
A Study of Leaping in
Prosimian Primates

September 1992

Thesis submitted in accordance with the requirements of the University of Liverpool for

the degree of Doctor of Philosophy by William Irvin Sellers

LWERPOOL

U NIV RSITY
Lill

Contents

Abstract ... iii

Acknowledgements ... ü

A Study of Leaping in Prosimian Primates......., 1

Introduction.,,... .. 1

Locomotor Function .. 1

Locomotor Ecology .. 7

Mechanical Considerations ... 12

Aims .. 14

Methods .. 15

The Animals .. 18

Filming .. 21

Measurements. .. 28

Kinematic Analysis ... 31

Signal Processing ... 31

Differentiation. ... 33

Angular Properties ...
33

Centre of Mass ... 34

Trajectory .. 35

Segment Mass Properties ... 37

Inverse Dynamics .. 45

Results - Section .. 51
Leaping Trajectory

..
51

Theory ... 51

Results .. 53

Discussion ... 59

Distance Relationships ... 64

Theory ... 64

Results .. 72

Gravity Effects ... 82

Mass Relationships ... 84

Theory ... 84

Results .. 87

Predictive Leaping Model .. 92

Theory ..: 92

Results .. 99

Model Performance ... 130

Discussion .. 133

Kinematographic Measurements .. 133

Leaping Trajectory .. 134

Species Differences ... 139

Scaling Models .. 140

Predictive Modelling ... 142

Conclusion .. 144

Technical Development ... 146

User Guide .. 147

gap ... 147

Installing the program ... 147

Setting up a model ... 150

Running the Program ... 153

Measuring the Film .. 153

Getting Output ... 155

Menus ... 15 6

digit. eze ... 161

Installation ... 161

Running the program ... 162

stretchpic .. 164

Installation .. 165

Running the program ... 165

Leaping Model ... 166

Installation .. 166

Running the program ... 166

Technical Description ... 173

gap 173

Features ... 173

Structure ... 177

dlgit. eu ... 201
Software .. 202

Hardware ... 203

File Type '..:........... 205

stretchpic .. 207

Predictive Leaping Model ... '............. 207

Features ...:...
207

Structure ... 208

Appendix - Source Code .. 211
gap

...

211

C Routines ... 211

FORTRAN Glue Routines .. 318

digit. exe ... 324

C Routines ... 324

stretchpic .. 339

Leaping Model ... 341

C Routines ... 341

References .. 377

A study of leaping in prosimian primates

By William Sellers

Abstract

This study investigates the biomechanics of leaping in a group of six prosimian

primates: Microcebus murinus, Lemur cotta, Cheirogaleus major, Mirza coquerel4

Galago garnettii and Gatago mohoii. They cover a 40 fold mass range and include

animals from the three commonly recognized distinct prosimian leaping

categories. The animals were filmed leaping under controlled captive conditions

to obtain kinematic and kinetic data. This data was used to formulate a

predictive model for leaping to enable the analysis of internal forces.

As an integral part of this project, a large amount of technical development

work was done to produce a complete, computerized video gait analysis system.

This uses digital image storage and on-screen calibration and measurement to

enable flicker free analysis at a 0.02s interval. The system is capable of 3D

reconstruction from twin camera systems at arbitrary positions and real-time 3D

animation of a solid rendered model.

Counter to expectations, except for Galago moholi, the animals were found not

to use the 45° takeoff angle predicted by a maximum efficiency hypothesis

except for very long leaps. Even for G. mohoU, there was considerable variation

in leaping angle, though this variation has only a minor energetic cost. A

constant force model was found to be a reasonable predictor for the observed

leap parameters. Hind-limb extension was seen to show strong positive

allometry with increasing body mass. The predictive model indicated that

leaping was mainly hip driven in all the animals with appreciable negative work

being performed at the knee joint in all the animals except Galago moholi. It

also showed the importance, in this model, of torque about the takeoff point.

Acknowledgements

I would like to thank the following people for their help and guidance

during the course of this project: Robin Crompton, Michael Günther.

Russell Savage, Professor Wood and the other members of the Primate

Evolution and Morphology Group at Liverpool University; McNeil

Alexander at Leeds University; Nick Ellerton and his staff at Chester Zoo;

Elwyn Simons, Lousie Martin and the animal technicians at Duke

University Primate Centre; Jean-Jacques Petter, Emanuelle Goix and the

keepers at Paris Zoo. I would also like to specially mention to my stars:

Bitters, Rapunzel, Seritra, Tuff and Viburnam.

There are also a number of other people whom I would like to thank for

helping me retain, and at times lose, my sanity (they will understand this

cryptic reference).

This work was funded by grants awarded to Robin Crompton from the

Liverpool Research Development Fund, the Hasselblad Foundation and

the Science and Engineering Research Council.

Si je vous racontE cus ditails sur ('asteroid B 612 et si je vous ai confii son
numiro, c'cst k cause des grandes personnes. Les grandes personnes aiment (es

chins. Qjand vous ltur par(z dun nouvcf amt, tiles ne vous questionent jamais

sur t'csscntiel ¶Q'is ne vous & sent jamais: tojtd cst !c son dc sa voit? Qiuls sont (es

jcux qu'il prifir? Bst"ce qu'if coffectionne ! cs papiQ"ions? a E. llcs vous dcmandcnt:

tQltef 4gc a"t"i!? Combien a"t-il dc frires? ComSicn plsc"t"it? Combicn gagnc son
pert? i Alors scukmcnt dies croient !c connaitrc. Si vous dites auzgrandes personnes:

r9'ai vu une 6cflc maison en briquc roses, avec des geraniums aux fcnitres et des

colom6ct sue !c toit... º tiles ne parviennent pas ci s'imaginer cette maison. If faut
four due: rl'ai vu une maison de cent mi!! e francs... '4lors dies s'icrient: rComme

c'est joils

Ainsi, si vous (cur Mites: «La preuve que (e petit prince a etisti eist qu'i! itait

ravaissant, qu'if riait, et qu'if voulait un mouton. Qpanä on veut un mouton, c'cst
!a preuve qu'on e&iste', dies hausscront (es Epaulrs et vous traiteront ä'cnfantl Mais

si vous lour &tes: rLa planlte d ou il venait est ('astlroUe B 612k, alors dies seront

convaincues, et dies vows (aisseront tranquilly avec (curs questions. B(tes sort comme
ca. I! ne faut pas (cur en vouloir. Les enfants doivent Ztre tris inäulgents envers (es

granäes personnes. (Saint"E. xupdry 1946)

Introduction Page (1)

A Study of Leaping in Prosimian
Primates

Introduction

The object of this project was to study the design of a locomotor system

in the context of its ecology and morphology'. Leaping was chosen for

several reasons: there are some clear morphological correlates between

leaping proclivity and, for example, intermembral index2 (Walker 1974);

it as a form of locomotion that leads to very high forces on the skeleton

compared to other forms of locomotion (Calow and Alexander 1973) and

so is more likely to elicit structural adaptations3; in addition, leaping is a

relatively simple form of locomotion, obeying well understood ballistic4

principles (eg. Gibbs 1990, Norton 1987).

Locomotor Function

Primates are popular animals in which to study locomotion: for an order

with a small number of species, they show a very wide range of locomotor

behaviours, with only flight and burrowing being entirely missing, and

1The concept of a relationship between form and function stems from the early attempts to
understand the world in a rational way postulated by Plato (428-348 B. C.) and continued by
Aristotle (384-322 B. C.). To Plato, the form of a structure, biological or otherwise, could be
understood from its function, since it was the function that dictated the form. However, the
philosophies of the Greek thinkers considered that ideal generalizations were true and
unchangeable and variation was illusion: an imperfect reflection of reality. Whereas, the
more modern concept is that the generalization is merely a convenient reflection of the
pluralities of reality (Strickberger 1990).
2The intermembral index is the ratio of the ulna and humerus length to the tibia and femur
length. Its value is generally lower in primarily leaping species.
3Prost, when attempting to establish a methodology for summarizing the locomotor
behaviour of a species, contrasts "critical locomotor habits" with "frequent locomotor habits',
stressing that the frequency of a behaviour may not be a valid indicator of its adaptive
importance to the animal (Prost 1967). Leaping may be relatively infrequent, but of extreme
importance both anatomically and ecologically.
4Ballistics is the `science of projectiles', and has been studied with a great deal of
enthusiasm ever since the first ballista was used to destroy the walls of a castle.

A study of leaping In prosimian primates

Introduction page (2)

swimming only represented in a very minor way (Napier and Napier

1985). Among the primates, the prosimians show the greatest degree of

specialization ý for leaping behaviour. It includes slow quadrupedal animals
that are never seen to leap such as Perodicticus potto (Charles-Dominique

1977) and expert leapers such as Galago senegatensis which is reckoned
by some authors (eg. Schmidt-Nielsen 1983) to hold the record for a

standing vertical jump of 2.25m under well controlled conditions (Hall-

Craggs 1965).

Notes and observations on the locomotor behaviour of prosimian primates

have been made sporadically since the late 19th century (eg. Shaw 1879,

Thomas 1896). However, until, the general acceptance of the locomotor

classification proposed by Napier and Napier (Napier and Napier 1967),

quantitative descriptions of locomotion were hampered by ambiguities in

descriptive terms. Indeed, even subsequently, there have been relatively

few quantitative studies of general locomotion which has led workers

such as Oxnard., Crompton and Lieberman (Oxnard et al. 1990), requiring

comparative activity frequency data, to devise a semi-quantitative scoring

system based on the descriptive terms found in the literature.

The term vertical clinging and leaping was coined in 1967 (Napier and

Walker 1967) to describe the general form of leaping in primates. The

locomotion of Tarsus bancanus is perhaps the best example of this form of

locomotion with the animal leaping between vertical supports for 61% of

the time (Crompton and Andau 1986). However, this term is somewhat

too restrictive, and has been expanded on morphological and behavioural

grounds to include 3 sub-divisions: indriid-type, epitomized by Indri indrt;

galagine-type, for example Galago senegalensis; cheirogaleine-type as in

Microcebus murinus (Oxnard et al. 1981a, b).

A study of leaping in prosimlan primates

Introduction Page (3)

Locomotion was initially studied as an isolated phenomenon (eg. Marey

1874. Muybridge 1899) in laboratory environments. The gross

correspondence between overall body proportions and locomotor

behaviour was soon recognized by anatomists (eg. Mollinson 1911,

Schultz 1930). Ripley's work In 1967 (Ripley 1967) treated locomotion

as just another form of behaviour that could not be divorced from other

behaviours such as play, feeding and social interaction. In addition,

workers such as Napier and Napier (Napier and Napier 1967) started

stressing the importance of the structural aspects of the environment to

primate locomotion: in particular its continuity or discontinuity.

Subsequent fieldworkers recorded locomotor data in the context of

support use and overall behaviour (eg. Bearder and Doyle 1974. Fleagle

1976, Charles-Dominique 1977).

A parallel approach to these classical comparative studies is the study of

biomechanics5. Here, two types of studies stand out (Emerson 1985):

investigations into the effects of scaling in animals, specifically jumping

in this case; analyses of muscle forces, bone stress and energy storage.

The effects of changes in body mass were first postulated by the ancient

Greek philosophers, and re-iterated by renaissance scholars, but perhaps

the classic paper on scaling as it might affect the locomotor system was

based on a "Friday Evening Discourse" given by Hill at the Royal

Institution in the autumn of 1949 (Hill 1950). He showed that

geometrically similar animals would be expected to leap the same

distance regardless of size. This has been shown to be largely true in a

5Biomechanics is simply the application of engineering mechanical principles to bilogical
systems. The first real "biomechanicians" were probably Leonardo DaVinci, Galileo,
Lagrange, Bernoulli and Euler (Winter 1990). Borelli was also an extremely important
early pioneer. For a more generalized definition of the term, see the article by Hatze in the
Journal of Biomechanics (Hatze 1974).

A study of leaping In prosimian primates

Introduction Page (4)

very broad sense: Schmidt-Nielsen compared the maximum jumps of

animals varying in mass by a factor of 108 (Schmidt-Nielsen 1983). On a

more specific level however, for example in frog species of differing sizes
(Emerson 1978), it can be shown' that this prediction does not always
hold up. In this case, absolute jump distance increased with body size.

This implies either that the basic assumption of Hill's model, geometric

similarity, may be wrong, or that some other aspect of the locomotor

physiology may not scale appropriately. Frog body shape does appear to

be conserved for different masses (one of the reasons why frogs were

chosen for this study), but later work (Sperry 1981) has shown that,

unlike the situation in mammals, the number of muscle fibres per unit

area of muscle increases with increasing body mass in frogs which may

account for the discrepancies.

In addition, the effects of scale mean that the power required per

kilogram body mass for a given jump distance increases as body size

decreases (Bennet-Clark 1977), so that at some point, as animals reduce

in size, it is no longer possible to leap a given distance by relying solely

on direct muscle action. For small animals, long leaps require some form

of elastic storage mechanism, for example the catapult action of a flea

(Rothschild et al. 1972) using the elastic energy storage properties of

resilin (Weiss-Fogh 1960).

Analyses of muscle forces, bone stress and energy storage have been

performed in several ways: in the first instance, simple observation of the

movements of the segments of the hind-limb by high-speed cine

photography (eg. Hall-Craggs 1964) extended by using cine-radiography

to observe the actual positions of the bones rather than the limb outlines

(Jouffroy and Gasc 1974). Incorporation of muscle physiological and

anatomical data, and calculation of forces from observed accelerations, is

A study of leaping In prosimian primates

Introduction Page (5)

the next step in this analysis (Hall-Craggs 1977). An external force plate

was used to greatly increase the accuracy of internal force measurements

to investigate the jumps of frogs (Calow and Alexander 1973), a dog

(Alexander 1974) and the kangaroo (Alexander and Vernon 1975). To

date, perhaps the most complete investigation, using high speed

cinematography, a force plate, and telemetered electro-myography6 all

combined, is the work by Günther on Ga. lago moholi (Günther 1989).

These latter approaches allow the calculation of the total forces around

joints and the overall stresses on the skeleton. However, in most cases in

mammals, the actions of muscles around joints are extremely

complicated. Individual muscles combine in groups for any given action,

with other muscles firing antagonistically to improve joint stability, so

that, even with EMG, it is impossible to identify the precise contribution

of each muscle at a given stage in a movement. The number of muscles

present, (especially if one considers that each muscle may have a number

of functionally independent bundles of fibres) is considerably greater than

the number required to control the mechanism (Alexander 1983), so that

it is impossible to calculate the röle of an individual muscle without

making further assumptions. Internal forces can, be measured by

appropriate invasive surgery. Strain gauges can be fixed internally to

muscle tendons (Riemersa et al. 1988) so that the actual force generated

can be measured at all stages of the movement. In a similar fashion, - strain

gauges can be attached directly to bones (eg. Lanyon and Bourne 1979).

However, this approach is not often practicable, and the surgery itself

6Electro-myography, or EMG, is the recording of the electrical activity of muscles using
implanted or surface mounted electrodes. Telemetry is simply measuring remotely, that is
using a radio transmitter mounted on the animal to send the signals from the EMG
electrodes to a receiver some distance away, to avoid the problem of trailing wires
interfering with the animal's movement.

A study of leaping In prosimtan primates

Introduction Page (6)

may cause atypical movement. It is clearly unethical to use invasive

experimental techniques on endangered species.

Turning the problem around: deciding on the goal of locomotion and

then postulating mechanisms that might achieve it, is one way out of this

problem. The first attempts to do this were by building machines that

could mimic natural movements. For example, the first legged vehicle

that could walk by itself under computer control was the "Phoney Pony"

built by Frank and McGhee in 1966 (McGhee 1966). The difficulties in

building such a machine can help highlight the actual problems in the

natural system that it is - attempting to copy. In addition, with a

sufficiently realistic model, measurements can be taken from the model,

and these will have some bearing on the values to be expected in the real

world. With the recent improvements in computing technology, it is no

longer necessary to actually build working models for systems. They can

be simulated in an entirely abstract form. Early work was done with

specifically written software with highly simplified models of limb

movement (eg. Townsend and Seireg 1972). but now, general purpose

predictive dynamic software packages are available that can be used to

model any mechanical system (eg. DADS 1989, ADAMS 1990). ADAMS in

particular, has been specially adapted to allow modelling of human

movement with a special pre-processor called ANDROID. Currently,

much of the predictive work is being done in the fields of robotics (Paul

1981) and in computer aided animation (Armstrong and Green 1985).

Simulations of simple biological movements have been reasonably

successful, but because of the severe constraints required for a true

forward solution model, more complicated forms have not yet been

validated (Winter 1990).

A study of leaping In prosimian primates

Locomotor Ecology Page (7)

Locomotor Ecology I

In a paper written in 1963. Tinbergen suggests that the ethologist should

attempt to answer the questions of the causation, development, survival

value and evolution of a behaviour pattern (Tinbergen 1963). These

questions have come to be known as the "Tinbergen Why's": the first two

involve looking for the proximate causes and the second two, the ultimate

causes of an observed behaviour. Biomechanics specifically answers the

causation question: how does an animal perform a particular action? It

can also have some bearing on development, since it is known that bones

are remodelled depending on the forces they experience during life

(Curry 1984). However, questions about survival value and evolution must

be viewed in the context of the other behaviours of the animal and its

environment. This is the purpose of locomotor ecology.

Evolution is, to a great extent, driven by natural selection, as described by

Charles Darwin (Darwin 1859). Natural selection tends to maximize an

individual's inclusive fitness7; that is, not only its own reproductive

success, but also that of its kin (Hamilton 1964). In other words, its total

genetic contribution to subsequent generations. In practice however.

measuring inclusive fitness is extremely difficult. Simple reproductive

success is usually a good measure (Grafen 1982), but even this requires

long term studies and because of the complexity of the natural

environment it is almost impossible to measure the change in fitness that

derives from a specific behaviour pattern.

7Fitness, as in Darwin's "survival of the fitest", was not rigorously defined by Darwin
himself. However, it is now widely recognized by biologists to be a measure of the capacity
to produce offspring (McFarland 1985).

A study of leaping In prosimian primates

Locomotor Ecology Page (8)

One approach to this problem is to evaluate the costs and benefits

associated with a particular behaviour, most behaviours (and indeed most

aspects of an animal's biology) are a compromise between their merits

and their disadvantages. Animals are faced with alternative options and

they need to make a trade-off between the costs and benefits associated

with each. From an evolutionary standpoint, it would be expected that a

well adapted animal would make optimal choices to maximize its

inclusive fitness, so that measuring the costs and benefits of a particular

behaviour can allow some estimate of the real goal of measuring fitness.

Analyzing costs and benefits requires the separation out of the

increments and decrements to inclusive fitness ascribed to each aspect

of the animal's internal state and behaviour. The total specification of an

animal in these terms is its cost function which can be defined as the

"specification of the instantaneous level of risk incurred by (and

reproductive benefit available to) an animal in a particular internal state,

engaged in a particular activity in a particular environment" (McFarland

1977,1985).

It is unrealistic to try to measure the complete cost function for an

animal, but one can try to identify aspects that are important.

Considering the röle of locomotion, a number of hypotheses can be

postulated as to how its design may lead to the least cost, or greatest

benefit:

(1) An animal can be designed to minimize the energy cost of its

locomotion. The less energy the animal has to use to move around, the

more energy it will have available for other activities, such as

reproduction, and the less food it will need to survive.

A study of leaping In prosimian primates

Locomotor Ecology Page (9)

(2) An animal can be designed to - minimize the time - it spends
"locomoting". In other words, it maximizes its locomotor, , performance.
This may be because time is the major limiting factor for its other

activities: it has plenty of energy, but insufficient time to do all that it

would ideally want to do. Alternatively, improving performance may

enable the animal to do' things that it otherwise could not: such as a

cheetah being able to catch its prey; or a rabbit being able to outrun its

pursuers.

(3) Or. an animal may design its locomotion to maximize its safety. This

may be accomplished by reducing the risk of physical injury or by

reducing the chance of predation.

Obviously, in a real world situation, the design has to take all these

considerations into account to some degree. The optimal design will be a

compromise, but certain factors will generally be considerably more

important than others. Experiments on bumblebees (Heinrich 1979)

indicate that when the animals have to travel some distance to find

productive flowers time is the limiting factor: it is worthwhile to expend

energy in order to save time. When foraging on relatively unproductive

flowers, or when foraging at low temperatures, energetic efficiency

becomes more important, and the bee slows down in order to save

energy. Observations on squirrels eating chocolate chip cookies in a park

(Lima et al. 1985) show that the animal is not primarily concerned with

either time or energy: the squirrel grabs the cookie and retreats to a tree

to eat it. This behaviour has been interpreted as minimizing predation

risks.

The various benefits and costs associated with leaping locomotion can be

summarized as follows: I

A study of leaping In prosimian primates

Locomotor Ecology Page (10)

Leaping, as a form of horizontal locomotion, is moderately expensive
(Walton and Anderson 1988). Walking, in an appropriately designed

animal on a level surface, is extremely cheap, with energy recovery rates

per stride as high as 70% (Cavagna et al. 1977), and galloping and

hopping allow elastic energy recovery between. cycles which reduces

their energetic cost (Heglund 1985). In a three dimensional

environment, leaping may provide a relatively, cheap way of gaining

height. It is certainly much quicker than climbing.

The speed of leaping depends on the takeoff angle. At its most efficient

angle of 45°, it is relatively slow compared with galloping (Günther et al.

1991). However, at shallower angles, it compares more favourably. In

fact, galloping can be described as a series of connected, shallow leaps.

The difficulty of leaping any appreciable distance at a shallow angle is

probably one of precision. At small takeoff angles, a small change in angle

has a very large influence on the distance leapt, and an error that led to

too small a distance being covered could have very serious consequences.

The main advantage of leaping is that it enables the animal to cope with

discontinuities in the substrate. Thus, Galago mohoii can leap from tree

to tree, instead of having to climb down one tree, move across the ground

to the other, and climbing back up the second tree. This latter approach

would almost certainly be both more expensive energetically and slower

(Crompton 1984).

As far as physical injury goes, leaping is extremely risky. There is only

very limited scope for correcting a bad leap in mid-flight since no

external forces can be brought into play, and the animal risks missing the

destination substrate completely, which, in an arboreal environment,

could lead to a possibly fatal fall (Cartmill 1985). Compared to this, the

A study of leaping in prosimian primates

Locomotor Ecology Page (11)

risks of missing ones footing when galloping along a branch would seem
to be lower. However leaping is a good way of avoiding predators.

Arboreal predators, including snakes, may not be able to leap so that the

primate can escape by leaping from one branch to another, or to another

tree. For aerial predators, such as raptors, leaping from tree to tree does

expose the animal. However, moving along the ground between trees

leads to exposure to terrestrial predators as well as aerial ones, and

would generally be much slower (Crompton 1980).

Leaping is an extremely good means of predator avoidance. It combines a

rapid start with poor direction predictability (Emerson 1985). A non-

leaping animal on a branch is restricted to escaping along that branch. Its

escape direction is easily predicted so that the chances of capture are

higher. A leap can be off in any direction and is therefore very much

harder to predict. The only disadvantage is that during the flight phase of

the leap, the animal is totally committed to its choice. It has no option of

changing mid-way.

In addition, leaping has also been suggested as a means of prey capture.

Insects can be captured in mid-air, or a sudden pounce can be used to

catch animals on the ground (Crompton 1984).

A study of leaping in prosimlan primates

Mechanical Considerations Page (12)

Mechanical Considerations

Leaping is a ballistic form of locomotion. During the takeoff phase, the

animal applies a force to the substrate to accelerate it to the required

takeoff velocity. During the flight phase, it acts as a projectile, moving

through a parabolic path dependent entirely on the initial takeoff angle

and velocity. The effect of air resistance depends on the animal's size, but

is minimal for the prosimian range (Bennet-Clark 1977). There is some

evidence that gliding may be used to extend the flight path a small

amount (Günther 1991). Drag and relative rotation of parts of the body

are used to adjust orientation during flight (Dunbar 1988).

For efficient leaping, an animal should have very light limbs to minimize

the energy lost in internal kinetic energy (Alexander 1983). The total

mass of the animal should also be kept as low as possible. It is also

important to have sufficient precision to propel the centre of mass in a

straight line throughout the takeoff phase. This should also be chosen to

be 45° (Emerson 1985). Any deviation requires extra energy expenditure

to correct. The choice of substrate will also affect the energy cost.

Ideally. a rigid start support should be used so that no energy is wasted

bending the branch, and a flexible landing support should be used to

dissipate the kinetic energy of the jump externally without the animal

needing to do any negative work.

For maximum performance, the animal needs long, strong hind-limbs

relative to its body mass. Takeoff velocity depends both on the force

applied and the length of time for which the force is applied. Longer

limbs prolong the contact phase and lead to a higher takeoff velocity and

hence a longer leap (Emerson 1985). The ideal takeoff angle depends

upon whether the animal is trying to maximize speed or jump length. 45°

A study of leaping In prosimian primates

Mechanical Considerations Page (13)

leads to the maximum possible jump distance, but for maximum speed,
the shallowest angle that allows the animal to leaps the required distance

is needed. By choosing a suitably "springy" start substrate, the animal

may be able to store up energy from a previous jump and use the branch

like a springboard to extend the maximum range of a leap (Günther

1991). Landing on a rigid substrate is also generally quicker since the

animal is able to recover its poise faster.

For safety, an animal needs stronger, shorter limbs to reduce the chance

of breakage. Obviously, higher performance jumps are intrinsically more

risky, and a flexible, cushioning destination is preferable. Falling damage

is a real risk for arboreal primates (Alexander 1989).

As mentioned before, the overall design must be a compromise among

these features. For example: light hind-limbs will be efficient; long and

powerfully muscled ones will produce the longest jumps; extremely

robust limbs will be safest. There is a trade-off between the requirements

for the different design goals.

Also, leaping adaptations can affect other related locomotor and non-

locomotor activities that the animal might wish to perform. For example,

efficient walking depends on the stride frequency being close to the

natural pendulum frequency of the limbs (Hildebrand 1985). Leapers

tend to have elongated hind-limbs for the reasons mentioned above. This

makes them less efficient walkers since the natural pendulum

frequencies of their fore and hind limbs differ.

A study of leaping in prosimian primates

Alms Page (14)

Aims

The aims of this study were five fold:

(1) The development of a computerized system for the kinematic and
kinetic analysis of locomotion. This system should be as flexible as

possible, allowing two and three dimensional measurements of arbitrary

models. The main source of raw data would be video tape, so that

facilities to make the measurement of still video images as easy, reliable

and rapid as possible were also required. Data output from the package

was to be smooth running, three dimensional animations: on-screen or

printed graphical displays; numerical data in suitable formats for import

into spreadsheets and statistical programs.

(2) The design, and use of an experimental protocol to investigate the

mechanics of leaping. This had to cope with the restrictions imposed by

working with endangered species: very limited manipulation of the

animals, and only minimal disturbance to their cage environments.

(3) To test the hypothesis that the animals would generally choose to leap

in such a fashion as to minimize their energy expenditure by looking at

the takeoff angles used by the animals.

(4) To formulate and test the predictions of a number of simple leaping

and scaling models by looking at the effects of varying body mass and leap

distance on a number of measured kinematic and kinetic leap

parameters.

(5) To develop and test a predictive model of leaping that could in future

be used as an investigative tool for non-observed behaviours such as
leaping in lorises and in fossil and sub-fossil prosimian species.

A study of leaping in prosimian primates

Methods Page (15)

Methods

The basic technique I have chosen to use to look at the mechanics of

leaping is kinematic an alysis. This is the study of motion by looking at the

positions of all the components of a system with respect to time. This

technique was pioneered by Muybridge in the 1880s (Muybridge 1889)

who photographed a large number of animals using a series of still

cameras triggered electrically. He had been asked to solve the vexing

question as to whether all four limbs of a horse left the ground during a

trot. He was able to get the first sufficiently good photograph on a freshly

made wet collodion plate to freeze the motion in mid-stride. and to

reveal that all four legs did indeed leave the ground at once. The early

pioneers of high-speed photography followed on in a similar vein

qualitatively describing things that happen too quickly for the unaided

eye to follow.

The natural extension of this is to obtain quantitative data. This involves

calibrating the optical system being used and measuring the positions of

interest on the resultant frames. This is a relatively simple, if rather

time-consuming exercise since there can be many thousands of frames to

measure. Much more recently, with the advent of cheap and powerful

computing facilities, attempts have been made to automate the

measurement process. Various systems are available that can recognize

markers, but these are still extremely expensive and can be a little

unreliable. This will doubtless all change in the not too distant future.

Presently the options for filming are between video and photographic
film. Each has merits and disadvantages Video is cheap, the camera gives

instant feedback of success or failure, timing is very precise, and they can

often function in relatively low light levels. However, normal video has a
low resolution, and the framing rate is also low even though the shutter

A study of leaping In prosim(an primates

Methods Page (16)

speed can be very high. 8 Photographic film is more expensive and one

has to wait for the film to be developed before the quality of any particular

sequence can be assessed. It can operate at much higher framing rates,

though the shutter speed is often a direct function of this rate so that a

camera capable of very high rates may be required simply to freeze the

motion. The resolution of the eventual picture is very much higher,

though the light level required is much higher too. In addition, the

framing rate usually has to be measured by incorporating timing marks.

The choice between the two is thus complicated and it is not possible to

generalize on the suitability of either. Non-standard video formats are

overcoming some of the disadvantages of video. Both high speed and high

definition cameras exist, though not, unfortunately, high speed and

definition in the same unit. 9 In this study, since some of the animals were

nocturnal zoo specimens, it was a requirement to cause as little

disturbance to the animals as possible. This effectively ruled out using

movie film because it would have required more too much light. This also

gave scope to try out some innovative analysis techniques which will be

discussed later.

An attempt was also made to try 3D kinematic analysis. This is basically

an extension of still stereo-photogrammetric techniques. However, it is

not without its difficulties. Firstly, still photogrammetric cameras are

extremely precisely built, often using glass photographic plates to insure

a completely flat focal plane. They are carefully calibrated so that their

8The framing rate is the number of discrete frames exposed each second. The shutter speed
is the amount of time any particular frame is exposed to the light. Thus a high shutter speed
is required to freeze movement, (even a still camera, can freeze movement) but a high
framing rate is required to slow it down.
9For an excellent review of filming techniques, and of other methods of obtaining
kinematic data, see Winter 1990.

A study of leaping In prosimlan primates

Methods Page (17)

optical parameters can be described mathematically. This level of

precision is just not possible with moving pictures with out very great

expense. Secondly, if two or more cameras are being used to produce the

images, they need to be exactly synchronized so that they show the

moving subject frozen at exactly the same instant. The first problem has

been overcome by a variety of mathematical approximations that allow

calibration of the cameras in-situ, for example, the direct linear

transform (DLT) equations (Shapiro 1978). The second cannot yet be

easily countered using film cameras, but with video, a technique known

as genlocking is used to electronically synchronize all the cameras. This

is a standard broadcast technique because video signals need to be

synchronized to allow mixing.

Historically, there are a number of other techniques for analyzing motion.

Their use currently is restricted to specialized applications. Strobe lights

can be used to illuminate a subject moving in front of a still camera with

its shutter held open. This produces a set of overlaid images of the

moving target; one for each flash of the strobe. The images produced

tend to be fairly poor quality, and the flashing strobe can be off-putting

for the subject. However, it is very cheap, and the effective framing rate

that can be achieved is comparatively high. Alternatively, various

mechano-receptors can be attached to the subject's body. These can relay

telemetered signals indicating position, bending, velocity and

acceleration. The main advantage of these is that the measurements can

be read directly by a computer. Also, the measurements are continuous

rather than discrete which greatly helps mathematical analysis later on.,

Indeed, one of the biggest problems, that of getting accelerations from

position data, is completely alleviated by measuring the acceleration

directly. The "down-side" is that there is a great deal of interference

with the subject wiring up all the sensors. and they are limited to

A study of leaping In prosimian primates

Methods Page (18)

measuring exactly the positions where they are attached. Their accuracy

depends on their mounting method. Direct bone mounting on

experimental animals is extremely precise. but skin attachment to

measure a human hip joint is much less so. 10

X-ray photogrammetry is an obvious extension for skeletal motion

analysis. It allows the joints to bee seen directly without having to infer

their positions from external appearances. It has been done for a very

limited number of primate species, and only once for a leaping prosimian

(Jouffroy and Gasc 1974) but is currently limited by the expense and the

limitations of the equipment. There are also problems with the radiation

dosagell required and the limited size of the field of view.

The Animals

Six prosimian species were used in the study. They have a 40 fold

variation in body mass and there is at least one representative from each

of the three main prosimian leaping classifications. They are described

here in order of leaping proclivity with the most frequent leaper first

(Oxnard et al. 1981).

Galago moholi, the lesser bushbaby. (a galagine-type leaper)12 was filmed

at Duke Primate Centre. The individual used in the experiment,

Viburnam, was an adult male in good health, weighing 0.21kg. The lesser

10Again see Winter 1990
1lgoth to the subject animal and to the human experimentor. Jouffroy describes her subject
as suffering from `a slight radiodermatitis" after filming. Whilst this sort of exposure will
not lead to an unduely large dose to an extremity, if given to the whole body, it is likely to
lead to bone marrow depression which is clearly unacceptible when working with
endangered animals.
120xnard and his co-workers sub-divided leaping behaviour in prosimians into three sub-
groups depending upon a multivariate analysis of a number of anatomical and behavioural
factors. These groups are entitled indriid-type, galagine-type and cheirogaleine-type.
(Oxnard et al. 1981, Oxnard et al. 1990)

A study of leaping In prosimian primates

Methods Page (19)

bushbaby is widespread in sub-saharan Africa in a wide range of habitats

from sea level to 1,500m (Bearder and Doyle 1974). It is about 16cm long

and the mean wild caught weight is about 0.25kg (Rasmussen and Izard

1988). It is mainly a gum feeder, though it also eats small animals

(Oxnard et al. 1990).

Microcebus murinus. the grey mouse lemur. (a cheirogalein-type leaper)

was filmed at Duke. The subject was Bitter, a 0.066kg male. This species

is primarily insectivorous, though with a reasonable quantity of fruit in its

diet. It inhabits dense tangles of foliage in the forest fringe habitat. These

tangles can, however have a markedly different vertical position, being at

ground level in secondary forest. but 30m up in the canopy in primary

rainforest (Oxnard et al. 1990). An average weight is approximately

0.08kg (Harvey et al. 1987).

Mirza coquereli, Coquerel's mouse lemur, (a cheirogalein-type leaper) was

also filmed at Duke. The individual studied was called Seritra, was female,

and weighed 0.35kg. It lives in the lower 6m of the forest, moving mainly

on horizontal supports. Its diet consists mainly of animal items and fruit

(Tattersall 1982). Interestingly, in the dry season, it survives on the

secretions of homopteran larvae. An average weight is about 0.3kg. 13

Galago garnettii, the greater bushbaby, (a galagine-type leaper) was also

filmed at Duke Primate Centre. Tuff, the animal studied, was male and

weighed 1.13kg. It has a more restricted range than Galago senegaiensts,

being restricted to dense evergreen forest and riparian bush in south-

central Africa where there is a plentiful supply of fruit (Bearder and Doyle

13Mirza coquereli and Galago crassicaudatus have the same recorded leaping frequency
(Oxnard et al. 1990). I have put them in this order because in my experiments, Mirza
coquereli was the more enthusiastic leaper.

A study of leaping In prosimian primates

Methods Page (20)

1974). Galago gamettii has an average weight of about 0.9kg (Nash and

Harcourt 1986). Its diet consists of about equal quantities of fruit and

animal items (Oxnard et al. 1990).

Lemur catta. the ring-tailed lemur, (an indriid-type leaper) is rather

larger than the other animals in this study. and is the only diurnal one. A

group of these animals were filmed at Chester Zoo where they had been

encouraged to leap across a 2.2m horizontal gap to a feeding site. It was

not possible to identify individuals in the film, so a nominal figure of

2.7kg was used for the mass (Harvey at al. 1987). Lemur catta has been

widely studied, but its behaviour appears to be very flexible. It eats mostly

fruit, leaves and flowers (Oxnard et al. 1990). It is fairly widespread in

Madagascar in moist and dry forests, but not in open country (Napier and

Napier 1985).

Cheirogaleus major, - the greater fat-tailed dwarf lemur, (a cheirogalein-

type leaper) filmed at Duke Primate Centre. Rapunzel was female and

weighed 0.34kg. Very little is known about these animals in the wild.

However, it lives in tropical rainforest in Eastern Madagascar, where it

utilizes mostly large diameter, horizontal branches and is largely

frugivorous. Its mean mass is 0.35kg (Napier and Napier 1985).

4. .e

A study of leaping In prosimlan primates

Filming Page (21)

Filming

Most of the filming was performed at Duke Primate Centre in North

Carolina using the experimental setup described below. In addition, some

film for Lemur cotta was taken at Chester Zoo. 14

The subject was housed in a relatively large, empty cage with only two

supports that could be conveniently used by the animal. The camera was

placed so that the field of view covered the area on the first support from

which, it was hoped, the animal would leap. During the course of the

experiment, the second support was positioned at varying distances from

the first support, and the animal was filmed whenever it leapt between

the two supports. In this way, horizontal leaps with no height change

over a known distance could be reliably measured. Restricting the

number of available supports, and positioning these supports well off the

ground improves the chances of the animal leaping the whole distance.

The problem with floor mounted force plate type experiments with

untrained animals is that the animal tends not to jump the desired

distance, but hops along the floor instead (M. Günther personal

communication). Food rewards were placed on the second support to

encourage the animal to leap, and the animal's nest box was placed near

the first support to encourage it to go there. Animals were moved from

their normal cages into the experimental cage, and leaps were recorded

over the next several weeks, as the animal explored its new environment.

In general, there was little activity for the first few days, but eventually.

14There was no experimental setup in this case. The animals habitually leapt across a 2.2m
gap in a wooden causeway to get from an island to a feeding site. This provided an ideal
position to film this animal performing a relatively large leap except for the fact that the
camera operator had to stand in 5ft of cold water in the lake to get an orthogonal view of the
jump!

A study of leaping In prosimtan primates

Filming Page (22)

the animals would leap between the supports as required, though not

particularly frequently.

The camera used was a standard portable CCD15 video camera with a lms

second exposure. As the animals were nocturnal, the lighting in the

enclosure was reverse cycled, with bright, fluorescent tube lighting from

9 pm to 9 am. and rather dimmer, incandescent, red filtered lighting

from 9 am to 9 pm. The fight level was rather lower than ideal for the

camera, but minimized the stress on the animals and caused them to be

more active.

The camera was calibrated for each series of measurements by filming a

reference object of known dimensions at the start of the session. This

consisted of a rigid rod with a series of markers fixed at known intervals

along it. The field of view was carefully chosen to be as small as possible,

to maximize the resolution, and yet include the whole of the takeoff

phase of the leap. The camera was positioned outside the cage, three

metres from the takeoff position so that the effects of parallax could be

ignored. 16 The lens quality was judged to be sufficiently good, given the

level of other measurement uncertainties, to allow us ignore optical

distortion. Timing' accuracy of video cameras is extremely good

(considerably less than 1% error), and the framing rate was therefore

assumed to be exactly 50 fields per second. 17

15A CCD, or charge coupled device, is a solid state array of optical sensors positioned at the
focal plane of the lens. All the receprors act in parallel to give a very fast snapshot of the
image. Older cameras use evacuated glass "camera" tubes that have a fluorescent screen
that is read by scanning with an electron beam. These can have very high light
sensitivities but the scanned reading method means that the image produced is not
instantaneous.
16The parallax error is the ratio between the camera distance from the subject and the depth
of the subject. In this case, it is about 1%.
17When filming, it is customary to talk of the number of images recorded per second as
frames per second.. However, a PAL video signal overcomes problems with limited

A study of leaping in prosimian primates

Filming Page (23)

In addition, attempts were made to record the jump in 3D. Here, two

cameras were genlocked together and the' signals were fed through a

video mixer and recorded, as a split screen image on a single video

recorder. The start position of the animal was arranged to be covered by

both their fields of view. Calibration was performed using a reference

object constructed out of a small box approximately 4cm long and wide

and 2cm deep made of cast aluminium. 5 of its 6 faces had telescopic

aerials attached to produce a structure similar to the diagram:.

Diagram of the reference object used for the 3D
measurements.

The base of the box was attached to a photographic tripod so that the

whole object could be maneuvered into a position where it was seen by

both cameras. Markers were fixed at measured intervals to the telescopic

aerials which could be extended to, fill as much of the common field of

view as possible. The minimum number of known points required for

DLT reconstruction is six. Tests have. shown that the more known points

bandwidth, resolution and flicker, by incorporating two interlaced fields in each frame. The
framing rate is 25 frames per second, but with CCD cameras switched to their high shutter
speed modes, each field is a separate entity recorded at 50 fields per second, and sent to the
video recorder in pairs as the complete interlaced frame.

A study of leaping In prosimlan primates

Filming Page (24)

measured, the better, and that these should extend throughout the

volume of interest (Wood and Marshal 1986). Unfortunately. the results
from this part of the study were extremely disappointing. When the

resultant film was viewed, 4 it was discovered that the common field of

view was such a small portion of the video frame that it was impossible to

pick out the limb positions of the animals.

The major experimental difficulty was the delay between activating the

video recorder. and actually starting to record the action. Due to the

duration of the experiment. it was not possible to keep the video

recorder running continuously, and this meant that I had to become very

proficient at predicting what the animals were about to do (this was not

an easy task).

The video signal was initially recorded onto a portable VHS recorder, and

back at the laboratory, this was copied onto a Hi-Band SP U-matic tape

for editing. Kinematic analysis requires sequential access to each frame of

the film. Various methods were tried for this. In the first instance, the

single frame advance of a VHS video recorder was used and

measurements were made directly from the monitor screen. This proved

unsatisfactory since, though the still frame quality was reasonably good,

the time resolution was reduced to 25 fps since the recorder stepped by

frames and could not resolve the individual fields. The VHS recording

system records each frame as a single rotation of its recording head so

that it is very easy to step between frames automatically. On still frame

mode, one field of the image is removed from the signal so that the image

on the screen is completely still, and not a mixture of two fields 1/50th

of a second out of step. It is generally not possible to get access to the

other field. To resolve individual fields, I moved to using the jog control

on the U-matic editing equipment. On a U-matic system, the separate

A study of leaping In pros(mtan primates

Filming Page (25)

fields are accessible sequentially, but in this case, the recording system is

such that stepping a single field is difficult to do automatically. and the

manual jog control means that it is difficult to get the rotating head to

line up accurately enough on the tape to get an interference free picture.
There was also considerable vertical displacement between individual

frames and a problem with the machine's safety cutout coming into

operation if a still frame was viewed for too long.

Eventually, both these problems were solved by converting the video

signal on the tape to a series of digital pictures on a PC. The computer

was fitted with a Matrox PIP-1024 card that was capable of grabbing up to

four complete video frames in real-time from a video source. These

images could then be split up into the individual fields and displayed and

measured on the computer monitor at leisure. Also, since the frames

were grabbed from the moving video, the quality was excellent. The only

difficulty was that the leaping sequences were generally about 25 frames

long. This was overcome by designing what was basically a simplified

modem circuit that could convert signals transmitted from the computer

over its RS-232 port to audio tones that could then be recorded onto the

audio track of the video tape. A program running on the PC counted the

synchronization pulses from the video signal on the tape, and this count

was dubbed onto the audio track. To digitize a sequence of frames from

the tape, it was played through once and the pulse counts were displayed

on the computer screen and the start and stop counts noted. The

computer was then instructed to digitize in sequence, all the frames

between these two counts, and the computer would then prompt the

A study of leaping in prosimian primates

Filming Page (26)

operator to replay the section of video tape of interest 'a number of times,

grabbing and saving its four frames on each pass. Is

The kinematic analysis requires that the positions of the joint centres are

measured for each frame in a leap sequence. This measurement was

performed using the specially written Gait Analysis Program software

(GAP). 19 This program runs on a Hewlett-Packard graphics workstation,

and the image data acquired by the PC is passed over to it via a local area

network link. Each image has a resolution of 512 by 256 pixels and has

256 grey levels. GAP allows the user to display the image on the

computer screen, optionally expanded up to 1024 by 768 to restore the

correct aspect ratio, and points are measured using the mouse driven

pointer.

To assist the measurements, and to automate some of the kinematic

calculations, the computer program requires some additional information

from the user. This is provided in the form of a data file for each set of

experiments. This specifies the structure of the model being used. It

defines the names of the joints, the names of the segments, and how the

joints are linked together by the segments. The same file also contains

data on the masses of the segments, the relative positions of the centres

of mass of the segments and the moments of inertia about the centres of

mass of the segments. The names given are used as user prompts for the

measurements required. This file can be created in a word processing

package and saved to disk. Although it is quite tricky to set up in the first

place, it generally requires very little alteration between experiments.

18Details of the circuit and the computer software are given in the technical section.
19Again, a full description of GAP is included in the technical section, along with details of
data file formats, and operating instructions.

A study of leaping In proslmlan primates

Filming Page (27)

As mentioned before, the -system is calibrated by filming a reference

object of known dimensions. This section of film is digitized to produce a

single reference frame. The only requirement is that it should define the

origin of the coordinate system20, and have one other known point. The

program asks the user to select the origin from the picture, type in the

real-world coordinates of the known point, and select this point from the

picture. If necessary, a fiducial2l point can also be defined. This point is

used as a registration to line up individual frames, and should be visible

on all frames in a sequence, as well as the reference frame. It is not used

for straightforward video work since there is virtually no jitter between

frames when they are digitized from the moving film. However, it is

useful for video copies of high-speed movie film where there can be

noticeable jitter.

The coordinate systems are converted by calculating the offset of the

origin, a scale factor, and a rotation matrix:

(1) 0= Sorg

Iwrefl
c2) S=

I Srefl

(3)

(4)

0= Sref Z Wref

cos 0 -sin 0
M-

sin 0 cos A

20The picture that is actually measured on the computer screen in arbitrary pixel diameter
units can be thought of as a mapping of the real-world coodinate system chosen by the
experimenter. This coordinate system needs a zero position and a scale of measurement.
21The fiducial point is simply a point that is known not to move between individual frames
on the film.

A study of leaping In prosimlan primates

Filming Page (28)

Where:

0 is the offset vector

Sorg is the screen coordinate vector of the reference origin
S is the scale factor

Wrd is the world coordinate vector for the reference point

Sref is the screen coordinate vector reference point
0 is the angle between the reference vectors

M is the rotation matrix

Measurements

Having obtained a calibrated film sequence. a set of points to be measured

must be defined. This choice depends on a number of factors: the points

must be clearly visible on the film; they must relate to underlying skeletal

structures; they must make some sort of mechanical sense. The first

factor is obvious. If the desired position cannot be seen on the film, then

it is not possible to measure It, no matter how desirable this may be. The

second and third factors are tied together. Vertebrate body mechanics

are extremely complicated indeed and it is essential that a much simpler

model of the real system is used so that any meaningful information can

be gleaned. To this end. a link segment model is constructed (Bresler

and Frankel 1950). This will be discussed in more detail in the technical

section, but it basically involves dividing up the body into a series of rigid

links connected by joints. Each link can be considered in isolation using

the information known about its movement to calculate the external

forces acting upon it. These external forces must come from its contact

with the surroundings, or, through its joints, from other links. In this

way, the forces (both internal and external) necessary to produce the

observed movement in the whole structure can be calculated. This

procedure is know as inverse dynamic analysis.

A study of leaping In prosimian primates

Filming Page (29)

The links chosen, and the points on the film chosen to specify them are

as follows:

Link: From: To:

Fore-foot Toe tip Mid-tarsal joint
complex

Hind-foot Mid-tarsal joint
complex

Ankle joint

Calf Ankle joint Knee joint

Thigh Knee joint Base of ta1l22

Lower arm Wrist complex Elbow joint

Upper arm Elbow joint Neck23

Head Nose tip Neck

Torso Neck Base of tail

Tail Base of tail Tip of tail

These choices necessarily involve approximations. The base of the tail. as

can be seen in lateral X-ray photographs, is reasonably close to the hip

joint. The shoulder joint approximation is rather less good. but this is

permissible since the role of the upper limb in leaping is far less

important. In both cases, allowing the upper limb to share the joint

between the head and the torso, and allowing the lower limb to share the

joint between the torso and the tail considerably simplifies the resultant

link segment model. Other authors have split the torso into a

head/thorax and an abdomen (or even abdomen/tail) segment (Wells and

DeMenthon 1987, Smith 1987). In my film, I was unable to see a reliable

position on which to base this division, though mechanically, a split there

22Nominal position of the hip joint.
23Nominal position of shoulder joint.

A study of leaping in prosimian primates

Filming Page (30)

rather than at the neck might well have been desirable. Also. since none

of these authors were attempting inverse dynamic analysis, they had less

incentive to simplify the link segment model.

To perform inverse dynamic analysis. the following kinematic measures

are required for each link at each time interval:

Linear Position of centre of mass

Velocity of centre of mass

Acceleration of centre of mass

Rotational Angle

Angular velocity

Angular acceleration

The linear measures refer to the displacement in space of the centre off

mass of the segment. The centre of mass is the position where all the

mass of the whole segment can be considered to act as a point mass. It is

defined mathematically later. The rotational measures refer to the

internal circular movement of the segment around its centre of mass.

A study of leaping In prosimlan primates

Kinematic Analysis Page (31)

Kinematic Analysis

Signal Processing

The raw data obtained by measuring the joint positions contains a

reasonable degree of random sampling error due mainly to the difficulty

in accurately estimating the positions of the joint centres. This shows up

as high frequency noise superimposed on the position signal. This is not

too much of a problem when considering the position data alone, but the

process of differentiation needed to calculate the other kinematic

parameters of velocity and acceleration tends to amplify this high

frequency signal to such an extent that the data becomes useless (Winter

1990).

To get any form of useful secondary data, the original signal needs to be

smoothed. There are two common approaches. Firstly, a suitable

mathematical function can be fitted to the data: various orders of splined

polynomials are often used. Secondly, the' data can be filtered using a

digital low-pass filter so that the troublesome high-frequencies are

attenuated. The former approach produces perfectly smooth curves, and

the fitted function can then be differentiated analytically to produce more

smooth curves of velocities and differentiation. Unfortunately, the shapes

of these curves depend more on the function chosen to fit the data than

on the underlying mechanics of the filmed performance. Thus, the

results obtained are only of interest if there is some mechanical

justification for the function used. The latter approach does not smooth

up the data as aesthetically, and certainly, there is still an appreciable

noise level when the signal is differentiated. However, the process is

much more robust, and the results more closely reflect the mechanics.

The only problem can be if the framing rate is not high enough, and then

A study of leaping In prosimian primates

Kinematic Analysis Page (32)

the degree of filtration required to get a useable signal can flatten out any

rapid peaks in the signal. Experimental comparison of these techniques

shows that smoothing rather than function fitting is the best approach

(Pezzack et al. 1977).

There are a variety of alternative digital filters (Radar and Gold 1967).

Initially, a Butterworth second order low pass filter with a 10Hz cutoff

was tried. This was applied twice, the second time in the reverse

direction, to produce a fourth order zero phase shift filter (Winter et al.

1974). However, although this technique worked well on the central

parts of the sequence, it required approximately five frames at each end

to stabilize which was unsatisfactory since there were generally only

three or four frames after takeoff where the subject was still fully in the

field of view. So, instead, a simple unweighted moving average was used.

This is symmetrical, so only requires a single pass, and it only loses one

frame at each end of thesequence. Its main disadvantage is that, unlike

the Butterworth filter, it does not have well defined physical properties.

It simply smooths the data in a non-specific way.

The formula used was:

Xn-1 + Xn + Xn+1
(1) Sin= 3

Where:

sn is the nth smoothed value

xt, is the nth raw value

A study of looping In prosimian primates

Kinematic Analysis Page (33)

Differentiation

A simple linear integration scheme was used (this is effectively fitting a

straight line between two data points and measuring its gradient). The

equation for the differentiation algorithm used is as follows:

Xn+1- Xn-1
Vn_ to+l - to-1

ý3) an _
4(xn+1- 2xn + Xn-1)

(tn+1 - to-1)2

Where:

x� position at the nth sample

vn velocity at the nth sample

an acceleration at the nth sample

to time at the nth sample

Angular Properties

As well as the positions, linear velocities and linear accelerations of the

joints, the angles, angular velocities and angular accelerations of the

limbs also need to be calculated. These can be obtained by considering

each segment of the animal as a vector. For instance, the thigh can be

represented as follows:

(4,
hip - Xk ee

Yhip - Yknee

Where:

xioint is the x coordinate of a joint

Yjoint is the y coordinate of a joint

A study of looping In prosimlon primates

Kinematic Analysis Page (34)

Then the angle can be calculated as24:

ý5) echigh = tan-1
xhip - Xknce
Yhip - Yknee

Once 0 has been calculated, then angular velocities and accelerations can

be calculated in exactly the same way as for their linear counterparts:

On+1-en-1
ý6ý

to+1 - to-1

(7) an
4(0n+1- 20n +On-1)

(tn+l - to-1)2

Where:

On angle at the nth sample

angular velocity at the nth sample

angular acceleration at the nth sample

to time at the nth sample

Centre of Mass

Each individual segment of the model has a centre of mass. In addition,

the_ overall model has a centre of mass that can be calculated from the

positions of the individual centres of mass. The segment centres of mass

can be measured or calculated geometrically as described later. The

position of the centre of mass of a segment, In a general form, is

expressed as it relative distance from one of the joints. Thus, a value of

0.5 means that the centre of mass is halfway along the segment. The

24Care must be taken to get the correct angle in this calculation since tan-1 will only give
answers between -90° and 90°. Checks need to be made on the direction of the vector by
looking at the signs of its x and y component and working out from this which quadrant it
is in. Alternatively, the `C' language function atan2(y, x) will produce the correct result.

A study of leaping in proslmian primates

Kinematic Analysis Page (35)

actual position of the centre of mass in a segment can be obtained from

the following vector equation:

(7) Pcm = Pjoint + RVsegment

Where:

Pan is the position vector of the centre of mass

Pio; nt is the position vector of the joint

R is the relative position of the centre of mass

Vsegment is the segment vector

Knowing the centre of mass position in all the segments in the model

allows the overall centre of mass to be calculated (this is the position

where the total mass can be considered to be a point mass as far as

translational motion is concerned).

n
1

(8) Pcm =
lPimi
Mt

i=1

Where:

Pa, is the overall position of the centre of mass

Mt is the total mass of the animal

Pi is the position of the ith segment centre of mass

m, is the mass of the ith segment

Trajectory

Once the overall centre of mass has been calculated for each frame of the

film, then the trajectory of the animal (the path followed by the centre of

mass) can be produced. This can be plotted out and the initial gradient

A study of leaping in prosimlan primates

Kinematic Analysis Page (36)

calculated. giving the takeoff angle for the animal. This is an important

parameter, being one which the animal can alter when it wants to move

more rapidly at the expense of energy efficiency. In practice, the takeoff

angle was calculated by fitting a straight line to the centre of mass

position between the start of the leap (position of maximum flexion) to

toe off and calculating the gradient of this line. In addition, all

trajectories were plotted to check that the straight line assumption was

reasonable.

The following graph shows an example trajectory:

a. 5

0.9
E v

0.2
-0.4 -0.3 -0.2 -0.1 0.0 0.1

X (m)
0.2

Graph of the trajectory of Lemur catta leaping 2.22 m. The
origin position is arbitrary, and the last two points are after
toe off.

A study of leaping In prosimlan primates

Segment Mass Properties Page (37)

Segment Mass Properties

In order to perform an inverse dynamic analysis of a link segment model,

the mass properties of the segments are needed. The actual parameters

needed are the length and mass of the segment; the relative position of

the centre of mass along the segment; and the moment of inertia about

the centre of mass. The moment of inertia is a measure of the

distribution of the mass away from the centre of mass: it is the rotational

analogue of mass.

These values can be measured directly but it is a time consuming

process, and moreover, involves killing of the measured animal. It has

also been shown that these values vary very substantially from individual

to individual, especially for moments of inertia, which can differ by a

factor of two or more even when body mass differences have been taken

into consideration (Smith 1987). In humans, these values can be obtained

by a combination of published values and allometric scaling tables, or

from volume measurements obtained by immersion (Li 1991). However,

there is an insufficient number of studies on prosimians to produce

empirically derived scaling tables and immersion techniques are likely to

be much less accurate for small and hairy animals. Since I was able to

measure only the total mass of my experimental animals, I decided to use

a mixed geometrical approach to estimate segment properties.

The raw data for the distribution of the body mass among the individual

segments in the model was obtained from the literature (Smith 1987,

Wells and DeMenthon 1987). This gives data for Galago senegalensis and

Eulemur fulvus. These animals are very similar in shape to Galago moholi

and Lemur catta respectively so can be used instead. However, for the

remaining animals in my study, there are no really good analogues.

A study of leaping In prosimlan primates

Segment Mass Properties Page (38)

Galago gamettii has been modelled using the Galago senegalensis shape in

other places, (Günther 1989) so I did the same in my study. Since I had

no other option, I used the Eulemurfulvus body shape for the three dwarf

lemurs. Because of the large difference in mass between the two galagos

and among the four lemurs, I would not expect these approximations to

be particularly good. However, until more data on mass distribution is

available, it is probably the best that can be managed.

For most segments. I was able to use the relevant mass fraction from the

literature directly and calculate the mass from the measured total mass of

the animal. However, the choice of segments in some parts of the body

were not the ones I wished to use. For example, I needed head and torso

separately, and others have lumped head and upper torso together. For

this case, I measured the volumes of the head and torso from x-ray

photographs and estimated the mass fractions accordingly.

Again for segment centres of mass. I took the values directly from the

literature. Because of my re-division of the torso and head segments. I

used a nominal value of a half. This is relatively close to the values

calculated for the other segmental distributions as can be seen in the

diagrams at the end of this section.

The lengths of the segments were calculated directly from the kinematic

analysis data for the animals.

To calculate the moments of inertia for each segment, a purely geometric

approach was used. Each segment of the body was treated as a conic

section with appropriate dimensions to fit the mass, length and centre of

mass position criteria.

A study of leaping In prosimian primates

Segment Mass Properties Page (39)

The volume of each conic section was calculated from its mass and a

mean figure for body density (Apkarian et al. 1989).

m (i) V=P

Where:

V is the volume

m is the mass

p is the density

The volume of a conic section is given by:

(2) V= nL(R2+Rr+r2)

Where:

L is the length of the segment

R is the proximal radius

r is the distal radius

The centre of mass of a conic segment is given by:

L(1 + 2µ + 3µ2)
C3) ý= 4(1+µ+µ2)

Where:

x is the horizontal position of the centre of mass

And where:

(4)
r

µ-R

A study of leaping In prosimian primates

Segment Mass Properties Page (40)

So, for a given centre of mass, g can be calculated2s from by rearranging

equation (3):

2-4x- 48x2+48x-8
(6) 8x-6

And then the moment of inertia about the centre of mass is given by:

(7) I=
LV+BL2

Where:

I is the moment of inertia

And:

9 1+µ+µ2+µ3+µ4
(8ý A

24n a2

(9) B3
(1+4g+ 1Oµ+ 4µ3 +0

=g C12

(10) a=1+µ+µ2

If necessary the actual values for R and r can be obtained by rearranging

equations (2) and (4):

3V
(11) R=

nL(1 +µ+µ2)

The following table shows the values calculated for each of the study

animals and the segments chosen.

25v, A, B and a are used simply as convenient intermediate values in the calculation.

A study of leaping in prosimian primates

Segment Mass Properties Page (41)

X. iwurinus L. cotta C. Major X. cow" i O. aorwotli! 0. iwohoti

L. w. r am Ha. s(kg) 3.1310-3 1.35 10'1 1.70 10"2 1.7610-2 5.63 10-2 9.24 10'3

cm 5.00 10" 1 5.0010-1 5.0010-1 5.0010-1 5.0010-1 5.00 10' 1

MOI (kg. m2) 2.35 10-7 1.2710-4 2.7010-6 3.89 10'6 3.6010-5 1.2210-6

Upper 1[w (kg) 2.8810-3 1.24 10'1 1.561()-2 1.61 10'2 5.40 10'2 6.721()-3

cm 5.18 10'1 6.1810-1 5.18 10'1 6.1810-1 4.66 10 4.66 10

HOI (kg. m2) 1.771()-7 1.1510-4 2.4610-6 3.0910-6 2.37 103 8.35 10-7

Torn-f009 Ma.. (kg) 8.7510-4 3.78 10"2 4.7610-3 4.9010-3 2.25 10-2 4.2010-3

cm 5.73 10 5.73 10 5.73 10 5.73 10 6.7310-1 5.7310-1

MOI (k8"m2) 1.2610-8 5.1410-6 1.9610-7 2.1810-7 1.9710-6 2.0710-7

Stud-foot Ma. (kg) 8.7610-4 3.781()-2 4.7610-3 4.9010-3 1.1310-2 2.5210-3

CM 4.78 10"1 4.78 10 4.78 10 4.7810-1 4.78 10'1 4.78 10

NOI (kg. m2) 1.3210-8 4.9410-6 2.1710-7 2.2610-7 1.41 10-6 1.3610-7

Calf Hau (kg) 3.38 10'3 1.4610-1 1.831()-2 1.89 10'2 6.081()-2 1.391()-2

CM 4.01 10 4.01 10 4.01 10 4.01 10-1 6.08 104 6.0810-1

MOI (kg. m2) 3.57 10'7 1.61 10-4 6.8610-6 5.3910-6 4.0810-5 4.1510-6

Thigh Yu. (kg) 1.0310-2 4.4310-1 5.571()-2 6.741()-2 1.37 10 4.2010-2

CM 4.47 10'1 4.47 10 4.47 10 4.47 10 5.61 10'1 5.61 10'I

MOI (kg. m2) 1.2610-6 7.3910-4 2.4610-6 2.8310-5 1.4810-4 1.7310-5

Head Ma.. (k8) 6.381()-3 2.75 10 3.461()-2 3.6710-2 1.20 10'1 2.0810-2

cm 5.00 10' 1 5.00 10-1 5.0010-1 5.0010-1 5.00 10" 1 5.00 10' I

NOI (kg. m2) 7.30 10"7 2.8810-4 1.1610-5 1.17 10'5 7.92 10'5 3.3710-6

Torso Ma.. (kg) 3.2610-2 1.41 10; 0 1.77 10 1.82 10 6.15 10"1 1.05 10'I

CH 5.00 10' 1 5.0010-1 5.00 10' 1 5.00 10' 1 5.0010-1 5.0010-1

MOI (kg. m2) 1.8210-5 9.581()-3 3.0610-4 3.0610-4 1.941()-3 1.1210-4

Tall Y+.. (kg) 2.1910-3 9.4610-2 1.191()-2 1.2310-2 4.841()-2 5.2610-3

CK 3.7810-1 3.78 10 3.78 10 3.78 10 3.78 10 3.78 10

1[OI (kg. m2) 2.33 10 6 1.1310-3 4.5710-5 6.3910-5 1.11 10"4 1.06 ITS

A study of leaping in prosimlan primates

Segment Mass Properties Page (42)

In the table. mass refers to the total mass of the segment. CM is the

position of the centres of mass as the relative distance from the distal

end for limbs and the relative distance caudally for the axial segments.

MOI is the moment of inertia about the centre of mass. The values for

limbs are the sums of the values for the left and right hand sides of the

animals as used in the computer program.

To check that the calculated values of the moments of inertia are

reasonable, the following graphs shows published values for Galago

senegalensis and Eulemurfulvus and my calculated values. Also shown are

the probable limits for the moment of inertia. The minimum is obtained

by considering the limb as a uniform rod rotating about the middle:

(Kleppner and Kolenkow 1973)

(12)
ML2
12

and the maximum by considering it as a barbell, with the mass

concentrated at the ends (this is a very excessive assumption):

(13)
ML2

2

A study of leaping In proslmlan primates

Segment Mass Properties Page (43)

This graph shows the moments of inertia of the limb
segments of the geometrically derived Lemur catta (C)
compared with those experimentally measured from
Eulemur fulvus (F) (Wells and DeMenthon 1987)26. For
comparison, the values for the rod and barbell models are
given for the Lemur catta mass. The values for head, torso
and tail use different segmental division. F includes part of
the torso in the head segment, and the tail in the torso
measurement. The indicated tail measurement has been
extrapolated.

26The results presented by Wells and DeMenthon are sufficiently detailed to be checked
geometrically. In fact, their measured moments of inertia are higher even than those that
would be predicted using the barbell model. This is extremely unlikely, and does suggest
that there was some error in their calculations.

A study of leaping in prosimian primates

Segment Mass Properties Page (44)

10-3

10-4

N
-5

0 P (0.31 kg)
10 S (0.43kg)

C6 ® V (0.21 kg)
10-6 Rod

Q Barbell
10-7

10-8
8wsuo

c° m 4- w- U .c=p I-
Jju. =~

This graph shows the moments of inertia of the limb
segments of the geometrically derived Galago moholi (V)
compared with those experimentally measured (P and S)
(Smith 1987). For comparison, the values for the rod and
barbell models are given for V's mass. The values for head
and torso use different segmental division. Both P and S
include part of the torso in the head segment.

A study of leaping In prosimian primates

Inverse Dynamics Page (45)

Inverse Dynamics

Inverse dynamics is a descriptive name given to the process of obtaining
kinetic data from kinematic Information. It relies on Newton's second
law-27

(1)

Where:

F =ma

F is the resultant force acting on a body.

m is the mass of the body

a is the acceleration of the body

And the angular equivalent for when the force is not acting through the

centre of mass of the body

(2)

Where:

T=Ia

T is the resultant torque acting on the body

I is the moment of inertia of the body

a is the angular acceleration of the body

The approach used for inverse dynamic analysis of a complex, linked

structure such as the limbs of an animal connected by joints, is to treat

each rigid segment in isolation and to apply equations (1) and (2). Forces

and linear accelerations can be split into their components in the

principal axes: X. Y (and Z. if working in three dimensions). Torques,

27Newton's laws of motion were first published in 1687 in his treatise "Principia
mathematics". Here, they are largely descriptive, and they were not translated into a more
precise mathematical form until Mach published The science of mathematic? in 1883.
Before Newton, Aristotelian mechanics reigned supreme, with its basic tenet that a force
was required to keep a body in motion. Newton, and before him, Galileo, postulated that a
force was only required to change the movement of an object. (Kleppner and Kolenkow 1973)

A study of leaping In prosimian primates

Inverse Dynamics Page (46)

moments of inertia and angular accelerations can be split depending on

the plane of rotation. These planes are defined mathematically as X=O,

Y=O and Z=O. They correspond to rotation about the X, Y and Z axes

respectively. Thus, only the Z=O plane is involved in two dimensional

analysis.

This can be expressed mathematically as: (see Winter 1990)

nn

(3)
YaFi

= myai
i=1 i=1

nn

ý4)
1

Ti =1
i=1 i=1

Where:

n is the number of forces or torques acting on the segment

Linear forces produce torques, but torques do not effect the linear

properties, so the non-rotational problem needs to be solved first. This is

simply a matter of knowing the mass of the free body and its acceleration

(the right hand side of equation 1) and then summing up all the forces

acting upon it. This is done separately in the X and Y direction. In the Y

analysis, the additional force of gravity also acts.

A study of leaping In prosimian primates

Inverse Dynamics Page (47)

The following diagram shows the forces present on the isolated limb

segment

Y

Distal Reaction

X
Y

Proximal Reaction Acceleration
Gravity

X

Diagram showing the forces acting on an isolated segment
in a link segment model. The reaction forces can be split
into their components in the X and Y directions. Gravity
only acts in the negative Y direction.

So, the equation (3) becomes:

(5)

(6)

Where:

Fx1 + Fx2 = max

Fy1 + Fy2 -mg = may

F, cl is the x component of the proximal reaction force

Fx2 is the x component of the distal reaction force

Fyl is the y component of the proximal reaction force

Fy2 is the y component of the distal reaction force

g is the acceleration due to gravity.

The calculation of the whole model proceeds from segments that are

unattached at one end, such as the forearm (in this model). At these

segments, the distal reaction force is zero. Then, there is only one

unknown in each of the equations for the separate components. This is

A study of leaping In prosimian primates

Inverse Dynamics Page (48)

the proximal reaction force which can now be easily calculated. This

proximal reaction force becomes the negative of the distal reaction force

acting on the next segment due to Newton's second law: each action has

an equal and opposite reaction. And now, this segment has only one

unknown in each of the X and Y directions, and its proximal reaction

force. At joints where more than two segments meet, the rule is that the

total of all the reaction forces should be zero (as is also the case at any

joint). So, in my model, calculating back from the head will give one set

of reaction forces at the neck. Calculating up the arm will give another.

The negative of the sum of these two forces will be the reaction force

acting on the cranial end of the torso. Calculating all the way down will

give the reaction force acting between the tip of the toe and the ground.

Once the linear forces are known, the rotational parameters can then be

calculated. The rotational torques present in the linked segment model

are shown in the following diagram:

Distal Torque

Angular Acceleration

Proximal Torque

Diagram showing the torques acting on an isolated segment
in a link segment model. In addition, the reaction forces at
the proximal and distal ends also apply a torque (though
gravity does not).

So, equation (4) becomes:

A study of leaping in prosimlan primates

Inverse Dynamics Page (49)

(7) Fx1Dy1 + Fy1Dx1 + Fx2Dy2 + Fy2Dx2 +T1 + T2 = la

Where:

DXl is the x distance from the proximal joint to the centre of mass

D, 2 is the x distance from the distal joint to the centre of mass

Dyl is the y distance from the proximal joint to the centre of mass

Dye is the y distance from the distal joint to the centre of mass

Ti is the torque about the proximal joint

T2 is the torque about the distal joint

The progression of calculation of the torques is similar to that for the

reaction forces. From a free end, the distal torque is zero. All the linear

forces are known, as are the distances of the joints from the centre of

mass in both the X and Y directions. Thus, the proximal torque is the

only unknown and can be calculated. The negative of this becomes the

distal torque at the next segment along. When more than two segments

meet at a joint, the total torque is again, zero, and there will be only one

unknown torque.

The only problem with inverse dynamic analysis is that it depends on
knowing the linear and angular accelerations accurately. As mentioned
before, calculating accelerations from positional data leads to a very large

amplification of high frequency noise, and so, unless the quality of the

data is extremely high, the results from this sort of analysis need to be

treated with caution. However, since the equations can be solved

analytically, producing information about forces and torques from

artificially generated resuý ddictive model for example) is
'gSLT ''

extremely quick and reliab e. iy

14TH :`,. y
.4

, A1ý' ý,, , 'ý`,

A study of Ian primates

Inverse Dynamics Polte (50)

The reliability could be checked experimentally by comparing the

external forces calculated by the analysis with forces measured with a

force plate. This option was not available in the present study.

A study of leaping In prosimian primates

Leaping Trajectory Page (51)

Results Section

Leaping Trajectory

Theory

When choosing how to leap a gap of a particular size, an animal has two

physical parameters that it can alter: its takeoff velocity and its angle of

trajectory. Since leaping is a ballistic form of motion, these two

parameters are related by the following equation for leaping with no

height change28:

(1) _
4rg.

_ StO sin 20

Where:

vto is the takeoff velocity

r is the range of the jump

g is the acceleration due to gravity

0 is the takeoff angle

28A difference in height between takeoff and landing points makes the relationships
slightly more complex and alters the value of the optimal takeoff angle but otherwise does
not affect any of the general properties of the interaction between takeoff velocity and angle.

A study of leaping In prosimlan primates

Leaping Trajectory Page (52)

Graphically this relationship is as follows:

6

5
E

4-

3-

%- 2-
4-

a

0-

.Y1
F-

10 20 30 40 50 60 70 80
Takeoff Angle (')

Graph showing the theoretical relationship between takeoff
velocity and trajectory for a1m leap.

From this, it can be seen that the animal can either choose a shallow or a

steep trajectory and a high takeoff velocity, or can minimize its takeoff

velocity by choosing a takeoff angle of 45°. From an ecological standpoint,

it is helpful to look at the differing energy costs of these options. This

cost is simply the kinetic energy of the animal at takeoff.

1
(2) ERE = ynvco2

Where:

EKE is the kinetic energy of the animal

So, from equations (1) and (2), the following relationship can be

formulated:

(3) EKE =
mrg

2 sin 20

A study of leaping in prosimlan primates

Leaping Trajectory

And again, this can be shown graphically:

Page (53)

15

10
v

W

5

0
10 20 30 40 50 60 70 80

Takeoff Angle (')

Graph showing the relationship between the initial
trajectory and the minimum energetic cost of a1m leap for
a1 kg animal.

From this graph, it can be seen that the most economical takeoff angle.

the one that leads to the longest jump for the least energy expenditure, is

45°, and one would expect that this is the takeoff angle that would be

chosen by the animal.

Results

For each animal and for all jump distances, the leaping trajectory was

calculated. For Lemur catta, which I only filmed leaping at a single

distance, I simply calculated the 95% confidence limits of the trajectory.

For the other 5 animals, the relationship between the leap distance and

the trajectory was investigated by calculating the regression lines with

95% confidence limits.

The following graphs show the results obtained:

A study of leaping in prosimlan primates

Leaping Trajectory Page (54)

First for Lemur catta:

Histogram of Xi : Trajectory (')
S. -

4.

3

2

0
30 32 34 36 38 40 42 44

Trajectory (')

X1: Trajectory (')
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
1 35.308 1 3.216 1 1.017 1 10.343 1 9.108 1 10
Minimum: Maximum: Range: Sum: Sum Squared: # Missing
1 30.46 1 42.32 1 11.86 353.08 1 12559.633 0

t 95%: 9S% Lower. 95% Upper:
1 2.301 1 33.007 1 37.609

Histogram showing the distribution of trajectories observed
for a set of 10 2.22 m leaps in Lemur catta. The mean
trajectory is 35.3 ± 2.3° (95%) which is clearly less than the
predicted value of 45°.

A study of leaping In prosimlan primates

leaping Trajectory Page (55)

And now for the others:

Cheirogaleus major

. -.
0

to

H

Parameter: Value: Std. Err.: Std. Value: t-value: Probabilit :
INTERCEPT 12.239

SLOPE 25.255 3.153 . 884 8.01 . 0001

Confidence Intervals Table

Parameter: 95% Lower: 95% [Inner 90% Lower: 90% Uooer:

MEAN XY 28.662 32.94 29.035 32.567

SLOPE 18.63 31.879 19.787 30.722

Graph showing the observed trajectories for a variety of
different leaps distances in Cheirogaleus major. The
regression line and 95% confidence limits are purely to
illustrate that there is a significant trend, and are not to
suggest that there is any linear relationship.

A study of leaping In prosimlon primates

Distance (m)

Simple Regression X1: Distance (m) Yi: Trajectory (')

Beta Coefficient Table

Leaping Trajectory Page (56)

Galago garnettll

L..

. i%
F-

Parameter: Value: Std. Err.: Std. Value: t-Value: Probabilit :

INTERCEPT 9.038

SLOPE 23.686 2.832 . 918 8.362 . 0001

Confidence Intervals Table

Parameter 95% Lower_ 95% (Inner: 90% Lower: 9096 UDDer:

MEAN XY 25.15 27.666 25.377 27.439

SLOPE 17.566 29.806 18.669 28.702

Graph showing the observed trajectories for a variety of
different leaps distances in Galago garnettü. The regression
line and 950/6 confidence limits are purely to illustrate that
there is a significant trend, and are not to suggest that there
is any linear relationship.

A study of leaping in prosimian primates

Distance (m)

Simple Regression XI: Distance (m) Y1: Trajectory (")

Beta Coefficient Table

Leaping Trajectory Page (57)

Ga/ayo mohdl

50 O O

8 O
48

p 46 p
to

O

44
O

42 - O
1

8 -
40

38.
O

36 p

34
.811.2 1.4
Distance (m)

Simple Regression XI: Distance (m) Y1: Trajectory (')

Beta Coefficient Table

'arameter: Value: Std. Err.: Std. Value: t-Value: Probabilit :
INTERCEPT 40.626

SLOPE 5.26 2.027 . 512 2.595 . 0178

Confidence Intervals Table
P r2mater" Qi96 I nwpr, QSOf. Ilnnar" Q(196 I nwer_ 9096 lJnnor_

MEAN XY 43.117 46.551 43.415 46.252

SLOPE 1.017 9.503 1.755 8.765

Graph showing the observed trajectories for a variety of
different leaps distances in Galago moholi. The regression
line and 950/6 confidence limits are purely to illustrate that
there is a significant trend, and are not to suggest that there
is any linear relationship. In this case the trend is
noticeably less pronounced than for the others, and there
are results with trajectories greater than 45°.

A study of leaping in prosimian primates

leaping Trajectory Page (58)

Mlcrocebus mu anus
7C

v

F"'

Distance (m)

Simple Regression XI: Distance (m) Yi: Trajectory (")

Beta Coefficient Table

Parameter: Value: Std. Err: Std. Value: t-Value: Probabilit :
INTERCEPT 2.63

SLOPE 27.99 4.095 . 863 6.835 . 0001

Confidence Intervals Table
Parameter, 9546 Lower_ 9596 [Innere 4Ö% I nwerr 4Ö% IInnar-

MEAN XY 18.231 22.484 18.606 22.109
SLOPE 19.308 36.673 20.84 35.141

Graph showing the observed trajectories for a variety of
different leaps distances in Microcebus murinus. The
regression line and 95% confidence limits are purely to
illustrate that there is a significant trend, and are not to
suggest that there is any linear relationship.

A study of leaping In prosimian primates

Leaping Trajectory Page (59)

Mirza coquereli

. -.

I H

Distance (m)

Simple Regression X1: Distance (m) YI: Trajectory (')

Beta Coefficient Table

'arameter: Value: Std. Err.: Std. Value: t-Value: Probabilit :
INTERCEPT 19.429

SLOPE 15.587 1.826 . 891 8.535 . 0001

Confidence Intervals Table

o,. ý.., eýe. " QC4 I nwnr" OSOL IInnsr Q(106 I nwnr 9006 Ilnnnr

MEAN XY 28.473 30.277 28.63 30.121

SLOPE 11.764 19.41 12.429 18.746

Graph showing the observed trajectories for a variety of
different leaps distances in Mirza coquerelL The regression
line and 95% confidence limits are purely to illustrate that
there is a significant trend, and are not to suggest that there
is any linear relationship.

Discussion

The main thing to note about these results is that, except for Galago

moholi, these animals-do not leap at the energetically optimal angle of

450. They leap at appreciably shallower angles. However, as the leap

distance increases, they all do choose to leap at more energetically

efficient angles and it would certainly be expected that they would all

A study of leaping In prosimlan primates

leaping Trajectory Page (60)

have to leap at 45° for their longest leaps. Looking at the data for

Cheirogaieus major, which is the least frequent leaper of the group, it is

probable that 1.4 m is near its maximum leaping distance and so it is not

surprising that it is forced to use the optimal leap trajectory.

Since the animals are not leaping at the energetically most efficient

angle, then there must be other benefits associated with the shallower

trajectories. One reason could be that the animals are prepared to trade-

off some loss in energetic efficiency for a gain in travelling speed. The

horizontal speed of a leap is given by:

(4) Vh = Vt0 cos 0

Where:

vh is the horizontal velocity

So, from equations (1) and (4), the relationship between speed and leap

angle can be calculated:

rg_ (5) Vh = cos 0
sin 28

A study of leaping in prosimtan primates

Leaping Trajectory Page (61)

And shown graphically:

6

5
n

4-

u 3-
CL N

'n 2-
O

01

01
10 20 30 40 50 60 70 80

Takeoff Angle (')

Graph showing the relationship between the takeoff angle
and the horizontal velocity for an animal leaping lm.

So a "time pressurized" animal has to decide on a compromise between

the relatively high cost of a very quick leap and the relative slowness of an

energetically efficient one. On longer leaps, the range of choice in leap

angle is more restricted because the minimum takeoff velocity for the

leap is a larger fraction of the maximum takeoff velocity that the animal

can manage and it therefore has less scope for selecting a faster, flatter

trajectory.

The importance of travel time depends very much on the ecology of the

animal. If resources are widely spaced then it might be extremely

important to travel quickly between them so that there would be plenty

of time to exploit them once the animal has arrived. Speed is also

important for escape behaviour, but since the study animals were not

being chased, but were rather being induced to jump by the presence of

food rewards, this is , unlikely to have influenced the present results. If

the local ecology for Galago moholi is such that economy of movement is

A study of leaping In prosimlan primates

leaping Trajectory Page (62)

much more important than speed, this would explain why it alone

chooses to leap at more or less 4511 all the time.

Another feature of the animal's ecology that may influence their leaping

behaviour is the density of the vegetation in their normal habitat. The

Cheirogaleidae live in dense undergrowth tangles where there is only

room for shallow trajectory jumps. This may lead to an in-built

preference for a low takeoff angle even when there is room for greater

elevation.

Where substrates are significantly bent by the force applied by the animal

leaping, the optimally efficient takeoff angle may not be 45° for a leap

with no height change. The animal will lose energy by bending the

support. The maximum bending will occur if the force applied is

perpendicular to the branch, and will be minimized if the force is along

the axis of the branch since buckling requires considerably greater forces

than bending. For a horizontal support, a shallow takeoff trajectory will

cause less bending, and hence less energy transfer to the substrate. 29 The

actual value of the optimal takeoff angle will depend on the resilience,

orientation and shear modulus of the branch, but will lie somewhere

between the branch orientation and 45°.

Finally, leaping animals may be very vulnerable to aerial predators whilst

leaping in the open. A flatter than energetically optimal trajectory

ensures that they are airborne for a shorter time. Also, if an animal always

chooses exactly the same trajectory for its leaps, then a predator would

be able to predict the mid-air position of an animal that it has spotted

291n the experimental setup used, the substrate was not noticeably bent by any of the animals
and so can effectively be considered as a rigid support, causing no appreciable loss or gain
of energy.

A study of leaping in proslmian primates

Leaping Trajectory Page (63)

about to jump out of the cover of a tree. This would help to explain the

relatively large amount of variation of the observed takeoff angles.

A study of leaping In prosimlan primates

Distance Relationships Page (64)

Distance Relationships

Theory

There are three key biomechanical parameters that can be readily

measured for each leap. These are: the peak force generated during

takeoff; the extension distance of the hind-limb; and the duration of this

extension. For a given animal, these parameters would be expected to

vary depending on the distance being leapt. The effect of takeoff angle

has already been explained so that all the leap distances can be re-

evaluated as if the leap had been done at 45°. Thus, with the trajectory

fixed. the leap distance depends solely on the takeoff velocity.

The relationship with extension duration can be investigated by

considering momentum30. The change in momentum equals the impulse

applied by the animal as shown in the following equation:

tto

(1)
IF (t) dt = mvto - mvo

to.

Where:

F (t) is the function of force with respect to time

to is the time at the start of the leap

tto is the time at takeoff

m is the mass of the animal

vto is the takeoff velocity

vo is the start velocity

30The momentum of a body is the product of its velocity and its mass.

A study of leaping In prosimian primates

Distance Relationships Page (65)

This is the generic form of the equation using vectors representing the

force function and the velocities. In the takeoff phase of a leap, the

centre of mass of the animal moves in a straight line at the takeoff angle.

Thus, the two dimensional problem can be simplified down to just one

dimension. However, in doing this, it must be remembered that as well

as applying a force to accelerate the centre of mass along this trajectory.

the animal must also apply a vertical force to compensate for the pull of

gravity. This force is independent of the distance leapt, and adds an

appreciable amount to the total force that needs to be generated at lower

distances. The results shown subsequently are for the resultant force

derived from the acceleration of the centre of mass. The comparative

magnitude of the peak forces required in the leap compared to the force

due to gravity has been shown to vary from 13.5 times in the case of

Galago moholt to 4.5 times for Lemur catta (Günther 1989). In my

experiments, the value is about 5 for all the animals except Cheirogaleus

major which has a value of 8. However, as will be shown at the end of the

chapter, these values depend on the distance leapt, and one of the

problems with calculations from kinematics instead of force plate

measurements is that peaks tend to be missed due to the relatively

coarse temporal resolution.

In this case, the start velocity is zero since the animals leap from rest.

The start time can be arbitrarily set to zero, so that the takeoff time is

the duration of the extension. Also, for our idealized 45° leap, the takeoff

velocity is related to the leap distance by the following equation:

(2) Vtp=
4

1g

A study of leaping In prosimlan primates

Distance Relationships Page (66)

Where:

r

g

So:

is the range of the leap_

is the acceleration due to gravity

tto

(3) JF(t) dt = m4rg
to

Where:

F(t) is the resultant magnitude force function.

The extension distance relates to the ' takeoff force according to Newton's

second law (acting in a straight line):

(4) F(t) = ma

Where:

a is the acceleration of the centre of mass

And since:

(5)

Where:

s

From (4) and (5)

(6)

des
a= dt2

is the extension distance

A F(t)
dt2 =m

To progress any further, the function of force with respect to time needs

to be defined. An actual force/time graph, irrespective of the mass of the

animal or the distance being leapt has a shape something like this:

A study of leaping In prosimlan primates

Distance Relationships Page (67)

100

X Force (N)
80 Y Force (N)

ýý.,
"""""""ýý;

"""""""""", Res. Force (N)

60

z
40

00 L
20

0 ".., ft

-20
0.0 0.1 0.2 0.3 0.4

Time (s)

Graph showing the component and resultant forces31
calculated for Lemur catta leaping 2.22 m. The mass of the
animal was 2.7 kg and the trajectory 36°.

For modelling purposes relatively simple force' functions can be obtained

from the maximum recorded force for a leap as the limit for a simple

polynomial relationship mapped to the leap duration with an arbitrary

start time of zero. Three such functions are illustrated below:.

(']) F(t) = Fmax

_
Fmaxt

(g) F(t)
tco

31The resultant force has been calculated by summing the components of the X and Y forces
in the direction of the leaping trajectory:

Fresuitant = FxcosO + Fycos(90 - 0)

A study of leaping in prosimian primates

Distance Relationships Page (68)

(9) F(t) =
Fmaxt2

ttO2

The suitability of these functions can be seen from the following graph:

100
Res. Force (N)

60 -M-M---- Constant
...

".... u. """" Linear " :"
60 "" Quadratic

z.

40 ""
o
o"
IA. ý. i

20 "

0 """ý

-20
-0.2 -0.1 0.0 0.1 0.2

Time (s)

Graph showing the values predicted by the various force
models that might be chosen. Zero on the time scale is
where the takeoff phase is judged to begin since this is the
first time when the hind-limb is seen to extend, and the
centre of mass of the animal to have a positive velocity
along the trajectory.

There are a number of interesting points to note about this comparison.

Firstly. the start of the leap is defined by when the animal starts to move

along its takeoff trajectory. not when it first starts to produce a resultant

force along this trajectory. This is because the animal starts its leap by

flexing its leg muscles allowing the force of gravity to move the centre of

mass downwards. It can then 'apply a force to decelerate this downward

movement so that when it starts accelerating its centre of mass along the

A study of leaping In prosimlan primates

Distance Relationships Page (69)

takeoff trajectory, it has already generated a significant amount of tension

in its leg muscles. This helps alleviate the slow buildup to maximum

muscle tension, and means that a higher mean muscle tension can be

maintained during the course of the takeoff phase.

Since this mechanism means that the start force is appreciably higher

than zero, the constant force model best fits the observed data. though it

does overestimate the impulse somewhat. The linear model

underestimates the impulse, and the quadratic model even more so.

Since reality lies between the constant and linear force models,

evaluating both should produce a reasonable estimate of the range within

which observed values would be expected to fall.

Now equation (3) can be solved for both these force models:

Constant:

Lto 0
(10) 1 Fmax dt = [Finaxt]

tto

(11) m4rg = Fmax tt 0ff

Linear:

tto
Finaxt 0 Finax t2

(12) dt ito ko
2tto

0

(13) ýj-
1

mV rS = ? max ttakeoff

And likewise, equation (6) can also be solved: I

A study of leaping In proslmlan primates

Distance Relationships Page (70)

Constant:

(14)
d2s Fmax
dt2= m

(15) s=F 2mt2 + Ct +D

Linear:

des Fmaxt
(16) dt2 - ttom

Finaz t3
(17) s= 6th + Ct +D

For this problem, at t=0, both v=0 and s=0, so C=0 and D=0. Also,

for the case in which I am interested, t= ttakeoff. so equations (15) and

(17) both simplify:

Constant:

(1 S) S-
Fmaxtto2

2m

Linear:

(19) S.
Fmaxtto2

6m

It is interesting to note that the two different force models do not alter

the indices of the various powers in the eventual relationships, only the

values of the constants. So that the relationship between the peak force,

the extension distance and the takeoff duration will be equivalent for the

, two cases.

To see this relationship, equation (11) can be rearranged and substituted

into equation (18) to eliminate tto:

A study of leaping In prosimian primates

Distance Relationships Page (71)

(20) ttO2 =F
ý8

max2

mrg (21) s= 2FX

And for the linear model:

(22) S=
2mrg
3Fmax

This provides two equations relating leap distance to the three measured

parameters. The interrelationship between these parameters is therefore

not unique, but if we make the not unreasonable assumption that the

animal will generally choose to use its full hind-limb extension for all

leaps, thereby minimizing the forces needed, then a third relationship

can be obtained:

(23) S= Smax

Where:

Smax is the maximum extension of the hind-limb

Now, from (21) and (23):

(24) Fmax = 2sß.

And from (24) and (11):

(25) ito
2Smax

__r
1J rg

Similarly, for the linear model:

(26) Fmax=
2mrg
3smax

A study of leaping in prosimian primates

Distance Relationships Page (72)

(27) tto _
3smaz

NV r$

Results

The results for each animal follow. The effective distance is calculated

from the measured takeoff velocity at a trajectory of 45°. Since we are

assuming that the extension distance does not vary with the leap

distance. I have used the mean value for the extension distance to

calculate the predicted values throughout.

Scattergram for columns: X1 Y1 ... X1 Y3

60
Peak Force (N) 0 Peak Force - Constant- A Peak Force - Linear M...

5.5
5

4.5
Z4

3.5
3

äO2.5
OO0

2 00
00

1.5 0O
1

.5
.1 .2 .3 .4 .5 .6 .7 Equiv. Horizontal Distance (m)

Graph showing the calculated peak force exerted by
Microcebus murinus for a variety of leap distances. The two
straight lines indicate the values predicted by the two force
models. The significance level of the regression line is
0.0006.

A study of leaping In prosimian primates

Distance Relationships Page (73)

Graph showing the extension distance for Microcebus
murinus for a variety of leap distances. There is no
significant relationship.

- Scattergram for columns: X1 Yi ... X1 Y3 -
0 Duration (s) O Duration - Constant M... & Duration - Linear Mod...

U.

A
0

Graph showing the extension duration of Microcebus
murtnus for a variety of leap distances. The leap distance
has been transformed by raising it to the power minus one
half as predicted by the model. The two straight lines
indicate the values predicted by the two force models. There
is no significant relationship.

A study of leaping In prosimian primates

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1 /SQRT(Equiv. Horizontal Distance)

Distance Relationships Page (74)

Scattergram for columns: X1 Y1 ... X1 Y3

180
0 Peak Force (N) O Peak Force - Constant... A Peak Force - Linear M...

170

160

z 150

O
140

OO
130

°- 120

110 OO

1 00

90
2 2.1

Graph showing the calculated peak force exerted by Lemur
catta for a variety of leap distances. The two straight lines
indicate the values predicted by the two force models. There
is no significant relationship.

y- . 046x + . 163, R-squared: . 072

. 34
0

. 32

E .3OO

C . 28
00

O

. 26
O

Lf) °'
. 24 O

O

. 22
0

.2 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
Equiv. Horizontal Distance (m)

Graph showing the extension distance for Lemur catty for a
variety of leap distances. There is no significant
relationship.

A study of leaping in prosimian primates

2.2 2.3 2.4 2.5 2.6 2.7
Equiv. Horizontal Distance (m)

Distance Relationships Page (75)

Scattergram for columns: X1 Y1 ... X1 Y3
O Duration (s) O Duration - Constant M... O Duration - Unear Mod...

"2

. 18

. 16

. 14 O

. 12 0

"1 O000

. 08 0

. 06

. 61 . 62 . 63 . 64 65 66 . 67 . 68 . 69 .7 . 71
1 /SQRT(Equiv. Horizontal Distance)

Graph showing the extension duration of Lemur catta for a
variety of leap distances. The leap distance has been
transformed by raising it to the power minus one half as
predicted by the model. The two straight lines indicate the
values predicted by the two force models. There is no
significant relationship. It

Scattergram for columns: X1 Y1 ... X1 Y3

30
OPeak Force (N) 13 Peak Force - Constant ... OPeak Force - Linear M...

O
25

z 20 O

-ý O
41 O

15 000
YO N
n 10 O

0

.12 .3 .4 .5 .6 .7 .8 .911.1 Equiv. Horizontal Distance (m)

Graph showing the calculated peak force exerted by
Cheirogaleus major for a variety of leap distances. The two
straight lines indicate the values predicted by the two force
models. The significance level of the regression line is
0.0001.

A study of leaping in proslmian primates

Distance Relationships Page (76)

y- . 086x + . 088, R-squared: . 514
.2

. 18 O

E
. 16 O

. 14 OpO

OO
OO

Ln . 12 p
OO

.1

OO
. 08

.1 .2 .3 .45 .6 .7 .8 .911.1 Equiv. Horizontal Distance (m)

Graph showing the extension distance for Cheirogaleus
major for a variety of leap distances. The significance of the
regression line is 0.0004.

Scattergram for columns: Xi Yi ... X1 Y3
0 Duration (s) 0 Duration - Constant M... A Duration - Linear Mod...

.2

_ .i U,
4J

.1 0

.1

.0

Graph showing the extension duration of Cheirogaleus
major for a variety of leap distances. The leap distance has
been transformed by raising it to the power minus one half
as predicted by the model. The two straight lines indicate
the values predicted by the two force models. There is no
significant relationship.

A study of leaping in prosimlan primates

.811.2 1.4 1.6 1.8 2 2.2 2.4
1 /SQRT(Equiv. Horizontal Distance)

Distance Relationships Page (77)

Scattergram for columns: X1 Y1 ... X1 Y3

18
O Peak Force (N) 13 Peak Force - Constant ... 0 Peak Force - Linear M...

16

14
Z 12 0OO

10
000

800
a00

6.1 0
4

2

.1 .2 .3 .4 .5 .6 .7 .8 Equiv. Horizontal Distance (m)

Graph showing the calculated peak force exerted by Mirza
coquerell for a variety of leap distances. The two straight
lines indicate the values predicted by the two force models.
The significance level of the regression line is 0.0008.

ys . 069x + . 068, R-squared: . 481

. 13

. 12 O
OO

. -. . 11
EOO

OO

C
. 09 O

CID

O

. 08

. 07 OO

. 06
O

O

. 05

.123 .45 .6 .7 .8 Equiv. Horizontal Distance (m)

Graph showing the extension distance for Mirza coquereli
for a variety of leap distances. The significance level of the
regression line is 0.0005.

A study of leaping in prosimian primates

Distance Relationships Page (78)

Scattergram for columns: X1 Y1 ... X1 Y3

. 22
O Duration (s) O Duration - Constant M... O Duration - Linear Mod...

"2 0

. 18 O

. 16 O
-W

. 14W O 0-70

. 12 0

"1 00 OO0

. 08 0

. 06
1 1.2 1.4 1.6 1.8 2 2.2 2.4

1 /SQRT(Equiv. Horizontal Distance)

Graph showing the extension duration of Mirza coquereli for
a variety of leap distances. The leap distance has been
transformed by raising it to the power minus one half as
predicted by the model. The two straight lines indicate the
values predicted by the two force models. The significance
level of the regression line is 0.0034.

Scattergram for columns: X1 Y1 ... X1 Y3

40
0 Peak Force (N) O Peak Force - Constant... A Peak Force - Linear M...

O 35

30 O
zO
v 25
is O

20
00 OO

OO
15

10

.2 .4 .5 .6 .7 .8 .9 Equiv. Horizontal Distance (m)

Graph showing the calculated peak force exerted by Galago
garnettii for a variety of leap distances. The two straight
lines indicate the values predicted by the two force models.
The significance level of the regression line is 0.0016

A study of leaping in prosimian primates

Distance Relationships Page (79)

y- . 04x + . 166, R-squared: . 355

. 21

. 205
0 OD

.2O
E

. 195 %9

. 19.1
4)

. 185 O
. 00

. 18 OO

. 175
O

. 17
00 O

. 165 O

. 16
.2 .3 .4 .5 .6 .7 .8 .9 Equiv. Horizontal Distance (m)

Graph showing the extension distance for Galago garnettii
for a variety of leap distances. There is no significant
relationship.

Scattergram for columns: X1 Y1 ... X1 Y3
0 Duration (s) O Duration - Constant M... 0 Duration - Linear Mod...

. 35

. 325

.3
. 275

v . 25

. 225

0 "2 00

. 175

. 15 OO
OO 00

. 125 OO

.1 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1 /SQRT(Equiv. Horizontal Distance)

Graph showing the extension duration of Galago garnettii
for a variety of leap distances. The leap distance has been
transformed by raising it to the power minus one half as
predicted by the model. The two straight lines indicate the
values predicted by the two force models. The significance
level of the regression line is 0.0005

A study of leaping In prosimian primates

Distance Relationships Page (80)

Scattergram for columns: X1 Y1... X1 Y3

18
O Peak Force (N) D Peak Force - Constant... A Peak Force - Linear M...

16

14
Z 12
Ü

10 0

8O
OO

6.1

4

2

.2 .3 .4 .5 .6 .78911.1 1.2
Equiv. Horizontal Distance (m)

Graph showing the calculated peak force exerted by Galago
mohoii for a variety of leap distances. The two straight lines
indicate the values predicted by the two force models. The
significance level of the regression line is 0.0001

Graph showing the extension distance for Galago moholi for
a variety of leap distances. There is no significant
relationship.

A study of leaping in prosimian primates

Distance Relationships Page (81

Scattergram for columns: X1 Y1 ... X1 Y3
0 Duration (s) O Duration - Constant M... O Duration - Unear Mod...

U)

A
0

Graph showing the extension duration of Galago moholi for
a variety of leap distances. The leap distance has been
transformed by raising it to the power minus one half as
predicted by the model. The two straight lines indicate the
values predicted by the two force models. There is no
significant relationship.

For Microcebus murtnus. the agreement between the measured values and

the model is reasonably good. There is a tendency to underestimate peak

forces, especially for small, quick animals, due to the relatively slow

framing rate used in this study. There is quite a large amount of variation

in the hind-limb extension distance, but this is largely independent of

the leap distance. so modelling it by a constant function seems

reasonable. The relationship with the duration of the extension phase

shows most of the values clumped within the expected range. It Is

difficult to measure this duration at all precisely, and this would explain

the poor level of correlation.

For Lemur catta the result is also in good agreement with the model's

predictions. For this animal, all the leap distances were nominally the

same, with only differences in leaping trajectory and precise landing

A study of leaping In prosimlan primates

.911.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1 /SQRT(Equiv. Horizontal Distance)

Distance Relationships Page (82)

points providing any variation. Thus I would not expect to see any

significance in the correlations because measurement errors will swamp

any distance effects.

Cheirogaieus major, however, fits the model much less well. There is a

notable increase of extension distance with leap range and instead,

extension time remains more or less constant. This reversal will affect

the predicted force curves too, with recorded peak forces being

noticeably higher than those predicted. Qualitatively, the leaping style of

Cheirogaieus major is different from the other animals. It is the least

enthusiastic jumper and for the longer leaps, it curls itself up into a very

tight ball, and uses its back muscles to throw the upper torso forward

during the leap.

Mirza coquereli also shows an increase in the hind-limb extension with

leap distance. This affects the other curves much more predictably

though with peak force at longer lengths being overestimated and

underestimated at shorter lengths. The time curve is still relatively well

predicted, and any errors in the force curve are relatively small.

The predictions for Galago garnettii and Galago moholi are again

reasonable. There is appreciable scatter about the modelled curves but it

seems acceptable given the generally high level of noise in the data.

Gravity Effects

The comparative magnitude of the force due to gravity can be calculated

from equation (1):

tto Jng to
(28) JF(t) dt + dt = mvto - mvo

to to

A study of leaping In prosimian primates

Distance Relationships Page (83)

Where:

g is the acceleration vector due to gravity.

This can be divided into its X and Y components, and using the constant

force model as before, produces the following 2 equations:

mvto (29) Fxtco _4r

(30) Fyt1o =
mvto
_r+

mgtto

So, as would be expected, gravity has no effect on the force required in

the X direction (from equation (29)). Rearranging (30) gives:

(31) Fy= r2t +g
V to

So, the importance of gravity depends on the relative magnitudes of g and
vto

. The value of vto depends solely on the leap distance, so that as leap
, 1tto

distance increases, the support component decreases. The value of tto

depends on both the leap distance (it falls as leap distance increases) and

on the length of the animal's hind-limbs. If the hind-limbs are longer,

then the takeoff duration will increase. This explains why the the force of

gravity acting on a large animal is larger proportion of the force it needs

to apply for the leap. However, even for the largest animal in my study.
Lemur catta, Ito has a value of approximately 4 times the value of g. j2tto

A study of leaping In prosimian primates

Mass Relationships Page (84)

Mass Relationships

Theory

Relationships of parameters with the mass of the animal depend on the

scaling model used. These relate linear measurements on the animal to

the animal's overall mass for animals of similar shapes. Three so called

"Similarity" models are commonly encountered:

Geometric Similarity

Linear distances are scaled isotropically (Hill 1950). The scaling with

mass is a simple geometric relationship with all axes scaling equally. This

can be described by the following equation:

il) Lo cm

Where:

L is the characteristic length

m is the mass of the animal

Elastic Similarity

Linear distances are scaled anisotropically. with characteristic lengths

increasing less rapidly than diameters so that the bending stress on the

skeleton due to its own weight is kept constant for animals of different

masses (McMahon 1973). This can be described by the following

equation:

(2) L°`m

A study of leaping In prosimlan primates 6

Moss Relationships Page (85)

Constant Stress Similarity

Linear distances are scaled anisotropically. with characteristic lengths

increasing even less rapidly than diameters so that the breaking stress on

the skeleton due to its own weight is kept constant for animals of

different masses (McMahon 1973). This can be described by the

following equation:

(3)
I

Lam'

The extension distance during the takeoff phase of the leap is primarily a

function of the length of the hind-limb so can be related to the mass of

the animal by these three equations depending which scaling model is

more appropriate. This enables certain predictions about the mass

dependency of the peak force. the extension distance and the extension

duration to be made.

Considering the geometric similarity model:

From (1):

(4)

Where:

i
sam

s is the extension length

From (11) in the previous chapter.

(5)

Where:

mqrg = Ftco

r is the leap distance

A study of leaping In prosimlan primates

Mass Relationships Page (86)

Fmax is the peak force

tto is the takeoff duration

From (18) in the previous chapter.

_
Finaxtto2

(6) S= 2m

Substituting (4) in (6) gives:

Fmaxtto2
(7) m 2m

And rearranging:
21

2 (8) tto oc m Finax

Substituting into (5)
2

(9)
f

cc m3 Finax2

And rearranging:

(10) Finax cc rgm

By substituting (10) into (8) and rearranging:

3 m
(11) tcö ý

-V rg

Considering the elastic similarity model:

From (2):

(12)
4

sCC m

And by a similar rearrangement as before:

A study of leaping In prosimian primates

Mass Relationships Page (87)

i

(13) Fmax a rgm

And:

1
4

m i 14) ico «4

For the constant stress similarity model:

(15) s« m'

(16) Fmax « rgn

s
m

(17).. tto «

Results

The six different species investigated covered a 40 fold' mass range so are

eminently suitable for investigating mass dependent effects. The

predictions of the similarity models vary by the index of the mass. To

calculate this, the the peak force, extension distance and extension

duration are plotted against mass on log scale graphs. The gradient of a

straight line fitted to these transformed points is the power of the mass

that best fits the data. The r2 value is an indication of how precisely this

value is estimated by the data.

All the data points have been normalized for a1m leap. This has been

done using the modelling assumptions in the previous chapter. Thus, the

extension distance is assumed to. be independent of the leap range; the

peak force is divided by the effective horizontal leaping distance as this

relationship is assumed to be linear; and the extension duration is

A study of leaping In prosimlan primates

Mass Relationships Page (88)

multiplied by the square root of the effective leap distance to reflect the

power to the minus half relationship there.

1

In
C
O

A
7

.1

V"

. 01

. 01 .11 10
Mass (kg)

This graph shows the relationship between the mass and the
duration of the takeoff phase of the leap. The leap duration
has been normalized for a1m leap. The best fit power is
0.329 and the r2 value is 0.661

100

z

ö 10

Ad

a

. 01 .11 10
Mass (kg)

This graph shows the relationship between the mass and the
peak force during the leap. The peak force has been
normalized for a1m leap. The best fit power is 0.717 and
the r2 value is 0.829

A study of leaping in prosimian primates

Mass Relationships Page (89)

1

E
v

N

O

uo

. 01

Mass (kg)

This graph shows the relationship between the mass and the
extension distance in the takeoff phase of the leap. The
extension has been normalized for a1m leap. The best fit
power is 0.451 and the r2 value is 0.818

The results for the takeoff duration are very close to the 0.33 power

predicted by the geometric similarity model. The peak force value of

0.72 is closer to the value predicted by elastic similarity. The extension

distance value of 0.45 is rather larger than any of the predicted values,

though is closest to the geometric model prediction.

It seems that the geometric model predicts the rates of change best.

However it is interesting to note that both the force and the extension

distance increase more rapidly with increasing mass than would be

predicted. One of the features of all the scaling models is that if they are

faithfully followed by animals of different sizes then all the animals will be

able to leap exactly the same distance.

This can be justified as follows (based on Hill 1950):

The maximum force that can be generated by a muscle depends upon its

cross-sectional area.

A study of leaping In prosimlan primates

Mass Relationships Page (90)

(18)

Where:

Fnad2

d is a characteristic diameter

The extension distance depends upon the length of the hind limb.

(19) s«L

Where:

L is a characteristic length

Rearranging equation (21) from the previous chapter gives:

(20)
2 Fmax S

r=
mg

So, inserting equations (18) and (19) and combining the constants gives:

d2L
(21) r« m

But, no matter what scaling model is being used, d2L is always the

volume, and the volume is always directly proportional to the mass, so r

in this equation is constant irrespective of the mass or the scaling model.

A study of leaping In prosimlan primates

Mass Relationships Page (91)

So, if, as would seem likely, a larger animal wishes to be able to leap

further than a smaller animal32, then it needs to be more specialized than

the smaller animal and have correspondingly longer limbs and stronger

hind-limb muscles so that both Fmax and s will increase faster with

increasing body mass than simple scaling would predict. This is precisely

what these results show.

32Home range size in primates in general actually correlates positively with group mass
(Clutton-Brock and Harvey 1977). Except for Lemur catta, the animals in this study are
solitary, so the individual mass is equivalent to the group mass.

A study of leaping In prosimian primates

Predictive Model Page (92)

Predictive Leaping Model

The previous three chapters have described results obtained from

measuring the joint positions, frame by frame, in a number of video

sequences of leaping. To check these results, over 100 graphs showing

the position of the centre of mass of the animal against time were

plotted. These showed sufficient similarity in their shape that it was

decided that it might be possible to produce a general model for leaping

based on the goal of producing a centre of mass trajectory that matched

the ones measured: This would then be a predictive model that would

produce dynamic joint position data from a set of static start conditions.

This is an important objective since it would allow the analysis of the

mechanics involved in activities that are rarely, or never seen. For

example, leaping behaviour in fossil forms, or looking at very long leaps.

Theory

The model provides a method for calculating the hind-limb positions

with time for an animal leaping a given distance. It is designed to be

useful in situations where the dimensions of the animal are known, to

calculate the maximum possible leaping distance, by calculating the

power requirements, and the bone stresses.

It has been created by considering the design goals of a leaping animal.

For efficiency, and also maximum performance, the animal should aim to

move its centre of mass along a straight line path inclined at 45° during

the takeoff phase of the leap. Any deviation from this path will incur an

energetic cost. and will lead to a reduced maximum performance. In

addition, the animal needs to maximize the duration of the takeoff phase

to reduce the peak forces necessary to produce the required impulse

since it is ultimately the impulse that the animal can apply to the

A study of leaping in prosimian primates

Predictive Model Page (93)

substrate that will determine the length of the leap. However. at the

same time, the animal needs to convert the purely rotational motion

produced by its muscles into a linear thrust, and this becomes

progressively less efficient as the limb is extended. Internal energy

should also be minimized by requiring smooth movements of all the parts

of the mechanism.

The model incorporates the effects of change in overall centre of mass

with the change in limb position. but assumes a uniform extension for the

hind-limb joints, and completely ignores the röle of the tail, the upper

limbs and torso bending. 33

The leap model is considered to be driven entirely by extension of the

hind-limb, and requires, as input parameters, the start position of the

jump with the hind-limb fully flexed, and an equation describing the

position of the centre of mass with respect to time. For the simplest

approach, a constant force formula is used, but the model could have

been adapted for other equations, and could, indeed, have used force

plate data had this been available. It Is also assumed that the extension of

the hind-limb occurs uniformly at each joint, and that at takeoff, the limb

is approaching full extension.

The model can best be described by following through the steps used to

calculate the joint positions at any time during the takeoff phase:

The hind-limb and torso of the animal are represented as a set of five

segments linked by rotational joints. First of all, from the start position

"Given the goals described, there are a number of different ways that the problem can be
solved. The solution given here was obtained by considering how the movements of the
limbs would effect the centre of mass and applying an iterative process to obtain the correct
movement. A simpler, semi-analytical approach was tried initially, but this required
unrealistic start conditions so had to be discarded.

A study of leaping In proslmlan primates

Predictive Model Page (94)

and from the mass properties of the segments (torso, hip, calf, fore-foot

and hind-foot), the overall centre of mass is calculated.

O

Stage one of the model calculation involves the
measurement of the centre of mass position from the joint
locations and the centres of mass of each segment at the
start position.

The whole structure is then rotated so that the centre of mass is

positioned on the x axis. This is used as a local coordinate system, with

the centre of mass moving along the x axis. The results can be converted

back to the global coordinates as a final step simply by rotating the model

by 45°. The toe-tip is already assumed to be positioned at the origin.

Next, the distance of the centre of mass from the origin is measured in

this position, and in the end position, with all the joints fully extended.

This gives the maximum possible extension distance available for the

takeoff. The fraction of this distance to use for the modelling run is set as

one of the input parameters.

A study of leaping In prosimlan primates

Predictive Model Page (95)

ro"N

Start Extension
poll,

The structure is rotated so that the line joining the position
of the toe tip (0,0) Is on the X axis. The start extension
distance is the distance of the centre of mass from the toe
tip.

From the extension distance, and from the equation used to describe the

force function, the duration of the takeoff phase is calculated. With this,

and using the number of output times specified in the modelling

parameters, a table containing a list of times of interest is built up: these

are the times for which the program needs to find the positions of the

joints. Again using the force equation, the distance of the centre of mass
from the origin is calculated at each of these times.

However, the positions of the joints cannot now be analytically calculated.

There is no unique solution to the placement of the limbs since there are

only two known points - the centre of mass position and the toe tip

position - and four joints and five links between these points (Hunt

1978). This can be overcome by using the design goal requiring smooth

movement of the segments. Each segment is rotated from its starting

A study of leaping In prosimian primates

Predictive Model Page (96)

angle to the zero finishing angle at a rate proportional to its initial angle

so that they all finish together.

0

The angles from the X axis to the segment angles for each
separate segment are calculated. By rotating the segments at
a speed proportional to this angle, all the segments end up
lined up together along the X aids together: a fully extended
position similar to the takeoff position seen with leaping
prosimians.

This needs to be adjusted at each step by recalculating the position of the

centre of mass and rotating the structure to reposition it on the local x

aids.

ýý

A study of leaping in prosimian primates

Predictive Model Page (97)

(9)

At each intermediate position calculated by extending the
joints, there may be a discrepancy between the new centre of
mass position and the X axis. This needs to be corrected for
by rotating the structure again.

The exact amount of extension and rotation required to produce the

desired distance is found by repeatedly performing the calculation with

different values and gradually improving the precision of the result. The

algorithm used converges relatively rapidly. Full details of this process

are given in the technical development section in the second part of this

thesis.

A study of leaping In prosimtcn primates

Predictive Model page (98)

0

After the extension and rotation has been performed, the
new position of the centre of mass can be measured. This is
unlikely to be the required value the first time. so depending
upon whether it is too large or too small, the whole process
is repeated with a smaller or larger amount of rotation.
This cycle is continued until the difference between the
obtained extension distance and the desired extension
distance is sufficiently small.

Once the predictive modelling program has produced a list of joint

positions at a set of times during the takeoff phase of the leap at an

arbitrary temporal resolution and precision, this information can be fed

into the gait analysis program as if it had been measured from an actual

animal, and the inverse dynamic analysis can be performed to calculate

the forces and torques that are present during the movement. The

problems of double differentiation leading to the magnification of high

frequency errors is minimized by choosing a reasonable compromise

between precision and sample rate. If the sample rate is very high, then

the errors due to the numerical nature of the solution and the rounding

error within the computer can still lead to the actual values being

A study of leaping In prosimlan primates

Resultant Extension

Predictive Model
Dw-- inw.
 -VW %771

swamped. 30 to 100 samples at a time tolerance of 10.7 produces results with barely noticeable noise in the acceleration curves.
alts

Results

Runs were performed using the mass characteristics for each of animals, but with the figures for the torso made up of f
the test

value plus the values for the head, tail and for
p the original torso

of the animal was unchanged. The foil

forearms, so that the total mass
owing table shows the figures actually used:

M. murin» L calla C. mayor Y, coquersii O. Qanuttu ! 'orei oot M«@ (kg) 8 -4 7510
0. mohai

. 3.7810'2 4.7610-3 4.9010-3 2.2510'2 4 2010'3 cm
5.73 10'I 5.7310-1 5.73 10'I 1 ä73l0'

.

7901 5.73 I0'1 5.7310-1
(kg. m2) -8 1.2610 5.1410-6 1.9610'7 2.1810'7 "6 1 97 IO . 2.0710"

Hind.
foot Y&» 8.75 10 2 3.7810" 4 76103 3 . 4.9010- 1.1310"2 2.5210-3

cm 1 4.7 810 - 4.78 10 -1 4.7810-1 4 78 10' 1
l+[OI . 4.781o-1 4.7810-1
(kg. ma)

1.32 10 4.9410-6 2.1710'7 2 261o-7 . 1.4110-6 1.3510'7
Call Ya« (kg) 3.38 10.3 1.4610-1 1 8310-2 2

cm
. 1.891()- 6. o810-2 1,3910-2

4. OI IO'1 1 4.01 10' 4.0110-1 4.01 10-1 6 0610-1
OI Hol

(O m2)
7 3.5710' 1.611()-4 6 86 10'6

- 6.0810-1

. 5.3910-6 4.08 10'5 4.15 10$
Thigh]ja« 040 1.03 10-2 4 431()-1

Cl[
. 5.5710-2 5.7410-2 1.37 10' 1 4.2010-2

I 4.4710' 4.4710'1 4.4710"1 4 4710'1 . 5.6110-1 5.6110'1 mz) 1.2610 6 7M10-4 2.4610-' 2 8310'5 . -4 1.4810 1.7310-5
Torso Mass (kg) 4.7110-2 +0 2.04 10 2 5610-1

cm
. 1 2.6410- 8.94 10-1 1.47 20'l

5.0010' 1 5.0010-1 5.0010-1 5 0010'1 . 5.0010-1 1 5.0010' m m2) 1.8210-5 9.5810-3 3.0510-4 3 0610-4 ' 1.9410-3 1.1210-4

The start position was obtained by examining one of the longest
each species, and using the position where the animal's

leaps

hind-limb was

~ 3'uay Of leaping In prostmlan primates

Predictive Model
Page (100)

maximally flexed. Because of smoothing, this was the mean position from
three consecutive frames where the animal was stationary. This was
considered to be a good estimate of a typical leap start posture. The start
positions used are given in the following table:

Tip Mid-
Tarsal Ankle Mass Hip Nose Tip say COM
Joint

Y. murinw 00100

T

" -9.62 10-3 -1.99 10-2 -5.12 10"4 -4.52 10-2 6.7710'2 -2.26 10
Y 0010'0 O. 2.6610-3 5,72103 3.4710'2 1.7810'2 8.2210-3 1.9810"2

L catta z 0.001040 -3.1610-2 -6.0710-2 1.7210-2 . 1.0110-1 2.49 10'1 2.1310"2
7 0.0010'0 4.8810-3 2.0110'2 1.0510-1 8.5110"2 5.1710"2 6.9510"2

C. major z

-

0.001040 -1.55 10-2 -3.07 10-2 1.7710-2 -5.38 10-2 1.01 10-1 4.7210-3 ry
0.0010+0

f

1.0210"2 2.0810"2 7.0010-2 3.4610-2 1.0210- 2 M41 10-2 Y. coquerrlt z 0.0010+0 . 2.2510-2 -4.00 10-2 1.9810-2 -7.2810-2 1.04 10-1 -5.40 10-3
7 0.001040 6.79103 1.6410'2 4.9710"2 &60 10-2 4.7110-3 3.7810-2

0. yanistt Uz 0.00 10+0 -8.96 10-3 -4.46 10-2 2.99 10'2 -6.41 10-2 1.82 10'1 2.1610-2
7 0.0010+0 2.4110'2 4.4910"2 9.5710-2 9.0210-2 ` 3.0310-2 6.6010-2

O. moholi z 0.00 10+0 -2.35 10-2 -3.75 10-2 2.71 10-2 -5.20 10"2 8.52 10'2 1.9910-3
7 0.0010+0 8.5110-3 2.6710'2 4.2910-2 5.80 107f 6.02 10"2 5.27 10'2

iii uujLcr interesung input parameters for the model are the extension
fraction of the hind-limb and the distance jumped. The extension
fractions used were: 50°x6,60%, 70%, 80%ib, 90%, 95%34; the distances
were: 1 m, 2 m, 4m and 8 m. It was soon clear that the effect of distance
Is a simple scale factor (see following graphs), so distance effects are only
shown for a single extension fraction, and extension fraction effects only for a single distance.

3499% extension fraction was also tried at first, but the torque and power required for this last few percent totally swamped the other values since they all approach 100% extension asymptotically.

A study of leaping in proslmian primates

Predictive Model Page (101)

Extension Effects

The following graphs show the effects of fractional hind-limb extension

the model for all the subject animals:

Microcebus murinus

0.34 26

0.32-
-24

0.30-
E 22 v 0.28

--f- Torque
0.26 20 Ö --S Power

° 0.24 L °'.
18

0.22-

0.20-. 16
40 50- 60 70 80 90 100

L % Extension

Graph showing the effect of hind-limb extension on the
peak torque and the peak power generated about the hip
joint for Microcebus murinus in a simulated 1m leap at a
4511 trajectory.

A study of leaping In proslmian primates

Predictive Model Page (102)

Lemur cotta

19 600

18

17 500
Z

16
` -ý- Torque

Q ; --ý-- Power
15 400 Q

14

13 300
40 50 60 70 80 90 100

% Extension

Graph showing the effect of hind-limb extension on the
peak torque and the peak power generated about the hip
joint for Lemur catta in a simulated 1m leap at a 45°
trajectory.

Cheirogaleus major

1.7 80

1.6-

E
1.5

70
1.4

--o- Torque
1.3 ; -+- Power

F°- 1.2
60

1.1

1.0 50
40 50 60 70 80 90 100

% Extension

Graph showing the effect of hind-limb extension on the
peak torque and the peak power generated about the hip
joint for Cheirogaleus major in a simulated 1m leap at a 4511
trajectory.

A study of leaping In prosimlan primates

Predictive Model Page (103)

Mirza coquerell

1.7 70

,. 6 l
E
z v

O
7
I
º. 0

F-

1.5 60
v --f- Torque 1.4 n

ý- Power
1.3

_
50 0°.

1.2

1.1 40
40 50 60 70 80 90 100

% Extension

Graph showing the effect of hind-limb extension on the
peak torque and the peak power generated about the hip
joint for Mirza coquereli in a simulated 1m leap at a 45°
trajectory.

Golago gameltil

7 240

220

EZ 6
200 3

-ý- Torque

180 ö ý- Power

0 5 a
H

160

4 140
40 50 60 70 80 90 100

% Extension

Graph showing the effect of hind-limb extension on the
peak torque and the peak power generated about the hip
joint for Gaiago garnettit in a simulated 1m leap at a 4511
trajectory.

A study of leaping in prosimian primates

Predictive Model Page (104)

Gologo moholr

0.9 40

0.8-
E

0.7 30 -"ý- Torque

-+- Power
00
~ 0.6

a

0.5 20
40 50 60 70 80 90 100

% Extension

Graph showing the effect of hind-limb extension on the
peak torque and the peak power generated about the hip
joint for Galago moholi in a simulated 1m leap at a 45°
trajectory.

A study of leaping In prosimtan primates

Predictive Model Page (105)

8

-' 7
,ý -ý-- A murinus
3 -0- L calla

--a- C. major
+ M. ccquerel!

u ---f- G. gamettY
CL 6 13 G. mohd!

h

5
40 50 60 70 80 90 100

% Extension

t

Graph showing the effect of extension fraction on the mass
specific work done during the leap. In general there is a
small increase with extension fraction, and it approaches
100% asymptotically. Galago moholl has a distinct shape.
with its dip from 80% to 90% extension.

Varying the extension fraction from 50% to 95% causes a 500/6 change in

both the peak torque and the peak power required for a given leap. It is

thus an important parameter in the model. The results for all the animals

indicate that the peak torque is minimized with an extension fraction of

80%, but that the peak power is lowest at 70%. The total work curve is

lowest at low extension fractions (50% in this set of results), but is very

flat until 95% or greater extension fractions. This may seem to contradict

the earlier statement that leaping animals need to maximize their takeoff

distance in order to reduce the forces required to leap. However, what is

actually happening is that during the last 20% of the leap, the animal

needs to move the segments of its hind limb through relatively large

A study of leaping in prosimlan primates

Predictive Model Page (106)

angles to produce any of the desired longitudinal movement35 and this

large rotational movement means that the fairly small moments of inertia

of the hind limb start to become important. The energy required simply

to rotate the limb becomes prohibitive. It also means that the energy that

needs to be absorbed to stop the limb from rotating may become quite

large. This probably does not involve any work on the part of the animal

since it can be performed by the passive structures such as ligaments that

limit extension in the limb, but if too much energy has to be absorbed in

too short a time then the animal is risking injury.

The work/extension fraction curve for Galago moholt is slightly different

from- all the others: the value for total work drops from 80% to 90%

extension. This is due to the combined effects of positive and negative

work about the hind-limb joints. To produce the figure for the total

amount of work done in the leap, I have summed together the values for

the work done at each joint. In general, for all the animals, positive work

is done at'hip, ankle and mid-tarsal joints, and negative work is done at

the knee joint and at the contact point. However, for Galago moholt,

negative work is only done at the knee joint for the larger extension

distances, and it is this increase in the negative work at the hip ; joint that

produces the total work reduction. The handling of negative work itself is

problematic. It can only be cancelled out by positive work elsewhere in

the system only if the there is some sort of energy transfer mechanism.

In the case of the hind-limb, such a röle could be postulated for the major

two joint muscles such as the gastrocnemius muscle and the hamstrings

35The longitudinal movement depends on the cosine of the current angle of the segment.
from the direction that the animal wishes to go in. When almost fully extended, this angle
is small, and for small angles, the cosine curve is very flat: a large change in angle is
required for a relatively small change in longitudinal movement.

A study of leaping In prosimian primates

Predictive Model Page 0 07)

(Wells 1988). Otherwise, the negative work can be performed by muscles

doing positive work. Unfortunately, the metabolic efficiency for negative

work is quite different from the efficiency for positive work. Example

figures are 0.22 for positive work (Dickinson 1929) and -1.6 for negative

work (Abbott and Bigland 1953). Thus, some sort of scaling is required

for calculating a total energy figure where negative work is considered to

be important.

The curves for peak power. peak torque and total work all have different

shapes, with both power and torque having minima at different values. If

the relative importance of these factors is known. then an optimal

extension distance can be calculated. This would require knowledge of

the forces and powers produced by the major muscles in the leg -

information which is not available at present. A value of 80% for optimal

extension distance was chosen largely by inspection. It is the minimum

value for peak torque, and both the power and work curves are relatively

flat. An equally good argument could doubtless be made for 75% or even

70°x6 extension, but because the curves are relatively flat, this would not

greatly affect the rest of the analysis.

The shapes of the peak torque and power curves are very similar for all

the animals. This is probably due to the geometrical approach used to

obtain the mass properties of the limb segments.

Distance Effects

The next set of graphs show the effect of changing the leap distance. As

can be seen from the- previous graphs, the lowest peak torque occurs

when the extension fraction is 80%. Since the aim is to model maximum

leaps. where peak torque required is likely to be the limiting factor, this

extension fraction has been used for all the subsequent analysis.

A study of leaping in prosimian primates

Predictive Model Page (108)

Microcebus murinus

23

'"
z2

1 --f- Torque
0 --ý- Work

Fö
1

0
02468 10

Distance (m)

Graph showing the relationship between peak torque about
the hip joint, the total work and the leap distance for a
simulated leap of Microcebus murinus with an 80% hind
limb extension and a trajectory of 45°.

Lemur cotta

10

8

Z6
v

O

04 h. 0
f-

2

04
0

140

120

100

80
Torque

60 ö
--ý- Work

40

20

0
1 0

Graph showing the relationship between peak torque about
the hip joint. the total work and the leap distance for a
simulated leap of Lemur catta with an 80% hind limb
extension and a trajectory of 45°.

A study of leaping In prosimlan primates

2468
Distance (m)

Predictive Model Page (109)

Cheirogaleus major

8 20

6-
E-

Torque
ý4 10 ,ý
Qö -r-- Work
ö3
ý- 2-

00
02468 10

Distance (m)

Graph showing the relationship between peak torque about
the hip joint, the total work and the leap distance for a
simulated leap of Cheirogaleus major with an 8096 hind
limb extension and a trajectory of 45°.

Mirza coquereli

8 20

6
E

r. zv -ý
-ý- Torque 4 10

ö --r- Work

0
~ 2-

0-
02468 10

Distance (m)

Graph showing the relationship between peak torque about
the hip joint, the total work and the leap distance for a
simulated leap of Mirza coquereli with an 809ä hind limb
extension and a trajectory of 45°.

A study of leaping In prosimlan primates

Predictive Model Page 0 10)

Galago gamettii

30

E 20
z
b
Q

0 10

0
0 246

Distance (m)

iF- SO

40

30
-s- Torque

20 ö -ý-- Work

10

0
8 10

Graph showing the relationship between peak torque about
the hip joint, the total work and the leap distance for a
simulated leap of Galago garnettii with an 80% hind limb
extension and a trajectory of 45°.

Galago moholi

4 10

38
E6
%wo 2m Torque

Cr 40 ---ý- Work
0- 3 0
I- 1 2

00
02468 10

Distance (m)

Graph showing the relationship between peak torque about
the hip joint, the total work and the leap distance for a
simulated leap of Galago moholi with an 80% hind limb
extension and a trajectory of 450"

A study of leaping In prosimlan primates

Predictive Model Page (111)

In this model, distance has a simple linear relationship with both torque

and total work. In reality, this may not mimic the true effect of distance

all that closely, since the importance of the various factors involved in

choosing the extension fraction are almost certainly a function of the

distance: for short leaps, energetic 'efficiency is liable to be more

important than the peak torque since the peak torque will be well below

the maximum the animal can manage, so that a shorter extension fraction

with its concommitant lower energy cost is more appropriate.

Torque is only the rotational analogue of force, and in this model, will be

proportional to it. As shown before, peak force is linearly related to the

distance leapt. The work done depends on 'the kinetic energy required

for the leap. This is proportional to the leap distance, again agreeing with

the results of the model.

The following graphs show the effect of leap distance on the peak power

required. These have been plotted on logarithmic axes to show clearly

that there is a simple mathematical power relationship between peak

power and distance leapt.

A study of leaping In proslmlan primates

Predictive Model Page 0 12)

Microcebus murinus

3-
y"1.2243 + 1.4465x RA2 = 1.000

3
ä2

ae

0.0 0.2 0.4 0.6 0.8 1.0
Log Distance

Graph showing the peak power generated about the hip Joint
of Microcebus murinus as a function of distance for a
simulated leap at a 450 takeoff trajectory. 38

38RA2 in the diagram is the r2 value of the regression line.

A study of leaping in prosimian primates

Predictive Model Page (113)

Lemur cotta

4.0

.. 3.5
u
0

as
,
°0 3.0

y-2.5379 + 1.3706x RA2 - 0.999

0.2 0.4 0.6 0.8 1.0
Log Distance

Graph showing the peak power generated about the hip joint
of Lemur catta as a function of distance for a simulated leap
at a 45° takeoff trajectory.

Cheirogaleus major

4,
y-1.7208 + 1.4181 x RA2 = 1.000

3
V
ö

at 02

0.0 0.2 0.4 0.6 0.8 1.0
Log Distance

Graph showing the peak power generated about the hip joint
of Cheirogaleus major as a function of distance for a
simulated leap at a 450 takeoff trajectory.

2.5 -T--
0.0

A study of leaping In prosimian primates

Predictive Model Page (114)

Mirza coquerell

3
y1.6543+1.4066x RA2=1

ä 2-
a 0 J

0.0 0.2 0.4 0.6 0.8 1.0
Log Distance

Graph showing the peak power generated about the hip joint
of Mirza coquereli as a function of distance for a simulated
leap at a 45° takeoff trajectory.

Galago gamettil

3.5-
y=2.1844 + 1.3856x RA2 = 1.0

3.0-
v
0 a
in ° 2.5-

2.0
0.0 0.2 0.4 0.6 0.8 1.0

Log Distance

Graph showing the peak power generated about the hip joint
of Galago garnettii as a function of distance for a simulated
leap at a 450 takeoff trajectory.

A study of leaping in prosimian primates

6

Predictive Model page (115)

Gologo moholl

3
y"1.4019+1.4237x R22=1.000

ä2

at

0.0 0.2 0.4 0.6 0.8 1.0
Log Distance

Graph showing the peak power generated about the hip joint
of Galago moholi as a function of distance for a simulated
leap at a 45° takeoff trajectory.

The results for power do not quite agree with those predicted in the

general relationships. Power can be defined as follows:

(1) P= Fv

Where:

P is the power

F is the force

v is the velocity

From the ballistic equations:

(2) v cc r

i3) Focr

A study of leaping In proslmian primates

Predictive Model Page (116)

Where: ,

vto is the takeoff velocity

r is the leap distance

Therefore:

(4) P cc r

The peak power relationship obtained is always a simple power

relationship, but the index varies from 1.37 to 1.45. Most of this variation

is due to the effect of mass. Equation (3) is an approximation because it

ignores the force required to oppose gravity which becomes more

significant with larger animals. However, when the power index is

plotted against mass, there is still some variation in the values which

must be attributable to the other modelling parameters:

1.46-

1.44-

1.42-

1.40-

1.38-

1.36-

. 01 .11 10
Mass (kg)

Graph showing the relationship between the mass of the
animal and the index of the power relation between the
peak power and the distance leapt. No attempt has been
made to fit a curve to the points, since any measure of
significance would be largely meaningless. However the
trend indicated is very clear: that larger animals have a
slower increase in peak power demands for longer leaps.

A study of leaping in prosimlan primates

Predictive Model Page (117)

This next graph shows the mechanical efflciency37 calculated from the

model as a function of mass:

0.8

U
c

0.7 " ü
w
w W

"

0.6

. 01 .11 10
Mass (kg)

Graph showing the relationship between the mass of the
animal and the mechanical efficiency of the leap. The
mechanical efficiency has been calculated as the ratio of the
useful work performed to the total work done by the animal.

This graph indicates that the smaller animals are able to leap more

efficiently than the larger ones. The larger animals are less efficient

mechanically because most of the energy input that does not do useful

work in accelerating the centre of mass of the animal to the required

takeoff velocity is used to rotate the body segments of the animal. The

internal rotational energy is dependent on the moments of inertia of the

segments, and since moment of inertia depends on the 5th power of

linear dimensions38, this cost is going to be higher for larger animals.

37The mechanical efficiency is the mechanical work done in the model divided by the
amount of useful mechanical work obtained.
38The moment of inertia of a rod is proportional to the mass times the length squared. The
mass is proportional to the volume, and the volume depends on the cube of linear
dimensions. Therefore, the moment of inertia depends on the linear dimension to the power
five. This relationship will only hold precisely for geometrically scaled animals.

A study of leaping In prosimian primates

Predictive Model page 0 18)

Mechanical efficiency, however, provides a very incomplete picture. What

concerns the animal more is the metabolic efficiency of the action. This

is the metabolic (chemical) energy required to perform an amount of

useful work. The efficiency for converting metabolic energy into useful in

ideal conditions is about 0.22 (Dickinson 1929) However, he and others

have shown that this efficiency depends on a large number of other

factors. When looking at animals rather than humans, the efficiency of

obtaining energy from food also has to be considered. The real question is

the amount of food the animal needs to eat to perform one Joule of useful

work. Metabolic efficiency for digestion also depend on various factors

including diet, but is generally higher in larger animals (Martin et al.

1985).

A study of leaping in prosimian primates

Predictive Model Page (119)

Time Dependence

The following graphs show the time dependent data' for each joint and

segment in the hind-limb. As before, an extension fraction of 80% has

been chosen, and the leap distance is 1 m. This latter choice does not

effect the shapes of the curves, though the former does.

Microcebus murinus

1.0.25

E .ý Z 0.15 /* 0
y 0 1 ------------- i

- de

.
b
o

0.05
_ý- ----" -' ! ,ý

-0.054
0.02

.
0.04 0.06

Time (s)

C. P.

-7---M. T. J.

-----"" Ankle

------ Knee

-------Hip

Graph showing the torque about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 45° in
Microcebus murtnus. s

39M. T. J. is an abbreviation for mid-tarsal joint. This is a descriptive term for the joint
complex halfway along the foot. C. P. is the contact point at the tip of the toe.

A study of leaping In prosimian primates

Predictive Model Page (120)

20

15 -C. P.
10

---- M. T. J.
L.

-,, 3
-ý-

........ .
-------- Ankle

00
o. _

-50.02
0.04 -ý . 06 ------ Knee

" 101 ------- Hip

Time (s)

Graph showing the power about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 450 in
Microcebus murinus.

0.3 5

,. ý
0.3

Z 0.25 - ýý

0.2 /
0.15 .e *---

0.05
0

0 0.02 0.04 0.06

Time (s)

- Forefoot

Hindfoot

"""-- Calf

-'-'-' Thigh

-------Torso

Graph showing the bending moment about the segments in
the hind-limb for a simulated 1m jump at a takeoff
trajectory of 45° in Microcebus murinus.

A study of leaping In prosimian primates

Predictive Model Page (121)

Lemur cotta

14
12 C P

E 10 . .

g -----M. T. J.
oe

4
OP do, ,.

' w
-------- Ankle

Q w
F°- 2

------ Knee

-2 0.05 0.1 0.15 0.2 ------- Hip

Time (s)

Graph showing the torque about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 45° in
Lemur catta.

400

300 .' C. P.

200 -----M. T. J.
100 i"- Opp

- ý -------- Ankle ö 0

-100
0.05 15 0.2 -----" Knee

-200 -------Hip

Time (s)

Graph showing the power about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 45° in
Lemur catta.

A study of leaping In prosimlan primates

Predictive Model Page (122)

25

E 20

10 'r

5 011

0, -.
0 0.05 0.1 0.15

Time (s)

0.2

Forefoot

----- Hindfoot

--"'-'- Calf

-'-'-- Thigh

-""----Torso

Graph showing the bending moment about the segments in
the hind-limb for a simulated 1m jump at a takeoff
trajectory of 45° in Lemur cotta.

Cheirogaleus major

1.2
1

ý/
E 0.8 ý' , "'/

"'

/

0.6
0.4
0.2

-0,2
kor 0.02 0.04 0.06 0.08 0.1

Time, - (s)

C. P.

----- M. T. I

'---'--' Ankle

-"---- Knee

-------Hip

Graph showing the torque about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 45° in
Cheirogaleus major.

A study of leaping In prosimian primates

Predictive Model Page (123)

60
50 C. P.
40 de 3 30

.,.
"ý -----M. T. J.

20
10 "'. 0

ý. -" -------- Ankle

0
----- Knee

-10 0.02 0.04 0.06 0.0.1

-20 -------Hip

Time (s)

Graph showing the power about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 45° in
Cheirogaleus major.

2
1.5

v 0.5 E"
o -'

0.05 0.1
-0.5

Time (s)

Forefoot

-----Hindfoot

'-"--" Calf

------ Thigh

-------Torso

Graph showing the bending moment about the segments in
the hind-limb for, a simulated 1m jump at a takeoff
trajectory of 45° in Cheirogaleus major.

A study of leaping In prosimlan primates

Predictive Model Page (124)

Mirza coquerell

1.2
1

E
z 0.8 -"'' 00 ----

3
Q.

0.4 -------- Ankle
` 0.2 i
I- -. ------ Knee

0 _
--

-0.2
_ 0.05 0.1 0.15 -------Hip

Time (s)

Graph showing the torque about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 4511 In
Mirza coquerelL

50

"e
40 C. P.

^ / 30 3:
0, '-M. T. J.

20
. 00.00 ,.

10 -------- Ankle
0

. 0.

a ------ Knee
-10 0.05 0.15

-20 -------HiP

Time (s)

Graph showing the power about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 4511 in
Mirza coquereli.

... j . ýNIV v.

A study of leaping In prosimian primates

Predictive Model Page (125)

2.5

E2ý
Z a00 1.5 . 0.00 1
4.0

00
@

0.5

0 0.05 0.1 0.15

Time (s)

Forefoot

----- Hindfoot

"------ Calf

-'-"-" Thigh

-""-"""Torso

Graph showing the bending moment about the segments in
the hind-limb for a simulated 1m jump at a takeoff
trajectory of 45° in Mirza coquerelL

Galago gamettil

5

u"

0
0 0.05 0.1

Time (s)

0.15

C. P.

----- M. T. J.

-------" Ankle

------ Knee

-------Hip

Graph showing the torque about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 45° In
Galago garnettiL

A study of leaping In prosimian primates

Predictive Model Page (126)

200

150 C. P.

3 100 /
... _-. -M. T. J.

b- 50 00, " V -e - -------- Ankle
0 -IH a

-50
t M

0.05 ^ 0ýr 0.15 ------ Knee
%

-loo -------Hip

Time (s)

Graph showing the power about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 450 in
Galago gamettii.

8
7ý

E60

4 . 00 Poo'
3 E

02
1
0

0 0.05 0.1

Time (s)
0.15

Forefoot

----- Hindfoot

-'------ Calf

------ Thigh

-------Torso

Graph showing the bending moment about the segments in
the hind-limb for a simulated 1m jump at a takeoff
trajectory of 450 in Galago gamettii.

A study of leaping in prosimlan primates

Predictive Model Page (127)

Galago moholi

0.7
0.6 , -

E
0.4
0.3
0.2

cr 0.1 6- l*I 0
.X

-0.1 p*02__--@. T4 0.06 0.08
-0.2

Time (s)

-'- C. P.

----- M. T. J.

'"-"""- Ankle

------ Knee

-------Hip

Graph showing the torque about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 45° in
Galago moholi.

30
25

-C. P.
20
15

"ý" ".
" -----M. T. J.

10 ý
SOO, 5 lop sop -+ --"-- Ankle

0
------ Knee

5 0.02 0.04 08

"10 -------Hip

Time (s)

Graph showing the power about the joints in the hind-limb
for a simulated 1m jump at a takeoff trajectory of 450 in
Galago moholL

A study of leaping in prosimlan primates

Predictive Model Page (128)

1.2

Z 0.8 v

0.6

E 0.4
x 0.2

0
0 0.02 0.04 0.06 0.08

Time (s)

Forefoot

-----Hindfoot

----"--" Calf

-'---' Thigh

----"'Torso

Graph showing the bending moment about the segments in
the hind-limb for a simulated 1m jump at a takeoff
trajectory of 45° In Galago moholl.

One of the very important assumptions of the model is the smooth

extension at each joint in the hind limb. This is certainly an over

simplification. The joints do not all extend together, and this will effect

the results quite considerably. Nor is the actual force applied constant

and this again would alter the shapes of the curves. The torque curves

can be visually divided between two groups: Galago moholi and Mirza

coquereli lack the two stage increase of torque with time and do not have

the constant torque plateau seen with the other animals. Whether this is

indeed a feature of the limb configuration or simply due to the takeoff

position chosen is unclear. The power curves are much more convincing,

with the power generated about each joint increasing almost linearly with

time as the animal's velocity increases and the forces required remain

constant. As mentioned before, the upward curve at the end of the takeoff

is due to the effect of internal energy to rotate the segments in the hind

limb.

More importantly. all the curves indicate the predominance of the hip

joint in powering the leap. It generates the highest powers, and, from

A study of leaping in prosimian primates

Predictive Model Page (129)

the area under the power/time curve, does the most work. This is not

unexpected from a design point of view. The hip is the most proximal

joint, so that having a large muscle mass around it will have less effect on

the total moment of inertia of the limb. However, at least in the case of

Galago moholi, the vastus lateralis muscle is by far the largest muscle In

the hind-limb, but is a knee extensor (Günther 1989). This would lead to

the conclusion that the prime motive force for a leap in this Galago

species would be extension around the knee joint which contradicts the

findings from the model. However, of all the animals simulated, G. moholi

is the only one where the knee performs any appreciable amount of

positive work. In the other animals, only negative work is performed

about the knee joint. In a case where the main motive muscles in the leap

were the gastrocnemius muscle which, extends the ankle and flexes the

knee, and the hamstrings, which extend the hip and flex the knee, this

would be unsurprising since these two joint muscles would allow the

required energy transfer so that the negative work is simply subtracted

from the positive work required at the ankle and hip (Wells 1988).

Verification of this requires the contraction forces and movements to be

measured or modelled in the muscles themselves.

The graphs also show a significant rotational torque about the contact

point between the animal and the substrate. The centre of mass of the

animal is clearly not directly above the support area and without some

form of torque here the animal will fall flat on its face! The only way to

reduce this torque would be for the animal to accelerate off in a parabolic

path during takeoff with the toe-off point being timed to coincide with

the moment when the animal is inclined to the desired trajectory. This

will, however. leave the animal with an unwanted angular velocity, and

require very much more precise timing and coordination during takeoff.

A study of leaping In prosimtan primates

Predictive Model Page (130)

In practice, most of the required torque will probably be provided by the

action of the forelimbs, and a combination of timing and torque about the

forefoot used to obtain the correct trajectory and minimize any rotational

velocity on takeoff. In addition, a torque can be applied by the hind-feet

gripping the substrate. The importance of this torque applied to the

substrate is one of the things that cannot be measured with standard

force plates, since they can only record the torque about a vertical axis.

Model Performance

To review the results of this exercise: does the predictive leaping model,

as described here, provide any useful insight into the mechanism of

leaping, and how might it be improved In the future? It does produce

sets of movements that look convincing when animated on the computer

screen, and it is relatively easy to calculate any of the desired dynamic

results from the data produced. The results above were obtained by

putting the data into my own gait analysis program, as described earlier,

but they could equally have been used as an input dataset for a

commercial, mechanical engineering dynamic analysis program such as

DADS, or ADAMS. These typically allow much more detailed modelling of

elastic and damping elements as well as simple force generators, and

bending stresses are handled much more comprehensively, with links

into finite elements packages such as ANSYS to cope with irregular

shapes. My previous experience using one of these packages (DADS) in an

attempt to analyze measured kinematic data was that they are not set up

to cope with the kind of levels of uncertainty that are common when

dealing with biological phenomena, and hence produce meaningless

results. However, given the much higher quality of the data from a

predictive model, I am quite sure that they would function perfectly.

A study of leaping In prosimian primates

Predictive Model Page (131)

The form of the -model shown here is necessarily rather simple, but

certain extensions could be incorporated which would improve

confidence in the results obtained:

Firstly. real force plate data could be used to calculate the position of the

centre of mass with time. Combined with a film record of the takeoff

posture to get the starting position, this would allow a very much higher

temporal resolution than film with very much less work (at least on the

part of the experimenter: doing the calculations would involve quite a

large amount of computing effort) and the precision of a force plate is

very much higher than the accuracy with which joint positions can be

measured.

Secondly, the time courses of the extensions of the various joints in the

hind-limb can be 'tweaked' to more accurately reflect those observed in a

subject animal. These will need to be coded into the model as functions

describing in which parts of the takeoff phase they are more or less

rapidly extending than normal. They could be weighted to act uniformly,

or to unusually fast or slow in the beginning, middle. or end of the takeoff

sequence.

And thirdly, the kinematic results produced by the model can be put into

a commercial inverse dynamic modelling package which can be set up to

use linear force producing engines attached between to the links and

acting over pulleys rather than the much simpler rotational torque

producing engines that I have used. Passive elements can also be

incorporated, and it would also be possible, this way, to model the effects

of the elasticity of the substrate.

Better mass distribution data would also be a great help. This is not

particularly difficult to measure, but does render the animal body far less

A study of leaping In prosimion primates

Predictive Model Page (132)

useful for any other anatomical work, and as carcasses of these animals

are particularly difficult to obtain, little information of this sort is

available.

A study of leaping in prosimian primates

Discussion Page (133)

Discussion

This section discusses the points arising from the chapters of this thesis

in the order they were raised.

Kinematographic Measurements

Video film was used exclusively as the source of the raw kinematographic

data. This was viewed frame by frame, and points of interest were

measured. This approach has a number of associated difficulties:

The major problem with video as a recording medium is poor resolution.

Photographic film has an extremely high resolution, and each frame can

be easily scanned into a computer at a resolution of 4096 by 4096 or

higher. Compare this to a normal video signal where the best that can

generally be obtained is 768 by 576; 512 by 512 is very much more

common, and in either case this is the combination of two fields which

need to be separated for still motion analysis. The images I used had

resolutions of 512 by 256. In addition, the range of contrasts that can be

recorded is also inferior for video.

The consequence of this is that, to get an image that shows enough detail

to be measured, the field of view needs to be kept tightly cropped around

the area of interest. This is a problem with leaping: the takeoff phase is

relatively compact and the camera needs to be zoomed in so that the

subject takes up most of the field. This means that the animal very

quickly leaves the field of view after it has taken off. Whatever technique

is used, differentiation loses several frames from each end of the

sequence, so unless the film includes at least 2 frames after takeoff, no

velocity or acceleration data can be obtained for the takeoff point. A

number of my sequences were rendered useless because of this.

A study of leaping in prosimian primates

Discussion Page (134)

In addition, the ability to use video cameras in low light conditions is

something of a mixed blessing. While the camera will indeed continue to

function, the quality of the resultant image degenerates enormously. The

increased gain required produces a lot more noise on the image, and
because the light level is uniformly low, the contrast of the image falls.

Compensating for this further increases the noise level. There is, in fact,

no substitute for proper lighting. Even image intensifiers cannot avoid

excessive image degeneration with current technology levels, and so for

work which requires the level of detail required for accurate still frame

measurement, adequate, well placed lighting, is essential.

Filming rate is also an important variable but it needs to be assessed in

the light of experience. Slow filming rates will tend to underestimate

velocities and accelerations. High rates will lead to greater inaccuracies

in velocities and accelerations due to measurement errors occurring at

higher effective frequencies. In addition, measurement is more 'time

consuming. The main advantage of using higher filming rates is that it

allows for more extensive smoothing, and the precision with which

events such as toe-off can be measured is greater.

Leaping Trajectory

The results for leaping trajectory are unequivocal. The animals I studied

did not leap at a trajectory of 45° as had been expected. This has

important implications. It implies that energetic efficiency is not of

prime importance for these animals and that they are prepared to forego

the benefit of a reduced energy requirement in favour of some other

benefit.

A study of leaping In prosimian primates

Discussion Page (135)

From the present study, there is no way of quantifying the other costs

and benefits associated with the choice of leaping trajectory, but there

are a number of possibilities:

Firstly, flatter trajectories are quicker. Therefore by leaping at a

trajectory less than 45°, a prosimian can move through its habitat faster.

This will allow it to spend less time travelling between discrete food

patches or from sleeping sites, giving it more time for beneficial activities

such as foraging, territory defence and courtship. There is a tradeoff

here: the faster the animal moves, the more expensive it becomes to

move a unit of distance, and there is only limited benefit to be gained

from the time saved. To investigate this further, it would be necessary to

derive cost/benefit functions for the various activities that the animal

performs with respect to the amount of time it spends doing the activity.

For example, an animal's territory size or quality (for example, its food

density) may be directly related to the amount of time it has available for

territorial defence behaviour. This has been shown to be the case for the

golden-winged sunbird (Gill and Wolf 1975). Knowing all these cost

functions would allow an optimum travelling speed to be calculated.

An associated factor to increased travelling speed for a flatter trajectory is

that the time spent in the air is shorter. In general, raptors are the

primary predator of small (<2kg) arboreal primates (Cheney and

Wrangham 1986). However. because the presence of an observer tends to

reduce the risk of predation, predation tends to be inferred rather than

observed. For example, in a two year study of Galago moholi, for a

population of 75 individuals, 3 predations were observed, 7 were

suspected and the predation rate was estimated to be in excess of 10 per

year (Bearder and Martin 1980). Thus, ý one might suppose that the risks

of aerial predation would be lower when moving through undergrowth,

A study of leaping in proslmlan primates

Discussion Page (136)

but much higher when the animal needs to leap across an exposed
discontinuity in the substrate. It may therefore be extremely important to

be in flight for as short a period of time as possible to minimize the

danger. This predation argument would also go some way to explain the

leaping trajectories chosen by Galago tnoholi. This animal was observed to

leap at a variety of trajectories, though it was the only animal to average

about 45° for all its jumps. This variation could be a mechanism to

produce leaps that are more difficult for a predator to predict. If the prey

animal always uses the same trajectory. then the raptor, seeing the

animal preparing to leap across a gap, could judge the flight path of the

animal and intercept it more easily.

In addition, animals that habitually live in the undergrowth may be so

used to having to leap in a flat trajectory to avoid other branches that

even in situations where there is room they may be insufficiently

behaviourally flexible to choose to use a more energetically efficient

trajectory. Indeed, they may be so specialized for their chosen

environment that they can no longer get into the correct posture for a

4511 leap, or again, doing so may be so unnatural to their bodies adapted to

flat trajectories that they may not be able to leap efficiently at this angle.

While this may be the case for frogs where leaping for height gain is

unimportant, it seems unlikely for the animals studied here since all

were observed leaping nearly vertically simply to gain height on

numerous occasions.

There may be other environmental effects. It is more expensive to leap

from a substrate that distorts appreciably from the forces exerted during

takeoff due to the energy lost performing the distortion. In the case of an

animal leaping from a horizontal branch, this distortion is most likely to

be a shear occurring due to the bending moment from the reaction force

A study of leaping In prostmlan primates

Discussion Page (137)

of the leap. This bending moment is only from that component of the

reaction force that acts perpendicularly to the orientation of the branch.

So, for a horizontal branch, the steeper the trajectory for a given leap

distance, the more the branch is likely to bend. 40 So, for a given branch

flexibility, the optimal leaping angle will be somewhat less than 45°. If

the branch Is not horizontal, then the picture becomes even more

complicated. A branch inclined at 45° will get virtually no bending torque

from an animal leaping off at 45°. Practically the only forces will be

compressive, and assuming the branch does not buckle, this is likely to

have very little effect since the force required to appreciably compress a

branch longitudinally is very high indeed. The effects of substrate are

likely to be rather more important for larger animals due to the larger

forces involved, and may well encourage these animals to use larger

supports closer to the main trunk of the tree than to venture out to the

periphery when contemplating leaping. This is precisely the sort of

behaviour seen in Indriidae, the largest and the most habitual leapers

among the prosimians (Oxnard et al. 1990).

The other aspect of leaping trajectory concerns performance. All the

animals, apart from Galago moholl which habitually leapt at 45°. leapt at

closer to 45° as the distance they were jumping increased. Given that

there are reasons to choose flat trajectories, this increase would be

expected. For longer leaps, the animal has no choice but to consider the

importance of efficiency because there are limits to the possible amount

of energy an animal can put into a leap, and to get as far as possible on

that amount of energy requires the animal to use the optimal energy

40The Y component of the reaction force is actually approximately proportional to 91 0
sin20

A study of leaping in prosimian primates

Discussion Page (138)

efficient trajectory. For all these arboreal primates, it is easy to envisage

circumstances when being able to manage an extremely long leap is

enormously advantageous. For instance, if there is a large gap between

two trees, a single leap is almost certainly a far preferable option than

laboriously climbing down one tree trunk, running across the ground, and

climbing up the other tree. In general, the ground is an extremely
dangerous place for these animals, and the loss of potential energy means

that this option is going to be energetically costly.

However, the substrate can also effect maximum performance. If the

animal needs to pause before a long leap, which is the case for all the

animals I watched when they were at all uncertain about the jump, then it

cannot retain kinetic energy from a run up. However, provided the elastic

properties of the branch are suitable, it can use it as a springboard,

storing energy from a small preparatory bounce to add to the final larger

leap (Günther et al. 1991). This is expensive because the branch will

absorb an appreciable proportion of the energy from this first jump, but It

may allow a greater maximal leap. In addition, the preparatory bounce

will store energy in internal elastic structures, but although this has been

found to be important in, for example, kangaroo rats (Biewener et al.

1981), its relative importance in prosimians is, as yet, unknown.

Apart from the changes in trajectory, there do not appear to be any other

major alterations in the style of leaps with distance. Physics requires an

increase in force and a concurrent reduction in the duration of the

takeoff phase with increasing leap distance and this is exactly what is

seen. There is an increase in the extension distance of the hind-limb, but

this is not marked, and can be considered to be fairly constant over the

jump distances observed. The fact that the observed parameters agreed

reasonably well with the predicted ones is indicative that the

A study of leaping in prosimlan primates

Discussion Page (139)

measurements obtained were correct. The values for forces, however,

depending as they do on differentiating the measurements twice to

calculate accelerations. are rather less certain.

The obtained force curves show an increase in force on the substrate in

addition to body weight while the animal is flexing its hind-limbs in

preparation for takeoff. This must be due to the animal allowing its

centre of mass to fall due to the force of gravity. It can then apply a force

to decelerating this fall and subsequently to accelerate the animal

upwards in the takeoff phase of the leap. One can only assume that this is

a mechanism to pre-tense the leg muscles by getting them to do some

negative work before they do useful work in takeoff. This will overcome

the problem of the relative slow build-up of tension in muscles:

mammalian muscle fibres take somewhere between 10 and 100ms to

generate their maximum tension depending on the speed of the muscle

fibres (Schmidt-Nielsen 1983). It will also give them the chance to store

some energy in elastic structures in the hind-limb without the action of

antagonistic muscles to prevent movement. It is quite possible that

antagonistic muscle action is also involved, but inverse dynamic analysis

can only give information on resultant forces and gives no information as

to how they are made up.

Species Differences

Most of the differences observed between the different species can be

attributed mainly to their mass difference. However Galago moholi stands

out from all the others in a number of ways. Firstly, it was seen to leap

habitually at the energy efficient angle of 45°. Secondly, the shape of

curves produced by the predictive model for this animal was qualitatively

different from the others: specifically the minimum in the total work

A study of leaping In prosimian primates

Discussion Page (140)

against extension graph. and the absence of appreciable amounts of

negative work about the knee joint. Both these observations fit with the

fact that Galago moholt is a far more enthusiastic and frequent leaper

than the other species (Oxnard et al. 1990). This may mean that energy

efficiency is a greater concern. Cheirogaleus major is noteworthy in being

the least capable leaper of the group. This is indicated by the fact that it

needs to change its leaping style to a more energy efficient one at shorter

distances than the other animals.

Scaling Models

There are various models used to explain the changes in body

proportions with size. Leaping, however, is not a continuous activity like

walking or running, so it does not have a characteristic velocity, and

dynamic models, such as the 'dynamic similarity hypothesis' (Alexander

and Jayes 1983) are not applicable. However the geometric (Hill 1950),

elastic and breaking strain (McMahon 1973) similarity models are

applicable. None of these make any difference to the predictions about

the power relation between force and time and body mass: they all

predict the same relationship which the experimental data fit reasonably

well. However each does predict a different rate of change change in

hind-limb extension distance with mass. There is conflicting evidence

about whether the geometric similarity model is a better predictor of

limb length than the elastic similarity model. Comparison of limb bone

dimensions from animals as different as shrews and elephants has

indicated a geometric relationship (Alexander et al. 1979), but analysis of

other datasets has supported the elastic similarity model (McMahon

1984). In fact, none of them explain the observed results in this study at

all well. It is not an exhaustive sample, but the indications are that the

extension distance of the hind-limbs increases more rapidly than would

A study of leaping In prosimian primates

Discussion Page (141)

be predicted by any of these models. These results agree with more

general observations on hind-limb, length in prosimians (Emerson 1985).

which indicate that the larger animals are more highly adapted for

maximum leap distance. 41

In this context, it must be remembered that all the scaling models

predict that the maximum leap distance for similarly designed animals is

the same irrespective of body mass. By having longer than expected hind-

limbs means that larger animals can leap further. This does not seem to

be an unreasonable state of affairs, but why would a larger animal need to

be a able to leap further? By expending adaptive effort on being a better

leaper, it must be suffering in other respects, such as being a less

efficient walker, or a less rapid runner, so there must be reasons for this

increased capability. Increased limb length is not going to effect the cost

of leaping very much42, but it will increase the length of the maximum

leap that can be achieved. If the main role for long leaps is for crossing

gaps in the substrate, then we may postulate that the discontinuities for

larger animals are themselves larger. The tree spacing will be the same

for all sizes of animals, but the size of the gap between trees depends on

how far out along branches an animal can get. Smaller animals can get

much further before they run the risk of bending or breaking branches,

and they need to get less far towards the trunk of the target tree in order

to get to a support suitable for landing on. Depending on the diameter

41There are important limitations in this line of reasoning. There may be no adaptive
significance at all in the extra length of the hind-limbs of larger prosimians. The small
ancestral leaping form may have obtained its long legs by an increase in their growth rate
during infancy. This could lead to an even greater increase in limb length in subsequent
larger forms due to their increased duration of infancy. If this extra hind-limb length has
no adaptive value (that is, it is neutrally selected) then it will tend to persist.
42If it has any effect, increasing the length of the hind-limbs is most likely to decrease the
energy efficiency of leaping shorter distances. The main excess cost is due to the internal
energy of the rotating limb segments. The internal energy is proportional to the moment of

A study of leaping In prosimlan primates

Discussion Page (142)

distribution of the branches of the tree, this may make a very big

difference in the effective distance that the animal needs to cross. As

mentioned before, the largest leaping prosimians, the Indriidae, leap

preferentially from larger branches and from the trunk. This may well be

because they are too big to reliably leap from branches away from the

trunks. This sort of behaviour will appreciably increase the distances

involved. Also, the smaller animals in this study can easily move through

undergrowth tangles rather than leap across gaps much of the time. This

positive allometry in hind-limb length appears to be peculiar to

prosimians. Data for other jumping mammals, and even including other

jumping vertebrates show a straightforward geometric increase in hind-

limb length with body mass (Emerson 1985).

Predictive Modelling

Predictive models, in all their various forms, provide, in my opinion, one

of the best way forward for studies of locomotion. Obviously their results

need to be compared with those measured by more traditional methods

and the models continuously refined to produce as convincing a set of

output data as possible. Their advantage is that all the assumptions made

have to be clearly set out at an early stage and their effects can be seen

directly. Although, with a great deal of care, and extremely precise

measurements, it is possible to calculate the torques required around the

joints of the hind-limb by using experimentally derived kinematic data

and inverse dynamic analysis, this does not necessarily reveal very much

about the underlying mechanisms. However, if the same results can only

be obtained with a predictive model using particular goal criteria, then

inertia of the limb segment and this depends on the square of the length. Longer limbs are
likely to have a higher moment of inertia per unit mass because of this.

A study of leaping In prosimian primates

Discussion Page (143)

you have some evidence that the goals chosen might well be those that

are have been selected for in the animal.

In addition predictive models are the only way to answer classic "What if

type questions. What if a loris, which is never seen to leap, did actually

try to leap a metre? Predictive modelling would allow us to calculate the

required torques generated round its hind-limb joints and the bending

stresses applied to its skeleton. Then, if the answer to the question is

that its tibia would break, or that its hip extensor muscles would not be

able to provide the necessary power, the likely reason for not being able

to leap would be clearly identified.

Similarly, a sub-fossil prosimian, such as Megaindri could be made to leap

a variety, = of distances to see how its maximum - power and torque

requirements compare with those of other prosimians. This will' allow

the estimation of its possible maximum leap distance, which is extremely

informative about its lifestyle.

Extending the idea further. using more sophisticated models. the effects

of mechanical units other than simple links and torque generators could

be seen. Does having an elastic element in the Achilles tendon lead to

greater efficiency/performance? What feedback mechanisms are required

to produce the observed movement in a controlled fashion? The effects of

altering the input parameters could be analyzed by using Monte Carlo

approaches, where each of the parameters is sampled from a range of

possible values and the model is run a large number of times.

A study of leaping in prosimian primates

Conclusion Page (144)

Conclusion

In conclusion, the mechanics of leaping in prosimian primates are not as

straightforward as might have been thought. The expected optimal

energy efficiency model is quite clearly not generally true except in

certain special circumstances. The animals are seen to leap in flatter

trajectories almost certainly due to the effects of non-mechanical factors.

The exception to this is Galago moholi, which does appear to leap

efficiently with respect to energy consumption.

The detailed internal workings of the limbs during a leap are much closer

to those predicted by simple biomechanical requirements. The centre of

mass of the animal moves in a straight line during the takeoff phase of the

leap. Because of pre-tensioning of the muscles immediately before the

takeoff, the force applied to the substrate is relatively constant during

takeoff, though it falls off very rapidly as the limb becomes fully extended.

Predictive modelling reveals that this is because attempting to get any

worthwhile push at the limit of limb extension is unrealistically expensive

because of the amount of internal energy required to rotate the segments

of the hind-limb. The degree of extension of the hind-limb is not greatly

increased with leap distance, but the effect on the takeoff duration and

peak force are very much as predicted by simple mathematical analysis.

The extension distance increase with mass is noticeably bigger than

would be predicted by any of the popular scaling models. This non-

geometric scaling indicates that there is some selective pressure for

larger prosimians to have longer hind-limbs. One possible reason for this

is that the larger animals have further to leap since they can only leap

from large supports that are closer to the trunks of the trees.

A study of leaping In prosimian primates

Conclusion Page (145)

The predictive model with its goal oriented approach does appear to give

sensible values for leap parameters. It indicates that leaping is mainly hip

driven and that for all the animals, except again Galago moholi, only

negative work is performed around the knee joint. It also shows that

torque about the takeoff point Is important for a stationary leap. Whilst

there are limitations in how far the results obtained from the model can

be taken, it could certainly be used to provide answers to a number of

postulated questions about behaviours that are not observed and further

work will be pursued in this area.

A study of leaping In proslmlan primates

Technical Development Page (146)

Technical Development
A suite of programs was developed for this project. The main gait analysis

was done using a program called gap (gait analysis program) running on a

Hewlett-Packard Unix workstation. The image grabbing was done using

digit running on a PC clone. A program called stretchpic was used to

enlarge the grabbed frames for analysis. This also ran on the workstation.

The predictive modelling program. Leaping Model, runs on a Macintosh.

This section describes how to use each of these pieces of software, and

the following section describes the technical details of the design and

implementation of the programs. In addition. It also describes the

specialized interface between the computer and the video recorder that

was also developed specifically for this project.

Technical Development

User Guide Page (147)

User Guide

gap

This program is the main kinematic analysis tool. It runs on the

HP9000-350-SRX and the HP9000-360 TurboSRX computers fitted with

24 planes of display memory and at least 2 overlay planes. It also requires

a knob box and a button box. Installation requires at least some familiarity

with the intricacies of the Unix operating system, but using the program

requires no knowledge beyond the ability to create directories and move

around in the directory structure. The storage requirements for the

program are minimal but with each image requiring over 750kbytes,

considerable hard disk space is needed for image storage. The program

requires the Starbase graphics system and the X window system (version

11) to be installed. In addition, recompilation requires aC compiler, a

FORTRAN compiler and the NAG numerical libraries.

Installing the program

The program consists of a single executable file called gap. This should

be placed in a directory on the user's path. 43 If the program needs to be

recompiled, this is done by typing make in the directory containing the

source code. The file Makefile may need to be edited so that it moves

the new version of gap to the correct destination. If system-wide access

to the program is desired, it should be put into the /usr/bin directory

since this is on each user's default path.

43The path is a list of the directories that are searched for an executable file. It is set through
the environment variable PATH.

Technical Development

User Guide Page (148)

The program must be run from a directory containing the following sub-

directories: analysis, frame, limb, node, picture. These are where the

program expects to be able to put its output files and read its input files.

This structure is necessary to keep track of all the files that are involved

in an average analysis session. I used a different directory for each animal

I was studying, and each of these contained the five required sub-

directories.

/users/bill/gait/data C. major analysis

frame

limb

node

picture

t
G. moholi analysis

frame

-limb

node

picture

An example directory structure for gap. The program should
be run by typing:

gap. J

whilst in one of the directories marked with a ".
Alternatively. It can be run from elsewhere. and the
working directory can be changed (using the "change
working directory" option) to one of the marked directories.

For analysis, the program requires: a model definition file; a calibration

image file and a set of image files representing sequential frames in the

film to be analyzed. The model definition file should be put in the limb

Technical Development

User Guide Page (149)

sub-directory and the image files (calibration and sequence) should be

put in frame. If sequence position data is to be used that has been

calculated from elsewhere then it should be put in node which is also

where gap will put any it produces. The directory analysis is used for

any data export files and picture is used for screen dumps of animations

and graphs.

In- Unix, all user interaction is performed through special device files that

are created in the directory /dev using the program mknod. The

program requires the following special files to be set up:

Device File Description

/dev/crt Accesses the image planes of the display.

/dev/bbox Accesses the button box

/dev/knobl Accesses the bottom row of three knobs

/dev/knob2 Accesses the middle row of three knobs

/dev/knob3 Accesses the top row of three knobs

In addition, X windows needs to be set up to run in the overlay planes of

the graphic display. This involves the creation of a /dcv/crto special file

and setting up an X*screens file with /dev/crto as its first line. X Itself

requires special files for the mouse and keyboard. These are created

automatically, but /dev/locator, for the mouse may need, to be altered

when the knobs and buttons are attached. All the special files needed

depend on the exact configuration of the hardware, including the order

of devices on the keyboard bus and the presence or absence of the dongle

module. 44

44FU11 details about installation of Unix device drivers, Starbase and X11 can be found in
the relevant HP 9000 series 300 manuals (Hewlett-Packard 1988a, b, c, e)

Technical Development

User Guide Page (150)

Also, the following Unix environmental variables need to be set:

SB_OUTDEV to /dev/crt and SB OUTDRIVER to hp98721 or hp98731

depending on the graphics accelerator being used. These are the device

and driver used in the Starbase gopen statement and they are usually set

in the user's profile file, or they can be set by hand at the start of each

session.

For example:

export SB OUTDEV=/dev/crt

export SB OUTDRIVER-hp98721

Setting up a model

Setting up the model requires the creation of a . limb file. This is a text

file that is used by gap to define the nodes and segments in the model.

how they are linked together. and the mass properties of the segments.

However, before this file is created, the model itself needs some

consideration:

First of all, the positions (nodes) on the subject that are to be measured

need to be named and numbered. Then the nodes need to be linked up

with segments. Nodes that link segments are joints. Each segment is

defined by two nodes: one at each end. Measured nodes do not have to be

associated with a segment, but each segment must be defined by two

nodes. A node can be used as a defining point for any number of

segments. The segments also need to be named and numbered. The

program calculates position information for nodes and angle information

for segments.

Technical Development

User Guide Page (151)

The . limb file has been designed so that it is easily produced or read by a

FORTRAN program where file manipulation in text mode is somewhat

limited, but normally, it is produced using a text editor such as vi or

emacs, or alternatively, by any word processor that can save files as

unformatted text. The line spacing is not at all important since all the

character strings are delimited by single quotes, but the suggested line

spacing makes the file relatively easy to read.

Here is an example . limb file:

'Microcebus murinus limb file (Bitters)'
10
0 'Forelimb tip'
1 'Elbow'
2 'Shoulder'
3 'Toe tip'.
4 'Mid-tarsal joint'
5 'Ankle'
6 'Knee'
7 'Hip'
8 'Nose tip'
9 'Tip of tail'
9
0 'Lower arm' 0 1 3.13E-03 5.00E-01 2.35E-07
1 'Upper arm' 1 2 2.88E-03 5.18E-01 1.77E-07
2 'Forefoot' 3 4 8.75E-04 5.73E-01 -1.26E-08
3 'Handfoot' 4 5 8.75E-04 4.78E-01 1.32E-08
4 'Calf' 5 6 3.38E-03 4.01E-01 3.57E-07
5 'Thigh' 6 7 1.03E-02 4.47E-01 1.26E-06
6 'Head' 8 2 6.38E-03 5.00E-01 7.30E-07
7 'Torso' 2 7 3.26E-02 5.00E-01 1.82E-05
8 'Tail' 7 9 2.19E-03 3.78E-01 2.33E-06

The first line contains a title that is used to provide more information

about the contents of the file. It is delimited by single quotes45. The

second line is an integer (10 here) that specifies the number of nodes in

the model. The nodes are named on the next 10 lines: each of these lines

starts with an incremental integral identification number running from 0

45The single quote is the ASCII value 39. This should not be confused with the opening and
closing single quotes provided on the Macintosh system whose ASCII values are 212 and 213.
These are not interchangeable, and do, in fact, look quite different: ' as opposed to' or'.

Technical Development

User Guide Page (152)

to 9, and is followed by the actual name of the node. The names are again
delimited by single quotes. The next integer, in this case 9, is the

number of segments defined. The 9 subsequent lines contain, first of all,

an incremental identification number. This is followed by the name of the

segment in single quotes, then the identification numbers of the two

joints at the ends of this segment. For the purposes of the program, this

segment is considered to extend from the first numbered joint to the

second numbered joint. So, in this case, the lower arm, runs from the

forelimb-tip (joint 0) to the elbow joint (joint 1). The next number on the

line is the mass of this segment in kg, and the next is the position of the

centre of mass as a fraction of the distance from the first joint to the

second joint. In other words, a value of 0 would indicate that the centre

of mass was at the first joint, and a value of 1 would indicate that it was at

the second joint. Normally, this value is not too far from 0.5. The last

number is the moment of inertia of the segment in kg. m2.

All the values are required though dummy values can be inserted for the

mass properties if they are not required. Zero should not be used as a
dummy value since it will lead to divide by zero errors in the program,

and 0.5 should be used for dummy centre of mass positions. The

character strings have no significance within the program except as the

names used as prompts to the user and as labels on the output data. Extra

nodes and segments are added by changing the integers indicating the

total number of nodes or segments and by adding extra node or segment

description lines. As mentioned before, a single node can be used to

specify more than one segment, or, indeed, no segments at all, and act

simply as a position marker.

Only the first half of the file which defines the joints is used for the

measurement and reconstruction phase, -so if there is an error in the

Technical Development

User Guide Page (153)

segment description, this can be changed after measurement as long as

the joint definitions themselves are not altered. The other area in which

to be careful is in defining the position of the centre of mass. It is very

easy to get the direction sense of this fraction wrong. It Is the fraction of

the distance from the first defined node in a segment to the second. The

integers should be typed in as simple numbers (i. e. 1 rather than 1.0) but

the floating point numbers can use any standard computer notation (1 1.0

or 1. OeO).

Running the Program

The program is run by typing:

gapJ

in the directory containing the analysis, frame, limb, node, picture sub-

directories. It needs to be run from an hpterm window running in X11 in

overlay mode. It uses the system command zseethru to open up a

seethru window, so this should be available on the path. The window

selection control should be set up to use the left mouse button (the

default), since the right hand mouse button is used for all selection (both

menu and measurement) in the program. Menus pop-up automatically,

and windows re-size suitably for a 1280 by 1024 display. To switch to

another program, regain control of the mouse pointer by choosing the

shell option on the main menu.

Measuring the Film

Before anything else, you need to set up the global options (select

"options" from the main menu) for the type of measurements that you

are ' doing. There are 3 types of reconstruction: 2D; 3D with orthogonal

cameras; 3D with any camera position. In addition, a fiducial point can be

Technical Development

User Gulde Page (154)

specified for each frame. This Is simply a point that is visible on all

frames and can be used to make sure that the registration of each frame

is constant. It is measured on each frame and if its apparent position has

altered, then the program can shift every point it measures accordingly.

Calibration

Select the "digitize new sequence" option, and you will be prompted to

load up an existing calibration file or to perform a new calibration. For

the new calibration option, you will be prompted for an image name

which will be displayed. Then you will be asked for a number of

calibration points (and a fiducial point if appropriate) depending on the

reconstruction option, and asked to type in their real world coordinates.

The 3D options assume that both of the required views are contained on a

single image as obtained by grabbing a split field view. It does not matter

which is chosen as picture 1. as long as it is consistent. The brightness

and contrast of an image can be adjusted using the first two knobs.

After calibration, there is an option to save the calibration file.

Measurement

After calibration, you are taken directly to the measurement option. Here,

you are prompted for each measurement using the names given in the

model definition file. In 3D, the required picture is also requested.

Measurement is simply a matter of moving the mouse pointer so that it is

pointing to the required position on the. image and pressing the right

button. The program will acknowledge a point by drawing a marker at the

measured position. Occasionally, due to the multi-tasking nature of Unix,

it will miss a mouse click because the processor was busy elsewhere. This

Technical Development

User Guide Page (155)

can be minimized by having as little going on in background as possible.

This should be done in any case to avoid sluggish performance.

There is no option to correct individual mistakes, but at the end of each
frame, there is the option to repeat the whole frame, or to go onto the

next one. There is also the option to finish the sequence and go back to

the main menu. Once here, it is suggested that the sequence should be

saved with the appropriate menu option.

Getting Output

Animation

Once a sequence is in the computer's memory, either because it has just

been measured, or because it has been loaded up from a file, the

animation option can be selected. This allows continuous, movie style

display, or frame by frame stepping. There is also the option to fix a

particular joint to the centre of the field of view.

When the animation Is running various options are available from the

knobs and buttons. These functions are displayed on the top corners of

the screen. The top right displays each relate to the knob in the

geometrically similar position. It is suggested that the user experiment

with the use of the knobs to become familiar with their effect on the

three dimensional views. In particular, moving the target and the view

point positions produce effects that maybe somewhat difficult to get to

grips with. The viewpoint can be considered as a camera that is moved

around in 3D space (top 3 knobs) with its lens always pointed at the

target point (middle 3 knobs). Thus any combination of viewing positions

can be achieved. The camera and target positions are limited to a4m

cube with the origin in the centre.

Technical Development

User Guide Page (156)

Analysis

The analysis selection brings up" a large menu. These options are all the

kinematic and general kinetic measurements that are available. For each

one, the use can select the limb segment or joint of interest. Multi-line

graphs are possible, but, not more than 10 lines should be plotted on each

one since this will lead to duplication of symbols.

Once a plot has been obtained on the screen, it can be output to a plotter,

saved as screen dump, or the data that is represented can be exported in

a format suitable for input into a variety of other programs. In particular

the SAS export option is -designed to duplicate the displayed graph by

producing a SAS program that contains both the data and the required

commands to produce the graph.

Analysis can be performed on raw or smoothed data as chosen by the

analysis options menu. The user defined menu option contains specific

add-ons. At present this consists of the inverse dynamic procedures used

in this thesis, but others can be easily added.

Menus

For reference. here is a complete description of the menus available in

the current version of gap.

Technical Development

User Guide Page (157)

Main menu:

Selection Description

Read limb file Reads in a limb file from disk.

Read node file Reads in a node file from disk.

Write node file Writes out the current position data to a node
file on disk.

Digitize new sequence Start a new digitization sequence.

Digitize additional Add more frames to an existing digitization
frames sequence in memory.

Display frames Display an animated reconstruction of the data
in memory. Goto display menu.

Analyze gait Perform kinematic and kinetic analysis of the
data in memory. Goto analysis menu.

View video frames View stored images on screen. This does not
affect any data in memory.

Set global options Set program global options. Goto global options
menu.

Shell to Unix Goto the Unix command line prompt. Type:

exit. J

to get back to the menu.

Exit Quit back to the Unix prompt. Also closes the
display window and resizes the command
window.

Display menu:

Selection Description

Start sequence Start the animation

Select options Select animation options. Coto display options
menu.

Exit Exit back to the main menu.

Technical Development

User Guide Page (158)

Display options menu:

Selection Description

Colour. Copper Select colour and reflectance properties for the
surface modeller. This selection is red, metallic
copper.

Rubber Matt red/orange rubber.

Plastic Bright, shiny red plastic.

Obsidian Gloss black.

Pottery Dull orange/brown.

Brass Golden metallic brass.

Style : Hollow Select fill style. Hollow shows the outlines of the
polygons used to construct the animation.

Raw data Raw or smoothed data for the animation.

Variable limb radius Not implemented fully, but switches the display
to use truncated cones rather than cylinders.

Exit Exit back to the display menu.

Technical Development

User Guide Page (159)

Analysis menu:

Selection Description

Node position Display node position' data for selected nodes
with respect to time.

Node velocity Display node velocity data for selected nodes
with respect to time.

Node acceleration Display node acceleration data for selected
nodes with respect to time.

Segment angle Display segment angle data for selected
segments with respect to time.

Segment angular Display segment angular velocity data for
velocity selected segments with respect to time.

Segment angular Display segment angular acceleration data for
acceleration selected segments with respect to time.

Segment lengths Write out a file containing mean segment
lengths.

Node locus Display the locus of selected nodes.

Forces - Display the resultant forces acting on selected
centres of mass of segments with respect to
time.

Torques Display the resultant torques acting on selected
segments with respect to time.

Energies Display the potential, linear kinetic and,
rotational kinetic energies of selected segments
with respect to time.

Options Select options for the analysis. At present, only
whether to use raw or smoothed data.

User specific analysis Perform specialized, user written analyses. Goto
user specific analysis menu.

Exit Exit back to the main menu.

Technical Development

User Guide Page (160)

User specific analysis menu:

Selection Description

Simplified
Quadrupedal Analysis

Perform inverse dynamic analysis on the
simplified quadrupedal link segment model.

Predictive Model
Analysis

Perform inverse dynamic analysis on the output
of the predictive leaping model.

Toe tip and Body COM
output

Write out toe tip and whole body centre of mass
positional data to a file.

Exit Exit back to analysis menu.

Global options menu:

Selection Description

2d On Switch between two and three dimensional data
and reconstruction. In 2D mode, the Z values of
any data are zeroed.

Flexible 3d Switch between orthogonal camera 3D
reconstruction reconstruction and flexible reconstruction using

the DLT algorithms.

No fiducial marks Switch on or off the requirement for a fiducial
mark on each frame measured.

Set frame increment Set the number of frames to be skipped when
reading in frames incrementally.

Set filtration cutoff Set the filtration cutoff frequency as a multiple
of the framing rate.

Change working Change the startup directory.
directory

Smoothing Switch between moving average smoothing and
low-pass digital filtration.

Set smoothing Set the number of values over which to perform
number moving average smoothing.

Exit Exit back to the main menu.

Technical Development

User Guide Page (161)

digit. exe

This program is used to grab sequential fields from a video film. It runs

on a reasonably fast PC compatible (80286 or better processor) running

MSDOS with a serial card (COM1) and a Matrox PIP-1024 board

connected to a second monitor. The program requires minimal hard disk

space, but each image requires over 100kbytes of storage so that

appreciable storage space is required.

Installation

This program requires that the Me digit. exe be copied into a directory on

the path, or the path can be set to include the directory containing the

program. digit. eze is produced, by compiling digit. c and linking with the

relevant Matrox libraries. These can generally all be kept in the same

directory. The program is run by typing:

digit)

at the DOS prompt.

The video interface needs to be connected to the COM1 port of the

computer and the audio in and audio out'sockets need to be connected to

their counterparts on the video recorder. When dubbing, the output level

from the interface is constant so that any auto level control on the video

should be turned off, and the level set manually to the 0dB level. The

output level from the video needs to be set experimentally along with the

input sensitivity control in the interface to produce reliable results. Since

the signal is internally clipped, maximum volume may work best here.

The PIP-1024 card needs to be installed normally and the video output

from the recorder connected to channel 2. The board needs to be

Technical Development

User Guide Page (162)

installed at the default I/O location and memory address with interrupts

disabled. The second monitor is connected to the board as normal.

Running the program

First of all, move to the directory where the image data is going to be

saved and start the program. This will produce the following menu (items

are selected by keying in their number):

Selection Description

Write Soundtrack Writes the timing sound track out to the video
recorder.

Read and Display Read the timing sound track from the video
Soundtrack recorder and displays it on the computer

screen.

Grab Single Frame Grabs a single frame at a specific count number
on the sound track. -

Digitize Frames Grabs and saves a sequence of fields from the
video recorder based on counts from the sound
track.

Adjust Brightness and Adjust the brightness and contrast settings for
Contrast the frame grabber card.

Exit Quit back to DOS.

To digitize a- series of fields from the video, the following steps need to

be performed:

(1) Record a sound track on the video:

Rewind the video tape containing the sequence. Select the write sound

track option from the main menu. Press play on the video recorder and

switch on sound dubbing and press the space bar on the computer

keyboard to start the production of the sound track. The computer

counts the video frames and sends out a digitally coded count number to

be recorded on the sound track. When the sound track has finished,

Technical Development

User Guide Page (163)

press the space bar to get back to the main menu. This process only has

to be done once for the whole tape.

(2) Set up the brightness and contrast:

Choose the adjust brightness and contrast option and play through the

video sequence. Adjust the brightness and contrast using the new menu

options until the best picture is obtained on the screen attached to the

grabber card. then select exit to get back to the main menu. This will

need to be done once per session. It is worth noting down the brightness

and contrast settings so that they can be duplicated on subsequent

sessions.

(3) Choose the start count for the sequence:

Rewind the video to before the start of the sequence. Select the read and

display sound track option from the main menu. Press play on the video

recorder. After a -short delay while the computer gets into sync with the

video, the computer screen will display the timing counts. When the

required start point is reached, press the space bar on the computer

keyboard. The screen attached to the grabber card will show the frame

that corresponds to the displayed timing count. To check whether the

count before, or perhaps after, is a better start point, the grab selected

frame option can be selected from the main menu, and the desired

timing count keyed in. The video can then be rewound to before the start

point and switched to play. The timing count will be displayed, and a

frame will be grabbed at the required count number.

(4) Grab and save the desired sequence:

Select the digitize frames option from the main menu. You are then

prompted for a file name. This should be up to 8 characters long, and is

Technical Development

User Guide Page (164)

the name each field is saved asp with an extension starting at . 000 and

incrementing by 1 each time. Then key in the start timing count and the

number of counts over which to digitize. Each count corresponds to 16

fields (about 113 second). Then rewind the video to a point before the

start of the sequence and press "play". For each count, the video needs

to play through the sequence twice. since only 8 fields are stored on each

pass. After these are grabbed, an on-screen prompt appears asking for

the tape to be rewound. The tape needs to be rewound each time to a

position at least 2 seconds before the start of the sequence since it takes

about 2 seconds for the computer to re-sync to the timing track after

"play" has been pressed on the video46. If. by accident, the tape is not

rewound sufficiently, simply rewind the tape again and press "play". This

may lead to the synchronization getting confused. but this is easily

spotted since the timing counts displayed are nonsensical. If this occurs.

just rewind and play until the correct numbers are displayed. This may

take two or three attempts.

The end result is a sequence of incrementally numbered files on the hard

disk, each containing a single field digitized at 256 grey levels and at a

resolution of 512 by 256, with an aspect ratio of 1.333 for the whole

image so that each pixel in the stored image is 1 unit wide by 1.5 units

high.

stretchpic

The image files produced by digit have a resolution of 512 by 256. gap

can display these files, but they will appear very small on the display and

46The easiest way to perform this repetitive rewind and play cycle is to use the shuttle and
play controls on an edit controller. Alternatively, an in and out point can be set, and the
required sequence of film can be cycled through using the review button.

Technical Development

User Guide Page (165)

will be horizontally stretched because the pixels on the workstation are

square, and those in the image are rectangular. stretchpic, as its name

suggests, stretches the image to 1024 by 768 pixels. Of course, this

increases their storage requirement 6 fold, so for archive storage, images

should be left in their unstretched form. The program currently runs

under Unix, though, since it is a very simple program it could be

recompiled to run under virtually any operating system.

installation

The executable file stretchpic can be installed anywhere on the path. As

with gap, for system-wide access, /usr/bin is a good choice.

Recompilation simply requires running the C compiler on the source file

stretchpic. c.

Running the program

The program is run by typing:

stretchpic fi1el file2 ... J

where Mel el fi I e2 etc. are the names of the original image files. This

will produce stretched image files which will replace the originals.

Wildcards such as * and ? can be used to specify a group of files in the

standard Unix fashion.

stretchpic is quite slow, so the suggested action is to copy a session's

worth of image file from archive storage into a directory and to run

stretchpic on all of them at once before the session starts. This may take

an hour or so to complete, but will allow the measurement session to take

place without interruption.

Technical Development

User Guide Page (166)

Leaping Model

This is the predictive leaping model program. It is given a set of

parameters describing the required leap and the physical properties of

the leaping animal, and it produces a set of positional data which have the

correct kinematics to perform such a jump. This output data set is ' in the

correct format to be read into gap for display and kinetic analysis. It has

been tested on a Macintosh Plus running system 6.7 under multifinder,

but should run with no problems on more recent versions of the system

and with newer machines. The program fully supports desk accessories

and MultiFinder, but it does not run in the background.

Installation

Copy the application file Leaping Model anywhere on the hard disk or

floppies. If recompilation is required, use the the Symantec Think C

project file Leaping Modelac. The resource file and the C source files are

all in the same folder.

Running the program

The program can be started by either double clicking on the program

icon or on one of the files produced by the program.

Program Icon Model Icon Results Icon

Macintosh icons for the predictive modelling program.
Double clicking on the model icon causes that model to be
loaded up immediately.

There are four main menu groups: d. File, Edit and Model. The d menu

accesses the desktop accessories and other programs running under

Technical Development

User Guide Page (167)

MultiFinder as well as the "about box" for Leaping Model. The Edit

menu is only used for desk accessories and for number entry within fields

in the dialog boxes.

The File menu has the following options:

New deletes the current modelling data, and restores the values to their

defaults. Open reads in an existing modelling data file. This is the file

that contains the input data for the program. Only modelling data files

will be displayed in the standard file dialog box. Save saves the current

modelling data file with its current name if it has one. Save as saves the

current modelling data file under a different name. Write data calculates

the kinematic data from the current modelling data and writes it out to a

file. It is greyed out, as in this example, until a modelling data file is

opened, or new modelling data is entered. Quit exits the program. All

standard Macintosh data traps are implemented so that any action that

might cause the loss of data is queried.

The Model menu has the following options:

Technical Development

User Guide Page (168)

All these options pop-up dialog boxes that allow the user to type in the

various input parameters required by the model. Start position is the for

the positions of the joints in the fully flexed position: 47

Start Position: HY

Mid-Tarsal Joint 1-0.032 10.005

Ankle 1-0.061 10.02

Knee 10.017 0.105

Hip 1-0.101 0.085

Nose Tip 0.249 10.0052

OK Cancel

The toe tip needs to be at the origin, but otherwise, any coordinate

system can be used provided that the units are in metres. The model is

rotated so that the centre of mass is at a 45° inclination before calculation

starts. As in all the dialog boxes, values can be entered in any of the

standard numerical formats (1 1.0 1. OeO). The OK button accepts the

47The values in the dialog boxes shown are for the Lemur catta leaping model.

Technical Development

User Guide Page (169)

currently displayed data. Cancel reverts back to the data displayed when

the dialog box was first displayed.

The start position data can be obtained from measuring a still video frame

of the animal just before it starts to leap.

Run parameters sets the requirements for the computer program that

are independent of the animal being modelled (generally):

Mass: 112.7 kg

g: 19.81 m/s/s

Time tolerance: 1 e-07

Range: 8 im
Number of times: 130 5-100

MaHimum Iterations: 100 >10

EHtension Fraction: 0.8 0.0-1.0

OK Cancel

Mass is the overall mass of the animal in kg. g is the acceleration due to

gravity in ms-2. Time tolerance is a measure of the precision used to

decide whether the iteration has finished. It is actually a fraction of the

time interval but there is little reason to alter it from its default value

given here. Range is the horizontal distance of the leap in metres.

Number of times is the number of times required in the output data.

Maximum iterations is the maximum number of iterations that the

program will use to attempt to achieve the desired time tolerance. A

Technical Development

User Guide Page (170)

warning is issued if the number of iterations is exceeded, and the output

data contains the best approximation currently available. Extension

fraction is the fraction of the maximum extension distance of the hind-

limb to be reached by takeoff. Sensible defaults are provided for all the

values here except Mass which needs to be set for each animal.

It is not necessary, or even desirable, to set the tolerance to a much

lower value than the default, or to set the number of times to calculate to

a value greater than 100. The current tolerance is close to the floating

point accuracy of the computer, and Is easily accurate enough. The

program is currently set with a maximum number of times of 100. This

could easily be extended, by recompiling, but, experience has shown that

the errors from second order differentiation simply due to rounding

error become very noticeable if the sample frequency Is set much higher

than this value. The default maximum number of iterations value of 100

has been sufficient for all cases tried so far unless there has been some

error in the input data.

Technical Development

User Guide Page (17 1)

Segments is for the mass distribution properties of the animal:

Segments: Mass C. M.

Fore-foot 110-0378 0.573

Hind-foot 0.0378 10.478

Calf 0.146 0.401

Thigh 0.443 10.447
Torso 2.04 I°"5

OK Cencei

Mass is the mass of the segment. These values can either be fractional

masses, or actual masses in any units. The actual mass of each segment is

calculated from the total mass of the animal. This allows a generic set of

segment masses to be used here with only the total mass changing. C. M.

is the fractional position of the centre of mass moving proximally and

cranially.

The output from Leaping Model is a text ffie with a node suffix in the

correct format to be read into gap for further analysis. This file is a list of

the positions of the nodes of the model for the number of times

requested. Since each position is calculated by an iterative method rather

than analytically, It is fairly slow, and would benefit greatly from being run

on a Macintosh with a maths co-processor chip installed.

Technical Development

User Guide Page (172)

gap requires an appropriate . limb file to understand the data produced by

Leaping Model. Here is a suitable example:

'Microcebus murinus limb file (Bitters)'
6
0 'Toe tip'
1 'Mid-tarsal joint'
2 'Ankle'
3 'Knee'
4 'Hip'
5 'Nose tip'
5
0 'Forefoot' 0 1 8.75E-04 5.73E-01 1.26E-08
1 'Hind-foot' 1 2 8.75E-04 4.78E-01 1.32E-08
2 'Calf' 2 3 3.38E-03 4.01E-01 3.57E-07
3 'Thigh' 3 4 1.03E-02 4.47E-01 1.26E-06
4 'Torso' 4 5 4.71E-02 5.00E-01 1.82E-05

Only the mass properties and the title line need to be changed for each

animal to match those used in Leaping Model. The rest of the values

describe how the segments in the model are joined together, and this

cannot be altered.

i

Technical Development

Technical Description Page (173)

Technical Description

This section describes the programming techniques used for each of the

computer programs. and describes how they might be customized and

extended. None of this information is necessary to use the software. In

addition, a full listing of the source code is given for each program.

gap

gap has been written in C and currently runs on Hewlett-Packard 9000

series 300 hardware under HP-UX, a System V version of Unix. It makes

extensive use of the HP X11 tool-kit and widget library and the HP 3D

graphics library Starbase so that currently it could not be simply re-

compiled to run on a different machine. It also uses the NAG numerical

analysis libraries for some of the calculations and for plotting the results

graphically. However, - parts of the program have already been ported to

run on Macintosh hardware, and it is expected that the whole program

will eventually run on any hardware that supports X11.

The HP9000-350SRX that is used to develop the program has some

features not commonly found on computing systems: a 3D hardware

graphics accelerator which allows real-time animation of solid rendered

images: knob and button boxes in addition to the normal mouse for

extended analogue control. These features are all supported by the code.

Features

User Interface

The program has been designed from the start to be as easy to use as

possible. It is entirely menu driven, and primarily mouse controlled. The

main compromise here is between ease of use and generality. The more

Technical Development

Technical Description Page (174)

things are tied to menu choices, the less absolute flexibility is available. In

an attempt to overcome' some of these problems, many of the menus are

constructed dynamically from information in the model description.

The main flaw is that the program has not adopted the event driven

format that is now gaining in popularity. This is where the actions of the

program are governed as much as possible by events generated by

interaction with the program's user. The main advantage Is the avoidance

of modes where the user is required to perform operations sequentially:

first do A; then do B; and so on... This may not seem to be a problem to

hardened computer users, and is Indeed the classical programming

model used, but it is not, unfortunately, the way that people choose to

operate. In general, A and B should be performed when the user

decides/remembers that it should be done, and the software can sort out

the required ordering internally. As can be imagined, there is an

appreciable amount of extra work involved for the programmer.

In addition, more use could have been made of the X11 tool-kit to

provide dialog and message boxes instead of using the terminal emulator

window. Again this an expedient demanded by lack of time. X11, unlike

other graphical interfaces such as the Macintosh does not provide

interactive design tools for its widgets and panels so that providing this

level of interaction requires a very much larger amount of work.

Generality

Generality was a major functional aim of the program. Whilst the primary

goal for this project was to look at leaping in prosimian primates, it was

also envisaged that the same software could be extremely useful in

looking at the mechanics of a tennis serve, or a golf swing. Thus the

number of measurement points, their names and their connection

Technical Development

Technical Description Page (175)

pattern are completely defined by the user. The only limitation is that

each segment is only defined by two points and these need to be the

joints so that, for instance, there is no facility for picking a point on an

animal that is easy to measure and can be considered to have some fixed

relationship to a particular joint that is, itself, very difficult to define.

However, since the program produces a data file containing raw position

information, the different parts of the program: data acquisition and data

analysis can be used in isolation.

The source code is written for clarity rather than, necessarily, efficiency

where there was any conflict between the two. In particular, considerable

effort was made to keep the machine specific parts of the program

isolated so that it could be moved onto other platforms without too much

difficulty. In addition, there is specific support for user supplied

extensions in the analysis subroutine since it is quite impossible to

provide all possible options that could be requested. In addition, the

inverse dynamic module is specific for a particular limb segment

configuration and although it is relatively easy to change the given source

code for a different model, it is extremely difficult to provide general

code for this.

Scope

The program allows the user to call up and measure a series of stored

images. It has three calibration models: 2D with correction for rotation

and scale; 3D from 2 orthogonally mounted cameras correcting for

rotation and scale; 3D from 2 randomly placed cameras calibrated from at

least 6 known points. It has interactive image enhancement of contrast

and brightness, and can use pseudo-colours to further improve detail

separation. Current images are 512 by 256 (stretched to 1024 by 768) by

Technical Development

Technical Description Page (176)

256 grey levels, but this can easily be expanded depending on the

available video display and capture equipment. All measurement is

performed by mouse movement which is extremely time efficient and

allows each measured position to be prompted for on-screen and to be

marked on the image.

Calibration data can be stored for subsequent re-use. Measurement data is

stored unsmoothed, but is optionally smoothed by a digital filter or by a

user selectable moving average when it is re-read.

The program is able to present animated sequences depending on the

linkage map set up in the original model description file. When in 3D

mode, this is a fully Phong rendered stick figure with smoothed octagonal

prisms representing the limb segments (Hewlett-Packard 1988d). The

colour and surface properties of the display can be changed and the user

is able to move the viewpoint around the model. zoom and pan in real-

time using the knob box. In addition the animation can be single stepped,

or allowed to run through only a user defined part of the whole sequence.

The 3D effect is extremely convincing and can be an important

visualization tool.

Full kinematic analysis facilities in 2 or 3D are available within the

program with the results output to the screen, a plotter or to data file in

123, Excel or SAS formats. The program will calculate positions,

velocities and accelerations of all measured points and the centres of

mass of each segment and the overall model. It will calculate the angles,

angular velocities and angular accelerations of each segment. Using the

mass and moment of inertia data, it can then calculate the net force and

torques acting on each segment, and also its potential and kinetic energy

- both linear and rotational.

Technical Development

Technical Description Page (177)

In the user specified analysis section it is currently set up to perform

inverse dynamic calculations on the measured 2D model (8 segments)

and the predictive model (5 segments). These both calculate the reaction

forces, the torques and the work per frame at each joint, and the torque

induced bending moment on each segment.

Structure

Inittallzation

The basic structure of the program can be considered to be a tree rooted

at the main menu level. Outside this are just the routines to initialize the

graphics, windows and user interaction hardware at the beginning and

the routines to disconnect them all at the end of the program. The

function open_dev performs initialization and close_dev tidies up when

the program has finished.

The window arrangement is set so that text interaction occurs in the

terminal window from which the program is called. and a so called

seethru window is set up to allow the graphics routines to run in the

image planes of the display. The windowing is all done in the overlay

planes. 48 This allows the user to move and resize the graphics window

whilst still allowing use of the high-speed hardware 3D rendering under

Starbase.

48The picture displayed on the video screen is obtained from a large block of video memory
in the graphic accelerator. For each pixel, there are 24 bits (planes) of image information to
allow 16 million colours and 4 bits of overlay information to allow 15 colours plus
transparent so that the underlying image can be masked.

Technical Development

Technical Description Page (178)

Data Input

Video Display

Image measurement is done from digitally stored images. This can be

from any source, though the format needs to be appropriate for this

program. The current size limits are 1024 by 768 and only 256 grey

levels are supported. This limitation is because the image is treated

simply as a block of data that is written over to the display hardware in an

untranslated form. This proved to be necessary to get the images

displayed from disc at a usably fast speed. On the current hardware it

takes about 2 seconds.

Once displayed. the user can modify the contrast and brightness using

the knob box. This is done by switching the display mode to use a lookup

table instead of the true colours used for 3D. The display look-up table

can be re-mapped very quickly49 to change either the effective brightness

range or the offset of the whole screen. In addition, there are facilities to

allow the display of the image in pseudo-colours50, again by re-mapping

the look-up table.

On-Screen Measurement

Data measurement is performed in the function digrd by entering a loop

where the right mouse button status is polled. X11, by default, only uses

49Each pixel of the image is stored as a number from 0 to 255. This number is used as the
index to a look-up table of red, green and blue values so that, although only 256 colours can
be displayed simultaneously, these can be chosen from a palette of approximately 16
million. To rapidly change the appearance of colours on the display, the entries in this table
can be altered and it will immediately effect the whole of the display.

50pseudo-colours are where artificial colours are applied to an image instead of grey levels.
By using colours, the effective contrast is enhanced and certain areas of the image can be
made to stand out very clearly.

Technical Development

Technical Description Page (179)

the left mouse button, so by using the right button, the normal X11

window switching functions can still be supported. Within this loop, the

knob positions are also monitored to allow real-time contrast adjustment

whilst measuring is being undertaken.

When a right button press is detected, the loop is ended, and a marker

drawn on the screen to provide feedback to the user that a particular

location has now been measured. Use has shown that this is particularly

reassuring, and eliminates measurement errors associated with

measuring the same point twice. The marker. and all subsequent

calculation is done in the Starbase coordinate system rather than the X11

coordinate system. Starbase uses floating point coordinates with the

origin in the lower left, whereas X11 uses integers with the origin at the

upper left. There is also some discrepancy between the perceived

position of the cursor and the centre of the marker and this few pixel

difference also has to be compensated for.

2D/3D Reconstruction

The reconstruction is handled by having two separate menu selections:

one for starting a new series of measurements; the other for continuing

with an existing set of measurements. The effects of both are controlled

by the global options specifying 2D or 3D and, for 3D, orthogonal or DLT

reconstruction. The initial calibration is performed through the initrd

function, and subsequent measurements via the read2d and read3d

functions.

When starting a new series of measurements, the option is given to load

up an existing calibration file or to produce a new calibration, which can

then be saved as required. Calibration is achieved by finding a geometrical

transformation that maps real world coordinates onto screen coordinates.

Technical Development

Technical Description Page (180)

To find real world coordinates from screen coordinates is then simply a

matter of reversing this transformation. With 2D. this is a relatively trivial

exercise since both the display device and the real world are considered

as parallel planes, so that only uniform scale and translation are required.

For 3D measurements, the additional dimension means that information

is required from another frame of reference: that is another camera. The

complexity then depends on the restrictions placed on the camera

positions. By having cameras placed orthogonally, one can be considered

to be measuring the X and Y coordinates exclusively, and the other the Y

and Z. These can then be treated as two independent 2D problems for X

and Z and a mean can be used for the Y value. The only caveat here is that

the cameras should be sufficiently far from the subject that this distance

should swamp the variation in the depth of the subject so that parallax

can be ignored. This, in itself, can be difficult to arrange.

Completely flexible 3D reconstruction. allowing for free choice of camera

positions, and yet calibrating from known positions in the subject volume,

requires a more thorough understanding of the optic train. Effectively,

each position measured on the image can be considered as defining a

straight line in space from the point defined on the film plane of the

camera, through the optical centre of the cameras lens, to the actual

position of the point being measured. If this is done for two cameras,

then two lines are defined in space and the position of the target point is

where these two lines cross. Unfortunately, due to errors in

measurement. these two lines will. almost certainly never actually touch.

so some sort of nearest estimate approximation must be obtained. In

addition, the optics of currently available lenses are such that the optical

centre will change depending on the position on the film plane in some

uncertain fashion (unless the camera has been specially calibrated as in

Technical Development

Technical Description Page (181)

the case of specialist mapping stereo-photogrammetric systems), so that

an approximation method will almost certainly give better results than

trying to solve the problem analytically. This is where DLT reconstruction

is useful: (Shapiro 1978. Miller et al. 1980)

DLT Reconstruction

The basic DLT equations derive from the standard photogrammetric

equation, and are an approximation that lends itself easily to calculation

and are relatively stable.

L1X+LZY+L3Z+L4
(1ý q-LgX+L1OY+L11Z+1

LSX+L6Y+LIZ+Lg
(2) r=LgX+L1OY+L11Z+1

Where:

p, q Camera (and hence screen) x and y coordinates

Ll L11 DLT parameters

X, Y, Z World coordinates

For reconstruction use. the parameters, Li to L11 need to be calculated

for each camera, by measuring the screen coordinates, p and q, for at

least six sets of known world coordinates X, Y and Z.

Rearranging as follows:

(3) - L1X - L2Y - L3Z - L4 + L9Xq + L1OYq + L11Zq = -q

(4) - L5X - L6Y - LIZ - L8 + LgXr + L1OYr + L11Zr = -r

For q(1-n), r(1-n). X(1-n). Y(1-n). Z(1-n), the solution matrix becomes:

Technical Development

Technical Description Page (182)

(5)

-X I Y1 -Zi 4 0 0 00 9iX1 91Y1 9X1 qt
0 0 00 -X I Y1 -Zi -1 rfX1 rlY1 riZi Li ;1

.
L2
Ls
L4
Ls

L=
L9
Li

-X a Ya -Zn -1 0 0 00 c6Ca gqYa y, Za Lu qa
0 0 00 -X. Y. -Za -1 raXa rata r1Za -re

Which can be solved for Li to Li 1 by standard over-defined linear equation

techniques.

Once all the DLT parameters are known for each camera, then the

unknown world coordinates of points can be calculated by measuring

their screen coordinates in each camera where they are visible. They

must be visible in at least two cameras.

Rearranging the standard equations:

(6) (qLg - L1)X + (gLlo - L2)Y + (qLl l- L3)Z = 14 -q

(7) (rL9 - Lg)X + (rLlo - L6)Y + (rLi 1- L7)Z = Lg -r

For a series of cameras a, b, c..., for q(a, b...). r(a, b...) and r41-11)(a, b...) the

solution matrix becomes:

(8)
q 9a LIa Q. -10a

L2a QL11a Lia L4a-q

rLL9a L5a rLL10a L6a raL1lä L7a L8a ra

q L9b-L1b QbL10b-L2b q L11b-L3b x_ L4b-gb

rbL9b-L5b rbL10b-L6b rbLllb-L7b Z L8b-Tb

Which can be solved as before for X. Y and Z.

Technical Development

Technical Description Page (183)

The NAG routine E02GCF is used to find the MINIMAX solution of the

sets of linear equations. It is written in FORTRAN rather than C, so a

certain amount of jiggery-pokery is required to get the two languages to

talk to each other. and this is done via the small FORTRAN routines

dltjarametcrs and dlt recon.

Initial tests in the laboratory showed this to be a perfectly acceptable

implementation of the DLT algorithm, but subsequent field trials revealed

it to be completely unuseable with my experimental setup. 3D

reconstruction is much more sensitive to measurement error than the

much simpler 2D approach. Visualize shining two narrow light beams

from torches, trying to get the position where the two beams intersect,

and to hold the beams still enough so that this intersection position does

not move. The point measured in the two images must be the same point

in space. In my experiments, the operator has to estimatie the position of

the joint, and thus getting the same position estimate from two different

views is extremely difficult. While this error is relatively small as far as 2D

is concerned, it equates to a much larger error in 3D. Thus, whereas

markers are optional for 2D, they are much more important if the DLT

method of 3D measurement is to be attempted.

Kinematic Modelling

The kinematic modelling is achieved by treating the model segments as a

set of vectors running from one defined joint to another as described in

the limb model provided by the user. Each joint has an X, Y and Z

position. and each segment has an angle in the X=O, Y=O and Z=0 plane.

For the 2D model, Z is always zero, so all rotation is in the Z=O plane.

The positions of the centres of mass of the segments are found by sub-

dividing the segment vector by the centre of mass position fraction given

Technical Development

Technical Description Page (184)

in the model description file. The reconstruction data gives a series of

values of position or angle at a series of discrete times. Kinematic analysis

requires these values to be converted into velocities and accelerations: a

process that requires differentiation with respect to time. This program

uses a simple straight line fitting approach with or without data

smoothing. However, the differentiation routine is isolated so that other

approaches can be easily implemented. Differentiation is available in the

NAG libraries for example, and in is certainly relatively easy to fit a

smooth curve to the data and differentiate this analytically. Various

polynomial splines are ideal in this respect because they are guaranteed

to be continuous up to the second derivative. However the experience of

others indicate that the values obtained by these methods reflect more

the fitting method than the actual data; this is certainly so when used to

find second rather than first derivatives (Pezzack et al. 1977).

The smoothing is performed directly from the main menu loop whenever

new data is obtained. The form is controlled by a global option and both

the raw and smoothed data are stored internally. The choice of whether

to use smoothed or raw data is then made from within the analysis and

the animation sections.

Two digital smoothing algorithms are available in the program: 4th order

low pass Butterworth digital filtration at a variety of cutoff frequencies

and moving average smoothing over a variable number of steps and

moving average smoothing over a user-defined number of steps. The

advantage of the first method is that it has a real physical meaning:

frequencies above a certain value are reduced by 12dB per octave. so that

if a cyclic movement is being studied, where the characteristic

frequencies are known by examining the frequency spectrum (obtained

by Fourier analysis, for example), a cutoff point can be set above which

Technical Development

Technical Description Page (185)

there are no frequencies of interest. Its main disadvantage is that it takes

an appreciable number of samples at each end of the sequence for the

filter to stabilize, so that a relatively large number of measurements are

lost. In my experience, the filter appeared to behave properly after about

4 samples (in addition to the two lost due to the digital filter itself),

which, again would not be a problem when looking at a cyclic behaviour,

but because of the speed the animal left the field of view after takeoff.

meant that this method was unsuitable for my experiments. Moving

average smoothing has a less well defined physical description: there is

more smoothing when the average is performed over a greater number of

samples, and a greater number of samples is lost at each end. However,

there is no settling time problem, so the number of samples lost is just

the smoothing interval divided by two and rounded down. The minimum

smoothing, over three values, only causes the loss of one data point at

each end and provides a reasonable degree of smoothing. This was the

technique that I habitually used.

The 4th order low pass Butterworth was implemented as described by

Winter (Winter 1991). This is achieved by running the data through a

second order filter twice, reversing the direction for the second run to

correct for any phase distortion that has occurred.

The equation for the filtration function is as follows:

(1) Fn = aOXn + aiXn-1 + a2Xn-2 + b1Fn-1 + b2Fn-2

Where:

Fn is the nth filtered output coordinate

XI, is the nth raw input coordinate

an bn are the filtration coefficients

Technical Development

Technical Description Page (186)

The filtration coefficients used are as follows: (Winter 1991)

fs/fc ao al a2 b1 b2

4.0 0.2929 0.5858 0.2929 0.0000 -0.1716
5.0 0.2066 0.4132 0.2066 0.3695 -0.1959
6.0 0.15505 0.3101 0.15505 0.6202 -0.2404

7.0 0.1212 0.2424 0.1212 0.8030 -0.2878

8.5 0.0884 0.1768 0.0884 1.0011 -0.3547
10.0 0.06745 0.1349 0.06745 1.1430 -0.4128

12.0 0.0495 0.0990 0.0495 1.2796 -0.4776

14.0 0.0379 0.0758 0.0379 1.3789 -0.5305

16.0 0.02995 0.0599 0.02995 1.4542 -0.5740

18.0 0.0243 0.0486 0.0243 1.5134 -0.6106

20.0 0.0201 0.0402 0.0201 1.5610 -0.6414

Where:

fc is the cutoff frequency

fs is the sampling frequency

Filtration is performed in the routine filter so this can be altered

independently if a different filtration algorithm is required.

The moving average smoothing is performed in the routine smooth. The

formula used is as follows:

m
1:

(2) Sn 2m+ 1
i=-m

And:

(3)
N-1

2

Technical Development

Technical Description page (187)

Where:

Sn is the nth smoothed value

N is the number of values smoothed over (must be odd)

A certain amount of experimentation is required to get the degree of

smoothing right, but it is closely linked to the framing rate chosen, and if

this is fixed (for example to 50Hz for a video camera) then any smoothing

is quite likely to remove some of the high frequency detail.

Animation

The animation section of the program provides the, facility to display the

measured data as a movie sequence. This is visually very effective. and by

removing the extraneous detail from the original recording, is often

much more revealing. In the 3D mode, by allowing rotation of the model,

the movement can be viewed from novel positions which can give a very

clear picture of the important movements. Also, it immediately reveals if

any joints have been mis-measured in any of the frames. Often, a joint is

measured out of sequence, even with the on-screen prompting, but the

animated display will quickly reveal, for instance, if a hip position has

been entered as the tail-tip. It is very much harder to pick this out when

just looking at graphs of joint positions.

The animation technique uses double buffering to produce completely

smooth screen updating. The original 24 planes of image memory are

divided up into two sets of 12 planes, only one of which is displayed. The

next frame to be displayed is drawn up on the non-visible set of planes, a

and when the drawing has been finished, the visible plane sets are

switched. This switching is very much quicker than the drawing (even

with the accelerated video hardware) and can be synchronized to the

Technical Development

Technical Description Page (188)

vertical fly-back period of the cathode ray tube51, and hence never causes

the flickering associated with screen update while the electron beam of

the CRT Is involved in displaying an image.

The routine that draws up the 3D figure on the screen needs some

explanation. Each segment is drawn as an octagonal prism extending
from the proximal to the distal joint positions. To take advantage of the

accelerator hardware, as much calculation as possible needs to be done in

the accelerator, and as little as possible locally. On the SRX systems, the

3D calculations rely on a matrix transformation stack. Any

transformations that are to use the accelerator are pushed onto the stack

(including the 3D to 2D conversion) and all subsequent drawing operation

will use the combined stack transformation. When no longer required,

transformations can be popped off in the reverse of the order in which

they were applied. So, when the octagonal prism drawing routine,

draw-limb is called, it actually sends the commands to draw an

appropriately sized prism running from the origin along the X axis, a

simple scaling exercise, and then calculates the transformation that

would be required to put this prism in the correct place as a combination

of aY and Z axis rotation and a translation and puts these transformation

matrices onto the accelerator stack. The graphics hardware then draws

the limb in the correct place. The prism is built up from a series of

planar polygons drawn in an anti-clockwise fashion when viewed from

outside. Phong shading, selected in displa, makes the octagonal prism

51The vertical flyback period is when the beam of the CRT is being from the bottom of one
frame back to the top of the screen ready to display the next frame. If all the display
updating can be done during this period when nothing is being draw to the VDU screen,
then the update will appear completely seamless, and the animation will appear very much
smoother.

Technical Development

Technical Description Page (189)

appear as a smooth cylinder. Colours and reflectance properties. along

with light positions, are also added to improve the illusion of depth. 52

If desired. there are options to show the model as a series of lines. to

show how it is actually built up. Hidden line removal is performed by

using aZ buffer. Unfortunately, this is only 16 bits deep and there are

problems with breakthrough of what should be hidden faces at the joints

because of the relatively poor Z resolution53. For 2D. the model is

displayed as a series of linked rectangles.

Graphical Data Display

The graphical data display is all passed to the routine d_graph as a series

of linked X and Y coordinates and labels. It then calculates the optimal

ranges internally and lets the actual plotting be handled by the NAG

graphical routines working on top of Starbase. This again requires the

interface between C and FORTRAN, and some ancillary conversion code is

required. This is all contained in the Me general. f. The main problem

here is that in C. two dimensional arrays increase their second dimension

fastest. In FORTRAN, the first dimension is increased first. This means

that the order of dimension specifiers has to be reversed. In addition,

character expressions in FORTRAN are not zero delimited as they are in

C, so that anything dependent on the length of a string of characters is

unlikely to work well.

52For more details, see the Starbase manual (Hewlett-Packard 1988d).
53Hidden line/face removal is a difficult problem. One approach is to store a depth
associated with each pixel colour. The colour will only be overwritten by another colour if
the depth value associated with the new colour is higher, meaning that this new colour is
closer to the observer than the old one. The problem comes when two pixels are very close in
depth. Because of the relatively low resolution of the Z buffer, the one that will get displayed
may very well be dependent solely on rounding errors in the depth calculation and random
breakthrough can occur.

Technical Development

Technical Description Page (190)

For plots of the locus of a point, each individual position is numbered to

allow more timing information to be displayed. This function is not

provided in the libraries so has had to be coded explicitly using the NAG

graphics primitives., A key is also drawn up, identifying the individual

lines in multi-line graphs.

Data Export

The data export section of the program, save an, produces files that can

be read directly Into some popular data manipulation and analysis

packages. It is an option after a set of data has been plotted on the

screen. The ones chosen are the text formats used by Microsoft Excel

and Lotus 123. These are sometimes loosely known as tab delimited

format and comma delimited format. In addition, GAP Is capable of

producing a program file for SAS that contains the data embedded in it,

and has the required statements to produce a very similar graph using
SAS graph. These programs allow for analysis that is not supported

within GAP, and can, for instance, be used to produce graphs of data

combinations that are not supported internally.

User Routines/Dynamic Modelling

The routine user specific_analysis is simply a convenient point where

all the data produced by the program is available. It is probably easier to

add any extra analysis here rather than work from exported data because

all the data is predefined and so no more data input routines need to be

written.

The inverse dynamic sections of the program are accessed from here

because, unlike the other data manipulations, they are not general, and

require a specific connection arrangement of limbs. The two provided:

Technical Development

Technical Description Page (191)

simplified_quadrupedal and predictive_model are specific to the 2D

measurements I used and my predictive model respectively. They are
both straightforward examples of implementations of the inverse dynamic

equations as described in the inverse dynamics chapter. The only
difficulty is keeping track of the relatively large number of individual

values associated, with each segment, and getting the signs right across

joints: when more than one segment meets.

The predictive-model routine is the more straightforward simply because

it has fewer segments and they are only connected in a simple linear

fashion with no branching. The calculation proceeds from the cranial end

of the torso, since there are no forces or torques acting there, and

calculates the forces and torques that must be acting on the caudal end to

produce the observed angular and linear acceleration given its mass and

moment of inertia. These forces must also apply, in an equal and opposite

fashion in accordance with Newton, on the proximal end of the thigh.

Knowing these forces and torques, in a similar fashion, the forces and

torques on the distal end of the thigh are calculated. These are equal and

opposite to the ones on the proximal end of the calf and so the distal calf

values can be found. This process is continued until the distal end of the

fore-foot, giving values for all the joints in the model.

The only important difference in simplifled_quadrupedal is that there

are 3 free ends: the hand; the nose tip; the tip of the tail. These are all

separately treated as previously with the caudal end of the torso, and have

no forces acting on them. In addition, the neck and hip joints have three

segments each meeting at them. The approach here is to make sure that

the total force and torque from the ends of the three meeting segments

is zero. Only one segment end in each case is unknown.

Technical Development

Technical Description Page (192)

File Formats

. limb File

This file has been designed so that it is easily produced or read by a

FORTRAN program where file manipulation in text mode is somewhat

limited, but normally. it is produced using a text editor such as vi or

emacs, or alternatively. by any word processor that can save files as

unformatted text. The line spacing is not at all important since all the

character strings are delimited by single quotes, but the suggested line

spacing makes the file relatively easy to read.

Here is an example . limb file:

'Microeebus aurinus lieb file (Bitters)'
10
0 'Forelimb tip'
1 'Elbow'
2 'Shoulder'
3 'Toe tip'
4 'Mid-tarsal Joint'
5 'Ankle'
6 'Knee'
7 'Hip'
8 'Nose tip'
9 'Tip of tail'
9
0 'Lower arm' 0 1 3.13E-03 5.00E-01 2.35E-07
1 'Upper arm' 1 2 2.88E-03 5.18E-01 1.77E-07
2 'Forefoot' 3 4 8.75E-04 5.73E-01 1.26E-08
3 'Rindfoot' 4 5 8.75E-04 4.78E-01 1.32E-08
4 'Calf' 5 6 3.38E-03 4.01E-01 3.57E-07
5 'Thigh' 6 7 1.03E-02 4.47E-01 1.26E-06
6 'Head' 8 2 6.38E-03 5.00E-01 7.30E-07
7 'Torso' 2 7 3.26E-02 5.00E-01 1.82E-05
8 'Tail' 7 9 2.19E-03 3.78E-01 2.33E-06

Technical Development

Technical Description Page (193)

The first line contains a title that is used to provide more Information

about the contents of the file. It is delimited by single quotes54. The

second line is an integer (10 here) that specifies the number of nodes in

the model. The nodes are named on the next 10 lines: each of these lines

starts with an incremental integral identification number running from 0

to 9, and is followed by the actual name of the node. The names are again
delimited by single quotes. The next integer, in this case 9, Is the

number of segments defined. The 9 subsequent lines contain, first of all,

an incremental identification number. This is followed by the name of the

segment in single quotes, then the identification numbers of the two

joints at the ends of this segment. For the purposes of the program, this

segment is considered to extend from the first numbered joint to the

second numbered joint. So, in this case, the lower arm, runs from the

forelimb-tip (joint 0) to the elbow joint (joint 1). The next number on the

line is the mass of this segment in kg, and the next Is the position of the

centre of mass as a fraction of the distance from the first joint to the

second joint. In other words, a value of 0 would indicate that the centre

of mass was at the first joint, and a value of 1 would indicate that it was at
the second joint. Normally, this value Is not too far from 0.5. The last

number is the moment of inertia of the segment in kg. m2.

All the values are required though dummy values can be inserted for the

mass properties if they are not required. Zero should not be used as a
dummy value since it will lead to divide by zero errors in the program.

and 0.5 should be used for dummy centre of mass positions. The

character strings have no significance within the program except as the

"The single quote is the ASCII value 39. This should not be confused with the opening and
closing single quotes provided on the Macintosh system whose ASCII values are 212 and 213.
These are not interchangeable, and do, in fact, look quite different: ' as opposed to' or.

Technical Development

Technical Description Page (194)

names used as prompts to the user and as labels on the output data. Extra

nodes and segments are added by changing the integers indicating the

total number of nodes or segments and by adding extra node or segment

description lines. As mentioned before, a single node can be used to

specify more than one segment, or, indeed, no segments at all, and act

simply as a position marker.

Only the first half of the file which defines the joints is used for the

measurement and reconstruction phase, so if there is an error in the

segment description, this can be changed after measurement as long as

the joint definitions themselves are not altered. The other area to be

careful in is in defining the position of the centre of mass. It is very easy

to get the direction sense of this fraction wrong. It is the fraction of the

distance from the first defined node in a segment to the second. The

integers should be typed in as simple numbers (i. e. 1 rather than 1.0) but

the floating point numbers can use any standard computer notation (1 1.0

or 1. OeO).

Technical Development

Technical Description Page (195)

This is the code segment used to read this data (NPS is defined as 2):

/* read the data */

fscanf(unlt, O'%("']'*, title);
fscanf(unit, "td", nnodes):
for (anodes. 0; inodes<*nnodes; inodes++)
(

fscanf(unit, '%d '%(^lll", &inode, nodes(inodes]);
if (inodel-modes)
(

printfl'Node number mismatch during file read error\n');
return;

fscanf(unit, "%d", nsegs);
for (isegs_O; iseqs<*nsegs; isegs++)
{

fscanf(unit, "%d '%("')*", &iseq, segs(iseqs]);
if (iseq! -isegs)
{

printf("Segment number mismatch during file read error\n");
return;

for (i-O; 1<NPS; i++)

fscanf(unit, "ºd", snodesper seg(i](isegs));

]
fscanf(unit, "ºf", iseg_mass(isegs])=
fscanf(unit, "ºf", tseg_com(isegs]);
fscanf(unit, '%f", Sseg_moi(isegs))=

. node File

This is the file containing the measurements produced by GAP. It is also

produced as the output from leaping model. It is not expected to be

produced by hand, but it is in an ASCII form to allow portability across

different computer platforms, and to allow other computer programs to

produce suitable raw data for input into the analysis sections of GAP.

Since these files are generally quite large, and are not designed to be

easily read by people, I will instead give the code segments both for

writing and reading the file.

Technical Development

Technical Description Page (196)

Writing a node file:

/* write data */

fprintf(unit, "%s\n", title);
fprintf(unit, "%e\n", fspeed);
fprintf(unit, "%d\n", nframe);
for (iframes-O; iframescnfran ; iframes++)
{

fprintf(unit, "%d\n", iframes);
fprintf(unit, '%d\n", nnodes);
for (indes-0; inodes<nnodes; inodes++)

fprintf(unit, "%d to te "e\n`, inodes, xpos[inodes)(iframes),
ypos(anodes)(iframes), zpos(inodes)(iframesj),

fprintf(unit, "%s\n", nodes(inodes));

Reading a node Me:

/* read data */

fscanf(unit, "%("\nl\n", title);
fscanf(unit, "%f\n", fspeed);
fscanf(unit, "%d\n", nfra=);
for (iframes-OJiframes<*nframe; iframes++)
{

fscanf(unit, " %d\n", fiiframe);
if (iframel-iframes)
I

printf("Frame number mismatch in node data file\n")=
return!

}
fscanf(unit, "%d\n", nnodes)t
for (inodes. 0=anodes<*nnodestinodes++)
{

fscant(unit, "%d%f%f%f\n", sinode, ixpos(inodesJ(iframes],
typos(indes)(iframea], &zpos(inodes](iframes]);

fscanf(unit, "%("\nJ\n_, nodea(inodes]);
if (inodet-anodes)
{

printf("Node number mismatch in node data file\n");
return;

it (flag 2d) zpos(inodes3(iframesj-0.0;

Where:

fspeed is the interval between frames in seconds

nframe is the number of frames

nnodes is the number of nodes

Technical Development

Technical Description Page (197)

xpos is the X position of the nodes for each frame in metres

ypos is the Y position

zpos is the Z position

. 2d . 3d1 . 3d2 Files

These are the calibration files produced by the various different

reconstruction models used in the program. They are almost certainly of

no use whatsoever to any other program but their details will be given for

the sake of completeness.

Program segment to read . 2d flle:

fscanf(unit, "%e%e", Afiducial x, sfiducial_y);

fscanf(unit, "%e", az offset);
fscanf(unit. %. e iy offset);
fscanf(unit, "1e", &scale factor);
fscanf(unit, "%e%e", irotation(OJ(0), &rotation(OJ(1J);
fscanf(unit, "%e%e", srotation(1J(OJ, crotation(1)(1J);

Program segment to read . 3d1 file:

for (i-O; 1<ll; i++) fscanf(unit, '%e', &11(i));
for (i-O; i<11; 1++) fscanf(unit, '%e', &12(1));

fscanf(unit, '%e%e', ifiducial x, cfiducialy);

Technical Development

Technical Description Page (198)

Program segment to read . 3d2 file:

fscanf(unit, `te%e", &fiducial x, ifiducial_y);

fscanf(unit, "%e", tx offset 1);
fscanf(unit, "te", iy_offset 1);
facanf(unit, "5e", sscale factor 1);
fscanf(unit, "%e%e", srotation 1[0)[0), irotation 1[0J(1]);
fscanf(unit, "%e%e", &rotation 1[1J(OJ, trotation 1[1)(1J);
fscanf(unit, "5d", &x mirror 1);

fscanf(unit, "5e", &x offset 2);
fscanf(unit, '%e", iy_offset 2);
fscanf(unit, "5e", &scale_factor_2);
fscanf(unit, "te%e", &rotation 2[0J[OJ, &rotation 2(0)[11);
fscanf(unit, "te %e", trotation 2[1)(OJ, irotation 2[1J[1J);
facanf(unit, "%d", &xmirror 2);

fscanf(unit, "%d", ax axis source);
fscanf(unit, "%d", iy_axissource);
fscanf(unit, "%d", is axis source);

. OOn Fie

This is the format of the image Me used. If the file extension is a3 digit

number padded with zeros (. 000. . 001, . 002 etc.) then the auto-
increment feature of the program can be used which allows image files to

be read in sequentially by supplying the name of the file without the

extension, and the number of the first Me to be read in.

Currently two formats are supported which are switchable at compile
time. One is used by the Visilog image analysis package, and the other is

specific to this program. There is also the option of allowing the image to

be re-scaled as it is read in. This is not recommended unless a faster

computer is used: I preferred to re-scale all the images that I was going

to use in a session beforehand using stretchpic so that individual images

were loaded into the computer as quickly as possible. Only 256 grey level

images are supported.

Technical Development

Technical Description Page (199)

Here is the code segment for reading in a Visilog format image:

struct
{

long 1nt magicNumber;
long int pixelsPerLine;
long 1nt numberOfLines;
long int"resl;

long int res2;
long int res3;
long int gridType;
long int rest;
long int arithmaticType;
long int bitsPerPixel;
long int resS;
long int xOrigin;
long int yOrigin;
long 1nt res6;
long int rest;
long int visilogHeaderSize;
long int userHeaderSize;
long int rest;
long int totaiHeaderSize;

imageHeader;

fread(SimageHeader, sizeof(imageeeader), 1, unit);
xrange-imageHeader. pixelsPerLine;
yrange-imsgeHeader. numberofLines;
nbytes-fread(buffer, xrange*yrange, l, unit);

And for the other option:

xrange-qetc(unit):
xrange. xranqe+256*getc(unit):
yrange-getc(unit):
yrange. yranqe+256*getc(unit):
nbytes-freed(buff. r, xrange+yrange, 1, unit):

. txt prn sas Files

These files are written out by the function save an and are designed to

be read in by other programs. Axt is for Microsoft Excel, prn is for Lotus

123 and sas is for SAS. Sensible column labels are defined for each

program from the names of the lines on the corresponding plot and the

units used.

Technical Development

Technical Description Page (200)

Code for Excel (tab delimited):

/* write out data in ASCII form suitable for EXCEL irtport "/

fprintf(unit, "%s\r", title);
for (aline-O; iline<nline: lline++)

fprintf(unit. %s\011\011', key(iline]);
fprintf(unit, `\r");
for (! line-O; lline<nline; illne++)

fprintf(unit, "%s\Oll%s\011", x label, y_label);
fprintf(unit, "\r');
for (ipoint-O; ipoint<npoint; ipoint++)

for (aline-O; illne<nline; iline++)
fprintf(unit, -%12.5e\011%12.5e\011",

xjoint[iline)(ipoint),
ypoint[iline](ipoint]);

fprintf(unit. "\r");

Code for 123 (comma delimited):

/* write out data in ASCII form suitable for LOTUS 123 import */

fprintf(unit, "\"%s\"\n", title);
for (iline-O: iline<nline: lline++)

fprintf(unit, "\"%s\" ", key(ilineJ);
fprintf(unit, "\n");
for (i11ne-0; iline<nllnetiline++)

fprintf(unit, "\"%s\" \"%s\" I, x label, y_label);
fprintf(unit, "\n");
for (ipoint-0;! point<npoint; lpolnt++)

for (! line-O: iline<nline; iline++)
fprintf(unit, 0%12.5e 112.5e ", xjoint[ilineJ[ipoint),

yjoint(iline)[ipointi);
fprintf(unit, "\n");

break;

Technical Development

Technical Description Page (201)

Code for SAS:

/* write out SAS program in ASCII file */

fprintf(unit, "/* is */\n\n", title);
for (iline=O; iline<nline; iline++)

fprintf(unit, "/* col%02d - %s */\n", iline, key(ilineJ);
fprintf(unit, "\n");
fprintf(unit, "/* x label - %s */\n/* y label - %s */\n\n",

x_label, y_label); 0
fprintf(unit, "data gait; \ninput\n");
for (aline-O; iline<nllne; iline++)

fprintf(unit, "col%02d x@@ col%02d_y@@\n", iline, iline);
fprintf(unit, "; \ncards; \n");
for (ipoint-O; ipoint<npoint; ipoint++)
{

for (iline-O; iline<nline; iline++)
fprintf(unit, "%10.3e %10.3e\n", xjoint(iline][ipoint],

y point(illne](ipoint]);
}
fprintf(unit, "; \nrun; \n");

fprintf(unit, "proc gplot; \n");
fprintf

(unit, "axisl label-(f-swiss j-c '%s')\nvalue-(f-simplex); \n",

x"label);
fprintf

(unit, "axis2 label-(f-swiss j-c '%s')\nvalue-(f-simplex); \n",

y_label);
fprintf(unit, "plot\n");
for (iline-O; iline<nline; iline++)

fprintf(unit, "col%02d y* col%02d x\n", iline, iline);
fprintf(unit, "/overlay haxis-axial vaxis-axis2; \n");
fprintf(unit, "title f-centb '%s'; \n", title);
for (iline-O; illne<nline; illne++)
{

fprintf(unit, "symbol%-3d f-simplex i-join v-'%d'; \n",
iline+l, iline);

fprintf(unit, "footnotet-3d f-simplex j-1 '%3d - 1s"; \n",
iline+l, iline, key(iline));

}
fprintf(unit, "run; \n");

r4

digit. exe

Images were grabbed from moving video tape using a Matrox PIP1024B

digitizing card. The software supplied with the card is fairly basic, and it

has no''facilities for grabbing a sequential set of frames from the video.

Indeed, there is no capability for separating out the two fields making up

each frame. The card has sufficient memory to hold 4' full frames (8

Technical Development

Technical Description Page (202)

fields), but tests showed that it could not switch between grabbing areas

quickly enough to grab sequential frames. The best that could be achieved

was to grab every other frame.

The design goal was a system that could automatically recognize the

position on the video film to a sufficient degree of accuracy to guarantee

to be able to grab specifically identified frames on multiple passes of the

film through the video recorder. Commercial systems are available that

can do this by using animation controllers and SMPTE time codes

recorded onto the unseen portions of the video image or onto one of the

sound tracks. However, such a system was not available, so a poor man's

imitation was designed and built.

Software

To get reliable grabbing of numbered video frames requires some sort of

machine readable frame numbering system. This involves three steps.

Firstly, a set of numbers need to be written to the sound-track of the

film. Then, these numbers need to be displayed whilst the film is being

played back so the operator can select the code numbers of the frames he

or she wishes to grab. Thirdly, the required frames need to be grabbed.

The communication between the computer and the sound-track of the

video was achieved using a modified modem circuit attached to the serial

port. The initial numbering- sequence was achieved by counting field

number changes directly off the video grabbing card. For the first step.

the video tape containing the required images is fully re-wound, the

computer program is set to write the sound-track, and then the video

tape recorder is set to audio dubbing mode. This means that while the

recorder plays the video, it simultaneously records a new sound-track.

The computer program monitors the change in field number and uses

Technical Development

Technical Description Page (203)

this to increment a frame count. This value is then written to the serial

port every 8 frames where the modem circuit will convert it into a set of

coded tones that it will send to the video recorder. In this way, the whole

of the video tape is given a sound-track that uniquely marks any section of

the tape.

For display, the program is switched to its display mode, and the video

allowed to play through the sequence of film that the operator is

interested in. The modem decodes the sound-track, and sends the values

to the serial port of the computer. These are then displayed on the

screen, and can be frozen as required by the user.

For grabbing, the user types in the numbers of the first frame of interest

and the number of sets of 16 fields that are required. The video is then

re-wound to before the required part of the sequence, and switched to

play. The computer again reads off the numbers coded onto the sound-

track, but this time, when the required value is read, it grabs 8 of the

next 16 fields (every other frame for the next 4 frames) and saves them

to disk with their appropriate field numbers. The user then rewinds the

tape and repeats the operation. This time, the computer delays 1 frame

before starting its grab so that the missing 8 fields are grabbed. This

whole process is repeated for the number of times originally selected by

the user. The grabbing precision is perfect, but if an animation controller

had been available, then the play/rewind/play cycle could also have been

automated.

Hardware

A standard modem could probably have been used to write the sound-
track, but when this was tried, the signal levels were found to be quite

unsuitable for recording onto the video. In addition, only a 300 baud

Technical Development

Technical Description Page (204)

modem was available, and this was really too slow a data rate for the very

limited amount of time available for writing the numerical data onto the

tape. Buying a faster modem is one option, but this does not solve the

signal level problem, so instead. I decided to build a suitable circuit. This

is appreciably simpler than a full modem circuit because only one set of

signals is present at any time: it is either sending or receiving; never

both at the same time. 55 It is based around the MC14412VP modem chip

which does almost all the hard work. It also needs a suitable amplifier to

convert the input analogue signal into a clipped 5V digital signal

(approximately), and the output voltage needs to be converted from 0 to

5V TTL levels to -12V to +12V RS232 levels.

1 MHz XTAL

+SV. +SV.

+SV. r--+--1
Audo N 11 RS232 OUT

O

-11-

>LM386N

a* fV - Cli4p*pifnmg
11

MC14412VP 1 MAX232CPE 1

Modem Chip level S&tor

Audio OUT 11
RS232 MI

O O

Record 11 j
Pryb°d 1- -E-

Schematic diagram of the modem circuit used to record and
read a timing soundtrack on the video recorder. The only
additional circuitry is a stabilized +5V power supply, and
some ancillary passive components required for the correct
functioning of the integrated circuits. Full details are
available in the appropriate manufacturers data sheets.

551f two sets of signals are present, then notch filters need to be used for the input and output
sections so that only the frequency that they are interested in is presented to them.

Technical Development

Technical Description Page (205)

File Type

The only file used is the image file which the program produces. This is a
512 by 256 image in Visilog format. It needs to be processed by

stretchpic before it is read into gap. (gap will read this image directly,

but in the default setup, it will not alter its size. 512 by 256 looks very

small and distorted when viewed on a 1280 by 1024 monitor.)

Technical Development

Technical Description Page (206)

This is the code segment that does the actual write:

void FrameSave(filename, quadrant, field)

char filename[); /* file name
int quadrant; /* sector number
int field; /* field number */
(

FILE *unit;
int rows-256;
int columns-512;
int irow;

int ycount;
char buffer[5121;
struct visilogImag

/* file unit */
/* number of rows in picture
/* number of columns in picture

/* row counter */
/* y coordinate counter

/* row buffer */
Header fileHeader; /* visilog file header */

printf("Saving %s \n", filename);

unit-fopen(filenan , "wb"); /* open file */

/* write out file header */

fileHeader. maglcNumber-VSsllogConvert(0x6931);
flleHeader. pixelsPerLine=VisilogConvert(columns);
fileHeader. numberOfLines=VisilogConvert(rows);
fileHeader. resl-VisilogConvert(1);
fileHeader. res2=VisilogConvert(0);
fileHeader. res3=VisilogConvert(0);
fileHeader. gridType=VisilogConvert(1);
fileHeader. res4=VisilogConvert(0);
fileHeader. arithmaticType-VisilogConvert(0x14);
fileHeader. bitsPerPixel=VlsllogConvert(8);
fileHeader. res5-VisllogConvert(0);
fileHeader. xOrigin=VisilogConvert(1);
fileHeader. yOrigin=VisilogConvert(1);
fileHeader. res6=VisilogConvert(1);
fileHeader. res7-VisilogConvert(0);
fileHeader. visilogHeaderSize=VisilogConvert(76);
fileHeader. userHeaderSize=VisilogConvert(0);
fileHeader. res8=VisilogConvert(0);
fileHeader. totalHeaderSize=VisilogConvert(76);

fwrite(&flleHeader, sizeof(fileHeader), l, unit);

/* set up to read from right part of screen

ycount-field;

for (crow=O; irow<rows; irow++)
{

/* rectangular */

/* integer */

fg_rowr(ycount, quadrant, buffer); /* read row into memory
fwrite(buffer, 512,1, unit); /* and write it to disk */

ycount++; /* increment ycount twice

ycount++;

fclose(unit);
}

/* close file */

The function VisilogConvcrt is to convert two byte integers which are

written most significant byte first on Motorola 68000 based machines

Technical Development

Technical Description Page (207)

such as the Hewlett-Packard. and least significant byte first on Intel 8086

architecture.

stretchplc

This program Is extremely simple. It reads in the standard 512 by 256

image file produced by digit, and writes out a file 1024 by 768. This

corrects the aspect ratio so that each pixel is now square, and provides

an image of a suitable size for display on the 1280 by 1024 workstation

monitor. The only slight complication is that the program does not

overwrite the existing image file directly. The target image is written to a

temporary file that is then copied onto the original file. This means that

if the program is interrupted for any reason, then there is always a copy

of the data somewhere on the disk which can be recovered if necessary.

Otherwise, an interrupt could cause the loss of the image file.

The program runs from the command line and accepts a list of file

names. This is to allow the program to be used in shell programs on a

Unix machine, and to allow wildcard file specification in the normal

fashion.

Predictive Leaping Model

Features

This program is designed to permit easy explorative modelling:

answering 'what if style questions. For this reason, ease of use is of

prime importance. It runs on any Macintosh computer running System

6.7 or higher with at least 1 Mbyte of RAM and a hard disk. It makes full

use of the graphical interface, using menus, dialog boxes, and supporting

desk accessories and the Multifinder.

Technical Development

Technical Description Page (208)

Modelling parameters are entered into fields in various dialog boxes, with

sensible defaults being provided where appropriate. This data is stored in

binary files which preserves full accuracy at the expense ý- of easy

portability. It is not envisaged that these files will be used elsewhere. The

output is a node file suitable for GAP, where all the further analysis can

be done.

Structure

Support for standard Macintosh features requires a great deal of extra

programming. Much of the code is for initialization and operation of the

user interface. The program is fully event driven, with functions being

accessed of a main event loop depending on mouse clicks or command

key combinations. Within dialog boxes, the program is modal: only

interrupt driven system queues are active. During the modelling

calculations, a dialog box allows cancellation, though, due to the non

preemptive nature of multi-tasking on the Macintosh, this has a sluggish

response on slower machines.

The modelling calculations are performed by Calculate and

LengthFunction. LengthFunction uses a successive approximation

method to find the length that corresponds sufficiently closely to a

required time interval. Here, it is modelled using a mathematical

function, but it could equally well interpolate between experimentally

derived data points for time and distance. This would almost certainly be

a worthwhile addition to the program since it would overcome the

problem of the arbitrary nature of the force function chosen in the model.

The model data is encapsulated in a set of structures: Vector.

Coordinate, ModelCoordinates, ModelCOMs, ModelMass and

ModelVectors. This makes the code appreciably more readable. though

Technical Development

Technical Description Page (209)

not necessarily more compact. It would certainly make model alterations

quicker. It also simplifies the routines used to read and write the

modelling ' data file. since they can simply dump the binary image of the

contents of the relevant data structures to a disk file without any

conversion.

Technical Development

Technical Description Page (210)

The following code segment is used to write the modelling data file (the

definitions for the structures are in Params. h):

/* create and open file */

FSDelete(gDefinitionFile. fName, gDefinitionFile. vRefNum);
Create(gDefinitionFile. fName, gDefinitlonFile. vRefNum,

FILE_OWNER, FILE TYPE);

FSOpen(gDefinitionFile. fName, gDefinitionFile. vRefNum, irefNum);

/* write out data */

numBytes=(long) sizeof(gUserModel);
FSWrite(refNum, &numBytes, (char *)&gUserModel);

numBytes-(long) sizeof(gSegmentMass);
FSWrite(refNum, inumBytes, (char *)&gSegmentMass);

numBytes-(long)sizeof(gCOMs);
FSWrite(refNum, &numBytes, (char *)&gCOMs);

numBytes-(long)sizeof(gMass);
FSWrite(refNum, &numBytes, (char *)&gMass);

numBytes=(long)sizeof(g);
FSWrite(refNum, &numBytes, (char *)&g);

numBytes=(long) sizeof(gTlmeTolerance);
Fswrite(refNum, znumBytes, (char *)&gTimeTolerance);

numBytes=(long) sizeof(gRange);
FSWrite(refNum, znumBytes, (char *)igRange);

numBytes=(long) sizeof(gNumberofTimes);
FSWrite(refNum, &numBytes, (char *)tgNumberofTimes);

numBytes=(long) sizeof(gMaxIterations);
FSWrite(refNum, &numBytes, (char *)&gMaxIterations);

numBytes-(long) sizeof(gExtenslonFraction);
FSWrite(refNum, &numBytes, (char *)&gExtensionFraction);

/* close file */

FSClose(refNum);

The routines FSDelete. Create, FSOpen. FSWrIte and FSClose are

Macintosh toolbox routines for file handling. They need to be used

instead of the very similar C library functions so that features such as

icons can be supported.

Technical Development

Source Code page (211)

Appendix - Source Code

gap

C Routines

params. h

/* This is the general include file for the gaitan set of programs */

/* include files */

#include <stdio. h>
"include <math. h>
"include <string. h>

#Sfdef HP
#include <fcntl. h>
#include "/users/bill/include/colour. h'
#include <starbase. c. h>
#include <Xll/Xlib. h>
#include <Xrll/Xrlib. h>
#endif

/* bological and physical constants */

#define DENSITY 1.0
#define G -9.80665

/* constant definitions */

#define SHELL "/bin/ksh"

/* mean body density */
/* acceleration due to gravity */

/* shell option */

(define NPS 2 /* Number of nodes to define a segment
; define STRING SIZE 80 /* Size of strings */

#define MAX NODES 10 /* Maximum number of nodes */

(define MAX_SEGS MAX_NODES /* Maximum number of segments */
/define MAX-FRAMES 100 /* Maximum number of frames */
#define MAX_LINES (MAX_NODES+MAX SECS) /* Maximum number of lines per graph */
(define MAX_POINTS MAX_FRAMES /* Maximum number of points per line */

#define MAX_REF 20 /* max number of reference points
(define MIN REF 6 /* minimum */

#define DLT_FILE "dlt file" /* filename for DLT intermediates */

#define ASPECT RATIO 1.0 /* World dy/dx */

#define MENU PAGE 20 /* size of a single menu page */
#define GRAPHIC

_NAME
"Gait Analysis" /* name of graphic window */

#define GRAPH_WIDTH 1255 /* width of graph window */
#define GRAPH_HEIGHT 846 /* height of graph window
#define XSEETHRU "xseethru -geometry 1255x846+0+0'i"

/* xseethru window command */
#define TEXT WIDTH 1255 /* width of text window */
#define TEXT_HEIGHT 102 /* height of text window */
#define DEV MAX

-X
1280 /* max device x coordinate

#define DEV MAX Y 1024 /* max device y coordinate */

Appendix

Source Code Page (212)

/define FILE_MAX_x 640

#define FILE_MAX_Y 574

"define CURSOR_OFFSET_X 5

"define CURSOR_OFFSET_Y 5

Nefine TOP-BORDER 27

#define SIDE_BORDER 11

(define BOTTOM BORDER 11

#define DIRECTORY-ENTRIES 120

#define LIMB-DIRECTORY
#define LIMB_PREFIX ""

#define LIMB-SUFFIX *. limbO

#define NODE_DIRECTORY '"

#define NODE_PREFIX ""

#define NODE_SUFFIX ". node"
#define FRAME_DIRECTORY ""

#define FRAME_PREFIX ""

#define FRAME_SUFFIX ww

#define PICTURE_DIRECTORY
#define PICTURE PREFIX "'

#define PICTURE SUFFIX ". pic"
#define RECON_DIRECTORY
#define RECON_PREFIX "'

#define RECON_SUFFIX_2D ". rec2d"
#define RECON SUFFIX_3D1 ". rec3dl"
#define RECON_SUFFIX_3D2 ". rec3d2"
#define ANALYSIS_DIRECTORY ww

#define ANALYSIS-PREFIX ""

#define ANALYSIS_SUFFIX_123 '. prn"
#define ANALYSIS SUFFIX EXCEL ". txt"

#define ANALYSIS-SUFFIX-SAS ". sas"

/* max file x coordinate */
/* max file y coordinate */

/* graphic cursor x offset */
/* graphic cursor y offset */
/* m+m top border in pixels */

/* mwm side border in pixels
/* mwm bottom border in pixels */

#define COPPER COLOUR 0.4,0.1,0.06

#define COPPER SURFACE 8,0.6,0.5,0.1

#define RUBBER COLOUR 0.3,0.03,0.03

#define RUBBER SURFACE 5,0.15,0.1,0.1

(define PLASTIC COLOUR 0.6,0.05,0.05

#define PLASTIC SURFACE 40,1.0,1.0,1.0

#define OBSIDIAN_COLOUR 0.01,0.01,0.01

#define OBSIDIAN_SURFACE 50,1.0,1.0,1.0

#define POTTERY COLOUR 0.2,0.2,0.2

#define POTTERY_SURFACE 5,0.2,0.2,0.2

#define BRASS_COLOUR 0.4,0.2,0.08

/define BRASS_SURFACE 15,0.5,0.5,0.1

; define DEFAULT_COLOUR COPPER COLOUR

(define DEFAULT SURFACE COPPER SURFACE

/* number of directory entries
/* limb data directory */

/* limb file prefix */
/* limb file suffix */

/* node data directory */
/* node file prefix */

/* node file suffix */
/* frame data directory */

/* frame file prefix */
/* frame file suffix */

/* frame data directory */
/* frame file prefix */
/* frame file suffix */

/* recon data directory */
/* recon file prefix */

/* recon file suffix for 2d
/* recon file suffix for 3d */
/* recon file suffix for 3d */

/* analysis data directory */
/* analysis file prefix */
/* analysis file suffix for 123 */

/* analysis file suffix for EXCEL */
/* analysis file suffix for SAS */

/* define some 'interesting' colours */
/* and surface properties */

#define LA 0x0001 /* define some light switches */
#define L1 0x0002
#define L2 0x0004
#define L3 0x0008

#define INIT_ZOOM 40.0 /* camera field of view */
#define CAMERA ZOOM MIN 2.0 /* minimum field of view */
#define CAMERA ZOOM MAX 90.0 /* maximum field of view
#define INIT_VIEW POS 0.0,0.0,1.0 /* initial view position (RA)

#define CAMERA
_POS

RANGE -4.0, -4.0, -4.0,4.0,4.0,4.0 /* camera position range
#define INIT TARGET POS 0.0,0.0,0.0 /* initial target position */
#define CAMERA_TARGET_RANGE -4.0, -4.0, -4.0,4.0,4.0,4.0 /* camera target range

#define K
_SENSITIVITY

10.0 /* # knob revolutions for range */

Appendix

Source Code Page (213)

(define DC_CHAR_WIDTH 8

(define DC_CHAR_HEIGHT 10

#define KEY_GRAPH 0.8

(define VDC_CHAR_SIZE 0.01

#define CHAR SLIM 0.75

#define DEFAULT DIAMETER 0.01

/* subroutine definitions */

P device coordinate character size
/* device coordinate character height */
/* relative position of graph/key join

/* virtual device coordinate char size
/* character width slimming factor */

/* default limb diameter */

#ifdef HP
; define CLEAR TEXT printf("\33h\33J\n\33h") /* clear text window */
#define CLEAR GRAPH clear_view surface(display), make, picture current(display)=

/* clear graphics */
leise

}define CLEAR_TEXT

idefine CLEAR_GRAPH
lendif

/" external variables */

/* file names */

extern char node_file(STRING_SIZEJ; /* node file name
extern char limb_file(STRING_SIZE); /* limb file name

/* options flags */

extern int flag 2d; /* 2d only flag */

extern int flag simple_reconstruction; /* simple 3d reconstruction flag */

extern int fiducial_flag; /* fiducial mark registration flag */

extern int frame
_increment;

/* frame sequence increment */

extern int filtration_number; /* filtration cutoff number
extern int flag_filter; /* filter/smooth flag */

extern int smooth number; /* number of values in moving average */

/* 3d reconstruction. values */

extern float 11[11];

extern float 12[11);

extern int x_mirror 1;

extern float x offset 1;

extern float y offset 1;

extern float scale factor 1;

extern float rotation_1(2][2];
extern int x_mirror_2;
extern float x offset 2;

extern float y_offset 2;

extern float scale_factor_2;
extern float rotation_2[2][2);
extern int x axis_source;
extern int y axis_source;
extern int z_axis source;

/* 2d conversion values */

extern float x
-offset;

extern float y offset;
extern float scale-factor;
extern float rotation[2][2];

/* DLT parameters */

/* x mirroring flag */
/* x offset of picture origin 1 */
/* y offset of picture origin 1 */

/* scale factor from picture to world (m) 1 */
/* rotation matrix picture to world 1 */

/* x mirroring flag */
/* x offset of picture origin 2 */
/* y offset of picture origin 2 */

/* scale factor from picture to world (m) 2 */
/* rotation matrix picture to world 2 */

/* 3d axes source: 1 picture 1'x axis
2 picture 1y axis

/* 3 picture 2x axis
4 picture 2y axis */

/* x offset of picture origin
/* y offset of picture origin
/* scale factor from picture to world (m)

/* rotation matrix picture to world */

Appendix

Source Code Page (214)

/* registration values */

extern float flducial_x;
extern float fiducial_y;

extern float correction X:
extern float correction_y;

/* graphics device pointers */

extern int display;
extern int locator;

extern int knobsl, knobs2, knobs3;

extern int bbox;

fifdef HP
/* window device pointers */

extern Window graphic window;
extern Window text_window;
extern Window menu window;
extern Display *xdisplay;

extern int xscreen;

/* global x registration value */
/* global y registration value */

/* framewide x registration
/* framewide y registration */

/* graphics display */
/* locator device (mouse)

/* knob bog (3 rows) */
/* button box */

/* graphic window */
/* text window */
/* menu window */

/* x display pointer
/* screen number */

/* original hpterm window parameters

extern unsigned int orig_width, origheight;
extern int oriq_x, orig_y;

/* global brightness and contrast values */

extern float brightness; /* brightness */

extern float contrast; /* contrast
fendif

close_dev()

#include "params. h"

void close dev()

/* This routine closes the various input devices */

{
/* Screen */

CLEAR_GRAPH;

gclose(display);

/* Knobs */

gclose(knobsl);

gclose(knobs2);

gclose(knobs3);

/* button box */

gclose(bbox);

/* close windows */

XDestroywindow(xdisplay, graphic_window);

Appendix

Source Code Page (215)

mestroywindow(xdisplay, menu window);

/* reset hpterm */

XFlush(xdisplay);

XMoveWindow(xdisplay, text_window, SIDE_BORDER, TOP BORDER);

XResizeWindow(xdisplay, text window, oriq width, oriq height);

XFlush(xdisplay);

XC1oseDisplay(xdisplay);
}

Como
(include "params. h"

void com(xpos, ypos, zpos, nnodes, nframes, nodes per seq, nsegs, seg_com, seq_mass,
body_comx, body_comy, body comz, body mass, comx, comy, comz)

/* calculate the centres of mass of the segments and the overall centres of mass */

float xpos[MAX NODES][MAX_FRAMES]; /* x world coordinates */

float ypos(MAX NODES][MAX_FRAMES]; /* y world coordinates */

float zpos[MAX NODES][MAX_FRAMES]; /* z world coordinates */

int nnodes; /* number of nodes */

int nframes; /* number of frame */

int nodes_per seg[NPS][MAX_SEGS]; " /* nodes per segment
int nsegs; /* number of segments */

float seg_com[MAX_SEGS]; /* relative segment radii */

float seq_mass[MAX_SEGS]; /* segment masses */

float body_comx[MAX FRAMES]; /* x centre of mass of animal (m)

float body comy[MAXFRAMES]; /* y centre of mass of animal (m)

float body comz[MAXFRAMES]; z centre of mass of animal (m) */

float *body_mass; /* mass of animal (kg) */

float comx[MAX_SEGS][MAXFRAMES]; /* x component of segment COM

float comy[MAX_SEGS][MAXFRAMES]; /* y component of segment COM

float comz[MAX_SEGS](MAXFRAMES]; /* z component of segment COM

{

int iframes; /* frame counter
int isegs; /* segment counter
int inps; /* nodes per segment counter */
int nstart, nend; /* start and end nodes for a segment */

/* find total mass */

*body_mass=0;
for (isegs-O; lsegs<nsegs; isegs++)
(

*body_mass+-seg_mass[isegs);

/* loop over frames */

for (iframes=O; iframes<nframes; iframes++)
{

body_comx[iframes]=0.0;
body_comy[iframes]=0.0;
body_comz[iframes]-0.0;

/* loop over segments */

Appendix

Source Code Page (216)

for (isegs-O; isegs<nsegs; isegs++)
{

/* find start and end nodes */

nstart-nodes per seq(O](isegs];
vend-nodesper seq[1](isegs];

/* perform the centre of mass calculation */

limb_com(xpos(nstart](iframes], ypos(nstart)(iframes),
zpos[nstart](iframesj,
xpos[nend][iframes], ypos(nend][iframesJ, zpos(nend)(lframes),
seq com(isegs),
&comx[isegs](iframesJ, &comy[isegs](iframes),
&comz(isegs](iframesj);

body comxliframsl+-seg
body_comy[iframes]+=seg_mass[isegs]*comy[isegs)(iframes];
body_comz[iframes]+=seg mass[isegs]*comz[isegs)(iframes);

}

body_comx(iframes) . body_comx(iframes]/(*body_mass);
body_comy(iframes). body comy[iframes]/(*body mass);
body_comz(iframes]-body comz(iframes]/(*body_mass);

}
}

dgnodeo

#include "params. h"

void dgnode(title, nodes, nnodes, xpos, ypos, zpos, nframe)

/* this routine prompts the user for the positions of the nodes named in array nodes */

char title(STRING SIZE]; /* file title line */
char nodes(MAX NODES](STRING_SIZE]; /* names of the nodes of the model
int nnodes; /* the number of nodes */
float xpos[MAX NODES][MAX FRAMES]; /* the x world coordinates
float ypos(MAX NODES][MAX FRAMES]; /* the y world coordinates
float zpos(MAX NODES](MAX_FRAMES]; /* the z world coordinates
int *nframe; /* the number of frames */

ant anodes; /* node counter */
ant fret; /* menu return value */
static char menul[J[STRING_SIZEI- /* menu
{

uNext frames,

"Repeat last frame",

"Exit"

/* get into right graphics mode

CLEAR GRAPH;

/* loop round frames */

Appendix

Source Code Page (217)

do

/* print out file title */

printf("%s\n", title);
printf("Frame #%d\n", *nframe);

/* read in picture file */

readpicC);

/* fiducial point

if (fiducial flag)
{

printf("Select fiducial point\n");
digrd(&correction_x, &correction_y);

}

/* loop round the nodes */

for (indes=0; inodes<nnodes; inodes++)
{

/* prompt for node */

printf("%s\n", nodes[inodes]);

/* read coordinates */

if (flag-2d--TRUE)
{

read2d(&xpos(inodes][*nframeJ, iypos[inodesJ(*nframe]);
zpos[inodes][*nframe]. 0.0;

}
else
{

read3d(&xpos[inodes][*nframe], sypos[inodesJ[*nframe),
izpos(inodes)(*nframe]);

}

while ((lret-menu("Select option: ", menul, 3))--O);

if (ixet! -2) *nframe+el;

} while (fret! -3);

/* finished */

CLEAR GRAPH;

L'
different()

#include "params. h"

/* this routine differentiates twice by a finite difference method, the array y on x t/

Appendix

Source Code Page (218)

void different(x, y, n, dy, d2y, angle flag)
float x(J; /* array of x values */
float y(J; /* array of y values */
int n; /* number of values */
float dy(J; /* diff'd values of y, minus 1 at each end */
float d2y1j; /* double diff'd value of y, minus 2 at each end */
int angle flag; /* flag for angular correction
{

int i: /* counter
float dely; /* y difference */
float del2y; /* y difference for 2nd order differentiation */

for (i-1; 1<n-1; i++)
{

dely-y[1+1J-y[i-1J;
del2y-y(i+1J-2*y[i1+y(i-1];
if (angle_flag)
{

if (dely>M PI) dely-=(2*M PI);
if (dely<=(-M PI)) dely+=(2*M PI);

if (del2y>M_PI) del2y--(2*M PI);
if, (del2y<-(-M PI)) del2y+-(2*M PI);

dy[iJ-dely/(x[i+1j-x[i-1]);
d2y[i)-del2y/(((x[i+1J-x[1-1])/2.0)*((x[i+1)-x[1-1))/2.0));

dy[0]-0.0;
dy[n-1]-0.0;
d2y[0]-0.0;
d2y(n-1]-0.0;

}

dlgrdO

linclude 'params. h"

void digrd(x, y)

/* This routine reads the position of the locator device */

float *x, *y; /* Position of pointer in device coords
{

static char marker9- /* marker bit map
{

0,0,0,0,0,0,0,0,0,
0,0,0, -1, -1, -1,0,0,0,
0,0,0,
0, -1, -1,0,0,0, -l, -1,0,
0, -1, -1,0, -l, 0, -l, -1,0,
0, -1, -1,0,0,0, -1, -i, 0,
0,0,0,
0,0,0, -1, -1, -1,0,0,0,
0,0,0,0,0,0,0,0,0

Window window return;
Window root_return;
int root x, root_y;
int win x, win_y;

Appendix

Source Code Page (219)

unsigned 1nt mask;
float colourTable[256](3];
float red, green, blue;
int i;
int offset, range;
float grey;
int dum, button, valid;
float dummy;
float oldbrlghtness-0.0, oldcontrast-0.0;

/* wait for no buttons to be pressed */

do

XQueryPointer(xdisplay, graphicwindow, &windowreturn, &root return,
&root_x, &root_y, &win x, &win_y, &mask);

} while (mask! =0);

/* get pointer position etc

do
{

XQueryPointer(xdisplay, graphicwindow, &windowreturn, &rootreturn,
&root_x, &root_y, &win x, &win_y, &mask);

/* interactive contrast/brightness control */

sample_locator(knobs3,1, &valid, &brlghtness, &contrast, &dummy);
if (brightness! -oldbrightness if contrast! =oldcontrast)
{

oldbrightness-brightness;
oldcontrast-contrast;

offset=(int)512.0*(0.5-brightness);
range=512*(1.0-contrast);
if (range==0) range=1;

for (i=0; i<256; i++)
{

if (i<offset)
{

grey=0.0;
}
else
{

if (i<(offset+range))
{

grey-(float)(i-offset)/(float)range;
}

else

grey=1.0;
}

}

colourTable[i][01-grey;
colourTableti][i]-grey;
colourTable(1][2]-grey;

}
define

_color
table(display, 0,256, colourTable);

make_picture_current(display);
}

Appendix

Source Code Page (220)

) while (mask(-Button3Mask);
*x-(float)root x*ASPECT RATIO;
*y-(float)(DEV MAX_Y-root_y-1);

/if 0

printf("(%f, %f)\n", *x, *y);
iendif

/* plot a marker */

dcblock_write(display, root_x-CURSOR OFFSET X, rooty-CURSOR OFFSET Y,
9,9, marker, 0);

makecicture current(display);

displa()

#include "params. h"

void displa(title, nodes, nnodes, xpos, ypos, zpos,
xpos_filt, ypos filt, zpos_filt, nframe,
segs, nsegs, nodes_per_seg, seg radii)

/* this routine displays the node data as defined by limb model data

char title(STRING_SIZE]; /* file title line */

char nodes(MAX NODES](STRING_SIZE]; /* names of the nodes */

int nnodes; /* the number of nodes */
float xpos[MAX_NODES][MAX_FRAMES]; /* the x world coordinates */

float ypos(MAX_NODES][MAX_FRAMES]; /* the y world coordinates */

float zpos[MAX_NODES](MAXFRAMES]; /* the z world coordinates */

float xpos_filt(MAX NODES](MA)_FRAMES]; /* the filtered x world coordinates */
float ypos_filt(MAX_NODES)(MAX_FRAMES]; /* the filtered y world coordinates */
float zpos_filt(MAX NODES][MAX FRAMES]; /* the filtered z world coordinates */
int nframe; /* the number of frames */
char segs(MAX_SEGS][STRING_SIZE]; /* names of the segments

int nsegs; /* the number of segments
int nodes_per seg(NPS][MAX_SEGS]; /* nodes for each segment

float seg_radii[NPS](MAX_SEGS]; /* relative radii of ends of segments */

{
camera arg camera; /* view camera structure
char fname[STRING SIZE]; /* picture filename */

char fllename(STRING_SIZE]; /* full filename */
int buffer-0; /* double buffer switch */
int button; /* button number */
int dum; /* dummy value */
int anode; /* number of target fixed node */
int iframe; /* frame counter */
int ifix; /* fix reference point to node flag */
int pause; /* pause between frames flag */
int min_frame; /* min frame number for repeat loop
int max_frame; /* max frame number for repeat loop
float krange; /* knob range for frame select
int iret; /* menu option main */
int icol; /* menu option colour
static int smooth_flag=TRUE; /* smoothed data flag */

static int solid flag=TRUE; /* interior fill flag

static int flag_fixed_diamete r-TRUE; /* fixed limb display radii */
static char menul[][STRING SI ZE]= /* options menu
{

"Start sequence",

Appendix

Source Code page (221)

"Select options`,
*Exit"

static char menu2[][STRING SIZE]- /* colours menu
{

'Colour: Copper",
' Rubber,
" Plastic',
' Obsidian,
" Pottery",
" Brass",
"Style : Hollow,
"Raw data",
"Variable limb radius",
"Exit"

/* get into correct graphics mode */

CLEAR_GRAPH;

vdc extent(display, 0.0,0.0,0.0,1.25,1.0,1.0);
mapping_mode(display, ISOTROPIC);

/* enable button box events */

enable events(bbox, CHOICE, 1);

/* set up knob ranges and sensitivity

krange-(float)nframe+0.1;

mapping mode(knobsl, DISTORT);

mapping_mode(knobs2, DISTORT);

mapping mode(knobs3, DISTORT):

vdc extent(knobsl, CAMERA_ZOOM MIN, 0.05,1.05, CAMERA_ZOOMMAX,
krange-1.0, krange);

vdc extent(knobs2, CAMERA TARGET_RANGE);

vdc extent(knobs3, CAMERA_POSRANGE);

set_p1_p2(knobsl, FRACTIONAL, 0.0,0.0,0.0, K SENSITIVITY, KSENSITIVITY,
K_SENSITIVITY);

set_pl_p2(knobs2, FRACTIONAL, 0.0,0.0,0.0, K SENSITIVITY, KSENSITIVITY,
K_SENSITIVITY);

set_p1_p2(knobs3, £RACTIONAL, 0.0,0.0,0.0, K_SENSITIVITY, K SENSITIVITY,
K_SENSITIVITY);

set_locator(knobsl, 1, INIT ZOOM, 0.1, krange);

set_locator(knobs2,1, INIT TARGET_POS);

set locator(knobs3,1, INIT VIEW POS);

/* Set up viewing position and transformation */

camera. upx=0.0:
camera. upy-1.0;
camera. upz-0.0;
camera. front-camera. back-0.0;
camera. projection=CAM PERSPECTIVE;

/* Set up drawing attributes */

if (solid_flag--TRUE) interior style(display, INT_SOLID, FALSE);
else interior style(display, INT HOLLOW, TRUE);
text

_color(display,
RED);

fill_color(display, DEFAULTCOLOUR);

perimeter color(display, WHITE);

Appendix

Source Code page (222)

surface_model(display, TRUE, DEFAOLTSURFACE);

shade_mode(display, CMAP_FULLIINIT, TRUE);
light ambient(display, GREY);
light source(dlsplay, l, DIRECTIONAL, LIGHT BLUE, 0.0,0.0, -1.0);
light source(dlsplay, 2, DIRECTIONAL, LIGHT STEEL BLUE, 0.0,1.0,0.0);
light source(display, 3, DIRECTIONAL, DARK_SLATE BLUE, 1.0,0.0,0.0);
light switch(display, LAIL11L21L3);

dccharacter width(display, DC_CHAR WIDTH);
dccharacter height(display, DC_CHARHEIGHT);

/* set up display buffering */

double buffer(display, TRUEIINIT, 12);
if (hidden_surface(display, TRUE, TRUE)I-1)
{

printf("\n\ninsufficient space for z buffer\n\n');
exit(-1);

while ((fret=menu("Select option: , menul, 3))! -3)
{

switch (iret)
{
case 1:

/* start sequence

if ((ifix-yesno("Fix target position to node? "))--TRUE)

{
while ((anode=menu("Select node: ", nodes, nnodes))--O);
anode--;

}

/* pause 7

pause-yesno("Pause between frames? *);

/* loop until button 32 */

frame_range(display, imin frame, &max frame);
iframe=min_frame;
do
{

/* loop until button 1 or 32 */

do
{

/* print out frame range */

frame_range(display, &min frame, imax frame);

/* print out help */

draw help(display);

/* test smooth flag */

if (smooth_flag)

Appendix

Source Code Page (223)

/* move camera

if (ifix) set_locator(knobs2,1,
xpos filt(anode](Sframe],
ypos_filt(anode](iframe),
zpos filt(anode](iframe]);

move_cam(display, &camera);

/* draw figure */

draw_fig(display, xpos filt, ypos fllt, zpos filt,
nnodes, iframe, nodes_per seg, nsegs,
seq_radii, flag_fixeddiameter);

}
else
{

/* move camera */

if (ifix) set_locator(knobs2,1,
xpos(anode)(iframe),
ypos(anode)[iframe),
zpos(anode)(iframe));

move cam(display, &camera);

/* draw figure */

draw_fig(display, xpos, ypos, zpos,
nnodes, iframe, nodes_per_seg, nsegs,
seg_radii, flag_fixed_diameter);

}

/* switch buffer plane */

dbuffer_switch(display, buffer.! buffer);

/* read button box */

if (read_choice_event(bbox, idum, &dum, £button, idum, tdum)1=0)
button=0;

/* check for screen copy

if (button==2)
{

/* write out picture file */

printf("Input picture file name

scanf("%s", fname);

strcpy(filename, PICTURE DIRECTORY);

strcat(filename, PICTURE_PREFIX);

strcat(filename, fname);

strcat(filename, PICTURE_SUFFIX);

bitmap to file(display, TRUE, 0,0, filename,
TRUE, 0.0,0.0,0,0, TRUE);

printf("%s written successfully\n",
filename);

}

Appendix

Source Code Page (224)

} while ((button)-l is button! -32) ii (pause--TRUE));

iframe++;

if (iframe>-max_frame) iframe=min frame;

} while (button! -32);
break;

case 2:

/* select options

do
{

/* set up correct menu prompts */

if (solid flag--TRUE) strcpy(menu2[6], "Style : Hollow");
else strcpy(menu2[6], "Style : Solid");

if (smooth flag--TRUE) strcpy(menu2[7], "Raw data");

else strcpy(menu2[7], "Smoothed data");

if (flag_fixed_diameter--TRUE)
strcpy(menu2[8], "Variable limb radius");

else strcpy(menu2[8], "Fixed limb radius");

icol=menu("Select option: ", menu2,10);

switch (icol)
{

case 1:

fill_color(display, COPPER_COLOUR);

perimeter color(display, COPPER_COLOOR);

surface_model(display, TRUE, COPPERSURFACE);
break;

case 2:
fill_color(display, RUBBER COLOUR);

perimeter_color(display, RUBBER_COLOUR);

surface model(display, TRUE, RUBBER SURFACE);
break;

case 3:
fill_color(display, PLASTICCOLOUR);

perimeter_color(display, PLASTIC COLOUR);

surface model(display, TRUE, PLASTICSURFACE);

break;

case 4:

fill_color(display, OBSIDIANCOLOUR);

perimeter color(display, WHITE);

surface_model(display, TRUE, OBSIDIAN_SURFACE);

break;

case 5:
fill_color(display, POTTERY_COLOUR);

perimeter_color(display, POTTERYCOLOUR);

surface_model(display, TRUE, POTTERYSURFACE);

break;

case 6:

Appendix

Source Code Page (225)

fill color(display, BRASS COLOUR);
perimeter color(display, BRASS COLOUR);
surface model(display, TRUE, BRASSSURFACE);
break;

case 7:
if (solid flag==TRUE)
{

interior_style(display, INT HOLLOW, TRUE);
solid flag-FALSE;

}
else
{

interior style(display, INT SOLID, FALSE);
solid flag-TRUE;

}
break;

case 8:
if (smooth flag==TRUE) smooth flag-FALSE;

else smooth flag-TRUE;

break;

case 9:
if (flag-fixed diameter=. TRUE) flaq_fixed diameter. FALSE;
else flag fixed diameter=TRUE;
break;

}
} while (icoll-l0);

/* disable button box events */

disable events(bbox, CHOICE, 1);

/* back to text mode */

hidden surface(display, FALSE, FALSE):
double buffer(display, FALSE, 0);
flush matrices(display);
CLEAR GRAPH;

domenu0

/* menu routine using Xrlib toolkit */

#include "params. h"

int domenu(title, prompts, nprort)
char title[STRING_SIZE]; /* menu title

char prompts[][STRING_SIZE]; /* menu prompts */

int nprompt; /* number of prompts
{
11f 1

int ixet; /* return value
int iprompt; /* prompt counter
XEvent xinput; /* x event structure

xrEvent *input; /* input structure */

Appendix

Source Code Page (226)

xrMenu *menu; /* menu pointer */
xrMenuinfo menuinfo; /* menu information structure */
INTB *menuitems(MENUPAGE+1]; /* array of pointers to meu items

/* cast xr event onto x event

input-(xrEvent *)ixinput;

/* get menu items

for (iprompt-O; iprompt<npronpt; iprompt++)

menultems[iprompt]-(INT8 *)prorrpts[iprompt];

/* get values into menu information structure */

menuinfo. menuTitle=title;

menuinfo. menuItems=menuitems;

menuinfo. numitems=(INT32)nprompt;

menuinfo. menuContext=NULL;

menuinfo. menuId=0;

menuinfo. menuStyle=0;

/* create and display menu

menu=XrMenu(NULL, MSG_NEW, imenuinfo);
XrMenu(menu, MSG ACTIVATEMENU, menuwindow);

input->type=ButtonRelease;

xrMenultemSelect-XrRIGHTBUTTONDOWN;
XrMenu(menu, MSG EDIT, input);

/* get input

while (1)
{

if (XrInput(O, MSG BLKHOTREAD, input)! =FALSE)
{

if (input->type==XrXRAY && input->inputType=-XrMENU)
{

fret-input->value3+1;
break;

}
else
{

fret-0;
break;

}
}

/* remove menu

XrMenu(menu, MSG_DEACTIVATEMENU, menu_window);

XrMenu(menu, MSG FREE, NULL);

xrMenurtemSelect=XrRIGHTBUTTONUP;

return(iret);

#else
int iprompt; /* prompt counter
int ixet; /* return value */

CLEAR TEXT;

Appendix

Source Code Page (227)

printf("ts\n\n", title);

for (iprompt-O; iprompt<nprompt; iprompt++)
{

printf("%d. %s\n", iprompt+l, prompts(ipromptj);

printf(u\nlnput selection:
scanf("%d", iiret);

if (iret<1 11 fret>nprompt) fret=0;

return Uret);
fendif
}

draw_flg()

#include "params. h"

void draw_fig(fd, xpos, ypos, zpos, nnodes, iframe, nodesper seg, nsegs, seg_radii,
flag fixed diameter)

/* draw the figure */

int fd;
float xpos(MAx NODESJ(Max_FRAMES);

float yrpostMAX NODESJ (MAX_FRAMESJ;
float zpos(MAX NODES)[MAX FRAMES);

int nnodes;
int iframe;
int nodes_per seg[NPS)(MAX_SEGS);
int nsegs;
float seg_radii(NFS)(MAX_SEGS);
int flag_fixed diameter;

{
int isegs;
int inps;
int nstart, nend;
char string(STRING SIZE);

/* output file descriptor */
/* x world coordinates */
/* y world coordinates
/* z world coordinates */

/* number of nodes */
/* frame counter */

/* nodes per segment
/* number of segments

/* radii of segment ends */
/* fixed segment diameter flag */

/* segment counter */
/* nodes per segment counter

/* start and end nodes for a segment
/* frame number string */

/* write out frame number */

sprintf(string, "Frame I %d", iframe);
dctext(display, SIDE BORDER+IO, GRAPH HEIGHT+TOP BORDER-10, string);

/* loop over segments */

for (isegs-O; isegs<nsegs; isegs++)
{

/* find start and end nodes */

nstart=nodesyer seg[O)[isegs);
vend-nodesper seg(1][isegs];

/* draw the limb */

draw_limb(fd, xpos(nstart][iframe], ypos[nstart)[iframe],
zpos[nstart)[iframe], xpos(nend)(iframe),
ypos(nend)(iframe], zpos(nend)[iframe],
seq_radii(01(isegs], seg_radii(1)(isegs],

Appendix

Source Code Page (228)

flag fixed diameter);
}

}

draw_help()

#include 'params. h"

/* this routine draws up the help prompt on the rhs of screen "/

void draw help(fd)

int fd;

{

/* output device file pointer */

dctext(display, GRAPH_WIDTH+SIDE_BORDER-80, TOP BORDER+20, "Buttons: ");
dctext(display, GRAPH WIDTH+SIDE BORDER-80, TOP BORDER+40, "1. Step");
dctext(display, GRAPH WIDTH+SIDE_BORDER-80, TOP_BORDER+60, "2. Save");
dctext(display, GRAPH WIDTH+SIDEBORDER-80, TOPBORDER+80, "32. Quit");

draw_Ilmb()

tinclude "params. h"

/* Subroutine draw limb draws an octagonal truncated cone

/* Axis from (xl, yl, zl) to (x2, y2, z2), with proximal diameter prox diam and */
/* distal diameter dist diam */

/* converts axis system to right handed */

void draw_limb(fd, xl, yl, zl, x2, y2, z2, rel_prox radius, rel_distradius,
flag fixed diameter)

int fd;
,

double xl, yl, z1;
double x2, y2, z2;
double relyrox_radius;
double rel_dist_radius;
int flag_fixed_diameter;

/* Define octagon data */

/* output file descriptor */
/* axis start coordinates */
/* axis end coordinates */

/* proximal radius / length */
/* distal radius / length */

/* fixed limb diameter flag */

static float octagon[8](2]-
{

0.5,0.0,
M_SQRT2/4.0, M_SQRT2/4.0,
0.0,0.5,

-M_SQRT2/4.0, M_SQRT2/4.0,

-0.5,0.0,
-M_SQRT2/4.0, -M_SQRT2/4.0,
0.0, -0.5,
M SQRT2/4.0, -M SQRT2/4.0

};

static float prox octagon(8)(3}-
{

24*0.0

/* define an octagon */

/* proximal octagon polygon */

Appendix

Source Code Page (229)

static float dist octagon(8)(3)-
{

24*0.0

static float figure_2d(4][3]-
{

12*0.0

static float quadr[8][4](6]-
{

192*0.0

static float mirror_z(41[4]-
{

1.0,0.0,0.0,0.0,
0.0,1.0,0.0,0.0,
0.0,0.0, -1.0,0.0,
0.0,0.0,0.0,1.0

double prox diam, dist diam;
double x, y, z;
double length;
double z rot, y_rot;
float transform(4)(4);
int vertex, pvertex;

/* distal octagon polygon */

/* 2d quadralateral */

/* side quadralaterals */

/* z inversion to convert to RH axes */

/* segment diameters */
/* axis vector */

/* length of axis vector
/* z and x axis rotations */

/* transform matrix
/* vertex counters */

/* Calculate axis vector

x=x2-xl;
y-y2-yl:
z-z2-zl;

/* Calculate length of axis vector

length-sgrt(x*x+y*y+z*z);

/* check diameter model */

if (flag_fixed_diameter-=TRUE)
{

/* set fixed diameters */

prox_diam=DEFAULT DIAMETER;

dist diam=DEFAULT DIAMETER;

}

else
{

/* Calculate diameters */

prox_diam=2.0*length*rel_prox radius;
dist diam=2.0*length*rel_dist_radius;

}

if (length! =0.0)
{

/* Calculate the z axis rotation */

Appendix

Source Code Page (230)

if (y>0.0)
zrot-acos(y/length)-M PI/2.0;

else
z rot-M PI/2.0-acos(-y/length);

/* Calculate the y axis rotation

if (z--0.0)
y_rot- x<0.0 ?M PI: 0.0;

else
{

if (x--0.0)
y_rot- z<0.0 7M PI/-2.0: M PI/2.0;

else
{

if (x<0.0)
{

if (z<0.0)
y_rot. M Pl+atan(z/x);

else
yrot-M PI-atan(-z/x);

}

else
{

if (z<0.0)
y_rot-(-atan(-z/x));

else
y_rot-atan(z/x);

}
}

}

/* Perform required transformations in reverse order */

/* z inversion for RH axes conversion */

concat transformation3d(fd, mirror z, PRE, PUSH);

/* Translation */

translate3d(xl, yl, zl, transform);

concat transformation3d(fd, transform, PRE, REPLACE);

/* y axis rotation */

rotate3d('y', y_rot, transform);
concat transformation3d(fd, transform, PRE, REPLACE);

/* z axis rotation */

rotate3d('z', z rot, transform);

concat transformation3d(fd, transform, PRE, REPLACE);

/* Calculate sized proximal and distal octagons
/* Also side quadralaterals */

for (vertex-O; vertex<8; vertex++)
{

prox_octagon[vertex][1]=octagon(vertex)[03*(float)prox diam;
prox_octagon(vertex)[2]-octagon(vertex](11*(float)prox diam;

/* Reverse direction for distal polygon to preserve */

Appendix

Source Code Page (231)

/* anti-clockwise order from outside */

dist_octagon[7-vertex][01-(float)length;
dist_octagon[7-vertex](11-octagon(vertex)(0J*(float)dist diam;
list octagon[7-vertex][2]-octagon[vertex)(1J*(float)dist diam;

/* Side quadralaterals

if (vertex--0)
pvertex=7;

else
pvertex=vertex-1;

quadr(vertex](0](1]=quadr[vertex](0]14]=octagon(vertex)[0)*
(float)prox diam;

quadr(vertex)(03(2)-quadr[vertex][01[5)-octagon(vertex)113*
(float)prox_diam;

quadr(vertex][1)[13=quadr(vertex](1)[41=octagon[pvertex)[0J*
(float)prox_diam;

quadr(vertex)[1](2]=quadr(vertex](1](5)-octagon[pvertex)(11*
(float)prox_diam;

quadr(vertex)[2)(0)-(float)length;
quadr[vertex](2)(l]-quadr[vertex][2](4]-octagon[pvertex](03*

(float)dist-diam;
quadr[vertex](21(2]-quadr[vertex][2](5]=octagon(pvertexj(13*

(float)dist-diam;
quadr(vertex](31(0]-(float)length;
quadr(vertexj(3)(1]=quadr(vertex](3)(4]-octagon[vertex][01*

(float)dist-diam;
quadr(vertex)(3)(21-quadr(vertex)[31[53-octagon[vertex][1]*

(float)dist diam;

/* do all calculation for 2d and 3d versions to keep the timing approx
/* equal */

if (flag_2d--TRUE)

figure 2d[0]101-figure 2d[1][0]-(float)length;
figure 2d[0][1]=figure 2d(3](l)-(float)(-list diam*0.5);

figure 2d[1](l)=figure 2d(2][l]_(float)dist diam*0.5;

vertex_format(fd, 0,0,0,0,000NTER_CLOCKWISE);

polygon3d(fd, figure_2d, 4, FALSE);

vertex format(fd, 0,0,0,0, CLOCKWISE);

polygon3d(fd, figure 2d, 4, FALSE);

}

else

/* Draw the two octagons */

vertex format(fd, 0,0,0,0, COUNTER_CLOCKWISE);

polygon3d(fd, prox octagon, 8, FALSE);

polygon3d(fd, dist octagon, 8, FALSE);

/* Draw the eight quadralaterals */

vertex format(fd, 3,3,0,0, COUNTERCLOCKWISE);

for (vertex=0; vertex<8; vertex++)

{
polygon3d(fd, quadr[vertex], 4, FALSE);

}

Appendix

Source Code Page (232)

/* Return stack to previous condition */

pop matrix(fd);
}

}

d_graph()

#include "params. h"

void d_graph(device, title, x label, y_label, sxjoint, sy_point, npoint, nline, key, ennum)

/* this routine plots a general line graph of the data contained in x_point and y
-point

/* calls double precision NAG subroutines */

int device; /* output device pointer
char title(STRING_SIZE]; /* graph title */
char x label[STRING_SIZEJ; /* x axis label */

char y_label[STRING_SIZE); /* y axis label */

float sx_point(MAX_LINESJ[MAX_POINTS]; /* x coordinates */

float sy_point[MAX_LINES][MAX_POINTS]; /* y coordinates */

int npoint; /* number of points
int nline; /* number of lines */

char key[MAX_LINES][STRINGSIZE]; /* key for multiple lines */

int ennum; /* number markers flag */

{
int. iline; /* line counter */
int ipoint; /* point counter
int iwidth; /* width of integer field */
double xmin, xmax; /* x coordinate range
double ymin, ymax; /* y coordinate range
double vxmin, vxmax; /* x viewport
double vymin, vymax; /* y viewport
int margin; /* margin flag
int lstring; /* string lengths */
int font; /* fortran out channel */
double temp; /* temporary real value */
int items; /* temporary integer
int icntl; /* control value */
1nt itype; /* graph type */
int isym; /* marker type
int ifail; /* fail flag */
double dx, dy; /* character spacing
double cwidth, cheight; /* character size */
int key_len; /* length of key string
double cx, cy; /* key string position
double yinc; /* key spacing */
double range; /* y extent of key */
double xsym, ysym; /* symbol position
double x_point(MAX_LINES](MAX POINTS]; /* x coordinates */

double y_point[MAX_LINES](MAX_POINTS]; /* y coordinates */

char stringl[80], string2[80];

/* convert to double precision */

for (iline-O; iline<nline; iline++)

Appendix

Source Code Page (233)

for (ipoint-O; lpoint<npolnt; ipoint++)
{

x point[iline][ipointl-(double)sx point[iline][ipoint];
ypoint(ilineJ(ipoint]-(double)sy_point[11inel[ipoint];

/* initialize secondary graphics system */

fout-6;
itenp-1;
j06vbf(&itemp, ifout);
itemp-0;

strcpy(stringl, getenv("SB_OUTDEV));

strcpy(string2, getenv("SB_OUTDRIVER"));
cnagsti(stringl, string2, <emp);
j06waf();

/* find coordinate range and key string length */

key_len=0;
xmin-xmax-x_point[O)[0);
ymin-ymax-y. point[0][0);
for (iline. 0; illne<nline; iline++)
{

for (ipoint=O; ipoint<npoint; ipoint++)
{

ternp=xjoint(iline] (lpoint);
if (temp<xmin) xmin-temp;
if (temp>xmax) xmax=temp;
temp=yjoint(iline)[ipoint];
if (temp<ymin) ymin=temp;
if (temp>ymax) ymax=temp;

/* while here, find out max key string length */

itemp-strlen(keyfiline});
key_len - itemp>key_len 7 itemp: key_len;

}

/* set up data mapping

margin=1;
j06wbf(sxmin, ixmax, &ymin, tymax, &margin);
vxmin-0.0;
vxmax-KEY_GRAPH;
if (device--display)

{

vymin=0.18;
vymax-0.95;

}
else
{

vymin-0.0;
vymax-1.0;

}
j06wcf(ivxmin, ivxmax, ivymin, ivymax);

/* labels */

Appendix

Source Code Page (234)

cjO6ahf"(title);
icntl-1;
cj06ajf(&icntl, xlabel);
icntl-2;
cjO6ajf(&icntl, y_label);

/* draw axes */

j06aaf();

/* draw lines */

itype-2;
for (iline-O; lline<nline; iline++)
{

isym-iline+l;
ifail=0;
j06baf(xpoint(ilineJ, ypoint(llinej, inpoint, iitype, &isym, iifail);

}

/* check if markers need to be ennumerated */

if (ennum)

/* character sizes */

dx-(xmax-xmin)*VDC_CHAR_SIZE;

dy=0;

cwidth-dx*CHAR_SLIM;
cheight-(ymax-ymin)*VDC CHAR_SIZE;
jO6ylf(&dx, cdy);

j06ykf(&cwidth, &cheight);

for (11ine=0; 11ine<nline; iline++)
{

for (ipoint-O; ipoint<npoint; ipoint++)
{

cx=x point(iline)[ipointi+dx/2.0;
cy=ypoint[iline)[ipointl+cheight/2.0;
j06yaf(&cx, &cy);
iwidth= ipoint==0 ? 1: (int)loglO((float)ipoint)+1;
j06zbf(&ipoint, &iwidth);

1
}
/* now do key */

xmin=0.0;
xmax-1.0;
ymin-0.0;
ymax-l. 0;

margin-0;
j06wbf(&xmin, ixmax, tymin, iymax, &margin);
range-n11ne/((float)MAX_LINES*2.0);
vxmin-KEY GRAPH;

vxmax-1.0;
vymin-(1.0-range)/2.0;
vymax-l. 0-vymin;
j06wcf(&vxmin, &vxmax, &vymin, &vymax);

Appendix

Source Code Page (235)

/* set character size and spacing */

dx-1.0/(float)(key_len+4);
dy-0.0;
cwidth. dx*CHAR_SLIM;

cheight-1.0/(float)(2*nline);
j06ylf(idx, &dy);
j06ykf(&cwidth, &cheight);
j06yjf(&cwidth);

/* draw key */

xsym-dx;
cx=dx*3;
yinc-1.0/nline;
ysym-1.0-yinc/2.0;
for (aline=0; iline<n1ine; iline++)
{

isym=iline+l;
j06yaf(&xsym, iysym);
j06ygf (iisym);
cy=ysym-cheight/2.0;
j06yaf(&cx, &cy);
cj06zaf(key(iline]);
ysym--yinc;

/* finished */

j06wzf 0;
}

energetics()
/* routine to calculate potential energy, translational kinetic energy and */
/* rotational kinetic energy for all the segments */

(include "params. h"

void energetics(comy, comxvel, comyvel, comzvel, xavel, yavel, zavel, seg_mass, seg_moi,
nsegs, nframes, seg_PE, seg_LKE, seq RKE)

float comy[MAX_SEGS] (MAXFRAMES];
float comxvellMA)ý_SEGS]IMAX FRAMES];
float comyvel[MAX SEGS]IMAX FRAMES];

float comzvel(MA)LSEGS]IMnx_FRAMES];
float xavel(MAX_SEGS)(MAX_FRAMES];
float yavel(MAX_SEGS](MAXFRAMES);
float zavel[MAX_SEGS][MAXFRAMES);
float seg_mass(MAX_SEGS];
float seg_moi(MAX_SEGS];
int nsegs;

int nframes;
float seg PE[MAX SEGS)(MAX_FRAMES);

float seg LKE(MHX_SEGS)(MAX FRAMES];

float seg_RKEIMAX_SEGS](MAX_FRAMES];
{

int isegs;
int iframes;

/* loop round segments */

/* y component of segment COM */
/* x component of segment COM vel
/* y component of segment COM vel
/* z component of segment COM vel

/* calculated angular velocities (rad/s) */

/* array of segment masses
/* array of segment MOIs

/* Number of segments
/* number of frames */

/* segment potential energy
/* segment linear kinetic energy
/* segment rotational kinetic energy */

/* segment counter
/* frame counter */

Appendix

Source Code Page (236)

for (isegs-O; isegs<nsegs; isegs++)
{

/* loop round frames */

for (iframes. 0; iframes<nframes; iframes++)

/* calculate Potential Energy (-mgh) */

seg PE(isegs)(iframesl-(-1.0)*seg mass(isegs)*G*
comy(isegs](ifrar s);

if (flag 2d)
{

/* calculate Linear Kinetic Energy (0.5mv42) */

seg_LKE(isegs)(iframes]. 0.5*seg_mass(isegsJ*
(comxvel(isegsJ(iframesJ*comxvel(isegs)(lfran s)+
comyvel[isegs](iframes]*comyvel[lsegs](iframes]);

/* calculate Rotational Kinetic Energy (0.5Iomega^2)

seg_RKE(isegs](iframes]-0.5*seg_moi[isegs]*
zavel(isegs)[iframes]*zavel(isegs][iframes];

else
{

/* calculate Linear Kinetic Energy (0.5mv"2) */

seg_LKE[isegs][iframes]=0.5*seg_mass(isegsJ*
(comxvel(isegs](iframesi*comxvel(isegs][iframesJ+
comyvel(isegs](iframes]*comyvel[isegs)(iframesj+
comzvel[isegs][iframes]*comzvel[isegs](iframes));

/* calculate Rotational Kinetic Energy (0.5Ioffega42) */

seg_RKE[isegs][iframesJ=0.5*seg_moi[isegsJ*
(xavel[lsegs)(iframesj*xavel(lsegs)(lframes]+
gavel[isegs)(iframes]*yavel(isegs)[If ramesI+
zavel[isegs](iframes]*zavel(isegs](iframes]);

}
}

}
}

energy lot() '

#include "params. h"

void energyplot(segs, nsegs, seg PE, seg_LXE, seg_RKE, startframe, endframe, tlmes)

/* this routine plots the selected segment energetics */

/* depending on the data arrays passed over to the routine */

Char segs[](STRING_SIZE]; /* segment names */

int nsegs; /* number of segments

float seg_PE(MAX_SEGSI[MAXFRAMES]; /* segment potential energy */

Appendix

Source Code Page (237)

float seq_LXE(MAx SEGS](MA)LFRAMES); /* segment linear kinetic energy */

float seg_RKE(MAX_SEGS)(MAXFRAMES]; /* segment rotational kinetic energy
int startframe; /* start frame number
int endframe; /* end frame number
float times(MA% FRAMES); /* times (s) */

float pl times[MAX_LINES](MAX_POINTS];
float energy[MAX_LINES](MAXPOINTS];
char key(MAX_LINES+1][STRING_SIZE];

char title(STRING SIZE];

char x label(STRING SIZE);

char y_label(STRING SIZE);

char fname(STRING SIZE];

char filename(STRINGSIZE];

int iframe;

ant anode;
ant ienergy;
ant iplot;
ant nlines;
ant aseg;

/* times to be plotted (s)
/* calculated energies

/* graph key string
/* graph title */

/* graph x axis label */
/* graph y axis label */

/* picture filename */
/* full picture filename */
/* frame counter

/* node counter */
/* energy control */

/* plotter control */
/* number of lines on graph */

/* finish node number */

static char menul[][STRING SIZE]-

{

"Potential Energy",
"Linear Kinetic Energy",
"Rotational Kinetic Energy"

};

static char menu2(}(STRING SIZE =
{

"Save data to file",
"Save picture to file",
"Exit"

/* all segments */

/* energy menu */

/* plotting menu */

if (nsegs<MAX_LINES £& yesno("Plot all segments? ")--TRUE)

{

while ((ienergy=menu("Option: `, menul, 3))""0);

strcpy(key[nsegsl, menul[lenergy-11);
strcat(key[nsegsl, " ");

for (nlines-O; nlines<nsegs; nlines++)
{

strcpy(key[nlines], key[nsegs]);

strcat(key[nlines], segs[nlines]);

/* loop round frames */

for (iframe-startframe; iframe<endframe; iframe++)
{

/* calculate times */

pl times(n1ines][iframe-startframe]-times(iframe];

switch (ienergy)
{

Appendix

Source Code Page (238)

case 1:
energy[nlines][iframe-startframe]-

seg PE(n11nes](iframe);
break;

case 2:
energy [nlines](iframe-startframe]-

seg LKE[nlines](iframe);
break;

case 3:
energy(nlines](iframe-startframe]-

seg_RKE(nlines](iframe];
break;

}
}
else
{

/* loop round number of lines */

nlines=0;
do
{

/* first option */

while ((ienergy-menu("Option: ", renul, 3))--O);

strcpy(key[nlines], menul[ienergy-1]);
strcat(key(nlines], W

/* second option */

while ((aseg-menu("Select segment: ", segs, nsegs))--O);
aseg--;
strcat(key(nlines], segs[aseg]);

/* loop round frames */

for (iframe-startframe; iframe<endframe; lframe++)
{

/* calculate times

pl times[nlines](iframe-startframel-times(lframe];

switch (ienergy)
{

case 1:
energy[nlines)[iframe-startframe]-seg_PE[aseg](iframe];
break;

case 2:

energy[nllnes)(iframe-startframe]-seg LXE[aseg)(iframe];
break;

case 3:

energy(nlines](iframe-startframe]-seg_RKE[aseg](iframe);
break;

Appendix

Source Code Page (239)

nlines++;
} while (nlines<MAX LINES && yesno("Another line? ")--TRUE);

}

/* draw graph */

strcpy(title, "Energetics");
strcpy(x label, "Time (s)");

strcpy(y_label, "Energy (J)");
d graph(display, title, x label, y_label, pl times, energy, endframe -

startframe, nlines, key, FALSE);

while ((iplot=menu("Select option: ", menu2,3))1-3)
{

switch (iplot)
{
case 1:

save_an(title, x label, y_label, pl times, energy, endframe-startframe,
nlines, key);

break;
case 2:

printf("Input picture file name

scanf("%s", fname);

strcpy(filename, PICTURE DIRECTORY);

strcat(filename, PICTURE_PREFIX);

strcat(filename, fname);

strcat(filename, PICTURESUFFIX);

bitmap_to_file(display, TRUE, 0,0, filename, TRUE, 0.0,0.0,0,0, TRUE);

break;

}
}
CLEAR GRAPH;

/* finished */

}

filter()

#include "params. h"

void filter(nnodes, xpos, ypos, zpos, xpos_filt, ypos_filt, zpos filt, nframe, fspeed)

/* this routine performs a forth order, zero phase Butterworth digital filtration on the

/* node position data */

/* the second pass is reversed for zero overall phase shift */

/* the cutoff frequency is set to 1/5 of the sampling frequency */

int nnodes; /* Number of nodes */
float xpos[MAX NODES](MAX FRAMES); /* x world coordinates (m)

float ypos(MAX NODES](MM(FRAMES]; /* y world coordinates (m) */

float zpos[MAX NODES](MAX_FRAMES). /* z world coordinates (m) */

float xpos_filt(MAX NODES](MAX FRAMES]; /* filtered x world coordinates (m) */
float ypos filt(MAX NODES][MAx FRAMES]; /* filtered y world coordinates (m) */
float zpos_filt[MAX NODES][MAX_FRAMES]; /* filtered z world coordinates (m) */

int nframe; /* number of frames */

Appendix

Source Code Page (240)

float fspeed; /* Film frame interval (s) */

{
float xfilter(MAX NODES][MAX_FRAMESj; /* temporary filtered x data store
float yfilter[MAR NODES](MAX_FRAMES); /* temporary filtered y data store
float zfilter[MAX NODES](MAX_FRAMESJ; /* temporary filtered z data store
ant anodes; /* node counter
ant iframe; /* frame counter
static float data_block(ll](5J- /* filtration coefficients */
{

. 2929, . 5858,. 2929,0.0000, -. 1716,

. 2066, . 4132,. 2066,0.3695, -. 1959,

. 15505,. 3101,. 15505,0.6202, -. 2404,

. 1212, . 2424,. 1212,0.8030, -. 2878,

. 0884, . 1768,. 0884,1.0011, -. 3547,

. 06745,. 1349,. 06745,1.1430, -. 4128,

. 0495, . 0990,. 0495,1.2796, -. 4776,

. 0379, . 0758,. 0379,1.3789, -. 5305,

. 02995,. 0599,. 02995,1.4542, -. 5740,

. 0243, . 0486,. 0243,1.5134, -. 6106,

. 0201, . 0402,. 0201,1.5610, -. 6414

/* filtration coefficients (Winter 1979 "Biomechanics of Human Movement")

float aO, al, a2, bl, b2;

aO-data_block(flltration_number-1)[0);
al-data_block[filtration_number-1][1];
a2=data block[filtration_number-1)(2];
bl-data block[filtration_number-1](3];
b2-data block[filtrationnumber-1)(9);

/* test for suitable number of frames */

if (nframe<5)
{

printf("Too few frames for filtration\n");
for (inodes-0; inodes<nnodes; inodes++)
{

for (iframe-0; iframe<nframe; iframe++)
{

xpos filt(inodes](iframel-xpos(inodes](iframe);

ypos_filt[inodes](iframe]-ypos[inodes](iframe);
zpos filt(anodes][iframe]-zpos[inodes][iframe];

}

return;
}

/* loop over nodes */

for (inodes=O; inodes<nnodes; inodes++)
{

/* first pass */

xfilter[inodes)(OJ=xpos[inodes)(0];
yfilter(inodes)(0]-ypos(inodes][0];
zf11ter(inodes][0]-zpos(inodes)[0];
xfilter[inodes][1]=xpos(inodes)(1);
yfi1ter[inodes][1]-ypos(inodes)(1);

Appendix

Source Code Page (241)

zfilter[inodesj[11-zpos[inodes](1);
for (iframe-2; iframe<nframe; lframe++)
{

xfilter[inodes)(iframe]_a0*xpos[inodes][iframe]+
al*xpos[inodesj(iframe-1]+
a2*xpos[inodes][iframe-2]+bl*xfilter(inodes][iframe-1]+
b2*xfilter(inodesj(iframe-2J;

#if1

yfilter(inodes)(iframe). a0*ypos(inodes][iframe]+
al*ypos(inodes)[iframe-1)+
a2*ypos(anodes](iframe-2]+b1*yfilter[inodes)(iframe-1]+
b2*yfilter(inodes][iframe-2];

zfilter[anodes](iframe]. a0*zpos(inodes)(iframe]+
al*zpos[inodes)[iframe-1)+
a2*zpos[inodes](iframe-2]+b1*zfilter(inodes)(iframe-1]+
b2*zfilter(inodes](iframe-2];

/* second pass */

/* reverse version for zero phase shift */

xpos_filt[anodes](nframe-1]-xfilter[inodes](nframe-1);
ypos_filt[indes](nframe-I)-yfilter[inodes)[nframe-1J;
zpos filt[anodes][nframe-1]-zfilter[inodes][nframe-1];

xpos filt[anodes][nframe-2]-xfilter[inodes][nframe-2];

ypos_filt(anodes](nframe-21-yfilter(inodes](nframe-21;
zpos_filt[anodes][nframe-2]-zfilter(inodes](nframe-2];
for (iframe-nframe-3; iframe>-O; iframe--)
{

xpos filt(anodes](iframe]-aO*xfllter(inodes)[iframe)+
al*xfilter(anodes)(iframe+l]+a2*xfilter(lnodes](iframe+2]+
bl*xpos filt(inodes][iframe+l]+b2*xpos filt(inodes)[iframe+2];

ypos filt(inodes](iframe]=a0*yfilter(1nodes](iframe]+
al*yfilter(lnodes][iframe+lJ+a2*yfilter(lnodes)(lframe+2J+
bl*ypos_filt(inodesj(iframe+l]+b2*ypos filt(inodesj[iframe+21;

zpos filt[inodes](iframe]=a0*zfilter(inodes](iframe]+
al*zfilter(anodes](iframe+l]+a2*zfilter[inodes](lframe+2]+
bl*zpos_filt(inodes](iframe+l]+b2*zpos filt[inodes](iframe+2];

}
ielse -

/* unreversed for improved last points smoothing */

xpos_filt[inodes](0]=xfilter(inodes][0);
ypos fllt(inodes][01-yfilter(inodes)(01;

zpos_filt(inodes][01-zfilter(inodes](0);
xpos filt(inodes)(1)-xfilter(inodes](1];

ypos_filt(inodes][1]=yfilter(inodes)[1);
zpos_filt(inodes][1]-zfilter(inodes][11;
for (iframe-2; iframe<nframe; iframe++)
{

xpos_filt[anodes)(iframe)_a0*xfilter(inodes)[iframe]+
al*xfilter(inodes)(iframe-1]+a2*xfilter[inodes)(lframe-2]+
bl*xpos_filt(anodes](iframe-11+b2*xpos_filt(inodes](iframe-21;

ypos filt(anodes][iframe]=a0*yfilter(inodes][iframe]+

al*yfilter(lnodes1[iframe-1J+a2*yfilter(inodes][iframe-2J+
bl*ypos filt(inodes](iframe-1]+b2*ypos filt[inodes][iframe-2];

Appendix

Source Code page (242)

zpos Eilt(inodes][iframeJ. aO*zfilter[Snodes](iframej+
al*zfilter(lnodes][lframe-lJ+a2*zfilter(inodesJ(iframe-2]+
bl*zpos filt(inodes](iframe-1J+b2*zpos filt(inodesJ(lframe-21=

iendif
}

)

/* finished */

printf("Filtration successful\n");

frame_range()

/include "params. h"

/* this routine uses the knobs to move the repeat frame range */

frame_range(fd, min_frame, max frame)
int fd; /* display device */
int *min_frame; /* minimum frame number
int *max_frame; /* maximum frame number

{
int valid;
float rdum;
float rmin;
float rmax;
int string(STRING SIZE);

/* valid response flag
/* dummy value */
/* minimum range knob */
/* maximum range knob */

/* text output string */

sample locator(knobsl, 1, &valid, &rdum, &rmin, &rmax);
*min_frame-(int)rmin;
*max frame-(int)rmax;

sprintf(string, "Fran s %3d to %3d", *min frame, (*maxframe)-1);
dctext(fd, SIDE BORDER+10, TOP BORDER+80, string);

gapO

/* This module contains the main routine for the 'G'alt 'A'nalysis 'P'rogram (GAP)

linclude "params. h"

/* global variables */

/* options flags */

1nt flag 2d=TRUE;
1nt flag simple reconstruction=FALSE;
flag */
int fiducial flag=FALSE;
int frame_increment=1;
int filtration_number=2;
int flag filter=FALSE;
1nt smooth number=3;

/* 3d reconstruction values */

/* 2d only flag */
/* sirtple (orthogonal camera) 3d reconstruction

/* fiducial mark recostruction flag
/* frame sequence increment */

/* filtration cutoff number
/* filter/smooth flag */

/* number of values in moving average */

Appendix

Source Code Page (243)

float 11[11J;
float 12[11];

int x_mirror_1;
float x offset_1;
float y offset_1;
float scale_factor_1;
float rotation 1(2](21;
int x_mirror_2;
float x offset 2;
float y offset 2;
float scale factor 2;
float rotation 22;
int x-axis-source;
int y_axis_source;
int z-axis-source;

/* 2d conversion values */

/* DLT parameters */

/* x mirroring flag */
/* x offset of picture origin 1 */
/* y offset of picture origin 1 */

/* scale factor from picture to world (m) 1 */
/* rotation matrix picture to world 1 */
/* x mirroring flag */

*x offset of picture origin 2
/* y offset of picture origin 2 */

/* scale factor from picture to world (m) 2 */
/* rotation matrix picture to world 2 */

/* 3d axes source: 1 picture 1x axis
2 picture 1y axis
3 picture 2x axis

4 picture 2y axis */

float x_offset; /* x offset of picture origin
float y_offset; /* y offset of picture origin
float scale

_factor;
/* scale factor from picture to world (m) */

float rotation[21[21; /* rotation matrix picture to world */

/* registration values */

float fiducial_x=0.0;

float fiducial_y=0.0;

float correction-x-0.0;
float correction_y=0.0;

/* graphics device pointers */

int display;
int locator;
int knobsl, knobs2, knobs3;
int bbox;

/* window device pointers */

Window graphic window;
Window text_window;
Window menu_window;
Display *xdisplay;
int xscreen;

/* global x registration value */
/* global y registration value */

/* framewide x registration */
/* framewide y registration */

/* graphics display */
/* locator device (mouse) */

/* knob box (3 rows) */
/* button box */

/* graphic window */
/* text window */
/* menu window */

/* x display pointer
/* screen number */

/* original hpterm window parameters */

unsigned int orig_width, orig height;
int orig_x, orig_y;

/* global brightness and contrast values */

float brightness=0.5; /* brightness */
float contrast-0.5; /* contrast

void gap()
{

/* This program records frames of 3d gait analysis data obtained from */
/* split image video film */

Appendix

Source Code Page (244)

int limb_data-FALSE;
int data_to_write-FALSE;
int nframe=0;
int ixet;
int nnodes;
int nsegs;
int iopt;

float (speed;

char title(STRING SIZE);

/* Read limb file flag */
/* New data flag */

/* Frame number */
/* Menu return code */

/* Number of nodes */
/* Number of segments

/* y world coordinate option */

/* Film frame interval (s) */

/* File title line */

int nodes_per_seg(NPS](MAX_SEGS]; /* Nodes in segment */

float seg_radii[NPS][MAX_SEGS]; /* relative radii of segment ends */

float xpos(MAX NODESJ[MAX FRANES]; /* x world coordinates (m)

float ypos(MAX_NODES][MAX_FRAMES]; /* y world coordinates (m)

float zpos[MAX NODES][MAX_FRAMES]; /* z world coordinates (m)

float xpos_filt(MAX NODES](MAX_FRAMES]; /* filtered x world coordinates (m)

float ypos_filt(MA)LNODES](MAX FRAMES]; /* filtered y world coordinates (m) */

float zpos_filt(MAX NODES)[MAX_FRAMES]; /* filtered z world coordinates (m) */

float seg_mass[MAX_SEGS]; /* array of segment masses */

float seg com(MAX_SEGS); /* array of segment relative COMs

float seg_moi(MAX SEGS); /* array of segment MOIs

char nodes[MAX NODES][STRING SIZE]; /* Names of nodes */

char segs[MAX_SEGS][STRINGSIZEJ; /* Names of segments */

static char menul(](STRING SIZE = /* Main menu */

"Read limb file",
"Read node file",
"Write node file",
"Digitize new sequence",
"Digitize additional frames",
"Display frames",
"Analyse gait",
"View video frames",
"Set global options",
"Shell to Unix",
"Exit",

/* open devices

open dev 0;

CLEAR_TEXT; "
printf("Gait Analysis Program\n\n');

while (TRUE)

(

/* write main menu */

iret=menu("Gait analysis program", menul, 11);

/* select options */

Appendix

Source Code Page (245)

if (fret--1)
{

/* test to see if unsaved data exists */

if (data_to_write--TRUE)

if (yesno("Save current frame data ? "))

wrnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed):

data_to_write-FALSE;

}

/* read the limb model file */

rdlimb(title, nodes, innodes, segs, &nsegs, nodes_per seg, seg_mass,
seg_com, seq_moi);

nframe=0;
data_to_write=FALSE;
limb data-TRUE;

}

if (iret--2 && limb-data--TRUE)
{

/* test to see if unsaved data exists */

if (data_to_write--TRUE)
{

if (yesno("Save current frame data ? "))

wrnode(title, nodes, nnodes, xpos, ypos, zpos,

nframe, fspeed);

data towrite-FALSE;

}

/* read a node data file */

rdnode(title, nodes, innodes, xpos, ypos, zpos, inframe, cfspeed);

/* filter data */

if (flag-filter) filter(nnodes, xpos, ypos, zpos, xpos Eilt,

ypos filt, zpos filt, nframe, fspeed);

else smooth(nnodes, xpos, ypos, zpos, xpos filt,

ypos filt, zpos filt, nframe, fspeed);

}

if (iret-=3 ii nframe! -O)
{

/* save frame data file */

wrnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed);

data-to-write-FALSE;

}

if (iret==4 && limb-data=-TRUE)
{

/* test to see if unsaved data exists */

if (data to write""TRUE)
(

Appendix

Source Code Page (246)

if (yesno("Save current frame data ? "))

wrnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed);
data_to_write-FALSE;

}

/* initialize the digitizer */

initrd 0;

/* get frame speed */

printf("Input interval between frames (s)
scanf("%f", ifspeed);

/* digitize frames required */

nframe=0;
dgnode(title, nodes, nnodes, xpos, ypos, zpos, inframe);
data to write=TRUE;

/* filter data */

if (flag_filter) filter(nnodes, xpos, ypos, zpos, xpos Eilt,
ypos filt, zpos filt, nframe, fspeed);

else smooth(nnodes, xpos, ypos, zpos, xpos Eilt,
ypos filt, zpos filt, nframe, fspeed);

}

if (iret--5 ii limb_data==TRUE && nframe! =0)
{

/* initialize the digitizer */

if (data_to_write==FALSE)

{
initrd();

/* get frame speed */

printf("Input interval between frames (s)
scanf("%f", ifspeed);

}

else
{

if (yesno("Reinitialize digitizing 7"))
{

initrd();

/* get frame speed */

printf("Input interval between frames (s)

scanf('%f", tfspeed);

/* digitize frames required */

dgnode(title, nodes, nnodes, xpos, ypos, zpos, tnframe);
data to write=TRUE;

Appendix

Source Code Page (247)

/* filter data */

if (flag-filter) filter(nnodes, xpos, ypos, zpos, xpos filt,

ypos filt, zpos filt, nframe, fspeed);

else smooth(nnodes, xpos, ypos, zpos, xpos filt,

ypos filt, zpos_fllt, nframe, fspeed);

}

if (fret--6 & nframel-0)

/* display digitized data */

displa(title, nodes, nnodes, xpos, ypos, zpos, xpos filt, ypos filt, zpos filt,

nframe, segs, nsegs, nodesper seg, seq_radii);

if (iret--7 && nframel-0)

/* perform data analysis */

stats(title, nodes, nnodes, xpos, ypos, zpos, xpos filt, ypos filt,

zpos filt, nframe, segs, nseqs, nodes_per seq, fspeed, seq mass,
seq_com, seq_moi);

if (iret=-8)

/* view video frames */

view o; ;

if (iret--9)
{

/* set global options

options();

/* re-filter data */

if (flag-filter) filter(nnodes, xpos; ypos, zpos, xpos filt,

ypos filt, zpos filt, nframe, fspeed);

else smooth(nnodes, xpos, ypos, zpos, xpos filt,

ypos filt, zpos filt, nframe, fspeed); "-
}

if (iret--10)
{

/* shell out to Unix

system(SHELL);
}

if (ixet- 11)
{

if (yesno("Are you sure you want to quit? "))
{

/* test to see if unsaved data exists */

if (data towrite==TRUE)

Appendix

Source Code page (248)

{
if (yesno("Save current frame data ? ̀))

wrnode(title, nodes, nnodes, xpos, ypos, zpos,
nframe, fspeed);

}

/* terminate program

break;

L'

}
}

/* loop back to menu

}

/* close devices */

close dev(;

/* finished */

Identity3d()

/* Subroutine identity3d produces the identity matrix

#include "params. h"

void identlty3d(m)
float m[4](4],
{

int i, j;

for (i=0; i<4; i++)
for (j-O; j<4; j++)

m(i] (j]=(float) (i=-j);
}

initrd()

/* routine to select initialize options depending on flag 2d

/include "params. h"

void inltrd()
{

if (flag_2d==TRUE) initrd_2d();

else
{

if (flag simple reconstruction==TRUE) initrd_3d2();

else initrd 3d1();

P
}

Initrd_2dO

#include "params. h"

Appendix

Source Code Page (249)

void initrd 2d()

/* this routine sets up the transformation values for the 2d input

{
double theta; /* rotation angle */
float xjos, y pos; /* screen position of reference point
float x_dis, y dis; /* screen displacement of reference point
float x_ref, y_ref; /* reference point
FILE *unit; /* file pointer

char filename[STRING_SIZE); /*, file name */

char fname[STRING SIZE]; /* input file name
int iret; /* menu option */

static char menul[][STRING SIZE = /* initialization option menu
{

"Load reconstruction parameters",
"Calculate reconstruction parameters"

/* do menu

while ((fret-menu("Select option: ", menul, 2))==0);

switch (iret)
{

case 1:

/* load up parameters file */

do
{

sel_file(RECON_DIRECTORY, RECON PREFIX, RECONSUFFIX 2D, filename);

unit-fopen(filename, "r");

} while (unit-NULL);

fscanf(unit, "%e%e", &fiducial x, ifiducial_y);

fscanf(unit, "%e", &x offset);
fscanf(unit, "%e", &y offset);
fscanf(unit, "%e", &scale_factor);
fscanf(unit, "teke", crotation[0][O], &rotation[0][1J);
fscanf(unit, "%e%e", &rotation[1][O], irotation[l)(11);

fclose(unit);
printf("File %s'read successfully\n", filename);

break;

case 2:

/* get into right graphics mode

CLEAR GRAPH;

/* read in picture file *j

readpic(};

/* fiducial point

if (fiducial_flag)
{

Appendix

Source Code Page (250)

printf("Select fiducial point\n");
digrd(&fiducial x, &fiducial_y);

}

/* get origin

printf("Select origin from picture\n");
digrd(&x offset, &y_offset);

/* get reference point

printf("Input coordinates of a reference point : ");
scanf("%f%f", &x_ref, &y_ref);
printf("Select reference point from picture\n");
digrd (&x_pos, iyyos) ;

/* calculate scale factor */

x dis-x_pos-x offset;
ydis-y_pos-y_offset;
scale_factor-sgrt((double)(x ref*x ref+y ref*y_ref))/

sgrt((double)(xdis*xdis+ydis*y_dis));

/* calculate rotation */

theta-atan2((double)y_ref, (double)x ref)-
atan2((double)y_dis, (double)xdis);

/* and rotation array

rotation[0][O]-(float)cos(theta);
rotation[0][ll-(-(float)sin(theta));
rotation(l)[0J-(float)sin(theta);
rotation[1][11-(float)cos(theta);

/* terminate graphics */

CLEAR GRAPH;

/* write out reconstruction parameters file */

if (yesno("Write parameters file? "))
{

do
{

prlntf("Input reconstruction parameters file name
scan f("%s", fname) ;
strcpy(filename, RECON_DIRECTORY);

strcat(filename, RECON_PREFIX),

strcat(filename, fname);

strcat(filename, RECON_SUFFIX 2D);

unit-fopen(filename, "w");

} while (unit--NULL);

fprintf(unit, "te %e\n", fiducial x, fiducial_y);

fprintf(unit, "%e\n", x offset);
fprintf(unit, "%e\n", y_offset);
fprintf(unit, "%e\n", scale factor);
fprintf(unit, "%e %e\n", rotation[O][OJ, rotation[OJ[1]);
fprintf(unit, "%e %e\n", rotation[l][O], rotation(l)(1]);

Appendix

Source Code Page (251)

fclose(unit);
printf("File is written successfully\n", filename);

}
break;

initrd_3d 10

#include "params. h"

void initrd 3d1()

/* this routine sets up. the transformation values for the 2d to 3d conversion
/* it uses the Marzan algorithms to enable the cameras to be in any convenient position

{

FILE *unit; /* file pointer

char filename [STRING SIZE]; /* file name */

char fname(STRING SIZE]; /* input file name
float xw[MAX_REF); /* reference point world coordinates */

float yw[MAX REF);

float zw[MAX REF];
float gl(MAX_REFI; /* reference points screen coordinates */

float rl(MAX_REF];
float g2(MAX_REF]; /* reference points screen coordinates */

float r2(MAX REF};
int iret; /* menu option

int nrefs; /* reference value number
int irefs; /* reference value counter
static char menul[][STRING SIZED= /* initialization option menu
{

"Load reconstruction parameters",
"Calculate reconstruction parameters"

int i; /* load up counters

/* do menu

while ((iret=menu("Select option: ", menul, 2))==0);

switch (iret)
{

case 1:

/* load up parameters file, */

do
{

sei file(RECON_DIRECTORY, RECON_PREFIX, RECON_SUFFIX 3Dl, filename);

unit-f open(filename, "r");

} while (unit==NULL);

for (i=0; i<ll; i++) fscanf(unit, "ice", ill(ij);
for (i=0; i<ll; 1++) fscanf(unit, "%e", &l2(i]);
fscanf(unit, "bette", &fiducial x, ifiducial_y);

fclose(unit);

Appendix

Source Code Page (252)

printf("File %s read successfully\n", filename);
break;

case 2:

1* get into right graphics mode */

CLEAR GRAPH;

/* read in picture file */

readpic();

/* fiducial point

if (fiducial flag)
{

printf("Select fiducial point\n");
digrd(&fiducial x, sfiducial_y);

}
else
{

flducial_x"0;
fiducial_y=0;

/* get world coordinates of reference points

do
{

printf("Input number of reference points : ");
scanf ("%d", &nrefs) ;

)while (nrefs<MIN_REF II nrefs>-MAX_REF);

for (irefs-O; irefs<nrefs; irefs++)

{
printf("Reference point %d : ", irefs+l);
scanf("%f %f %f", &xw[irefs], &yw[irefs], izw(irefs]);

}

select the reference points

for (irefs=0; irefs<nrefs; irefs++)
{

printf("Picture 1, reference point "d\n", irefs+l);
digrd(igl[irefs], &rl[irefs]);
printf("Picture 2, reference point %d\n", irefs+l);
digrd(&g2[irefs], ir2(irefs]);

}

/* calculate dlt parameters

dlt_parameters(xw, yw, zw, gl, rl, inrefs, 11);
dlt parameters(xw, yw, zw, g2, r2, znrefs, 12);

/* terminate graphics */

CLEAR GRAPH;

/* write out reconstruction parameters file */

printf("Input reconstruction parameters file name : ");

Appendix

Source Code Page (253)

scanf("%s", fname);

strcpy(filename, RECON_DIRECTORY);

strcat(filename, RECON_PREFIX);

strcat(filename, fname);

strcat(filename, RECON SUFFIX 3D1);

unit-fopen(filename, "w");
for (i-O; i<ll; i++) fprintf(unit, "%e\n", 11(iJ);
fprintf(unit, "\n");

for (i-O; i<ll; i++) fprintf(unit, "%e\n", 12(iJ);
fprintf(unit, "\n%e %e\n", fiducial x, fiducial_y);
fclose(unit);
printf("File %s written successfully\n", filename);
break;

Inltrd_3d2()

#include "params. h"

void initrd 3d2()

/* this routine sets up the transformation values for the simple 3d reconstruction

{
double theta; /* rotation angle */
float x posy pos; /* screen position of reference point
float x dis, y_dis; /* screen displacement of reference point
float x ref, y_ref; /* reference point
FILE *unit; /* file pointer
char filename[STRINGSIZE]; /* file name */

char fname(STRING_SIZE); /* input file name
int ixet; /* menu option */

static char menul(][STRING_SIZE]- /* initialization option menu
{

-Load reconstruction parameters",
"Calculate reconstruction parameters"

char menu2[4][STRINGSIZE]; /* 3d information source menu

/* do menu */

while ((iret-menu("Select option: ", menul, 2))-. 0);

switch (fret)
{

case 1:

/* load up parameters file */

do
{

sel_file(RECON DIRECTORY, RECON PREFIX, RECON_SUFFIX 3D2, filename);
unit-fopen(filename, "z");

} while (unit-NULL);

fscanf(unit, "%e%e", ifiducial x, zfiducial_y);

fscanf(unit, "%e", &x_offset_l);
fscanf(unit, "%e", &y offset 1);

Appendix

Source Code Page (254)

fscanf(unit, "te", zscale
-

factor 1);
fscanf(unit, "te%e", arotation 1(0](0], irotation 1(0]111);
fscanf(unit, "%e%e", &rotation_l(1](0], irotation 1[1](1]);
fscanf(unit, "%cd", ix mirror 1);

fscanf(unit, "%e", &x_offset_2);
fscanf(unit, "%e", &y_offset_2);
fscanf(unit, "%e", zscale_factor 2);
fscanf(unit, "Ire%e", &rotation_2(0][0], &rotation 2(0)(11);
fscanf(unit, "%ete", &rotation_2[1](0], irotation 2(1][1]);
fscanf(unit, "%d", &x mirror 2);

fscanf(unit, "%d", ix axis source);
fscanf(unit, "td", &y_axis_source);
fscanf(unit, "%d", iz axis source);

fclose(unit);

printf("File %s read successfully\n", filename);
break;

case 2:

/* get into right graphics mode */

CLEAR GRAPH;

/* read in picture file */

readpic();

/* fiducial point

if (fiducial_flag)
{

printf("Select fiducial point\n");
digrd(sfiducial x, &fiducial_y);

}

/* PICTURE 1 */

/* get x mirror status

printf("PICTURE 1\n");

x mirror l-yesno("Mirror x axis on picture 1");

/* get origin

prlntf("Select origin\n");
digrd(&x offset l, &y offset 1);
if (x mirror_1) x offset l-(-x offset 1);

/* get reference point */

printf("Input coordinates of a reference point : ");
scanf("%f%f", &x_ref, iy_ref);
printf("Select reference point from picture\n");
digrd(&x_pos, Ly_pos);
if (x mirror 1) x_pos-(-x_pos);

/* calculate scale factor */

x dis-x pos-x offset_1;

Appendix

Source Code Page (255)

y_dis-yyos-y_offset_1;
scale factor l-sgrt((double)(x ref*x ref+y ref*y_ref))/

sgrt((double)(xdis*x_dis+ydis*y_dis));

/* calculate rotation */

theta-atan2((double)y_ref, (double)x ref)-
atan2((double)y_dis, (double)xdis);

/* and rotation array */

rotation 1(0J[0J-(float)cos(theta);

rotation l(01111-(-(float)3in(theta));

rotation_1[1)[0]-(float)sin(theta);
rotation 1[1J[iJ-(float)cos(theta);

/* PICTURE 2 */

/* get x mirror status

printf("PICTURE 2\n");

x mirror_2-yesno("Mirror x axis on picture 20);

/* get origin */

printf("Select origin\n");
digrd(&x_offset 2, &y offset_2);
if (x mirror 2) x_offset 2-(-x offset 2);

/* get reference point */

printf("Input coordinates of a reference point : ");

scanf("%f%f", ix ref, iy_ref);
printf("Select reference point from picture\n");
digrd(&x_pos, &y_pos);
if (x mirror 2) x_pos-(-xpos);

/* calculate scale factor */

x dis=xyos-x_offset_2;
y_dis-y_Pos-y_offset_2;
scale factor_2-sgrt((double)(x ref*x ref+y_ref*y_ref))/

sgrt((double)(xdis*x_dis+ydis*y_dis));

/* calculate rotation */

theta=atan2((double)y_ref, (double)x ref)-
atan2((double)y_dis, (double)xdis);

/* and rotation array */

rotation 2[01[01-(float)cos(theta);

rotation _2[0J[1J-(-(float)sin(theta));
rotation_2[11[01-(float)sin(theta);
rotation 2111[11-(float)cos(theta);

1* terminate graphics */

CLEAR GRAPH;

/* select sources of 3d information */

Appendix

Source Code Page (256)

strcpy(menu2[01, "Picture 1x axis");
strcpy(menu2[11, " y axis");
strcpy(menu2[2], "Picture 2x axis");
strcpy(menu2[3], " y axis");

do

x axis_source-menu("3d x axis data from: ", menu2,4);
} while (x-axis-source--O);

strcat(menu2[x axis source-1), " x");

do
{

y_axis source=menu("3d y axis data from: ", menu2,4);
} while (y_axis_source--O II y_axis_source--x axis source);

strcat(menu2(y_axissource-1}, " y");

do
{

z axis_source-menu("3d z axis data from: ", menu2,4);
} while (z-axis-source--O II z_axis_source--x axis source ii

z axis_source--y_axis_source);

/* write out reconstruction parameters file */

if (yesno("Write parameters file? "))
{

do
{

printf("Input reconstruction parameters file name
scanf("%s", fname);
strcpy(filename, RECON DIRECTORY);

strcat(filename, RECON_PREFIX);

strcat(filename, fname);
strcat(filename, RECONSUFFIX 3D2);

unit-fopen(filename, "w");
} while (unit--NULL);

fprintf(unit, "%e %e\n", fiducial_x, fiducial_y);

fprintf(unit, "fie\n", x_offset 1);
fprintf(unit, "te\n", y offset 1);
fprintf(unit, "%e\n", scale factor 1);
fprintf(unit, "%e Ire\n", rotation_1[0][OJ, rotation 1[0][1));
fprintf(unit, "%e %e\n", rotation 1[l][OJ, rotation l(lJ[i]);
fprintf(unit, "%d\n", x mirror 1);

fprintf(unit, "%e\n", x offset_2);
fprintf(unit, "%e\n", y_offset 2);
fprintf(unit, "%e\n", scale factor 2);
fprintf(unit, "be %e\n", rotation 2[0J[0], rotation 2[0][11);
fprintf(unit, "%e %e\n", rotation 2[1][0], rotation 2[1][1]);
fprintf(unit, "$d\n", x mirror 2);

fprintf(unit, "%d\n", x axis_source);
fprintf(unit, "%d\n", y_axis source);
fprintf(unit, "%d\n", z axis source);

fclose(unit);

Appendix

Source Code Page (257)

printf("File is written successfully\n', filename);
}
break;

}
}

length()

#include 'params. h`

void length(xpos, ypos, zpos, nnodes, nframes, nodes per seg, nsegs, seg length)

/* calculate the mean lengths of the segments */

float xpos[MAX NODESI(MAX_FRAMES];
float ypos[PAX NODES](MAX FRAMES);
float zpos[MAX NODES](MAX_FRAMES];
int nnodes;
int nframes;
int nodes_per seg[NPS][MAX_SEGS];
int nsegs;
float seq_length[MAX_SEGS];
{

int iframes;
int isegs;
int nstart, nend;
float x, y, z;

/* x world coordinates */
/* y world coordinates */
/* z world coordinates */
/* number of nodes */

/* number of frames */
/* nodes per segment */

/* number of segments
/* mean segment lengths */

/* frame counter
/* segment counter

/* start and end nodes for a seg
/* intermediate lengths */

/* find mean segment lengths */

for (isegs=O; lsegs<nsegs; isegs++)
{

/* find start and end nodes */

nstart=nodesyer_seg[0][isegs];
nend=nodes_per seg(1](isegs];

/* loop over frames */

seg length[isegs]=0.0;
for (iframes-O; iframes<nframes; lframes++)
{

x-xpos[nend](iframes]-xpos[nstart](iframes);
y-ypos(nend][iframes]-ypos[nstart](iframes];
z-zpos[nend][iframes]-zpos[nstart][iframes];

seg length[isegsJ+"(float)sgrt((double)x*x+y*y+z*z);
}
seg_length[isegsJ-seg_length[isegsJ/(float)nframes;

Iimb_com()

/* limb_com calculates the position of the centre of mass for the limb */

/include "params. h"

void limb_com(xl, yl, zl, x2, y2, z2, rel_com, x, y, z)
float xl, yl, zl; /* start of axis of conic section */

Appendix

Source Code Page (258)

float x2, y2, z2;
float rel_com;
float *x, *y, *z;
{

float dx, dy, dz;

dx=x2-xl;
dy-y2-yl;
dz-z2-zl;

*x=x1+re1_com*dx;
*y.. yl+rel_com*dy;
*z=z1+re1_com*dz;

}

/* end of axis of conic section
/* relative COM position */

/* calculated position of the centre of mass

/* displacement along axis */

Iocus()

#include "params. h"

void locus(nodes, nnodes, xpos, ypos, zpos, nframe, fspeed)

/* this routine plots the selected node locus */

int nnodes; /* Number of nodes */
char nodes[J[STRING_SIZE); /* Names of nodes */

float xpos(J[MAX_FRAMESJ; /* x world coordinates (m) */
float ypos[J[MAX_FRAMES); /* y world coordinates (m)

float zpos[][MA%FRAMES); /* z world coordinates (m) */
int nframe; /* number of frames */

float x_locus[MAX_LINES)[MAXFRAMES); /* locus x axis
float y_locus[MAX_LINES)[MAXFRAMES); /* locus y axis

char key[MAX_LINES)(STRINGSIZE); /* graph key string */

char title(STRING SIZE]; /* graph title */

char x label[STRING_SIZE]; /* graph x axis label */

char y_label(STRING SIZE]; /* graph y axis label */
char fname[STRING SIZE]; /* picture filename */

char filename(STRING_SIZE]; /* full picture filename */
Snt labs; /* absolute/relative indicator */
int iframe; /* frame counter
int iplot; /* plotter control */
int nlines; /* number of lines on graph */
int anode; /* selected node */
int bnode; /* reference node */
int x-axis; /* x-axis selector */
int y_axis; /* y axis selector */

float refx-O. O, refy-O. O, refz=0.0; /* node reference values */

static char menul[](STRING SIZE}=

{

'x Value",

"y Value",

"Z Value"

static char menu2[][STRING_SIZE}"
{

'x Value",
"y Value",
"z Value"

};

/* locus x selector menu */

/* locus y selector menu */

Appendix

Source Code Page (259)

static char menu3[][STRING_SIZE]- /* absolute/relative menu
{

'Absolute*,
"Relative`

static char menu4[][STRING_SIZE]- /* plotting menu
{

"Save data to file",
"Save picture file",
"Exit"

P select absolute/relative */

while ((iabs=menu("Select option: ", menu3,2))--O);

/* select axes */

if (flag_2d=-TRUE)
{

x-axis-1;
y_axis-2;

}

else
{

while ((x axis=menu("Select x axis: ", menul, 3))--O);

while ((y_axis. menu("Select y axis: ", menu2,3))-=O);
}

/* loop round number of lines */

nllnes=0;
do

{

/* select nodes */

if (iabs--2)
{

while ((bnode-menu("Select reference node: ', nodes, nnodes))--0);
bnode--;
while ((anode-menu("Select node: ", nodes, nnodes))--O);
anode--;
strcpy(key[nlines], nodes[bnode]);
strcat(key[nlines], - ");
strcat(key[nlines], nodes(anode]);

}
else
{

while ((anode=menu("select node: ", nodes, nnodes))--O);
anode--;
strcpy(key[nlines}, nodes(anode]);

}

/* loop round frames */

for (iframe-O; iframe<nframe; iframe++)

/* assign reference node values */

if (iabs=-2)
4

Appendix

Source Code Page (260)

refx=xpos[bnode][iframe];
refy-ypos[bnode)[iframe];
refz-zpos[bnode)[iframe];

}

/* put correct values into locus */

switch (x-axis)
{
case 1:

x locus[nlines](iframe]-xpos[anode)(iframej-refx;
break;

case 2:
x locus(nlines](iframe]-ypos(anode](iframe]-refy:
break;

case 3:
x locus[nlines](iframe]=zpos(anode](iframe]-reiz;
break;

}
switch (y axis)
{
case 1:

y_locus(nlines][iframe]=xpos(anode](iframe]-refx;
break;

case 2:

y_locus[nlines][iframe)-ypos[anode][iframe]-refy;
break;

case 3:
y_locus[nllnes)(iframel-zpos(anode)[iframe)-refz;
break;

nlines++;
} while (yesno("Another line? ")--TRUE);

/* draw graph */

strcpy(title, menu3[iabs-l]);

strcat(title, " Node Locus");

strcpy(x label, menul[x axis-11);
strcat(x_label, - (m)");

strcpy(y_label, menu2[y_axis-1]);

strcat(y_label, " (m)");

d graph(display, title, x_label, y_label, x_locus, y locus, nframe, nlines, key, TRUE);
while ((iplot=menu("Select option: ", menu4,3)))=3)
{

switch (iplot)
{
case 1:

save an(title, x_label, y_label, x locus, y_locus, nframe, nlines, key):
break;

case 2:

printf("Input picture file name : ");
scanf("%s", fname);
strcpy(filename, PICTURE_DIRECTORY);

strcat(filename, PICTURE PREFIX);

strcat(filename, fname);

Appendix

Source Code Page (261)

straat(filename, PICTURE_SUFFIX);

bitmap to_file(display, TRUE, 0,0, f11ename, TRUE, 0.0,0.0,0,0, TRUE);
break;.

}
}
CLEAR GRAPH;

/* finished */

I_dynamO

/include "params. h"

/* routine to calculate linear dynamics */
/* NB. calculates resultant force on each segment */

void 1 dynam(comxacc, comyacc, comzacc, nsegs, nframe, seg_mass,
x force, y_force, z_force)

float comxacc(][MAX FRAMES];

float comyacc(][MAX_FRAMES];
float comzacc[][MAX_FRAMES];
int nsegs;
int nframe;
float seg_mass[];
float x force(] (MAX FRAMES];

float y_force(I[MAX FRAMES];

float z force(][MAX FRAMES];

{

int isegs;
int iframe;

/* x component of segment COM accln
/* y component of segment COM accln
/* z component of segment COM accln

/* number of segments
/*'number of frames */

/* segment masses
/* x component of force */
/* y component of force */
/* z component of force */

/* segment counter
/* frame counter */

/* loop round frames and segments */

for (isegs-O; isegs<nsegs; isegs++)
{

for (iframe=O; iframe<nframe; iframe++)
{

x force(isegs)(iframe]=seg_mass(isegs]*comxacc(isegs][iframe];
y_force[isegs][iframe]_seg_mass(isegs]*(comyacc(lsegsj[iframe]);
z_force[isegs](iframe]_seg_mass[isegs]*comzacc[isegs][iframe];

}

I_kinem()

#include "params. h"

void 1_kinem(nnodes, xpos, ypos, zpos, nframe, fspeed, times, xvel, yvel, zvel,
xacc, yacc, zacc)

/* this routine calculates the linear kinematic parameters */

int nnodes; /* Number of nodes */

float xpos[][MAX FRAMES); /* x world coordinates (m) */

Appendix

Source Code Page (262)

float ypos(][MAR FRAMES];
float zpos[] [MAX FRAMES];
int nframe;
float fspeed;
float times [MAX FRAMES];
float xvel(](MAX FRAMES);
float yvel (] (MAX FRAMES) ;
float zvel(] [MA% FRAMES];
float xacc(][MAX FRAMES);
float yacc(][MAX FRAMES];
float zacc() [MAX FRAMES];

int iframe;
ant anode;
float time;

}

/* y world coordinates (m)
/* z world coordinates (m) */

/* number of frames */
/* Film frame interval (s)

/* times (s) */
/* calculated velocities (m/s) */

/* calculated accelerations (m/s/s) */

/* frame counter
/* node counter */

/* time counter (3) */

/* check sufficient frames */

if (nframe<5)
{

prlntf("Insufficient frames\n");

return;

/* loop over nodes */

for (inode=O; inode<nnodes; lnode++)

/* calculate velocities and accelerations */

different(times, xpos[inode], nframe, xvel[inode], xacc(inode], FALsE);
different(tlmes, ypos[lnode], nframe, yvel(1node], yacc(inode], FALsE);
different(times, zpos[Snode], nframe, zvel[inode], zacc(inode], FALSE);

}

menu()
(include "params. h"

int menu(title, prompt, nprompt)

/* this routine prints up on the screen a general format mouse selection menu

char title[]; /* the title centred at the top of the screen

char prortpt[][STRING_SIZE]; /* these are the selection options

int nprompt; /* this is the number of prompts */

/* test menu size */

int iret; /* this is the value of the returned selection*/

char menu-pronpts[MENU PAGE+11[STRING SIZE); /* this is the menu buffer

int lprompt; /* this is the prompt pointer */
int jpronpt; /* prompt index in multi-page menu
int kpronpt; /* menu size in multi-page menu */
int npage; /* number of pages in multi-page menu
int ipage; /* page index */

Appendix

Source Code Page (263)

}
else
{

if (nprompt<=MENU PAGE)
{

/* get the string into the correct format for 'domenu' */

for (iprompt=O; iprompt<nprompt; iprompt++)

}
strcpy(menuj, rompts[ipromptj, pronpt[Sprompt]),

/* and call the menu routine */

fret-domenu(title, menujronpts, npronpt);

/* calculate the number of pages */

npage-nprompt/MENU PAGE;
ipage=0;

do
{

1* get the string into the correct format for 'domenu' */

kpronpt=0;
for (ipronpt-O; iprompt<MENU PAGE; iprompt++)
{

jpronpt. ipronpt+MENU PAGE*ipage;
if (jprompt<nprompt)

{
strcpy(menujrorpts[kprortpt], promptIjpronpt]);
kprompt++;

}
strcpy(menu prompts(kprompt], "Next page");
kprompt++;

/* and call the menu routine */

fret-domenu(title, menujrompts, kpronpt);

/* calculate next page number */

ipage- ipage<npage ? ipage+l: 0;
} while (iret--kpronpt);

/* recalculate page number */

ipage- ipage--O ? npage: ipage-1;
if (iretl-O) iret. iret+ipage*MENU PAGE;

}

/* return menu selection value */

return(iret);

}

move_cam()

Appendix

Source Code Page (264)

tinclude "params. h'

{

/* this routine uses the knobs to move the camera view position */

void move cam(fd, camera)

int fd;
camera_arg *camera;

int valid;
float value(9J;
int string[STRING SIZE];

/* output device file pointer
/* camera model structure */

/* valid response flag */
/* new value of knobs */

/* text output string */

sample locator(knobs3,1, &valid, &value[O], &value(1J, &value(2)),
sample locator(knobs2, l, tvalid, &value[3], avalue(4J, ivalue(5)),
sample locator(knobsl, l, &valid, ivalue[6], ivalue(7], ivalue(BJ);

sprintf(string, "Viewpoint: X -%5.2f Y -%5.2f Z _%5.2f',
value[0], value(1], value[2J);

dctext(display, SIDE BORDER+IO, TOP BORDER+20, string);

sprintf(string, 'Target :X -%5.2f Y "%5.2f Z -%5.2f',
value[3], value(4], value[5]);

dctext(display, SIDE BORDER+10, TOP_BORDER+40, string);

sprintf(string, 'Field -%5.2f', value[6J);
dctext(display, SIDEBORDER+10, TOPBORDER+60,3tring);

/* camera position */

(*camera). camx-value[0];
(*camera). camy-value(l];
(*camera). camz-(-value[2]);

/* camera target */

(*camera). refx-value[3];
(*camera). refy-value[4];
(*carwra) ref z- (-value [5]);

/* field of view */

(*camera). field of view-value[6];

view camera(fd, camera);

node-plot(

(include "params. h"

void nodeylot(nodes, nnodes, xpos, ypos, zpos, startframe, endframe,
times, p title, pylabel)

/* this routine plots the selected node positions/velocities/accelerations
/* depending on the data arrays passed over to the routine */

int nnodes; /* Number of nodes */

char nodes()(STRING SIZE]; /* Names of nodes */

float xpos[][MAX FRAMES); /* x world coordinates (pos/vel/acc)

float ypos(][MAX_FRAMES]; /* y world coordinates */

Appendix

Source Code page (265)

float zpos(J(MAX_FRAMES]; /* z world coordinates */
int startframe; /* start frame number */
int endframe; /* end frame number
float times(MAX_FRAMESJ; /* times (s)

char p title[STRING_SIZE]; /* plot title */
char p_ylabel[STRINGSIZE]; /* plot y axis label */

float pl times[MAX_LINES][MAX POINTS); /* times to be plotted (s)
float distance[MAX LINES][MAX POINTS]; /* calculated

distances/velocities/accelerations */

char key(MAX LINES+11[STRINGSIZE]; /* graph key string
char title(STRING SIZE]; /* graph title */

char x label[STRING_SIZE]; /* graph x axis label */

char y_label[STRING SIZED; /* graph y axis label */

char fname[STRING_SIZE); /* picture filename */

char filename[STRINGSIZE]; /* full picture filename */
int iframe; /* frame counter
ant anode;. /* node. counter */
float xref-O. O, yref-O. O, zref=0.0; /* xyz refence values */
float xint, yint, zint; /* xyz intervals */
ant cabs-l; /* relative/absolute indicator */
ant idir; /* direction indicator */
ant iplot; /* plotter control */
ant nlines; /* number of lines on graph */
ant anode; /* start node number */
ant bnode; /* finish node number */

static char menul[][STRING SIZE]-
{

"Absolute",
"Relative"

static char menu2[][STRING_SIZE]-
{

"X",
. Y.,
"Z",
"3D"

static char menu2b[](STRING_SIZE]-
{

. Xw

. Y.,

"2D"

static char menu3[](STRING_SIZE]-

{
"Save data to file",
"Save picture to file",
"Exit"

/* absolute or relative menu */

/* direction menu */

/* direction menu for 2d */

/* plotting menu */

/* all nodes */

if (nnodes<MAX LINES && yesno("Plot all nodes? ")--TRUE)

{

if (flag_2d==TRUE)
{

while ((idir=menu("Direction: ", menu2b, 3))-=0);

strcpy(key(nnodes], menu2b[idir-1]);

Appendix

Source Code Page (266)

strcat(key[nnodes], " ");
if (idir--3) idir-4;

}
else
{

while ((idir=menu("Direction: ", menu2,4))-. 0);
strcpy(key[nnodes], menu2[idir-1J);
strcat(key[nnodes], " ");

for (nlines=0; nlines<nnodes; nlines++)
{

strcpy(key(nlinesl, key[nnodes));
strcat(key[nlinesj, nodes[nllnesj);

/* loop round frames */

for (iframe-startframe; iframe<endframe; iframe++)
{

/* calculate times */

p1_times(nlinesjfiframe-startframel-times[iframe];

/* calculate distance */

switch (idir)
{
case 1:

distance[nlines)(iframe-startframej-
xpos[nlines)[iframe);

break;

case 2:
distance[nlines][iframe-startframe]-

ypos[nlines][iframe];
break;

case 3:
distance[nlines][iframe-startframe]-

zpos[nlines][iframe];
break;

case 4:
xint-xpos(nlines)[iframe);
yint-ypos[nlines][iframe];
zint-zpos[nlines)(iframe);
distance[n1ines)(iframe-startframe]=

sgrt(xint*xint+yint*yint+zint*zint);
break;

}
}
else
{

/* first option */

while ((labs=menu("Option: ", menul, 2))="0);

/* loop round number of lines */

Appendix

Source Code Page (267)

nlines-0;
do
{

/* second option */

if (flag-2d--TRUE)
{

while ((idir-menu('Direction: ", menu2b, 3))--O);
strcpy(key[nlines), menu2b[idir-1));
strcat(key[nlines), " ");
if (idir=-3) idir-4;

}
else
{

while ((idir=menu("Direction: ", menu2,4))--O);

strcpy(key[nlines], menu2[idir-l1):

strcat(key[nllnes), " ");

if (iabs==2)
{

while ((anode-menu("Select reference node: ", nodes, nnodes))

anode--;
strcat(key[nlines], nodes(anode]);
strcat(key[nlines], N ");

}
while ((bnode=menu("Select node: ", nodes, nnodes))__0);
bnode--;
strcat(key[nlines], nodes[bnode]);

/* loop round frames */

for (iframe-startframe; iframe<endframe; iframe++)
{

/* calculate times */

p1_times[nlines](iframe-startframe]-times[iframe];

/* calculate distance */

if (iabs--2)
{

xref-xpos(anode][iframe];
yref-ypos(anode][iframe];
zref-zpos(anode][iframe];

switch (idir)

case 1:
distance[nlines][iframe-startframe]-

xpos[bnode](iframe]-xref;
break;

case 2:
distance(nlines](iframe-startframe]=

ypos[bnode][iframe]-yref;
break;

Appendix

Source Code Page (268)

case 3:
distance[nlinesj[iframe-startframeJ-

zpos[bnodeJ(iframej-zref;
break;

case 4:
xint-xpos(bnode][iframe]-xref:
yint-ypos[bnode][iframe]-yref;
zint-zpos[bnode][iframe]-zref;
distance[nlines][iframe-startframe]-

sgrt(xint*xint+yint*yint+zint*zint);
break;

}
nlines++;

} while (nlines<NWX_LINES && yesno("Another line? ")--TRUE);

/* draw graph */

strcpy(title, menul[iabs-1]);
strcat(title, " ");
strcat(title, p title);

strcpy(x_label, "Time (s)");

strcpy(y_label, p ylabel);
d graph(display, title, x label, y_label, pl times, distance,

endframe-startframe, nlines,
key, FALSE);

while ((iplot-menu("Select option: ", menu3,3))! =3)
{

switch (iplot)
{
case 1:

save_an(title, x label, y_label, pl_times, distance, endframe-Startframe,
nlines, key);

break;
case 2:

printf("Input picture file name

scanf("%s", fname);

strcpy(filename, PICTURE_DIRECTORY);

strcat(filename, PICTUREPREFIX);

strcat(filename, fname);

strcat(filename, PICTURE_SUFFIX);

bltmap t0 file(display, TRUE, 0,0, filename, TRUE, 0.0.0.0,0,0, TRUE);
break;

}
}
CLEAR GRAPH;

/* finished */

open_dev0

(include "params. h"

void open dev()

/* This routine opens the devices using Starbase gopen routines */

Appendix

Source Code Page (269)

/" It also checks that the program is being run from a window

{

char *graphic window_name; /* graphic window path name */
char *text window name; /* graphic window path name
Window wdummy; /* dummy window return
1nt idummy; /* dummy return */

xrWindowData windowdata; /* Xr window data structure

/* connect to X windows */

if ((xdisplay-XOpenDisplay(NULL))--NULL) exit(-1);
xscreen-XDefaultScreen(xdisplay);

/* add Xrlib */

if (XrInit(xdisplay, xscreen, NULL)--FALSE) exit(-1);

/* get hold of terminal window */

XGetlnputFocus(xdisplay, &text_window, iidummy);
XGetGeometry(xdisplay, textwindow, &wdummy, iorig_x, iorlg_y, torig_width,

& oriq_height, i idummy, a idummy) ;

/* create graphics window */

system(XSEETHRU);
XFlush(xdisplay);

/* screen */

if ((display-gopen(getenv("SB OUTDEV"), OUTDEV, getenv("SB OUTDRIVER"),

INITITHREE DIMODEL_XFORM))---1) exit(-1);

/* set up some useful defaults */

clear control(display, CLEARDISPLAY SURFACEICLEAR ZBUFFER);

shade mode(display, CMAP_FULLIINIT, FALSE);

/* knob box */

if ((knobsl-gopen("/dev/knobl", INDEV, "hp-hil", INIT))---1) exit(-1);
knobs2-gopen("/dev/knob2", INDEV, "hp-hil", INIT);
knobs3-gopen("/dev/knob3", INDEV, "hp-hil", INIT);

/* button box */

if ((bbox-gopen("/dev/bbox", INDEV, "hp-hil", INIT))---l) exit(-l);

/* get hold of see thru window - done now to give time to create */

XGetlnputFocus(xdisplay, &graphic window, &idummy);

/* menu window - not mapped */

menu_window=XCreateSimpleWindow(xdisplay, RootWindow(xdisplay, xscreen),
20,20,40,40,0, BlackPixel(xdisplay, xscreen), WhitePixel(xdisplay, xscreen));

/* set up Xrlnput */

Xrlnput(menu window, MSG ADDWINDOW, &windowdata);

Appendix

Source Code Page (270)

XSelectInput(xdisplay, menu window, ButtonPressMaskIButtonReleaseMaskI

KeyPressMasklExposureMask);

/* shift around the main input window */

XFlush(xdisplay);
XMoveWindow(xdisplay, text window, SIDE BORDER, GRAPH HEIGHT+2*TOP BORDER+

BOTTOM_BORDER);

XResizeWindow(xdisplay, text window, TEXT WIDTH, TEXTHEIGHT);

XRaiseWindow(xdisplay, text window);

/* get everything up to date */

XFlush(xdisplay);

/* attach keyboard to text window */

XSetlnputFocus(xdisplay, text_window, RevertToParent, CurrentTime);

/* routine to set up global options */

options()

#include 'params. h'

void options()
{

int iret; /* menu return value */

static char menul(J(STRING SIZE)- /* menu
{

'2d On",
"Flexible 3d reconstruction",
"No fiducial marks',
 Set frame increment',
"Set filtration cutoff",
"change working directory",
"smoothing",
"Set smoothing number",
"Exit"

int nmenul-9; /* number of menu items

static char menu2[}(STRING_SIZEI /* menu for filtration stuff */

{
"9.0",

"6.0",

"7.0",

"8.5",
"10.0",

"12.0",

"14.0",

"16.0",
"18.0",
"20.0"

int nmenu2-11; /* number of menu iterva

static char menu3(][STRING SIZE]- /* menu for smoothing
{

"3"
050,

Appendix

Source Code page (27 1)

wir

. g.

`11w

int nmenu3-5;

char directory[STRING SIZE]; /*'directory string

do
{

/* copy in correct menu prompts */

if (flag_2d--TRUE) strcpy(menul[O], "2d off");
else strcpy(menul(O], "2d on");

if (flag simple_reconstruction--TRUE)
strcpy(menul(1], "Flexible 3d reconstructions);

else strcpy(menul[1], "Sirple 3d reconstruction");

if (fiducial_flag. -TRUE) strcpy(menul(2], "No fiducial marks");
else strcpy(menul[2], "Fiducial marks');

if (flag_filter--TRUE) strcpy(menul[6], 'Smoothing");
else strcpy(menul(6], "Filtration");

/* write menu */

iret-menu("Select option: ", menul, nmenul);

switch(iret)
{

case 1:
if (flaq_2d. -TRUE) flag 2d=FALSE;
else flag_2d=TRUE;
break;

case 2:
if (flag_simplereconstruction--TRUE)

flag-simple
-

reconstruction-FALSE;
else flag simple reconstruction-TRUE;
break;

case 3:
if (fiducial_flag=-TRUE) fiducial flag=FALSE;
else fiducial_flag=TRUE;
break;

case 4:
printf("Current frame increment is %d\n", frame_increment);
printf("Required increment is : ");
scanf("td", &frame_increment);
break;

case 5:
while ((filtration_number=menu("Select fs/fc", menu2, nn nu2)) a0);
break;

case 6:

printf("Directory name : ");
scanf("%s", directory);

chdir(directory);

Appendix

Source Code " Page (272)

getcwd(directory, STRING SIZE);
printf("Changed to : is\n", directory);
break;

case 7:
if (flag filter==TRUE) flag filter-FALSE;
else flag_filter-TRUE;
break;

case 8:
while ((smooth_number=menu("Select smoothing number: ", menu3,

nmenu3)) --0);
smooth number-smooth_number*2+1;
break;

}
} while (fret! =nmenul);

}

predlctlve_analysis()

#include "params. h"

/* routine to calculate joint torques and reaction forces for predictive
/* leaping model */

predictive_analysis(seg_length, seg_mass, seg_com, phi, x force, y_force, torque,
segs, nsegs, nframe, times)

float seg_length[MAX SEGS];
float seq mass(MAX SEGS];
float seq_com(MAX_SEGS);
float phi[MAX_SEGS](MAX_FRAMES];
float x force(MAX_SEGS][MAX_FRAMES];
float y_force[MAX_SEGS](MAX FRAMES];
float torque[MAX_SEGS)[MAX_FRAMES);

char segs[MAX_SEGS)[STRING_SIZE);
int nsegs;
int nframe;
float times[MAX_FRAMES];

{

int iframe;
float dl, d2;

struct body
{

float r1xIMAX-FRAME S
float rly[MAX_FRAMES];
float r2x[MAX_FRAMES];
float r2y[MAX_FRAMES];
float ml(MAX_FRAMES);
float m2[MAX_FRAMES);
int segnum;

/* mean segment lengths */
/* segment masses */

/* relative COM positions
/* segment angle */

/* x component of linear force
/* y component of linear force

/* torques about segments
/* segment names */

/* number of segments
/* number of frames

/* frame times */

/* frame counter */
/* distances from COM

/* structure for free body data */

/* reaction force at 'proximal' end */

/* reaction forces at 'distal' end */

/* torque at 'proximal' end
/* torque at 'distal' end */

/* segment number */

struct body forefoot; /* segments */

struct body hindfoot;

struct body calf;
struct body thigh;

struct body torso;
float x react(MA)LSEGSJ(MAX FRAMES);

float y_react[MAX_SEGSJ(MAX_FRAMES];
float j_torque[MAX SEGSJ[MAX FRAMES];

float work done[MAX SEGS)(MAX FRAMES);

/* reaction forces
/* reaction forces

/* joint torques
/* work done at joints */

Appendix

Source Code Page (273)

float bend(MAX_SEGS][MAXFRAMES]; /* bending moment on segments
float dumny(MAX_SEGS][MAXFRAMES]; /* dummy values for plots
float angle; /* intermediate angle value
static char joints(][STRING_SIZEJ- /* joints etc.
{

"Contact point",
"Mid-tarsal joint",
"Ankle",
"Knee",
"Hip",

int njoints-5;
static char menul[](STRING_SIZE]-
{

"Joint reactions",
"Joint torques",
"Work done per frame",

"Bending moments",
"Exit"

int nmenul=5;
int iret;

/* initialize segment ID numbers */

forefoot. segnum-0;
hindfoot. segnum-l;
calf. segnum=2;
thigh. segnum=3;
torso. segnum-4;

/* loop over frames */

for (iframe-1; iframe<(nframe-1); iframe++)
{

/* number of joints
/* printout menu */

/* number of menu items */
/* menu return value */

dl.. seg com[torso. segnum]*seg_length(torso. segnum];
d2.. (l-seg com[torso. segnumj)*seg length[torso. segnum];
torso. r2x[iframej-0.0;
torso. r2yIiframe)-0.0;
torso. m2(iframe]=0.0;
torso. rlx[iframe]=x force(torso. segnum](iframe)-torso. r2x[iframe];
torso. rly[iframej-y_force(torso. segnum)[iframe3-torso. r2y(iframeJ-

seg_mass[torso. segnum]*G;
torso. ml(iframe]-torque[torso. segnum][iframe]-

torso. rlx(iframeJ*dl*
(float)sin((double)phi[torso. segnumJ(iframe])+

torso. r2x(iframe)*d2*
(float)sin((double)phi[torso. segnum)[iframe])+
torso. rly(iframe]*dl*
(float)cos((double)phi[torso. segnumJ(iframe))-
torso. r2y[iframe]*d2*
(float)cos((double)phi[torso. segnum](iframe))-

torso. m2[iframe];

dl-seg_com(thigh. segnum]*seg_length(thigh. segnum);
d2=(1-seg_com[thigh. segnum])*seg length[thigh. segnumj;
thigh. r2x[iframe]-(-torso. rlx[iframe]);
thigh. r2y[iframe]=(-torso. rly[iframe]);
thigh. m2(iframe]-(-torso. ml(iframe]);
thigh. rlx[iframe]-x force(thigh. segnum](iframe)-thigh. r2x(iframe);
thigh. rly[iframej-y_force(thigh. segnum][iframeJ-thigh. r2y[iframe]-

seg_mass[thigh. segnum]*G;

Appendix

Source Code Page (274)

thigh. ml(iframe]-torque(thigh. segnum](iframe]-
thigh. rlxfiframe]*dl*
(float)sin((double)philthigh. segnum](iframe])+

thigh. r2x[iframe]*d2*
(float)sin((double)phi(thigh. segnum](iframe])+
thigh. rly(iframe]*dl*
(float)cos((double)phi(thigh. segnum][iframe])-

thigh. r2y[iframe]*d2*
(float)cos((double)phi[thigh. segnum](iframe])-
thlgh. m2(iframe);

dl-seg_com[calf. segnum]*seg length[calf. segnumf;
d2-(l-seg_com(calf. segnum])*seg_length[calf. segnum);
calf. r2x[iframe]-(-thigh. rlx[iframej);
calf. r2y[iframe]-(-thigh. rly[ifran J);

calf. m2[iframej-(-thigh. ml(iframe));
calf. rlx[iframe]-x_force[calf. segnum](iframej-calf. r2x[iframej;
calf. rly[iframe)-y_force[calf. segnum)(iframel-calf. r2y[lframeJ-

seg mass[calf. segnum]*G;
calf. ml[iframe]-torque[calf. segnum](iframe]-

calf. rlx[iframe]*dl*
(float)sin((double)phi[calf. segnum](iframej)+
calf. r2x[iframa]*d2*
(float)sin((double)phi[calf. segnumllifran])+

calf. rly[iframe]*dl*

, (float)cos((double)phi(calf. segnum)[iframe])-
calf. r2y(iframe]*d2*
(float)cos((double)phi[calf. segnumJ(iframe])-
calf. m2[iframe);

dl-seq_com[hindfoot. segnum]*seg_length(hindfoot. segnum];
d2- (1-seg com[hindfoot. segnum])*seg length[hindfoot. segnum);
hindfoot. r2x[! frame]-(-calf. rlx(iframe]);
hindfoot. r2y[iframe]-(-calf. rly[iframe]);
hindfoot. m2(iframe]-(-calf. ml[iframe]);
hindfoot. rlx[iframe]-xforce[hlndfoot. segnum](iframe]-hindfoot. r2x(iframe];
hindfoot. rly(iframe]-y_force[hindfoot. segnum](iframe]-hlndfoot. r2y(iframe)-

seq_mass[hindfoot. segnum]*G;
hindfoot. ml(iframe]-torque[hindfoot. segnum)(iframe]-

hindfoot. rlx[iframe]*dl*
(float)sin((double)phi(hlndfoot. segnum][iframe])+

hindfoot. r2x[iframe]*d2*
(float)sin((double)phi[hindfoot. segnum)(iframe])+

hindfoot. rly[iframe]*dl*
(float)cos((double)phi[hindfoot. segnum][iframe])-

hindfoot. r2y(iframe]*d2*
(float)cos((double)phi[hindfoot. segnum](iframe])-

hindfoot. m2[iframe);

dl-seg_com(forefoot. segnum]*seg_length(forefoot. segnum);
d2-(1-seg_com(forefoot. segnumJ)*seg_length[forefoot. segnum];
forefoot. r2x[iframe]. (-hindfoot. rlx(iframej);
forefoot. r2y[iframe]-(-hindfoot. rly[lframeJ);
forefoot. m2(iframe]-(-hlndfoot. ml(iframef);
forefoot. rlx[iframej-x force[forefoot. segnum](iframe]-forefoot. r2x[lframel;
forefoot. rly(iframe]-y_force(forefoot. segnum](iframe]-forefoot. r2y(iframe]-

seg mass[forefoot. segnum]*G;
forefoot. ml[iframe].. torque[forefoot. segnum](iframe]-

forefoot. rlx[iframe]*dl*
(float)sin((double)phi(forefoot. segnum][iframe])+
forefoot. r2x[iframe]*d2*
(float)sin((double)ph1(forefoot. segnum](iframe])+

Appendix

Source Code Page (275)

forefoot. rly[iframe]*dl*
(float)cos((double)phi(forefoot. segnum)(iframe])-
forefoot. r2y[iframe]*d2*
(float)cos((double)phi[forefoot. segnum](iframe))-
forefoot. m2[iframe];

/* put into array for display */

x react(O](iframe]-forefoot. rlx[iframe]; /* contact point
y_react[0][iframel-forefoot. rly[iframe];
j_torque[O][iframe]=forefoot. ml[iframe);
angle-phi[forefoot. segnum](iframe+l]-phi[forefoot. segnum](iframs-1];
if (angle>M PI) angle-=(M PI*2);
if (angle<-(-M PI)) angle+=(M PI*2);

work done(OJ(iframe]-j torque[0][lframe]*O. 5*angle;

x_react[l](iframe]-hindfoot. rlx[iframe]; /* mid-tarsal joint
y_react(l](iframe]-hindfoot. rly[iframe);
j_torque[1](iframe]=hindfoot. ml(iframe];
angle-(phi[hindfoot. segnum][iframe+l]-phi(hindfoot. segnum)(iframe-1]-

phi(forefoot. segnum][iframe+l]+phi[forefoot. segnum](iframs-1]);
if (angle>M PI) angle-=(M PI*2);
if (angle<-(-M-PI)) angle+-(M PI*2);

work done(l](iframe]=j torque[1][iframe]*0.5*angle;

x react[2J[iframe]-calf. rlx[iframe]; /* ankle */

y_react[21(iframel-calf. rly[iframe];
j torque[2)[iframe]-calf. ml[iframe];
angle-(phi[calf. segnum](iframe+l)-phi[calf. segnum](iframe-lJ-

phi[hindfoot. segnum][iframe+l]+phi(hindfoot. segnum)(ifname-1]);
if (angle>M PI) angle-=(M PI*2);
if (angle<-(-M PI)) angle+=(M_PI*2);
work done[2J[iframe)=j_torque[2](iframe]*0.5*angle;

x_react(3)(iframe]=thigh. rlx(iframe); /* knee */

y_react[3][iframe]=thigh. rly[iframe];
j_torque(31[iframe]=thigh. ml(iframe];
angle-(phi[thigh. segnum][iframe+l]-phi[thigh. segnum)(ifname-1]-

phi(calf. segnum][iframe+l]+phi(calf. segnum][iframe-1]);
if (angle>M_PI) angle-=(M PI*2);
if (angle<-(-M PI)) angle+=(M PI*2);

work done[3][iframe]=j_torque[3)[iframe]*0.5*angle;

x react[4][iframe]=torso. rlx[iframe]: /* hip */

y_react[4][iframe]=torso. rly[iframe);
j_torque[4][iframe]-torso. ml[iframe];
angle-(phi[torso. segnum][iframe+l]-phi[torso. segnum)[iframe-1]-

phi[thigh. segnum)[iframe+l]+phi[thigh. segnum][iframe-l]);
if (angle>M PI) angle-=(M PI*2):
if (angle<-(-M PI)) angle+=(M PI*2);

work done[4)[iframe)=j_torque[4](iframe]*O. 5*angle;

bend(forefoot. segnum][iframe]-forefoot. ml[lframe]-forefoot. m2[iframe);
bend(hlndfoot. segnum][iframe]-hindfoot. ml[iframe]-hindfoot. m2[iframe];
bend(calf. segnum](iframe]-calf. ml[iframe)-calf. m2[iframe];
bend[thigh. segnum][iframe]-thigh. ml(iframe]-thigh. m2[iframe];
bend[torso. segnum](iframe]-torso. ml[iframe]-torso. m2[iframe):

while ((iret=menu("Select option: ", menu 1, nmenul))I-nmenu1)

Appendix

Source Code Page (276)

switch (iret)
{
case 1:

nodejlot(joints, njoints, x react, y_react, dummy, l, nframe-1,
times, "Reaction Forces", UForce (N)");

break;

case 2:
seq_plot(dummy, dummy,] torque, 1, nframe-1, joints, njoints,

times, "Joint Torques", "Torques (Nm)");

break;

case 3:
seq_plot(dunmy, dunmy, work done, 1, nframe-l, joints, njoints,

times, "work Done per frame", "Energy (J)");
break;

case 4:
segylot(dummy, dummy, bend, 1, nframe-1, segs, nsegs,

tires, "Bendinq Moments", 'Moment (Nm)*);
break;

}

rdllmb()

tinclude 'params. h'

void rdlimb(title, nodes, nnodes, segs, nseqs, nodescer seq, seq mass, seq com, seq_moi)

/* this routine reads in the limb model data from the specified file */

char title(STRING SIZE];

char nodes[MAX NODES][STRING SIZE];
int *nnodes;

char segs(MA)SEGS][STRING SIZE];

int *nsegs;

int nodes_per seg(NPS][MAX_SEGS];
float seg_mass(MAX_SEGS];
float seg com[MAX_SEGS];
float seg moi[MAX_SEGS];
{

/* file title line */
/* names of the nodes of the model
/* the number of nodes */

/* names of the segments in the model
/* the number of segments */

/* array of node pairs for each segment
/* array of segment masses */

/* array of segment relative COMB
/* array of segment MOIs */

FILE *unit;
ant anode;
ant anodes;
ant iseg:
1nt isegs;
ant i;
char fname[STRING_SIZE];

char a, b, c, d, e;

do
{

/* get file name */

/* file pointer */
/* node number from file */
/* node number from counter

/* segment number from file */
/* segment number from counter

/* counter
/* filename */

sel file(LIMB DIRECTORY, LIMB PREFIX, LIB SUFFIX, fname),

Appendix

Source Code page (277)

/* open the file */

unit-fopen(fname, "r");
}while (unit--NULL);

/* read the data */

fscanf(unit, "'i["'J'", title);
fscanf(unit, "%d", nnodes);
for (inodes-O; inodes<*nnodes; inodes++)
{

fscanf(unit, "%d '%["'J'", &inode, nodes[inodesj);
if (anode! -inodes)
{

printf("Node number mismatch during file read error\n");
exit(-1);

}
}

fscanf(unit, "%d", nsegs);
for (isegs-O; isegs<*nsegs; isegs++)
{

fscanf(unit, "%d '%('']'", &iseg, segs[isegs]);
if (isegl-isegs)
{

printf("Segment number mismatch during file read error\n");
exit(-1);

}
for (i-O; i<NPS; i++)
{

fscanf(unit, "%d", &nodesjer seg[i](isegs]);
}
fscanf(unit, "%f", tseg_mass[isegsl);
fscanf(unit, "%f", &seg com(isegsf);
fscanf(unit, "%f", &seg moi[isegs]);

}

/*-close the file */

fclose (unit) ;

/* print success message

printf("File %s read successfully\n", fname);

/* finished */

}

rdnode()

(include "params. h'

void rdnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed)

/* this routine reads in the node position file */

char title(STRING_SIZE); /* file title line

char nodes(MAX_NODESJ(STRINGSIZE]; /* names of the nodes of the model
int *nnodes; /* the number of nodes */

Appendix

Source Code Page (278)

float xpos(MAx NODES][MAX FRAMES];
float ypos(MAx NODES][MAX FRAMES];
float zpos[MAX NODES](MA)_FRAMES];
int *nframe;

int *fspeed;

FILE *unit;

char fname(STRING SIZE);
int iframe;

int iframes;
ant anode;
ant anodes;

do
{

/* get filename */

/* the x world coordinates */
/* the y world coordinates
/* the z world coordinates */

/* the number of frames
/* the interval between frames */

/* file pointer
/* filename */

/* file frame number
/* counter frame number

/* file node number */
/* counter node number */

sel_file(NODE_DIRECTORY, NODE PREFIX, NODE SUFFIX, fname);

/* open file */

unit-fopen(fname, "r");

} while (unit--NULL);

/* read data */

fscanf(unit, "%["\n)\n", title);
fscanf(unit, "! f\n", fspeed);
fscanf(unit, "%d\n", nframe);
for (iframes=O; iframes<"nframe; iframes++)
{

fscanf(unit, "%d\n", ciframe);
if (iframe! -iframes)
(

printf("Frame number mismatch in node data file\n");

exit(-1);

fscanf(unit, "%d\n`, nnodes);
for (inodes-O; inodes<*nnodes; inodes++)
{

fscanf(unit, "%cd%f%cf%f\n", &inode, ixpos[inodes](iframes),
typos[modes](iframes), &zpos[inodes)(iframes]);

fscanf(unit, "%["\n]\n", nodes[inodes]);
if (inodel-anodes)
{

printf("Node number mismatch in node data file\n");

exit(-1);
}
if (flag 2d) zpos(inodes](iframes]=0.0;

/* close file */

fclose (unit);

/* print success message */

printf("File "s read successfully\n", fname);

Appendix

Source Code Page (279)

/* finished */

}

rood2dO

Iinclude "params. h"

void read2d(xcoord, ycoord)

/* this routine returns the 2d world coordinates of a point specified by
a position located on the picture */

float *xcoord; /* x coordinate returned by the subroutine
float *ycoord; /* y coordinate returned by subroutine */

{

float qa, ra; /* screen coordinates */

/* prompt for coordinate from pictures */

printf("Select point: \n");
digrd(&qa, &ra);

/* fiducial point */

if (fiducial flag)
{

qa-qa+fiducial_x-correction x;
ra-ra+fiducial_y-correction_y;

}

/* correct for offset and scale factor */

qa=scale factor*(qa-x offset);
ra=scale factor*(ra-y offset);

/* correct for rotation */

*xcoord-rotation[OJ[O]*qa+rotation[O][1]*ra;
*ycoord=rotation[1J[OJ*qa+rotation(1J(1]*ra;

I}

read3dO

flnclude "params. h"

void read3d(xcoord, ycoord, zcoord)

/* this routine returns the 3d world coordinates of a point specified by
two orthogonal pictures. origin points and camera distances are specified
as input parameters. */

float *xcoord; /* x coordinate returned by the subroutine
float *ycoord; /* y coordinate returned by subroutine */
float *zcoord; /* z coordinate returned by the subroutine */

Appendix

Source Code Page (280)

float qa, ra; /* camera 1 screen coordinates
float qb, rb; /* camera 2 screen coordinates */

/* prompt for coordinate from pictures

printf("Select point on picture 1\n");
digrd(&qa, &ra);
printf("Select point on picture 2\n");
digrd(&qb, &rb);

/* fiducial point

if (fiducial flag)
{

qa-qa+fiduclal x-correction x;
ra-ra+fiducial_y-correction_y;
qb-qb+fiducial x-correction x;
rb=rb+fiducial_y-correction_y;

/* perform required reconstruction */

if (flag_sinple_reconstruction--TRUE)
simple recon(qa, ra, gb, rb, xcoord, ycoord, zcoord);

else dlt_recon(11,12, &qa, &ra, igb, irb, xcoord, ycoord, zcoord);

#if 0
printf("Position: (tf, %f, %f)\n", *xcoord, *ycoord, *zcoord);

lendif
/* finished */

recdplc(

iinclude "params. h"

/* This is a routine to read the data contained in an image (. bm) file */

void readpic()

FILE *unit; /* file pointer
char filename(STRING_SIZE); /* filename */

static char filename2[STRINGSIZE]; /* next filename in sequence
register char byte; /* pixel data read in */
int xrange, yrange; /* range of file image data */
int xlow, xhigh, ylow, yhigh; /* range on screen for each file pixel */
char buffer(FILE_MAX_X*FILEMAX Y]; /* buffer for file input */

char pixel data[GRAPH_HEIGHT][GRAPH WIDTH]; /* buffer for screen data */

int x, y; /* screen pixel counters
int ix, iy; /* file data counters */
char *buf pointer; /* pointer for file buffer */
int nbytes; /* number of bytes read in

static char menul[J[STRING_SIZE]- /* file selection method menu
{

-Specific file,
"Set sequence name & number,
"Next file in sequence"

Appendix

Source Code Page (281)

static int sequence num-0; /* sequence number

static char sequence_name[STRINGSIZE]- "; /* sequence name
int ixet; /* return value for menu

char strinq[STRING_SIZE); /* temporary string */

struct visiloglmageHeader
{

long int maglcNumber;
long int pixelsPerLine;
long int numberOfLines;
long int resl;
long int res2:
long int res3;
long int gridType;
long int res4;
long int arithmaticType;
long int bitsPerPixel;
long int res5;
long int xOrigin;
long int yorigin;
long int res6;
long int res?;
long int visilogHeaderSize;
long int userHeaderSize;
long int res8;
long int totalHeaderSize;

} imageHeader;
float colourTable[256}(3};
float red, green, blue;
int i;
int offset, range;
float grey;
int dum, button, valid;
float dummy;

/* Clear screen */

CLEAR GRAPH;

/* rectangular grid */

/* long integer image */

/* setup display for anisometric greyscale 2d graphics */

/* Set up display window */

mapping_mode (display, DISTORT);

vdc extent(display, 0.0,0.0,0.0,1.0,1.0,0.0);

/* Set attributes */

shade mode(display, CMAP_MONOTONICIINIT, FALSE);

of 0
/* pseudo-colour map */

for (i=O; i<256; i++)
{

if (i<0)
{

colourTable[i)[01.0.0;
}

else
{

Appendix

Source Code Page (282)

if (1<128)
{

colourTable(iJ(0J-(float)(1-0)/128.0;
}
else
{

colourTable(i](01-0.0;
}

}

if (i<64)
{

colourTable(i)[1]=0.0;
}
else
{

if (i<192)
{

colourTable[i](l)-(float)(1-69)/128.0:
}
else

{
colourTable[1][1]=0.0;

}

if (1<128)
{

colourTable(1J[2J-0.0;
}
else
{

if (i<256)

colourTable[i][21-(float)(1-128)/128.0;
}
else
{

colourTable[i](2J=0.0;
}

}

define color table(display, 0,256, colourTable);
fendif

/* loop till file read */

do
{

/* menu options

while ((ixet-menu("File selection option: ", menul, 3)). =0);

switch (iret)
{

case 1: /* specific filename */

sei file(FRAMEDIRECTORY, FRAMEPREFIX, FRAME_SUFFIX, filename):

Appendix

Source Code Page (283)

break;

case 2: /* set name and number of sequence

printf("Input sequence name : ");
scanf("ts", sequence name);
do
{

printf("Input sequence number : ");

scanf("%d", &sequence_num);
} while (sequence_num<O II sequence num>999);

strcpy(filename2, FRAME DIRECTORY); /* get bits of filename */

strcat(filename2, FRAME PREFIX);

strcat(filename2, sequence name);
sprintf(string, ". %3.3d", sequence num); /* get number as string
strcat(filename2, string);
strcat(filename2, FRAME SUFFIX);

/* no break after case 2 so runs onto case 3 */

case 3: /* next file in a sequence */

strcpy(filename, filename2);

sequence num+-frame_increment; /* increment count */

/* test to see if next filename exists */

strcpy(filename2, FRAME_DIRECTORY); /* get bits of filename

strcat(filename2, FRAME_PREFIX);

strcat(filename2, sequence name);

sprintf(string, ". %3.3d", sequence num); /* get number as string
strcat(filename2, string);
strcat(fllename2, FRAME_SUFFIX);

unit-fopen(filename2, "r");
if (unit-NULL) printf("NO subsequent files in sequence\n");

else fclose(unit);

break;
}

/* Open file and read image data */

unit=fopen(filename, "r");
if (unit==NULL) printf("File %s not found\n", filename);

} while (unit--NULL);

/* get x and y range of input file */
fif 0

xrangegetc(unit);
xrange=xrange+256*getc(unit);
yrange-getc(unit);
yrange=grange+256*getc(unit);

fendif
fread(&imageHeader, sizeof(iinageHeader), 1, unit);
xrange-imageHeader. pixelsPerLine;
yrange=imageHeader. numberofLines;

/* read data in */

#if 0
nbytes-fread(buffer, xrange*yrange, l, unit);

Appendix

Source Code Page (284)

fclose(unit);
if (nbytes--l)
{

printf("File %s read successfully\n", filename);
}
else

{
printf("Error reading file %s\n", filename);

/* sort to correct format */

bufyointer-buffer;
glow=0;
for (iy-O; iy<yrange; iy++)
{

yhigh-((iy+1)*GRAPH_HEIGHT)/yrange;
x1ow=0;
for (ix=O; ix<xrange; ix++)
{

byte-(*bufyointer++);

xhlgh-((ix+1)*GRAPH WIDTH)/xrange;
for (y-ylow; y<yhigh; y++)
{

for (x-xlow; x<xhigh; x++)
{

pixel data(y)(x]-byte;

}
xlow=xhigh;

}
ylow-yhigh;

}
tendif

nbytes-fread(pixel data, xrange*yrange, l, unit);
fclose(unit);
if (nbytes--l)
{

printf("File %s read successfully\n", filename);
}

else
{

prlntf("Error reading file %s\n", filename);

/* Write data to screen
1if 0

dcblock_write(display, SIDE_BORDER, TOP BORDER,

GRAPH_WIDTH, GRAPH HEIGHT, pixel_data, FALSE);

make_picture current(display);
lendif

dcblock write(display, SIDE BORDER, TOPBORDER,

xrange, yrange, pixel data, FALSE);

/* set up knob ranges and sensitivity */

mapping_mode(knobsl, DISTORT);

mapping mode(knobs2, DISTORT);

mapping_mode(knobs3, DISTORT);

vdc extent(knobs1,0.0,0.0,0.0,1.0,1.0,1.0);

Appendix

Source Code Page (285)

vdc extent(knobs2,0.0,0.0,0.0,1.0,1.0,1.0);
vdc_extent(knobs3,0.0,0.0,0.0,1.0,1.0,1.0);
set pl p2(knobsl, FRACTIONAL, 0.0,0.0,0.0,2.0,2.0,2.0)=
setp1_p2(knobs2, FRACTIONAL, 0.0,0.0,0.0,2.0,2.0,2.0):
set_pl_p2(knobs3, FRACTIONAL, 0.0,0.0,0.0,2.0,2.0,2.0);
set_locator(knobsl, 1,0.5,0.5,0.5);
set locator(knobs2,1,0.5,0.5,0.5);
set locator(knobs3, l, brightness, contrast, 0.5);

/* interactive contrast/brightness control */

sample locator(knobs3,1, ivalid, &brightness, &contrast, &dummy);

offset-(int)512.0*(0.5-brightness);
range-512*(1.0-contrast);
if (range--0) range-1;

for (i-0; i<256; 1++)
{

if (1<offset)
{

grey-0.0;
}
else
{

if (i<(offset+range))
{

}
else
{

grey-(float)(i-offset)/(float)range;

grey=1.0;
}

}
colourTable[1J[01-grey;
colourTable[il[1Jigrey;
colourTable[1J[2)-grey;

}
define_color table(display, 0,256, colourTable);
make_picture_current(display);

/* Finish */

rotate3d()

/* Subroutine rotate3d produces rotation matrix around one of the axes +/

#include 'params. h'

void rotate3d(axis, angle, m)
char axis;
double angle;
float m[9J(4]:
{

int top, bottom, left, right;

identity3d(m);
left -(axis=='x'? 1: 0);

right -(axis=='z'? 1: 2);

Appendix

Source Code Page (286)

top -(axis--'x'? 1: 0);
bottom-(axis--'z'? 1: 2);

m[top)(leftl-(float)cos(angle);
m[top](right]-(float)sin(angle);

if (axisl-'y')
m(top](rightj-(-m(top][right]);

m[bottom](left]-(-m[top](right));
m(bottom)(right)-m[top](left);

}

r_dynam()

#include "params. h"

/* routine to calculate linear dynamics */

void r dynam(xaacc, yaacc, zaacc, nsegs, nframe, seg_moi, x torque, y torque, ztorque)

float xaacc(][MAX FRAMES];
float yaacc(](MAX_FRAMES];
float zaacc(][MAX_FRAMES];
int nsegs;
int nframe;
float seg_moi(];
float x torque(][MAX FRAMES];

float y_torque(](MAX FRAMES);
float z torque[](MA)LFRAMES];
{

/* angular accn through x=0 plane
/* angular accn through y-0 plane */
/* angular accn through z-0 plane */
/* number of segments

/* number of frames */
/* segment moments of inertia */

/* x component of torque
/* y component of torque
/* z component of torque */

int isegs; /* segment counter
int iframe; /* frame counter */

/* loop round frames and segments */

for (isegs-O; isegs<nsegs; isegs++)
{

for (iframe-O; iframe<nframe; iframe++)
{

x_torque[isegsj[iframe]=seg_moi[isegsJ*xaacc[isegsJ(iframej;
y_torque(isegs)(iframe]=seg_moi(isegsj*yaacc[isegsJ(iframe];
z_torque[isegs](iframe]-seg_moi[isegs]*zaacc[isegs3(iframe];

}
3

r_kinem()

#include "params. h"

void r_kinem(xpos, ypos, zpos, nframe, fspeed, nsegs, nodesyer seq, times,

xapos, yapos, zapos,
xavel, yavel, zavel, xaacc, yaacc, zaacc)

/* this routine calculates the rotational kinematic parameters */

float xpos[][MAX FRAMES): /* x world coordinates (m)

float ypos[][MAX_FRAMES]; /* y world coordinates (m) */

Appendix

Source Code Page (287)

float zpos(](MAX FRAMES];
int nframe;
float fspeed;
int nsegs;
int nodes_per seq(NPS)(MAX SEGSJ;
float times(MAX-FRAMES I;
float xapos(][MAX_FRAMES);
float yapos[][MAX_FRAMES];
float zapos(1(MAXFRAMES);
float xavel(][MAX FRAMES];
float yavel[][MAX_FRAMES];
float zavel(](MA)FRAMES];
float xaacc(][MAX_FRAMES];
float yaacc[][MAX_FRAMES);
float zaacc(](MAXFRAMES];

{
int iframe;
int iseg;
float time;
double xseg, yseg, zseg;

/* z world coordinates (m) */
/* number of frames */

/* Film frame interval (s)
/* number of segments */

/* nodes per segment
/* times (s) */

/* angle of segment (radian) */

/* calculated angular velocities (rad/s) */

/* calculated angular accelerations (rad/s/s) */

/* frame counter */
/* segment counter

/* time counter (s)
/* segment vector */

/* check sufficient frames */

if (nframe<5)
{

printf("Insufficient frames\n");

return;

/* loop over segments */

for (iseg O; iseg<nsegs; iseg++)
{

/* calculate angles */

for (ifran O; iframe<nframe; 1frame++)
{

xseg-(double)(xpos[nodes_per seg[1J[iseg]J[iframe]-
xpos(nodesyer seg(0J(iseg]][iframe]);

yseg-(double)(ypos[nodesyer_seg(l)[isegJ](iframe]-
ypos[nodesjer seg[O](iseg]][iframe]);

zseg-(double)(zpos(nodesper_seg(1)(iseg]](iframe]-
zpos(nodesper seg[0](iseg]][iframe));

xapos(iseg](iframe]-(float)atan2(zseq, yseg);
yapos[iseg][iframe]-(float)atan2(xseq, zseg);
zapos[iseg](iframe]-(float)atan2(yseq, xseg);

}

/* calculate angular velocities and accelerations */

different(times, xapos(iseg], nframe, xavel(iseg], xaacc[iseg], TRu) ;
different(times, yapos[iseg], nframe, yave1(iseg), yaacc[lseg], TRUE);
different(times, zapos(iseg], nframe, zavel[iseg], zaacc[lseg], TRUE);

}

}

save_an()
I (include "params. h"

Appendix

Source Code Page (288)

void save an(title, x label, y_label, xpoint, ypoint, npoint, nline, key)

t

/* this routine saves the data contained in xjoint and ypoint to a file */

char title(STRING_SIZEJ;

char x label(STRING SIZE);

char y_label(STRING_SIZE];
float x_point[MAX_LINES](MAXPOINTS);
float y_point(MAX LINES][MAX POINTS];
int npoint;
int nline;
char key[MAX_LINES][STRING SIZED;

/* graph title
/* x axis label */
/* y axis label */

/* x coordinates */
/* y coordinates */

/* number of points
/* number of lines */

/* key for multiple lines */

FILE *unit; /* file pointer
char fname(STRING SIZE); /* filename */

char filename[STRING_SIZEJ; /* full filename */
int iline; /* line counter */

int ipoint; /* point counter
int icount; /* character counter
int iret; /* menu option */
static char menul(J[STRING_SIZE]- /* output selection menu
{

"ASCII file for 123",

"ASCII file for EXCEL",

"SAS Program File",

"Exit'

};

do
{

do
{

/* get filename */

printf("Input 123 data file name :9;
scanf("%s`, fname);
strcpy(filename, ANALYSIS_DIRECTORY);

strcat(filename, ANALYSIS_PREFIX);

strcat(filename, fname);

strcat(filename, ANALYSISSUFFIX 123);

/* open file */

unit=fopen(filename, "w");
} while (unit-NULL);

/* write out data in ASCII form suitable for LOTUS 123 itrport */

fprintf(unit, "\'%s\'\015\0120, title);

/* select menu option */

while ((iret=menu("Select file type: `, menul, 4))--O);

switch (fret)
{

case 1:

Appendix

Source Code Page (289)

for (iline=0; iline<nline; iline++)
fprintf(unit, "\"%s\" \" \" ", key[iline));

fprintf(unit, "\015\012");
for (iline=O; iline<nline; iline++)

fprintf(unit, "\"%s\" \"%s\" ", x label, y_label);
fprintf(unit, "\015\012);
for (ipoint-O; ipoint<npoint; ipoint++)
{

for (iline=O; iline<nline; iline++)
fprintf(unit, 0%12.5e %12.5e ", xpoint[iline)[ipoint),

y. point(ilinej(ipoint));
fprintf(unit, 0\015\012");

fclose(unit);

/* print success message

printf("File is written successfully\n", filename);

/* finished */

break;

case 2:

do
{

/* get filename */

printf("Input EXCEL data file name :);
scanf (%s , fnarm);

strcpy(filename, ANALYSiS_DIRECTORY):

strcat(filename, ANALYSISPREFIX);

strcat(filename, fname);

strcat(filename, ANALYSIS SUFFIxEXCEL);

/* open file */

unit=fopen(filename, "w`);

while (unit==NULL);

/* write out data in ASCII form suitable for EXCEL import */

fprintf(unit, "4s\015", title);
for (iline-O; iline<nline; iline++)

fprintf(unit, "%s\011\0110, key[ilineJ);
fprintf(unit, "\015");
for (iline-O; iline<nline; iline++)

fprintf(unit, "%s\Oll%s\011", x_lebel, y_1abe1);
fprintf(unit, "\015");
for (ipoint=0; ipoint<npoint; ipoint++)
{

for (iline=O; iline<nline; iline++)
fprlntf(unit, "%12.5e\011%12.5e\011",

x point[iline][ipoint),
yyoint(iline][lpoint]);

fprintf(unit, "\0150);

fclose(unit);

Appendix

Source Code Page (290)

/* print success message "/

printf("File %s written successfully\n", filename);

/* finished */

break;

case 3:

do
{

/* get filename */

prlntf("Input SAS program file name : ");
scanf("%s", fname);
strcpy(filename, ANALYSISDIRECTORY);

strcat(filename, ANALYSISPREFIX);

strcat(filename, fname);

strcat(filename, ANALYSIS SUFFIX SAS);

/* open file */

unit-fopen(filename, w");
} while (unit-NULL);

/* write out SAS program in ASCII file */

fprintf(unit, "/* t */\n\n", title);
for (iline-O; iline<nline; iline++)

fprintf(unit, "/* col%02d - %s */\n", iline, key(ilinel);
fprintf(unit, "\n");
fprintf(unit, "/* x label - %s */\n/* y label - %s */\n\n",

x label, y_label);
fprintf(unit, "data gait; \ninput\n");
for (iline=O; iline<nline; iline++)

fprintf(unit, "col%02d x@@ col%02djy@@\n", iline, iline);
fprintf(unit, "; \ncards; \n");
for (ipoint-O; ipoint<npoint; ipoint++)
{

for (iline-O; iline<nline; iline++)
fprintf(unit, "%10.3e %10.3e\n", x_point(ilinef[ipoint),

y point(iline](ipointl);
}
fprintf(unit, "; \nrun; \n");

fprlntf(unit, "proc gplot; \n");
fprintf(unit, "axisl label-(f-swiss j=c '%s')\nvalue=(f-sirplex); \n",

xlabel);
fprintf(unit, "axis2 label-(f-swiss j-c '%s')\nvalue-(f-sirtplex); \n",

y_label);
fprintf(unit, "plot\n");
for (iline-O; iline<nline; iline++)

fprintf(unit, "col%02d_y * col%c02d_x\n", iline, iline);
fprintf(unit, "/overlay haxis-axisl vaxis-axis2; \n");
fprintf(unit, "title f-centb '%s'; \n", title);
for (aline-O; iline<nline; lllne++)
{

fprintf(unit, "symbolt-3d f-simplex i-join v-'td'; \n", iline+l, iline);
fprintf(unit, "footnotet-3d f-simplex j-l '%3d - ! s'; \n",

Appendix

Source Code Page (291)

iline+l, iline, key(iline});
}
fprintf(unit, "run; \n");

fclose(unit);

/* print success message

printf("File is written successfully\n", filename);

/* finished */

break;
}

} while (iretl-4);

L'
seg_lengthso)

/* routine to write out lengths file for EXCEL

iinclude 'paranms. h"

void seq_lengths(segs, nsegs, seg_length)

char segs[MAX_SEGS][STRINGSIZE];
int nsegs;
float seg_length[MAX_SEGS);
{

FILE *unit; /* file unit
char filename(STRING_SIZE); /* file name
char fname(STRING SIZE); /* intermediate file name
int isegs; /* segment counter

do
{

/* get filename */

printf("Input EXCEL data file name

scanf("%s', fname);

strcpy(filename, ANALYSISDIRECTORY);

strcat(filename, ANALYSISPREFIX);

strcat(filename, fname);

strcat(filename, ANALYSISSUFFIX EXCEL);

/* open file */

unit=fopen(filename, "w");
} while (unit==NULL);

/* write out data */

for (isegs=O; isegs<nsegs; isegs++)
{

fprintf(unit, "4s\011%e\015\012", segs[isegs], seg length[isegs]);
}
fclose(unit);

printf("File tos written successfully\n", filename);

Appendix

Source Code Page (292)

seg_plot()

#include "params. h"

void seg plot(xapos, yapos, zapos, Startframe, endframe, segs, nsegs, times,

p_title, pylabel)

/* this routine displays the segment angles/angular velocities /angular accelerations "/
/* depending on the data arrays passed to the routine */

float xapos(] (MAX FRAMES];
float yapos[] [MAX_FRAMES];

float zapos(](MAX FRAMES);
Snt startframe;
int endframe;
char segs[MAX_SEGS)(STRINGSIZE];
int nsegs;
float times(MAX_FRAMES];

char p title(STRING SIZE);

char p ylabel(STRING SIZE);

/* segment angles/a vel/a acc */

/* starting frame number
/* end frame number
/* Names of segments

/* Number of segments
/* times (s)

/* plot title */
/* plot y axis label */

float pl times[MAX_LINES][MAX POINTS]; /* times to be plotted (s) */

float angle[MAX_LINES][MAX_POINTS]; /* calculated angles/a vels/a accs

char key[MAX LINES+1][STRING SIZE]; /* graph key string */

char title[STRING SIZE]; /* graph title */

char x label[STRING SIZE]; /* graph x axis label */

char y_label[STRING SIZE], /* graph y axis label */

char fname(STRING_SIZE]; /* picture filename */
char filename[STRING SIZE]; /* full picture filename */

float xref-O. O, yref-0.0, zref=0.0; /* reference angles */
int iframe; /* frame counter */
int iabs-l; /* relative/absolute indicator */
int idir; /* direction indicator */
int iplot; /* plotter control */
int nlines; /* number of lines on graph */
int aseg; /* start segment number
int bseg; /* finish segment number */

static char menul[)(STRING SIZE =
{

-Absolute",
-Relative"

static char menu2()(STRING_SIZE)=
{

"X_O",

"Z_O",

static char menu3()(STRING_SIZEI-
{

-Save data to file",
"Save picture to file,
"Exit"

/* all segments */

/* absolute or relative menu */

/* angle menu */

/* plotting menu */

if (nsegs<MAX_LINES i& yesno("Plot all segments? "). -TRUE)
{

Appendix

Source Code Page (293)

if (flag-_2d--TRUE)
{

idir-3;
key(nsegs][0]-0;

]
else
{

while ((idir-menu("Angle plane: ", menu2,3)) -0);
strcpy(key[nsegs], menu2(idir-1]);
strcat(key(nsegs], " ");

}

for (nlines-O; nlines<nsegs; nlines++)
{

strcpy(key(nllnes), key(nsegs));
strcat(key(nlines], segs(nlines]);

/* loop round frames */

for (iframe-Startframe; iframe<endframe; iframe++)
{

/* calculate times */

pl times(nlines](iframe-startframe]-times(iframe);

/* calculate angle */

switch (idir)
{
case 1:

angle[nlines)[iframe-startframe]-
xapos[nlines)(iframe];

break;
case 2:

angle[nlines](iframe-startframe]-
yapos[nlines)[lframe];

break;
case 3:

angle(nlines][iframe-startframe]-
zapos[nlines][iframe];

break;
}

}

else
{

/* first option

while ((iabs-menu("Option: `, menul, 2)) -0);

/* loop round number of lines */

nlines=0;
do
{

/* second option */

Appendix

Source Code Page (294)

if (flag-2d--TRUE)
{

idir-3;
key[nlines][0]-0;

}
else
{

while ((idir-menu("Angle plane: ", menu2,3))--0);
strcpy(key[nlines], menu2[idir-1]);
strcat(key[nlines), " ");

}

if (iabs--2)
{

while ((aseg-menu("Select reference segment: ", segs, nsegs))--O);
aseg--;
strcat(key[nlinesl, segs[aseg));
strcat(key[nlinesj, "

while ((bseg menu("Select segn nt: ", segs, nsegs))--O);
bseg--;

strcat(key[nlinesj, segs[bsegl);

/* loop round frames */

for (iframe. startframe; iframe<endframe; iframe++)
{

/* calculate times */

pl_times[nlines)[iframe-startframe)-times[iframe);

/* calculate angle */

if (labs--2)
{

xref-xapos[aseg][iframe];
yref-yapos[aseg][iframe];
zref-zapos[aseg][iframe];

}

switch (idir)
{
case 1:

angle (nlines) (iframe-startframeI-xapos[bseg)(iframe]-xref;
break;

case 2:

angle(nlines)[iframe-startframe)-yapos[bseg][iframe]-yref;
break;

case 3:

angle [nlines][iframe-startframe]-zapos[bseg](iframe)-zref;
break;

}
}
nlines++;

} while (nlines<MAX_LINES i& yesno("Another line? "). -TRUE);
}

/* draw graph */

strcpy(title, menul[labs-i]);

Appendix

Source Code Page (295)

strcat(title, " ");
strcat(title, p title);
strcpy(x_label, "Time (s)");
strcpy(y_label, p ylabel);
d graph(display, title, x label, y_label, pl times, angle,

endframe-startframe, nllnes, key, FALSE);

while ((iplot=menu("select option: ", menu3,3))1-3)
{

switch (iplot)
{
case 1:

save an(title, x label, y_label, pl times, angle,
endframe-startframe, nlines, key);

break:

case 2:
printf("Input picture file name

scanf("%s", fname);

strcpy(filename, PICTURE DIRECTORY);

strcat(filename, PICTURE_PREFIX);

strcat(filename, fname);

strcat(filename, PICTURESUFFIX);

bitmap to file(display, TRUE, 0,0, filename, TRUE, 0.0,0.0,0,0, TRUE);
break;

}
}
CLEAR GRAPH;

/* finished */

}

äeß filoo

linclude "params. h"

int sel file(directory, prefix, suffix, filename)

/* this routine allows the user to select a file from a menu list */

char directory[];

char prefix[];
char suffix[];
char filename[STRINGSIZE];

/* directory path */
/* selection prefix */
/* selection suffix */

/* returned filename */

FILE *unit; /* temporary directory file */
int error=0; /* error return value */
int nentries=0; /* number of directory entries
int ixet=0; /* menu return value */
int dir_len; /* length of directory string
int Sentries; /* directory entry counter */

char command[STRING SIZE]; /* system command string

char dir_list[DIRECTORY ENTRIES][STRINGSIZE]; /* directory entries */

/* make up system command */

strcpy(command, "1s -1 ");

strcat(comnand, directory);

strcat(comnand, prefix);
strcat(comnand, "*");

Appendix

Source Code Page (296)

strcat(command, suffix);
strcat(command, " > directory-log);

/* perform command */

system(command);

/* read in directory file */

unit-fopen("directory_log", "r");
if (unit! -NULL)
{

while (fscanf(unit, "ts\n", dir list(nentries])l-EOF) nentries++;
fclose(unit);

/* see if entries exist */

if (nentries==O)
{

printf("Input filename

scanf("%s", filename);

unit=fopen(filename, "r");
if (unit--NULL) error-i;
else fclose(unit);

}
else
{

/* remove directory data from list */

dir_len-strlen(directory);
for (ientries-0; ientries<nentries; ientries++)
{

strcpy(comnand, dir list[ientries]+dir len);

strcpy(dir list[ientries], comnand);

/* do menu */

while (iret--O)
iret-menu("Select file: ", dir list, nentries);

strcpy(filename, directory);

strcat(filename, dir list(iret-1]);
}

/* finished */

return (error);

simple_reconO

/* This routine uses the orthogonal camera assunptions to reconstruct the (x, y, z)
coordinates */
/* from two sets of screen coordinates */

/include "params. h"

Appendix

Source Code Page (297)

void simple recon(ga, ra, qb, rb, x, y, z)
float ga, ra; /* screen 1 (q, r) coordinates */
float qb, rb; /* screen 2 (q, r) coordinates */
float *x, *y, *z; /* reconstructed world coordinates */
{

/* PICTURE 1 */

/* correct for x mirroring

if (x mirror 1) qa-(-qa);

/* correct for offset-and scale factor */

qa-scale_factor 1*(qa-x offset_1);
ra-scale factor 1*(ra-y offset_l);

/* correct for rotation */

qa=rotation 1(0)(0]*qa+rotation_1(0][1]*ra;

ra-rotation 1[1](0]*qa+rotation 1(1](1]*ra;

/* PICTURE 2 */

/* correct for x mirroring

if (x mirror_2) qb-(-qb);

/* correct for offset and scale factor */

qb=scale_factor 2*(qb-x offset_2);
rb-scale_factor 2*(rb-y offset 2);

/* correct for rotation */

qb-rotation _2[0J(0]*qb+rotation
2[0][1]*rb;

rb=rotation 2[1](0]*qb+rotation 2[1](11*rb;

if (x_axis source"4) *x-qa;

else
{

if (x-axis-source--2) *x-ra;

else
{

if (x axis source--3) *x-qb;

else *x-rb;
}

}

if (y_axis source-"1) *y-qa;

else
{

if (y axis_source--2) *y-ra;

else
{

if (y_ax1s_source--3) *y-qb;

else *y=rb;
}

}

if (z-axis source--l) *z-qa;

else

Appendix

Source Code Page (298)

if (z-axis-source--2) *z-ra;
else
{

if (z axis source--3) *z-qb;
else *z-rb;

}
}

simpllfled_quadrupedal()

Iinclude "params. h"

.1

/* routine to calculate joint torques and reaction forces for simplified */
/* quadrupedal leaping model */

sircplified quadrupedal(seq length, seg_mass, seg_com, phi, x force, y_force, torque,
segs, nsegs, nframs, times)

float seg_length(MAX SEGS]; /* mean segment lengths */
float seg_mass(MAX_SEGS]; /* segment masses */
float seg_com(MAX_SEGS]; /* relative COM positions
float phi(MA) SEGS](MAX_FRAMES); /* segment angle */

float x_force[MAX_SEGS][MAXFRAMES]; /* x component of linear force */

float y_force[MAX_SEGS][MAXFRAMES]; /* y component of linear force */

float torque[MAX_SEGS](MAX_FRAMES]; /* torques about segments

char segs[MAX_SEGS](STRING_SIZE]; /* segment names */

int n segs; /* number of segments
int n frame; /* number of frames */
float times[MAX_FRAMES]; /* frame times

{
int iframe;
float dl, d2;

struct body
{

float rlx(MAX FRAIIES];
float rly(MAX_FRANES];
float r2x(MAR_FRAMES];
float r2y[MAX FRAMES];
float ml[MAR_FRAMES];
float m2(MAX_FRAMES];
float ml O(MAX_FRAMES];

float m2_0[MAX_FRAMES];
int segnum;

struct body upper
-

arm;
struct body forefoot;

struct body hindfoot;

struct body calf;
struct body thigh;

struct body head;

struct body torso;

struct body tail;
float x react[MAX SEGS](MAX FRAMES];

float y_react(MAX_SEGS](MAXFRAMES];
float j torque(MAX SEGS](MAX FRAMES];

float j torque O[MAX SEGS](MA)FRAMES];

/* frame counter */
/* distances from COM

/* structure for free body data */

/* reaction force at 'proximal' end */

/* reaction forces at 'distal' end */

/* torque at 'proximal' end */
/* torque at 'distal' end */

/* torque assuming 0 contact torque
/* torque assuming 0 contact torque
/* segment number */

struct body lower arm; /* segment structures */

/* reaction forces
/* reaction forces */

/* joint torques
/* joint torques with zero contact torque

float work_done[MA%SEGS][MARFRAMES]; /* work done at joints */

Appendix

Source Code Page (299)

float work_done O[MAX_SEGS](MAX FRAMESJ; /* WD at joints for 0 contact torque*/
float dumny[MAX_SEGS][MAXFRAMES); /* dummy values for plots */
float angle; /* intermediate angle value
static char joints(](STRING_SIZE]- /* joints etc.

I
"Contact point",
"Mid-tarsal joint",
"Ankle",
"Knee",
 Hipr,
"Tail base",

"Neck",
"Shoulder",
"Elbow"

int njoints-9; /* number of joints
int njoints_0=5; /* number of joint for zero torque */

static char menul(](STRING_SIZE]- /* printout menu "/

{
"Joint reactions",
"Joint torques",
"Zero contact joint torques",
"Work done per frame",
"Work done - zero contact torque",
"Exit"

int nmenul=6; /* number of menu items */
int iret; /* menu return value */

/* initialize segment ID numbers */

lower_arm. segnum=0;
upper_arm. segnum-1;
forefoot. segnum=2;
hindfoot. segnum=3;
calf. segnum-4;
thigh. segnum=5;
head. segnum=6;
torso. segnumm7;
tail. segnum=8;

/* loop over frames */

for (iframe-l; iframe<(nframe-1); iframe++)
{

dl-seg_com(lower arm. segnum]*seg_length(lower_arm. segnum];
d2-(l-seq_com(lower arm. segnum])*seq_length[lower arm. segnum];
lower_arm. rlx[iframe]-0.0;
lower arm. rly[iframe]-0.0;
lower arm. ml[iframe]=0.0;
lower arm. r2x(iframe]-x force(lower_arm. segnum](iframe]-

lower_arm. rlx(iframe];
lower arm. r2y(iframel-y_force(lower arm. segnum](iframe]-

lower_arm. rly(iframe]-seg_mass[lower arm. segnum]*G;
lower_arm. m2(iframe]=torque[lower arm. segnum](iframe]-

lower_arm. rlx[iframe]*dl*
(float) sin((double)phi[lower arm. segnum][lframe])+
lower arm. r2x(iframel*d2*
(float)sin((double)phi[lower_arm. segnum](iframe])+
lower

_arm.
rly(iframe]*dl*

(float) cos((double)phi(lower arm. segnum](iframe])-
lower arm. r2y(lframe]*d2*

Appendix

Source Code Page (300)

(float) cos((double)phi(lower arm. segnum)[iframej)-
lower arm. ml[iframe);

dl-seg com(upper arm. segnumj*seg_length[upper arm. segnum];
d2-(1-seg_com(upper_arm. segnum])*seg length(upper arm. segnum);
upper arm. rlx[iframe]-(-lower_arm. r2x(iframe]);
upper arm. rly[iframe]-(-lower arm. r2y(iframe]);
upper arm. ml(iframe]-(-lower arm. m2[iframeI);
upper_arm. r2x[iframej-x_force[upper arm. segnumJ(iframeJ-

upper_arm. rlx[iframe];
upper_arm. r2y[iframej=y force(upper arm. segnum)(lframeJ-

upper arm. rly(iframe]-seg_mass(upper arm. segnum]*G;
upper_arm. m2(iframe1-torque(upper arm. segnum](iframeJ-

upper arm. rlx(iframe]*dl*
(float)sin((double)phi[upper arm. segnum](iframej)+
upper arm. r2x(iframe]*d2*
(float) sin((double)phi[upper arm. segnum](iframej)+
upper arm. rly(iframs]*dl*
(float)cos((double)phi[upper_arm. segnum)[iframej)-
upper arm. r2y(iframs)*d2*
(float) cos((double)phi[upper arm. segnumJ(iframeJ)-

upper arm. ml[iframe];

dl-seg_com[head. segnum]*seg_length(head. segnum);
d2-(l-seg_com[head. segnumJ)*seg_length[head. segnum);
head. rlx(iframe]-0.0;
head. rly(iframe]=0.0;
head. ml[lframe]=0.0;
head. r2x(iframe]=x force(head. segnum)(iframe)-head. rlx[iframej;
head. r2y[iframe]-y_force[head. segnum)(iframej-head. rly(iframeJ-

seg_mass(head. segnum]*G;
head. m2[iframe)-torque(head. segnum](iframe]-

head. rlx(iframeJ*dl*
(float)sin((double)phi(head. segnum)(iframe])+

head. r2x[iframe]*d2*
(float)sin((double)phi[head. segnum)(iframel)+

head. rly(iframe]*dl*
(float)cos((double)phi[head. segnum](iframe))-
head. r2y[iframe]*d2*
(float)cos((double)phi[head. segnum][iframe])-

head. ml(iframe];

dl-seg_com[tail. segnum]*seg_length(tail. segnum);
d2-(1-seq com(tall. segnum))*seg_length(tail. segnum];
tail. r2x(iframe]=0.0;
tail. r2y[iframe]-0.0;
tail. m2[iframej=0.0;
tail. rlx(iframe]-x force[tail. segnum](iframel-tail. r2x[iframe);
tail. rly(iframe]=y_force[tail. segnum][iframej-tail. r2y(iframe]-

seg_mass(tail. segnum]*G;
tail. ml(iframe]-torque[tail. segnum][iframe]-

tail. rlx(iframeJ*dl*
(float)sin((double)phi[tail. segnum](iframe])+
tail. r2x[iframe]*d2*
(float)sin((double)phi[tail. segnumj(iframej)+
tail. rly(iframe]*dl*
(float)cos((double)phi(tail. segnum)[iframeJ)-
tail. r2y[iframe]*d2*
(float)cos((double)phi(tail. segnum][iframe])-

tail. m2[iframe];

dl-seg_com(torso. segnumJ*seg_length[torso. segnum];

Appendix

Source Code Page (301)

d2-(1-seq_com(torso. segnum])*seq_length(torso. segnum);
torso. rlx[iframe]=(-head. r2x(iframeI)+(-upper arm. r2x[iframeJ);
torso. rly[iframe]. (-head. r2y[iframeJ)+(-upper arm. r2y[iframeJ);
torso. ml(lframel-(-head. m2[iframe])+(-upper arm. m2(iframel);
torso. r2x[iframe]-x_force[torso. segnum](iframeJ-torso. rlx(iframe3;
torso. r2y(iframe)-y_force(torso. segnum][iframeJ-torso. rly(iframeJ-

seq_mass(torso. segnum]*G;
torso. m2liframel-torque[torso. segnum](iframe]-

torso. rlx[iframe]*dl*
(float)sin((double)phi(torso. segnum][iframej)+

torso. r2x[iframe]*d2*
(float)sin((double)phi[torso. segnum](iframe))+

torso. rly[iframe]*dl*
(float)cos((double)phi(torso. segnuml(iframe])-

torso. r2y[iframe]*d2*
(float)cos((double)phi[torso. segnum][iframe))-
torso. ml(iframe);

di-seg_com(thigh. segnum]*seg_length(thigh. segnum);
d2_(1-seg_com(thigh. segnum])*seq length(thigh. segnum];
thigh. r2x[iframe3-(-torso. r2x[iframeJ)+(-ta11. r1x(iframeJ);
thigh. r2y(iframe]=(-torso. r2y[iframe])+(-tail. rly[iframeJ);
thigh. m2[iframe]-(-torso. m2[iframe])+(-tail. ml[iframe]);
thigh. rlx[iframe]. x force(thigh. segnum)(iframe]-thigh. r2x[iframe);
thigh. rly[ifran]-y_force(thigh. segnum](ifrarm)-thigh. r2y[iframe]-

seg_mass[thigh. segnumJ*G;
thigh. ml(iframe)-torque(thigh. segnum][iframe]-

thlgh. rlx(iframe]*dl*
(float)sin((double)phi[thlgh. segnum][iframe])+

thigh. r2x(iframe]*d2*
(float)s1n((double)phi(thigh. segnum](lframe])+

thlgh. rly[iframe]*dl*
(float)cos((double)phi(thigh. segnum](iframe])-

thigh. r2y(iframe]*d2*
(float)cos((double)phi(thlgh. segnum)(iframe])-
thigh. m2(iframe);

dl-seg_com(calf. segnum]*seg_length[calf. segnum);
d2-(1-seg_com[calf. segnum])*seg_length[calf. segnum];
calf. r2x[iframe]-(-thigh. rlx[iframe));
calf. r2y(iframe]-(-thigh. rly[iframe));
calf. m2(iframel-(-thigh. ml(iframe]);
calf. rlx(iframe]-x force(calf. segnum][iframe]-calf. r2x[iframe);
calf. rly(iframe)-y_force(calf. segnum][iframe]-calf. r2y[iframe]-

seg mass(calf. segnum]*G;
calf. ml(iframe]=torque(calf. segnum](iframe]-

calf. rlx[iframel*dl*
(float)sin((double)phi[calf. segnum][iframe])+
calf. r2x(iframe)*d2*
(float)sin((double)phi[calf. segnum][iframe])+
calf. rly[iframe]*dl*
(float)cos((double)phi[calf. segnum)(iframe])-
calf. r2y(iframeJ*d2*
(float)cos((double)phi[calf. segnum][iframeJ)-
calf. m2[iframe];

d1-seg_com[hindfoot. segnum]*seg_length[hindfoot. segnum];
d2. (l-seg_com[hindfoot. segnum])*seg_length[hindfoot. segnum];
hindfoot. r2x[iframej-(-calf. rlx[iframe]);
hindfoot. r2y[lframeJ-(-calf. rly[iframe]);
hindfoot. m2[iframe]-(-calf. ml(ifran J);
hlndfoot. rlx[iframe]=xforce[hlndfoot. segnumj(iframe]-hindfoot. r2x[lframe];

Appendix

Source Code Page (302)

hindfoot. rly(iframe)-y_force(hindfoot. segnum][iframeJ-hindfoot. r2y[iframeJ-
seg mass[hindfoot. segnum]*G;

hindfoot. ml(iframe]=torque(hindfoot. segnum](iframeJ-
hindfoot. rlx(iframe)*dl*
(float)sin((double)phi(hindfoot. segnum](iframej)+

hindfoot. r2x(iframe]*d2*
(float)sln((double)phi(hindfoot. segnumj(iframe])+

hindfoot. rly(iframe]*dl*
(float)cos((double)phi[hindfoot. segnum](iframeJ)-

hindfoot. r2y[iframe]*d2*
(float)cos((double)phi(hindfoot. segnum)(iframeJ)-

hindfoot. m2[iframe];

dl-seg com(forefoot. segnumJ*seg_length(forefoot. segnum);
d2-(1-seq_com(forefoot. segnumJ)*seg_length(forefoot. segnum);
forefoot. r2x[iframe]-(-hindfoot. rlx(iframe]);
forefoot. r2y[iframeJ-(-hindfoot. rly[iframe));
forefoot. m2(iframe]-(-hindfoot. ml[iframe]);
forefoot. rlx[iframe)-x_force[forefoot. segnum)[iframeJ-forefoot. r2x(lframe);
forefoot. rly(iframe]-y_force[forefoot. segnum](iframe1-forefoot. r2y[iframe)-

seq mass(forefoot. segnum]*G;
forefoot. ml(iframe)-torque[forefoot. segnum](iframeJ-

forefoot. rlx[iframe]*dl*
(float)sin((double)phi[forefoot. segnum)[iframe])+
forefoot. r2x[iframe]*d2*
(float)sin((double)phi(forefoot. segnum][iframe])+
forefoot. rly(iframe]*dl*
(float)cos((double)phi(forefoot. segnum][iframe])-
forefoot. r2y[iframeJ*d2*
(float)cos((double)phi(forefoot. segnum](iframe])-
forefoot. m2[iframeJ;

/* calculate joint torques assumming zero torque at contact with */
/* ground */

forefoot. ml O[iframe)-0.0;
forefoot. m2_0[iframe]-torque(forefoot. segnum)[iframe]-

forefoot. rlx[iframe]*dl*
(float)sin((double)phi[forefoot. segnum](iframe))+

forefoot. r2x(iframe)*d2*
(float)sin((double)phi[forefoot. segnum][iframe])+
forefoot. rly(iframe)*dl*
(float)cos((double)phi(forefoot. segnumJ(iframe])-
forefoot. r2y[iframe]*d2*
(float)cos((double)phi[forefoot. segnum](iframe])-
forefoot. ml O[iframe);

hindfoot. ml O(iframe]-(-forefoot. m2 0[iframe]);
hindfoot. m2_0(iframe]-torque(hindfoot. segnumJ(iframe]-

hindfoot. rlx[iframe]*dl*
(float)sin((double)phi[hindfoot. segnumf[iframe))+

hindfoot. r2x(iframe)*d2*
(float)sin((double)phi[hindfoot. segnum][iframe])+

hindfoot. rly(iframe)*dl*
(float)cos((double)phi[hindfoot. segnum][iframeJ)-

hindfoot. r2y[iframeJ*d2*
(float)cos((double)phi(hindfoot. segnum](iframeJ)-

hindfoot. ml_0[iframe];

calf. ml_0[iframe]-(-hlndfoot. m2_0(iframe]);
calf. m2_0[iframe]-torque(calf. segnum)[iframe)-

calf. rlx(iframe]*dl*

Appendix

Source Code Page (303)

(float)sln((double)phi(calf. segnum](iframej)+
calf. r2x(iframel*d2*
(float)sin((double)phi(calf. segnum)(iframef)+
calf. rly(iframe]*dl*
(float)cos((double)phi(calf. segnum)(iframeJ)-
calf. r2y(iframeJ*d2*
(float)cos((double)phi(calf. segnumJ(iframe))-
calf. ml O(iframej;

thigh. ml_O(iframeI-(-calf. m2_0(iframe]);
thigh. m2_0(iframe)-torque[thigh. segnum)[iframe]-

thigh. rlx[iframe]*dl*
(float)sin((double)phi(thigh. segnum](iframe])+
thigh. r2x(iframe3*d2*
(float)sin((double)phi[thigh. segnum](iframe])+

thigh. rly(ifname]*dl*
(float)cos((double)phi(thigh. segnum](lframe))-

thigh. r2y(iframe]*d2*
(float)cos((double)phi(thigh. segnum)[iframe])-

thigh. ml_O[iframe);

/* put into array for display */

x react[OJ(lframe)=(-forefoot. rlx[iframe]); /* contact point
y_react[O](lframe]-(-forefoot. rly(iframe]);
j_torque(O](iframe]-(-forefoot. ml(iframe]);
j torque O[0](iframe]-(-forefoot. ml 0[iframe));
angle-phi[forefoot. segnum][iframe+l]-phi(forefoot. segnum](iframe-1];
if (angle>M PI) angle-=(M PI*2);
if (angle<-(-M PI)) angle+=(M PI*2);
work done[O](iframe]-j torque(0][iframe]*0.5*angle;

work done 0[0][iframe]-j_torque 0[0)[iframe)*0.5*angle;

x react(l](iframe]-forefoot. r2x[iframe]; /* mid-tarsal joint
y_react[1](iframe]-forefoot. r2y(iframe);
j_torque[l](iframe]-forefoot. m2[iframe];
j torque_0(1][iframe]-forefoot. m2 0(iframej;
angle-(phi(hindfoot. segnum](iframe+l]-phi(hindfoot. segnum](lframe-1)-

phi(forefoot. segnum](iframe+l)+phi[forefoot. segnum](iframe-1]);
if (angle>M_PI) angle-=(M PI*2);
if (angle<-(-M PI)) angle+=(M PI*2);
work_done(l](iframe)=j torque(l](iframe)*0.5*angle;
work_done 0[1][iframe]-j torque 0(1][iframe]*0.5*angle;

x react[2][iframe]-hindfoot. r2x(iframe); /* ankle */

y_react[2](iframe]-hindfoot. r2y(iframe];
j_torque[2][iframe]-hindfoot. m2[iframe];
j_torque_0(2][iframe)-hindfoot. m2_0[iframe);
angle-(phi[calf. segnum][iframe+l)-phi(calf. segnum)[iframe-1]-

phi[hindfoot. segnum](iframe+l]+phi[hindfoot. segnum](iframe-1J);
if (angle>M PI) angle-=(M PI*2);
if (angle<-(-M_PI)) angle+=(M PI*2);

work done[2](iframe]-j torque[2J[iframe)*0.5*angle;
work done 0(2)(iframe]-j torque 0[2)[iframe]*0.5*angle;

x react(3J[iframe]-calf. r2x[iframe]; /* knee

y_react[3](iframe]-calf. r2y(iframe];
j_torque[3](iframe]-calf. m2(iframe];
j_torque 0(3](iframe]-calf. m2_0[iframe];
angle-(phi[thigh. segnum)(iframe+l]-phi(thigh. segnum](ifname-1)-

phi[calf. segnum](iframe+l]+phi(calf. segnum](iframe-1J);
if (angle>M PI) angle-=(M PI*2);

Appendix

Source Code Page (304)

if (angle<-(-M-PI)) angle+-(M PI*2);
work done[3](iframe]-j torque[3][iframe]*0.5*angle;
work_done 0[3](iframe]-j_torque 0[3)(iframe]*0.5*angle;

x react(4J(iframe]-thigh. r2x[iframej; /* hip */
y_react[4](iframe]. thigh. r2y[lframe];
j torque[4][iframe)-thigh. m2(iframe);
j torque 0(4J[iframe]-thigh. m2O(iframej;
angle-(phi(torso. segnum](iframe+lJ-phi[torso. segnum](iframe-1)-

phi(thigh. segnum](iframe+lJ+ph1[thigh. segnum](iframe-1));
if (angle>M_PI) angle--(M PI*2);
if (angle<-(-M PI)) angle+-(M PI*2);
work_done(4](iframe]=j_torque(4](iframe]*0.5*angle;
work done 0(4][iframe]-j torque 0(4)(iframe]*O. 5*angle;

x react[5J[iframe]-tail. rlx(iframe); /* tail base
y_react(5J(iframej-tail. rly[iframe];
j torque[5J[iframe]=tail. ml(iframe1;
angle-(phi[tail. segnum][iframe+l]-phi[tail. segnum)(iframe-1J-

phi[torso. segnum](iframe+l]+phi[torso. segnum](iframe-1J);
if (angle>M PI) angle--(M PI*2);
if (angle<-(-M-PI)) angle+-(M_PI*2);
work done[5][iframe]-j_torque[5J[iframe)*0.5*angle;

x react(6][iframe]-head. r2x[iframe]; /* neck */
y_react[6](iframe]-head. r2y[iframe];
j torque[6][iframe]. head. m2(iframe];
angle-(phi[torso. segnum](iframe+lJ-phi[torso. segnum)(iframe-1]-

phi(head. segnumJ[iframe+l]+phi[head. segnum](iframe-1]);
if (angle>M_PI) angle--(M PI*2);

if (angle<-(-M-PI)) angle+-(M PI*2);
work_done[6][iframe)-j torque[6][iframeJ*0.5*angle:

x_react[7J[iframe]-upper arm. r2x(iframe]; /* shoulder */
y react[7J[iframe]-upper arm. r2y(iframe];
j_torque[7](iframe]-upper arm. m2[iframe];
angle-(phi(torso. segnum](iframe+lJ-phi[torso. segnum](iframe-lJ-

phi(upper arm. segnum][iframe+lJ+phi[upper arm. segnum](iframe-i]);
if (angle>M PI) angle--(M_PI*2);
if (angle<-(-M PI)) angle+. (M PI*2),

work done[7J(iframe]-j torque[7](iframe]*0.5*angle;

x react[8][iframe)-lower arm. r2x[iframe]; /* elbow */
y_react(81[iframe]-lower arm. r2y[iframe);
j torque(8)(lframe]-lower arm. m2(iframe];
angle- (phi [upper arm. segnum](iframe+lJ-phi(upper arm. segnum)(iframe-lJ-

phi(lower arm. segnum][iframe+l]+phi[lower_arm. segnum][iframe-1));
if (angle>M PI) angle-=(M PI*2);
if (angle<-(-M PI)) angle+=(M PI*2);
work done[8](iframe]-j torque(8](iframe]*0.5*angle;

while ((iret-menu("Select option: ", menul, nmenul))! -nmenul)
{

switch (fret)

case 1:

nodeylot(joints, njoints, x_react, y_react, dummy, l, nframe-1,
times, "Reaction Forces", "Force (N)");

break;

Appendix

Source Code Page (305)

case 2:
segj, lot(dummy, dummy, j_torque, 1, nframe-1, joints, njolnts,

times, "Joint Torques", "Torques (Nm)");
break;

case 3:
seg plot(dummy, dummy, jtorque O, 1, nframe-1, joints* njoints 0,

times, "Zero Contact Torque Joint Torques",
"Torques (Nm)");

break;

case 4:
segjlot(dummy, dumny, work done, l, nframe-l, joints, njoints,

times, "Work Done per frame", "Energy (J)");

case 5:
segplot(dummy, dummy, workdone 0,1, nframe-1, jolnts, njolnts 0,

times, "Work Done per frame -0 contact work", "Energy (J)");
}

}
}

smooth()

#include "params. h"

void smooth(nnodes, xpos, ypos, zpos, xpos filt, ypos filt, zpos filt, nframe, fspeed)

/* this routine performs moving average type smoothing */

int nnodes; /* Number of nodes */
float xpos(MAX_NODES)[MAX_FRAMES]; /* x world coordinates (m)
float ypos[MAX NODES][MAX FRAMES]; /* y world coordinates (m)
float zpos[MAX NODES][MAX FRAMES]; /* z world coordinates (m)
float xpos filt(MA)LNODES](MAXFRAMES]; /* filtered x world coordinates (m) */
float ypos_filt(MA)NODES][MAX_FRAMES]; /* filtered y world coordinates (m)
float zpos filt[MAX NODES][MAX FRAMES]; /* filtered z world coordinates (m) */
int nframe; /* number of frames */

float fspeed; /* Film frame interval (s) */

{
ant anodes;
ant iframe;
ant ismooth;
ant start frame, endframe;

/* node counter
/* frame counter
/* smooth counter

/* start and end frames */

/* test for suitable number of frames */

if (nframe<smooth_number)
{

printf("Too few frames for filtration\n");
for (anodes-O; inodes<nnodes; inodes++)
(

for (iframe-O; iframe<nframe; iframe++)
{

xpos filt(modes)(iframe]-xpos(inodes)[iframe];

ypos filt(inodes](iframe]-ypos(inodes)(iframe);
zpos filt[inodes][iframe]-zpos(inodes](iframe);

}
return;

Appendix

Source Code Page (306)

/* put in some sensible values for end points so as not to crash anything */

start_frame-smooth number/2;
end frame-nframe-smooth_number/2;
for (indes-O; inodes<nnodes; inodes++)
{

for (iframe=O; iframe<start frame; iframe++)
{

xpos Eilt(Snodes][iframe]-xpos(inodes](iframe);
ypos_Eilt(anodes)(iframe]-ypos(inodes)[iframe];
zpos filt(inodes)[iframe)-zpos(inodes)[iframe];

}
for (iframe-end_frame; iframe<nframe; iframe++)
{

xpos flit(anodes][iframe]=xpos(inodes)[iframe];
ypos filt(inodes](iframe]-ypos[inodes][iframe);
zpos filt[anodes][iframe]-zpos[inodes][iframe);

}
}

/* loop over nodes */

for (anodes-O; inodes<nnodes; inodes++)
{

for (iframe=start frame; iframe<end frame; lframe++)
{

xpos filt[inodes][iframe]=0.0;
ypos f11t[inodes][iframe]-0.0;
zpos filt(inodes)[lframe]-0.0;
for (ismooth-O; lsmooth<smooth number; ismooth++)
{

xpos filt[inodes][iframe]+-
xpos(anodes][iframe+ismooth-start_frame];

ypos_filt[inodes][iframe]+-
ypos(inodes](iframe+ismooth-start frame);

zpos filt[inodes](iframe]+-
zpos[anodes][iframe+ismooth-start_frame];

}
xpos filt(inodes][iframe]-

xpos filt(inodes)[iframe]/(float)smooth_number;

ypos filt[inodes][iframe]-
ypos filt(inodes)(iframe]/(float)smooth_number;

zpos filt(inodes][iframe]-
zposEilt[inodes](iframe)/(float)smoothnuirber;

}
}

/* finished */

printf("Smoothing successful\n");

}

stats()
#include "params. h"

void stats(title, nodes, nnodes, xpos, ypos, zpos, xpos filt, ypos filt, zpos filt, nframe,

Appendix

Source Code Page (307)

segs, nsegs, nodesper_seq, fspeed, seq_mass, seq_com, seq_moi)

/* this routine performs simple dynamics calculations on the raw node position data A/

char title(STRING SIZE); /* Title of node file */

int nnodes; /* Number of nodes */
char nodes[MAX NODES](STRING SIZE]; /* Names of nodes */

. float xpos(MAX_NODESJ[MAX_FRAMES]; /* x world coordinates (m)
float ypos(MAX_NODES][MAX_FRAMES]; /* y world coordinates (m)
float zpos[MAX NODES][MAX_FRAMES]; /* z world coordinates (m) */

float xpos filt[MAX NODES](MA)FRAMES]; /* filtered x world coordinates (m)
float ypos_filt[MAX NODES][MAX FRAMES); /* filtered y world coordinates (m) */
float zpos filt[MAx NODES](MA)FRAMES); /* filtered z world coordinates (m) */
int nframe; /* number of frames "/
char segs(Mº%SEGS][STRINGSIZE]; /* Names of segments

int nsegs; /* Number of segments
int nodes_per seg(NPS][MAX_SEGS]j /" Nodes in segment */

float fspeed; /* Film frame interval (a)
float seq_mass[MAX SEGS]; /* array of segment masses */

float seq com[MAX_SEGS]; /* array of segment relative COMB
float seq_moi[MAX_SEGSI; /* array of segment MOTs */

float times[MAX_FRAMES]; /* times (s) */
float xvel[MAX NODES+MAX SEGS](MA)FRAMES]; /* calculated velocities (m/s)
float yvel(MAX NODES+MAX_SEGS][MAX FRAMES];

float zvel[MAX NODES+MAX SEGS][MAX_FRAMES];

float xacc[MAX NODES+MAX SEGSJ[MAX_FRAMES]; /* calculated accn (m/s/s)

float yacc[MAX NODES+MAX SEGS][MAX_FRAMES];
float zacc[MAX NODES+MAX SEGS][MAX_FRAMES];
float xapos(MAX SEGS](MAX FRAMES]; /* angle of segment (radian)

float yapos(MA)SEGS][MAX_FRAMES];
float zapos[MAX_SEGS][MAX_FRAMES];
float xavel(MAX SEGS](MAX_FRAMES]; /* calculated angular velocities (rad/s)
float yavel(MAX_SEGS](MAXFRAMES];
float zavel[MAX_SEGS][MAXFRAMES];
float xaacc(MAX SEGS][MAX FRAMES]; /* calculated angular accln (rad/s/s)
float yaacc[MAR SEGS][MAX_FRAMESj;
float zaacc[MAX_SEGSj[MAX_FRAMES];
float body_comx[MAX_FRAMES]; /* x centre of mass of animal (m)
float body comy[MAXFRAMES]; /* y centre of mass of animal (m) */
float body_comz[MAX FRAMES]; /* z centre of mass of animal (m) */
float body_mass; /* mass of animal (kg) */
float comx(MAX_SEGS][MAXFRAMES]; /* x component of segment COM
float comy(MAX_SEGS][MAX_FRAMES]; /* y component of segment COM
float comz[MAX_SEGS](MAX_FRAMES]; /* z component of segment COM

float comxvel[MAX_SEGS][MAX_FRAMESJ; /* x component of segment COM vel
float comyvel[MAX_SEGS](MAX FRAMES]; /* y component of segment COM vel
float comzvel(MAX_SEGS](MAX_FRAMES]; /* z component of segment COM vel
float comxacc(MAX SEGS][MAX FRAMES]; /* x component of segment COM accln
float comyacc(MA)SEGS][MAX_FRAMES]; /* y component of segment COM accln
float comzacc[MAX_SEGS][MAX_FRAMES]; /* z component of segment COM accln
float xp[MAX_NODES+MAX SEGS][MAX FRAMES]; /* x position data used */

float yp[MAX NODES+MAX SEGS][MAX_FRAMES]; /* y position data used */

float zp[MAX NODES+MAX_SEGS][MAX FRAMES]; /* z position data used */
float x force[MAX SEGS](MAX FRAMES]; /* x component of force

float y_force[MAX_SEGS](MAR FRAMES]; /* y component of force

float z force[MAX_SEGS][MAX FRAMES]; /* z component of force */

float x torque[MAX_SEGS][MAX_FRAMES]; /* torque in x=0 plane */

float y_torque[MAX_SEGS][MAX FRAMES]; /* torque in y=0 plane */

float z torque[MAX SEGS](MAX_FRAMES]; /* torque in z=0 plane
float seg_PE[MAX SEGS][MAX FRAMES]; /* segment potential energy
float seg_LKE(MAX_SEGS][MAXFRAMES]; /* segment linear kinetic energy */

Appendix

Source Code Page (308)

float seg_RKE[MAX_SEGSJ[MAX FRAMESJ; /* segment rotl kinetic energy
float seg_length[MAX_SEGSJ; /* mean segment lengths */

char positions[MAX NODES+MAX_SEGS][STRING SIZE]; /* names for position data */
int npositions; /* number of position items

ant anodes; /* node counter
ant iframe; /* frame counter
ant isegs; /* segment counter
static char menul[][STRING SIZE]- /* function selector menu
{

"Node position',
"Node velocity",
"Node acceleration`,
"Segment angle",
`Segment angular velocity`,
"Segment angular acceleration",
`Segment lengths,
"Node locus",
'Forces',
"Torques',
"Energies",
"Options",
"User specific analysis",
"Exit"

static char menu2(][STRING_SIZE]- /* option selection menu

{
-Raw data",

"Exit"

int ifunc;
int iopt;
int change_flag TRUE;

static int smoothed flag-TRUE;

FILE *unit;

char fname[STRING_SIZE];

char filename[STRING_SIZE);

int frames-lost;

int useable_frames:
float time;

/* function */
/* option

/* flag to change values */
/* smoothed data flag */

/* file pointer
/* filename */

/* full pathname
/* frames lost at each end */

/* nframe corrected by frames lost
/* intermediate time value */

/* calculate number of frames to remove

if (flag_filter--TRUE) frames_lost-2;

else frames lost-smooth number/2;

/* menu 1 */

while ((ifunc-menu("Analysis function", menul, 14))1-14)

{
if (change_flag--TRUE)

/* copy over values */

if (smoothed flag--TRUE)
{

for (anodes=O; inodes<nnodes; inodes++)
{

for (iframe-frames_lost;
lframe<(nframe-frames lost); iframe++)

xp(lnodes)(1frame-frames lost]-

Appendix

Source Code page (309)

xpos filt(inodes](iframe);
yp(inodes][lframe-frames_lost]-

ypos filt(inodes)(iframe);
zp(inodes)[iframe-frames_lost]-

zpos filt[inodes](iframe);
}

}
useable_frames-nframe-2*frames lost;

/* calculate times */

time-fspeed*(float)frames lost;
for (iframe-O; iframe<useable frames; iframe++)
{

times(iframe]-time;
time-time+f speed;

}
else
{

for (anodes-O; lnodes<nnodes; inodes++)
{

for (iframe-O; iframe<nframe; iframe++)
{

xp[inodes](iframe]-
xpos[inodes](iframe];

yp[inodes)(iframe]-
ypos(inodes](iframe);

zp(inodes][iframe]-
zpos(inodes)(iframe);

}

}
useable frames-nframe;

/* calculate times

time=0.0;
for (iframe-O; iframe<useable_frames; iframe++)
{

times (if rame) -time;
time-time+fspeed;

}

/* copy over position names */

for (anodes-O; inodes<nnodes; inodes++)
{

strcpy(positions[inodes], nodes[inodes]);

/* calculate centres of mass */

com(xp, yp, zp, nnodes, useable frames, nodes_per seg, nsegs, seg_com,
seg_mass, body_comx, body_comy, body_comz, ibody mass, comx,
comy, comz);

/* calculate segment lengths */

length(xp, yp, zp, nnodes, useable_frames, nodes_per seg, nsegs,
seg_length);

Appendix

Source Code Page (310)

/* add data onto position data */

for (isegs. 0; lsegs<nsegs; isegs++)

for (iframe-O; iframe<useable frames; iframe++)

xp(nnodes+isegs](iframe]-comx(isegs](iframe);
yp[nnodes+isegs][iframe]-comy(isegs)[iframe];
zp[nnodes+isegs](iframel-comz[isegs][iframe];

strcpy(positions(nnodes+isegs}, seqs(iseqs});

strcat(positions(nnodes+isegs}, " COMO);
}
for (iframe-O; iframecuseable frames; iframe++)

xp[nnodes+nsegs](iframe). body_comx(iframe];
yp[nnodes+nsegs)(iframe]-body_comy[Sframe);
zp(nnodes+nsegs](iframe]-body_comz(iframe);

strcpy(positions[nnodes+nsegs), `Whole body COM");

npositions-nnodes+nsegs+l;

/* calculate kinematics */

1_kinem(npositions, xp, yp, zp, useable frames, fspeed, times,

xvel, yvel, zvel, xacc, yacc, zacc);
r kinem(xp, yp, zp, useable frames, fspeed, nsegs, nodes_per seq, times,

xapos, yapos, zapos, xavel, yavel, zavel, xaacc, yaacc, zaacc);

/* put COM accel and vel into separate array

for (isegs-O; isegs<nsegs; isegs++)
{

for (iframe-O; iframe<useable frames; iframe++)

comxvel(isegsj(iframe]-xvel(nnodes+lsegsj(iframe);
comyvel[isegs](iframe)=yvel(nnodes+isegs)Iiframej;
comzvel[isegs](iframe]-zvel[nnodes+isegs][iframe3;
comxacc[isegs](iframej=xacc[nnodes+lsegs](lframe);
comyacc(isegs](iframe)-yacc(nnodes+isegs][iframe];
comzacc[isegs](iframe]-zacc(nnodes+lsegsj[iframe);

}

for (iframe-O; iframe<useable_frames; iframe++)

comxvel[nsegs)(iframe]=xvel(nnodes+isegs][iframe];
comyvel[nsegs][iframe]=yvel(nnodes+isegs][iframe);
comzvel[nsegs][iframe]-zvel[nnodes+isegs](iframe);
comxacc[nsegs][iframe]=xacc(nodes+nsegs](iframe);
comyacc[nsegs][iframe]-yacc[nnodes+nsegs](iframe);
comzacc[nsegs][iframe]-zacc(nnodes+nsegs)[iframe];

seg_mass[nsegs]-body_mass;
strcpy(segs[nsegsj, "Whole body w);

/* calculate dynamics */

1_dynam(comxacc, comyacc, comzacc, nsegs+l, useable frames, seq mass,
x force, y_force, z_force);

Appendix

Source Code Page (311)

r dynam(xaacc, yaacc, zaacc, nsegs, useable frames, seg_moi,
x torque, y torque, z torque);

/* calculate energetics */

energetics (corny, comxvel, comyvel, comzvel, xavel, yavel, zavel,
seg_mass, seg_moi, nsegs, useableframes,

seg PE, seg_LKE, seg RKE);

}
change flag=FALSE;

switch (ifunc)
{

/* node position */

case 1:
node plot(positions, npositions, xp, yp, zp, 0, useable frames, times,

'Node Position", "Distance (m)");
break;

/* node velocity */

case 2:

nodejlot(positions, npositions, xvel, yvel, zvel, l, useableframes-1,
tir s, "Node Velocity", "Velocity (m/s)');

break;

/* node acceleration */

case 3:

nodeplot(positions, npositions, xacc, yacc, zacc, l, useableframes-1,
times, "Node Acceleration", 'Acceleration (m/s/s)');

break;

/* segment angle */

case 4:
segjlot(xapos, yapos, zapos, 0, useable frames, segs, nsegs, times,

"Segment Angle", "Angle (r)");
break;

/* segment angular velocity */

case 5:
segyplot(xavel, yavel, zavel, l, useable_frames-l, segs, nsegs, times,

"Segment Angular, Velocity', "Angular Velocity (r/s)");
break;

/* segment angular acceleration */

case 6:
seg ylot(xaacc, yaacc, zaacc, l, useable frames-1, segs, nseqs, times,

"Segment Angular Acceleration", "Angular Acceleration (r/s/s)");
break;

/* segment lengths */

case 7:
seg_lengths(segs, nsegs, seg_length);
break;

Appendix

Source Code Page (312)

/* node locus */

case 8:
locus(positions, npositions, xp, yp, zp, useable frames):
break;

/* forces */

case 9:
nodeylot(segs, nsegs+l, x force, y_force, z force, l, useableframes-1,

times, 'Resultant Force on COM-, `Force (N)");

break;

/* torques */

case 10:
segj, lot(x torque, y torque, z torque, l, useable frames-1, segs, nsegs,

times, "Torque about COM", "Torque (Nm)");

break;

/* energies */

case 11:

energyjlot(segs, nsegs, seg_PE, seq_LKE, seg_RXE, 1, useableframes-1,
times);

break;

/* options */

case 12:

change_flag-TRUE;
if (smoothed flag--TRUE) strcpy(menu2[01, "Raw data");

else strcpy(menu2(0J, "Smoothed data");

while ((iopt-menu("options: ", menu2,2)))-2)
{

switch (iopt)
{
case 1:

if (smoothed flag--TRUE)
{

strcpy(menu2[0], "Smoothed data");

smoothed flag=FALSE;

}

else
{

strcpy(menu2(0], "Raw data");

smoothed flag-TRUE;
}
break;

}
break;

/* do user specific analysis */

case 13:

user specific analysis(xp, yp, zp, xvel, yvel, zvel, xacc, yacc, zacc,
xapos, yapos, zapos, xavel, yavel, zavel, xaacc, yaacc, zaacc,
x force, y_force, z force, x torque, y torque, z torque,

Appendix

Source Code Page (313)

comx, corny, comz, comxacc, comyacc, comzacc,
body_comx, body_comy, body_comz, body_mass,
times, seg length, seg mass, seg_com, seq moi,
positions, npositions, nodes, nnodes, segs, nsegs, useableframes,
seg PE, seg LKE, seq RKE);

break;
}

/* finished */

toe_tip_and_body_COM_output()

/* routine to output toe tip and body COM information */

#include "params. h"

void toe tip and body COM output(positions, xp, yp, times, npositions, nftame)

char positions[MAX NODES+MAX SEGSJ(STRING_SIZEJ; /* position names
float xp[MAX NODES+MAX SEGS)(MAX_FRAMESJ; /* x coordinates */
float yp[MAX NODES+MAX SEGSJ[MAXC_FRAMES]; /* y coordinates */

float times(MAX FRAMESJ; /* times */

int npositions; /* number of positions
int nframe; /* number of frames */

int iposition;
int toe-tip;
int body_COM;
int iframe;

FILE *unit;

char fname(STRING
_SIZE);

char filename (STRING SIZE);

/* position counter
/* toe tip index */

/* body COM index */
/* frame counter
/* file pointer

/* intermediate filename */
/* full filename */

/* look for required positions */

for (iposition-O; lposition<npositions; iposition++)
{

if (strcmp("Toe tip", positions(iposition))==O) tce tip=iposition;
if (strcmp("Whole body COM", positions[iposition))--O) body_COM=ipositlon;

/* write out data */

do
{

/* get filename */

printf("Input EXCEL data file name ");
scanf("%s", fname);
strcpy(filename, ANALYSIS_DIRECTORY);

strcat(filename, ANALYSIS_PREFIX);

strcat(filename, fname);

strcat(filenane, ANALYSISSUFFIX EXCEL);

/* open file */

Appendix

Source Code Page (314)

unit-fopen(filename, "w");
} while (unit--NULL);

}

/* write out data in ASCII form suitable for EXCEL import */

fprintf(unit, "Time\O11Toe Tip x\O11Toe Tip y\011CM x\011CM y\015\012');
fprintf(unit, "\015\012");
for (iframe. 0; iframe<nframe; iframe++)
{

fprintf(unit, "%12.5e\011%12.5e\O11%12.5e\011%12.5e\011%12.5e\015\012",
times(iframe], xp[toe tip](iframe], yp(toe tip][iframe),

xp[body_COM][iframe], yp(body COM](iframe]);

fclose(unit);

printf("File %s written successfully\n", filename);

translate3d()

/* Subroutine produces a translation 4*4 matrix from the transformation vector */

void translate3d(tx, ty, tz, m)
double tx, ty, tz;
float m[41(43;

identity3d(m);
m[31[0]-(float)tx;
m[31[11-(float)ty;
m[31(21-(float)tz;

user_specific_analysls()

#include "params. h"

user specific_analysis(xp, yp, zp, xvel, yvel, zvel, xacc, yacc, zacc,
xapos, yapos, zapos, xavel, yavel, zavel, xaacc, yaacc, zaacc,
x force, y_force, z force, x torque, y_ torque, ztorque,
comx, corny, comz, comxacc, comyacc, comzacc,
body_comx, body comy, body_comz, body_mass,
times, seg_length, seg_mass, seg_com, seg moi,
positions, npositions, nodes, nnodes, segs, nsegs, nframe,

seg_PE, seg_LKE, seg_RKE)

int nnodes; /* Number of nodes

char nodes[MAX NODES][STRING SIZE]; /* Names of nodes */

int nframe; /* number of frames

char segs[MAX SEGS][STRING_SIZEJ; /* Names of segments
int nsegs; /* Number of segments
float seg_mass[MAX SEGSJ; /* array of segment masses

float seg_com[MAX_SEGS); /* array of segment relative COMs
float seg_moi[MAX_SEGS]; /* array of segment is
float times[MAX_FRAMES]; /* times (s) */
float xvel[MAX_NODES+MAX_SEGS][MAR_FRAMESJ; /* calculated velocities (m/s)

float yvel(MAX NODES+MAX_SEGS](MA)_FRAMES];

float zvel[MAX_NODES+MAX SEGS][MAX_FRAMES);

#include "params. h"

Appendix

Source Code Page (315)

float xacc[MAX NODES+MAX_SEGS][MAX_FRAMES]; /* calculated accelerations (m/s/s) */

float yacc(MAX NODES+MAX_SEGS](MAX_FRAMES];
float zacc(MAX NODES+MAX_SEGS)(MAX_FRAMES];
float xapos(MAX

_SEGS](MAXFRAMES);
/* angle of segment (radian) */

float yapos[MAX_SEGS][MAXFRAMES];
float zapos[MAX_SEGS](MAXFRAMES);
float xavel[MAR_SEGS][MAX_FRAMES]; /* calculated ang vels (rad/s) */

float yavel(MAX_SEGS][MAXFRAMES];
float zavel[MAX_SEGS][MAX_FRAMES];
float xaacc[MAX SEGS][MAX_FRAMES]; /* calculated ang accln (rad/s/s)

float yaacc(MAX_SEGS][MAXFRAMES];
float zaacc[MAX_SEGS][MAXFRAMES];
float body_comx(MAX FRAMES]; /* x centre of mass of animal (m) */
float body_comy(MA)FRAMES]; /* y centre of mass of animal (m)
float body_comz(MAX_FRAMES]; /* z centre of mass of animal (m)
float body_mass; /* mass of animal (kg) */
float comx[MAX_SEGS][MAX FRAMES]; /* x component of segment COM

float comy[MAX_SEGS](MAX FRAMES]; /* y component of segment COM

float comz[MAX_SEGS](MAX FRAMES]; /* z component of segment COM

float comxacc[MAX SEGS][MAX_FRAMES]; /* x component of seq COM accln
float comyacc[MAX_SEGS][MAX FRAMES]; /* y component of seq COM accln
float comzacc(MAX_SEGS][MAX_FRAMES]; /* z component of seq COM accln
float xp(MAX NODES+MAX_SEGS](MAX_FRAMES]; /* x position data used
float yp(MAX NODES+MAX SEGS][MAX_FRAMES]; /* y position data used

float zp[MAX NODES+MAX SEGS](MAX_FRAMES]; /* z position data used */

float x force(MAX_SEGS][MAXFRAMES]; /* x component of force */

float y_force(MAX_SEGS](MAXFRAMES]; /* y component of force

float z force[MAX_SEGS](MAXFRAMFS]; /* z component of force

float x torque(MAX_SEGS][MAXFRAMES]; /* torque in x. 0 plane
float y_torque(MAX_SEGS](MAXFRAMES]; /* torque in y-O plane
float z torque[MAX_SEGS](MAX_FRAMES]; /* torque in z-0 plane

float seg_length[MAX_SEGS]; /* mean segment lengths

char positions [MAX NODES+MAX_SEGS](STRING SIZE]; /* names for position data

int npositions; /* number of position items
float seg_PE(MAX_SEGS](MAX_FRAMES]; /* segment potential energy
float seg_LKE[MAX_SEGS][MAXFRAMES]; /* segment linear kinetic energy
float seq RKE(MAX_SEGS](MAXFRAMES]; /* segment rotational kinetic energy */

/* put user specified analysis routines in this function */

static char menul(J[STRING_SIZEJ- /* menu prortpts

{

"Sinplified Quadrupedal Analysis",
"Predictive Model Analysis",
"Toe tip and Body COM output",
"Exits

int nmenu=9; /* number of menu items */

int iret; /* menu return value */

/* menu */

while ((iret-menu("User Specific Analysis`, menul, nmenu))! -nmenu)
{

switch (fret)
{

case 1:
sinplified_quadrupedal(seg length, seg_mass, seq com,

zapos, x_force, y_force, ztorque, segs, nsegs, nframe, times);
break;

Appendix

Source Code Page (316)

case 2:
predictive-analysis (seq_length, seq_mass, seq_com,

zapos, x_force, y_force, z torque, segs, nsegs, nframe, times);
break;

case 3:
toe tip and body_COM_output(positions, xp, yp, times, npos it ions,

nframe);
break;

}

}

VI@W(i

iinclude "params. h"

void view()

/* this routine allows the user to view the video frames */

int iret; /* menu selection */
char fname[STRING SIZE]; /* picture file name
char filename[STRING_SIZEJ; /* full picture file name
static char menul(J(STRING_SIZE]- /* menu
{

-Read frame file",
"Write picture file`,
"Exit"

};

/* get into right graphics mode */

CLEAR GRAPH;

fret-1;
do
{

switch (iret)
{

case 1:

/* read in picture file */

readplc(;
break;

case 2:

/* write out picture file */

printf("Input picture file name

scanf (~%s", fnaxne);

strcpy(filename, PICTURE_DIRECTORY);

strcat(filename, PICTURE_PREFIX);

strcat(filename, fname);

strcat(filename, PICTURE_SUFFIX);

bitmap to file(display, TRUE, 0,0, filename, TRUE, 0.0,0.0,0,0, TRRE);

Appendix

Source Code Page (317)

break;
}

} while ((iret. menu("Select option: ", menul, 3))! _3);

/* terminate graphics */

CLEAR GRAPH;

/* finished */

}

wrnode()

#include "params. h"

void wrnode(title, nodes, nnodes, xpos, ypos, zpos, nframe, fspeed)

/* this routine writes out the node position file */

char title(STRING_SIZE];

char nodes[MAX_NODES][STRING_SIZE];
int nnodes;
float xpos[MAX NODES](MAX FRAMES];
float ypos(MAX NODES](MA)LFRAMES];
float zpos(MAX NODES][MAX_FRAMES];
int nframe;
int fspeed;

FILE *unit;

char fname(STRING SIZE);

char filename(STRING_SIZE];
int iframes;

ant anodes;

do
{

/* get filename */

/* file title line */
/* names of the nodes of the model */
/* the number of nodes */

/* the x world coordinates */
/* the y world coordinates */
/* the z world coordinates */
/* the number of frames */
/* the interval between frames */

/* file pointer
/* filename */

/* full filename */
/* counter frame number

/* counter node number */

printf("Input node data file name

scanf("%s", fname);

strcpy(filename, NODEDIRECTORY);

strcat(filename, NODEPREFIX);

strcat(filename, fname);

strcat(filename, NODE SUFFIX);

/* open file */

unit-fopen(filename, "w");
} while (unit==NULL);

/* write data */

fprintf(unit, "%s\n", title);
fprintf(unit, "%e\n", fspeed);
fprintf(unit, "%d\n", nframe);
for (iframes-O; iframes<nfrare; iframes++)

Appendix

Source Code Page (318)

{
fprintf(unit, "%d\n", iframes);
fprintf(unit, u%d\n", nnodes);
for (indes. O: inodes<nnodes; inodes++)
(

fprintf(unit, "%d %e %e %e\n", inodes, xpos(inodes)(iframesj,
ypos[inodesJ(iframes], zpos(inodes3(iframes));

fprintf(unit, "%s\n", nodes[inodesi);

}

/* close file */

fclose(unit);

/* print success message

printf("File %s written successfully\n", filename);

/* finished */

L
yesno()

#include "params. h"

Snt yesno(prompt)

/* this routine waits for the user to enter y (TRUE) or n (FALSE) via a mouse driven

menu */

char prompt(J; /* This is the menu title string

{
int reply; /* the value returned TRUE/FALSE */

int ixet=0; /* the value returned by the menu

static char menul(J(STRING SIZED= /* the menu
{

"Yes",

"Now

};

while (iret- O)
ixet-menu(prompt, menul, 2);

reply- iret--l 7 TRUE: FALSE;

return (reply);

L'
FORTRAN Glue Routines

fparams. h

implicit none

c max size of euqtion matrix

Appendix

Source Code Page (319)

integer MAX MATRIX

parameter (MAX MATRIX=50)

c number of DLT parameters

integer NDLT

parameter (NDLT-11)

dlt_parameters()

c This subroutine solves the DLT reconstruction equations
c calculating the parameters Ll to L11

c solved using minimax algorithm

subroutine dltyarameters(xw, yw, zw, q, r, nrefs, 1)

include 'fparams. h'

real xw(nrefs), yw(nrefs), zw(nrefs),
q(nrefs), r(nrefs)

integer nrefs
real l(nrefs)

c xw, yw, zw world coordinates of reerence points
c q, r screen coordinates of reference points
c nrefs number of reference points
c1 dlt parameters

double precision a(MAX_MATRIX, MAX MATRIX), b(MAX_MATRIX),

x(MAX_MATRIX), ta(MAX_MATRIX, MAX_MATRIX)

integer m, n, ndim, mdim, irank, iter, ifail

double precision tol, relerr, resmax

c m number of equations
c n number of unknowns
c ndim 1st dimension of a
c mdim 2nd dimension of a
c a ndim * mdim matrix for equations
c to transpose of a
c b m matrix of RHS of equations
c tol tolerance

c relerr max acceptable error

c resmax largest residual
c irank rank of matrix a

c iter number of iterations

c ifail failure flag

integer iref, i, im, in

c iref reference value counter

ci DLT parameter counter

c im, in counters to transpose matrix

c setup arrays for equation solution

do 10 iref-1, nrefs

a(iref*2-1,1)--xw(iref)
a(iref*2-1,2)--yw(iref)

Appendix

Source Code Page (320)

a(iref*2-1,3)--zw(iref)
a(iref*2-1,4)=-1.0
a(iref*2-1,5). 0.0
a(iref*2-1,6)-0.0
a(iref*2-1,7)-0.0
a(iref*2-1,8). 0.0
a(iref*2-1,9)-q(iref)*xw(iref)
a(iref*2-1,10)-q(iref)*yw(iref)
a(iref*2-1,11)-q(iref)*zw(iref)

a(Ire f*2,1)-0.0
a(iref*2,2)=0.0
a(iref*2,3)=0.0
a(iref*2,4)-0.0
a(iref*2,5)--xw(iref)
a(iref*2,6)=-yw(iref)
a(iref*2,7)=-zw(lref)
a(lref*2,8)=-1.0
a(iref*2,9)-r(iref)*xw(iref)
a (iref*2,10)-r (iref) *yw (iref)
a(iref*2,11)=r(iref)*zw(iref)

b(iref*2-1)--q(iref)
b(iref*2). -r(iref)

10 continue

c get values into variables

m=2*nrefs
c m=NDLT

n=NDLT

mdim=MAX_MATRIX
ndim=MAX_MATRIX
tol=0.0

relerr=0.0
ifail-1

c transpose a

do 20 im=1, m
do 30 in-1, n

ta (in, im) -a (im, in)
30 continue
20 continue

c call nag routine to perform calculation

call e02gcf(m, n, mdim, ndim, ta, b, tol, relerr, x,
1 resmax, irank, iter, ifail)

write(6,98)ifail, resmax, iter
98 format(' IFAIL = ', 12, ' RESMAX = ', ipel2.4, ' ITER = ', 110)

c put solution into correct array

do 40 1-1, NDLT
1(1)-x(1)

40 continue

return

Appendix

Source Code Page (321

I
end

dlt_recon()

c This routine uses the DLT parameters to reconstruct
c the. (x, y, z) coordinates from two sets of screen coordinates

c calculates the minimax solution of the equations

subroutine dlt_recon(la, lb, ga, ra, qb, rb, xxw, yyw, zzw)

include 'fparams. h'

real la(ll), lb(ll)
real ga, ra
real qb, rb
real xxw, yyw, zzw

c la, lb DLT reconstruction parameters

c qa, ra screen 1 (q, r) coordinates

c qb, rb screen 2 (q, r) coordinates

c xxw, yyw, zzw reconstructed world coordinates

double precision a(MAX MATRIX, MAX_MATRIX), b(MAX_MATRIX),

x (MAXMATRIX), ta(MAX_MATRIX, MAX_MATRIX)
integer m, n, ndim, mdim, irank, iter, ifail

double precision tol, relerr, resmax

c m number of equations
c n number of unknowns
c ndim 1st dimension of a
c mdim 2nd dimension of a
c a ndim * mdim matrix for equations
c to transpose of a
c b m matrix of RHS of equations
c tol tolerance
c relerr max acceptable error
c resmax largest residual
c irank rank of matrix a
c iter number of iterations

c ifail failure flag

integer im, in

c im, in counters to transpose matrix

c get values into array

a(1,1)-qa*la(9)-1a(1)
a(1,2)-qa*1a(10)-1a(2)
a(1,3)_ga*la(11)-1a(3)

b(1)-1a(4)-qa

a (2,1) -ra*1a (9) -1a (5)

a(2,2)=ra*la(10)-1a(6)
a(2,3)_ra*la(11)-1a(7)

b(2)-la(8)-ra

a (3,1) -qb*lb (9) -1b (1)

Appendix

Source Code Page (322)

a(3,2)=qb*lb(10)-lb(2)
a (3,3) -qb*lb (11)-lb (3)

b (3) -lb (4) -qb

a(4,1)-rb*lb (9)-lb (5)
a(4,2)-rb*lb(10)-lb(6)
a(4,3). rb*lb(11)-lb(7)

b(4)-lb(8)-rb

c get values into variables

m-4
n-3
mdim-MAX_MATRIX
ndim=MAX_MATRIX
tol-0.0

relerr-0.0
ifail-1

c transpose a

do 20 im-1, m
do 30 in-l, n

ta (in, im) -a (im, in)
30 continue
20 continue

c call nag routine to perform calculation

call e02gcf(m, n, mdim, ndim, ta, b, tol, relerr, x,
1 resmax, lrank, iter, ifail)

c put solution into correct variables

xxw-x(1)
YYw=x(2)
zzw-x(3)

return
end

general. c

CA general set of routines to pass values along to the NAG fortran routines

c string cleanup routine

subroutine cleanup(string)
include 'fparams. h'

character *80 string
integer i, f

f-0
do 10 1-1,80
if (f. ne. 0) then
string(i: i)-char(0)

else
if (string(i: i). eq. char(0)) then

Appendix

Source Code . Page (323)

f=1
endif

endif
10 continue

return
end

subroutine cnagsti(path, device, pawse)
include 'fparams. h'

character *80 path, device
logical pawse

call nagsti(path, device, pawse)
return
end

subroutine cj06ahf(title)
include 'fparams. h'

character *80 title

call cleanup(title)
call j06ahf(title)
return
end

subroutine cj06ajf(iaxis, title)
include 'fparams. h'

character *80 title
integer taxis

call cleanup(title)
call j06ajf(iaxls, title)
return
end

subroutine cj06zaf(string)
include 'fparams. h'

character *80 string

call cleanup(string)
call j06zaf(string)

return
end

program start

include 'fparams. h'

call gap
end

Appendix

Source Code Page (324)

digit. exe

C Routines

visllog. h

/* visilog. h - visilog information */

/* this structure uses high to low byte order for its long integers
/* this is NOT normal and hence the function to reverse the order of */
/* the bytes */

struct visiloglmageHeader

long int magicNumber;
long int pixelsPerLlne;
long int numberOfLines;
long int resl;
long int rest;
long int res3;
long int gridType;
long int res4;
long int arithmaticType;
long int bitsPerPixel;
long int res5;
long int x0rigin;
long int yOrigin:
long int res6;
long int res7;
long int vlsilogHeaderSize;
long int userHeaderSize;
long int res8;
long int totalHeaderSize;

1;

long int VisilogConvert(int);

/* rectangular grid */

/* long integer image */

/* routine to cenvert ordinary integers to visilog style reversed 4 byte integers */

long int VisilogConvert(value)
int value;
{

long int returnValue=OL;
unsigned char *pointerl, *pointer2;

unsigned char byte;

pointerl-(unsigned char *)&value;
byte=*pointerl;

pointer2-(unsigned char *)creturnValue+3;
*pointer2=byte;

pointerl++;
pointer2--;
byte-*pointerl;
*pointer2=byte;

return(returnValue);
}

Appendix

Source Code Page (325)

Appendix

Source Code Page (326)

dlglt. c

#include <stdio. h>
#include <time. h>
#include <sys\types. h>
#include <sys\timeb. h>
"include <conio. h>
"include <bios. h>
(include <graph. h>
#include <string. h>
#include <dos. h>
#include "matrox. h"
#include "visilog. h"

/define VBLANK Ox126c
period */
#define STATUS 0x026c

"define CONTROL2 OxOa6c

#define ODDFIELD 0x20

#define FGRACT 0x08
#define INTERVAL 8
#define STRINGSIZE 80

/* non-zero when in vertical blanking

/* status register */
/* control register 2 */
/* odd field flag */
/* frame grab active flag
/* frame interval between pulses */
/* default size of strings */

void main (void);
void SetupMatrox(void);
void SetupSerial(void);
void MainMenu(void);
void WriteSoundtrack(void);
void ReadSoundtrack(void);
void GrabSingleFrame(void);
void DigitizeFrames(void);
void SynchronizePulses(void);
void Controls(void);
void FrameSave(char *, int, int);
void FillIn(void);
void FileName(char *, int, char *);
int Menu(char *, char[][STRINGSIZE], int);

extern void grab4(void);
frames */

/* machine code routine to grab 4 successive

void main ()
{

/* initialize matrox card */

SetupMatrox 0;

/* initialize serial port

SetupSerial 0;

/* go do main menu loop */

MainMenu();

}

void MainMenu()
{

static char menul[](STRINGSIZE]=

Appendix

Source Code Page (327)

"Write Soundtrack',
"Read and Display Soundtrack",
"Grab Single Frame',
"Digitize Frames',
"Adjust Brightness and Contrast',
"Exit"

int fret; /* menu return value */

while ((ixet-Menu("Main Menu", menul, 6))l-6)
{

switch (iret)

case 1:
WriteSoundtrack();
break;

case 2:
ReadSoundtrack();
break;

case 3:
GrabSingleFrame();
break;

case 4:
DigitizeFrames(;
break;

case 5:
Controls();
break;

}

/* write the timed soundtrack onto the video tape */

void WriteSoundtrack()
{

unsigned int frameCounter;

unsigned int pulseCounter;
struct timeb timel, time2;
float elapsedTime;
unsigned char *lowByte, *highByte;

/* frame counter
/* pulse counter
/* time stores
/* elapsed time
/* pointers to individual bytes */

SetupSerial():

_clearscreen(_GCLEARSCREEN);
printf("Start dubbing on video recorder and press any key\n\n");

while (_bios keybrd(_KEYBRD READY)-O);
bios_keybrd(KEYBRD READ);

printf("Writing soundtrack\n\n\nPress any key when finished\n");

lowByte-(unsigned char *)apulseCounter;
highByte=lowByte+l;
pulseCounter-0;
ftime(&timel);

while (_bios_keybrd(KEYBRD_READY)--0)

Appendix

Source Code Page (328)

/* wait for change from odd to even field 4 times */

for (frax Counter-O; frameCounter<INTERVAL; frameCounter++)
{

while ((inp(STATUS)&ODDFIELD)! -0);
while ((inp(STATUS)&ODDFIELD)--0);

}
bios serialcom(_COM SEND, 0, (int)*lowßyte);
bios serialcom(COM SEND, 0, (int)*highByte);

pulseCounter++;
}
ftime(&time2);
elapsedTime-(float)tlme2. time-(float)timel. time+

(float)time2. millitm/1000.0-(float)timel. millitm/1000.0;
bios keybrd(KEYBRD READ);

printf("Time elapsed is %f\n", elapsedTime);
printf("Pulses written %u\n\n", pulseCounter);
printf("Expected elapsed time is %f\n",

(float)pulseCounter*(float)INTERVAL/25.0);

printf("\nPress any key to continue\n");

while (_bios_keybrd(KEYBRD_READY)==0);

bios_keybrd(KEYBRD READ);

}

/* read soundtrack and display the pulse number */

void ReadsoundtrackC)
{

unsigned int pulseCounter;
unsigned int bytel, byte2;

struct timeb timel, time2;
float elapsedTime;
unsigned char *lowByte, *highByte;

/* pulse counter
/* data bytes */
/* time stores
/* elapsed time
/* pointers to individual bytes */

clearscreen(GCLEARSCREEN);

lowByte-(unsigned char *)&pulseCounter;

highByte-lowByte+l;

/* synchronize to pulses */

SynchronizePulses();

/* all synchronized now - next character will be first of a pair */

ftiu (&tin 1);

while (blos_keybrd(_KEYBRD READY)==0)
{

bytel- blos_serialcom(_COM_RECEIVE, 0,0);

bytel=bytel&Ox00ff;
byte2-_bios_serialcom(COM RECEIVE, 0,0);
byte2=byte2&0xO0ff;

*lowBytes(unsigned char)bytel;
*highByte. (unsigned char)byte2;

settextposition(0,0);
printf("%5u", pulseCounter);

}

Appendix

Source Code Page (329)

ftime(&time2);
fg_snap(l);
fg_sbuf(l):
fg_sync(0);
elapsedTime-(float)time2. time-(float)timel. time+

(float)time2. millitm/1000.0-(float)timel. millitm/1000.0;
bios keybrd(KEYBRD READ);

printf("\nTime elapsed is tf\n", elapsedTime);
printf("Pulses read %u\n\n", pulseCounter);
printf("Expected elapsed time is "f\n",

(float)pulseCounter*(float)INTERVAL/25.0);

printf("\nPress any key to continue\n");

while (_bios_keybrd(KEYBRD_READY)- O);

bios_keybrd(KEYBRD READ);

fg_sync(1);
fg_sbuf(0)p

}

void GrabSingleFrame()
{

unsigned int bytel, byte2;
unsigned int pulseCounter;
unsigned char *lowByte, *highByte;

unsigned int pulse;

/* data bytes */
/* pulse counter
/* pointers to individual bytes
/* pulse counter */

clearscreen(GCLEARSCREEN);

lowByte-(unsigned char *)&pulseCounter;

highByte-lowByte+l;

printf("Input counter value : ");
scanf("%u", &pulse);

/* loop through numbered pulses */

_clearscreen(_GCLEARSCREEN);
printf("Searching for pulse %u\n", pulse);

/* synchronize

SynchronizePulsesC);

/* all synchronized now - next character will be first of a pair */

while (1)

bytel _bios_serialcom(COM_RECEIVE, 0,0);

bytel=bytel&0x0Off;

byte2= bios serialcom(_COM RECEIVE, 0,0);
byte2=byte2&OxOOff;

*1owByte=(unsigned char)bytel;
*highByte. (unsigned char)byte2;

if (pulse"=pulseCounter) break;

_settextposition(2,2);
printf("%5u", pulseCounter);

}

/* at right place now, so grab frame */

Appendix

Source Code Page (330)

fg_dquad(O); /* grab quadrant 0 */
fg_snap(1);
fg_sbuf(1); /* show buffer
fg_sync(0); /* internal sync */

printf("\nPress any key to continue\n');
while (bios_keybrd(_KEYBRD_READY)--O);

bios keybrd(xEYBRD READ);

fq_sync(1);
fg_sbuf(0);

/* external sync */
/* show incoming signal */

void DigitizeFrames()
{

unsigned int pulseCounter;
unsigned int bytel, byte2;

unsigned char *lowByte, *highByte;
unsigned int startPulse;
unsigned int numberofPulses;
unsigned int endPulse;
unsigned int pulse;
char sequenceName[STRINGSIZE];

char fileName(STRINGSIZE);

int frameCounter-0;

int temporaryFrameCounter;
int quadrant;
int field;

clearscreen(GCLEARSCREEN);

lowByte-(unsigned char *)&pulseCounter;
highByte-lowByte+1;

printf("input sequence name: ");
scanf("%cs", sequenceName);

printf("Input start pulse number: ");

scanf("%u", &startPulse);

printf("Input number of pulses : ");

scant("%u", &numberOfPulses);

endPulse-startPulse+numberOfPulses;

/* loop through numbered pulses */

/* pulse counter
/* data bytes */
/* pointers to individual bytes */
/* first pulse to start digitizing on
/* number of pulses to digitize over
/* end pulse for digitizing */
/* pulse counter
/* sequence name
/* file name */
/* frame counter
/* temporary frame counter t/
/* quadrant counter
/* field counter */

for (pulse-startPulse; pulse<endPulse; pulse++)
{

/* get even numbered frames first */

temporaryFrameCounter-frameCounter;

_clearscreen(_GCLEARSCREEN);
printf("Searching for pulse %u\n", pulse);

/* synchronize */

SynchronizePulses();

/* all synchronized now - next character will be first of a pair */

Appendix

Source Code Page (331)

while (1)
{

bytel-_bios_serialcom(_COM RECEIVE, 0,0);
bytel-byte1i0x0Off;
byte2- bios_serialcom(_COM RECEIVE, 0,0);
byte2-byte2&OxOOff;

*lowByte-(unsigned char)bytel;
*highByte-(unsigned char)byte2;

if (pulse--pulseCounter) break;

_settextposition(2,2);
printf("%5u", pulseCounter);

}

/* at right place now, so grab next 4 frames */
/* making sure every other frame grabbed */

;
_disable

o;
fg dquad(0);
fg_snap(1);
while(inp(VBLANK)--0);
while(inp(VBLANK)! -0);
while(inp(VBLANX)--0);
fq_dquad(1);
fg_snap(1);
while(inp(VBLANK)-=0);
while(inp(VBLANK)1-0);
while(inp(VBLANK)--0);
fg_dquad(2);
fg_snap(1);
while(1np(VBLANK)--0);
while(inp(VBLANK)I-0);
while(inp(VBLANK)--0);
fg_dquad(3);
fg snap(1);

enable 0;

/* interrupts off */
/* grab quadrant 0 */

/* grab quadrant 1 */

/* grab quadrant 2 */

/* grab quadrant 3 */

/* interrupts back on */

/* write all eight field out to files */

settextposltion(2,2);
printf("%5u\n\n", pulseCounter);
fq_sbuf(1); /* show buffer */
fg_sync(0); /* internal sync
for (quadrant-O: quadrant<4; quadrant++)
{

fg_dquad(quadrant);
for (field-O; field<2; field++)
{

FileName(sequenceName, frameCounter, fileName);
FrameSave(fileName, quadrant, field);
frameCounter++;

frameCounter+-2;
}
fg_sync(1); /* external sync
fg_sbuf(0); /* show incoming signal */

/* now get odd numbered frames */

frameCounter-temporaryFrameCounter+2;

Appendix

Source Code Page (332)

_clearscreen(_GCLEARSCREEN);
printf("Searchinq for pulse tu\n", pulse);

/* synchronize */

SynchronizePulses(;

/* all synchronized now - next character will be first of a pair */

while (1)
{

bytel-_bios serialcom(_COM RECEIVE, 0,0);

bytel=bytel&Ox00ff;
byte2- bios serialcom(_COM_RECEIVE, 0,0);

byte2-byte2t0x00ff;

*lowByte-(unsigned char)bytel;
*highByte-(unsigned char)byte2;

if (pulse- pulseCounter) break;

_settextposition(2,2);
printf("%5u", pulseCounter);

}

/* this time through skip a frame here */

while ((inp(STATUS)&ODDFIELD)1=0);

while ((inp(STATUS)&ODDFIELD)==0);

while ((inp(STATUS)&ODDFIELD)! =0);

/* at right place now, so grab next 4 frames */
/* making sure every other frame grabbed */

_disable
0;

fg_dquad(0);
fg_snap (1) ;
while(inp(VBLANK)- O);
while(inp(VBLANK)! -0);
while(inp(VBLANK)="0);
fg_dquad(l);
fg_snap(l);

while(inp(VBLANK)--0);
while(inp(VBLANK)! =0);
while(inp(VBLANK)« 0);
fg_dquad(2);
fg snap(1);
while(inp(VBLANK)==0);
while(inp(VBLANK)1-0);
while(inp(VBLANK)==0);
fg_dquad(3);
fq_snap(1);

_enable
0;

/* interrupts off */
/* grab quadrant 0 */

/* grab quadrant 1 */

/* grab quadrant 2 */

/* grab quadrant 3 */

/* interrupts back on */

/* write all eight field out to files */

_settextposition(2,2):
printf("%5u\n\n", pulseCounter);
fg_sbuf(1); /* show buffer */
fg sync(0); /* internal sync
for (quadrant-O; quadrant<4; quadrant++)
{

fg_dquad(quadrant);

Appendix

Source Code Page (333)

for (field-O; field<2; field++)
{

FileName(sequenceName, frameCounter, fileName);
FrameSave(fileName, quadrant, field);
frameCounter++;

}
frameCounter+-2;

}
frameCounter--2; /* correct frame count
fg_sync(l); /* external sync */
fg_sbuf(O); /* show incoming signal */

}
}

/* synchronize to sound pulses by checking for incrementing */

void SynchronizePulses O
{

unsigned char *1owFirst, *highFirst; /* pointers to first counter
unsigned char *lowSecond, *highSecond; /* pointers to second counter
unsigned int first, second; /* startup pulse counters
unsigned int bytel, byte2; /* bytes read serially */

SetupSerial();
lowFirst-(unsigned char *)Sfirst;
highFirst-lowFirst+l;
1owSecond-(unsigned char *)&second;
highSecond-lowSecond+l;

/* synchronize for data pairs */

while (1)
{

/* get two bytes and see if incrementing normally */

bytel-_bios_serialcom(_COM RECEIVE, 0,0);
bytel-bytel&OxOOff;
byte2-_bios_serialcom(COM RECEIVE, 0,0);
byte2=byte2&Ox00ff;

*lowFirst-(unsigned char)bytel;
*highFirst-(unsigned char)byte2;

bytel=_bios_serialcom(COM RECEIVE, 0,0);
bytel-byte1iOx00ff;

byte2-_bios serialcom(COM RECEIVE, 0,0);
byte2-byte2&Ox00ff;
*1ow$econd. (unsigned char)bytel;
*highSecond. (unsigned char)byte2;

/* if not incrementing, skip one byte and try again */

if (second! =first+l) bins serialcom(COM RECEIvE, 0,0);
else break;

}
}

/* setup and initialize the matrox card */

void SetupMatrox()
{

fg_inifmt(0x26c, 1,0,0,1,0); /* initialize card */

Appendix

Source Code Page (334)

fg dquad(0);
fg_chan(2);
fq_sync(1);
fq_quadm(1);
fg_autoset();
fg_sbuf(0);

}

/* setup and initialize the serial port */

void SetupSerial()
{

/* call bios routine */

/* display quadrant 0 */
/* input channel 2 */
/* external synch */
/* set 4 quadrant mode */
/* set gain and offset */
/* display signal */

bios_serialcom(COM INIT, 0, COM CHR8I COM STOP11 COM EVENPARITYI

_COM_600); }

/***** NB Routines after this point may need tidying up *****/

/* produce general menu */

int Menu(title, prompts, items)
char title[]; /* title string

char proapts[][STRINGSIZE]; /* pronpt strings *1

int items; /* number of items

{
int i; /* item counter
int key; /* key pressed */
Snt fret; /* return value */
int row; /* row numbers
char buffer(STRINGSIZE); /* string buffer */
int tab, len, max len-0; /* menu positioning */

_clearscreen(_GCLEARSCREEN);
settextposition(0, (80-strlen(title))/2);

outtext(title); /* print title */

for (i-0; i<items; i++)

1en-strlen(prompts(1]);
if (len>max len) max len-len;

}
tab-(80-(max len+9))/2:

row-2+(23-items*2)/2:
for (i-0; 1<items; 1++) /* print out profits
{

settextposition(row, tab);
sprintf(buffer, "(%li) %s`, i+l, prompts(i]);

_outtext(buffer);
row+-2;

settextposition(24,0);

do
{

/* get key press */

key-getch () ;
iret. key-(int)'o'; /* convert to integer

} while (iret<l II iret>items);

Appendix

Source Code Page (335)

}
return (lret); /* return value */

/* routine to set up user defined gain and offset */

void Controls()
{

int iret; /* menu selection
static int offset-100; /* offset */
static int gain-155; /* gain */
static char menul(J(STRINGSIZE)- /* menu 1 prompts
{

"Increase Gain",

"Decrease Gain",
"Increase Offset",

"Decrease Offset",
"Draw Histogram",

"Exit"

char buffer(STRINGSIZE};
long max value;
long hast buffer[256};

strcpy(menul[2], "Increase Offset ");
sprintf(buffer, "(t3d)", offset);
strcat(menul[21, buffer);

strcpy(menul[0], "Increase Gain
sprintf(buffer, "(%3d)", 255-gain);
strcat(menul(0], buffer);

/* set offset/gain and grab picture */

fg_offset(offset);
fg gain(gain);
fg_dquad(O);
fg_cgrab(1);
fg sbuf(1);

do
{

/* character buffer */

/* quadrant 0 */
/* continuous grabbing
/* show grab buffer */

iret-Menu("Control Options: ", menul, 6);
switch (iret)

case 1:
gain--5;
if (gain<O) gain=0;
fg_gain(gain);
break;

case 2:

gain+=5;
if (gain>255) gain=255;
fq gain(gain);
break;

case 3:

offset+-5;
if (offset>255) offset-255;
fq_offset(offset);
break;

case 4:

Appendix

Source Code Page (336)

offset--5; -
if (offset<O) offset-0;
fq_offset(offset):
break;

case 5:
fg_cgrab(0);
fg_sync(0);
FillIn();
max value-fg histo(hist buffer);
fg_setind(0);
fg_rectf(0,0,512,512);
fg_dhisto(max value, 100,500,350,255,255, hist buffer);

_outtext("Press
a key when ready");

while (getch()-=0);
fg_sync(1);
fg_cgrab(1);
break;

]
strcpy(menul[2], "Increase Offset
sprintf (buffer, " (%c3d) ", offset) ;
strcat(menul[2], buffer);
strcpy(menul[O], "Increase Gain
sprintf(buffer, U(%3d)0,255-gain);
strcat(menul[O), buffer);

} while (iret! -6);

/* back to default */

fg_sbuf(O);
fg_cgrab(0);

}

/* external signal */
/* continuous grab off */

/* frame save routine - heavily personalized for pip-1024 card */

void FrameSave(filename, quadrant, field)
char filename[); /* file name
int quadrant; /* sector number
int field; /* field number
{

FILE *unit;
int rows=256;
int columns=512;
int crow;
int ycount;
char buffer[5121;

struct visiloglmagE

/* file unit */
/* number of rows in picture
/* number of columns in picture

/* row counter */
/* y coordinate counter

/* row buffer */
Header fileHeader; /* visilog file header */

printf("Saving %s \n", filename);

unit=fopen(filename, "wb"); /* open file */

/* write out file header */

fileHeader. magicNumber-VisilogConvert(0x6931);
fileHeader. pixelsPerLine=VisilogConvert(columns);
fileHeader. numberOfLines-VisilogConvert(rows);
fileHeader. resl-VisilogConvert(1);
fileHeader. res2. VisilogConvert(0);
fileHeader. res3=VisilogConvert(0);
fileHeader. gridType-VisilogConvert(1); /+ rectangular */

Appendix

Source Code Page (337)

fileHeader. res4=Vi3ilogConvert(0);
fileHeader. arithmaticType-VisilogConvert(0x14);
fileHeader. bitsPerPixel-VisilogConvert(8);
fileHeader. res5-VisilogConvert(0);
fileHeader. xorigin=VisilogConvert(1):
fileHeader. yOrigin=VisilogConvert(1);
fileHeader. res6=VisilogConvert(1);
fileHeader. res7=VisilogConvert(0);
fileHeader. visilogHeaderSize=VisllogConvert(76);
fileHeader. userHeaderSize=VisilogConvert(0);
fileHeader. res8-VisilogConvert(0);
fileHeader. totalHeaderSize=VisilogConvert(76);

fwrite(if11eHeader, sizeof(fileHeader), 1, unit);

/* set up to read from right part of screen

ycount-field;

for (irow-O; irow<rows; irow++)
(

/* integer */

fg rowr(ycount, quadrant, buffer); /* read row into memory
fwrite(buffer, 512,1, unit); /* and write it to disk */
ycount++; /* increment ycount twice
ycount++;

fclose(unit);
}

/* close file */

/* fill in second field lines with first field lines */

void Fi11In()
{

int rows-256;
int columns=512;
int irow;
int ycount;
char buffer[5121;

/* number of rows in picture */
/* number of columns in picture

/* row counter */
/* y coordinate counter */

/* row buffer */

ycount=0;
for (crow=O; irow<rows; irow++)

fg_rowr(ycount, 0, buffer); /* read row into memory
ycount++; /* increment ycount */
fg_roww(ycount, 0, buffer); /* write over blank row
ycount++; /* increment ycount */

/* set up file name */

void FileName(sec_name, iframe, filename)

char seq name[]; /* sequence name
int iframe; /* frame number */
char filename[); /* file name
{

char string(41; /* number string */

strcpy(filename, segname); /* copy to file name */
if (strlen(filename)>8) filename[8)=0; /* truncate if required */

Appendix

Source Code Page (338)

sprintf(string, "%3.3i", iframe); /* convert number to string

strcat(filename, ". ");
_

/* add number as extension
strcat(filename, string);

1

Appendix

Source Code Page (339)

stretchplc
#include <stdlo. h>
#include <string. h>
#include <stdlib. h>

/* this program reads in a 512 by 256 pixel file and stetches it to 1024 by 768 */
/* visilog format */

(define XIN 512
(define YIN 256
(define XOUT 1024
(define POUT 768
(define XFACT 2
(define YFACT 3
(define STRINGSIZE 128

main(nparms, parms)
int nparms;
char *parms[];
{

FILE *unit;

char filename[STRINGSIZE];

char buffer[YIN][XIN];

char stretchBuffer(YOUT][XOUT];
int x, y;
int nbytes;
struct vlsilogImageHeader
{

long int magicNumber;
long int pixelsPerLine;
long int numberOfLines;
long int resl;
long int rest;
long int res3;
long int gridType;
long int res4:
long int arithmaticType;
long 1nt bltsPerPixel;
long int res5;
long int x0rigin;
long Snt yorigin;
long int res6;
long int res7;
long int visllogHeadersize;
long 1nt userHeaderSize;
long int res8;
long int totalHeaderSize;

} imageHeader;
char tempFile(STRINGSIZE);

char command(STRINGSIZE];

/* file pointer
/* filename */
/* buffer for file input

/* buffer for file output
/* counters */

/* block counter */

/* rectangular grid */

/* long integer image */

/* temporary file name
/* command string */

/* Open file and read image data */

strcpy(filename, parms(1));
unit-fopen(filename, "r");
if (unit==NULL)
{

printf("File %s not found\n', filename);

exit(-1);

Appendix

Source Code page (340)

/* get x and y range of input file */

fread(iimageHeader, sizeof(imageHeader), 1, unit);
if (imageHeader. pixelsPerLinel-XIN 11 imageHeader. numberOfLinesl=YlN)
{

printf("Wrong picture size\n");
exit(-1);

}

/* read data in */

nbytes-fread(buffer, XIN"YIN, 1, unit);
fclose(unit);
if (nbytes! =1)
{

printf("Error reading file %s\n', filename);
exit(-l);

/* stretch file */

for (y=O; y<YIN; y++)
{

for (x=O; x<XIN; x++)
{

stretchBUffer[y*YFACTJ[x*XFACT]=buffer[yJ(xl;

stretchBuffer[y*YFACT][x*XFACT+1]=buffer(yJ[x];
stretchBuffer[y*YFACT+1](x*XFACT]=buffer[y](x];
stretchBuffer(y*YFACT+IJ[x*XFACT+11=buffer(y][x];

stretchBuffer(y*YFACT+2][x*XFACT]=buffer[y](x];
stretchBuffer[y*YFACT+2][x*XFACT+1]-buffer[yJIx];

}

}
imageHeader. pixelsPerLine=XOUT;
imageHeader. numberOfLines=YOUT;

strcpy(tempFile, tempnam(NULL, "pic"));
unit-fopen(tenpFile, "w");
fwrite(&imageHeader, sizeof(imageHeader), l, unit);
fwrite(stretchBuffer, sizeof(stretchBuffer), l, unit);
fclose (unit) ;
strcpy(command, "mv
strcat(command, tempFile);

strcat(command, " ");
strcat(command, filename);

strcat(command, " a");
system (comnand);

Appendix

Source Code page (341)

Leaping Model

C Routines

Params. h

/* parameters file */

tinclude <stdio. h>
#include <string. h>
#include <stdlib. h>
(include <math. h>
Iinclude "MathConstants. h"

/* resource IDs */

#define MENU BAR ID 128

#define APPLE
-

MENU-ID 128
#define FILE MENU_ID 129
#define EDIT MENU ID 130
#define MODEL MENU ID 131

#define ABOUT ID 128
#define MESSAGE_ID 129

/* main menu bar */

/* apple menu
/* file menu
/* edit menu

/* model menu

/* about alert */
/* general message alert */

#define MODEL DEFINITION DIALOG ID 128 /* model definition dialog
#define UNSAVED DATA DIALOG_ID 129 /* unsaved data dialog "/
#define OPTIONSDIALOG ID 130 /* options dialog */
(define SEGMENTS_DIALOG_ID 131 /+ segments dialog
; define PROGRESS DIALOG ID 132 /* progress dialog */

/* menu items */

#define ABOUT ITEM 1 /* apple menu */

#define NEW ITEM 1 /* file menu
#define OPEN_ITEM 2

"define SAVE_ITEM 4
#define SAVE_AS_ITEM 5
#define WRITE_ITEM 7

#define QUIT ITEM 9

#define UNDO ITEM 1 /* edit menu
#define CUT_ITEM 2

#define COPY_ITEM 3

#define PASTE_ITEM 4

#define CLEAR ITEM 6

#define DEFINE ITEM 1 /* nadel menu "/
#define OPTIONS ITEM 2

#define SEGMENTS ITEM 3

/* dialog items */

#define OK 1
/define CANCEL 2

Appendix

Source Code Page (342)

idefine MODEL_DEFINITION MTJ X3 /* model definition dialog
(define MODEL

_DEFINITION
MTJY 4

Idefine MODEL_DEFINITION_ANKLE_X 5
Idefine MODEL_DEFINITION_ANKLE_Y 6
Idefine MODEL_DEFINITION_INEE_X 7
#define MODEL_DEFINITION_IcNEE_Y 8
#define MODEL_DEFINITION_HIP_X 9
#define MODEL DEFINITION HIP Y 10
(define MODEL_DEFINITION_NOSETIP_X 11
#define MODEL DEFINITION NOSETIP Y 12

#define UNSAVED DATA NO SAVE 3

#define OPTIONS-MASS 3
#define OPTIONS_G 4
#define OPTIONS-TIME-TOLERANCE 5
#define OPTIONS_RANGE 6
#define OPTIONS-TIMES 7
#define OPTIONS_ITERATIONS 8
Idefine OPTIONS EXTENSION FRACTION 9

/* unsaved data dialog */

/* options dialog box */

#define SEGMENTS FOREFOOT MASS 3
#define SEGMENTS_HINDFOOTMASS 4
#define SEGMENTS-CALF-MASS 5
#define SEGMENTS_THIGH_MASS 6

Idefine SEGMENTS_TORSO_MASS 7

ldefine SEGMENTS_FOREFOOT_COM 8
#define SEGMENTS_HINDFOOT_COM 9
#define SEGMENTS_CALF_COM 10

#define SEGMENTS_THIGH_COM 11
Idefine SEGMENTS TORSO COM 12

/define PROGRESS INDICATOR 3

/* apple constants */

#define MIN SLEEP OL

#define NIL_MOUSE_REGION OL

#define REMOVE_ALL_EVENTS 0

#define NULL STRING "\p"
#define MOVE_TO_FRONT (WindowPtr)-1L

#define DIALOG NULL EVENT 1000

/* segments dialog box */

/* progress dialog */

/* null event returned from dialog */

/* program parameters */

#define STRING_SIZE 128

#define MAX-RESULTS 100

#define FILE_OWNER 'LM!! '

#define FILE_TYPE 'LM!! '

idefine FILE_DIALOG_X 75

; define FILE DIALOG Y 75

/* type definitions */

typedef struct
{

double x;
double y;

} Coordinate;

typedef struct

/* string size */
/* maximum number of time intervals

/* created file ownership */
/* binary file type */
/* position of file dialog box */

Appendix

Source Code Page (343)

double x;
double y;
double theta;
double r;

} Vector;

typedef struct
{

Coordinate toeTip;
Coordinate midTarsalJoint;
Coordinate ankle;
Coordinate knee;

Coordinate hip;

Coordinate noseTip;
Coordinate foreFootCOM;
Coordinate hlndFootCOM;

Coordinate calfCOM;
Coordinate thighCOM;
Coordinate torsoCOM;
Coordinate bodyCOM;

} ModelCoordinates;

typedef struct
{

double foreFoot;
double hindFoot;
double calf;
double thigh;
double torso;

} ModelCOMs;

typedef struct
{

double foreFoot;
double hindFoot;
double calf;
double thigh;
double torso;

} ModelMass;

typedef struct
{

Vector foreFoot;

Vector hindFoot;

Vector calf;
Vector thigh;

Vector torso;

} ModelVectors;

/* prototypes */

void AdjustMenus(void);
void HandleAppleChoice(short);

void HandleEditChoice(short);

void HandleFileChoice(short);

void HandleModelChoice(short);

void HandleMenuChoice(long);

void HandleMouseDown(void);

void HiLiteOK(DialogPtr);

short IsDAWindow(WindowPtr);

void main (void);

Appendix

Source Code Page (344)

void MainLoop(void);
void MenuBarlnit(void);
void ToolBoxlnit(void);
void Dialoglnit(void);
void DialogEnd(void);
void OpenFile(AppFile *);
Boolean DeflneModel(void);
Boolean Options(void);
Boolean Segments(void);
void GetModelSettings(void);
void SetModelSettings(void);
void GetoptionsSettings(void);
void SetoptionsSettings(void);
void GetSegmentsSettings(void);
void SetSegmentsSettings(void);
void New(void);
void SaveFile(void);

void SaveAs(void);

Boolean UnsavedData(void);

void Write(void);
Boolean Calculate(void);
double VectorLength(Vector);
double VectorAngle(Vector):
double VectorX(vector):
double VectorY(Vector);

Boolean LengthFunction(double, int, double);

void WriteResults(char *, double);

void Rotate(Coordinate *, double);

void XAxisize(ModelCoordinates *);

void CentresOfMass(ModelCoordinates *);

void OpenFromDocument(void);
pascal Boolean NullEventFilter(DialogPtr, EventRecord *, short *);

/* globals */

extern Boolean gDone; /* done flag */

extern EventRecord gTheEvent; /* event structure

extern MenuHandle gAppleMenu; /* menu handles */

extern MenuHandle gFileMenu;
extern MenuHandle gEditMenu;
extern MenuHandle gModelMenu;
extern DialogPtr gModelDefinitionDialog;
extern DialogPtr gUnsavedDataDialog;
extern DialogPtr gOptionsDialogBox;
extern DialogPtr gSegmentsDialog;
extern DialogPtr gProgressDialog;

extern Boolean gDefinitlonOK;
extern Boolean gDefinitionToSave;

extern SFReply gDefinitionFile;

/" dialog pointer "/

/* model definition in memory
/* stuff to save flag

/* definition file stuff */

extern ModelCoordinates gModel; /* transformed model parameters
extern ModelCoordinates gUserModel; /* user input model parameters
extern ModelCoordinates gResults[MA)_RESULTS]; /* model results */

extern ModelVectors gVectors; /* model vectors
extern ModelCOMs gCOMs; /* model COM's

extern ModelMass gSegmentMass; /* segment masses
extern double gMass; /* animal mass */

extern double g; /* acceleration due to gravity */

extern double gTimeTolerance; /* time tolerance */

extern int gNumberofTimes; /* number of time values */

Appendix

Source Code Page (US)

extern int gMaxIterations; /* maximum number of iterations
extern double gTimes(MAX RESULTS); /* times calculates

extern double gRange; /* leap range */
extern double gFMax; /* maximum force
extern double gSMax; /* maximum extension
extern double gTMax; /* maximum time */
extern double gExtensionFraction; /* fraction of max extension */

MathConstants. h

/* some useful constants */

f define M_ E 2.7182818284590452354
f define M_LOG2E 1.4426950408889634074

define M_ LOG10E 0.43429448190325182765
i define M_ LN2 0.69314718055994530942
i define M_LN10 2.30258509299404568402
i define M_ PI 3.14159265358979323846
I define M_ PI_2 1.57079632679489661923
t define M_ PI_4 0.78539816339744830962

define M_ 1_PI 0.31830988618379067154
1 define M_ 2_PI 0.63661977236758134308
i define M_ 2_SQRTPI 1.12837916709551257390
I define M_ SQRT2 1.41421356237309504880
I define M_ SQRT1_2 0.70710678118654752440
I define MAXFLOAT ((float)3.40282346638528860e+38)

AdjustMenus()

/* routine to set which menu options are available */

(include "Params. h"

void AdjustMenusC)
{

/* check for desk accessories */

if (IsDAWindow(FrontWindow()))
{

Enableltem(gEditMenu, UNDO_ITEM);
EnableItem(gEditMenu, CUT ITEM);
Enable Item(gEdltMenu, COPY ITEM);
Enableltem(gEditMenu, PASTE_ITEM);
Enableltem(gEditMenu, CLEAR_ITEM);

}

else
{

Disableltem(gEditMenu, UNDO ITEM);
Disableltem(gEditMenu, CUT ITEM);

Disableltem(gEditMenu, COPY ITEM);
Disableltem(gEditMenu, PASTEITEM);
Disableltem(gEditMenu, CLEAR ITEM);

/* check for data in memory */

if (gDefinitionOK)
{

Enableltem(gFileMenu, WRITE ITEM);

Disableltem(gFileMenu, OPEN STEM);

Appendix

Source Code page (346)

else
{

Disableltem(gFileMenu, WRITE ITEM);

Enable Item(gFileMenu, OPEN ITEM);

Calculate()

#include 'Params. h"

/* routine to perform the actual modelling calculations */

Boolean Calculate()
{

short itemHit;
short itemType;
Rect itemRect;
Handle itemHandle;
double pValue;
int pCounter;
double time;
double timeInterval;
double tolerance;
char buffer(STRING SIZED;

/* item hit */
/* dummy item type

/* dummy item rect
/* item handle */
/* loop parameter

/* loop counter
/* current time
/* time interval for results */

/* absolute tolerance value
/* string buffer */

/* put up percentage completed window */

Showwindow(gProgressDialog);

/* correct for Body COM on x axis and calculate COMB

gModel-gUserModel;
XAxisize(&gModel);

/* calculate start vectors */

gVectors. foreFoot. x-gModel. midTarsalJoint. x;
gVectors. foreFoot. y-gModel. midTarsalJoint. y;

gVectors. hindFoot. x-gModel. ankle. x-gModel. midTarsalJoint. x;

gVectors. hindFoot. y-gModel. ankle. y-gModel. midTarsalJoint. y;
gVectors. calf. x=gModel. knee. x-gModel. ankle. x;
gVectors. calf. y-gModel. knee. y-gModel. ankle. y;
gVectors. thigh. x-gModel. hip. x-gModel. knee. x;
gVectors. thigh. y-gModel. hip. y-gModel. knee. y;
gVectors. torso. x gModel. noseTip. x-gModel. hip. x;
gVectors. torso. y-gModel. noseTip. y-gModel. hip. y;

/* calculate lengths */

gVectors. foreFoot. r-VectorLength(gVectors. foreFoot);

gvectors. hindFoot. r-VectorLength(gVectors. hindFoot);

gVectors. calf. r-VectorLength(gVectors. calf);

gVectors. thigh. r-VectorLength(gVectors. thigh);

gVectors. torso. r-VectorLength(gVectors. torso);

/* and angles */

gVectors. foreFoot. theta-vectorAngle(gVectors. foreFoot);

gvectors. hindFoot. theta-VectorAngle(gVectors. hindFoot);

Appendix

Source Code page (347)

gVectors. calf. theta=VectorAngle(gVectors. calf);
gVectors. thigh. theta-VectorAngle(gVectors. thigh);
gVectors. torso. theta-VectorAngle(gVectors. torso);

/* calculate start joint positions

gResults[0]. toeTip. x-0.0;
gResults[0]. toeTip. y-0.0;
gResults[0]. midTarsalJoint. x-gModel. midTarsalJoint. x;
gResults[0]. midTarsalJoint. y-gModel. midTarsalJoint. y;
gResults(0]. ankle. x-gModel. ankle. x;
gResults(0]. ankle. y-gModel. ankle. y;
gResults[0]. knee. x-gModel. knee. x;
gResults(0]. knee. y-gModel. knee. y;
gResults[0]. hip. x-gModel. hip. x;
gResults[0]. hip. y=gModel. hip. y;
gResults[0]. noseTip. x-gModel. noseTip. x;
gResults[0]. noseTip. y-gModel. noseTip. y;

/* rotate to position Body COM on X axis and calculate COMs

XAxisize(&gResults(0]);

/* now end joint positions

gResults[gNumberOfTimes-1]. toeTip. x-0.0;
gResults[gNumberofTimes-1]. toeTip. y=0.0;
gResults[gNumberofTimes-1]. midTarsalJoint. x=gVectors. foreFoot. r;
gResults[gNumberOfTimes-l]. midTarsalJoint. y-0.0;
gResults[gNumberOfTimes-l]. ankle. x-

gResults(gNumberOfTimes-l]. midTarsalJoint. x + gVectors. hindFoot. r;
gResults[gNumberOfTimes-l]. ankle. y-0.0;
gResults[gNumberOfTimes-1]. knee. x-

gResults(gNumberOfTimes-l]. ankle. x + gVectors. calf. r;
gResults(gNumberOfTimes-1]. knee. y-0.0;
gResults[gNumberOfTimes-l]. hip. x-

gResults[gNumberOfTimes-l]. knee. x + gVectors. thigh. r;
gResults[gNumberOfTimes-l]. hip. y-0.0;
gResults[gNumberOfTimes-l]. noseTip. x-

gResults[gNumberOfTimes-l]. hip. x + gVectors. torso. r;
gResults[gNumberOfTimes-l]. noseTip. y-0.0;

/* rotate to position Body COM on X axis

XAxisize(&gResults[gNumberOfTimes-1]);

/* calculate gFMax */

gSMax - gExtensionFraction *(gitesults[gNumberOfTimes-l]. bodyCOM. x
gResults[0]. bodyCOM. x);

gFMax =(gMass * gRange *g/(2.0 * gSMax);

gTMax = sqrt(2.0 * gMass * gSMax / gFMax);

timelnterval - gTMax /(double)(gNumberofTimes);

tolerance - timelnterval * gTimeTolerance;

/* time loop */

time-timelnterval;
for (pCounter-l; pCounter<gNumberOfTimes; pCounter++)
{

GetDltem(gProgressDialog, PROGRESS INDICATOR, iltemType,

Appendix

Source Code Page (348)

iitemHandle, &itemRect);

sprintf(buffer, "%d out of %d times calculated`,

pCounter, gNumberOfTimes);
SetIText(itemHandle, CtoPstr(buffer));

ModalDialog(NullEventFilter, &itemHit);
if (itemHit==CANCEL)
{

SysBeep(10);
Hidewindow(gProgressDialog);

return(TRUE);

if (LengthFunction(time, pCounter, gTimeTolerance)--FALSE)
{

ParamText('\pLength function iteration failed to converge,
NULL_STRING, NULL STRING, NULLSTRING);

NoteAlert(MESSAGE_ID, NULL);

}
time+-timeInterval;

GetDltem(gProgressDialog, PROGRESS INDICATOR, LitemType,

LitemHandle, sitemRect);

sprintf(buffer, "%d out of %d times calculated",

pCounter, gNumberOfTimes);
SetlText(itemHandle, CtoPstr(buffer));

ModalDialog(NullEventFilter, &itemHit);
if (itemHit--CANCEL)
{

SysBeep(10);
Hidewindow(gProgressDialog);

return (TRUE);

/* rotate 45° */

for (pCounter=O; pCounter<gNumberOfTimes; pCounter++)
{

Rotate(igResults[pCounterJ. midTarsalJoint, M PI 4);

Rotate(&gResults[pCounterj. ankle, M_PI_ 4);

Rotate(&gResults[pCounter]. knee, M_PI 4);

Rotate(&gResults[pCounter]. hip, M PI 4);

Rotate (&gResults[pCounterJ. noseTip, M PI 4);

/* and do times while we're at it */

gTimeslpCounterl. timeInterval*(double)pCounter;

SysBeep(10);
WriteResults("Test Result File", timeInterval);

HideWindow(gProgressDialog);

return (TRUE);

CentreOfMasso

Appendix

Source Code Page (349)

/* routine to calculate centres of mass

tinclude "Params. h"

void CentresofMass(model)
ModelCoordinates *model; /* model */
{

/* segment centres of mass

model->foreFootCOM. x - gCOMs. foreFoot *(model->midTarsalJoint. x -
model->toeTip. x)+ model->toeTip. x;

model->foreFootCOM. y - gCOMs. foreFoot *(model->mldTarsalJoint. y -
model->toeTip. y)+ model->toeTip. y;

model->hindFootCOM. x - gCOMs. hindFoot *(model->ankle. x -
model->midTarsalJoint. x)+ model->midTarsalJoint. x;

model->hindFootCOM. y - gCOMs. hindFoot *(model->ankle. y -
model->midTarsalJoint. y)+ model->midTarsalJoint. y;

model->calfCOM. x - gCOMs. calf *(model->knee. x -
model->ankle. x)+ model->ankle. x;

model->calfCOM. y - gCOMs. calf *(model->knee. y -
model->ankle. y) + model->ankle. y;

model->thighCOM. x - gCOMs. thigh *(model->hip. x -
model->knee. x) + model->knee. x;

model->thighCOM. y - gCOMs. thigh *(model->hip. y -
model->knee. y)+ model->knee. y;

model->torsoCOM. x gCOMs. torso *(model->noseTip. x -
model->hip. x)+ model->hip. x;

model->torsoCOM. y - gCOMS. torso *(model->noseTip. y -
model->hip. y)+ model->hip. y;

/* overall centre of mass */

model->bodyCOM. x -(model->foreFootCOM. x * gSegmentMass. foreFoot +

model->hindFootCOM. x * gSegmentMass. hindFoot +

model->calfCOM. x * gSegmentMass. calf +

model->thighCOM. x * gSegmentMass. thigh +

model->torsoCOM. x * gSegmentMass. torso)/

(gSegrentMass. foreFoot + gSegmentMass. hindFoot +
gSegmentMass. calf + gSegmentMass. thigh +
gSegrmntMass. torso);

model->bodyCOM. y -(model->foreFootCOM. y * gSegmentMass. foreFoot +

model->hindFootCOM. y * gSegmentMass. hindFoot +

model->calfCOM. y * gSegmentMass. calf +

model->thighCOM. y * gSegmentMass. thigh +
model->torsoCOM. y * gSegmentMass. torso)/
(gSegmentMass. foreFoot + gSegmentMass. hindFoot +

gSegmentMass. calf + gSegmentMass. thigh +

gSegrentMass. torso);

DeflneModel()

/* routine to define the parameters of the leaping model */

#include "Params. h"

Appendix

Source Code Page (350)

Boolean DefineModel()
{

short itemHit; /* item hit value +/

/* show dialog window */

SetModelSettings();
ShowWindow(gModelDefinitionDialog);

HiLiteOK(gModelDefinitionDialoq);

while (TRUE)
{

ModalDialog(NULL, LitemHit);

switch(1temHit)
{

/* OK button */

case (OK) :
Hidewindow(gModelDefinitionDialog);
GetModelSettings();

gDefinitionToSave-TRUE;
gDefinitionOK=TRUE;

return(TRUE);
break;

/* Cancel button */

case (CANCEL):
HideWindow(gModelDefinitionDialog);

return(FALSE);
break;

}

} L. ý

DlalogEnd()

/* routine to initialise dialog windows */

#include "Params. h"

void DialogEnd()
{

DisposeDialog(gModelDefinitionDialog);
DisposeDialog(gUnsavedDataDialog);
DisposeDialog(goptionsDialogBox);
DisposeDialog(gSegmentsDialog);
DisposeDialog(gProgressDialog);

}

DialoginItO

/* routine to initialise dialog windows */

; include "Params. h"

void Dialoglnit()

Appendix

Source Code Page (351)

gMode1DefinitlonDialog=GetNewDialog(MODELDEFINITION DIALOG_ID, NULL,
MOVE_TO_FRONT);

gUnsavedDataDialog-GetNewDialog(UNSAVEDDATA(UNSAVED_DATA_D
MOVE_TO_FRONT);

gOptionsDialogBox=GetNewDialog(OPTIONS DIALOG_ID, NULL,
MOVE_TO_FRONT);

gSegmentsDialog-GetNewDialog(SEGMENTS DIALOG ID, NULL,
MOVE_TO_FRONT);

gProgressDialog-GetNewDialog(PROGRESS DIALOG_ID, NULL,
MOVE TO FRONT);

GetModelSettings()

/* routine to get the model parameters settings from the dialog box

#include "Params. h"

void GetModelSettings()
{

short itemType;, /* dummy item type
Rect itemRect; /* dummy item rect
Handle itemHandle; /* item handle */

char buffer[STRING_SIZE]; /* string buffer */

GetDItem(gM delDefinitionDialog, MODEL DEFINITION MTJ X, iitemType,

&itemHandle, &itemRect);
GetlText(itemHandle, buffer);
sscanf(PtoCstr(buffer), "$lf", i(gUserModel. midTarsalJoint. x));

GetDitem(gModelDefinltionDialog, MODEL DEFINITION_MTJ Y, IitemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "tlf", &(gUserModel. midTarsalJoint. y));

GetDltem(gModelDefinitlonDialog, MODEL DEFINITION ANKLE X, iitemType,
£itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", &(gUserModel. ankle. x));

GetDltem(gModelDefinitionDialog, MODELDEFINITIONANKLE Y, iitemType,
&itemHandle, &itemRect);

GetIText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", i(gUserModel. ankle. y));

GetDltem(gModelDefinitionDlalog, MODEL DEFINITION_KNEE X, titemType,
&itemHandle, &itemRect);

GetIText(itemHandle, buffer);

sscanf(PtoCstr(buffer), Otlf", &(gUserModel. knee. x));

GetDltem(gModelDefinitionDialog, MODEL_DEFINITIONKNEE Y, IitemType,
titemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", &(gUserModel. knee. y));

GetDltem(gModelDefinitlonDialog, MODEL DEFINITION_HIP X, IitemType,
4itemHandle, citemRect);

GetIText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", i(guserModel. hip. x));

Appendix

Source Code page (352)

GetDltem(gModelDefinitlonDlalog, MODELDEFINITION HIP Y, JitemType,
&itemHandle, iitemRect);

GetlText(ltemHandle, buffer);

sscanf(PtoCstr(buffer), "ilf", &(gUserModel. hip. y));

GetDltem(gModelDefinitionDialog, MODELDEFINITION NOSETIP X, &itemType,
iitemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", i(gUserModel. noseTip. x));

GetDltem(gModelDefinitionDialog, MODELDEFINITION NOSETIP Y, &itemTypo,
&itemHandle, iitemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "tlf", &(guserModel. noseTip. y));

/* calculate centres of mass

CentresOfMass(&gUserModel);
}

GetOptionSettings()

/* routine to get the options parameters settings from the dialog box

#include "Params. h"

void GetOptionsSettings()
{

short itemType; /* dummy item type
Rect itemRect; /* dummy item rect
Handle itemHandle; /* item handle */

char buffer(STRING SIZE); /* string buffer */

GetDItem(gOptionsDialogBox, OPTIONS MASS, £itemType,

&itemHandle, &itemRect);
GetlText(itemHandle, buffer);
sscanf(PtoCstr(buffer), "%lf", &gMass);

GetDltem(gOptionsDialogBox, OPTIONS G, LitemType,
iitemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", &g);

GetDltem(gOptionsDialogBox, OPTIONSTIMETOLERANCE, &itemType,
&itemHandle, titemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", &gTimeTolerance);

GetDltem(gOptionsDialogBox, OPTIONS_RANGE, iitemType,

&itemHandle, &itemRect);
GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", &gRange);

GetDltem(gOptionsDialogBox, OPTIONS_TIMES, iitemType,
4itemHandle, 4itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%d", &gNumberOfTimes);

GetDltem(gOptlonsDialogBox, OPTIONS ITERATIONS, iitemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

Appendix

Source Code Page (353)

sscanf(PtoCstr(buffer), `%d", &gMaxIterations);

GetDltem(gOptionsDialogBox, OPTIONS EXTENSION FRACTION, iitemType,
<emHandle, &itemRect);

GetlText(itemHandle, buffer);
sscanf(PtoCstr(buffer), "tlf", &gExtensionFraction);

}

GetSegmentSettings()

/* routine to get the model parameters settings from the dialog box

#include "Params. h`

void GetSegmentsSettings()
{

short itemType; /* dummy item type */
Rect itemRect; /* dummy item rect
Handle itemHandle; /* item handle */

char buffer(STRING_SIZE]; /* string buffer */

GetDltem(gSegmentsDlalog, SEGMENTS_FOREFOOT_MASS, iitemType,
iitemHandle, titemRect);

GetlText(itemHandle, buffer);
sscanf(PtoCstr(buffer), "tlf", &gSegmentMass. foreFoot);

GetDltem(gSegmentsDialog, SEGMENTS_HINDFOOT_MASS, &itemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%1f", &gSegmentMass. hindFoot);

GetDltem(gSegmentsDialog, SEGMENTS CALF_MASS, &itemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", & gSegmentMass. calf);

GetDltem(gSegmentsDialog, SEGMENTS_THIGH MASS, &itemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "41f", &gSegmentMass. thigh);

GetDltem(gSegmentsDialog, SEGMENTSTORSO MASS, &itemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "tlf", &gSegmentMass. torso);

GetDItem(gSegmentsDialog, SEGMENTS_FOREFOOT COM, &itemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "$lf", &gCOMs. foreFoot);

GetDltem(gSegmentsDialog, SEGMENTS_HINDFOOT COM, &itemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), u%lf", &gCOMs. hindFoot);

GetDltem(gSegmentsDialog, SEGMENTS_CALF COM, &itemType,

&itemHandle, &itemRect);
GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%lf", &gCOMs. calf);

Appendix

Source Code Page (354)

GetDltem(gSegmentsDialog, SEGMENTSTHIGH COM, iitemType,
&itemHandle, &itemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "%1f", igCOMs. thigh);

GetDltem(gSegmentsDlalog, SEGMENTSTORSO COM, iitemType,
iitemHandle, iltemRect);

GetlText(itemHandle, buffer);

sscanf(PtoCstr(buffer), "tlf", igCOMs. torso);

L'
HandleAppleCholce()

/* routine to handle choices in the apple menu

#include "Params. h"

void HandleAppleChoice(theltem)
short theItem;
{

Str255 accName;
short accNumber;

switch (theItem)
{
case ABOUT_ITEM:

NoteAlert(ABOUT ID, NULL);
break;

default:

GetItem(gAppleMenu, theltem, accName);
accNumber=OpenDeskAcc(accName);
break;

}

L'
HandleEditCholce()

/* routine to handle edit menu choice */

1lnclude "Params. h"

void HandleEditChoice(theltem)
short theltem;
{

SystemEdit(theitem-1);
}

/* routine to handle choices from the file menu

"include "Params. h"

void HandleFileChoice(theltem)
short theItem;
{

switch (theltem)
{
case NEW_ITEM:

if (UnsavedData())

Appendix

Source Code Page (355)

{
New () ;

}

break;

case OPEN_ITEM:
OpenFile(NULL);
break;

case SAVE_ITEM:

SaveFile();
break;

case SAVE_AS_ITEM:
SaveAs 0;
break;

case WRITE_ITEM:

; write o;
break;

case QUIT_ITEM:

if (UnsavedData())
{

gDone-TRUE;
}

break;
}

L'
HondleMenuCholce()

/* routine to handle menu choices */

#include `Params. h"

void HandleMenuChoice(menuChoice)
long menuChoice;
{

short theMenu;
short theItem;

if (menuChoice! =0)
{

theMenu=HiWord(menuChoice);

theItem=LoWord(menuChoice);

switch (theMenu)

case APPLE MENU ID:

HandleAppleChoice(theltem);
break;

case FILE MENU ID:

HandleFileChoice(theItem);
break;

case EDIT
-

MENU-ID:
HandleEditChoice(theItem);
break;

case MODEL MENU ID:

Appendix

Source Code Page (356)

HandleModelChoice(theltem);
break;

}
HiliteMenu(0);

}
HandleModelChoice 0
/* routine to handle choices from the model menu */

#include "Params. h"

void HandleModelChoice(theItem)
short theItem;
{

switch (theItem)
{
case DEFINE_ITEM:

DefineModel();
break;

case OPTIONS_ITEM:

Options o;
break;

case SEGMENTS_ITEM:
Segments();
break;

}
}

HandleMouseDown()

/* routine to handle mouse downs */

/include "Params. h"

void HandleMouseDown()
{

WindowPtr whichwindow;
short thePart;
long menuChoice, windsize;

thePart-FindWindow(gTheEvent. where, iwhichWindow);
switch (thePart)

case inMenuBar:

AdjustMenus();

menuChoice-MenuSelect(gTheEvent. where);
HandleMenuChoice(menuChoice);
break;

case inSysWindow:
Systemflick(&gTheEvent, whichwindow);
break;

}

HILIteOKO

Appendix

Source Code Page (357)

/* routine to halite the OK button on a standard modal dialog box */

finclüde "Params. h"

void HiLiteOK(dialogPointer)
DialogPtr dialogPointer;
{

short itemType;
Handle item;
Rect box;
GrafPtr oldPort;

}

/* get old drawing port

GetPort(ioldPort);

/* set new port */

SetPort(dialogPointer);

/* pointer to dialog box for hilite */

/* item type
/* item */

/* rect enclosing item */

/* get details about the OK button */

GetDltem(dialogPointer, OK, &itemType, Litem, ibox);

/* and do the hiliting */

PenSlze(3,3);
InsetRect(&box, -4, -4);
FrameRoundRect(&box, 16,16);

/* back to old port */

SetPort(&oldPort);

IsDAWIndow()

/* routine to test for DA Window */

tinclude "Params. h"

short IsDAWindow(whichWindow)
WindowPtr whichWindow;
{

if (whichWindow==NULL) return (FALSE);

else /* DA windows have negative windowKinds
return(((WindowPeek)whichWindow)->windowKind<O);

LengthFunctlon()

/* routine to calculate the positions of the joints at a given time */

Boolean LengthFunction(goalTime, pCounter, tolerance)
double goalTime; /* time required for distance calculation
int pCounter; /* result counter */
double tolerance; /* absolute time tolerance *1

#include "Params. h"

#define DEBUG 0

Appendix

Source Code Page (358)

{
double pValue=0.5;
double deltaP-0.25;
int loopCounter-0;
double time;
ModelVectors vectors;

/* range checking */

if (goalTime<-0.0)
{

goalTime-0.0;
pValue-1.0;

if (goa1Time>=gTMax)
{

goa1Time-gTMax;
pValue-0.0;

/* initial value of p */
/* initial p change value */

/* iteration counter */
/* calculated time from p
/* intermediate vectors */

/* loop till goalTime is within tolerance of actual time */

while (TRUE)

/* count interation */

loopCounter++;

/* calculate vectors */

vectors. foreFoot. theta - pValue * gVectors. foreFoot. theta;
vectors. foreFoot. r - gVectors. foreFoot. r;
vectors. foreFoot. x - VectorX(vectors. foreFoot);
vectors. foreFoot. y - VectorY(vectors. foreFoot);

vectors. hindFoot. theta - pValue * gVectors. hindFoot. theta;

vectors. hindFoot. r - gVectors. hindFoot. r;

vectors. hindFoot. x - VectorX(vectors. hindFoot);

vectors. hindFoot. y - VectorY(vectors. hindFoot);

vectors. calf. theta - pValue * gVectors. calf. theta;

vectors. calf. r - gVectors. calf. r;
vectors. calf. x - VectorX(vectors. calf);
vectors. calf. y - VectorY(vectors. calf);

vectors. thigh. theta - pValue * gVectors. thigh. theta;

vectors. thigh. r - gVectors. thigh. r;
vectors. thigh. x - VectorX(vectors. thigh);

vectors. thigh. y - VectorY(vectors. thigh);

vectors. torso. theta = pValue * gVectors. torso. theta;
vectors. torso. r - gVectors. torso. r;
vectors. torso. x - VectorX(vectors. torso);

vectors. torso. y " VectorY(vectors. torso);

/* calculate joint positions */

gResults[pCounter]. toeTip. x-0.0;
gResults[pCounter]. toeTip. y=0.0;

Appendix

Source Code Page (359)

gResults(pCounterj. midTarsalJoint. x-

gResults[pCounterj. toeTip. x+

vectors. foreFoot. x;

gResults(pCounterj. midTarsalJoint. y-
gResults(pCounterj. toeTip. y+
vectors. foreFoot. y;

gResults[pCounter]. ankle. x-

gResults[pCounter]. midTarsalJoint. x+

vectors. hindFoot. x;

gResults[pCounter]. ankle. y-
gResults[pCounter]. midTarsalJoint. y+
vectors. hindFoot. y;

gResults[pCounter). knee. x-
gResults(pCounter). ankle. x+
vectors. calf. x;

gResults[pCounter]. knee. y-
gResults[pCounter]. ankle. y+
vectors . calf. y;

gResults[pCounter]. hip. x-
gResults[pCounter). knee. x+
vectors. thigh. x;

gResults[pCounter). hip. y-
gResults[pCounter]. knee. y+
vectors. thigh. y;

gResults[pCounter]. noseTip. x-

gResults[pCounter]. hip. x+
vectors. torso. x;

gResults[pCounter]. noseTlp. y-
gResults[pCounter]. hip. y+
vectors. torso. y;

/* rotate and align with x axis

XAxisize(&gResults[pCounter]);

/* calculate time from position of COM

time-sgrt(2.0 * gMass * (gResults[pCounter]. bodyCOM. x -
gResults[0]. bodyCOM. x) / gFMax);

of DEBUG

printf("p - %. 121f time - t. 121f\n", pvalue, time);
fendif

/* check to see if close enough to required value to do */

if (fabs(time-goalTime)<tolerance) return(TRUE);
else
{

if (time>goalTime) pValue+-deltaP;
else pValue--deltaP;

if (pValue>1.0) pValue=1.0;
if (pValue<0.0) pValue=0.0;

deltaP*=0.5;
}

Appendix

Source Code Page (360)

/* check iteration count */

if (loopCounter>gMaxIterations) return(FALSE);
}

}

malnO

/* main routine */

linclude "Params. h"

/* globale */

Boolean gDone; /* done flag */

EventRecord gTheEvent; /* event structure
MenuHandle oAppleMenu; /* menu handles */

MenuHandle gFileMenu;
MenuHandle gEditMenu;
MenuHandle gModelMenu;
DialogPtr gModelDefinitionDialog;
DialogPtr gUnsavedDataDialog;
DialogPtr goptlonsDialogBox;
DialogPtr gSegmentsDialog;
DialogPtr gProgressDialog;

Boolean gDefinitionOK=FALSE;
Boolean gDefinitionToSave-FALSE;
SFReply gDefinitionFile;

/* dialog pointer */

/* model definition in memory
/* stuff to save flag */
/* definition file stuff */

ModelCoordinates gModel;
ModelCoordinates gUserModel;
ModelCoordinates gResults[MAX RESULTSJ;

ModelVectors gVectors;
Mode1COMs gCOMs;
ModelMass gSegmentMass;
double gMass;
int gNumberofTimes;
int gMaxIterations;
double g;
double gTimeTolerance;
double gTimes[MAX RESULTS);

double gRange;
double gFMax;
double gSMax;
double gTMax;
double gExtensionFraction;

void main()
{

ToolBoxlnitC);

MenuBarlnit();
DialogInit();
New U;

OpenFrorrDocument();

MalnLoopo);

exit (0)
}

/* transformed model parameters
/* user input model parameters

/* model results */
/* model vectors

/* model COM's */

/* segment masses
/* animal mass */

/* time increment
/* maximum number of iterations

/* acceleration due to gravity
/* fractional time tolerance */
/* times calculates

/* leap range */
/* maximum force */
/* maximum extension
/* maximum time */

/* fraction of max extension */

Appendix

Source Code page (361)

/* main program loop */

linclude "Params. h"

void MalnLoop()
{

char theChar;

gDone=FALSE;
while(gDone--FALSE)
{

/* key character */

/* get events */

WaitNextEvent(everyEvent, £gTheEvent, MIN SLEEP, NILMOUSE REGION):

/*ýand act on it */

ýr
ý'ä. "

-switch (gTheEvent. what)
{
case mouseDown:

HandleMouseDown();
break;

case keyDown:

case autoKey:
theChar-gTheEvent. message i charCodeMask;
if ((gTheEvent. modlfiers i cmdKey)! -0)
{

Ad justMenus () ;
HandleMenuChoice(MenuKey(theChar));

}

break;

-case updateEvt:
break;

}Ar

MenuBarinit()

/* routine to set up menu bar */

#include "Params. h"

void MenuBarInit()
{

Handle myMenuBar;

myMenuBar-GetNewMBar(MENU BAR_ID);

SetMenuBar(myMenuBar);

gAppleMenu-GetMHandle(APPLE_MENU_ID);
AddResMenu(gAppleMenu, 'DRVR');

gFileMenu-GetMHandle(FILE_MENU_ID);

gEditMenu-GetMHandle(EDIT MENU_ID);

gModelMenu-GetMHandle(MODEL MENO_ID);

DrawMenuBar();

Appendix

Source Code Page (362)

}

NewO

/* routine to reset globals to their startup values

tinclude "Params. h"

void New()
{

/* reset the dialog boxes */

DialogEnd () ;,
Dialoglnit();

/* model */

GetModelSettings();

/* definition file status */

gDefinitionOK=FALSE;
gDefinitionToSave-FALSE;

gDefinitionFile. fName[0}=0;

/* options

GetOptionsSettings 0;

/* segments */

GetSegmentsSettings 0;
}

NullEventsFllter()

/* dialog filter routine to return NULL EVENTS

#include "Params. h"

pascal Boolean NullEventFilter(theDialog, theEvent, itemHit)
DialogPtr theDialog; /* calling dialog */
EventRecord *theEvent; /* event returned */
short *iteMit; /* item hit return code */

if (theEvent->what- nullEvent)
{

*itejtDIALOG NULL EVENT;

return(TRUE);

return(FALSE);
}

OpenFIIe()

/* routine to open an existing model definition file */

#include "Params. h"

Appendix

Source Code Page (363)

void OpenFile(theFile)
AppFile *theFile;

Point myPoint;
SFTypeList typeList;
short numTypes;
short refNum;
long numBytes;

/* check to see if passed a file */

/* pointer to file */

/* position of dialog
/* type selection */

/* number of acceptable filetypes
/* file reference number */

/* number of bytes to read */

if (theFile"=NULL)
(
myPoint. h-FILE_DIALOG X;

myPoint. vsFILE_DIALOG Y;

numTypes-1;
typeList[0]-FILE TYPE;

SFGetFile(myPoint, NULLSTRING, NULL, numTypes, typeList, NULL,

&gDefinitionFile);

else
{

gDefinitionFile. good-TRUE;
strcpy((char *)gDefinitlonFlle. fName, (char *)theFlle->fName);
gDefinitionFile. vRefNum=theFile->vRefNum;

}

/* process goefinitionFile */

if (gDefinitionFile. good==TRUE)
{

gDefinitionToSave=FALSE;
gDefinitionOK-TRUE;

/* open and read file */

FSOpen(gDefinitionFile. fName, gDefinitionFile. vRefNum, &refNum);

numBytes-(long) sizeof(gUserModel);
FSRead(refNum, &numBytes, igUserModel);

numBytes-(long)sizeof(gSegmentMass);
FSRead(refNum, &numBytes, (char *)&gSegmentMass);

numBytes-(long)sizeof(gCOMs);

FSRead(refNum, inumBytes, (char *)&gCOMs);

numBytes-(long)sizeof(gMass);
FSRead(refNum, &numBytes, (char *)&gMass);

numBytes-(long)sizeof(g);
FSRead(refNum, &numBytes, (char *)tg);

numBytes-(long)sizeof(gTimeTolerance);
FSRead(refNum, &numBytes, (char *)&gTimeTolerance);

numBytes=(long) sizeof(gRange);
FSRead(refNum, &numBytes, (char *)&gRange);

numBytes=(long) sizeof(gNumberOfTimes);
FSRead(refNum, &numBytes, (char *)&gNumberOfTimes);

Appendix

Source Code Page (364)

L'

numBytes-(long) sizeof(gMaxIterations);
FSRead(refNum, &numBytes, (char *)&gMaxIterations);

numBytes-(long) sizeof(gExtenslonFraction);
FSRead(refNum, &numBytes, (char *)&gExtensionFraction);

/* close file */

FSClose(refNum);

}

OpenFromDocument()

/* opens a file that has been selected by the finder */

#include "Params. h"

void OpenFromDocumentC)
{

short message;

short count;
AppFile theFile;

/* count documents */

/* document count message
/* document count number */
/* file selected */

CountAppFiles(&message, &count);

/* check count, and whether print requested (not available) */

if (count--O) return;
if (message- appPrint) exit(O);

/* get first file only (and then only if type FILE TYPE) */

GetAppFiles(1, &theFile);
C1rAppFiles(1);

if (theFile. fType! -FILE_TYPE) return;

OpenFile(&theFile);

Options()

/* routine to set the modelling options */

#include "Params. h"

Boolean Options()
{

short itemHlt;

/* show dialog window */

SetOptionsSettings();
ShowWindow(goptionsDialogBox);

HiLiteOK(goptionsDialogBox);

/* item hit value */

Appendix

Source Code Page (365)

while (TRUE)
{

ModalDialog(NULL, &itemHit);

switch(itemHit)

/* OK button */

case (OK) :.
HideWindow(goptionsDialogBox);
GetoptionsSettings();

gDefinitionToSave-TRUE;
return(TRUE);
break;

/* Cancel button */

case (CANCEL):

HideWindow(goptionsDialogBox);

return (FALSE);

break;
}

}

Rotate()

/* routine to do a 2D rotation by an arbitrary amount to a coordinate */

; include "Params. h"

void Rotate(point, angle)
Coordinate *point;
double angle;
{

double x, y;
double sinAngle, cosAngle;

/* do trig */

sinAngle-sin(angle);
cosAngle-cos(angle);

/* point to be rotated */
/* angle to rotate (radians) */

/* temporary storage for new angle */
/* temporary storage of the trig stuff */

/* do matrix rotation stuff */

x-point->x*cosAng1e-point->y*sinAng1e;
y-point->x*sinAngle+point->y*cosAngle;

point->x=x;
point->y-y;

L'
SaveAso)

/* routine to perform named save function */

#include "Params. h"

void SaveAs()

Appendix

Source Code Page (366)

{
SFReply reply;
Point myPoint;
short refNum;
char prompt(STRING SIZE);
long numBytes;

}
else
{

if (gDefinitionFile. fName[0)=-0)
{

/* reply from file dialog */
/* position of dialog */

/* file reference number
/* prompt file name */

/* number of bytes to write */

strcpy(prorrpt, (char *)"\pUntitled");

strcpy(prortpt, (char *)gDefinitionFile. fName);

myPoint. h-FILE_DIALOG X;

myPoint. v=FILE DIALOG Y;

SFPutFile(myPoint, NULL STRING, prortpt, NULL, &reply);

if (reply. good--TRUE)
{

strcpy((char *)gDefinitionFlle. fName, (char *)reply. fName);

gDefinltlonFile. vRefNum-reply. vRefNum;

/* create and open file */

FSDelete(gDefinitionFile. fName, gDefinitionFile. vRefNum)"
Create(gDeflnitionF11e. fNan, gDefinitionFile. vRefNum,

FILE OWNER, FILETYPE):

FSOpen(gDefinitionFile. fName, gDefinitionFile. vRefNum, &refNum);

/* write out data */

numBytes-(long) sizeof(guserModel);
FSWrite(refNum, &numBytes, (char *)&gUserModel);

numBytes-(long) sizeof(gSegmentMass);
FSWrite(refNum, &numBytes, (char *)&gSegmentMass);

numBytes-(long)sizeof(gCOMs);
FSWrite(refNum, inumBytes, (char *)&gCOMs);

numBytes-(long)sizeof(gMass);
FSWrite(refNum, &numBytes, (char *)igMass);

numBytes-(long)sizeof(g);
FSWrite(refNum, inumBytes, (char *)fig);

numBytes-(long) sizeof(gTimeTolerance);
FSWrite(refNum, &numBytes, (char *)&gTimeTolerance);

numBytes=(long) sizeof(gRange);
FSWrite(refNum, tnumBytes, (char *)&gRange);

numBytes-(long)sizeof(gNumberOfTimes);
FSWrite(refNum, inumBytes, (char *)&gNumberOfTimes);

numBytes-(long)sizeof(gMaxIterations);
FSWrlte(refNum, &numBytes, (char *)&gMaxIterations);

numBytes-(long) sizeof(gExtensionFraction);

Appendix

Source Code Page (367)

FSWrlte(refNum, &numBytes, (char *)&gExtenslonFractlon);

/* close file */

FSClose(refNum);

gDefinitionToSave-FALSE;
}

}

SaveFIIe()

/* routine to perform un-named save function */

#include "Params. h"

void SaveFile ()
{

short refNum;
long numBytes;
char buffer(STRING_SIZE*5];

/* file reference number */
/* number of bytes to write */

/* buffer space */

if (gDefinitionFile. fName[O]==O)

SaveAs{);
}

else
{

FSOpen(gDefinitionFile. fName, gDefinitionFile. vRefNum, irefNum);

/* write out data */

numBytes-(long) sizeof(gUserModel);
FSWrite(refNum, &numBytes, (char *)&goserModel);

numBytes-(long) sizeof(gSegmentMass);
FSWrite(refNum, &numBytes, (char *)&gSegmentMass);

numBytes-(long)sizeof(gCOMs);
FSWrite(refNum, anumBytes, (char *)&gCOMs);

numBytes-(long)sizeof(gMass);
FSWrite(refNum, &numBytes, (char *)&gMass);

numBytes-(long)sizeof(g);
FSWrite(refNum, &numBytes, (char *)&g);

numBytes-(long)sizeof(gTimeTolerance);
FSWrite(refNum, &numBytes, (char *)&gTimeTolerance);

numBytes-(long) sizeof(gRange);
FSWrite(refNum, &numBytes, (char *)&gnange);

numnytes-(long) sizeof(gNumberOfTimes);
FSWrite(refNum, &numBytes, (char *)&gNumberofTimes);

numBytes-(long) sizeof(gMaxIterations);
FSWrite(refNum, &numBytes, (char *)&gMaxIteratlons);

numBytes-(long) sizeof(gExtensionFraction);
FSWrite(refNum, &numBytes, (char *)&gExtensionFraction);

Appendix

Source Code page (368)

/* close file */

FSClose(refNum);

gDefinitionToSave=FALSE;

II

Segments()

/* routine to set the modelling options

linclude "Params. h"

Boolean Segments()

short itemHit; /* item hit value

/* show dialog window */

SetSegmentsSettings(;

ShowWindow(gSegmentsDialog);

HiLiteOK(gSegmentsDialog);

while (TRUE)

{
ModalDialog(NULL, &itemHit);
switch(itemHlt)
{

/* OK button */

case (OK):

HideWindow(gSegmentsDialog);
GetSegmentsSettings();

gDeflnitionToSave-TRUE;
return(TRUE);
break;

/* Cancel button */

case (CANCEL):

Hldewindow(gSegmentsDialog);

return(FALSE);
break;

}
}

L'
SetModelSettings()

/* routine to set the model parameters settings for the dialog box

#include "Params. h"

void SetModelSettings()
{

short itemType; /* dummy item type
Rect itemRect; /* dummy item rect
Handle itemHandle; /* item handle */

}

Appendix

Source Code Page (369)

char buffer[STRING SIZE]; /* character buffer */

GetDItem (gModelDefinitlonDialog, MODELDEFINITION MTJ X, iitemType,
iitemHandle, &itemRect);

sprintf(buffer, "tlg", gUserModel. midTarsalJoint. x);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gModelDefinitlonDialog, MODEL DEFINITION_MTJ Y, LitemType,
iitemHandle, titemRect);

sprintf(buffer, "i1g", gUserModel. midTarsa1Joint. y);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gModelDefinitionDialog, MODEL_DEFINITION ANKLE X, GitemType,

&itemHandle, iitemRect);

sprlntf(buffer, "%lg", gUserModel. ankle. x);
SetIText(itemHandle, CtoPstr(buffer));

GetDltem(gModelDefinitionDialog, MODEL_DEFINITIONANKLE Y, LitemType,

sitemHandle, &itemRect);

sprintf(buffer, "%lg", gUserModel. ankle. y);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gModelDefinitlonDialog, MODEL_DEFINITIONKNEE X, iitemType,

<emHandle, &itemRect);

sprintf(buffer, "tlg", gUserModel. knee. x);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gModelDefinitionDialog, MODEL DEFINITION KNEE Y, <emType,

LitemHandle, &itemRect);

sprlntf(buffer, "%lg", gUserModel. knee. y);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gModelDefinitionDialog, MODEL_DEFINITION_HIP X, &itemType,
&itemHandle, &itemRect);

sprintf(buffer, "%lg", gUserModel. hip. x);
SetlText(itemHandle, CtoPstr(buffer));

GetDitem(gModelDefinitionDialog, MODEL_DEFINITION_HIP Y, &itemType,
LitemHandle, iitemRect);

sprintf(buffer, "%lg", gUserModel. hip. y);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gModelDefinitionDialog, MODEL DEFINITION_NOSETIP X, &itemType,
&itemHandle, iitemRect);

sprintf(buffer, "%lg", gUserModel. noseTip. x);

SetlText(itemHandle, CtoPstr(buffer));

GetDItem(gModelDefinitionDialog, MODEL_DEFINITION NOSETIP Y, &itemType,

LitemHandle, &itemRect);

sprintf(buffer, "%lg", gUserModel. noseTip. y);
SetlText(itemHandle, CtoPstr(buffer));

SetOptionsSettings()

/* routine to set the options parameters settings for the dialog box */

#include "Params. h"

void SetOptionsSettings()

Appendix

Source Code Page (370)

I
short itemType;

Rect itemRect;

Handle itemHandle;

/* dummy item type
/* dummy item rect "/
/* item handle */

char buffer(STRING_SIZE); /* character buffer */

GetDltem(gOptionsDialogBox, OPTIONS MASS, iltemType,

iitemHandle, iitemRect);

sprintf(buffer, "%lg", gMass);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gOptlonsDialogBox, OPTIONS G, LitemType,

iitemHandle, &itemRect);

sprintf(buffer, "t1g , g);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gOptionsDialogBox, OPTIONS_TIMETOLERANCE, LitemType,

&itemHandle, &itemRect);

sprintf(buffer, '%1g', gT1n Tolerance);
SetlText(itemHandle, CtoPstr(buffer));

GetDItem(gOptionsDialogBox, OPTIONS RANGE, iitemType,

&itemHandle, &itemRect);

sprintf(buffer, "41g", gRange);
SetIText(itemHandle, CtoPstr(buffer));

GetDltem(gOptlonsDialogBox, OPTIONS TIMES, £ItemType,

&itemHandle, &itemRect);

sprintf(buffer, "id", gNumberOfTimes);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gOptlonsDialogSox, OPTIONS ITERATIONS, iitemType,

iltemHandle, titemRect);

sprintf(buffer, "td", gMaxIterations);
SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gOptionsDialogBox, OPTIONS EXTENSION FRACTION, iitemType,

iitemHandle, &itemRect);

sprintf(buffer, "tlg", gExtensionFraction);
SetlText(itemHandle, CtoPstr(buffer));

}

SetSegmentsSettings()

/* routine to set the model parameters settings for the dialog box */

#include `Params. h"

GetDltem(gSegmentsDialoq, SEGMENTS FOREFOOT_MASS" itemType,

&itemHandle, &itemRect);

sprintf(buffer, "%1g", gSegmentMass. foreFoot);
SetlText(itemHandle, CtoPstr(buffer));

void SetSegmentsSettings{)
{

short itemType; /* dummy item type

Rect itemRect; /* dummy item rect

Handle itemHandle; /* item handle */

char buffer[STRING_SIZE]; /* character buffer */

Appendix

Source Code Page (371)

GetDltem(gSegmentsDialoq, SEGMENTS HINDFOOT_MASS, iitemType,
iitemHandle, iitemRect);

sprintf(buffer, "%lg", gSegmentMass. hindFoot);

SetIText(itemHandle, CtoPstr(buffer));

GetDltem(gSegmentsDialog, SEGMENTSCALF MASS, ittemType,

&itemHandle, iitemRect);

sprintf(buffer, "%lg", gSegmentMass. calf);
SetIText(itemHandle, CtoPstr(buffer));

GetDltem(gSegmentsDialog, SEGMENTSTHIGH MASS, LitemType,

&itemHandle, titemRect);

sprintf(buffer, "%lg", gSegmentMass. thigh);

SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gSegmentsDialog, SEGMENTSTORSO MASS, &itemType,

titemHandle, iitemRect);

sprintf(buffer, "%lg", gSegmentMass. torso);

SetIText(itemHandle, CtoPstr(buffer));

GetDltem(gSegmentsDialog, SEGMENTSFOREFOOT COM, iitemType,

&itemHandle, &itemRect);

sprintf(buffer, "%lg", gCOMs. foreFoot);

SetIText(itemHandle, CtoPstr(buffer));

GetDltem(gSegmentsDialog, SEGMENTS_HINDFOOT COM, &itemType,

&itemHandle, &itemRect);

sprintf(buffer, "%lg", gCOMs. hindFoot);

SetlText(itemHandle, CtoPstr(buffer));

GetDltem(gSegmentsDialog, SEGMENTS CALF_COM, &itemType,

&itemHandle, &itemRect);

sprintf(buffer, "%lg", gCOMs. calf);
SetIText(itemHandle, CtoPstr(buffer));

GetDltem(gSegmentsDialog, SEGMENTS_THIGH_COM, &itemType,

&itemHandle, &itemRect);

sprintf(buffer, "%lg", gCOMs. thigh);

SetIText(itemHandle, CtoPstr(buffer));

GetDltem(gSegmentsDialog, SEGMENTS TORSO_COM, &itemType,

&itemHandle, &itemRect);

sprintf(buffer, "%lg", gCOMs. torso);
SetIText(itemHandle, CtoPstr(buffer));

ToolBoxlnit()

/* Routine to initialize various toolbox managers

tinclude "Params. h'

void ToolBoxlnitC)
{

InitGraf(&thePort);

InitFonts 0;

FlushEvents(everyEvent, REMOVE_ALLEVENTS);

Initwindows O;

InitMenus();

TEInitC);
InitDialogs(NULL);

Appendix

Source Code Page (372)

InitCursorO;
}

UnsavedData(

/* routine to check for and save any unsaved model data file

tinclude'"Params. h"

Boolean UnsavedDataC)
{

Boolean dlalogDone=FALSE; /* dialog done flag */

short itemHlt; /* item hit value */
Boolean returnCode=TRUE; /* return code */

/* test for unsaved data */

if (gDefinitionToSavet=TRUE) return(returnCode);

/* show dialog window */

Showwindow(gUnsavedDataDialog);
HiLiteOK(gUnsavedDataDialog);

while (dialogDone--FALSE)

{
ModalDialog(NULL, &itemHit);

switch(itemHit)

Save button */

case (OK):

HideWindow(gUnsavedDataDialog);
SaveFile () ;
dlalogDone-TRUE;
break;

/* Don't Save button

case (UNSAVED DATA_NO_SAVE):

HideWindow(gUnsavedDataDlalog);
dialogDone=TRUE;
break;

/* Cancel button */

case (CANCEL):

HideWindow(gUnsavedDataDialog);
dialogDone-TRUE;

returnCode-FALSE;
break;

}

L'

}

return (returnCode);

VectorAngle()

Appendix

Source Code Page (373)

/* routine to calculate angles */

#include "Params. h"

double VectorAngle(vector)

Vector vector;

double angle;

angle-atan2(vector. y, vector. x);
return(angle);

}

VectorLength()

/* routine to calculate lengths */

#include "Params. h"

double VectorLength(vector)
Vector vector;
{

double length;

length-sgrt(vector. x*vector. x+vector. y*vector. y);
return(length);

}

VectorX()

/* routine to calculate x part of vector

#include "Params. h"

double VectorX(vector)

Vector vector;

(
double x;

x- vector. r * cos(vector. theta);
return(x);

L'
VectorY()

/* routine to calculate y part of vector

"include "Params. h"

double VectorY(vector)
Vector vector;
{

double y;

y- vector. r * sin(vector. theta);

return (y) ;

Appendix

Source Code Page (374)

WriteO

/* routine to write out data */

#include "Params. h"

void Write ()
{

Calculate {)"

WriteResults()

/* this routine writes out the node position file */

#include"Params. h"

void writeResults(title, frameInterval)

char title[STRING SIZE]; /* file title line */
double frameInterval; /* the interval between frames */

int frameCounter;
int nodeCounter;
SFReply reply;
Point myPoint;
short refNum;
char prompt(STRING SIZE];

char buffer[STRING_SIZE);
long numBytes;

}
else
{

if (gDefinitionFile. fName[O]--O)
{

/* counter frame number */
/* counter node number */

/* reply from file dialog */
/* position of dialog */

/* file reference number
/* prompt file name
/* file buffer */

/* number of bytes to write */

strcpy(pronpt, (char *)"\pUntitled. nodee);

strcpy(pronpt, (char *)gDefinitionFile. fName);
PtoCstr(pronpt);
strcat(prompt, ". node");
CtoPstr(prompt);

myPoint. h=FILE DIALOG_X;

myPoint. v=FILE DIALOG_X;

SFPUtFile(myPolnt, NULL_STRING, pronpt, NULL, &reply);

if (reply. good--TRUE)
{

/* create and open file */

FSDelete(reply. fName, reply. vRefNum);
Create(reply. fName, reply. vRefNum, FILE_OWNER, 'TEXT');

FSOpen(reply. fName, reply. vRefNum, &refNum);

/* write data */

sprintf(buffer, "%s\r", title):
numBytes-(long) strlen(buffer):

Appendix

Source Code Page (375)

FSwrite(refNum, &numBytes, buffer);

sprintf(buffer, N%. 121e\r", frameInterval);

numBytes-(long) strlen(buffer);
FSWrlte(refNum, &numBytes, buffer);

sprintf(buffer, "%d\r", gNumberOfTimes);
numBytes=(long) strlen(buffer);
FSWrite(refNum, &numBytes, buffer);

for (frameCounter-O; frameCounter<gNumberofTimes; frameCounter++)
{

sprintf(buffer, "%d\r", frameCounter);

numBytes-(long) strlen(buffer);
FSWrite(refNum, inumBytes, buffer);

sprintf (buffer, "%cd\r", 6);

numBytes-(long) strlen(buffer);
FSWrite(refNum, &numBytes, buffer);

sprintf(buffer, "4d %. 121e %. 12le %. 121e\r", 0,0.0,0.0,0.0);

numBytes-(long) strlen(buffer);
FSWrite(refNum, &numBytes, buffer);

sprintf(buffer, "Toe Tip\r");

numBytes-(long) strlen(buffer);
FSWrite(refNum, inumBytes, buffer);

sprintf(buffer, "%d %. 12le %. 12le %. 121e\r", 1,
gResults(frameCounter]. midTarsalJoint. x,

gResults(frameCounter]. midTarsalJolnt. y,
0.0);

numBytes-(long) strlen(buffer);
FSWrite(refNum, anumBytes, buffer);

sprintf(buffer, "Mid-tarsal Joint\r");

numBytes=(long) strlen(buffer);
FSWrite(refNum, inumBytes, buffer);

sprintf(buffer, "%d %. 12le %. 12le %. 121e\r", 2,

gResults(frameCounter]. ankle. x,
gResults(frameCounter]. ankle. y,
0.0);

numBytes-(long) strlen(buffer);
FSWrite(refNum, anumBytes, buffer);
sprintf(buffer, "Ankle\r");
numBytes-(long) strlen(buffer);
FSWrite(refNum, &numBytes, buffer);

sprintf(buffer, "%d %. 12le %. 12le %. 121e\r", 3,

gResults(frameCounter]. knee. x,
gResults(frameCounter]. knee. y,
0.0);

numBytes-(long) strlen(buffer);
FSWrite(refNum, &numBytes, buffer);

sprintf(buffer, "Knee\r");
numBytes-(long) strlen(buffer);
FSWrite(refNum, inumBytes, buffer);

sprintf(buffer, "%d %. 121e %. 121e %. 121e\r", 4,
gResults[frameCounter]. hip. x,
gResults(frarrCounter]. hip. y,
0.0);

numBytes-(long) strlen(buffer);
FSWrite(refNum, inumBytes, buffer);

sprintf(buffer, "Hip\r");

numBytes-(long) strlen(buffer);

Appendix

Source Code Page (376)

FSWrite(refNum, inumBytes, buffer);

sprintf(buffer, "%d %. 121e %. 121e %. 121e\r", 5,
gResults(frameCounter3. noseTlp. x,
gResults(fran CounterJ. noseTip. y,
0.0);

numBytes-(long) strlen(buffer);
FSWrite(refNum, &numlytes, buffer);
sprintf(buffer, "Nose Tip\r");
numBytes-(long) strlen(buffer):
FSWrite(refNum, &numBytes, buffer);

}
}

/* close file */

FSClose(refNum);

/* finished */

XAxisize()

/* routine to rotate model so that body COM is on the x axis */

#include "Params. h"

void XAxisize(model)
ModelCoordinates *model; /* model */
{

double angle; /* rotation angle */

/* calculate centres of mass */

CentresOfMass(model);

/* find angle of body COM off centre */

angle-atan2(model->bodyCOM. y, model->bodyCOM. x);
angle*-(-1);

/* now perform all the rotations */

Rotate(&model->midTarsalJoint, angle);
Rotate(&model->ankle, angle);
Rotate(&model->knee, angle);
Rotate(&model->hip, angle);
Rotate(&model->noseTip, angle);

/* and redo centres of mass */

CentresOfMass(model);

L'

Appendix

References Page (377)

References
L Abbott B. C.; Bigland B. The effects of force and speed changes on the rate

of oxygen consumption during negative work. J. Physiol., Lond. 1953;
120-319-325.

2. ADAMS. 1.1.: Mechanical Dynamics Inc.; 1990.

3. Alexander R. McN. The mechanics of jumping by a dog (Canis
familiaris). J. Zool.. 1974; 173: 549-573.

4. Alexander R. McN. Animal mechanics. Oxford: Blackwell Scientific;
1983.

5. Alexander R. McN. Gibbons swing stress away. Nature. 1989; 342: 229.

6. Alexander R. McN.; Jayes A. S.; Maloiy G. M. 0.; Wathuta E. M.
Allometry of the limb bones of mammals from shrews (Sorex) to

elephant (Loxodonta). J. Zool. Lond.. 1979; 189: 305-314.

7. Alexander R. McN.; Jayes A. S. A dynamic similarity hypothesis for

gaits of quadrupedal mammals. J. Zool., Lond.. 1983; 201: 135-152.

8. Alexander R. McN.; Vernon A. The mechanics of hopping by kangeroos
(Macropodidae). J. Zool.. 1975; 177: 265-303.

9. Apkarian J.; Naumann S.; Cairns B. A three dimensional kinematic

and dynamic model of the lower limb. J. Biomechanics. 1989; 22: 143-
155.

10. Armstrong W. W.; Green M. W. The dynamics of articulated rigid bodies
for purposes of animation. The Visual Computer. 1985; 1: 231-240.

11. Bearder S. K.; Doyle G. A. Ecology of bushbabies, Galago senegalensis
and Galago crassicaudatus, with some notes about their behaviour
in the field. Martin R. D.; Doyle G. A.; Walker A. C., Editors.
Prosimian biology. London: Duckworth; 1974: 109-130.

Appendix

References Page (378)

12. Bearder S. K.; Martin R. D. Acacia gum and its use by bushbabies,
Galago senegalensis (Primates: Lorisidae). Int. J. Primatol.. 1980; 1:
103-128.

13. Bennet-Clark H. C. Scale effects in jumping animals. Pedley T. J., Editor.
Scale effects in animal locomotion. London: Academic Press; 1977.

14. Biewener A. A.; Alexander R. McN.; Heglund N. C. Elastic energy
storage in the hopping of kangaroo rats (Dipodomys spectablis). J.
Zool., Lond.. 1981; 195: 369-383.

15. Bresler B.; Frankel J. P. The forces and moments in the leg during level

walking. Trans. ASME. 1950; 72: 27-36.

16. Calow L.; Alexander R. McN. A mechanical analysis of a hind leg of a
frog (Rana temporaria). J. Zool.. 1973; 171: 293-321.

17. Cartmill M. Climbing. Hildebrand M.; Bramble D. M.; Liem K F.; Wake
D B., Editors. Functional vertebrate morphology. Cambridge, MA:
Harvard University Press; 1985: 71-88.

18. Cavagna G. A.; Heglund N. C.; Taylor C. R. Mechanical work in
terrestrial locomotion: two basic mechanisms for minimizing energy
expenditure. Am. J. Physiol.: Regulatory, Integrative and
Comparative Physiol.. 1977; 2: R243-R261.

19. Charles-Dominique P. Ecology and behaviour of nocturnal primates.
London: Duckworth; 1977.

20. Cheney D. L.; Wrangham R. W. Predation. Smuts B. B.; Cheney D. L.;
Seyfarth R. M; Wrangham R. W.; Struhsaker T. T., Editors. Primate

societies. Chicago: University of Chicago Press; 1986: 227-239.

2L Clutton-Brock T. H.; Harvey P. H. Primate ecology and social resources.
J. Zool. Lond.. 1977; 183: 1-39.

22. Crompton R. H. Foraging, habitat structure, and locomotion in two

species of Galago. Rodman P. S.; Cant J. G. H., Editors. Adaptations

Appendix

References Page (379)

for foraging in nonhuman primates. New York: Columbia University
Press; 1984: 73-111.

23. Crompton R. H. A leap in the dark: locomotor behaviour and ecology in
Galago senegalensis and G. crassicaudatus. Cambridge, MA:
Harvard University; 1980.

24. Crompton R. H.; Andau P. M. Locomotion and habitat utilization in free-

ranging Tarsius bancanus :a preliminary report. Primates. 1986; 27:
337-355.

25. Currey J. D. The mechanical adaptations of bones. New Jersey:
Princeton University Press; 1984.

' 26. DADS. 6.0.: Computer Aided Design Software Inc.; 1989.

27. Darwin C. On the origin of species by natural selection or the

preservation of favoured races in the struggle for life. London: John
Murray; 1859.

28. Dickinson S. The efficiency of bicycle-pedalling, as affected by speed and
load. J. Physiol., Lond.. 1929; 67: 242-255.

29. Dunbar D. C. Aerial maneuvers of leaping lemurs: the physics of whole
body rotations while airborne. A. J. Primatol.. 1988; 16: 291-303.

30. Emmerson S. Allometry and jumping in frogs: helping the twain to
meet. Evol.. 1978; 32: 551-564.

31. Emmerson S. B. Jumping and leaping. Hildebrand M.; Bramble D. M.;
Liem K. F.; Wake D. B., Editors. Functional vertebrate morphology.
Cambridge, MA: Harvard University Press; 1985: 58-72.

32. Fleagle J. G. Locomotor behaviour and muscular anatomy in sympatruc
Malysian leafmonkeys (Presbytis obscura and Presbytis melalophos).
Amer. J. Phys. Anthro.. 1976; 46: 297-308.

33. Gibbs K. Advanced physics. Cambridge: Cambridge University Press;
1990.

Appendix

References Page (380)

34. Gill F. B.; Wolf L. L. Economics of feeding territoriality in the golden.
winged sunbird. Ecology. 1975; 56: 333-345.

35. Grafen A. How not to measure inclusive fitness. Nature. 1982; 298: 425-
426.

36. Günther M. M. Funktionsmorphologische Untersuchungen zum
Sprungverhalten an mehrenen Halfaffenarten (Galago moholi,
Galago (Otolemur) garnettii, Lemur catta). Berlin: Freien
Universität; 1989.

37. Günther M. M.; Ishida H.; Nakano Y. The jump as a fast mode of
locomotion in arborial and terrestrial biotopes. Z. Morph. Anthrop..
1991; 78: 341-372.

38. Hall-Craggs E. C. B. An analysis of the jump of the lesser galago
(Galago senegalensis). J. Zool.. 1965; 147: 20-29.

39. Hall-Craggs E. C. B. The jump of the bushbaby -a photographic analysis.
Med. Biol. Ill.. 1964; 14: 170-174.

40. Hall-Craggs E. C. B. Physiological and histochemical parameters in
comparative locomotor studies. Martin R. D.; Doyle G. A.; Walker A.
C., Editors. Prosimian anatomy, biochemistry and evolution. London:
Duckworth; 1977: 829-845.

4L Hamilton W. D. The genetical theory of social behaviour (I and II). J.
theor. Biol.. 1964; 7: 1-16,17-32.

42. Harvey P.; Martin R. D.; Clutton-Brock T. H. Life histories in

comparative perspective. Smuts B. B.; Cheney D. L.; Seyfarth R. M;
Wrangham R. W.; Struhsaker T. T., Editors. Primate societies.
Chicago: University of Chicago Press; 1987: 181-196.

43. Hatze H. The meaning of the term 'biomechanics'. J. Biomechanics.
1974; 7: 189-190.

Appendix

References Page (381)

44. Heglund N. C. Comparative energetics and mechanics of locomotion:
How do primates fit in? Jungers W. L., Editor. Size and scaling in

primate biology. New York: Plenum Press; 1985: 319-335.

45. Heinrich B., Bumblebee economics. Cambridge, MA: Harvard University
Press; 1979.

46. Hildebrand M. Walking and running. Hildebrand M.; Bramble D. M.;
Liem K. F.; Wake D. B., Editors. Vertebrate functional morphology.
Cambridge, MA: Harvard University Press; 1985: 38-57.

47. Hill A. V. The dimensions of animals and their muscular dynamics.
Science Progress. 1950; 38: 209-230.

48. HP 9000 series 300 computers. HP"UX system administrator manual.
Fort Collins, Colorado: Hewlett-Packard Company; 1988.

49. HP 9000 series 300/800 computers. Programming with the Xlib user
interface toolbox. Fort Collins, Colorado: Hewlett-Packard Company;
1988.

50. HP 9000 series 300/800 computers. Programming with the Xrlib user
interface toolbox. Fort Collins, Colorado: Hewlett-PAckard Company;
1988.

5L HP 9000 series 300/800 computers. Starbase programming with X11. Fort
Collins, Colorado: Hewlett-Packard Company; 1988.

52. HP 9000 series 300/800 computers. Starbase device drivers library

manual. Fort Collins, Colorado: Hewlett-Packard Company; 1988.

53. HP 9000 series 800/300 computers. Starbase graphics techniques: HP-UX

concepts and tutorials. Fort Collins, Colorado: Hewlett-Packard

Company; 1988.

54. Hunt K. H. Kinematic geometry of mechanisms. Oxford: Clarendon
Press; 1978.

Appendix

References Page (382)

55. Jouffroy F. K.; Gasc J. P. A cineradiographical analysis of leaping in an
African prosimian (Galago alleni). Jenkins F. A., Editor. Primate
locomotion. New York: Academic Press; 1974: 117-142.

56. Kleppner D.; Kolenkow R. J. An introduction to mechanics. London:
McGraw-Hill; 1973.

57. Lanyon L. E.; Bourn S. The influence of mechanical function on the
development and remodelling of the tibia. An experimental study in

sheep. J. Bone A. Surg.. 1979; 61A: 263-273.

58. Laurig W. Methodological and physiological aspects of
electromyographic investigations. Komi P. V., Editor. Biomechanics
V-A. Baltimore: Univ. Park Press; 1976: 219-230.

59. Lima S.; Valone T. J.; Caraco T. Foraging efficiency - predation risk
tradeoff in the grey squirrel. Anim. Behav.. 1985; 33: 155.165.

60. Marey E. J. Animal mechanism: a treatise on terrestrial and aerial
locomotion. New York: Appleton; 1874.

61. Martin R. D.; Chivers D. J.; MacClarnon A. M.; Hladik C. M.
Gastrointestinal allometry in primates and other animals. Jungers
W. L. Size and scaling in primate biology. London: Plenum; 1985: 61-
89.

62. McFarland D. Animal behaviour: psychology, ethology and evolution.
Harlow: Longman Scientific & Technical; 1985.

63. McFarland D. Decision making in animals. Nature. 1977; 269: 15-21.

64. McGhee R. B. Finite state control of quadrupedal locomotion.
Proceedings of the second international symposium on external
control of human extremities; Dubrovnik, Yugoslavia. ; 1966.

65. McMahon T. A. Muscles, reflexes, and locomotion. Princeton, New
Jersey: Princeton University Press; 1984.

66. McMahon T. A. Size and shape in biology. Science. 1973; 179: 1201-1204.

Appendix

References Page (383)

67. Miller N. R.; Shapiro R.; McLaughlin T. M. A technique for obtaining
spatial kinematic parameters of segments of biomechanical systems
from cinematographic data. J. Biomechanics. 1980; 13: 535-547.

68. Mollinson' T. Die Körperproportionen der Primaten. Morphol. Jahrb..
1911; 42: 79-304.

69. Muybridge E. Animals in motion. London: Chapman & Hall; 1899.

70. NAG. The NAG FORTRAN library manual mark 13. Oxford: The
Numerical Algorithms Group Ltd.; 1988.

71. NAG. The NAG graphical supplement manual mark 2. Oxford: The
Numerical Algorithms Group Ltd.; 1985.

72. Napier J. R.; Napier P. H. A handbook of living primates. London:
Academic Press; 1967.

73. Napier J. R.; Napier P. H. The natural history of the primates. London:

British Museum (Natural History); 1985.

74. Napier J. R.; Walker A. C. Vertical clinging and leaping -a newly
recognized category of primate locomotion. Folia Primatol.. 1967; 6:
204-219.

75. Nash L. T.; Harcourt C. S. Social organization of galagos in Kenyan

coastal forests: II. Galago garnettii. Am. J. Primatol.. 1988; 10: 357-
369.

76. Norton F. G. J. Advanced mathematics. London: Pan Books; 1987.

77. Oxnard C. E.; Crompton R. H.; Lieberman S. S. Animal lifestyles and
anatomies: the case of the prosimian primates. Seattle: University of
Washington Press; 1990.

78. Oxnard C. E.; German R. Z.; McArdle J. E. The functional

morphometrics of the hip and thigh in leaping prosimians. Amer. J.
Phys. Anthro.. 1981; 54: 481-498.

Appendix

References Page (384)

79. Oxnard C. E.; German R. Z.; Jouffroy F. K.; Lessertisseur J. The
morphometrics of limb proportions in leaping prosimians. Amer. J.
Phys. Anthro.. 1981; 54: 421-430.

80. Paul P. Robot manipulators: mathematics, programming and motor
control. Cambridge, MA: MIT Press; 1981.

8L Pezzack J. C.; Norman R. W.; Winter D. A. An assessment of derivative
determining techniques used for motion analysis. J. Biomech.. 1977;
10: 377-382.

82. Prost J. H. A definitional system for the classification of primate
locomotion. Am. J. Phys. Anthro.. 1967; 26: 149-170.

83. Radar C. M.; Gold B. Digital filtering design techniques in the frequency
domain. Proc. IEEE. 1967; 55: 149-171.

84. Rasmussen D. T.; Izard M. K. Scaling of growth and life history traits

relative to body size, brain size, and metabolic rate in lorises and
galagos (Lorisidae, Primates). Am. J. Phys. Anthrop.. 1988; 75: 357-
367.

85. Riermsersa D. J.; Bogart A. J. van den; Schamhardt H. C.; Hartman W.
Kinetics and kinematics of the equine hind limb: in vivo tendon

strain and joint kinematics. Am. J. Vet. Res.. 1988; 49: 1353-1359.

86. Ripley S. The leaping of langurs, a problem in the study of locomotor

adaptation. Amer. J. Phys. Anthro.. 1967; 26: 149-170.

87. Rothschild M.; Schlein Y.; Parker K.; Sternberg S. Jump of the oriental
rat flea Xenopsylla cheopsis (Roths). Nature. 1972; 239: 45-48.

88. Saint-Exupery A. de. Le petit prince. Paris: Gallimard; 1946.

89. Schmidt-Nielsen K. Animal physiology. Cambridge: Cambridge
University Press; 1983.

90. Schultz A. H. The skeleton of the trunk and limbs of higher primates.
Hum. BioL. 1930; 2: 303-438.

Appendix

References Page (385)

9L Shapiro R. Direct linear transformation method for three-dimensional
cinematography. Research Quarterly. 1978; 49: 197-205.

92. Shaw G. A. A few notes upon four species of lemurs, specimens of which
were brought alive to England in 1878. Proc. Zool. Soc. London. 1879:
132-136.

93. Smith R. M. Biomechanics of the locomotion of Galago Senegalensis.
Arizona: Arizona State University; 1987.

94. Sperry D. Fiber type composition and post-metamorphic growth of
anuran hindlimb muscles. J. Morph.. 1981; 170: 321-345.

95. Strickberger M. W. Evolution. Boston: Jones and Bartlett; 1990.

96. Tattersall I. The primates of Madagascar. New York: Colombia
University Press; 1982.

97. Thomas O. On the mammals obtained by Mr. John Whitehead during
his recent expedition to the Philippines with field notes by the

collector. Trans. Zool. Soc. London. 1896; 54(2): 387-398.

98. Tinbergen N. On aims and methods in ethology. Z. Tierpsychol.. 1963; 20:
410-433.

99. Townsend M. A.; Seireg A. The synthesis of bipedal locomotion. J.
Biomech.. 1981; 14: 727-738.

100. Walker A. Locomotor adaptations in past and present prosimian
primates. Jenkins F. A., Editor. Primate locomotion. New York:
Academic Press; 1974: 349-381.

101. Walton M.; Anderson B. D. The aerobic cost of saltatory locomotion in the
Fowlers toad (Bufo woodhousei fowleri). J. exp. Biol.. 1988; 136: 273-
288.

102. Weis-Fogh T. A rubber-like protein in insect cuticle. J. Exp. Biol.. 1960;
37: 889-907.

Appendix

References Page (386)

103. Wells J. P.; DeMenthon D. F. Measurement of body segment mass,
center of gravity, and determination of moments of inertia by double
pendulum in Lemur fulvus. Am. J. Primatol.. 1987; 12: 299-308.

104. Wells R. P. Mechanical energy costs of human movement: an approach
to evaluating the transfer possibilities of two joint muscles. J.
Biomech.. 1988; 21: 955-964.

105. Winter D. A. Biomechanics and motor control of human movement.
New York: John Wiley & Sons; 1990.

106. Winter D. A.; Sidwall H. G.; Hobson D. A. Measurement and reduction of
noise in kinematics of locomotion. J. Biomech.. 1974; 7: 157-159.

107. Wood G. A.; Marshal R. N. The accuracy of DLT extrapolation in three-
dimensional film analysis. J. Biomech.. 1986; 19: 781-785.

108. Yu L. Ontogeny of children's limbs - with particular reference to inertial
characteristics. Liverpool: University of Liverpool; 1991.

Appendix

UMPO:

UME RS! TY

LAP' '.:: Y

