 7: 
if (solid flag==TRUE) 
{ 

interior_style(display, INT HOLLOW, TRUE); 
solid flag-FALSE; 

} 
else 
{ 

interior style(display, INT SOLID, FALSE); 
solid flag-TRUE; 

} 
break; 

case 8: 
if (smooth flag==TRUE) smooth flag-FALSE; 

else smooth flag-TRUE; 

break; 

case 9: 
if (flag-fixed diameter=. TRUE) flaq_fixed diameter. FALSE; 
else flag fixed diameter=TRUE; 
break; 

} 
} while (icoll-l0); 

/* disable button box events */ 

disable events(bbox, CHOICE, 1); 

/* back to text mode */ 

hidden surface(display, FALSE, FALSE): 
double buffer(display, FALSE, 0); 
flush matrices(display); 
CLEAR GRAPH; 

domenu0 

/* menu routine using Xrlib toolkit */ 

#include "params. h" 

int domenu(title, prompts, nprort) 
char title[STRING_SIZE]; /* menu title 

char prompts[][STRING_SIZE]; /* menu prompts */ 

int nprompt; /* number of prompts 
{ 
11f 1 

int ixet; /* return value 
int iprompt; /* prompt counter 
XEvent xinput; /* x event structure 

xrEvent *input; /* input structure */ 
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xrMenu *menu; /* menu pointer */ 
xrMenuinfo menuinfo; /* menu information structure */ 
INTB *menuitems(MENUPAGE+1]; /* array of pointers to meu items 

/* cast xr event onto x event 

input-(xrEvent *)ixinput; 

/* get menu items 

for (iprompt-O; iprompt<npronpt; iprompt++) 

menultems[iprompt]-(INT8 *)prorrpts[iprompt]; 

/* get values into menu information structure */ 

menuinfo. menuTitle=title; 

menuinfo. menuItems=menuitems; 

menuinfo. numitems=(INT32)nprompt; 

menuinfo. menuContext=NULL; 

menuinfo. menuId=0; 

menuinfo. menuStyle=0; 

/* create and display menu 

menu=XrMenu(NULL, MSG_NEW, imenuinfo); 
XrMenu(menu, MSG ACTIVATEMENU, menuwindow); 

input->type=ButtonRelease; 

xrMenultemSelect-XrRIGHTBUTTONDOWN; 
XrMenu(menu, MSG EDIT, input); 

/* get input 

while (1) 
{ 

if (XrInput(O, MSG BLKHOTREAD, input)! =FALSE) 
{ 

if (input->type==XrXRAY && input->inputType=-XrMENU) 
{ 

fret-input->value3+1; 
break; 

} 
else 
{ 

fret-0; 
break; 

} 
} 

/* remove menu 

XrMenu(menu, MSG_DEACTIVATEMENU, menu_window); 

XrMenu(menu, MSG FREE, NULL); 

xrMenurtemSelect=XrRIGHTBUTTONUP; 

return(iret); 

#else 
int iprompt; /* prompt counter 
int ixet; /* return value */ 

CLEAR TEXT; 
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printf("ts\n\n", title); 

for (iprompt-O; iprompt<nprompt; iprompt++) 
{ 

printf("%d. %s\n", iprompt+l, prompts(ipromptj); 

printf(u\nlnput selection: 
scanf("%d", iiret); 

if (iret<1 11 fret>nprompt) fret=0; 

return Uret); 
fendif 
} 

draw_flg() 

#include "params. h" 

void draw_fig(fd, xpos, ypos, zpos, nnodes, iframe, nodesper seg, nsegs, seg_radii, 
flag fixed diameter) 

/* draw the figure */ 

int fd; 
float xpos(MAx NODESJ(Max_FRAMES); 

float yrpostMAX NODESJ (MAX_FRAMESJ; 
float zpos(MAX NODES)[MAX FRAMES); 

int nnodes; 
int iframe; 
int nodes_per seg[NPS)(MAX_SEGS); 
int nsegs; 
float seg_radii(NFS)(MAX_SEGS); 
int flag_fixed diameter; 

{ 
int isegs; 
int inps; 
int nstart, nend; 
char string(STRING SIZE); 

/* output file descriptor */ 
/* x world coordinates */ 
/* y world coordinates 
/* z world coordinates */ 

/* number of nodes */ 
/* frame counter */ 

/* nodes per segment 
/* number of segments 

/* radii of segment ends */ 
/* fixed segment diameter flag */ 

/* segment counter */ 
/* nodes per segment counter 

/* start and end nodes for a segment 
/* frame number string */ 

/* write out frame number */ 

sprintf(string, "Frame I %d", iframe); 
dctext(display, SIDE BORDER+IO, GRAPH HEIGHT+TOP BORDER-10, string); 

/* loop over segments */ 

for (isegs-O; isegs<nsegs; isegs++) 
{ 

/* find start and end nodes */ 

nstart=nodesyer seg[O)[isegs); 
vend-nodesper seg(1][isegs]; 

/* draw the limb */ 

draw_limb(fd, xpos(nstart][iframe], ypos[nstart)[iframe], 
zpos[nstart)[iframe], xpos(nend)(iframe), 
ypos(nend)(iframe], zpos(nend)[iframe], 
seq_radii(01(isegs], seg_radii(1)(isegs], 
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flag fixed diameter); 
} 

} 

draw_help() 

#include 'params. h" 

/* this routine draws up the help prompt on the rhs of screen "/ 

void draw help(fd) 

int fd; 

{ 

/* output device file pointer */ 

dctext(display, GRAPH_WIDTH+SIDE_BORDER-80, TOP BORDER+20, "Buttons: "); 
dctext(display, GRAPH WIDTH+SIDE BORDER-80, TOP BORDER+40, "1. Step"); 
dctext(display, GRAPH WIDTH+SIDE_BORDER-80, TOP_BORDER+60, "2. Save"); 
dctext(display, GRAPH WIDTH+SIDEBORDER-80, TOPBORDER+80, "32. Quit"); 

draw_Ilmb() 

tinclude "params. h" 

/* Subroutine draw limb draws an octagonal truncated cone 

/* Axis from (xl, yl, zl) to (x2, y2, z2), with proximal diameter prox diam and */ 
/* distal diameter dist diam */ 

/* converts axis system to right handed */ 

void draw_limb(fd, xl, yl, zl, x2, y2, z2, rel_prox radius, rel_distradius, 
flag fixed diameter) 

int fd; 
, 

double xl, yl, z1; 
double x2, y2, z2; 
double relyrox_radius; 
double rel_dist_radius; 
int flag_fixed_diameter; 

/* Define octagon data */ 

/* output file descriptor */ 
/* axis start coordinates */ 
/* axis end coordinates */ 

/* proximal radius / length */ 
/* distal radius / length */ 

/* fixed limb diameter flag */ 

static float octagon[8](2]- 
{ 

0.5,0.0, 
M_SQRT2/4.0, M_SQRT2/4.0, 
0.0,0.5, 

-M_SQRT2/4.0, M_SQRT2/4.0, 

-0.5,0.0, 
-M_SQRT2/4.0, -M_SQRT2/4.0, 
0.0, -0.5, 
M SQRT2/4.0, -M SQRT2/4.0 

}; 

static float prox octagon(8)(3}- 
{ 

24*0.0 

/* define an octagon */ 

/* proximal octagon polygon */ 
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static float dist octagon(8)(3)- 
{ 

24*0.0 

static float figure_2d(4][3]- 
{ 

12*0.0 

static float quadr[8][4](6]- 
{ 

192*0.0 

static float mirror_z(41[4]- 
{ 

1.0,0.0,0.0,0.0, 
0.0,1.0,0.0,0.0, 
0.0,0.0, -1.0,0.0, 
0.0,0.0,0.0,1.0 

double prox diam, dist diam; 
double x, y, z; 
double length; 
double z rot, y_rot; 
float transform(4)(4); 
int vertex, pvertex; 

/* distal octagon polygon */ 

/* 2d quadralateral */ 

/* side quadralaterals */ 

/* z inversion to convert to RH axes */ 

/* segment diameters */ 
/* axis vector */ 

/* length of axis vector 
/* z and x axis rotations */ 

/* transform matrix 
/* vertex counters */ 

/* Calculate axis vector 

x=x2-xl; 
y-y2-yl: 
z-z2-zl; 

/* Calculate length of axis vector 

length-sgrt(x*x+y*y+z*z); 

/* check diameter model */ 

if (flag_fixed_diameter-=TRUE) 
{ 

/* set fixed diameters */ 

prox_diam=DEFAULT DIAMETER; 

dist diam=DEFAULT DIAMETER; 

} 

else 
{ 

/* Calculate diameters */ 

prox_diam=2.0*length*rel_prox radius; 
dist diam=2.0*length*rel_dist_radius; 

} 

if (length! =0.0) 
{ 

/* Calculate the z axis rotation */ 
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if (y>0.0) 
zrot-acos(y/length)-M PI/2.0; 

else 
z rot-M PI/2.0-acos(-y/length); 

/* Calculate the y axis rotation 

if (z--0.0) 
y_rot- x<0.0 ?M PI: 0.0; 

else 
{ 

if (x--0.0) 
y_rot- z<0.0 7M PI/-2.0: M PI/2.0; 

else 
{ 

if (x<0.0) 
{ 

if (z<0.0) 
y_rot. M Pl+atan(z/x); 

else 
yrot-M PI-atan(-z/x); 

} 

else 
{ 

if (z<0.0) 
y_rot-(-atan(-z/x)); 

else 
y_rot-atan(z/x); 

} 
} 

} 

/* Perform required transformations in reverse order */ 

/* z inversion for RH axes conversion */ 

concat transformation3d(fd, mirror z, PRE, PUSH); 

/* Translation */ 

translate3d(xl, yl, zl, transform); 

concat transformation3d(fd, transform, PRE, REPLACE); 

/* y axis rotation */ 

rotate3d('y', y_rot, transform); 
concat transformation3d(fd, transform, PRE, REPLACE); 

/* z axis rotation */ 

rotate3d('z', z rot, transform); 

concat transformation3d(fd, transform, PRE, REPLACE); 

/* Calculate sized proximal and distal octagons 
/* Also side quadralaterals */ 

for (vertex-O; vertex<8; vertex++) 
{ 

prox_octagon[vertex][1]=octagon(vertex)[03*(float)prox diam; 
prox_octagon(vertex)[2]-octagon(vertex](11*(float)prox diam; 

/* Reverse direction for distal polygon to preserve */ 
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/* anti-clockwise order from outside */ 

dist_octagon[7-vertex][01-(float)length; 
dist_octagon[7-vertex](11-octagon(vertex)(0J*(float)dist diam; 
list octagon[7-vertex][2]-octagon[vertex)(1J*(float)dist diam; 

/* Side quadralaterals 

if (vertex--0) 
pvertex=7; 

else 
pvertex=vertex-1; 

quadr(vertex](0](1]=quadr[vertex](0]14]=octagon(vertex)[0)* 
(float)prox diam; 

quadr(vertex)(03(2)-quadr[vertex][01[5)-octagon(vertex)113* 
(float)prox_diam; 

quadr(vertex][1)[13=quadr(vertex](1)[41=octagon[pvertex)[0J* 
(float)prox_diam; 

quadr(vertex)[1](2]=quadr(vertex](1](5)-octagon[pvertex)(11* 
(float)prox_diam; 

quadr(vertex)[2)(0)-(float)length; 
quadr[vertex](2)(l]-quadr[vertex][2](4]-octagon[pvertex](03* 

(float)dist-diam; 
quadr[vertex](21(2]-quadr[vertex][2](5]=octagon(pvertexj(13* 

(float)dist-diam; 
quadr(vertex](31(0]-(float)length; 
quadr(vertexj(3)(1]=quadr(vertex](3)(4]-octagon[vertex][01* 

(float)dist-diam; 
quadr(vertex)(3)(21-quadr(vertex)[31[53-octagon[vertex][1]* 

(float)dist diam; 

/* do all calculation for 2d and 3d versions to keep the timing approx 
/* equal */ 

if (flag_2d--TRUE) 

figure 2d[0]101-figure 2d[1][0]-(float)length; 
figure 2d[0][1]=figure 2d(3](l)-(float)(-list diam*0.5); 

figure 2d[1](l)=figure 2d(2][l]_(float)dist diam*0.5; 

vertex_format(fd, 0,0,0,0,000NTER_CLOCKWISE); 

polygon3d(fd, figure_2d, 4, FALSE); 

vertex format(fd, 0,0,0,0, CLOCKWISE); 

polygon3d(fd, figure 2d, 4, FALSE); 

} 

else 

/* Draw the two octagons */ 

vertex format(fd, 0,0,0,0, COUNTER_CLOCKWISE); 

polygon3d(fd, prox octagon, 8, FALSE); 

polygon3d(fd, dist octagon, 8, FALSE); 

/* Draw the eight quadralaterals */ 

vertex format(fd, 3,3,0,0, COUNTERCLOCKWISE); 

for (vertex=0; vertex<8; vertex++) 

{ 
polygon3d(fd, quadr[vertex], 4, FALSE); 

} 
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/* Return stack to previous condition */ 

pop matrix(fd); 
} 

} 

d_graph() 

#include "params. h" 

void d_graph(device, title, x label, y_label, sxjoint, sy_point, npoint, nline, key, ennum) 

/* this routine plots a general line graph of the data contained in x_point and y 
-point 

/* calls double precision NAG subroutines */ 

int device; /* output device pointer 
char title(STRING_SIZE]; /* graph title */ 
char x label[STRING_SIZEJ; /* x axis label */ 

char y_label[STRING_SIZE); /* y axis label */ 

float sx_point(MAX_LINESJ[MAX_POINTS]; /* x coordinates */ 

float sy_point[MAX_LINES][MAX_POINTS]; /* y coordinates */ 

int npoint; /* number of points 
int nline; /* number of lines */ 

char key[MAX_LINES][STRINGSIZE]; /* key for multiple lines */ 

int ennum; /* number markers flag */ 

{ 
int. iline; /* line counter */ 
int ipoint; /* point counter 
int iwidth; /* width of integer field */ 
double xmin, xmax; /* x coordinate range 
double ymin, ymax; /* y coordinate range 
double vxmin, vxmax; /* x viewport 
double vymin, vymax; /* y viewport 
int margin; /* margin flag 
int lstring; /* string lengths */ 
int font; /* fortran out channel */ 
double temp; /* temporary real value */ 
int items; /* temporary integer 
int icntl; /* control value */ 
1nt itype; /* graph type */ 
int isym; /* marker type 
int ifail; /* fail flag */ 
double dx, dy; /* character spacing 
double cwidth, cheight; /* character size */ 
int key_len; /* length of key string 
double cx, cy; /* key string position 
double yinc; /* key spacing */ 
double range; /* y extent of key */ 
double xsym, ysym; /* symbol position 
double x_point(MAX_LINES](MAX POINTS]; /* x coordinates */ 

double y_point[MAX_LINES](MAX_POINTS]; /* y coordinates */ 

char stringl[80], string2[80]; 

/* convert to double precision */ 

for (iline-O; iline<nline; iline++) 
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for (ipoint-O; lpoint<npolnt; ipoint++) 
{ 

x point[iline][ipointl-(double)sx point[iline][ipoint]; 
ypoint(ilineJ(ipoint]-(double)sy_point[11inel[ipoint]; 

/* initialize secondary graphics system */ 

fout-6; 
itenp-1; 
j06vbf(&itemp, ifout); 
itemp-0; 

strcpy(stringl, getenv("SB_OUTDEV )); 

strcpy(string2, getenv("SB_OUTDRIVER")); 
cnagsti(stringl, string2, &ltemp); 
j06waf(); 

/* find coordinate range and key string length */ 

key_len=0; 
xmin-xmax-x_point[O)[0); 
ymin-ymax-y. point[0][0); 
for (iline. 0; illne<nline; iline++) 
{ 

for (ipoint=O; ipoint<npoint; ipoint++) 
{ 

ternp=xjoint(iline] (lpoint); 
if (temp<xmin) xmin-temp; 
if (temp>xmax) xmax=temp; 
temp=yjoint(iline)[ipoint]; 
if (temp<ymin) ymin=temp; 
if (temp>ymax) ymax=temp; 

/* while here, find out max key string length */ 

itemp-strlen(keyfiline}); 
key_len - itemp>key_len 7 itemp: key_len; 

} 

/* set up data mapping 

margin=1; 
j06wbf(sxmin, ixmax, &ymin, tymax, &margin); 
vxmin-0.0; 
vxmax-KEY_GRAPH; 
if (device--display) 

{ 

vymin=0.18; 
vymax-0.95; 

} 
else 
{ 

vymin-0.0; 
vymax-1.0; 

} 
j06wcf(ivxmin, ivxmax, ivymin, ivymax); 

/* labels */ 

Appendix 



Source Code Page (234) 

cjO6ahf"(title); 
icntl-1; 
cj06ajf(&icntl, xlabel); 
icntl-2; 
cjO6ajf(&icntl, y_label); 

/* draw axes */ 

j06aaf(); 

/* draw lines */ 

itype-2; 
for (iline-O; lline<nline; iline++) 
{ 

isym-iline+l; 
ifail=0; 
j06baf(xpoint(ilineJ, ypoint(llinej, inpoint, iitype, &isym, iifail); 

} 

/* check if markers need to be ennumerated */ 

if (ennum) 

/* character sizes */ 

dx-(xmax-xmin)*VDC_CHAR_SIZE; 

dy=0; 

cwidth-dx*CHAR_SLIM; 
cheight-(ymax-ymin)*VDC CHAR_SIZE; 
jO6ylf(&dx, cdy); 

j06ykf(&cwidth, &cheight); 

for (11ine=0; 11ine<nline; iline++) 
{ 

for (ipoint-O; ipoint<npoint; ipoint++) 
{ 

cx=x point(iline)[ipointi+dx/2.0; 
cy=ypoint[iline)[ipointl+cheight/2.0; 
j06yaf(&cx, &cy); 
iwidth= ipoint==0 ? 1: (int)loglO((float)ipoint)+1; 
j06zbf(&ipoint, &iwidth); 

1 
} 
/* now do key */ 

xmin=0.0; 
xmax-1.0; 
ymin-0.0; 
ymax-l. 0; 

margin-0; 
j06wbf(&xmin, ixmax, tymin, iymax, &margin); 
range-n11ne/((float)MAX_LINES*2.0); 
vxmin-KEY GRAPH; 

vxmax-1.0; 
vymin-(1.0-range)/2.0; 
vymax-l. 0-vymin; 
j06wcf(&vxmin, &vxmax, &vymin, &vymax); 
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/* set character size and spacing */ 

dx-1.0/(float)(key_len+4); 
dy-0.0; 
cwidth. dx*CHAR_SLIM; 

cheight-1.0/(float)(2*nline); 
j06ylf(idx, &dy); 
j06ykf(&cwidth, &cheight); 
j06yjf(&cwidth); 

/* draw key */ 

xsym-dx; 
cx=dx*3; 
yinc-1.0/nline; 
ysym-1.0-yinc/2.0; 
for (aline=0; iline<n1ine; iline++) 
{ 

isym=iline+l; 
j06yaf(&xsym, iysym); 
j06ygf (iisym); 
cy=ysym-cheight/2.0; 
j06yaf(&cx, &cy); 
cj06zaf(key(iline]); 
ysym--yinc; 

/* finished */ 

j06wzf 0; 
} 

energetics() 
/* routine to calculate potential energy, translational kinetic energy and */ 
/* rotational kinetic energy for all the segments */ 

(include "params. h" 

void energetics(comy, comxvel, comyvel, comzvel, xavel, yavel, zavel, seg_mass, seg_moi, 
nsegs, nframes, seg_PE, seg_LKE, seq RKE) 

float comy[MAX_SEGS] (MAXFRAMES]; 
float comxvellMA)ý_SEGS]IMAX FRAMES]; 
float comyvel[MAX SEGS]IMAX FRAMES]; 

float comzvel(MA)LSEGS]IMnx_FRAMES]; 
float xavel(MAX_SEGS)(MAX_FRAMES]; 
float yavel(MAX_SEGS](MAXFRAMES); 
float zavel[MAX_SEGS][MAXFRAMES); 
float seg_mass(MAX_SEGS]; 
float seg_moi(MAX_SEGS]; 
int nsegs; 

int nframes; 
float seg PE[MAX SEGS)(MAX_FRAMES); 

float seg LKE(MHX_SEGS)(MAX FRAMES]; 

float seg_RKEIMAX_SEGS](MAX_FRAMES]; 
{ 

int isegs; 
int iframes; 

/* loop round segments */ 

/* y component of segment COM */ 
/* x component of segment COM vel 
/* y component of segment COM vel 
/* z component of segment COM vel 

/* calculated angular velocities (rad/s) */ 

/* array of segment masses 
/* array of segment MOIs 

/* Number of segments 
/* number of frames */ 

/* segment potential energy 
/* segment linear kinetic energy 
/* segment rotational kinetic energy */ 

/* segment counter 
/* frame counter */ 
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for (isegs-O; isegs<nsegs; isegs++) 
{ 

/* loop round frames */ 

for (iframes. 0; iframes<nframes; iframes++) 

/* calculate Potential Energy (-mgh) */ 

seg PE(isegs)(iframesl-(-1.0)*seg mass(isegs)*G* 
comy(isegs](ifrar s); 

if (flag 2d) 
{ 

/* calculate Linear Kinetic Energy (0.5mv42) */ 

seg_LKE(isegs)(iframes]. 0.5*seg_mass(isegsJ* 
(comxvel(isegsJ(iframesJ*comxvel(isegs)(lfran s)+ 
comyvel[isegs](iframes]*comyvel[lsegs](iframes]); 

/* calculate Rotational Kinetic Energy (0.5Iomega^2) 

seg_RKE(isegs](iframes]-0.5*seg_moi[isegs]* 
zavel(isegs)[iframes]*zavel(isegs][iframes]; 

else 
{ 

/* calculate Linear Kinetic Energy (0.5mv"2) */ 

seg_LKE[isegs][iframes]=0.5*seg_mass(isegsJ* 
(comxvel(isegs](iframesi*comxvel(isegs][iframesJ+ 
comyvel(isegs](iframes]*comyvel[isegs)(iframesj+ 
comzvel[isegs][iframes]*comzvel[isegs](iframes)); 

/* calculate Rotational Kinetic Energy (0.5Ioffega42) */ 

seg_RKE[isegs][iframesJ=0.5*seg_moi[isegsJ* 
(xavel[lsegs)(iframesj*xavel(lsegs)(lframes]+ 
gavel[isegs)(iframes]*yavel(isegs)[If ramesI+ 
zavel[isegs](iframes]*zavel(isegs](iframes]); 

} 
} 

} 
} 

energy lot() ' 

#include "params. h" 

void energyplot(segs, nsegs, seg PE, seg_LXE, seg_RKE, startframe, endframe, tlmes) 

/* this routine plots the selected segment energetics */ 

/* depending on the data arrays passed over to the routine */ 

Char segs[](STRING_SIZE]; /* segment names */ 

int nsegs; /* number of segments 

float seg_PE(MAX_SEGSI[MAXFRAMES]; /* segment potential energy */ 
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float seq_LXE(MAx SEGS](MA)LFRAMES); /* segment linear kinetic energy */ 

float seg_RKE(MAX_SEGS)(MAXFRAMES]; /* segment rotational kinetic energy 
int startframe; /* start frame number 
int endframe; /* end frame number 
float times(MA% FRAMES); /* times (s) */ 

float pl times[MAX_LINES](MAX_POINTS]; 
float energy[MAX_LINES](MAXPOINTS]; 
char key(MAX_LINES+1][STRING_SIZE]; 

char title(STRING SIZE]; 

char x label(STRING SIZE); 

char y_label(STRING SIZE); 

char fname(STRING SIZE]; 

char filename(STRINGSIZE]; 

int iframe; 

ant anode; 
ant ienergy; 
ant iplot; 
ant nlines; 
ant aseg; 

/* times to be plotted (s) 
/* calculated energies 

/* graph key string 
/* graph title */ 

/* graph x axis label */ 
/* graph y axis label */ 

/* picture filename */ 
/* full picture filename */ 
/* frame counter 

/* node counter */ 
/* energy control */ 

/* plotter control */ 
/* number of lines on graph */ 

/* finish node number */ 

static char menul[][STRING SIZE]- 

{ 

"Potential Energy", 
"Linear Kinetic Energy", 
"Rotational Kinetic Energy" 

}; 

static char menu2(}(STRING SIZE = 
{ 

"Save data to file", 
"Save picture to file", 
"Exit" 

/* all segments */ 

/* energy menu */ 

/* plotting menu */ 

if (nsegs<MAX_LINES £& yesno("Plot all segments? ")--TRUE) 

{ 

while ((ienergy=menu("Option: `, menul, 3))""0); 

strcpy(key[nsegsl, menul[lenergy-11); 
strcat(key[nsegsl, " "); 

for (nlines-O; nlines<nsegs; nlines++) 
{ 

strcpy(key[nlines], key[nsegs]); 

strcat(key[nlines], segs[nlines]); 

/* loop round frames */ 

for (iframe-startframe; iframe<endframe; iframe++) 
{ 

/* calculate times */ 

pl times(n1ines][iframe-startframe]-times(iframe]; 

switch (ienergy) 
{ 
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case 1: 
energy[nlines][iframe-startframe]- 

seg PE(n11nes](iframe); 
break; 

case 2: 
energy [nlines](iframe-startframe]- 

seg LKE[nlines](iframe); 
break; 

case 3: 
energy(nlines](iframe-startframe]- 

seg_RKE(nlines](iframe]; 
break; 

} 
} 
else 
{ 

/* loop round number of lines */ 

nlines=0; 
do 
{ 

/* first option */ 

while ((ienergy-menu("Option: ", renul, 3))--O); 

strcpy(key[nlines], menul[ienergy-1]); 
strcat(key(nlines], W 

/* second option */ 

while ((aseg-menu("Select segment: ", segs, nsegs))--O); 
aseg--; 
strcat(key(nlines], segs[aseg]); 

/* loop round frames */ 

for (iframe-startframe; iframe<endframe; lframe++) 
{ 

/* calculate times 

pl times[nlines](iframe-startframel-times(lframe]; 

switch (ienergy) 
{ 

case 1: 
energy[nlines)[iframe-startframe]-seg_PE[aseg](iframe]; 
break; 

case 2: 

energy[nllnes)(iframe-startframe]-seg LXE[aseg)(iframe]; 
break; 

case 3: 

energy(nlines](iframe-startframe]-seg_RKE[aseg](iframe); 
break; 

Appendix 



Source Code Page (239) 

nlines++; 
} while (nlines<MAX LINES && yesno("Another line? ")--TRUE); 

} 

/* draw graph */ 

strcpy(title, "Energetics"); 
strcpy(x label, "Time (s)"); 

strcpy(y_label, "Energy (J)"); 
d graph(display, title, x label, y_label, pl times, energy, endframe - 

startframe, nlines, key, FALSE); 

while ((iplot=menu("Select option: ", menu2,3))1-3) 
{ 

switch (iplot) 
{ 
case 1: 

save_an(title, x label, y_label, pl times, energy, endframe-startframe, 
nlines, key); 

break; 
case 2: 

printf("Input picture file name 

scanf("%s", fname); 

strcpy(filename, PICTURE DIRECTORY); 

strcat(filename, PICTURE_PREFIX); 

strcat(filename, fname); 

strcat(filename, PICTURESUFFIX); 

bitmap_to_file(display, TRUE, 0,0, filename, TRUE, 0.0,0.0,0,0, TRUE); 

break; 

} 
} 
CLEAR GRAPH; 

/* finished */ 

} 

filter() 

#include "params. h" 

void filter(nnodes, xpos, ypos, zpos, xpos_filt, ypos_filt, zpos filt, nframe, fspeed) 

/* this routine performs a forth order, zero phase Butterworth digital filtration on the 

/* node position data */ 

/* the second pass is reversed for zero overall phase shift */ 

/* the cutoff frequency is set to 1/5 of the sampling frequency */ 

int nnodes; /* Number of nodes */ 
float xpos[MAX NODES](MAX FRAMES); /* x world coordinates (m) 

float ypos(MAX NODES](MM( FRAMES]; /* y world coordinates (m) */ 

float zpos[MAX NODES](MAX_FRAMES). /* z world coordinates (m) */ 

float xpos_filt(MAX NODES](MAX FRAMES]; /* filtered x world coordinates (m) */ 
float ypos filt(MAX NODES][MAx FRAMES]; /* filtered y world coordinates (m) */ 
float zpos_filt[MAX NODES][MAX_FRAMES]; /* filtered z world coordinates (m) */ 

int nframe; /* number of frames */ 
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float fspeed; /* Film frame interval (s) */ 

{ 
float xfilter(MAX NODES][MAX_FRAMESj; /* temporary filtered x data store 
float yfilter[MAR NODES](MAX_FRAMES); /* temporary filtered y data store 
float zfilter[MAX NODES](MAX_FRAMESJ; /* temporary filtered z data store 
ant anodes; /* node counter 
ant iframe; /* frame counter 
static float data_block(ll](5J- /* filtration coefficients */ 
{ 

. 2929, . 5858,. 2929,0.0000, -. 1716, 

. 2066, . 4132,. 2066,0.3695, -. 1959, 

. 15505,. 3101,. 15505,0.6202, -. 2404, 

. 1212, . 2424,. 1212,0.8030, -. 2878, 

. 0884, . 1768,. 0884,1.0011, -. 3547, 

. 06745,. 1349,. 06745,1.1430, -. 4128, 

. 0495, . 0990,. 0495,1.2796, -. 4776, 

. 0379, . 0758,. 0379,1.3789, -. 5305, 

. 02995,. 0599,. 02995,1.4542, -. 5740, 

. 0243, . 0486,. 0243,1.5134, -. 6106, 

. 0201, . 0402,. 0201,1.5610, -. 6414 

/* filtration coefficients (Winter 1979 "Biomechanics of Human Movement") 

float aO, al, a2, bl, b2; 

aO-data_block(flltration_number-1)[0); 
al-data_block[filtration_number-1][1]; 
a2=data block[filtration_number-1)(2]; 
bl-data block[filtration_number-1](3]; 
b2-data block[filtrationnumber-1)(9); 

/* test for suitable number of frames */ 

if (nframe<5) 
{ 

printf("Too few frames for filtration\n"); 
for (inodes-0; inodes<nnodes; inodes++) 
{ 

for (iframe-0; iframe<nframe; iframe++) 
{ 

xpos filt(inodes](iframel-xpos(inodes](iframe); 

ypos_filt[inodes](iframe]-ypos[inodes](iframe); 
zpos filt(anodes][iframe]-zpos[inodes][iframe]; 

} 

return; 
} 

/* loop over nodes */ 

for (inodes=O; inodes<nnodes; inodes++) 
{ 

/* first pass */ 

xfilter[inodes)(OJ=xpos[inodes)(0]; 
yfilter(inodes)(0]-ypos(inodes][0]; 
zf11ter(inodes][0]-zpos(inodes)[0]; 
xfilter[inodes][1]=xpos(inodes)(1); 
yfi1ter[inodes][1]-ypos(inodes)(1); 
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zfilter[inodesj[11-zpos[inodes](1); 
for (iframe-2; iframe<nframe; lframe++) 
{ 

xfilter[inodes)(iframe]_a0*xpos[inodes][iframe]+ 
al*xpos[inodesj(iframe-1]+ 
a2*xpos[inodes][iframe-2]+bl*xfilter(inodes][iframe-1]+ 
b2*xfilter(inodesj(iframe-2J; 

#if1 

yfilter(inodes)(iframe). a0*ypos(inodes][iframe]+ 
al*ypos(inodes)[iframe-1)+ 
a2*ypos(anodes](iframe-2]+b1*yfilter[inodes)(iframe-1]+ 
b2*yfilter(inodes][iframe-2]; 

zfilter[anodes](iframe]. a0*zpos(inodes)(iframe]+ 
al*zpos[inodes)[iframe-1)+ 
a2*zpos[inodes](iframe-2]+b1*zfilter(inodes)(iframe-1]+ 
b2*zfilter(inodes](iframe-2]; 

/* second pass */ 

/* reverse version for zero phase shift */ 

xpos_filt[anodes](nframe-1]-xfilter[inodes](nframe-1); 
ypos_filt[indes](nframe-I)-yfilter[inodes)[nframe-1J; 
zpos filt[anodes][nframe-1]-zfilter[inodes][nframe-1]; 

xpos filt[anodes][nframe-2]-xfilter[inodes][nframe-2]; 

ypos_filt(anodes](nframe-21-yfilter(inodes](nframe-21; 
zpos_filt[anodes][nframe-2]-zfilter(inodes](nframe-2]; 
for (iframe-nframe-3; iframe>-O; iframe--) 
{ 

xpos filt(anodes](iframe]-aO*xfllter(inodes)[iframe)+ 
al*xfilter(anodes)(iframe+l]+a2*xfilter(lnodes](iframe+2]+ 
bl*xpos filt(inodes][iframe+l]+b2*xpos filt(inodes)[iframe+2]; 

ypos filt(inodes](iframe]=a0*yfilter(1nodes](iframe]+ 
al*yfilter(lnodes][iframe+lJ+a2*yfilter(lnodes)(lframe+2J+ 
bl*ypos_filt(inodesj(iframe+l]+b2*ypos filt(inodesj[iframe+21; 

zpos filt[inodes](iframe]=a0*zfilter(inodes](iframe]+ 
al*zfilter(anodes](iframe+l]+a2*zfilter[inodes](lframe+2]+ 
bl*zpos_filt(inodes](iframe+l]+b2*zpos filt[inodes](iframe+2]; 

} 
ielse - 

/* unreversed for improved last points smoothing */ 

xpos_filt[inodes](0]=xfilter(inodes][0); 
ypos fllt(inodes][01-yfilter(inodes)(01; 

zpos_filt(inodes][01-zfilter(inodes](0); 
xpos filt(inodes)(1)-xfilter(inodes](1]; 

ypos_filt(inodes][1]=yfilter(inodes)[1); 
zpos_filt(inodes][1]-zfilter(inodes][11; 
for (iframe-2; iframe<nframe; iframe++) 
{ 

xpos_filt[anodes)(iframe)_a0*xfilter(inodes)[iframe]+ 
al*xfilter(inodes)(iframe-1]+a2*xfilter[inodes)(lframe-2]+ 
bl*xpos_filt(anodes](iframe-11+b2*xpos_filt(inodes](iframe-21; 

ypos filt(anodes][iframe]=a0*yfilter(inodes][iframe]+ 

al*yfilter(lnodes1[iframe-1J+a2*yfilter(inodes][iframe-2J+ 
bl*ypos filt(inodes](iframe-1]+b2*ypos filt[inodes][iframe-2]; 
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zpos Eilt(inodes][iframeJ. aO*zfilter[Snodes](iframej+ 
al*zfilter(lnodes][lframe-lJ+a2*zfilter(inodesJ(iframe-2]+ 
bl*zpos filt(inodes](iframe-1J+b2*zpos filt(inodesJ(lframe-21= 

iendif 
} 

) 

/* finished */ 

printf("Filtration successful\n"); 

frame_range() 

/include "params. h" 

/* this routine uses the knobs to move the repeat frame range */ 

frame_range(fd, min_frame, max frame) 
int fd; /* display device */ 
int *min_frame; /* minimum frame number 
int *max_frame; /* maximum frame number 

{ 
int valid; 
float rdum; 
float rmin; 
float rmax; 
int string(STRING SIZE); 

/* valid response flag 
/* dummy value */ 
/* minimum range knob */ 
/* maximum range knob */ 

/* text output string */ 

sample locator(knobsl, 1, &valid, &rdum, &rmin, &rmax); 
*min_frame-(int)rmin; 
*max frame-(int)rmax; 

sprintf(string, "Fran s %3d to %3d", *min frame, (*maxframe)-1); 
dctext(fd, SIDE BORDER+10, TOP BORDER+80, string); 

gapO 

/* This module contains the main routine for the 'G'alt 'A'nalysis 'P'rogram (GAP) 

linclude "params. h" 

/* global variables */ 

/* options flags */ 

1nt flag 2d=TRUE; 
1nt flag simple reconstruction=FALSE; 
flag */ 
int fiducial flag=FALSE; 
int frame_increment=1; 
int filtration_number=2; 
int flag filter=FALSE; 
1nt smooth number=3; 

/* 3d reconstruction values */ 

/* 2d only flag */ 
/* sirtple (orthogonal camera) 3d reconstruction 

/* fiducial mark recostruction flag 
/* frame sequence increment */ 

/* filtration cutoff number 
/* filter/smooth flag */ 

/* number of values in moving average */ 
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float 11[11J; 
float 12[11]; 

int x_mirror_1; 
float x offset_1; 
float y offset_1; 
float scale_factor_1; 
float rotation 1(2](21; 
int x_mirror_2; 
float x offset 2; 
float y offset 2; 
float scale factor 2; 
float rotation 2[2](2); 
int x-axis-source; 
int y_axis_source; 
int z-axis-source; 

/* 2d conversion values */ 

/* DLT parameters */ 

/* x mirroring flag */ 
/* x offset of picture origin 1 */ 
/* y offset of picture origin 1 */ 

/* scale factor from picture to world (m) 1 */ 
/* rotation matrix picture to world 1 */ 
/* x mirroring flag */ 

*x offset of picture origin 2 
/* y offset of picture origin 2 */ 

/* scale factor from picture to world (m) 2 */ 
/* rotation matrix picture to world 2 */ 

/* 3d axes source: 1 picture 1x axis 
2 picture 1y axis 
3 picture 2x axis 

4 picture 2y axis */ 

float x_offset; /* x offset of picture origin 
float y_offset; /* y offset of picture origin 
float scale 

_factor; 
/* scale factor from picture to world (m) */ 

float rotation[21[21; /* rotation matrix picture to world */ 

/* registration values */ 

float fiducial_x=0.0; 

float fiducial_y=0.0; 

float correction-x-0.0; 
float correction_y=0.0; 

/* graphics device pointers */ 

int display; 
int locator; 
int knobsl, knobs2, knobs3; 
int bbox; 

/* window device pointers */ 

Window graphic window; 
Window text_window; 
Window menu_window; 
Display *xdisplay; 
int xscreen; 

/* global x registration value */ 
/* global y registration value */ 

/* framewide x registration */ 
/* framewide y registration */ 

/* graphics display */ 
/* locator device (mouse) */ 

/* knob box (3 rows) */ 
/* button box */ 

/* graphic window */ 
/* text window */ 
/* menu window */ 

/* x display pointer 
/* screen number */ 

/* original hpterm window parameters */ 

unsigned int orig_width, orig height; 
int orig_x, orig_y; 

/* global brightness and contrast values */ 

float brightness=0.5; /* brightness */ 
float contrast-0.5; /* contrast 

void gap() 
{ 

/* This program records frames of 3d gait analysis data obtained from */ 
/* split image video film */ 
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int limb_data-FALSE; 
int data_to_write-FALSE; 
int nframe=0; 
int ixet; 
int nnodes; 
int nsegs; 
int iopt; 

float (speed; 

char title(STRING SIZE); 

/* Read limb file flag */ 
/* New data flag */ 

/* Frame number */ 
/* Menu return code */ 

/* Number of nodes */ 
/* Number of segments 

/* y world coordinate option */ 

/* Film frame interval (s) */ 

/* File title line */ 

int nodes_per_seg(NPS](MAX_SEGS]; /* Nodes in segment */ 

float seg_radii[NPS][MAX_SEGS]; /* relative radii of segment ends */ 

float xpos(MAX NODESJ[MAX FRANES]; /* x world coordinates (m) 

float ypos(MAX_NODES][MAX_FRAMES]; /* y world coordinates (m) 

float zpos[MAX NODES][MAX_FRAMES]; /* z world coordinates (m) 

float xpos_filt(MAX NODES](MAX_FRAMES]; /* filtered x world coordinates (m) 

float ypos_filt(MA)LNODES](MAX FRAMES]; /* filtered y world coordinates (m) */ 

float zpos_filt(MAX NODES)[MAX_FRAMES]; /* filtered z world coordinates (m) */ 

float seg_mass[MAX_SEGS]; /* array of segment masses */ 

float seg com(MAX_SEGS); /* array of segment relative COMs 

float seg_moi(MAX SEGS); /* array of segment MOIs 

char nodes[MAX NODES][STRING SIZE]; /* Names of nodes */ 

char segs[MAX_SEGS][STRINGSIZEJ; /* Names of segments */ 

static char menul(](STRING SIZE = /* Main menu */ 

"Read limb file", 
"Read node file", 
"Write node file", 
"Digitize new sequence", 
"Digitize additional frames", 
"Display frames", 
"Analyse gait", 
"View video frames", 
"Set global options", 
"Shell to Unix", 
"Exit", 

/* open devices 

open dev 0; 

CLEAR_TEXT; " 
printf("Gait Analysis Program\n\n'); 

while (TRUE) 

( 

/* write main menu */ 

iret=menu("Gait analysis program", menul, 11); 

/* select options */ 
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if (fret--1) 
{ 

/* test to see if unsaved data exists */ 

if (data_to_write--TRUE) 

if (yesno("Save current frame data ? ")) 

wrnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed): 

data_to_write-FALSE; 

} 

/* read the limb model file */ 

rdlimb(title, nodes, innodes, segs, &nsegs, nodes_per seg, seg_mass, 
seg_com, seq_moi); 

nframe=0; 
data_to_write=FALSE; 
limb data-TRUE; 

} 

if (iret--2 && limb-data--TRUE) 
{ 

/* test to see if unsaved data exists */ 

if (data_to_write--TRUE) 
{ 

if (yesno("Save current frame data ? ")) 

wrnode(title, nodes, nnodes, xpos, ypos, zpos, 

nframe, fspeed); 

data towrite-FALSE; 

} 

/* read a node data file */ 

rdnode(title, nodes, innodes, xpos, ypos, zpos, inframe, cfspeed); 

/* filter data */ 

if (flag-filter) filter(nnodes, xpos, ypos, zpos, xpos Eilt, 

ypos filt, zpos filt, nframe, fspeed); 

else smooth(nnodes, xpos, ypos, zpos, xpos filt, 

ypos filt, zpos filt, nframe, fspeed); 

} 

if (iret-=3 ii nframe! -O) 
{ 

/* save frame data file */ 

wrnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed); 

data-to-write-FALSE; 

} 

if (iret==4 && limb-data=-TRUE) 
{ 

/* test to see if unsaved data exists */ 

if (data to write""TRUE) 
( 
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if (yesno("Save current frame data ? ")) 

wrnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed); 
data_to_write-FALSE; 

} 

/* initialize the digitizer */ 

initrd 0; 

/* get frame speed */ 

printf("Input interval between frames (s) 
scanf("%f", ifspeed); 

/* digitize frames required */ 

nframe=0; 
dgnode(title, nodes, nnodes, xpos, ypos, zpos, inframe); 
data to write=TRUE; 

/* filter data */ 

if (flag_filter) filter(nnodes, xpos, ypos, zpos, xpos Eilt, 
ypos filt, zpos filt, nframe, fspeed); 

else smooth(nnodes, xpos, ypos, zpos, xpos Eilt, 
ypos filt, zpos filt, nframe, fspeed); 

} 

if (iret--5 ii limb_data==TRUE && nframe! =0) 
{ 

/* initialize the digitizer */ 

if (data_to_write==FALSE) 

{ 
initrd(); 

/* get frame speed */ 

printf("Input interval between frames (s) 
scanf("%f", ifspeed); 

} 

else 
{ 

if (yesno("Reinitialize digitizing 7")) 
{ 

initrd(); 

/* get frame speed */ 

printf("Input interval between frames (s) 

scanf('%f", tfspeed); 

/* digitize frames required */ 

dgnode(title, nodes, nnodes, xpos, ypos, zpos, tnframe); 
data to write=TRUE; 
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/* filter data */ 

if (flag-filter) filter(nnodes, xpos, ypos, zpos, xpos filt, 

ypos filt, zpos filt, nframe, fspeed); 

else smooth(nnodes, xpos, ypos, zpos, xpos filt, 

ypos filt, zpos_fllt, nframe, fspeed); 

} 

if (fret--6 & nframel-0) 

/* display digitized data */ 

displa(title, nodes, nnodes, xpos, ypos, zpos, xpos filt, ypos filt, zpos filt, 

nframe, segs, nsegs, nodesper seg, seq_radii); 

if (iret--7 && nframel-0) 

/* perform data analysis */ 

stats(title, nodes, nnodes, xpos, ypos, zpos, xpos filt, ypos filt, 

zpos filt, nframe, segs, nseqs, nodes_per seq, fspeed, seq mass, 
seq_com, seq_moi); 

if (iret=-8) 

/* view video frames */ 

view o; ; 

if (iret--9) 
{ 

/* set global options 

options(); 

/* re-filter data */ 

if (flag-filter) filter(nnodes, xpos; ypos, zpos, xpos filt, 

ypos filt, zpos filt, nframe, fspeed); 

else smooth(nnodes, xpos, ypos, zpos, xpos filt, 

ypos filt, zpos filt, nframe, fspeed); "- 
} 

if (iret--10) 
{ 

/* shell out to Unix 

system(SHELL); 
} 

if (ixet- 11) 
{ 

if (yesno("Are you sure you want to quit? ")) 
{ 

/* test to see if unsaved data exists */ 

if (data towrite==TRUE) 
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{ 
if (yesno("Save current frame data ? ̀ )) 

wrnode(title, nodes, nnodes, xpos, ypos, zpos, 
nframe, fspeed); 

} 

/* terminate program 

break; 

L' 

} 
} 

/* loop back to menu 

} 

/* close devices */ 

close dev(; 

/* finished */ 

Identity3d() 

/* Subroutine identity3d produces the identity matrix 

#include "params. h" 

void identlty3d(m) 
float m[4](4], 
{ 

int i, j; 

for (i=0; i<4; i++) 
for (j-O; j<4; j++) 

m(i] (j]=(float) (i=-j); 
} 

initrd() 

/* routine to select initialize options depending on flag 2d 

/include "params. h" 

void inltrd() 
{ 

if (flag_2d==TRUE) initrd_2d(); 

else 
{ 

if (flag simple reconstruction==TRUE) initrd_3d2(); 

else initrd 3d1(); 

P 
} 

Initrd_2dO 

#include "params. h" 
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void initrd 2d() 

/* this routine sets up the transformation values for the 2d input 

{ 
double theta; /* rotation angle */ 
float xjos, y pos; /* screen position of reference point 
float x_dis, y dis; /* screen displacement of reference point 
float x_ref, y_ref; /* reference point 
FILE *unit; /* file pointer 

char filename[STRING_SIZE); /*, file name */ 

char fname[STRING SIZE]; /* input file name 
int iret; /* menu option */ 

static char menul[][STRING SIZE = /* initialization option menu 
{ 

"Load reconstruction parameters", 
"Calculate reconstruction parameters" 

/* do menu 

while ((fret-menu("Select option: ", menul, 2))==0); 

switch (iret) 
{ 

case 1: 

/* load up parameters file */ 

do 
{ 

sel_file(RECON_DIRECTORY, RECON PREFIX, RECONSUFFIX 2D, filename); 

unit-fopen(filename, "r"); 

} while (unit-NULL); 

fscanf(unit, "%e%e", &fiducial x, ifiducial_y); 

fscanf(unit, "%e", &x offset); 
fscanf(unit, "%e", &y offset); 
fscanf(unit, "%e", &scale_factor); 
fscanf(unit, "teke", crotation[0][O], &rotation[0][1J); 
fscanf(unit, "%e%e", &rotation[1][O], irotation[l)(11); 

fclose(unit); 
printf("File %s'read successfully\n", filename); 

break; 

case 2: 

/* get into right graphics mode 

CLEAR GRAPH; 

/* read in picture file *j 

readpic(}; 

/* fiducial point 

if (fiducial_flag) 
{ 
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printf("Select fiducial point\n"); 
digrd(&fiducial x, &fiducial_y); 

} 

/* get origin 

printf("Select origin from picture\n"); 
digrd(&x offset, &y_offset); 

/* get reference point 

printf("Input coordinates of a reference point : "); 
scanf("%f%f", &x_ref, &y_ref); 
printf("Select reference point from picture\n"); 
digrd (&x_pos, iyyos) ; 

/* calculate scale factor */ 

x dis-x_pos-x offset; 
ydis-y_pos-y_offset; 
scale_factor-sgrt((double)(x ref*x ref+y ref*y_ref))/ 

sgrt((double)(xdis*xdis+ydis*y_dis)); 

/* calculate rotation */ 

theta-atan2((double)y_ref, (double)x ref)- 
atan2((double)y_dis, (double)xdis); 

/* and rotation array 

rotation[0][O]-(float)cos(theta); 
rotation[0][ll-(-(float)sin(theta)); 
rotation(l)[0J-(float)sin(theta); 
rotation[1][11-(float)cos(theta); 

/* terminate graphics */ 

CLEAR GRAPH; 

/* write out reconstruction parameters file */ 

if (yesno("Write parameters file? ")) 
{ 

do 
{ 

prlntf("Input reconstruction parameters file name 
scan f("%s", fname) ; 
strcpy(filename, RECON_DIRECTORY); 

strcat(filename, RECON_PREFIX), 

strcat(filename, fname); 

strcat(filename, RECON_SUFFIX 2D); 

unit-fopen(filename, "w"); 

} while (unit--NULL); 

fprintf(unit, "te %e\n", fiducial x, fiducial_y); 

fprintf(unit, "%e\n", x offset); 
fprintf(unit, "%e\n", y_offset); 
fprintf(unit, "%e\n", scale factor); 
fprintf(unit, "%e %e\n", rotation[O][OJ, rotation[OJ[1]); 
fprintf(unit, "%e %e\n", rotation[l][O], rotation(l)(1]); 
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fclose(unit); 
printf("File is written successfully\n", filename); 

} 
break; 

initrd_3d 10 

#include "params. h" 

void initrd 3d1() 

/* this routine sets up. the transformation values for the 2d to 3d conversion 
/* it uses the Marzan algorithms to enable the cameras to be in any convenient position 

{ 

FILE *unit; /* file pointer 

char filename [STRING SIZE]; /* file name */ 

char fname(STRING SIZE]; /* input file name 
float xw[MAX_REF); /* reference point world coordinates */ 

float yw[MAX REF); 

float zw[MAX REF]; 
float gl(MAX_REFI; /* reference points screen coordinates */ 

float rl(MAX_REF]; 
float g2(MAX_REF]; /* reference points screen coordinates */ 

float r2(MAX REF}; 
int iret; /* menu option 

int nrefs; /* reference value number 
int irefs; /* reference value counter 
static char menul[][STRING SIZED= /* initialization option menu 
{ 

"Load reconstruction parameters", 
"Calculate reconstruction parameters" 

int i; /* load up counters 

/* do menu 

while ((iret=menu("Select option: ", menul, 2))==0); 

switch (iret) 
{ 

case 1: 

/* load up parameters file, */ 

do 
{ 

sei file(RECON_DIRECTORY, RECON_PREFIX, RECON_SUFFIX 3Dl, filename); 

unit-f open(filename, "r"); 

} while (unit==NULL); 

for (i=0; i<ll; i++) fscanf(unit, "ice", ill(ij); 
for (i=0; i<ll; 1++) fscanf(unit, "%e", &l2(i]); 
fscanf(unit, "bette", &fiducial x, ifiducial_y); 

fclose(unit); 
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printf("File %s read successfully\n", filename); 
break; 

case 2: 

1* get into right graphics mode */ 

CLEAR GRAPH; 

/* read in picture file */ 

readpic(); 

/* fiducial point 

if (fiducial flag) 
{ 

printf("Select fiducial point\n"); 
digrd(&fiducial x, sfiducial_y); 

} 
else 
{ 

flducial_x"0; 
fiducial_y=0; 

/* get world coordinates of reference points 

do 
{ 

printf("Input number of reference points : "); 
scanf ("%d", &nrefs) ; 

)while (nrefs<MIN_REF II nrefs>-MAX_REF); 

for (irefs-O; irefs<nrefs; irefs++) 

{ 
printf("Reference point %d : ", irefs+l); 
scanf("%f %f %f", &xw[irefs], &yw[irefs], izw(irefs]); 

} 

select the reference points 

for (irefs=0; irefs<nrefs; irefs++) 
{ 

printf("Picture 1, reference point "d\n", irefs+l); 
digrd(igl[irefs], &rl[irefs]); 
printf("Picture 2, reference point %d\n", irefs+l); 
digrd(&g2[irefs], ir2(irefs]); 

} 

/* calculate dlt parameters 

dlt_parameters(xw, yw, zw, gl, rl, inrefs, 11); 
dlt parameters(xw, yw, zw, g2, r2, znrefs, 12); 

/* terminate graphics */ 

CLEAR GRAPH; 

/* write out reconstruction parameters file */ 

printf("Input reconstruction parameters file name : "); 
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scanf("%s", fname); 

strcpy(filename, RECON_DIRECTORY); 

strcat(filename, RECON_PREFIX); 

strcat(filename, fname); 

strcat(filename, RECON SUFFIX 3D1); 

unit-fopen(filename, "w"); 
for (i-O; i<ll; i++) fprintf(unit, "%e\n", 11(iJ); 
fprintf(unit, "\n"); 

for (i-O; i<ll; i++) fprintf(unit, "%e\n", 12(iJ); 
fprintf(unit, "\n%e %e\n", fiducial x, fiducial_y); 
fclose(unit); 
printf("File %s written successfully\n", filename); 
break; 

Inltrd_3d2() 

#include "params. h" 

void initrd 3d2() 

/* this routine sets up the transformation values for the simple 3d reconstruction 

{ 
double theta; /* rotation angle */ 
float x posy pos; /* screen position of reference point 
float x dis, y_dis; /* screen displacement of reference point 
float x ref, y_ref; /* reference point 
FILE *unit; /* file pointer 
char filename[STRINGSIZE]; /* file name */ 

char fname(STRING_SIZE); /* input file name 
int ixet; /* menu option */ 

static char menul(][STRING_SIZE]- /* initialization option menu 
{ 

-Load reconstruction parameters", 
"Calculate reconstruction parameters" 

char menu2[4][STRINGSIZE]; /* 3d information source menu 

/* do menu */ 

while ((iret-menu("Select option: ", menul, 2))-. 0); 

switch (fret) 
{ 

case 1: 

/* load up parameters file */ 

do 
{ 

sel_file(RECON DIRECTORY, RECON PREFIX, RECON_SUFFIX 3D2, filename); 
unit-fopen(filename, "z"); 

} while (unit-NULL); 

fscanf(unit, "%e%e", ifiducial x, zfiducial_y); 

fscanf(unit, "%e", &x_offset_l); 
fscanf(unit, "%e", &y offset 1); 
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fscanf(unit, "te", zscale 
- 

factor 1); 
fscanf(unit, "te%e", arotation 1(0](0], irotation 1(0]111); 
fscanf(unit, "%e%e", &rotation_l(1](0], irotation 1[1](1]); 
fscanf(unit, "%cd", ix mirror 1); 

fscanf(unit, "%e", &x_offset_2); 
fscanf(unit, "%e", &y_offset_2); 
fscanf(unit, "%e", zscale_factor 2); 
fscanf(unit, "Ire%e", &rotation_2(0][0], &rotation 2(0)(11); 
fscanf(unit, "%ete", &rotation_2[1](0], irotation 2(1][1]); 
fscanf(unit, "%d", &x mirror 2); 

fscanf(unit, "%d", ix axis source); 
fscanf(unit, "td", &y_axis_source); 
fscanf(unit, "%d", iz axis source); 

fclose(unit); 

printf("File %s read successfully\n", filename); 
break; 

case 2: 

/* get into right graphics mode */ 

CLEAR GRAPH; 

/* read in picture file */ 

readpic(); 

/* fiducial point 

if (fiducial_flag) 
{ 

printf("Select fiducial point\n"); 
digrd(sfiducial x, &fiducial_y); 

} 

/* PICTURE 1 */ 

/* get x mirror status 

printf("PICTURE 1\n"); 

x mirror l-yesno("Mirror x axis on picture 1"); 

/* get origin 

prlntf("Select origin\n"); 
digrd(&x offset l, &y offset 1); 
if (x mirror_1) x offset l-(-x offset 1); 

/* get reference point */ 

printf("Input coordinates of a reference point : "); 
scanf("%f%f", &x_ref, iy_ref); 
printf("Select reference point from picture\n"); 
digrd(&x_pos, Ly_pos); 
if (x mirror 1) x_pos-(-x_pos); 

/* calculate scale factor */ 

x dis-x pos-x offset_1; 

Appendix 



Source Code Page (255) 

y_dis-yyos-y_offset_1; 
scale factor l-sgrt((double)(x ref*x ref+y ref*y_ref))/ 

sgrt((double)(xdis*x_dis+ydis*y_dis)); 

/* calculate rotation */ 

theta-atan2((double)y_ref, (double)x ref)- 
atan2((double)y_dis, (double)xdis); 

/* and rotation array */ 

rotation 1(0J[0J-(float)cos(theta); 

rotation l(01111-(-(float)3in(theta)); 

rotation_1[1)[0]-(float)sin(theta); 
rotation 1[1J[iJ-(float)cos(theta); 

/* PICTURE 2 */ 

/* get x mirror status 

printf("PICTURE 2\n"); 

x mirror_2-yesno("Mirror x axis on picture 20); 

/* get origin */ 

printf("Select origin\n"); 
digrd(&x_offset 2, &y offset_2); 
if (x mirror 2) x_offset 2-(-x offset 2); 

/* get reference point */ 

printf("Input coordinates of a reference point : "); 

scanf("%f%f", ix ref, iy_ref); 
printf("Select reference point from picture\n"); 
digrd(&x_pos, &y_pos); 
if (x mirror 2) x_pos-(-xpos); 

/* calculate scale factor */ 

x dis=xyos-x_offset_2; 
y_dis-y_Pos-y_offset_2; 
scale factor_2-sgrt((double)(x ref*x ref+y_ref*y_ref))/ 

sgrt((double)(xdis*x_dis+ydis*y_dis)); 

/* calculate rotation */ 

theta=atan2((double)y_ref, (double)x ref)- 
atan2((double)y_dis, (double)xdis); 

/* and rotation array */ 

rotation 2[01[01-(float)cos(theta); 

rotation _2[0J[1J-(-(float)sin(theta)); 
rotation_2[11[01-(float)sin(theta); 
rotation 2111[11-(float)cos(theta); 

1* terminate graphics */ 

CLEAR GRAPH; 

/* select sources of 3d information */ 
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strcpy(menu2[01, "Picture 1x axis"); 
strcpy(menu2[11, " y axis"); 
strcpy(menu2[2], "Picture 2x axis"); 
strcpy(menu2[3], " y axis"); 

do 

x axis_source-menu("3d x axis data from: ", menu2,4); 
} while (x-axis-source--O); 

strcat(menu2[x axis source-1), " x"); 

do 
{ 

y_axis source=menu("3d y axis data from: ", menu2,4); 
} while (y_axis_source--O II y_axis_source--x axis source); 

strcat(menu2(y_axissource-1}, " y"); 

do 
{ 

z axis_source-menu("3d z axis data from: ", menu2,4); 
} while (z-axis-source--O II z_axis_source--x axis source ii 

z axis_source--y_axis_source); 

/* write out reconstruction parameters file */ 

if (yesno("Write parameters file? ")) 
{ 

do 
{ 

printf("Input reconstruction parameters file name 
scanf("%s", fname); 
strcpy(filename, RECON DIRECTORY); 

strcat(filename, RECON_PREFIX); 

strcat(filename, fname); 
strcat(filename, RECONSUFFIX 3D2); 

unit-fopen(filename, "w"); 
} while (unit--NULL); 

fprintf(unit, "%e %e\n", fiducial_x, fiducial_y); 

fprintf(unit, "fie\n", x_offset 1); 
fprintf(unit, "te\n", y offset 1); 
fprintf(unit, "%e\n", scale factor 1); 
fprintf(unit, "%e Ire\n", rotation_1[0][OJ, rotation 1[0][1)); 
fprintf(unit, "%e %e\n", rotation 1[l][OJ, rotation l(lJ[i]); 
fprintf(unit, "%d\n", x mirror 1); 

fprintf(unit, "%e\n", x offset_2); 
fprintf(unit, "%e\n", y_offset 2); 
fprintf(unit, "%e\n", scale factor 2); 
fprintf(unit, "be %e\n", rotation 2[0J[0], rotation 2[0][11); 
fprintf(unit, "%e %e\n", rotation 2[1][0], rotation 2[1][1]); 
fprintf(unit, "$d\n", x mirror 2); 

fprintf(unit, "%d\n", x axis_source); 
fprintf(unit, "%d\n", y_axis source); 
fprintf(unit, "%d\n", z axis source); 

fclose(unit); 
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printf("File is written successfully\n', filename); 
} 
break; 

} 
} 

length() 

#include 'params. h` 

void length(xpos, ypos, zpos, nnodes, nframes, nodes per seg, nsegs, seg length) 

/* calculate the mean lengths of the segments */ 

float xpos[MAX NODESI(MAX_FRAMES]; 
float ypos[PAX NODES](MAX FRAMES); 
float zpos[MAX NODES](MAX_FRAMES]; 
int nnodes; 
int nframes; 
int nodes_per seg[NPS][MAX_SEGS]; 
int nsegs; 
float seq_length[MAX_SEGS]; 
{ 

int iframes; 
int isegs; 
int nstart, nend; 
float x, y, z; 

/* x world coordinates */ 
/* y world coordinates */ 
/* z world coordinates */ 
/* number of nodes */ 

/* number of frames */ 
/* nodes per segment */ 

/* number of segments 
/* mean segment lengths */ 

/* frame counter 
/* segment counter 

/* start and end nodes for a seg 
/* intermediate lengths */ 

/* find mean segment lengths */ 

for (isegs=O; lsegs<nsegs; isegs++) 
{ 

/* find start and end nodes */ 

nstart=nodesyer_seg[0][isegs]; 
nend=nodes_per seg(1](isegs]; 

/* loop over frames */ 

seg length[isegs]=0.0; 
for (iframes-O; iframes<nframes; lframes++) 
{ 

x-xpos[nend](iframes]-xpos[nstart](iframes); 
y-ypos(nend][iframes]-ypos[nstart](iframes]; 
z-zpos[nend][iframes]-zpos[nstart][iframes]; 

seg length[isegsJ+"(float)sgrt((double)x*x+y*y+z*z); 
} 
seg_length[isegsJ-seg_length[isegsJ/(float)nframes; 

Iimb_com() 

/* limb_com calculates the position of the centre of mass for the limb */ 

/include "params. h" 

void limb_com(xl, yl, zl, x2, y2, z2, rel_com, x, y, z) 
float xl, yl, zl; /* start of axis of conic section */ 
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float x2, y2, z2; 
float rel_com; 
float *x, *y, *z; 
{ 

float dx, dy, dz; 

dx=x2-xl; 
dy-y2-yl; 
dz-z2-zl; 

*x=x1+re1_com*dx; 
*y.. yl+rel_com*dy; 
*z=z1+re1_com*dz; 

} 

/* end of axis of conic section 
/* relative COM position */ 

/* calculated position of the centre of mass 

/* displacement along axis */ 

Iocus() 

#include "params. h" 

void locus(nodes, nnodes, xpos, ypos, zpos, nframe, fspeed) 

/* this routine plots the selected node locus */ 

int nnodes; /* Number of nodes */ 
char nodes[J[STRING_SIZE); /* Names of nodes */ 

float xpos(J[MAX_FRAMESJ; /* x world coordinates (m) */ 
float ypos[J[MAX_FRAMES); /* y world coordinates (m) 

float zpos[][MA%FRAMES); /* z world coordinates (m) */ 
int nframe; /* number of frames */ 

float x_locus[MAX_LINES)[MAXFRAMES); /* locus x axis 
float y_locus[MAX_LINES)[MAXFRAMES); /* locus y axis 

char key[MAX_LINES)(STRINGSIZE); /* graph key string */ 

char title(STRING SIZE]; /* graph title */ 

char x label[STRING_SIZE]; /* graph x axis label */ 

char y_label(STRING SIZE]; /* graph y axis label */ 
char fname[STRING SIZE]; /* picture filename */ 

char filename(STRING_SIZE]; /* full picture filename */ 
Snt labs; /* absolute/relative indicator */ 
int iframe; /* frame counter 
int iplot; /* plotter control */ 
int nlines; /* number of lines on graph */ 
int anode; /* selected node */ 
int bnode; /* reference node */ 
int x-axis; /* x-axis selector */ 
int y_axis; /* y axis selector */ 

float refx-O. O, refy-O. O, refz=0.0; /* node reference values */ 

static char menul[](STRING SIZE}= 

{ 

'x Value", 

"y Value", 

"Z Value" 

static char menu2[][STRING_SIZE}" 
{ 

'x Value", 
"y Value", 
"z Value" 

}; 

/* locus x selector menu */ 

/* locus y selector menu */ 
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static char menu3[][STRING_SIZE]- /* absolute/relative menu 
{ 

'Absolute*, 
"Relative` 

static char menu4[][STRING_SIZE]- /* plotting menu 
{ 

"Save data to file", 
"Save picture file", 
"Exit" 

P select absolute/relative */ 

while ((iabs=menu("Select option: ", menu3,2))--O); 

/* select axes */ 

if (flag_2d=-TRUE) 
{ 

x-axis-1; 
y_axis-2; 

} 

else 
{ 

while ((x axis=menu("Select x axis: ", menul, 3))--O); 

while ((y_axis. menu("Select y axis: ", menu2,3))-=O); 
} 

/* loop round number of lines */ 

nllnes=0; 
do 

{ 

/* select nodes */ 

if (iabs--2) 
{ 

while ((bnode-menu("Select reference node: ', nodes, nnodes))--0); 
bnode--; 
while ((anode-menu("Select node: ", nodes, nnodes))--O); 
anode--; 
strcpy(key[nlines], nodes[bnode]); 
strcat(key[nlines], - "); 
strcat(key[nlines], nodes(anode]); 

} 
else 
{ 

while ((anode=menu("select node: ", nodes, nnodes))--O); 
anode--; 
strcpy(key[nlines}, nodes(anode]); 

} 

/* loop round frames */ 

for (iframe-O; iframe<nframe; iframe++) 

/* assign reference node values */ 

if (iabs=-2) 
4 
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refx=xpos[bnode][iframe]; 
refy-ypos[bnode)[iframe]; 
refz-zpos[bnode)[iframe]; 

} 

/* put correct values into locus */ 

switch (x-axis) 
{ 
case 1: 

x locus[nlines](iframe]-xpos[anode)(iframej-refx; 
break; 

case 2: 
x locus(nlines](iframe]-ypos(anode](iframe]-refy: 
break; 

case 3: 
x locus[nlines](iframe]=zpos(anode](iframe]-reiz; 
break; 

} 
switch (y axis) 
{ 
case 1: 

y_locus(nlines][iframe]=xpos(anode](iframe]-refx; 
break; 

case 2: 

y_locus[nlines][iframe)-ypos[anode][iframe]-refy; 
break; 

case 3: 
y_locus[nllnes)(iframel-zpos(anode)[iframe)-refz; 
break; 

nlines++; 
} while (yesno("Another line? ")--TRUE); 

/* draw graph */ 

strcpy(title, menu3[iabs-l]); 

strcat(title, " Node Locus"); 

strcpy(x label, menul[x axis-11); 
strcat(x_label, - (m)"); 

strcpy(y_label, menu2[y_axis-1]); 

strcat(y_label, " (m)"); 

d graph(display, title, x_label, y_label, x_locus, y locus, nframe, nlines, key, TRUE); 
while ((iplot=menu("Select option: ", menu4,3)))=3) 
{ 

switch (iplot) 
{ 
case 1: 

save an(title, x_label, y_label, x locus, y_locus, nframe, nlines, key): 
break; 

case 2: 

printf("Input picture file name : "); 
scanf("%s", fname); 
strcpy(filename, PICTURE_DIRECTORY); 

strcat(filename, PICTURE PREFIX); 

strcat(filename, fname); 
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straat(filename, PICTURE_SUFFIX); 

bitmap to_file(display, TRUE, 0,0, f11ename, TRUE, 0.0,0.0,0,0, TRUE); 
break;. 

} 
} 
CLEAR GRAPH; 

/* finished */ 

I_dynamO 

/include "params. h" 

/* routine to calculate linear dynamics */ 
/* NB. calculates resultant force on each segment */ 

void 1 dynam(comxacc, comyacc, comzacc, nsegs, nframe, seg_mass, 
x force, y_force, z_force) 

float comxacc(][MAX FRAMES]; 

float comyacc(][MAX_FRAMES]; 
float comzacc[][MAX_FRAMES]; 
int nsegs; 
int nframe; 
float seg_mass[]; 
float x force(] (MAX FRAMES]; 

float y_force(I[MAX FRAMES]; 

float z force(][MAX FRAMES]; 

{ 

int isegs; 
int iframe; 

/* x component of segment COM accln 
/* y component of segment COM accln 
/* z component of segment COM accln 

/* number of segments 
/*'number of frames */ 

/* segment masses 
/* x component of force */ 
/* y component of force */ 
/* z component of force */ 

/* segment counter 
/* frame counter */ 

/* loop round frames and segments */ 

for (isegs-O; isegs<nsegs; isegs++) 
{ 

for (iframe=O; iframe<nframe; iframe++) 
{ 

x force(isegs)(iframe]=seg_mass(isegs]*comxacc(isegs][iframe]; 
y_force[isegs][iframe]_seg_mass(isegs]*(comyacc(lsegsj[iframe]); 
z_force[isegs](iframe]_seg_mass[isegs]*comzacc[isegs][iframe]; 

} 

I_kinem() 

#include "params. h" 

void 1_kinem(nnodes, xpos, ypos, zpos, nframe, fspeed, times, xvel, yvel, zvel, 
xacc, yacc, zacc) 

/* this routine calculates the linear kinematic parameters */ 

int nnodes; /* Number of nodes */ 

float xpos[][MAX FRAMES); /* x world coordinates (m) */ 
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float ypos(][MAR FRAMES]; 
float zpos[] [MAX FRAMES]; 
int nframe; 
float fspeed; 
float times [MAX FRAMES]; 
float xvel(](MAX FRAMES); 
float yvel (] (MAX FRAMES) ; 
float zvel(] [MA% FRAMES]; 
float xacc(][MAX FRAMES); 
float yacc(][MAX FRAMES]; 
float zacc() [MAX FRAMES]; 

int iframe; 
ant anode; 
float time; 

} 

/* y world coordinates (m) 
/* z world coordinates (m) */ 

/* number of frames */ 
/* Film frame interval (s) 

/* times (s) */ 
/* calculated velocities (m/s) */ 

/* calculated accelerations (m/s/s) */ 

/* frame counter 
/* node counter */ 

/* time counter (3) */ 

/* check sufficient frames */ 

if (nframe<5) 
{ 

prlntf("Insufficient frames\n"); 

return; 

/* loop over nodes */ 

for (inode=O; inode<nnodes; lnode++) 

/* calculate velocities and accelerations */ 

different(times, xpos[inode], nframe, xvel[inode], xacc(inode], FALsE); 
different(tlmes, ypos[lnode], nframe, yvel(1node], yacc(inode], FALsE); 
different(times, zpos[Snode], nframe, zvel[inode], zacc(inode], FALSE); 

} 

menu() 
(include "params. h" 

int menu(title, prompt, nprompt) 

/* this routine prints up on the screen a general format mouse selection menu 

char title[]; /* the title centred at the top of the screen 

char prortpt[][STRING_SIZE]; /* these are the selection options 

int nprompt; /* this is the number of prompts */ 

/* test menu size */ 

int iret; /* this is the value of the returned selection*/ 

char menu-pronpts[MENU PAGE+11[STRING SIZE); /* this is the menu buffer 

int lprompt; /* this is the prompt pointer */ 
int jpronpt; /* prompt index in multi-page menu 
int kpronpt; /* menu size in multi-page menu */ 
int npage; /* number of pages in multi-page menu 
int ipage; /* page index */ 
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} 
else 
{ 

if (nprompt<=MENU PAGE) 
{ 

/* get the string into the correct format for 'domenu' */ 

for (iprompt=O; iprompt<nprompt; iprompt++) 

} 
strcpy(menuj, rompts[ipromptj, pronpt[Sprompt]), 

/* and call the menu routine */ 

fret-domenu(title, menujronpts, npronpt); 

/* calculate the number of pages */ 

npage-nprompt/MENU PAGE; 
ipage=0; 

do 
{ 

1* get the string into the correct format for 'domenu' */ 

kpronpt=0; 
for (ipronpt-O; iprompt<MENU PAGE; iprompt++) 
{ 

jpronpt. ipronpt+MENU PAGE*ipage; 
if (jprompt<nprompt) 

{ 
strcpy(menujrorpts[kprortpt], promptIjpronpt]); 
kprompt++; 

} 
strcpy(menu prompts(kprompt], "Next page"); 
kprompt++; 

/* and call the menu routine */ 

fret-domenu(title, menujrompts, kpronpt); 

/* calculate next page number */ 

ipage- ipage<npage ? ipage+l: 0; 
} while (iret--kpronpt); 

/* recalculate page number */ 

ipage- ipage--O ? npage: ipage-1; 
if (iretl-O) iret. iret+ipage*MENU PAGE; 

} 

/* return menu selection value */ 

return(iret); 

} 

move_cam() 
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tinclude "params. h' 

{ 

/* this routine uses the knobs to move the camera view position */ 

void move cam(fd, camera) 

int fd; 
camera_arg *camera; 

int valid; 
float value(9J; 
int string[STRING SIZE]; 

/* output device file pointer 
/* camera model structure */ 

/* valid response flag */ 
/* new value of knobs */ 

/* text output string */ 

sample locator(knobs3,1, &valid, &value[O], &value(1J, &value(2)), 
sample locator(knobs2, l, tvalid, &value[3], avalue(4J, ivalue(5)), 
sample locator(knobsl, l, &valid, ivalue[6], ivalue(7], ivalue(BJ); 

sprintf(string, "Viewpoint: X -%5.2f Y -%5.2f Z _%5.2f', 
value[0], value(1], value[2J); 

dctext(display, SIDE BORDER+IO, TOP BORDER+20, string); 

sprintf(string, 'Target :X -%5.2f Y "%5.2f Z -%5.2f', 
value[3], value(4], value[5]); 

dctext(display, SIDE BORDER+10, TOP_BORDER+40, string); 

sprintf(string, 'Field -%5.2f', value[6J); 
dctext(display, SIDEBORDER+10, TOPBORDER+60,3tring); 

/* camera position */ 

(*camera). camx-value[0]; 
(*camera). camy-value(l]; 
(*camera). camz-(-value[2]); 

/* camera target */ 

(*camera). refx-value[3]; 
(*camera). refy-value[4]; 
(*carwra) ref z- (-value [5]); 

/* field of view */ 

(*camera). field of view-value[6]; 

view camera(fd, camera); 

node-plot( 

(include "params. h" 

void nodeylot(nodes, nnodes, xpos, ypos, zpos, startframe, endframe, 
times, p title, pylabel) 

/* this routine plots the selected node positions/velocities/accelerations 
/* depending on the data arrays passed over to the routine */ 

int nnodes; /* Number of nodes */ 

char nodes()(STRING SIZE]; /* Names of nodes */ 

float xpos[][MAX FRAMES); /* x world coordinates (pos/vel/acc) 

float ypos(][MAX_FRAMES]; /* y world coordinates */ 
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float zpos(J(MAX_FRAMES]; /* z world coordinates */ 
int startframe; /* start frame number */ 
int endframe; /* end frame number 
float times(MAX_FRAMESJ; /* times (s) 

char p title[STRING_SIZE]; /* plot title */ 
char p_ylabel[STRINGSIZE]; /* plot y axis label */ 

float pl times[MAX_LINES][MAX POINTS); /* times to be plotted (s) 
float distance[MAX LINES][MAX POINTS]; /* calculated 

distances/velocities/accelerations */ 

char key(MAX LINES+11[STRINGSIZE]; /* graph key string 
char title(STRING SIZE]; /* graph title */ 

char x label[STRING_SIZE]; /* graph x axis label */ 

char y_label[STRING SIZED; /* graph y axis label */ 

char fname[STRING_SIZE); /* picture filename */ 

char filename[STRINGSIZE]; /* full picture filename */ 
int iframe; /* frame counter 
ant anode;. /* node. counter */ 
float xref-O. O, yref-O. O, zref=0.0; /* xyz refence values */ 
float xint, yint, zint; /* xyz intervals */ 
ant cabs-l; /* relative/absolute indicator */ 
ant idir; /* direction indicator */ 
ant iplot; /* plotter control */ 
ant nlines; /* number of lines on graph */ 
ant anode; /* start node number */ 
ant bnode; /* finish node number */ 

static char menul[][STRING SIZE]- 
{ 

"Absolute", 
"Relative" 

static char menu2[][STRING_SIZE]- 
{ 

"X", 
. Y., 
"Z", 
"3D" 

static char menu2b[](STRING_SIZE]- 
{ 

. Xw 

. Y., 

"2D" 

static char menu3[](STRING_SIZE]- 

{ 
"Save data to file", 
"Save picture to file", 
"Exit" 

/* absolute or relative menu */ 

/* direction menu */ 

/* direction menu for 2d */ 

/* plotting menu */ 

/* all nodes */ 

if (nnodes<MAX LINES && yesno("Plot all nodes? ")--TRUE) 

{ 

if (flag_2d==TRUE) 
{ 

while ((idir=menu("Direction: ", menu2b, 3))-=0); 

strcpy(key(nnodes], menu2b[idir-1]); 
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strcat(key[nnodes], " "); 
if (idir--3) idir-4; 

} 
else 
{ 

while ((idir=menu("Direction: ", menu2,4))-. 0); 
strcpy(key[nnodes], menu2[idir-1J); 
strcat(key[nnodes], " "); 

for (nlines=0; nlines<nnodes; nlines++) 
{ 

strcpy(key(nlinesl, key[nnodes)); 
strcat(key[nlinesj, nodes[nllnesj); 

/* loop round frames */ 

for (iframe-startframe; iframe<endframe; iframe++) 
{ 

/* calculate times */ 

p1_times(nlinesjfiframe-startframel-times[iframe]; 

/* calculate distance */ 

switch (idir) 
{ 
case 1: 

distance[nlines)(iframe-startframej- 
xpos[nlines)[iframe); 

break; 

case 2: 
distance[nlines][iframe-startframe]- 

ypos[nlines][iframe]; 
break; 

case 3: 
distance[nlines][iframe-startframe]- 

zpos[nlines][iframe]; 
break; 

case 4: 
xint-xpos(nlines)[iframe); 
yint-ypos[nlines][iframe]; 
zint-zpos[nlines)(iframe); 
distance[n1ines)(iframe-startframe]= 

sgrt(xint*xint+yint*yint+zint*zint); 
break; 

} 
} 
else 
{ 

/* first option */ 

while ((labs=menu("Option: ", menul, 2))="0); 

/* loop round number of lines */ 
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nlines-0; 
do 
{ 

/* second option */ 

if (flag-2d--TRUE) 
{ 

while ((idir-menu('Direction: ", menu2b, 3))--O); 
strcpy(key[nlines), menu2b[idir-1)); 
strcat(key[nlines), " "); 
if (idir=-3) idir-4; 

} 
else 
{ 

while ((idir=menu("Direction: ", menu2,4))--O); 

strcpy(key[nlines], menu2[idir-l1): 

strcat(key[nllnes), " "); 

if (iabs==2) 
{ 

while ((anode-menu("Select reference node: ", nodes, nnodes)) 

anode--; 
strcat(key[nlines], nodes(anode]); 
strcat(key[nlines], N "); 

} 
while ((bnode=menu("Select node: ", nodes, nnodes))__0); 
bnode--; 
strcat(key[nlines], nodes[bnode]); 

/* loop round frames */ 

for (iframe-startframe; iframe<endframe; iframe++) 
{ 

/* calculate times */ 

p1_times[nlines](iframe-startframe]-times[iframe]; 

/* calculate distance */ 

if (iabs--2) 
{ 

xref-xpos(anode][iframe]; 
yref-ypos(anode][iframe]; 
zref-zpos(anode][iframe]; 

switch (idir) 

case 1: 
distance[nlines][iframe-startframe]- 

xpos[bnode](iframe]-xref; 
break; 

case 2: 
distance(nlines](iframe-startframe]= 

ypos[bnode][iframe]-yref; 
break; 
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case 3: 
distance[nlinesj[iframe-startframeJ- 

zpos[bnodeJ(iframej-zref; 
break; 

case 4: 
xint-xpos(bnode][iframe]-xref: 
yint-ypos[bnode][iframe]-yref; 
zint-zpos[bnode][iframe]-zref; 
distance[nlines][iframe-startframe]- 

sgrt(xint*xint+yint*yint+zint*zint); 
break; 

} 
nlines++; 

} while (nlines<NWX_LINES && yesno("Another line? ")--TRUE); 

/* draw graph */ 

strcpy(title, menul[iabs-1]); 
strcat(title, " "); 
strcat(title, p title); 

strcpy(x_label, "Time (s)"); 

strcpy(y_label, p ylabel); 
d graph(display, title, x label, y_label, pl times, distance, 

endframe-startframe, nlines, 
key, FALSE); 

while ((iplot-menu("Select option: ", menu3,3))! =3) 
{ 

switch (iplot) 
{ 
case 1: 

save_an(title, x label, y_label, pl_times, distance, endframe-Startframe, 
nlines, key); 

break; 
case 2: 

printf("Input picture file name 

scanf("%s", fname); 

strcpy(filename, PICTURE_DIRECTORY); 

strcat(filename, PICTUREPREFIX); 

strcat(filename, fname); 

strcat(filename, PICTURE_SUFFIX); 

bltmap t0 file(display, TRUE, 0,0, filename, TRUE, 0.0.0.0,0,0, TRUE); 
break; 

} 
} 
CLEAR GRAPH; 

/* finished */ 

open_dev0 

(include "params. h" 

void open dev() 

/* This routine opens the devices using Starbase gopen routines */ 
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/" It also checks that the program is being run from a window 

{ 

char *graphic window_name; /* graphic window path name */ 
char *text window name; /* graphic window path name 
Window wdummy; /* dummy window return 
1nt idummy; /* dummy return */ 

xrWindowData windowdata; /* Xr window data structure 

/* connect to X windows */ 

if ((xdisplay-XOpenDisplay(NULL))--NULL) exit(-1); 
xscreen-XDefaultScreen(xdisplay); 

/* add Xrlib */ 

if (XrInit(xdisplay, xscreen, NULL)--FALSE) exit(-1); 

/* get hold of terminal window */ 

XGetlnputFocus(xdisplay, &text_window, iidummy); 
XGetGeometry(xdisplay, textwindow, &wdummy, iorig_x, iorlg_y, torig_width, 

& oriq_height, i idummy, a idummy) ; 

/* create graphics window */ 

system(XSEETHRU); 
XFlush(xdisplay); 

/* screen */ 

if ((display-gopen(getenv("SB OUTDEV"), OUTDEV, getenv("SB OUTDRIVER"), 

INITITHREE DIMODEL_XFORM))---1) exit(-1); 

/* set up some useful defaults */ 

clear control(display, CLEARDISPLAY SURFACEICLEAR ZBUFFER); 

shade mode(display, CMAP_FULLIINIT, FALSE); 

/* knob box */ 

if ((knobsl-gopen("/dev/knobl", INDEV, "hp-hil", INIT))---1) exit(-1); 
knobs2-gopen("/dev/knob2", INDEV, "hp-hil", INIT); 
knobs3-gopen("/dev/knob3", INDEV, "hp-hil", INIT); 

/* button box */ 

if ((bbox-gopen("/dev/bbox", INDEV, "hp-hil", INIT))---l) exit(-l); 

/* get hold of see thru window - done now to give time to create */ 

XGetlnputFocus(xdisplay, &graphic window, &idummy); 

/* menu window - not mapped */ 

menu_window=XCreateSimpleWindow(xdisplay, RootWindow(xdisplay, xscreen), 
20,20,40,40,0, BlackPixel(xdisplay, xscreen), WhitePixel(xdisplay, xscreen)); 

/* set up Xrlnput */ 

Xrlnput(menu window, MSG ADDWINDOW, &windowdata); 
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XSelectInput(xdisplay, menu window, ButtonPressMaskIButtonReleaseMaskI 

KeyPressMasklExposureMask); 

/* shift around the main input window */ 

XFlush(xdisplay); 
XMoveWindow(xdisplay, text window, SIDE BORDER, GRAPH HEIGHT+2*TOP BORDER+ 

BOTTOM_BORDER); 

XResizeWindow(xdisplay, text window, TEXT WIDTH, TEXTHEIGHT); 

XRaiseWindow(xdisplay, text window); 

/* get everything up to date */ 

XFlush(xdisplay); 

/* attach keyboard to text window */ 

XSetlnputFocus(xdisplay, text_window, RevertToParent, CurrentTime); 

/* routine to set up global options */ 

options() 

#include 'params. h' 

void options() 
{ 

int iret; /* menu return value */ 

static char menul(J(STRING SIZE)- /* menu 
{ 

'2d On", 
"Flexible 3d reconstruction", 
"No fiducial marks', 
 Set frame increment', 
"Set filtration cutoff", 
"change working directory", 
"smoothing", 
"Set smoothing number", 
"Exit" 

int nmenul-9; /* number of menu items 

static char menu2[}(STRING_SIZEI /* menu for filtration stuff */ 

{ 
"9.0", 

"6.0", 

"7.0", 

"8.5", 
"10.0", 

"12.0", 

"14.0", 

"16.0", 
"18.0", 
"20.0" 

int nmenu2-11; /* number of menu iterva 

static char menu3(][STRING SIZE]- /* menu for smoothing 
{ 

"3" 
050, 
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wir 

. g. 

`11w 

int nmenu3-5; 

char directory[STRING SIZE]; /*'directory string 

do 
{ 

/* copy in correct menu prompts */ 

if (flag_2d--TRUE) strcpy(menul[O], "2d off"); 
else strcpy(menul(O], "2d on"); 

if (flag simple_reconstruction--TRUE) 
strcpy(menul(1], "Flexible 3d reconstructions); 

else strcpy(menul[1], "Sirple 3d reconstruction"); 

if (fiducial_flag. -TRUE) strcpy(menul(2], "No fiducial marks"); 
else strcpy(menul[2], "Fiducial marks'); 

if (flag_filter--TRUE) strcpy(menul[6], 'Smoothing"); 
else strcpy(menul(6], "Filtration"); 

/* write menu */ 

iret-menu("Select option: ", menul, nmenul); 

switch(iret) 
{ 

case 1: 
if (flaq_2d. -TRUE) flag 2d=FALSE; 
else flag_2d=TRUE; 
break; 

case 2: 
if (flag_simplereconstruction--TRUE) 

flag-simple 
- 

reconstruction-FALSE; 
else flag simple reconstruction-TRUE; 
break; 

case 3: 
if (fiducial_flag=-TRUE) fiducial flag=FALSE; 
else fiducial_flag=TRUE; 
break; 

case 4: 
printf("Current frame increment is %d\n", frame_increment); 
printf("Required increment is : "); 
scanf("td", &frame_increment); 
break; 

case 5: 
while ((filtration_number=menu("Select fs/fc", menu2, nn nu2)) a0); 
break; 

case 6: 

printf("Directory name : "); 
scanf("%s", directory); 

chdir(directory); 
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getcwd(directory, STRING SIZE); 
printf("Changed to : is\n", directory); 
break; 

case 7: 
if (flag filter==TRUE) flag filter-FALSE; 
else flag_filter-TRUE; 
break; 

case 8: 
while ((smooth_number=menu("Select smoothing number: ", menu3, 

nmenu3)) --0); 
smooth number-smooth_number*2+1; 
break; 

} 
} while (fret! =nmenul); 

} 

predlctlve_analysis() 

#include "params. h" 

/* routine to calculate joint torques and reaction forces for predictive 
/* leaping model */ 

predictive_analysis(seg_length, seg_mass, seg_com, phi, x force, y_force, torque, 
segs, nsegs, nframe, times) 

float seg_length[MAX SEGS]; 
float seq mass(MAX SEGS]; 
float seq_com(MAX_SEGS); 
float phi[MAX_SEGS](MAX_FRAMES]; 
float x force(MAX_SEGS][MAX_FRAMES]; 
float y_force[MAX_SEGS](MAX FRAMES]; 
float torque[MAX_SEGS)[MAX_FRAMES); 

char segs[MAX_SEGS)[STRING_SIZE); 
int nsegs; 
int nframe; 
float times[MAX_FRAMES]; 

{ 

int iframe; 
float dl, d2; 

struct body 
{ 

float r1xIMAX-FRAME S 
float rly[MAX_FRAMES]; 
float r2x[MAX_FRAMES]; 
float r2y[MAX_FRAMES]; 
float ml(MAX_FRAMES); 
float m2[MAX_FRAMES); 
int segnum; 

/* mean segment lengths */ 
/* segment masses */ 

/* relative COM positions 
/* segment angle */ 

/* x component of linear force 
/* y component of linear force 

/* torques about segments 
/* segment names */ 

/* number of segments 
/* number of frames 

/* frame times */ 

/* frame counter */ 
/* distances from COM 

/* structure for free body data */ 

/* reaction force at 'proximal' end */ 

/* reaction forces at 'distal' end */ 

/* torque at 'proximal' end 
/* torque at 'distal' end */ 

/* segment number */ 

struct body forefoot; /* segments */ 

struct body hindfoot; 

struct body calf; 
struct body thigh; 

struct body torso; 
float x react(MA)LSEGSJ(MAX FRAMES); 

float y_react[MAX_SEGSJ(MAX_FRAMES]; 
float j_torque[MAX SEGSJ[MAX FRAMES]; 

float work done[MAX SEGS)(MAX FRAMES); 

/* reaction forces 
/* reaction forces 

/* joint torques 
/* work done at joints */ 

Appendix 



Source Code Page (273) 

float bend(MAX_SEGS][MAXFRAMES]; /* bending moment on segments 
float dumny(MAX_SEGS][MAXFRAMES]; /* dummy values for plots 
float angle; /* intermediate angle value 
static char joints(][STRING_SIZEJ- /* joints etc. 
{ 

"Contact point", 
"Mid-tarsal joint", 
"Ankle", 
"Knee", 
"Hip", 

int njoints-5; 
static char menul[](STRING_SIZE]- 
{ 

"Joint reactions", 
"Joint torques", 
"Work done per frame", 

"Bending moments", 
"Exit" 

int nmenul=5; 
int iret; 

/* initialize segment ID numbers */ 

forefoot. segnum-0; 
hindfoot. segnum-l; 
calf. segnum=2; 
thigh. segnum=3; 
torso. segnum-4; 

/* loop over frames */ 

for (iframe-1; iframe<(nframe-1); iframe++) 
{ 

/* number of joints 
/* printout menu */ 

/* number of menu items */ 
/* menu return value */ 

dl.. seg com[torso. segnum]*seg_length(torso. segnum]; 
d2.. (l-seg com[torso. segnumj)*seg length[torso. segnum]; 
torso. r2x[iframej-0.0; 
torso. r2yIiframe)-0.0; 
torso. m2(iframe]=0.0; 
torso. rlx[iframe]=x force(torso. segnum](iframe)-torso. r2x[iframe]; 
torso. rly[iframej-y_force(torso. segnum)[iframe3-torso. r2y(iframeJ- 

seg_mass[torso. segnum]*G; 
torso. ml(iframe]-torque[torso. segnum][iframe]- 

torso. rlx(iframeJ*dl* 
(float)sin((double)phi[torso. segnumJ(iframe])+ 

torso. r2x(iframe)*d2* 
(float)sin((double)phi[torso. segnum)[iframe])+ 
torso. rly(iframe]*dl* 
(float)cos((double)phi[torso. segnumJ(iframe))- 
torso. r2y[iframe]*d2* 
(float)cos((double)phi[torso. segnum](iframe))- 

torso. m2[iframe]; 

dl-seg_com(thigh. segnum]*seg_length(thigh. segnum); 
d2=(1-seg_com[thigh. segnum])*seg length[thigh. segnumj; 
thigh. r2x[iframe]-(-torso. rlx[iframe]); 
thigh. r2y[iframe]=(-torso. rly[iframe]); 
thigh. m2(iframe]-(-torso. ml(iframe]); 
thigh. rlx[iframe]-x force(thigh. segnum](iframe)-thigh. r2x(iframe); 
thigh. rly[iframej-y_force(thigh. segnum][iframeJ-thigh. r2y[iframe]- 

seg_mass[thigh. segnum]*G; 
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thigh. ml(iframe]-torque(thigh. segnum](iframe]- 
thigh. rlxfiframe]*dl* 
(float)sin((double)philthigh. segnum](iframe])+ 

thigh. r2x[iframe]*d2* 
(float)sin((double)phi(thigh. segnum](iframe])+ 
thigh. rly(iframe]*dl* 
(float)cos((double)phi(thigh. segnum][iframe])- 

thigh. r2y[iframe]*d2* 
(float)cos((double)phi[thigh. segnum](iframe])- 
thlgh. m2(iframe); 

dl-seg_com[calf. segnum]*seg length[calf. segnumf; 
d2-(l-seg_com(calf. segnum])*seg_length[calf. segnum); 
calf. r2x[iframe]-(-thigh. rlx[iframej); 
calf. r2y[iframe]-(-thigh. rly[ifran J); 

calf. m2[iframej-(-thigh. ml(iframe)); 
calf. rlx[iframe]-x_force[calf. segnum](iframej-calf. r2x[iframej; 
calf. rly[iframe)-y_force[calf. segnum)(iframel-calf. r2y[lframeJ- 

seg mass[calf. segnum]*G; 
calf. ml[iframe]-torque[calf. segnum](iframe]- 

calf. rlx[iframe]*dl* 
(float)sin((double)phi[calf. segnum](iframej)+ 
calf. r2x[iframa]*d2* 
(float)sin((double)phi[calf. segnumllifran ])+ 

calf. rly[iframe]*dl* 

, (float)cos((double)phi(calf. segnum)[iframe])- 
calf. r2y(iframe]*d2* 
(float)cos((double)phi[calf. segnumJ(iframe])- 
calf. m2[iframe); 

dl-seq_com[hindfoot. segnum]*seg_length(hindfoot. segnum]; 
d2- (1-seg com[hindfoot. segnum])*seg length[hindfoot. segnum); 
hindfoot. r2x[! frame]-(-calf. rlx(iframe]); 
hindfoot. r2y[iframe]-(-calf. rly[iframe]); 
hindfoot. m2(iframe]-(-calf. ml[iframe]); 
hindfoot. rlx[iframe]-xforce[hlndfoot. segnum](iframe]-hindfoot. r2x(iframe]; 
hindfoot. rly(iframe]-y_force[hindfoot. segnum](iframe]-hlndfoot. r2y(iframe)- 

seq_mass[hindfoot. segnum]*G; 
hindfoot. ml(iframe]-torque[hindfoot. segnum)(iframe]- 

hindfoot. rlx[iframe]*dl* 
(float)sin((double)phi(hlndfoot. segnum][iframe])+ 

hindfoot. r2x[iframe]*d2* 
(float)sin((double)phi[hindfoot. segnum)(iframe])+ 

hindfoot. rly[iframe]*dl* 
(float)cos((double)phi[hindfoot. segnum][iframe])- 

hindfoot. r2y(iframe]*d2* 
(float)cos((double)phi[hindfoot. segnum](iframe])- 

hindfoot. m2[iframe); 

dl-seg_com(forefoot. segnum]*seg_length(forefoot. segnum); 
d2-(1-seg_com(forefoot. segnumJ)*seg_length[forefoot. segnum]; 
forefoot. r2x[iframe]. (-hindfoot. rlx(iframej); 
forefoot. r2y[iframe]-(-hindfoot. rly[lframeJ); 
forefoot. m2(iframe]-(-hlndfoot. ml(iframef); 
forefoot. rlx[iframej-x force[forefoot. segnum](iframe]-forefoot. r2x[lframel; 
forefoot. rly(iframe]-y_force(forefoot. segnum](iframe]-forefoot. r2y(iframe]- 

seg mass[forefoot. segnum]*G; 
forefoot. ml[iframe].. torque[forefoot. segnum](iframe]- 

forefoot. rlx[iframe]*dl* 
(float)sin((double)phi(forefoot. segnum][iframe])+ 
forefoot. r2x[iframe]*d2* 
(float)sin((double)ph1(forefoot. segnum](iframe])+ 
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forefoot. rly[iframe]*dl* 
(float)cos((double)phi(forefoot. segnum)(iframe])- 
forefoot. r2y[iframe]*d2* 
(float)cos((double)phi[forefoot. segnum](iframe))- 
forefoot. m2[iframe]; 

/* put into array for display */ 

x react(O](iframe]-forefoot. rlx[iframe]; /* contact point 
y_react[0][iframel-forefoot. rly[iframe]; 
j_torque[O][iframe]=forefoot. ml[iframe); 
angle-phi[forefoot. segnum](iframe+l]-phi[forefoot. segnum](iframs-1]; 
if (angle>M PI) angle-=(M PI*2); 
if (angle<-(-M PI)) angle+=(M PI*2); 

work done(OJ(iframe]-j torque[0][lframe]*O. 5*angle; 

x_react[l](iframe]-hindfoot. rlx[iframe]; /* mid-tarsal joint 
y_react(l](iframe]-hindfoot. rly[iframe); 
j_torque[1](iframe]=hindfoot. ml(iframe]; 
angle-(phi[hindfoot. segnum][iframe+l]-phi(hindfoot. segnum)(iframe-1]- 

phi(forefoot. segnum][iframe+l]+phi[forefoot. segnum](iframs-1]); 
if (angle>M PI) angle-=(M PI*2); 
if (angle<-(-M-PI)) angle+-(M PI*2); 

work done(l](iframe]=j torque[1][iframe]*0.5*angle; 

x react[2J[iframe]-calf. rlx[iframe]; /* ankle */ 

y_react[21(iframel-calf. rly[iframe]; 
j torque[2)[iframe]-calf. ml[iframe]; 
angle-(phi[calf. segnum](iframe+l)-phi[calf. segnum](iframe-lJ- 

phi[hindfoot. segnum][iframe+l]+phi(hindfoot. segnum)(ifname-1]); 
if (angle>M PI) angle-=(M PI*2); 
if (angle<-(-M PI)) angle+=(M_PI*2); 
work done[2J[iframe)=j_torque[2](iframe]*0.5*angle; 

x_react(3)(iframe]=thigh. rlx(iframe); /* knee */ 

y_react[3][iframe]=thigh. rly[iframe]; 
j_torque(31[iframe]=thigh. ml(iframe]; 
angle-(phi[thigh. segnum][iframe+l]-phi[thigh. segnum)(ifname-1]- 

phi(calf. segnum][iframe+l]+phi(calf. segnum][iframe-1]); 
if (angle>M_PI) angle-=(M PI*2); 
if (angle<-(-M PI)) angle+=(M PI*2); 

work done[3][iframe]=j_torque[3)[iframe]*0.5*angle; 

x react[4][iframe]=torso. rlx[iframe]: /* hip */ 

y_react[4][iframe]=torso. rly[iframe); 
j_torque[4][iframe]-torso. ml[iframe]; 
angle-(phi[torso. segnum][iframe+l]-phi[torso. segnum)[iframe-1]- 

phi[thigh. segnum)[iframe+l]+phi[thigh. segnum][iframe-l]); 
if (angle>M PI) angle-=(M PI*2): 
if (angle<-(-M PI)) angle+=(M PI*2); 

work done[4)[iframe)=j_torque[4](iframe]*O. 5*angle; 

bend(forefoot. segnum][iframe]-forefoot. ml[lframe]-forefoot. m2[iframe); 
bend(hlndfoot. segnum][iframe]-hindfoot. ml[iframe]-hindfoot. m2[iframe]; 
bend(calf. segnum](iframe]-calf. ml[iframe)-calf. m2[iframe]; 
bend[thigh. segnum][iframe]-thigh. ml(iframe]-thigh. m2[iframe]; 
bend[torso. segnum](iframe]-torso. ml[iframe]-torso. m2[iframe): 

while ((iret=menu("Select option: ", menu 1, nmenul))I-nmenu1) 
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switch (iret) 
{ 
case 1: 

nodejlot(joints, njoints, x react, y_react, dummy, l, nframe-1, 
times, "Reaction Forces", UForce (N)"); 

break; 

case 2: 
seq_plot(dummy, dummy, ] torque, 1, nframe-1, joints, njoints, 

times, "Joint Torques", "Torques (Nm)"); 

break; 

case 3: 
seq_plot(dunmy, dunmy, work done, 1, nframe-l, joints, njoints, 

times, "work Done per frame", "Energy (J)"); 
break; 

case 4: 
segylot(dummy, dummy, bend, 1, nframe-1, segs, nsegs, 

tires, "Bendinq Moments", 'Moment (Nm)*); 
break; 

} 

rdllmb() 

tinclude 'params. h' 

void rdlimb(title, nodes, nnodes, segs, nseqs, nodescer seq, seq mass, seq com, seq_moi) 

/* this routine reads in the limb model data from the specified file */ 

char title(STRING SIZE]; 

char nodes[MAX NODES][STRING SIZE]; 
int *nnodes; 

char segs(MA)SEGS][STRING SIZE]; 

int *nsegs; 

int nodes_per seg(NPS][MAX_SEGS]; 
float seg_mass(MAX_SEGS]; 
float seg com[MAX_SEGS]; 
float seg moi[MAX_SEGS]; 
{ 

/* file title line */ 
/* names of the nodes of the model 
/* the number of nodes */ 

/* names of the segments in the model 
/* the number of segments */ 

/* array of node pairs for each segment 
/* array of segment masses */ 

/* array of segment relative COMB 
/* array of segment MOIs */ 

FILE *unit; 
ant anode; 
ant anodes; 
ant iseg: 
1nt isegs; 
ant i; 
char fname[STRING_SIZE]; 

char a, b, c, d, e; 

do 
{ 

/* get file name */ 

/* file pointer */ 
/* node number from file */ 
/* node number from counter 

/* segment number from file */ 
/* segment number from counter 

/* counter 
/* filename */ 

sel file(LIMB DIRECTORY, LIMB PREFIX, LIB SUFFIX, fname), 
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/* open the file */ 

unit-fopen(fname, "r"); 
}while (unit--NULL); 

/* read the data */ 

fscanf(unit, "'i["'J'", title); 
fscanf(unit, "%d", nnodes); 
for (inodes-O; inodes<*nnodes; inodes++) 
{ 

fscanf(unit, "%d '%["'J'", &inode, nodes[inodesj); 
if (anode! -inodes) 
{ 

printf("Node number mismatch during file read error\n"); 
exit(-1); 

} 
} 

fscanf(unit, "%d", nsegs); 
for (isegs-O; isegs<*nsegs; isegs++) 
{ 

fscanf(unit, "%d '%('']'", &iseg, segs[isegs]); 
if (isegl-isegs) 
{ 

printf("Segment number mismatch during file read error\n"); 
exit(-1); 

} 
for (i-O; i<NPS; i++) 
{ 

fscanf(unit, "%d", &nodesjer seg[i](isegs]); 
} 
fscanf(unit, "%f", tseg_mass[isegsl); 
fscanf(unit, "%f", &seg com(isegsf); 
fscanf(unit, "%f", &seg moi[isegs]); 

} 

/*-close the file */ 

fclose (unit) ; 

/* print success message 

printf("File %s read successfully\n", fname); 

/* finished */ 

} 

rdnode() 

(include "params. h' 

void rdnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed) 

/* this routine reads in the node position file */ 

char title(STRING_SIZE); /* file title line 

char nodes(MAX_NODESJ(STRINGSIZE]; /* names of the nodes of the model 
int *nnodes; /* the number of nodes */ 
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float xpos(MAx NODES][MAX FRAMES]; 
float ypos(MAx NODES][MAX FRAMES]; 
float zpos[MAX NODES](MA)_FRAMES]; 
int *nframe; 

int *fspeed; 

FILE *unit; 

char fname(STRING SIZE); 
int iframe; 

int iframes; 
ant anode; 
ant anodes; 

do 
{ 

/* get filename */ 

/* the x world coordinates */ 
/* the y world coordinates 
/* the z world coordinates */ 

/* the number of frames 
/* the interval between frames */ 

/* file pointer 
/* filename */ 

/* file frame number 
/* counter frame number 

/* file node number */ 
/* counter node number */ 

sel_file(NODE_DIRECTORY, NODE PREFIX, NODE SUFFIX, fname); 

/* open file */ 

unit-fopen(fname, "r"); 

} while (unit--NULL); 

/* read data */ 

fscanf(unit, "%["\n)\n", title); 
fscanf(unit, "! f\n", fspeed); 
fscanf(unit, "%d\n", nframe); 
for (iframes=O; iframes<"nframe; iframes++) 
{ 

fscanf(unit, "%d\n", ciframe); 
if (iframe! -iframes) 
( 

printf("Frame number mismatch in node data file\n"); 

exit(-1); 

fscanf(unit, "%d\n`, nnodes); 
for (inodes-O; inodes<*nnodes; inodes++) 
{ 

fscanf(unit, "%cd%f%cf%f\n", &inode, ixpos[inodes](iframes), 
typos[ modes](iframes), &zpos[inodes)(iframes]); 

fscanf(unit, "%["\n]\n", nodes[inodes]); 
if (inodel-anodes) 
{ 

printf("Node number mismatch in node data file\n"); 

exit(-1); 
} 
if (flag 2d) zpos(inodes](iframes]=0.0; 

/* close file */ 

fclose (unit); 

/* print success message */ 

printf("File "s read successfully\n", fname); 
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/* finished */ 

} 

rood2dO 

Iinclude "params. h" 

void read2d(xcoord, ycoord) 

/* this routine returns the 2d world coordinates of a point specified by 
a position located on the picture */ 

float *xcoord; /* x coordinate returned by the subroutine 
float *ycoord; /* y coordinate returned by subroutine */ 

{ 

float qa, ra; /* screen coordinates */ 

/* prompt for coordinate from pictures */ 

printf("Select point: \n"); 
digrd(&qa, &ra); 

/* fiducial point */ 

if (fiducial flag) 
{ 

qa-qa+fiducial_x-correction x; 
ra-ra+fiducial_y-correction_y; 

} 

/* correct for offset and scale factor */ 

qa=scale factor*(qa-x offset); 
ra=scale factor*(ra-y offset); 

/* correct for rotation */ 

*xcoord-rotation[OJ[O]*qa+rotation[O][1]*ra; 
*ycoord=rotation[1J[OJ*qa+rotation(1J(1]*ra; 

I} 

read3dO 

flnclude "params. h" 

void read3d(xcoord, ycoord, zcoord) 

/* this routine returns the 3d world coordinates of a point specified by 
two orthogonal pictures. origin points and camera distances are specified 
as input parameters. */ 

float *xcoord; /* x coordinate returned by the subroutine 
float *ycoord; /* y coordinate returned by subroutine */ 
float *zcoord; /* z coordinate returned by the subroutine */ 
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float qa, ra; /* camera 1 screen coordinates 
float qb, rb; /* camera 2 screen coordinates */ 

/* prompt for coordinate from pictures 

printf("Select point on picture 1\n"); 
digrd(&qa, &ra); 
printf("Select point on picture 2\n"); 
digrd(&qb, &rb); 

/* fiducial point 

if (fiducial flag) 
{ 

qa-qa+fiduclal x-correction x; 
ra-ra+fiducial_y-correction_y; 
qb-qb+fiducial x-correction x; 
rb=rb+fiducial_y-correction_y; 

/* perform required reconstruction */ 

if (flag_sinple_reconstruction--TRUE) 
simple recon(qa, ra, gb, rb, xcoord, ycoord, zcoord); 

else dlt_recon(11,12, &qa, &ra, igb, irb, xcoord, ycoord, zcoord); 

#if 0 
printf("Position: (tf, %f, %f)\n", *xcoord, *ycoord, *zcoord); 

lendif 
/* finished */ 

recdplc( 

iinclude "params. h" 

/* This is a routine to read the data contained in an image (. bm) file */ 

void readpic() 

FILE *unit; /* file pointer 
char filename(STRING_SIZE); /* filename */ 

static char filename2[STRINGSIZE]; /* next filename in sequence 
register char byte; /* pixel data read in */ 
int xrange, yrange; /* range of file image data */ 
int xlow, xhigh, ylow, yhigh; /* range on screen for each file pixel */ 
char buffer(FILE_MAX_X*FILEMAX Y]; /* buffer for file input */ 

char pixel data[GRAPH_HEIGHT][GRAPH WIDTH]; /* buffer for screen data */ 

int x, y; /* screen pixel counters 
int ix, iy; /* file data counters */ 
char *buf pointer; /* pointer for file buffer */ 
int nbytes; /* number of bytes read in 

static char menul[J[STRING_SIZE]- /* file selection method menu 
{ 

-Specific file, 
"Set sequence name & number, 
"Next file in sequence" 
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static int sequence num-0; /* sequence number 

static char sequence_name[STRINGSIZE]- "; /* sequence name 
int ixet; /* return value for menu 

char strinq[STRING_SIZE); /* temporary string */ 

struct visiloglmageHeader 
{ 

long int maglcNumber; 
long int pixelsPerLine; 
long int numberOfLines; 
long int resl; 
long int res2: 
long int res3; 
long int gridType; 
long int res4; 
long int arithmaticType; 
long int bitsPerPixel; 
long int res5; 
long int xOrigin; 
long int yorigin; 
long int res6; 
long int res?; 
long int visilogHeaderSize; 
long int userHeaderSize; 
long int res8; 
long int totalHeaderSize; 

} imageHeader; 
float colourTable[256}(3}; 
float red, green, blue; 
int i; 
int offset, range; 
float grey; 
int dum, button, valid; 
float dummy; 

/* Clear screen */ 

CLEAR GRAPH; 

/* rectangular grid */ 

/* long integer image */ 

/* setup display for anisometric greyscale 2d graphics */ 

/* Set up display window */ 

mapping_mode (display, DISTORT); 

vdc extent(display, 0.0,0.0,0.0,1.0,1.0,0.0); 

/* Set attributes */ 

shade mode(display, CMAP_MONOTONICIINIT, FALSE); 

of 0 
/* pseudo-colour map */ 

for (i=O; i<256; i++) 
{ 

if (i<0) 
{ 

colourTable[i)[01.0.0; 
} 

else 
{ 
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if (1<128) 
{ 

colourTable(iJ(0J-(float)(1-0)/128.0; 
} 
else 
{ 

colourTable(i](01-0.0; 
} 

} 

if (i<64) 
{ 

colourTable(i)[1]=0.0; 
} 
else 
{ 

if (i<192) 
{ 

colourTable[i](l)-(float)(1-69)/128.0: 
} 
else 

{ 
colourTable[1][1]=0.0; 

} 

if (1<128) 
{ 

colourTable(1J[2J-0.0; 
} 
else 
{ 

if (i<256) 

colourTable[i][21-(float)(1-128)/128.0; 
} 
else 
{ 

colourTable[i](2J=0.0; 
} 

} 

define color table(display, 0,256, colourTable); 
fendif 

/* loop till file read */ 

do 
{ 

/* menu options 

while ((ixet-menu("File selection option: ", menul, 3)). =0); 

switch (iret) 
{ 

case 1: /* specific filename */ 

sei file(FRAMEDIRECTORY, FRAMEPREFIX, FRAME_SUFFIX, filename): 
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break; 

case 2: /* set name and number of sequence 

printf("Input sequence name : "); 
scanf("ts", sequence name); 
do 
{ 

printf("Input sequence number : "); 

scanf("%d", &sequence_num); 
} while (sequence_num<O II sequence num>999); 

strcpy(filename2, FRAME DIRECTORY); /* get bits of filename */ 

strcat(filename2, FRAME PREFIX); 

strcat(filename2, sequence name); 
sprintf(string, ". %3.3d", sequence num); /* get number as string 
strcat(filename2, string); 
strcat(filename2, FRAME SUFFIX); 

/* no break after case 2 so runs onto case 3 */ 

case 3: /* next file in a sequence */ 

strcpy(filename, filename2); 

sequence num+-frame_increment; /* increment count */ 

/* test to see if next filename exists */ 

strcpy(filename2, FRAME_DIRECTORY); /* get bits of filename 

strcat(filename2, FRAME_PREFIX); 

strcat(filename2, sequence name); 

sprintf(string, ". %3.3d", sequence num); /* get number as string 
strcat(filename2, string); 
strcat(fllename2, FRAME_SUFFIX); 

unit-fopen(filename2, "r"); 
if (unit-NULL) printf("NO subsequent files in sequence\n"); 

else fclose(unit); 

break; 
} 

/* Open file and read image data */ 

unit=fopen(filename, "r"); 
if (unit==NULL) printf("File %s not found\n", filename); 

} while (unit--NULL); 

/* get x and y range of input file */ 
fif 0 

xrangegetc(unit); 
xrange=xrange+256*getc(unit); 
yrange-getc(unit); 
yrange=grange+256*getc(unit); 

fendif 
fread(&imageHeader, sizeof(iinageHeader), 1, unit); 
xrange-imageHeader. pixelsPerLine; 
yrange=imageHeader. numberofLines; 

/* read data in */ 

#if 0 
nbytes-fread(buffer, xrange*yrange, l, unit); 
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fclose(unit); 
if (nbytes--l) 
{ 

printf("File %s read successfully\n", filename); 
} 
else 

{ 
printf("Error reading file %s\n", filename); 

/* sort to correct format */ 

bufyointer-buffer; 
glow=0; 
for (iy-O; iy<yrange; iy++) 
{ 

yhigh-((iy+1)*GRAPH_HEIGHT)/yrange; 
x1ow=0; 
for (ix=O; ix<xrange; ix++) 
{ 

byte-(*bufyointer++); 

xhlgh-((ix+1)*GRAPH WIDTH)/xrange; 
for (y-ylow; y<yhigh; y++) 
{ 

for (x-xlow; x<xhigh; x++) 
{ 

pixel data(y)(x]-byte; 

} 
xlow=xhigh; 

} 
ylow-yhigh; 

} 
tendif 

nbytes-fread(pixel data, xrange*yrange, l, unit); 
fclose(unit); 
if (nbytes--l) 
{ 

printf("File %s read successfully\n", filename); 
} 

else 
{ 

prlntf("Error reading file %s\n", filename); 

/* Write data to screen 
1if 0 

dcblock_write(display, SIDE_BORDER, TOP BORDER, 

GRAPH_WIDTH, GRAPH HEIGHT, pixel_data, FALSE); 

make_picture current(display); 
lendif 

dcblock write(display, SIDE BORDER, TOPBORDER, 

xrange, yrange, pixel data, FALSE); 

/* set up knob ranges and sensitivity */ 

mapping_mode(knobsl, DISTORT); 

mapping mode(knobs2, DISTORT); 

mapping_mode(knobs3, DISTORT); 

vdc extent(knobs1,0.0,0.0,0.0,1.0,1.0,1.0); 
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vdc extent(knobs2,0.0,0.0,0.0,1.0,1.0,1.0); 
vdc_extent(knobs3,0.0,0.0,0.0,1.0,1.0,1.0); 
set pl p2(knobsl, FRACTIONAL, 0.0,0.0,0.0,2.0,2.0,2.0)= 
setp1_p2(knobs2, FRACTIONAL, 0.0,0.0,0.0,2.0,2.0,2.0): 
set_pl_p2(knobs3, FRACTIONAL, 0.0,0.0,0.0,2.0,2.0,2.0); 
set_locator(knobsl, 1,0.5,0.5,0.5); 
set locator(knobs2,1,0.5,0.5,0.5); 
set locator(knobs3, l, brightness, contrast, 0.5); 

/* interactive contrast/brightness control */ 

sample locator(knobs3,1, ivalid, &brightness, &contrast, &dummy); 

offset-(int)512.0*(0.5-brightness); 
range-512*(1.0-contrast); 
if (range--0) range-1; 

for (i-0; i<256; 1++) 
{ 

if (1<offset) 
{ 

grey-0.0; 
} 
else 
{ 

if (i<(offset+range)) 
{ 

} 
else 
{ 

grey-(float)(i-offset)/(float)range; 

grey=1.0; 
} 

} 
colourTable[1J[01-grey; 
colourTable[il[1Jigrey; 
colourTable[1J[2)-grey; 

} 
define_color table(display, 0,256, colourTable); 
make_picture_current(display); 

/* Finish */ 

rotate3d() 

/* Subroutine rotate3d produces rotation matrix around one of the axes +/ 

#include 'params. h' 

void rotate3d(axis, angle, m) 
char axis; 
double angle; 
float m[9J(4]: 
{ 

int top, bottom, left, right; 

identity3d(m); 
left -(axis=='x'? 1: 0); 

right -(axis=='z'? 1: 2); 
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top -(axis--'x'? 1: 0); 
bottom-(axis--'z'? 1: 2); 

m[top)(leftl-(float)cos(angle); 
m[top](right]-(float)sin(angle); 

if (axisl-'y') 
m(top](rightj-(-m(top][right]); 

m[bottom](left]-(-m[top](right)); 
m(bottom)(right)-m[top](left); 

} 

r_dynam() 

#include "params. h" 

/* routine to calculate linear dynamics */ 

void r dynam(xaacc, yaacc, zaacc, nsegs, nframe, seg_moi, x torque, y torque, ztorque) 

float xaacc(][MAX FRAMES]; 
float yaacc(](MAX_FRAMES]; 
float zaacc(][MAX_FRAMES]; 
int nsegs; 
int nframe; 
float seg_moi(]; 
float x torque(][MAX FRAMES]; 

float y_torque(](MAX FRAMES); 
float z torque[](MA)LFRAMES]; 
{ 

/* angular accn through x=0 plane 
/* angular accn through y-0 plane */ 
/* angular accn through z-0 plane */ 
/* number of segments 

/* number of frames */ 
/* segment moments of inertia */ 

/* x component of torque 
/* y component of torque 
/* z component of torque */ 

int isegs; /* segment counter 
int iframe; /* frame counter */ 

/* loop round frames and segments */ 

for (isegs-O; isegs<nsegs; isegs++) 
{ 

for (iframe-O; iframe<nframe; iframe++) 
{ 

x_torque[isegsj[iframe]=seg_moi[isegsJ*xaacc[isegsJ(iframej; 
y_torque(isegs)(iframe]=seg_moi(isegsj*yaacc[isegsJ(iframe]; 
z_torque[isegs](iframe]-seg_moi[isegs]*zaacc[isegs3(iframe]; 

} 
3 

r_kinem() 

#include "params. h" 

void r_kinem(xpos, ypos, zpos, nframe, fspeed, nsegs, nodesyer seq, times, 

xapos, yapos, zapos, 
xavel, yavel, zavel, xaacc, yaacc, zaacc) 

/* this routine calculates the rotational kinematic parameters */ 

float xpos[][MAX FRAMES): /* x world coordinates (m) 

float ypos[][MAX_FRAMES]; /* y world coordinates (m) */ 
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float zpos(](MAX FRAMES]; 
int nframe; 
float fspeed; 
int nsegs; 
int nodes_per seq(NPS)(MAX SEGSJ; 
float times(MAX-FRAMES I; 
float xapos(][MAX_FRAMES); 
float yapos[][MAX_FRAMES]; 
float zapos(1(MAXFRAMES); 
float xavel(][MAX FRAMES]; 
float yavel[][MAX_FRAMES]; 
float zavel(](MA)FRAMES]; 
float xaacc(][MAX_FRAMES]; 
float yaacc[][MAX_FRAMES); 
float zaacc(](MAXFRAMES]; 

{ 
int iframe; 
int iseg; 
float time; 
double xseg, yseg, zseg; 

/* z world coordinates (m) */ 
/* number of frames */ 

/* Film frame interval (s) 
/* number of segments */ 

/* nodes per segment 
/* times (s) */ 

/* angle of segment (radian) */ 

/* calculated angular velocities (rad/s) */ 

/* calculated angular accelerations (rad/s/s) */ 

/* frame counter */ 
/* segment counter 

/* time counter (s) 
/* segment vector */ 

/* check sufficient frames */ 

if (nframe<5) 
{ 

printf("Insufficient frames\n"); 

return; 

/* loop over segments */ 

for (iseg O; iseg<nsegs; iseg++) 
{ 

/* calculate angles */ 

for (ifran O; iframe<nframe; 1frame++) 
{ 

xseg-(double)(xpos[nodes_per seg[1J[iseg]J[iframe]- 
xpos(nodesyer seg(0J(iseg]][iframe]); 

yseg-(double)(ypos[nodesyer_seg(l)[isegJ](iframe]- 
ypos[nodesjer seg[O](iseg]][iframe]); 

zseg-(double)(zpos(nodesper_seg(1)(iseg]](iframe]- 
zpos(nodesper seg[0](iseg]][iframe)); 

xapos(iseg](iframe]-(float)atan2(zseq, yseg); 
yapos[iseg][iframe]-(float)atan2(xseq, zseg); 
zapos[iseg](iframe]-(float)atan2(yseq, xseg); 

} 

/* calculate angular velocities and accelerations */ 

different(times, xapos(iseg], nframe, xavel(iseg], xaacc[iseg], TRu) ; 
different(times, yapos[iseg], nframe, yave1(iseg), yaacc[lseg], TRUE); 
different(times, zapos(iseg], nframe, zavel[iseg], zaacc[lseg], TRUE); 

} 

} 

save_an() 
I (include "params. h" 
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void save an(title, x label, y_label, xpoint, ypoint, npoint, nline, key) 

t 

/* this routine saves the data contained in xjoint and ypoint to a file */ 

char title(STRING_SIZEJ; 

char x label(STRING SIZE); 

char y_label(STRING_SIZE]; 
float x_point[MAX_LINES](MAXPOINTS); 
float y_point(MAX LINES][MAX POINTS]; 
int npoint; 
int nline; 
char key[MAX_LINES][STRING SIZED; 

/* graph title 
/* x axis label */ 
/* y axis label */ 

/* x coordinates */ 
/* y coordinates */ 

/* number of points 
/* number of lines */ 

/* key for multiple lines */ 

FILE *unit; /* file pointer 
char fname(STRING SIZE); /* filename */ 

char filename[STRING_SIZEJ; /* full filename */ 
int iline; /* line counter */ 

int ipoint; /* point counter 
int icount; /* character counter 
int iret; /* menu option */ 
static char menul(J[STRING_SIZE]- /* output selection menu 
{ 

"ASCII file for 123", 

"ASCII file for EXCEL", 

"SAS Program File", 

"Exit' 

}; 

do 
{ 

do 
{ 

/* get filename */ 

printf("Input 123 data file name :9; 
scanf("%s`, fname); 
strcpy(filename, ANALYSIS_DIRECTORY); 

strcat(filename, ANALYSIS_PREFIX); 

strcat(filename, fname); 

strcat(filename, ANALYSISSUFFIX 123); 

/* open file */ 

unit=fopen(filename, "w"); 
} while (unit-NULL); 

/* write out data in ASCII form suitable for LOTUS 123 itrport */ 

fprintf(unit, "\'%s\'\015\0120, title); 

/* select menu option */ 

while ((iret=menu("Select file type: `, menul, 4))--O); 

switch (fret) 
{ 

case 1: 
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for (iline=0; iline<nline; iline++) 
fprintf(unit, "\"%s\" \" \" ", key[iline)); 

fprintf(unit, "\015\012"); 
for (iline=O; iline<nline; iline++) 

fprintf(unit, "\"%s\" \"%s\" ", x label, y_label); 
fprintf(unit, "\015\012 ); 
for (ipoint-O; ipoint<npoint; ipoint++) 
{ 

for (iline=O; iline<nline; iline++) 
fprintf(unit, 0%12.5e %12.5e ", xpoint[iline)[ipoint), 

y. point(ilinej(ipoint)); 
fprintf(unit, 0\015\012"); 

fclose(unit); 

/* print success message 

printf("File is written successfully\n", filename); 

/* finished */ 

break; 

case 2: 

do 
{ 

/* get filename */ 

printf("Input EXCEL data file name :  ); 
scanf ( %s , fnarm); 

strcpy(filename, ANALYSiS_DIRECTORY): 

strcat(filename, ANALYSISPREFIX); 

strcat(filename, fname); 

strcat(filename, ANALYSIS SUFFIxEXCEL); 

/* open file */ 

unit=fopen(filename, "w`); 

while (unit==NULL); 

/* write out data in ASCII form suitable for EXCEL import */ 

fprintf(unit, "4s\015", title); 
for (iline-O; iline<nline; iline++) 

fprintf(unit, "%s\011\0110, key[ilineJ); 
fprintf(unit, "\015"); 
for (iline-O; iline<nline; iline++) 

fprintf(unit, "%s\Oll%s\011", x_lebel, y_1abe1); 
fprintf(unit, "\015"); 
for (ipoint=0; ipoint<npoint; ipoint++) 
{ 

for (iline=O; iline<nline; iline++) 
fprlntf(unit, "%12.5e\011%12.5e\011", 

x point[iline][ipoint), 
yyoint(iline][lpoint]); 

fprintf(unit, "\0150); 

fclose(unit); 
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/* print success message "/ 

printf("File %s written successfully\n", filename); 

/* finished */ 

break; 

case 3: 

do 
{ 

/* get filename */ 

prlntf("Input SAS program file name : "); 
scanf("%s", fname); 
strcpy(filename, ANALYSISDIRECTORY); 

strcat(filename, ANALYSISPREFIX); 

strcat(filename, fname); 

strcat(filename, ANALYSIS SUFFIX SAS); 

/* open file */ 

unit-fopen(filename,  w"); 
} while (unit-NULL); 

/* write out SAS program in ASCII file */ 

fprintf(unit, "/* t */\n\n", title); 
for (iline-O; iline<nline; iline++) 

fprintf(unit, "/* col%02d - %s */\n", iline, key(ilinel); 
fprintf(unit, "\n"); 
fprintf(unit, "/* x label - %s */\n/* y label - %s */\n\n", 

x label, y_label); 
fprintf(unit, "data gait; \ninput\n"); 
for (iline=O; iline<nline; iline++) 

fprintf(unit, "col%02d x@@ col%02djy@@\n", iline, iline); 
fprintf(unit, "; \ncards; \n"); 
for (ipoint-O; ipoint<npoint; ipoint++) 
{ 

for (iline-O; iline<nline; iline++) 
fprintf(unit, "%10.3e %10.3e\n", x_point(ilinef[ipoint), 

y point(iline](ipointl); 
} 
fprintf(unit, "; \nrun; \n"); 

fprlntf(unit, "proc gplot; \n"); 
fprintf(unit, "axisl label-(f-swiss j=c '%s')\nvalue=(f-sirplex); \n", 

xlabel); 
fprintf(unit, "axis2 label-(f-swiss j-c '%s')\nvalue-(f-sirtplex); \n", 

y_label); 
fprintf(unit, "plot\n"); 
for (iline-O; iline<nline; iline++) 

fprintf(unit, "col%02d_y * col%c02d_x\n", iline, iline); 
fprintf(unit, "/overlay haxis-axisl vaxis-axis2; \n"); 
fprintf(unit, "title f-centb '%s'; \n", title); 
for (aline-O; iline<nline; lllne++) 
{ 

fprintf(unit, "symbolt-3d f-simplex i-join v-'td'; \n", iline+l, iline); 
fprintf(unit, "footnotet-3d f-simplex j-l '%3d - ! s'; \n", 
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iline+l, iline, key(iline}); 
} 
fprintf(unit, "run; \n"); 

fclose(unit); 

/* print success message 

printf("File is written successfully\n", filename); 

/* finished */ 

break; 
} 

} while (iretl-4); 

L' 
seg_lengthso) 

/* routine to write out lengths file for EXCEL 

iinclude 'paranms. h" 

void seq_lengths(segs, nsegs, seg_length) 

char segs[MAX_SEGS][STRINGSIZE]; 
int nsegs; 
float seg_length[MAX_SEGS); 
{ 

FILE *unit; /* file unit 
char filename(STRING_SIZE); /* file name 
char fname(STRING SIZE); /* intermediate file name 
int isegs; /* segment counter 

do 
{ 

/* get filename */ 

printf("Input EXCEL data file name 

scanf("%s', fname); 

strcpy(filename, ANALYSISDIRECTORY); 

strcat(filename, ANALYSISPREFIX); 

strcat(filename, fname); 

strcat(filename, ANALYSISSUFFIX EXCEL); 

/* open file */ 

unit=fopen(filename, "w"); 
} while (unit==NULL); 

/* write out data */ 

for (isegs=O; isegs<nsegs; isegs++) 
{ 

fprintf(unit, "4s\011%e\015\012", segs[isegs], seg length[isegs]); 
} 
fclose(unit); 

printf("File tos written successfully\n", filename); 
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seg_plot() 

#include "params. h" 

void seg plot(xapos, yapos, zapos, Startframe, endframe, segs, nsegs, times, 

p_title, pylabel) 

/* this routine displays the segment angles/angular velocities /angular accelerations "/ 
/* depending on the data arrays passed to the routine */ 

float xapos(] (MAX FRAMES]; 
float yapos[] [MAX_FRAMES]; 

float zapos(](MAX FRAMES); 
Snt startframe; 
int endframe; 
char segs[MAX_SEGS)(STRINGSIZE]; 
int nsegs; 
float times(MAX_FRAMES]; 

char p title(STRING SIZE); 

char p ylabel(STRING SIZE); 

/* segment angles/a vel/a acc */ 

/* starting frame number 
/* end frame number 
/* Names of segments 

/* Number of segments 
/* times (s) 

/* plot title */ 
/* plot y axis label */ 

float pl times[MAX_LINES][MAX POINTS]; /* times to be plotted (s) */ 

float angle[MAX_LINES][MAX_POINTS]; /* calculated angles/a vels/a accs 

char key[MAX LINES+1][STRING SIZE]; /* graph key string */ 

char title[STRING SIZE]; /* graph title */ 

char x label[STRING SIZE]; /* graph x axis label */ 

char y_label[STRING SIZE], /* graph y axis label */ 

char fname(STRING_SIZE]; /* picture filename */ 
char filename[STRING SIZE]; /* full picture filename */ 

float xref-O. O, yref-0.0, zref=0.0; /* reference angles */ 
int iframe; /* frame counter */ 
int iabs-l; /* relative/absolute indicator */ 
int idir; /* direction indicator */ 
int iplot; /* plotter control */ 
int nlines; /* number of lines on graph */ 
int aseg; /* start segment number 
int bseg; /* finish segment number */ 

static char menul[)(STRING SIZE = 
{ 

-Absolute", 
-Relative" 

static char menu2()(STRING_SIZE)= 
{ 

"X_O", 

"Z_O", 

static char menu3()(STRING_SIZEI- 
{ 

-Save data to file", 
"Save picture to file, 
"Exit" 

/* all segments */ 

/* absolute or relative menu */ 

/* angle menu */ 

/* plotting menu */ 

if (nsegs<MAX_LINES i& yesno("Plot all segments? "). -TRUE) 
{ 
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if (flag-_2d--TRUE) 
{ 

idir-3; 
key(nsegs][0]-0; 

] 
else 
{ 

while ((idir-menu("Angle plane: ", menu2,3)) -0); 
strcpy(key[nsegs], menu2(idir-1]); 
strcat(key(nsegs], " "); 

} 

for (nlines-O; nlines<nsegs; nlines++) 
{ 

strcpy(key(nllnes), key(nsegs)); 
strcat(key(nlines], segs(nlines]); 

/* loop round frames */ 

for (iframe-Startframe; iframe<endframe; iframe++) 
{ 

/* calculate times */ 

pl times(nlines](iframe-startframe]-times(iframe); 

/* calculate angle */ 

switch (idir) 
{ 
case 1: 

angle[nlines)[iframe-startframe]- 
xapos[nlines)(iframe]; 

break; 
case 2: 

angle[nlines](iframe-startframe]- 
yapos[nlines)[lframe]; 

break; 
case 3: 

angle(nlines][iframe-startframe]- 
zapos[nlines][iframe]; 

break; 
} 

} 

else 
{ 

/* first option 

while ((iabs-menu("Option: `, menul, 2)) -0); 

/* loop round number of lines */ 

nlines=0; 
do 
{ 

/* second option */ 
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if (flag-2d--TRUE) 
{ 

idir-3; 
key[nlines][0]-0; 

} 
else 
{ 

while ((idir-menu("Angle plane: ", menu2,3))--0); 
strcpy(key[nlines], menu2[idir-1]); 
strcat(key[nlines), " "); 

} 

if (iabs--2) 
{ 

while ((aseg-menu("Select reference segment: ", segs, nsegs))--O); 
aseg--; 
strcat(key[nlinesl, segs[aseg)); 
strcat(key[nlinesj, " 

while ((bseg menu("Select segn nt: ", segs, nsegs))--O); 
bseg--; 

strcat(key[nlinesj, segs[bsegl); 

/* loop round frames */ 

for (iframe. startframe; iframe<endframe; iframe++) 
{ 

/* calculate times */ 

pl_times[nlines)[iframe-startframe)-times[iframe); 

/* calculate angle */ 

if (labs--2) 
{ 

xref-xapos[aseg][iframe]; 
yref-yapos[aseg][iframe]; 
zref-zapos[aseg][iframe]; 

} 

switch (idir) 
{ 
case 1: 

angle (nlines) (iframe-startframeI-xapos[bseg)(iframe]-xref; 
break; 

case 2: 

angle(nlines)[iframe-startframe)-yapos[bseg][iframe]-yref; 
break; 

case 3: 

angle [nlines][iframe-startframe]-zapos[bseg](iframe)-zref; 
break; 

} 
} 
nlines++; 

} while (nlines<MAX_LINES i& yesno("Another line? "). -TRUE); 
} 

/* draw graph */ 

strcpy(title, menul[labs-i]); 

Appendix 



Source Code Page (295) 

strcat(title, " "); 
strcat(title, p title); 
strcpy(x_label, "Time (s)"); 
strcpy(y_label, p ylabel); 
d graph(display, title, x label, y_label, pl times, angle, 

endframe-startframe, nllnes, key, FALSE); 

while ((iplot=menu("select option: ", menu3,3))1-3) 
{ 

switch (iplot) 
{ 
case 1: 

save an(title, x label, y_label, pl times, angle, 
endframe-startframe, nlines, key); 

break: 

case 2: 
printf("Input picture file name 

scanf("%s", fname); 

strcpy(filename, PICTURE DIRECTORY); 

strcat(filename, PICTURE_PREFIX); 

strcat(filename, fname); 

strcat(filename, PICTURESUFFIX); 

bitmap to file(display, TRUE, 0,0, filename, TRUE, 0.0,0.0,0,0, TRUE); 
break; 

} 
} 
CLEAR GRAPH; 

/* finished */ 

} 

äeß filoo 

linclude "params. h" 

int sel file(directory, prefix, suffix, filename) 

/* this routine allows the user to select a file from a menu list */ 

char directory[]; 

char prefix[]; 
char suffix[]; 
char filename[STRINGSIZE]; 

/* directory path */ 
/* selection prefix */ 
/* selection suffix */ 

/* returned filename */ 

FILE *unit; /* temporary directory file */ 
int error=0; /* error return value */ 
int nentries=0; /* number of directory entries 
int ixet=0; /* menu return value */ 
int dir_len; /* length of directory string 
int Sentries; /* directory entry counter */ 

char command[STRING SIZE]; /* system command string 

char dir_list[DIRECTORY ENTRIES][STRINGSIZE]; /* directory entries */ 

/* make up system command */ 

strcpy(command, "1s -1 "); 

strcat(comnand, directory); 

strcat(comnand, prefix); 
strcat(comnand, "*"); 
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strcat(command, suffix); 
strcat(command, " > directory-log); 

/* perform command */ 

system(command); 

/* read in directory file */ 

unit-fopen("directory_log", "r"); 
if (unit! -NULL) 
{ 

while (fscanf(unit, "ts\n", dir list(nentries])l-EOF) nentries++; 
fclose(unit); 

/* see if entries exist */ 

if (nentries==O) 
{ 

printf("Input filename 

scanf("%s", filename); 

unit=fopen(filename, "r"); 
if (unit--NULL) error-i; 
else fclose(unit); 

} 
else 
{ 

/* remove directory data from list */ 

dir_len-strlen(directory); 
for (ientries-0; ientries<nentries; ientries++) 
{ 

strcpy(comnand, dir list[ientries]+dir len); 

strcpy(dir list[ientries], comnand); 

/* do menu */ 

while (iret--O) 
iret-menu("Select file: ", dir list, nentries); 

strcpy(filename, directory); 

strcat(filename, dir list(iret-1]); 
} 

/* finished */ 

return (error); 

simple_reconO 

/* This routine uses the orthogonal camera assunptions to reconstruct the (x, y, z) 
coordinates */ 
/* from two sets of screen coordinates */ 

/include "params. h" 
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void simple recon(ga, ra, qb, rb, x, y, z) 
float ga, ra; /* screen 1 (q, r) coordinates */ 
float qb, rb; /* screen 2 (q, r) coordinates */ 
float *x, *y, *z; /* reconstructed world coordinates */ 
{ 

/* PICTURE 1 */ 

/* correct for x mirroring 

if (x mirror 1) qa-(-qa); 

/* correct for offset-and scale factor */ 

qa-scale_factor 1*(qa-x offset_1); 
ra-scale factor 1*(ra-y offset_l); 

/* correct for rotation */ 

qa=rotation 1(0)(0]*qa+rotation_1(0][1]*ra; 

ra-rotation 1[1](0]*qa+rotation 1(1](1]*ra; 

/* PICTURE 2 */ 

/* correct for x mirroring 

if (x mirror_2) qb-(-qb); 

/* correct for offset and scale factor */ 

qb=scale_factor 2*(qb-x offset_2); 
rb-scale_factor 2*(rb-y offset 2); 

/* correct for rotation */ 

qb-rotation _2[0J(0]*qb+rotation 
2[0][1]*rb; 

rb=rotation 2[1](0]*qb+rotation 2[1](11*rb; 

if (x_axis source"4) *x-qa; 

else 
{ 

if (x-axis-source--2) *x-ra; 

else 
{ 

if (x axis source--3) *x-qb; 

else *x-rb; 
} 

} 

if (y_axis source-"1) *y-qa; 

else 
{ 

if (y axis_source--2) *y-ra; 

else 
{ 

if (y_ax1s_source--3) *y-qb; 

else *y=rb; 
} 

} 

if (z-axis source--l) *z-qa; 

else 
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if (z-axis-source--2) *z-ra; 
else 
{ 

if (z axis source--3) *z-qb; 
else *z-rb; 

} 
} 

simpllfled_quadrupedal() 

Iinclude "params. h" 

.1 

/* routine to calculate joint torques and reaction forces for simplified */ 
/* quadrupedal leaping model */ 

sircplified quadrupedal(seq length, seg_mass, seg_com, phi, x force, y_force, torque, 
segs, nsegs, nframs, times) 

float seg_length(MAX SEGS]; /* mean segment lengths */ 
float seg_mass(MAX_SEGS]; /* segment masses */ 
float seg_com(MAX_SEGS]; /* relative COM positions 
float phi(MA) SEGS](MAX_FRAMES); /* segment angle */ 

float x_force[MAX_SEGS][MAXFRAMES]; /* x component of linear force */ 

float y_force[MAX_SEGS][MAXFRAMES]; /* y component of linear force */ 

float torque[MAX_SEGS](MAX_FRAMES]; /* torques about segments 

char segs[MAX_SEGS](STRING_SIZE]; /* segment names */ 

int n segs; /* number of segments 
int n frame; /* number of frames */ 
float times[MAX_FRAMES]; /* frame times 

{ 
int iframe; 
float dl, d2; 

struct body 
{ 

float rlx(MAX FRAIIES]; 
float rly(MAX_FRANES]; 
float r2x(MAR_FRAMES]; 
float r2y[MAX FRAMES]; 
float ml[MAR_FRAMES]; 
float m2(MAX_FRAMES]; 
float ml O(MAX_FRAMES]; 

float m2_0[MAX_FRAMES]; 
int segnum; 

struct body upper 
- 

arm; 
struct body forefoot; 

struct body hindfoot; 

struct body calf; 
struct body thigh; 

struct body head; 

struct body torso; 

struct body tail; 
float x react[MAX SEGS](MAX FRAMES]; 

float y_react(MAX_SEGS](MAXFRAMES]; 
float j torque(MAX SEGS](MAX FRAMES]; 

float j torque O[MAX SEGS](MA)FRAMES]; 

/* frame counter */ 
/* distances from COM 

/* structure for free body data */ 

/* reaction force at 'proximal' end */ 

/* reaction forces at 'distal' end */ 

/* torque at 'proximal' end */ 
/* torque at 'distal' end */ 

/* torque assuming 0 contact torque 
/* torque assuming 0 contact torque 
/* segment number */ 

struct body lower arm; /* segment structures */ 

/* reaction forces 
/* reaction forces */ 

/* joint torques 
/* joint torques with zero contact torque 

float work_done[MA%SEGS][MARFRAMES]; /* work done at joints */ 
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float work_done O[MAX_SEGS](MAX FRAMESJ; /* WD at joints for 0 contact torque*/ 
float dumny[MAX_SEGS][MAXFRAMES); /* dummy values for plots */ 
float angle; /* intermediate angle value 
static char joints(](STRING_SIZE]- /* joints etc. 

I 
"Contact point", 
"Mid-tarsal joint", 
"Ankle", 
"Knee", 
 Hipr, 
"Tail base", 

"Neck", 
"Shoulder", 
"Elbow" 

int njoints-9; /* number of joints 
int njoints_0=5; /* number of joint for zero torque */ 

static char menul(](STRING_SIZE]- /* printout menu "/ 

{ 
"Joint reactions", 
"Joint torques", 
"Zero contact joint torques", 
"Work done per frame", 
"Work done - zero contact torque", 
"Exit" 

int nmenul=6; /* number of menu items */ 
int iret; /* menu return value */ 

/* initialize segment ID numbers */ 

lower_arm. segnum=0; 
upper_arm. segnum-1; 
forefoot. segnum=2; 
hindfoot. segnum=3; 
calf. segnum-4; 
thigh. segnum=5; 
head. segnum=6; 
torso. segnumm7; 
tail. segnum=8; 

/* loop over frames */ 

for (iframe-l; iframe<(nframe-1); iframe++) 
{ 

dl-seg_com(lower arm. segnum]*seg_length(lower_arm. segnum]; 
d2-(l-seq_com(lower arm. segnum])*seq_length[lower arm. segnum]; 
lower_arm. rlx[iframe]-0.0; 
lower arm. rly[iframe]-0.0; 
lower arm. ml[iframe]=0.0; 
lower arm. r2x(iframe]-x force(lower_arm. segnum](iframe]- 

lower_arm. rlx(iframe]; 
lower arm. r2y(iframel-y_force(lower arm. segnum](iframe]- 

lower_arm. rly(iframe]-seg_mass[lower arm. segnum]*G; 
lower_arm. m2(iframe]=torque[lower arm. segnum](iframe]- 

lower_arm. rlx[iframe]*dl* 
(float) sin((double)phi[lower arm. segnum][lframe])+ 
lower arm. r2x(iframel*d2* 
(float)sin((double)phi[lower_arm. segnum](iframe])+ 
lower 

_arm. 
rly(iframe]*dl* 

(float) cos((double)phi(lower arm. segnum](iframe])- 
lower arm. r2y(lframe]*d2* 
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(float) cos((double)phi(lower arm. segnum)[iframej)- 
lower arm. ml[iframe); 

dl-seg com(upper arm. segnumj*seg_length[upper arm. segnum]; 
d2-(1-seg_com(upper_arm. segnum])*seg length(upper arm. segnum); 
upper arm. rlx[iframe]-(-lower_arm. r2x(iframe]); 
upper arm. rly[iframe]-(-lower arm. r2y(iframe]); 
upper arm. ml(iframe]-(-lower arm. m2[iframeI); 
upper_arm. r2x[iframej-x_force[upper arm. segnumJ(iframeJ- 

upper_arm. rlx[iframe]; 
upper_arm. r2y[iframej=y force(upper arm. segnum)(lframeJ- 

upper arm. rly(iframe]-seg_mass(upper arm. segnum]*G; 
upper_arm. m2(iframe1-torque(upper arm. segnum](iframeJ- 

upper arm. rlx(iframe]*dl* 
(float)sin((double)phi[upper arm. segnum](iframej)+ 
upper arm. r2x(iframe]*d2* 
(float) sin((double)phi[upper arm. segnum](iframej)+ 
upper arm. rly(iframs]*dl* 
(float)cos((double)phi[upper_arm. segnum)[iframej)- 
upper arm. r2y(iframs)*d2* 
(float) cos((double)phi[upper arm. segnumJ(iframeJ)- 

upper arm. ml[iframe]; 

dl-seg_com[head. segnum]*seg_length(head. segnum); 
d2-(l-seg_com[head. segnumJ)*seg_length[head. segnum); 
head. rlx(iframe]-0.0; 
head. rly(iframe]=0.0; 
head. ml[lframe]=0.0; 
head. r2x(iframe]=x force(head. segnum)(iframe)-head. rlx[iframej; 
head. r2y[iframe]-y_force[head. segnum)(iframej-head. rly(iframeJ- 

seg_mass(head. segnum]*G; 
head. m2[iframe)-torque(head. segnum](iframe]- 

head. rlx(iframeJ*dl* 
(float)sin((double)phi(head. segnum)(iframe])+ 

head. r2x[iframe]*d2* 
(float)sin((double)phi[head. segnum)(iframel)+ 

head. rly(iframe]*dl* 
(float)cos((double)phi[head. segnum](iframe))- 
head. r2y[iframe]*d2* 
(float)cos((double)phi[head. segnum][iframe])- 

head. ml(iframe]; 

dl-seg_com[tail. segnum]*seg_length(tail. segnum); 
d2-(1-seq com(tall. segnum))*seg_length(tail. segnum]; 
tail. r2x(iframe]=0.0; 
tail. r2y[iframe]-0.0; 
tail. m2[iframej=0.0; 
tail. rlx(iframe]-x force[tail. segnum](iframel-tail. r2x[iframe); 
tail. rly(iframe]=y_force[tail. segnum][iframej-tail. r2y(iframe]- 

seg_mass(tail. segnum]*G; 
tail. ml(iframe]-torque[tail. segnum][iframe]- 

tail. rlx(iframeJ*dl* 
(float)sin((double)phi[tail. segnum](iframe])+ 
tail. r2x[iframe]*d2* 
(float)sin((double)phi[tail. segnumj(iframej)+ 
tail. rly(iframe]*dl* 
(float)cos((double)phi(tail. segnum)[iframeJ)- 
tail. r2y[iframe]*d2* 
(float)cos((double)phi(tail. segnum][iframe])- 

tail. m2[iframe]; 

dl-seg_com(torso. segnumJ*seg_length[torso. segnum]; 

Appendix 



Source Code Page (301) 

d2-(1-seq_com(torso. segnum])*seq_length(torso. segnum); 
torso. rlx[iframe]=(-head. r2x(iframeI)+(-upper arm. r2x[iframeJ); 
torso. rly[iframe]. (-head. r2y[iframeJ)+(-upper arm. r2y[iframeJ); 
torso. ml(lframel-(-head. m2[iframe])+(-upper arm. m2(iframel); 
torso. r2x[iframe]-x_force[torso. segnum](iframeJ-torso. rlx(iframe3; 
torso. r2y(iframe)-y_force(torso. segnum][iframeJ-torso. rly(iframeJ- 

seq_mass(torso. segnum]*G; 
torso. m2liframel-torque[torso. segnum](iframe]- 

torso. rlx[iframe]*dl* 
(float)sin((double)phi(torso. segnum][iframej)+ 

torso. r2x[iframe]*d2* 
(float)sin((double)phi[torso. segnum](iframe))+ 

torso. rly[iframe]*dl* 
(float)cos((double)phi(torso. segnuml(iframe])- 

torso. r2y[iframe]*d2* 
(float)cos((double)phi[torso. segnum][iframe))- 
torso. ml(iframe); 

di-seg_com(thigh. segnum]*seg_length(thigh. segnum); 
d2_(1-seg_com(thigh. segnum])*seq length(thigh. segnum]; 
thigh. r2x[iframe3-(-torso. r2x[iframeJ)+(-ta11. r1x(iframeJ); 
thigh. r2y(iframe]=(-torso. r2y[iframe])+(-tail. rly[iframeJ); 
thigh. m2[iframe]-(-torso. m2[iframe])+(-tail. ml[iframe]); 
thigh. rlx[iframe]. x force(thigh. segnum)(iframe]-thigh. r2x[iframe); 
thigh. rly[ifran ]-y_force(thigh. segnum](ifrarm)-thigh. r2y[iframe]- 

seg_mass[thigh. segnumJ*G; 
thigh. ml(iframe)-torque(thigh. segnum][iframe]- 

thlgh. rlx(iframe]*dl* 
(float)sin((double)phi[thlgh. segnum][iframe])+ 

thigh. r2x(iframe]*d2* 
(float)s1n((double)phi(thigh. segnum](lframe])+ 

thlgh. rly[iframe]*dl* 
(float)cos((double)phi(thigh. segnum](iframe])- 

thigh. r2y(iframe]*d2* 
(float)cos((double)phi(thlgh. segnum)(iframe])- 
thigh. m2(iframe); 

dl-seg_com(calf. segnum]*seg_length[calf. segnum); 
d2-(1-seg_com[calf. segnum])*seg_length[calf. segnum]; 
calf. r2x[iframe]-(-thigh. rlx[iframe)); 
calf. r2y(iframe]-(-thigh. rly[iframe)); 
calf. m2(iframel-(-thigh. ml(iframe]); 
calf. rlx(iframe]-x force(calf. segnum][iframe]-calf. r2x[iframe); 
calf. rly(iframe)-y_force(calf. segnum][iframe]-calf. r2y[iframe]- 

seg mass(calf. segnum]*G; 
calf. ml(iframe]=torque(calf. segnum](iframe]- 

calf. rlx[iframel*dl* 
(float)sin((double)phi[calf. segnum][iframe])+ 
calf. r2x(iframe)*d2* 
(float)sin((double)phi[calf. segnum][iframe])+ 
calf. rly[iframe]*dl* 
(float)cos((double)phi[calf. segnum)(iframe])- 
calf. r2y(iframeJ*d2* 
(float)cos((double)phi[calf. segnum][iframeJ)- 
calf. m2[iframe]; 

d1-seg_com[hindfoot. segnum]*seg_length[hindfoot. segnum]; 
d2. (l-seg_com[hindfoot. segnum])*seg_length[hindfoot. segnum]; 
hindfoot. r2x[iframej-(-calf. rlx[iframe]); 
hindfoot. r2y[lframeJ-(-calf. rly[iframe]); 
hindfoot. m2[iframe]-(-calf. ml(ifran J); 
hlndfoot. rlx[iframe]=xforce[hlndfoot. segnumj(iframe]-hindfoot. r2x[lframe]; 
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hindfoot. rly(iframe)-y_force(hindfoot. segnum][iframeJ-hindfoot. r2y[iframeJ- 
seg mass[hindfoot. segnum]*G; 

hindfoot. ml(iframe]=torque(hindfoot. segnum](iframeJ- 
hindfoot. rlx(iframe)*dl* 
(float)sin((double)phi(hindfoot. segnum](iframej)+ 

hindfoot. r2x(iframe]*d2* 
(float)sln((double)phi(hindfoot. segnumj(iframe])+ 

hindfoot. rly(iframe]*dl* 
(float)cos((double)phi[hindfoot. segnum](iframeJ)- 

hindfoot. r2y[iframe]*d2* 
(float)cos((double)phi(hindfoot. segnum)(iframeJ)- 

hindfoot. m2[iframe]; 

dl-seg com(forefoot. segnumJ*seg_length(forefoot. segnum); 
d2-(1-seq_com(forefoot. segnumJ)*seg_length(forefoot. segnum); 
forefoot. r2x[iframe]-(-hindfoot. rlx(iframe]); 
forefoot. r2y[iframeJ-(-hindfoot. rly[iframe)); 
forefoot. m2(iframe]-(-hindfoot. ml[iframe]); 
forefoot. rlx[iframe)-x_force[forefoot. segnum)[iframeJ-forefoot. r2x(lframe); 
forefoot. rly(iframe]-y_force[forefoot. segnum](iframe1-forefoot. r2y[iframe)- 

seq mass(forefoot. segnum]*G; 
forefoot. ml(iframe)-torque[forefoot. segnum](iframeJ- 

forefoot. rlx[iframe]*dl* 
(float)sin((double)phi[forefoot. segnum)[iframe])+ 
forefoot. r2x[iframe]*d2* 
(float)sin((double)phi(forefoot. segnum][iframe])+ 
forefoot. rly(iframe]*dl* 
(float)cos((double)phi(forefoot. segnum][iframe])- 
forefoot. r2y[iframeJ*d2* 
(float)cos((double)phi(forefoot. segnum](iframe])- 
forefoot. m2[iframeJ; 

/* calculate joint torques assumming zero torque at contact with */ 
/* ground */ 

forefoot. ml O[iframe)-0.0; 
forefoot. m2_0[iframe]-torque(forefoot. segnum)[iframe]- 

forefoot. rlx[iframe]*dl* 
(float)sin((double)phi[forefoot. segnum](iframe))+ 

forefoot. r2x(iframe)*d2* 
(float)sin((double)phi[forefoot. segnum][iframe])+ 
forefoot. rly(iframe)*dl* 
(float)cos((double)phi(forefoot. segnumJ(iframe])- 
forefoot. r2y[iframe]*d2* 
(float)cos((double)phi[forefoot. segnum](iframe])- 
forefoot. ml O[iframe); 

hindfoot. ml O(iframe]-(-forefoot. m2 0[iframe]); 
hindfoot. m2_0(iframe]-torque(hindfoot. segnumJ(iframe]- 

hindfoot. rlx[iframe]*dl* 
(float)sin((double)phi[hindfoot. segnumf[iframe))+ 

hindfoot. r2x(iframe)*d2* 
(float)sin((double)phi[hindfoot. segnum][iframe])+ 

hindfoot. rly(iframe)*dl* 
(float)cos((double)phi[hindfoot. segnum][iframeJ)- 

hindfoot. r2y[iframeJ*d2* 
(float)cos((double)phi(hindfoot. segnum](iframeJ)- 

hindfoot. ml_0[iframe]; 

calf. ml_0[iframe]-(-hlndfoot. m2_0(iframe]); 
calf. m2_0[iframe]-torque(calf. segnum)[iframe)- 

calf. rlx(iframe]*dl* 
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(float)sln((double)phi(calf. segnum](iframej)+ 
calf. r2x(iframel*d2* 
(float)sin((double)phi(calf. segnum)(iframef)+ 
calf. rly(iframe]*dl* 
(float)cos((double)phi(calf. segnum)(iframeJ)- 
calf. r2y(iframeJ*d2* 
(float)cos((double)phi(calf. segnumJ(iframe))- 
calf. ml O(iframej; 

thigh. ml_O(iframeI-(-calf. m2_0(iframe]); 
thigh. m2_0(iframe)-torque[thigh. segnum)[iframe]- 

thigh. rlx[iframe]*dl* 
(float)sin((double)phi(thigh. segnum](iframe])+ 
thigh. r2x(iframe3*d2* 
(float)sin((double)phi[thigh. segnum](iframe])+ 

thigh. rly(ifname]*dl* 
(float)cos((double)phi(thigh. segnum](lframe))- 

thigh. r2y(iframe]*d2* 
(float)cos((double)phi(thigh. segnum)[iframe])- 

thigh. ml_O[iframe); 

/* put into array for display */ 

x react[OJ(lframe)=(-forefoot. rlx[iframe]); /* contact point 
y_react[O](lframe]-(-forefoot. rly(iframe]); 
j_torque(O](iframe]-(-forefoot. ml(iframe]); 
j torque O[0](iframe]-(-forefoot. ml 0[iframe)); 
angle-phi[forefoot. segnum][iframe+l]-phi(forefoot. segnum](iframe-1]; 
if (angle>M PI) angle-=(M PI*2); 
if (angle<-(-M PI)) angle+=(M PI*2); 
work done[O](iframe]-j torque(0][iframe]*0.5*angle; 

work done 0[0][iframe]-j_torque 0[0)[iframe)*0.5*angle; 

x react(l](iframe]-forefoot. r2x[iframe]; /* mid-tarsal joint 
y_react[1](iframe]-forefoot. r2y(iframe); 
j_torque[l](iframe]-forefoot. m2[iframe]; 
j torque_0(1][iframe]-forefoot. m2 0(iframej; 
angle-(phi(hindfoot. segnum](iframe+l]-phi(hindfoot. segnum](lframe-1)- 

phi(forefoot. segnum](iframe+l)+phi[forefoot. segnum](iframe-1]); 
if (angle>M_PI) angle-=(M PI*2); 
if (angle<-(-M PI)) angle+=(M PI*2); 
work_done(l](iframe)=j torque(l](iframe)*0.5*angle; 
work_done 0[1][iframe]-j torque 0(1][iframe]*0.5*angle; 

x react[2][iframe]-hindfoot. r2x(iframe); /* ankle */ 

y_react[2](iframe]-hindfoot. r2y(iframe]; 
j_torque[2][iframe]-hindfoot. m2[iframe]; 
j_torque_0(2][iframe)-hindfoot. m2_0[iframe); 
angle-(phi[calf. segnum][iframe+l)-phi(calf. segnum)[iframe-1]- 

phi[hindfoot. segnum](iframe+l]+phi[hindfoot. segnum](iframe-1J); 
if (angle>M PI) angle-=(M PI*2); 
if (angle<-(-M_PI)) angle+=(M PI*2); 

work done[2](iframe]-j torque[2J[iframe)*0.5*angle; 
work done 0(2)(iframe]-j torque 0[2)[iframe]*0.5*angle; 

x react(3J[iframe]-calf. r2x[iframe]; /* knee 

y_react[3](iframe]-calf. r2y(iframe]; 
j_torque[3](iframe]-calf. m2(iframe]; 
j_torque 0(3](iframe]-calf. m2_0[iframe]; 
angle-(phi[thigh. segnum)(iframe+l]-phi(thigh. segnum](ifname-1)- 

phi[calf. segnum](iframe+l]+phi(calf. segnum](iframe-1J); 
if (angle>M PI) angle-=(M PI*2); 
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if (angle<-(-M-PI)) angle+-(M PI*2); 
work done[3](iframe]-j torque[3][iframe]*0.5*angle; 
work_done 0[3](iframe]-j_torque 0[3)(iframe]*0.5*angle; 

x react(4J(iframe]-thigh. r2x[iframej; /* hip */ 
y_react[4](iframe]. thigh. r2y[lframe]; 
j torque[4][iframe)-thigh. m2(iframe); 
j torque 0(4J[iframe]-thigh. m2O(iframej; 
angle-(phi(torso. segnum](iframe+lJ-phi[torso. segnum](iframe-1)- 

phi(thigh. segnum](iframe+lJ+ph1[thigh. segnum](iframe-1)); 
if (angle>M_PI) angle--(M PI*2); 
if (angle<-(-M PI)) angle+-(M PI*2); 
work_done(4](iframe]=j_torque(4](iframe]*0.5*angle; 
work done 0(4][iframe]-j torque 0(4)(iframe]*O. 5*angle; 

x react[5J[iframe]-tail. rlx(iframe); /* tail base 
y_react(5J(iframej-tail. rly[iframe]; 
j torque[5J[iframe]=tail. ml(iframe1; 
angle-(phi[tail. segnum][iframe+l]-phi[tail. segnum)(iframe-1J- 

phi[torso. segnum](iframe+l]+phi[torso. segnum](iframe-1J); 
if (angle>M PI) angle--(M PI*2); 
if (angle<-(-M-PI)) angle+-(M_PI*2); 
work done[5][iframe]-j_torque[5J[iframe)*0.5*angle; 

x react(6][iframe]-head. r2x[iframe]; /* neck */ 
y_react[6](iframe]-head. r2y[iframe]; 
j torque[6][iframe]. head. m2(iframe]; 
angle-(phi[torso. segnum](iframe+lJ-phi[torso. segnum)(iframe-1]- 

phi(head. segnumJ[iframe+l]+phi[head. segnum](iframe-1]); 
if (angle>M_PI) angle--(M PI*2); 

if (angle<-(-M-PI)) angle+-(M PI*2); 
work_done[6][iframe)-j torque[6][iframeJ*0.5*angle: 

x_react[7J[iframe]-upper arm. r2x(iframe]; /* shoulder */ 
y react[7J[iframe]-upper arm. r2y(iframe]; 
j_torque[7](iframe]-upper arm. m2[iframe]; 
angle-(phi(torso. segnum](iframe+lJ-phi[torso. segnum](iframe-lJ- 

phi(upper arm. segnum][iframe+lJ+phi[upper arm. segnum](iframe-i]); 
if (angle>M PI) angle--(M_PI*2); 
if (angle<-(-M PI)) angle+. (M PI*2), 

work done[7J(iframe]-j torque[7](iframe]*0.5*angle; 

x react[8][iframe)-lower arm. r2x[iframe]; /* elbow */ 
y_react(81[iframe]-lower arm. r2y[iframe); 
j torque(8)(lframe]-lower arm. m2(iframe]; 
angle- (phi [upper arm. segnum](iframe+lJ-phi(upper arm. segnum)(iframe-lJ- 

phi(lower arm. segnum][iframe+l]+phi[lower_arm. segnum][iframe-1)); 
if (angle>M PI) angle-=(M PI*2); 
if (angle<-(-M PI)) angle+=(M PI*2); 
work done[8](iframe]-j torque(8](iframe]*0.5*angle; 

while ((iret-menu("Select option: ", menul, nmenul))! -nmenul) 
{ 

switch (fret) 

case 1: 

nodeylot(joints, njoints, x_react, y_react, dummy, l, nframe-1, 
times, "Reaction Forces", "Force (N)"); 

break; 
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case 2: 
segj, lot(dummy, dummy, j_torque, 1, nframe-1, joints, njolnts, 

times, "Joint Torques", "Torques (Nm)"); 
break; 

case 3: 
seg plot(dummy, dummy, jtorque O, 1, nframe-1, joints* njoints 0, 

times, "Zero Contact Torque Joint Torques", 
"Torques (Nm)"); 

break; 

case 4: 
segjlot(dummy, dumny, work done, l, nframe-l, joints, njoints, 

times, "Work Done per frame", "Energy (J)"); 

case 5: 
segplot(dummy, dummy, workdone 0,1, nframe-1, jolnts, njolnts 0, 

times, "Work Done per frame -0 contact work", "Energy (J)"); 
} 

} 
} 

smooth() 

#include "params. h" 

void smooth(nnodes, xpos, ypos, zpos, xpos filt, ypos filt, zpos filt, nframe, fspeed) 

/* this routine performs moving average type smoothing */ 

int nnodes; /* Number of nodes */ 
float xpos(MAX_NODES)[MAX_FRAMES]; /* x world coordinates (m) 
float ypos[MAX NODES][MAX FRAMES]; /* y world coordinates (m) 
float zpos[MAX NODES][MAX FRAMES]; /* z world coordinates (m) 
float xpos filt(MA)LNODES](MAXFRAMES]; /* filtered x world coordinates (m) */ 
float ypos_filt(MA)NODES][MAX_FRAMES]; /* filtered y world coordinates (m) 
float zpos filt[MAX NODES][MAX FRAMES]; /* filtered z world coordinates (m) */ 
int nframe; /* number of frames */ 

float fspeed; /* Film frame interval (s) */ 

{ 
ant anodes; 
ant iframe; 
ant ismooth; 
ant start frame, endframe; 

/* node counter 
/* frame counter 
/* smooth counter 

/* start and end frames */ 

/* test for suitable number of frames */ 

if (nframe<smooth_number) 
{ 

printf("Too few frames for filtration\n"); 
for (anodes-O; inodes<nnodes; inodes++) 
( 

for (iframe-O; iframe<nframe; iframe++) 
{ 

xpos filt(modes)(iframe]-xpos(inodes)[iframe]; 

ypos filt(inodes](iframe]-ypos(inodes)(iframe); 
zpos filt[inodes][iframe]-zpos(inodes](iframe); 

} 
return; 
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/* put in some sensible values for end points so as not to crash anything */ 

start_frame-smooth number/2; 
end frame-nframe-smooth_number/2; 
for (indes-O; inodes<nnodes; inodes++) 
{ 

for (iframe=O; iframe<start frame; iframe++) 
{ 

xpos Eilt(Snodes][iframe]-xpos(inodes](iframe); 
ypos_Eilt(anodes)(iframe]-ypos(inodes)[iframe]; 
zpos filt(inodes)[iframe)-zpos(inodes)[iframe]; 

} 
for (iframe-end_frame; iframe<nframe; iframe++) 
{ 

xpos flit(anodes][iframe]=xpos(inodes)[iframe]; 
ypos filt(inodes](iframe]-ypos[inodes][iframe); 
zpos filt[anodes][iframe]-zpos[inodes][iframe); 

} 
} 

/* loop over nodes */ 

for (anodes-O; inodes<nnodes; inodes++) 
{ 

for (iframe=start frame; iframe<end frame; lframe++) 
{ 

xpos filt[inodes][iframe]=0.0; 
ypos f11t[inodes][iframe]-0.0; 
zpos filt(inodes)[lframe]-0.0; 
for (ismooth-O; lsmooth<smooth number; ismooth++) 
{ 

xpos filt[inodes][iframe]+- 
xpos(anodes][iframe+ismooth-start_frame]; 

ypos_filt[inodes][iframe]+- 
ypos(inodes](iframe+ismooth-start frame); 

zpos filt[inodes](iframe]+- 
zpos[anodes][iframe+ismooth-start_frame]; 

} 
xpos filt(inodes][iframe]- 

xpos filt(inodes)[iframe]/(float)smooth_number; 

ypos filt[inodes][iframe]- 
ypos filt(inodes)(iframe]/(float)smooth_number; 

zpos filt(inodes][iframe]- 
zposEilt[inodes](iframe)/(float)smoothnuirber; 

} 
} 

/* finished */ 

printf("Smoothing successful\n"); 

} 

stats() 
#include "params. h" 

void stats(title, nodes, nnodes, xpos, ypos, zpos, xpos filt, ypos filt, zpos filt, nframe, 
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segs, nsegs, nodesper_seq, fspeed, seq_mass, seq_com, seq_moi) 

/* this routine performs simple dynamics calculations on the raw node position data A/ 

char title(STRING SIZE); /* Title of node file */ 

int nnodes; /* Number of nodes */ 
char nodes[MAX NODES](STRING SIZE]; /* Names of nodes */ 

. float xpos(MAX_NODESJ[MAX_FRAMES]; /* x world coordinates (m) 
float ypos(MAX_NODES][MAX_FRAMES]; /* y world coordinates (m) 
float zpos[MAX NODES][MAX_FRAMES]; /* z world coordinates (m) */ 

float xpos filt[MAX NODES](MA)FRAMES]; /* filtered x world coordinates (m) 
float ypos_filt[MAX NODES][MAX FRAMES); /* filtered y world coordinates (m) */ 
float zpos filt[MAx NODES](MA)FRAMES); /* filtered z world coordinates (m) */ 
int nframe; /* number of frames "/ 
char segs(Mº%SEGS][STRINGSIZE]; /* Names of segments 

int nsegs; /* Number of segments 
int nodes_per seg(NPS][MAX_SEGS]j /" Nodes in segment */ 

float fspeed; /* Film frame interval (a) 
float seq_mass[MAX SEGS]; /* array of segment masses */ 

float seq com[MAX_SEGS]; /* array of segment relative COMB 
float seq_moi[MAX_SEGSI; /* array of segment MOTs */ 

float times[MAX_FRAMES]; /* times (s) */ 
float xvel[MAX NODES+MAX SEGS](MA)FRAMES]; /* calculated velocities (m/s) 
float yvel(MAX NODES+MAX_SEGS][MAX FRAMES]; 

float zvel[MAX NODES+MAX SEGS][MAX_FRAMES]; 

float xacc[MAX NODES+MAX SEGSJ[MAX_FRAMES]; /* calculated accn (m/s/s) 

float yacc[MAX NODES+MAX SEGS][MAX_FRAMES]; 
float zacc[MAX NODES+MAX SEGS][MAX_FRAMES]; 
float xapos(MAX SEGS](MAX FRAMES]; /* angle of segment (radian) 

float yapos(MA)SEGS][MAX_FRAMES]; 
float zapos[MAX_SEGS][MAX_FRAMES]; 
float xavel(MAX SEGS](MAX_FRAMES]; /* calculated angular velocities (rad/s) 
float yavel(MAX_SEGS](MAXFRAMES]; 
float zavel[MAX_SEGS][MAXFRAMES]; 
float xaacc(MAX SEGS][MAX FRAMES]; /* calculated angular accln (rad/s/s) 
float yaacc[MAR SEGS][MAX_FRAMESj; 
float zaacc[MAX_SEGSj[MAX_FRAMES]; 
float body_comx[MAX_FRAMES]; /* x centre of mass of animal (m) 
float body comy[MAXFRAMES]; /* y centre of mass of animal (m) */ 
float body_comz[MAX FRAMES]; /* z centre of mass of animal (m) */ 
float body_mass; /* mass of animal (kg) */ 
float comx(MAX_SEGS][MAXFRAMES]; /* x component of segment COM 
float comy(MAX_SEGS][MAX_FRAMES]; /* y component of segment COM 
float comz[MAX_SEGS](MAX_FRAMES]; /* z component of segment COM 

float comxvel[MAX_SEGS][MAX_FRAMESJ; /* x component of segment COM vel 
float comyvel[MAX_SEGS](MAX FRAMES]; /* y component of segment COM vel 
float comzvel(MAX_SEGS](MAX_FRAMES]; /* z component of segment COM vel 
float comxacc(MAX SEGS][MAX FRAMES]; /* x component of segment COM accln 
float comyacc(MA)SEGS][MAX_FRAMES]; /* y component of segment COM accln 
float comzacc[MAX_SEGS][MAX_FRAMES]; /* z component of segment COM accln 
float xp[MAX_NODES+MAX SEGS][MAX FRAMES]; /* x position data used */ 

float yp[MAX NODES+MAX SEGS][MAX_FRAMES]; /* y position data used */ 

float zp[MAX NODES+MAX_SEGS][MAX FRAMES]; /* z position data used */ 
float x force[MAX SEGS](MAX FRAMES]; /* x component of force 

float y_force[MAX_SEGS](MAR FRAMES]; /* y component of force 

float z force[MAX_SEGS][MAX FRAMES]; /* z component of force */ 

float x torque[MAX_SEGS][MAX_FRAMES]; /* torque in x=0 plane */ 

float y_torque[MAX_SEGS][MAX FRAMES]; /* torque in y=0 plane */ 

float z torque[MAX SEGS](MAX_FRAMES]; /* torque in z=0 plane 
float seg_PE[MAX SEGS][MAX FRAMES]; /* segment potential energy 
float seg_LKE(MAX_SEGS][MAXFRAMES]; /* segment linear kinetic energy */ 
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float seg_RKE[MAX_SEGSJ[MAX FRAMESJ; /* segment rotl kinetic energy 
float seg_length[MAX_SEGSJ; /* mean segment lengths */ 

char positions[MAX NODES+MAX_SEGS][STRING SIZE]; /* names for position data */ 
int npositions; /* number of position items 

ant anodes; /* node counter 
ant iframe; /* frame counter 
ant isegs; /* segment counter 
static char menul[][STRING SIZE]- /* function selector menu 
{ 

"Node position', 
"Node velocity", 
"Node acceleration`, 
"Segment angle", 
`Segment angular velocity`, 
"Segment angular acceleration", 
`Segment lengths, 
"Node locus", 
'Forces', 
"Torques', 
"Energies", 
"Options", 
"User specific analysis", 
"Exit" 

static char menu2(][STRING_SIZE]- /* option selection menu 

{ 
-Raw data", 

"Exit" 

int ifunc; 
int iopt; 
int change_flag TRUE; 

static int smoothed flag-TRUE; 

FILE *unit; 

char fname[STRING_SIZE]; 

char filename[STRING_SIZE); 

int frames-lost; 

int useable_frames: 
float time; 

/* function */ 
/* option 

/* flag to change values */ 
/* smoothed data flag */ 

/* file pointer 
/* filename */ 

/* full pathname 
/* frames lost at each end */ 

/* nframe corrected by frames lost 
/* intermediate time value */ 

/* calculate number of frames to remove 

if (flag_filter--TRUE) frames_lost-2; 

else frames lost-smooth number/2; 

/* menu 1 */ 

while ((ifunc-menu("Analysis function", menul, 14))1-14) 

{ 
if (change_flag--TRUE) 

/* copy over values */ 

if (smoothed flag--TRUE) 
{ 

for (anodes=O; inodes<nnodes; inodes++) 
{ 

for (iframe-frames_lost; 
lframe<(nframe-frames lost); iframe++) 

xp(lnodes)(1frame-frames lost]- 
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xpos filt(inodes](iframe); 
yp(inodes][lframe-frames_lost]- 

ypos filt(inodes)(iframe); 
zp(inodes)[iframe-frames_lost]- 

zpos filt[inodes](iframe); 
} 

} 
useable_frames-nframe-2*frames lost; 

/* calculate times */ 

time-fspeed*(float)frames lost; 
for (iframe-O; iframe<useable frames; iframe++) 
{ 

times(iframe]-time; 
time-time+f speed; 

} 
else 
{ 

for (anodes-O; lnodes<nnodes; inodes++) 
{ 

for (iframe-O; iframe<nframe; iframe++) 
{ 

xp[inodes](iframe]- 
xpos[inodes](iframe]; 

yp[inodes)(iframe]- 
ypos(inodes](iframe); 

zp(inodes][iframe]- 
zpos(inodes)(iframe); 

} 

} 
useable frames-nframe; 

/* calculate times 

time=0.0; 
for (iframe-O; iframe<useable_frames; iframe++) 
{ 

times (if rame) -time; 
time-time+fspeed; 

} 

/* copy over position names */ 

for (anodes-O; inodes<nnodes; inodes++) 
{ 

strcpy(positions[inodes], nodes[inodes]); 

/* calculate centres of mass */ 

com(xp, yp, zp, nnodes, useable frames, nodes_per seg, nsegs, seg_com, 
seg_mass, body_comx, body_comy, body_comz, ibody mass, comx, 
comy, comz); 

/* calculate segment lengths */ 

length(xp, yp, zp, nnodes, useable_frames, nodes_per seg, nsegs, 
seg_length); 
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/* add data onto position data */ 

for (isegs. 0; lsegs<nsegs; isegs++) 

for (iframe-O; iframe<useable frames; iframe++) 

xp(nnodes+isegs](iframe]-comx(isegs](iframe); 
yp[nnodes+isegs][iframe]-comy(isegs)[iframe]; 
zp[nnodes+isegs](iframel-comz[isegs][iframe]; 

strcpy(positions(nnodes+isegs}, seqs(iseqs}); 

strcat(positions(nnodes+isegs}, " COMO); 
} 
for (iframe-O; iframecuseable frames; iframe++) 

xp[nnodes+nsegs](iframe). body_comx(iframe]; 
yp[nnodes+nsegs)(iframe]-body_comy[Sframe); 
zp(nnodes+nsegs](iframe]-body_comz(iframe); 

strcpy(positions[nnodes+nsegs), `Whole body COM"); 

npositions-nnodes+nsegs+l; 

/* calculate kinematics */ 

1_kinem(npositions, xp, yp, zp, useable frames, fspeed, times, 

xvel, yvel, zvel, xacc, yacc, zacc); 
r kinem(xp, yp, zp, useable frames, fspeed, nsegs, nodes_per seq, times, 

xapos, yapos, zapos, xavel, yavel, zavel, xaacc, yaacc, zaacc); 

/* put COM accel and vel into separate array 

for (isegs-O; isegs<nsegs; isegs++) 
{ 

for (iframe-O; iframe<useable frames; iframe++) 

comxvel(isegsj(iframe]-xvel(nnodes+lsegsj(iframe); 
comyvel[isegs](iframe)=yvel(nnodes+isegs)Iiframej; 
comzvel[isegs](iframe]-zvel[nnodes+isegs][iframe3; 
comxacc[isegs](iframej=xacc[nnodes+lsegs](lframe); 
comyacc(isegs](iframe)-yacc(nnodes+isegs][iframe]; 
comzacc[isegs](iframe]-zacc(nnodes+lsegsj[iframe); 

} 

for (iframe-O; iframe<useable_frames; iframe++) 

comxvel[nsegs)(iframe]=xvel(nnodes+isegs][iframe]; 
comyvel[nsegs][iframe]=yvel(nnodes+isegs][iframe); 
comzvel[nsegs][iframe]-zvel[nnodes+isegs](iframe); 
comxacc[nsegs][iframe]=xacc(nodes+nsegs](iframe); 
comyacc[nsegs][iframe]-yacc[nnodes+nsegs](iframe); 
comzacc[nsegs][iframe]-zacc(nnodes+nsegs)[iframe]; 

seg_mass[nsegs]-body_mass; 
strcpy(segs[nsegsj, "Whole body w); 

/* calculate dynamics */ 

1_dynam(comxacc, comyacc, comzacc, nsegs+l, useable frames, seq mass, 
x force, y_force, z_force); 
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r dynam(xaacc, yaacc, zaacc, nsegs, useable frames, seg_moi, 
x torque, y torque, z torque); 

/* calculate energetics */ 

energetics (corny, comxvel, comyvel, comzvel, xavel, yavel, zavel, 
seg_mass, seg_moi, nsegs, useableframes, 

seg PE, seg_LKE, seg RKE); 

} 
change flag=FALSE; 

switch (ifunc) 
{ 

/* node position */ 

case 1: 
node plot(positions, npositions, xp, yp, zp, 0, useable frames, times, 

'Node Position", "Distance (m)"); 
break; 

/* node velocity */ 

case 2: 

nodejlot(positions, npositions, xvel, yvel, zvel, l, useableframes-1, 
tir s, "Node Velocity", "Velocity (m/s)'); 

break; 

/* node acceleration */ 

case 3: 

nodeplot(positions, npositions, xacc, yacc, zacc, l, useableframes-1, 
times, "Node Acceleration", 'Acceleration (m/s/s)'); 

break; 

/* segment angle */ 

case 4: 
segjlot(xapos, yapos, zapos, 0, useable frames, segs, nsegs, times, 

"Segment Angle", "Angle (r)"); 
break; 

/* segment angular velocity */ 

case 5: 
segyplot(xavel, yavel, zavel, l, useable_frames-l, segs, nsegs, times, 

"Segment Angular, Velocity', "Angular Velocity (r/s)"); 
break; 

/* segment angular acceleration */ 

case 6: 
seg ylot(xaacc, yaacc, zaacc, l, useable frames-1, segs, nseqs, times, 

"Segment Angular Acceleration", "Angular Acceleration (r/s/s)"); 
break; 

/* segment lengths */ 

case 7: 
seg_lengths(segs, nsegs, seg_length); 
break; 
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/* node locus */ 

case 8: 
locus(positions, npositions, xp, yp, zp, useable frames): 
break; 

/* forces */ 

case 9: 
nodeylot(segs, nsegs+l, x force, y_force, z force, l, useableframes-1, 

times, 'Resultant Force on COM-, `Force (N)"); 

break; 

/* torques */ 

case 10: 
segj, lot(x torque, y torque, z torque, l, useable frames-1, segs, nsegs, 

times, "Torque about COM", "Torque (Nm)"); 

break; 

/* energies */ 

case 11: 

energyjlot(segs, nsegs, seg_PE, seq_LKE, seg_RXE, 1, useableframes-1, 
times); 

break; 

/* options */ 

case 12: 

change_flag-TRUE; 
if (smoothed flag--TRUE) strcpy(menu2[01, "Raw data"); 

else strcpy(menu2(0J, "Smoothed data"); 

while ((iopt-menu("options: ", menu2,2)))-2) 
{ 

switch (iopt) 
{ 
case 1: 

if (smoothed flag--TRUE) 
{ 

strcpy(menu2[0], "Smoothed data"); 

smoothed flag=FALSE; 

} 

else 
{ 

strcpy(menu2(0], "Raw data"); 

smoothed flag-TRUE; 
} 
break; 

} 
break; 

/* do user specific analysis */ 

case 13: 

user specific analysis(xp, yp, zp, xvel, yvel, zvel, xacc, yacc, zacc, 
xapos, yapos, zapos, xavel, yavel, zavel, xaacc, yaacc, zaacc, 
x force, y_force, z force, x torque, y torque, z torque, 
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comx, corny, comz, comxacc, comyacc, comzacc, 
body_comx, body_comy, body_comz, body_mass, 
times, seg length, seg mass, seg_com, seq moi, 
positions, npositions, nodes, nnodes, segs, nsegs, useableframes, 
seg PE, seg LKE, seq RKE); 

break; 
} 

/* finished */ 

toe_tip_and_body_COM_output() 

/* routine to output toe tip and body COM information */ 

#include "params. h" 

void toe tip and body COM output(positions, xp, yp, times, npositions, nftame) 

char positions[MAX NODES+MAX SEGSJ(STRING_SIZEJ; /* position names 
float xp[MAX NODES+MAX SEGS)(MAX_FRAMESJ; /* x coordinates */ 
float yp[MAX NODES+MAX SEGSJ[MAXC_FRAMES]; /* y coordinates */ 

float times(MAX FRAMESJ; /* times */ 

int npositions; /* number of positions 
int nframe; /* number of frames */ 

int iposition; 
int toe-tip; 
int body_COM; 
int iframe; 

FILE *unit; 

char fname(STRING 
_SIZE); 

char filename (STRING SIZE); 

/* position counter 
/* toe tip index */ 

/* body COM index */ 
/* frame counter 
/* file pointer 

/* intermediate filename */ 
/* full filename */ 

/* look for required positions */ 

for (iposition-O; lposition<npositions; iposition++) 
{ 

if (strcmp("Toe tip", positions(iposition))==O) tce tip=iposition; 
if (strcmp("Whole body COM", positions[iposition))--O) body_COM=ipositlon; 

/* write out data */ 

do 
{ 

/* get filename */ 

printf("Input EXCEL data file name "); 
scanf("%s", fname); 
strcpy(filename, ANALYSIS_DIRECTORY); 

strcat(filename, ANALYSIS_PREFIX); 

strcat(filename, fname); 

strcat(filenane, ANALYSISSUFFIX EXCEL); 

/* open file */ 
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unit-fopen(filename, "w"); 
} while (unit--NULL); 

} 

/* write out data in ASCII form suitable for EXCEL import */ 

fprintf(unit, "Time\O11Toe Tip x\O11Toe Tip y\011CM x\011CM y\015\012'); 
fprintf(unit, "\015\012"); 
for (iframe. 0; iframe<nframe; iframe++) 
{ 

fprintf(unit, "%12.5e\011%12.5e\O11%12.5e\011%12.5e\011%12.5e\015\012", 
times(iframe], xp[toe tip](iframe], yp(toe tip][iframe), 

xp[body_COM][iframe], yp(body COM](iframe]); 

fclose(unit); 

printf("File %s written successfully\n", filename); 

translate3d() 

/* Subroutine produces a translation 4*4 matrix from the transformation vector */ 

void translate3d(tx, ty, tz, m) 
double tx, ty, tz; 
float m[41(43; 

identity3d(m); 
m[31[0]-(float)tx; 
m[31[11-(float)ty; 
m[31(21-(float)tz; 

user_specific_analysls() 

#include "params. h" 

user specific_analysis(xp, yp, zp, xvel, yvel, zvel, xacc, yacc, zacc, 
xapos, yapos, zapos, xavel, yavel, zavel, xaacc, yaacc, zaacc, 
x force, y_force, z force, x torque, y_ torque, ztorque, 
comx, corny, comz, comxacc, comyacc, comzacc, 
body_comx, body comy, body_comz, body_mass, 
times, seg_length, seg_mass, seg_com, seg moi, 
positions, npositions, nodes, nnodes, segs, nsegs, nframe, 

seg_PE, seg_LKE, seg_RKE) 

int nnodes; /* Number of nodes 

char nodes[MAX NODES][STRING SIZE]; /* Names of nodes */ 

int nframe; /* number of frames 

char segs[MAX SEGS][STRING_SIZEJ; /* Names of segments 
int nsegs; /* Number of segments 
float seg_mass[MAX SEGSJ; /* array of segment masses 

float seg_com[MAX_SEGS); /* array of segment relative COMs 
float seg_moi[MAX_SEGS]; /* array of segment is 
float times[MAX_FRAMES]; /* times (s) */ 
float xvel[MAX_NODES+MAX_SEGS][MAR_FRAMESJ; /* calculated velocities (m/s) 

float yvel(MAX NODES+MAX_SEGS](MA)_FRAMES]; 

float zvel[MAX_NODES+MAX SEGS][MAX_FRAMES); 

#include "params. h" 
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float xacc[MAX NODES+MAX_SEGS][MAX_FRAMES]; /* calculated accelerations (m/s/s) */ 

float yacc(MAX NODES+MAX_SEGS](MAX_FRAMES]; 
float zacc(MAX NODES+MAX_SEGS)(MAX_FRAMES]; 
float xapos(MAX 

_SEGS](MAXFRAMES); 
/* angle of segment (radian) */ 

float yapos[MAX_SEGS][MAXFRAMES]; 
float zapos[MAX_SEGS](MAXFRAMES); 
float xavel[MAR_SEGS][MAX_FRAMES]; /* calculated ang vels (rad/s) */ 

float yavel(MAX_SEGS][MAXFRAMES]; 
float zavel[MAX_SEGS][MAX_FRAMES]; 
float xaacc[MAX SEGS][MAX_FRAMES]; /* calculated ang accln (rad/s/s) 

float yaacc(MAX_SEGS][MAXFRAMES]; 
float zaacc[MAX_SEGS][MAXFRAMES]; 
float body_comx(MAX FRAMES]; /* x centre of mass of animal (m) */ 
float body_comy(MA)FRAMES]; /* y centre of mass of animal (m) 
float body_comz(MAX_FRAMES]; /* z centre of mass of animal (m) 
float body_mass; /* mass of animal (kg) */ 
float comx[MAX_SEGS][MAX FRAMES]; /* x component of segment COM 

float comy[MAX_SEGS](MAX FRAMES]; /* y component of segment COM 

float comz[MAX_SEGS](MAX FRAMES]; /* z component of segment COM 

float comxacc[MAX SEGS][MAX_FRAMES]; /* x component of seq COM accln 
float comyacc[MAX_SEGS][MAX FRAMES]; /* y component of seq COM accln 
float comzacc(MAX_SEGS][MAX_FRAMES]; /* z component of seq COM accln 
float xp(MAX NODES+MAX_SEGS](MAX_FRAMES]; /* x position data used 
float yp(MAX NODES+MAX SEGS][MAX_FRAMES]; /* y position data used 

float zp[MAX NODES+MAX SEGS](MAX_FRAMES]; /* z position data used */ 

float x force(MAX_SEGS][MAXFRAMES]; /* x component of force */ 

float y_force(MAX_SEGS](MAXFRAMES]; /* y component of force 

float z force[MAX_SEGS](MAXFRAMFS]; /* z component of force 

float x torque(MAX_SEGS][MAXFRAMES]; /* torque in x. 0 plane 
float y_torque(MAX_SEGS](MAXFRAMES]; /* torque in y-O plane 
float z torque[MAX_SEGS](MAX_FRAMES]; /* torque in z-0 plane 

float seg_length[MAX_SEGS]; /* mean segment lengths 

char positions [MAX NODES+MAX_SEGS](STRING SIZE]; /* names for position data 

int npositions; /* number of position items 
float seg_PE(MAX_SEGS](MAX_FRAMES]; /* segment potential energy 
float seg_LKE[MAX_SEGS][MAXFRAMES]; /* segment linear kinetic energy 
float seq RKE(MAX_SEGS](MAXFRAMES]; /* segment rotational kinetic energy */ 

/* put user specified analysis routines in this function */ 

static char menul(J[STRING_SIZEJ- /* menu prortpts 

{ 

"Sinplified Quadrupedal Analysis", 
"Predictive Model Analysis", 
"Toe tip and Body COM output", 
"Exits 

int nmenu=9; /* number of menu items */ 

int iret; /* menu return value */ 

/* menu */ 

while ((iret-menu("User Specific Analysis`, menul, nmenu))! -nmenu) 
{ 

switch (fret) 
{ 

case 1: 
sinplified_quadrupedal(seg length, seg_mass, seq com, 

zapos, x_force, y_force, ztorque, segs, nsegs, nframe, times); 
break; 
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case 2: 
predictive-analysis (seq_length, seq_mass, seq_com, 

zapos, x_force, y_force, z torque, segs, nsegs, nframe, times); 
break; 

case 3: 
toe tip and body_COM_output(positions, xp, yp, times, npos it ions, 

nframe); 
break; 

} 

} 

VI@W(i 

iinclude "params. h" 

void view() 

/* this routine allows the user to view the video frames */ 

int iret; /* menu selection */ 
char fname[STRING SIZE]; /* picture file name 
char filename[STRING_SIZEJ; /* full picture file name 
static char menul(J(STRING_SIZE]- /* menu 
{ 

-Read frame file", 
"Write picture file`, 
"Exit" 

}; 

/* get into right graphics mode */ 

CLEAR GRAPH; 

fret-1; 
do 
{ 

switch (iret) 
{ 

case 1: 

/* read in picture file */ 

readplc(; 
break; 

case 2: 

/* write out picture file */ 

printf("Input picture file name 

scanf (~%s", fnaxne); 

strcpy(filename, PICTURE_DIRECTORY); 

strcat(filename, PICTURE_PREFIX); 

strcat(filename, fname); 

strcat(filename, PICTURE_SUFFIX); 

bitmap to file(display, TRUE, 0,0, filename, TRUE, 0.0,0.0,0,0, TRRE); 
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break; 
} 

} while ((iret. menu("Select option: ", menul, 3))! _3); 

/* terminate graphics */ 

CLEAR GRAPH; 

/* finished */ 

} 

wrnode() 

#include "params. h" 

void wrnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed) 

/* this routine writes out the node position file */ 

char title(STRING_SIZE]; 

char nodes[MAX_NODES][STRING_SIZE]; 
int nnodes; 
float xpos[MAX NODES](MAX FRAMES]; 
float ypos(MAX NODES](MA)LFRAMES]; 
float zpos(MAX NODES][MAX_FRAMES]; 
int nframe; 
int fspeed; 

FILE *unit; 

char fname(STRING SIZE); 

char filename(STRING_SIZE]; 
int iframes; 

ant anodes; 

do 
{ 

/* get filename */ 

/* file title line */ 
/* names of the nodes of the model */ 
/* the number of nodes */ 

/* the x world coordinates */ 
/* the y world coordinates */ 
/* the z world coordinates */ 
/* the number of frames */ 
/* the interval between frames */ 

/* file pointer 
/* filename */ 

/* full filename */ 
/* counter frame number 

/* counter node number */ 

printf("Input node data file name 

scanf("%s", fname); 

strcpy(filename, NODEDIRECTORY); 

strcat(filename, NODEPREFIX); 

strcat(filename, fname); 

strcat(filename, NODE SUFFIX); 

/* open file */ 

unit-fopen(filename, "w"); 
} while (unit==NULL); 

/* write data */ 

fprintf(unit, "%s\n", title); 
fprintf(unit, "%e\n", fspeed); 
fprintf(unit, "%d\n", nframe); 
for (iframes-O; iframes<nfrare; iframes++) 
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{ 
fprintf(unit, "%d\n", iframes); 
fprintf(unit, u%d\n", nnodes); 
for (indes. O: inodes<nnodes; inodes++) 
( 

fprintf(unit, "%d %e %e %e\n", inodes, xpos(inodes)(iframesj, 
ypos[inodesJ(iframes], zpos(inodes3(iframes)); 

fprintf(unit, "%s\n", nodes[inodesi); 

} 

/* close file */ 

fclose(unit); 

/* print success message 

printf("File %s written successfully\n", filename); 

/* finished */ 

L 
yesno() 

#include "params. h" 

Snt yesno(prompt) 

/* this routine waits for the user to enter y (TRUE) or n (FALSE) via a mouse driven 

menu */ 

char prompt(J; /* This is the menu title string 

{ 
int reply; /* the value returned TRUE/FALSE */ 

int ixet=0; /* the value returned by the menu 

static char menul(J(STRING SIZED= /* the menu 
{ 

"Yes", 

"Now 

}; 

while (iret- O) 
ixet-menu(prompt, menul, 2); 

reply- iret--l 7 TRUE: FALSE; 

return (reply); 

L' 
FORTRAN Glue Routines 

fparams. h 

implicit none 

c max size of euqtion matrix 
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integer MAX MATRIX 

parameter (MAX MATRIX=50) 

c number of DLT parameters 

integer NDLT 

parameter (NDLT-11) 

dlt_parameters() 

c This subroutine solves the DLT reconstruction equations 
c calculating the parameters Ll to L11 

c solved using minimax algorithm 

subroutine dltyarameters(xw, yw, zw, q, r, nrefs, 1) 

include 'fparams. h' 

real xw(nrefs), yw(nrefs), zw(nrefs), 
q(nrefs), r(nrefs) 

integer nrefs 
real l(nrefs) 

c xw, yw, zw world coordinates of reerence points 
c q, r screen coordinates of reference points 
c nrefs number of reference points 
c1 dlt parameters 

double precision a(MAX_MATRIX, MAX MATRIX), b(MAX_MATRIX), 

x(MAX_MATRIX), ta(MAX_MATRIX, MAX_MATRIX) 

integer m, n, ndim, mdim, irank, iter, ifail 

double precision tol, relerr, resmax 

c m number of equations 
c n number of unknowns 
c ndim 1st dimension of a 
c mdim 2nd dimension of a 
c a ndim * mdim matrix for equations 
c to transpose of a 
c b m matrix of RHS of equations 
c tol tolerance 

c relerr max acceptable error 

c resmax largest residual 
c irank rank of matrix a 

c iter number of iterations 

c ifail failure flag 

integer iref, i, im, in 

c iref reference value counter 

ci DLT parameter counter 

c im, in counters to transpose matrix 

c setup arrays for equation solution 

do 10 iref-1, nrefs 

a(iref*2-1,1)--xw(iref) 
a(iref*2-1,2)--yw(iref) 
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a(iref*2-1,3)--zw(iref) 
a(iref*2-1,4)=-1.0 
a(iref*2-1,5). 0.0 
a(iref*2-1,6)-0.0 
a(iref*2-1,7)-0.0 
a(iref*2-1,8). 0.0 
a(iref*2-1,9)-q(iref)*xw(iref) 
a(iref*2-1,10)-q(iref)*yw(iref) 
a(iref*2-1,11)-q(iref)*zw(iref) 

a(Ire f*2,1)-0.0 
a(iref*2,2)=0.0 
a(iref*2,3)=0.0 
a(iref*2,4)-0.0 
a(iref*2,5)--xw(iref) 
a(iref*2,6)=-yw(iref) 
a(iref*2,7)=-zw(lref) 
a(lref*2,8)=-1.0 
a(iref*2,9)-r(iref)*xw(iref) 
a (iref*2,10)-r (iref) *yw (iref) 
a(iref*2,11)=r(iref)*zw(iref) 

b(iref*2-1)--q(iref) 
b(iref*2). -r(iref) 

10 continue 

c get values into variables 

m=2*nrefs 
c m=NDLT 

n=NDLT 

mdim=MAX_MATRIX 
ndim=MAX_MATRIX 
tol=0.0 

relerr=0.0 
ifail-1 

c transpose a 

do 20 im=1, m 
do 30 in-1, n 

ta (in, im) -a (im, in) 
30 continue 
20 continue 

c call nag routine to perform calculation 

call e02gcf(m, n, mdim, ndim, ta, b, tol, relerr, x, 
1 resmax, irank, iter, ifail) 

write(6,98)ifail, resmax, iter 
98 format(' IFAIL = ', 12, ' RESMAX = ', ipel2.4, ' ITER = ', 110) 

c put solution into correct array 

do 40 1-1, NDLT 
1(1)-x(1) 

40 continue 

return 
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I 
end 

dlt_recon() 

c This routine uses the DLT parameters to reconstruct 
c the. (x, y, z) coordinates from two sets of screen coordinates 

c calculates the minimax solution of the equations 

subroutine dlt_recon(la, lb, ga, ra, qb, rb, xxw, yyw, zzw) 

include 'fparams. h' 

real la(ll), lb(ll) 
real ga, ra 
real qb, rb 
real xxw, yyw, zzw 

c la, lb DLT reconstruction parameters 

c qa, ra screen 1 (q, r) coordinates 

c qb, rb screen 2 (q, r) coordinates 

c xxw, yyw, zzw reconstructed world coordinates 

double precision a(MAX MATRIX, MAX_MATRIX), b(MAX_MATRIX), 

x (MAXMATRIX), ta(MAX_MATRIX, MAX_MATRIX) 
integer m, n, ndim, mdim, irank, iter, ifail 

double precision tol, relerr, resmax 

c m number of equations 
c n number of unknowns 
c ndim 1st dimension of a 
c mdim 2nd dimension of a 
c a ndim * mdim matrix for equations 
c to transpose of a 
c b m matrix of RHS of equations 
c tol tolerance 
c relerr max acceptable error 
c resmax largest residual 
c irank rank of matrix a 
c iter number of iterations 

c ifail failure flag 

integer im, in 

c im, in counters to transpose matrix 

c get values into array 

a(1,1)-qa*la(9)-1a(1) 
a(1,2)-qa*1a(10)-1a(2) 
a(1,3)_ga*la(11)-1a(3) 

b(1)-1a(4)-qa 

a (2,1) -ra*1a (9) -1a (5) 

a(2,2)=ra*la(10)-1a(6) 
a(2,3)_ra*la(11)-1a(7) 

b(2)-la(8)-ra 

a (3,1) -qb*lb (9) -1b (1) 
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a(3,2)=qb*lb(10)-lb(2) 
a (3,3) -qb*lb (11)-lb (3) 

b (3) -lb (4) -qb 

a(4,1)-rb*lb (9)-lb (5) 
a(4,2)-rb*lb(10)-lb(6) 
a(4,3). rb*lb(11)-lb(7) 

b(4)-lb(8)-rb 

c get values into variables 

m-4 
n-3 
mdim-MAX_MATRIX 
ndim=MAX_MATRIX 
tol-0.0 

relerr-0.0 
ifail-1 

c transpose a 

do 20 im-1, m 
do 30 in-l, n 

ta (in, im) -a (im, in) 
30 continue 
20 continue 

c call nag routine to perform calculation 

call e02gcf(m, n, mdim, ndim, ta, b, tol, relerr, x, 
1 resmax, lrank, iter, ifail) 

c put solution into correct variables 

xxw-x(1) 
YYw=x(2) 
zzw-x(3) 

return 
end 

general. c 

CA general set of routines to pass values along to the NAG fortran routines 

c string cleanup routine 

subroutine cleanup(string) 
include 'fparams. h' 

character *80 string 
integer i, f 

f-0 
do 10 1-1,80 
if (f. ne. 0) then 
string(i: i)-char(0) 

else 
if (string(i: i). eq. char(0)) then 
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f=1 
endif 

endif 
10 continue 

return 
end 

subroutine cnagsti(path, device, pawse) 
include 'fparams. h' 

character *80 path, device 
logical pawse 

call nagsti(path, device, pawse) 
return 
end 

subroutine cj06ahf(title) 
include 'fparams. h' 

character *80 title 

call cleanup(title) 
call j06ahf(title) 
return 
end 

subroutine cj06ajf(iaxis, title) 
include 'fparams. h' 

character *80 title 
integer taxis 

call cleanup(title) 
call j06ajf(iaxls, title) 
return 
end 

subroutine cj06zaf(string) 
include 'fparams. h' 

character *80 string 

call cleanup(string) 
call j06zaf(string) 

return 
end 

program start 

include 'fparams. h' 

call gap 
end 
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digit. exe 

C Routines 

visllog. h 

/* visilog. h - visilog information */ 

/* this structure uses high to low byte order for its long integers 
/* this is NOT normal and hence the function to reverse the order of */ 
/* the bytes */ 

struct visiloglmageHeader 

long int magicNumber; 
long int pixelsPerLlne; 
long int numberOfLines; 
long int resl; 
long int rest; 
long int res3; 
long int gridType; 
long int res4; 
long int arithmaticType; 
long int bitsPerPixel; 
long int res5; 
long int x0rigin; 
long int yOrigin: 
long int res6; 
long int res7; 
long int vlsilogHeaderSize; 
long int userHeaderSize; 
long int res8; 
long int totalHeaderSize; 

1; 

long int VisilogConvert(int); 

/* rectangular grid */ 

/* long integer image */ 

/* routine to cenvert ordinary integers to visilog style reversed 4 byte integers */ 

long int VisilogConvert(value) 
int value; 
{ 

long int returnValue=OL; 
unsigned char *pointerl, *pointer2; 

unsigned char byte; 

pointerl-(unsigned char *)&value; 
byte=*pointerl; 

pointer2-(unsigned char *)creturnValue+3; 
*pointer2=byte; 

pointerl++; 
pointer2--; 
byte-*pointerl; 
*pointer2=byte; 

return(returnValue); 
} 
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dlglt. c 

#include <stdio. h> 
#include <time. h> 
#include <sys\types. h> 
#include <sys\timeb. h> 
"include <conio. h> 
"include <bios. h> 
(include <graph. h> 
#include <string. h> 
#include <dos. h> 
#include "matrox. h" 
#include "visilog. h" 

/define VBLANK Ox126c 
period */ 
#define STATUS 0x026c 

"define CONTROL2 OxOa6c 

#define ODDFIELD 0x20 

#define FGRACT 0x08 
#define INTERVAL 8 
#define STRINGSIZE 80 

/* non-zero when in vertical blanking 

/* status register */ 
/* control register 2 */ 
/* odd field flag */ 
/* frame grab active flag 
/* frame interval between pulses */ 
/* default size of strings */ 

void main (void); 
void SetupMatrox(void); 
void SetupSerial(void); 
void MainMenu(void); 
void WriteSoundtrack(void); 
void ReadSoundtrack(void); 
void GrabSingleFrame(void); 
void DigitizeFrames(void); 
void SynchronizePulses(void); 
void Controls(void); 
void FrameSave(char *, int, int); 
void FillIn(void); 
void FileName(char *, int, char *); 
int Menu(char *, char[][STRINGSIZE], int); 

extern void grab4(void); 
frames */ 

/* machine code routine to grab 4 successive 

void main () 
{ 

/* initialize matrox card */ 

SetupMatrox 0; 

/* initialize serial port 

SetupSerial 0; 

/* go do main menu loop */ 

MainMenu(); 

} 

void MainMenu() 
{ 

static char menul[](STRINGSIZE]= 
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"Write Soundtrack', 
"Read and Display Soundtrack", 
"Grab Single Frame', 
"Digitize Frames', 
"Adjust Brightness and Contrast', 
"Exit" 

int fret; /* menu return value */ 

while ((ixet-Menu("Main Menu", menul, 6))l-6) 
{ 

switch (iret) 

case 1: 
WriteSoundtrack(); 
break; 

case 2: 
ReadSoundtrack(); 
break; 

case 3: 
GrabSingleFrame(); 
break; 

case 4: 
DigitizeFrames(; 
break; 

case 5: 
Controls(); 
break; 

} 

/* write the timed soundtrack onto the video tape */ 

void WriteSoundtrack() 
{ 

unsigned int frameCounter; 

unsigned int pulseCounter; 
struct timeb timel, time2; 
float elapsedTime; 
unsigned char *lowByte, *highByte; 

/* frame counter 
/* pulse counter 
/* time stores 
/* elapsed time 
/* pointers to individual bytes */ 

SetupSerial(): 

_clearscreen(_GCLEARSCREEN); 
printf("Start dubbing on video recorder and press any key\n\n"); 

while (_bios keybrd(_KEYBRD READY)-O); 
bios_keybrd(KEYBRD READ); 

printf("Writing soundtrack\n\n\nPress any key when finished\n"); 

lowByte-(unsigned char *)apulseCounter; 
highByte=lowByte+l; 
pulseCounter-0; 
ftime(&timel); 

while (_bios_keybrd(KEYBRD_READY)--0) 
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/* wait for change from odd to even field 4 times */ 

for (frax Counter-O; frameCounter<INTERVAL; frameCounter++) 
{ 

while ((inp(STATUS)&ODDFIELD)! -0); 
while ((inp(STATUS)&ODDFIELD)--0); 

} 
bios serialcom(_COM SEND, 0, (int)*lowßyte); 
bios serialcom(COM SEND, 0, (int)*highByte); 

pulseCounter++; 
} 
ftime(&time2); 
elapsedTime-(float)tlme2. time-(float)timel. time+ 

(float)time2. millitm/1000.0-(float)timel. millitm/1000.0; 
bios keybrd(KEYBRD READ); 

printf("Time elapsed is %f\n", elapsedTime); 
printf("Pulses written %u\n\n", pulseCounter); 
printf("Expected elapsed time is %f\n", 

(float)pulseCounter*(float)INTERVAL/25.0); 

printf("\nPress any key to continue\n"); 

while (_bios_keybrd(KEYBRD_READY)==0); 

bios_keybrd(KEYBRD READ); 

} 

/* read soundtrack and display the pulse number */ 

void ReadsoundtrackC) 
{ 

unsigned int pulseCounter; 
unsigned int bytel, byte2; 

struct timeb timel, time2; 
float elapsedTime; 
unsigned char *lowByte, *highByte; 

/* pulse counter 
/* data bytes */ 
/* time stores 
/* elapsed time 
/* pointers to individual bytes */ 

clearscreen(GCLEARSCREEN); 

lowByte-(unsigned char *)&pulseCounter; 

highByte-lowByte+l; 

/* synchronize to pulses */ 

SynchronizePulses(); 

/* all synchronized now - next character will be first of a pair */ 

ftiu (&tin 1); 

while (blos_keybrd(_KEYBRD READY)==0) 
{ 

bytel- blos_serialcom(_COM_RECEIVE, 0,0); 

bytel=bytel&Ox00ff; 
byte2-_bios_serialcom(COM RECEIVE, 0,0); 
byte2=byte2&0xO0ff; 

*lowBytes(unsigned char)bytel; 
*highByte. (unsigned char)byte2; 

settextposition(0,0); 
printf("%5u", pulseCounter); 

} 
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ftime(&time2); 
fg_snap(l); 
fg_sbuf(l): 
fg_sync(0); 
elapsedTime-(float)time2. time-(float)timel. time+ 

(float)time2. millitm/1000.0-(float)timel. millitm/1000.0; 
bios keybrd(KEYBRD READ); 

printf("\nTime elapsed is tf\n", elapsedTime); 
printf("Pulses read %u\n\n", pulseCounter); 
printf("Expected elapsed time is "f\n", 

(float)pulseCounter*(float)INTERVAL/25.0); 

printf("\nPress any key to continue\n"); 

while (_bios_keybrd(KEYBRD_READY)- O); 

bios_keybrd(KEYBRD READ); 

fg_sync(1); 
fg_sbuf(0)p 

} 

void GrabSingleFrame() 
{ 

unsigned int bytel, byte2; 
unsigned int pulseCounter; 
unsigned char *lowByte, *highByte; 

unsigned int pulse; 

/* data bytes */ 
/* pulse counter 
/* pointers to individual bytes 
/* pulse counter */ 

clearscreen(GCLEARSCREEN); 

lowByte-(unsigned char *)&pulseCounter; 

highByte-lowByte+l; 

printf("Input counter value : "); 
scanf("%u", &pulse); 

/* loop through numbered pulses */ 

_clearscreen(_GCLEARSCREEN); 
printf("Searching for pulse %u\n", pulse); 

/* synchronize 

SynchronizePulsesC); 

/* all synchronized now - next character will be first of a pair */ 

while (1) 

bytel _bios_serialcom(COM_RECEIVE, 0,0); 

bytel=bytel&0x0Off; 

byte2= bios serialcom(_COM RECEIVE, 0,0); 
byte2=byte2&OxOOff; 

*1owByte=(unsigned char)bytel; 
*highByte. (unsigned char)byte2; 

if (pulse"=pulseCounter) break; 

_settextposition(2,2); 
printf("%5u", pulseCounter); 

} 

/* at right place now, so grab frame */ 
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fg_dquad(O); /* grab quadrant 0 */ 
fg_snap(1); 
fg_sbuf(1); /* show buffer 
fg_sync(0); /* internal sync */ 

printf("\nPress any key to continue\n'); 
while (bios_keybrd(_KEYBRD_READY)--O); 

bios keybrd( xEYBRD READ); 

fq_sync(1); 
fg_sbuf(0); 

/* external sync */ 
/* show incoming signal */ 

void DigitizeFrames() 
{ 

unsigned int pulseCounter; 
unsigned int bytel, byte2; 

unsigned char *lowByte, *highByte; 
unsigned int startPulse; 
unsigned int numberofPulses; 
unsigned int endPulse; 
unsigned int pulse; 
char sequenceName[STRINGSIZE]; 

char fileName(STRINGSIZE); 

int frameCounter-0; 

int temporaryFrameCounter; 
int quadrant; 
int field; 

clearscreen(GCLEARSCREEN); 

lowByte-(unsigned char *)&pulseCounter; 
highByte-lowByte+1; 

printf("input sequence name: "); 
scanf("%cs", sequenceName); 

printf("Input start pulse number: "); 

scanf("%u", &startPulse); 

printf("Input number of pulses : "); 

scant("%u", &numberOfPulses); 

endPulse-startPulse+numberOfPulses; 

/* loop through numbered pulses */ 

/* pulse counter 
/* data bytes */ 
/* pointers to individual bytes */ 
/* first pulse to start digitizing on 
/* number of pulses to digitize over 
/* end pulse for digitizing */ 
/* pulse counter 
/* sequence name 
/* file name */ 
/* frame counter 
/* temporary frame counter t/ 
/* quadrant counter 
/* field counter */ 

for (pulse-startPulse; pulse<endPulse; pulse++) 
{ 

/* get even numbered frames first */ 

temporaryFrameCounter-frameCounter; 

_clearscreen(_GCLEARSCREEN); 
printf("Searching for pulse %u\n", pulse); 

/* synchronize */ 

SynchronizePulses(); 

/* all synchronized now - next character will be first of a pair */ 
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while (1) 
{ 

bytel-_bios_serialcom(_COM RECEIVE, 0,0); 
bytel-byte1i0x0Off; 
byte2- bios_serialcom(_COM RECEIVE, 0,0); 
byte2-byte2&OxOOff; 

*lowByte-(unsigned char)bytel; 
*highByte-(unsigned char)byte2; 

if (pulse--pulseCounter) break; 

_settextposition(2,2); 
printf("%5u", pulseCounter); 

} 

/* at right place now, so grab next 4 frames */ 
/* making sure every other frame grabbed */ 

; 
_disable 

o; 
fg dquad(0); 
fg_snap(1); 
while(inp(VBLANK)--0); 
while(inp(VBLANK)! -0); 
while(inp(VBLANX)--0); 
fq_dquad(1); 
fg_snap(1); 
while(inp(VBLANK)-=0); 
while(inp(VBLANK)1-0); 
while(inp(VBLANK)--0); 
fg_dquad(2); 
fg_snap(1); 
while(1np(VBLANK)--0); 
while(inp(VBLANK)I-0); 
while(inp(VBLANK)--0); 
fg_dquad(3); 
fg snap(1); 

enable 0; 

/* interrupts off */ 
/* grab quadrant 0 */ 

/* grab quadrant 1 */ 

/* grab quadrant 2 */ 

/* grab quadrant 3 */ 

/* interrupts back on */ 

/* write all eight field out to files */ 

settextposltion(2,2); 
printf("%5u\n\n", pulseCounter); 
fq_sbuf(1); /* show buffer */ 
fg_sync(0); /* internal sync 
for (quadrant-O: quadrant<4; quadrant++) 
{ 

fg_dquad(quadrant); 
for (field-O; field<2; field++) 
{ 

FileName(sequenceName, frameCounter, fileName); 
FrameSave(fileName, quadrant, field); 
frameCounter++; 

frameCounter+-2; 
} 
fg_sync(1); /* external sync 
fg_sbuf(0); /* show incoming signal */ 

/* now get odd numbered frames */ 

frameCounter-temporaryFrameCounter+2; 
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_clearscreen(_GCLEARSCREEN); 
printf("Searchinq for pulse tu\n", pulse); 

/* synchronize */ 

SynchronizePulses(; 

/* all synchronized now - next character will be first of a pair */ 

while (1) 
{ 

bytel-_bios serialcom(_COM RECEIVE, 0,0); 

bytel=bytel&Ox00ff; 
byte2- bios serialcom(_COM_RECEIVE, 0,0); 

byte2-byte2t0x00ff; 

*lowByte-(unsigned char)bytel; 
*highByte-(unsigned char)byte2; 

if (pulse- pulseCounter) break; 

_settextposition(2,2); 
printf("%5u", pulseCounter); 

} 

/* this time through skip a frame here */ 

while ((inp(STATUS)&ODDFIELD)1=0); 

while ((inp(STATUS)&ODDFIELD)==0); 

while ((inp(STATUS)&ODDFIELD)! =0); 

/* at right place now, so grab next 4 frames */ 
/* making sure every other frame grabbed */ 

_disable 
0; 

fg_dquad(0); 
fg_snap (1) ; 
while(inp(VBLANK)- O); 
while(inp(VBLANK)! -0); 
while(inp(VBLANK)="0); 
fg_dquad(l); 
fg_snap(l); 

while(inp(VBLANK)--0); 
while(inp(VBLANK)! =0); 
while(inp(VBLANK)« 0); 
fg_dquad(2); 
fg snap(1); 
while(inp(VBLANK)==0); 
while(inp(VBLANK)1-0); 
while(inp(VBLANK)==0); 
fg_dquad(3); 
fq_snap(1); 

_enable 
0; 

/* interrupts off */ 
/* grab quadrant 0 */ 

/* grab quadrant 1 */ 

/* grab quadrant 2 */ 

/* grab quadrant 3 */ 

/* interrupts back on */ 

/* write all eight field out to files */ 

_settextposition(2,2): 
printf("%5u\n\n", pulseCounter); 
fg_sbuf(1); /* show buffer */ 
fg sync(0); /* internal sync 
for (quadrant-O; quadrant<4; quadrant++) 
{ 

fg_dquad(quadrant); 
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for (field-O; field<2; field++) 
{ 

FileName(sequenceName, frameCounter, fileName); 
FrameSave(fileName, quadrant, field); 
frameCounter++; 

} 
frameCounter+-2; 

} 
frameCounter--2; /* correct frame count 
fg_sync(l); /* external sync */ 
fg_sbuf(O); /* show incoming signal */ 

} 
} 

/* synchronize to sound pulses by checking for incrementing */ 

void SynchronizePulses O 
{ 

unsigned char *1owFirst, *highFirst; /* pointers to first counter 
unsigned char *lowSecond, *highSecond; /* pointers to second counter 
unsigned int first, second; /* startup pulse counters 
unsigned int bytel, byte2; /* bytes read serially */ 

SetupSerial(); 
lowFirst-(unsigned char *)Sfirst; 
highFirst-lowFirst+l; 
1owSecond-(unsigned char *)&second; 
highSecond-lowSecond+l; 

/* synchronize for data pairs */ 

while (1) 
{ 

/* get two bytes and see if incrementing normally */ 

bytel-_bios_serialcom(_COM RECEIVE, 0,0); 
bytel-bytel&OxOOff; 
byte2-_bios_serialcom( COM RECEIVE, 0,0); 
byte2=byte2&Ox00ff; 

*lowFirst-(unsigned char)bytel; 
*highFirst-(unsigned char)byte2; 

bytel=_bios_serialcom(COM RECEIVE, 0,0); 
bytel-byte1iOx00ff; 

byte2-_bios serialcom(COM RECEIVE, 0,0); 
byte2-byte2&Ox00ff; 
*1ow$econd. (unsigned char)bytel; 
*highSecond. (unsigned char)byte2; 

/* if not incrementing, skip one byte and try again */ 

if (second! =first+l) bins serialcom(COM RECEIvE, 0,0); 
else break; 

} 
} 

/* setup and initialize the matrox card */ 

void SetupMatrox() 
{ 

fg_inifmt(0x26c, 1,0,0,1,0); /* initialize card */ 
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fg dquad(0); 
fg_chan(2); 
fq_sync(1); 
fq_quadm(1); 
fg_autoset(); 
fg_sbuf(0); 

} 

/* setup and initialize the serial port */ 

void SetupSerial() 
{ 

/* call bios routine */ 

/* display quadrant 0 */ 
/* input channel 2 */ 
/* external synch */ 
/* set 4 quadrant mode */ 
/* set gain and offset */ 
/* display signal */ 

bios_serialcom(COM INIT, 0, COM CHR8I COM STOP11 COM EVENPARITYI 

_COM_600); } 

/***** NB Routines after this point may need tidying up *****/ 

/* produce general menu */ 

int Menu(title, prompts, items) 
char title[]; /* title string 

char proapts[][STRINGSIZE]; /* pronpt strings *1 

int items; /* number of items 

{ 
int i; /* item counter 
int key; /* key pressed */ 
Snt fret; /* return value */ 
int row; /* row numbers 
char buffer(STRINGSIZE); /* string buffer */ 
int tab, len, max len-0; /* menu positioning */ 

_clearscreen(_GCLEARSCREEN); 
settextposition(0, (80-strlen(title))/2); 

outtext(title); /* print title */ 

for (i-0; i<items; i++) 

1en-strlen(prompts(1]); 
if (len>max len) max len-len; 

} 
tab-(80-(max len+9))/2: 

row-2+(23-items*2)/2: 
for (i-0; 1<items; 1++) /* print out profits 
{ 

settextposition(row, tab); 
sprintf(buffer, "(%li) %s`, i+l, prompts(i]); 

_outtext(buffer); 
row+-2; 

settextposition(24,0); 

do 
{ 

/* get key press */ 

key-getch () ; 
iret. key-(int)'o'; /* convert to integer 

} while (iret<l II iret>items); 
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} 
return (lret); /* return value */ 

/* routine to set up user defined gain and offset */ 

void Controls() 
{ 

int iret; /* menu selection 
static int offset-100; /* offset */ 
static int gain-155; /* gain */ 
static char menul(J(STRINGSIZE)- /* menu 1 prompts 
{ 

"Increase Gain", 

"Decrease Gain", 
"Increase Offset", 

"Decrease Offset", 
"Draw Histogram", 

"Exit" 

char buffer(STRINGSIZE}; 
long max value; 
long hast buffer[256}; 

strcpy(menul[2], "Increase Offset "); 
sprintf(buffer, "(t3d)", offset); 
strcat(menul[21, buffer); 

strcpy(menul[0], "Increase Gain 
sprintf(buffer, "(%3d)", 255-gain); 
strcat(menul(0], buffer); 

/* set offset/gain and grab picture */ 

fg_offset(offset); 
fg gain(gain); 
fg_dquad(O); 
fg_cgrab(1); 
fg sbuf(1); 

do 
{ 

/* character buffer */ 

/* quadrant 0 */ 
/* continuous grabbing 
/* show grab buffer */ 

iret-Menu("Control Options: ", menul, 6); 
switch (iret) 

case 1: 
gain--5; 
if (gain<O) gain=0; 
fg_gain(gain); 
break; 

case 2: 

gain+=5; 
if (gain>255) gain=255; 
fq gain(gain); 
break; 

case 3: 

offset+-5; 
if (offset>255) offset-255; 
fq_offset(offset); 
break; 

case 4: 
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offset--5; - 
if (offset<O) offset-0; 
fq_offset(offset): 
break; 

case 5: 
fg_cgrab(0); 
fg_sync(0); 
FillIn(); 
max value-fg histo(hist buffer); 
fg_setind(0); 
fg_rectf(0,0,512,512); 
fg_dhisto(max value, 100,500,350,255,255, hist buffer); 

_outtext("Press 
a key when ready"); 

while (getch()-=0); 
fg_sync(1); 
fg_cgrab(1); 
break; 

] 
strcpy(menul[2], "Increase Offset 
sprintf (buffer, " (%c3d) ", offset) ; 
strcat(menul[2], buffer); 
strcpy(menul[O], "Increase Gain 
sprintf(buffer, U(%3d)0,255-gain); 
strcat(menul[O), buffer); 

} while (iret! -6); 

/* back to default */ 

fg_sbuf(O); 
fg_cgrab(0); 

} 

/* external signal */ 
/* continuous grab off */ 

/* frame save routine - heavily personalized for pip-1024 card */ 

void FrameSave(filename, quadrant, field) 
char filename[); /* file name 
int quadrant; /* sector number 
int field; /* field number 
{ 

FILE *unit; 
int rows=256; 
int columns=512; 
int crow; 
int ycount; 
char buffer[5121; 

struct visiloglmagE 

/* file unit */ 
/* number of rows in picture 
/* number of columns in picture 

/* row counter */ 
/* y coordinate counter 

/* row buffer */ 
Header fileHeader; /* visilog file header */ 

printf("Saving %s .... \n", filename); 

unit=fopen(filename, "wb"); /* open file */ 

/* write out file header */ 

fileHeader. magicNumber-VisilogConvert(0x6931); 
fileHeader. pixelsPerLine=VisilogConvert(columns); 
fileHeader. numberOfLines-VisilogConvert(rows); 
fileHeader. resl-VisilogConvert(1); 
fileHeader. res2. VisilogConvert(0); 
fileHeader. res3=VisilogConvert(0); 
fileHeader. gridType-VisilogConvert(1); /+ rectangular */ 
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fileHeader. res4=Vi3ilogConvert(0); 
fileHeader. arithmaticType-VisilogConvert(0x14); 
fileHeader. bitsPerPixel-VisilogConvert(8); 
fileHeader. res5-VisilogConvert(0); 
fileHeader. xorigin=VisilogConvert(1): 
fileHeader. yOrigin=VisilogConvert(1); 
fileHeader. res6=VisilogConvert(1); 
fileHeader. res7=VisilogConvert(0); 
fileHeader. visilogHeaderSize=VisllogConvert(76); 
fileHeader. userHeaderSize=VisilogConvert(0); 
fileHeader. res8-VisilogConvert(0); 
fileHeader. totalHeaderSize=VisilogConvert(76); 

fwrite(if11eHeader, sizeof(fileHeader), 1, unit); 

/* set up to read from right part of screen 

ycount-field; 

for (irow-O; irow<rows; irow++) 
( 

/* integer */ 

fg rowr(ycount, quadrant, buffer); /* read row into memory 
fwrite(buffer, 512,1, unit); /* and write it to disk */ 
ycount++; /* increment ycount twice 
ycount++; 

fclose(unit); 
} 

/* close file */ 

/* fill in second field lines with first field lines */ 

void Fi11In() 
{ 

int rows-256; 
int columns=512; 
int irow; 
int ycount; 
char buffer[5121; 

/* number of rows in picture */ 
/* number of columns in picture 

/* row counter */ 
/* y coordinate counter */ 

/* row buffer */ 

ycount=0; 
for (crow=O; irow<rows; irow++) 

fg_rowr(ycount, 0, buffer); /* read row into memory 
ycount++; /* increment ycount */ 
fg_roww(ycount, 0, buffer); /* write over blank row 
ycount++; /* increment ycount */ 

/* set up file name */ 

void FileName(sec_name, iframe, filename) 

char seq name[]; /* sequence name 
int iframe; /* frame number */ 
char filename[); /* file name 
{ 

char string(41; /* number string */ 

strcpy(filename, segname); /* copy to file name */ 
if (strlen(filename)>8) filename[8)=0; /* truncate if required */ 
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sprintf(string, "%3.3i", iframe); /* convert number to string 

strcat(filename, ". "); 
_ 

/* add number as extension 
strcat(filename, string); 

1 
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stretchplc 
#include <stdlo. h> 
#include <string. h> 
#include <stdlib. h> 

/* this program reads in a 512 by 256 pixel file and stetches it to 1024 by 768 */ 
/* visilog format */ 

(define XIN 512 
(define YIN 256 
(define XOUT 1024 
(define POUT 768 
(define XFACT 2 
(define YFACT 3 
(define STRINGSIZE 128 

main(nparms, parms) 
int nparms; 
char *parms[]; 
{ 

FILE *unit; 

char filename[STRINGSIZE]; 

char buffer[YIN][XIN]; 

char stretchBuffer(YOUT][XOUT]; 
int x, y; 
int nbytes; 
struct vlsilogImageHeader 
{ 

long int magicNumber; 
long int pixelsPerLine; 
long int numberOfLines; 
long int resl; 
long int rest; 
long int res3; 
long int gridType; 
long int res4: 
long int arithmaticType; 
long 1nt bltsPerPixel; 
long int res5; 
long int x0rigin; 
long Snt yorigin; 
long int res6; 
long int res7; 
long int visllogHeadersize; 
long 1nt userHeaderSize; 
long int res8; 
long int totalHeaderSize; 

} imageHeader; 
char tempFile(STRINGSIZE); 

char command(STRINGSIZE]; 

/* file pointer 
/* filename */ 
/* buffer for file input 

/* buffer for file output 
/* counters */ 

/* block counter */ 

/* rectangular grid */ 

/* long integer image */ 

/* temporary file name 
/* command string */ 

/* Open file and read image data */ 

strcpy(filename, parms(1)); 
unit-fopen(filename, "r"); 
if (unit==NULL) 
{ 

printf("File %s not found\n', filename); 

exit(-1); 
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/* get x and y range of input file */ 

fread(iimageHeader, sizeof(imageHeader), 1, unit); 
if (imageHeader. pixelsPerLinel-XIN 11 imageHeader. numberOfLinesl=YlN) 
{ 

printf("Wrong picture size\n"); 
exit(-1); 

} 

/* read data in */ 

nbytes-fread(buffer, XIN"YIN, 1, unit); 
fclose(unit); 
if (nbytes! =1) 
{ 

printf("Error reading file %s\n', filename); 
exit(-l); 

/* stretch file */ 

for (y=O; y<YIN; y++) 
{ 

for (x=O; x<XIN; x++) 
{ 

stretchBUffer[y*YFACTJ[x*XFACT]=buffer[yJ(xl; 

stretchBuffer[y*YFACT][x*XFACT+1]=buffer(yJ[x]; 
stretchBuffer[y*YFACT+1](x*XFACT]=buffer[y](x]; 
stretchBuffer(y*YFACT+IJ[x*XFACT+11=buffer(y][x]; 

stretchBuffer(y*YFACT+2][x*XFACT]=buffer[y](x]; 
stretchBuffer[y*YFACT+2][x*XFACT+1]-buffer[yJIx]; 

} 

} 
imageHeader. pixelsPerLine=XOUT; 
imageHeader. numberOfLines=YOUT; 

strcpy(tempFile, tempnam(NULL, "pic")); 
unit-fopen(tenpFile, "w"); 
fwrite(&imageHeader, sizeof(imageHeader), l, unit); 
fwrite(stretchBuffer, sizeof(stretchBuffer), l, unit); 
fclose (unit) ; 
strcpy(command, "mv 
strcat(command, tempFile); 

strcat(command, " "); 
strcat(command, filename); 

strcat(command, " a"); 
system (comnand); 
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Leaping Model 

C Routines 

Params. h 

/* parameters file */ 

tinclude <stdio. h> 
#include <string. h> 
#include <stdlib. h> 
(include <math. h> 
Iinclude "MathConstants. h" 

/* resource IDs */ 

#define MENU BAR ID 128 

#define APPLE 
- 

MENU-ID 128 
#define FILE MENU_ID 129 
#define EDIT MENU ID 130 
#define MODEL MENU ID 131 

#define ABOUT ID 128 
#define MESSAGE_ID 129 

/* main menu bar */ 

/* apple menu 
/* file menu 
/* edit menu 

/* model menu 

/* about alert */ 
/* general message alert */ 

#define MODEL DEFINITION DIALOG ID 128 /* model definition dialog 
#define UNSAVED DATA DIALOG_ID 129 /* unsaved data dialog "/ 
#define OPTIONSDIALOG ID 130 /* options dialog */ 
(define SEGMENTS_DIALOG_ID 131 /+ segments dialog 
; define PROGRESS DIALOG ID 132 /* progress dialog */ 

/* menu items */ 

#define ABOUT ITEM 1 /* apple menu */ 

#define NEW ITEM 1 /* file menu 
#define OPEN_ITEM 2 

"define SAVE_ITEM 4 
#define SAVE_AS_ITEM 5 
#define WRITE_ITEM 7 

#define QUIT ITEM 9 

#define UNDO ITEM 1 /* edit menu 
#define CUT_ITEM 2 

#define COPY_ITEM 3 

#define PASTE_ITEM 4 

#define CLEAR ITEM 6 

#define DEFINE ITEM 1 /* nadel menu "/ 
#define OPTIONS ITEM 2 

#define SEGMENTS ITEM 3 

/* dialog items */ 

#define OK 1 
/define CANCEL 2 
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idefine MODEL_DEFINITION MTJ X3 /* model definition dialog 
(define MODEL 

_DEFINITION 
MTJY 4 

Idefine MODEL_DEFINITION_ANKLE_X 5 
Idefine MODEL_DEFINITION_ANKLE_Y 6 
Idefine MODEL_DEFINITION_INEE_X 7 
#define MODEL_DEFINITION_IcNEE_Y 8 
#define MODEL_DEFINITION_HIP_X 9 
#define MODEL DEFINITION HIP Y 10 
(define MODEL_DEFINITION_NOSETIP_X 11 
#define MODEL DEFINITION NOSETIP Y 12 

#define UNSAVED DATA NO SAVE 3 

#define OPTIONS-MASS 3 
#define OPTIONS_G 4 
#define OPTIONS-TIME-TOLERANCE 5 
#define OPTIONS_RANGE 6 
#define OPTIONS-TIMES 7 
#define OPTIONS_ITERATIONS 8 
Idefine OPTIONS EXTENSION FRACTION 9 

/* unsaved data dialog */ 

/* options dialog box */ 

#define SEGMENTS FOREFOOT MASS 3 
#define SEGMENTS_HINDFOOTMASS 4 
#define SEGMENTS-CALF-MASS 5 
#define SEGMENTS_THIGH_MASS 6 

Idefine SEGMENTS_TORSO_MASS 7 

ldefine SEGMENTS_FOREFOOT_COM 8 
#define SEGMENTS_HINDFOOT_COM 9 
#define SEGMENTS_CALF_COM 10 

#define SEGMENTS_THIGH_COM 11 
Idefine SEGMENTS TORSO COM 12 

/define PROGRESS INDICATOR 3 

/* apple constants */ 

#define MIN SLEEP OL 

#define NIL_MOUSE_REGION OL 

#define REMOVE_ALL_EVENTS 0 

#define NULL STRING "\p" 
#define MOVE_TO_FRONT (WindowPtr)-1L 

#define DIALOG NULL EVENT 1000 

/* segments dialog box */ 

/* progress dialog */ 

/* null event returned from dialog */ 

/* program parameters */ 

#define STRING_SIZE 128 

#define MAX-RESULTS 100 

#define FILE_OWNER 'LM!! ' 

#define FILE_TYPE 'LM!! ' 

idefine FILE_DIALOG_X 75 

; define FILE DIALOG Y 75 

/* type definitions */ 

typedef struct 
{ 

double x; 
double y; 

} Coordinate; 

typedef struct 

/* string size */ 
/* maximum number of time intervals 

/* created file ownership */ 
/* binary file type */ 
/* position of file dialog box */ 
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double x; 
double y; 
double theta; 
double r; 

} Vector; 

typedef struct 
{ 

Coordinate toeTip; 
Coordinate midTarsalJoint; 
Coordinate ankle; 
Coordinate knee; 

Coordinate hip; 

Coordinate noseTip; 
Coordinate foreFootCOM; 
Coordinate hlndFootCOM; 

Coordinate calfCOM; 
Coordinate thighCOM; 
Coordinate torsoCOM; 
Coordinate bodyCOM; 

} ModelCoordinates; 

typedef struct 
{ 

double foreFoot; 
double hindFoot; 
double calf; 
double thigh; 
double torso; 

} ModelCOMs; 

typedef struct 
{ 

double foreFoot; 
double hindFoot; 
double calf; 
double thigh; 
double torso; 

} ModelMass; 

typedef struct 
{ 

Vector foreFoot; 

Vector hindFoot; 

Vector calf; 
Vector thigh; 

Vector torso; 

} ModelVectors; 

/* prototypes */ 

void AdjustMenus(void); 
void HandleAppleChoice(short); 

void HandleEditChoice(short); 

void HandleFileChoice(short); 

void HandleModelChoice(short); 

void HandleMenuChoice(long); 

void HandleMouseDown(void); 

void HiLiteOK(DialogPtr); 

short IsDAWindow(WindowPtr); 

void main (void); 
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void MainLoop(void); 
void MenuBarlnit(void); 
void ToolBoxlnit(void); 
void Dialoglnit(void); 
void DialogEnd(void); 
void OpenFile(AppFile *); 
Boolean DeflneModel(void); 
Boolean Options(void); 
Boolean Segments(void); 
void GetModelSettings(void); 
void SetModelSettings(void); 
void GetoptionsSettings(void); 
void SetoptionsSettings(void); 
void GetSegmentsSettings(void); 
void SetSegmentsSettings(void); 
void New(void); 
void SaveFile(void); 

void SaveAs(void); 

Boolean UnsavedData(void); 

void Write(void); 
Boolean Calculate(void); 
double VectorLength(Vector); 
double VectorAngle(Vector): 
double VectorX(vector): 
double VectorY(Vector); 

Boolean LengthFunction(double, int, double); 

void WriteResults(char *, double); 

void Rotate(Coordinate *, double); 

void XAxisize(ModelCoordinates *); 

void CentresOfMass(ModelCoordinates *); 

void OpenFromDocument(void); 
pascal Boolean NullEventFilter(DialogPtr, EventRecord *, short *); 

/* globals */ 

extern Boolean gDone; /* done flag */ 

extern EventRecord gTheEvent; /* event structure 

extern MenuHandle gAppleMenu; /* menu handles */ 

extern MenuHandle gFileMenu; 
extern MenuHandle gEditMenu; 
extern MenuHandle gModelMenu; 
extern DialogPtr gModelDefinitionDialog; 
extern DialogPtr gUnsavedDataDialog; 
extern DialogPtr gOptionsDialogBox; 
extern DialogPtr gSegmentsDialog; 
extern DialogPtr gProgressDialog; 

extern Boolean gDefinitlonOK; 
extern Boolean gDefinitionToSave; 

extern SFReply gDefinitionFile; 

/" dialog pointer "/ 

/* model definition in memory 
/* stuff to save flag 

/* definition file stuff */ 

extern ModelCoordinates gModel; /* transformed model parameters 
extern ModelCoordinates gUserModel; /* user input model parameters 
extern ModelCoordinates gResults[MA)_RESULTS]; /* model results */ 

extern ModelVectors gVectors; /* model vectors 
extern ModelCOMs gCOMs; /* model COM's 

extern ModelMass gSegmentMass; /* segment masses 
extern double gMass; /* animal mass */ 

extern double g; /* acceleration due to gravity */ 

extern double gTimeTolerance; /* time tolerance */ 

extern int gNumberofTimes; /* number of time values */ 
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extern int gMaxIterations; /* maximum number of iterations 
extern double gTimes(MAX RESULTS); /* times calculates 

extern double gRange; /* leap range */ 
extern double gFMax; /* maximum force 
extern double gSMax; /* maximum extension 
extern double gTMax; /* maximum time */ 
extern double gExtensionFraction; /* fraction of max extension */ 

MathConstants. h 

/* some useful constants */ 

f define M_ E 2.7182818284590452354 
f define M_LOG2E 1.4426950408889634074 

define M_ LOG10E 0.43429448190325182765 
i define M_ LN2 0.69314718055994530942 
i define M_LN10 2.30258509299404568402 
i define M_ PI 3.14159265358979323846 
I define M_ PI_2 1.57079632679489661923 
t define M_ PI_4 0.78539816339744830962 

define M_ 1_PI 0.31830988618379067154 
1 define M_ 2_PI 0.63661977236758134308 
i define M_ 2_SQRTPI 1.12837916709551257390 
I define M_ SQRT2 1.41421356237309504880 
I define M_ SQRT1_2 0.70710678118654752440 
I define MAXFLOAT ((float)3.40282346638528860e+38) 

AdjustMenus() 

/* routine to set which menu options are available */ 

(include "Params. h" 

void AdjustMenusC) 
{ 

/* check for desk accessories */ 

if (IsDAWindow(FrontWindow())) 
{ 

Enableltem(gEditMenu, UNDO_ITEM); 
EnableItem(gEditMenu, CUT ITEM); 
Enable Item(gEdltMenu, COPY ITEM); 
Enableltem(gEditMenu, PASTE_ITEM); 
Enableltem(gEditMenu, CLEAR_ITEM); 

} 

else 
{ 

Disableltem(gEditMenu, UNDO ITEM); 
Disableltem(gEditMenu, CUT ITEM); 

Disableltem(gEditMenu, COPY ITEM); 
Disableltem(gEditMenu, PASTEITEM); 
Disableltem(gEditMenu, CLEAR ITEM); 

/* check for data in memory */ 

if (gDefinitionOK) 
{ 

Enableltem(gFileMenu, WRITE ITEM); 

Disableltem(gFileMenu, OPEN STEM); 
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else 
{ 

Disableltem(gFileMenu, WRITE ITEM); 

Enable Item(gFileMenu, OPEN ITEM); 

Calculate() 

#include 'Params. h" 

/* routine to perform the actual modelling calculations */ 

Boolean Calculate() 
{ 

short itemHit; 
short itemType; 
Rect itemRect; 
Handle itemHandle; 
double pValue; 
int pCounter; 
double time; 
double timeInterval; 
double tolerance; 
char buffer(STRING SIZED; 

/* item hit */ 
/* dummy item type 

/* dummy item rect 
/* item handle */ 
/* loop parameter 

/* loop counter 
/* current time 
/* time interval for results */ 

/* absolute tolerance value 
/* string buffer */ 

/* put up percentage completed window */ 

Showwindow(gProgressDialog); 

/* correct for Body COM on x axis and calculate COMB 

gModel-gUserModel; 
XAxisize(&gModel); 

/* calculate start vectors */ 

gVectors. foreFoot. x-gModel. midTarsalJoint. x; 
gVectors. foreFoot. y-gModel. midTarsalJoint. y; 

gVectors. hindFoot. x-gModel. ankle. x-gModel. midTarsalJoint. x; 

gVectors. hindFoot. y-gModel. ankle. y-gModel. midTarsalJoint. y; 
gVectors. calf. x=gModel. knee. x-gModel. ankle. x; 
gVectors. calf. y-gModel. knee. y-gModel. ankle. y; 
gVectors. thigh. x-gModel. hip. x-gModel. knee. x; 
gVectors. thigh. y-gModel. hip. y-gModel. knee. y; 
gVectors. torso. x gModel. noseTip. x-gModel. hip. x; 
gVectors. torso. y-gModel. noseTip. y-gModel. hip. y; 

/* calculate lengths */ 

gVectors. foreFoot. r-VectorLength(gVectors. foreFoot); 

gvectors. hindFoot. r-VectorLength(gVectors. hindFoot); 

gVectors. calf. r-VectorLength(gVectors. calf); 

gVectors. thigh. r-VectorLength(gVectors. thigh); 

gVectors. torso. r-VectorLength(gVectors. torso); 

/* and angles */ 

gVectors. foreFoot. theta-vectorAngle(gVectors. foreFoot); 

gvectors. hindFoot. theta-VectorAngle(gVectors. hindFoot); 
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gVectors. calf. theta=VectorAngle(gVectors. calf); 
gVectors. thigh. theta-VectorAngle(gVectors. thigh); 
gVectors. torso. theta-VectorAngle(gVectors. torso); 

/* calculate start joint positions 

gResults[0]. toeTip. x-0.0; 
gResults[0]. toeTip. y-0.0; 
gResults[0]. midTarsalJoint. x-gModel. midTarsalJoint. x; 
gResults[0]. midTarsalJoint. y-gModel. midTarsalJoint. y; 
gResults(0]. ankle. x-gModel. ankle. x; 
gResults(0]. ankle. y-gModel. ankle. y; 
gResults[0]. knee. x-gModel. knee. x; 
gResults(0]. knee. y-gModel. knee. y; 
gResults[0]. hip. x-gModel. hip. x; 
gResults[0]. hip. y=gModel. hip. y; 
gResults[0]. noseTip. x-gModel. noseTip. x; 
gResults[0]. noseTip. y-gModel. noseTip. y; 

/* rotate to position Body COM on X axis and calculate COMs 

XAxisize(&gResults(0]); 

/* now end joint positions 

gResults[gNumberOfTimes-1]. toeTip. x-0.0; 
gResults[gNumberofTimes-1]. toeTip. y=0.0; 
gResults[gNumberofTimes-1]. midTarsalJoint. x=gVectors. foreFoot. r; 
gResults[gNumberOfTimes-l]. midTarsalJoint. y-0.0; 
gResults[gNumberOfTimes-l]. ankle. x- 

gResults(gNumberOfTimes-l]. midTarsalJoint. x + gVectors. hindFoot. r; 
gResults[gNumberOfTimes-l]. ankle. y-0.0; 
gResults[gNumberOfTimes-1]. knee. x- 

gResults(gNumberOfTimes-l]. ankle. x + gVectors. calf. r; 
gResults(gNumberOfTimes-1]. knee. y-0.0; 
gResults[gNumberOfTimes-l]. hip. x- 

gResults[gNumberOfTimes-l]. knee. x + gVectors. thigh. r; 
gResults[gNumberOfTimes-l]. hip. y-0.0; 
gResults[gNumberOfTimes-l]. noseTip. x- 

gResults[gNumberOfTimes-l]. hip. x + gVectors. torso. r; 
gResults[gNumberOfTimes-l]. noseTip. y-0.0; 

/* rotate to position Body COM on X axis 

XAxisize(&gResults[gNumberOfTimes-1]); 

/* calculate gFMax */ 

gSMax - gExtensionFraction *( gitesults[gNumberOfTimes-l]. bodyCOM. x 
gResults[0]. bodyCOM. x ); 

gFMax =( gMass * gRange *g/(2.0 * gSMax ); 

gTMax = sqrt( 2.0 * gMass * gSMax / gFMax ); 

timelnterval - gTMax /( double )( gNumberofTimes ); 

tolerance - timelnterval * gTimeTolerance; 

/* time loop */ 

time-timelnterval; 
for (pCounter-l; pCounter<gNumberOfTimes; pCounter++) 
{ 

GetDltem(gProgressDialog, PROGRESS INDICATOR, iltemType, 
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iitemHandle, &itemRect); 

sprintf(buffer, "%d out of %d times calculated`, 

pCounter, gNumberOfTimes); 
SetIText(itemHandle, CtoPstr(buffer)); 

ModalDialog(NullEventFilter, &itemHit); 
if (itemHit==CANCEL) 
{ 

SysBeep(10); 
Hidewindow(gProgressDialog); 

return(TRUE); 

if (LengthFunction(time, pCounter, gTimeTolerance)--FALSE) 
{ 

ParamText('\pLength function iteration failed to converge, 
NULL_STRING, NULL STRING, NULLSTRING); 

NoteAlert(MESSAGE_ID, NULL); 

} 
time+-timeInterval; 

GetDltem(gProgressDialog, PROGRESS INDICATOR, LitemType, 

LitemHandle, sitemRect); 

sprintf(buffer, "%d out of %d times calculated", 

pCounter, gNumberOfTimes); 
SetlText(itemHandle, CtoPstr(buffer)); 

ModalDialog(NullEventFilter, &itemHit); 
if (itemHit--CANCEL) 
{ 

SysBeep(10); 
Hidewindow(gProgressDialog); 

return (TRUE); 

/* rotate 45° */ 

for (pCounter=O; pCounter<gNumberOfTimes; pCounter++) 
{ 

Rotate(igResults[pCounterJ. midTarsalJoint, M PI 4); 

Rotate(&gResults[pCounterj. ankle, M_PI_ 4); 

Rotate(&gResults[pCounter]. knee, M_PI 4); 

Rotate(&gResults[pCounter]. hip, M PI 4); 

Rotate (&gResults[pCounterJ. noseTip, M PI 4); 

/* and do times while we're at it */ 

gTimeslpCounterl. timeInterval*(double)pCounter; 

SysBeep(10); 
WriteResults("Test Result File", timeInterval); 

HideWindow(gProgressDialog); 

return (TRUE); 

CentreOfMasso 
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/* routine to calculate centres of mass 

tinclude "Params. h" 

void CentresofMass(model) 
ModelCoordinates *model; /* model */ 
{ 

/* segment centres of mass 

model->foreFootCOM. x - gCOMs. foreFoot *( model->midTarsalJoint. x - 
model->toeTip. x )+ model->toeTip. x; 

model->foreFootCOM. y - gCOMs. foreFoot *( model->mldTarsalJoint. y - 
model->toeTip. y )+ model->toeTip. y; 

model->hindFootCOM. x - gCOMs. hindFoot *( model->ankle. x - 
model->midTarsalJoint. x )+ model->midTarsalJoint. x; 

model->hindFootCOM. y - gCOMs. hindFoot *( model->ankle. y - 
model->midTarsalJoint. y )+ model->midTarsalJoint. y; 

model->calfCOM. x - gCOMs. calf *( model->knee. x - 
model->ankle. x )+ model->ankle. x; 

model->calfCOM. y - gCOMs. calf *( model->knee. y - 
model->ankle. y) + model->ankle. y; 

model->thighCOM. x - gCOMs. thigh *( model->hip. x - 
model->knee. x) + model->knee. x; 

model->thighCOM. y - gCOMs. thigh *( model->hip. y - 
model->knee. y )+ model->knee. y; 

model->torsoCOM. x gCOMs. torso *( model->noseTip. x - 
model->hip. x )+ model->hip. x; 

model->torsoCOM. y - gCOMS. torso *( model->noseTip. y - 
model->hip. y )+ model->hip. y; 

/* overall centre of mass */ 

model->bodyCOM. x -( model->foreFootCOM. x * gSegmentMass. foreFoot + 

model->hindFootCOM. x * gSegmentMass. hindFoot + 

model->calfCOM. x * gSegmentMass. calf + 

model->thighCOM. x * gSegmentMass. thigh + 

model->torsoCOM. x * gSegmentMass. torso )/ 

( gSegrentMass. foreFoot + gSegmentMass. hindFoot + 
gSegmentMass. calf + gSegmentMass. thigh + 
gSegrmntMass. torso ); 

model->bodyCOM. y -( model->foreFootCOM. y * gSegmentMass. foreFoot + 

model->hindFootCOM. y * gSegmentMass. hindFoot + 

model->calfCOM. y * gSegmentMass. calf + 

model->thighCOM. y * gSegmentMass. thigh + 
model->torsoCOM. y * gSegmentMass. torso )/ 
( gSegmentMass. foreFoot + gSegmentMass. hindFoot + 

gSegmentMass. calf + gSegmentMass. thigh + 

gSegrentMass. torso ); 

DeflneModel() 

/* routine to define the parameters of the leaping model */ 

#include "Params. h" 
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Boolean DefineModel() 
{ 

short itemHit; /* item hit value +/ 

/* show dialog window */ 

SetModelSettings(); 
ShowWindow(gModelDefinitionDialog); 

HiLiteOK(gModelDefinitionDialoq); 

while (TRUE) 
{ 

ModalDialog(NULL, LitemHit); 

switch(1temHit) 
{ 

/* OK button */ 

case (OK) : 
Hidewindow(gModelDefinitionDialog); 
GetModelSettings(); 

gDefinitionToSave-TRUE; 
gDefinitionOK=TRUE; 

return(TRUE); 
break; 

/* Cancel button */ 

case (CANCEL): 
HideWindow(gModelDefinitionDialog); 

return(FALSE); 
break; 

} 

} L. ý 

DlalogEnd() 

/* routine to initialise dialog windows */ 

#include "Params. h" 

void DialogEnd() 
{ 

DisposeDialog(gModelDefinitionDialog); 
DisposeDialog(gUnsavedDataDialog); 
DisposeDialog(goptionsDialogBox); 
DisposeDialog(gSegmentsDialog); 
DisposeDialog(gProgressDialog); 

} 

DialoginItO 

/* routine to initialise dialog windows */ 

; include "Params. h" 

void Dialoglnit() 
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gMode1DefinitlonDialog=GetNewDialog(MODELDEFINITION DIALOG_ID, NULL, 
MOVE_TO_FRONT); 

gUnsavedDataDialog-GetNewDialog(UNSAVEDDATA(UNSAVED_DATA_D 
MOVE_TO_FRONT); 

gOptionsDialogBox=GetNewDialog(OPTIONS DIALOG_ID, NULL, 
MOVE_TO_FRONT); 

gSegmentsDialog-GetNewDialog(SEGMENTS DIALOG ID, NULL, 
MOVE_TO_FRONT); 

gProgressDialog-GetNewDialog(PROGRESS DIALOG_ID, NULL, 
MOVE TO FRONT); 

GetModelSettings() 

/* routine to get the model parameters settings from the dialog box 

#include "Params. h" 

void GetModelSettings() 
{ 

short itemType;, /* dummy item type 
Rect itemRect; /* dummy item rect 
Handle itemHandle; /* item handle */ 

char buffer[STRING_SIZE]; /* string buffer */ 

GetDItem(gM delDefinitionDialog, MODEL DEFINITION MTJ X, iitemType, 

&itemHandle, &itemRect); 
GetlText(itemHandle, buffer); 
sscanf(PtoCstr(buffer), "$lf", i(gUserModel. midTarsalJoint. x)); 

GetDitem(gModelDefinltionDialog, MODEL DEFINITION_MTJ Y, IitemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "tlf", &(gUserModel. midTarsalJoint. y)); 

GetDltem(gModelDefinitlonDialog, MODEL DEFINITION ANKLE X, iitemType, 
£itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", &(gUserModel. ankle. x)); 

GetDltem(gModelDefinitionDialog, MODELDEFINITIONANKLE Y, iitemType, 
&itemHandle, &itemRect); 

GetIText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", i(gUserModel. ankle. y)); 

GetDltem(gModelDefinitionDlalog, MODEL DEFINITION_KNEE X, titemType, 
&itemHandle, &itemRect); 

GetIText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), Otlf", &(gUserModel. knee. x)); 

GetDltem(gModelDefinitionDialog, MODEL_DEFINITIONKNEE Y, IitemType, 
titemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", &(gUserModel. knee. y)); 

GetDltem(gModelDefinitlonDialog, MODEL DEFINITION_HIP X, IitemType, 
4itemHandle, citemRect); 

GetIText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", i(guserModel. hip. x)); 

Appendix 



Source Code page (352) 

GetDltem(gModelDefinitlonDlalog, MODELDEFINITION HIP Y, JitemType, 
&itemHandle, iitemRect); 

GetlText(ltemHandle, buffer); 

sscanf(PtoCstr(buffer), "ilf", &(gUserModel. hip. y)); 

GetDltem(gModelDefinitionDialog, MODELDEFINITION NOSETIP X, &itemType, 
iitemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", i(gUserModel. noseTip. x)); 

GetDltem(gModelDefinitionDialog, MODELDEFINITION NOSETIP Y, &itemTypo, 
&itemHandle, iitemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "tlf", &(guserModel. noseTip. y)); 

/* calculate centres of mass 

CentresOfMass(&gUserModel); 
} 

GetOptionSettings() 

/* routine to get the options parameters settings from the dialog box 

#include "Params. h" 

void GetOptionsSettings() 
{ 

short itemType; /* dummy item type 
Rect itemRect; /* dummy item rect 
Handle itemHandle; /* item handle */ 

char buffer(STRING SIZE); /* string buffer */ 

GetDItem(gOptionsDialogBox, OPTIONS MASS, £itemType, 

&itemHandle, &itemRect); 
GetlText(itemHandle, buffer); 
sscanf(PtoCstr(buffer), "%lf", &gMass); 

GetDltem(gOptionsDialogBox, OPTIONS G, LitemType, 
iitemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", &g); 

GetDltem(gOptionsDialogBox, OPTIONSTIMETOLERANCE, &itemType, 
&itemHandle, titemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", &gTimeTolerance); 

GetDltem(gOptionsDialogBox, OPTIONS_RANGE, iitemType, 

&itemHandle, &itemRect); 
GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", &gRange); 

GetDltem(gOptionsDialogBox, OPTIONS_TIMES, iitemType, 
4itemHandle, 4itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%d", &gNumberOfTimes); 

GetDltem(gOptlonsDialogBox, OPTIONS ITERATIONS, iitemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 
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sscanf(PtoCstr(buffer), `%d", &gMaxIterations); 

GetDltem(gOptionsDialogBox, OPTIONS EXTENSION FRACTION, iitemType, 
&ltemHandle, &itemRect); 

GetlText(itemHandle, buffer); 
sscanf(PtoCstr(buffer), "tlf", &gExtensionFraction); 

} 

GetSegmentSettings() 

/* routine to get the model parameters settings from the dialog box 

#include "Params. h` 

void GetSegmentsSettings() 
{ 

short itemType; /* dummy item type */ 
Rect itemRect; /* dummy item rect 
Handle itemHandle; /* item handle */ 

char buffer(STRING_SIZE]; /* string buffer */ 

GetDltem(gSegmentsDlalog, SEGMENTS_FOREFOOT_MASS, iitemType, 
iitemHandle, titemRect); 

GetlText(itemHandle, buffer); 
sscanf(PtoCstr(buffer), "tlf", &gSegmentMass. foreFoot); 

GetDltem(gSegmentsDialog, SEGMENTS_HINDFOOT_MASS, &itemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%1f", &gSegmentMass. hindFoot); 

GetDltem(gSegmentsDialog, SEGMENTS CALF_MASS, &itemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", & gSegmentMass. calf); 

GetDltem(gSegmentsDialog, SEGMENTS_THIGH MASS, &itemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "41f", &gSegmentMass. thigh); 

GetDltem(gSegmentsDialog, SEGMENTSTORSO MASS, &itemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "tlf", &gSegmentMass. torso); 

GetDItem(gSegmentsDialog, SEGMENTS_FOREFOOT COM, &itemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "$lf", &gCOMs. foreFoot); 

GetDltem(gSegmentsDialog, SEGMENTS_HINDFOOT COM, &itemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), u%lf", &gCOMs. hindFoot); 

GetDltem(gSegmentsDialog, SEGMENTS_CALF COM, &itemType, 

&itemHandle, &itemRect); 
GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%lf", &gCOMs. calf); 
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GetDltem(gSegmentsDialog, SEGMENTSTHIGH COM, iitemType, 
&itemHandle, &itemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "%1f", igCOMs. thigh); 

GetDltem(gSegmentsDlalog, SEGMENTSTORSO COM, iitemType, 
iitemHandle, iltemRect); 

GetlText(itemHandle, buffer); 

sscanf(PtoCstr(buffer), "tlf", igCOMs. torso); 

L' 
HandleAppleCholce() 

/* routine to handle choices in the apple menu 

#include "Params. h" 

void HandleAppleChoice(theltem) 
short theItem; 
{ 

Str255 accName; 
short accNumber; 

switch (theItem) 
{ 
case ABOUT_ITEM: 

NoteAlert(ABOUT ID, NULL); 
break; 

default: 

GetItem(gAppleMenu, theltem, accName); 
accNumber=OpenDeskAcc(accName); 
break; 

} 

L' 
HandleEditCholce() 

/* routine to handle edit menu choice */ 

1lnclude "Params. h" 

void HandleEditChoice(theltem) 
short theltem; 
{ 

SystemEdit(theitem-1); 
} 

/* routine to handle choices from the file menu 

"include "Params. h" 

void HandleFileChoice(theltem) 
short theItem; 
{ 

switch (theltem) 
{ 
case NEW_ITEM: 

if (UnsavedData()) 
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{ 
New () ; 

} 

break; 

case OPEN_ITEM: 
OpenFile(NULL); 
break; 

case SAVE_ITEM: 

SaveFile(); 
break; 

case SAVE_AS_ITEM: 
SaveAs 0; 
break; 

case WRITE_ITEM: 

; write o; 
break; 

case QUIT_ITEM: 

if (UnsavedData()) 
{ 

gDone-TRUE; 
} 

break; 
} 

L' 
HondleMenuCholce() 

/* routine to handle menu choices */ 

#include `Params. h" 

void HandleMenuChoice(menuChoice) 
long menuChoice; 
{ 

short theMenu; 
short theItem; 

if (menuChoice! =0) 
{ 

theMenu=HiWord(menuChoice); 

theItem=LoWord(menuChoice); 

switch (theMenu) 

case APPLE MENU ID: 

HandleAppleChoice(theltem); 
break; 

case FILE MENU ID: 

HandleFileChoice(theItem); 
break; 

case EDIT 
- 

MENU-ID: 
HandleEditChoice(theItem); 
break; 

case MODEL MENU ID: 
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HandleModelChoice(theltem); 
break; 

} 
HiliteMenu(0); 

} 
HandleModelChoice 0 
/* routine to handle choices from the model menu */ 

#include "Params. h" 

void HandleModelChoice(theItem) 
short theItem; 
{ 

switch (theItem) 
{ 
case DEFINE_ITEM: 

DefineModel(); 
break; 

case OPTIONS_ITEM: 

Options o; 
break; 

case SEGMENTS_ITEM: 
Segments(); 
break; 

} 
} 

HandleMouseDown() 

/* routine to handle mouse downs */ 

/include "Params. h" 

void HandleMouseDown() 
{ 

WindowPtr whichwindow; 
short thePart; 
long menuChoice, windsize; 

thePart-FindWindow(gTheEvent. where, iwhichWindow); 
switch (thePart) 

case inMenuBar: 

AdjustMenus(); 

menuChoice-MenuSelect(gTheEvent. where); 
HandleMenuChoice(menuChoice); 
break; 

case inSysWindow: 
Systemflick(&gTheEvent, whichwindow); 
break; 

} 

HILIteOKO 
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/* routine to halite the OK button on a standard modal dialog box */ 

finclüde "Params. h" 

void HiLiteOK(dialogPointer) 
DialogPtr dialogPointer; 
{ 

short itemType; 
Handle item; 
Rect box; 
GrafPtr oldPort; 

} 

/* get old drawing port 

GetPort(ioldPort); 

/* set new port */ 

SetPort(dialogPointer); 

/* pointer to dialog box for hilite */ 

/* item type 
/* item */ 

/* rect enclosing item */ 

/* get details about the OK button */ 

GetDltem(dialogPointer, OK, &itemType, Litem, ibox); 

/* and do the hiliting */ 

PenSlze(3,3); 
InsetRect(&box, -4, -4); 
FrameRoundRect(&box, 16,16); 

/* back to old port */ 

SetPort(&oldPort); 

IsDAWIndow() 

/* routine to test for DA Window */ 

tinclude "Params. h" 

short IsDAWindow(whichWindow) 
WindowPtr whichWindow; 
{ 

if (whichWindow==NULL) return (FALSE); 

else /* DA windows have negative windowKinds 
return(((WindowPeek)whichWindow)->windowKind<O); 

LengthFunctlon() 

/* routine to calculate the positions of the joints at a given time */ 

Boolean LengthFunction(goalTime, pCounter, tolerance) 
double goalTime; /* time required for distance calculation 
int pCounter; /* result counter */ 
double tolerance; /* absolute time tolerance *1 

#include "Params. h" 

#define DEBUG 0 
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{ 
double pValue=0.5; 
double deltaP-0.25; 
int loopCounter-0; 
double time; 
ModelVectors vectors; 

/* range checking */ 

if (goalTime<-0.0) 
{ 

goalTime-0.0; 
pValue-1.0; 

if (goa1Time>=gTMax) 
{ 

goa1Time-gTMax; 
pValue-0.0; 

/* initial value of p */ 
/* initial p change value */ 

/* iteration counter */ 
/* calculated time from p 
/* intermediate vectors */ 

/* loop till goalTime is within tolerance of actual time */ 

while (TRUE) 

/* count interation */ 

loopCounter++; 

/* calculate vectors */ 

vectors. foreFoot. theta - pValue * gVectors. foreFoot. theta; 
vectors. foreFoot. r - gVectors. foreFoot. r; 
vectors. foreFoot. x - VectorX(vectors. foreFoot); 
vectors. foreFoot. y - VectorY(vectors. foreFoot); 

vectors. hindFoot. theta - pValue * gVectors. hindFoot. theta; 

vectors. hindFoot. r - gVectors. hindFoot. r; 

vectors. hindFoot. x - VectorX(vectors. hindFoot); 

vectors. hindFoot. y - VectorY(vectors. hindFoot); 

vectors. calf. theta - pValue * gVectors. calf. theta; 

vectors. calf. r - gVectors. calf. r; 
vectors. calf. x - VectorX(vectors. calf); 
vectors. calf. y - VectorY(vectors. calf); 

vectors. thigh. theta - pValue * gVectors. thigh. theta; 

vectors. thigh. r - gVectors. thigh. r; 
vectors. thigh. x - VectorX(vectors. thigh); 

vectors. thigh. y - VectorY(vectors. thigh); 

vectors. torso. theta = pValue * gVectors. torso. theta; 
vectors. torso. r - gVectors. torso. r; 
vectors. torso. x - VectorX(vectors. torso); 

vectors. torso. y " VectorY(vectors. torso); 

/* calculate joint positions */ 

gResults[pCounter]. toeTip. x-0.0; 
gResults[pCounter]. toeTip. y=0.0; 
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gResults(pCounterj. midTarsalJoint. x- 

gResults[pCounterj. toeTip. x+ 

vectors. foreFoot. x; 

gResults(pCounterj. midTarsalJoint. y- 
gResults(pCounterj. toeTip. y+ 
vectors. foreFoot. y; 

gResults[pCounter]. ankle. x- 

gResults[pCounter]. midTarsalJoint. x+ 

vectors. hindFoot. x; 

gResults[pCounter]. ankle. y- 
gResults[pCounter]. midTarsalJoint. y+ 
vectors. hindFoot. y; 

gResults[pCounter). knee. x- 
gResults(pCounter). ankle. x+ 
vectors. calf. x; 

gResults[pCounter]. knee. y- 
gResults[pCounter]. ankle. y+ 
vectors . calf. y; 

gResults[pCounter]. hip. x- 
gResults[pCounter). knee. x+ 
vectors. thigh. x; 

gResults[pCounter). hip. y- 
gResults[pCounter]. knee. y+ 
vectors. thigh. y; 

gResults[pCounter]. noseTip. x- 

gResults[pCounter]. hip. x+ 
vectors. torso. x; 

gResults[pCounter]. noseTlp. y- 
gResults[pCounter]. hip. y+ 
vectors. torso. y; 

/* rotate and align with x axis 

XAxisize(&gResults[pCounter]); 

/* calculate time from position of COM 

time-sgrt(2.0 * gMass * (gResults[pCounter]. bodyCOM. x - 
gResults[0]. bodyCOM. x) / gFMax); 

of DEBUG 

printf("p - %. 121f time - t. 121f\n", pvalue, time); 
fendif 

/* check to see if close enough to required value to do */ 

if (fabs(time-goalTime)<tolerance) return(TRUE); 
else 
{ 

if (time>goalTime) pValue+-deltaP; 
else pValue--deltaP; 

if (pValue>1.0) pValue=1.0; 
if (pValue<0.0) pValue=0.0; 

deltaP*=0.5; 
} 
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/* check iteration count */ 

if (loopCounter>gMaxIterations) return(FALSE); 
} 

} 

malnO 

/* main routine */ 

linclude "Params. h" 

/* globale */ 

Boolean gDone; /* done flag */ 

EventRecord gTheEvent; /* event structure 
MenuHandle oAppleMenu; /* menu handles */ 

MenuHandle gFileMenu; 
MenuHandle gEditMenu; 
MenuHandle gModelMenu; 
DialogPtr gModelDefinitionDialog; 
DialogPtr gUnsavedDataDialog; 
DialogPtr goptlonsDialogBox; 
DialogPtr gSegmentsDialog; 
DialogPtr gProgressDialog; 

Boolean gDefinitionOK=FALSE; 
Boolean gDefinitionToSave-FALSE; 
SFReply gDefinitionFile; 

/* dialog pointer */ 

/* model definition in memory 
/* stuff to save flag */ 
/* definition file stuff */ 

ModelCoordinates gModel; 
ModelCoordinates gUserModel; 
ModelCoordinates gResults[MAX RESULTSJ; 

ModelVectors gVectors; 
Mode1COMs gCOMs; 
ModelMass gSegmentMass; 
double gMass; 
int gNumberofTimes; 
int gMaxIterations; 
double g; 
double gTimeTolerance; 
double gTimes[MAX RESULTS); 

double gRange; 
double gFMax; 
double gSMax; 
double gTMax; 
double gExtensionFraction; 

void main() 
{ 

ToolBoxlnitC); 

MenuBarlnit(); 
DialogInit(); 
New U; 

OpenFrorrDocument(); 

MalnLoopo); 

exit (0) 
} 

/* transformed model parameters 
/* user input model parameters 

/* model results */ 
/* model vectors 

/* model COM's */ 

/* segment masses 
/* animal mass */ 

/* time increment 
/* maximum number of iterations 

/* acceleration due to gravity 
/* fractional time tolerance */ 
/* times calculates 

/* leap range */ 
/* maximum force */ 
/* maximum extension 
/* maximum time */ 

/* fraction of max extension */ 
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/* main program loop */ 

linclude "Params. h" 

void MalnLoop() 
{ 

char theChar; 

gDone=FALSE; 
while(gDone--FALSE) 
{ 

/* key character */ 

/* get events */ 

WaitNextEvent(everyEvent, £gTheEvent, MIN SLEEP, NILMOUSE REGION): 

/*ýand act on it */ 

ýr 
ý'ä. " 

-switch (gTheEvent. what) 
{ 
case mouseDown: 

HandleMouseDown(); 
break; 

case keyDown: 

case autoKey: 
theChar-gTheEvent. message i charCodeMask; 
if ((gTheEvent. modlfiers i cmdKey)! -0) 
{ 

Ad justMenus () ; 
HandleMenuChoice(MenuKey(theChar)); 

} 

break; 

-case updateEvt: 
break; 

}Ar 

MenuBarinit() 

/* routine to set up menu bar */ 

#include "Params. h" 

void MenuBarInit() 
{ 

Handle myMenuBar; 

myMenuBar-GetNewMBar(MENU BAR_ID); 

SetMenuBar(myMenuBar); 

gAppleMenu-GetMHandle(APPLE_MENU_ID); 
AddResMenu(gAppleMenu, 'DRVR'); 

gFileMenu-GetMHandle(FILE_MENU_ID); 

gEditMenu-GetMHandle(EDIT MENU_ID); 

gModelMenu-GetMHandle(MODEL MENO_ID); 

DrawMenuBar(); 
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} 

NewO 

/* routine to reset globals to their startup values 

tinclude "Params. h" 

void New() 
{ 

/* reset the dialog boxes */ 

DialogEnd () ;, 
Dialoglnit(); 

/* model */ 

GetModelSettings(); 

/* definition file status */ 

gDefinitionOK=FALSE; 
gDefinitionToSave-FALSE; 

gDefinitionFile. fName[0}=0; 

/* options 

GetOptionsSettings 0; 

/* segments */ 

GetSegmentsSettings 0; 
} 

NullEventsFllter() 

/* dialog filter routine to return NULL EVENTS 

#include "Params. h" 

pascal Boolean NullEventFilter(theDialog, theEvent, itemHit) 
DialogPtr theDialog; /* calling dialog */ 
EventRecord *theEvent; /* event returned */ 
short *iteMit; /* item hit return code */ 

if (theEvent->what- nullEvent) 
{ 

*itejtDIALOG NULL EVENT; 

return(TRUE); 

return(FALSE); 
} 

OpenFIIe() 

/* routine to open an existing model definition file */ 

#include "Params. h" 
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void OpenFile(theFile) 
AppFile *theFile; 

Point myPoint; 
SFTypeList typeList; 
short numTypes; 
short refNum; 
long numBytes; 

/* check to see if passed a file */ 

/* pointer to file */ 

/* position of dialog 
/* type selection */ 

/* number of acceptable filetypes 
/* file reference number */ 

/* number of bytes to read */ 

if (theFile"=NULL) 
( 
myPoint. h-FILE_DIALOG X; 

myPoint. vsFILE_DIALOG Y; 

numTypes-1; 
typeList[0]-FILE TYPE; 

SFGetFile(myPoint, NULLSTRING, NULL, numTypes, typeList, NULL, 

&gDefinitionFile); 

else 
{ 

gDefinitionFile. good-TRUE; 
strcpy((char *)gDefinitlonFlle. fName, (char *)theFlle->fName); 
gDefinitionFile. vRefNum=theFile->vRefNum; 

} 

/* process goefinitionFile */ 

if (gDefinitionFile. good==TRUE) 
{ 

gDefinitionToSave=FALSE; 
gDefinitionOK-TRUE; 

/* open and read file */ 

FSOpen(gDefinitionFile. fName, gDefinitionFile. vRefNum, &refNum); 

numBytes-(long) sizeof(gUserModel); 
FSRead(refNum, &numBytes, igUserModel); 

numBytes-(long)sizeof(gSegmentMass); 
FSRead(refNum, &numBytes, (char *)&gSegmentMass); 

numBytes-(long)sizeof(gCOMs); 

FSRead(refNum, inumBytes, (char *)&gCOMs); 

numBytes-(long)sizeof(gMass); 
FSRead(refNum, &numBytes, (char *)&gMass); 

numBytes-(long)sizeof(g); 
FSRead(refNum, &numBytes, (char *)tg); 

numBytes-(long)sizeof(gTimeTolerance); 
FSRead(refNum, &numBytes, (char *)&gTimeTolerance); 

numBytes=(long) sizeof(gRange); 
FSRead(refNum, &numBytes, (char *)&gRange); 

numBytes=(long) sizeof(gNumberOfTimes); 
FSRead(refNum, &numBytes, (char *)&gNumberOfTimes); 
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L' 

numBytes-(long) sizeof(gMaxIterations); 
FSRead(refNum, &numBytes, (char *)&gMaxIterations); 

numBytes-(long) sizeof(gExtenslonFraction); 
FSRead(refNum, &numBytes, (char *)&gExtensionFraction); 

/* close file */ 

FSClose(refNum); 

} 

OpenFromDocument() 

/* opens a file that has been selected by the finder */ 

#include "Params. h" 

void OpenFromDocumentC) 
{ 

short message; 

short count; 
AppFile theFile; 

/* count documents */ 

/* document count message 
/* document count number */ 
/* file selected */ 

CountAppFiles(&message, &count); 

/* check count, and whether print requested (not available) */ 

if (count--O) return; 
if (message- appPrint) exit(O); 

/* get first file only (and then only if type FILE TYPE) */ 

GetAppFiles(1, &theFile); 
C1rAppFiles(1); 

if (theFile. fType! -FILE_TYPE) return; 

OpenFile(&theFile); 

Options() 

/* routine to set the modelling options */ 

#include "Params. h" 

Boolean Options() 
{ 

short itemHlt; 

/* show dialog window */ 

SetOptionsSettings(); 
ShowWindow(goptionsDialogBox); 

HiLiteOK(goptionsDialogBox); 

/* item hit value */ 
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while (TRUE) 
{ 

ModalDialog(NULL, &itemHit); 

switch(itemHit) 

/* OK button */ 

case (OK) :. 
HideWindow(goptionsDialogBox); 
GetoptionsSettings(); 

gDefinitionToSave-TRUE; 
return(TRUE); 
break; 

/* Cancel button */ 

case (CANCEL): 

HideWindow(goptionsDialogBox); 

return (FALSE); 

break; 
} 

} 

Rotate() 

/* routine to do a 2D rotation by an arbitrary amount to a coordinate */ 

; include "Params. h" 

void Rotate(point, angle) 
Coordinate *point; 
double angle; 
{ 

double x, y; 
double sinAngle, cosAngle; 

/* do trig */ 

sinAngle-sin(angle); 
cosAngle-cos(angle); 

/* point to be rotated */ 
/* angle to rotate (radians) */ 

/* temporary storage for new angle */ 
/* temporary storage of the trig stuff */ 

/* do matrix rotation stuff */ 

x-point->x*cosAng1e-point->y*sinAng1e; 
y-point->x*sinAngle+point->y*cosAngle; 

point->x=x; 
point->y-y; 

L' 
SaveAso) 

/* routine to perform named save function */ 

#include "Params. h" 

void SaveAs() 
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{ 
SFReply reply; 
Point myPoint; 
short refNum; 
char prompt(STRING SIZE); 
long numBytes; 

} 
else 
{ 

if (gDefinitionFile. fName[0)=-0) 
{ 

/* reply from file dialog */ 
/* position of dialog */ 

/* file reference number 
/* prompt file name */ 

/* number of bytes to write */ 

strcpy(prorrpt, (char *)"\pUntitled"); 

strcpy(prortpt, (char *)gDefinitionFile. fName); 

myPoint. h-FILE_DIALOG X; 

myPoint. v=FILE DIALOG Y; 

SFPutFile(myPoint, NULL STRING, prortpt, NULL, &reply); 

if (reply. good--TRUE) 
{ 

strcpy((char *)gDefinitionFlle. fName, (char *)reply. fName); 

gDefinltlonFile. vRefNum-reply. vRefNum; 

/* create and open file */ 

FSDelete(gDefinitionFile. fName, gDefinitionFile. vRefNum)" 
Create(gDeflnitionF11e. fNan, gDefinitionFile. vRefNum, 

FILE OWNER, FILETYPE): 

FSOpen(gDefinitionFile. fName, gDefinitionFile. vRefNum, &refNum); 

/* write out data */ 

numBytes-(long) sizeof(guserModel); 
FSWrite(refNum, &numBytes, (char *)&gUserModel); 

numBytes-(long) sizeof(gSegmentMass); 
FSWrite(refNum, &numBytes, (char *)&gSegmentMass); 

numBytes-(long)sizeof(gCOMs); 
FSWrite(refNum, inumBytes, (char *)&gCOMs); 

numBytes-(long)sizeof(gMass); 
FSWrite(refNum, &numBytes, (char *)igMass); 

numBytes-(long)sizeof(g); 
FSWrite(refNum, inumBytes, (char *)fig); 

numBytes-(long) sizeof(gTimeTolerance); 
FSWrite(refNum, &numBytes, (char *)&gTimeTolerance); 

numBytes=(long) sizeof(gRange); 
FSWrite(refNum, tnumBytes, (char *)&gRange); 

numBytes-(long)sizeof(gNumberOfTimes); 
FSWrite(refNum, inumBytes, (char *)&gNumberOfTimes); 

numBytes-(long)sizeof(gMaxIterations); 
FSWrlte(refNum, &numBytes, (char *)&gMaxIterations); 

numBytes-(long) sizeof(gExtensionFraction); 
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FSWrlte(refNum, &numBytes, (char *)&gExtenslonFractlon); 

/* close file */ 

FSClose(refNum); 

gDefinitionToSave-FALSE; 
} 

} 

SaveFIIe() 

/* routine to perform un-named save function */ 

#include "Params. h" 

void SaveFile () 
{ 

short refNum; 
long numBytes; 
char buffer(STRING_SIZE*5]; 

/* file reference number */ 
/* number of bytes to write */ 

/* buffer space */ 

if (gDefinitionFile. fName[O]==O) 

SaveAs{); 
} 

else 
{ 

FSOpen(gDefinitionFile. fName, gDefinitionFile. vRefNum, irefNum); 

/* write out data */ 

numBytes-(long) sizeof(gUserModel); 
FSWrite(refNum, &numBytes, (char *)&goserModel); 

numBytes-(long) sizeof(gSegmentMass); 
FSWrite(refNum, &numBytes, (char *)&gSegmentMass); 

numBytes-(long)sizeof(gCOMs); 
FSWrite(refNum, anumBytes, (char *)&gCOMs); 

numBytes-(long)sizeof(gMass); 
FSWrite(refNum, &numBytes, (char *)&gMass); 

numBytes-(long)sizeof(g); 
FSWrite(refNum, &numBytes, (char *)&g); 

numBytes-(long)sizeof(gTimeTolerance); 
FSWrite(refNum, &numBytes, (char *)&gTimeTolerance); 

numBytes-(long) sizeof(gRange); 
FSWrite(refNum, &numBytes, (char *)&gnange); 

numnytes-(long) sizeof(gNumberOfTimes); 
FSWrite(refNum, &numBytes, (char *)&gNumberofTimes); 

numBytes-(long) sizeof(gMaxIterations); 
FSWrite(refNum, &numBytes, (char *)&gMaxIteratlons); 

numBytes-(long) sizeof(gExtensionFraction); 
FSWrite(refNum, &numBytes, (char *)&gExtensionFraction); 
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/* close file */ 

FSClose(refNum); 

gDefinitionToSave=FALSE; 

II 

Segments() 

/* routine to set the modelling options 

linclude "Params. h" 

Boolean Segments() 

short itemHit; /* item hit value 

/* show dialog window */ 

SetSegmentsSettings(; 

ShowWindow(gSegmentsDialog); 

HiLiteOK(gSegmentsDialog); 

while (TRUE) 

{ 
ModalDialog(NULL, &itemHit); 
switch(itemHlt) 
{ 

/* OK button */ 

case (OK): 

HideWindow(gSegmentsDialog); 
GetSegmentsSettings(); 

gDeflnitionToSave-TRUE; 
return(TRUE); 
break; 

/* Cancel button */ 

case (CANCEL): 

Hldewindow(gSegmentsDialog); 

return(FALSE); 
break; 

} 
} 

L' 
SetModelSettings() 

/* routine to set the model parameters settings for the dialog box 

#include "Params. h" 

void SetModelSettings() 
{ 

short itemType; /* dummy item type 
Rect itemRect; /* dummy item rect 
Handle itemHandle; /* item handle */ 

} 
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char buffer[STRING SIZE]; /* character buffer */ 

GetDItem (gModelDefinitlonDialog, MODELDEFINITION MTJ X, iitemType, 
iitemHandle, &itemRect); 

sprintf(buffer, "tlg", gUserModel. midTarsalJoint. x); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gModelDefinitlonDialog, MODEL DEFINITION_MTJ Y, LitemType, 
iitemHandle, titemRect); 

sprintf(buffer, "i1g", gUserModel. midTarsa1Joint. y); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gModelDefinitionDialog, MODEL_DEFINITION ANKLE X, GitemType, 

&itemHandle, iitemRect); 

sprlntf(buffer, "%lg", gUserModel. ankle. x); 
SetIText(itemHandle, CtoPstr(buffer)); 

GetDltem(gModelDefinitionDialog, MODEL_DEFINITIONANKLE Y, LitemType, 

sitemHandle, &itemRect); 

sprintf(buffer, "%lg", gUserModel. ankle. y); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gModelDefinitlonDialog, MODEL_DEFINITIONKNEE X, iitemType, 

&ltemHandle, &itemRect); 

sprintf(buffer, "tlg", gUserModel. knee. x); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gModelDefinitionDialog, MODEL DEFINITION KNEE Y, &ltemType, 

LitemHandle, &itemRect); 

sprlntf(buffer, "%lg", gUserModel. knee. y); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gModelDefinitionDialog, MODEL_DEFINITION_HIP X, &itemType, 
&itemHandle, &itemRect); 

sprintf(buffer, "%lg", gUserModel. hip. x); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDitem(gModelDefinitionDialog, MODEL_DEFINITION_HIP Y, &itemType, 
LitemHandle, iitemRect); 

sprintf(buffer, "%lg", gUserModel. hip. y); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gModelDefinitionDialog, MODEL DEFINITION_NOSETIP X, &itemType, 
&itemHandle, iitemRect); 

sprintf(buffer, "%lg", gUserModel. noseTip. x); 

SetlText(itemHandle, CtoPstr(buffer)); 

GetDItem(gModelDefinitionDialog, MODEL_DEFINITION NOSETIP Y, &itemType, 

LitemHandle, &itemRect); 

sprintf(buffer, "%lg", gUserModel. noseTip. y); 
SetlText(itemHandle, CtoPstr(buffer)); 

SetOptionsSettings() 

/* routine to set the options parameters settings for the dialog box */ 

#include "Params. h" 

void SetOptionsSettings() 
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I 
short itemType; 

Rect itemRect; 

Handle itemHandle; 

/* dummy item type 
/* dummy item rect "/ 
/* item handle */ 

char buffer(STRING_SIZE); /* character buffer */ 

GetDltem(gOptionsDialogBox, OPTIONS MASS, iltemType, 

iitemHandle, iitemRect); 

sprintf(buffer, "%lg", gMass); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gOptlonsDialogBox, OPTIONS G, LitemType, 

iitemHandle, &itemRect); 

sprintf(buffer, "t1g , g); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gOptionsDialogBox, OPTIONS_TIMETOLERANCE, LitemType, 

&itemHandle, &itemRect); 

sprintf(buffer, '%1g', gT1n Tolerance); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDItem(gOptionsDialogBox, OPTIONS RANGE, iitemType, 

&itemHandle, &itemRect); 

sprintf(buffer, "41g", gRange); 
SetIText(itemHandle, CtoPstr(buffer)); 

GetDltem(gOptlonsDialogBox, OPTIONS TIMES, £ItemType, 

&itemHandle, &itemRect); 

sprintf(buffer, "id", gNumberOfTimes); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gOptlonsDialogSox, OPTIONS ITERATIONS, iitemType, 

iltemHandle, titemRect); 

sprintf(buffer, "td", gMaxIterations); 
SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gOptionsDialogBox, OPTIONS EXTENSION FRACTION, iitemType, 

iitemHandle, &itemRect); 

sprintf(buffer, "tlg", gExtensionFraction); 
SetlText(itemHandle, CtoPstr(buffer)); 

} 

SetSegmentsSettings() 

/* routine to set the model parameters settings for the dialog box */ 

#include `Params. h" 

GetDltem(gSegmentsDialoq, SEGMENTS FOREFOOT_MASS" itemType, 

&itemHandle, &itemRect); 

sprintf(buffer, "%1g", gSegmentMass. foreFoot); 
SetlText(itemHandle, CtoPstr(buffer)); 

void SetSegmentsSettings{) 
{ 

short itemType; /* dummy item type 

Rect itemRect; /* dummy item rect 

Handle itemHandle; /* item handle */ 

char buffer[STRING_SIZE]; /* character buffer */ 
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GetDltem(gSegmentsDialoq, SEGMENTS HINDFOOT_MASS, iitemType, 
iitemHandle, iitemRect); 

sprintf(buffer, "%lg", gSegmentMass. hindFoot); 

SetIText(itemHandle, CtoPstr(buffer)); 

GetDltem(gSegmentsDialog, SEGMENTSCALF MASS, ittemType, 

&itemHandle, iitemRect); 

sprintf(buffer, "%lg", gSegmentMass. calf); 
SetIText(itemHandle, CtoPstr(buffer)); 

GetDltem(gSegmentsDialog, SEGMENTSTHIGH MASS, LitemType, 

&itemHandle, titemRect); 

sprintf(buffer, "%lg", gSegmentMass. thigh); 

SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gSegmentsDialog, SEGMENTSTORSO MASS, &itemType, 

titemHandle, iitemRect); 

sprintf(buffer, "%lg", gSegmentMass. torso); 

SetIText(itemHandle, CtoPstr(buffer)); 

GetDltem(gSegmentsDialog, SEGMENTSFOREFOOT COM, iitemType, 

&itemHandle, &itemRect); 

sprintf(buffer, "%lg", gCOMs. foreFoot); 

SetIText(itemHandle, CtoPstr(buffer)); 

GetDltem(gSegmentsDialog, SEGMENTS_HINDFOOT COM, &itemType, 

&itemHandle, &itemRect); 

sprintf(buffer, "%lg", gCOMs. hindFoot); 

SetlText(itemHandle, CtoPstr(buffer)); 

GetDltem(gSegmentsDialog, SEGMENTS CALF_COM, &itemType, 

&itemHandle, &itemRect); 

sprintf(buffer, "%lg", gCOMs. calf); 
SetIText(itemHandle, CtoPstr(buffer)); 

GetDltem(gSegmentsDialog, SEGMENTS_THIGH_COM, &itemType, 

&itemHandle, &itemRect); 

sprintf(buffer, "%lg", gCOMs. thigh); 

SetIText(itemHandle, CtoPstr(buffer)); 

GetDltem(gSegmentsDialog, SEGMENTS TORSO_COM, &itemType, 

&itemHandle, &itemRect); 

sprintf(buffer, "%lg", gCOMs. torso); 
SetIText(itemHandle, CtoPstr(buffer)); 

ToolBoxlnit() 

/* Routine to initialize various toolbox managers 

tinclude "Params. h' 

void ToolBoxlnitC) 
{ 

InitGraf(&thePort); 

InitFonts 0; 

FlushEvents(everyEvent, REMOVE_ALLEVENTS); 

Initwindows O; 

InitMenus(); 

TEInitC); 
InitDialogs(NULL); 
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InitCursorO; 
} 

UnsavedData( 

/* routine to check for and save any unsaved model data file 

tinclude'"Params. h" 

Boolean UnsavedDataC) 
{ 

Boolean dlalogDone=FALSE; /* dialog done flag */ 

short itemHlt; /* item hit value */ 
Boolean returnCode=TRUE; /* return code */ 

/* test for unsaved data */ 

if (gDefinitionToSavet=TRUE) return(returnCode); 

/* show dialog window */ 

Showwindow(gUnsavedDataDialog); 
HiLiteOK(gUnsavedDataDialog); 

while (dialogDone--FALSE) 

{ 
ModalDialog(NULL, &itemHit); 

switch(itemHit) 

Save button */ 

case (OK): 

HideWindow(gUnsavedDataDialog); 
SaveFile () ; 
dlalogDone-TRUE; 
break; 

/* Don't Save button 

case (UNSAVED DATA_NO_SAVE): 

HideWindow(gUnsavedDataDlalog); 
dialogDone=TRUE; 
break; 

/* Cancel button */ 

case (CANCEL): 

HideWindow(gUnsavedDataDialog); 
dialogDone-TRUE; 

returnCode-FALSE; 
break; 

} 

L' 

} 

return (returnCode); 

VectorAngle() 
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/* routine to calculate angles */ 

#include "Params. h" 

double VectorAngle(vector) 

Vector vector; 

double angle; 

angle-atan2(vector. y, vector. x); 
return(angle); 

} 

VectorLength() 

/* routine to calculate lengths */ 

#include "Params. h" 

double VectorLength(vector) 
Vector vector; 
{ 

double length; 

length-sgrt(vector. x*vector. x+vector. y*vector. y); 
return(length); 

} 

VectorX() 

/* routine to calculate x part of vector 

#include "Params. h" 

double VectorX(vector) 

Vector vector; 

( 
double x; 

x- vector. r * cos(vector. theta); 
return(x); 

L' 
VectorY() 

/* routine to calculate y part of vector 

"include "Params. h" 

double VectorY(vector) 
Vector vector; 
{ 

double y; 

y- vector. r * sin(vector. theta); 

return (y) ; 

Appendix 



Source Code Page (374) 

WriteO 

/* routine to write out data */ 

#include "Params. h" 

void Write () 
{ 

Calculate {)" 

WriteResults() 

/* this routine writes out the node position file */ 

#include"Params. h" 

void writeResults(title, frameInterval) 

char title[STRING SIZE]; /* file title line */ 
double frameInterval; /* the interval between frames */ 

int frameCounter; 
int nodeCounter; 
SFReply reply; 
Point myPoint; 
short refNum; 
char prompt(STRING SIZE]; 

char buffer[STRING_SIZE); 
long numBytes; 

} 
else 
{ 

if (gDefinitionFile. fName[O]--O) 
{ 

/* counter frame number */ 
/* counter node number */ 

/* reply from file dialog */ 
/* position of dialog */ 

/* file reference number 
/* prompt file name 
/* file buffer */ 

/* number of bytes to write */ 

strcpy(pronpt, (char *)"\pUntitled. nodee); 

strcpy(pronpt, (char *)gDefinitionFile. fName); 
PtoCstr(pronpt); 
strcat(prompt, ". node"); 
CtoPstr(prompt); 

myPoint. h=FILE DIALOG_X; 

myPoint. v=FILE DIALOG_X; 

SFPUtFile(myPolnt, NULL_STRING, pronpt, NULL, &reply); 

if (reply. good--TRUE) 
{ 

/* create and open file */ 

FSDelete(reply. fName, reply. vRefNum); 
Create(reply. fName, reply. vRefNum, FILE_OWNER, 'TEXT'); 

FSOpen(reply. fName, reply. vRefNum, &refNum); 

/* write data */ 

sprintf(buffer, "%s\r", title): 
numBytes-(long) strlen(buffer): 
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FSwrite(refNum, &numBytes, buffer); 

sprintf(buffer, N%. 121e\r", frameInterval); 

numBytes-(long) strlen(buffer); 
FSWrlte(refNum, &numBytes, buffer); 

sprintf(buffer, "%d\r", gNumberOfTimes); 
numBytes=(long) strlen(buffer); 
FSWrite(refNum, &numBytes, buffer); 

for (frameCounter-O; frameCounter<gNumberofTimes; frameCounter++) 
{ 

sprintf(buffer, "%d\r", frameCounter); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, inumBytes, buffer); 

sprintf (buffer, "%cd\r", 6); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, &numBytes, buffer); 

sprintf(buffer, "4d %. 121e %. 12le %. 121e\r", 0,0.0,0.0,0.0); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, &numBytes, buffer); 

sprintf(buffer, "Toe Tip\r"); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, inumBytes, buffer); 

sprintf(buffer, "%d %. 12le %. 12le %. 121e\r", 1, 
gResults(frameCounter]. midTarsalJoint. x, 

gResults(frameCounter]. midTarsalJolnt. y, 
0.0); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, anumBytes, buffer); 

sprintf(buffer, "Mid-tarsal Joint\r"); 

numBytes=(long) strlen(buffer); 
FSWrite(refNum, inumBytes, buffer); 

sprintf(buffer, "%d %. 12le %. 12le %. 121e\r", 2, 

gResults(frameCounter]. ankle. x, 
gResults(frameCounter]. ankle. y, 
0.0); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, anumBytes, buffer); 
sprintf(buffer, "Ankle\r"); 
numBytes-(long) strlen(buffer); 
FSWrite(refNum, &numBytes, buffer); 

sprintf(buffer, "%d %. 12le %. 12le %. 121e\r", 3, 

gResults(frameCounter]. knee. x, 
gResults(frameCounter]. knee. y, 
0.0); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, &numBytes, buffer); 

sprintf(buffer, "Knee\r"); 
numBytes-(long) strlen(buffer); 
FSWrite(refNum, inumBytes, buffer); 

sprintf(buffer, "%d %. 121e %. 121e %. 121e\r", 4, 
gResults[frameCounter]. hip. x, 
gResults(frarrCounter]. hip. y, 
0.0); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, inumBytes, buffer); 

sprintf(buffer, "Hip\r"); 

numBytes-(long) strlen(buffer); 
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FSWrite(refNum, inumBytes, buffer); 

sprintf(buffer, "%d %. 121e %. 121e %. 121e\r", 5, 
gResults(frameCounter3. noseTlp. x, 
gResults(fran CounterJ. noseTip. y, 
0.0); 

numBytes-(long) strlen(buffer); 
FSWrite(refNum, &numlytes, buffer); 
sprintf(buffer, "Nose Tip\r"); 
numBytes-(long) strlen(buffer): 
FSWrite(refNum, &numBytes, buffer); 

} 
} 

/* close file */ 

FSClose(refNum); 

/* finished */ 

XAxisize() 

/* routine to rotate model so that body COM is on the x axis */ 

#include "Params. h" 

void XAxisize(model) 
ModelCoordinates *model; /* model */ 
{ 

double angle; /* rotation angle */ 

/* calculate centres of mass */ 

CentresOfMass(model); 

/* find angle of body COM off centre */ 

angle-atan2(model->bodyCOM. y, model->bodyCOM. x); 
angle*-(-1); 

/* now perform all the rotations */ 

Rotate(&model->midTarsalJoint, angle); 
Rotate(&model->ankle, angle); 
Rotate(&model->knee, angle); 
Rotate(&model->hip, angle); 
Rotate(&model->noseTip, angle); 

/* and redo centres of mass */ 

CentresOfMass(model); 

L' 
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