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ABSTRACT 

THE CLASSIFICATION OF GERMS OF MAPS FROM SURFACES TO 3-SPACE, 

WITH APPLICATIONS TO THE DIFFERENTIAL GEOMETRY OF IMMERSIONS. 

D. M. Q. MOND 

The original aim of the research project out of which this thesis grew 

was to study the differential geometry of immersions of surfaces in 

IR 
4, 

by considering the /i classes of germs of radial projections of 

the immersed surfaces into affine hyperplanes of f41 the immersions 

in question to be subjected to certain genericity requirements. A-- 

a preliminary step towards this programme, it was necessary to give 

an A 
-invariant stratification of 

k(2,3) 
in which all strata of co- 

dimension less than or equal to 6 should be A 
-sufficient. This class- 

ification is presented in Chapter I, and includes the classification 

of some bi-germs. 

In Chapter II, the exponential map exp9: TM--* f 
associated with an 

immersion g: 14 1.9, is studied. The principal result is a transver- 

sality theorem for expg, (Theorem II: 1), from which it is possible 

to deduce that if (2n, p) are nice dimensions (ä la Mather), then gen- 

erically exp6 is locally stable on TM-M. (Corollary 11: 2). 

In Chapter III, the results of Chapters I and II are applied to the 

study of the differential geometry of generic immersions, as outlined 

in the first paragraph of this abstract. 

In Chapter Ill, some of the results of Chapter I are applied to give 

"normal forms" for the singularities of the tangent developable of 

a smooth space curve, via the introduction of the class of "map-germs 

with a cuspidal'edge". 
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INTRODUCTION 

Let M be a smooth (C w) k-manifold, and g: M --0 Rn a smooth immersion. 

By studying the germs of radial projections of M from points q in Pn-M 

into affine hyperplanes, one may hope to obtain a description of the 

local differential geometry of the immersion g. Such a study has been 

made by C. T. C. Wall and his student J. M. Soares David, in the case where 

k=1 and n-3, and is reported by Wall in [281 
, where a list is 

given of all -classes of germs (including multi-germs) of project- 

ions for "generic" immersions g. This list is used in a paper written 

by H. Morton and the author ([253) in which it is proved that a gener- 

ically embedded knot must have a quadrisecant. 

Similar studies, replacing radial by orthogonal projection, have been 

made by Arnol' d [43 
, by Gaffney and Ruas [10] 

, and by McCrory[231 

in the case where k=2 and n=3. In all of these, emphasis is placed 

on obtaining a list of the A 
classes to which germs of projection will 

belong, for a suitably large (residual) set of immersions g: 11 ºR3, 

and in the last two the relation between the description so obtained, 

and the classical differential-geometric description, is also invest- 

igated. 

In Chapter III of this thesis ,: e study the germs of radial projections 

in the case k=2 and n-4, with the aims of determining, for a suit- 

ably defined residual set of immersions, 

1) to which Ilk classes the germs of projection will belong, 

2) what is the relation between the k class of germs of projection 
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and the differential geometry of the immersion, and 

3) what is the nature of the loci on M of the sets of points at which 

there are germs of projection belonging to the various possible A classes. 

As a first step towards ca. rying out this programme, it is necessary 

to give an '-invariant stratification of Jk(N, R3), and this we do in 

Chapter I (Theorem 1: 2). All A orbits and modular strata of codimen- 

sion less than or equal to 6 are given, along with normal forms for 

germs in these orbits and modular strata, their determinacy degrees, 

and their A tangent spaces. A list of all A 
-simple germs of maps 

(IR2,0)---ß(R30) is also given (Theorem I: 1). For determinacy estim- 

ates, and for the calculation of 
A tangent spaces, we rely on tech- 

niques developed by T. Gaffney ( [81) whose work in turn is based on 

that of J. Niather (171- 223 ). 

In the course of carrying out this classification, it was found that 

map-germs which are VC-equivalent to 

)(x, y2, o), 

may all be put in pre-normal forms 

(x, Y) >(x, Y2, yp(x, y2))1 

and that the problem of classification of such germs reduces to a 

much simpler problem of classification. More precisely, if ýtT 

is the subgroup of 7. which acts on the ring tT 
of invariant func- 

tion germs p(x, y2), then the 4 classification of map-germs of the 

form described above is equivalent to the Z- classification of the 

function germs p(x, y2) (Theorem I. 5: 8 and Corollary I. 5: 11). From this 
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it is easy to deduce that the A classification problem reduces fur- 

ther, to that of the äa classification of the function germs p(x, y), 

defined on the half-plane H2, ?) being the contact group which acts 

naturally on the ring of such germs (Theorem 1.5: 16). A. du Plessis 

has informed us that these results may also be deduced from some 

results that he, T. Gaffney and L. Wilson have obtained ([11l _6p, but 

the methods of proof involved are quite different. In view of our Theo- 

rem 1.5: 16, we are able to use a classification that V. I. Arnol'd has 

given ([21 ), although because of the rather sparse nature of his 

proofs, we have given ; roofs for the small part of his classification 

that we employ. 

For any immersion g: Mand for any point (x, q) E TM c. M xRn, 

with q/ g(x), (here we refer to the usual embedding of TM in MX n), 

there is an isomorphism between the local algebra at (x, q) of the 

exponential map expg: TM --ý Rn, and the A 
-invariant "singular algebra" 

(introduced in 1.9) of the germ at x of the projection pg(q) (see 

II. 1 for this notation). This is a consequence of our 11-2: 3 and 11.2: 7. 

This isomorphism is used in Chapter III to obtain information about 

the relation between the behaviour of the germs of projection and the 

behaviour of expg, but its consequences are studied in more detail and 

in greater generality in Chapter II. In particular, it is used to 

prove a transversality theorem for expg (Theorem II: 1) which has as 

a corollary that if (2n, p) are nice dimensions (in the sense of Mather, 

21 , 22), then generically expg is locally stable away from the 

0-section of TM. 

The results in Chapter IV (on map-germs with a cuspidal edge) arose 
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partly out of a desire to study the behaviour, at the 0-section of TR, 

of the exponential map expg associated with a smooth immersion g: P IR 3 

and also because the "equivalence of equivalences" discussed in I. 5 

provided methods by which some of the germs of expg, at the 0-section 

of TR, may be classified up to A 
-equivalence. The usual methods of 

A classification (such as those employed in Chapter I, from 1.6 on- 

wards) are not applicable in this context, because map-germs 

(R20) IR3, O) with a non-isolated singularity are not finitely 

determined ([73 ). By introducing the class of map germs with a cus- 

pidal edge, we are able, in some cases, to circumvent this difficulty, 

and to provide a partial A classification. Using this classification, 

we are able to find normal forms for the germ of the tangent develop- 

able surface of a smooth space-curve, at points on the curve where 

the curvature does not vanish and the torsion vanishes to order k, 

with 0 49 kS4, and at points where the curvature has a "non-degene- 

rate" zero-(Theorems IV. 5: 1 and IV. 5: 8). This extends work of J. Cleave 

([6)) and of T. Gaffney and A. du Plessis ( [9)). An analogous study, 

that of isolated line singularities, which involves the classification 

up to 12 equivalence of certain function germs of infinite R 
codimen- 

sion, has been made by D. Siersma ([27) ), but his work bears little 

relation to our own. 

Finally, I would like to thank the people and institutions who have 

helped me during my stay in Liverpool. First, the University of Liv- 

erpool for providing me with financial support during The period of 

my studies, and my supervisor, Professor C. T. C. Wall, for suggesting 

the research project which led to this thesis, and for his extremely 
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stimulating help and guidance. I would also like to thank my fellow 

student James Montaldi for a great many helpful discussions. Lastly, 

I would like to thank the National University of Colombia for grant- 

ing me leave of absence in order to come to Liverpool. 



CHAPTER I 

CLASSIFICATION OF SINGULARITIES OF MAPS FROM SURFACES TO 3-SPACE 

I. 1 Introduction In this chapter we shall be concerned principally 

with the classification of smooth map-germs (R2,0)-+(I, 0) up to 

A-equivalence, where Ac is the group Diff(1R2,0)X Diff(LR3,0). We 

shall also deal briefly with the classification of some multigerms. 

We present two main results: 

I: 1 Theorem Simple map-germs OR 2,0)>(P3,0) belong to the A 
-equi- 

valence classes of the germs in the following list: 

Germ k-codimension Name 

f(x, y) = (x, y2, xy) 2 S0 

f(x, y) = (x, y2, y3 + xk+1y) (k ) 1) k+2 Sk 

f(x, y) = (x, y2, x2y + y2k, +1) (k > 2) k+2 Bk 

f(. x, y) = (x, y2, xy3 + xky) (k > 3) k+2 Ck 

f(x, y) = (x, y2, x3y + y5) 6 F4 

f(x, y) = (x, xy + yak-1, y3) (k > 2) k+2 Hk 

I: 2 Theorem The following table gives an * 
-invariant stratification 

of J"(2,3)- Z2 (where E2 is the set of all jets of corank 2) for all 

r: 



Stratum 

A- 

codim. Name Reference 

(x, y, 0) 0 immersion 

(x, y2, xy) 2 S0 1.4 

(x, y2, y3 + xk+1 y) k= 1,2,3,4 k+2 Sk 1.5 

(x, y2, x2y + y2k+1) k= 2,3,4 k+2 Bk 1.5 

(x, y2, xy3 + xky) k= 3,4 k+2 Ck 1.5 

(x, y2, x3y + y5) 6 F4 1.5 

(x, xy + y3k-1, y3) k= 2,3,4 k+2 Hk 1.6.1 

(x, xy + y3, xy2 + cy4) cio, i, 1,9 5 P3 1.6.2 

(x, xy + y3, xy2 + iy4 + y5) 6 1.6.2 

(x, xy + y3, x2 + iy4 + y5) 6 1.6.2 

(x, xy + y3, xy2 + y4 + y6) 6 1.6.2 

(x, xy + y3, xy2 + y7) 6 1.6.2 

(x, xy + y3, y4) 6 1.6.4 

(x, xy + y6 + by7, xy2 + y4 + ßy6) 6 1.6.3 

(x, y3, xýy + xy2 + y4) 6 1.7 

(x, y3 -xy, xy + y4) 6 1.7 

'6(x, y2, y3) 7 1.5 

A9(x, y2, x2y) 7 1.5 

A5(x, y2, x3y) 7 1.5 

A5(x, y2, xy3) 7 1.5 

Aý(x, y2,0) 7 I. 5 

ß, 1(x, xy, y3) 7 1.6.1 
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Stratum 
A- 

codim. Name Reference 

(x, 0,0) 12 1.6 

3(x, 
xy, 0) 7 1.6 

fý6(x, xy + y3, xy2 + Jy4 + y6) 7 1.6.2 

(x, xy + y3, xy2 + ay4 + y6) 7 1.6.2 

A6(x, xy + y3, xy2 + iy4) 8 1.6.2 

A6(x, xy + y3, xy2 + ßy4) 8 1.6.2 

¢ý6(x, xy + y3 xy 
2+ 

y4) 7 1.6.2 

A7(x, xy + y3, xy2) 7 1.6.2 

A4(x, xy + y4, xy2) 7 1.6.3 
4(x, 

xy, xy2) 8 1.6.3 

(x, xy, xy2 + y4 + y6) 7 1.6.3 
6(x, 

xy, xy2 + y4) 8 1.6.3 

A (x, xy + y3, xy3) 7 1.6.4 

A (x, xy + y3,0) 8 1.6.4 

¢ý4(x, y3, xy2 + x2y) 7 1.7 

¢t4(x, y3 - x2Y, xy2) 7 1.7 

A3(x, y3, x2y) 7 1.7 

--3(x, y3,0) 9 1.7 

2 
s (x ,3 y, xy ) 7 1.7 

A3(x, y3 + x2 y, 0) 8 1.7 

*c3(x, xy2, x2y) 8 1.7 

A3(x, xy2,0) 9 1.7 

ý3(x, x2y, 0) 10 I. 7 
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In the first part of this list, the strata are the r 
orbits of the 

germs given, or the union of 54 orbits where moduli figure. Each of 

these germs is A 
-sufficient, in the sense that its degree of A 

-det- 

erminacy is equal to the highest of the degrees of its component poly- 

nomials '. 

In the second part of the list, the stratum in each case is the pre- 

image in Jr (2,3) of the y}k orbit given, with respect to the natural 

projection Jr(2,3)--ý Jk(2,3)" 

The fourth column of the table, marked "Reference", refers to the sect- 

ion of this chapter in which the stratum is studied. 

A corresponding stratification of Jr(2,3), for r< 11, may be obtained 

by projecting each of the given strata into Jr(2,3).. Of course, some of 

the strata may become identified in the process. 

The bulk of the chapter is taken up by the classification of germs and 

jets which is tabulated in Theorem 1: 2. No further proof of this theorem 

is given. Since the classification was motivated by the desire to obtain 

a list of all simple germs of codimension less than or equal to 6, all 

unimodular germs of codimension less than or equal to 7, etc., (for rea- 

sons which will become clear in Chapter III), it is-carried out accord- 

ingly. In particular, with a few exceptions, 
Ak 

orbits of codimension 

greater than 6 are taken as strata and not further subdivided. A proof 

of Theorem I: 1 is given in section I: , although simple germs are shown 

to be so as they occur in the. classification. 

The results of the classification, some of which go slightly further 

than is needed to prove Theorem 1: 2, are shown diagranatically in Fig- 

There is one exception to this: the germs (x, y) (x, xy+y6+by7, xy2+y4+cy6) 

are all 7-determined, in particular when b=0, Lt -tnt 6- cU(3 r+, (. %'e6(. 
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ures 1,2 and 3. These show the stratifications of Jr(2,3) for 2< r<, 11. 

At each level (i. e. in each jet space) the strata are the Ar orbits of 

the jets shown. The lattice relation is simply one of projection - 

O'1 <fk (where Q1 is an 1-jet and Pk is a k-jet, and 1> k) means sim- 

ply that lT1 
k( 

6,1 )= /0 k' 
(or, in one case, that these k-jets are 

A k-equivalent. ). Those jets which are underlined are sufficient, and 

there the downward branch of the lattice ends, and similarly, those k- 

jets at which the downward branch ends, but which are not underlined, 

have Ak-codimension greater than 6. 

Figures 1,2 and 3 also show certain infinite families of germs, for ex- 

ample (x, y)-}(x, y2, y3 + xk+1y). These are indicated by the ending 

of the downward branch of the lattice in a dotted line, which means that 

the pattern of branching already established (and which should be clear 

from the diagram) continues ad infinitum. 

1.2 Notation We identify Jk(2,3) with the space of all triples of poly- 

nomials of degree less than k+1 , in two real variables, and with real 

coefficients. These are written in the form (a(x, y), b(x, y), c(x, y)), 

with a(x, y) = 
Y- 

a. xly3 , etc. 
1<i+j<k 1'0 

Since Jk(2,3) is a vector space, we trivialise its tangent bundle and 

regard it as its own tangent space at each point (k-jet). In this conn- 

ection we shall write its elements as column vectors, 

a(x, y) 

b(x, y) 

c(x, y) 

In order to specify linear subspaces of J--(2,3) we make use of the nat- 
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ural decomposition as the direct sum of three copies of fl2 /'M ý+1, 
and 

of the natural set of generators of 112 /'M2+1, namely 
{ 

xly3 : 

However, we shall generally omit the reference to 1) 2+1, 
since this will 

be obvious from the context. Thus, for example, by 

'M 
2- 

{y, 
xY, Y31 +t 

txy 
+ y3} 

we would mean the linear subspace of M2 generated by all xly3 with 

i+j1, except for y, xy and y3, and by xy + y3. If we were doing cal- 

culations in J5(2,3), however, it would mean the projection into 12 /? '? )6 

of this subspace. 

By tn we shall mean the clgebra of germs at 0 of smooth functions of n 

variables, and by 
n/p 

the space of map- germs (e, O)(LRp, O). The 

same symbols will also denote the tangent spaces to either of these 

spaces at any point. 

In other respects, our notation is that of Mather ( [17) 
- 

L22]) 
. 

I. 3 Techniques Apart from using explicit coordinate changes to reduce 

k-jets to one of a number of normal forms, which becomes progressively 

more difficult as k increases, we shall use the infinitesimal technique 

due to Mather: 

I. 3: 1 Theorem a) Let the Lie group G act smoothly on the Manifold M, 

and suppose that the submanifold SC -M has the following properties: 

1) For all x ES, TxGx ?TxS 

2) The dimension of Gx is independent of the choice of x 6. S 

3) S is connected. 

Then S is contained in a single G orbit. 
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b) Suppose 1t: M1P M2 is a G-submersion and let S= 111(x0) for 

some XE M2. Then if (1) and (3) of part (a) hold, S is contained in 

a single G orbit. 

This result may be found in t20, 
as Lemma 3.1 . 

In order to go from the calculation of 
Ak tangent spaces to the cal- 

culation of A tangent spaces, we shall use 

I. 3: 2 Theorem Let f: (IRn, O) -3(0,0) be a smooth map-germ such that 

tf(e(n)) + f*Tfl e(f) ýiv1ne(f) 
, let n<p, 

and let C be an 
ý 

module (via f*) such that 
p 

Cý2 nke(f) (k>1). 

Then 

(1) CTAf if and only if 

(2) C= TAf + f`tfl C +11 n+le(f). 

Proof That (1)=: ý>(2) is trivial. To see the converse, note that under 

the hypotheses of the theorem, 

tf(e(n)) + f`In Cý1fl 1O(f), 

for we have 

iylä {tf&nfl 
+ f*71 O(f)}D1º'1 n 

. 7''1nO(f) = 'ývýÄ+10 (f) 

and so 

tf(%º7ne(n)) + f*^Mpinne(f)=Mn+1Q(f) 

whence 

tfCM E)(n)) + f"1i Cý"i 1 'C W. 

Thus, (2) implies 
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C= tf(Wn6(n)) +w f(T4pp(p)) + f*» C 

A straightforward application of Nakayama's Lemma will complete the 

proof, if we can show that C is a finitely generated 
kp 

module. But 

since 

tf(G(n)) + f' 7p (f )9' 1"1ne(f) 

and n<p, f is 
h 

-finite ( [301 page 494, Proposition 2.4), and so by 

the Preparation Theorem (DOI page 489), any finite ýn 
module is fin- 

itely generated over 
p. 

In particular this holds foriM k O(f). Since 

Ck 
O(f) 

is a finite dimensional (R vector space, it follows that C. 

n 
is a finite ýn 

module, and hence a finite ýp 
module n 

This theorem is due to Gaffney (verbal communication) and is related to 

the following result ( [71 page 127 ) which is proved by a related method, 

and forms the basis of the determinacy estimates we make in this chapter. 

I. 3: 3 Theorem Let f: (IRn, 0) ->(iRp, 0) be a smooth map-germ and suppose 

that 

tf(G(n)) + Lf(O(p)) =-ý 7'ßn 4 (f) 

and 

tf(O(n)) + r*)1 e(f)ý r9 n 6(f). 

Then f is k+1 determined for A. 

1.4 Classification 

I. 4: 1 Lemma If f: (R2,0)--*(, 0) has rank 1 at the origin then there 

are coordinates in which f may be written 

(x, y)-- *(x, b(x, y), c(x, y)) 
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where b, cE 11 
. 

Proof Obvious A 

Henceforth all germs and jets that we consider will be of this form. 

I. 4: 2 Proposition (Classification of 2-jets) There are four A2 
orbits 

in J2(2,3)n Z1: 

(x, y) --ýs(x, y2, xy) 

(x, y)-> (x, y2, o) 

(X, y)-2>(x, xy, o) 

(x, y)--3 (x, 0,0) 

Proof Let j2f(O) = (x, b2, Ox2 + bl, 1xy + b0,2y2, c2, Ox2 + c1,1 xy + c0,2y2). 

Then the coordinate change in R3 ( "left coordinate change") 

2_ 
Y=Y+ b2,0X (X, Y, Z old coordinates, X, Y, Z new coordinates) 

Z=Z+ c2,0X2 

transforms j2f(0) into (x, b1,1 xy + b0,2Y2 , c1 1xy + c02). 

Now if b1,1 c1,1 / 0, an appropriate (linear) left coordinate 

b0,2 c0,2 

change transforms j2f(O) into (x, y2, xy). 

If this determinant is zero, then after a left coordinate change, we can 

assume that c1 1= c0 0,2 = 0. If now b0 
0,2 

/ 0, we can complete the square 

in the second component; and the corresponding change in the y-variable 

then changes j2f(0) into (x, y2,0). 

0 then the 2-jet is equivalent either to (x, 0,0) or to If b092 ': 

(x, xy, 0) in 
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I. 4: 3 Theorem The map-germ f(x, y) = (x, y2, xy) (the "cross-cap") is 

stable and 2-determined. 

Proof It is a theorem of Whitney that f is stable ( [33] ). It fo- 

llows by Theorem I. 3: 3 that f is 3-determined, for clearly f`? 13 9(f) 

contains -M 
2 

O(f). Now by I. 5: 2 and I. 5: 3 (see below) if j3g(0)=j2f(0), 

then g is equivalent to a germ of the form 

(x, y) (x, y2, xy + c2,1 x2y + c0,3y3 + o(1)). 

The coordinate changes 

Z=z-c2,1 XZ 

2 
x-x+C03y 

X-X+c0,3Y 

now transform g to a map whose 3-jet is equal to that of f. Since f is 

3-determined, g must be equivalent to fJ; 

There now follow three sections, in which we classify, successively, 

map germs whose 2-jet is equivalent to (x, y2,0), (x, xy, O) and (x, 0,0). 

I. 5 Classification of germs whose 2-jet is equivalent to (x, y 
2 

10) 

I. 5: 1 Lemma a) The germ f(x, y) = (x, y2) has sufficient 2-jet. 

b) tf(1'n 2-1e 
(2)) + f(lll2-1e (2))ß 1"1 2Q(f), fork > 1. 

Proof a) This is the Whitney fold, and is well known to be stable, so 

that tf(G(2)) + wf(O(3)) DY120(f). Moreover, 

tf( O(2)) + f* l3Q(f): D "M 
26(f), so that by I. 3: 3 f is 2-determined. 

b) As f is aa -finite map-germ, ri1 2 E)(f) is a finite t2 module 

via ft, and so by Nakayama's Lemma we need only show 
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(1) tf'M 
10 (2)) + 14f(iýlk-113 (2)) +f22 . Y42e(f)ý1'tk dif) 

. 222 

Now k+1 

f*iº'12.1º'12Oif) _ýv12+16(f) 

0 

k+1 'y 
0, q 

0 yk+1 

so we need only find the k-th order terms, plus k+1 and 

ly 

0 
in the left hand side of (1). And in fact 

Xiyý Xiy oo0o 
tf of k= 

Xk 
and tf 

Xi 
J-1 = 

Xiyj 

is 

00 X__ y 

I. 5: 2 Corollary Let g(x, y) x+ p(x, y), y2 + c, (x, y), c(x, y) + r(x, y)), 

-01 where cE2 and p, q, r E»12 (k>, 3). Then g is equivalent to a germ of 

the form. 

h(x, y) = 
(x, y2, C(X, y) + 

r(X, 
y) 

where r61M 
k 

" 

Proof Let fu : (R2,0)-, (R210) be given by 

fu(x, y) = (X + up(X, y), y2 + uq(x, y)). 

By part (a) of the Lemma, fu is equivalent to f0 for each u 6IR, and so 

by part (b), 

: )tfu(N12 l e(2)) + wfu( h12-19(2))Yý120(fu) 

for all uER. From this it follows by the Preparation Theorem and the. 

usual Thom-Levine vector-field argument (see for example 1301 page 488) 

that fu is equivalent to f0 under diffeomorphisms in source and target 

whose k-2 jet is that of the identity. In other words, we have shown 

that fn is Ak-2 
-, equivalent to f0. This holds in particular for u=1. 

Now the diffeomorphism in the target may be regarded as a diffeomorphism 

in 
P3 

which leaves the last coordinate fixed. Writing the source diffeo- 
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morphism as 

x=X+0. (x, 

y=y 
where d, n iVf k-1 

, we see that g is equivalent to 

(X, Y) (x, y2, c(x + 01 (x, y), y+ /3(x, y)) + r(x +t (x, y), y+ ýJ (x 
, y) ) 

which in fact-has the desired forms 

I. 5: 3 Lemma Let f: (R20)>(R3, O) be given by 

(x, y)[--->(x, y2, c(x, y)) 

with cC 112. Then f is equivalent to 

(x, y)I- x, y2, yP(x, y2 )), 

where 

yp(x, y2) =I {c(X, y) - c(X, -Y)). 
Proof We have 

c(x, y) =- 
{c(x, y) + c(x, -y)\ +i 

Lc(x, 
y) - c(x, -y)j . 

Since the first of these two summands is even in y, by a Theorem of 

Whitney ( [321) there exists a function germ r: 022,0)-- , I2 

such that 

I {c(x, y) + c(x, -y)l = r(x, y2). 

The coordinate change Z- r(x, Y) now transforms f into 

(x, y)tj(x, y29 j c(x, y) - c(x, -y) ). 

Finally, since the last component of this germ is odd in y, it may be 

written in the form yp(x, y2), for some smooth function germ p, again 

by the theorem of Whitneyy 

I. 5: 4 Corollary Every map germ (R2 0)--+(R3,0) whose 
i-class 

is 

that of (x 
,y 

)I (x, y 
2 

, 0), is equivalent to a map-germ of the form 

(x, y)ý--ý(x. y2, yp(X, y2) ). 
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Proof This follows immediately from 1.5: 2 and 1-5: 3-12 

Having acheived this reduction, it may be expected that the A--class- 

ification of such map-germs will be related to the classification, 

under the action of an appropriate group, of the functions p(x, y2). In 

fact this is indeed the case, the group in question being X, the sub- 

group of /X which preserves the set of functions QR? >R invariant 

under (x, y)l * (x, -y). The following sequence of definitions and lemmas 

goes towards proving this"equivalence of equivalences! '* and towards pro- 

ving also "equivalence of versality" for unfoldings. 

1,5: 5 Lemma If f(x, y) _ (x, y2, yp(x, y2)) then for any function h 6t3 , 

there exist functions r, s Et2 such that 

h(f(x, y)) = r(x, y2) + yp(x, y2)s(x, y2). 

Proof By the Preparation Theorem, any function h6 t3 can be written 

h(X, Y, Z) = h1 (X, Y, Z2) + Zh2(X, Y, Z2) 

for some functions h1 and h2. Thus, 

h(f(x, y)) = h1 (x, y2, y2P2(x, y2))+yp(x, y2)h2(x, y2, Y. 
2P2ix, 

y2)). 

Nov put 

r(x, w) = h1 (x, w, wp2(x, w)) and s(x, w) = h2(x, w, wp2(x, w)) 

to obtain the desired equality. 12 

I. 5: 6 Definition i) t2 is the set of germs of functions h: ([22,0) > CR 

such that hoT = h, where T : IR 
2'I22 

is defined by T(x, y) _ (x, 
-y), 

and -MT 
= 

142f ýT 
" 22 
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ii) . is the subgroup of Diff (I200) consisting of germs of diffeo- 

morphisms 7 such that (ýoT = To 

iii) T 
is the subgroup of which acts naturally on 

t.., i. e. germs 

of diffeomorphisms (JR3,0)---(R3,0) of the form 

(X, y, Z)l--i(x, y, h(x, y2'z) ) 

iv) AT is the semi-direct product of KT with 
T. 

v) For a germ p(x, y2)6 
ý 2, 

T Tp(x, 
y2) _< xPx(x, y2), y2px(x, y2)1 y2py(x, y2), p(x, y2)> 

ý2 
. 

vi) The ýCT 
codimension of p(x, y2) is 

T 
dim R' 2 

Tpix, 
y2) 

T 
vii) 

ýýý. TP(X, y2) _ (PX(x, y2), y Py(x, y2), P(X, y2)ýý. 

viii) The e 
codimension of p(x, y2) is 

T 
dimR 2 

Ie X P(X, y2) . 

I. 5: 7 Proposition If f(x, y) = (x, y2, yp(x, y2)), with p(0,0) = 0, then 

i)TAf =2-b 

ih2 ® y{ I O\Tp(X, y2)} 

2 
ii) ýe ýf= ýe 

2 

CZ 9 Y{TJ<Tp(x, y2)} 
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iii) Codim(5) f=2+ codim(X 
T) 

p(x, y2), 

Codim(A) f= codim((Q) p(x, y2) 

Proof Let g1 (X, y) E ly) 
20(f). 

g2(x, y) 

L0 
Put gi = gi e+ 

gi, o 
(even and odd parts of gi with respect to y). 

Then 

g. = r. (x, y2) = f'ir. (X, Y)} 

for some function ri, so assume that gi = gi o' i. e. gi Ey 
t2' 

If also g2 E Y714 2, then 

g1 

tf 
ß1 

g2 

L g2 12Y 

_Yß1px(x, 
y2) +(g2 /2y)(p(x, y2) + 2y2py(x, y2)) 

Since the bottom line is in 
ý 2, 

we can find it in f"3. Thus, we have 

. M2 + yýT2 2 
T, 4 fý 2+Z 

= H2- y 
T ýT L22- 

0 
Now let g3 be odd in y. Then 0t IT f if and only if 

93. 

0 
a 

h1 

0= tf 
b+ 

to f 1h2 where a, bE and hi E ý, I3 

g3 h3 
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That is, 

0 a(x, y) h, ý(f(x, y)) 

0= 2yb(x, y) + h2(f(x, y)) 

g3(x, y) ya(x, y)px(x, y2) + b(x, y)(p(x, y2)+2y2py(x, y2)r h3(f(x, y))_ 

Clearly a= -f*h1 and 2yb = -f*h2 , so by Lemma 1.5: 5, write 

a(x, y) = a1 (x, y2) + yp(x, y2)a2(x, y2) 

2yb(x, y) = b1(x, y2) + yp(x, y2)b2(x, y2) 
f*h3(x, y) = r(x, y2) + yp(x, y2) s(x, y2). 

Note that since aE2, we have a1C ý12. Note also that the second of 

these three equalities implies that b1 (x, y2) is divisible by y2, and so 

may be written as y2b3(x, y2). Equating the odd and even parts in both 

sides of (*), we must have 

g3(x, y) = yap(x, y2)Px(x, y2)+y3b3(x, y2)py(x, y2)+4yb3(x, y2)p(x, y2)+yp(x, y2)s(x, y 
2) 

That is, 

r 
g3 £yf <px(x, y2)i 1ý2 + <yy(x, y2)> yz+ <p(x, y2)i 2J 

=y 
"i Kp(x, 

y2). 

Clearly we can reverse this construction, so that if gE1 
gp(x, 

y2), 

0 
then 0EI #f' 

yg(x, y) 

This completes the proof of (i). Part (ii) is proved similarly, and 

part (iii) follows trivially from (i) and (ii)C 

I. 5: 8 Theorem Let fi(x, y) = (x, y2, ypi(x, y2). Then if p1(x, y2) is xT 

equivalent to p2(x, y2), flis A 
-equivalent to f2. 
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Proof First suppose that pl(x, y2) is ýT-equivalent to p2(x, y2). Then 

there exists a function r(x, y2) such that p1(x, y2) = r(x, y2)p2(x, y2), 

with r(0,0) i 0. Define T: ( 
, 0)-x( , 0) by 

(X, Y, Z)f-- . (X, Y, r(X, Y)Z). 

Clearly is a diffeomorphism at 06R3, and'` oft = fV 

Now consider the case where p, (x, y2) is(Z T-equivalent 
to p2(x, y2). Then 

there exists a diffeomorphism-germ : (t20)-->. (JR20), which may be 

written as 

q (x, y) = (r(x, y2), ys(x, y2)), 
such that 

p1(r(x, y2), y2 s2(x, y2)) = p2(x, y2). 

Since T is a diffeomorphism, rx(0,0) '0/ s(0,0). We shall now show 

that f1. T is left-equivalent to f2. We have 

f1 ( T(x, y)) = (r(x, y2), y2s2(x, y2), ys(x, y2)p2(x, y2)). 

Consider the map-germ q: (LR2,0)---3(82,0) 

(x, y) (r(x, y2), y2s(x, y2)). 

It is clear that 

2222-/2 

q'(1'12) 
ý2 <r(x, y2 ), y8 (x, y )% (r(x, 0), y 

IR f1, yj , since rx(0,0) /0/ s(0,0). By the Preparation Theorem, 

every function germ k: (R2,0)--; ýP can be written in the form 

k(x, y) = a(r(x, y2), y282(x, y2))+ yb(r(x, y2), y2s2(x, y2)) 
In particular, since s(x, y2) is even in y, we can write 

s(X, y2) = a(r(x, y2), y2s2(X, y2)). 
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Define '`f ,: 
(R3,0) -->(R , 0) by 

(X, Y, Z, ){-3(X, YZ 

a2(X, Y) a(X, Y) 

Then 'ti is a diffeomorphism, since a(0,0) / 0, and moreover 

°f1.1 (x, y) = (r(x, y2), y2, yp 2(x, y2)). It 1 

Now put r1 (x, y) = r(x, y) - r(O, y). Clearly r1(x, y2) is divisible by x, 

so write r1(x, y2) = xr2(x, y2). Note that r2(0)0) ? 0. 

Define 
ý2: (R3,0)-ßi 

, 0) by 

(X, Y, Z)I-ý (X-r(O, Y), Y, Z). 

Then t2 is a diffeomorphism, and 

20 11'f1 
T (x+y) = (xr2(x, y2), y2, yP2(x, y2)). 

As in the construction of '? 'l, r2(x, y2) can be written in the form 

b(xr2(x, y2), y2), and defining a third diffeomorphism 13 : (1R3,0)--i( 
, 0) 

by (X, Y, Z)1--ý( 
X, Y, Z) 

b(X, Y) 

we have 
i 

3°f2`f1°fl°T 
f2.0 

In order to prove the converse, we need the following lemma, due to Gaff- 

ney and du Plessis ([9] page 10, Lemma 1.11) : 

1.5: 9 Lemma Let f, g :Wn, 0) ýiü , 0) be smooth map-germs, and suppose 

that there exists hE ýn 
such that for i=1,..., p, fi-gib <h> 

. 
(Here 

f., g. are the component functions of f and g with respect to some coord- 

inate system on RP). Then for any kEk 
pI 

f*k - g*k E<h, Q 
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I. 5: 10 Theorem Let fi(x, y) = (x, y2, ypi(x, y2)), rrith pi(0,0)=0, and sup- 

pose f1 and f2 are 
A 

-equivalent. Then there exist diffeomorphisms 

-11 
of (R2,0) and (LR 

, 0) respectively, of the form 

(x, y) _ (r(x, y2), ys(x, y2)) 

(X, Y, Z) _ (r(X, Y), Ys2(X, Y), Zt(X, Y)) 

such that f10i _o f2 

Proof Suppose that f1 oý =+, f 2 for some diffeomorphisms Cl and 

Decomposing each component function of ý into odd and even parts (with 

respect to y) we can write 

Q (x, y) = (c 
, 1(x, y2) +y 91,2(x, y2), 9 

2,1(x, y2) +y T2., 
2(x, y2) ), 

and then applying Lemma 1.5: 5 and equating f1o P and'fa f2 component 

by component, we have 

(1) 91,1 (x, y2) + y91,2(x"y2) = f1,1(x, y2) + yP2(x, y2)"4'112(x, y2) 

(2) {l2,1(x"y2) +y12,2(Xly2)) 2-e2,1(x, y2) + yp2(x, y2)t2,2(x, y2) 
(3)2,1(x, y2)+y 72,2(x, y2) p1( 11,1(x, y2)+y T1,2(x, y2)t T2,1(x, y2)+y(Q2,2(x, y2>y 

-ý3,1(x, y2) + yp2(x, y2)`ý3,2(x, y2) 

for some functions Yi, 
j. 

Equating odd parts of (1) we see that p2(x, y2) divides T192(x, y2) and 

hence that 11,2(0,0) 
= 0. Now since C(0,0) 

_ (0,0), we have 1,, 
1(0,0)=O 

for i=1,2, and hence y9 
il1(x, y2) is equal to 0 at (x, y) _ (0,0). J 

It follows that det(d (0,0)) =T2,2(0,0) 
X'1 

1(d, 
0), and so 

12,2 (0,0)"ý 0 57 
T1 

1(0,0). So we can define a diffeomorphism 
, 

N '1ý 

: (1R2,0)->([R 2 
, o) by 4 (X, Y) = (Ti, 1(x, y2), y Cf2,2(x, y2)). 

Equating the odd parts of (2) we see that p2(x, y2) divides 
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CT2,1(x, y2)CP2,2(x, y2), and since C P2,2(0'0) * 0, p2(x, y2) must divide 

72,1(x'y2). 

It remains to be seen that we can construct a diffeomorphism of 

(1x3,0), of the desired form, such that f1ýý _ ft. There is no pro- 

blem with the first two components of : simply set 

_ti '21(X, Y, Z) = 
ý1,1(X, Y) 

f2(X, Y, Z) = Y{ý 
2,2(X, 

Y)}2. 

In order to define '`r 3 
in the desired way, we have to find t(X, Y), with 

t(0,0) ( 0, such that 

(4) y CP2,2(x, y2)p1( 11,1 (x, y2), 
{ycp2,2(x, 

y2)j 
2) 

= yt(x, y2)p2(x, y2). 

That is, we have to show that the expression on the left hand side of 

(4) is divisible by p2(x, y2). Let a and b denote the left hand sides of 

(3) and (4) respectively, and let ae and ao, be and bo, denote the even 

and odd parts (with respect to y) of a and b respectively. In fact 

be = 0. Now by equating the odd parts of (3), we find 

ao = YP2(x, y2)t3 2(x, y2). 

Since both T1,2(x, 
y2) and CP2,1(x, y2) are divisible by p2(x, y2) it 

follows, by I. 5: 9, that a-b is divisible by p2(x, y2). Hence 

ae +a0- b0 = p2(x, y2)c = p2(x, y2) {ce 
+ col 

for some function c. Comparing odd parts of this equation, we have 

a0 - b0 = c0p2(x, y2) 

and since a0 is divisible by p2(x, y2), we conclude that b= bo is also 
2 divisible by p2(x, y ). Clearly the quotient must be an odd function, 

and so there exists t(X, Y) such that 

b= YP2(x, y2)t(x, y2). 
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In order to see that t(0,0) / 0, note that b= *(yp1(x, y2)) and so 

the order of b is the same as the order of yp, (x, y2). Now we claim 

that the orders of yp1(x, y2) and yp2(x, y2) are equal. For if the 

former were greater than the latter, then setting k= order (yp2(x, y2)) 

we have, from the fact that 'I of 2= f1 o 12 
, that 

3(x, y2, Yp2(x, y2) )=0 mod FYI k+1 

This implies that ý3 E ý'13 
, contradicting the fact that '1 is a diffeo- 

morphism. By symmettry, the two orders are equal, and so t(o, 0) / 0. 

Thus, the map 

T: (P3,0)---ß(R3,0) 

(X, Y, Z)E--- ( Till (X, Y), Y t12,2 (X, Y)) 2, Zt(X, Y) ) 

is a diffeomorphism, and since 

(5) ° f2 =fro , 

the proof is complete 

I. 5: 11 Corollary Under the hypotheses of the preceeding theorem, p1(x, y2) 
T is -equivalent to p2(x, y2). 

Proof Equate the third components in (5)IC 

I. 5: 12 Corollary Let p(x, y2)C N2. Then p(x, y2) is k-dtermined for d<T 

if and only if the map germ f : (jR2, 0)- -(IR3,0) given by 

(X, y) >(X, y2, YP(X, y2) 
is k+1-determined fora . 
Proof Suppose p(x, y2) is k-determined for XT, 

and let 

g(x, y) = (x + 0(k+2), y2 + 0(k+2), yp(x, y2) + 0(k+2)). 

By 1.5: 2, g is ){ 
-equivalent to 

i 
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(X, y) --. (x, y2, yr(x, y2) + 0(k+2)), 

and by I. 5: 3 we may assume that the third component in 

yp(x, y2) + yh(x, y2) 

for some function h(x, y2)C 
k+1 By hypothesis, p(x, y2) + h(x, y2) is 

%T-equivalent to p(x, y2), and so by I. 5: 8 
9g is A 

-equivalent to f. 

The converse is an immediate consequence of I. 5: 1111 

I. 5: 13 Remark It is easy to see that pairs of diffeomorphisms like the 

ti x 
I and ý' of 1.5: 10 form a subgroup of Diff(jR2,0)XDiff(ý3,0), which we 

shall call 
ý. 

If we denote by M the set of map-germs (L 2,0)--(It3,0) 

of the form (x, y) >(x, y2, yp(x, y2)), then we have shown that for f, 

gEM, fg if and only if 
_- g 

A 
One may check also that for fEM, TAf 

= -[ f, and that AM 
= M. 

I. 5: 14 Remark We have shown that the classification of map-germs in M 

with respe ct to A, is the same as the classification of T-invariant 

functions undo . Following A'rnol'd, [33 
, we now note that the 

classification of T-invariant germs p(x, y2) under 
pT is the same as 

2 
that of the function germs p(X, Y) on H- {(X, Y)E ký2 I Y> 0} , under 

the action of the group of diffeomorphisms of (H2,0).. A similar corr- 

espondence holds for XT and 

I. 5: 15 Proposition Let h: ER? i H2 be the fold map (x, y)(x, y2)1 

and let f and g be smooth germs (H 2 
, 0)->((R, 0). Then 

f ^. 2 g C---ý f oh .T geh. 

Proof First suppose that f'g, i. e. that there exists r: (W 0)---* IR 
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such that f(x, y) = r(x, y)g(x, y). Then h*f = (h*r)(h'g) and so h*f and 

h*g are 
ýT-equivalent, 

since h*r is T-invariant. The converse is equally 

trivial. 

If now f and g are 
as 

-equivalent, then there exists a diffeomorphism 

T: (H2,0) >(H2,0) such that f-Cp = g. Since I (*DH2) = -ýH2,1 

must have the form 

(X, y)r---3(l1(x, y), y T2(X, y)) 

with 12(0; 0) 40/XT, (0,0). Thus, 

and so 

and hence 

f( 71 (x, y), y 12(x, y)) = g(x, y) for y, '- 0, 

f( Ti (x, y2)' y2 ) 2(x, y2)) = g(x, y2) for all y, 

ih*f)( Cpýix, y2), y'1ý2ix, y2)) = (h*g)(x, y). 

The map germ defined by 

(x, y) `9 (x'y2)' y�1 2ix, y2) ) 

is a member of , and thus we conclude that 
T 

f-h . -+/ geh. 
T 

A similar argument proves the converse JE 

Now putting the pieces together, we have 

I. Theorem 'Let fi(x, y) = (x, y2, ypi(x, y2)) i=1,2 be smooth 

map-germs; then f1 and f2 are A 
-equivalent if and only if the function 

a 
germs pi on (H2,0) are 

X 
-equivalent. 

Proof The theorem follows immediately from I. 5: 8, I. 5: 11 and I-5: 15 X 
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I. 5: 17 Remark The close parallel between the action of A on M (see 

I. 5: 13) and the action of 7( on C ""(H 
, 0) (the space of smooth function 

germs on H2 at 0) does not stop at classification, but carries over to 

vernal unfoldings, which we examine in I. 10 . Without going into any 

detail now, one may see this parallel quite simply displayed in the 

geometry of the germs in M: if fEM, then the set of double points in 

the image of f is 

{(X, Y, Z)E 1IZ=0, y;, 0, p(X, Y) = 0} 

and the closure of this set, which contains also the image under f of 

its singular points, is 

{(X, Y, Z) E a3 1=0, 
Y>O, p(X, Y) = 0} 

We now proceed to the classification itself. In [2) 
, Arnold gives a 

classification of critical points of functions in C'`'(H2,0) with respect 

to the action of , and his lists may be adapted to give a classifi- 

cation under The modifications required generally amount to no more 

than a reduction in the number of moduli, and in particular, the class- 

ification of those germs for which quasi-homogeneous normal forms exist 
T ena is the same for X as for jý . Thus, by carrying out the appropriate 

modifications in Arnol'd's lists, one can obtain a far wider A 
-class- 

ification of germs whose X 
-class is that of (x, y)-ý(x, y2,0) than the 

one we give here. 

The following table gives the classification of singular. germs in ýT 

with respect to the action of XT, as far as we have carried it out, 

consistent with the aims stated in I. 1. The proof follows, although 

we omit the calculation of tangent spaces to orbits, as they are very 
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straightforward. 

I. 5: 18 Table of 
V, V 

orbits 

Name Normal Form 

T- 

codim. )F tangent space 

determin- 

acy. deg.. 

Sk y2 + xk+1 (k>, 1) k M 
2- 

{x, x2, ... , xki k+1 

Tk (Bk) x2 + y2k (k> 2) k MT_ Ix. y2, y4, ..., y2k-21 2 
2k 

Dk (Ck) xy2+ xk (k> 3) k 7h2- f 
x, y2, x2, x3, ...,. xk-1} k 

E6 (F4) x3 + y4 4 T_ ix, 
x2, y2, xy2) 4 

J10(F, ý C x3 +a xy4 + /3 y6 6 1'72- lx, x2, x3,72, xY2, x2y2, xy4, y6 6 

4oc3 + 27/32 + Rt3x2y2+ xy4,3x3+ xy4 

2 °` xy4 + 314 y61 

X (x 
9 4,2 x4 +x x2 

2± 
y4 y 6 'N T- {x 

, x2 x3 x4 
22 4x2 2 

2 ,y' ,yy 4 

0L2 /4 in posi- + f2 f2x4 + oLx2y2, ox2y2 + 2y41 
tive case. 

Notes 1) The names given here (except for Skand Tk) are those under 

which these germs, considered as members of 
'E2, figure in Arnol'd's 

lists (see e. g. 
C11 ). The names in brackets are those Arnold gives 

in [23 to the corresponding germs in C`0(H2,0), whose normal form is 

obtained in each case by dividing every exponent of y by 2. In the 

case of Sk, the corresponding germs in C o*(H2,0) are non-singular, 

and so do not figure in Arnol'd's list, but one should bear in mind 

that , unlike in the case of germs in tn, 
non-singular germs in 

C °(H290) 
are not all equivalent, and in particular f(x, y) =y is not 

even finitely determined for 
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2) The family J10 (F1,0) is in fact unimodal in the sense that two para- 

meters are not necessary to list all the members: each member is equi- 

valent to either x3 + o(xy + y6 for some o4, or to x3 + xy4. We have 

retained the two-parameter presentation in order to emphasise that we 

are dealing with a single family, and in order not to duplicate the 

tangent space. In fact the normal form which Arn- expression for the öýT 

ol'd gives, x3 + o4x2y2 + y6, is convenient in the complex case, but in 

the real case not every member can be brought to this normal form. 

3) The T-codimension in the table is that of each orbit; in the cases 

of J10and X9the codimension of the stratum is 5. 

4) There is some collapsing in the list, since for k even y2 + xk+1 Wk) 

is equivalent to y2 - xk+1 (Sk), and Dk is equivalent to Dk. 

I. 5: 19 Theorem a) The above list includes normal forms for all xT- 
simple 

T-invariant germs, namely Sk, Tk, Dk and E6. 

b) The codimension, in l1? 2, 
of the complement of the germs 

listed, is 6. 

c) Every singular germ f E1 either is equivalent to one 

of the germs listed in I. 5: 18, or satisfies one of the following: 

j 00 f ^ýY2, . and codim. f =W if N x4 +x2 y2 and codim. 
f 4f 

= 6 

Co jf N x2, . and codim. f = 00 ji+f N y4+x2y2 and codim. ' f= 6 

°'f xy2 and codim. f = 
4f 

N x4 and codim. T4f 
= 7 

6f 
x3 and codim. 

f6f 
=7 j4f ev y4 and codim.? 

T4f 
= 7 

6 
jf x3 + x2 y 2 and 

T 
codim 

/ 6f 
=6 j 

4f 
N x2y2 and codim. 

1 
f= 7 

j'f -- x4+2x2y2+y4 a-d co dim. 'X f=6 j4f =0 and codimJ 'f= 8 
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Proof (of I. 5: 19 and of the assertions contained in I. 5.: 18): 

For determinacy degrees we use the fact that if fet2 is k-determined 

for , then it is k-determined for &T (see [29]page 2, Lemma 1.2). 

We first construct a stratification of 70 2. Since any T-invariant function 

may be written as p(x, y2) for some PC 
k 

2' 
its Taylor series will have 

the form Ta1,2j 
xi y 

2j 

i, j 

and since we are principally interested in finitely determined germs, 

we will write p(x, y2) as a formal power series. 

Case 1 a1 0/0. Then p(x, y2) is X T-equivalent 
to x. (Put x= p(x, y2), 

y= y). 

Case 2 a1 0=0, a2 0and a0 2 not both 0. If a2 0and a0 2 are both non- 
,,,,, 

zero, then p(x, y2) is a Morse function, equivalent to x2 + y2 and 

2-determined. (SI ). 

If a2,0 = 0, a0,2 / 0, then we can assume a0 2=1. By the Invariant 

Splitting Lemma ([31) page 42 ff) p(x, y is T-equivalent 
to 

2) 

y2 +2 (x) 

for some ýE N3 
. The usual classification of functions of one variable 

now applies, so that p(x, y2) is n T-equivalent 
to 

2 k+1 
y+x 

for some k2, or has o0-jet equivalent to y2. 

If a012 = 0, a2,0 / 0, similar considerations show that either p(x, y2) 

is a T-equivalent 
to xZ t y2k (Tk) for some k> or has oo -jet 

equivalent to x. 
2 

Case a1,0 = a2,0 = a0,2 = 0, a112 4 0. Assume a1 1,2 =1 
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After multiplying p(x, y2) by 1-a2 
2x -a1 4y2, we may assume that 

a2 2= a1 1,4 = 0. Successive T X 
-equivalences of this kind will reduce 

2 
p(x, y ), to any desired degree, to the form 

xy2 +L 
j> 2 

Pit 
Z 

x=x-L 
j>2 

to reduce p(x, y2) to 

2i C-i 
a0,2i y+i3 ai, 0 x 

2j V "v i 
a0 2y+Ga. x 

iý 3' 

xy2 +G äiýQix 
-Z 

ä0 
2j y2j-2i 

i>3 jý 2 

Let k be the first integer such that äO'0. Then the last expression 

is equal to 

xy2+akOx+O(k+1) 

which may be reduced, by an appropiate change of scale, to 

xy2 +x+ 0(k+1). 

Since this germ is k-determined for R, it is also for T, 
and so p(x, y2) 

is T-equivalent 
to xy2 + xk (Dk). If, on the other hand, äk 

0=0 for 

all k, then in fact ak 0=0 for all k, and so 

p(x, y2) =xy2+y 
2(, L 

a. 12 i2 , 
ý, 2j xy ) 

which is formally equivalent to xy2. 

Case 4 a0,1 = a2,0 = a0 0,2 = a1 2=0, a3,0 ( 0. Assume a3,0 = 1. The 

coordinate change x=x- -a2 
2y2 removes any x2y2 term from the 

4-jet of p(x, y2), leaving x3 + a04y4. If a0 0,4 
/ 0, p(x, y2) is equiva- 

lent to x3 + y4 + 0(5) and we have an E6, which is 4-determined for K 
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and hence also for 
T. 

Now assume a0,4 = 0. One then shows, by using straightfomard equi- 

valences, that the 6-jet of p(x, y2) is equivalent to 

x3 + of xy4 + Y6 

for some CC , ýJ E ER. This is 6-determined fork if 4 oC3 + 27 2 0, and 

can be placed in one of the two normal forms 

x3 + -D[xy4 + y6 or x3 ± xy4. 

One can check by direct substitution that d is indeed a modulus - 

for different values of oar , the germs are inequivalent. 

The remaining 6-jet orbits are those of 

, c3 - 
3/ 

4 , ßy4 + y6 (codim. 6) and x3 (codim. 7). 

The former has the more convenient normal form x3 + x2y2 since it 

is a cubic with a repeated root. 

Case a1,0 = a0,2 = a2,0 = a1,2 = a3,0 = 0. Then the 4-jet of p(x, y2) is 

If 224 
a4, Ox + a2,2x y+ ao, 4y 

If a40 and aO, 4 are both non-zero, appropiate changes of scale reduce 

this to 

X4 + of x2y2+ y4, 

for some OtE LR. In the case where the coefficient of y4 is 1, this jet 

is sufficient for Z iff oe / 4, and when the coefficient of y4 is -1, 

it is sufficient for all values of oC . 

It is easy to see that we have here a unimodular family: if we apply 
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any tX 
-equivalence, then it is only the linear part of the diffeo- 

morphism which acts on the 4-jet, and one checks that if the coeffici- 

ents of x4 and y4 are unchanged, then x is also unchanged. 

The remaining 4-jet orbits are those of x4 t 2x2 y2 + y4, x4 t x2 y2, 

x4 ± y4, x4, x2 y2, y4 and 0, which have codimension 6,6,6,7,7,7 

and 8 respectively. This completes the stratification that we require. 

It is shown in diagramatic form on page 34 . 

Parts (b) and (c) of the theorem follow directly from this stratifica- 

tion, and the assertions in 1.5: 18 have also been dealt with. 

Proof of-(a) It is clear that if p(x, y2) is not equivalent to one of 

the Sk, Tk, Dk or E6 then it is not simple, for it must adjoin J10, 

in the case that the 4-jet of p(x, y2) is equivalent to x3, or X9, in 

the case that the 3-jet is zero, or it must adjoin a countably infi- 

nite number of distinct orbits, in the cases where the 00-jet is equi- 

valent to y2, to x2 or to xy2 

Conversely, the simplicity of Sk, Tk, Dk and E6 is more or less imm- 

ediate from the stratification. For Sk, we have p(x, y2) = y2 t xk+1 

and small perturbations will remove neither the y2 term nor the xk+1 

term. Thus, the only orbits in which small perturbations will lie are 

those of y2 t' xi+1 for i<k. The argument for Tk is similar. For Dk9 

we have p(x, y2) = xy2 1 xk, and small perturbations may either intro- 

duce an xl term for some is k, in which case Di results, or introduce 

quadratic terms, in which case Si or Ti (i ' k) will result. For E6, 

small perturbations will result in Si, T. or Dig with i6a 
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The stratification constructed in the preceeding proof is slightly finer 

than is needed for the proof of Theorem 1: 2; for that purpose we obtain, 

from the proof of I. 5: 19, the following stratification: 

I. 5: 20 Corollary The following is a XT-invariant stratification of 

Stratum %T-codim. 

x 0 

y2 + xk+1 1tkS4 k 

x2 + y2k 2 Sk <4 k 

xy2+xk 3<k4 k 

x3 + y4 4 

4x3 5 

30 5 

öC 5Y2 5 

9x2 5 

4xY2 
5 

Note In other words, every germ E ?2 is ? LT-equivalent to one of the 

germs listed in the first four places in the table, or its k-jet lies 

in one of the °_ 
T k_ 

orbits listed in the remaining places. 

I. 5: 21 Remark The part of the stratification of Theorem 1: 2 which 

lies within the W 
-orbit of the map germ (x, y)--ý, (x, y2,0) can easily 

be obtained from this stratification by applying I. 5: 7, I. 5: 8, I. 5: 11 

and I. 5: 12. 
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1.6 Classification of germs whose 2-jet is equivalent to (x, xy, 0) 

I. 6: 1 Proposition In J3(2,3) there are five yk 3-orbits 
of jets whose 

2-jet is equivalent to (x, xy, 0): 

Orbit 
3-codim. 

(x, xy, y") 4 

(x, xy + y3, xy2) 5 

(x, xy, xy2) 6 

(x, xy +, y 3,0) 6 

(x, xy, O) 7 

Proof Any 3-jet over (x, xy, O) is equivalent to one of the form 

(x, xy + b2ýýx2y + b1 
, 2xy2 + b0,3? 

. 
c2,1x2y-+ cl, 2xy2. + c0,3y3) . 

If c0,3 / 0, complete the cube in the third component by adding appro- 

piate multiples of X3 and XY to Z (i. e. by a left coordinate change) 

and then change the y coordinate to get a 3-jet of the form 

(x, xy + b2,1 x2y + b1,2xy2 + b0,3y3, ). 

After an obvious left coordinate change we may take b2 2,1 to be 0. Put 

2 
y= y(1 + b112y ) and then remove the term from the second component 

by the obvious left coordinate change to obtain 

(x, xy, Y3). 

If c0,3 = 0, the 3-jet is obviously left-equivalent to 
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(x, xy + b1,2 xy2 + b0,3 y3' c 112 xy 
2) 

and then, if cß, 2 
/ 0, it is equivalent to 

(x, xy + b0,3y3 , xy2). 

This is equivalent to the second of the 3-jets in the table, if b0s3 / 0, 

or to the third, if b0,3 = 0. 

If c0,3 c1,2 = 0, the 3-jet is left-equivalent to 

(x, xy + b1,2xy2 + b013y 3,0). 

Putting y= y(1 + b1 
s2y), 

this becomes equivalent to the fourth of the 

3-jets in the table, if b0 
0,3 

' 0, or to the fifth otherwise. 

It is straightforward to calculate the j 3-tangent 
spaces to each of 

the orbits listed, and to count the codimension from them l: 

The remainder of 1.6 is divided into four subsections, numbered from 

1.6.1 to 1.6.4. These deal respectively with the classification of germs 

whose 3-jet is equivalent to one of the first four listed in 1.6: 1. 

Since the A 3-codimension 
of the fifth is 7, the preimage in Jk(2,3) 

of the 343-orbit of this jet forms one of the strata in our stratifi- 

cation of Jk(2,3) (Theorem 1: 2). 

1.6.1 Classification of germs whose 3-jet is equivalent to (x, xy, y3) 

Here we are able to acheive a complete classification of finitely det- 

ermined map-germs. 

I. 6.1: 1 Lemma All 4-jets whose 3-jet is equivalent to (x, xy, y3) belong 
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to a single 
Ai4 orbit 

Proof Apply Theorem 1.3: 1 to the set S= 7-14,3-1 ((X, xy, y3)) C- jk (2,3), 

taking G as A 4, 
which acts on J3(2,3) by taking mod 7 2, 

and r as 

Ti 
3: J4(2,3)--3'J 3(2,3). The hypotheses of the Theorem are easily 

'3 
seen to hold; in particular, TS=2, for any O' E S, and it is 

1 

straightforward to calculate that 

T .1Y 
TdS R 

I. 6.1: 2 Theorem a) If j3 f(O) is equivalent to (x, xy, y3) and f is of fin- 

ite A-codimension then for some 1 2, f is equivalent to 

(x, y)-->(x, xy + y31-11 y3). 

b) If f(x, y) = (x, xy + y31-1 9 y3) (1 > 2) then 

31-5 'M2 -{y, y4, y7,..., y31-5 
}y y4 7L 

-- f=C mz - {y, y 2, y5y 31-4) + IR y2 y5 y8 ,..., . ,..., 

y, y2} o00 

f has A 
-codimension 1+2, f is 31-1 determined (for A ), and f is simple. 

Proof By induction on k. Suppose that Cr is a k-jet of the form 

(x + a(x, y), xy + b(x, y), y3 + c(x, y)), 

where a, b and c are homogeneous polynomials of degree k. By the coord- 

inate change x= f"X, we may assume that a=0. Now it is straightfor- 

ward to check that the following hold for any f such that jkf(0) = Cr : 

31+1 
(1) f* 113 + r'12 2 -M31 - 

[�31_1 j 
(1> 2) 
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(2) f* m+ X31+-2 31+1 
- 

Ly31+1 (1> 
3221. 

) 

(3) f* '»13 + 'h121+3 '31+2 _ 
L312J (i>. 1 ) 

This means that by applying left coordinate changes we can reduce ß' to 

(x, xy+ bxyk-1 + b'yk, y3 + cxyk-1 + c'yk) 

where b, b', c and c' are now constants. 

By Lemma 1.6.1: 1 we may now take k to be greater than 4. In what follows 

we make a succession of coordinate changes, denoting at each stage the 

variables which we are replacing by x, y (in the source) and by X, Y, Z (in 

the target), and denoting the new variables by x, y and by X; Y, Z. 

If k= 31 we can assume that b' = c' = 0, by (1). 

Coordinate Change resulting k-jet 

(z, xy + bxy31-1I y3 + cxy3l-1) 

x=x- bxy- -- 

(x - bxy31-2, xy, y3 + cxy31-1) 

X=X+ bYZl-1 

(x, xy, y3 + cxy31-1) 

y_y- . cxy 
31-2 

(X, Xy - gcx2y31-3, 
y3) 

Y=Y+ jCX2Z1-1 

(x, xy, y3) 
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If k= 31+1 we can assume b=c=0, by (2). 

Coordinate Change Resulting k-jet 

(x, xy + b'y31+1, y3 + ß'y31+1) 

X_X_b'y31 

ix -b'y31, xy, y3 + coy31+1) 

X=X+b'Z1 

(x, xy, y3 + cty31+1) 

y=y- c'y31-ý 

fix, xy - 
ic'xy31-1, y3) 

x +c'Xy31-2 

(x + ic'xy31-2, xy, Y3) 

X=x- 1c'YZ1-1 

(x, xy, y3) 

If k= 31+2 we can assume b=c=0, by (3). 

(x, xy + b'y31+2, y3 + ß'y31+2) 

y_y- cly31 

(x, xy - gc'xy31 + b'y31+2, y3) 

Y=Y+ Ic'xz' 

(x, xy + b'y31+2, y3) 
Now if b' / 0, 

Y= 3ki )Y 

31t 

=I b'! y 
(b 

1 

z'= 16'I e +'z 
(x, xy + 3,31+2 y3) . 
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Finally, (x, xy + y31+2, y3) and (x, xy - y31+2, y3) are equivalent under 

changes of sign in the x, X and Y coordinates. We replace the 31+2 here 

by 31-1 in the statement-of the theorem, since this. is the Ae-codimen- 

sion of the germ f of part (b). 

In order to complete the proof of the theorem, it will be enough to prove 

part (b), since we have shown that for any f with j 3f(O) 
equivalent to 

(x, xy, y3), either j31+2 (0) is equivalent to (x, xy + y31+2, yß) for some 1, 

or for all finite k, jkf(0) is equivalent to (x, xy, y3). 

Proof of part (b) Let j'1 
1"g(0) 

= (x, xy + Y31-1 y3). Then 

g'7 30(g)ß 
h3 (g), 

for clearly the inclusion holds mod-4 6(g), and we can apply Nakayama's 

Lemma. Hence, g is a finite map-germ, and C is a finite 
3 module via 

g' (see the argument at the end of the proof of I. 3: 2). It is, of course, 

easy to see that C is indeed closed under the action of 
t3 

via g". Now, 

since 

C 2'h131-3©(g 
2 

we may conclude from 1.3: 2 that C= TA g, if we can prove 

(4) C= TAg + g*T113. c +, M31 
2Q(g) 

We have 

3 
31 e(g) g x, z .c+ 'PI g iºý c+ "r'! i{) 21. p(g) = {X, y3} .c +'g218(g) 

XY y2 y3 000000000 y31-2 0 
Cc t) -M2 6(g), -000 xy XY2 Y3 Y4 000000 y31-1 

0 iLoib11ooi1oi112J3J1y4jy5J1o Jjo 
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Then, working mod IM31 e(g), we have 

Z-o 
ry 

tg -wgy (31-1)y 31-1 

3z0 

I 

y31-2 

tg 
y31-2 

- y31-1 
0 

0 

and so the right hand side of (4) contains N31-20 (g). 

Now working mod M31-2 Q(g), we have 

xy =9 *Y 
, 

o Xy 

Xy - tg - o 
0 

0 0 

0 0 
o 2 

0 = tg - 

l 

XY 2 
y L3Y 0 

y 

y = tg 

0 

Y220 1Y 
0= tg - wg Z1 

0 
0 10 
00 

0 
0= tg -wg X2 

2x 
xY 0 

oz 
y4 =tg- Lg o 

0 
00 
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10 0 

I0 0= tg 
[y31 

- lag XZ 

3Y5 0 

and since y3 = g*Z, x= g*X, this completes the proof that (4) holds, 

and hence that TA g=C. 

Now, by Theorem 1.3: 3, g is 31-determined, but by an application of I. 3: 1, 

we see that the 31-jets of all such g are equivalent, so that in fact g 

is (31-1)-determined. 

Proof of simplicity By inspection of the A 
-tangent space to f, we see 

that an A 
-versal unfolding of f is given by 

(x, y, u1,..., u1+2)->(x, xy+uly+u2y2+u3y5+... uly31-4+y31-1 , u1+1y+u. +2y2+y3, u) 

= (f 
U(X, 

Y), u). 

If u1 or ul+l is non-zero, the fu is an immersion. 

Assume u1 - u1+1 - 0. If ul 2/0, the 2-jet of fu is (x, xy + u2y2, u1+2y2), 

and so fu is a cross-cap, equivalent to (x, y)-. (x, y2, xy). 

Assume u1 = u1+1 = u1+2 = 0. If u2 ' 0, then the coordinate changes 

xx2 y-y+2u2 Y-u2+ 
+ßu2 

transform the 3-jet of fu into 

_2 
2- 3 

(x, -2 , y3 - +'2 "3) 
2u2 4u2 - $u2 

which is equivalent to 

(x, y2, r3 + x2y). 
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Since this is the 3-jet of S1 (see I. 5: 18) and is sufficient (I. 5: 19), 

fu is equivalent to S,. 

Assume u1 = u2 = u1+1 = U1+2 = 0. Then 

fu(x, y) _ (x, xy + u3y5 + uky8 + ... + uly31-4 + y31-1, y3). 

By the above, this is equivalent to 

(x, y) -)(x, xy + y3i-1, y3) 

where i is the first sub-index for which ui / 0, or to f0 if u=0. Thus, 

only a finite number of different A 
-orbits are met by an -versal un- 

folding of f, and so it follows that f is simplen _ 

1.6.2 Classification of germs whose 3-jet is equivalent to (x, xy+y3, xy2) 

We now embark on a rather tedious series of calculations. Unlike in the 

preceeding subsection, the explicit coordinate changes needed to bring 

jets to the appropriate normal form are rather complicated, so that it 

is in fact easier to make the corresponding infinitesimal calculations 

and apply Theorem I. 3.1. 

I. 6.2: 1 Lemma Every 4-jet whose 3-jet is equivalent to (x, xy + y3, xy2)1 

is equivalent to one of 

d= 
(x, xy + y3, xy2 + cy4). 

Proof Let Q' be a 4-jet of the form (x, xy + y3 + b(x, y), xy2 + c(x, y)), 

where b, c E X4 
. Since, mod 12, we have 

x4 = x41 x2Y = x37, y2 = x2), 
21 
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we may assume, after appropriate left coordinate changes, that 0' is 

(x, xy + y3 + b1,3xy3 + b0,4y4, xy2 + cl, 3xy3 + c0,4y4). 

Putting y= y(1+c1,3y)3 removes the xy3 term from the third component, 

but introduces an xy2 term in the second. This, however, may be removed 

by a left coordinate change, bringing d to the form 

(x, xy + y3 + b1 3xy3 + bo, Ify4, xy2 + c0,4y4) 

Putting y- y(1+b 
2 

1,3 y) transforms this 4-jet into 

(x, xy + y3 + b0,14y4, xy2 + co, 4y4). (1) 

One then calculates that for any 4-jet of this form, 

3Y -"y 

tf 
1- 

Wf 0=y It 0 
00 

0 -2xy 

tf 
- 2xy 

+OfZ t(3+c)YkJ and 2 
y 

00 
4bZ 

[(2 

- 4c)xy 
2-4c)xy - 4b(xy2 + cy4) 

tf +c of (4c-5)Z - X2 - (4c - 5)y4 
x 

-cXY 0 

(where c= c0,4) so that 

0 

y4 E T}k40' . 
0 

From there it is relatively straightforward to calculate TA-4 - it 
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is in fact equal, mod. h2, to the space C of 1.6.2: 3, except that the 

fourth supplementary generator of C is replaced by 

0 

o 
3 xyº+y +b0ý y 

Hence the dimension of TA Cr is independent of bG 4, and a straightfor- 

ward application of Theorem 1.3: 1 (a) with G=4 and S= Sc =f 4-jets 

of the form (1) with cQik=c} completes the proof Q 

I. 6.2: 2 Lemma Every 6-jet whose 3-jet is equivalent to (x, xy + y3, xy2) 

is equivalent to a 6-jet of the form 

(x, Xy+y3+b0,5y5+b0,6y61 xy2+cy4+c1,4xy4+C0,5y5+C1,5"y5+c0,6y6). 

Proof Let Cr' be such a 6-jet. By the preceeding lemma, and by obvious 

left coordinate changes, the 5-jet of 0' is equivalent to 

(x, xy + y3, + b1,4Xy4 + b0,5y5' "y2 + ßy4 + c1,4xy4 + Co, 575). 

By writing y=y+b 4yß we can remove the xy4 term from the second 

component. A similar proceedure at 6-jet level reducues O' to the des- 

ired formt/ 

Now for convenience write b0,5 = b, c1,4 = d, c0,5 = e, and C0 6_g. 

I. 6.2: 3 Proposition Let d be a 6-jet 

(x, xy + y3 + by5 + b0,6y6, xy2 + cy4 + dxy4 + ey5 + c1,5xy5 + g'6)- (1) 
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If c/J, 1, ý, 

or if c=1 and g-d-b-e2 ? 0, 

or if c=Ior 3,, - andep0, 

then 

"1 - fya y y2 

T 6C 
=C2- {y, xy, y2, y3} + IR y2 y3 

22434 'r2-{y, xy, y, x, , y} y 

. C. and in the other cases, TA 
6C-- 

00 00o 

xy+y3 o xy 0 

0 +y3 xy? xy2+cy4 

Proof First, with one exception, it is easy to see that the generators 
2 

of TA 
66, 

(i. e. tf of the Natural generators of and and L if of the 
3 

natural generators of Q-M ; see 1.2) are contained in C; note that the 

supplementary generators of C are, respectively, 

o0x0 
Y9x 

tf , tf (, ýf Y, pof 0, tf - wf 0 and L, f 0 
l01 

00 
0Y0Z 

all mod. -M 5. The exception is tf 
0, 

but this is equal, again mod. M5 
, to 

IY 

2X 
2x 

ýýf 3Y - tf , and so is indeed contained in C. Hence, T* 
6CC. 

0 
4Z 

To see that T -Q C, note first that by Nakayama's Lemma this is equi- 

valent to Ti 
6d 

+ cc 3. C? C, where Cr* is the obvious morphism 
t3 

--j" 
ý2 

obtained by considering a as a polynomial germ. Nakayama's Lemma is 

certainly applicable here since we are dealing with finite dimensional 

real vector spaces, and thus certainly with finite modules. 
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Since O"M3. C ? x. C, it contains all those monomial generators of C 

(i. e. those listed in the statement of the proposition) which are div- 

isible by x, except for 

xy xy2 o000000 

(2) oo Ix2yU xy2 xy3 0 IC. 0o. 

00 
to 

00 x2y x2y2 xy3 xy4 

a(x, y) 

Moreover, all terms of the form 0, where aE2, belong to TA6C' 

0 

a 
a 

since 0=td, where t ß' is the morphism 2 obtained 
ý. O `2 

0 

by regarding 0 as a polynomial germ. 

o0 
Using WO' Y2 we obtain y6 in T, 46(' 

. 

00 

Of the generators of C we now need to find those of group (2), and 

y 
37 

y4 0000 

(3) 00 y4 y5 00 

0000 y5 y6 

for once these are found, then by the remark in the first paragraph of 

the proof, the supplementary generators of C will then belong to TA 
6d 

as a consequence. By listing the generators of T, 46 &, in which the terms 

of groups (2) and (3) figure, it becomes clear that Tj6O' nC if and 
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only if the matrix (4) of coefficients (shown on next page) has maximal rank. 

The rows have been numbered in order to facilitate the succeeding cal- 

culations, and, as can be seen, the first eleven rows are already in 

s tep form. Rows 12 and (93 turn out to be dependent, modulo the first 

eleven rows, and after operating, with rows O to 11 , on rows 12 

and 14 to 
@, 

we obtain, in the last four columns and the last five 

rows, matrix (5), whose corank is thus equal to that of (4). 

o xy y 0 

Matrix (5) y4 0 0 0 

0 0 o 
6 

y 

10 -cQ- 
04 

+c 
©- (c-1) 1® - (c-2) 11 0 0 2c-c2 I-c 

14 - 20- 3@+(g)- t@o 0 0 -3 4c-4 

15 - 5e (D - 4c + 5e@ -2® -(5-4c)(9 4c2-5c 2-4c e(5-9c) -4ce 

- 4c U2 
- 2(D+ 4c(D+() 3-3c 4c-2 -e 4e 

-2d 
Q 

-e 
(? 7 

-2bo+2d©+eo-2 10 2d 0 
-e e -2(b+cd) 2(g-b-d) 

Now, the first two rows of this matrix are independent if and only if 

(c - 1)(2c - 3)(2c - 1) /0 

and in this case, matrix (5) has the same corank as 

4c 2- 
5c 2- kc 

3- 3c 4c -2 

However, the determinant of the first two rows of this matrix is equal 

to 2(2c - 1)2(2c - 3) and so if (c - 1)(2c - 3)(2c - 1) / 0, we conclude 
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--- 
X''7, ,o ,yy . 7D-, .V,; G it-). .0.; . .I C jc 

.0. 

j o ý ,o Co 

o 0 0 0. ," o 0 0 0 o 00 
ýp 

0 0 , 0 0 0 0 0 0 0 0 O , , 

2 1 

," 

I_ 

u: O 0 0 0 1 0 0 0 C, 0 , 0 0 0 o O 

' t! 

- 

0 0 0 0 1 0 0 0 , 0 0 0 , 0 0 

o 
: 

I - - l' 

` o o o o L , o 0 0 , o 0 0 o 0 
0 

ooo 0 o L o, o0 0 0 0 , o 0 

ü oc , 
XYJ _, { 

o c c c c 

00 0 O 

CO0 

7i C' D c C 

I 

60.1 21" ; 0 
O 

0 0 0 C O C 0 0 1 -2 C C' C ,t 
ýý 

ý 11 

ý'Jiý o n c o 0 o c c o , o c c , 

i ýý s ý ý e e c c o o e c n o n 

tý 
ý 

I. c 0 0 2 v 3 0 0 0 , 

~ 

t XY o 0 0 c C 

ter. 
(2 

o 3 0 0 , o c o 0 c o C C 

f 3 t 

itX 

5" o e 0 4c o 0 2 3 0 _ 0 c o c o 

-- -- - -- 

ý 

tfj0] 

--- 

.c 0 0 2 0 0 C 1 U 0 C o 

:a f ?r 0 0 0 C, 7 
ILZ, ý o 0 0 o c c o 

ýi 

ýE 

`J 
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that matrix (4) has maximal-rank, proving that in this case Tj 
6G' 

= C. 

If c=I matrix (5) has maximal rank iff g -b -d- e2 ? 0. 

If c=1 matrix (5) has maximal rank iff e0 

If c= matrix (5) has maximal rank iff e/0D 

1.6.2.4 Corollary The 6-jets 0' of form (1) (of 1.6.2: 3) are classified 

(for 5k ) as follows: 

recognition principle normal form name 

As 

codim. 

i cp3,1 ,2 
(x, xy + y3, xy 

2 
+ cy 

4) 6 

ii c=2, e/0 (x, xy + y3, xy2 + jy4 + y5) (3,1) 6 

c= , e/O (x, xy + y3, xy2 +4y4+ y5) (3,1) 6 

iv c=1, g-b-d ge 2 (x, xy + y3, xy2+ y4 ± y6) (1, +1) 6 

v c4, e=O, b+2d / 3g (x, xY + y3, xy2 + jY4 + y6) (3, +1) 7 

vi c= , e=0,5b+6d/ 3g (x, xy + y3, xy2 + y4 ± y6) (3, +1) 7 

vii c=3, e=0, b+2d= 3g (x, xy + y3, xy2+ -ßy4) (1,0) 8 

viii . c= -ff , e=0,5b+6d= 3g (x, xy + y3, xy2 +y) ( , 0) 8 

ix c=1, gg-b-d = e2 (x, xy + 73 , xy2 + y4) (1,0) 7 

Proof (i) If c p( 3,1 or 7, let Sc = 
{6-jets 

of the form (1), for fixed c} 

Then apply Theorem 1.3: 1 (a) with S=Sc and G=A6. 

(ii) If c=, let S(j, 1) = 
{6-jets 

of the form (1), with c= , e/01 
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and apply Theorem I. 3: 1(a) to conclude that each component of S(3,1) is 

contained in a single A6 orbit. Normal forms a (j, t1) may then be cho- 

sen, one for each component of S(3,1) , but are clearly equivalent. 

iii) As in (ii). 

v) In the case where c=- and e=0, then by modifiying the calcul- 

ations made in the proof of 1.6.2: 3 and applying I. 3: 1(a) with 

S= {a 
of form (1) with c=J, e=0, b+ 2d / 3g), one shows that 

each component of S lies in a single 
46 

orbit. The condition b+ 2d 1 3g 

is necessary and sufficient (in this case ) for matrix (4) to drop rank 

by exactly one. Normal forms ((3, ±1) may be chosen, one for each com- 

ponent of S. 

vii) This is proved by a similar method. 

vi), viii). As in (v), (vii). 

iv), ix). If c=1, then, as can be seen by inspection, the condition 

that matrix (5) drops rank by exactly 1 is g -b -d/ e2. It is clear 

that Tj45p' _C (mod'»1 ), so by I. 3: 1 there is only one orbit at 5-jet 

level. We may thus take b=d=e=0. The proof of (iv) then proceeds 

as in (v), and (ix) follows by similar methods il 

I. 6.2: 5 Theorem Each of the map germs 

(i) (x, y)), (x, xy + y3, xy2 + cy4) c/0, i, 1,3 

ii) (x, y)--->(x, 
3 

xy + y, xy2 + ßy 
4+y 5) 

c_3, 

iii) (x, y)-->(x, xy + y3, xy2 + y4 ± y6) 

iv) (x, y)' (x, xy + y3, xy2 + y7) 

has /A tangent space equal to 
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{y, y2i y y2 0000 

c= 'M2 - Ly, xy, y2, y3) + IR y2 y3 Xy+y3 0 xy 0 

+cy Lý"2 - {y, xy, y2, x2, y3, y 
4} 

y3 y40 Xy+y3 xy 
2 Xy 

24 

and A -codimension 6. Their degrees of determinacy are, respectively, 

4,5,6 and 7. 

Note In case (iv), since c=0, the A 
-tangent space has a simpler pres- 

entation. 

Proof In each case, 

TAf +'y e(f) =C 

by 1.6.2: 3. By Theorem I. 3.: 2, 

8(f) = C, T) f=C if and only if Tf+ f*%"13. C "+ 
8 

since it is clear that f"'Vl3 ®(f)ý iß^2 ©(f) and C ýiý'12&(f). Hence, 

in order to prove that Ti f =C it is enough to prove that 

TAf + : r*ýffi 3. 
c +"}M )8e(f)D1? 2e(f). 

It is straightforward to show that this holds, in each of the cases. 

Note that the case c=0, which was not exceptional previously, becomes 

so at this level. This may be seen from the fact that the germ 

(X, Y)---N (x, xy + y3, xy2), 

is not finitely determined, since, considered as a map-germ {C2,0)--. -(c310)1 

it has a complex line of points of triple self-intersection in its im- 

age, namely{OOX CX{03 (See [30] 
, Proposition 1.? and Theorem 2.1). 

For determinacy estimates, note first that all of the germs listed are 
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8-determined, by Theorem 1.3: 3. However, the fact that TAf=C, dep- 

ends only on j4f(0) in case (i), on j5f(0) in case (ii), on j6f(0) in 

case (iii) and on j7f(0) in case (iv), so that a straightforward app- 

lication of I. 3: 1(a) shows that these germs are respectively, 4,5,6 

and 7-detremined. That these estimates are exact follows from I. 6.2: 4 

in cases (ii) and (iii) and from the fact, already noted, that the map- 

germ (x, y)--->(x, xy + y3, xy2) is not finitely determined, in cases 

(i) and (iv)13 

I. 6.2: 6 Remark We have already noted that one can verify that the value 

c=0, in the unimodal family (x, y)----(x, xy + y3, xy2 + cy4), is in- 

deed exceptional, by applying Proposition 1.8 and Theorem 2.1 of 
[30] 

. 

One can check similarly that for each of the other exceptional values 

c 1, , the corresponding germ is not finitely determined,, by cal- 

culating that in the first case there is a line of tangential self-inter- 

section (the image of points (-y2, y) and (-y2, -y)) in jR3, in the sec- 

ond case there is a line of triple self intersection (the image of 

points (-y2, O), (-y2, y) and (-y2, -y)) in 23, and in the third case 

the image of f is the "swallowtail surface" which has a cuspidal edge. 

In each of these three cases the set of unstable points in the image 

is 1-dimensional, and so by the results cited above, the three germs 

are not finitely A 
-determined. 

To finish this subsection, we prove the existence of another infinite 

family of germs: 

I. 6.2: 7 Theorem Let j6f(0) be equivalent to (x, xy + y3, Xy2). Then 
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either for some 1, f is-equivalent to (x, y) -4(x, xy + y3, xy2 + y31+1 ), 

or for alr, jkf(0) is equivalent to (x, xy + y3, xy2) and f has infinite 

-codimension. 

b) The germ f(x, y) = (x, xy + y3, xy2 + y31+1) (1>-, 2) has A tangent space 

2 -Iyy2, y5, y8,..., y31-4) y Y2 y5 

c 2-ty, y21 +R y2 00... 
2347 10 31-2 347 'm2 -ty, ), y ,y ,y ,y , yý ,..., y }yy 

has A 
-codimension 1+4 and is 31+1 determined. 

y31-4 01 

3 12 1 
0 [: 

+31 

Proof a) By induction on k: we suppose jk-1 f(O) = (x, xy+y3, xy2) and 

consider seperately each of the three cases k=31-1, k=31 and k=31+1. 

i) If j31-1f(0) = (x, xy + y3 + b(x, y), xy2 + c(x, y)) where b, c E-M21-1 

then TA 31-1f 
=C (mod i1231(9(f)). The calculations involved in showing 

this are very similar to those involved in the proof of (b), and so we 

omit them here. In particular, TA 31-1f 
Z2. M 

21-1 
O(f). Applying Theorem 

I. 3: 1(b), taking as x0 the 31-2-jet (x, xy + y3, xy2), as ii the pro- 

jection J31-1(2,3)- + J31-2(2,3), and as G the group A 31-1, 
we conclude 

that all such jets lie in a single 1'A 
31-1 

orbit. 

ii) If j31f(0) = (x, xy + y3 + b(x, y), xy2 + c(x, y)), with b, c Er21, 

then TA31f is again equal to C (mod-Mal+1(9 (f)), and the proof pro- 

ceeds as in ii). 

iii) If 31+1f(0) 
= (x +3+ b(x ), xy2 + c(x )) with b, cC ßj31+1 J+ xy Y ,Y ,Y,, 2, 

then there are two cases to consider: first, when c0,31+1 - 0, and sec- 

ond when c0,31+1 ý 0" In the first case, 
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cýý, i 
25 31-11 2 31-1 0 

2- Y, Y, y, .... yYYY 
TA31+1 f= cyh _ 

fY, Y21 + RR y2 0 ... 00 

234 31+1 34 31+1 3 31+1 
L I$ - 

lY, Y , xY, Y ,Y". ", Y YYY xY+Y +b Y 

where b' =b0,31+1 , and applying Theorem I. 3: 1(a) with G =, A31+1 and 

S= (31+1-jets (x, xy+y3+b(x, y), xy2+c(x, y)) with b, c C 1ýr21+1, c0,31+1 = 0} 

we conclude that S is contained in a single 
A31+1 

orbit, that of 

(x, xy + y3, xy2). 

We consider the second case in (b). 

b) Suppose that X31+1f(0) = (x, xy + y3 + b(x, y), xy2 + c(x, y)) with 

b, c E -M31+1 and c0 31+1 
j 0. Then Tyr f=C. To show this, it is enough, 

by Theorem 1.3: 2, to show that 

31+2 
TAf + f*'M3' C +'12 e (f) = C, 

for f` "M3E(f)D-M3e(f) and C 21-le(f). 

Working first in the top line, we find that f*''v13. C contains all mono- 

mial generators of C (i. e. those listed in the statement of the theorem) 

divisible by x except for 

31-4 
xy 

Xß', 
xy , x, 

o 0 0 ... 0 

0 0 0 0 

Then we have (working mod -M21+2) 

y3' y31-3 y3i-2 

0- f*Y 0- f*X 0E f*Y13. C (i > 2) 

000 

z 
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XY 
3i+2 y3i 

0= f*Z 0E f*70 3. 
C (i> 1) 

00 

3i+1, 
y3i- y3i-3 

0= f*Y 0- f*Z 0C f*iý13. C (i>- 2) and 

10 00 

Xy Z 1-M 31+1 31+ý 
22 

0=Wf0 mod 0 but since 0 jc TA f+ -M 
21+2e 

10 000 

2 
X3' 

0C T/-A f +'M31+2e(f). 

0 

Thus, of the monomial generators of C in the top line, we only need 

xy y3 y4 y31-1 

o000 

0000 

Similar operations provide us with all of the monomial generators of C 

in the second and third lines, except for 

00000000000 

xy y3 yy0000000 

0000 xy2 x2y xy3 xy4 y5 y6 y31+l 
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Then, working successively, 

20 

tf gives 0 
10 

xy 

0 
0 

tf gives 0 
x2 

xy 

0 '0 

Wf 0 gives 0 

xY 

XY 
pry 

tf gives 0 
0 

0 

y y3 

wP 0 gives 0 

00 

0 

tf 
02 

gives y4 

y I0J 

y3 
0 

tf gives 0 
05 

y 

00 

wf 0 gives 0 

Y2 y6 
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tf 3 gives y5 
ly 

0 

1 
4y 

y 
tf gives 0 

0 
0 

and 

10 0 

lxi 
0 

Then tf , tf ,wfy and iof 0 together give 

0y 0Z 

000ro 
y31-1 

y31-1 

xy y3 00 and tf gives 0 

00 xy2 
31+1 

0 
0 

y y3i-1 0 
Y [Y 3i-1 

Finally, y= tf and 
10 

= tf - y3i 

y3 
0 

y3i+1 
o0 

This completes the proof that TA f=C. It then follows that all such 

f are 31+1 determined, for by I. 3: 2 they are all 31+2 determined, while 

by I. 3: 1 their 31+2-jets are all equivalent. In fact by I. 3: 1(a) their 

31+1-jets all lie in at most two A31+1 
orbits, those of 

(x, y)-- >(x, xy + y3, xy2 ± y31+1), 

and these two are clearly equivalent under a change of sign in the y 

and Y coordinates. Note that 31+1 is the exact degree of determinacy, 

since (x, y)>(x, xy + y3, xy2) is not finitely determined 



60 

) I. 6.3 Classification of Germs whose 3-jet is equivalent to (x, xy, xy 
2 

I. 6.3: 1 Proposition The 4-jets whose 3-jet is equivalent to (x, xy, xy2 

lie in one of the following A, 4 
orbits: 

codim. 

i) (x, xy, xy2 + y4) 6 

ii) (x, xy +y, xy2) 7 

iii) (x, xy, xy2) 8 

Proof Any such 4-jet can be transformed by obvious coordinate changes 

to a 4-jet of the form 

oX = (x, xy + b0,4y4, 'ßy2 + c1,3xy3 + co, 4y4). 

If c0ý4 0 then 22 
-iY, y, y3 IY Y 2 

TA 
4d 

=2-l y' Y2 y31 + Y2 y3 

'N2 - tY, Y2, Y3 j Y3 0 

and there is only one orbit (by I. 3: 2(a)), that of (i). 

If c0,4 - 0, b0,4 '1 0, 

TA'= 
2 -tY, Y21 

" -{y, Y21 y3} + IR 

2 
2- 

ty, Y , XY, Y3, Y 

y y2 0 

y2 y3 

LbOY 

4 
y3 tyj4 

and there is only one orbit, that of (ii). 

If co, 4 = b0,4 =0i iß'1 
-lY, Y23Y3} Y Y2 Y 2 

T k' 
= 7M2 - fY, Y21 Y31 Y4} + I2 y2 y3 y4 

2 -{Y, Y2, xY, Y3, Y4- y3 y4 0 
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and again there is only one orbit, that of (iii)  

I. 6.3: 2 Proposition The 5-jets whose 4-jet is equivalent to (x, xy, xy2+y4 

all lie in a single A, 5 
orbit. 

Proof Straightforward calculations show that for any such 5-jet d, 
3 

TA5o'? (D-M5. Apply Theorem I. 3: 2(b)* 

I. 6.3: 3 Proposition The 6-jets whose 5-jet is equivalent to (x, xy, xy2+y4) 

lie in the orbits of 
codim. 

i) (x, xy + y6, xy2 + y4 + cy6) 7 

ii) (x, xy, xy2 +y+ y6) 7 

iii) (x, xy, xy + y4) 8 

Note In the first case, the codimension of the stratum is 6. 

Proof Calculations show that for the 6-jet p= (x, xy+b(x, y), xy2+y4+c(x, y)), 

23245 
2 -ýy, y ,y xy 'y ,y) 

Týr6d = 'M2 -iy, xy, y2'y3'y4'y5, y6, ý3) 

"m2 -{y, xy, y2, y3, y4, y6, xy 2) 

24 
xy +y +co, 

6 
6y 0 

0 y4+c0, 6y6 

0 

10 0 

+ IR xy+b0,6y6 0 

0 xy+bo 67 
6 

00y 

0 xy 11y2ýb15y6l 
Xy2+y4+c0,6y6 xy2 y3+cl, 5y6 

y4 ys 0 Xy2 0 

y5 y6 xy+6b0,6y6 xy3 xy3 . C. 

y6 
to 

º2+4y4+6c0 6y6 0 4y6 

y2 y3 

y3 y4 

y4 ý5 
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The supplementary generators in this expression are, respectively, 

00Z00X 
x 

(. "ýf Y, wf 0, wf 0, wf Z, wf 0, tf - wf 0, 
10 

0Y00Z0 

yyo Xy 0 
tf , ..., tf , tf , tf , and tf 3, modulo the 

0oyoy 

principal part of C. They are not necessarily independent: in fact 

2X 0 
"2x 

tf -f 3Y = 3b0 6y6 
(modulo the principal part of C) 

' 
4z 2c 0,6y 

6 

and if bo 0,6 = co 6=0, the codimension increases by 1. Since 

-02 

C? 'M6 
2 _by6l whatever the values of b0 6 and C0,6 , by Theorem I. 3: 1 

'y, 6 
_[6i 

we conclude that O" is equivalent to (x, xy + b0 6y6, xy2 + y4 + c0 6y6). 

These 6-jets form a linear subspace S of J6(2,3) which is foliated by the 

integral curves of the vector field x equal to 

0 

3b0,6y6 

2c0,67 6 

each of which is contained in a single q\ 
6_ 

orbit, the orbits being lo- 

cally distinct, in the sense that the values of a first integral of X. 

(defined locally on S) are 
A6 invariants. It is clear that each int- 
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egral curve of X contains one of the 6-jets in the statement of the pro- 

position, the last one corresponding to the degenerate, 1-point, curve  

I. 6.3: 4 Remark We take orbits (ii) and (iii) as strata in the strati= 

fication of Theorem 1: 2. Although in fact the orbits of (i) and (ii) 

together make up a smooth unimodal stratum of J6(2,3), the treatment 

of 7-jets over (ii) is different from that of 7-jets over (i), and we 

prefer to omit it. 

I. 6.3: 5 Theorem a) The germs 

(X, y) >(x, xy + y6 + bo, 7y79 xy2 + y4 + co, 6y6) 

form a bimodal family (with respect to A) 
each member of which has 

,k -codimension 8 and is 7-determined. The tangent space is 

'2 -fY, XY, Y2ly3, XY2, y4, Y5, y61 XY+Y6 0 

c_ "ý12 -[Y, Y2, XY, XY2, Y3, XY3, Y4, Y5, Y6, Y? } + (R o xy+Y6+bo, 7Y7 
jvý 223456 

-{Y, Y , XY, xY ,Y , Y- ,Y ,Y}00 

o xy2+y4+co, 6y 00o xy 

Ixy2 00 jXY0 xy Xy2 xy3 

Xy+y6 00 Xy+y4+co, 6y6 Xy2 00 

y y2 y y4 

y2 y3 y4 y5 

Y3 y4 y5 y6 

y5 y0 
6 

y? xy+6y6+7b0,7y7 

00 2Xy2+4y4+6c0,63' 6 

00 

xy2+6y7 Xy3 

2xy3+4y5 4y6 

b) Every germ whose 6-jet is equivalent to (x, xy + y6, xy2 + y4 + c0,6y6) 
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belongs to one of the orbits of (a). 

Proof a) Since C8 e(f) and f'^'113O(f) Dß'1 28(f) 
for any such 

germ f, we need only prove 

C T4 f+ f'7º'13. C+ iý'112O (f) . 2 

Straightforward checking shows that the inclusion from left to right 

holds; note that the supplementary generators of C are, respectively, 

Y00Z00X 
x 

Pf 0, (, fY, wf0, wf0, wfZ, L. ßf0, tf - i--,: r 0 
0 

00Y00Z0 

tf 
101 

, tf , tf 
0,..., 

tf , tf tf 
iy 

2, tf 

y3, 

[Xoylyo loyl, o0 

modulo the principal part of C. 

To show the opposite inclusion, note first that using f*%M3. C we ob- 

tain all of the monomial generators of C except for 

1 % 7 o y o o y o y o oy 0 
11 1 V ° 

j j 10 9 8 0 0 1,0 y 0 o y 0 o y7 0y 

o Xy 0o xys 0o Xy o0% 
xyý o xy6 0o xy4 0 

00o xy6 0 xys o0 `` 

xy oxyo0ox2yooXo0 

00o x2y3 x2y20 ho x2y ooxo 

0 xy3 000 I1x22J oo x2y to] 0X 
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The last three of these are obviously in Tjf. We now work inductively, 

i. e. at each stage calculations are made modulo the generators of C al- 

ready obtained. 

Y2 0x2y0 
From Wf0 and Wf0 we obtain 0 and 0; 

0 Y2 0x2y2 

r2 y 
00 

X 
tf gives x2y3 

0 to 

X 2y xy 
6xy, 

taking together tf tf , wf 0 and wf Y2 we obtain 
10 0 

00 

xy 0 xy 0 

0, x2y2,0, xY7 

0000 

XT xy 

L .? f 0 then gives 0 

00 

0p05 
1x r 

tf gives x2y , then from wf XY we get xy6 from tf 
0000 

XY" YZ 

we get 0, from wf0 

00 

1 
y 

y 

01 
we get 0, from tf 

0 

0 

we get y11 

0 
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z2 y8 

and from wf0 comes 0; 

00 

10 $0 
from tf 

o7 
comes 0, and tf 

y 
then gives y9 ; 

y 

y10 
0 

0 

0 
0 

from tf 
[6) 

we get 0 
yy9 

oo 
f XZ gives xy4 

00 

00 

taking together tf Lif O of YZ 
0 

Z2 0 

0 ][0] 0 [01 Ix:! 50 y10 and 06$ 

0 xy 0y 

00 
From wf 0 we get I0 

XY x2y 

y9 
From tf 

0 

Y9. 

comes 0 

0 

10 
and tf 5 we get 

y 
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0 0 y7 

from ,. ýf Z2 we get y8 and then from tf comes 
y 

0 

0 0 0 

0 0 0 
0 

from f 0 we get 0 and tf now gives 0 

YZ x 
5 

Xy3 y 

XY 
3 

XY 
from tf 

) 
we now get 0 

0 
0 

0 0 

from Wf 0 we get 0 

4 
xz xy 

0 
10 

and finally tf 4 gives 0 
y 

y7 

This completes the proof that T/f = C. Now note that these calculations 

also work for any germ whose 7-jet is the same as that of the statement 

of the theorem, and this, together with Theorem I. 3: 1(a), proves the 7- 

determinacy of all such germs. Inspection of the A tangent spaces shows 

that this is the exact determinacy degree. 

b) In fact for the ? -jet 

(X + a(x, y), xy + y6 + b(X, y), xy2 + y4 + c0,6y6 + c(X, y)) 

where a, b, c ET, it is easy to see, by modifying the proof of (a) a 

and taking everything modÖý12e(f), that 
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2 

T, 7C? M2- {y7} 

2 

and that the dimensions of all these 
A7 

tangent spaces are the same. 

It follows that "ß' is equivalent to the 7-jet 

(X, xy + y6 + bo, 7y7, xy + y4 + c0,6y6). 

This completes the proof of (b)IR 

1.6.4 Classification of germs whose 3-jet is equivalent to (y, xy + y3,0) 

I. 6.4: 1 Proposition The 4-jets whose 3-jet is equivalent to (x, xy+y3,0) 

belong to the ýi4 
orbits of the following 4-jets: 

i) (x, xy + y3, y4) codim. 6 

ii) (x, xy + y3, xy3) �7 

iii) (x, xy + y3,0) If $ 

Proof Since the map germ OR 2,0)--'(IR 2,0) 

xy + Y3) 

is 3-determined, any germ (ER2,0)--, -(IR3,0) whose 3-jet is (x, xy+y3,0) 

is equivalent to a germ of the form 

(x, y)--' (x, xy + y3, c(x, y)) 

where cE iM 
2. 

After obvious left coordinate changes, we may suppose that 
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its 4-jet is (x, xy + y3, c1,3xy3 + c0,4y4)' 

If c0,4 ý0 then 

'M2 -{yi y0 
TAO 2- {y, y21 + IR y2 0 

lyl2 - ty, xy, y2, xy 2, y3 0 xy+l 

and so all such jets belong to the A4 
orbit of (i), by I. 3: 1. 

If co, 4=0/cß, 3 

1l2 - 
fr y0 

4 21 
=IN-fy, y+ IR yZ 0 T3 4G 

1m2 -{Y, Y2, XY, Y3, xJ'2, Y41 cI 3y4 xy +y3 

and all such jets belong to the orbit of (ii). 

If c0,4 = cl, 3 =0 

'y00 

T/4O' _ t, 2 -ty, y2i +y00 
y+xy 

223 
'b2 - Y, XY, Y, xyI y, x2 y, xy 

3IY 4} 
0 xy+y x2 

3 

I. 6.4: 2 Theorem The germ (x, y)>(x, xy + y3, y4) has A tangent space 

1M2-{y1 y0 
C= 'W2 -'7' Y9 + rR y2 0 

'i"? -{y, Xy, y2, )Qº2,3'33 0 Xy+y3 

and is 4-determined 

Proof Since C 21 12 e(f) and f*1113e(f)ý)%1 
3 A(f), we need only prove 
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C TA f+ f*)3. C + Yº12®(f). 

It is straightforward to check that this holds for any germ whose 4-jet 

is equal to that of f. From this the 4-determinacy of f follows imme- 

diatelyI 

I. 7 Classification of germs whose 2-jet is equivalent to (x, 0,0) 

I. 7: 1 Proposition The 3-jets whose 2-jet is equivalent to (x, 0,0) 

belong to the A3 
orbits of the following 3-jets: 

3-jet A3 codimension 

i) 

] 

-(X, 

y3, x2y + xy2) 6 

ii) (x, y3 - x2y, xy2) 6 

iii) (x, y3, x2y) 7 

iv) (x, y3, '2) 7 

v) (x, y3,0) 9 

vi) (x, y3+ x2 y, 0) 8 

vii) (x, xy2, x2y) 8 

viii) (x, xy2,0) 9 

ix) (x, x2 y, 0) 10 

x) (x, 0,0) 12 

Proof Any 3-jet whose 2-jet is equivalent to (x, 0,0) is obviously 
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equivalent to (x, b2,1 x? y-+ b1,2xy2 + b0,3y3, c2,1 x2y + cil2xy2 + c0,3y3). 

for some value of the coefficients. If either b0,3 or c05 is non-zero, 

then this jet is left-equivalent to one of the form 

(x, y3 + b2,1x2y + bý, 
2xy2, +c2,1 x2y+ c1,2xy2). Now we can complete the 

cube in the the second component, by making the coordinate change 

r=Y+ocx3+ý3z 

for appropriate values of odand (3 
, if and only if 

3(c2, I) 
2> 4c1,2(b1,2c2,1 - b2,1 c1,2)" 

If this holds, the 3-jet is equivalent to one of the form 

(x, y3, c2,1 x2y + c1,2xy2). By changes of scale in the coordinates, if 

necessary, we can reduce this to one of (i), (iii), (iv) or (v). 

If 3(c211 )2 < 4c1,2(b1,2c2,1 - b2,1c1,2) then in particular cß, 2 
? 0. 

The coordinate change 

7 c211 
1,2 

followed by certain obvious left coordinate changes, then transforms 

the 3-jet to 

(x, 3+ -4c 1,2 
(b 

1,2 c 2,1 - b2,1c1,2) + 3(c2,1)2x2 
2 

Y, xy ) 4(c112)2 

and this is clearly equivalent to (x, y3 - x2 y, xy2). 

If b0 3= c0,3 = 0, then left coordinate changes, followed if necessary 

by a-change of scale in the coordinates, will transform the 3-jet into 

one of the normal forms (vii) - (x). 
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The codimensions of the A3 orbits are easily found by calculating the 

, lk3 tangent spaces. 

In order to distinguish between the orbits, note first that (vi) and 

(vii) are not even 73 equivalent; the same goes for (v) and (viii). 

For the equi-codimensional pairs (i), (ii) and (iii), (iv), see Note 

1.7: 6. Other than these four pairs, all of the orbits listed are dis- 

tinguished by their codimension N 

I. 7: 2 Proposition All 4-jets whose 3-jet is equivalent to (x, y3, x2y+xy2) 

lie in the ; i4 orbits of 

i) (X, y3,3,2 + xy2 + y4) 

ii) (x, y3, x2y + xy2) 

codimension 6 

it 7 

Proof After obvious coordinate changes, any such 4-jet may be assumed 

to be of the form (x, y3 + b2,2x2y2 + b0 4y4, x2y+XY+ c2 2x2y2 + c0 4y4) 
,, 

If c0,4 "l 0 then 

2 

TA 
40' 

= 1112 -fy, y2, XY} 

%2 
-4Y, 72, x 

and so all such 4-jets lie in the orbit of (i). 

If co, 4=0 then 

2-ty, y2j y y2 0 
T cr 

= 'Yi - {y, y2, xy + IR 000 
2 "2 - 

Ly, y1 xy, y3, y) y3 y4 y3+b0,4y 1 
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and all such 4-jets belong to the orbit of (ii)U 

1.7: 3 Theorem The germ f: (x, y)I'(x, y3, x2y + xy2 + y4) is 4-deter- 

mined and has A tangent space 

112 

_ 72 - CY, XY, Y21 

tY, XY, Y2} 

Proof Let g have the same 4-jet as f. Then we claim that Tykg = C. The 

theorem is a consequence of this claim. To prove it, note that for any 

such g, g*)'º'13e(g): D -M2&(g) and so by I. 3: 2, 

TJ4g =C if and only if C= Tyg + g* 3e(g) + Y? 
2e(g)" 

It is straightforward to verify that the last equality holdsli 

1.7: 4 Proposition All 4-jets whose 3-jet is equivalent to (x, y3 - x2y, xy2) 

lie in the A4 
orbits of 

i) (x, y3 - x2y, xy3 + y4) codimension 6 

ii) ix, y3 - x2Y, xy3) 11 7 

Proof The proof is almost exactly the same as that of I. 7: 2. In partic- 

ular, the two cases c0,4 /0 and c0,4 =0 give rise to the same +4 

tangent spaces, as in I.?: 2 4 

I. 7: 5 Theorem The germ f(x, y) = (x, y3 _ x2y, xy2 + y4) has the same 

tangent space as the germ of Theorem I. 7: 3, and is +-determined. 

Proof As in I-7: 3 M 
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I. 7: 6 Note Inequivalence of the two germs 

and 

f(x, y) _ (x, y3, x2y+ xy2 + y4) 

g(x, y) = (x, y3 - x2 Y, xy2 + y4) 

may be proved by calculating their singular algebras (see 1.9 below), 

as the isomorphism class of these algebras is an fr 
-invariant. It is 

easy to calculate that the two algebras are, respectively, 

ý2 
ti 

ý2 

and 

t2 
ý 

t2 

<y2, x2+2xy> <Y2, x2% <3y2-x2,2xy+4Y3} \X2-Y2, XY% 

which are not isomorphic (as real algebras). 

In fact, for any two map germs whose 3-jets are the same as those of 

f and g, respectively, the corresponding singular algebras are isomor- 

phic to those of f and g, and hence are not isomorphic to one another. 

This serves to distinguish between the orbits of (i) and (ii) in 

I. 7: 1. 

Suppose now that f and g have 3-jets (x, y3, x2y) and (x, y3, xy2). 

Then one calculates that the singular algebra of 'F has real dimension 

4, while that of g has dimension greater than 4. This proves that the 

two 3-jets (iii) and (iv) of I. 7: 1 are not equivalent. 
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1.8 Proof of Theorem 1: 2 

Let f: (R2,0) -*(, 0) be a smooth map-germ. If f is non-singular at 

0 ER 
2 then it is equivalent to (x, y)->(x, y, 0). 

Let f have a Z1 singularity at 06R 2. Then by I. 4: 2, j2f(0) is 

equivalent to (x, y2, xy), (x, y2,0), (x, xy, O) or (x, 0,0). In the first 

case, f is 2-determined and stable, and hence simple. Now suppose 

j2f(0)N(x, y2,0). Then any small perturbation of f will either be an 

immersion or will have 2-jet equivalent to (x, y2,0) or to (x, y2, xy). 

This is because A 2(x, 
y2, xy)U y 

2(x, 
y2,0) is open in J2(2,3)n(Z1 UZ 2J, 

as can be seen in the proof of I. 4: 2. By I. 5: 4, we may suppose that f 

is of the form f(x )= (x 22 
,y, y, yp(x, y )), and moreover, any small per- 

turbation of f will be equivalent, if it is neither an immersion nor 

a cross-cap, to a germ of the form (x, y2, yq(x, y2)), wheii q is a small 

perturbation of p. This follows from the fact that any (germ of a) one 

parameter deformation of f is induced from the k -versal deformation 

of f which may be calculated from the expression for TA f given in 

I. 5: 7" (We are supposing, of course, that f is finitely determined - 

otherwise it is certainly not simple. ) Now by I. 5: 8 and I. 5: 11 it foll- 

ows that f is simple if and only if the germ p(x, y2) is simple for 

and from the list given in 1.5: 19, we obtain the following list of 
A- 

simple map-germs (R2,0)--->(R', 0). 

f(x, y) = (X, y2, y3 +x +1 y) (k 
_>-1) sk 

f (x, y) = (x, y21 2c 
2y 

+ y2k+1) (k >� 2) Bk 

f(x, y) = (x, y2, xy3 + xky) (k>3) ck 

f(x, y) = (x, y2, x3y + y5) F 
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We have given them_the. same names as the function germs p(x, y) receive 

in Arnol'd's list ( [21 ), except for Sk, since there the function p(x, y) 

is non-singular and does not figure in his list. 

Next, consider map-germs whose 2-jet is equivalent to (x, xy, O). If 

j3f(O) is equivalent to (x, xy, y3) then either f is equivalent to 

(x, xy + y3k-1I y3) for some k>, -2, in which case it is simple, or it 

is not finitely determined and therefore not simple (Theorem 1.6.1: 2). 

If j3f(0) is not equivalent to (x, xy, y3) then we claim f is not simple. 

For in this case j3f(0) is equivalent to (x, xy + y3, xy2), to (x, xy, xy2), 

to (x, xy + y3,0) or to (x, xy, O). From 1.6.2 we see that there are no 

simple germs with the first of these 3-jets, and since arbitrarily small 

perturbations of the remaining 3-jets will lie in the orbit of this one, 

there can be no simple germs with any of these 3-jets either. 

Next, consider germs whose 2-jet is equivalent to (x, 0,0). None of these 

can be simple either, since arbitrarily small perturbations of any 3-jet 

having this 2-jet will lie in the orbit of (x, xy+y3, x 
y ). 

Finally, no germ having a2 singularity at 0 ER 2 
can be simple. This 

is because the set of 3-jets of such is of codimension 6 in J3(2,3) 

and hence of dimension 21, while the tangent space to the A3 
orbit of 

such a 3-jet is generated by only 19 elements X 
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1.9 The Singular Algebra of a Smooth Map-Germ 

If f: (Rn, O)-4(Rp, O) is a smooth map-germ, then so is df: (Rn, O)-) L(n, p) 

(where L(n, p) is the space of linear maps 0---> Q2p), and so graph(df) 

is a smooth submanifold-germ of & L(n, p). Since Xk, the set of lin- 

ear maps fin-- >(R of corank k, is a smooth submanifold of L(n, p), we 

can investigate the algebra of contact of graph(df) with Rn xk at 

(0, df(0)). If df(0)/Z 
k 

then this algebra is 0 by definition, but 

if df(0)E 7k then we obtain what turns out to be an interesting A 
-inv- 

ariant of the germ. 1, which we call the singular algebra of f at 0 and 

denote by Qi 
f(0). 

Recall (see e. g. [12] 
pages 170-173) that if 

df(0)G 
k then 

Ql 
f(0) =n 

df*(I(Zk, df(O)) . 

where I(f k, df(O)) is the ideal of germs at df(O) of functions on L(n, p) 
k 

which vanish on 2. 

1.9: 1 Example Let f: (R2,0)--ý O R3,0) be given by f(x, y) = (x, p(x, y), q(x, y)) 

and suppose that 
2R(0) 

-- 
{0) 

= 0, so that df(0)C -71. Now 

10 

df(0) =00 
00 

and so I(I 1, df(0)) is generated by the two functions /), and P 2, 

a1,1a2,2 - a2,1a1,2 '12 (ai, 
j) = a1'1a3,2 - a30 a1,2 

where the ai1. j are the usual coordinates on L(n, p). It follows that 

QF 
f(0) _=2 911odf, 

/2 
df> 9Dp 

' 
D-a 

ay ay 
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For example, if f(x, y) = (x, y2, y3 +x 
k+' 

y) (Sk) then 

QXf(0) =z%1N f1 
X x2 ..., xk 

<y, xk+1+3Y2% <xk+1> =C1,, 

I. 9: 2 Theorem If f, g are A-equivalent then 

QZ 
f(0) ' QI 

9 
(0). 

Proof Take df(O) and dg(O) to be in 2 
k, 

and suppose that f ='' " 90 

where 7EDiff(0,0) and' E Diff(R, 0). Define 

(Rn )<L(n, p), (O, df(O))--i(R L(n, p), (O, dg(O)) 

(x, A)I (ý-'1(x), d ý'(g(x)). A. dCý(Cp-fi(x))). 

Then eis a diffeomorphism, Q (graph(df)) = graph(dg) (as germs of mani- 

folds), and O(Fnx :Z k) 
= RN2: k. That is, graph(df) and graph(dg) have 

equivalent contact with lRj(rk. It follows by the usual argument (see 

e. g. 
[121 page 173) that QI 

f(O)= 
QFg(0). Rt 

Instead of considering the algebra QT 
f(0), we can also define a map- 

germ associated with f, whose local algebra is QI 
f(0), as follows. Let 

P: (L(n, p), df(0))-->(Rc, O) be a submersion such that Jk=p 1(0), 
and 

set df df. Then Qf 
f(0) 

is (isomorphic to) the local algebra Q2rf(0), 

and so from 1.9: 2 we deduce 

1.9: 3 Corollary If f and g are A 
-equivalent, then df and dg are C-equi- 

valent. 

Proof This follows immediately from the fact that their local algebras 

are isomorphic 
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I. 10 The Classification of some Multigerms 

We consider "bi-germs" f: (R2, S)--->(R3,0), where S is a set consisting 

of two points, and give the beginning of a classification (with respect 

to 4). 

Notation Recall from e. g. [191 that for a multi-germ f: (R', S)- (J, f(S)), 

where S is a finite point set, the space 19(f)8 of germs at ,S of vector 

fields along f is just the direct product of the B(fi), where fi is 

the germ of f at xi E S. We shall denote elements of 19(f) S by matrices, 

the ith column of which corresponds to a menber of e(fi). The same goes 

for O (n)S and for O (P)f(s), which are after all equal, by definition, to 

Q(1ýn)S and 8(1,, 
p)f(S) respectively. Then 

tf : Oin)S-->O if )S 

is just the product of the maps tfi. Since we shall be dealing only with 

cases where f(S) is a single point, the map 

l.. ý f: 6) (P) 
f(S) -ý'G)Ms 

presents no special notational problems, and is perhaps best described 

with an example. (I. 10: 1). 

For our coordinate notation we shall assume that each x. C- S lies at the 

centre of a coordinate patch in IRE, and has coordinate 0 in the corre- 

sponding coordinate system. This should cause no confusion, since any 

expression involving the coordinates arround xi will always appear in 

the ith column of a matrix. 

I. 10: 1 Example J(x1)___>(a(x1), b(x, y), c(x, y)) 

ý(ä(x, Y), b(x, Y), c(x, y)) 
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denotes a bi-germ. For this bi-germ we have 

U- hoax+h2ay Klax+h2ay u(a, b, c) u(a, b, c) 

tf 
hý hý 

+ of v= hýbx+h2b 
yhIbx +h 2 

by + v(a, b, c) v(a, b, c) 
h2 h2 

w h1cX+h2cy h1cX+h2cy w(a, b, c) w(a, b, c) 

Bi-germs of immersions 

Given two immersed planes meeting at 06 IR3, it is possible to choose 

coordinates in 23 and at each of the two source points with respect to 

which the bi-germ of the immersion is written 

(X, y)ý, (x, y, cp (x, y)) (1) 
(x, y)'(x, y, 0) 

We shall refer to CD as the separation function. We now have the elementary 

I. 10: 2 Theorem a) Bi-germs of immersions, expressed in the form (1), are 

classified for A by the '<-class of the separation function. 

b) For a bi-germ f of the form (1), 

t2 

Teuf = t2 

Te'ýý 

t2 0 

ý2 +0 

Te7Cr Di ý2Xý2) 

where (t2Xý2) is the diagonal in t2Xý2. 

Proof a) This is precisely the definition of X- 
see for example UIý 

pages 170-172. 

b) Let 'r : -ýQ22 be projection onto the XY-plane. The equality 
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g1 g1 ý= 1TT * g1 
0 g1-g1 

g2 g2 - tf + wf*g2 
0 g2 g2 

000 

for any g1, g2, g1, g2, shows that 

12 2T 

eAf 
'2 t2 

00 

We may therefore ignore the first two rows of matrices in e(f) 
S and e(3) 

in the calculations which follow. 

Now let g3 E Tei(T , so that g3 can be written g3 = h, Yx + h29 +cT 

for some functions hl, h2 C ý2' 
cE ')42. Then (looking only at the bottom 

row of the matrices in e(f)5) 

0 hý 10 
g31 =of (r"g3 - ZTI "c) - tf 

h2 0 

and 

hC 
[g3 0} = taf (ZTT *c) + tf 1 

h2 0 

This shows that (on the bottom row) Te 4f [Te `\q Te% 11 

Now for any gEý2, we have 
(g 

g, = Wi(TT*g), and this completes 

the proof of the inclusion from left to right in the statement of (b). 

Conversely, if (g3 
g3) E Te A f, then we must have 

g3 = v(x, y, 7) + hl Tx + h2 yy 

g3 = w(x, Y, 
_ 

0)-- 



82 

for some wE 
L3 

and h1, h2e 
ý2. 

It follows that [g3 
- 931 E Te ý(ý 

. This 

completes the proof. 

I. 10: 3 Remark Given a bigerm of immersions, it is not necessary to re- 

duce it to the form (1) in order to find out what the X-class 
of the 

separation function is. In fact it is easily seen that it is enough to 

choose a direction transverse to both immersed surfaces and measure the 

distance between the two surfaces in this direction, as a function of 

the co rdinates on one of the two surfaces. 

In view of 1.10: 2 we shall refer to A 
-classes of bi-germs of immersions 

by the X 
-class of the separation function. Thus, 

1 (x, y)---+ (x, Y, x2 + Y2) 

(x, y)} (x, Y, -x 
2) 

will be referred to as an 
[A1++ ]1 

or as [ X2+y2, ß . 

The interest of this theorem lies in the way that it helps in the study 

of the Ae-versal unfoldings of some of the germs classified earlier, 

in particular those whose 2-jet is equivalent to (x, y2,0). For these 

map-germs, the only singular (i. e. unstable) multi-germs present in 

their 
A 

e-versal 
unfoldings are bi-germs of immersions. Theorem 1.10: 2 

allows us to extend the isomorphism of classifications (Theorem I. 5: 16), 

to obtain isomorphisms of versal unfoldings. In this context the sheaf- 

theoretic approach is perhaps the most appropriate, so we make the foll- 

owing definitions: for any unfolding 

F: (&R2)< a, O): >(3XlRa, O) 

(x, Y, u)--s(fu(x, y), u) 
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and each u E(ka, 0), define a sheaf 
4 (fu) as follows: first, let(f) 

be the sheaf of germs of vector fields along fu, and let ®() be the 

sheaf of germs along 1. Define /19, (fu) by the exact sequence 

tf 
0---®iE22)-®(fu)->ý(fu)->0 

let (fu)*Aa(fu) be the push-forward of A (fu) by f, and defineJA(fu) by 

0--a a(R3)--= (fu)*; ý, ifu)--ýý 

Note that if f=f0 is X 
-finite, then for all u C((Ra, O), fu is finite- 

to-one (130 page 493) and so the stalk over y6 R3 of (fu). I (fu) is a 

direct sum of the stalks of, ip, (fu) over the finite set fu-1(y); moreover, 

the stalk of A (fu) over y may be identified with 

es(fu) 

TeA(fu)S 

where S= fu-1 (y) (see [30) pages 492 and 493 for more details of this 

construction, or C7) where it is described at some length). 

Now let P: (H2X IR a, 0)-> OR XLRa, 0) 

(X, y, u)--ý (p 

be any unfolding and for each u define a sheaf 13 (1 ) over H2 by 
9(p11) 

tpu(QQ (H2)) + Pu 

If f(x, y) = (x, y2, yp(x, y2)) then by 1.5: 7 and the Versality Theorem 
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([30) Theorem 3-3)-there exists an ! fie-versal unfolding of f of the form 

F: (x, Y, u) º--3 (x, y2, YP(x, y2), u) 

and clearly one can regard the map-germ 

P: (x, y, u)H-(p(x, y), u) 

defined on 
WX 

9a, 0) as an unfolding of the germ p: (H2,0)- +1R. An Re- 

versality theorem has been proved by Arnold, ( [21 page ), namely 

that the unfolding P is ý}, 
e-versal 

if and onlj if 

Te 
ap+ 

iR 
J PJ,... 9Pa} = C00(H2,0) 

and one can go on from this to prove the corresponding 
7 Xe-versality 

theorem, but for the purposes of brevity we shall adopt the following 

definition: we shall say that the unfolding P is Xe-versal if and 

only if the corresponding infinitesimal condition holds, namely 

T? p+R {PJ,. 
0., Pa} = CCO(H2,0) 

where as usual 

Then we have 

Pu 
Pi 

- Du. 
(X, Y, 0). 

1 

I. 10: 4 Lemma Let f(x, y) = (x, y2, yp(x, y2)) and let F: (IR2)e pa, O)-(IR3)4 pa, 0) 

be an unfolding of f of the form 

(X, y, u) -4(x, Y2, YPu(x, y2), u). 

Let P: (H7C 12a, 0) 3o(IRXO, O) be the unfolding of p defined by 
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(x, Y, u)I-+(pu(x, y), u). 

Then F is an A 
e-versal 

unfolding of f if and only if P is a '( a 

e-versal 

unfolding of p. 

Proof Immediate from I. 5: 7 and the Versality Theorem for A-X 

We now show that for unfoldings F and P as in the lemma, for all u E(Ra, 0) 

the sheaves (fu) and jk(pu) are essentially the same. Of course the 

former is a sheaf over P3 while the latter is a sheaf over $, and so in 

order to compare them we make use of the projection TT introduced in the 

proof of 1.10: 2, and consider, instead of . Stý (fu), its push-forward 

T-,, (., S (fu)). Now for an unfolding F as in Lemma I. 10: 4, and for any u, 

supp(, JA (fu)) C- f(Y, 
Z) E R3 :Z=0, y., 0ý X, 

(we shall see why in the proof of the next result), and so TI is one-to- 

one on supp(J* (fu)) andýalso, supp(r, ýA(fu))C H2. In view of this, 

regard 1T *ý 
(fu) as a sheaf on H2; then we have 

I. 10: 5 Theorem The sheaves Ti, ýA(fu) 
and 8,? (p. ) are isomorphic in 

the weak sense that for each yE H2, the respective stalks over y have 

the same dimension as real vector spaces. 

Proof We consider two cases, where y is on the boundary of Hj2 and where 

y is in the interior. 

Let (XO, o)EH2. Then S,, a (p, ) ( , 0) the stalk of 9- (pu) over (X0,0), is 

o°°(xz, (x01o)) 
Pu ? Pu 

ax yaY Pu 
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T 

lAP2 
X+X , Y2) Y2 

ýPu(X+X 

, Y2), P (X+X 
, Y2)> \050u0 

which by I. 5: 7 is isomorphic to 

G (fu`(X0,0)) 

Te, 4(fu `(X0,0)) 

where (ful(X0,0)) is the germ of fu at the point (X0,0) in JR2. But this 

is of course just 

-SA 
(fu)(X0,0,0) 

and thus equal to 

IT�) 
u)(XO, O) . 

Now let (XO, YO)E H2 with Y0 > 0. Then A a(pu)(X 
0'Y0 

) is equal to 

C00(H2, (XCYD)) 

apu Pu 

() X, 
Y-, Pu 

which is equal to 

,u <! B. (X+XY+Y), 
ýY (X+Xo, Y+YO) , Pu (X+XO, Y+Y0) 

since the function Y is a unit in the ring C °`'(H29 (X0, y0))when Y0 >0. 

Now this space is different from 0 if and only if 

Dpu Dpu 
pu(Xo, YO) =X iXO, YO) = -(X0, Y0) _0 
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but that is precisely the condition that fu have a singular bi-germ at 

S= f(X0j_Y 
0)' 

(X0'`'"))) (fu has a singular bi-germ at S if and only if 

fu(X0 j 
0) - fu(X0' j 

0) and the two tangent planes to the image coin- 

cide). In this case we have 

7r., JACru)(X0, 
YO) -/j4 (fu)(X0, 

Y0, O) 

esifu 

_ 
TeA fu 

(3) _ 
22 

Te y? 

where I is a separation function, by 1.10: 2. We now complete the proof by 

showing that we may take, as I, the function (x, y)º---i pu(x+X0, y+Y0). 

To see this, we reduce the bigerm of fu at S to the form (1) defined be- 

fore 1.10: 2. PLk t 

X=XD+X 

y=YO+ 

X-X0+X 

Y-Y0+Y 

Z=Z 

Then in the new coordinates (x, y) and (X, Y, Z), the germ of fu at (X0, J0) is 

y+ 2ý0 Y, (Y + fi0)pu(x 
+ X0, (y + 

j0)2). 

N -2 

Now put y=y+2 fyo y, so that y= 
-F0 + Yý +y. Then the germ 

of fu at (X0, YO) becomes 

(X, yy, 

jo +y Pu 
(X 

+ xo, 
J+j». 

0 

By syrmettry, the germ of fu at (X0, J) is equivalent to 
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Since the germ-of at-x2 is a cross-cap, a linear autormphism of the 

XY-plane in the target (leaving the Z coordinate unchanged) reduces 

the 2-jet of (4) to 

(x, Y, o) 

(yZ1 
xy, x). 

By applying the Splitting Lemma ( [1S] 
page ) to the first component 

of the germ of f at x2, we can reduce f to 

(x, y)Kx, Y, 0) 

(x, y)--", (y2 + r(x), xy + s(x, y), x) 

where s Eý! 
2 and r( 

ý'I ý. Now clearly 

Fz"i1'l3 + ýºj 2k+1 
_m_ 

tyl 
y3, ..., y -1 

22 

for any k'< oO, and so, for arbitrarily high l <0 0, the 1-jet of f is 

equivalent to 

(y2, xy + 

under left coordinate changes. 

I. 10: 6 Theorem i) The bi-germ 

ay 
2i+1 

X 
3ý2i+1ý1 1 

(x, y)-- + (x, y, 0) 

(X, Y)----> (y21 xy + y2k+1, x) 

is 2k+1-determined, and has 3S 
e 

tangent space 
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ý2 
- 

t2 
0 

C= ý2 
2 -{y, y31..., y2`-1} + IR 0 

s x2 ... xk-11 
'rºý2 

_Fy2, Y4, , yam-21 Xi ,fl... J 
L'2 

- 
{x 

oho0 
0 y2i+'I 

y2i 0 y2i 
Ocisk-1 

ii) Every finitely determined germ of an immersion and a cross-cap 

meeting transversely, is equivalent to one of the germs defined in M. 

Proof i) Since 

hý 0 
h1 0' o20 

i) Since tf = h2 0, we have 20C Teo f. 
h2 0 

0000 

Next, 
p(Z, X) 0 p(x, y2) 0 

ýT 

-p(x, y2) 0,2 
tf + of q(Z, X) =0 q(x, y2) shows 0 tT C Teg4 f, 

-q(x, y 
202 

00000 

whereas in I. 5, ý2 is the ring of functions invariant under (x, y)- +(x, -y). 

Then 

0 2yp(x, y2) 0002 
00 

tf =e 00 mod 0 ýT 
shows 00C TA f. 

0 p(X, y 
2) 

00o0o0 

By comparing 
10 0 

00 
tf and wf Yp(Z, X) 

0 yp(x, y2) 
0 

we see now that 
0 

Te 5- f0 

0 

0 

2- 
{y, y3, ... , y2k-13 

0 



91 

00 
o a(x, y) 

and then tf = 10 ya(x, y) shows that 
00 

LO a(x, y) 

00 

Te9k f00 

0 -t. y.,..., y2k-21. 

10 0000 

Next, wf0=00 shows that 00 6T 
eAf 

a(X, Y) a(x, y) a(y2, xy+y2x+1) a(x, y) 0 

for all acý2 such that a(y2, xy+y2k+1)E -[y2, y41�... �y 
2k-2} 

; that is, 

2 k-1 
for a¬)'12-fx, x,... ,x}. 

Finally, to conclude that Te AfC, note that 

000 2i 00 

of 0=00 and tf 10y=0y 2i+1 
" 

Xi 0 y2i 
000 

y2i 

The proof that TeAAf GC is a trivial matter of checking generators, 

and we omit it. 

To see that f is 2k+1-determined, note first that Te Af 2k B 
S(f), 

and, as an easy calculation shows, f" es(f) r'12OS(f ). It follows 

from Gaffney's formula (Theorem 1.3: 3), whose proof works equally well 

in the multi-jet case, that f is 2k+2-determined. However, by the rem- 

arks preceeding the statement of the theorem, it is clear that if 

j2k+1 f(S) = j2k+1g(S), then j2'+2g(S) is equivalent to j2k+2f(S). From 

this we conclude that f is 2k+2-determined. 
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ii) This now follows immediately from (i) and from the remarks precee- 

ding the statement of the theorem. 

I. 10: 7 Definition Let f: (LR2, {x1, x2}) -3(IR3,0) be a bigerm such that 

the germ of f at x1 is an immersion and the germ of f at x2 is a cross- 

cap. Write (fix, ) for the germ of f at xi. Then (flx2) has a curve of 

double-points which, in the source, is a smooth curve D passing through 

x2. Let I(D) be the ideal in C°Q((R2, x2) of germs of functions vanish- 

ing on D, and let I(f(P2, xi)) be the ideal in of germs of functions 

vanishing on f(R2xi). Then the algebra of contact between the curve 

of double points of (flx2) 
, and f(R2, x1 ), is defined to be 

C °° (IR 2, x2) 
CI(D) 

+ f"(I(f(ý2, xý))ý C W(R2, 
x2) 

I. 10: 8 Corollary Finitely-determined germs of an immersion and a cross-cap 

meeting transversely, are classified, for 5k, by the isomorphism class 

of the algebra of contact between the curve of double points of the 

cross-cap and the immersed plane. 

Proof If f is such a bi-germ then by I. 10: 7, it is equivalent to 

(x, y)(x, y, 0) 

(x, y)--: (y2, xy + y2k+1' x) 

for some k> 1. A brief calculation shows that in this case D is the 

curve x= -y 
2k 

, and the algebra of contact is 

2 2k-1 22 A- IR f1, 
Y, Y , """, Y 

<x+y2, f*z> Z x+y2`, x> 
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For different k, these algebras are non-isomorphic, and the corollary 

now follows from the fact that the isomorphism class of the algebra is 

an A 
-invariante 

I. 11 Adjacencies 

The A class L of singularities is adjacent to the A class K (L --} K) 

if every map-germ fEL can be deformed to a map-germ in K by an arbi- 

trarily small perturbation. This is the same as saying that K special- 

ises to L. Thus, the A classes to which L is adjacent are those which 

appear in the A 
-versal unfolding of any germ in L, and may be deter- 

mined by studying the A 
-versal unfolding of such a germ. Here we om- 

it the generally straightforward calculations involved in the study 

of these unfoldings, and simply show the adjacencies, for some of the 

A classes in our classification. In fact adjacencies, except for 

those involving bi-germs, have already been calculated for the simple 

singularities, in the proofs of I. 5: 19 and 1.6.1: 2. 

We refer to A classes by the symbols given in 1: 2 and I. 10. 

Diagram 1 

k-1 
[A-1, 

[Ak 
2, 

B3 
F4 

J" 
ý 

Ck --ý c -ý -ý " .... 
ý' 

c ``may 
k-1 ck-2 

3 -)B2 
(A21 
l 

tAi1J 

-4' S2 
_--ý S1 --ý S 

0 
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Diagram 2 

B/2N 

S 
2S 

7t 7-H2 
Z 

p3 

I. 11: 1 Remarks i) The situation regarding multi-germs in the unfold- 

ings of germs (R2,0) ; o( , 0) with 2-jet equivalent to (x, xy, O) is 

considerably more complicated than in the case of germs with 2-jet 

equivalent to (x, y 
2 

, 0), and is not shown here. In fact we know that 

if f: (R2,0)-x(13,0) is in the same X class as (x, y)-) (x, yk, 0), 

then there will be arbitrarily small deformations of f presenting 

k-tuple points in the image. Moreover, such k-tuple points will also 

specialise to more singular multi-germs, such as multi-germs involv- 

ing cross-caps as well as immersed planes. This occurs in the A'-ver- 

sal deformation of H2 

fa b: (x, y)>(x, xy + y5 + ayz, y3 + by). 

When 4b3 + 27a2 = 0, then fa 
b 

has an SO (cross-cap) singularity at 

_ 
2 

+ 2a/T- , 9 

whose image in R3 is the same as that of 

_ 9b 

2+ 
2aJ ,2 

/ý-b 
). 
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It seems likely that in the At-versal deformation of Hk (k > 2), 

there will be bi-germs consisting of a cross-cap and an immersed plane, 

A -equivalent to 

WD Y, 0) 

2 2k-1 (x, y)ý--ý (y 
, xy +y, x), 

but we have not carried out the calculations involved in verifying 

this. 

ii) In our adjacency diagrams we have not distinguished between the 

A classes Sk, 

y2, y3 + xk+1y), 

and Sk, 

y)ý (x, y)º--ý(x, y2, y3 - xk+l 

which are inequivalent (as map-gcrms (IR 2,0) 
--ý(, 0)) when k is odd. 

Similarly, we have not distinguished between Bk and Bk, [Aýjand l 

etc. In fact interesting phenomena present themselves wheen these signs 

are taken into consideration. For example, B2 is adjacent to [AIbut 

not toIAl}while for B2 the reverse is true. 



CHAPTER II 

THE EXPONENTIAL MAP OF THE TANGENT BUNDLE 

In this chapter we study the exponential map expg from the tangent bun- 

dle TM of a smooth manifold M into IRP, associated with a smooth immer- 

sion g: M --10. This map is given, in trivial local coordinates on TM, by 

expg(x, v) = g(x) + dg(x)(v) 

where vE TXM and dg(x) is the differential of g, from TxM to Tg(X)L = IRP. 

We show that the behaviour of expg may be studied by looking at families 

of central (radial) projections pg of M into hyperplanes H of (RP, and 

in particular that every contact-invariant submanifold W of jk(TM-M, ätD) 

corresponds in a well-defined way to a submanifold W' of jk+1(M, H), 

such that 

0 
k+1p9(q)(x)E W' 

and 

ýk+1p 
ß 

W, 

(Theorem 11.3: 5). 

This allows us to prove 

if and only if 

if and only if 

jkexp9(x, q) EW 

jkexp9(x, q)i W. 

II: 1 Theorem Let W (TM-M, AP) be a contact-invariant manifold; 

then {g E Imm(M, 9) 
rjke)g I TM-M 

fi WJ is residual. 

From this we deduce 
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11: 2 Corollary If (2n, p) are nice dimensions and if dim M=n, then 

{gImmM, &) : expg is locally stable on TM-M} is residual in Imm(M, l). 

By "expg is locally stable on TM-M" we mean that every multi-germ of 

expg on TM-M is stable. 

The converse to 11: 2 does not hold, and we give an example of dimensions 

(n, p) for which (2n, p) are not nice dimensions but expg: TM-M--> R is 

generically locally stable. We also give examples of certain reasonably 

large ranges of dimensions for which local stability of exp 
ß 

on TM-M is 

not generic. 

II. 1 Preliminaries 

Given an immersion g: M--) iR , we embed TM in MX 0, as 

{(x, 
q)EMXaP :q- g(x) = dg(x)(v) for some vE TXM}. 

The map exp9 is then simply projection onto the second factor. 

The starting point for the proof of the results described above is the 

observation that TM is locally the singularity manifold of the family 

of central projections of M from points of 0 into a fixed hyperplane. 

More precisely, let x0 EM, let cO f g(x0) be a point in 9, 
and choose 

an affine hyperplane H, with associated height function h (i. e. such 

that H=h -'(O)) such that 

(1) h(qo) / h(g(x0)). 

Then for (y, q)E iRX Ip near (g(x0), q, ), the projection of y from q into H 

is defined by 
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y- h( ) 
p(q)(y) = 

h( q) (Y, q)H P(q, Y) = h(q) -hy 

and we define a family of projections 

p9 : (M, x0) X (PP, g0)-'ýH X' 

by 

ix, q)F--) (p9(q)(x), q) = (p(q)(g(x)) 
, q) 

Note that if (H', h') also satisfies (1), then Pg and PI are left-equi- 

valent families: 

P 

(M, x0) x (a, qo) g' (H, p9 (q0) (xo)) X(', qo) 

P11: ý 9 
(H', Pg(go)(x0)) x(Rý', g0) 

where (y, q) = (p'(q)(y), q). 

Now, for such a family P define the singularity manifold SP by 
9 

SP 
g= 

{(x, 
q)E MXRP: p9(q)is not an immersion at x}. 

Clearly pg(q) is not an immersion at x precisely when the kernel of dj(q) 

intersects Tg(x)g(M), but since this kernel is spanned by the vector 

q-g(x), we conclude 

II. 1: 1 Proposition SP = TM iidomain (P9) and moreover, 
S 

exp9 : TM fldomain (P9) -. 
R and r, : SP ) Rp 

are the same map. Here It is just projection onto the second factor A 

Note that domain(P9) is an open subset of MX fP. 
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This identity will allow us to study exp9: TM-M -*º 
t from the viewpoint 

of singularity theory. Incidentally, it justifies the use of the word 

"manifold" in the term "singularity manifold". 

11.2 For any immersion g: M--->IRP, we have identified TM-M C- M XOp as 

being, locally, the singularity manifold of the family Pg of radial 

projections of M into a hyperplane. It will be convenient to identi- 

fy it further as the 0-set of a submersion (M, x0) X(RP, g0)ý, -n. 

Before proceeding, note that if g is an immersion, all the singulari- 

ties of Pg (and of pg) are of type 
f. 

11.2: 1 Definition Let 

F: Qýn ýC ---ý (n sp) 

(x, u)t > (f(x, u), u) = (fu(x), u) 

be a smooth unfolding , and suppose that F (and hence f0) has a 

singularity at x=u=0. Let p : (L(n, p), df0(0))-s(F -n+1,0) be the 

germ of a submersion such that locally Z: 1(n, 
p) = /'3-1(0), and define 

map-germs 
df: (RnX Ra, 0)--ý (gyp-n+1 0) and dF: (din)( ga, 0)-ý (0-n+1xiRa, 0) by 

df(x, u) =n (df (x)) 

and 

äF(x, u) = (äf(x, u), u). 

11.2: 2 Remark 1) If �' : (L(n, p), df0(0))--, (Q -n+1,0) is another sub- 

mersion such that locally Z 1(n, 
p) _ p'-1(0) , then p and /)' are 

ý! 
-equi- 

valent, so that the ideals 

/I*rnp-n+1 C 00 (L(n, p), df0(0)) and (* 
p_n+1 

C001 (L(n, p), df0(0)) 
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of C °°(L(n, p), df0(O))-are equal. From this it follows that 

adxf) *'M 
p-n+1 

t 
n+a = (i to dxf) *'M* 

p-n+1 
ý 

n+a 

(where dxf is the differential of f with respect to x), and so the two 

versions of 
df are -equivalent. The same goes for dF. We shall be in- 

terested only in the OX -class of df and dF, and so the ambiguity in 

the definition will not trouble us. 

2) The local algebra of dNf is just the algebra of contact of df with 
x 

(n, p, as studied in 1.9. 

Using this definition, we may restate II. 1: 1 as 

11.2: 3 Proposition TM = dpg 
1(0) 

= dP9-1({0} X gyp) and 

exp9: TM fl domain(P9)_ I2P is just Ti : dpg 1 ({o} X0)-+ om 

We are therefore led to study projections r: F1 ({0)r, a)-ýbVa, 
where 

F: nx ra---> PPX Ra is an unfolding. As a starting point we have the 

theorem of Martinet ( [161 
page 27, though see also [301 

page 502 for 

this formulation) 

II. 2: 4 Theorem Let F: (ex 0a, 0)-'(ex IRa, 0) 

(x, u)i--> (f(x, u), u) = (fuix), u) 

be a regular unfolding of f0 (i. e. F(j {OJx a), 
and let VF = F-1 ( loix 0) 

Then the projection jj: (VF, O)-__. ý"(Eta, 0) is an A 
-stable map-germ if and 

only if F is ae -versal unfolding of f01Q 
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It follows immediately--from this theorem and from 11.2: 3 that the germ 

of expg at (x0, g0) is A 
-stable if and only if dPg is a (e vernal unfol- 

ding of the germ of 
dpg(g0) at x0. However, in order to prove Theorem 

II: 1, we need a more general result. First we give a characterisation 

of e -versality in terms of transversality: 

11.2: 5 Proposition Let F: (ßnX 0,0) 
-+ (fix fRa, 0) 

_ 
(x, u)t---> (f(x, u), u) = (fu(x), u) 

be a regular unfolding of f0. Then F is X 
e-vernal 

if and only if the 

restriction to VF of the map 

jkf : (fin) 0,0) 
--* jk(Rn, Rp) 

(x, u)1-0. jkfu(x) 

is transverse to the contact class containing jk f0 (0), where k>, a+1. 

Proof F is a 'C 
e versal unfolding of fo if and only if 

Df 2f a+2 
C1) tf0(NnG(n)) + f0' TYlpe(f0) + kR{ a xo' au0 

1 
u=0ý 

14iCn +ýý}n e if0 
Ij1. j: a 

= 
e(f0). 

(Seer15) , Sec. 2, p. 125)Note that (1) implies that F is regular. Now let 

ýot. 1: in and3 
J1 l5 a be real numbers such that if 1' 1sj n+a 

1' 31 j<, n+a 

0D 
1, j axi + 2ý1, 

J 

then ý1' 
"'' 

a 
n+a-p 

is a basis for T(0 
O) VF and 

D1' 
... ' 

an+a is a basis for T(0,0)I2nXIa. 
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Then a 
n+a-p+1f(0), n+af(0) 

is a basis for T0RP, and so (1) is 

equivalent to 

(2) tf0(i1 (9 (n)) + f0*ýº4p0Cr0) + IR 
11 

f1u_O, 0 "", C) n+a-pf Iu-OI 

+ývºna+28(f0) = "4 
ne(fo) 

But (2) is simply the statement that (ja+1f)IV is transverse to the 

atl 
F 

C-orbit (contact class) of ja+1f0(0)11 

Since we know ([201p&ge 227) that 11 : (VF, 0)-0 W, 0) is stable 

if and only if 

a+1 (77 IV) 
fi 

FIV)(0,0)) 
) II' 

in Ja+l(VV Ra), we can restate Martinet's Theorem (II. 2: 4) as 

11.2: 6 Theorem With the hypotheses of II. 2: 4, we have 

ýýX+1f)IV 
F 

a+1(ßa+1f0(0)) 

if and only if 

i a+l(riv )ý xa+l(ja+lýý'V )(0,0))1 01. 

As a final preparatory step for the generalisation of II. 2: 4, we have 

11; 2: 7 Lemma Let F: (Onj( Rao) -0 (O; K e 
90) 

(x, u) I--ý (f(x, u), u) = Cru(x), u) 

be a regular unfolding. Then for (x, u) E VF , the local algebra 

(n, IV ) (x, u) is isomorphic to the local algebra Qf 
u 

(x). 

F- 
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Proof Assume, for simplicity of notation, and without loss of generality, 

that (x, u) = (0,0). We have 

Q (0,0) c m(VF, (0,0) ) 
ý xI 

VF) (jjivl. 'ryiaC noiVF' (0,0) ) 
F 

n+a 

,vfMp n+a 
r 

n+a 
a f, >p t 

n+a 

ý_- 
En+a 

[-rr 'a + f*'m 
pl 

ýn+a 

- 
kn 

= Qf (0)je 
fo*, pl 

pkn0 

11.2: 6 and 11.2: 7 suggest a generalisation of Martinet's Theorem, (our 

Theorem II. 2: 12 ) which in fact provides the principal step in the proof 

of Theorem II: 1. Before stating it we need some preparatory definitions 

and lemmas. First, we establish a correspondence between smooth ? 
-inva- 

riant submanifolds of different jet-bundles. If WG Jk(N, P) is a smooth, 

X -invariant submanifold, then W is a union of contact classes W corr- 

esponding to isomorphism types of local algebras Q, -,, Let s be 

any integer greater than min. { 
-n, -p} and let N, P be smooth manifolds 

NN 

such that dim. N = n+s, dim. P = p+s, where n and p are the dimensions of 

p- N and P respectively. Define WQ (N, P) to be the union of contact 

classes in J'(N, P) corresponding to the same set of local algebra iso- 

morphism types Q-A , 
AEA 

. 
(Of course if s< 0 then some of these contact 

classes may be empty. ) 
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11.2: 8 Lemma W, as-defined in the preceeding paragraph, is a smoothly 

embedded submanifold of J-(N, P), whose codimension is the same as that 

of W in Jk(N, P), provided that it is non-empty. 

NN ti 

Proof Since W and W are locally trivial fibre bundles over NXP and NXP 
N 

respectively, it will be enough to consider the fibre of W and of W, 

which we shall continue to refer to as W and W, and so we work in 
Jk(n, 

p) 

and Jk(n+s, p+s). There are two cases: 

i) sS0. If s=0, there is nothing to prove, so assume s 0. Write 

b= -s, and define an immersion Jk(n-b, p-b) 
I 

Jk(n, p) as follows: 

if z= jkf(0) for some map-germ f: (6n-b, 0)__ (Q -b, 0), then define 

F: (0. O)--3 (PP. 0) by F(x_,..., x)_ (f(x...... x . 
). x...... Y 

and let i(z) = jkF(0). Clearly the local algebras of f and F are iso- 

morphic, so we have 

i(W) = Wil i(Jk(n-b, p-b)). 

It is only necessary now to show that W j5 
i(Jk(n-b, p-b)). In fact this 

is straightforward; indeed, if WX is any contact class contained in W 

then Wj i(J--(n-b, p-b)). To see this, identify the tangent space to 

Jk(n, p) with 

n n, p k+1` 
E '"'n n, p 

and that of Jk(n-b, p-b) with 

Im 
n-b 

t 
o-b, p-b k+1 11-b 

n-b, p-b 

If we write elements of either of these as column vectors having, res- 

pectively, p and p-b entries, and, in order to simplify notation, aban- 
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don reference to M k+1 
n, p 

and "fM k+1 ýn-b, 
p-b' 

then the tangent 

space to i(Jk(n-b, p-b)) at any point becomes 

n-b I 

p-b 

n-b 
1 

0 
b 

0 

Now if WA does not meet i(Jk(n-b, p-b)), transversality holds vacuously, 

so assume the contrary and let ZCW fl i(Jk(n-b. p-b)). Then z is the k-jet 

of a map germ of the form F: (xl,..., xn)-i(f(xI,..., xn-b)' xn-b+1l*"'xn). 

Then 

Df of 

TZW 'Nn öx1 
, ... 

a xn-b 
, ep-b+1 , ... ,e p 

00 

ß+9P-b + "ýxn-b+1+..., xni, 
nip 

+ Cf* 
where ei is the ith vector in the natural basis of lip. Thus, 

TW0+ 

Pb ýn, 
P-b 

n 
gn, 

b b 
tn, 

b 

where. il1b <xn_b+1'"', xn>. From this, and from the formula for 

Tzi(Jk(n-b, p-b)), the transversality of W and i(Jk(n-b, p-b)) follows. 

ii) s> 0 Define a similar immersion i: Jk(n, p)ý 
Jk(n+s, 

p+s). As before, 

we have i(W) = WO i(Jk(n, p)). Now, W is the union of the orbits under 

the contact group of elements in i(W), and in order to show that it is 

a smoothly immersed submanifold of Jk(n+s, p+s)it is enough to show that 
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the map _ 
r: kX i(w) ik(n+s, p+s), 

determined by the action of Xk, has constant rank. Let zE Wj; then 

the rank of P at (H, i(z))C XkX i(W) is 

dim TH(i(z))WX + dim TH(i(z))HUM) - dim TH(i(z))Wýn TH(i(z))H(i(W)) 

ýº N 

dim Wx + dim W- dim Ti(Z)Wa(1Ti(Z)i(W). 

However, since i(WA) = 
WX n i(W) = WA()i(Jk(n, p)), and the second of 

these intersections is transverse, we have 

T. (z) i(W )C Ti 
. (z)W 

n Ti (z) i(W) 
i) 

T 
i(z)W% 

fl T i(z) i(Jk(n, p)) =Ti (z) (W an i(J"k(n, p))) 

Ti(z)i(WA). 

So in particular 

Ti(z)W n Ti(Z)1(W) = Ti(z)Wan Ti(Z)i(Jk(n, p)), 

and the rank of r at (H, i(z)) is equal to 

dim W+ dim WA 
- dim WA 0i (Jk (n, p) ) 

= dim W+ codim i(Jk(n, p)). 

This proves that W is a smoothly immersed submanifold of Jk(n+s, p+s) 

whose codimension is equal to that of W in Jk(n, p). That W is embedded 

now follows from the fact that each orbit Wx is embedded ( 1211 page 305) 

that for differing A and W-A 
and W 

are disjoint, and from the 

fact that the adjacency relations among the Wý are the same as those 

among the W. w 
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11.2: 9 Theorem Let____ - F: (Rn9 I2a, 0)> (aX Ra, O) 

(x, u) (f(x, u), u) = (fu(x), u) 

be a regular unfolding. 

i) If WS Jk(VF, 0) is a smooth, 
C 

-invariant submanifold, let 

Wr Jk(Rn, RP) be defined as in 11.2: 8. Then 

jk(771 v 
)ýl W if and only if (jkf )' Wx 

FF 

ii) If Wc J--(Rn, 0) is a smooth, (-invariant submanifold, let 

wS Jk(VF, Ra) be defined as in 11.2: 8. Then 

k(7tIV )(T1 W if and only if (jkf)IV FW. 

FxF 

Remark Since for (x, u)E VFJthe local algebra of 7T IV 
F 

at (x, u) is iso- 

morphic to the local algebra of fu at x, these two statements mean the 

same thing in practice. However they are not identical inasmuch as 

if we start with WC Jk(Rn, Rp), define W 'Jl(VF, Ra) as in 11.2: 8 and 

then use 
W to define "W" CJ (Rn, RR), then is not necessarily equal 

to W, although it is contained in it, since if a <p, some WA may be 

empty. 

Proof of 11.2: 9 i) Let (U XaX ßb, 0) --ý iur X naX ßb, 0) 

(x, u, v)ý, (? (x, u, v), u, v) = (fu, 
v(x), u, v), 

k 
where f(x, u, 0) = f(x, u), be aX 

e-versal unfolding of f0, in the sense 

that 

+ TeIfý +Rf F1 
..., Fa+b' ýln +1Oif 

0) = O(fo). 

Such aX 
k- 

versal unfolding will always exist, even if f0 is not 
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7 
-finite, since we can always replace f0 by aX -finite map-germ hav- 

ing the same k-jet as f0 ( 30) , Theorem 5.1). Now let 

WS J(VF 
,EX IR 

b) 
be defined, like W, 

as the union of contact classes 

corresponding to the same local algebra isomorphism-types as W. 

If jkf(0,0) x W, then jk1T (0,0) 'W 
and transversality holds vacuously, 

so assume jkf(0,0) E W. Since 7 is die-versal, by 11.2: 5 we have 

(, jX )IV 
Ffi 

Kk(jkfoi0) ), 

from the fact that W is Ö(-invariant we have =D Xk(jkf0(O, O)), and so 

OWL 
F 

Moreover, since jk (TTIVF) is the k-jet of a stable map-germ (by II. 2: 4), 

a similar argument shows that 

F 

Note that by 11.2: 7, 

(ýk ý1 )-1(W) = (jk )-1(W) n v7 
7V x 

Now suppose that (jkf )I 
V 

(Jl W. Choose a transversal X to (jkf)-1(W) f VF 
F 

in VF , with dim X= codim W. Then we claim that for no vector xE T(0,0)X, 

x/0, is 

djk(17 Iv 
F 

)(0,0)(x) E Tw 

where w=jk (T IV 
F 

)(0,0). For if this were the case, then since 

jk(7TIV ) W, there exists a smooth curve Y(t) in jk(17ýv )_1 (W) 
7 

with 'Y'(0) = X. By 11.2: 7, jk7( ' (t)) 6W for all t, and so we have 
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_N 
djkf(O, O, O)(x) E TW-W, where w= kf0(0). 

Since (jx )IV = (3Xf)IV 
FF 

this implies that dj 
k f(0,0)(x"') G T... However, this last is absurd, 

by the definition of X. We conclude, from the fact that codim W is 

equal to codim W, that 

k(Tß, ) (t1 
F 

w, 

and so we conclude that 

Q kf)IVFý W 
k( TTI, W. 

The proof of the reverse implication is practically identical. 

ii) If j1f(0,0), j W then transversality holds vacuously. If j? f(0,0) E W, 

then there is nothing to distinguish this case from (i), and so the same 

proof applies M 

The Multi-germ Case 

Multi-germ versions of II. 2: 4 - 11.2: 9 hold, and in fact all, with the 

exception of the multi-germ version of II. 2: 4 (iartinet's Theorem), 

follow directly from the corresponding results for "mono-germs". We 

have preferred to state and prove the mono-germ versions first, as 

they are both notationally and conceptually simpler. 

First we give the multi-germ version of 11.2: 8. In order to define the 

desired correspondence between -invariant submanifolds of 
r'k(N, 

P) 

and rJk(N, 
P), where dien P- dim = dim P- dim N, note that since the 

contact group action on 
rJk(n, p) is just the r-fold product of the 
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contact group action-on Jk(n, p), it follows that any (-invariant sub- 

manifold of 
rJk(n, 

p) is of the form Wax ... x Wr, with each W. a cont- 

act invariant submanifold of 
J(n, 

p). Define the corresponding sub- 

manifold W of 
rJ--(n+s, 

p+s) as Wax ... x Wr, where each WI is defined 

as before. This done, we have 

11.2: 10 Lemma W, as defined in the preceeding paragraph, is a smoothly 

embedded submanifold of rJk(N, 
P). 

Proof Obvious M 

If F: (aj( 0a, S xf01)-ý, (R'xfa, f0(S) X (0) ) is a regular unfolding 

of the multi-germ f0: (Fin's), (RR, f(S)), where SG IRn is a set con- 

sisting of r points (r< 00), and WC 
rJk(0,0) 

is a contact-invariant 

W submanifold, then defining C 
rJ--(VF, 

Q2a) as above, it follows immed- 

iately from 11.2: 7 that for S' = 
f(xi, 

ul), ..., (x 
rur- 

)} SVF, 

rixf(S') 
EW ýý 

rjk(T1 
IvF) (S') W. 

Here VF =F -1 (f0(S)X k2a), and by a regular unfolding we mean one that 

is transverse to f0(S)X Va. 

The corresponding result when we start with W in 
rJ'(VF, 

0a) and define 
W S-rJk(IRn, Rp) as above, is also an immediate consequence of II. 2: 7. 

In order to prove the multi-jet version of 11.2: 9 we need first a multi- 

jet version of Martinet's Theorem. And in fact, since Martinet's proof 

of his theorem works equally well in the multi-jet version, we shall 

state the result without further proof 

II.: 11 Theorem Let F: (Prýc Ra, S X 10I) --; P, (Q? PX Eta, f0(S))((oj) be a 
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regular unfolding of the multi-germ f0. Then F is e versal if and 

only if the multi-germ TT : (VF, S X{0} )) (ff a, 0) is stable R 

From this we may deduce the multi-jet version of 11.2: 9 

11.2: 12 Theorem Let F be as in 11.2: 11. 

i) If wC 
rj'(VF, 

Ra) is a smooth, o' -invariant submanifold, let 

W9 
rJk(e , Pp): be defined as in II. 2: 10. Then 

rjk( 
ý1 (V )Ih W <'- (rjkf)jv m W. 

FxF 

ii) If Wc J--(e, F) is a smooth, X 
-invariant submanifold, let 

wC 
rJ 

(. 
Fle) be defined as in 11.2: 10. Then 

k(Tr 
,) 

ý1 W (jkf) 
r(VrIVxFF 

Proof As in 11.2: 9 2 

This theorem will be our principal singularity-theoretic tool in the 

proof of II: 1. We now return to the geometrical context of the expon- 

ential map. 

11.3 

The results of the preceeding section, in as much as they apply to the 

study of expg : TM-M I RP, may be summarised as follows: 

11.3: 1 Proposition With the notation of II. 1 and 11.2, let 

W C- 
rJk(TM, 

a) be a smooth, A-invariant manifold, and let 

WG 
rJk(M, 

ý-n) be the corresponding Ö(-invariant submanifold, as in 11.2: 10. 

Then 
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r 
dPg) jk(exp )i <-> (X 

g I(domain Pg (l TM 
W 

rji ((domain Pg 0 TM) 
(r) 

Similarly, if WQ 
rJ--(M, 

-n) is a )(-invariant submanifold, and we 

define WS 
r(TM, 

O) as in 11.2: 10, then 

rjk(exp 9) 
fi w <==* ( jxdp m w. I(domain Pg iý TM rx9 (domain Pg iý TM)(rý 

Proof The statement of this proposition is just a translation of 

11.2: 12 into the context of expg. For dPg is a regular unfolding of 

'r 
�(domain 

P (1 TM is just Vs and exp is just TI :V 
ggý ßgý C 

Leaving aside for the moment the problem of going from a local to a 

global result, which is due to the fact that domain Pg is not all of 

MX9 and does not, in general, contain all of TM-M, we see from 

11.3: 1 that in order to prove that for a residual set of g c- Imm(M, RP), 

ri 
k(exp 

g1 TM-M 
)I(1 W, we have to prove the corresponding statement about 

N 

rjxdpg. 
And in fact this is not difficult: it is an essentially easy 

consequence of the following transversality theorem, due to Soares 

David ([28] page 742 ), (although we give here a slightly sharper 

version). 

II. 3: 2 Theorem Let M be a smooth manifold, let H be an affine hyper- 

plane in RP (p> dim M) with associated height function h, and for an 

immersion g: M --> 
0 let Pg be the family of radial projections of M 

into H, as in II. 1. Let 

rGg(H) = 
t(x 

1,..., xr, q) E M(r) X IRp: h(g(xi)) ý h(q), 1=1,..., r; h(q)' 01. 
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Then for any smooth manifold W9 
rJk(M, 

H), the set 

[gEC"O(M, IRP) = 
rjkp gIr Gg (H) 

ý 
wi 

is residual in C ov(M, E ). 

Proof We follow closely the proof of Soares David's Theorem that Wall 

gives in [28) 
, and indeed the only difference between our version 

and his is that we remove the restriction that the maps gE C°'(M, Pp) 

that one considers should map M into one component of IRP-H while the 

points q of projection should lie in the other. 

As in Wall's proof, consider first the case where r=1, and try to find a 

sufficiently large space A of perturbations of g, such that by varying 

g in A we obtain a submersion 

.k 3x g AXMXQ ` (M, H). 

The difficulty is, of course, that p9(x, q) is not defined for all (x, q), 

and moreover that the set 1 G9(H) of (x, q) for which pg is defined var- 

ies with g. To obviate this, set 

1 
G(H) = 

{(g, 
x, q) EAxMxf: (x, q) 6 

1Gg(H)J. 

Clearly 1 
Gg(H) =1 G(H) 0 fgj XMX', and also that 

1G(H) is open. Hence, 

by choosing A so that one obtains a submersion 

.k i Pý 

IG(H) ' Jk (M, H), 

one can deduce that for a set of g in A whose complement is of measure 0, 

fi W. Jxpg 11 Gý(H) 
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We define A as follows: let i: M --#1 be a k-th order non-degenerate 

embedding (see[28]pages 721 and 722 for definitions and for proof of the 

existence of such embeddings) and let 

B= AffW, H), 

i. e. the space of affine maps from IRN to H. Now define A by 

A {g+cý. i : 1E B}. 

Then one checks, exactly as in Wall's proof, that one does indeed obtain 

a submersion 

.k 

1G(H) 
Jk(M, H). 

From this it follows, by Sard's Theorem, that for a set of g in A whose 

complement is of measure 0, jkp9 Z W. 

The rest of the proof is exactly as in [28] 
. The multi-jet version is 

proved similarly, replacing 1G(H) by 
rG(H)® 

if M We now show that the transversality of (rjx dp 
g)J(TM-M)(r) 

to a given 

invariant submanifold of 
r 

(M, O-n) is equivalent to the transversal- 

ity of 

rikpg : Gg(H)-->rJk(M, H) 
x 

to a certain submanifold of 
rJk(M, 

H). We make use of the following lem- 

ma in elementary differential topology: 

11.3: 3 Lemma Let f: N >P be a smooth map, N and P smooth manifolds, 
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and suppose that fmY, where Y is a smooth submanifold of P. If Z is 

another smooth submanifold of P such that Z 15 Y, then 

fI: f1 (Y) )P is transverse to Z<f iii Y(1 Z. 
f 

ý(Y) 

Proof First it is clear that f1 (YA Z) = f1(Y)fl f 
1(Z). 

For xEf1 (Y n Z) and y= f(x), we have 

(1) f r1 YAZ at x r_ý df(x)(TN) + TYr) TyZ = TyP 

and 

(2) f (ti Z at x df(x)(T N)(1TyY + TyZ = Ty P. If 1(Y) x 

Intersect both sides of (1) with TyY to obtain 

(1') df(x)(TXN)/1TyY + TyY(1TyZ = Ty Y. 

If we now add df(x)(TXN) to both sides of (1'), we obtain (1), so we have 

(1 )4 (l'). Intersecting both sides of (2) with TyY also gives (1'), and 

then adding TyZ to both sides of (1') gives (2), so that (2) also is equi- 

valent to (1')/ 

From this result we see that, with the notation and definitions of 11.2: 12, 

( 
rjxf)IVF 

W Gr (Rf, RP) r> 
rjxf 

(n Wr)ß -1(f(x1),..., f(xr)) 

where 13 : 
rjk(Rn, 

Rp): (Rp)r is just the target projection of the jet 

bundle. Note that since W is a locally trivial fibre bundle over 

(Rn)(r)X (Rp)r, it follows that W(fl/-1 (f(x1),..., f(xr)); it is also 

clear that VF _ 
(rikf)_1(P-1(f(xl), 

..., f(xr))). 
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II. 3: 4 Lemma Let Wr (M, e-n) be a smooth, Z 
-invariant submanifold. 

Then there exists a smooth submanifold W' of 
rJk+I(M, 

H) such that 

i) 
rj 

k+1Pgi(x,, 
ql), ..., 

(xr, qr)) E W' 

if and only if 

rjk 
dpg((x11 ql), ..., (xr, qr)) E 

for (x1, q1), "'' 
(xri qr)E TM %l domain(P9). 

ii) 
r. 

k+lPg Wýý, ý 
rjx 

dpNg)I (TM n domain(P. ))(r) w. 

Proof We define a submersion 

r2 
: Jk+1(M, H) - (1: 2V 

... u2 n) 
rLT 

(M, k -n) 
r 

such that 

r_o(rjk+1Pg) _ rikdp9' 

and then set 

4J' _r k)-..., 
0)0 

N A$ 

To begin with, we define 
jdk, which we shall denote simply by dk. In 

fact it is not possible to make a global definition, so we work locally, 

but as we shall see, this causes no problems. 

Suppose then that zo=j 
k+1 

f(x0) 6 Jlt+1 (M, H) and that rank df (x) n-1. 

Choose a submersion p: U ->Q2P-n, where U is a neighbourhood of df(xo) 

in L(n, p-1) = L(Rn, H), with U contained in FOU X1, such that 
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-7 
1= 1(0). 

Then set 
dk(z) 

= jk( a f)(x0). Evidently z £Z <===> dk(z)E ß -ý(0), 

where /3 is the target projection of Jk(M, e-n). Clearly there is ambig- 

I- JW 
uity in the definition of dk, just as there was in the definition of d, 

but for exactly the same reason as in that case, it will not matter: if 

and f)' are two submersions such that (0) ý(0), 
then 

/)"df and p'"df are 
e 

-equivalent, so that in particular 
2(z) 

and 
dk'(z) 

lie in the same -orbit in T (M, Q2p-n). Since we also have d k(z) 
C- /3 -(0) 

if and only if dk'(z) Eß1 (O), and our purpose in introducing n. dk is to 

pull back WO 4-1(0), where W is aX -invariant submanifold of Jk(M, IRp-n), 

the ambiguity in the definition of dr will not be an obstacle. 

Now, it is clear that dk, as thus defined using /, is well defined on 

a neighbourhood Ui of z in Jk(M, H). 

Claim dk is a submersion. 

Proof of claim After an appropriate choice of local coordinates on M, 

centred at x0, and of local coordinates on H, we can assume that the 

jet z0 is equal to j 
k+1 

f(x0), where f is of the form 

f(x1,..., xn) = 9fn(x)1..., fp-1ýx)) 

(xi I. JW 

Then we may take df(x) to be equal to 

ýfn ýf' 

nn 

and trivialising Jk(M, IRP-n) locally as 
eX 6p-n X Jk(n, p-n), we have 
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d. V ow - 
k(z) = (x, df(x)(en), d2f(x)(en), ..., dk+1fix)(en)) 

ßnXOP-nX L(n, p-n)X LS(n, p-n)X ... XLS(n, p-n), 

where LS(n, p-n) is the space of symmettric i-linear maps IR -+ ýp-nom 

It is easy to see that in these coordinates dN 
k 

is a submersion. However, 

whether or not dk is a submersion does not depend on the choice of co- 

w 
ordinates or on the choice of /I in the definition of dk, since as was 

shown in 1.9, if f is A 
-equivalent to g then df is X 

-equivalent to dg, 

so that a change of coordinates on M and H is compensated by aX 
k-equi- 

valence (a diffeomorphism) on Jk(M, O-n). This proves the claim. 

Thus, we can define W' locally by setting 

,= 

^F 
-1 

Wl(1 udk (w Oß 

By adopting a similar proceedure on a neighbourhood of every k+1-jet z 

in Jk+1(M, H) - 
(F 2U 

... 
V jn), we obtain a well-defined submanifold W' 

of J1'+1(M, H), since if U1 and U2 are intersecting neighbourhoods of z1 

and z2 on which dk is defined by using p and p', then by the construct- 

ion, the definitions of W' coincide on U1') 11 
2. 

By the construction, and by Lemma II. 3: 3, W' has the properties listed 

in the statement of this lemma. 

Now, turning to the multi-jet case, if WG 
rJ 

k(M, 
RP n) is a smooth. ' 

- 

invariant submanifold, then W is of the form 

(W1X 
... X Wr) nv -1(Mir) ) 

where each WI is aX -invariaiit submanifold of jk(M, (RP-n) and 
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ýC : T-(M, Rp-n)r 50 Mr 

is the source projection. 

Define W' as 

W1'X ... x Wr' 0 ot-1(M(r) ) 

where each Wi' is defined as in the preceeding paragraphs. Again it is 

clear that W' has the desired properties IR 

We shall refer to the submanifold W' as defined in the proof of this 

lemma, as 
rdk-J(wfl 

ý -I(0)). 

11.3: 5 Theorem Let HQ Ip be a hyperplane, let g:! -> Q2p be an immers- 

ion, let 
rGg(H) 

be defined as in II. 3: 2, and let W9 
rJk(TM, 

RP) be a 

? C. ^ kn 
-invariant submanifold. If 4J c 

rJ 
(M, ) is defined, starting from 

W, as in 11-3 : 1, and 

rk 
1(W (1ß -1(0)) C 

rjk+l 
(M, H) 

is defined as in II. 3: 4, then 

rjkexpgITM(r)(I rGg 
(H) is transverse to W 

if and only if 

k+1 G (H) -ý Jk+1 A. 1. _1 (0)). r3x 
pg rgr 

(M, H) is transverse to 
rdk 

(W 0/3 

Proof First, 

k 
(w np-, (0)) 

rix+1pgWr 
ow -1 

if and only if 
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r-k 
° 

rJx+ 
pgfi w nos -1(0) 

, 

N 

by II. 3: 4. But by the definition of rdk' 
this is equivalent to 

rjxdpgf 
W n13-1 (0), 

and by II. 3: 1, this is equivalent to 

k^' ITM 
TM(r)n 

rG$(H) 

being transverse to W. By 11.2: 12, this last holds if and only if 

rjkexp9 
: TM(r)n 

rGg(H) -> rJk 
(TM, RP) 

is transverse to W 

Proof of Theorem II: 1 

Choose a set H1, ..., Hs of hyperplanes in Ip such that for any immers- 

ion g: M --), 
1 the corresponding sets rGg(Hi) cover 

X= 
t(x1, 

..., xr, q)E M(r)x 9: 
g(xi) ji q for i=1,..., r 

I. 

This may be done by taking any set of p hyperplanes in general position 

(so that for no (x, q) with g(x) /q is hi(g(x)) - hi(q) for all i) 

and then adding to it a further p hyperplanes parallel to but not coin- 

cident with the hyperplanes in the first set (so that we can always find 

H. 
1 

with h 
3. . 

(g(x)) /h1 
. 

(q) and hZ. (q) j 0). 

With this choice of hyperplanes, we then have 2p "maps" 

rk : 
rJk+1(M, 

Hi)-. ý. 
r 

(M, O-n) 
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and thus obtain in_each_bundle 
rJk+lM, 

Hi) a submanifold 

r k-1 
(w fl/�_1 (0) ) 

defined as in the preceeding Theorem. 

Let 

Si =f ßE G, (M, if) : 
rjx+lpg: rGg(Hi)> rJ1 

(M, Hi) is 
ý 

to 
rck 

1(W nß-1(o)). 

Then for each i, Si is residual in C (M, RR), by II. 3: 2, and so if 

S= S1 n ... 
n S2p then S is also residual. 

It follows by Theorem II. 3: 5 that if gE Imm(M, (R')n S, then at all points 

((xý, q), ..., 
(xr, q)) 

in (TM-M) 
(r), 

reg 
T W, and from this it is an easy deduction that 

rjkexp9: 
(TM-M) (r)--j 

rJk(TM, 
RP) is transverse to Wm 

Proof of Corollary 11.2 

The proof is almost exactly the one Mather gives for his Theorem 8.1 

in t211 
pp. 326-327. The only difference is that we are not looking for 

globally stable maps TM-M 4 R, 
but locally stable ones. We do not att- 

empt to find globally stable ones, because exp9: TM-M --. 
9 is not proper. 

Now the local stability of expg at (x1, q1),..., (xr, gr) is equivalent 

to the transversalit of 
rJ 

k 
y expg at (xj'q1)'. 

e*' 
(xrgr) to the contact 

class in 
h(TM O) 

containin 
k 

r, g rJ expg((x1, qj), """, (xr, gr)) for 1: >, p+1 

(see [201 
page 229 )" Thus, to prove that 

{g E Imm(M, Rp) : expg is locally stable on TM-M} 
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is residual, we mustshow that 

{g 6 Imm(M, RP) : rjP+1exPgI(TM-M)(r) 
is transverse to every contact 

class in 
rJp+1 

(TM, RJ' )j 

is residual. But when 2n < (2n, p), this follows from our Theorem II. 1 

exactly as Mather's Theorem 8.1 follows from his Corollary 3.40 

11.4 Outside the Nice Dimensions 

By following our Theorem II. 1 with Mather's argument, we have been able 

to prove that when (2n, p) are nice dimensions then local stability on 

TM-M is a generic property of the exponential map expg. However, the 

considerably more sophisticated arguments which Mather used in [21] to 

prove that local stability is not generic in C°`'(N, P) when (dimN, dim P) 

are not nice dimensions, do not apply in our case. The reason for this 

is that they depend upon the possibility of constructing maps f: N -- P 

such that jk f(N) meets a given manifold in Jk(N, P), and since we are in- 

k 
terested not so much in jg (where gE Imm(M, IRp)) as in the behaviour of 

jkexp91 this construction is not available to us. That is, given a sub- 

manifold WS J--(TM-M, 1), 
of codimension 2n, there is in general no 

way of constructing an immersion 9: M---* 0 
such that jkexpg meets W trans- 

versely. 

II. 4: 1 Example Consider immersions g: M --ýIR6, where dim M=4, and let 

w=1 
4(4,6) G J1(MIR 

6). 
Then codim W 8, and so if g were such that 

ýýexpg : T11-M 1R6 met W transversely, it would follow that the set 
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Q1 expg) 
1 (W) consisted-of isolated points. However, writing expg, in 

terms of trivial local coordinates on TM, as 

expg(x, v) = g(x) + dg(x)(v), 

we have, for (x, v) F. T(X, 
v)TM, 

dexpg(x, v)(z, 
v) 

= dg(x)(x) + d2g(x)(v, x) + dg(x)(v) 

dg(x)(x+v) + d2g(x)(v, x) 

and so 

dexp9(x, Tv)(x, Av + (A -1)x) =T dexpg(x, v)(x, v). 

Thus, rank dexp9(x, )v) = rank dexp9(x, v) for i1 ? 0, and so if 

(x, v)6(j1 exp9)-1 (W) then all points (x, %) are also in (j1expg)-1(W). There- 

fore it is impossible for j1 exp9 to meet W transversely. 

The same argument applies to all cases where codim .Z k(2n, 
p) = 2n. 

Now by applying Theorem II: 1, we may conclude that for a residual set of 

immersions g: M > F6, the rank of dexpg is greater than or equal to 5 

at all points in TM-M. And in fact we can go further: 

II. 4: 2 Proposition For a residual set of immersions g: M -o LR6, (where 

dim M= 4), expg is locally stable on TM-M. 

Proof Recall (cf. [211 ) that the genericity of stability in the nice 

dimensions is proved by showing that for a residual set of f in Ccd(N, P), 

jpf(N) does not meet UP(N, P), where TI k(N, 
P) is defined, for any k, to 

be the sub-bundle of Jk(N, P) whose fibre, k (n 
,p), is the smallest clo- 
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sed, algebraic, 7k-invariant subset of Jkn, p) whose complement contains 

only a finite number of ýCk orbits. In [221, Mather calculates the cod- 

imension of rjk(n, p) by decomposing it as the union of IT k 
r(n, 

p), where 

kk 
r(n, 

p) is the set of k-jets in II (n, p) whose kernel rank is r, and 

then calculating individually the codimension O'r(n, p) of each jr(n, p). 

In our case, (n = 8, p= 6) we need only consider Tj"2(8,6), 71 3(8,6), 

and 'g 4(8,6), 
since the kernel rank of expg on TM-N is at most 4. 

k 
However, 2(8,6) 

is empty, since all k-jets of submersions belong to a 

single .k orbit, 
r 3(8,6) 9( [221 

page 250), and as we have just seen, 

for a generic immersion g: M --> P6, the rank of dexp 
6 

on TM-M is always 

greater than 4. 

It follows that for a residual set of immersions g: N, ý> IR 
61 

36exp9(TM-M)n lT 6(TM, 
R6) =0 

and the proof then concludes in the usual ways 

Note that locally stable maps are not residual in C 00 (TM-M, JR 
6 ), since 

(8,6) are not nice dimensions. 

In order to provide examples of dimensions (n, p) for which local stabil- 

ity of expg on TM-M is not generic, we must prove an existence theorem 

to take the place of the construction that Mather gives on the last 

page of 
[21). Here we limit ourselves to proving such a theorem for the 

1-jets of exponential maps, which allows us to give the examples shown 

in the diagram on page 139. 

Trivialise TM over a neighbourhood of x0 6 M, as IR1)( Rn. Then 
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expg(x, v) = g(x) + dg(x)(v) 

By choosing local coordinates on M appropriately, we can write 

g(x) = (x, h(x)) 

where h: ý 
--ý 

O-n, and with respect to these coordinates, dexp9(X, v) 

has matrix 

II 
nn 

dh(x) + d2h(x)(v) dh(x) 

Define d2h : TM-* L(n, p-n) to. be the map (x, v)-- * d2h(x) (v). 

II. 4: 3 Lemma dexp9(x, v) E k(2n, 
p) ý---'> 1 2h(x, 

v)F I k(n, 
p-n) 

and 

dexpý 1E Ik(2n, p) ý`-'> d2h 
I Zk(n, p-n). 

Proof Define B6 Gl(2n), and Y iIRn-A,. Gl(p), by 

I0I0 
nn 

B= 'i (x) = 
In In -dh(x) In 

P- 

Then the map L(2n, p)--+L(2n, p) given by At---ý'Y(x). A. B defines a di- 

ffeomorphism of L(2n, p) which leaves k (2n, p) setwise invariant. Thus, 

dexp9 is transverse to E k(2n, 
p) if and only if the map 

r: (x, v)t-->'S(x). dexp9(x, v). B 

is transverse to_ (2n, p). Now let I : L(n, p-n) -s L(2n, p) be defined by 
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0I 
n 

DO 

Then (2n, p) for all k, and 1-1(Zk(2n, p)) = Zk(n, p-n). Moreover, 

r= 7j o d2h, and so 

dexpg ( 
e(2n, 

p) r 
fi Ek(2n, p)S d2h 

i 2k(n, p-n). 

The first affirmation of the lemma is obvious from these calculations ig 

We now aim to show, by using this lemma, that if 2n j codim Ek(2n, p)-1, 

then it is possible to construct immersions g: M ---. IR(where dim t; = n) 

such that j1 expg: TM-M J1 (TM, O) 
meets 2 k(2n, 

p) transversely. By the 

IRp-n it will be enough to show that we can construct maps h: R 

-7 k 
such that d2h meets 1: (n, p-n) transversely. 

Consider the following commutative diagram: 

ý2nX ihn - 
{0}) d-hX 1 

d2h 

L2(IRn, [R p-n) X (Rn - 
(03 ) 

fv 

L(n, p-n) 

where L2ORn, o-n) is the space of symmettric bilinear maps IRTý( IRn -o [Rp-n 

and ev is defined by ev(CQ, v) =9'(v)- Clearly ev is a submersion, and it 

follows that d2h iI), -k(n, p-n) ý (d2hX 1) Ji ev-1 
k(n, 

p-n). 

Now (d2hX 1) fi 
ev 

1 F- k if and only if d-h 'T 
ev_1 Zk, where ii is 

2n -n n the projection of LS(ý2 JR )x (0 - 
{0}) onto the first factor, and so 

the problem of constructing h: ltn-)- IRp-n such that d2h meets Zk(n, p-n) 
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transversely, becomes-that of constructing h such that d2h 
ev-1T 

k 

and meets IT (ev 1 T- k). 

II. 4: 4 Lemma 11 (ev 1 57 k) 
contains a smooth ivmersed manifold of codim- 

ension max 
{ k(p-2n+k) -n+1,0). 

Proof Let 

Rk, i = 
{(A, 

v) E ev 
1Zk: 

kernel rank (71 1 
ev-1 7- 

k) at (A, v) equals i} 

Then Rk, O is empty for all k, for if (A, v)E ev 
1k 

then (A, )v) 6 ev-1 
k 

for all real \/0, so that 

(0, v)E T(A, 
v)ev-1j: 

k 

Since d7f(A, v)(O, v) = 0, this gives d( TIev-1 
Z 

k)(A, v) a non-trivial 

kernel. 

It is clear that 

dim ker d(iil 
eV-1ý 

k)> n- codimZ 
k(n, 

p-n) 

with equality when 1evk is a submersion, and so by the preceed- 

ing paragraph, 

dim ker d(7T lev-137 k)) max 
11, 

n- codim Zk(n, p-n)} . 
" 

Claim Let i= max 
{1, 

n- codim 1 k(n, 
p-n)} . Then Rk i is non-empty 

and open in ev-1E: 
k 

To see this, we construct a pair (A, v? E ev-1 
k 

such that at (A, vo), 

ker d(W Iev-1r- k) has the requisite dimension. Regard A as being a 

(p-n)-tuple of symmettric nXn matrices, A', 
..., AP-n. Then we have 
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vtA1 

ev(A, v) = ev((A1, ..., Ap-n), v) = 
-- vtAp-n 

where vt is the transpose of v. 

For a fixed k, define A as follows: first, let 

Ai 

0.. 010.. 0 

0.. 000.. 0 

00...... 0 

10...... 0 

0....... 0 

10 0 

T 

1 for 1<i Sn-k 

and let all the remaining Al have first row and column identically zero. 

Case 1 n-1 < k(p-2n+k). Let rE ll be such that rk'< n-1 < (r+1)k. Let 

E-- n-k --* 
(0 

.. 00.... 0l 

n-k+j 

. . . . . . . . . . 

0 0 0 . . . . 0' 

0 0 1 0 . . . 0 

0 0 0 1 0 . . 0 

.......... 

000... 01 

10 

10 
C 

T 
(j-1)k+1 

4, 

jk+1 

w 

and let An-k+j _ _(Cn-k+j)t + Cn-k+j for 1<jr. 
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Let 

An-k+r+1 

F- rk+1 -> 
0.. 00.. 0I 
"""""""" 

0 0010 

00010.0 

......... 

I0 

00.. 01 

rk+1 

I 

and let the remaining Al be arbitrary, except that they have first row 

and column identically zero. 

Case 2 n-1 > k(p-2n+k). Define An-k+1, ..., Ap-n as in Case 1. 

In each case, let v0 = eý = (1,0, 
..., 0)t 

Then in Case 1, (A, v0) Ei1, and 

To see this, regard L(n, p-n) as its 

note that Tev(A, 
v0)2k 

(n, p-n) consi 

M1,1 M1,2 

112,1 M2,2,2 

, tn-k -> <-k-) 

in Case 2, (A, v0)E Rk, 
n-k(p-2n+k)' 

own tangent space at each point, and 

sts of all matrices of the form 

n-k 
4 

p-2n+k 
4. 

with M2,2 = 0. Write M2,2(A, v) for the M2 
2 component of ev(A, v). Then 

in Case 1, we have to show that for no vector v/ e1 is M2,2 (A, v) equal 

to 0. This amounts to showing that M292(Ale 
2), ... M2 2(A, en) are finde- 

pendent. But, for i such that (j-1)k+1 <i< jk+1, the first j-1 rows 
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of M2s2(A, ei) are all-equal to 0; so provided we can show that each set 

of k matrices M2,2(A, ejk+2), ... , M2,2(A, e(j+1)k+1) is independent, for 

j=0,1, ..., r, and similarly that M2,2(A, e(r+1)k+2)' """' M2,2(A'en) 

is an independent set, the claim (for Case 1) is proved. 

However, for (j-1)k+1 <i< jk+1, we see that the jth row of M2,2(A, ei) 

(which is just the ith row of An-k+j) has a1 in the (i-(j-1)k_1)th 

place, followed only by zeros. Thus, M2,2(A, e(j_l)k+2)'...., M2,2(A, ejk+1) 

are independent. 

In Case 2, the same construction shows that the composition of 

n 
dev(A, e1 ) 

Tev(A, 
e1)L(np-n) 

{o} cTe Tev(A 
e )L(n, p-n) -)0 

Tev(A, 
e1)2: 

k1 (n, p-n) 

is surjective. 

This completes the proof that k is not 
, rýaýc {1, n-codim Z (n, p-ný 

-1 k 
empty. That it is open in ev F (n, p-n) is straightforward: in Case 1, 

(A, v) 6i1 if ev(A, v) ¬ E: k(n, 
p-n) and the map 

T 1n 
v 

Sp{v} 

Tev(A, 
v)L(n, p-n) 

Tev(A, 
v) 

5k(n, p-n) 

induced by dev(A, v), is injective, while in Case 2, (A, v)e H, 
n-k(p-2n+k) 

k 
if ev(A, v) E (n, p-n) and this same map is surjective. Both of these 

are evidently open conditions on ev-1 E k. 

This completes the proof of the claim. 

Now, in Case 1. the_corank of 71 IR 
1 

is everywhere equal to 1, and so 
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IT(Rk 1) 
is a smoothly immersed manifold of codimension k(p-2n+k)-n+1 

in L2ORn JRp-n), while in Case 2, Tf, is a submersion, Rkn-k(p-2n+k) 

and so its image is open in L2(Rn,, p-n), 

II. 4: 5 Theorem Let 2nd k(p-2n+k) - 1, and let p> n. Then there exists 

an immersion g: M -) 
k (where dim M= n) such that jexpg meets 

Ek(2n, p)q=- J1(TM-M, RR) transversely. 

Proof Choose any immersion f0: M --> 
I, and take a coordinate chart I 

on a neighbourhood U of x0 EM so that fp -1 has the form 

x 1-+ (x, h0(x) ) 

where h0:, n---ý, IRp-n and h0 and all its first derivatives vanish at 0. 

Since 2n > k(p-2n+k), we have n) k(p-2n+k) -n+1, and so by 

nn2 
Theorem 6.1 there exists a map h1: ký --. tP1 such that d h1 meets 

"T (Rk, 
max {1, n-k(p-2xß+kl) 

transversely at 0. It is clear that we may take 

h1(0) =0 and dh1(0) = 0. 

NOW if g1: Rn3 ý-n is defined by g1(x) = (x, h1(x)) then it follows 

n 
from Lemma II. 4: 3 that j1 expg meets 

k (n, p-n)c J1 (TR -Rn, gyp) trans- 
1 

versely at some point (O, v)E Tßn-2n. 

Let Cr : M-3IR be a C06 mapping with compact support in U, identically 

equal to 1 in a neighbourhood of x0. Define g: M -' &P by 

90(x) if xE M-U 

g(x) _ 
G(x)g1(7 (x)) + (1- G(x))g0(9 (x)) if X EU 

Then g is a smooth- immersion 1.1 --; 0 and j1 expg meets Ek (2n, p) trans- 
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versely a 

We are now in a position to give examples of dimensions (n, p) for which 

{g E Imm(M, Rp) : expg is locally stable on TM-M) is not dense. We use 

the caCculations in [221 
, but at this stage it is perhaps worthwhile to 

point out in slightly more detail the difference between our case and 

Mather's. In [21] 
, he shows that if there is a smooth stratum Wc con- 

tained in Jk(N, P) consisting of X orbits, with codim We =c \K n, but 

such that each X orbit contained in We has codimension greater than c, 

then it is possible to construct a proper map f: N -, P such that jk f 

meets We transversely but is not transverse to any of the x orbits con- 

C 

tained in J--(N, P) consisting of 
%C 

orbits, with codim We =c \K n, but 

such that each X orbit contained in We has codimension greater than c, 

then it is possible to construct a proper map f: N -, P such that jk f 

tained in Wc, so that f is not stable. This alone is not enough to prove 

that stable maps are not dense in Cpr(N, P); and a crucial step in Math- 

er's argument consists in showing that it is possible to construct f 

such that the phenomenon "jkf meets We transversely but is not trans- 

verse to any of the X orbits contained in Wc" is "stabley" or "trans- 

versely" present. From this it follows that sufficiently small pertur- 

bations of f will exhibit the same phenomenon, and will therefore be 

unstable also. Because, as we have remarked earlier, expg is subject to 

the constraint of being an exponential map and we are free only in our 

construction of g, it is not clear, from Mather's work alone, that it 

is always possible to construct g so that expg will exhibit the phenom- 

enon described above. However, there is one case, or set of cases, in 

which to show that local stability of expg is not a generic property of 

immersions g, it is enough merely to construct g so that jkexPg meets 

We transversely. These are of course the cases in which each X orbit con- 

tained in We has_codimension greater than 2n. It is to such cases that 
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we now turn our attention. 

Since we have at our disposal only the rather weak Theorem II. 4: 5, we 

look at the cases in which r- k(2n, 
p)C 

k(2n, 
p), and we aim to find 

dimensions (n, p) for which there exists k satisfying 

i) k(p-2n+k) < 2n 

ii) the codimension of each of the x2 orbits in (ii 
2,1)-1(. r k(2n, 

p)) 

(where T 
2,1: 

J2(2n, p)---' J1(2n, p) is the usual projection) is greater 

than 2n. 

Recall from [221 pp. 214-219 that the 2-jets of map-germs (0,0)--ä(Rq0) 

having corank k at the origin are classified up to 7C2-equivalence by 

the orbit under the action of the projective linear group PG1(k) of 

Ker TE Gr(s, jk(k+1)), where I is the linearisation of the second in- 

trinsic derivative D2f (here we depart from Mather's notation) as in 

Ker df X Ker df 
2 

S2(Ker df) Coker df, 

and s= dim Ker . Two such 2-jets exhibiting different values of 

s are not ÖC2-equivalent. 

If dim PG1(k) c dim Gr(s, 3k(k+1)) then the set of all such 2-jets is - 

contained in ]T2(m, q). If we denote by F k(s) 
the set of all 2-jets 

whose kernel has rank k and whose seconiintrinsic derivative, regarded 

as a linear map S2IR 
k 

--)-Coker df : IR q-m+k, has an s-dimensional kernel, 

then by the above, 2: k(s) C TT k(mq) 
if s(3k(k+1)-s) < k2-1. 
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Moreover, 
k 

ý (s) is a smooth manifold of codimension s(q-m+k-ik(k+1)+s) 

in F_ k, 
and hence of codimension s(q-m-3k(k-1)+s) + k(q-m+k) in J2(m, q), 

provided, of course, that 

min 
{-k(k+1)-q+m-k, 01 <s< jk(k+1), 

(for otherwise it is empty). 

The codimension of each of the 7C2 orbits contained in 2: k(s) is at least 

codim 57 k(s) 
+ dim Gr(s, 3k(k+1)) - dim PG1(k). 

Since we have no existence theorem for immersions g: M -->, 
e 

such that 

expg has a given 2-jet, we restrict our attention to those values of k 
k 

and s for which (s) is open and dense in 37 k, 
that is, for which the 

linearisation I :Sk -ik2q-m+k of D 
2f 

is either an epimorphism or an 

injection. 

From the calculations on pp. 218-224 of 22) , we see that the only cases 

that interest us are 

i) 0( p-2nk(k-1) -2 and k at 4 

ii) 2n-p -2 and k> 2n-p+2 

iii) 2n-p =1 and k>4 

(Mather's Case Ic, p. 218 op. cit. ) 

(Mather's Case IIa, p. 218 op. cit. ) 

In all these cases, we have p-2n+k < 3k(k+1), so that the valno of 6 

for which Z k(s) is open in 2: k 
is ik(k+1)-p+2n-k. 

Thus, we seek those values of n, p and k within these ranges such that 

codim 
k (2n, p) < 2n < codimj 

k(2n, 
p) + dim Gr(jk(k+1)-p+2n-k, jk(k+1)) 

- dim PG1(k) 
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that is, 

k(p-2n+k)< 2n < k(p-2n+k) + (p-2n+k)(3k(k+1)-p+2n-k) - k2 + 1, 

which simplifies to 

k(p-2n+k) < 2n ( 3k(k-1)(p-2n+k) - 
(p-2n)2 + 1. (iv) 

From the preceeding analysis, and from II. 4: 5, we conclude 

II. 4: 6 Theorem For any pair (n, p) with 0<n<p, if there exists k>0 

such that n, p and k satisfy one of the conditions (i), (ii) or (iii) on 

the previous page and satisfy also (iv), then if dim M = n, the set 

(g E Imm(M, RP) : exp9 is locally stable on TM-MI 

is not dense in Imm(M, (Rp)d 

Calculation of Examples 

In order not to devote too much space to the solution of diophantine in- 

equalities, we do not attempt to give a complete list of dimensions to 

which this theorem applies. 

Put 2n -p=r. Then (iv) becomes 

k(k-r) < 2n < 3k(k-1)(k-r) - r2 + 1. 

If r=0 then setting k=4 gives 16 < 2n < 25 

k=5 gives 25 ( 2n < 51 

k. 6 gives 36 < 2n < 91 

.......... 

and so II. 4: 6 applies to all values of n? 9, 
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If r= -1 then setting k=4 gives 20 < 2n < 30 

k=5 gives 30 < 2n < 60 

k=6 gives 42 < 2n < 115 

....... 

and so II. 4: 6 applies to all values of n> 11, except for n= 15. 

If r= -2 then setting k=4 gives 24 2n 33 

k=5 gives 35 2n 67 

k=6 gives 48 2n 117 

and so II. 4: 6 applies to all values of n >, 13, except for n= 17. 

If r=- then setting k=4 gives 28 < 2n < 34 

k=5 gives 40 C 2n < 72 

k=6 gives 54 < 2n < 12? 

eS""SS""S 

and so II. 4: 6 applies to n= 15,16 and n> 21. 

If -r=1 then setting k=4 gives 12 <' 2n < 18 

ka5 gives 20 < 2n Z 40 

k6 gives 30 < 2n < 75 
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and so II. 4: 6 applies to n=7,8 and to n? 11. 

If r=2 then setting k=4 gives 8< 2n <9 

k=5 gives 15<2n<27 

k=6 gives 24 < 2n < 57 

........ 

and so II. 4: 6 applies to n? 8. 

If r= then setting k=5 gives 10 < 2n < 12 

k=6 gives 18 < 2n< 37 

k=7 gives 28 < 2n < 76 

00 ..... 

and so II. 4: 6 applies to n? 10. 

By fixing r and substituting successive values of k into (iv), we 

obtain a continuous set of nE IN once the value of the right hand side 

of (iv) for k is greater than the value of the left hand side for k+1. 

That is, once 

lk(k-1)(k-r) - r2 +Ii (k+1)(k+1-r) 

providing the additional condition (i), (ii) or (iii) is met. Thic in- 

equality is more conveniently expressed as 

k3 -(r+3)k2 + (3r-4)k + 2r - 2r2 ? 0. 
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It is satisfied, along-with condition (i), if r< -4 and k= 1-r (alth- 

ough there are of course other sets of values which will satisfy both 

the inequality and condition (i)). Putting k= 1-r in the left hand 

side of (iv), we find that II. 4: 6 applies to all dimension-pairs 

(n, 2n-r) if 2n > 2r2 - 3r +1 and =4 > r. 

The inequality is satisfied, along with condition (ii), if r>, 4 and 

k= r+3. Putting k= r+3 into the left hand side of (iv), we find that 

II. 4: 6 applies to all dimension-pairs (n, 2n-r) if 2n > 3r+9 and 4 
, <r < n. 

By taking. k - r+2 for r>4, one finds that II. 4: 6 also applies to all 

dimension-pairs (n, 2n-r) for which 2r+4 < 2n < 3r+3. 

The results of these calculations are displayed on the next page. It 

will be appreciated that a fairly large part of Mather's "bad dimens- 

ions" is covered by those pairs (2n, p) for which II. 4: 6 applies to (n, p). 
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----- Boundary of Nice Dimensions 

--- Line n=p 

Values (2n, p) for which II. 4: 6 

applies to (n, p) 
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----- Boundary of Nice Dimensions 

)4 

--- Line n=p 

Values (2n, p) for which II. 1+: 6 

applies to (n, p) 
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CHAPTER III 

APPLICATIONS TO THE GEOMETRY OF SURFACES IN R4 

In this chapter we shall study radial projections into hyperplanes of 
4 

surfaces M (of dimension 2) embedded in R. In particular we shall be 

interested in the A 
-classification of the germs of these projections. 

We shall try to answer the following questions: for a "generic" embedd- 

ing M--ýý41 

1) which A 
-classes do the germs of projection belong to? 

2) what correlation is there between the 
., 
+ 

-class of the germs of the 

projections p9(q) at x0EM, and the differential geometry of the emb- 

edding g of the surface at x0? 

3) For a given }c 
-class S, what is the locus of points xEM for which 

for some qEf4, the germ at x of the projection pg(q) belongs to S? 

Our answers to these questions are by no means complete, as will become 

apparent, and at the end of the chapter we raise several questions 

which might be susceptible to further investigation. 

To start with, we must give a precise meaning to the term "generic". 

Our philosophy will be that we are interested in proving theorems 
4 

about the members of residual subsets of Imm(M, R ), and since the count- 
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able intersection of residual subsets is still residual, we shall not 

hesitate to introduce further conditions on the immersions for which 

our theorems hold, as and when they become necessary. 

III. 1 :1 Definition E1 is the set of all immersions g: M + I24 such that 

for any hyperplane H in R4, ýxk pg: 1Gg(H) -- Jk(M, H) is transverse to 

the stratification 
g induced in Jk(M, H) by the stratification 

S0 
of 

Theorem 1: 2. 

111.1 :2 Proposition E1 is residual in Imm(M, R4). 

Proof That for any one hyperplane H, the set E1(H) of immersions g such 

that jkpg: 1Gg(H) i T-(M, H) is transverse to is an immediate con- 

sequence of our transversality theorem. IIe3: 2, bearing in mind that 

consists of only a finite number of strata. That E1 is also residual, 

although it is the intersection of all Ej(H), follows from the fact 

that it contains the intersection of a finite number of them. To see 

this, let Hi = 
{(X1, X2, X3, X4)E 'R 

4: 
X. =0 for i=1,..., 4j and let 

Hi = 
J(X1, X2, X3, X4)E 14 : Xi-4 =1 for i=5,..., 8) Then 

8 
E1 =nE,, (Hi) . 

i=1 

For if H is any hyperplane, and (x, q) 6 
ýG9(H), then for-some i, 

(x, q) E 
1Gg(Hi), and the germs at x of the projections p9 (q) into H 

and into Hi are left-equivalent (see II. 1). Since' is an * -invariant 

stratification, if the projection p9(q) into H. is transverse toy at x 

then so is the projection p9(q) into H. 

From this it follows that E1 contains the intersection of the E1(Hi), 

i=1,..., 81 
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As a first consequence of our definition, we have 

III. 1: 3 Proposition If gEE then each germ of expg at a point in TM-M 

is stable. 

Proof It is convenient to continue to use the embedding of TM into 

MX R4 defined by g, as discussed in II. 1. 

Let (x0, g0)6 TM-M, and choose a hyperplane H such that (x0, g0)G 1 
G9(H). 

Since by hypothesis jkpg is transverse to the stratum ofg containing 
k j pg(g0)(x0), it is also transverse to any manifold containing this stra- 

tum. Now it is easy to check, for any stratum X of codimension < 6, and 

for zEX, that 

äk-1iXka(Z» X. 

For the strata which consist of only one A 
-orbit, this just the state- 

ment that the *-class of df is an A 
-invariant of f; for the modular 

strata in, 9, 
one checks by direct calculation that the 

f-class 
of dkz 

does not vary as z varies within each stratum. 

Hence, we can conclude that 

ýx+1Pg ä -1 k ßßk+1p9(g0)ßx0))), 

from which it follows, by II. 3: 5, that 

km Xk .k i exp9 ý exp9(xo, qo 

at (x0, g0). By taking k=5, we conclude that the germ of expg at (x0+q0) 

jr, stable/ 

In what follows, we shall be talking only about iºamersions 9E E1, and 
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thus will assume that all (mono-germ) singularities of expg, away from 

the 0-section, are stable. From this it follows, on the grounds of 1( - 

codimension alone, that the only singularities that expg can present 

are the Morin singularities corresponding to the Boardman strata Z: 1'0 

1,1,0 1,111,0 1,1,1,1,0 2 
ýý , and , and the two codimension 4Z sing- 

ularities. However, a simple argument, in essence that of II. 4: 1, shows 

that for g6 E1, expg has no ,: 
2 

singularities: 

III. 1: 4 Prcposition For g6 E1, expg presents only the Morin singularities 

listed in the preceeding paragraph. 

Proof That for a residual set of immersions g, expg has no 72 points, 

is straightforward. For by II: 1, there is a residual set of g such that 

12 
j expgýlE , and for such g the codimension in TM-M of the set of 

points of expg (if it is not empty) must be 4. It follows that this set 

must be empty, for, as was shown in II. 4: 1, the rank of dexpg is const- 

ant along 1-dimensional vector subspaces of the fibres of TM. 

In fact it is precisely this same reasoning that shows that for gE El, 

expg has no Z2 points. The link is the fact that the local algebra of 

expg at (x, q) is isomorphic to the local algebra of dpg(q) 
at x (11.2: 3 

and 11.2: 7). The only two strata in of jets z= jkf(0) such that df 

has aZ 
2 

singularity at 0, are both of codimension 6. Hence, for gE E1 

the set of points (x, q) such that p9(q)(x) lies in either of these str- 

ata is of codimension 6 in MX R4, if it is not empty, and thus consists 

of isolated points. But this is impossible, since the rank of dpg(q) at 

x remains constant as q moves along the line joining g(x) and q I9 
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As a prelude to further description of the geometry of embeddings gE E1, 

we present a table of the strata of 3 which may be met by jXpg for g 

in a residual set E4 of immersions (see Theorem III. 3: 1, below, for 

the definition of E4 and proof that these are the only strata met). 

Singularity of exp9 )-codim Stratum of Name ¢t-codim d 

submersion 0 (x, y 
2 

, xy) S0 2 0 

(x, Y2, Y3+x2y) S1 3 0 

(x, y2, x2y+y5) B2 4 1 

(x, xy+y5, y3) x2 4 1 
X1,0 (fold) 1 

(x, y2, x2, v+y7) B3 5 2 

(x, xy+y8, y3) H7 
J 

5 2 

(x, y2, x2y+y9) B4 6 3 

(x, xy+y11'y3) H4 6 3 

(x, y2, y3+x3y) S2 4 0 

(x, y2, xy3+X3y) C3 5 1 
1,1,0 (cusp) 2 

(x, xY+Y3, xy2+cY4) p3 5 1 

(x, y2, x3y+y5) F4 6 2 

(x, Y2, Y3+x4Y) S3 5 0 
21,1,1,0 3 

(x, y2, xy3+x4y) c4 6 1 

1'1'1'1'0 4 (x, Y2, Y3+x5Y) 
IS 

4 
6 0 

The number d in the last column is defined on the next page. 
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The number d is defined as follows: 

For Xa stratum of if and g 6Imm(M, R4), let 

X(g) _ 
j(x, 

q) EM )CR4 : jkp9(q)(x) 6 XJ, 

and let 7º 
1 and 7T 

2 
be the projections of MX IR 

4 
onto M and IR 

4 
respect- 

ively. 

Suppose that the öC-class of dkz, for z6X, (which is an invariant of 

X), is that of (x, y)f---ý, (x, yr). Then by II. 3: 4, 

1 
«ri 

2Wg)) 
6 expg( 7- rexpg). 

Moreover, for g C- E1, every mono-germ of expg on TM-M is stable, by III. 1: 3, 

and so is a smooth immersion when restricted to its equisingularity man- 
1r 

ifold f expg. Hence the image of this equisingularity manifold is an 

immersed manifold in I24, of codimension r. 

1 
We define d to be the codimension of Tr2(X(g)) in exp Z rexp9). That 

d is then well-defined follows from 

111-1: 5 Preposition For each XEB, and for gE E1, Ti 
21X(8) is an immer- 

sion. 

Proof For the strata of which are A 
-orbits, this is a consequence 

of 

111.1: 6 Lemma Let , F: (09 Qa, 0)-. (jpXtRa, O) 

F(x, u) = (f(x, u), u) = (fu(x), u) 

be an Ae-vernal unfolding of f0, and let 

14 
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SF = 
[(x, 

u) E (0 X@2a, 0) : the germ of fu at x is A 
-equivalent to the 

germ of f0 at 03'. 

Then SF is the germ of a smooth manifold, and if 7T 1 : 
Ox G? a-ý n 

and 

7f 2: 
RnX Ra ). IRa are the usual projections, then T21 

S is of constant 
F 

rank, and is an immersion if f0is not stable. 

Proof Since F is sý 
e-versal, 

it is equivalent as an unfolding to a con- 

stant unfolding G of a miniversal unfolding G of f0. That is, there is 

a commutative diagram 

(RnXRc XRa-c00) 
G (0X IRCX Qua-', 0) 

h*F 
(fnx IR , (1 a-c, 0) (IRP XQ2cX I2a-c, 0) 

where G(x, v, w) _ (g(x, v), v, w), h: (Pa, O)-ýV, O) is the germ of a 

diffeomorphism, h*F(x, v, w) = (f(x, h(v, w)), v, w), and are a- 

parameter unfoldings of the identity of IRn and RP respectively, and c 

is the A 
e-codimension 

of f0. 

If f0 is not stable, then 

G= {o}xto} xe-" 

for a non-stable singularity is necessarily of isolated singularity type 

([301 , page 492), so 

Sh*F = (j) ={ e(0, 
w)(0), 

0, w) :w6 (Aa-C, 0)3 
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and 

SF 
1( T(O, 

w)' 
h(O, w)) :w (Ra-c, 0)} . 

Thus, 7TH : (S 
F, 

0) --ýORn, 0) is -A -equivalent to the map-germ 

(pa-c 
, 0) -'(rn, 0) 

wi -ý q(O, 
w)l0) 

and 7t2 : (SF1O) > (iRn, 0) is A 
-equivalent to the map-germ 

( a-c 
ý0). 

(Ra, 0) 

w I-----ý h (0 
, w) . 

Hence, T2IS is an immersion. 
F 

If f0 is stable, then c=0 and Tit : (SF, 0)-+(Ia, 0) is a submersion)( 

Proof of III. 1: 5 (continued) 

If the stratum X is an 
A 

orbit, and . 
if k 

jXpg 
ý 

X, then Pg is an A 
e-ver- 

sal unfolding of the germ whose A'-orbit X is, and X= SP 
9 

For those strata of , 
g' 

which are not 7k orbits but instead are uni- or 

bi-modular, a slight modification of the preceeding argument suffices 

to prove the result: in a miniversal unfolding, the set 

{(x, 
u)E IR2XjRc : the germ of fu at x belongs to the modular family}, 

instead of being a single point, is a smooth submanifold which projects 

irmersively into IRcv 
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111.1: 7 Calculation of the value of d 

From the preceeding remarks, it is clear that for a stratum X of 5' whose 
1 

codimension is c and which corresponds to Fr singularities of exp g, 

we have 

d=c-r-2. 

111.1: 8 Reek As can be seen in the proof of III. 1: 5, Singularity Theory 

alone tells us nothing about Ti 1 : X(g)-. M Ti 1 : 
Sp -3 M); geomet- 

g 
rical factors intervene to determine the form of this map, and we shall 

see that even for gE E1, for certain strata XEg, Tr, 
tIX(g) 

is not in 

general of constant rank. 

111.2 Calculations 

Since we are interested in the A class of the germs of projections pg(q), 

in seeking "normal forms" for the germs of immersions g: M -ý IR 
4, 

in or- 

der to facilitate succeeding calculations, we cannot allow ourselves ar- 

bitrary coordinate changes in JR4, and in fact we will restrict ourselves 

to using only isometric coordinate changes, corresponding to isometries 

of I. However, by using these, as well as arbitrary smooth coordinate 

changes in M, it is clear that we may bring the germ at x0 EM of any imm- 

ersion g: M--- ; ý, IR 
4 

to the form 

g(x, y) = (X, y, b(x, y), c(x, y)), with b, c c 'N22, 

and in all our calculations we will suppose the germ of g at x0 =0 to 

be of this form , which we shall refer to as Monge form. We shall write 

the Taylor series of b and c as 
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b. xly3 and c. x1yJ 
i lid 1, J 1, J ,J 

The Curvature Ellipse An extremely useful second order invariant of the 

embedding g: M - IR is the curvature ellipse, studied in some detail in 

[14) 
. It is defined as follows: 

let S1 (TxM) be the unit circle in TxM (with respect to the metric indu- 

ced by g), and parametrise it by (cos 6, sing ). Let Nx be the orthogo- 

nal complement in 24 to Tg(x) g(M), and let 1x : (84---> 14x be orthogo- 

nal projection. Then the curvature ellipse (at x) is defined to be the 

image of S1 (TxM) under the map 

IL(O) = lix (d2g(x)((cose , sin0 ), (cosh, sin0 )). 

For g: M--> IR 
4 

in Monge form , the curvature ellipse at 0 is thus the 

image of the map 

222 
Q r--ý2(bcos 9 +bcosesinQ +bsin 

2 ). 
290 1,1 0,2 0, c2, Ocos e +c1,1,1 cosOsinO+c0,2 sin 0 

The map rx -d 
2g is of course the second fundamental form. 

We shall say that a point xEM is hyperbolic, elliptic or parabolic acc- 

ording to whether the point 06N 
XM 

lies inside, outside or on the curva- 

ture ellipse. 

We shall refer to the directions e in TXM for which is parallel to 

(o) as asymptotic directions. At a hyperbolic point, then providing 

the ellipse is not a radial line segment, there are two distinct asymp- 

totic directions, while at parabolic points, again providing that the 

ellipse is not a radial line segment, there is only one asymptotic dir- 

ection. When the ellipse is a radial line segment then every tangent 

direction is asymptotic. 
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The set of points xeM such thet the curvature ellipse passes through 

ONM is the parabolic curve . 

It may also be characterised by the contact between the surface g(M) 

and its tangent plane Tg(x)g(M) at the point x, but we shall not go in- 

to that here. 

It turns out that the configuration of the ellipse and 06NxM is of con- 

siderable importance in determining they -clasp of the germs of project- 

ion pg(q) at x when the line joining q and g(x) is tangent to g(M) at 

g(x). (Projections in non-tangent directions are of course non-singular). 

In particular, projections in tangent directions which are not asympto- 

tic are all cross-caps (111.2: 2 ). Apart from the hyperbolic, parabolic 

and elliptic configurations, two other configurations are important in 

determining the /c-classes of projections in tangent directions: when 

the ellipse is a radial line segment (see 111.2: 8 ) and when it is a 

radial line segment with one end at the origin. In each of these cases, 

all tangent directions at x are asymptotic, while in the second case 

2 
expg has a singularity in the fibre of TM over x (111.2: 2 ). 

111.2: 1 Lemma If g(x, y) = (x, y, b(x, y), c(x, y)), q= (O, v, 0,0) (v / 0) and 

H= (0,1,0,0) 
, then 

i) If b0,2 / 0, j3p9(q)(0) is equivalent to 

2 (X, 
y +0(3), (b 

0,2c1'ý-c0ý2b, ý'1)xy+[c2,1 b0,2 b2ýýc0ý2_(5,2b0, 
b 
2-b112c0,2)b11 

0,2 

2 
+ b11 

(c b 
c012b2l0-b02c2L 23 

4b 2 0'3 0'2 ýb0,3c0,2)+ 
v]xy +(c0,2b0,2 b0,3co 

2)y 
). 

0,2 ' 
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ii) If b0,2 = c0,2 = 0, and b1,1 / 0, then j3p9(q)(0) is equivalent to 

(x,, b 1,1 xy+b 1, xy2+b0,3 y3, (-c 
1,2 b 

1,1 -b 1,2 c 1,1)xy2 + (c 
0,3 b1,1-b 

0,3 c1,1)y3). 2 

Proof We have 

p (q)(x, Y) =Cx 
b(x, y) c(x, y) 

9 1- I 1- 1- 

and putting x=X, 53pg(q)(0) is equal to 

v 

b2,0 
2+b1,1xy+b0,2y2+(b b 

+ (b0 
3+ 

0,2 )y3 2,1- vL 
)x2y+b1,2xy2 

b 

, 

C2 
,02+ 

Cý 
c x2 +c xy+c 2+(c 

- '0 )x y+c xy + (c )y3). 2,0 1,1 0,2y 2,1 v 1,2 0,3 v 

i) Remove paces of x from the second and third components by the obvious 

left coordinate changes, and then put Z= b0,2Z - c0,2 Y to obtain, in 

the third component, 

(c b -b c )xy+(c b -b c+ 
c0'2 b 

2,0 b0,2c2,0 
"2 1,1 0,2 1,1 0,2 2,1 0,2 2,1 0,2 )x y+ 

+ (c b-bc )x-Y2 + (c b-bc)3. 
1,2 0,2 1,2 0,2 093 0,2 0,3 0,2 y 

Now put y=y+ 
2b' 0ß, 2 

x and eliminate all x2, x3 and xy 
-2 terms from the 

second and third components by the obvious left coordinate changes to 

bring j3p9 (q)(0) to the desired form. 

ii) The coordinate change biel Z- cllY, followed by obvious left 
, 

coordinate changes to remove the x, x3 and x2 2 
y terms from the second 

and third components, bring j3p9(q)(0) to the desired form  
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111.2: 2 Proposition 

i) If the direction of projection is tangential but not asymptotic at 

x6M then the germ at x of p9(q) is a cross-cap. 

ii) With the hypotheses of the preceeding lemma, if 0 is a hyperbolic 

point and the direction of projection is asymptotic, then either b0 
0,2 

or c0 0,2 
is different from 0, and so either j3p9(q)(0) is equivalent to 

3b 2 

(x 2 [c21b02 
bc+bc-cb1,1 '. -2,1 0,2 1,2 1,1 1,2 1,1 4b 2(c0,3b0,2-b0,3c0,2) 

0,2 

c0,2b2,0 - b0,2c2,0 23 
+v1x+ (c0,3b0,2 b0,3c0,2)y ), 

or it becomes so after b and c are interchanged. If the coefficients of 

both x2y and y3 in the third component of this jet are non-zero, then 

the jet is sufficient and the germ of pg(q) at 0 is A--equivalent to 

(X, y)i-: -P (X, y2, y3 + x2 y). (si). 

If the coefficient of y3 is non-zero and gE E1, then for some k, 1k<4, 

the germ of p9(q) at 0 is equivalent to 

(x, Y)i->(x, y2, y3 + xk+1y) (Sk), 

1 

and moreover, exp9 has aZ singularity at (0, q). In this case the k- 

class of expg at (O, q) determines the /c 
-class of p9(q) at 0, and vice- 

versa. 

iii) If xEM is a hyperbolic point, then the germs at x of all project- 

ions in tangent directions are equivalent to germs of the form 

(x, y)j >(x, y2, YP(x, Y2)). 
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iv) For g as in the preceeding lemma, if b0 
2= c0 0,2 = b1 

1= c1 1=0, 

then expg has a Y2 singularity at (O, q), and it follows by III: 4 that 

if gE E1, then this possibility can be excluded. Thus, after interchang- 

ing b and c if necessary, either case (i) or case (ii) of the preceeding 

lemma applies to g. 

Proof 

i) It is apparent from the lemma that the germ of pg(q) at 0 is a cross- 

cap if and only if b1 1c0 0,2 c1,1b0 0,2 
/ 0. Now the curvature ellipse 

at 0 is the image of the unit circle in T0M under the map 

1 : (x, y) ->(b2,0x2 + b1,1 xy + b0,2y2, c2,0x2 + c1,1 xy + c0,2y2), 

and so the direction (0,1) (which is the direction determined by the 

point q of projection) is asymptotic if and only if the differential at 

(0,1) ofý , applied to the unit tangent vector in T(0 
1)S1, gives a 

vector parallel to'1(0,1). That is, if (b1 
1, c1l1) is parallel to 

(b0,2, c0,2). 

ii) Assume that the direction of projection is asymptotic, so that 

b1 1c0 2 c1,1b0 2 = 0. Then the second-order term disappears from the 

third component of the 3-jet in the statement of III. 2: 1(i). It follows 

by 1.5: 2 that the 3-jet of p9(q) at 0 is equivalent to the 3-jet in the 

statment of this proposition. The remaining assertions follow by 1.5: 12 

and 1.5: 18 (on the A 
-classification and degree of determinacy of map- 

germs (R2,0) -ý(, 0)) and by the isomorphism between the local alg- 

bras of expg at (0, q) and of dpg(q) at x (11.2: 3 and 11.2: 7). 

ii ) This follows, by I. 5: 3 and 1.5: 4, from the fact that if x is s 
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hyperbolic point then the 2-jet at x of the projection in any tangen- 

tial direction is equivalent either to (x, y2, xy) or (x, y2, O). 

iv)If b0,2 = c0,2 = b1,1 = c1,1 =0 then j2p9(q)(0) = (x, 0,0) and so 

p9(q) has aE singularity at 0. d2 

111.2: 3 Remark One may check by straightforward calculation (which we 

omit here) that the coefficient of y3 in the third component of the 3- 

jet of III. 2: 2(ii) vanishes if and only if the torsion of the curve 

V0 g(M) vanishes at 0, where V is any hyperplane meeting g(M) trans- 

versely at 0 and containing the vector 0q. Here we consider Vii g(M) 

as a 3-space curve, contained as it is in V. If (as in this case) 05 q 

is an asymptotic direction, then the vanishing of the torsion of V (lg(M) 

is independent of the choice of hyperplane V, but if 0q is not an asymp- 

totic direction then this independence is lost. However, it does make 

sense to speak of twisting and non-twisting asymptotic directions, the 

first when the torsion of Vn g(M) at x is non-zero, the second when it 

is zero. Thus, by III. 2: (ii), projections in twisting asymptotic direct- 

ions are equivalent to Sk for some k. 

One might expect, on naive grounds of codimension, that generically, 

hyperbolic points at which one or other asymptotic direction is non-twi- 

sting form a curve, and this is indeed the case, although the condition 
4 

on gE Imm(M, R ) is not just gE E1 0 

111.2: 4 Lemma Let A0 be the set of 3-jets of the form (x, y, b(x, y), c(x, y)) 
2 

in J3(2,4), such that b, c 09 
2 and also the following conditions hold: 

i) b0,2c111 - c0 2b1', = b0 
2c0,3 - CO$2b0,3 -0 
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ii) (b0,2, c0,2) ? (0,0) 

iii) (b2,0c0,2 - c2,0b0,2, b0ý2cl, 2 - C0,2bl, 2) 
1 (0 0). 

Let 

A= {(x, 
y, b(cäýx+p y, -/5 x+ay), c(V- x+ /3y, -n x+ dy) : (x, y, b, c)E A0, oc2+p 

2 
=1} 

let B0 be the set of 3-jets in J3(2,4) whose orbit under the action of 

Diff(IR2,0)>( Isom(d , 0) meets A, and let B be the sub-bundle of J3(M. lp41 

(over MX IR 
4) 

whose fibre is B0. 

Then B is a smoothly immersed submanifold of J3(M, R4), of codimension 1. 

Proof First, an explanation of conditions (i)-(iii) in the statement. 

(i) means that if j3g(0)E A0 then (0,1) is a non-twisting asymptotic 

direction, (ii) means that 0 is a hyperbolic point (and also guarantees 

that AO is smooth), and (iii) is introduced to guarantee that the map P 

SAX A0 -" J3(2,4) whose image is A, has constant rank. 

Let D be the set of 3-jets of the form (x, y, b(x, y), c(x, y)) with b, c C 7º22, 

and letp : D--; P. I22 be defined by 

(x, y, b(x, y), c(x, y)) _ (b1,1c0ý2 - c1ý1b0ý2, c0,3b0ý2 - bp, 3c0,2). 

Then A0 is the set of 3-jets in 1(0,0) 
such that (b0,2, c02) 1g (0,0), 

and since at such points %o is a submersion, A0 is a smooth submanifold 

of D of codimension 2. 

Now define a map r : SAX A0 ßD by 

h «x, y, b(x, y), c(x, y) ), (o , p)) = ix, Y, b(oC x+ e y), c( ax+ý Y, -/l 
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is of constant rank if and only if it is of constant rank at all points 

of 
f (1,0))XAO, and replacing (c 

, ýS) by (cos ß, sine), it is of constant 

(maximal) rank at (0 
, z) if 

d/ (z)( r©r(0, 
z)ý©=off r o. 

Straightforward calculation shows that 

(z)( 
Bß` 

(e 
, z) Ip 

_0) 
= 

2ib210c0,2 - c210b012 
d1p 

b0,2c1,2-c02b192 

if zE Ap, and thus condition (iii) guarantees that r is of constant 

rank. A is thus a smoothly immersed submanifold of D, of codimension 

1 (self-intersection takes place at jets which have more than one non- 

twisting asymptotic direction). 

For any jet zE A, the orbit of z under the action of DiffOOR2, O)X IsomQR4,0) 

is transverse to A in J3(2,4), and from this and the fact that A is an 

immersed submanifold, one deduces that BD is an immersed submanifold of 

J3(2,4) whose codimension is the same as that of A in D, i. e. 1. The 

conclusion of the lemma then followsl 

111.2: 5 Remark Condition (iii) of the statement of the lemma has the 

following geometrical interpretation: first, if zE A0, and if also 

b2,0c0,2 - c2,0b0,2 = 0, then 

b2,0 bi'l b012 

c2,0 ci'l c0,2 

has rank 1 (since the last column is non-zero), and so the curvature 

ellipse is a radial line segment; second, one calculates that if 
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Ve = Sp [(-sin& 
, cosO , 0,0), (0,0,1,0), (0,0,09 1)1! 9 n24, then the 

derivative with respect to e of the torsions at 0 of Ve 0 M, taken at 

0=0, is a non-zero multiple of (b0 
2c1 1,2 - c0 2b1 2). 

T 

It follows from the lemma that if gE Imm(M, IR ) and j3g 0 B, and if more- 

over j3g does not meet B'-B, where B' is defined exactly like B except 

that condition (iii) of the statement of the lemma is omitted, then the 

set of points in the hyperbolic region of M at which there is a non-twi- 

sting asymptotic direction, is an immersed submanifold of codimension I 

i. e. an immersed curve. 

By inspection of the 3-jet in the statement of III. 2: 2(ii), one sees 

that unless cp 2b2,0 -' b0,2c2, 
o = 0, there is at most one value of v 

for which the coefficient of x2y in the third component vanishes. Now 

this condition, taken together with the condition c0,2b1 1,1 - b0 
2c1 1=0 

which was assumed in order to obtain this 3-jet, is equivalent, provi- 

ding (b0,2, c0,2) / (0,0), to 

lb2,0 bI'l b0,2" 

rank 

c2,0 cl'1 c0,2 

and thus to the curvature ellipse being a radial line segment. Thus, we 

have 

111.2: 6 Proposition Let x be a point in the hyperbolic region of M 

(with respect to the immersion g: M y LR4), and suppose that the cur- 

vature ellipse at x is not a radial line segment. Suppose that L is a 
twisting asymptotic tangent line at x. Then for all points q on L, 

except perhaps forcne, the germ at x of the projection pg(q) is equi- 

valent to S1. If now L is a non-twisting asymptotic tangent line at x, 
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then for all points q on L, except perhaps for one, the germ at x of the 

projection pg(q) is equivalent to Bk for some k> 2. 

Proof By means of an isometry on IR 
4 

and an appropriate choice of coord- 

inates in M arround x, bring the germ of the immersion g at x to 

Monge form. After a rotation in the tangent plane of M at x, 

we may suppose that the asymptotic tangent line L is the line through 

0 in IR 
4, 

parallel to the vector (0,1,0,0). The result now follows from 

III. 2: 2(ii)0 

In order to control the behaviour of the projections pg(q) in tangent 

directions at points x in M where the curvature ellipse is a radial line 

segment, we make the following sequence of definitions, leading up to 

the definition of a submanifold in the jet bundle J3(M, t4) to which we 

shall insist that j3g be transverse. 

First, as in the proof of III. 2: 4, let 

D= {(x, 
y, b(x, y), c(x, y))EJ3(z, 4) : b, c E 'M 

2 
2} 

and let 

Aý zED: rank 
b210 

c2,0 

b1'1 b0'2 

c1ý1 c0 2 

Then A1 is a smooth submanifold of D of codimension 2, and if j3g(0)E A1 

then every tangent direction at 0 is asymptotic. Now let 

Ash = 
tzE A, : bil12 - 4b2, 

pbp, 2 
< 0, C191 

2 
- 4c210 c092 < oj I 

so that if j 3g(O)E A1 h 
then 0 is a hyperbolic point. Note that A1_A1h 

has non-empty interior in A,. 
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If zE Ash, then (b0,2, c0,2) . (0,0) 1 (b2,0, c2,0). 

As in the proof of Lemma III. 2: 4, let r :s1XD --) D be defined by 

[' ((a , ), (x, y, b(x, y), c(X, y)) = (x, y, b( «. x+/] y, -/]x+ ay), c( &x+ ny, -4 x+ Ly)) 

and let the coefficients of xly3 in the third and fourth components of 

((ý 
, /! 

), (x, y, b, c)) be written as bi, j(0 
), '( ©) respectively. 

Now it follows from III. 2: 2(ii) that if gE Imm(M, JR4) is (locally) 

in Monge % form and j 
3g 

E A, 
h, 

and if q= (-vsin6 
, vcose, 0,0), 

then j3pg(q)(0) is equivalent to a 3-jet 

22~ 3R2,1(bi, 
j ciij(A)x y+ RO, 3(biji0), ci3(D)y) 

where, if b0,2(ß ) 01 R2, ß is equal to 

N2-MNNM ý' ý' V2VNN 

4b0,2 (c2,1 b0,2 -b 2,1 c0,2+b1,2c1,1-c1,2bl, 1) + 3b1,1 (c0,3b0,2 b0,3c0,2) 

and R0,3 is equal to 

yMrw 

4b0,2 
2 

(CM 013b0,2 - ba, 3c0,2ý, 

and if c0,2iý ) 0, R2,1 and R0O are equal to the same functions 

except that the bi and ci1j are interchanged. If both b0 
20 and 

c0,2 / 0, the two 3-jets are of course equivalent. 

By taking the discriminants of the four homogeneous polynomials in 

(cos e, sine) thus obtained, we obtain four polynomial functions of 

the original coefficients b. 
3., j j :1j. 

c. . which we shall write as f1,..., f4. 

It is easy to check that none of these is identically zero. Now let 

A1h' ={zE Ash : f1 (z)f2(z)f3(z)f4(z) = 0, or R2,1 (z) and R0,3(z) 

have a common root 
J, 
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let Bah be the set of 3-jets in j3(2,4) whose orbit under the action 

of Diff(k290) X Isom(R , 0) meets Al , and let Bh be the sub-bundle of 

h' h' 
J3(M, R4) whose fibre is B1 . Clearly B1 is algebraic. Then we have 

III. 2: 7 Lemma B h' is an algebraic subset of J3(M, R whose codimension 

is equal to 3. 

Proof By this we mean that the intersection of Bh1 with 
1 

each fibre of J3(M, R4) over M X[R is algebraic, and thus Bh has a 

canonical stratification, induced from the canonical algebraic strat- 

ification of B, h' 
, whose open stratum has the same codimension in J 

3(M, 
R4 ) 

as that of the open stratum of B1 in J3(2,4). It is immediate from 

the definition of B�h that this codimension is 392 

111.2: 8 Proposition Let gE Imm(M, R 
4 

), let Bh be the sub-bundle of 

J3(M. R4) consisting of those 3-jets whose orbit under the action of 

Diff(M)X Isom(I4) meets Ah, and suppose that j3g (3 Bh and jag/6j gh 

Then 

i) There is a set of isolated points in the hyperbolic region of M at 

which the curvature ellipse is a radial line segment 

and 

ii) If x is one of these points, then at x there is a finite number of 

tangent lines Li, such that if qE Li then j3pg(q)(x) is equivalent to 

(x, y2, y3), there is a finite number of tangent lines Li' such that if 

qE Li' then j3pg(q)(x) is equivalent to (x, y2, x2y), and if q lies in 

Tg(x)g(M) but does not lie on any of the L. or Li' then the germ at x 

of pg(q) is equivalent to 

(x, y)- 3(x, y2, y3 ± x2 y). 



ID' 

Proof First, it is clear that Bh is a smooth submanifold of J3(M, R ), 

of codimension 2, so that the first affirmation of the proposition foll- 

ows. Now j3glh Bh' means that it does not meet it, so that the homoge- 

neous polynomials R2,1(bi, j, cIli) and R0ý3(bi, 
j, ci, j) defined by 

bringing the germ of g at x to Monge form by means of an 

appropriate choice of coordinates on M at x, and an isometry of IR 
4, 

have 

only simple roots, none of which is common to both of them. Thus, in the 

tangent directions for which R2. 
ß vanishes (which are finite in number), 

R0,3 does not vanish, and vice-versa. Projections in the tangent direc- 

tions for which neither R2,1 nor R093 vanish have 3-jets at x equivalent 

to (x, y2, y3 t x2y), and since this 3-jet is sufficient, the last sta- 

tement follows K 

By the Thom Transversality Theorem, the conclusion of this proposition 

applies to a residual set of 9E Irnm(M, I4). 

We now turn our attention to the behaviour of the projections pg(q) at 

parabolic points- of M. There are two cases to consider: first, when the 

curvature ellipse is not a radial line segment, so that there is only 

one asymptotic direction, and second where the ellipse is a radial line 

segment, in which case every tangent direction is asymptotic. Before con- 

sidering these two cases, however, we prove 

111.2: 9 Proposition There is a residual set E2 of 9E Imm(M, IR 
4) 

for which 

the parabolic set is a smoothly immersed curve with transverse self-inter- 

section at points where the curvature ellipse is a radial line segment. 

Proof Choose a moving frame'ej, e2, e3, e4 defined on aft open set U in 
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M such that for all x in U, e1 (x) and e2 (x) are a basis for Tg(x)g(M) 

and e3(x) and e4(x) are a basis for NxM. Then the point xEU is parabo- 

lic if there exists a unit vector uETM such that 
x 

e3(x)"d2g(x)(u, u) = e4(x)"d2g(x)(u, u) =0 

Trivialise TM over U as IR 
2 

) 12. Then the parabolic set is the projection 

into the first factor of the set P defined by 

J(x, 
u)E IR2 X Sl : e3(x)"d2g(x)(u, u) e4(x)"d2g(x)(u, u) = 01 . 

We want to show that generically this projection is non-singular, but 

first we must show that P itself is, generically, a smooth submanifold 

of P2X S1. In order to do this we look at the differential of the map p 

used to define P. We find that d p(x, u) has matrix 

de3(x)"d2g(x)(u, u) + e3(x)"d3g(x)(u, u) 2e3(x)"d2g(x)(u) 

de4(x)"d2g(x)(u, u) + 94(x)"d3g(x)(u, u) 2e4(x)"d2g(x)(u) 

Now suppose that g is in Monge form , that x=0, that u= (0,1) and 

that (x, u)E P. Then b0 
0,2 = c0,2 = 0, and this matrix becomes 

2b1,2 6b0,3 
. 
2b1, ß 0 

(1) 

2c1,2 6c0,3 2c1,1 0" 

Now the codimension in D of the algebraic set Q0 defined by 

{(x, 
y1b(xy)1c(x1)) : b0,2 = c012 = 0, and matrix (1) has rank < 2) 

is 4, and so the image Q of the map r: S1X Q -3 D defined as in III. 2: 4 

is of codimension 3 in D. Now proceeding as in III. 2: 4 to define a sub- 
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bundle Q, of J3(M, p4) by taking as its fibre the set of 3-jets in J3(2,4) 

whose orbit under the action of Diff(R2,0) X Isom (f4,0) meets Q, we see 

that the codim of Q. in J3(M,, R4) is also 3. It follows- sinne, 0 ; r, AiR- 

ebraic, that for a residual set of gE Imm(M, t4), j 3g 
does not meet Qj. 

But that is to say that generically the map f defined on the previous 

page is a submersion at all points of P, so that generically P is a 

smooth curve. 

Now in order to show that generically the projection ,: Ps IR 2 
is non- 

singular, we look once again at the matrix (1). It is clear that TIP 

has non-trivial kernel if and only if matrix (1), applied to the vec- 

tor ((0,0), (1,0)), is equal to 0 ((1,0) is of course the unit tangent 

vector to S1 at u), and this happens if and only if b1', = cl 
'i 

= 0. 

However, since we are assuming that b0,2 = C0 0,2 = 0, this means that 

expg has rank 2 at all points (O, q) in TM, ' where q= (O, q2), q26 tR-10% 
, 

Now by if EE then e has no Z2 Y+g1 XPg singularities on TM-M, 

and so we conclude that if gE E1 and also P is a smooth curve, then 

the parabolic set in M is a smoothly immersed curve. 

Now, nothing in the previous analysis excludes the possibility that 

7 :P -) M should have multiple points i. e. self. -intersections of the 

parabolic curve on M. In fact, if the curvature ellipse is not a line 

segment at x then there is only one value of uC S' such thatp (x, u) = 0, 

and so x is a simple point of the parabolic curve, but if the curvat- 

ure ellipse is a line segment (and we assume that it does not degener- 

ate to a point) there are two distinct values of u, unless also the ell- 

ipse is a line segment whose centre is at 0. This last case can be exc- 

luded for a residual set of g on the grounds of codimension - in the 

case we are considering, with b0,2 = c0 2=0, it is equivalent to ha- s 
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ving also b2,0 = c2,0 = 0. 

Assuming, then, that b0,2 = C0,2 = 0, and that the ellipse is a line 

segment whose centre is not at 0, we find that as well as (0, (0,1)) -ýwe 

have 

lý( lll' 
b 

2,0If 

Now, it is easy to check that the condition that the tangent vectors 

to the two branches of 71(P) at 0 should be parallel, defines an alg- 

ebraic set in D whose codimension is 3, and then by the usual proceed- 

ure one concludes that for a residual set of gE Imm(M, IR 
4), 

all self- 

intersections of the parabolic curve are transverse. This completes 

the proof O 

111.2: 10 Remark For future reference, we note that if, in the notation 

of the preceding proof, 

e3(0). d2g(0)((0,1), (0,1)) = e4(0)"d2g(0)((0,1), (0,1)) =0 

and g is in Monge form , then the tangent line to the corresponding 

branch of the parabolic curve at O, is generated by the vector 

ý (3(b c-cb), (b c-cb )) 
(b 

'2 
c 0'3 - c''2bo'3) 

O, 3 ý, ý 0,3 1, ý 1, i 1,2 1,1 
X 

1,1 

if the determinant in the denominator is not 0, and by the vector 

(-3co, 3, c1,2) (or (-3b0,3, b, 2) if this is 0) 

if the determinant is 0. The vanishing of this determinant corresponds 
1 

to the vanishing of the component in TUS of the unit tangent vector 
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to P at (O, u). 

111.2: 11 Remark We would like to stress at this point that although gen- 

erically the parabolic curve is 1-dimensional and the set of points at 

which the curvature ellipse is a radial line segment is 0-dimensional, 

it is not the case that generically these two do not meet. As noted on 

page 158 that the ellipse should pass through the origin is a codimension 

0 condition on the set of 2-jets of germs of immersions for which the 

ellipse is a radial line segment, and since this (algebraic) set has a 

smooth stratum of codimension 2-, it is possible to construct immersions 

g for which j2g is transverse to the part of this stratum corresponding 

to the ellipse passing through the origin. 

That the parabolic curve can present transverse self-intersection raises 

interesting problems about the configuration of the asymptotic curves 

in the neighbourhood of such points, the asymptotic curves being the in- 

tegral curves of the multi-valued line field defined on the union of 

the elliptic and parabolic regions by the asymptotic directions. Lak 

Dara, in a paper on the local form of solutions to multiform diff- 

erential equations in the plane, ([131), conjectures local normal forms 

which would be applicable in this context except at points at which the 

curvature ellipse is a radial line segment, and Banchoff, Gaffney and 

McCrory have made use of these conjectures in F5 1 
to draw pictures 

of the (generically) possible configurations of asymptotic curves and 

parabolic locus for surfaces immersed in IR3. Lak Dara does prove one re- 

suit ([131, page 122 ) which may be used to show that at simple points 

of the parabolic locus on a surface immersed in IR4 where also the asy- 

mptotic direction is not tangent to the parabolic curve, the configur- 
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ation of the asymptotic curves is diffeomorphic to the one drawn below, 

in which each curve has a first-order cusp where it meets the parabolic 

locus. 

hypez 

regic 
parabolic locus 

c region 

However, proofs of his other conjectures (which relate in our case to 

the configuration of asymptotic curves at points on the parabolic locus 

where the (unique) asymptotic direction is tangent to the parabolic loc- 

us) have not been forthcoming. 

Before leaving this area, we will make a conjecture of our own, about 

the generic configuration of asymptotic curves in the neighbourhood of 

a point on M where the parabolic curve meets itself transversely. First, 

a lemma: 

111.2: 12 Lemma There is a res-dual set E3 of gE Imm(M, IR4), contained in 

E2, such that at each point xEM. at which the parabolic locus crosses 

itself, neither of the two root-directions of e3(x)"d2g(x) = e4(x)"d2g(x) =0 

is tangent to either branch of the parabolic locus. 

Proof Assume, as in the proof of 111.2: 9, that g is in Monge form, 

that x=0, and that the curvature ellipse is a line segment passing 

through 0. Then after a rotation of the normal plane N0M we may assume 

that c2,0 = Cl1i = C012 = 0, and after a rotation of the tangent plane 

we may assume that b0,2 0. Then if gE E2, both bill and b210 are diff- 
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erent from 0. One calculates that the two root directions of the sec- 

ond fundamental form are (0,1) and (-b1 
1, b210 ), and that the tangent 

directions to the two corresponding branches of the parabolic locus 

are determined, respectively, by the vectors (-3c 
00, c 1,2 

) and 

(2b1 
12c2,1-4b1 1b2 0c1 2+6b2 02c0 3, -(2b2,02c1 2-4b1 1b2 0c2 1+6b112c0 

)). 

It is easy to see from this that the condition that either of the two 

root-directions should be tangent to either of the branches of the para- 

bolic locus, raises by I the codimension of the set of 3-jets in quest- 

ion, and since this set is already of codimension 2, an application of 

the Thom Transversality Theorem concludes the proof i; 

111.2: 13 Conjecture Generically, the configuration of asymptotic curves 

in the neighbourhood of a point xCM where the parabolic locus crosses 

itself transversely, is equivalent, under a honeomorphism of (M, x) which 

is C°0 except at x, to the configuration drawn below. 

The parabolic locus is represented by the thick lines the asymptotic 

curves by the thin lines. 
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Returning now to the study of germs of projection, we have 

III. 2: 14 Proposition Let gE E2. If x is a parabolic point of M at which 

the curvature ellipse is not a radial line segment, then 

i) If the (unique) asymptotic direction is not tangent to the parabolic 

curve at x, then for all points qp g(x) on the asymptotic line at x, 

the germ of pg(q) at x is equivalent (if finitely determined) to 

(x, y) (x, xy + yak-1, y3) (H ) 

for some k>2. 

ii) If the asymptotic direction is tangent to the parabolic curve, and 

if, moreover, gE E1, then for all points q/ g(x) on the asymptotic line 

at x, j4pg(q)(0) is equivalent to 

(x, xy + y3, xy2 + cy4) 

for some value of c which does not vary with q, 

Proof Assume that g is in Monge form and that x=0. Assume also, after 

a rotation in T0M, that the unique asymptotic direction is spanned by 

(0,1), so that b0,2 = C0,2 = 0. Then at least one of b1 
1, c1 1 is diff- 

erent form 0, since the curvature ellipse is not a radial line segment, 

and hence after a rotation in the normal plane we may assume that b11 

is different from 0. Then by y+ J3Pg(q)(0) is equivalent to 

(x, bl, lxy+bl2xy 
2 

+b0,3y3 ' 
(c1,2b1+1-b1,2c1,, )xy 2 

+(c0+3b1+1-b0.3c1 
1)y3) 

Now if the coefficient of Y3 in the third component is non-zero, j3p9(q)(0) 

is equivalent to (x, xy, y3) (see the proof of 1.6: 1) and so it follows by 
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I. 6.1: 2 that the germ at 0 of pg(q) is equivalent to "k for some k>2. 

However, from 111.2: 10 we see that this coefficient vanishes precisely 

when the asymptotic direction is tangent to the parabolic curve at x. 

This completes the proof of (i). 

Now assume that the asymptotic direction is tangent to the parabolic 

curve at x, and that g 6E V Then by 1.6: 1, j3p9 (q)(0) is equivalent to 

one of (x, xy+y3, xy2), (x, xy, xy2), (x, xy+y3,0), and (x, xy, 0). 

We now show that only the first of these is possible. The last can be el- 

iminated immediately, since the codimension of its 5k 3 
orbit, to which 

j3pg is transverse, is 7. The codimension of the 9ý3 orbits of each of 
x 

the two remaining 3-jets is 6, and thus since j3pg is transverse to these 

orbits, their preimage in Mx 14, if not empty, consists of a collection 

of isolated points. However, as can be seen from the expression for j3pg (q)(0), 

its 
3 

class does not vary as q moves along the asymptotic tangent line, 

and thus for no point q can j3pg(q)(0) be equivalent to either (x, xy, xy2) 

or (x, xy+y3,0). 

It now follows, by 1.6.2: 1, that j4 pg(q)(0) is equivalent to 

(x, xy + y3, xy2 + cy4) 

for some cE R. To show that the value of c does not vary as q moves along 

the asymptotic tangent line, we carry out a straightforward calculation, 

which is slightly facilitated by assuming, after a rotation in ! 
OM, that 

cl'i = 0. Our assumption that the asymptotic tangent direction is tangent 

to the parabolic curve at 0 now becomes simply c00 0, and by what we 

have shown about j3p9 (q)(0), we must have b05 /0' c1 2. 
As usual 

14p9 (q)(0) is equivalent to 
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(x, b xly3(1- Z)Z 
c xlyi(1- z)i-1) 

2.4i+j <4 - i'i v ý, i+j 4 l, j 

and since b1,1 (0 it is clear that we can remove all x4, x3y and x2y2 

terms from the third and fourth components of the 4-jet by means of left 

coordinate changes. Similarly'we may remove all x2, x3 and x4 terms from 

the second and third components by obvious left coordinate changes. These 

we shall carry out tacitly at each stage in the ensuing calculation. Thus, 

jp9(q)(0) is equivalent to 
4 

(x, 'b111 xy + (b2 
2,1 -v -)x2y + b1,2 xy2 + b1,3xy3 + (b0,4 +b0,3 )y41 

(c2,, - 
c-v 0)x2y 

+ c1,2xy2 + c1,3x3 + c0 4y4). 

Now put Y-Y- (b2,1 - 
b2,0)XY, 

Z- (c2,1 - 
c2,0)XY to obtain 

ill1illl1illl vb1 1 

(x, b1,1xy + b1,2xy2 + b0,3y3 + (b1,3 b 
_(b291 

- 

b- 
v °-))xy3 

+ (b0 
4+ 

b- 
°- )y41,1 

c1,2xy2 + (cß, 
3 - 

b03(c2,1 cv 0))x3'3 
+ c0 Y4 

1,1 , 

and put y=y+1 (c1ý3 - 

b2,3(c 
c2,1 - 

C2,0 
))y2 to obtain c 1,2 1,1 v 

2N3M4 (x, b xy+b xy +b xy +b y, c+4 1,1 1,2 1,3 0,4 1,2ý c0,4y )' 

N 

where the bi,, are functions of the original coefficients b, ci, j and 

of v. The coordinate change 

Y=Y-b1,? Z 
c112 
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transforms this to. __ 

3 ^b 3 (x, bl, 1xy + b0,3y + l, 3xy + b0,4y , c1,2xy2 + c0,4y4) 

ý. n 
where once again bß, 3 and b0 0,4 are functions of the original coefficients 

and of v, and now the coordinate change 

b, 3 
Y+b y 

1,1 

transforms it to 

(x, bý, ýx' + b0,3y3 + b0,4y ,c1,2ý2 + co, 4y4). 

Now by the calculations in the proof of 1.6.2: 1, this is equivalent to 

(x, b1,1xy + b0,3y4' c1,2x2 + cO, ky4), 

and finally the coordinate changes 

b ,ý 
b'1 

X, Y=11 Y and Z 
bý'ý 

Z bp, 3 
bp, 3 bp, 3 c1 b 

,20,3 

transform this to 

c 0bi'1 4 
ix, XY + y3, xy2 + c'4 by). 

1,2 0,3 

Evidently, the coefficient of y4 in the last component of this 4-jet does 

not vary with vii 

111.2: 15 Remark We do not attempt here to find any relation between the 

value of this coefficient and the "traditional" differential geometric 

invariants of the immersion g at 0. 

111.2: 16 Proposition There is a residual set of g r- Imrn(rS, R4), contained 
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in ESA E2, for which the set of points on the parabolic locus at which 

the curvature ellipse is not a radial line segment and the asymptotic 

direction is tangent to the parabolic curve, is of dimension 0, and such 

that at each of these points the germs of projection in the asymptotic 

direction are equivalent to 

(x, y) - (x, xy + y3, xy2 + cy4), 
(P3) 

the values of c (one for each such point on the parabolic locus) all being 

. different from 0, ', 1, and 3 

Proof That generically the set of points on the parabolic curve at which 

the ellipse is not a radial line segment and the asymptotic direction is 

tangent to the parabolic curve, is of dimension 0, is intuitively obvious 

from the calculations made in 111.2: 10, and may be proved by methods sim- 

ilar to those employed in III. 2: 4. We omit the proof here, as it is clear 

how it proceeds. 

For an immersion g having this property, there will only be a countable 

number of these points, and thus a countable number of values of the coe- 

fficient c in the normal form for the 4-jet of the projections in asymp- 

totic directions. Thus, for a residual set of immersions g, none of these 

values will be equal to 0,1,1, , and hence for such immersions the 

4-jets of projections in asymptotic directions arena sufficient, by I. 6.2: 5a 

The last case that we shall consider is that of the projections at points 

on the parabolic curve at which the ellipse is a radial line segment. 

111.2: 1 Proposition If the immersion g belongs to E1( E3, then at all 

points x on the parabolic locus at which the curvature ellipse is a rad- 
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ial line segment, the germs at x of projections in the root directions 

of the second fundamental form are equivalent to 

(x, y)f---)(x, xy + yak-1, y3) 

for values of k between 2 and 4. Projections in other tangent directions 

are, of course, equivalent to germs of the form 

(X, y)-. (X, y2, yp(x, y2)). 

Proof By the definition of E3 (see 111.2: 12), if gE E3 then at each point 

x at which the curvature ellipse is a line segment containing the origin, 

neither of the two root directions of the second fundamental form is tan- 

gent to either of the two branches of the parabolic curve. The first aff- 

irmation now follows by the arguments used in the proof of III. 2: 14 b 

III. 3. Conclusions 

We are now able to give at least partial answers to the questions we 

asked at the beginning of this chapter. First, 

III. 3: 1 Theorem There is a residual set E4 of immersions for which all 

singular germs of projection lie in the A 
-classes of the germs shown 

in the table on page 144. 

Proof Take as E4 the intersection with E3 of the set defined in III. 2: 15. 

on the grounds of codimension alone, it is clear that if gE E4 then those 

strata of which will be met by ,? y jXpg all correspond to strata of0 

which figure in the first part of the list given on page 2 (Theorem 1: 2). 

By III. 1: 4, if gE E1 (which contains E4), then j4pg does not meet the 

last two of these; and the proof is completed by noting that, by III. 2: 14, 
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111.2: 16 and 111.2: 17, if gE E4 then jXpg does not meet any of the rem- 

aining strata which figure on page 2 but not on page 144 X 

We shall not attempt here to prove any theorem concerning the existence 

of immersions g: M- IR4 for which jkpg meets any or all of the strata 

shown on page 144; however, it seems in particular that classical methods 

(such as Ct, ese C plojCJ I-, [3. `r, ß ) may be useful in counting 

the number of points on the parabolic locus at which the asymptotic dir- 

ection is tangent to the parabolic curve. 

For the second question, we have provided a number of partial (and highly 

incomplete) answers in III. 1 and 111.2, of which perhaps the most satis- 

factory is the relation between the singularities of the exponential map 

expg: TM--4 P4 and the singular algebra of the germs of projection, disc- 

ussed in III-1. We shall not state any further results here. However, it 

seems worthwhile to ask two further questions at this point. 

First, since the key to understanding the index k in the case of germs 

of projection equivalent to Sk or Ck, is in fact the index r in the 
1 

r Boardman symbol 5T of expg, one may ask what, in the geometry of the 

immersion g, is the key to understanding the index k in the case of germs 

of projection which belong to the other infinite families Bk or Hk? 

Second, after noting that for a generic immersion g, the germs of pro- 

jection in almost all tangent directions at all points on M are equival- 

ent to germs of the form 

(x, y)r-->(x, y2, yp(x, y2)i, 
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and moreover that the 
A 

classification of such garms is equivalent to 

the -T classification of the function germs p(x, y2) and to the class- 

ification of the function germs p(x, y) (see 1.5), one may ask if any 

other relation may be found between these functions and the geometry of 

the immersion g. 

As regards the third of the questions asked at the beginning of the chap- 

ter, we shall not say more here, except to point out two things: first, 

as was mentioned in III. 1: 8, even for a sufficient stratum XC g-", it is 

not the case that generically 7r1: X(g) --ý"M is of constant rank. This is 

shown for example by taking as X the, 4 
-orbit of S2. As can be seen from 

111.2: 6, if Mh is the hyperbolic region of M then at most points in Mh, 

71 : X(g) 3, M is a double cover, but at those isolated points xE Mh where 

the curvature ellipse is a radial line segment, N1-1 (x)f X(g) may con- 

tain one or more lines (111.2: 8). 

Second, it seems that much may be learned from the adjacency relations for 

the strata of , 
l; "'O (see I. 11). To take just one example, we have 

III. 3: 2 Proposition If gE E4, then the closure inH of the set of points in Mh 

at which there is a non-twisting asymptotic direction, can only meet the 

parabolic curve at points at which either the unique asymptotic asympt- 

otic direction is tangent to the parabolic curve, or at points where the 

curvature ellipse is a radial line segment. 

Proof If x is a parabolic point at which the ellipse is not a radial line 

segment, and at which the unique asymptotic direction is not tan6ent to 

the parabolic curve, then the germs at x of projections in tangent dir- 
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ections are equivalent either to the cross-cap S0 or to iik for some k. 2. 

Since for gE E4 the germs of projections in non-twisting asymptotic dir- 

ections at hyperbolic points are either equivalent to B2 or unfold to B2, 

and since B2 does not specialise to Hk or to S0, it follows that x cannot 

lie in the closure of the set of points in Mh at which there is a non- 

twisting asymptotic direction. 

On the other hand, if x is a parabolic point at which the ellipse is not 

a radial line segment, but at which the unique asymptotic direction is 

tangent to the parabolic curve, then since gE E4, the germs of projections 

in the asymptotic direction are equivalent to P3. Now P3 unfolds to B2, 

and moreover at no point on the parabolic curve near x is any germ of 

projection equivalent to B2, and so we are forced to conclude that there 

must be hyperbolic points arbitrarily near x at which there is a germ of 

projection equivalent to B2, and hence a non-twisting asymptotic direction. 

As regards points on the parabolic curve at which the curvature ellipse 

is a radial line segment, not enough has been said to determine whether 

or not any germ of projection at these points is either equivalent to 

B2 or unfolds to B2, and so we leave open the question of whether such 

points can lie in the closure of the set of points in Mh at which there 

is a non-twisting asymptotic direction K 
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MAP-GERMS WITH A CUSPIDAL EDGE 

N. 1 Introduction Map germs (IR 2 
0) -O(R, 0) "with a cuspidal edge" 

occur naturally in differential geometry, the simplest example being 

the tangent developable (the exponential map of the tangent bundle) 

of a smooth curve in 3-space. Such map-germs are not finitely A 
-det- 

ermined because ( [30] Theorem 2.1 and Proposition 1.7) of their non- 

isolated singularity, and so a knowledge of the local differential 

topology of the tangent developable of a space-curve is not immediat- 

ely obtainable by the standard methods of singularity theory. Several 

authors have, however, studied the problem from the point of view of 

singularity theory, making use of a variety of techniques to avoid 

this difficulty: see [6] 
, 

[91 
, 

(24]. Here we show that a large class 

of map-germs (R 2 
, 0) --O(R3 , 0) with a cuspidal edge may be easily class- 

ified using some of the results of Chapter Is and we also lay some of 

the groundwork for a sytematic study, from the point of view of aing- 

ularity theory, of these map-germs. 

N. 2 

IV. 2: 1 Definition a) Let f: ((R 2,0) 
-+(R3,0) be a smooth map-germ; it 

is a map-germ with a cuspidal edge if there is a curve (i. e. a homeo- 

morph of the open interval ]0,1[ G JR), containing 0E n2 
, at each point 

of which df has rank 1. We shall denote by CE the space of all such 
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map-germs, and for any f6 CE, we shall denote by .Sf the set of points 

at which df has rank 1. 

b) If f6 CE, we shall say that f is k-determined in CE if every other 

member of CE, whose k-jet is that of f, is A 
-equivalent to f. 

IV. 2: 2 Proposition The germ f: (x, y)- + (x, y2, y3) is 3-determined in CE. 

Proof If i 3g(O) 
= (x, y2, y3) then by I. 5: 2 and I. 5: 3, g is A 

-equival- 

ent to a germ of the form 

(X, y2, YP(x, y2)). 

Now 

1 

dg(x, y)= 0 

YPx(x, y2) 

0 

2y 

p(x, y2) + 2y2py(x, y2) 

and since this is non-singular when y p( 0, the curve of singular points 

of g must lie in the x-axis. Hence p(x, O) =0 for all xt (n, 0), and so 

we 
2) 

can write p(x, y =y 
p(x, 

y2), and 

g(X, y) = (x, y2, y 3. P(X, y2)). 

N2 Since jag is equivalent to (x, y , y3), we must have 5(0,0) 1 0, so 

(X, Y, Z) ->(x, Y, 
-Z) p(X, Y) 

defines a diffeomorphism i 
of (fR3,0) such that Tv g(_t, y) = (X, y2, y3)IC 

IV. 2: 3 Remark It is easy to check that if 0=X (0) is a point 

of non-zero torsion and curvature of the smooth space curve *0 , then 



179 

the exponential map exp . : TR -+R3, given (with respect to trivial 

coordinates on TO by exp. (t u) = af(t) + u1S'(t), has 3-jet at 

(0,0) equivalent to (x 23 
,y ,y). Since dexpY has rank 1 at all points 

(t, 0), the germ of exp. at (0,0) belongs to CE, and it follows by 

IV. 2: 2 that it is equivalent to (x, y)--i. (x, y2, y3). 

IV. 2: 4 Lemma Let f6 CE and suppose that j2f(0,0) is equivalent to 

(x, y2,0). Then f is equivalent to a germ of the form 

(x, y)--. (x, y2, y3p(x, y2)). 

Proof As in IV. 2: 2 Q 

IV. 2: 5 Theorem Let fi(x, y) = (x, y2, y3pi(x, y2)), 

gl(X, y) = (X, y2, ypi(X, y2)) 

for i=1,2. Then f1 is A 
-equivalent to f2 if and only if g1 is 

A 
-equivalent to g2. 

Proof Let g1 = i- g2" . We may suppose, by I. 5: 10, that T is of t 

the form 

(X, Y, Z)--- . (r(X, Y), Ys(X, Y), Zt(X, Y)) 

with s(0,0) p0p t(0,0). and rX(0,0) / 0. 

Defining , 
(L: p3-__. ý, p3 by J(X, Y, Z) = (X, Y, YZ), we see that fi -A0 gi, 

and in order to conclude that f1 is 54 -equivalent to f2 we need only 

complete the diagram 

(I2,0) 91 (a, o) ( , o> 

ýI 
- 

li '. 1 

g (1R2, o)=-2 --> (R3,0) -ý---->ct , o) 
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NN 

with another diffeomorphism'ý' . In fact, we can define 'j directly, by 

(X, Y, Z) = (r(X, Y), Ys(X, Y), Zt(X, Y)s(X, Y)), 

N 

and it is easily checked that i is a diffeomorphism and does indeed 

complete the diagram. 

Now suppose that f1 =I"f2' T. Again, we may take j to be of the form 

j (X, Y, Z) _ (r(X, Y), Ys(X, Y), Zt(x, Y)), 

with s(0,0) /0/ t(0,0) and rx(0,0) / 0, and if we now define j' by 

(X, Y, Z) = (r(X, Y), Ys(X, Y), Z t(X, Y) 

s(X, Y) 

N 
_N 

then '1 is a diffeomorphism and 10 g2o C3) = g1 

IV. 2: 6 Corollary Let pi: (H2,0)-ß(R, 0), i=1,2, and define 

qi: (H20)a(IR, 0) by gi(x, Y) = Ypi(x, y). Then p1 and p2 are 7Ca 
-equi- 

valent if and only if q1 and q2 are. 

Proof Immediate from I. 5: 16 and IV. 2: 5, although it can also be proved 

directly (and easily) by a method similar to that of IV. 2: 5a 

IV. 2: 7 Corollary The germs fI and f2 of N. 2: 5 are A 
-equivalent if 

and only if pl and p2 are Xa -equivalent. 

Proof Immediate from IV. 2: 5 and I. 5: 16. 

IV. 2: 8 Corollary Let f(x, y) _ (x, y2, y3p(x, y2)) 

g(X, Y) = (x, Y2,3'P(X, y2) ). 

Then the following are equivalent: 
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i) f is k+2-determined in CE. 

ii) g is k-determined for )k. 

. iii) p(x, y) is k-1-determined for 7U. 2T 

Proof (ii)'(iii) by 1.5: 12, and (i)(iii) follows easily from I. 5: 15 and 

IV. 2: 7 by the same argument as that used in the proof of I. 5: 12   

N. 3 

From the results of the preceeding section we see that a classification 

of those map-germs in CE whose 2-jet at 0 is equivalent to (x, y2,0) may 

be obtained from the classification that we give in I. 5: 18 and 1.5: 19. 

Before proceeding to exploit these results, we shall prove some more 

general results about CE. 

As a first step, we calculate some tangent spaces. 

IV. 3: 1 Definition i) T(CE)f ={ 
ddtitIt=0 

: ft E CE for tE (F, 0), f0 = f} 

L)E 60 ii) is the sub-sheaf of (R2 R3) whose stalk 

over xE R2 is CE 
x, 

=tf: (p 2 
X) ,ý p3 : Sf contains a homeomorph of 0,1ý, containing xj . 

iii) Te(CE)f -{ 

dit 

dt It-0 : ftE tr, for all tE (IR, 0) J 

iv) DX ={g: (R2x) (R20) :g 
1(0) 

contains a 

homeomorph of ]0,1f}. 

v) is the sub-sheaf of 
L 60(C2OR2) 

whose stalk over 

xE JR2 is D. 
x 
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dgt 
vi) For g6 D0, T(D)g = dt jt=0 : gtE D0, g0 =g 

dg 
vii) For g6 D0, Te(D)g ={dttlt=O ' gt Eý, g0 =g 

viii) Let b: (R2,0)-i (R2,0) be given by b(x, y) = (x, 0). 

We introduce DD and @ because of the obvious 

IV. 3: 2 Proposition CE =d -1(D0) 

jk+l(CE) =d -1(jk(Do)) 

where ik+l (CE) jk+1 f (0) :fE CE}, jk(DO) =f jkg(0) :gE DO} , 1 

and d and dk are as defined in 11.2: 1 and II. 3: 4. 

IV. 3: 3 Remark Recall that 

i) If f is A 
-equivalent to g, then df is X-equivalent to dg. 

ti ii) . 
is a submersion. 

(proofs in 1.9: 2 and II. 3: 4). 

In view of IV. 3: 2, we can learn a lot about CE by studying D0. Perhaps 

the first thing to note is that D0 is not everywhere smooth. In general 

D0 has a singularity at gED0 "similar" to that of g1 (0) at 0; this is 

related to the fact that g1 (0) =g 
1(1)), 

where g is g considered as a 
100 22 

section of 
ý (IR iR ). We shall not make these rather vague statements 

precise, except with 

IV-3: 4 Lemma i) 7-b is open in D0, in the sense that any smooth 1-para- 

meter deformation in DD of a germ X 
-equivalent to b, is also (-equi- 

valent to b for small values of the parameter. 
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ii) Let gE DO, and suppose that g1 (0) contains two non-singular curves, 

meeting transversely at 0. Then T(DO)g is not a vector space. 

Proof i) This follows easily from the fact that for any gE D0, g6 kb 

if and only if j1 g(0) / 0. The'bnly if" of this equivalence is obvious; 

to see "if", note that if j1 g(0) /0 then after a change of coordinates 

in the source, g has the form 

(X, Y)! :> (x, g2(x, y) ). 

Then gE D0 if and only if x divides g2, in which case g is X -equivalent 

to b. 

ii) We may take the two non-singular curves referred to in the hypothe- 

sis as coordinate axes in a new system of coordinates on R2, and thus 

may suppose that 

g(x, y) = (xyh1 (x, y), xyh2(x, Y)). 

Then 

91t(x, y) = (tx + xyh1 (x, y), xyh2(x, y)) 

and 

9tit(X, y) = (xyh1(x, y), xyh2(X, y) + ty) 

are smooth 1-parameter deformations of g in Do, so that 

dg't x dgl lt 

dt I t=0 0 
and dt t=0 

Y 

belong to T(DD)g. However, we claim that 
Xf 

T(D0 )g. For if it were a 
y 

member, then there would exist a 1-parameter deformation g"It of g, nec- 
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essarily of the form 

9,111t(x, y) = (tx + h1 (x, y)xy +t2k1 (x, y, t), ty + h2(x, y)xy + t2k2(x, y, t)), 

with gill t6 
D0 for all t 6(R, 0). This, however, is impossible, since 

for sufficiently small t; 0, g"'t is the germ of a diffeomorphism 0 

The corresponding results in Jk(2,2), where we have a well defined diff- 

erentiable structure to speak of, are contained in 

IV. 3: 5 Corollary Let gC D0. Then 

i) If g is X 
-equivalent to b, then jk(DO) is a smooth manifold in a 

neighbourhood of jkg(0). 

ii) If g1 (0) contains two non-singular curves meeting transversely at 0, 

then jk(D0) is not a smooth manifold in any neighbourhood of jk g(0). 

Proof i) This follows directly from (i) of IV. 3: 4 and from the fact 

that YL k 
orbits in jet spaces are smoothly embedded manifolds. ([21] 

page 303). 

ii) As in the proof of IV. 3: 4(ii), the tangent space to jk(D0) at jkg(0) 

o 
contains, mod '). 77 k+1 

and but not 
x 

0y 

ly 

Translating these results back to CE, we have 

IV. 3: 6 Lemma Let fE CE. 

D if j2f(0) is equivalent to (x, y2,0) or (x, xy, 0) then jk+1(CE) is 

smooth in a neighbourhood of jk+1f(0), and 

TZýk+1(CE) = (d )'-1(T X df) 
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where z= jk+1f(0) and (dk)* is the differential of dk. 

ii) If j2f(0) is not equivalent to (x, y2,0) or to (x, xy, 0) then it is 

equivalent to (x, 0,0) and in general j k+1 (CE) is not smooth in any 

neighbourhood of j k+lf(0). 

Proof If f E'CE, then j2f(0) is equivalent to (x, y2,0), to (x, xy, O) or 

to (x, 0,0), since by I. 4: 3 it cannot be equivalent to (x, y2, xy). Only 

in the first two cases is df 
equivalent to b. In either of these two 

. kM 
cases Cdf =<b and is open in DD, and correspondingly 

k 
df(0) is 

open in jk(D0), so that 

TZj 
k+l (CE) = (d 

k)*-1(TZl(Do)) = (d )*-1(T 7Kkdf) 

where z' = jkdf(0) = dk(jk+1f(0))jj 

Our next result is a natural extrapolation of IV-3: 6(i). 

IV. 3: 7 Definition Let r_ {f E CE : j2f(0) is equivalent to (x, y2,0) 

or (x, xy, 0)}. 

N. 3: 8 Theorem Let fE CE and suppose that f(x, y) = (x, p(x, y), q(x, y)). 

Then 

i) T(CE) 
f= d*-1 (T7Cdf) 

ii) Te(CE)f = d*-'(T 
eä 

df). 

Note d, is the partial differential operator Q(f)--ý e (Gf) defined by 

df 
t d(dit) 

dt I 
t=0 ý> 

dt ` t-0 
" 

For f as in the statement of the theorem, and d defined by using 

,ý 



iota 

p: L(2,3)---*R2 

a1,1 

given by a211 

a3 3,1 

one calculates that d* has matrix 

a1,2 
a1 

,1 a2,2 H 
a2,1 

a3 2 

[DP. L -xDaao ay ax ry ay 

.ýao yý 
a3y 

y 

aß, 2 a, 
', 

a, 
ý2 

a292 1a3,1 a3,2 

Proof of IV-3: 8 (i) Let MGt2,3 consist of those map-germs of the 

form 

(x, y)H (x, r(x, y), s(x, y)). 

Then t 
2,3 - 2: 2 

= A-M, and CE =A "(M n CE). 

Claim: T(CE)ffi TfM = d*-1(T7cdf) n TfM. (i-) 

Proof of claim The inclusion from left to right is obvious from the 

definitions. To prove that the opposite inclusion holds, let 

a 

tTX 
df and choose a 1-parameter family (at, bt) of germs (122,0)-*OR2,0) r, 

n 

Ia such that 
dt(at'bt))t=0 

=b3 (at+bt) E)(df1 and (a0, b0) = df. 

Then for arbitrary r, SE Nis the snap-germ defined by 

ft(x, y) = (x, 
fatdy 

+ tr(x), 
Jbtdy 

+ ts(x)) 

belongs to CE for each value of t, satisfies fo = f, and we have 

ä df t 
d dt I t=o) =t 

'ý. 
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where d* is defined as in the note before this proof. 

This shows that d«(T(CE)fn TM)2? T7rdf, and moreover, since 
0 

ker d. nTfM = r(x) : r, s Eiý1ý 
, we have in fact proved the claim. 

s(x) 

1 
Now let f be any element of 

d, (T7[af). Take any 1-parameter deforma- 

tion ft of f such that dttg t_0 = f, (for example ft =f+ tf) and 

'project it" into CE as follows: first, choose a smooth 1-parameter 

family of A 
-equivalences (q 

t, 
T 

t) such that nr0 =1 
p3 

' JO - 1JR 
2' 

and -f to 
ft -It= ht EM for all t. Now we claim that 

dht 1 
dt I t=o 

E d"*- (T7C df) nT 
fM. 

dht df 
t This holds because T t- t=o = dt t-0 + tf ()+ LO fq 

where 
ý 

and are the vector fields on (LR2,0) and (183,0) defined by 

d(p 
t 

dýt 

= dt I t=0 and = dt I t=0 

so that 
dh 

d*( dtlt=O )= d*f + d*(tf(ý )+ 

Since 

ä*(tf(ý)+wf(ý))=d«( 
ddlf ttofýTt t_dd(ýt. 

frýt) 
-0 dt It- 

-0 

and 
Ow d(ytof- ýt)f X df for all t, certainly AO, d, (tf(ý ) +w f(' ))E TXdf, 

and this is enough to prove the claim. 
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Now, by (*) there exists a smooth 1-parameter family gt such that gt 6 CE 

for all t, go =f and 
dgt 

I= 
dhtl 

. Set kt 
t-1.9 t` 

(1 
t_1 o ät t=o ät t-o t 

It is easily checked that ktE CE for all t, that k0 = f, and that 

dkt 

ät It=o = f. 

This completes the proof of (i). 

The proof of (ii) proceeds along similar lines, the only added compli- 

cation being in the choice of the 1-parameter deformation of df in the 

proof of the first claim. This we now sketch. 

a 
Given Te'(df, we have to find a 1-parameter family (at, bt) such 

b 
A a 

that (a0, b0) - af, 
dt(at, bt)It=0 and such that for each value of 

ibi 

t, the germ of (at, bt), now a germ (R2, xt-)--+ (R2,0) where x0 = 0, 
N 

should have local algebra isomorphic to that of df. To do this, let 

a_ 
ul 

a df 
+ u2 

a df 
+ 

v1 
,1 

V1,2 p1 cP d 

a 9Y b 
[V211 

v2,2,2 r2v df 

where ul, u2 E2, vi 
1Et2, 

and P is the map L(2,3) --i X22 used 

to define d in the note after the statement of the theorem. Such func- 

tions ui, vi, j exist by the definition of TeXdf. Define the germ of a 

diffeomorphism H: (t2X a2)c LR, 0) (1R2X 122x (R, 0) by setting 

H(x, y, X, Y, t) = (x+tu1(x, y), y+tu2(x, y), X+ F- vl, j /2j"df, Y+ v2, j pjedf, t) 

and let (at, bt) be the map germ (LR2, (tu1(0,0), (tu2(0,0)) -_(cR2,0) 

whose graph is Ht(graph df), 
where Ht is defined by H= (Ht, 1 

R). 
Then 
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one checks that (at, bt) has the desired properties. 

The rest of the proof proceeds as in (i)M 

N 

IV. 3: 9 Definition For fE CE, set 

f 
codCE(f, A) din, 

T(CE) 

TA f 
and 

codCE(f, Ae) = dims 
Te (CE) 

f 

Tehf 

IV-3: 10 Theorem Let f(x, y) _ (x, y2, y3p(x, y2)) (so that fE CE). Then 

1"V12 

a) i) T(CE) 
f= 

'M2 - 
{y} 

T 3tT 
2+y 2 

fk2 

ii) Te(CE)f = 
t2 

tT y3 2 

IYV) 
2 

TAf= IN2- y 

'M 
2+ Y3TXTP(X, Y2) 

ý2 

iv) Teo f= t2 

c2 + y3TeX 
Tp(x, 

y2) 

b) codCE(f,? ) = cod(g, 9k) -1 and codCE(f, Ae) 
= cod(g, 4 

e), where 

t. 
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B(x, Y) = (x, Y2, YP(X, Y2)). 

Proof a)i) By Theorem IV. 3: 8, T(CE) 
f= 

d*-1(T Xdf). We have 

äf(x, y) = (2y, 3y2P(x, y2) + 2y4py(x, y2)), 

and so 

fm 
T2 

Yý2 
" 

We find that 

ä 
2yax + by 

dy 
ý_ 

A cy + ax(3y2P(x, y2) + 2y4pyix, y2)) - ayy3px(x, y2) 

and so dw bE TX -f if and only if by E 1'17 
2 and c 

y 
IN c 

It is clear that the condition on b is just bE2 _ 
fy, 

If we write 

c(x, 
y) = r(x, y2) + ys(x, y2) 

then 

cy(X, Y) = 2Yry(x, 72) + s(x, y2) + 2y2sy(x, y2) 

and in order that cy be divisible by y, s(x, y2) must be divisible by y 
2 

and hence by y. We can thus write 

c(x, 
y) = r(x, y2) + y3s' (x, y2) 

for some s' EC2. This completes the proof of (a)(i). The proof of (a)(ii) 
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is similar. 

a)iii) By 1.5: 7, 

"2 

TAf= '1+12 -y 

'ýýT + yTÖý. 
T(y2p(x, 

y2) ) 

and so it remains only to show that 

T XT(y2p(x, y2)) = Y2 TZp(x, y2). 

This is straightforward, if slightly unexpected. The proof of (a)(iv) is 

similar. 

b) This now follows from (a) and I. 5: 74 

IV. 3: 11 Definition i) Let fE CE, and let 

F: icR2 x e, () )( .yj, 0) 

(x, y, u) I--> (fu(x, y), u) 

unfold f, with f0 = f. Then F is a CE-unfolding if for all u, fuc-CE, 

and F is a (CE) -unfolding if there exists a 1ýoýeonýorpl�srw 

r: (RXEa, 0)--' (I22xfc, 0) 

(t, u) 0 (i'(t, u), u) = ('u(t), u) 

such that for all t, the map u r-' -(t, u) is smooth, and rank(dfu(-zu(t)))=1 

for all (t, u). 

ii) A CE-unfolding ((CE)e-unfolding) is A 
-versal 

(e-versal) if it is A--versal ( Ae-versal) 
within the category of 
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CE-unfoldings ((CE)e-unfoldings). 

IV. 3: 12 Lemma Let f(x, y) = (x, y2, y3p(x, y2)) and suppose that 

10 

Te Af+(? 0= Te (CE) 
f 

y3pi(x, y2) 

Then the (CE)e-unfolding of f, 

232k2 
F(x, y, ul,..., uk) = (x, y, y P(x, y )+5,7 uipi(x, y ), u1,..., uk), 

i=1 

is -vernal. 

Proof Let 

H: (aR2x a , o)-e (, R3Z Rl, o) 
(x, y, v)º-->(h(x, y, v), v) = (hv(x, y), v) 

be any (CE) -unfolding of f. Since the germ r: (82,0) (R2,0) given by 

r(x, y) = (x, y2) is A -stable, the unfolding HI of r defined by 

H1 (x, y, v) = (h1 (x, y, v), h2(x, y, v), v) 

(where h1 and h2 are the first two component functions of h) is trivial, 

and there exist diffeomorphisms ý 
and " 

1, which are 1-parameter unfold- 

ings of the identity on R2, such that the following diagram commutes: 

H 
(R Y- ßt1,0) 1( 2x R1,0) 

y1 

(I22X X21,0) ` (IR2X IR1,0) 
rX 11 

I 
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Writing '1(x, y, v) _ ("r1(x, y, v), v), define a diffeomorphism 

: (IR3x IR', o) (iR3x I21o) 

by 
T (X, Y, Z, v) = ("f'1(X, Y, v), Z, v). 

Then f. Hol -1 is an unfolding of f of the form 

(1) Q (x, y2, q(x, y), v). 

Since H is a (CE) 
e -unfolding of f, f- Hv 1 

is also. It is clear by ins- 

pection of (1) that the map r associated with this unfolding (see IV. 3: 11) 

must take the form 

(t, v)F---ý(t, 0, v), 

Bqv 
which is to say that ay 

(x, 0) =0 for all (small) x and v. By first rem- 

oving from q(x, y, v) its linear and quadratic part in x, and its quadratic 

part in y, by the smooth 1-parameter coordinate change in (R3 

22 
z -O, O, v)X - O, O, v)X2 -(01 010 v)Y Dx C) Y- 

and then applying parametrised versions of I. 5: 3 and IV. 2: 4, we see that 

Q, and therefore also H, is equivalent to an unfolding F' of f, of the form 

F'(x, y, v) _ (x, y2, y3P v x, y2), v). 

Now define unfoldings G: (R2X týc, Rk 10) and G' : (cR x., X21,0) -4(&X IR1,0) 

by 

2k G(x, Y, u) = (x, y, YP(X, Y2) + 71 uiypi(x, y2), u) 
i=1 

G'(x, Y, v) = (x, Y2, YP1 (x, Y2), v). 
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It follows from the hypothesis of the Theorem, from IV. 3: 10(ii), from 

I. 5.7(ii) and from the Versality Theorem ([30] 
, page 499) that G is an 

Ae 
-vernal unfolding of the finitely-determined map-germ g defined by 

g(x, y) = (x, y2, YPix, y2)) 

and hence G' is induced from G. That is, there exists a map-germ 

h: (R 1 
, 0)- s(Fk, O), and 1-parameter unfoldings ýf and 

y 
of the identity 

on X22 and 
I 

respectively, such that 
f-h*G 

= G'o . Now applying a 

parametrised version of IV. 2: 5 to the diagram 

21 
h*G 

(X1Axt (ft X IR , 0) , 0) (Q23X R 
1,0) 

(a22X tR1,0) ' ([R3)( 61,0) (, R3>< 
G' AX1 

where A is as in the proof of IV. 2: 5, we conclude that (A X1 )eG' is in- 

duced from (A xl)°G, that is, Q is induced from F. Since H is-equival- 

ent to Q, it follows that H is induced from FQ 

IV. 3: 13 Theorem Let fE CE with j 2f(0) 
equivalent to (x 

,y ,y , 0). Then for 

a (CE)e-unfolding F of f, the following are equivalent 

i) F is an Ae 
versal (CE)e-unfolding of f. 

ii) Te-Af + I2 {Fi) 
= T(CE) 

f. 

Proof (ii)z(i). By applying equivalences of unfoldings similar to those 

used in the proof of the preceeding lemma, we may assume that 
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F(x, y, u) = (x, y2, y3Pu(x, y2), u). 

By the usual rules of transformation of A 
-tangent spaces, (ii) then 

transforms to 

0 
Te A f+ f0= Te(CE) 

f 
II? 

PU 

a uiUIu=ojj 

After a coordinate change in FZ 
k, 

we may assume that 

23 2) >k 32 
F(x, y, u) = (x, y, yP(x, y+ uiypi(x, y), u) 

i=1 

and (ii)' then transforms to the hypothesis of the lemma. 

(i) (ii). This is more or less immediate from the definitions. Let 

ft be any smooth 1-parameter deformation of f as in the definition of 

Te(CE)f (IV. 3: 1). Then the map G(x, y, t) = (ft(x, y), t) is a (CE) 0. 

Ing of f, and as such is induced from the versal (CE)e-unfolding F. Thus 

there is a map-germ h: (LR, 0)--0(R 
k 

, 0) and there are 1-parameter unfoldings 

and T of-the identity on ff2 and p3 respectively such that''"h"F = Go . 

The result follows by differentiating this equality with respect to t and 

setting t= Oll 

IV-3: 14 Definition Let fE CE. Then f is CE-stable if every (CE)e-unfol- 

ding of f is trivial. 

IV. 3: 15 Theorem The map-germs (x, y2, y3) ("cuspidal immersion") 

and (x, y)ý-a (x, y2, xy3) Olcuspidal cross-capt') are CE-stable. 
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Proof Apply IV. 3: 10, and make an easy calculation to deduce "infinites- 

imal CE-stability". Then apply IV. 3: 13 to deduce the result il 

..: ý. 

cuspidal immersion cuspidal cross-cap 

N. 4 

So far we have only studied in any detail germs in CE whose 2-jet at 0 

is equivalent to (x, y 
2 

0), and the results we have obtained are due more , 

to the "equivalence of equivalences" I. 5: 8 and 1.5: 11 than to any deep 

understanding of CE. 
.A general "infinitesimal CE-stability implies CE- 

stability" result is at present beyond our reach, and with it general 

results on CE-determinacy and classification. 

It seems worth pointing out at this stage that it is likely that for 

germs in CE but not in CE (i. e. germs fE CE such that S. is not a non- 

singular curve germ), no such thing as an Ae-versal Ce unfolding exists, 

at least as such unfoldings are defined in IV-3: 11- This is because CE 

is not in general smooth at such points. What seems more probable is 

that the concept of C eunfolding will have to be widened to include 

unfoldings whose base (i. e. parameter space) is the germ of an algebraic 

variety rather than the germ of a smooth manifold. 

We now look at examples of germs in CE whose 2-jet is equivalent to 

(x, xy, 0). The first example, in the sense that the A4 orbit of its 4- 

jet at 0 has the lowest codimension, is 

f(x, y) _ (x, xy + y3, xy2 + 
ßy4) 
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whose image is the swallowtail surface. In fact f is A 
-equivalent to 

the projection into the parameter space JR3 of the bifurcation set of 

an 
?. 

e-versal unfolding of an A4 singularity. 

Since the map-germ defined by the first two component functions of f 

is the Whitney cusp, which is 3-determined for A, it is clear that 

any germ g whose 4-jet is that of f, is equivalent to 

(x, y) -3 (x, xy + y3, xy2 + -z y4 + c(x, y)), 

for some cE (112 
, and from the fact that gE CE one deduces that x+3y2 

must divide cy. Some rather tedious calculations, which we shall not go 

into here, show that after coordinate changes in (R2,0) and (R, 0) we 

can replace the germ c(; *" 
2 

by a germ c' E -M k, 
for any k< CO, but 

attempts to prove that f is actually 4-determined in CE have not yet 

been successful. However, the following argument, suggested by Andrew 

du Plessis (personal communication), shows that f is 4-determined in 

CES"', where CEW is the space of analytic map-germs in CE. First, 

IV. 4: 1 Lemma Let g: (R2,0)-)l! x", 0) be a map-germ such that j4g(o) is 

equivalent to 

(x, y3 + xp(X, y), y4 + xq(x, y)) 

where p, q Eý2. Then g is yi -equivalent to the map-germ h defined by 

(x, y)-- -(x, y3 + a(x)y, y4 + b(x)y2 + c(x)y) 

for some a, b, c67? 1. 

Proof First, let r: (R, 0)--) (82,0) be defined by r(y) = (y3, y4), Then 

one calculates, using I. 3: 2, that 
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fy) 
TAr -1 fy, 

since clearly r`r72 
ti ýý3. It follows, by I. 3: 3, that r is 6-deter- 

mined, but in fact an easy argument based on 1-3: 1 (a), shows that it is 

actually 4-determined. 

From this we deduce that the map-germ (R, 0) -i(P2,0) obtained from g 

by setting x equal to 0 and omitting the first component, is A 
-equi- 

valent to r, and hence that g itself is equivalent to 

91: (X, y)--->(X, y3 + xp'(x, y), y4 + xq'(x, y)) 

for some p', q'E 
t 

2. 
Now this germ is a 1-parameter unfolding of r, 

and as such must be induced from an A 
e-versal unfolding. From the 

expression for Te+r, and by the versality theorem for A, we see that 

R: (y, ul 1 u2, u3)---ß(y3 + uly, Y4 + u2y2 + u3y) 

is an A 
e-versal 

unfolding of r, and so there exists a map-germ 

h: (R, 0)-(1R3,0), which we write as x y(a(x), b(x), c(x)), such that 

g' is equivalent, as an unfolding of r, and a fortiori as a map-germ, to 

h*R. But that is to say that g is equivalent to 

(x, y); Kx, y3 + a(x)y, y4 + b(x)y2 + c(x)y)1 

IV. 4: 2 Proposition The map-germ f(x, y) = (x, y3 + xy, xy2 + 
jy4) is 

4-determined in CEw. 

Proof If g is an analytic map-germ such that j4g(0) = j4f(0), then by 

the lemma, g is equivalent to 
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h: (x, y) -->(x, y3 + a(x)y, y4 + b(x)y2 + c(x)y) 

for some a, b, c E T'1. However, since all the results on '+e-versality 

hold in the analytic category, we may take a, b and c to be analytic. 

We now aim to show that after coordinate change in the x and X variables 

24, 
we may take a(x) to be equal to x. To see this, we compare dg'r, '2 k2 

and dh*'Pl 2 
t2, 

which are, respectively, 

3y2 +x+ 0(4), 6y3 + 2xy + 0(4)> 

and 

3y2 + a(x), 4y3 + 2b(x)y + c(x)> . 

Since h and g are 
A 

-equivalent, these two ideals must be equivalent, 

in the sense that dg* 
2 

ih 
2= 

*(d*ý72 ý2) 
for some analytic diffeo- 

morphism q (1.9: 2). Thus, since the first has a non-singular generator, 

the second must have also. It follows that either a or c is non-singular. 

If c is non-singular, then, since 3y 
2+ 

a(x) must vanish along a curve 

contained in the O-locus of 4y3 + 2b(x)y + c(x) (for hE CE), it follows 

that the latter must actually divide the former. But this is absurd, 

since for each value of x, the 0-locus of the latter contains 3 points 

(in C2) whereas the 0-locus of the former contains only 2. Hence, c 

cannot be non-singular, and therefore a must be. Thus, a is R 
-equival- 

ent to 1jR , and applying the same coordinate change to the X coordinate 

in , we see that h is A 
-equiva7mt to the map- germ h' defined by 

li(x, y) = (x, y3 + xy, y4 + b(x)y2+ cix)y). 

But now 3y2 +x must divide 4y3 + 2b(x)y + c(x), and writing 
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4y3 + 2b(x)y + c(x) = 
3y(3Y2 

+ x) + (2b(x) - 
4x)y 

+ c(x) 

we see that (2b(x) - 
3x)y + c(x) must vanish identically on 3y2+x = 0, 

i. e. 

(2b(-3y2) + 4y2)y + c(-3y2) = o. 

for all y. Separating odd and even powers of y, we see that 

2b(-3y2) + 4y2 =0 and c(-3y2) =o 

for all y, from which we deduce (since b and c are analytic) that 

b(x) = ix and c(x) =0 

for all x. From this it is immediate that h (and hence also g) is equi- 

valent to fi 

IV. 4: 3 Corollary The map-germ f of the proposition is CEw-stable. 

Proof Let F: (R2 X R, 0)--j(R3 X R, 0) be any 1-parameter (CE)e unfolding 

of f. By the stability of the Whitney cusp, we may suppose that F is 

of the form 

F(x, y, t) = (x, xy + y3, xy2 + ßy4 + ct(x, y), t) 

2Dct 
where c0 = 0. Since F is a (CE)e unfolding, x+ 3Y must divide y (x, y), 

and so we can write 

ct(x, 
y> _T . Ci (OxiyJ(x + 3y2) y i, J ,J 

Hence 

's 
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i+1 j+1 ý +3 iyj 
ct 

x) (x, y) =Z clýj(t)( j+ý + j+3 i, j 

The analytic 1-parameter coordinate change in R3 given by 

Z= 1+ co 1( 
Z- cO, 0Y - cl, 0XY - c2,0X2Y - 3c1,1Y2) 

then transforms F into 

(x, y, t)--->(x, xy + y3, xy2 + ßy + ö, 
2(t)xy3 + ct(x, y)> 

where 0'2 1+ý c 
0,1 

c0,0,2 and ct E X25 
. 

Now if we write (the transformed) F as (x, y, t)º-->(ft(x, y), t), we find 

-3Y 0 
3(xY + Y3 

t2+ oft -4Z + 2c0,2 XY 0 (1) 
, 

y- 2c0,2Xy 
2c012Y2 

t5xy3j 

Letting It and I/t be the analytic 1-parameter families of analytic 
2 

diffeomorphisrns of OR 
, 0) and O R3,0) whose differentials with respect 

to t are, respectively, 

c0,2 and CO,? 
55 

where 
ý 

and are the vector fields on (R20) and 90) which fig- 

ure in (1), we find that 

1 
4(11 

t° 
ftv l t_1)(0) =i fi0) 

and then it follows from the 4-determinacy of f in CE that the unfold- 

ing F is trivial N 
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IV. 4: 4 Remark It follows from the proof we give for the preceeding cor- 

ollary that if f is 4-determined in CE then it is CE-stable, since the 

existence of the coordinate changes that we give in the proof does not 

depend on the analyticity of the unfolding F, although their analyti- 

city does. 
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IV. 5 Applications to the study of the geometry of the tangent developable 

of a smooth space-curve 

IV. 5: 1 Theorem Let ö: (R, 0) ->OR3,0) be the germ of a smooth curve 

with nowhere vanishing velocity and curvature. Let 't' (the torsion of 

the curve) vanish at the origin to order k, O<k <4. Then the germ of 

the exponential map 

exp. : (M, 0) (p3,0) 

(t, u)+-ý. )'(t) + uv(t) 

is A--equivalent to 

(x, y)--3 (X, y2, y3) if k=0 (i. e. if z (0) / 0) 

(x, y) >(x, y2, xy3) if k=1 

(x, y)---ý(x, y2, y5 + x2Y3 ) if k=2 

(x, y)---ý(x, y2, xy5 + x2y3) if k=3 

(x, y)---*(x, y, y+2 
5ý. 

x2 y53 
27 

+x y) if k= 1+, 

Proof The proof is very straightforward, and depends principally on the 

fact that for each value of k, the germ shown is k+3-determined in CE, by 

I,. 5: 18 and IV. 2: 8. It remains only-to show that in each case the k+3-jet 

of-exp 'is'A k_ 
equivalent to the k+3-jet of the germ shown. 

First, by taking as basis vectors in R3 a Serret-Frenet set t(0), r(0) 

and 1(0), redefining the t coordinate on R, and making, if necessary, a 

change of scale in IR3 , we can write 

'4, 
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Y(t) = (t, t2 + b(t), c(t)) 

where b, cC13. Since on 
P3 

only linear coordinate changes have been 

used in bringing I to this form, the 9% -class of exp : (TIR, O) -ý(, 0) 

remains unchanged. We shall write the Taylor series of b and c as 

bitl and 
>. 

c. tl 
ia3 1>3 

Now it is easy to check that T vanishes to order k at 0 if and only if 

c3 =... = ck+2 = 0, ck+3 4 0. 

It follows that if 'r vanishes to order k at 0, we have 

3 
jk+3exp (0,0) = (t + U, t2 + tut +5 bi(tl+ iutl-ic 

k+3(tk~3+(k. +3)utk+2)). 
i=3 

By putting t=v-u and dividing the Z coordinate by ck+3, the k+3-jet 

becomes 

(v, v2 - u2 + 0(3), (v - u)k+2(v + (k+2)u)). 

By putting Y= -Y + X2 we remove the v2 from the second component, and 

then an application of 1.5: 2 shows that this k+3-jet is equivalent to 

U) 
k+2 (v + (k+2)u)). 

After removing all even powers of u from the third component by using 

left coordinate changes (see I. 5: 3), and then making a change of scale 

in the coordinates if necessary, one obtains the k+3 jet of the corr- 

esponding germ listed in the statement of the theorem. In the last 
743 

case, once the' coefficients of y and xy have been reduced to 1, then 
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the coefficient of x2y5 is an3A -invariant (see case 5 in the proof of 

I. 5: 19), and so cannot be replace by j1X 

The tangent developable surface is simply the image of exp'., and so from 

the theorem we can obtain information about the topology of the germ 

at 0 of this surface. For example, 

IV. 5: 2 Corollary Under the hypotheses of the theorem, the tangent dev- 

elopable surface has one curve of self-intersection beginning at 0 if 

k=1 or 3, and none if k=O, 2 or 4. 

Proof Straightforward calculation E 

By the use of IV. 3: 13 (the Versality Theorem) we can also gain a certain 

ammount of information about the behaviour of the tangent developable 

surface as the curve '( is deformed, since deformations of y induce (CE) 
e- 

unfoldings of exp'. 

Iv-5: 3 Example Consider the curve 

y (t) _ (t, t2 + bA(t), 

6 
where c5>0, b, E 13 and cXE ý'11 

t3 + c5t5 + cA(t)) 

for all) . When! = 0, 'C vanishes at 

0 to second order, but for small A< 0,2' has two distinct first-order 

zeros in a small neighbourhood of 0. Now, it is easy to check that the 

(CE) 
e-unfolding of exp 

0 
given by 

E: (t, u, V--ý( äß(t) + uIa (t), 

is A 
e-versal, 

and from this and the fact that F: ([R 2x 
IR, 0) . --ý (p3)( IR, 0) 

ý4 
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defined by 

F(x, Y, ') = (x, y2, Y5 + x2y3 + 71 y3, )) 

is an A 
e-versal 

(CE)e-unfolding of (x, y)}--#(x, y2, y5 + x2y3), we 

deduce that E and F are equivalent unfoldings. 

By examining the geometry of F, one deduces that for sufficiently small 

A<, O, the image of exp... is diffeomorphic to the singular surface 

sketched below. Note the cuspidal edge along the X-axis, and the two 

points (± f-5,0,0) at each of which the surface is a cuspidal cross- 

cap. Joining these two points is a curve of self-intersection of the 

IV. 5: 4 Remark This, and the cases where k=0 or 1, (when exp, is stable), 

are the only cases where the singularity of expy can be ke 
vernally un- 

folded in CE by varying the curve Y. It is easy to see that for 1j>2, an 

e_1 
(CE)-unfolding cannot take place: the CE germ 

surface. As ? --; o. O- , this curve contracts to a point. 
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(X, y)-4 (x, y2, x2y3 + y7) 

occurs in the A 
e-versal 

(CE) -unfolding of 

(x, y)I->(x, y2, xy5 + x3 y3) 

(case k=3 of IV. 5: 1) and hence in the Ae-vernal (CE)e-unfolding of 

every singularity of exp, presented at a point on the curve where )( {0 

and 'C vanishes to order > 3; but it does not occur as a singularity 

of exp -e itself, since the only germ in CE of the form 

y2, y3p(x, y2) ) 

with p(x, y2) of order 2, to occur as a singularity of expy , is 

o(x, y2, y5 + x2y3). 

IV. 5: 5 Remark From IV. 5: 1 one sees that the topology of the tangent dev- 

elopable of a space-curve in'the neighbourhood of & point at which X/0, 

is determined by the order of vanishing of the torsion 'e , when this or- 

der is no greater than 4. Now when 'r vanishes to order k>4, the c 
-class 

of expy is no longer determined only by this order- briefly, k+3-jets 

of the form 

(x, y2, y3p(X, y2)1 

where p(x, y2) is a homogeneous polynomial of degree k, are not suffici- 

ent in CE if k> 4. However, one can prove the following result: 

Theorem Let p(x, y2) be a homogeneous polynomial of degree k, with no re- 

peated real root. Then the map-germ (IR 2,0)--y(p3, 
p) defined by 

(x, y)l--*(x, y2, yp(x, y2)) 
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is (k+1)-CC-, A -determined. 

From this it is possible to deduce, by proving a C0 variant of N. 2: 5, 

that 

(x, y) -(x, y2, y3P(x, y2) ) 

is (k+3)-CC-1k-determined in CE. 

As a final application of some of the forgoing ideas to the study of the 

geometry of the tangent developable of a space curve, we compute the A- 

class of the germ of exly(TR, O)--3(R3,0) when 0 is a "non-degenerate" 

point of zero curvature of the smooth curve?;. 

IV. 5: 6 Definition Let 't: (k2,0)-4 (, 0) be the germ of a regular smooth 

curve with zero curvature at t=0. We shall say that 0 is a non-degen- 

erate point of zero curvature ifV'(0), Weºt(0) and 75""(0) are linearly 

independent vectors, 

IV. 5: 7 Lemma Let ö have a non-degenerate point of zero curvature at t=0. 

Then 

i) By an appropriate choice of t coordinate, and after a linear coordin- 

ate change in (R3, ä(t) may be written 

-6(t) = (t, t3 + b(t), t4 + c(t)) 

where b and ce 
115. 

ii) 0 is an isolated point of zero curvature. 

iii) If (t, u) are locally trivial coordinates on TR at 0, then for *0 as 

in (i), 
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d(expv)*)12. C"O(T¢2,0) =<ut> 

iv) The function T (the torsion of the curve), which is not defined at 

points of zero curvature, has a C60 extension on a neighbourhood of 0 

in f, whose value at t=0 is non-zero. 

Proof i) Let Y be parametrised by vcR. Choose a basis for IR3 consisting 

of the vectors 

(O) ?S (O) ö rºr (O) and fill 

löl (0)1 itr O pýU1r o)I 

and dsfine a coordinate system on IR 3 
by taking the dual to this basis. 

Choose at coordinate on IR by setting 

(v) Y, (O) 
- t1 

Then in this coordinate system, -e has the desired form. 

ii) This is obvious from (i). 

iii)Using d defined as in IV. 3: 8, we have 

ä(exp, )*m2. c°`'(TR, o) =(u(6t + b"(0), u(12t2 + ott(t))> 

and since b", C" IE this this ideal is equal to <ut> 

iv) At points where the curvature is non-zero, 

Y, (t) 
= 

L''(t)XÖ"(t)1. 
x111(t) 

I[ ý' (t))CIX 11(t)112 
Since this is invariant under a parameter change in JR, and is subject 

only to multiplication by a non-zero constant under a linear isomorph- 
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ism of IR', we can use the expression for-2r(t) as in (i). We find that 

72t2 + 0(3) 

36t2 + 0(3) 

and thus after dividing numerator and denominator by t2, the same expr- 

ession may be used to define 'C at ON 

IV. 5: 8 Theorem Let Y have a non-degenerate point of zero curvature at 

t=0. Then the germ of exp., : (TR, O) -*(P31O) is A 
-equivalent to 

(x, y)F-> (x, y3 - x2 y, y4 - 
iX2y2). 

Proof Let T: -. * P3 be the linear isomorphism used in IV-5: 7(i) to 

bring ') to the form given. Since expTer = Teexp, , we may assume that 

is as in IV-5: 7(i). Then we have 

j4exp, (0) = (u + t, t3 + 3ut2, t4 + 4ut3). 

After the coordinate change u=v-t, this becomes 

(v, 3vt2 - 2t3,4vt3 - 3t4) 

From this it is immediate, by IV. 4: 1, that the germ of exp ö at O FE Tk2 

is A 
-equivalent to 

h(v, t) = (v, t3 + a(v)t, t4 + b(v)t2 + c(v)t) 

for some functions a, b, cE1. 

As in the proof of IV. 4: 2, in order to decide what the functions a, b 

and c are, we cgnsir' the ideal 
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dh*ý42" t2 = 
<3y2- + a(x), 4y3 + 2b(x)y + c(x)% . 

Since the zero-set of this ideal is contained in that of 3y2 + a(x), 

and must, by IV. 5: 7(iii), contain two non-singular curves meeting trans- 

versely at 0E 1R2, we must have a'(0) = 0, a"(0)< 0. A change in x and X 

coordinates then transforms h to 

(x, y)e-+ (x, y3 - x2y, y4 + b(x)y2 + c(x)y). 

Since 4y3 + 2b(x)y + c(x) vanishes on the zero set of 3y2 - x2, which 

is a non-degenerate polynomial, it must be divisible by it, and putting 

4y3 + 2b(x)y + c(x) = r(3Y2 - x2) + (2b(x) + x2)y + c(x) 

we see that the remainder (2b(x) + 
jx2)v 

+ c(x) must vanish on 3y2_ x2 =0 

which is equal to (x -f3 y)(x + j3 y)= 0. Substituting successively 

x =13" y and x= -J-3 y in the expression for the remainder, and setting 

it equal to 0, we obtain 

x2 )x +3 c(x) =0 (2b(x) - 34 

(2b(x) -ýx2)x -3 c(x) =0 

for allx. From this it is immediate that 

b(x) = -jx2 and c(x) =0 

for all x. This concludes the proof s 

IV. 5: 9 Geometry of the map-germ (x, y)F---ý(x, y3 - x2 y, y4 _ jx2y2). 

In order to obtain a picture of this map, it is perhaps best to regard 

it as a 1-parameter unfolding of yH( y3, y ), obtaining for each va- 

xý 
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lue of xa deformation of this curve, which is simply the intersection 

of the image of f with the plane X=x. 

X=O 

xO 

-1 3x cx-9 
3 T3 9 

Piecing all these together, we obtain the surface (the "double swallow- 

tail") sketched on the next page. Note the two cuspidal edges, which 

meet inflexionally at 0, and the curve of self-intersection. 

IV-5: 10 Remark From IV. 5: 7 (iv) it follows that if rX is a smooth 1-para- 

meter deformation of a curve To which has a non-degenerate point of zero 

curvature at t-0, then for small values of ? the curve WA has non-vani- 

shing torsion in a neighbourhood of t=0. Thus, if *6 
A 

is a generic 1- 

parameter deformation of 0, 
in the sense that for A/0 each r. has non- 

vanishing curvature in a neighbourhood of t=0, then the tangent dev- 

elopable of each curve Y. is a cuspidal immersion, equivalent at each 
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point on the curve to (x, )F-}(x, 2 
yy , y3). This might appear to contradict 

the fact that the tangent developable of 't 
0 

has transverse self-intersect- 

ion, which must persist under deformations of the curve, but in fact 

what happens is that this curve of self-intersection moves away from 

the curve Ya as A moves away from 0, and thus does not appear in the 

germ of exp. at (t, O), for A/0. 

The Double Swallowtail 
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CLOSED CURVES WITH NO QUADRISECANTS 

H. R. MORTON and D. M. Q. MoNDt 

(Received 18 December 1980) 

§1. INTRODUCTION 

IN HIS PAPER [1], Wall discusses the idea of a generically embedded curve in R3, related 
to the local appearance of the radially projected curve as viewed from different points 
in R3. 

Wall shows that a generic curve never meets a straight line in five points. There 

may, however, be finitely many straight lines, quadrisecants, which meet the curve in 
four points. The local view of the curve from distant points on a quadrisecant will 
have four branches crossing transversely. 

In this paper we ask how simple the embedding of a closed curve must be if the 

curve has no quadrisecants. Under a slight extension of Wall's term generic to ensure 
a similar regularity of appearance of the curve when viewed from other points of the 
curve itself, we prove: 

THEOREM. A generically embedded closed curve with no quadrisecants is unknotted. 

We expect that in the non-generic case a knotted closed curve will have a genuine 
quadrisecant. (If we widened the definition of quadrisecant to allow the intersections 

of a line with the curve to be counted with multiplicity, including, e. g. a tangent line 
which meets the curve in two further points, then a limiting argument would produce 
at least a "fake" quadrisecant for a knotted closed curve. ) 

Although the theorem deals with differentiable embeddings, it can be proved by a 
similar argument that a knotted PL curve in general position must have a quadrise- 
cant, other than one of its own straight edges. This result will probably hold for any 
knotted curve, whether differentiable or not. 

It seems possible to estimate the number of quadrisecants for a generic knot in 
terms of its minimum crossing number. Experiments with wire in the simplest case 
agree with the following conjecture. 

CONJECTURE. A generic knot with crossing number n has at least (1/2)n(n - 1) 
quadrisecants. 

§2. GENERICALLY EMBEDDED CURVES 

Wall's analysis of a generic curve shows that the projection of the curve from a 
point of R3 only has simple crossings as its singularities except when the point lies on 
certain two, one or zero-dimensional subsets of R3. The singularities shown in Fig. 1, 
tacnode, simple cusp and triple point can be seen from certain two-dimensional 
subsets, while anything more complicated, e. g. a curve and an inflectional tangent, are 
seen only from finitely many lower dimensional subsets, if at all. See [1] for the 
complete list. 

We shall ask that our curve be generic in the sense of Wall, and that it meet these 
subsets "transversely". By this we mean that for each point p on the curve, a 

tThe second author wishes to thank the University of Liverpool for financial support during the period 
of this research. 
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Fig. 1 

sufficiently small interval round p meets the subsets defined by the complement of the 
interval transversely, and in particular meets only the two-dimensional subsets. The 
result is to restrict the type of singularities seen when projecting from a point p on the 
curve to simple crossings or, from finitely many points, those in Fig. 1, with one extra 
possibility. This arises, since the image is no longer a closed curve, but has two ends 
corresponding to the tangent at p. Where the tangent meets the curve again, at q say, 
one of these ends will lie on another branch of the projected curve, as in Fig. 2. This 

can happen for finitely many q, when the picture viewed from q has a simple cusp at 
p" 

In §5 we rephrase this definition of genericity in the language of multijet trans- 
versality, and show that generic embeddings form a residual subset of all embeddings. 
In the following sections we shall prove the theorem using the properties of generic 
embeddings. 

$3. THE FAMILY OF PROJECTIONS OF A CURVE 

Let us assume that our curve is generically embedded in the sense of the previous 
section. From each point p on the curve project the curve radially to a sphere S2 

centre p. The image of the curve, D, C S2, is a path joining opposite ends of the 
diameter which is tangent to the curve at p. For all but finitely many critical values of 
p the path Do is immersed with a finite number of simple crossings. In such cases we 
can view Dp as a knot diagram for the original knotted curve by distinguishing an over 
and an undercrossing at each simple crossing. If these crossings are separated 
accordingly, and the end points of Dp joined by the diameter we recover a curve in R3 
isotopic to the original. 

Because of the transversality requirement in our definition we can picture how Do 
changes as p passes a critical value. There are four possible singularity types that can 
appear in Dp at a critical value of p, shown in Figs. 1 and 2. We can assume that only 
one occurs at any critical value. The changes in Do in the neighbourhood of the 
singular point as p passes the critical value are shown in Fig. 3 with over and 
undercrossings indicated. The rest of Dp changes simply by isotopy in SZ. For 
reference we shall distinguish the critical values as types 1,2,3 or 4 as in Fig. 3. 
Notice that a critical value p of type 4 lies on a quadrisecant of the curve through p 
and the apparent triple point. 

-01-Ok Fig. 2. 
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THEOREM. A generically embedded closed curve with no quadrisecants must be 

unknotted. 

Starting from the curve let us consider the family of diagrams Dp constructed by 

projection for each p on the curve as a subset DC SZ x S', with D f1 SZ x {p} = DD 
for each p. We shall look at the singular subset XCD consisting of the family of 
singular points of Dp for all p, in connection with the natural projection ir: X --* S. 
Away from critical values of p, 1r-'{p} is the finite set of crossing points of Dp and Tr 
is a covering. The nature of it above critical values of each type is indicated 

schematically in Fig. 4, where the inverse image of an interval round the critical value 
is shown. 

Let us now assume that the -curve has no quadrisecants. Then there are no critical 
values of type 4, and X is a 1-manifold, with boundary points above critical values of 
types 2 and 3. If we choose an orientation for our curve then each critical value p can 
be termed a "birth" or a "death" depending on whether the number of crossings 
increase or decrease as p is passed. A point of X in 1r-'{p} can be viewed as a 
trisecant meeting the curve in three distinct points, except at a boundary point of X 
where two of these coincide and yield a tangent line. One of the extreme points of the 
three on the trisecant line is the point p. Write µ: X -> S' for the map which selects 
the middle point of the three on each trisecant line. So µ(x) = 1r(x) only at a boundary 
point xEX. 
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LEMMA 1. The map it is inessential on every component of X. 

Proof. Suppose not. Then let YCX be a component, without a boundary, on 
which ir has degree ko 0. Since Tr(y); µ(y) for any yEY it follows that µ also has 
degree k on Y, and hence that µ: Y-S' is onto. Thus every point of the curve is the 
middle point of some trisecant. This is impossible, since every height function on R' 
has extreme points on the curve which are not middle points. 

§4. MODIFYING FAMILIES OF DIAGRAMS 

In this section we shall deal with certain subsets of S2 X S', including, but not 
confined to, the family D of projections of a curve as described in §3. 

Definition. Call the subset DC S' x S' a restricted family of diagrams if (i) the 
sets Do =D fl S2 X {p} consist, for all but finitely many p, of an arc immersed in Sz 

with simple crossings, at which an over and undercrossing are distinguished, and (ii) 

on passing a critical value of p, Dp changes as for types 1,2 or 3 in Fig. 3 near one 
singular point, and otherwise it changes smoothly with p, preserving over and 
undercrossings. 

The curves in R' formed by separating over and undercrossings of DP C S2, and 
joining the end points by a diameter of SZ will yield isotopic knots for all choices of p. 
Call this isotopy class the knot class of D. If, for example, D has been constructed by 

projections of an embedded smooth curve then this curve belongs to the knot class of 
D. 

The singular set XCD of a restricted family of diagrams is a 1-manifold, possibly 
with boundary. Call components of X essential or inessential according to their 
behaviour under the projection ir: X-S. 

LEMMA 2. For any restricted family of diagrams D, with singular set X, there is 
another family D' with the same knot class, whose singular set has the same number 
of essential components as X, but has no inessential components. 

Proof of Theorem. Every component of the singular set X in the restricted family 
of diagrams D constructed from the given curve by projection is inessential, by 
Lemma 1. Hence, by Lemma 2, there exists a family of diagrams D' with the same 
knot-class, having no singular set. This knot-class can be represented, using any of the 
diagrams D, ', by an embedded arc in S2 and a diameter. Such a closed curve is 
unknotted. 

Proof of Lemma 2. If ir: X -- S' has no critical values then 1r is a covering and 
there is nothing to prove. Otherwise, having chosen an orientation for S', there must 
occur among the critical values a birth followed immediately by a death. (If say, a 
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birth occurs as we pass each critical value, then the number of points in it-'{p} would 
increase as p makes a circuit of S'. ) We shall alter D over an interval containing only 
these two critical values to give a new restricted family of diagrams 15, with at most 
two critical values in this interval. Clearly, since D and 15 agree over part of S' they 
will have the same knot class. 

The new singular set XCD will be more regular in relation to the projection, with 
essential components straightened out slightly, and possibly an inessential component 
of X omitted. See Fig. 5 for the modifications to the singular set. 

More precisely, there is a homeomorphism h from X to a subset YCX, which 
commutes up to homotopy with projection to S', or X=0=Y, where Y=X or 
X-Y is an inessential component of X. Moreover k has fewer points lying above 
critical values in S'. 

Since any inessential component of X either disappears in X, or continues, via h-', 
to form an inessential component of X, we shall reach the required D' whose singular 
set has no inessential components after a finite number of such alterations. In fact 

we could continue until the essential components, if any, cover S' regularly. 
The alteration from D to 15 must now be prescribed for a consecutive birth and 

death of any of the three types. Let us suppose that the birth and death occur at 
critical values p and q in the interval [a, b] C S. Select an intermediate value c so 
that a<p<c<q<b in the orientation order. The new family D over [a, b] will be 

constructed with the same initial and final diagrams, Da = Da, Db = Db, but a new 
intermediate diagram D, related to the initial and final diagrams either by passing 
through a single birth of types 1,2 or 3, or simply by an isotopy. This passage from A 

to Da and D6 by way of the simple birth or isotopy then provides the way to complete 
D over the intervals [a, c] and [c, b]. 

The diagrams in Fig. 5 show X and X above [a, b] with it viewed as projection, in 
the various cases depending on the type of birth and death, and whether any singular 
point is involved in both. The map h can readily be produced in each case. 

It remains to show that a suitable candidate for the new intermediate diagram Di 
can always be found. Let us start with the original diagram Dc C S2. The diagrams Da 

XXXX 

lb). 

acbac 
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ý^ 

ö jý 

a c ba c b 
Fig. 5. 
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and Db are both reached from this by the simple death of one or two singular points. 
For a type 1 death of two singular points x, yE DD there will be two arcs joining x to 
y in DD which bound a disc AC SZ meeting DD only in these arcs. The change to D. 
takes place (up to isotopy on SZ) only in a neighbourhood of A. 

There is a similar disc for a type 2 death bounded by a loop joining the singular 
point to itself, and for a type 3 death there is an arc in DD from the singular point to an 
end-point of DD with all the action again taking place in a close neighbourhood. 

Write A for the disc (or arc in type 3) determined in this way in S2 by the death 

which yields Da from DD, and write B for the disc or arc yielding Db from D, These 
discs or arcs only contain the singular point(s) of DD which are to die. 

Then Da and Db only differ, up to isotopy in S2, in a neighbourhood of AUB. 
If the singular points which die in passing from DD to Da are different from those 

which die between DD and Db then A and B are disjoint, for neither contains any part 
of D. in its interior, and they have no boundary in common unless they have some 
common singular point. Choose disjoint neighbourhoods of A and B, and alter D. to 
D, by killing the singular points in each. Then Da and Db are both reached from DD by 
a simple birth, in the neighbourhood of B and A respectively, so in f) the death in B 
is followed by the birth in A. The corresponding alterations to the singular set are 
those in 5(a), (b) or (c). 

In the remaining cases A and B will either meet at one singular point only, or, 
since DD must be a single immersed arc, if they have more boundary in common they 
will coincide. 

If A=B, then Da and Db will be isotopic, and DD can be replaced by Da with the 
isotopy connecting D. and Db completing D. The singular set will change as in 5(f) or 
(g). 

We are left with the cases where A and B meet in a single point. The possible 
configurations for DD in a neighbourhood of ACB are shown with appropriate over 
and undercrossings in Figs. 6-8. The corresponding diagrams for the singular set are 
given by 5(d), (e) and (g) respectively. The different cases in Figs. 7 and 8 cover the 
possibilities of type 2 or type 3 singularities. The configurations 8(ii) and (iii) can be 
excluded since D. is an immersed arc. In the remaining cases D, is given by altering 
DD in the neighbourhood as shown. Outside the neighbourhood D,, and Db agree with 
DD up to isotopy, and within it they are also shown on the diagrams. It can be seen 
that in each case Da and Db are reached from D, either by isotopy or by a simple 
birth, enabling 15 to be completed as claimed. 

Remark. The first author has been able to show that a link with two components in 
general position has at least k2 quadrisecants which meet the components alternately, 
where k is the linking number. The proof uses the technique of representing trisecants 
on copies of S' x S' by taking the middle point and one end point of each trisecant. A 

Dc 

-- -b 

Fig. 6. 
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combination of this technique and the methods used in this section shows that a 
two-component link without quadrisecants must be trivial. 

§5. GENERIC EMBEDDINGS 

It remains to show that for a sufficiently large class of embeddings of S' in R', the 
family of diagrams obtains by projecting from points on the curve is indeed a 
restricted family of diagrams as defined in §4. 

LEMMA 3. For a residual set of embeddings of S' in R3, the image of the curve after 
projection from any one of its points contains, apart from simple crossings, only the 
singularities shown in Fig. 1, and as the point of projection moves along the curve, 
these singularities are unfolded as shown in Fig. 3. 
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Proof. In [1] Wall defines a residual set (which we shall call C) of embeddings of 
S' in R3 for which only the singularities in a list which he gives there are visible under 
projection from points in R3 off the curve. Moreover, each of these singularities, with 
the exception of the quadruple crossing, is versally unfolded by the family of 
mappings obtained by letting the point of projection vary in three-space. By versality 
we always mean versality with respect to the group .1 of local diffeomorphisms at 
source and target. If a singularity S is visible from a point on the curve then from 

points in space on the line joining this point to the perceived singularity, an "aug- 

mented" singularity S is seen, consisting of S plus an additional branch of the curve. 
Thus for a curve in C we need only look at the singularities in Wall's list involving 
two or more branches of the curve, and such that on removing one of the branches, a 
singularity other than a simple crossing remains. These are shown in Fig. 9. Removal 
of the starred branch in (i) or (iii) leaves the simple cusp or triple point, as shown in 
Fig. 1. Now the situation is slightly complicated in the case of (ii) and (iv). The 
difference between them is that the two branches of the curve which have non- 
transverse contact have inflexional (3rd order) contact in (iv), while in (ii) they have 
only tangential (2nd order) contact; but the degree of contact may be altered by 
moving the point of projection along the line of sight, and so what will appear as 2nd 

order contact between two branches of the curve from all except one of the points on 
the line of sight, will appear as higher order contact from this one remaining point. 
Thus, we cannot use Wall's list alone to exclude the possibility that, for a curve in C, 
two branches of the curve will appear to have 3rd order contact when viewed from a 
point on a 3rd branch. However, a straightforward if tedious calculation shows that in 
the multijet space 3J2(S', o- 3) the set of multi-jets exhibiting this circumstance is 
algebraic of codimension four, so that (by Mather's multijet transversality theory, [1], 

p. 741) for a residual set of curves it will not occur. Intersecting this set with C, we 
obtain a residual set C of curves satisfying the first statement of the lemma. 

A perceived singularity that is versally unfolded by the family of projections, is 
vernally unfolded as the eye moves along a curve in space if and only if this curve 
meets the corresponding equisingularity manifold transversely. (This is a simple 
consequence of the finite . i-determinacy of all of the singularities in question. ) Thus 
for example, a first order cusp is versally unfolded if the path that the eye follows in 

space crosses the tangent developable of the embedded curve transversely. It is easy 
to see, in the case of the cusp, tacnode and trisecant, that if the branch of the curve 
from which we are viewing fails to cross the equisingularity manifold transversely, 

(i) (ii) 

(iii) (iv) 

w 
Fig. 9. 
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'/ý` 
Fig. 10. 

then the augmented singularities seen are those shown in Fig. 10. None of these 
figures is in Wall's list for the curves of C. Hence the original singularities, when seen 
from a point on the curve, must be versally unfolded as the eye moves along the 

curve. The drawings in Fig. 3 are simply representations of these vernal unfoldings as 

one-parameter families of curve germs. 

COROLLARY. There is a residual set of curves, C, such that, for every curve in C, 

the family of diagrams obtained by projecting from the points on the curve is a 
restricted family of diagrams. 

Proof. After Lemma 3 all that we need do is examine the singularity of Fig. 2. But 
in fact there is nothing new here-it is just the same as the cusp, in as much as in each 
case the augmented singularity is that of Fig. 9(i). 

In the case of the singularity shown in Fig. 2, the starred branch is being viewed 
from the point on the other branch which appears here as the vertex of the cusp, 
while a cusp appears in D, when p is on the starred branch. In any case, the same 
argument as that used in the proof of the lemma shows that for a curve in C, if the 
singularity of Fig. 2 appears then it is versally unfolded as shown in Fig. 3. 

Finally, the assumption that for each pE S', at most one of the singularities of 
Figs. I and 2 appears in D, is in fact the assumption that the corresponding 
equisingularity manifolds do not meet on the curve. Although this could be proved by 
an extension of Soares's theorem (see [1], p. 742), in our case it is sufficient, since we 
are only interested in three specific and algebraically definable singularities, to assure 
the reader that in the corresponding multi-jet spaces kJ'(S', R'), the codimension of 
the phenomenon in question is in each case greater than k, so that for a subset ýC 

still residual, it does not occur. 
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Summary 

In this paper we investigate the local form of the tangent developable of a curve in 

3-space, and obtain results relating this to the order of vanishing of the torsion. In 

particular, 

THEOREM 1. If at the point y(t) on the curve y, the torsion vanishes to order k 
(0 <k< 4), then the germ of the tangent developable at that point has one curve of self- 
intersection if k is odd, and none if k is even. 

The proof uses the techniques of singularity theory, especially the notion of finite 
determinacy and also the idea of `blowing up' a variety along a singular set, in order 
to obtain a less singular variety. 

A similar result, for the cases k=0,1 (that is, for generic curves) was obtained by 
different methods by J. Cleave (i), and also by T. Gaffney and A. du Plessis (7). 

1. Definitions 
Throughout, y: (R, 0) -4 (R3,0) will be the germ of a regular C°° curve with non- 

vanishing curvature. The tangent developable is the surface generated by the lines 
tangent to y, and so has a natural parametrization 

ý6 - (t, w) --> Y(t)+wY, (t)" (1) 

Given a map germ (Rn, 0) -ý (Rn, 0), the group sl = Diff (R'", 0) x Diff (Rn, 0) acts on 
it in the obvious way. We say that a map germ f is k-determined if any other map-germ 
g, such that jk(g) = jk(f), is equivalent to f under the action of. d. A k-jet a is 8uf cient 
if any two map-germs f and g such that jk(f) = jk(g) = a, are equivalent under 0. 
By abuse of language, a polynomial germ f of degree d will be called sufficient if its 
d-jet is sufficient. 

2. Blowing up the tangent developable 
Since we are going to use finite determinacy, we are interested only in the Taylor 

series of the curve y. After an appropriate choice of coordinate in R, and a non- 
singular linear transformation of X83, (which will transform the tangent developable 
of the original curve into that of the transformed curve), we may assume that 

y(t) = (t, 12+b., t3 + 
,, )C313+ ... 

) 

= (t, b(t), c(t)) 
in a neighbourhood oft = 0. 
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As can be seen from (1), 0 is singular when w=0, and so the tangent developable 
has a cuspidal edge along the curve. Since map-germs R2 -+ R3 with non-isolated 
singularities cannot be finitely determined (2), we cannot apply this notion directly 
to 0. We therefore define the blow-up 

B- {((x, y, z), (u: v)) E X83 x P1: u(z - c(x)) = v(y - b(x))} 
= {((x, y, z), (u: v)) E X83 x P1: (u, v) parallel to (y - b(x), z- c(x))}. 

Let 7T, and Ira be the natural projections from B onto R3 and P' respectively. It is easy 
to check that B is a manifold, and that n 1: B -+ R3 is a diffeomorphism on B- cri 1(y). 

We now aim to lift 0 by a map c: (R2,0) -ý B, to obtain the commutative diagram 

B 
Inl 

1 R2 R3 

Since IT1 is a diffeomorphism away from rrl'(y), ý is automatically defined off the t-axis 
in R2, by 

ý(t, w) = ((t+w, b(1)+wb'(t), c(t)+wc'(t)), (b(t) + wb'(t) - b(t + w): c(t) 
+wc'(t) -c(t +w))). 

The Taylor series of ßr2 oc has the form 

(-w2(1+b3(3t+w)+... ): -w2(c3(3t+w)+... )) (2). 

and so for small w$0 and small t, 
9120c(t, w)EU1 = {(U: V)EP1: u + O}. 

By taking local coordinates (x, y, v/u) on Bn (R3 x U1) we can write c as a map germ 
(R2,0) -a (R3,0), 

I t+w, b(t)+wb'(t), 
b(t)+wc'(t) 

-c(t+w)ý (3) 
` ()+wb (t)-b(t+w) 

and looking at (2) we see that after cancellation of w2, (3) may be used to definite 

along the t-axis as well, i. e. in an open neighbourhood of (0,0) e R2. 

3. The germ of ý: (R2,0) -> (R3,0) 

(a) Assume c3 4 0. Then the 1-jet of ý is 

and so c is an immersion. 
(t, w) -* (t+w, 0, c3(3t+w)) 

(b) Assume c3 = O, cs * 0. The 2-jet of c is 

(t, w) -+ (t + w, t2+ 2tw, 6c4 t2 + 4c4 tw + c4 w2). 

Putting t=8-W, this becomes 

(s, w) -* (s, s2 - w2, c4(3w2 - 8sw + 682) ), 
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which is equivalent under coordinate changes in B (briefly, `left-equivalent') to 

(8, w) -*. (8, w2,8w). 

This is the 2-jet of a `cross-cap', and is sufficient (for determinacy estimates see 

section 5). 
(c) Assume c3 = c4 = 0, c5 + 0. The 3-jet of c is now, after the variable change 

t=s-W, 

(s, w) -+ (8, s2 - w2 + b3(s3 - 3sw2 + 2w3), c5(10s3 - 20s2w + 15sw2 - 4w3)). 

This is left-equivalent as a 3-jet to 

(s, w) -. > (s, w2 - 2b3 w3) w3 + . 5,32W), 

and putting w= w(1- 2b30) the 3-jet becomes 

which can be reduced to 
(s, w) -a (s, w2, w3 + 582w), 

(8, w) -> (3, w2, w3 + 82w) 
by a change of scale. This is a sufficient jet. 

(d) Assume c3 = c4 = c5 = 01 ce + 0. Similar coordinate changes show that the 4-jet 

of c is equivalent to 
(s, w) ->- 

(s, w2, w3s+sgw), 

which is again a sufficient jet. 
(e) If c3 = ... = ce = 0) c7 + 0, then c has 5-jet equivalent to 

(8, w) -> (8, w2, w5 + 2Vb 82V + sow) 

which is again sufficient. In fact 

(8, w) -+ (s, w2, w5 + As2w3 + a'w), 

is a unimodular family of germs with modulus A, and different members (i. e. with 
different values of A) are inequivalent. Thus we cannot bring the 5-jet of c to a simpler 
form not involving a coefficient like 2/i. 

4. 

The fact that in each of the cases considered in 3, the jet given is sufficient, tells us 
that from it we may gain complete information about the germ of the image of g. In 
fact, it is easy to see that lT2 gives a homeomorphism of g (R2,0) cB on to c(R2,0) e egg, 
and so by looking at the appropriate jet of the curve y (which of course determines the 
jet of ý) we can gain complete information about the topology of g(R2,0). Straight- 
forward calculations show that the images of the jets of (a)-(e) (considered as poly- 
nomial maps R2 --> R3) have respectively 0,1,0,1,0 curves of self-intersection, and 
since cases (a)-(e) correspond to the torsion of y at t=0 being respectively non-zero, 
zero to first order, zero to second order, etc., all that needs to be done to complete the 
proof of Theorem 1 is to show that the relevant jets are sufficient. 
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5. Determinacy Estimates 

The normal forms for the jets found in 3 figure in a classification of some map- 
germs from R2 to R3 obtained by the author (6). Here we sketch a proof of their suffi- 
ciency. We rely heavily on results obtained by Gaffney (3), and use his notation. 

(a) Let f be an immersion. Then it is well known that its 1-jet is sufficient. 
(b) Let f be given by (x, y) -). (x, y2, xy). Then as is well known (see e. g. (4), page 213, 

although it is easy to check), f is stable, i. e. tf (0(2)) +wf (6(3)) = 6(f ). Since f* m3 6(f ) 

mä 6(f ), it follows from the theorem of (3) that f is 3-determined. However, given a 
3-jet of the form 

(x) y) --), (x+pi(x, y)) ya+. 12(x) y), xy+P3(x, y)), 

where the pi are homogeneous cubics, then making the coordinate change 
x= x+pl(x, Y) 

we can assume that P1= 0. Then using left coordinate changes, we can remove the 

x3, xy2 and x2y terms from p2, so we are left with a 3-jet of the form 

(x, y) -* (x, y2 + ay3, xy +p3 (x, y)) " Now put 
y(i+ay) 

to get as 3-jet 
(x, y) -+ Y» 

Remove the x3, xy and x2y terms from p3 as before, to get a 3-jet of the form 

(x, y) (x, y2, xy+by ), 

then put x=x+ bye to get as 3-jet 

(2, y) -> (2 -by2, y2, xy)" 

Finally, remove the bye from the first component by the obvious (linear) coordinate 
change in R3. Hence, the 2-jet 

(x, y) -* (x, Y" xy) 
is sufficient. 

(c) Let f (x, y) = (x, y2, y3 + x2y). Then one calculates, using the techniques introduced 
in (3), that 

If (e(2)) +wf (0(3)) D m3O(f) 

tf(e(2))+f*ms8(. f) D mä (. f) 

so that by the Theorem of (3), f is 5-determined. Manipulations similar to those of (b) 
then show that any 5-jet, whose 3-jet is equal to that of f, is equivalent as a 5-jet to 
the 5-jet off. So f is sufficient. 

(d) The remaining cases are dealt with in a similar way. 

6. Remarks 
1. It will be noted that in the calculations made in 3, none of the coefficients of the 

Taylor series of b(t) appear (except for b2, which is equal to 1 by assumption). This is 
because in making the calculations we have only had to use the constant term (again 
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equal to 1) of the power-series inverse of (-1/w2){b(t)+wb'(t)-b(t+w)}, since the 

sufficiency of the jets concerned means that higher terms are irrelevant. However, for 
k>5, no k-jet of the form (x, y) -* (x, y2, p(x, y)), where p is a homogeneous polynomial 
of degree k, is sufficient, and so an analysis of further cases (r vanishing to order 
greater than 4) would have involved looking at the coefficients of b(t). It is possible, 
however, that such k-jets may be topologically (as opposed to sad) sufficient. 

2. By looking at the versal deformation (for definitions see (5)) of such germs as 
(x, y) -+ (x, y2, y3 + xzy) (case (c) of 3), we can get a picture of what happens to the 
tangent developable of a curve as we deform it by varying some parameter. For 

example, for A=0 the curve 

y (t) = (t, t2+..., At3+C5t5+... ) (Cg > 0) (` ) 

has torsion vanishing to second order at t=0, but for A<0 the torsion has two 
(distinct) first order zeros in a small neighbourhood of t=0. The versal deformation 

of (x, y) -> (x, y2, y3 + x2y) is 

(x, y, A) (x, y2, y3+x2y+Ay) 

For A<0, there two `cross-caps' or `pinch-points' (the type of singularity of 3(b)), 
at (x, y) = (± ,J-A, 0), and their images in R3 are linked by a curve of self-intersection 
of the image of (R2,0). As A --). 0-, this curve of self intersection contracts to a point. 
Since varying A in (4) induces a versal deformation of c, exactly the same must happen 
in the tangent developable of ya as A -+ 0 -. 
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