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Abstract 

An inverse scattering method for reconstructing the permittivity, conductivity 

and permeability profiles of a multi-layered medium is developed. The inversion 

is based on the minimization of an objective function that is defined as the mean 

square error between the measured and simulated scattering data. The method 

is employed to find the dielectric parameters of layered media using the data 

collected by Ground Penetrating Radar (GPR). A GPR facing a multi-layered 

medium is modelled by a new formulation, which relates the received signal 

to the reflection coefficient of the medium. The antenna-medium coupling has 

been taken into account in the model. Thus, the GPR antenna can be placed 

in the close proximity to the medium under investigation. This results in a 

higher signal-to-noise ratio, lower diffraction from the edge of the medium and 

lower extraneous reflections. 

Instead of using a nonlinear integral equation, an exact closed-form expres- 

sion is used for the reflection coefficient. The gradient of the objective function 

is also derived analytically. A substantial improvement in the efficiency of 

the inverse method can therefore be achieved. The necessary condition for 

the unique reconstruction of the profile of layered media from the reflection 

coefficient data is also derived. 

Reconstructions have been carried out using simulated annealing and Multi- 

Level Single-Linkage (MLSL) method to minimize the objective function. It 

has been demonstrated that the MLSL method provides a superior performance 

in terms of both reliability and efficiency. Further improvement in the perfor- 

mance has been achieved by combining the MLSL with a novel optimisation 

technique especially developed for this project. 

Using both experimental and simulated data, various reconstruction exam- 

ples of layered media have been presented. 
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Chapter 1 

Introduction 

The need for remote sensing of subsurface anomalies has increased signifi- 

cantly over the past few years. Knowledge of an industrial site is now required 

prior to plant construction and for site remediation when industrial plants 

are dismantled. The presence of contaminants in the subsurface is nowadays 

one of the greatest concerns because they may be hazardous to public health. 

Non-destructive inspection of high-value structures, like highway pavements, 

bridges and buildings, is also growing in importance. Such structures need to 

be properly monitored and maintained; otherwise, they can pose a threat to 

safety. Another example is the need for the detection of buried land mines, 

which is a problem of military and humanitarian concern. 

Ground Penetrating Radar (GPR) has been found to be an attractive so- 
lution to the above remote sensing problems. GPR is an electromagnetic 

system employed for non-intrusive detection and identification of subsurface 

objects and structures. It provides inexpensive quick surveys by allowing non- 
destructive investigation of media without resorting to digging, drilling, or tak- 

ing core sample. GPR was Originally developed for military applications [53], 

such as the detection of tunnels and buried mines. Since then, its application 
has been extended to diverse areas ranging from geophysics to civil engineering 
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1.1 Review of Previous Works and Relevant Problems 2 

and archaeology. These applications include the prediction of concrete dete- 

rioration [10], pavement profiling [61], monitoring subsurface contaminations 

[16], [27], and ice thickness profiling [28]. A general description of the ground 

penetrating radar system together with its applications is given in [15]. 

The principle of operation of GPR is similar to that of conventional radar. A 

series of short pulses are propagated into the medium under examination. The 

reflected wave from target (generally any discontinuity in the electromagnetic 

parameters) is received and processed to extract useful information. Compared 

with conventional radar, the interpretation of GPR data however requires so- 

phisticated signal processing because of differences in the type of targets and 

the host medium. The signal received by a conventional radar is the reflection 

of electromagnetic wave from large metallic objects or land masses through 

air, a known non-dispersive medium. Nevertheless, for GPR applications the 

targets can be non-metallic objects located in an unknown host medium with 

significant attenuation, such as the ground. The interpretation of GPR data 

has therefore been the main concern in its application and still remains as an 

active research area after 25 years of usage of the system. 

1.1 Review of Previous Works and Relevant 

Problems 

The interpretation of GPR data is primarily based on the identification of 

typical response signatures resulting from the contribution of particular subsur- 

face anomalies and inhomogeneities to the scattered field. The interpretation 

is therefore largely comparative and requires considerable skill and experience, 

which are basically obtained from experiments conducted. The experience can 

also be acquired from a systematic study of the influences of various factors 

based on a laboratory model of the problem, such as the work of Bungey et al. 
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1.1 Review of Previous Works and Relevant Problems 3 

[10] and that of Smith and Scott [60]. A cheap and quick alternative to gain a 
better understanding of the scattering responses for the GPR data interpreta- 

tion is to use numerical simulation, for example, finite-difference time-domain 

(FDTD) method [7], [8]. The identification and analysis of the response sig- 

natures may be facilitated and automated by employing image processing and 

pattern recognition methods [3], [20], [41]. 

The aforementioned techniques aim at recognition and discrimination of the 

targets without providing the information on their location, shape and profile. 

Inverse scattering (IS) methods should be employed for the extraction of such 

information. Johansson and Mast [35] have used synthetic aperture focusing 

to locate the steel reinforcing bars in a concrete slab. The application of this 

technique is limited to the cases where the host media are non-dispersive with 

a known wave propagation velocity. Diffraction tomography [43] has the ca- 

pability to generate the target profile using GPR data. However, this method 

can only be applied under certain restrictions [59], which are imposed on the 

properties of the host medium and target. In general, these restrictions are not 

met for many GPR applications. Such limitations have stimulated the devel- 

opment of spatial-iterative methods for the reconstruction of arbitrary profiles 

[12], [29], [34], [52]. Weedon et al. [66] have employed a spatial-iterative 

techniques known as the distorted-Born iterative to reconstruct plastic PVC 

pipes located in air. Promising results have been reported. The main disad- 

vantage of the spatial-iterative methods are their computational inefficiency, 

especially when dealing with 3-dimensional problems. High computation cost 

has restricted the application of these methods in the area where 3-dimensional 

effects are important. However, the rapid advancement in computer technology 

may alleviate this problem in future [52]. 

1-Dimensional (1D) IS methods are computationally efficient and realisable 
in real time. They can be used to reconstruct the profile of layered media. The 

ground and other host media are of multi-layered structures for many GPR 
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1.1 Review of Previous Works and Relevant Problems 4 

applications. The targets for some GPR usages, such as pavement profiling, 

stratigraphic and permafrost mapping, are layered media. When the dimen- 

sions of a finite-size target are large comparing with the radiated wavelength, 

such a target may be considered as a planar layer as well. Consequently, 1D 

IS techniques are useful for the interpretation of GPR data in various appli- 

cations. Such an approach has successfully been used by Spagnolini [61] for 

finding the profile of road pavements and by Golden et al. [26] for reconstruct- 

ing the profile of a layered medium consisting of drywall and polystyrene foam 

on top of sand. 

The 1D IS techniques can be divided into two categories: the direct and 

the model-based inversions. Layer-stripping method that belongs to the direct 

category has been used for finding the parameters of a multi-layered medium 

[9], [21], [22], [26]. The method involves solving for the parameters of each 

layer consecutively. In this way, the medium is mathematically stripped away 

layer by layer, and the properties of the medium are derived in the process. 

The layer-stripping technique is fast but it is often unstable. The model-based 

inversions rely on an optimisation procedure in which the profile of a medium is 

reconstructed by minimizing a suitable objective function. Various algorithms 

using different optimisation techniques in this category have been applied to 

the inverse problem of layered media [26], [30], [49], [64]. The model-based 

methods have the advantage of being robust and broadly applicable; their dis- 

advantage is that they tend to be computationally intensive. In addition, the 

optimisation procedure employed in the model-based inversions should con- 

verge to the lowest (global) minimum; otherwise, the true profile is not found. 

Local optimisation techniques, such as the conjugate gradient method, have 

often been used [26], [30], [49], [64]. These methods are likely to get stuck 
in a local minimum, thus giving a wrong solution. In order to overcome this 

problem, Sen and Stoffa [57] have suggested employing genetic algorithm (GA) 

and simulated annealing (SA). Although GA and SA improve the reliability of 
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1.2 Overview of the Thesis 5 

finding the global minimum, they tend to increase the computational cost. 

1.2 Overview of the Thesis 

As explained in the previous section, 1D inversion is at present a practi- 

cable approach for the interpretation of GPR data in many applications. The 

primary objective of this research is therefore to develop a 1D inverse technique 

that employs GPR data to characterise layered media. This study addresses 

and discusses in more details the issues outlined in Section 1.1 for GPR data 

interpretation, inverse scattering and optimisation. We aim to develop a 1D 

inverse method that provides better stability, efficiency and reliability in com- 

parison with the previous 1D inverse methods. 

The thesis focuses on inverse scattering problem, global optimisation and 

the modelling of GPR. The organisation of the thesis is as follows: 

* Chapter 2 describes a GPR system and some standard preprocessing tech- 

niques. The methods used to interpret GPR data are formulated and the 

difficulties associated with them are discussed. Finally, the chapter provides 

some conclusions that justify the use of 1D inversion for GPR. 

* Chapter 3 elaborates on the formulation of 1D electromagnetic forward and 

inverse problems. Two mathematical forward models, the 1D nonlinear inte- 

gral equation [6] and the reflectivity formulation [65], are introduced. Layer- 

stripping method is described in detail and an example of its application to 

reconstruct the profile of a 3-layer medium is presented. The example demon- 

strates the instability of the layer-stripping technique. This chapter covers our 

contribution to the development of a novel 1D model-based inverse method, re- 

flectivity model-based inversion (RMBI), in which the computational efficiency 

is greatly improved by using the reflectivity formulation. We also derive the 

necessary condition for the unique reconstruction of the parameters of a layered 

medium in this chapter. It is finally demonstrated that a global optimisation 
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technique should be used in the RMBI. 

* Chapter 4 provides a comparative study of four global optimisation meth- 

ods, genetic algorithm, simulated annealing, adaptive simulated annealing (ASA) 

and multi-level single-linkage (MLSL). GA and the MLSL have already been 

compared by Renders and Flasse [56]. Their results indicate that the MLSL 

method has a higher accuracy and efficiency than GA. Thus, several reconstruc- 

tion examples of layered media are presented to compare three other techniques. 

It is shown that a significant improvement in accuracy, efficiency and reliability 

can be achieved by using the MLSL method. Despite good performance of the 

MLSL, it fails or needs a substantial amount of computation time to solve those 

1D inverse problems in which the medium comprises a relatively large num- 
ber of layers. This is especially true when the deepest layer is unknown, the 

observed data is rather incomplete and/or the optimisation has to be carried 

out within a large space of the medium parameters. In order to remedy such a 

deficiency, a hybrid optimisation method is proposed by combining the MLSL 

method with another optimisation algorithm, the adaptive random search. The 

application of the hybrid method to various reconstruction examples confirms 

the improvement in the efficiency and reliability. 

* Chapter 5 deals with the mathematical modelling of a GPR antenna above 

the surface of a layered medium. Inspired by free-space measurement tech- 

niques [2], [36], [37], we derive a model that relates the signal received by the 

antenna to the reflection coefficient of the medium. The model takes into ac- 

count the antenna-medium coupling. This makes it possible to considerably 

reduce the separation between the GPR antenna and medium in comparison 

with conventional free-space methods. Experimental investigations and numer- 
ical examples verify that the separation might be of the order of a wavelength 

or less. The application of the proposed model to the measurement of the elec- 
tromagnetic properties results in a higher accuracy as well. This chapter also 
details a FDTD model of a commercial GPR and the considerations required 

THE APPLICATION OF GPR 



1.3 Major Contributions 

for the simulation of the GPR antenna. 

7 

* Chapter 6 presents a summary of the work and discusses the future contin- 

uation of the research. 

1.3 Major Contributions 

1. Development of a novel 1D model-based inverse method, the reflectivity 

model-based inversion (RMBI). 

2. Derivation of the necessary condition for the unique solution to 1D electro- 

magnetic inverse problems. 

3. Characterisation of layered dielectric medium using the reflection coefficient 
([31]). 

4. Application of the MLSL method to the inverse problem of layered media 

([45], [47]). 

5. A hybrid global optimisation technique. 

6. Modelling of a GPR above a multi-layered medium and its application to 

the measurement of the complex permittivity ([46]). 
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Chapter 2 

GPR System and Signal 

Processing 

2.1 Introduction 

Ground penetrating radar is based on the same principle as conventional 

radar. Electromagnetic energy propagates through a medium and is par- 

tially scattered from discontinuities in the electromagnetic parameters of the 

medium, i. e. the conductivity, permittivity and permeability. The scattered 

wave, which returns to the receiving antenna, is detected and processed to 

extract the information. 

Two modes of operation can be classified for GPR systems: The first is 

the frequency-domain mode and the second is the time-domain mode. The 

radiated signal in the frequency-domain mode comprises a number of narrow- 
band signals that cover a broad band of frequency as a whole. These signals are 

transmitted by sweeping through a range of frequencies and the magnitude and 

phase of the received signal are recorded at each frequency as radar data. The 

systems operated in this mode are referred to as step-frequency radar. In the 

time-domain mode, a short-duration pulse (ideally an impulse) is transmitted 

8 



2.2 Principles of Operation 9 

and the received signal is sampled in the time-domain as radar data. This kind 

of radar is called pulse radar. Through the use of Fourier transform, the data 

in the time domain may be converted to the frequency domain and vice versa. 
Thus, most of the processing techniques described in this thesis are equally 

applicable to both systems. 

Due to the popularity of pulse radar, and for completeness, it is described 

in Section 2.2 in some detail. Section 2.3 introduces several preprocessing 

techniques. The processing and interpretation of the GPR data are discussed 

in Section 2.4. Finally, Section 2.5 is devoted to concluding remarks that justify 

the direction of this research. 

2.2 Principles of Operation 

Figure 2.1 illustrates a typical pulse GPR. After the synchroniser triggers 

the pulse generator and the sampler, the transmitting antenna is excited by 

a pulse and radiates a signal which penetrates into the ground. The signal 

is partially scattered from the object or in general from any discontinuities in 

the electromagnetic parameters in the subsurface. A portion of the scattered 

signal returns to the surface, where it excites the receiving antenna. The re- 

ceived signal is then filtered, sampled and recorded. Figure 2.2 shows SIR-2 

system, a pulse GPR manufactured by Geophysical Survey Systems Incorpo- 

ration (GSSI). This system can be used with a range of antennas for various 

frequencies. A 400 MHz antenna is shown in Fig. 2.2. 

2.2.1 Pulse generator 

The pulse generator produces a train of short-duration step pulses (p(t)). 

Pulse width of such a pulse is usually of the order of a few nanoseconds and its 

amplitude is typically within the range 20-200 V. A reasonable approximation 

THE APPLICATION OF GPR. 



2.2 Principles of Operation 10 

Figure 2.1: Schematic diagram of a typical pulse GPR. 
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2.2 Principles of Operation 11 

Figure 2.2: SIR-2 system and 400 MHz antenna. 

for p(t) is a Gaussian pulse [7], [53] 

\2 
p(t) = Vo exp -I 

(s I (2.2.1) 
o/ 

where Vo is the peak amplitude of the pulse and rro determines the pulse width. 

The spectrum of this pulse is broad and equal to [62, Page 178] 

W VG 
P(w)_Vo 27r7-oexp 

)21 
--, w0=- (2.2.2) 

WO 70 

Normalised p(t) and P(w) are shown in Fig. 2.3. The sign pulse in this figure 

will be referred to in Subsection 2.2.3 for comparison. 

2.2.2 Sampler 

The received analog signal may be converted to digital data using a fast 

Analog-to-Digital Converter (ADC). This sampling system captures the com- 

plete waveform in one pulse transmission period. However, ADCs are not fast 
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2.2 Principles of Operation 12 

enough to be able to sample wideband GPR signals. The digital data are there- 

fore mostly acquired using what is known as equivalent time sampling system 
[15, Chapter 5]. In this system, only a single discrete data point is acquired 
during each pulse transmission period. The first data point is acquired during 

the first pulse period, the second one during the second pulse period and so 

forth. In other words, the complete waveform is constructed from displaced 

samples of successive periods of the analog signal. Thus, if a received digital 

-4 -3 -2 -1 01234 
Time (Vt. ) 

(a) 

0 0.5 1 1.5 2 2.5 3 
Frequency ( Imo ) 

(b) 

Figure 2.3: Gaussian and Sign pulses normalised to their amplitudes. (a) Time 
domain (b) Frequency domain. 
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signal consists of N samples, N pulses need to be transmitted. 

The pulse generator and the sampler must be synchronised (the function of 

synchroniser) not only to preserve both the phase and amplitude information 

but also due to an essential need for the equivalent time sampling system. Any 

drift in synchronisation between the sampler and the pulse generator within 

the acquisition of a signal results in non-uniform sampling which distorts the 

received signal. 

2.2.3 Antenna 

There are two popular antenna configurations for GPR: monostatic and 
bistatic. The same antenna is used for transmitting and receiving in a monos- 

tatic configuration, whereas separate antennas are employed in a bistatic con- 

figuration. The antennas for a bistatic GPR can be mounted inside a box a 

finite distant apart, as shown in Fig. 2.1. The most common antennas used 

for GPR are dipole, bow-tie and horn antennas. Crossed dipoles or the time- 

domain monopulse antenna can also be used for bistatic configuration so as to 

minimize the energy directly coupled from the transmit to the receive antenna 

[53]. 

GPR antennas are loaded in order to make them broad band and to reduce 

the antenna ringing that could extend into the range window of the desired sig- 

nal [53]. The radiated field (transmit wavelet) from a loaded antenna is nearly 

the time derivative of the driving pulse [15, Chapter 4], i. e. the antenna acts 

as first order high-pass filter in the bandwidth of the driving pulse. Assuming 

the driving pulse is Gaussian, the transmit wavelet will then be a Sign pulse 

ps (t) 

)2] 

ps(t) _- Vä t 
exp 

H (2.2.3) 
T0 

The spectrum of ps(t) can be found by introducing jw and a correction factor 
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(according to (2.2.3)) in (2.2.2). Thus 

2 

P'(w) = jVö 47rTO 
(-'\ 

exp -('j= (2.2.4) 
wo wo 

Fig. 2.3 shows a normalised Sign pulse and its spectrum. When an antenna is 

in the vicinity of the ground, the radiated field is determined by not only the 

antenna geometry but also its interaction with the ground (the antenna-ground 

coupling). This may also occur where two antennas are in close proximity, e. g. 

bistatic configuration. In such a situation, the transmitting frequency response 

of the antenna becomes more selective; thus the pulsewidth of the radiated field 

is increased. Furthermore, the wavelet might no longer be a sign pulse but a 

pulse that has many lobes such as Ricker pulse [541. 

2.2.4 Data acquisition and representation 

In order to conduct GPR surveys, the antenna is towed continuously over 

the ground. This can be carried out by pulling the GPR antenna by hand, 

or with a vehicle. Sampled waveforms are acquired at equally spaced points 

across the ground surface. The recorded data from each point is called a trace, 

or a scan. An ensemble of scans forms a 2-dimensional image referred as a 

'B-scan' or 'radargram'. Each vertical line of a radargram corresponds to a 

sampled waveform (scan), whose amplitude is represented by the intensity of 

gray scale. A typical radargram is shown in Fig. 2.4(a) where the horizontal 

axis is the distance along the surface, and the vertical axis is two-way travel 

time from the antenna to a reflector in the subsurface. The reflector in this 

survey is a steel pipe buried in desert at a depth of 37 cm (to the top of the 

pipe). The antenna is operated at 900 MHz. The pipe can be detected from 

the hyperbola, whose top is at scan number 125 (the hyperbola can hardly be 

seen). The phenomenon of hyperbolae appearing in GPR images due to the 

presence of buried objects will be discussed in Section 2.4. The waveform of 
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Figure 2.4: (a) A GPR image acquired in desert using 900 MHz antenna. Scan 

number 125 in (b) time-domain (c) frequency-domain. 
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2.3 Preprocessing 16 

scan number 125 in the time domain and frequency domain are shown in Fig. 

2.4(b) and 2.4(c) respectively. The strong reflection at the beginning is the 

combination of the ground surface reflection, the internal antenna reflection 

and/or the antenna transmit-receive coupling signal. This reflection serves 

to establish a time-reference point for return-depth determination. The time 

delay to the first reflection is determined either automatically or manually to 

prevent sampling the portion that results from the delay in the transmission 

lines. The reflection from the pipe, which is hard to see in Fig. 2.4(b), lies 

nearly in the interval [5 ns, 7.5 ns]. 

2.3 Preprocessing 

The raw GPR data needs to be preprocessed to enhance the part of the data 

related to the reflection from the target. This requirement can be understood 

from Fig. 2.4 in which the information from the pipe can hardly be observed. 

Three undesired effects, noise, common clutter and path loss are removed in the 

preprocessing stage. In this section, the widely used preprocessing techniques, 

i. e. path loss compensation, background removal, averaging and filtering are 

described. The description of other methods like pulse deconvolution can be 

found in [15, Chapter 6]. 

2.3.1 Path loss compensation 

As a result of path loss both by the ground conductivity and by the spread- 

ing effect, the received signal is attenuated when compared with the transmit- 

ted one. This attenuation depends on the range of the reflector (r). If the 

reflector is flat enough in comparison with the wavelength, the spreading loss 

is in proportion to *. Otherwise, it is proportional to r [15, Chapter 2]. The 
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medium (ground) loss (Loss) is given by 

s=e2, a=1+(-)2 -1 (2.3.1) Los 

where a, e and µ are respectively the conductivity, permittivity and perme- 

ability of the medium and a is the attenuation constant . 
Path loss is compensated by applying a time-variable gain (range gain) as 

shown in Fig. 2.5(a). The gain in decibel is selected as a piecewise linear 

function of time [24]. Assuming that the two-way travel time relates to r 

through a constant value, this selection can be justified by deriving Loss in 

decibel 

Loss(dB) = 20 loglo Loss = 17.372 ar (2.3.2) 

The above equation does not take account of the spreading loss. This might 
be because the medium loss is usually the dominant factor in path loss. 

2.3.2 Background removal 

In radar literature, those reflections that are unrelated to the target scat- 

tering characteristics but have similar spectral features to the target echo, are 

regarded as clutter. The common clutter is defined as the clutter that occurs 

in the same time window of several scans, e. g. the surface reflection, antenna 

ringing and the echoes from the subsurface planar interfaces. 

Background removal eliminates the common clutter in GPR data. It is 

useful where there are a limited number of targets and they are well separated. 
Background removal is attained by dividing the radargram into vertical strips, 

taking an average of the scans across each strip and subtracting the average 
from each scan of the strip. The width of each strip is specified in terms of 
the relative location of the targets to each other. As a rule of the thumb, the 
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Figure 2.5: (a) Applied range gain to the image 2.4(a). (b) Background signal, 
the ensemble mean of the scans across the image. (c) Signal of scan number 
125 after background removal and applying the range gain. (d) Filtered version 
of the above signal using a FIR low-pass filter with 1800 MHz cutoff frequency. 

THE APPLICATION OF GPR. 



2.4 Interpretation of GPR data 19 

width for all strips is equally set to the number of scans of the largest target 

[24]. 

Figure 2.5(b) shows the background signal that is the average of 251 scans 

of the radargram 2.4(a). The echo from the steel pipe ([5 ns, 7.5 ns]) is clearly 

visible in Fig. 2.5(c) and 2.6(b) after background removal and applying the 

range gain. 

2.3.3 Averaging and filtering 

Averaging is one of the techniques used to eliminate the effect of noise. The 

average of a number of radar signals, taken at a single point on the ground, 

is considered as the received waveform for that point. Viewing the noise as 

additive white Gaussian noise, it can be shown that averaging N radar signals 

improves Signal-to-Noise Ratio (SNR) N times [51]. 

Another method to improve SNR is low-pass filtering, in which high fre- 

quency noise, especially visible in the lower portion of the radargram is re- 

moved. It is suggested in [241 that cutoff frequency of the low-pass filter should 

be twice the antenna frequency. 

The effect of low-pass filtering can be observed in Fig. 2.5(d) where the 

reduction of the noise level is visible at late times. The effects of the prepro- 

cessing on the radargram 2.4(a) are illustrated in Fig. 2.6. 

2.4 Interpretation of GPR data 

The major problem with the application of GPR is the interpretation of 

its data. The standard methods used for conventional radar are not generally 

applicable to GPR because of two major differences. Firstly, in conventional 

radar the main objects reflecting radar signals are large metallic objects (e. g. 

an aircraft) or land masses, whereas in GPR, reflections can be caused by 
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Figure 2.6: Illustration of enhancement of the image 2.4(a) by (a) applying the 
range gain, (b) background removal and (c) low-pass filtering. 
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2.4 Interpretation of GPR data 21 

nonmetallic buried objects, voids, change in density, etc. Secondly, the host 

medium for conventional radar is air, a known medium with low attenuation, 
but for GPR the medium is often an unknown dispersive medium consisting of 

several layers. 

Depending on the information to be derived, GPR is commonly used for 

1. recognising and discriminating the targets. 

2. imaging the subsurface structure. 

The methods adopted for the first purpose simplify and speed up the interpre- 

tation of radar records. The techniques used are pattern recognition, Prony's 

method and image processing. Pattern recognition is used to discriminate 

echoes from buried targets and unwanted signals. Neural networks are fre- 

quently used for pattern classification [3]. On the basis that every object 

possesses a unique natural resonance, Prony's methods can be employed for 

discriminating and recognising targets from clutter [15, Chapter 6], [53]. This 

target resonance may be fed into the pattern recognition procedure in conjunc- 

tion with other target features. The goal of image processing is to enhance 

some aspects of GPR image, such as edges, and to extract lines and curves like 

hyperbolic anomalies caused by finite scatterers. 

Imaging the subsurface structure can be viewed as either locating the target, 

or constructing the target profile. Among the techniques used to locate the 

objects is synthetic aperture focusing [35]. Of the techniques that are useful 

in generating target profile are diffraction tomography [43] and the spatial- 

iterative methods [12], [52], [66]. The aforementioned imaging methods belong 

to a larger group known as the inverse scattering methods whose objective is 

to solve an inverse problem so as to estimate the target's properties from the 

scattered field. 

The methods employed for imaging the subsurface structure are directly 

concerned with the interpretation of GPR data. The methods used for the 
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recognition and discrimination of the targets have the same objectives as those 

of preprocessing. They may therefore be put into preprocessing stage. A brief 

description of synthetic aperture time-domain focusing, diffraction tomography 

and a spatial-iterative method, iterative Born technique, is given below. 

2.4.1 Synthetic aperture time-domain focusing 

Inherent in the application of synthetic aperture focusing is that the host 

medium is non-dispersive. In other words, the loss tangent of the host medium 

satisfies 

or I2 «1 (2.4.1) 

in the frequency bandwidth of the transmission wavelet. Suppose the radar- 

gram consists of N scans and the position of antenna for the nth scan is 

(x,,, z- = 0) where x-axis is on the surface and z-axis is perpendicular to 

the ground (Fig. 2.7). Having known the propagation velocity of the medium 

v, an estimate of the object distribution at a point (x, z) is given by [35] 

6(x, Z) =NN 
NE 

sn 
2v (2.4.2) 

n=1 

where s,, (t) is the nth received waveform and 

rn = (x - xn)2 + z2 (2.4.3) 

The quantity 2 represents the two-way travel time needed for an electro- 

magnetic pulse to travel between the antenna located at (x, 
s, 0) and the point 

(x, z) in the object distribution. Thus, the image formation process is simply 

an average over the received waveforms evaluated at the travel time for each 

particular antenna position. 

The presence of a finite-size scatterer forms hyperbolic anomalies in the 

GPR radargram, as illustrated by Fig. 2.7. Considering the vertical axis 
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Figure 2.7: Formation of a hyperbola anomaly. 

represents the two-way travel time (i. e. t= v'') in a radargram, the equation 

of the hyperbola can be written as 

t2 = tö + ui (x - xo)2 (2.4.4) 

The velocity v can be evaluated from hyperbolic anomalies. The four quan- 

tities to, xo, t and x are known from the radargram. The propagation velocity 

is computed from [3] 

v=2 
E(t2 

t2 ) 
(2.4.5) 

The sums are taken over several points on the hyperbola so as to reduce the 

effect of noise. 

2.4.2 Diffraction tomography and iterative Born method 

These two methods theoretically present the entire information available 
from GPR data, i. e. the location, geometry and material of targets. Both 

methods are based on the source-type integral equation that relates constitutive 

parameters (conductivity, permittivity and permeability) of the objects to the 

scattering field. Consider the geometry of a 3-dimensional electromagnetic 
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problem shown in Fig. 2.8. The geometry consists of two half-spaces, region 

fro, -a Region 1 

Y /Io, t`(r) , c(r) 

Object distribution 
Region 2 

V 
z 

Figure 2.8: The geometry for 3-dimensional electromagnetic problem. 

1 is free space and region 2 is an inhomogeneous half-space representing the 

ground. An inhomogeneous object of finite-size is located in the ground. At 

any point specified by the position vector r= (x, y, z), the total field c5(r) is 

given by [34] 

q5(r) _ 0"'(r) +f 0(r') [q5(r') - Gb(r, r')] dr' (2.4.6) 

where c5t"c(r) is the incident field produced by sources in the absence of the 

object (the scatterer). The object profile O(r) is defined as 

0(r) = 72(r) -7 (r) (2.4.7) 

where 'y(r), the propagation constant , is given by 

-W2µoco ,rE 
Region 1 

72(r) = jµoo9(r)w - w2jGoEg(r) ,rE 
Region 2 (2.4.8) 

jµoa(r)w - w2µo¬(r) ,rE object 

and ryb(r) defines a background propagation constant as 

2 w2/1oeo ,rE Region 1 
7b (r) _ (2.4.9) 

j poa9 (r)w - w2ploc9 (r) 
,rE Region 2 
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Gb(r, r') is the dyadic Green's function that is a solution of the differential 

equation [13, Chapter 9] 

[VV - V21 +'yb (r) I] " Gb(r, r') =- 15 (r - r') (2.4.10) 

where I is the unit matrix. It can be concluded from (2.4.6) that the scattered 

field containing the information about the object is equal to 

0 'ca (r) = fO(r') [«(r') " Gb(r, r')] dr' (2.4.11) 

The scattered field inside the object is a function of itself, making a nonlinear 

relation between the profile O(r) and the scattered field. 

Diffraction tomography employs an approximate linear version of (2.4.11). 

When the scattered field inside the object is small compared to the incident 

field, (2.4.11) can be approximated by [59] 

0sca(r) =% 0(r') [oinc (rº) , Gb(r, r')] dr' (2.4.12) 

which is linear in O(r). This approximation is referred as the Born or weak 

scattering approximation. The tomographic nature of the data in conventional 

diffraction tomography is obtained from rotation of the object. However, for 

GPR the tomographic information is obtained from a wideband pulse trans- 

mitted into the host medium at several points equally spaced in a grid on the 

interface between air and the host medium (Fig. 2.8). Each wavelength in the 

received waveform (scan) represents a different portion of the spectrum of the 

object distribution. Superimposing the spectral components from each wave- 
length, the object distribution on a plane parallel to the interface is derived 

by a 2-dimensional inverse Fourier transform. The details of the method are 

presented in [43]. 

For many geophysical applications where the contrast between the prop- 

agation constant of the host medium and object is considerable, the linear 

approximation is too restrictive. Iterative Born method directly deals with 
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the nonlinear integral equation [12]. In this technique, the use of the moment 

method transforms integral (2.4.11) into a matrix relation. This is done by 

discretising the region of space and then expanding the object profile into a set 

of J expansion functions. If a total of K receiver-transmitter pairs are used 

and each received waveform consists of N samples in the frequency domain, 

there will be a set of KxN linear equations with J unknown values. At each 

iteration by the use of the object profile provided in the previous iteration, 

a forward scattering problem is solved to compute the total field inside the 

object. Using the resulting field, the inverse solution of the matrix relation 

yields a new profile for the object. Various scattering algorithms can be used 

for the forward problem, such as the finite-difference time-domain method or 

the discretised version of equation (2.4.6). 

The iterative Born technique (or generally the spatial-iterative methods) are 

computationally inefficient and especially, their application to the 3-dimensional 

problems requires a huge amount of memory and intensive computation [52]. 

On the other hand, profiting from fast numerical algorithms (fast fourier trans- 

form), the diffraction tomography is efficient and works well when nonlinear 

effects are negligible. 

2.5 Discussion and Conclusion 

Preprocessing algorithms, image processing methods, pattern recognition 

etc. highlight the features of GPR data that are related to targets. These meth- 

ods automate some tasks in the analysis of radar data. Application of these 

techniques often enables a geophysicist to detect the targets and to recognise 

roughly their spatial extent (e. g. being finite-size objects or planar interfaces). 

The methods particularly pertaining to the interpretation of GPR data are 

inverse scattering techniques. There exist limitations associated with each in- 

verse technique discussed in Section 2.4. These techniques share one limitation 
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that the electromagnetic parameters and structure of the host medium have 

to be known in advance. When the host medium is homogenous and non- 

dispersive, it is possible to measure the permittivity (the propagation velocity) 

of the host medium using hyperbolic anomalies. However, some constitutive 

materials of such media are lossy especially when they are mixed with wa- 

ter. The conductivity of material is highly dependent on water content, e. g. 

0.001 < Udry clay < 0.1 (S/m) and 0.1 < Uwet clay <1 (S/m). Furthermore, 

the host medium is inhomogeneous (consists of planar layers) for many GPR 

applications, such as detection of objects buried under a road that comprises 

two/three layers of asphalt and a layer of concrete. 

3-dimensional spatial-iterative methods can be used to obtain the profile 

of a dispersive, inhomogeneous medium, but they are inefficient and not feasi- 

ble as realtime problems. The iterative Born method is capable of finding the 

whole subsurface profile including that of the host medium. However, including 

the host medium in the discretisation domain significantly increases the com- 

putation time and computer memory. It is also not practical to construct the 

profile of the host medium by diffraction tomography due to the considerable 

contrast between parameters of air and the host medium (e. g. the ground). 

The ground and other host media are multi-layered media for many GPR 

applications. Development of an efficient method for characterising multi- 

layered media would therefore be useful in this respect. The targets for some 

GPR usages, such as pavement profiling, permafrost mapping and ice thick- 

ness profiling, are also layered media. In addition, finite objects sometimes 

can be regarded as a layer if their dimensions are large compared with the 

effective transmitted wavelengths. Being efficient and feasible in real-time, 1- 

dimensional (1D) IS methods may be employed to characterise layered media 

using GPR data. In this research, we therefore investigate and assess the use 

of 1-dimensional IS techniques for GPR applications. 

THE APPLICATION OF GPR 



Chapter 3 

One-Dimensional Inverse 

Scattering Methods 

3.1 Introduction 

The inverse scattering problem is to reconstruct the properties of a medium 
from the scattering data. On the contrary, the goal in a forward problem is 

to generate the data scattered from a known medium. In a way, IS problems 

can be viewed as system identification problems in which the parameters of a 

predefined model of the system are derived. These problems arise in various 

areas including physics, geophysics, medicine and electrical engineering [14]. 

The determination of the dielectric properties of a medium, identification of 

the impedance profile of transmission lines and the design of digital filters in 

cascade form are examples of inverse scattering problems posed in electrical 

engineering. 

Inverse scattering methods may be classified into two categories [57]. The 

first category includes all direct inversions, which extract the model parame- 

ters directly by applying a mathematical operator to the measured scattering 
data. The operator is recognised or designed on the basis of the physics of 
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the forward problem. A well-known direct inversion is the layer-stripping algo- 

rithm principally used for 1D problems [9], [21], [22], [26] where the parameters 

of the media vary in one spatial dimension. This technique can be used for 

2-dimensional problems [67] as well. 

The second group comprises the so-called model-based inversions. These 

techniques rely on an optimisation procedure in which the parameters of a 

model of a medium are reconstructed by optimising a suitable objective func- 

tion. The value of this function indicates the closeness between the observed 

(measured) scattering data and the synthetic data. The synthetic data is gen- 

erated by solving the forward scattering problem. In contrast to direct inverse 

methods, no attempt is made to reverse the forward process in a model-based 

inverse technique. Several algorithms in this category have been developed 

[12], [23], [26], [29], [30], [49], [57], [64]. 

Inverse scattering problems might be ill-posed due to the nonlinearity of the 

forward problem and inadequacy of the measured data. A problem having the 

properties of existence, uniqueness and stability of the solution is called well- 

posed [14, Chapter 4]. The third property, stability, indicates how small errors 

in the measured data propagate into the estimation of the model parameters. 

Low stability of an inverse problem means that small perturbations of the data 

lead to large errors in the reconstruction of the model. A problem is said to 

be ill-posed if one of these properties fails to hold. 

If an IS problem is ill-posed, the performance of the model-based inversions 

is superior to the direct ones. Particularly, when the measured data is in- 

complete and/or contaminated by noise, the direct inversions suffer more from 

instability. The model-based methods are more robust and broadly applicable 
[57, Chapter 2]. The advantage of the direct methods over the model-based 

ones is their efficiency in terms of computation time and sometimes the amount 

of memory required. 

This chapter is devoted to the investigation of 1D Electromagnetic Inverse 
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Scattering (EIS) methods applied to characterisation of inhomogeneous layered 

media. Formulation of the inverse methods in both the categories mentioned 

are mainly based on either a nonlinear integral equation or a wave differential 

equation. Section 3.2 deals with the detailed extraction of nonlinear inte- 

gral equations for use in 1D EIS methods. Wave differential equations for 1D 

problems can be solved analytically to give an explicit closed-form expression, 

which is known as the reflectivity formulation and is introduced in Section 3.3. 

Making use of this expression, the layer-stripping method is described and a nu- 

merical example is also provided. This example demonstrates the instability of 

the direct techniques, suggesting the use of the model-based approach for GPR 

applications. Employing the reflectivity formulation, a new 1D model-based 

inverse method is proposed in the final section. The new method provides an 

improvement in efficiency. The necessary condition for the unique solution to 

1D EIS problems is also discussed. 

3.2 1D Nonlinear Integral Equation 

The model used in numerous 1D EIS methods is based on a nonlinear inte- 

gral equation, which was presented in the previous chapter for 3-dimensional 

problems. The 1D version of this equation is derived for normal wave incidence 

in [6] and can be extended to the TE wave incidence as follows. Figure 3.1 

illustrates the geometry of the problem where a TE wave is incident on an 

inhomogeneous slab with angle 0. The permittivity c(z) and conductivity a(z) 

of the slab are functions of the depth z. The incident electric field E, polarised 

along y coordinate is given by 

Ei_ Ee-70 cos 0' x e-7o sin 9x3.2.1 
y0 

where -yo = jw µoeo. The total field Ey satisfies the wave equation 

[V2 - y2(z)] Ey =0 (3.2.2) 
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Figure 3.1: A one-dimensional inhomogeneous slab placed in free space. 

where 

-/10EOW2 , z<O, z>h 
ry2(z) 

jµoa(z)W - POE(z)w2 ,0<z<h 

(3.2.3) 

The general solution of (3.2.2) is of the form 

E= (5(z) e-70 sinBx (3.2.4) 

where 0 is merely a function of z. Substituting (3.2.4) into (3.2.2), one can 

derive 

d2o 
d- [72(z) - 7ö sin2 0] g5 =0 (3.2.5) 

Now subtracting 7020 gives 

(3.2.6) 
d- 

76 cost 0_ ['Y2 (z) - 'Yö] 0 

Let G(z, z') be the Green's function which satisfies the equation 
ý-_. 

ycos2O4= -b(z - z') (3.2.7) 

According to (3.2.1), we know that O(z) = 1inC = Eoe yocosez in the absence 

of the slab (Oinc is the incident field 0). Thus, the solution for ¢(z) can be 

written as 
h 

o(z) _ otnc _ {72(z') (z')G(z, z') dz' (3.2.8) 
0 
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Taking the Laplace transform of (3.2.7), the Green's function is given by 

G(z z') =c e-. i 11 cos0lz-z'I ' 2jwcos0 
(3.2.9) 

where we made use of 'yo = jw/c, and c denotes the speed of light in free space. 
Substituting (3.2.9) into (3.2.8), the field O(z) can be expressed as 

c (z) _ oinc _ 170 hQ 
zº zº e -i cos B z-zý dz' l 2cos0 

fo ( )c( ) 

h 
3Weo[Er(z') - 1] «(z') e-i - coselz-z'I dzº 

(3.2.10) 
-ý f 

2 cose o 

where rho = µo/co is the impedance of free space and er(z) is the relative 

permittivity of the slab. 

In 1D EIS problems, the slab is approximated by M homogeneous layers. 

Thus, Equation (3.2.10) is rewritten as 
MM 

O(z) = oinc 
2 cos 

770 
8E am 4'm 

(z) 
-2 

cos 

3w 770 IEO 
8 

E`Erm 1] I)m(Z) 3.2.11) 

m=1 m=1 

where cr,,, and Cm are respectively the relative permittivity and conductivity 

of the nth layer. 0,,, (z) is equal to 
Zm 

, P. (Z) =f O(z1) e-iýý"selz-"l dz' (3.2.12) 
Zm-1 

where zo =0 and zM = h. The scattering data is the reflected field oref (z) 

measured at several frequencies and/or incident angles at a point in the region 

z<0, say z=0. Hence, 

ref (O) = 0(0) - Oinc(O)_ -ý2cosBEmM=10m Wm(0) l 
(3.2.13) 

3. w 170 £0 m 
2cos0 

>m=ikrm 
- 1] 

m(O) 

This equation can be used within the iterative Born algorithm to find the di- 

electric profile of inhomogeneous slabs. Such an algorithm is described in [63] 

where a time domain version of (3.2.13) has been employed. It is straightfor- 

ward to transform it to the time domain 

ýref (z = O, t) _2B Z+m_1 °m 
, Izm 10(z', 

tl) dz' 
(3.2.14) 

170 Co 
Ni ('Zm Ö Zý+ý 

2 cos 
Em-1 [Erm 

- 1ý Jz,,, 
_i at 

dz 
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where t' =t- ! '-"'O. Other versions of (3.2.13) have also been used in 1D EIS 

methods [64]. All inverse methods that have employed the nonlinear integral 

equation so far belong to the model-based category. Perhaps the iterative 

Born method cannot strictly be included in this category since the dielectric 

parameters are obtained by the inversion of a matrix equation derived from 

(3.2.13). However, this matrix inversion is not performed directly but through 

analytic minimization of an objective function. 

In order to employ the nonlinear integral equation in a 1D EIS technique, 

the total field O(z) has to be evaluated for the present medium profile at each 

iteration. One way is to use other kinds of forward modelling, such as the finite- 

difference time-domain method. Another way is to solve (3.2.11) numerically 

by assuming ¢(z) = q(zk id) within kth layer where zm id = (zk_l+zk)/2. Thus, 

one can derive 

O(zkmid) = 
inc(mid +o M mid /'zin -j `' cosBIzk'd-z' ecl dz' zk )- 

2cos0 
ým=1 Qm ýýzm ) 

JzM_i 

JW 770 co M 
cos B 

>m= [Erm 
' 11 O(zmidf11LM-) / z+n e-j 

c cos B ýzk cd-z, I dz' (3.2.15) 
-2 1 

k=1,2,..., M 

which consists of M linear equations and can be solved for unknown total fields 

ol/zkmid1l, 

As it can be inferred from the above explanation, the application of the 

nonlinear integral equation in a 1D EIS is involved matrix inversion and/or 

optimisation of function of 2M variables (Qm, frm, rn = 1, ... , M). These in- 

verse techniques are not therefore efficient even if the medium is discretised to 

small number of layers. For example, a function in 30-dimensional space must 
be optimised when M= 15. 

3.3 1D Wave Differential Equation 

It is demonstrated in this section that the solution of the 1D wave differen- 

tial equation results in an exact closed-form expression for the reflection coef- 
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ficient of a multi-layered medium. This expression has been used in the layer- 

stripping algorithm to reconstruct the profile of layered media. The derivation 

of the reflection coefficient of a non-uniform transmission line is also given in 

this section. Due to common mathematical foundation for two cases, we can 

use the experimental data acquired by a network analyser from a non-uniform 

transmission line to evaluate the performance of a 1D inverse method for the 

real data. For the case of multi-layer media, only TE wave incidence is con- 

sidered. Nevertheless, the derived expressions can easily be extended to TM 

wave incidence. 

3.3.1 Forward modelling of multi-layered media 

The geometry of the problem is illustrated in Fig. 3.2(a). The specifications 

of this figure are the same as Fig. 3.1 except that the medium consists of M 

homogeneous layers. Suppose the incident electric field E, is given by Equation 

(3.2.1). Thus, the electric field in the entire space has only ay component that 

for the mth layer is a solution of the equation 

[V2 
- 7m2 ] Em11 =0' 'Ym = iµmomw - µmemw2 3.3.1) 

The goal is to derive the reflection coefficient of the medium, which is the ratio 

of the reflected field to the incident field at the interface z=0. We follow a 

procedure similar to that in [65] while going through more details. The solution 

for E, n, y can be expressed as 

Emy = Lame um z+ bmeum zI e 7o sin Bx (3.3.2) 

where 
Vm6 

Y2 - 'Y2 sin2 0 (3.3.3) un+ -' 

Maxwell's equations give the x component of the magnetic field H�, x as 

Hmx 
ý1 

c9 E,, 
=Y,, -ame-um z+ bmeum xl e-7o sin ox z (3.3.4) 
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Figure 3.2: (a) A stratified medium. (b) A non-uniform transmission line. 

where Ym, termed by analogy to transmission line as the characteristic admit- 

tance of the mth layer, is given by 

Ym =, 
um (3.3.5) 

3PmW 

Let the surface admittance Wm be defined as 

Wm =- 
H(m-1)z 

(3.3.6) F/(m-1)y 
zm-1 

THE APPLICATION OF GPR 



3.3 1D Wave Differential Equation 36 

Owing to the boundary conditions 

E("`-i)y Emy 
(3.3.7) 

H(m-1)x = Hmx 
zm-1 

W, n, can be rewritten as 

-Eýum 
zm-1 + zm. eum zm-1 

W. =- 
Ems I=Y. 

e_ým zm-1 + brn eum zm_1 
(3.3.8) 

ýJ zm_1 am 

Similarly, the surface admittance at z= z�, is 

-e-tlm 
Zm + ý. 

e1lm Zm 

Wm+l =- 
Hmx 

= -Ym 
T an (3.3.9) 

Zm 
e-9Lm Zm + 691 

eum Zm I''+ny 

1 

am 

Deriving 
Pm- 

from the above equation yields m 

-2um zm 
Ym - Wm+l 

=eý (3.3.10) 
(Lm Ym + Wm+l 

By the substitution of (3.3.10) into (3.3.8), it follows that 

Wm = Ym 
Wm+l + Ym tanh u,,, hm 

3.3.11) 
Ym, + Wm+l tafh umhin 

where m=1,2,.. ., M-1. There is no upgoing wave in the lowest layer, i. e. 

bM = 0. Hence, for m=M Equation (3.3.8) gives 

WM = YM (3.3.12) 

From (3.3.2) and (3.3.10), one can conclude that the reflection coefficient of 

the medium made up of layers m+1, m+2, ... and M is given by 

rm(w) = e2u,.. zm 
bm 

= 
Ym - Wm+1 

(3.3.13) 
am Ym + Wm+l 

Substituting m=0, the reflection coefficient of whole multi-layered medium 
r(w) will be 

raw)=Yo - 
Wl 

Yo+Wl 
(3.3.1 4) 
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where Yo = Eo[1 - sin 8]/µo. 

Using Equations (3.3.11), (3.3.12) and (3.3.14), the reflection coefficient of 

a multi-layered medium can be computed through a recursive scheme that is 

started from the bottom layer. These equations are known as the reflectivity 

formulation of 1D problems. They can also be used for calculating the reflection 

coefficient of a continuous 1D medium (where e, a and p are continuous function 

of z) by dividing the medium into thin homogeneous layers. 

3.3.2 Forward modelling of a non-uniform transmission 

line 

Figure 3.2(b) shows a non-uniform transmission line with M uniform sec- 

tions. R,,,, L1z, Gm and C,,, are respectively the series resistance, series induc- 

tance, shunt conductance and shunt capacitance per unit length. hm denotes 

the length of the mth section. The non-uniform line is excited at z=0 from a 

uniform transmission line with a characteristic admittance Yo. There is a direct 

analogy between a multi-layered medium and a non-uniform transmission line. 

Replacing the electric field Ey by voltage V and the magnetic field HH by cur- 

rent I [55, Chapter 6], the expressions derived in the previous subsection are 

equally applicable here. In addition, 0= 0° (i. e. um = 'Tm) and the expression 

for rym is changed to 

7'm = [(Rm + jwLm)(Gm + jwCm)]1/2 (3.3.15) 

the characteristic admittance of the mth section Y�, is given by 

R+ jWLm 
Ym um (3.3.16) 

3.3.3 Layer-stripping method 

The layer-stripping method has been used for identification of layered me- 
dia, such as non-uniform transmission lines. It was originally developed by 
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geophysicists in order to obtain a layered model of earth from acoustic wave 

propagation. Starting from the first layer, the algorithm computes the param- 

eters of each layer consecutively. After identification of a layer, all reflections 

including the multiple reflections associated with this layer are removed from 

the received signal then the process is repeated for the remaining layers. In 

other words, the layers are successively peeled off by downward continuation 

(layer stripping) while deriving the properties of each layer. The model em- 

ployed in the method is generally based on the reflectivity formulation of the 

1D forward problems. The description of the method given herein is based on 

the idea taken from [57, Chapter 2]. 

The measured scattering data is the field S(w) reflected from the medium 

when an impulsive plane wave is incident on its surface. S(w) is related to the 

incident pulse P(w) by 

S(w) = P(w)r(w) (3.3.17) 

In the time domain, this field can be written as a superposition of echoes of 

p(t) (the incident pulse). 

00 
S (t) = Po (t) + Pi (t) +E Ps (t) (3.3.18) 

=z 

po(t) and pi(t) are respectively the first echoes from layers 1 and 2. The 

third term in (3.3.18) consists of all multiple reflections together with the first 

reflections from the other layers. The assumption made in the layer-stripping 

method is that p(t) is short enough (i. e. broadband in the frequency domain) 

so that po(t) and pi(t) can be separated individually from the rest of s(t). Let 

To, denote the reflection coefficient of layer 1 when the first layer is a half 

space (hi -4 oo). Po(w), the frequency component of po(t), is given by 

Yo - Yi 
Po(w) = T01 P(w) = P(w) (3.3.19) 

Yo + Yi 
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Thus, the characteristic admittance of the first layer is obtained from Po using 

Yl - Yo 
P(w) - Po(w) 

(3.3.20) 
P(w) + Po(w) 

We can also use Equations (3.3.5) and (3.3.3) to derive 

y2 =1 
[co (Ermµrm 

- sin 2 B) 
_ 

am /3.3.21) ` 
m PojUrm µrm 

iw` 

Providing one parameter among {°m, c., µm} is known, the other two param- 

eters may be calculated from the real and imaginary parts of Y, n 
. For most 

applications, the medium consists of non-magnetic materials and thus µ,.,, z = 1. 

In order to find the thickness hl, the echo pi(t) has to be manipulated. 
Under the condition that layers 1 and 2 are non-dispersive within the frequency 

band of the incident pulse, hi can be obtained from the time delay between 

po(t) and pi(t). However, it is possible to ease this constraint by considering 

pi (t) in the frequency domain (Pi). Let T12 be the reflection coefficient of the 

second layer. Pl is given by 

Pl =P (1 - Tö1) T12 e-2"lhl (3.3.22) 

Let us introduce a new quantity Pl as 

Pi = 
Pl 

2= T12 e-aulhi (3.3.23) 
P (1 - Tol) 

If wH is the highest frequency at which the magnitude of the quantity Pi 

is considerable compared to noise and other disturbances, the phase drift of 
Pi (WH) from its actual value is negligible. Assuming layers 1 and 2 are non- 
dispersive at this frequency (i. e. «1,2« 1), the thickness hl can WHCI 

be computed from the equation 

A (LP, ') sine 0 hl (3.3.24) 

where LP, ' denotes the phase of Pi and Ow is the incremental difference in the 

frequency around WH. 

THE APPLICATION OF GPR. 



3.3 1D Wave Differential Equation 40 

The echoes associated with the first layer are now removed from S(w) or 

equivalently from s(t). This is performed by solving (3.3.11) for Wm+1 

Wm+i = 
Wm - Yin, tank umhin. (3.3.25) Ym 
Y- Wm tank um, hm 

Finding Wl by employing 

Wi = 
P(w) - S(w) 

(3.3.26) Yo 
P(w) + S(w) 

one can obtain W2 from (3.3.25) and then obtain the total reflection coefficient 

of a new medium comprising M-1 layers from 

_Yl-W2 rl 
Yi + W2 

(3.3.27) 

The reflected field from this new medium is given by 

Sl (w) = Pl (w)I'1(w) (3.3.28) 

where P', the incident pulse on the new medium, is 

Pl(w) = P(w) (1 - Tö1) e-2uuh1 (3.3.29) 

The algorithm is now at the stage where it started but the first layer is peeled 

off. Consequently, the parameters of other layers can be found successively by 

repeating the same procedure. 

When the data is not sufficiently broadband and contaminated by noise, 

the layer-stripping method has the reputation of being unstable as it proceeds 

through the reconstruction procedure. Although lack of enough bandwidth for 

the data and noise may introduce small error in the parameters of the top 

layers, this error grows rapidly and accumulates for the parameters of deeper 

layers. The reasons for such behaviour are : 

1. As the incident field propagating into the layers, its power and its fre- 

quency bandwidth are reduced. This can be seen from Equation (3.3.29) 

in which (1 - T01) e-2ulhl behaves like a low-pass filter and 

ý1- Toi) e 2"lhl I<1 (3.3.30) 
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2. Any error in the parameters of a layer, e. g. Yf1, u�, etc, influences the 

estimated incident and reflected field of the subsequent layered media as 

can be understood by (3.3.25). 

Despite its disadvantages, the layer-stripping method is computationally 

efficient. Unlike the 1D inversions based on the nonlinear integral equation, 

there is no need to discretise the medium into thin layers and a layer is fully 

characterised including its thickness during one iteration. There exist other 

versions of the algorithm [9], [22] in which the medium under consideration is 

viewed as consisting of N thin layers, where N is the number of samples in the 

reflected signal s(t). Nonetheless, these versions of the layer-stripping method 

are also efficient since they do not involve computationally costly operations, 

such as matrix inversion or optimization of a function of a large number of 

variables. 

A numerical example is presented here to demonstrate the performance of 

the layer-stripping method. 

Example 3.1. The multi-layered medium is made up of 3 non-magnetic layers 

as shown in Fig. 3.3. Utilizing the reflectivity formulation, the reflected data 

-0, PO 
x 

uý=0.015 S/m, e, =460, LEI-, aO 1Ih, =20cm 

ý1= 0.005 S/m, C 1= 
9S0, 

. 
u1=I10 I h2 =15 cm 

0-3=0.05S/m, e3=6. '0, p=p0 

Z 

Figure 3.3: A 3-layer medium. 
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is generated for a normally incident wave (0 = 0°). The layer-stripping method 

is applied to this data to reconstruct the medium. For ease of explanation, let 

us refer to the 3-layer medium as medium 1, to the medium containing layer 2 

and 3 as medium 2 and finally to layer 3 as medium 3. 

The main incident pulse (solid line) and those produced by the algorithm as 

the incident pulses on medium 2 and 3 are shown in Fig. 3.4. It can be observed 

that the width of the main incident pulse in the time domain is increased or 

equivalently its frequency bandwidth is decreased while propagating into the 

deeper layers. The power of the incident pulses are also descending function of 

the depth. The same things can be seen for the reflected fields as indicated in 

Fig. 3.5. The echoes of medium 1 are separable, whereas those of medium 2 are 

overlapped. This is the consequence of decreasing the frequency bandwidth. 

Fig. 3.6 shows the reconstructed profiles. The negative value for the con- 

ductivity of the third layer indicates that the method becomes unstable. This 

can be explained by Fig. 3.7. With respect to Equation (3.3.21), the imaginary 

part of Ym should be negative for all layers. However, that of Y3 is positive for 

wide range of frequency. Note that there is no noise in the data and the error is 

introduced on account of overlap between the echoes of medium 2. This over- 

lap causes a rather small error in obtaining the parameters of layer 2 but this 

error propagates and is enlarged for the next layer. Another interesting thing 

that can be observed from Fig. 3.7 is the effect of reduction in the bandwidth. 

The real part of Y, n is frequency independent (constant) (Equation (3.3.21)). 

This figure shows that the frequency band over which Y, n is nearly constant 

reduces from the top to the bottom layer. 

As this example demonstrates and is also stated by other authors (Sen [57, 

Chapter 2]), the direct methods are generally unstable for incomplete data, 

especially in the presence of noise. Golden et al [26] have proposed a stable 

version of the layer-stripping algorithm by imposing the causality at every 
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Figure 3.4: The incident pulses (a) in the time domain (b) in the frequency 
domain. 

depth on the estimate of the depth-varying reflection coefficient. However, 

their algorithm does not seem to be appropriate for GPR applications. This 

is because firstly the algorithm is formulated for lossless media (i. e. U= 0). 

Secondly, the reconstruction of the permittivity profile of a 3-layer medium by 

a model-based method and also by this algorithm shows that the model-based 

method provides a more accurate profile [26]. Overall, the direct methods 
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Figure 3.5: The reflected fields (a) in the time domain (b) in the frequency 
domain. 

are not suitable for GPR applications since GPR data is not usually enough 
broadband (incomplete) and is inevitably contaminated by noise and clutter. 
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3.4 Reflectivity Model-Based Inversion 

The model-based approach could provide a robust, stable and reliable inver- 

sion [57]. The use of the nonlinear integral equation however makes the model- 

based methods computationally inefficient. In order to overcome this problem, 

a 1D model-based inverse method that employs the reflectivity formulation in- 

stead of the nonlinear integral equation is proposed in this section. The new 

method is referred to as the Reflectivity Model-Based Inversion (RMBI). 

In the RMBI, the profile of a multi-layered medium (or non-uniform trans- 

mission line) is reconstructed by successive minimization of the Mean Square 

Error (MSE) obtained from the difference between the scattering data and 

those calculated from the reflectivity formulation (the forward model). In this 

way, the 1D EIS problem turns into parameter optimisation of an objective 

function that here is the MSE function. Either the reflection coefficient or the 

reflected field measured at different frequencies and/or incident angles can be 

regarded as the scattering data. 

The application of the reflectivity formulation as the forward model in the 

RMBI method offers computational efficiency because: 

1. the forward model is exact and in a closed-form. Thus, the calculation 

of the MSE function does not involve numerical solution. Considering a 
M-layer medium, the reflectivity formulation requires O(M) arithmetic 

operations to calculate the reflected field from this medium for one in- 

cident angle and at one frequency. If the nonlinear integral equation is 

numerically solved for this problem by using Equation (3.2.15) with MI 

divisions where MI > M, the number of computations needed is O(MI). 

A substantial improvement in efficiency is therefore obtained by using 

the reflectivity formulation. 

2. the gradient of the MSE function required in the optimisation procedure 
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can also be derived analytically in a closed-form. This greatly increases 

the efficiency of the inversion. As it will be seen in Subsection 3.4.1, the 

gradient evaluation also needs O(M) computations. 

3. there is no need for discretisation of a medium into thin layers. This 

is because the thickness of layers appears directly in the formulation 

(tanh(umhm)). Not only the electromagnetic parameters (permittivity, 

conductivity, permeability) but also the thickness of layers are variables 

in the optimisation process. Consequently, the number of variables in 

the MSE function is reduced significantly. As an example, to find the 

permittivity and conductivity profiles of a 3-layer medium (as shown in 

Fig. 3.3), the MSE is a function of 8 variables in the RMBI. There are 

however 30 variables in case of employing nonlinear integral equation 

(3.2.13) when the medium is divided into M= 15 thin layers. 

Now, the necessary equations are derived. Let Si, S2,. . ., SN be the re- 
flected fields measured at N frequencies and/or incident angles. Furthermore, 

let x be a point in a multi-dimensional space with the dimension given by all 

constitutive parameters defining a layered medium, e. g. when the medium is 

non-magnetic, this point can be represented as 

X= (x1)x2, x3, ... ' XD-1, XD) 

(ai, ei, hi, 
... , ums EM) 

where D= 3M - 1. The objective function (MSE) for the inverse method is 

defined as 
N 

.f 
fix) = 2N 

IPn r , (x) - sn12 (3.4.2) 
n=1 

where P,, is the incident wave and I', a(x) denotes the reflection coefficient ob- 

tained from the forward model under the same conditions as the observed 
(measured) data S1 . This equation can also be used when S,, is the reflection 
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coefficient of the medium by letting P,, be 1. The constitutive parameters are 
found by minimization of the function f (x). A similar formulation can be 

applied to the case of non-uniform transmission line. 

Due to the nonlinearity of the forward model, f (x) may have several min- 
ima. The model-based inversions have the potential to be used in practical 

applications if they converge to the global minimum (the lowest minimum) of 
the objective function. Thus, a global optimization method should be used 
for f (x). In this chapter, a modified-Newton method, being a local optimisa- 
tion technique, is used to appreciate the importance of employing the global 

methods. The next chapter will be devoted to an study of global optimisation 

methods and their application to inverse problems. 
Depending on the initial point, the modified-Newton method converges 

to a minimum that hopefully might be the global minimum. This method 

requires both the gradient vector and the Hessian matrix (i. e. the matrix of 

the second derivatives) of a function to find a minimum point. The gradient 

of the MSE function is herein derived. The Hessian matrix is estimated by 

finite differences within NAG routine E04KDF [50], which is a realisation of 

the modified-Newton algorithm and used in the present work. 

3.4.1 The closed-form expression for the gradient 

Let xm be one of the parameters (em, Ems µ,,, or hm) of the mth layer. The 

derivative of the objective function f given by (3.4.2) with respect to Xm can 
be written as 

f=NN 
Re E Pn (Pn rn - Sn)* 

öxarn 
m 

(3.4.3) 
n=1 

where "Re" and "*" denote respectively the real part and complex conjugation. 
Using Equations (3.3.11), (3.3.12), and (3.3.14), one can derive 

axm -2 Yo + Wi 2 
V"` 'm=1,2, ... ,M 

(3.4.4) 
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where Vm = aWt/axm. The expression for V�, depends on the relation between 

i and m. If i<m, we have 
2 

Vm_ 
() 

(1_(Tt)2)V+ 
Y1 

(3.4.5 
+Wi+lTi 

where Tt = tanh uih;. For the case of i=m, and xm = Qm, em or µm, Vm is 

given by 

Vm (Tm [(Wm+l)2 + (y 
M)2 + 2YmWm+1Tm] 

Öxm 
Ly' 

ý- 
(3.4.6) 

Ym [(Ym)2 - (Wm+l)2] 
m) 

/(Ym 
-I- Wm+17'm)2 

The expression for V, n when x�a = h,,, is 

Vm = Ym um [1 - (Tm)2] 
(Ym)2 - (Wm+i)Z 

(3.4.7) 
(Ym + Wm+JTm)2 

Finally, for the special case of m=M, Equation (3.4.6) is simplified to 

VM = 
axM 

(3.4.8) 

öYm/Ö2m, and äTm/Ö2m in (3.4.6) and (3.4.8) for xm = QMM Em and µm are 

_ 
1-(Tm)2 hm as 8TM 

Oam 2u�ß 1 öQm 2Y�ß 

ä. _ awn aä ä= jWn ä (3.4.9) 
21 a=L1I)=h.. [1 - (Tm)2] 7m 

19µm µm 2 
`um 

8µm 214mum 

Due to the similarity between the formulation of the forward problem for a 

multi-layered medium and that of a non-uniform transmission line, Equations 

(3.4.3)-(3.4.8) are applicable for the latter case. In addition, UY, n/öx,,, and 
äT�+/öx�a for x,,, = R, n, L�a, G,,, and Cm can be written as 

a z m 
ORm 2u, n 
ayin 
äL�ß jwnäy 

. 9y. 1 
8Gm 2um 

ä _ jwnä & 

OTin 
_ 

Ym 1-(Tm)2 hm 
8Rm 2 
OTM 
OLm = own 
&Tm_ 1-(Tm)2 hm 
0Gm 2Ym 
OTM 
aCm 

ýWn -T 
OGM 

(3.4.1 0) 
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where use has been made of Equations (3.3.15) and (3.3.16). 

With regard to the recursive Equation (3.4.5), the number of computations 

for calculating the gradient is O(M), which is in proportion to that needed for 

calculating the objective function itself. This makes the RMBI more efficient. 

3.4.2 The necessary condition for the unique solution to 

1D EIS problems 

Two quantities, Ym (the characteristic admittance) and Xm, = Umh, n, of 

each layer might be obtained at most from the reflection coefficient of a multi- 

layer medium. This is because the reflection coefficient depends on the consti- 

tutive parameters of the medium only through Ym and Xm. By manipulating 

(3.3.3) and (3.3.5), we have 

aµ 
= 

X. 
= eUmhm 

3.4.11) 
W jWYm 

l2 
aQ+ja, =XmYm=Umhin, +jw Em, - 

1- (sin 
hm (3.4.12) 

BI 

\/ /-fim c 

With the known values of X�a and Ym that give the three quantities ao, aE and 

a,,, the following three relations can be derived 

Qmhm = ao 
rEm 

_ 
(sino)21 hm = aE/w (3.4.13) 

AM c 
mhm = 

Jaµ/w L 

1t 

According to the above set, one can state: 

1. Let the reflection coefficients (or the scattering data) be given at one inci- 

dent angle for a multi-layered medium. Then one out of four parameters 
{Qm, Em, p, hm} of each layer, must be known in order to uniquely re- 

construct the profile of the medium. If a layer is lossless, one of three 
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parameters hm} of that layer, apart from Q�L = 0, must be known 

for the unique reconstruction of the multi-layered medium. 

Note that, the two terms aE/w and a,, /w are frequency independent. 

Therefore, four parameters cannot uniquely be calculated by taking into 

account the value of X�, and Y�ti at different frequencies. 

2. To obtain all unknown parameters uniquely, it is necessary that the re- 
flection coefficients are available for at least two incident angles, resulting 
in one extra independent relation in (3.4.13). 

3. When the data is given for one incident angle excluding 0= 0°, the 

unique determination of all unknown parameters requires that the reflec- 

tion coefficients are available for both TE and TM wave incidence. 

It should be noted that when a layer is lossless, the equation containing a,,,, will 

be omitted from the set (3.4.13). That is why the first statement includes the 

lossless condition. The third statement can be achieved by the manipulation 

of the reflectivity formulation for both TE and TM wave incidence. 

Pursuing a similar procedure for the case of a non-uniform transmission 

line, it can be stated that: 

In order to uniquely reconstruct the profile of a non-uniform transmission 

line from the reflection coefficients of the line, one out of five parameters 
{Rm, Lm, Cm, Gm, hm} of each section excluding zero value parameters must 

be known. 

There is no alternative for this case owing to the only possibility of 0= 0°. 

3.4.3 Determining the number of layers of a medium 

It was assumed that the number of layers is known in the description of 

the RMBI. If the number of layers is however unknown, to find the structure 

of the medium, we could employ the present procedure making use of the 
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RMBI iteratively. At the kth iteration of this procedure, while the medium is 

considered to consist of k layers, the constitutive parameters of the medium 

are reconstructed by the RMBI. The resultant MSE fk, which is viewed as the 

global minimum of the objective function, is compared with the one from the 

(k - 1)th iteration (fk_1). If they are sufficiently close, two cases may arise: a) 

the parameters of two adjacent layers are matched o,,, = Qm_1, E�, = E�a_1 etc.; 

b) the thickness of a layer converges to zero. For both cases, one layer can be 

omitted and the reconstructed profile for k-layer medium is the same as that 

for (k - 1)-layer medium. This would happen for k=M+1, where M is the 

actual number of layers. When the observed data is free of noise, the global 

minimum of the objective function for M-layer and (M+1)-layer mediums are 

equal (i. e. fM = fM+1)" For the case where the data is corrupted by noise, we 

generally have 1M+1 < fM. Consequently, the iterative procedure at iteration 

k is terminated if 

Ilk 
- fig-1I '5 Pfk (3.4.14) 

where o is a small value less than one. Otherwise, the number of layers is 

incremented and the process is repeated. 

Example 3.2. The profile of the 3-layer medium in Example 3.1 is now recon- 

structed by the RMBI. The frequency components of the reflected field shown 

in Fig. 3.5(b) (solid line) in the interval [450 MHz, 850 MHz] are used as the 

observed data. The magnitudes of the data are maximum in this region result- 

ing in a higher signal-to-noise ratio. This is an example that shows how one 

can diminish the effect of noise in model-based inverse methods. 

The reduction of the MSE versus the number of function evaluations by 

the modified-Newton method is illustrated in Fig. 3.8. The initial points for 

the MSE curves are listed in Table 3.1. The computational efficiency of op- 

timisation methods is usually measured in terms of the number of evaluations 

of the objective function. In order to estimate the computation cost, the time 
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Figure 3.8: Illustration of reducing the MSE function by the modified-Newton 
method with two different sets of initial parameters given in Table 3.1. 

Table 3.1: The initial profiles corresponding to the solid and dashed lines in Fig. 
3.8. 

Initial parameters 

Q(S/m) Cr h(cm) 

Final 

MSE 

Solid Layer 1 0.0100 6.0 15.0 

line Layer 2 0.0030 10.0 12.0 0.0 

Layer 3 0.0400 5.0 - 
Dashed Layer 1 0.0250 10.0 10.0 

line Layer 2 0.0100 10.0 10.0 0.0567 

Layer 3 0.1000 10.0 - 

for gradient evaluation is measured in terms of the time for the function eval- 

uation. For this example and all examples given in the next chapter, it has 

been found that the cost of gradient evaluation is nearly twice that of function 

evaluation. 
The final profiles are shown in Fig. 3.9. It can be concluded that firstly 

the objective function has several minima and secondly the modified-Newton 

method provides different solutions for the two initial points. The medium is 
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Figure 3.9: The profiles obtained by employing the modified-Newton method 
in the RMBI with the initial parameters given in Table 3.1. 
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fully reconstructed for the first selected initial profile, but not for the second 

one. 

In addition to the modified-Newton method, the conjugate gradient and 

quasi-Newton methods were also tested using a number of multi-layered media. 

The conclusion was that none of these local optimisation techniques are reliable. 
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Chapter 4 

Global Optimisation Methods 

4.1 Introduction 

Local optimisation methods have often been used for IS problems [12], [29], 

[30], [49], [64]. The convergence of local optimisation methods to the global 

optimum can only be assured if a priori information is incorporated in the 

definition of the objective function as well as in the selection of the initial guess. 

There is however no certainty that the method finds the global minimum in 

a case with a lack of sufficient prior knowledge, as it was seen from Example 

3.2 given in the previous chapter. Such a situation often arises in practical 

applications. Therefore, a global optimisation technique should be used in a 

model-based inversion [23], [57]. In global optimization methods, it is no longer 

necessary to specify the initial guess although the bounds of the parameters 
have to be defined. Any prior knowledge of the parameters can help to narrow 

the parameter bounds and results in a faster convergence to the true profile 
(the global minimum). 

The global optimisation problem is to find a solution in a feasible set of 

solutions, for which the objective function attains the smallest value. The 

feasible set might be discrete containing a finite but very large number of 
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solutions. In that case, the problem is referred as a combinatorial problem. The 

number of solutions will be infinite for an objective function with continuous 

variables, as it is the case for electromagnetic inverse problems. A continuous 

global optimisation problem for an objective function f (x) can be defined by 

Definition 4.1. Given f (x) : RD -+ R and SC RD (R denotes the set 

of real numbers) then find x** ES for which f (x**) <f (x) for all xES. 

x** is referred as the global minimizer (or the global minimum point) of the 

objective function and f (x**) is referred as the global minimum . The feasible 

region S is usually given by 

S={x1 L1<xi<U1, i=1,..., D} (4.1.1) 

where Li and Us are respectively the lower and upper bounds of the variable 

xi. 

The theory of finding a minimizer in the neighbourhood of an initial solu- 

tion (i. e. finding a local minimum) is well developed [19], [25]. Classical hill- 

climbing methods, such as steepest decent, conjugate gradient, quasi-Newton 

and modified-Newton methods, are among those, which efficiently find a local 

optimum. The final solution of these methods is determined by the starting 

point as illustrated in Fig. 4.1. Commencing from any point in the region 

Sl = [x1, x2], hill-climbing algorithms give the same solution xi for the 1D 

function f (x) shown Fig. 4.1. Region Sl is called the attraction region of the 

minimum f (xi), generally defined as 

Definition 4.2. The attraction region (or the basin) of a local minimum f (x*) 

is the set of points in the feasible region S starting from which a given local 

search procedure converges to f (x*). 

Multistart was one of the early methods to tackle the global optimisation 

problems. This algorithm uses a local procedure that starts from different 
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Figure 4.1: A function in 1-dimensional space having several minima. 
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points sampled in the whole optimisation region. The main drawback of Mul- 

tistart is that when many starting points are used, the same minimum may be 

found several times. Various methods with better efficiency have been proposed 

since then. They can broadly be classified into two classes: the deterministic 

and the stochastic approaches, as recognised by Dixon and Szego [18]. 

Included in the class of deterministic approaches are space covering and 

trajectory methods. Most of these techniques do not provide a guarantee that 

the global minimum will be found. Such a guarantee is provided under addi- 

tional assumptions about the objective function f, which are difficult to verify 

in practice [11]. Furthermore, large computational effort is required in many 
deterministic methods in order to find the global minimum. The methods in 

the second group incorporate stochastic features in the search procedure, gen- 

erally the sampling of f (x) at randomly distributed points over the feasible 

region. This allows a probabilistic guarantee that the methods converge to the 

global optimum. The stochastic methods are therefore investigated for appli- 

cation in the RMBI. It is not possible to conduct a thorough investigation of 

the relative merits of various stochastic approaches in this thesis. Instead, we 

consider genetic algorithms (GA) and simulated annealing (SA) that have al- 

ready been used in the inverse problems [23], [57] together with the multi-level 
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single-linkage (MLSL) method known as an efficient technique for the optimi- 

sation of continuous functions [11]. A comparative study of GA, SA and MLSL 

will be carried out in order to identify the most efficient and reliable algorithm 
for our application. 

Genetic algorithms optimise a function using processes inspired from the 

mechanics of natural selection and genetics (crossover and mutation) [44]. The 

optimisation is accomplished by evolving a population of candidate solutions 

and improving incrementally the individuals forming the population. The con- 

vergency of GA and its variants to the global optimum is only guaranteed 
in a weak probabilistic sense, whereas it has been proved for SA and MLSL. 

A comparison between GA and MLSL has been performed by Renders and 
Flasse [56]. They have proposed a hybrid version of genetic algorithms com- 
bining principles from GA and hill-climbing techniques in order to improve the 

computing time and the accuracy of GA. The conclusion was that the hybrid 

method is superior to the standard GA but it produces the same results as 

those of MLSL. 

Consequently, the attention is paid to SA and MLSL in this work. Due to 

the stochastic nature of these algorithms, it is required to run them many times 

for a specific objective function in order to compare the general performance of 

the two methods. The performance is evaluated in terms of efficiency (the com- 

putation time) and reliability (the probability of finding the global minimum 

within a finite computing time). In the examples presented in this chapter, ev- 

ery algorithm is tried 10 times for the minimization of each objective function. 

Because the computational cost is dominated by the evaluation of the MSE 

function, the efficiency of the algorithms is compared in terms of the num- 
ber of evaluating the MSE function. Nevertheless, the running time is given 
in some examples for comparison of the algorithms. An intrinsic FORTRAN 

function (dtime) is used to obtain the running time. 

This chapter is organised into 5 sections: Section 4.2 is devoted to a brief 
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formulation of the modified-Newton method used as the local procedure in 

MLSL. Section 4.3 deals with the description of the standard SA algorithm and 

adaptive SA (a faster version of SA). The multi-level single-linkage method is 

detailed in Section 4.4 where several examples are presented in order to com- 

pare its performance with that of the standard SA and adaptive SA methods for 

1D inverse problems. In Section 4.5, a novel optimisation algorithm, adaptive 

random search, is introduced. The employment of this method in conjunc- 

tion with MLSL forms a hybrid method, which improves the reliability and 

efficiency. The improvement is verified by various minimization examples. 

4.2 Modified-Newton Method 

Hill-climbing algorithms generate an iterative sequence x(k) that might 

converge to a local or global minimizer. Most of them construct a sequence of 

x which satisfies [19, Chapter 2] 

x(k + 1) = x(k) + ((k) q(k) (4.2.1) 

where ((k) is the step length and the vector q(k) is called the search direction. 

The computation of ((k) involves a line search, the purpose of which is to find 

a particular value of ( for which the function f [x(k) + ((k) q(k)] is minimized. 

The distinction between hill-climbing methods lies with the definition of the 

search direction. Of the hill-climbing techniques, Newton's methods minimize 

an objective function, which is approximated at each iteration k by a quadratic 

function. The methods use both the gradient and the Hessian matrix of the 

objective function to define the search direction. Let g(x) denote the gradient 

and H(x) the Hessian matrix of the function f. Then 

g(x) = 
(of of 

.. 
of lT 

(4.2.2) 
LaXl' 

ax2' .' aXD J 
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22 a2f 
OX ... OX14XD 

H(x) = (4.2.3) 

a2 f ... 
? 

aXD8X1 8x, 

where T stands for matrix transpose. Note that H is symmetric, i. e. H= HT. 

The quadratic model of f is obtained by truncating the Taylor series expansion 

of the function about x(k), i. e. 

f [x(k) + ix(k)] _ .f 
[x(k)] + gT[x(k)] Ox(k) +2L xT(k) H[x(k)] Ax(k) 

(4.2.4) 

If the Hessian matrix is positive definite (i. e. if all its eigenvalues are positive), 

the quadratic model has a unique minimum at Ox(k) = q(k) that satisfies 

H[x(k)] q(k) = -g[x(k)] (4.2.5) 

Thus, the solution of this equation gives the search direction q(k). Equation 

(4.2.5) can be derived by setting the gradient of the quadratic function to zero. 

The quadratic model need not have a minimum when H[x(k)] is not positive 

definite. In this case, the search direction is obtained by modifying the Hessian 

matrix to a positive-definite one. Several strategies have been developed for 

this [25]; the methods, which do not use the Newton direction when the Hessian 

matrix is indefinite, are termed modified-Newton methods. The NAG routine 

E04KDF [50], adopted in this research, determines the search direction using 

{H[x(k)] +A} q(k) = -g[x(k)] (4.2.6) 

where the non-negative diagonal matrix A is chosen so that H[x(k)] +A is 

a positive-definite matrix. More details of the algorithm can be found in [25, 

Chapter 4]. 
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4.3 Simulated Annealing 
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Simulated annealing is based on the analogy between the physical anneal- 

ing process of solids and the problem of finding the minimum of an objective 
function [1]. In an annealing process the temperature of a solid in a heat bath 

is initially increased to a maximum value at which the solid melts and becomes 

disordered. The temperature is then lowered slowly so that the system at any 

time is approximately in thermal equilibrium. As cooling proceeds, the system 

becomes more ordered and approaches a frozen ground state at temperature 

zero. It is presumed that the initial temperature of the solid is sufficiently 

high and the cooling is carried out adequately slow; Otherwise the system may 

become quenched forming defects or freezing out in meta-stable states (i. e. 

trapped in a local energy state). 

Metropolis algorithm [1] provides a simple method for simulating the evo- 

lution of a solid in a heat bath to thermal equilibrium. In each step of the 

algorithm, the current state is perturbed slightly to generate a new state. If 

the resulting change in the energy of the system DE < 0, the new state is 

accepted as the current state. If the energy difference is positive (LE > 0), 

the new state is accepted with a probability given by 

P(DE)=exp(- 
E) (4.3.1) 

where kB is the Boltzmann constant and T denotes the temperature. This pro- 

cess is repeated a sufficient number of times to give a good sampling statistics 

for the current temperature until thermal equilibrium is reached. The temper- 

ature is then decremented and the entire process repeated until a frozen state is 

achieved (T = 0). Thermal equilibrium is characterized by the Boltzmann dis- 

tribution . According to this distribution, the probability of a physical system 

being in a state i with energy Ei at temperature T is given by 

I- 
Tl 

(4.3.2) Ps =Z exp 
B \ 
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where Z is the partition function defined as 

Z=E exp 
(- 

7,1 
(4.3.3) 

jB 

The summation is taken over all possible states. 
Making an analogy between the system energy and the value of a function, 

SA algorithm can be viewed as Metropolis algorithm, applied for minimization 

of a function. This algorithm and its numerous variants have been widely 

used in actual large-scale optimisation problems ranging from VLSI circuitry 

to image analysis [4]. Two kinds of SA methods are described herein: the 

standard SA and adaptive SA. Before proceeding with the detailed discussion 

of the methods, we define the necessary terms to be used later. 

Definition 4.3. S. is called a neighbourhood region of a point x if S. CS 

and xES, The neighbourhood region is mostly chosen to be a hypercube in 

the D-dimensional space. In accordance with (4.1.1), SX is given by 

SX={yILXi<y1<UXi, i=1,..., D} (4.3.4) 

where LX= and U,, = are determined by 

Lxi=Ui - Qi 
, 

Uxi=Ud if xi+L>Ui 

LXi = Li ' Uxi = Li +, 8j if xi -< Li 4.3.5) 

L,, i = xs -, UXi = x= + otherwise 

providing that f3 < U; - Li. The point xC _ [xi, x27 ... , xD] is the central 

point of S,, and the elements of the vector 0 correspond to 

the lengths of the sides of S., 

Definition 4.4. The generation probability density function g,, (y) determines 

the probability of generating a point y in the region S.. 

Definition 4.5. The acceptance probability is defined as the chance of accept- 
ing a point y for an objective function f in the neighbourhood region of the 
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current point x. It is given by 

AX(Y) (_i_ix) 
1' 

.f 
(Y) <_ 1(x) 

(4.3.6) 
{expf(y) 

>f (X) 

where the control parameter TT plays the role of the temperature in Metropolis 

algorithm. 

4.3.1 Standard simulated annealing 

In standard SA, the generation probability is uniform over a neighbourhood 

region S., i. e. 

1, YESX 
9X (Y) -I S-1 

SX 
(4.3.7) 

1Y 

where IS. 1 is called the Lebesgue measure of S, With regard to (4.3.5), we 

have 
D 

i sx = il ßý (4.3.8) 

Considering U[O, 1] as a uniform random number in the interval [0,1], the 

standard SA can be described in pseudo English as follows [1]: 

1. Initialise the control parameter (T, (0)), choose an initial point (x(0)) 

uniformly over S and set the current iteration to 1 (k = 1). 

2. Generate a sample point y and its function value f (y). 

3. Select the new point x(k). Acceptance probability of y is calculated. If 

AX(k_1)(y) > U[O, 1] then x(k) = y; otherwise x(k) = x(k - 1). 

4. Decide whether to update the control parameter. Go to Step 2 if not. 

5. Decrease the control parameter TT(k) slightly. 
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6. Decide whether to stop. If stopping rule is satisfied, the algorithm is 

terminated; otherwise it is repeated from Step 2. 

At each iteration, the solution that gives the lowest value for f is viewed to be 

the minimum point found so far. 

Generating a number of points uniformly over the feasible region at the 

beginning, the initial value of the control parameter Tß(0) is usually set to 

the mean or standard deviation of the function values at these points. For 

employing the standard SA in the RMBI, we choose Tß(0) to be the maximum 

of the MSE function at these generated points. Since the MSE is a positive 

value, this selection provides a larger value than the former ones ensuring that 

most of transitions are initially accepted by the algorithm. x(O) will be the 

last generated point in this category. 

It has been proven [1, Chapter 3] that if the control parameter satisfies 

T, (k) > 
T-(0) 

(4.3.9) 
ln(k + 2) 

for every k, where Tß(0) is a sufficiently large constant, then with probabil- 
ity one the algorithm will converge to the global minimum of the objective 
function. The annealing schedule specified by (4.3.9) is extremely slow for 

practical use. A finite-time approximation of SA [1, Chapter 4], frequently 

used for empirical situations, is 

TT(k) = r. TT(k - 1) (4.3.10) 

where rc is a constant smaller but close to unity. Typical values of rc lie between 

0.8 and 0.99. At each temperature, enough transitions (say NT) are attempted 

as indicated in Step 4 so that thermal equilibrium is roughly achieved. 

The price paid for this approximation is that the algorithm is no longer 

guaranteed to find the global minimum with probability 1. Nevertheless, the 

resulting approximate form of the algorithm is capable of producing near- 

optimum solution for many practical applications. 
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It has been suggested [4, Chapter 5] that the initial search region should 

be large in order to ensure the computation efficiency at the beginning. The 

algorithm used herein to obtain S. is that initially SX(0) = S. Then every time 

the control parameter TT is updated, each side of S. is reduced according to 

Qi(k - 1) ,i=1, ... ,D (4.3.11) 

The reduction will be continued until the limit , ßmi' is reached. 

Example 4.1. This example demonstrates the performance of the standard 

SA in minimizing the MSE function in the RMBI. The medium is a one- 

layer slab shown in Fig. 4.2. The parameters of the slab correspond to the 

X -, c 0, Ll0 1 

o1=0.05S/m, r, =860, lei=#o 11 h, =10 cm 

02=0. OS/m, e2=80,112 118 

Z 

Figure 4.2: A concrete slab placed in free space. 

parameters of a concrete wall surrounded by air. Indicated in Fig. 4.3, the 

reflection coefficients of the medium for the normal incidence are obtained from 

the simulation of the reflective formulation. It is assumed that the parameters 

of the second layer (02i f2) are not known, i. e. the MSE function has 5 variables. 

The feasible region S is set to 

0<o <0.5S/m, 1<_Er1<50,1<hl<50cm 
(4.3.12) 

0 <0'2<0.5 S/m, 1 <fr. 2 <50 

The parameters of the SA algorithm (n, NT) are determined empirically for 

a specified function. There is a direct dependency between their values and 

the number of minima of the function as well as the extensions of the feasible 
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Figure 4.3: The reflection coefficients of the medium shown in Fig. 4.2 for 
normal incidence. 

region. The minimization of a function with a big feasible region and/or many 

minima needs large values for n and NT. Otherwise, the algorithm is most 

likely to get stuck in a local minimum. In this example, k is fixed at 0.99 and 

two values, 100 and 500, are tried for NT. 

Using the reflection coefficients at 25 frequencies equally spaced in the in- 
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Table 4.1: The resultant MSE for 10 runs of the standard SA algorithm. The feasible 

region for the first and second sets of runs is (4.3.12) and for the third one is (4.3.13). 

Feasible Number of 

function NT Final MSE values for 10 runs 

region evaluation 

100 8.0e-7 0.0029 0.0029 4.0e-7 0.0037 

(4.3.12) 500000 9.0e-7 0.0038 0.0038 0.0030 0.0042 

500 0.0029 3.4e-6 9.2e-4 2.5e-5 1.6e-6 

0.0028 2.3e-6 0.0027 7.2e-6 6.5e-6 

(4.3.13) 100000 100 1.2e-5 2.4e-5 8.7e-6 1.4e-5 5. le-6 

7.2e-6 5.4e-6 1.2e-5 6.2e-6 5.2e-6 

terval [500 MHz, 1000 MHz] as the observed scattering data, Table 4.1 shows 

the final MSE values for 10 runs of the algorithm. The corresponding conver- 

gence curves and final resulting profiles for the best and worst cases (i. e. for 

the lowest and highest resultant MSE in Table 4.1) among the 10 attempts are 

demonstrated in Fig. 4.4,4.5 and 4.6. 

It can be seen that the selection NT = 100 does not provide appropriate 

reliability and the algorithm behaves more like a local method. One hundred 

transitions (NT = 100) are not sufficient for this problem in order to reach 

thermal equilibrium at each temperature. In other words, the cooling is not 

carried out adequately slow. The increase in NT enhances the reliability as the 

average of 10 MSE values for NT = 500 is smaller than that for NT = 100. 

Enlarging NT (and/or n) provides a reliable SA; but excessive increase in these 

parameters makes the algorithm inefficient. We can achieve a good efficiency 

while maintaining reliability by using some prior information to reduce the size 

of the feasible region. For this example, one may speculate that the conduc- 

tivity and relative permittivity of concrete, even wet concrete, are not greater 

than 0.2 S/m and 20 respectively. Furthermore, considering the medium is a 

slab placed in free space, the number of variables of MSE function might be re- 

duced to three that decreases the feasible region size substantially. It should be 
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Figure 4.4: Illustration of the performance of the standard SA in minimizing 
the MSE function for the concrete slab when the feasible region is (4.3.12). (a) 

NT = 100 (b) NT = 500 
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Figure 4.5: The reconstructed profiles using the standard SA with the bounds 
(4.3.12) and NT = 100. 
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Figure 4.6: The reconstructed profiles using the standard SA with the bounds 
(4.3.12) and NT = 500 
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however noted that the bottom layer is not known for most GPR applications. 
Setting S as 

0<a, 0.2S/m, 1<cl <20,1<h1<30cm 
(4.3.13) 

0 <a2 <0.05S/m, 1 <fr. 2 <5 

the results are depicted in the third row of Table 4.1 and Fig. 4.7. 

As expected, better results are obtained. However, generally speaking, the 

standard SA is slow. Several variants of SA have been proposed [5], [33] to 

improve the efficiency. Of these variants, the adaptive simulated annealing has 

been used in inverse problems of layered-media [57]. The next subsection deals 

with the mathematical description of this algorithm. 

4.3.2 Adaptive simulated annealing 

Ingber [32] proposed a modified version of SA known as the Adaptive Sim- 

ulated Annealing (ASA). It is mainly different from the standard SA in the 

generation function used to introduce a new point. Consider the optimisation 

of a function in D-dimensional space with the feasible region given by (4.1.1). 

The ith variable of the objective function (xi) at iteration k is updated using 

xi(k) =xi(l6- 1) +yj (Ui - Li) (4.3.14) 

where the random variable yi E [-1,1] has the following probability density 

function 
D 

9T (Y) _2T 
In 11 

(4.3.15) 
Tci 

yz can be generated from a uniform random number ri E U[O, 1] by 

(ri [(i I 2r-1I 
yj=sgn-2 f Tý +Tl -1 (4.3.16) 
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Figure 4.7: The results of using the standard SA with the feasible region 
(4.3.13) and NT = 100 
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It can be understood from these equations that the generation probability 
function g,, is defined over the entire feasible region S for all iterations, i. e. the 

neighbourhood region for all points is fixed to S and it does not change during 

the procedure. Nevertheless, gX depends on D control parameters Ti ispecified 
for each function variable xi, thus the generation function shape is allowed to 

be updated within the procedure. 

The control parameters are lowered with regard to annealing schedules by 

Td. (k) = T2(0) exp (-cik'/D) (4.3.17) 

where c= is a parameter used to control the schedule and to tune the algorithm 

to specific problems. gX permits for the generation of points far away from the 

current position at high temperatures (T i), whereas it prefers points in the 

close proximity of the current location at low temperatures . This is actually 

in accordance with the idea of choosing initially a large neighbourhood region 

and then reducing its size in the standard SA to speed up the algorithm. For 

both cases (the standard SA and ASA), the probability of selection of far 

points is decreased as the algorithm proceeds. Nevertheless, this reduction in 

ASA is different for each function variable. The reason for such a modification 

is that each function variable owns a different finite range of variations and 

the objective function has different sensitivity to each variable. Consequently, 

they should individually be assigned different degrees of perturbations from 

their current position. It has been shown [32] that ASA algorithm converges 

to the global minimum with probability 1 using annealing schedule (4.3.17). 

The cooling schedule for the acceptance probability is same as the standard 
SA (i. e. (4.3.10)). 

Another feature included in ASA [32] is to occasionally rescale the annealing 

schedule for a variable in terms of the sensitivity of the function f to that 
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variable. The sensitivity is defined as 

-of- Si = 
of 

(4.3.18) 
xs 

Suppose that T denotes the control parameter for xi at annealing time k. The 

rescaling is performed according to 

TV = pk 
(Smax 

Si 
(4.3.19) 

where Sm, ay is the largest value of s;. In this way, the algorithm is allowed 

to stretch out the ranges over which relatively insensitive variables are being 

searched comparative to the ranges of more sensitive ones. This new feature is 

termed reannealing. 
A program in C for the ASA algorithm is publicly available from its inventor 

(Ingber). We employ this program to minimize the MSE function in the RMBI. 

The MSE function written in a FORTRAN subroutine is introduced to the 

algorithm by linking the subroutine to the ASA program. There are many 

parameters in ASA that ought to be tuned to a specific problem. Two examples 

provided next were examined with several changes in the most influential ASA 

parameters. The results presented are those achieved with the most efficiency 

and reliability. 

Example 4.2. The reconstruction of the medium in Example 4.1 is also con- 

sidered here in order to compare the performance of ASA with the standard 

SA. The bounds of the parameters are given in (4.3.12) and the same reflection 

coefficients over the frequency range [500 MHz, 1000 MHz]) are used. 
The final MSE values are summarised in the first row of Table 4.2. Figure 

4.8 illustrates the convergence of the MSE value and the profiles obtained. The 

comparison of these results with those obtained by the standard SA for the 

same feasible region (4.3.12) indicates that ASA offers an improvement in the 

efficiency and reliability. This efficiency can also be confirmed by comparing 

the running times. The times elapsed for running the standard SA and ASA are 
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Figure 4.8: (a) The convergence curves, the (b) conductivity and (c) permit- 
tivity profiles yielded by employing the ASA algorithm for the inverse problem 
given in Example 4.1 with the feasible region (4.3.12). The best and worst re- 
sults correspond respectively to the lowest and highest final MSE values given 
in the first row of Table 4.2 
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respectively measured to be 522 and 185 second in this reconstruction example. 

The ratio of the running times (522/185) is close to the ratio of the number of 

function evaluations (500000/150000). This points out that the computational 

cost is dominated by the evaluation of the MSE function. 

Example 4.3. This example deals with the reconstruction of the 3-layer medium 

introduced in Example 3.1 but the observed data is that used in Example 3.2 

(Chapter 3). The eight parameters are constrained by 

0<a, <0.5S/m, 1 <E, 1 <50,1 <hl <50cm 

0<Q2<0.5S/m, 1<Er. 2<50,1<h2<50cm 
(4.3.20) 

0 <Q3 <0.5S/m, 1<e. 3<50 

Applying the ASA algorithm in the RMBI for this problem, the results are 

shown in the second row of Table 4.2 and Fig. 4.9. Overall, the algorithm has 

failed to find the profile of the medium even with a large number of evaluations. 

The ASA algorithm has been reported to be faster than genetic algorithms as 

well as the standard SA [33]. The results of application of ASA in geophysical 

inverse problems [57] have also drawn the same conclusion. Unfortunately, it 

is not sufficiently fast for our purpose, especially when a medium consists of 

several layers and the bounds of parameters have to be wide. This situation 

can arise in GPR applications where a layer might be a water table (e,. = 80) 

or a metal plate, and the bounds must therefore be extended. 

Table 4.2: The resultant MSE for 10 runs of ASA. 

Number of 

function medium Final MSE values 

evaluation 

150000 Fig. 7.2e-7 8.1e-7 0.0028 2.3e-6 0.0027 

4.2 7.4e-6 8.4e-7 6.9e-5 5.1e-8 9.8e-7 

500000 Fig. 0.0147 0.0238 0.0242 0.0098 0.0181 

3.3 0.0245 0.0249 0.0158 0.0137 0.0139 
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Figure 4.9: The results of using ASA algorithm for the 3-layer medium. 
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4.4 Multi-Level Single-Linkage Method 

Simulated annealing (and also GA) algorithms suffer from slow convergence 
due to using only the value of the objective function and not exploiting local 

information. In addition, they are not sufficiently accurate in terms of locating 

the exact solution, as was seen from the examples of the previous section. On 

the other hand, local optimisation methods reach an optimum efficiently and 

accurately using local information such as the gradient and the Hessian matrix. 

Local algorithms should therefore be incorporated within a global search so as 

to benefit from their advantages. A simple search procedure, Multistart, uses a 

local algorithm starting from several points distributed over the feasible region. 

One disadvantage of Multistart is that the same minimizer may be found several 

times. Clustering methods provide more adaptation of Multistart to avoid the 

repeated determination of local minimizers [38]. This is realised by grouping 

(clustering) the sample points around the local minimizers and starting a single 

local optimisation from each group. In fact, the formed clusters accord to the 

attraction regions of the minima. 

The multi-level single-linkage method, proposed by Rinnooy Kan and Tim- 

mer [38], [39] is a clustering method that appears to be efficient as shown by 

computational experiments. It also has probabilistic guarantees of computa- 

tional efficiency. The kth iteration of the algorithm outlined by Byrd et. al [11] 

is as follows: 

1. Generate Np sample points, drawn from a uniform distribution over S, 

and calculate the corresponding functional values at these points. Add 

Np points to the (initially empty) set of sample points. 

2. Determine a set of the reduced sample points by taking ekNp points with 

the smallest function values, where C is any fixed number in (0,1]. 

3. Select start points from the reduced sample points for local searches. The 
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selection procedure will be discussed later. 

4. Perform local minimization from the selected start points. 

5. If the stopping rule is satisfied, the lowest local minimum is taken as the 

global minimum, otherwise go to Step 1. 

In Step 3, at the kth iteration, each reduced sample point x is selected as a 

start point for a local minimization provided that the start point has not been 

used at a previous iteration, and that there is no sample point y within the 

critical distance d(k) of x with f (y) <f (x). Considering the definition 4.1, 

the critical distance is given by [39] 

kN1/D 
[GF(1 

d(k) = -1/2 + 
D) In ] 

(4.4.1) 
n 

where GF denotes the gamma function, ISI denotes the Lebesque measure of 

S and p is a positive constant. In fact, the distance d(k) defines the boundary 

of the attraction region for every local minimum. Rinnooy Kan and Timmer 

[39] have proven that if the critical distance is determined by (4.4.1) with 

p>0, all local minimizers of f (x) will be found within a finite number of 

iterations with probability 1. Moreover, when p>4, the total number of local 

searches started by the MLSL method will be finite with probability 1 even if 

the sampling continues forever. p is set to 4 in our reconstruction examples. 
A Bayesian stopping rule is applied in Step 5. Let w denote the number 

of local minimizers found after k iterations. A Bayesian estimate of the total 

number of local minimizers is given by 

w (ýkNp - 1) 
ekNp-w-2 (4.4.2) 

In addition, a Bayesian estimate of the portion of S covered by the attraction 

region of the local minima found so far is given by 

(ekNp -w- 1) (ekNp + w) 
ekNp(ekNp - 1) 

(4.4.3) 
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The algorithm is terminated after the kth iteration if the estimate given by 
(4.4.2) is greater than w by less than 0.5, and the estimate given by (4.4.3) is 

greater than a value near but less than 1 such as 0.999. 

Any standard optimisation algorithm can be used to perform the local min- 

imization task. The modified-Newton method is adopted within this research. 

The selection of the values for the two parameters Np and e are problem 

dependent. A decrease in e reduces the number of local searches, which involves 

several function as well as gradient evaluations. Thus, small values for C ought 

to be chosen for the minimization of a function whose minima have relatively 

big attraction regions. In this way, the repeated findings of local minima are 

more likely avoided. This actually enhances the computational performance 

of the MLSL method. No procedure can be established for the exact selection 

of the parameters Np and C; they can only be determined empirically for a 

specific problem. 

Three examples from [47] and two other examples are provided in the fol- 

lowing to demonstrate the effectiveness of the MLSL method for the recon- 

struction of different multi-layered media in the presence of noise from the 

simulated and experimental data. The method is run 10 times for the first two 

examples in order to compare the MLSL method with the standard SA and 

ASA algorithms. It is run once for the final three examples but with enough 

iterations to make sure that the global minimum is found. The validity of the 

procedure, described in Subsection 3.4.3 (Chapter 3), for finding the structure 

of a medium (i. e. determining the number of layers) will also be tested in 

Examples 4.6 and 4.7. More examples of applying the MLSL method to the 

inverse problem of non-uniform transmission lines can be found in [451. 

Example 4.4. The MLSL method is applied to the reconstruction of the 

medium described in Example 4.1 with the same observed data and the feasible 

region given by (4.3.12). The final MSE and the number of minima found for 
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10 runs and three sets of the two parameters Np and ý are listed in Table 4.3. 

The number of function evaluations is fixed to 10000 for each run, which takes 

about 11.5 s. A comparison between these results and those of the standard 

Table 4.3: The final MSE for 10 runs of the MLSL algorithm for the medium introduced 

in Example 4.1. Each run involves 10000 function evaluations. 

Final 0.0 0.0 0.0 0.0 0.0 

Np = 100 MSE 0.0 0.0 0.0 0.0 0.0 

0.1 No. of 7 7 8 8 8 

Minima found 8 8 7 8 6 

Final 0.0 0.0 0.0 0.0 0.0 

Np=100 MSE 0.0 0.0 0.0 0.0 0.0 

= 0.2 No. of 6 7 6 7 8 

Minima found 8 7 6 8 7 

Final 0.0 0.0 0.0 0.0 0.0 

Np = 100 MSE 0.0 0.0 0.0 0.0 0.0 

= 0.5 No. of 6 7 7 7 7 

Minima found 7 7 8 7 8 

SA and ASA shows that the MLSL method is undoubtedly more reliable and 

efficient than the standard SA and ASA. Furthermore, it can be seen that the 

MLSL algorithm locates the exact solution, as it has reached zero value (10-18) 

for the MSE function. Figure 4.10 shows the corresponding convergence curves. 

Example 4.5. This example is aimed at comparing the performance of MLSL 

with that of ASA for the inverse problem posed in Example 4.3. Table 4.4 and 

Fig. 4.11 give the results. While ASA did not find the global minimizer after 

500000 function evaluations, the MLSL method found it several times within 

only 50000 function evaluations. The running time is respectively 700 s and 51 

s for ASA and MLSL. Again, it is evident that the MLSL method is superior 

to the ASA and to the standard SA. 

It can be concluded from Table 4.3 and 4.4 that the performance of the 

MLSL for each particular problem is insensitive to and optimal within a range 
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Table 4.4: The resultant MSE for 10 runs of the MLSL method for the inverse problem 
posed in Example 4.3. Each run involves 50000 function evaluations. 

Final 0.0 0.0073 0.0 0.0 0.0 

Ny = 100 MSE 0.0 0.0 0.0 0.0 0.0 

= 0.02 No. of 25 21 23 21 27 

Minima found 26 28 24 21 26 

Final 0.0 0.0 0.0 0.0 0.0 
Ny = 100 MSE 0.0 0.0073 0.0 0.0 0.0 

0.05 No. of 27 26 25 27 27 

Minima found 25 24 22 29 26 

Final 0.0 0.0073 0.0073 0.0 0.0 

N, = 100 MSE 0.0 0.0 0.0 0.0 0.0 

0.1 No. of 26 24 28 26 28 

Minima found 28 27 27 27 25 

of values of its parameters, Np and ý. Np = 100 and 0.02 <ý<0.05 gives 

better results for this inverse problem. Numerical reconstructions of layered 

media show the values of Np and e should be selected in the ranges given in 

Table 4.5. 

Table 4.5: The recommended values for the parameters of the MLSL method. 
2-layer 

medium 

3-layer 

medium 

4-layer 

medium 

5(6 or 7)-layer 

medium 
Ny 100 100 500-1000 1000-2000 

f1 1 0.1-0.5 0.02-0.05 0.01-0.005 0.002-0.001 

Example 4.6. This example is the one considered in [64]. The goal is to recon- 

struct the permittivity and conductivity profiles of a three-layer slab placed in 

free space as shown in Fig. 4.12. The thickness of the whole ensemble together 

with the permittivity and conductivity of the bottom half-space are assumed 
known in [64]. In contrast, we only assume that the bottom layer is free space. 
The observed data is generated by using the reflectivity formulation presented 
in Chapter 3. 
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Figure 4.12: A 3-layer slab placed in free space. 

To simulate the presence of the noise in the observed data, Gaussian noise 

is added. The noise is a complex random variable whose real and imaginary 

parts are independent Gaussian random variables with zero mean and standard 

deviation v. The parameters of Np and ý in the MLSL method are set to 500 

and 0.01 respectively. In addition, the feasible region S is given by 

0<Qm<0.5S/m, 1<E,. m<100,0<h,,, <100cm 
(4.4.4) 

m=1,2,3 

The above bounds on permittivity and conductivity are sufficiently wide such 

that they cover the dielectric parameters of most materials which may be found 

in an environment. 

As shown in Fig. 4.13, the reflection coefficients are obtained for a TE wave 

incidence at 15 frequencies equally spaced in the interval [5 MHz, 75 MHz] and 

at two incident angles, 0= 0° and 45°. Gaussian noise with different standard 

deviations is introduced to simulate the effect of noise. 

The profile is first reconstructed from noise-free data at incident angle 

0=O. Figure 4.14(a) illustrates that how the objective function (MSE func- 

tion) is reduced by the MLSL method under the assumptions that the number 

THE APPLICATION OF GPR. 



4.4 Multi-Level Single-Linkage Method 

170 

165 

a 
160 

of layers of the slab is 2,3 and 4 respectively. The conductivity and permit- 

tivity profiles derived from the inverse method are shown in Fig. 4.14(b) and 

4.14(c). The results show that the procedure of determining the structure of a 

medium (Subsection 3.4.3, Chapter 3) is successful. It can be seen that identi- 

cal profiles are obtained for 3-layer and 4-layer structures. For the 4-layer case, 
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Figure 4.13: The reflection coefficients of the 3-layer slab obtained for a TE 
wave incidence at 15 frequencies equally spaced in the interval (5 MHz, 75 
MHz). (a) Incident angle 0= 0°. (b) Incident angle 0= 45°. 
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Figure 4.14: (a) Illustration of the performance of the MLSL method in min- 
imizing the objective function for the 3-layer slab. The number of layers as- 
sumed is 2,3 and 4. The observed data at 0= 0° is free of noise. The 
reconstructed (b) conductivity (c) and permittivity profiles 
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The results in the presence of a Gaussian noise with a standard deviation 

Q= 10-3 are shown in Fig. 4.15, where the influence of the noise is clearly 

visible. Nevertheless, this influence can be reduced by extending the data to 

include more frequencies and incident angles. In Fig. 4.16, the data at 15 

frequencies over the range of [5 MHz, 75 MHz] and at two incident angles 

0= 00,450 have been used. The improvement is apparent. Further improve- 

ment can be achieved by doubling the frequency points (Fig. 4.17). An 

important consequence of the successful convergence to the global minimum is 

that the inverse method can reconstruct the profile of a layered medium even 

if the wavelengths of the scattering data are greater than the thickness of the 

layers. For the first reconstruction, the smallest wavelength in the layer 1 of 

the medium is 2 metre, eight times of the thickness of the layer. This cannot 

be done using the layer-stripping method. 

Example 4.7. This example aims at testing the inverse method with exper- 

imental data. A non-uniform transmission line, which consists of four coaxial 

sections as shown in Fig. 4.18, is investigated. The coaxial cables are connected 

to each other via SMA 50 Sl connectors. An HP-8753B network analyzer with 

an output impedance of 50 S2 is used to measure the reflection coefficients. The 

lines are standard 50 SZ and 75 S2 coaxial cables, which have negligible series 

resistance and shunt conductance. The nominal value of the shunt capacitance 

per unit length, Cm, provided by the manufacturer, is 100 pF/meter for 50 SZ 

line and 56 pF/meter for 75 11 line. The series inductance L, n, given in Fig. 

4.18, are calculated by using 

Zm = (Lm/Cm)1/2 (4.4.5 

where Z,,, is the characteristic impedance of the mth section. The fourth line 

is terminated by a 50 Il load so that it can be considered as an infinitely long 

transmission line. 
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Figure 4.15: The results of using MILSL in the R\IBI for reconstruction of pro- 
file of the 3-layer slat) when the observed data at normal incidence is corrupted 
by a Gaussian noise with = 10-3. 
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Figure 4.16: Illustration of the improvement of the reconstructed profile for 
3-layer slab using more observed data. The results are based on the observed 
data at 15 frequencies and two incident angles (0° and 45°). 
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Figure 4.17: The conductivity (a) and permittivity- (b) profiles of the 3-layer 

slab reconstructed from the reflection coefficients obtained at two incident an- 
gles (0° and 4.5) and at 30 frequencies over the range of [5 \IHz, 150 MHz] 

with linear spacing. 
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Figure 4.18: A non-uniform transmission line. 

Since the value of the series resistance Rn,, and shunt conductance Gm of the 

lines are nearly zero, the value of one of the three parameters L, ", C,, and h" 

(the thickness) has to be known according to the necessary condition (Chapter 

3). In this example, the value of Lm is assumed known and C,,, and h�a are 

reconstructed by the inverse method. The bounds of these parameters are set 

to 

35.3 < Cl, C3 < 200 pF/meter , 44.5 < C2, C4 < 200 pF/meter , (4.4.6) 
0< hl, h2, h3 <2 metre 

The lower bounds of Cm are obtained in accordance with (L�mCm)-1"2 <3x 

108 meter/sec which indicates the velocity of the wave travelling along the lines 

cannot be in excess of the velocity of light. The parameters of Np and C in the 

MLSL method are set to 100 and 0.05 respectively. 

The reflection coefficients measured at 16 frequencies over the frequency 

range [100 MHz, 250 MHz] with linear spacing are shown in Fig. 4.19. The 

objective function during minimization and the reconstructed profiles are il- 

lustrated in Fig. 4.20. The characteristic impedance shown in Fig. 4.20(c) 

is obtained from the capacitance per unit length by using equation (4.4.5). 

There is an error in the reconstructed profile for the true structure (i. e. 4- 

section structure). Although the measurement noise can be considered having 
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Figure 4.19: The reflection coefficients of the transmission line shown in Fig. 
4.18. The data is measured by an HP-8753B network analyzer at 16 frequencies 
equally spaced in the interval [100 MHz, 250 MHz]. 

contributed in generating this error, we think the dominant sources of this error 

are: 

1. The SMA connectors introduce local capacitances that are not taken into 

account in the modelling. 

2. The value of the capacitance per unit length is a nominal value and the 

actual value can be different from the nominal one. 

3. The series resistance is neglected whereas its value for 50 S2 cables at 100 

MHz is nearly 2 S2/meter which is considerable. 

Example 4.8. This example is concerned with the simultaneous reconstruc- 

tion of four parameters R, L, G and C of a non-uniform transmission line from 

simulated data, assuming that the lengths of the sections are known. In prac- 

tice, these parameters vary with frequency: the variations of L, G and C are 

small whereas that of R is considerable. The frequency dependence of R,,, can 

be modelled by R, n = Q�, 5 [55, Chapter 3]. Thus, Q�, is to be reconstructed. 
Consequently, the expression (3.4.10) (Chapter 3) for R,,,, is replaced with the 
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Figure 4.20: (a) Illustration of the performance of the MLSL method in mini- 
mizing the objective function for the transmission line shown in Fig. 4.18 when 
the number of sections are 2,3 and 4. The reconstructed (b) capacitance and 
(c) characteristic impedance. 
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following expression 

8Ym 
__ 

Ym äT�ti 
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Ym [1- (Tm)2J hm 
(4.4.7 n2 SQm Wn Zum ' SQm W 

The line parameters chosen for this example are shown by the solid lines in 

Fig. 4.22. The corresponding values for the parameter Q are 

Q1=0) Q2=2X10-4, Q3=5X10-4, nw4=O 

The line is excited from a uniform line with a characteristic admittance Yo = 

0.02 S. The other side is left open, i. e. YM = 0. The parameters of Np and 

in the MLSL method are set to 1000 and 0.005 respectively. The search region 

is selected as: 

0< G�a < 1000 mS/meter , 10 < Cm < 200 pF/meter 

0< Qm< 0.01 , 1/(0.09Cm) < Lm < 0.55 µH/meter (4.4.8) 

for m=1,2,3,4 

Figures 4.21 and 4.22 show respectively the graph of [MSE] ä and the recon- 

structed profiles, making use of the observed data shown in Fig. 4.23. For 

the noise-free data, the objective function approached zero and therefore the 

profiles were precisely reconstructed. 
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Figure 4.21: The square root of the objective function versus the number of 
function evaluation. 
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Figure 4.22: Simultaneous reconstruction of the (a) conductance G, (b) capac- 
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Figure 4.23: The reflection coefficients of the transmission line whose profile is 
shown by the solid lines in Fig. 4.22. The data is obtained at 101 frequencies 
with logarithmic spacing in the interval (10 MHz, 1 GHz). 
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4.5 A Hybrid Optimisation Algorithm 

In spite of the good performance of the MLSL method, it has been recog- 

nised that the method may fail to find the true profile of some media with 

a relatively large number of layers (more than three layers). This happens 

especially when the deepest layer is unknown, the observed data is rather in- 

complete and/or there are wide bounds on the parameters. In an attempt to 

improve the efficiency and reliability of this approach, we have developed a 

hybrid method, which is the combination of the MLSL and a novel optimi- 

sation algorithm-the Adaptive Random Search (ARS). The hybrid method is 

referred as the MLSLARS and is based on heuristic reasoning. All examples 

attempted by us have demonstrated the superiority of the MLSLARS to the 

MLSL method. 

4.5.1 Adaptive random search 

The idea behind the ARS algorithm is to minimize a function derived from 

the transformation of the objective function f instead of minimizing f directly. 

Let g denote the transformed version of f. The value of g (x) is the minimum 

obtained if a local optimisation method with initial point x is applied to the 

objective function f. The function g therefore acquires constant values in the 

attraction regions of the minima of f. Considering that the transformation 

Tr indicates the act of the local optimisation algorithm on function f and Si* 

denotes the attraction region of the minimum f (xi*), one can write 

Tr :R -} R such that Tr[f (x)] = g(x) =f (x; ) 
,xE Si* 

(4.5.1) 
i=1, 

... , 
Nmin 

where Nmin is the number of minima of f inside the feasible region. The regions 
{Ss ,i=1, ... , Nmin} are called the plateaus of the function g(x). 

Figure 4.24 illustrates the transformation for the function shown in Fig. 

4.1. Another example is concerned with a function of two variables as shown 
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in Fig. 4.25(a) where three minima, f(2,8) =0, f (5,2) =3, f(8,6) =6 

are recognisable in the feasible region 0< : r., < 10 < . 1.. 2 < 10}. 

Applying the modified-Newton method to f (Xi,: z; 2), the function q(: x: , 1: 2) is 

shown in Fig. 4.25(b). 

A/ '(x) 

g (x) 

L x" x, x, r,. Ux 

Figure 4.24: Transformation of a function in 1-(lin1etisioual "'pace l)y a local 

optimisation algorithm. 

(a) 

10 

(h) 

10 

Figure 4.25: (a) a function in 2-dimensional space. (h) The function q dierived 
from that shown in part (a) using the mollified-Newton nietliud 

Four properties can be surrrrnarised for the function q from these examples: 

1. The number of the values of q is finite (N�. h, ). For the second example, 

function (] has three values {0,3, G} corresponding to the ºuiººima of . 
/'. 
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2. The gradient of g is either zero or does not exist. 

3. Function g has fewer local minima than f. Figure 4.24 shows that g has 

two local minima whereas f has four. 

4. The attraction regions of g are wider than or equal to those of f. Figure 

4.25 indicates that there is a single attraction region for the function 

g which covers the whole feasible region, being much wider than each 

attraction region of f. 

The ARS algorithm is a local search aimed at reaching the lowest plateau 

of function g. The wider attraction region for the global minimum of g would 

result in the higher probability of finding it by a local search procedure. For 

a class of the objective functions, whose derived functions (g) possess one 

minimum (such as the second example), performing just one local search gives 

the global minimum. In general, the ARS method is required to be combined 

with a global search so that it does not get stuck in the basin of local minima. 

The global search actually explores the entire feasible region and provides an 

initial point (hopefully being in the attraction region of the global minimum of 

the function g) for the ARS algorithm. The global search can be accomplished 

by any global method like SA or GA. Nevertheless, MLSL is chosen due to its 

better performance. The interaction between ARS and MLSL will be discussed 

in the next subsection. 

The ARS method is inspired from SA algorithms in which the control pa- 

rameter is zero. With TT =0 in Equation (4.3.6), a movement in SA will be 

accepted only if the value of the objective function is lowered or unchanged. 

That is that the method always seeks the lower function values. To speed up 

the finding of a local minimum, ARS includes a new feature that makes it dif- 

ferent from the SA with TT = 0. The new feature is to modify adaptively the 

neighbourhood region. In order to describe under what conditions and how 

the modification will be carried out, we need to define the state of the ARS 
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algorithm at kth iteration as 

x(k): the current point. 

x*(k): the minimizer of the objective function in the plateau that contains 

x(k). 
SX(k): the neighbourhood region of x(k). It is a hypercube specified by a cen- 

tral point xC and a vector ß (Equation (4.3.5)). 

B(k): the set of the eligible sides of SX(k). The concept of the eligible sides will 

be discussed later on. 

Suppose that the search is performed on a plateau S*(k) (current plateau) 

of the function g. The updating of Sx(k) has to satisfy the following three 

requirements: 

1. A few samples (ideally one) are taken from each plateau. Searching on a 

plateau more than once does not offer any new information. 

2. The probability of sampling a neighbourhood plateau of S* (k) with higher 

function value is reduced after detecting such a plateau. 

3. Having transferred to a lower plateau, the neighbourhood plateaus of 

S *(k) are initially explored with equal probability. 

To satisfy the first requirement, the size of SX(k) is expanded while the new 

sample point is found to be on the current plateau. The expansion of Sx(k) 

is accomplished by increasing the length of its sides (/3(k)). Not all sides are 

eligible to be updated at every iteration and only the selected sides will be 

expanded. If y denotes the new generated point that is on the current plateau 

at the kth iteration, the length of the eligible sides are increased as 

Pi(k) =1+ 
Iyi - xi(k - 1)I 

flj(k - 1) if iE B(k - 1) (4.5.2) 
1 

Z(Y, X(k-1)) 

where dB is the Euclidean distance in the subspace spanned by B(k - 1). 

The eligible sides are determined in accordance with requirement 2. Initially 

containing all sides, the set of the eligible sides B(k) is changed only when the 
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search finds a higher plateau. Suppose y is a new sample point on the higher 

plateau, i. e. g(y) > g(x(k - 1)). Furthermore, suppose the jth side satisfies 

jyj - xj(k - 1)) ? Iyj - xi(k - 1)1 ,iE B(k - 1) (4.5.3) 

Considering BD denotes the set of all sides of SX(k) (the objective function is 

defined in a D-dimensional space), the set of the eligible sides is updated by 

B(k) 
BD if the number of members of B(k - 1) is one 

Be otherwise 
(4.5.4) 

where Be is a new set obtained by rejecting the jth side from B(k - 1). Ac- 

cording to (4.5.4), when B(k) is about to become empty, it will be set to BD 

so that the process can be repeated. 

Having detected a higher plateau, the neighbourhood region is also moved 

away from this plateau. The movement is in the opposite direction of vector 

y- x(k - 1) so that the generated point y is located at the boundary of the 

displaced neighbourhood region. Suppose d,, denotes the length of the line that 

connects point y to the boundary of the neighbourhood region S (k_1) in the 

direction of vector y- x(k - 1). The movement of the neighbourhood region 

is performed by updating its central point as 

x'(k) = x'(k - 1) - ly - x(k - 1)1 
dy (4.5.5) 

where ly - x(k - 1)1 is the length of the vector y- x(k - 1). 

Once a lower plateau is found, the search will be transferred to this plateau. 

The neighbourhood region should be resized with respect to the extensions of 

the lower plateau in different dimensions so as to satisfy the third requirement. 

These extensions are roughly proportional to the inverse of the derivative (sen- 

sitivity) of the objective function f. This can be understood from figure 4.25 

by considering the plateau g(xl, x2) = 3. The function f (xl, x2) in this plateau 

has less sensitivity to xi that corresponds to the dimension in which 9 (x1, x2) 
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has more extension. Let v; represent the relative extension of the lower plateau 

in the ith dimension. An estimate of vs is given by 

-1 

Vi 

& 
af(xi) 1] 

(4.5.6) 
N� Öxi j=1 

where x3 is a randomly selected point in the vicinity of the minimum point 

of the lower plateau and N� is the number of these points. Assuming vmax 

denotes the maximum relative extension, the size of Sx(k) is determined by 

Q, (k) = sf 
v' 

vmnx ,i=1,..., D (4.5.7) 

where sf is a scaling factor. In the implementation of the ARS, , ß; (k) satisfies 

a minimum limit, i. e. ß (k) > , ßm=n. Thus, if the value provided by (4.5.7) is 

less than this limit, f31(k) = /3p_" 

For the case of the 1D EIS problem, one can notice that the scaling factor 

should be different for the permittivity, conductivity, permeability and thick- 

ness of layers. In addition, the scaling factor of a parameter ought to be chosen 

with respect to the value of that parameter. Suppose sfp is the scaling factor of 

a parameter p where p=o, e, µ or h. In the ARS algorithm, sfp is determined 

by 

Sfp=Cpl 

cp is a constant set to: 

c, =0.4, cE=0.25, cµ=0.25, ch=0.5 

(4.5.8) 

in our reconstruction examples. The scaling factor in (4.5.7) is calculated from 

(4.5.8) for the parameter corresponding to vmax. 

According to these explanations, the kth iteration of the ARS algorithm 

can be implemented as follows: 

1. Generate a sample point y and obtain g(y). 
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2. Determine the new state of the algorithm. There are three cases: 

i) If g[x(k-1)] = g(y) then x(k) = y, x*(k) = x*(k-1), B(k) = B(k-1), 

xc(k) =y and the neighbourhood region is expanded in terms of Equation 

(4.5.2). 

ii) If g[x(k - 1)] < g(y) then x(k) = x(k - 1), x*(k) = x*(k - 1), B(k) 

is updated using (4.5.4), and xc(k) is determined by (4.5.5) (i. e. the 

neighbourhood region is moved but its size remains unchanged). 

iii) If g[x(k - 1)] > g(y) then x(k) = x*, x*(k) = x*, B(k) = B°, 

xc(k) = x* and the size of the neighbourhood region is obtained using 

(4.5.7). Note that x* is the minimum point of the new lower plateau 

specified by g(y). 

Under condition that the ARS algorithm does not find any lower plateau (for 

instance, gets stuck in a local minimum of g), the neighbourhood region is 

gradually expanded, approaching to cover the entire feasible region. In this 

case, the algorithm is converted to Multistart. 

4.5.2 The MLSLARS method 

As mentioned before, the ARS method can be combined with the MLSL 

to prevent the ARS from getting stuck in a local minimum of function g. The 

resultant method, the MLSLARS, consists of three stages distinguishable by 

the Bayesian estimate (4.4.3). This estimation gives the portion of the feasible 

region covered by the basins of the local minima found by the MLSL. Let x* be 

the minimizer obtained by the MLSL algorithm. The Bayesian estimate (4.4.3) 

can be used to assess the level of the certainty that x* lies inside the attraction 

region of the global minimum of function g. One can therefore decide whether 

to start the ARS algorithm from x* using this estimation. 

The MLSLARS method includes the following stages: 

STAGE 1: 
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1. Initialise the MLSL algorithm. 

2. Run MLSL until the Bayesian estimate (4.4.3) is less than a constant 

value al 

STAGE 2: 

3. Initialise the state of the ARS algorithm. Consider x* is the minimum 

solution provided by the MLSL algorithm and k=0. The state of the 

D ARS is determined by: x(k) = x*, x*(k) = x*, B(k) = B, xc(k) = x* 

and ßk is obtained using (4.5.7). 

4. Perform one iteration of the ARS. 

5. Perform one iteration of the MLSL algorithm. 

6. If the minimum value yielded from the MLSL algorithm is less than that 

of the ARS, go to step 3. 

7. GO to step 4 if the estimate (4.4.3) is less than another constant a2. 

STAGE 3: 

8. Run the ARS algorithm until the stop condition is satisfied. 

Stage 2 may be removed; but the reconstruction examples showed that the 

inclusion of this stage enhances the efficiency of the algorithm. 

In order to compare the performance of the MLSLARS with the MLSL, 

two examples are given. The constants al and a2 are selected to be 0.75 and 

0.95 respectively. 

Example 4.9. The comparison of the MLSL with the MLSLARS for the si- 

multaneous reconstruction of the permittivity, conductivity and permeability 

profiles are considered in this example. As shown in Fig. 4.26(a), the medium 

is the same as the one in Example 4.6 except that the layers are magnetic. It 
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Figure 4.26: (a) A 4-layer magnetic medium and (b), (c) its reflection coeffi- 
cients synthesised for a TE wave incidence at 30 frequencies equally spaced in 
the interval [5 MHz, 150 MHz] and at two incident angles 0= 0° and 0= 45°. 
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is also assumed that the properties of the last layer are unknown; thus, the 

MSE function has 15 variables. According to the necessary condition (Chapter 

3), the scattering data has to be obtained at two incident angles. The data 

generated by the simulation of the reflectivity formulation are illustrated in 

Fig. 4.26(b) and 4.26(c). 

The parameters of Np and ý in the MLSL method are set to 1000 and 0.002 

respectively and the search region S is selected as 

0 <Qm <0.5S/m, 1 <E,. m <50,1 <p��: 5 20 
- (4.5.9) 

0< hm < 100 cm m=1,2,3,4 

Ten runs were conducted and the final value of the MSE obtained by the 

MLSL and the MLSLARS are given in Table 4.6 after 200000 function evalu- 

ations. The MLSL method found the global minimum just once, whereas the 

Table 4.6: The final MSE values attained for 10 runs of the MLSL and MLSLARS methods 

when reconstructing the profile of the magnetic medium. Each run involves 200000 function 

evaluations. 

Final 1.6e-4 0.0002 1.8e-5 0.0017 0.0017 

MSE 0.0002 0.0 0.0002 0.0002 2.3e-4 

MLSL No. of 12 13 15 8 11 

Minima found 12 12 14 13 13 

Final 0.0 8.3e-4 6.9e-5 0.0 1.5e-4 

MSE 0.0 7.5e-5 0.0 0.0 1.9e-4 

MLSLARS No. of 18 16 19 27 15 

Minima found 20 20 25 27 20 

MLSLARS found it 5 times. A considerable improvement in the reliability 

has therefore been achieved. Moreover, Fig. 4.27 shows that the efficiency 

is improved, as the MLSLARS method found the global minimum with fewer 

function evaluations for the best convergence. The resultant profiles are il- 

lustrated in Fig. 4.28 where the simultaneous reconstruction of all electro- 

magnetic parameters is demonstrated. It is noteworthy that this simultaneous 
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Figure 4.27: The minimization of the MSE function by (a) MLSL and (b) 
MLSLARS for the best and worst convergence within 10 runs. The medium 
and the used scattering data are depicted in Fig. 4.26. 
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Figure 4.28: The simultaneous reconstruction of the (a) conductivity, (b) per- 
mittivity and (c) permeability profiles of the 4-layer magnetic medium by the 
MLSL and MLSLARS using the reflection coefficients at two incident angles. 
The best profiles obtained by the MLSL and MLSLARS coincide with the 
actual ones. 
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reconstruction has not been dealt with before in any other work. Using the 

data for both TE wave and TM wave incidences or using the data at two in- 

cident angles, some authors [21], [22], [30], [63], [64] have only considered the 

simultaneous reconstruction of the permittivity and conductivity. 

Example 4.10. This example deals with finding the parameters of a continu- 

ous medium, the profile of which is shown by the solid line in Fig. 4.29. It is the 

profile of a road pavement. The permittivity of the pavement has been exper- 

imentally measured [61] and its conductivity is taken from measurements for 

asphalt and concrete. The two transition regions, that between asphaltl and 

asphalt2, and that between asphalt2 and concrete, have properties described 

by a linear function of depth. This linear function gives a good approximation 

to the real situation. The line stared in Fig. 4.29 shows a discontinuous 3-layer 

version of this profile. As illustrated in Fig. 4.30, the reflection coefficients of 

the 3-layer medium and the continuous medium are obtained for the normal 

incidence by dividing the transition parts into 20 steps. The scattering data 

for the 3-layer medium is not used for the reconstruction and it is referred to 

later to justify some facts. 

At first, the reconstruction is carried out by using the data at 21 frequencies 

over the band [250 MHz, 450 MHz] with linear spacing. The feasible region is 

set to 

0<Q�<<0.2S/m, 1 <e,. m <25,0 <h, n <25cm 
(4.5.10) 

m=1,2,..., M 

Assuming the number of layers (M) is 3, the results are given in Table 4.7. 

An identical performance can be seen for the MLSL and the MLSLARS in this 

example. Note that the value of the MSE function at the global minimum 

point is unknown. In other words, the value 3.5e-11 is not guaranteed to be 

the global minimum. However, since both algorithms have reached this value 

in all 10 runs, it is likely to be the global minimum. The profiles obtained are 
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Figure 4.29: The (a) conductivity and (b) permittivity profile of a typical 
3-layer road pavement. 
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Figure 4.30: The reflection coefficients of the profiles shown in Fig. 4.29 for 
the normal incidence. 
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Table 4.7: The resultant MSE using the MLSL and MLSLARS methods for reconstructing 
the profile of the continuous medium from the reflection coefficients obtained in the interval 
[250 MHz, 450 MHz] when M=3. 

Number of function eval. = 25000, Np = 100, = 0.05 

Final 3.5e-11 3.5e-11 3.5e-11 3.5e-11 3.5e-11 

MSE 3.5e-11 3.5e-11 3.5e-11 3.5e-11 3.5e-11 

MLSL No. of 17 15 16 14 13 

Minima found 15 20 18 18 14 

Final 3.5e-11 3.5e-11 3.5e-11 3.5e-11 3.5e-11 

MSE 3.5e-11 3.5e-11 3.5e-11 3.5e-11 3.5e-11 

MLSLARS No. of 12 15 16 15 13 

Minima found 15 15 17 15 15 

shown in Fig. 4.31. 

It can be demonstrated that the data in the frequency range [250 MHz, 

450 MHz] is not adequate to approximate the continuous profile with a 5-layer 

medium. This can be justified from Fig. 4.30 where there exist slight differ- 

ences between the reflection coefficients of the 3-layer and continuous mediums 

over the frequency band [250 MHz, 450 MHz]. The data at large wavelengths 

offers low resolution, which means the detailed variations of a medium in spa- 

tial dimensions cannot be extracted using the low frequency data. When the 

medium is assumed to have 5 layers and the data in the interval [250 MHz, 

450 MHz] is used, it has been found that the MSE function has several well- 

separated minimizers with the MSE values close to the global minimum. This 

implies an instability that means large changes in the parameters of the 5-layer 

medium can correspond to very small changes in the reflection coefficients over 
the band [250 MHz, 450 MHz]. As a result, the inverse problem is nearly 
ill-posed in such a circumstance. 

The reconstruction for M=5 with the bounds (4.5.10) are therefore per- 
formed employing the reflection coefficients at 21 frequencies equally spaced in 

the interval [650 MHz, 1150 MHz]. The resultant MSE are given in Table 4.8 
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Figure 4.31: The 3-layer profiles reconstructed using the reflection coefficients 
in the interval [250 MHz, 450 MHz]. 
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and the reconstructed profiles are illustrated in Fig. 4.32. It is evident that the 

MLSLARS gives the better results than the MLSL for this case. and appears 

to be more successful for the media with a large number of layers. 

Table 4.8: The final MSE values using the MLSL and MLSLARS methods for reconstruct- 
ing the profile of the continuous medium from the reflection coefficients obtained in the 
interval [650 MHz, 1150 MHz] when M=5. 

Number of function eval. = 500000, Np = 1000, = 0.002 

Final 3.5e-8 1.3e-8 1.4e-8 3.7e-9 2.3e-9 

MSE 1.8e-9 4.4e-8 3.7e-9 8.2e-9 1.7e-9 

MLSL No. of 89 86 84 92 87 

Minima found 84 89 80 82 92 

Final 2.6e-10 4.8e-11 2.7e-9 4.8e-11 5.3e-11 

MSE 2.8e-10 2.6e-10 4.6e-12 6.8e-12 4.6e-12 

MLSLARS No. of 85 83 94 82 78 

Minima found 74 70 70 78 97 

The profile obtained for M=5 is still not satisfactory. This is because 

the lowest value 4.6e-12 found by the MLSLARS is not necessarily the global 

minimum. To show this, the reconstruction is carried out in a reduced feasible 

region given by 

O<Q1<0.02S/m, 4<erl<8,2<hl<6cm 

0.005<012<0.015S/m, 6<Er2<8,1<h2<5cm 

0.005<a3<0.05S/m, 6<43<12,5<h3<15cm (4.5.11) 
0.01<U4 <0.05S/m, 8 <Er4C12,1<h4<10cm 

0.01 <a5 <0.1S/m, 8 <Er5 <16 

Running the MLSLARS algorithm 10 times with 500000 function evaluations, 

we found that MSE attains a final value of 1.9e-12 for all 10 runs. Figure 4.33 

illustrates the obtained profile, which is acceptable. It is seen that even the 

MLSLARS fails to find the global minimum within the bounds of (4.5.10). If 

the number of iterations is increased, a lower minimum could be found within 
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M=5. 

THE APPLICATION OF GPR. 



4.5 A Hybrid Optimisation Algorithm 119 

the bounds of (4.5.10). This can however be avoided in some practical appli- 

cations where the feasible region may be shrunk with respect to the profile 
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Figure 4.33: The profile corresponds to the value 1.9e-12 for the MSE function 

with M=5. 
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found from the low frequency data. Having the profile derived from the low 

frequency data for M=3 (Fig. 4.31), one can suggest bounds like (4.5.11). 

Alternatively, it may be suggested to employ the low and high frequency data 

simultaneously. Nonetheless, this is not preferable for the following reasons: 

1. The more data used, the more computation cost. 

2. The electromagnetic parameters of many materials, especially those con- 

cerned with the GPR application, depend on frequency. Thus, since 

the RMBI presents a unique value for each parameter for the frequency 

band used, the error in the parameters will be substantial if the data is 

distributed over a wide range of frequency. 

One can observe from the reconstruction examples of this chapter that 

the largest error occurs in the conductivity profile. This can be explained 

by Equation (3.4.9), which shows that the MSE function is more sensitive 

to the permittivity than the conductivity especially at high frequencies. In 

fact, low frequency data provides higher accuracy in the reconstruction of the 

conductivity profile. In addition, it can be seen that the error is greater for the 

parameters of the deeper layers. This is because the reflections from the shallow 

layers are stronger than those from the deeper ones and contribute more to the 

MSE. Consequently, the MSE function is less sensitive to variations of the 

parameters of the deeper layers. The solution to such problems needs further 

consideration that is left for future research. 
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Chapter 5 

Modelling of Ground 

Penetrating Radar 

5.1 Introduction 

In order to use GPR data to determine the profile of a multi-layered medium 
by the IWBI, a model that relates the GPR data to the reflection coefficients 

of the medium is needed. King of al [40] have solved Maxwell's equations for 

horizontal and vertical dipole antennas, facing a layered medium. Several equa- 

tions are derived under different conditions, which enable some simplifications 

to be made. Such conditions are not generally satisfied for GPR applications. 
Besides, antenna configurations for GPR are not as simple as a dipole. The 

system can be monostatic or bistatic composed of dipole, bow-tie or horn an- 

tennas. There is usually a metallic shield, and the whole ensemble is put into a 

plastic case. Due to the complexity and the operation of GPR in the close prox- 
imity of the ground, it is not possible to analytically solve Maxwell's equations 
for GPR. 3-dimensional numerical methods can be used for the modelling, but 

require intensive computation time (Chapter 2). 

One way to approximately model a GPR antenna above the surface of a 
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multi-layered medium is to maintain a separation distance between the antenna 

and the medium. This idea is inspired by free-space methods used to measure 

the electromagnetic properties of materials [2], [36], [37]. There exist several 
GPR applications in which the antenna is inevitably separated from the ground. 
Such applications include ice thickness profiling [28], bridge deck inspection and 

pavement profiling [61] where the surveys are continuously made at high speed 
(50km/h). The parameters of the host medium in GPR applications can also 
be identified by using the data collected when the GPR antenna is separated 

from the medium. 
Being among non-destructive techniques, free-space methods are based on 

the approximation of the radiated field as a plane wave at the surface of the 

sample under test. It is therefore required that the sample is a flat large- 

aperture medium placed far enough from the antenna. In this way, material 

properties are obtained from the measured reflection and/or transmission coef- 

ficients. The dimensions of the sample and its separation from the antenna are 

of the order of several wavelengths. An acceptable accuracy can be achieved for 

large sample aperture with large separation. Consequently, free-space meth- 

ods have mostly been adopted in centimeter-wave and millimetre-wave regions 
(3-300 GHz). 

GPR systems often operate at UHF frequencies. For a deep penetration, 

some systems may operate at lower frequencies (VHF) as well. Thus, the sep- 

aration distance ought to be around a few metres so that the model employed 
in free-space methods can be used for GPR systems. Large separations are not 

practical since this causes the reduction in the electromagnetic power penetrat- 
ing into the ground together with the introduction of higher clutter into the 

received signal. In order to decrease the separation distance while maintaining 
the accuracy, the effects of the antenna-medium coupling has to be taken into 

account in the modelling. Thus, a new formulation that relates the received 

signal to the reflection coefficient of the medium is proposed in this chapter. 
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Using the new model, experimental and numerical examples demonstrate that 

the separation between the medium and the antenna could be of the order of a 

wavelength or less. In addition to the GPR application, the model enables free- 

space measurement techniques to be used not only for the frequency range [3 

GHz, 300 GHz] but also for the UHF and VHF ranges. The closeness between 

the sample and transmitting-receiving apertures provides higher signal to noise 

ratio, lower diffraction around the edges of the sample and lower extraneous 

reflections into the measurement path. As a result, a better accuracy in the 

measurements is achieved. 
To validate the proposed model and compare it with the conventional free- 

space model, several experiments were carried out by using a commercial GPR 

in the Department of Civil Engineering (University of Liverpool). The experi- 

ments involved the collection of data from a metal plate, a tank of water and a 

concrete block at different separations. The results confirm the superiority of 

the new model to the conventional one. Unfortunately, due to the lack of facil- 

ities, it was not possible to extend the experiment to more complicated layered 

media such as road basements. Thus, computer simulations were conducted 

using the 3-dimensional Finite-Difference Time-Domain (FDTD) method. 

A similar idea was pursued by Spagnolini [61], but no mathematical formu- 

lation is given for the modelling of the GPR system in that paper. Hamran et 

al [28] have also considered the application of the conventional model to the 

estimation of the dielectric constants of an ice shelf using GPR data. 

This chapter is organised into four sections. In Section 5.2, the formulation 

of the conventional modelling and the new modelling are detailed. A com- 

mercial GPR antenna is simulated by the FDTD method in section 5.3. The 

final section is devoted to the experimental and numerical examples and the 

analysis of the results. 
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5.2 Problem Formulation 

The geometry of the problem is shown in Fig. 5.1 where a transmitting- 

receiving aperture is illuminating a flat-surface medium through an air gap. 
It is a bistatic configuration, which consists of a transmitting antenna and a 

Medium 

Figure 5.1: Schematic diagram of a GPR antenna facing a multi-layered 
medium. 

receiving antenna both mounted inside a common box a finite distant apart. 

Such a system can be considered as a monostatic configuration where the same 

antenna is used for transmission and reception. The formulations presented in 

this section are for the monostatic system. As shown in the figure, d denotes the 

separation between the antenna and the medium. Under the assumption that 

the transmitting-receiving aperture is parallel to the surface of the medium 

and d is large enough, the incident wave can be treated as being normal to 

the medium. The problem is to relate the received signal to the reflection 

coefficient of the medium. 

The voltage incident on the terminal of the transmitting antenna induces an 

electric current in the transmitting-receiving aperture. This current radiates a 

wave that is partially reflected from the medium. The reflected wave returns 

to the aperture where it generates an output signal at the terminal of the 

receiving ; antenna. In addition, it influences the distribution of the current in 

the transmitting-receiving aperture. This influence is the source of a secondary 
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wave, which in turn is reflected from the medium, generates another received 

signal and changes the distribution of the current. Thus, there are multiple 

reflections between the transmitting-receiving aperture and the medium, i. e. 

antenna-medium coupling. 
Let E; 

a and En denote respectively the nth incident and reflected electric 
fields defined at the air-medium interface. En is related to En through the 

reflection coefficient of the medium, i. e. En, =r En. Suppose H,. represents the 

transfer function that relates En to the signal S(w) received by the receiving 

antenna (note that H does not denote the magnetic field). Conventional free- 

space methods are based on the following equation 

S(w)=EiI'H,. =Ur , U=EiHr (5.2.1) 

In fact, only the first reflection from the medium is considered in the modelling. 

The quantity U is obtained through a calibration procedure by replacing the 

medium with a good conductor, i. e. IF = -1. The reflection coefficient of an 

unknown medium is calculated from S(w) using I' =Ü 
In order to consider the contribution of the multiple reflections, let us define 

the transfer function H as the ratio of En+l to E. The received signal can be 

written as 

S =EiI'H, +EirHrHr+ElrHFHrHr+... 
(5.2.2) 

=ur [1+rH+(rH)2+... ] 

Equation (5.2.2) is a geometric infinite series with the factor II' H) <1 and 

can be simplified as 

rS1UrH 
(5.2.3) 

It should be noted that the mismatch losses (i. e. losses due to mismatch 
between the antenna and feeding transmission line), antenna responses and the 

spreading losses in the air gap are included in U and H. These two quantities 
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are determined by the geometry of the transmitting-receiving aperture as well 

as the distance d. Moreover, the interaction between the electromagnetic field 

and the medium is only considered through the parameter r (the reflection 

coefficient). Nevertheless, when the antenna is close to the medium, the near- 

field effect contributes to the received signal as well. Consequently, the decrease 

in d will increase the error in both models, i. e. Equations (5.2.1) and (5.2.3). 

It is important to note that S in (5.2.3) is the signal received owing to the 

presence of the medium. The actual GPR data includes a background signal 

that results from the interaction between the antenna, case and other parts 

such as the metallic shield. For the bistatic configuration, the direct coupling 

between transmit and receive antennas also contributes to the background 

signal. 

U and H can be obtained by using the received signals from any two known 

media [46]. The first medium should be a metal plate whose reflection coeffi- 

cient is -1 over a wide range of frequencies. The reflection coefficients of other 

materials, including fresh water, are frequency dependant. However, since the 

permittivity of fresh water (e,. E [77,81]) is very high, its reflection coefficient 

is nearly constant versus frequency. Furthermore, the imaginary part of the 

reflection coefficient is negligible compared to the real part. Hence, fresh water 

is an appropriate candidate for the second known medium. 
Alternatively, the quantities U and H may be calculated by utilizing the sig- 

nals received from a single known medium with two different separations. The 

known medium should be a metal plate. The formulations for both approaches 

are given in the following sections. 
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5.2.1 Metal-Water approach 

Let SMet and Swat denote the signal received when the medium is a metal 

plate and a pool of water respectively. These signals are given by 

SMet =1H (5.2.4) 

S. Wat =Ur 
Wat 

(5.2.5) 
1- resat H 

where I'wat is the reflection coefficient of fresh water. Solving (5.2.4) and 

(5.2.5) for U and H, one can derive 

1+ rWat SMet Swat 
u= 

Twat ( 5Met - 
SWat) 

(5.2.6) 

1r Wat SMet + swat l H= --Fes-at 
( 

SMet - 
Swat ) (5.2.7) 

The reported values for the relative permittivity of fresh water are within 

E,. E [77,81]. In this investigation, rwat is set to -0.797, which is the mean of 

two extreme values: rwat = -0.795 for e,. = 77 and rwat = -0.8 for e,. = 81. 

Accordingly, substitution of (5.2.6) and (5.2.7) into (5.2.3) yields 

0.254 SMet Swat r 
S= 

Swat - SMet -r (SMet - 1.254 Swat) 
(5.2.8) 

Rearranging (5.2.8), we have 

S (Swat 
- SMet) 

r 
0.254 SMet Swat +S (SMet -1 1.254 Swat 

(5.2.9) 

The proposed model is given by Equation (5.2.8) or (5.2.9), which relates the 

received signal to the reflection coefficient of an unknown medium. 

5.2.2 Metal-Metal approach 

In this approach, the values of U and H are calculated from the mea- 

surements carried out on a metal plate with two different distances d. It is 
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well-known that the radiated field E in the far-field zone of an antenna is given 
by 

_ 

E_Fe 
r 

(5.2.1 0) 

where F is a proportional factor, c is the velocity of the wave in air and 

r is the distance from the antenna to the observation point. Consider two 

rays radiated from and returned to the transmitting-receiving aperture for two 

different separations and let E. and Eb be the field strengths of the returned 

rays at the receiving antenna with separations d= da and db respectively. The 

following equation can be obtained from (5.2.10) 

Eb = 
da 

e-2j' 
da Ea = Vab Ea (5.2.11) 

6 

Let Sa, U. and Ha denote the corresponding quantities in (5.2.2) when 
d= da. Observing that the first term in the series (5.2.2) involves one radiated 

ray, the second term involves two radiated rays and so forth, one can write the 

relation 

sb=uaVabr+ua1' r2Ha'i-UaVyr3Hä'i-... (5.2.12) 

where Sb is the received signal for d= db. Equation (5.2.12) can be simplified 
to 

Vabuar Sb = (5.2.13) 
1-VabrHa 

From (5.2.3), we have 

_ 
va r 

`S" 1-I'Ha 
(5.2.14) 

Solving (5.2.13) and (5.2.14) for U. and Ha, one can derive 

Ua = Sa Sb 1- Vab 
FVab(Sa - Sb) 
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_ Ha 
Vab Sa - Sb (5.2.1 6) 

IF Vab (Sa - Sb) 

If a metal plate (I' = -1) is used to obtain Ua and Ha, the equations can be 

rewritten as 

La- - SMet SMet 
1- Vab (5.2.17) 

ab Vab (Sä et - Sr et) 

V6 SM et - S6 et 
(5.2.18 Ha ab 

(Sb et - SQ et) 

where Sa et and S6 et are the measured signals using the metal plate. The 

substitution of (5.2.17) and (5.2.18) into (5.2.14) yields 

Met Met (1 Vab) I' 5.2.19 Sa = Sa Sb 
Vab (SMet 

- QMet) r (V b Sa et - S6 et) 
() 

baa 

Rearranging (5.2.19), we have 

Met - SM et 
r= Vab Sa Sa et SM et (1 

S 

-Vab)+Sa(Vab"5'Q et - SMet) 
(5.2.20) 

Equation (5.2.19) or (5.2.20) gives another version of the proposed model that 

relates the received signal to the reflection coefficient of an unknown medium 

placed at a distance da from the transmitting-receiving aperture. 

5.2.3 Application 

According to the proposed models, a GPR antenna at a specific separation 

can be characterised by two measured signals (SMet, Swat) or (Sn et, S6 et). 

These calibration measurements just need to be conducted once and the results 

can be used afterwards for the measurement of the parameters of a layered 

media. It is necessary to identify suitable separations that offer a satisfactory 

accuracy for an given GPR antenna. This can be done by conducting some 

experiments at different separations on a known medium or alternatively by 

3-dimensional simulation of the antenna. Further discussion is provided in 
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Section 5.4. It should be mentioned that such experiments or simulations are 

also required to be done once for an antenna. 
Using (5.2.9) or (5.2.20), the reflection coefficient can be computed from the 

measured data (e. g. S0, St'i'Qt, ... 
) and then employed in the RMBI to derive 

the profile of multi-layered media. Owing to the multiplication of two measured 

signals in the denominator of these equations, the noise will be amplified at 

the frequencies that bear less power. Hence, it is preferable to use Equations 

(5.2.8) or (5.2.19) directly in the inversion. To do so, some modifications are 

required in a few expressions derived for the RMBI. 

With regard to Equation (3.4.2) (Chapter 3), let the MSE function be 

rewritten as 
N 

1(x) = 
2N EI Sn odel - 

Sn 12 (5.2.21) 
n=1 

where S,, is the observed (measured) signal and Sn odel is the model signal 

obtained from either (5.2.8) or (5.2.19). The derivative of the MSE function f 

in terms of a parameter x,,, is given by 

a_1Na gMode! f- 
Re E (, 'n odel _ Srn) n ýrJ. ̀Z. ̀2(5.2.22) 

ax,,, N 
n_1 

1 aXm 

For the Metal-Water approach, we have 
aSModel 0.254 , 

Set Swat (Swat 
- SMet) or 

() axm, [Swat 
- 

SMet -r 
(SMl et - 1.254 SWat)]2 X ax,,, 

5.2.23 

and for the Metal-Metal approach, one can derive 
Model Met Met Met Met as 

_ 
Vab (1 

- 
Vab) Sa Sb (sb - Sa )x or (5.2.24) axm Vab (. Set 
- 

QMet) -r 
(Vab Sa et - 

SbMet)]2 axm 
ba /J 

The derivations for äm given in Chapter 3 are applicable here. 

5.3 The FDTD Simulation of a GPR Antenna 

The finite-difference time-domain (FDTD) method has been used success- 
fully to analyse antennas and solve scattering problems. The FDTD technique 
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utilizes a central difference scheme to discretise Maxwell's curl equations in 

space-time. Electric and magnetic fields are evaluated alternately at half-time 

step intervals in closely-spaced computation cells typically having dimensions 

less than A/20, where A denotes the wavelength in the medium of interest. 

The technique involves a time marching procedure, which is followed until the 

desired response is reached. 
The results of the simulation of GPR by the FDTD method show a good 

agreement with measured ones [7], [8], [48]. The FDTD analysis of an an- 

tenna, which is similar to that used in a commercial GPR system (Model 3101 

of GSSI Inc. ), is discussed in this section. The simulation is carried out by 

LC, a user-friendly software package developed by Silicon Graphics Inc. [58]. 

The software provides many facilities such as parallel processing, defining the 

material parameters, selecting different absorbing boundary conditions and in- 

troducing voltage and/or current sources at any location. LC allows the user 

to record the electromagnetic fields, voltage, current, charge density etc. at 

the positions of interest. The software is run on Silicon Graphics computer 
(model SGI Power Challenge) having fourteen R10000 processors and 1.768 

GB memory. We tested LC by comparing the experimental results, given in 

[42] for a monopole antenna, with those yielded from the simulation of that 

antenna by LC. A good agreement was achieved. 
The antenna of the commercial GPR is nominally 900 MHz with an aperture 

of 18 cm x 33 cm. To simulate this radar, the details of the antenna dimensions 

and materials are required. Since the antenna is sealed off, we are not allowed 

to open the antenna case. Using information supplied by the manufacturer, 

the FDTD model shown in Fig. 5.2 is used for simulation. 
The device contains two metallic bow-tie antennas (bistatic configuration) 

with similar design (Fig. 5.2(b)). The terminals of the antennas are connected 

to transmission lines consisting of two parallel cylindrical wires. The simulation 

of cylindrical shapes needs very fine cells, which will substantially increase 
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Figure 5.2: The FDTD model of a GPR antenna. (a) the complete aiiteiina. 
(b) The bow-tie antennas with the metallic shield, foattº packing and plastic 
cover stripped away. (c) Bottom view with the plastic cover reiuuwed. 
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the amount of memory required and exceed the computer memory available; 

hence, the transmission lines are modelled as cubic wires. The dimensions of 

transmission lines are chosen to yield the desired characteristic impedance of 

167 Q. Note that it is not possible to achieve every value for the characteristic 

impedance. This is because the dimensions of the lines are required to be a 

multiple of the cell size. Each antenna is loaded with four 170 1 resistors, 

giving an equivalent 170 SZ value which is nearly matched to the characteristic 

impedance of the lines. These resistors make the antennas broadband. 

The device incorporates a metallic shield that minimizes the radiation from 

top and sides of the antennas and directs the radiation toward the ground. 

The antennas are held by foam, which fills the space inside the shield. An air 

insulator protects the transmission line from touching to the metallic shield. 

The whole ensemble is covered by a plastic case, the bottom section of which 

is considered in the antenna model. 

Two Gaussian pulse current sources with opposite direction are placed along 

the wires to excite the transmitting antenna. The characteristics of the exci- 

tation pulse, such as rise time, fall time and pulsewidth, were not known for 

the commercial GPR. The parameter ro of the Gaussian pulse (Fig. 2.3) is 

experimentally set to 0.27 ns, which gives an acceptable match between the 

background GPR and FDTD signals (i. e. the signals are obtained from the 

GPR measurement and the FDTD simulation without the presence of any ob- 

struction). The signals are shown in Fig. 5.3 where the GPR signal is scaled 

in amplitude and offset in time with respect to the FDTD signal. Note that 

scaling and time offsetting are necessary so that one can easily compare the 

signals. The received signal is recorded by a voltage probe located between the 

wires of the receiving transmission line as indicated in Fig. 5.2(a). 

The cell size in all FDTD simulation is set to 2.625 mm that is a com- 

promise between the requirement for shortest wavelength (cell size should be 

< Amt, /20), the maximum computer memory available, and the need to achieve 

THE APPLICATION OF GPR. 



5.3 The FDTD Simulation of a GPR Antenna 134 

6 

5 

4 

3 

2 
m V1 

E0 

-1 

-2 

-4 

1I11 

_........: .........:...... ..........:......... 
>........:.. GPR signal 

--- FDTD signal 

_. -... i .........:..... ... ......... .......... .......... :.........;....................:........ 

................. .. _- .' '" 

v0 123456 
Time (ns) 

(a) 

789 10 

_0 500 1000 1500 2000 2500 
Frequency (MHz) 

(b) 

800 

700 

600 

500 
CD v 
'c 400 
os 

300 

200 

100 

n 

ýFDGPR 
T 

signal 
_ ..................:, - ..............................:... FDTD signal 

_ ............. ý....... a................................. ..:....... .... ..... 

....................................................... 
i 
i :.................. 

ý ......... .... .............................. 

i 

................................ ...:...................:.................. 

Figure 5.3: The background GPR and FDTD signals in (a) time domain and 
(b) frequency domain when there is no medium in front of the antenna. 

THE APPLICATION OF GPR 



5.3 The FDTD Simulation of a GPR Antenna 135 

a certain value for the characteristic impedance of the transmission lines. It 

is noteworthy that all dimensions of the elements in the model (Fig. 5.2) are 

chosen as multiples of the cell size so that no part is missed during the dis- 

cretisation. Once the cell size is selected, LC automatically assigns a value to 

the time step, which for the present size is equal to 4.378 ps. 
A comparison between the experimental and simulated data is provided 

here for the case when the GPR antenna is above a concrete block illustrated 

in Fig. 5.4(a). As it can be seen, a metal bar is embedded in the block. To 

minimize the effect of this bar, the polarization of the antenna is orthogonal 

to the bar. In addition, the top surface (80 cm x 120 cm) of the block, which 

is 15 cm away from the metal bar, is below the GPR antenna. The age of the 

block is two years and so it is dry. The relative permittivity and conductivity 

of dry concrete were measured by the transmission-line method and are shown 

in Fig. 5.4(b) and 5.4(c) as a function of frequency. The parameters with 

frequency dependency cannot be accommodated in LC. Thus, a medium with 

ET =6 and a=0.04 S/m, being roughly the average of the parameters of the 

concrete block, is used in the FDTD simulation. 

Figures 5.5 and 5.6 illustrate the resultant signals in the time and the 

frequency domains respectively. These signals are obtained after deducting the 

background signals of Fig. 5.3 from the original ones. They are therefore the 

result of the presence of the concrete block and the medium with er =6 and 

a=0.04 S/m. It can be observed that the rate of attenuation of the GPR 

and FDTD signals in terms of the separation distance is almost the same. 
Furthermore, a similar shift in the centre frequency of the signals occurs at 
different separations for the both signal sets. Overall, the FDTD simulation 

agrees well with the real signal. Thus, the FDTD method can be a useful tool 

for analysing and designing GPR antennas. 

With regard to the cost of the simulation, Table 5.1 summarises the corre- 

sponding minimum and maximum limits. 
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Figure 5.4: (a) A two years old concrete block. (b) The permittivity and (c) 

conductivity of dry concrete measured by the transmission-line method. 
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Table 5.1: The minimum and maximum costs for the FDTD simulations presented 
in Fig. 5.5. 

Separation 

distance 

No. of 

cells 

Memory 

needed 

CPU time for 

3071 time step 

5 cm 6779520 540 MB 25680 sec 

30 cm 10440000 806 MB 52610 sec 

5.4 Results and Discussion 

Several examples will be provided to evaluate the accuracy of the new mod- 

els over the conventional one. Furthermore, the models will be tested using the 

RMBI to reconstruct the profile of multi-layered media. The data shown in 

this section and utilized in the processing are calibrated by removing the back- 

ground from the original data. We refer to Equation (5.2.1) as the FR model 

in which only the First Reflection from the medium is considered. Equations 

(5.2.8) and (5.2.19) are respectively referred as the AM-MW (Metal-Water) 

model and the AM-MM (Metal-Metal) model in which the Antenna-Medium 

coupling is taken into account. 

Example 5.1. The data in this example is generated by the FDTD simulation, 

which is carried out at 6 separations d=5,10,15,20,25,30 for a copper plate, 

a pool of water and a medium with (Er = 6, o, = 0.04 S/m). The signals from 

the medium have already been shown in Fig. 5.5. The goal is to regenerate the 

signal due to the medium by using the FR model, AM-MW model and AM- 

MM model, and then compare them with the corresponding FDTD signal. 
In addition, the models are utilized to derive the reflection coefficient of the 

medium. 

According to (5.2.19), it is possible to make 5 selections for db among the 

six separations for any fixed da. The selection, which yields the best correlation 
between the FDTD and the AM-MM model signals, is applied. The correlation 
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is defined by the Relative Mean Square Error (Relative MSE) as 
N SMM SFDTD (W n) Relative 115E = 

r, 
"-1 

I (") I 
(5.4.1) 

1I 
SFDTD(Wn)IZ En= 

where SFDTD(wn) is the frequency domain component of the FDTD signal with 
N samples and SMM(wn) is the value calculated from the AM-MM model at 

angular frequency wn. Separation pairs (da, db) that resulted in good Relative 

MSE's were: (5 cm, 10 cm), (10 cm, 15 cm), (15 cm, 20 cm), (20 cm, 25 cm), 
(25 cm, 30 cm) and (30 cm, 25 cm). 

Figures 5.7 and 5.8 show the resultant signals and reflection coefficients 

respectively. It is evident that the AM models provides a better approximation 

than the FR model. This fact is quantitatively illustrated in Fig. 5.9 where 

the Relative MSE between the FDTD signal and the model signals are shown. 
One can observe that the suitable separation for the simulated GPR antenna 

could be within [15 cm, 30 cm]. It is advantageous to use the shortest suitable 

separation in order to provide the highest signal to disturbance (noise) ratio, 

as Fig. 5.7 indicates that an increase of the separation reduces the received 

power. Besides, the power of the disturbances generated by the surrounding 

environment is an ascending function of the separation. In this example, the 

imperfect boundary condition in the FDTD method generates a little reflection 

that most influences the received signal at large separations. Of course, both 

models become less accurate when the separation is decreased. Consequently, 

there is an optimum separation, as Fig. 5.9 shows that d= 15 cm (it can hardly 

be seen) and d= 20 cm give the minimum error for the AM-MW model and 
AM-MM model respectively. Similar phenomenon could also happen for the 
FR model if the disturbances were more powerful. This hypothesis is verified 
in the next example where the experimental GPR data, bearing substantial 
disturbances, are involved. 

Furthermore, it is observable from Fig. 5.9 that the AM-MM model presents 

smaller Relative MSE than AM-MW model for the separations of interest. 
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Figure 5.7: A comparison between the FDTD signals, AM-MM model sig- 
nals. AM-M«' model signals and FR model signals due to the presence of the 

medium with c, =6 and c, = 0.04 S/m. 
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Figure 5.9: The relative mean square error between the FDTD and different 
model signals shown in Fig. 5.7. 

This might be because of two reasons: Firstly the reflection coefficient of the 

simulated water (e,. = 80, a=0.01 S/m) is different from the constant Fwat -- 

-0.797 that is used in the model (Equation (5.2.8)). Secondly the FDTD cell 

size is not sufficiently small for the water medium. The wavelength at 1GHz 

in water is equal to 33.5 mm, which does not satisfy the condition: cell size 

< \/20. This introduces errors in the FDTD simulation, especially at higher 

frequencies. 

As Fig. 5.8 illustrates, all models produce large errors in the resulting 

reflection coefficients at low and high frequencies. This can be explained by 

Fig. 5.10 where the FDTD signals in the frequency domain are shown for the 

distance 20 cm. It can be seen that the power of the signals drops at low 

and high frequencies. The effect of disturbances and noise may therefore be 

significant at these frequencies. As mentioned in Section 5.2, the near-field 

effect also causes an error at low frequencies (large wavelengths). 

The reflection coefficients can be used to calculate the permittivity and 

conductivity at individual frequencies. Since the medium consists of 1 layer, it 

is straightforward to analytically find the parameters from the real and imag- 
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Figure 5.10: The frequency components of the FDTD signals for the separation 
distance = 20 cm. 

inary parts of the reflection coefficients. Figure 5.11 shows the permittivity 

and conductivity of the medium, obtained in the frequency interval [400 MHz, 

1500 MHz]. It is evident again that the AM models offer smaller errors. 

The parameters of the medium can also be reconstructed numerically by 

minimizing the MSE function (the RMBI). Applying this method while using 

the frequency components of the FDTD signal at 8 frequencies equally spaced 
in the interval [600 MHz, 800 MHz], the resultant relative errors for the per- 

mittivity and conductivity are illustrated in Fig. 5.12. The relative error for a 

parameter p is defined by 

I Pderived - Pactual I 
er = (5.4.2) 

Factual 

One may speculate that the FR model has given the minimum permittivity 

error at separation 30 cm. This can be explained by Fig. 5.11(b) where for 

example at separation 15 cm, the FR model provides zero error for the permit- 
tivity (E,. = 6) at three frequencies, which are roughly 425,775 and 1210 MHz. 

In fact, if another frequency range were chosen instead of [600 MHz, 800 MHz], 

the relative permittivity error of the FR model at 30 cm would be higher than 

the present one. As a result, the models should be compared by a criteria in 
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Figure 5.11: The permittivity and conductivity that are derived from the re- 
flection coefficients shown in Fig. 5.8 at individual frequencies for a medium 
with F, =6 and o, = 0.04 S/m. 
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which the outputs of the models at all frequencies take part. Such a criteria 

can be Relative MSE. defined by Equation (5.4.1) and shown in Fig. 5.9 for 

this example. 

Example 5.2. This example is the counterpart of the previous example but 
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Figure 5.12: The relative errors of the medium parameters derived by the 
RMBI. The scattering data are the frequency components of the FDTD signals 
(shown in Fig. 5.7) at 8 frequencies over the range of [600 MHz, 800 MHz] 
with linear spacing 
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the data are experimental ones collected by the commercial GPR with 900 MHz 

antenna. The measurements were taken on the concrete block (Fig. 5.4(a)), a 

copper plate (100 cm x 90 cm) and a water container (100 cm x 75 cm x 25 

cm). The separation pairs (d0, db) that provided the best Relative MSE were: 
(5 cm, 10 cm), (10 cm, 15 cm), (15 cm, 20 cm), (20 cm, 15 cm), (25 cm, 20 

cm) and (30 cm, 25 cm). 

The results are illustrated in Fig. 5.13,5.14 and 5.15. The first noteworthy 

thing is that the AM-MW model has presented a substantial error. As pointed 

out earlier, this could be because the reflection coefficient of the used water 
is different from that assumed in the model (resat = -0.797). Nevertheless, 

we think the most influential source of error is the strong diffraction from the 

edge of the finite-size water container. This problem can be solved by using 

a large-aperture container. Due to some practical difficulties associated with 

the utilization of water, such as the accurate adjustment of the separation 

distance, the Metal-Water approach is to be given up and our attention is 

therefore paid to the Metal-Metal approach (although Metal-Water approach 

emerged at first). 

As seen from the previous example, there is an optimum separation distance 

for each model, indicating by Fig. 5.15. The optimum separation for the 

FR model can however be seen readily in this example. When the distance 

is increased the models become more accurate. However, the power of the 

disturbances generated by the edge diffraction and unwanted reflections is also 
increased. In addition, the power received is reduced for larger distances. If 

the aperture of the concrete block and the copper plate were larger, it would 
be expected that the minimum points in Fig. 5.15 be shifted upwards. 

Unlike Example 5.1, it can be observed from Fig. 5.14 that there is a con- 

siderable fluctuation in the reflection coefficients over the low-error frequency 

band [400 MHz, 1500 MHz] at separations 15,20,25 and 30 cm for the AM-MM 

model. This phenomenon also occurs due to the presence of strong diffractions, 
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Figure 5.13: A comparison between the GPR signals, AM-MM model signals, 
AM-MW model signals and FR model signals due to the presence of the con- 
crete block illustrated in Fig. 5.4. 
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Figure 5.14: The reflection coefficients obtained from the GPR signals shown 
in Fig. 5.13 using AM-NIM model, AM-MW model and Fß, model. 

THE APPLICATION OF GPR 



5.4 Results and Discussion 150 

W 
N 

m 

d 
Q 

0.3 ý... ý. -r....... _ 

)25 .......... l ...........................; ..................:..................... 
i 

Between GPR and AM-MM model signals 
02 --- Between GPR and AM-MW model signals 

........ Between GPR and FR model signals 
i 

i 
t ............. 

0.1 ....... 

1.05 r i., - 
........ 

................ 

10 15 20 25 
Separatfon Distance (cm) 

Figure 5.15: The relative mean square error between the GPR and different 
model signals. The signals are given in Fig. 5.13. 

especially from the metal bar embedded in the concrete block. Attempts were 

made to remove the reflection arising from the metal bar by windowing the 

signals in time domain. However, the overlap between this reflection and those 

from the surface of the concrete block made it impossible to remove them com- 

pletely. This fluctuation results in an oscillatory behaviour of the dielectric 

parameters derived at each frequency, similar to that already seen in Fig. 5.11 

for the FR model (Example 5.1). Obviously, for precise measurements, the 

sample edges and other reflective objects ought to be covered by absorbing 

materials and a plain sample is utilized. 

Figure 5.16 compares the permittivities and conductivities derived by the 

RMBI for three frequency ranges. One can see that at any separation, the 

use of the AM-MM model provides less variation in the parameters than the 

use of the FR model for different frequency bands. This desirable feature is 

an advantage of using the AM-MM model over the FR model. In addition, 

comparing Fig. 5.16 with Fig. 5.4(b) and 5.4(c), the best results are those 

obtained for the distance 20 cm when using the AM-MM model. It should be 

noted that the reflection from the metal bar dominates that from the other side 
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of the concrete block. Thus, the reconstruction of the thickness of the block is 

subjected to a large error and is not considered in this example. 

It is inevitable to have extraneous disturbances in GPR applications. This 

example has demonstrated that satisfactory results can be achieved by the 

application of the AM-MM model even if the GPR data contains considerable 

unwanted disturbances. It is possible to improve the results by using a larger 

copper plate which produces weaker edge diffractions. 

Of the two AM models, only the Metal-Metal model is used in the sub- 

sequent examples. For convenience, this model is referred as the AM model 
hereafter. The data generated by the 3-dimensional FDTD simulations are 

used in the following examples. 

Example 5.3. In this example, the medium is a one-layer slab with e,. = 8, 

Q=0.05 S/m and h(thickness) = 10 cm, surrounded by free space. The same 

medium was used in several examples in Chapter 4 (e. g. Example 4.1). 

Using the AM and FR models, the resultant reflection coefficients are shown 

in Fig. 5.17. The pairs (da, db) in the AM model are those given in Example 

5.1. Figure 5.18 illustrates the Relative MSE obtained between the FDTD 

signals and the model signals. The superiority of the AM model to the FR 

model is evident here as well. 
The RMBI is utilized to find the profile of both the slab and the bottom 

half-space medium (free space). The scattering data lies over the frequency 

band [500 MHz, 1000 MHz] (the same interval used in Chapter 4 for the re- 

construction of this medium). The results are shown in Fig. 5.19. 

Example 5.4. This example is concerned with the evaluation of the AM and 
FR models in retrieving the reflection coefficient and the parameters of the 

road pavement regarded in Example 4.10 Chapter 4. We consider a separation 

of 20 cm, which gives the minimum error for the AM model in all previous 

examples. 
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Figure 5.17: The reflection coefficients of a slab with E. = 8, or = 0.05 S/rn and 
h(thickness) = 10 cm in free space. 
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Figure 5.18: A illustration of the accuracy of the AM model over the FR model. 

At first, the FDTD simulation is carried out for the 3-layer approximation 

of the pavement (Fig. 4.29). The FDTD signal along with the signals gen- 

erated by the models are given in Fig. 5.20(a). Furthermore, Fig. 5.20(b) 

compares the actual reflection coefficient of the 3-layer approximation with 

those provided by the models. 

The reconstructed profiles are illustrated and compared with the true one 

in Fig. 5.21. The frequency components of the FDTD signal in the range 

[650 MHz, 1150 MHz] are used as the scattering data. This range is the high 

frequency range employed for the reconstruction in Example 4.10. 

Dividing the transition regions of the continuous profile into 5 steps, the 

corresponding results are shown in Fig. 5.22. Note that the transition regions 

were divided into 20 steps in Example 4.10. However, the cell size 2.625 mm 

in the FDTD simulation imposes a limitation on having finer discretisation in 

this example. 
Figure 5.23 shows the resultant permittivity and conductivity profiles, us- 

ing only the AM model, while the number of layers is set to 3 and 5. The 

scattering data lies in the interval [650 MHz, 1150 MHz]. The reconstructed 

conductivity bears a substantial error. As mentioned before, the conductivity 
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Figure 5.19: A comparison between the reconstructed parameters of a 2-layer 

medium using the AM and FR models. 
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is very sensitive to errors in the data, especially at high frequencies. There 

exist two sources of error in the inverse method: 

1. The assumed number of layers is different from the actual one. In fact, 

the true medium consists of 11 layers (solid line in Fig. 5.23). 

2. The AM modelling is inexact, i. e. the scattering data is not predicted 

exactly by the ANI model. This can be observed from Fig. 5.22(a) where 
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Figure 5.20: The evaluation of the AM and FR models in deriving (a) the 

received signal and (b) the reflection coefficient when the medium is 3-layer 

approximation of the road pavement considered in Example 4.10 Chapter 4 
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the FDTD signal differs from the one generated by the AM model. 

One can also observe that the resultant 5-layer profile provides a larger 

error. This might be due to the second source of error, i. e. the inexact mod- 

elling makes the inverse problem ill-posed when the number of layers is 5 or 

more. Similar to Example 4.10, it is possible to use the scattering data at 
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Figure 5.21: The resultant conductivity and permittivity of the 3-layer 
medium. The scattering data are the frequency components of the FDTD 
signal (shown in Fig. 5.20(a)) over the band (650 MHz, 1150 MHz). 
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lower frequencies ([250 MHz. 450 \IHz]) to find a more accurate 3-laver profile 

(low resolution version). The low frequencies offer better accuracy because 

the conductivity is less sensitive to the error: In addition, the first source of 

noise introduces minor errors as it can be seen from Fig 4.30 (Chapter 4). The 

5-layer profile can then be reconstructed from the high frequency data using 

narrowed bounds. obtained on the basis of the 3-layer profile. Such a scenario 
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Figure 5.22: The evaluation of the ANI and FR models in deriving (a) the 
received signal and (b) the reflection coefficient when the medium is that whose 
profile shown by the solid line in Fig. 5.23. 
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cannot be applied to this example owing to a considerable error in the data over 

the frequency band [250 MHz, 450 MIHz]. Generally speaking, two surveys are 

required to be carried out by a GPR, one with low frequency (e. g. 300 MHz) 

and one with high frequency (e. g. 900 MHz) antennas so as to obtain accurate 

results. 
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Figure 5.23: The derived conductivity and permittivity of a road pavement 
using the AM model. The scattering data are the frequency components of 
the FDTD signal (shown in Fig. 5.22(a)) over the frequency range (650 MHz, 
1150 \IHz). 

THE APPLICATION OF GPR. 



Chapter 6 

Summary and Future Work 

6.1 Summary 

The problems associated with the interpretation of GPR data have been 

investigated and new techniques have been developed and evaluated for the 

characterisation of multi-layered media. These methods are valuable for many 
GPR applications such as characterising the subsurface structure of the ground. 

The model-based approach for the inversion was selected due to providing 

robustness and broad applicability. Three difficulties had to be tackled: 

1. The inefficiency of the model-based approach. 

2. The convergence of the optimisation procedure used in the inversion to 

the true solution. 

3. Modelling of GPR when its antenna is illuminating a layered medium. 

The inefficiency of the model-based approach has been remedied by employing 
the reflectivity formulation instead of the nonlinear integral equation and by 
deriving an analytical expression for the gradient of the objective function. In 

order to overcome the second difficulty, three well-known global optimisation 
techniques, genetic algorithm (GA), simulated annealing (SA) and multi-level 

160 



6.1 Summary 161 

single-linkage (MLSL) method, have been investigated. The comparison be- 

tween GA and the MLSL together with that between SA and the MLSL indi- 

cate that the MLSL method is the best candidate to be used in the inversion. 

In addition, the MLSL has been combined with a new optimisation technique, 

adaptive random search. Several reconstruction examples show that the resul- 
tant hybrid method provides better reliability and efficiency. 

In order to apply the inverse method to GPR data, a model is required 

that relates the reflection coefficient of the layered medium under investigation 

to the signal received by GPR. Such a model has been proposed by taking 

account of the antenna-medium coupling into the formulation used in con- 

ventional free-space methods. Thus, the antenna-medium separation could be 

reduced significantly to increase signal to clutter ratio. Compared with the con- 

ventional free-space formulation, the proposed model provides more realistic 

modelling of the application of GPR. 

In addition to the work performed to overcome the mentioned difficulties, 

the necessary condition for the unique solution to 1D EIS problem has been 

established. The detailed FDTD simulation of a commercial GPR has also been 

described. The comparison between the simulated and experimental results 

reveal that the FDTD method is a useful tool for the analysis and design of 
GPR antennas. 

Numerous reconstructions of layered media based on experimental and sim- 

ulated data have been carried out to test the methods developed in the thesis. 

The experimental data was obtained by using an HP-8753B network analyzer 

and a 900 MHz commercial GPR. The reflectivity formulation and the FDTD 

simulation were used to generate the simulated data. 
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6.2 Recommendation for Future Work 

The framework of finding the profile of a multi-layered medium using GPR 

has been provided in this thesis. Accuracy of the reconstruction could be 

further improved by taking the following into account: 

1. The wave spreading effect in the layered medium. This effect has not been 

taken into account although the wave spreading in the region between 

GPR and the upper surface has been considered. This is a source of 

systematic error, which can be avoided by considering the wave-spreading 

effect in the formulation of the reflection coefficient of the medium. 

2. Compensation of path loss. As mentioned at the end of Chapter 4, the 

parameters of the deeper layers bear greater error. This is due to path 

loss making the reflections from the shallow layers are stronger than those 

from the deeper ones. Path loss can be compensated by applying a time- 

variable gain. In this way, the deeper reflections are weighed upwards 

so as to increase their power. Another method is to use time-frequency 

domain data [17] rather than merely frequency domain data. The time- 

frequency analysis (such as the wavelet transform) is more suited to sepa- 

rate the echoes contained in the GPR signal. These echoes can be weighed 

appropriately and employed as the observed scattering data for the inver- 

sion. The use of time-variable gain or the adoption of the time-frequency 

analysis requires the derivation of the expressions for the gradient of the 

MSE function. 

The reconstruction of the profile of a continuous medium needs further 

refinement. Because a continuous medium may be regarded as comprising an 

infinite number of thin layers, the use of the data in a finite frequency range (i. e. 

incomplete data) makes the inverse problem ill-posed. This fact was shown in 

Example 4.10 where the reconstruction of the profile of a road pavement was 
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considered. One way to overcome this problem is to restrict the variation of 
the parameters in a small feasible region (Example 4.10). However, the general 

remedy is to impose the continuity of the profile by adding an appropriate 

regularisation factor to the MSE function [14, Chapter 4]. 
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