
OUTCOME MEASUREMENT 

ERROR IN SURVIVAL 

ANALYSIS 

Ph.D. Thesis 

by' 

WILLIAM MARK HIRST 

September 1998 



OUTCOME MEASUREMENT 

ERROR IN SURVIVAL 

ANALYSIS 

Thesis submitted in accordance with 

the requirements of the University of 

Liverpool for the degree of 

Doctor in Philosophy 

by 

WILLIAM MARK HIRST 

September 1998 



To 

Noreen, my family and my friends 

II 
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William Mark Hirst 

Abstract: 
Introduction: Measurement error is a well known statistical problem. 
Covariate error in survival data has received much attention but outcome error 
has not. Cancer registration data may suffer from a "window of uncertainty" in 
the date of diagnosis of a given individual which may lead to error in survival 
time (the "outcome" variable) and hence bias in modelling survival. True and 
observed survival are related by a measurement model. 

Aims: The aims of this thesis are: (i) to examine the effect of survival error on 
the parameter estimates of a Cox regression model, (ii) to develop methodology 
to correct for survival error for the Cox model, and (iii) to demonstrate how 
developed methodology can be of value to cancer registries. 

Methods: An experiment is undertaken to assess the effect of a measurement 
model on the parameters of a Cox regression. A method for weighting risk sets 
in the likelihood of a Cox model in order to achieve a superior partial likelihood 
is ~erived. This is based on approximations for tied data and the incorporation 
of a measurement model for outcome error. The effectiveness of this likelihood 
is examined using the data from the initial experiment. 

Data: The data are all primary lung malignancies in the Merseyside and 
Cheshire region for the years 1974 - 1993 inclusive. The total number of patients 
was 42,222. A measurement error analysis is considered for 500 of the patients 
diagnosed in 1993. 

Results: The effectiveness of the Cox likelihood in the presence of error is 
dependent on the size of the error, the size of the relative risk and characteristics 
of the true survival times. For large error bias is towards the null hypothesis. The 
correction procedure is effective in reducing the bias when it is of considerable 
size, but parameter estimates have larger variance. The variance of bias is 
reduced if its mean is not large. For cancer registry data, survival error due to 
diagnostic uncertainty is unlikely to be a problem when estimating the effect 
of covariates, but predicted survival is reduced when a correction for bias is 
employed. 

Conclusion: This thesis introduces a correction procedure for outcome error 
in the Cox model which shows considerable promise in resolving the problem of 
bias. A prototype analysis for cancer registration data demonstrates that the 
procedure is applicable to real data problems. 
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Chapter 1 

Introduction 

1.1 Motivation 

Analysis of survival data has seen many advances in recent years, and the 

Cox proportional hazards model is commonly used to examine the effect of 

explanatory variables on the survival time of an individual. 

Much attention has been paid to the fact that explanatory variables, particularly 

in epidemiology, may be measured with error. There is a wealth of literature 

documenting the fact that such error, depending on its structure, can lead to 

severe bias in the estimation of the effect of covariates. The Cox model has not 

escaped attention, and authors have been able to ascertain the extent of the 

bias, and suggest correction procedures to deal with it. 

Little attention has been paid to error in the outcome variable, namely survival. 

There is in fact less scope for such errors in many analyses, such as clinical trials. 

Some authors have discussed particular types of outc?me error for survey data. 

1 



Ch.l Introduction 2 

We examine a previously unexplored statistical problem, namely uncertainty in 

diagnosis recording in cancer registration data. Due to the fact that different 

patients receive different levels of diagnosis that can occur weeks apart, it 

is important that some patients do not have artificially extended survival in 

comparison with others. If this is the case, it is desirable to be able to incorporate 

such uncertainty in a Cox analysis. 

Estimation in the Cox model is achieved via a procedure dependent on the order 

of failure times, which will be clouded by noise in the recording of times. One 

such problem is tied data, and approximations have been suggested when failures 

are grouped due to rounding. The recording of diagnosis for cancer patients is 

not however a grouped rounding problem. We examine how Cox model estimates 

are affected by more general outcome measurement error. 

The problem of bias leads us to desire a correction procedure. A simple and 

generally applicable approximate correction for bias is derived in this thesis. 

This is then applied to diagnosis error in cancer registration. 

1.2 Structure of the Thesis 

Chapter 2 introduces the reader to the system of cancer registration in the 

U.K. and discusses briefly where measurement error might be coming from. 

The epidemiology of lung cancer is discussed, with emphasis placed on recent 

incidence reports from the Merseyside and Cheshire cancer registry. Finally the 

lung cancer data used for analysis in this thesis is introduced. 



Ch.l Introduction 3 

Chapter 3 introduces survival analysis, and reVIews existing non-parametric, 

semi-parametric and fully parametric methodology. Of particular importance is 

the Cox proportional hazards model - the most widely used model in survival 

analysis. Methodology is illustrated using the lung cancer data. Initial analyses 

are carried out under the assumption of no measurement error. 

Chapter 4 is a review of methodology available for covariate and outcome error. 

The Cox proportional hazards model is covered in detail. 

A new method for the incorporation of measurement error in the partial 

likelihood of the Cox model is introduced in chapt~r 5. This is an extension 

of approximate likelihoods used for tied data, and is closely related to the Efron 

likelihood for ties. In addition experiments are undertaken to establish the effect 

of measurement error on the parameter estimates of the Cox model. Data from 

these experiments are used to verify the correction procedure, and show that 

bias due to measurement error is virtually eliminated. 

The new methodology was motivated by concern over recording of date of 

diagnosis by cancer registries. Chapter 6 examines more deeply how the 

measurement error arises. Once the nature of the measurement error is 

established a correction is undertaken using the new methodology introduced 

in chapter 5. 

The conclusion of this work is given in chapter 7 and directions and ideas for 

further work outlined. 



Ch.1 Introduction 

1.3 Notation and Abbreviations 
" 

Throughout the thesis the following notl'ation is used: 

T: True survival time 

S: Observed survival time 

X: True covariable 

Z: Observed covariable 

4 

U: Measurement error relating the true survival time/covariate to the observed 

survival time/covariate 

Notation used for survival analysis is introduced as needed in chapter 3. 

1.3.1 List of Medical/Health Service Abbreviations 

NHS: National Health Service 

MRCR: Mersey Regional Cancer Registry 

MCCR: Merseyside and Cheshire Cancer Registry 

SRR: Standardised Registration Ratio 

IACR: International Association of Cancer Registries 

UKACR: United Kingdom Association of Cancer Registries 

ONS: Office of National Statistics 

WHO: World Health Organisation 

ICD: International Classification of Disease 



Chapter 2 

Introduction to Cancer 

Registration and Lung Cancer 

2.1 Introduction 

Registration 

to Cancer and Cancer 

In England and Wales, cancer affects approximately 1 in 3 people during their life 

and is responsible for about 1 in 4 deaths. Rates of incidence are usually higher 

in men and the majority of cancer sufferers are over 65. As a rule teenagers are 

least likely to be afflicted by cancer. In the region of 1 in 200 cases are aged 15 

or under. The age distribution of specific cancers may however vary (UKACR, 

1994) . 

In general there are a large number of established risks and causes of cancer. 

Commonly known examples are smoking and lung cancer or exposure to the sun 

and skin cancer. Occupational and demographic factors may increase risk and 

diet has been associated with certain cancers (for instance, a western diet may 

5 



Ch.2 Introduction to Cancer Registration 6 

explain some of the difference in breast cancer incidence between Europeans and 

Asians). Increased risk may have genetic origins. Other suspected associations 

are viral, for instance infection from the Epstein-Barr virus is associated with 

certain lymphomas (Vessey and Gray, 1985). However, there is scope for much 

more research investigating the causes of cancer with the aim of prevention. 

Until prevention is possible, it is important to examine actual cases of cancer in 

order to establish prognostic factors associated with better survival. 

In terms of the area covered by the Mereyside and Cheshire Cancer Registry 

(MCCR) recent incidence reports demonstrate a number of facts. Urban 

areas such as Liverpool compare unfavourably with more affluent areas of 

Cheshire such as Macclesfield (Hussey and Ashby, 1990; Youngson et al., 1991; 

Youngson et al., 1992). Most cancers are related to poor lifestyle indicators, and 

the Standardised Registration Ratio's (SRR's) for these cancers tend to be high 

across the region. An SRR provides a comparison of relative registration with 

the wider England and Wales population adjusted for differences in age and sex. 

The situation is more favourable for breast cancer, for which the Mersey region 

is in line with government targets (Williams et al., 1994). Overall it is evident 

that the Mersey region compares unfavourably with the rest of England and 

Wales (see table 2.1). Although now nearly a decade later, big changes from the 

1980's in registration patterns are unlikely. The incidence report for the years 

1990-1995 is due for publication in late 1998. 
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Table 2.1: Standardised Registration Ratios 1986-1990 for Mersey RHA (All 
Cancers) 

\I 

II 

. District I Males (95 % C.I.) I Females (95 % C.I.) II 
Chester 125 (120,131) 129 (124,135) 
Crewe 91 (88,95) 91 (88,95) 
Halton 127 (121,134) 131 (124,137) 

Liverpool 147 (143,150) 139 (135,142) 
Macclesfield 109 (104,114) 115 (110,120) 
South Sefton 125 (120,131) 122 (117,127) 

Southport and Formby 124 (119,130) 131 (125,137) 
St. Helens & Knowsley 128 (124,132) 122 (118,126) 

Warrington 119 (114,124) 124 (119,130) 
Wirral 131 (128,135) 126 (123,130) 

Mersey ReglOn I 127 (125,128) I 125 (124,127) 
England and Wales = 100 

Source: Youngson et al 1992 

II 

2.2 History of Cancer Registration 

Cancer registration can be traced back to the early years of the twentieth 

century, when in approximately 1900 Germany unsuccessfully attempted a 

cancer "census" based on questionnaires to doctors. The first registry was set 

up in Hamburg in 1929 in order to gain a superior follow up to patient care 

(Wagner, 1991) . The Mersey Regional Cancer Registry (MRCR) was founded 

in 1944, and emerged from the Liverpool Cancer Control Organisation set up in 

1939 as a result of the Cancer Act (MRCR, 1990) . In 1994 a merger between the 

Mersey and North West Health Regions meant the creation of the North West 

Regional Health Authority, covering a population of about 6.6 million people. 

The MRCR has since been called the Merseyside and Cheshire Cancer Registry 

(MCCR), covering seven District Health Authorities and a population of 2.4 

million people. 
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In recent history a number of organisations on a national, European and 

international basis have been created to increase the potential of cancer 

registration. The MRCR was a founder member of the International Association 

of Cancer Registries (IACR) set up in Tokyo in 1966. This now boasts over 200 

members from 80 countries and has its headquarters in Lyons, France. Also, 

the European Network of Cancer Registries was formed in 1990. The United 

Kingdom Association of Cancer Registries (UKACR) was created as an umbrella 

organisation in 1992. Other groups exist in order to share experiences and 

discuss methodology, practices and training. These meet several times a year 

and include the Cancer Registries Consultative Group, the Cancer Registries 

I.T. group and the Cancer Surveillance Group, who together with subgroups 

address issues of education,training and data quality (UKACR, 1994). Thus in 

its relatively short history cancer registration has expanded rapidly, and with 

growing advances in technology is a valuable worldwide resource for research. 

2.3 Uses of Cancer Registration 

The UKACR report in their handbook (UKACR, 1994), "The cancer registration 

system is the most powerful tool available for the epidemiological study of cancer" 

. The reasons for this are clear. As a population based register that includes both 

fatal and surviving cases from a long period of time, with a wide range of data 

sources and items, the cancer registry can provide data of minimal selection 

bias (Jensen and Storm, 1991) for the research worker in a number of areas. 

Registries are able to provide information on long term incidence and survival, 
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identifying any improvement or lack of it over time (when the data are analysed 

with care). In particular the registry offers an unrivalled opportunity for the 

comparison of regional differences in cancer. As Jensen and Storm argue, a well 

presented incidence report "serves an important function as part of the health 

information of a country or region". 

Other uses suggested in the Cancer Registry handbook are summarised below. 

Through the study of incidence and survival a greater insight into the areas that 

require resources can be gained, and thus the registry can help in the allocation 

of funding. For the evaluation of screening programmes the registries can 

provide data for retrospective studies and assess the effectiveness of a screening 

programme (this may not be a trivial exercise due to the nature of survival 

measurement). In terms of aetiological studies (i.e. those of a risk factor) the 

cancer registry can be used to study post treatment effects, and usually together 

with other sources (such a medical notes, biological samples or questionnaires) 

provide good information for carrying out studies. Study of survival times in 

relation to treatment is an area to be approached with caution. An effective 

treatment may not increase observed survival times since more advanced cases 

may be treated in this manner. Green and Byar (1984) argue that registry 

based studies are not an alternative to randomised trials in this area, and the 

focus of the registry should be for epidemiological studies. However the registry 

can identify patients for a cohort study and aid in the planning of case-control 

studies and clinical trials. 
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2.4 Data Items and Collection 

Data recorded on the registration form are keyed into the computer system by 

the MCCR personnel. The current computer system of the MCCR has been 

operational since 1989, and represents a major advance in eaBe of recording,use 

and validation of data compared with previous systems. 

The UKACR and ONS have outlined a Minimum Data Set (MDS) in which 

each item of information is regarded aB essential. MCCR record other optional 

data items aB routine and this is in common with most other registries. The 

three fundamental meaBurements for this analysis are date of diagnosis, date of 

death and date of birth as these allow the calculation of survival and comparisons 

between age groupings. The recording of sex and place of residence are also vital 

for comparative purposes. Survival and incidence reports will tend to focus on 

these particular data items. 

There are a large number of sources of information for the MCCR, ranging from 

hospital CaBe notes to post-mortem reports. After notification of a tumour, 

registry staff will search for additional information such as case notes and 

treatment records. It is difficult to follow up patients, especially those with 

a long survival period, and this has led to the registry flagging patients as 

"dead" or "not known to be dead". Ideally an active follow up of each patient 

would be implemented by the registry, but usually paBsive follow up is achieved 

through the NHS Central Register and the ONS (for instance, the notification 

of death certificates). There is a small proportion of CaBes however that remain 

'immortal', i.e. after notification of the cancer no follow up has been achieved. 
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Powell(1991) points out the need to evaluate sources of data, observing cost and 

potential use. He asserts the need for effective record linkage in order to avoid 

multiple notifications. 

The classification of cancers is that of the ICD-9 codes laid out by the World 

Health Organisation (WHO) in 1977. An ICD code provides information 

on topography (location) and morphology (behaviour). Together with an 

identification of subtype on the ICD code, there are two main classifications used 

to assess the stage of a cancer. The TNM method records the tumour size (T), 

indication of spread to lymph nodes(N) and spread to distant metastases(M). 

The second classification ranges from 0 - IV each describing a further level 

of invasion (0 being in-situ and IV distant spread). Stage at diagnosis is not 

a routinely collected data item by MCCR, partly because of the inconsistent 

manner in which it is available in clinical notes. 

2.5 Measurement Problems • In Cancer 

Registration 

The primary purpose of this thesis is to examine survival measurement for cancer 

registry data and to develop methodology to cope with any particular problems 

associated with it. The simplest definition of survival is (date of death) - (date 

of diagnosis). Briefly here, and in more detail in chapter 6, we examine the 

recording of date of diagnosis by cancer registries. It is immediately apparent 

that comparison of survival times may be clouded if the observed duration of 

survival is lengthened by artificially shifting the 'zero' time. If this occurs for 
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all patients or only a subset of patients then comparisons of survival and fitting 

of models to prognostic factors may contain considerable bias. 

The start date of a cancer might logically be date of disease onset, but this is 

impossible to ascertain. It may be possible via screening to detect a cancer in 

the pre-clinical phase. Following symptoms, an individual will present at a GP 

and is then usually referred to a hospital. A clinical diagnosis may be possible 

by the GP, otherwise a variety of macroscopic and microscopic verifications are 

undertaken following date of first attendance at a hospital. Following diagnosis 

a patient may receive treatment designed to treat the cancer, or may receive 

palliative care in order to alleviate symptoms alone. 

Hence there is considerable scope for defining date of diagnosis for patients with 

a full history available. If no history is available other than date of death, then 

the patient has a theoretical survival of zero. There is controversy over the best 

process of defining date of diagnosis (see chapter 6), and no research has been 

undertaken to gauge the effect of this "window of diagnosis" on conclusions of 

survival. 

2.6 Introduction to Lung Cancer 

Lung cancer has received extensive research over a long period of the twentieth 

century, and hence its aetiology is reasonably well understood. Despite this, it is 

the third most common cause of death in the U.K., and represents a quarter of all 

cancer mortality (NHS, 1998) . On a worldwide basis lung cancer is commoner 
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in western countries (Williams, 1992). 

2.6.1 Epidemiology of Lung Cancer 

It is widely established that the greatest cause of pnmary lung cancer is 

cigarette smoking. Epidemiologists have readily shown that increased smoking 

is responsible for the transformation of lung cancer from a rare disease at the 

turn of the century to a major cause of death today. Indeed by late middle age 

the lung cancer rate for regular smokers is more than ten times that of never 

smokers (Doll and Peto, 1981) 

Increased risk for 'current smokers' is in the region of fifteen times higher 

compared with 'never smokers', and is highest for heavy smokers who have 

smoked for a long period of time. For ex-smokers, death levels reduce and are 

are similar to 'never smokers' about 25 years after stopping (Williams, 1992). It 

is estimated about 2% of all cases are attributed to passive smoking (Williams 

et al., 1993). 

Pollution and industrial exposures such as asbestos are associated with increased 

risk. Radon, a radioactive naturally occurring gas has received increasing 

attention by authors (Chaffey and Bowie, 1994). It is generally believed 

that chemical and industrial exposures interact synergistically with smoking 

to increase risk (NHS, 1998). 

There is some speculation that improved diet may provide protection against 

lung cancer, but the protective mechanism is not understood. Alcohol may have 
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an adverse effect (Carpenter et al., 1998), while tea drinking (Ohno et al., 1995; 

Mendilaharsu et al., 1998) and physical activity (Thune and Lund, 1997) may 

be beneficial. There is also a possible link between depression and lung cancer 

(Knekt et al., 1996). More research is required however to establish such 

associations. 

Elevated risk is also linked with living in a urban area and belonging to a lower 

social class. This may be explained by smoking patterns. 

The profile of highest risk includes (Williams, 1992) .: 

• living in a westernised society; 

• being a man; 

• being a smoker; 

• being aged 60 or more; 

• living in an urban environment. 

Strategies for controlling lung cancer focus on prevention, as prognosis once the 

disease is diagnosed is poor. Obviously the single most important measure of 

prevention is the trend in smoking, which until recently had been dropping. 

Since 1994, smoking amongst young people and women is on the increase (NHS, 

1998). 

2.6.2 Diagnosis and Treatment of Lung Cancer 

Screening has not proved effective in improving the outcome of lung cancer cases. 

For the Merseyside and Cheshire Region about 55 % of cases are diagnosed 
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with the aid of microscopic evidence. Histologic confirmation typically involves 

a bronchoscopy or biopsy. Cytologic confirmation is achieved via microscopic 

examination of an individual's sputum. Macroscopic examination involves X­

rays, but typically 36 % of cases are clinical diagnosed. 

About 60 % of all lung cancer cases in the Mersey region do not receive specific 

treatment other than to alleviate suffering. This varies with age, and older 

patients are more likely to receive palliative treatment. For patients who 

do receive treatment, this is typically a combination of one, two or all three 

treatments available, namely surgery, radiotherapy and chemotherapy (Williams 

et al., 1993). 

2.6.3 Incidence of Lung Cancer for the Merseyside and 

Cheshire Region 

As part of one of the four specific cancers targeted by the government for 'The 

Health of the Nation', the MCCR published a bulletin (Williams et al., 1993) 

documenting incidence, treatment and a strategy for future prevention discussing 

government targets and particular problems associated with the Mersey region. 

The bulletin covered the 16 year period between 1975 and 1990, with a more 

detailed analysis of incidence for the years 1983 - 1990. Table 2.2 shows the 

SRR's by region for the period 1986 - 1990 and underlines the fact that incidence 

in the poorer, urban areas is greater than that for wealthier, rural regions. 

The bulletin gave a valuable insight into the current position of the Mersey 
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Table 2.2: Standardised Registration Ratios 1986-1990 for Mersey RHA (Lung 
Cancer) 

II 

II 

District I Males (95 % C.I.) I Females (95 % C.I.) II 
Chester 106 (97,117) 115 (99,132) 
Crewe 96 (89,105) 91 (79,104) 
Halton 136 (123,150) 150 (129,174) 

Liverpool 168 (161,176) 225 (212,239) 
Macclesfield 94 (85,103) 103 (89,119) 
South Sefton 143 (132,155) 177 (158,198) 

Southport and Formby 105 (94,117) 132 (114,152) 
St. Helens & Knowsley 141 (132,150) 152 (139,167) 

Warrington 115 (104,126) 138 (121,158) 
Wirral 129 (121,136) 1'49 (137,162) 

Mersey I 130 (127,133) I 154 (150,160) 
England and Wales = 100 

Source: Youngson et al 1992 

II 

region for lung cancer. In particular the Mersey region is "top nationally for 

both men and women for lung cancer incidence". 

2.7 Introduction to the Lung Cancer Dataset 

The data used in this thesis are cases of primary lung cancer (ICD 162) in 

the Mersey region on the registry database for the years 1974 - 1993 inclusive. 

Incidence for each sex by year is given in figure 2.1. These suggest that trends 

identified in the lung cancer bulletin have continued - the overall number of cases 

is not in decline and the proportion of female cases is increasing. The annual 

average number of male and female cases over the full 20 year period is 1496 and 

615, compared with 1386 and 464 for the first five years of the study and 1380 

and 760 for the final five years of study. Therefore any reductions in incidence 

for males is offset by an increase in the number of female cases. For the years 
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1975 - 1990 there are 33,914 cases compared with 34,118 cases used for the lung 

cancer bulletin, however the shortfall of 204 cases may be due to re-classification 

of cases as extra-regional or non-primary lung cancer. 

8 
It) 

o 

Incidence for lung cancer patients by sex 

o Males 
o Females 

1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 
year of diagnosis 

Figure 2.1: Incidence of lung cancer patients 

There are 2092 cases with zero or negative survival times and these are removed 

as it is not theoretically possible to admit zero or negative survival times in a 

survival analysis (see chapter 3). A summary is given in table 2.3. Such cases 

may arise from typing errors by registry staff or patients who genuinely died on 

the same day as diagnosis, but cases with zero survival are typically patients 

whose survival history comes from a Death Certificate Only notification. For 

these cases the death certificate is the initial and only point of contact with 

the registry. For the Mersey region as a whole an initial notification by death 

certificate accounts for about l of all cases, but history is successfully traced 
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for about ~ of these. The proportion of cases notified by death certificate and 

the proportion of these whose records can be traced varies dramatically between 

registries. Typically survival for cases initiated by death certificate and then 

traced is poorer, and hence estimates of survival with Death Certificate Only 

cases excluded may be biased in favour of better survival. One strategy is to 

estimate the survival time for Death Certificate Only cases from characteristics 

of survival in the traced population. However the absolute difference in survival 

estimation for cancers with short survival (such as lung cancer) by removing 

Death Certificate Only cases is likely to be less severe than for cancers with 

superior survival (such as breast cancer) (Berrino et al., 1995). 

Table 2.3: Cases with zero or negative survival - survival times 

survival time 0 -1 - -7 -8 - -14 -15 - -99 < -100 total 
no. of cases 1805 169 100 7 11 2092 

A summary of cases used in the full survival analysis of lung cancer is in table 

2.4. 
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Table 2.4: Cases included in survival analysis 

year males females total male:female ratio 
1974 1541 404 1945 3.80:1 
1975 1510 420 1930 3.58:1 
1976 1623 487 2110 3.32:1 
1977 1576 463 2039 3.36:1 
1978 1551 497 2048 3.12:1 
1979 1476 461 1937 3.19:1 
1980 1538 520 2058 2.99:1 
1981 1455 576 2031 2.52:1 
1982 1581 644 2225 2.44:1 
1983 1542 570 2112 2.70:1 
1984 1479 585 2064 2.52:1 
1985 1452 632 2084 2.30:1 
1986 1495 695 2190 2.16:1 
1987 1433 677 2110 2.13:1 
1988 1269 648 1917 1.93:1 
1989 1235 658 1893 1.84:1 
1990 1302 654 1956 1.88:1 
1991 1249 666 1915 1.89:1 
1992 1230 681 1911 1.76:1 
1993 1070 585 1655 1.71:1 

total number 40130 

2.8 Summary 

As cancer is responsible for 1 in 4 deaths in England and Wales, research into 

its causes and control is vital. In this chapter the reader has been familiarised 

with the system of cancer registration, an unrivalled resource for the study of 

incidence and survival of cancer. However, as there are many sources of data and 

quality may vary, a brief discussion has been made regarding the problems of 

survival measurement and how the method of diagnosis for an individual could 

artificially extend their survival. 
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The epidemiology of lung cancer has been discussed, in particular how smoking 

has made lung cancer a major cause of death in the western world. Those at 

highest risk are males living in less affluent urban areas who have a poor lifestyle. 

An introduction to the data used throughout this thesis was given. The full 

datset consisted of 42,222 cases between 1974 and 1993 but due to the removal 

of cases with 'impossible' survival the dataset to be used for analysis consists of 

40,130 patients. While overall incidence over the period has remained steady, 

the proportion of female cases has increased from about 20 % in 1974 to about 

35 % in 1993. 

Analysis of survival for the lung cancer dataset will be used to illustrate survival 

methodology in chapter 3. A re-analysis of 500 cases diagnosed in 1993 is 

undertaken in chapter 6 incorporating a model for survival time measurement 

error using methodology introduced in chapter 5. 



Chapter 3 

Introduction to Survival Analysis 

In this chapter we introduce the reader to survival analysis. After each technique 

is reviewed we apply it to the full lung cancer dataset introduced in the previous 

chapter. All analyses assume survival and prognostic factors are accurately 

recorded, although a brief discussion of uncertainty around date of diagnosis 

was given in chapter 2. 

Survival analysis has become an extensively researched statistical topic, and 

many texts are available to the researcher for reference. Two styles have become 

common. A traditional approach is adopted by authors such as Collett (1994), 

Kalbfleisch and Prentice (1980) and Cox and Oakes (1984). We have adopted 

this style for this thesis, as it is more accessible to epidemiologists and workers 

in the cancer field. A more mathematically rigorous approach has become 

increasingly common based on the theory of counting processes, and is the 

preferred style of authors such as Fleming and Harrington (1991). 

21 
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3.1 Introduction 

Survival data or failure time data are typified by a measurement to a particular 

event such as time to death from time of diagnosis, time to recurrence from time 

of remission for cancer studies or time to failure of machinery in industrial / 

engineering applications. Every study should have a defined origin and end point 

and every survival episode should have a start time and an end time. Figure 3.1 

shows the history of 5 patients in a study of 1000 days, where recruitment takes 

place in the first 500 days. Patients are either lost to follow up during the study, 

die or are still alive at the end of the study. In order to define survival data for 

such patients, one must take each individual's starting point and end point, so 

survival times all have the same origin as in figure 3.2. The definition of the 

start time for an individual is rarely contentious, for instance in a clinical trial 

situation all patients may have start time as date of randomisation. However 

this is not the case for cancer registry data, where there is ambiguity surrounding 

the definition of date of diagnosis. This will be discussed further in chapter 6. 

If a patient is lost to follow up, or has died from a cause not associated with 

the definition of failure for the study, their time is recorded as being at least 

that last recorded. Likewise is the case for patients still alive at the end-point 

of the study. Such cases are called censored and are a distinguishing feature of 

survival data. The presence,type of censoring and censoring mechanism have a 

great effect on a particular analysis. 
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Study period of 1000 days 
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Figure 3.1: History of 5 patients in a hypothetical study of 1000 days 
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Figure 3.2: Generation of times for survival analysis of the 5 patients 
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3.2 Censoring 

3.2.1 Types of Censoring 

Left Censoring 

In this situation the survival time is known to be less than the observed time, 

such as when detection of the event takes place after the event has occured, for 

instance at the three monthly check-up. 

Right Censoring 

Here the survival time is known to be after the observed survival time. This 

could be due to loss to follow up or more usually because the subject survives 

beyond the end point of the study. This is the most common form of censoring 

and is typical of cancer registry patients who have not died at the point of data 

being taken for analysis. 

Interval Censoring 

If the failure occurs during an interval but only the start and end points of 

the interval are observed the time is interval censored. Typically this type of 

censoring occurs when patients are seen on a regular basis, and detection of the 

event occurs when the patient is seen. 

3.2.2 Classes of Censoring 

Independent Censoring 

Kalbfleisch and Prentice describe this as "conditional independence" between 

the censoring and the failure mechanism. In other words censored times are 
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representative of all at risk at a given time and whether or not censoring occurs 

is not dependent on the risk at a given time. 

Random Censoring 

Censoring is regarded as random if censored times are stochastically independent 

of each other and of the failure times. 

Informative Censoring 

If the censoring mechanism depends on the parameters of interest then the 

censoring can be considered informative. Collett gives an example where a 

patient might be withdrawn from the study due to a side-effect from a treatment 

and hence the censoring is informed by treatment received. One suggestion is 

to plot survival and censoring times against such an explanatory variable and 

check if a pattern emerges. 

Type I censoring 

Here a study has a fixed end-point and hence the censoring time is fixed in 

advance. 

Type II censoring 

If the end point of a study is dependent on a given number of failures occuring 

this is called type II censoring. 
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3.2.3 Censoring in the Lung Cancer Data 

We will assume that the censoring is random and type I for the lung cancer 

data. The censoring date is the 27th of May 1997, the date the data were drawn 

from the registry computer records for analysis, hence patients have survived at 

least three years five months even if their diagnosis date is the final entry date of 

December 31st 1993. All censored patients are right censored, as we know they 

have survived up to the date the data were drawn from the registry. There may 

be a small number of patients who died before this date but this information 

was not entered on to the registry database at the time, however this is likely 

to be a tiny proportion of the total number of cases. A summary of censoring 

is given in table 3.1. Note how small the frequency of censoring is, as long term 

survival from lung cancer is rare. 

frequency percent cumulative frequency 
Censored 1520 3.6 1520 

Dead 40702 96.4 42222 

Table 3.1: Censoring for the lung cancer patients 

3.3 Representations of Survival Time 

Survival times have a probability density function valid only for non-negative 

times. Writing the density function as fT(t) then the distribution function is 

defined as: 
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F(t) = P(T < t) = lot fu(u)du (3.1) 

The survivor function for a survival time distribution is defined as the probability 

of surviving beyond a given time and hence is defined as: 

S(t) = P(T > t) = 1 - F(t) where S(O) = 1 and lim S(t) = 0 (3.2) 
t-too 

note 

fT(t) = dF(t) = _ dS(t) 
dt dt 

The hazard function is the instantaneous death rate· for an individual surviving 

to time t. Given that an individual has survived up to t the hazard is the 

probability of failing at time t. The hazard function is defined as: 

,X(t) lim M -+ O{ P(t ~ T < ;t+ ot\T ~ t)} 

limM -+ O{F(tHt)-F(t)} dF(t) fT(t) 
___ --,-:._~5t'__--=- _ ~ __ _ 

P(T ~ t) S(t) S(t) 
(3.3) 

Hence there are important relationships between the probability density 

function, the survivor function and the hazard function of a particular variable 

t. Note also 

fT(t) -dS(t) d 
,X(t) = S(t) = S(tt) = - dt log S(t) (3.4) 

The cumulative hazard is the sum of the instantaneous hazard rates over time 
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A(t) = lot -\(u)du = -log S(t) and S(t) = exp( -A(t)) (3.5) 

3.3.1 Non-Parametric Estimates of the Survivor, Hazard 

and Cumulative Hazard functions 

If we have a set of survival data and wish to estimate the survivor, or equivalently 

the cumulative hazard function, without parameterising the distribution, there 

are two main types of estimate based on the the proportion of individuals 

at risk for some form of partitioning of the time axis. The product-limit 

method considers risk at the observed death times, whereas the actuarial method 

considers risk in intervals independent of observed failure. 

Product Limit / Kaplan-Meier Estimate 

Given ti, i = 1, ... , n survival times of which r are failure times and n - rare 

censored times, with ~ failures at ti, and ni individuals at risk just prior to ti 

then the" non-parametric maximum likelihood estimate" of the survivor function 

(Kalbfleisch and Prentice, 1980) is a step function, given as: 

for t(k) ::; t < t(k+l) , k = 1, ... r, t(r+l) = 00 

(3.6) 

Throughout the thesis the notation t(.) will denote an ordered survival time. 

Note 5(0) = 1, and 5(t(r») = 0 if the rth failure time is the largest observed 

time, 5(t(r») > 0 if the rth failure time is less than an observed censored time. 

The most popular estimate of the variance is Greenwood's formula, derived by 
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regarding the proportion surviving in each interval as binomial,and defined as: 

(3.7) 

Greenwood's formula is only an approximation and therefore confidence intervals 

may be outside the range [0,1]. One can either simply round to 0 or 1 or take 

a transformation such as the complementary log-log transformation (which has 

the range (-00,00)). 

Another tack is to estimate the cumulative hazard function at each death time: 

for t(k) ~ t < t(k+1), k = 1, ... r, t(r+l) = 00 (3.9) 

This is known as Nelson's estimate. An approximation for tied death times is 

also given, as the above estimate is conservative for tied data due to rounding. 

If nj are at risk just prior to t j , and dj deaths occur at t j , then the modified 

contribution is: 

(3.10) 

The relationship between the cumulative and the survivor function can then be 

employed: 

S(t) = exp( -A(t)) (3.11) 
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The variance of A(t) is approximated by: 

A d· 
var(A(t)) ~ (n;)2 (3.12) 

3.3.2 Estimates of the Survivor Function for Lung 

Cancer Data 

For the 40,130 positive survival times in the lung cancer dataset we now estimate 

the survivor functions and related quantities of interest. A Kaplan - Meier 

estimate of the survivor function for all the cases is given in figure 3.3 and the 

median and other percentiles are given in table 3.2. Half of all patients die 

within 3 months of diagnosis and only 5 % of the patients survive more than 

five years. 
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Figure 3.3: Survivor curve for lung data 
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percentile 5 25 50 75 95 
survival time( days) 7 30 90 261 1824 

Table 3.2: Percentiles of survival for lung data 

Important covariates are age (a continuous covariate) and sex (a binary 

covariate). Other useful indicators such as stage are not routinely recorded 

(see chapter 2). The continuous variable age was categorised according to the 

deciles of the age distribution, in order to detect if there is a noticeable trend in 

survival across the distribution of age. 

Age (yrs) 0.2- 54.8- 59.7- 62.9- 65.7- 68.2- 70.8- 73.4- 76.3- 80.2-124.9 
frequency 4013 4022 4011 4015 4020 4001 4009 4026 4007 4006 

Table 3.3: Creation of 10 age groups for continuous covariable age according to 
the deciles of the age distribution 

Kaplan-Meier curves for the ten levels of age and sex are shown in figures 3.4, 

3.5, 3.6 and 3.7. Table 3.4 shows the estimated median survival with confidence 

intervals. 

3.3.3 Comparison of Survivor Curves 

When we have 9 different groups of data, we wish to test whether the estimated 

survivor functions differ across the groups. The most commonly used test 

statistic is the log-rank test . This test is based on the concept of difference 

between observed and expected survival, and it is assumed the number of deaths 

at each of the r observed times follows a hypergeometric distribution. For each 

of the first 9 - 1 groups the (observed - expected) contribution is: 
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Figure 3.7: Survivor curves for sex - survival up to 1000 days 
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II covariable I median survival (days) I 95 % C.1. II 
0.2 - 154 (146,162) 
54.8 - 127 (119,135) 
59.7 - 116 (109,124) 
62.9 - 102 (94,111) 

age 65.7 - 105 (97,112) 
group 68.2 - 82 (78,88) 

70.8 - 83 (77,88) 
73.4 - 71 (66,76) 
76.3 - 67 (63,71 

80.2 - 124.9 48 (45,51 

II sex I I----=:-m_a~-o-~e-+----~~---~I......:~~~6~1:~-~":-~ ~II 
Table 3.4: Median survival estimates for age and sex 

i = 1, ... , g-l 

(3.13) 

This has variance: 

v, .. - ~ - V .. - ~ n(ij)(nj - n(ij»)dj(nj - dj ) (3.14) 
(n) - L..... - J(n) - L..... 2( . _ 1) 

j=l j=l nj n J 

Also the covariance of between groups i and k is: 

Given the 9 - 1 vector:!! and the variance-covariance matrix V then uTV:!! is 

X~g-l) and hence the hypothesis of no difference in survival between groups can 

be tested. Weighting the contribution to Ui gives a class of significance tests. 

In particular weighting by the numbers at risk at each time gives the Wilcoxon 

test. 
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3.3.4 Log-Rank tests for Lung Cancer Data 

Having estimated the survivor functions for sex and age group, we now wish to 

test if there is a significant difference between the estimated levels of survival. 

We employ the log-rank test in order to do this. Sex has 2 levels, and is hence 

tested against a X~, while age has 10 levels and is tested against a X~ distribution, 

the results being in table 3.5. 

covariable I: (O-E)~ 
Ii: P 

age group 1613 0 
sex 10.5 0.000116 

Table 3.5: Log-Rank tests for binary covariables 

There is clear evidence that age has a strong effect on survival. Although the 

result is significant for sex, a dataset of this size will detect statistical significance 

when there is no real clinical significance in the result. The difference for sex may 

be due to a difference in age distribution across the sexes. The age distribution 

for males and females is shown in figure 3.8. These are extremely similar, though 

the median for males is more than that for females. After the median the age 

distribution of female cases shows they are marginally older than men. 
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Cumulative distribution of age for Males and Females 

C! ..... - ~a1es - -- emales --
CI) 

ci 

<0 
ci 

'8 
v 
ci 

N 
0 

0 
0 

50 60 70 80 
age 

Figure 3.8: Age across the sexes 

3.3.5 Parametric Distributions for Survival Data 

There are many distributions applicable to survival data and an extensive 

review of these are in Kalbfleisch and Prentice. We are only considering the 

Wei bull and exponential distributions. These may follow a proportional hazards 

representation (see section 3.4) when fitted to explanatory variables. In this 

thesis we are only considering proportional hazards. Other distributions include 

the gamma which has a difficult to represent hazard, and the log-logistic. 

The exponential distribution 

For the exponential distribution we have: 



Ch.3 Introduction to Survival Analysis 

fr(t) 

S(t) 

r exp( -rt) where t > 0, r > 0 

exp( -rt) and -X(t) = r 

37 

(3.16) 

(3.17) 

The exponential distribution has a constant hazard over time. The mean is 

1 the variance l 2 and the median llog 2. It is also memory less in that given 
T' T T 

survival up to a certain time the distribution of survival is still exponential with 

parameter r. 

The Weibull distribution 

For the Wei bull distribution we have: 

fr(t) 

S(t) 

rptp
-

1 exp( -rtP) where t > 0, r > 0, p > 0 

exp( -rtP) and -X(t) = rptp- 1 

(3.18) 

(3.19) 

Note the exponential distribution is a special case of the Weibull distribution 

with p = 1. In fact p is called a shape parameter as it determines the shape of 

the hazard over time. If p < 1 the hazard decreases over time and if p > 1 it 

increases over time. This is illustrated in figure 3.9. The Weibull distribution 

has mean r(l~*) and median {IO~2} *. Kalbfleisch and Prentice (1980) use r = r P 

TP 

in their representation. 
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Figure 3.9: Weibull hazard function for different shape parameters 

3.4 Proportional Hazards 
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If we have explanatory variables associated with the survival outcome, then 

the assumption of proportional hazards implies that the hazard for a set of 

covariates ;£ acts multiplicatively on the baseline hazard when ;£ = O. This 

is mathematically denoted as: 

(3.20) 

The function g(.) is the relative risk for covariates. Care must be taken to ensure 

that g(.) is positive and thus a linear form is rarely employed. We will now only 

consider the log-linear model: 

(3.21) 
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Notice that if there is more than one covariate, the model assumes that their joint 

effect is multiplicative, and that an increase of one in the value of a covariable 

Xl with relative risk exp(,8d represents an increase in the hazard of exp(,8I). For 

example: 

A(tlxl' X2) - Ao(t) exp(,81xl + ,82X2) 

A(tlxl = 1, X2 = 1) AO(t) exp(,81 + ,82) = AO(t) exp(,8d exp(,82) 

A(tlxl = 2, X2 = 1) Ao(t) exp(2,81 + ,82) = AO(t) exp(,8d exp(,8d exp(,82) 

We can also easily show the effect of the covariables on the survivor and 

cumulative hazard functions. 

A(tlx) = Ao(t) exp(f!.T~) 

S(tlx) = {So (t)}(exp(!!T ~» 

(3.22) 

(3.23) 

The baseline hazard may be parameterised as a Weibull or exponential baseline, 

but the most common approach is to regard it as arbitrary and concentrate on 

estimation of the parameters of relative risk. 

3.5 The Cox Proportional Hazards Model 

The proportional hazards model with an unspecified baseline hazard was first 

proposed by Cox (1972). The Cox model has been described as semi-parametric 
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- the baseline is not parameterised but the effect of covariates on the baseline is. 

When primary interest is in the effect of covariates on an arbitrary baseline it 

is assumed that the intervals between survival times offer "no information" on 

!2 and hence only the order of the survival times contributes to the estimation 

of Ii- The formulation of the likelihood in Cox's (1972) paper was justified by a 

conditioning argument. 

p(failure for individual jlall individuals surviving up to tj) = 

A(individual j)(tl!D _ Ao(t) exp(,BT ~j) _ exp(,BT ~j) 
Z:(IEtotal at risk at tj) AI(tl!2) - Z:, AO(t) exp(,BT~) - E, exp(ft~) 

(3.24) 

The suggested likelihood is the product of above terms for the r death times of 

the n individuals in the study. The conditioning argument was " unduly cryptic" 

and the likelihood required additional clarification. This came in the forms of 

marginal likelihood (Kalbfleisch and Prentice, 1973) and partial likelihood (Cox, 

1975). 

3.5.1 Parameter Estimation and Inference 

The technique of marginal likelihood arises from the fact that a transformation 

of the order statistic {t(1) ... t(r)} does not. lead to a change in the rank statistic. 

Thus the rank statistic is "sufficient for!!.. in the absence of knowledge of AO(t)" 

(Kalbfleisch and Prentice, 1973). The marginal likelihood of!!.. in the absence of 

tied times and censoring (r = n) is defined as: 
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L({!) ex: [00 100 

... 100 

rr~ J (tlx )dt(n) ... dt(l) 
10 t(l) t(n-l) 

[00 100 

... 100 

rr~ "\(tlx)S(tlx)dt(n) ... dt(1) 
10 t(l) t(n-l) 

[00 100 

... 100 
rr~"\( tlx) exp( - A(tlx ))dt(n) ... dt(l) 

10 t(l) t(n-l) 

exp(Ej=1 f3T Xj) 
(3.25) 

where the notation R(t(j)) denotes the risk set for the jth ordered failure time. 

Kalbfleisch and Prentice also derive the likelihood for right censoring and show 

the likelihood is exactly the same as that of Cox. 

• 

Cox (1975) introduced the concept of partial likelihood and derives the partial 

likelihood (PL) for his proportional hazards model with r failures from n 

individuals: 

r 

P L({!) - II J(failure case t(j) I censoring in[t(j_1), t(j)], failure case t(j-l) j (!) 
j=1 

(3.26) 

Inference on {i 

The large sample properties of the partial likelihood allow the maximum partial 

likelihood estimate to be treated as a maximum likelihood estimate. In particular 

the estimates are asymptotically consistent and multivariate normal: 
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I(fi) (3.27) 

We can therefore calculate confidence intervals for fi. The score test of the 

hypothesis fi = Q is defined as 

(alo~g(O»)2 

I(Q) (3.28) 

and is tested against a X2 distribution. For the case of a single binary covariate 

this is exactly the same as the log-rank test. A further test is the Wald test, 

where 

{J 
(3.29) 

s.e.(~) 

is tested against the standard normal distribution (or equivalently the square of 

this statistic is tested against a X2 distribution). 

Model selection can be carried out via comparison of - 2log L. If an additional 

variable is included, the difference between -21og(L) from the model with and 

without that variable can be tested against a X2 distribution. If the result is not 

significant, the simpler model is preferred. 
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3.5.2 Treatment of Tied Data 

The proportional hazards model is a continuous time model and hence does not 

permit tied data, however most real datasets include tied observations and hence 

a new likelihood must be specified. This is an important idea to this thesis -

rounding creating ties is a form of outcome variable error. We now outline 

"exact" and approximate likelihoods for tied data. The idea of approximating 

the likelihood when survival data display errors is extended more generally later 

in the thesis (chapter 5), hence it is important here to examine established 

approximations for ties. 

Let us consider three tied times (t(l) = t(2) = t(3») and a further two times at 

risk i.e. (t(4) , t(5) > t(3») with relative risks 1/J(j) = exp({3T Xj),j = 1, ... ,5. The - -
true partial likelihood at tel) = t(2) = t(3) is now one of six possibilities: 

1/J(1) 1/J(2) 1/J(3) 
1/J(1) + 1/J(2) + 1/J(3) + 1/J(4) + 1/J(5) 1/J(2) + 1/J(3) + 1/J(4) + 1/J(5) 1/J(3) + 1/J(4) + 1/J(5) 

1/J(1) 1/J(3) 1/J(2) 
1/J(1) + 1/J(2) + 1/J(3) + 1/J(4) + 1/J(5) 1/J(2) + 1/J(3) + 1/J(4) + 1/J(5) 1/J(2) + 1/J(4) + 1/J(5) 

1/J(2) 1/J(1) 1/J(3) 
1/J(1) + 1/J(2) + 1/J(3) + 1/J(4) + 1/J(5) 1/J(1) + 1/J(3) + 1/J(4) + 1/J(5) 1/J(3) + 1/J(4) + 1/J(5) 

1/J(2) 1/J(3) 1/J(1) 
1/J(1) + 1/J(2) + 1/J(3) + 1/J(4) + 1/J(5) 1/J(1) + 1/J(3) + 1/J(4) + 1/J(5) 1/J(1) + 1/J(4) + 1/J(5) 

1/J(3) 1/J(1) 1/J(2) 
1/J(1) + 1/J(2) + 1/J(3) + 1/J(4) + 1/J(5) 1/;(1) + 1/J(2) + 1/J(4) + 1/J(5) 1/J(2) + 1/;(4) + 1/J(5) 

1/J(3) 1/J(2) 1/;(1) 
1/J(1) + 1/J(2) + 1/J(3) + 1/J(4) + 1/J(5) 1/;(1) + 1/J(2) + 1/J(4) + 1/J(5) 1/J(1) + 1/;(4) + 1/J(5) 

Kalbfleisch and Prentice (1973) derive a marginal likelihood and the contribution 

at a death time with ties is the sum of the possible likelihoods i.e. in our example 
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the sum of the six possibilities. Defining D(t(j)) as the set of failures at t(j) and 

mj as the number of failures at t(j): 

r T mj 1 
Lmarginal = II IlkED(t(j») exp(~~) L II ( T ) 

j=1 all perms i=1 LIER(t(j).one perm) exp ~ ~ 
(3.30) 

Cox (1972) considered a conditional logistic model as a discrete time analogy to 

the continuous case. This is defined as: 

>.(t\z)dt 
1 - >.(t\z)dt 

>'0 (t)dt T 

1 _ >'o(t}dt exp(~ J!.) (3.31) 

The contribution to the likelihood denominator is then the sum over all 

combinations of choosing mj individuals from the risk set at t(j). For our example 

we have: 

(1/1(1)1/1(2)1/1(3)) * (1/( 1/1(1)1/1(2)1/1(3) + 1/1(1)1/1(2)1/1(4) + 

1/1(1 )1/1(2)1/1(5) + 1/1(1 )1/1 (3)1/1( 4) + 

1/1(1 )1/1(3)1/1(5) + 1/1(1 )1/1 ( 4)1/1(5) + 

1/1(2)1/1 (3)1/1( 4) + 1/1(2)1/1(3)1/1(5) + 

1/1(2)1/1(4)1/1(5) + 1/1(3)1/1(4)1/1(5)) 

This is more formally expressed as: 

(3.32) 
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_ rrr TIkED(t(j) exp{fiT ~) 
Ldiscrete - ( T 

j=l E(IEall combs size mj from risk set) exp fi ~) 
(3.33) 

Both likelihoods assume censored observations at death time occur after all the 

failure times. 

Approximations to the Partial Likelihood 

The calculations required in order to fit the" exact" likelihoods make their use 

unpopular. Other approximations have become the norm for practical fitting of 

the Cox model. One such approximation is due to Breslow (1974), and assumes 

each tied failure time occurs before each other tied time. For our example we 

have the likelihood: 

3! * 1jJ(1 )1jJ{2)1jJ(3) 
(3.34) 

(1jJ(1) + 1jJ(2) + 1jJ(3) + 1jJ(4) + 1jJ(5))3 

More generally, if we have mj failures at t(j): 

_ rrr TIkED(t(j) exp({3T ~) 
LBreslow - ( ( T 

j=l E(IER(t(j» exp fi ~))mj 
(3.35) 

This approximation is fine if the proportion of tied times to the total risk set 

is small. Oakes (1981) examined the expectation of the second derivative of 

the likelihood and found Breslow's approximation overestimates the variance 

of the first derivative. He then suggested weighting each tied failure time by 

mj+l in each of the mj risk sets. Despite the improvement on the Breslow 
2mj 

approximation the Oakes approximation is not, as far as this author is aware, a 
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feature of commercial packages for survival analysis. 

Another approximation which weights each of the tied failure times is that of 

Efron (1977): 

(1/1(1)1/1(2)1/1(3)) * (1/ ( (1/1(1) + 1/1(2) + 1/1(3) + 1/1(4) + 1/1(5)) * 
222 

(31/1(1) + 31/1(2) + 31/1(3) + 1/1 ( 4) + 1/1(5)) * 
111 

(31/1(1) + 31/1(2) + 31/1(3) + 1/1 ( 4) + 1/J(5))) 

(3.36) 

Note if the tied data all have the same relative risk, the Efron likelihood is 

identical to the exact marginal likelihood for ties. We then have: 

_ rrr IIkED(t(j» exp(fjT ~) 
LEfran - mj { (RT) (k-l) ( T )} (3.37) 

j=l TIk=l ~(lER(t(j)) exp !!.. ~ - mj ~(lED(t(j)) exp f!.. ~ 

3.5.3 Cox Model Fits to Lung Cancer Data 

Computer packages to fit the Cox model usually use the Breslow approximation 

as the default option. The S-plus survival library (Therneau, 1994) has the Efron 

approximation as the default option. We fit models for age (continuous covariate 

and binary covariate created around the median 68.24- see table 3.6) and binary 

covariate sex. The results for continuous covariate age are in table 3.7 and for 

binary covariate age are in table 3.8. Neither fit shows any significance for an 

interaction between age and sex, and for the case of the continuous covariate 

age the effect of sex is approximately the effect of one year of age. The hazard 
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is multiplied by exp(0.0206) = 1.02 for each year of age, thus the effect of 10 

years of age is to increase the hazard by exp(10 * 0.0206) = 1.229. 

Age frequency 
< 68.24 20081 
> 68.24 20049 

Table 3.6: Creation of binary covariate for age 

model eqn coeff age (s.e.) p coeff sex (s.e.) p coeff (age*sex) p 
age + sex + (age*sex) 0.019 (0.002) 0 -0.120 (0.077) 0.16 0.001 (0.001) 0.30 

age + sex 0.0206 (0.0005) 0 -0.03 (0.011) 0.007 -
age 0.0206 (0.0005) 0 - -

Table 3.7: Fits to lung data - covariate age,factor sex 

Table 3.8: Fits to lung data - binary covariate age,factor sex 

model eqn coeff age (s.e.) p coeff sex (s.e.) p coeff (age*sex) p 
age + sex + (agefac*sex) 0.293 (0.031) 0 -0.044 (0.016) 0.006 0.029 (0.023) 0.20 

age + sex 0.331 (0.010) 0 -0.030 (0.011) 0.009 -
age 0.331 (0.010) 0 - -

Note: Age here IS a bmary covarIate created around the medIan of 68.24 

It is also of interest to see if there has been an improvement in survival over 

time. To check this a fit to the Cox model of age in the presence of year of 

diagnosis was carried out (see table 3.9). The coefficient of age compared to 

the age alone model is similar. Figure 3.10 suggests the distribution of age has 

increased marginally over the twenty year period of study, and hence the large 

improvement in survival is unlikely to be explained by this alone. 
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Boxplots of age for each year of diagnosis 1974 - 1993 
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Figure 3.10: Age distribution for each year of diagnosis 

model eqn coefl" age (s.e.) p coefl' yr diag (s.e.) p 
age + yrdiag 0.0224 (0.0005) 0 -0.0236 (0.0009) 0 

Table 3.9: Fit to lung data - age + year of diagnosis 

3.5.4 Estimation of the Baseline Hazard 

48 

Once an estimate of f!.. has been obtained, attention then turns to estimation of 

the baseline hazard, or equivalently the baseline survivor function/cumulative 

hazard using our estimate {3. The original estimate from Cox (1972) was based 

on the conditional logistic model and is rarely applied in practice. Kalbfleisch 

and Prentice consider a discrete time model defined for the hazard in the jth 

interval (tj-l, tj] as: 

(3.38) 
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It was shown that the maximum likelihood estimate of the baseline hazard 

AO(t(j)) = 1 - ~j is given by the solution to: 

AT L exp(~~) (3.39) 
(IER(t(j) )) 

With a single failure at t(j) the above can be solved analytically to give: 

AT 
A expC8 ~(j») 
~(j) = 1 - AT 

2:(IER(t(j))) exp(~ ~) 
(3.40) 

Approximations to the baseline hazard have been suggested, in particular: 

(3.41 ) 

The latter approximation can be used in conjunction with Breslow's 

approximation for ties in the partial likelihood. The resulting estimate of the 

survivor function is equivalent to the non-parametric Kaplan-Meier curve. If 

the Efron approximation for ties is employed, a different approximation of the 

baseline hazard should then be adopted (Therneau, 1994): 

(3.42) 

Recall our example of the previous section for tied data, we have three tied times 

and a further two times at risk with relative risks 'IjJ(j) = exp(~T Xj), j = 1, ... ,5. 

The relevant estimates of the baseline hazard are: 
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'\0 (Breslow) (t(j)) 

'\0 (Efron) (t(j)) 

3 
~ 

1jJ(1) + 1jJ(2) + 1jJ(3) + 'Ij;(4) + 1jJ(5) 
1 

~ (1jJ(1) + 1jJ(2) + 'Ij;(3) + 1jJ( 4) + 'Ij;(5) + 
1 

i'lj;(l) + i'lj;(2) + ~'Ij;(3) + 1jJ(4) + 'Ij;(5) + 
1 

~1jJ(1) + ~'Ij;(2) + ~'Ij;(3) + 1jJ(4) + 'Ij;(5)) 
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Note that when f!.. = Q. i.e. 1jJ(j) = 1, j = 1, ... ,5 the estimates are equivalent 

to the contributions at each death time of the uncorrected and corrected Nelson 

cumulative hazard estimates, namely ~ and ~ + ~ + ~. 

The resulting estimates are step functions, and given the cumulative hazard 

estimate Ao(t) we estimate the survivor function by So(t) = exp( -Ao(t)). When 

the survivor function for a given set of covariable values has been estimated, it 

is then possible to examine quantities of interest such as the median predicted 

survival. 

3.5.5 Estimation of the Baseline Hazard for Cox Model 

Fits to Lung Cancer Data 

As we have employed the Efron correction for ties (the default option in Splus) 

we use the equivalent estimate of the baseline hazard. For the Cox model fit 

which had binary covariate age as its only term, figures 3.11 and 3.12 show 

the estimated survivor curves and cumulative hazard functions. Note that the 

cumulative hazards are parallel as constrained by the assumption of proportional 
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hazards. 

Cox fits for binary covariate age 
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Figure 3.11: Estimated survivor curves for factor age from Cox model fit 

It is therefore possible to predict survival for an individual. Table 3.10 gives 

the predicted median survival for binary covariate age. For the model fitted for 

continuous covariate age and continuous covariate year of diagnosis table 3.11 

shows the predicted median survival for ages 55 and 80 (representing the 10th 

and 90th percentile of the age distributions) and years 1974 and 1993. For a 

given age predicted survival has increased about two-fold over the period under 

study. 

covariable median survival (days) 95 % C.l. 
age ~ 68.24 116 (112,118) 

> 68.24 72 (70,73) 

Table 3.10: Predicted median survival estimates for binary covariate age 
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Cox fits for binary covariate age 
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Figure 3.12: Estimated cumulative hazard for factor age from Cox model fit 

II age I year diagnosis I median survival (days) I 95 % C.1. II 
11551 1974 I 99 1 (96,103) i 

80 1974 47 (46,49) 

55 1993 195 (187,203) 
80 1993 85 (82,88) 

Table 3.11: Predicted median survival estimates for continuous covariate age 
and year of diagnosis 

3.5.6 Testing the Assumption of Proportional Hazards 

The assumption of proportional hazards implies the hazard ratio for two different 

values of a covariate is constant over time. For a binary covariate we have 

'x(tlx = 1)/ 'x(tlx = 0) = exp(.8). If the coefficient of x varies over time, then the 

assumption of proportional hazards is inappropriate, however the purpose of this 

thesis is not to assess violations from proportional hazards in the true survival 

data. Current work on mis-specification of survival models is being undertaken 
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by Mr Paul Monaghan as a sister project to this, and the reader is referred to 

his thesis. Outcome error may imply that the observed survival data are no 

longer proportional hazards (see chapter 5), but we still assume the underlying 

true data follow a proportional hazards representation. 

A review of graphical methods is presented by Hess (1995). The simplest method 

is to compare the fitted model with Kaplan-Meier curves, but Therneau (1994) 

argues against this as violations are difficult to assess. However, examination 

of the Kaplan-Meier curves alone does give us a handle on the assumption of 

proportional hazards. The survivor curves cannot cross, and a plot of the log 

cumulative hazards should show parallel curves. 

If one suspects that the coefficient does change over time it is possible to split 

the time axis and fit the model within each time period. The selection of 

the intervals is however unclear. Many residuals and significance tests of the 

proportional hazards assumption have been suggested (Collett chapter 5) but 

we are not considering these. 

3.6 Parametric Proportional Hazards 

If we assume a parametric form of the baseline hazard, then different methods 

for estimation of f1. are appropriate. Parametric Weibull models have the same 

shape parameter p and a different scale parameter T = exp(f1.T ,12). If one suspects 

the baseline hazard is from a Weibull distribution, a simple test of this is to plot 

the log-cumulative hazard against log time, as 
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logA(t) = logT + plogt (3.43) 

is linear for the Wei bull model. If the gradient of the plot is ~ 1 then there is 

further evidence the data are from the exponential model. 

The likelihood for n observations, where Oi = 1 if the ith observation is a death 

time and Oi = 0 if the ith observation is censored is defined as: 

n 

L(tl~) = II(JT(tI~)y~i(S(tl~)){1-6;) (3.44) 
i=l 

Parameter estimates are then obtained by maximising the likelihood with respect 

to {3 and confidence intervals, significance tests and model selection can be 

performed using the same techniques as outlined for the Cox model. 

When the data truly have a parametric baseline and ~ =1= 0 then the efficiency 

of the parametric maximum likelihood estimate will be increased compared to 

estimation via the Cox partial likelihood (not specifying the baseline). This 

means the estimate of ~ will have reduced variance. Discussion of this is given 

in Kalbfleisch and Prentice (Chapter4), in particular the case of the exponential 

distribution. Intuitively correctly specifying the baseline hazard for all times via 

parameterisation is likely to be more efficient than assuming no information on 

the baseline hazard between death times. 
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Log-cumulative hazard plot for age (two groups) 
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Figure 3.13: Estimated cumulative hazard for factor age 

55 

3.6.1 Appropriateness of Weibull Assumption to Lung 

Cancer Data 

Figure 3.13 shows the estimated cumulative hazard function for the binary 

covariate age. The assumption of proportional hazards does not seem 

unreasonable (the vertical distance between the lines is approximately constant), 

but curves are clearly not linear. This would lead us to conclude that the fitting 

of a parametric Wei bull model to the lung cancer data is inappropriate. 

3.7 Summary 

In this chapter we have reviewed methodology for non-parametric and semi­

parametric survival methods. The idea of proportional hazards and the Cox 
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model were introduced. The Cox model assumes covariates act multiplicatively 

on an arbitrary baseline hazard. Estimation is achieved via partial likelihood. 

Where survival times display ties (a form of rounding measurement error) exact 

likelihoods have been proposed but due to their computational expense are 

unpopular. Therefore approximations to the partial likelihood are the norm, 

with S-plus employing the Efron (1977) approximation as a default. This is 

a vital springboard to the development of an approximation for more general 

outcome error in chapter 5. Fully parametric analyses were also briefly discussed. 

An analysis of the full lung cancer dataset was undertaken. Fitted Kaplan-Meier 

curves demonstrated how overall survival for patients is extremely poor, with 

the median survival being 3 months. The effect of age is an important one; the 

log-rank test for ten age groups created around the deciles of the age distribution 

displayed strong significance. Cox fits for continuous and binary covariate age 

reinforced this result within the framework of proportional hazards. Ten years 

of age increased the hazard by 1.229. Sex is unlikely to affect survival. There is 

also strong evidence that survival has improved during the period under study. 

Predicted survival for a 55 year old in 1974 was 99 days (95 % C.l. (96,103)) 

and predicted survival for a 55 year old in 1993 was 195 days (187,203)). 

In the next chapter we familiarise the reader with covariate and outcome 

measurement error and give a full literature review of measurement error 

methodology with particular reference to the Cox model. 



Chapter 4 

Review of Measurement Error 

In this chapter we review the topic of measurement error, giving particular 

attention to the Cox proportional hazards model introduced in the previous 

chapter. Covariate and outcome error are both reviewed. The particular 

measurement error problem considered in this thesis is that of a window of 

measurement for certain patient's diagnosis time (see chapters 2 and 6). This 

has obvious implications for recording of survival time and may imply that 

covariates such as age at diagnosis are also subject to measurement error. 

4.1 Measurement Error in Statistical Models 

Measurement error in the two variable, linear regression model is not a new 

problem. The earliest reference in the introduction to the Errors-in-Variables 

workshop (Byar and Gail, 1989) published by Statistics in Medicine is from 1878. 

The field has grown enormously since the mid 20th century and work in the last 

twenty years covers many types of statistical models and many different ways 

57 
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of coping with the problem of measurement error. Two main texts have been 

published on measurement error: Fuller {1987} extensively covers the case of 

linear models and Carroll, Ruppert and Stefanski (1995) cover nonlinear models, 

in particular generalised linear models. 

The need to address the problem of measurement error arises from the bias in 

regression parameter estimates in the presence of measurement error. This is 

often called attenuation and estimates ignoring measurement error are frequently 

called naive. The usual direction of such bias, particularly in univariate analyses, 

is towards the null hypothesis of no covariate effect, however this is not always 

the case. Figure 4.1 shows a graphical demonstration of this bias for hypothetical 

data. 
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Figure 4.1: Attenuation due to measurement error - hypothetical example 
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There are many ways to approach a measurement error problem, and the method 

adopted depends on many considerations. Broadly speaking, the difference 

between an error free analysis and an error correction analysis is that at least 

one further model (in addition to the usual model of outcome on covariables) 

has to be specified. This is often referred to as a measurement model (Clayton, 

1991) and relates the unobserved true variables to their observed counterparts. 

A further assumption regarding the underlying distribution of the true variables 

will also frequently be considered. 

4.1.1 Types of Error, 

Assumptions 

Measurement Models and 

Measurement errors can be broadly split into four categories. Random errors 

imply that the mean of the observed data will consistently estimate the mean of 

the true data whereas systematic errors have an overall mean bias compared 

to the true data. Within person error represents errors across replicated 

measurements for the same individual, and can be either random or systematic. 

Between person error represents errors across a sample of individuals and again 

mayor may not be consistent for the mean of the whole group (Willet, 1989). 

Let us consider the usual simple linear regression model: 

where (4.1) 

Instead of observing Xi we observe Zi, a distortion of Xi due to error. 
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Differential and Non-Differential Measurement Error 

If we assume that given the true Xi then the Zi have no further value in the 

model of the outcome variable Yi then the measurement error is regarded as non­

differential. Other terms for this are that Zi is a surrogate for Xi or that Zi is 

conditionally independent of Yi given Xi . This can be expressed mathematically 

as: 

f(YIX, Z) = f(YIX) (4.2) 

Differential error is more problematic and is not considered further as a 

correction is usually impossible (Willet, 1989). One example of differential error 

is relating diet to breast cancer. The true data are diet pre-diagnosis but the 

observed diet is post-diagnosis. The observed diet may thus have changed as 

a result of diagnosis, and is hence correlated with the outcome variable (see 

Carroll, Ruppert and Stefanski(page 16)). 

Errors-in-Variables and Berkson models 

The traditional errors-in-variables assumption is that the relation between true 

and observed is Zi = Xi + Ui or a more general function where the observed Zi 

is a distortion of the true Xi with a random error Ui. This is often seen as the 

most natural measurement model. The basic Berkson (1950) model states that 

Xi = Zi + Ui. Moran (1971) suggests the Berkson model when one aims for a 

particular X but fails to achieve it such as in a laboratory experiment when an 

instrument is set to a particular value. In terms of estimation the two models 

are not interchangeable even in the most simple form given above. Note in the 

Berkson case the observed data Zi are uncorrelated with the measurement errors 
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Functional and Structural Models 

Another consideration is how to regard the unobserved true Xi'S. Two main 

types of assumption are common. The functional assumption regards the true 

data as fixed constants whereas the structural model assumes an underlying 

distribution for the true values (usually normal). For the case of simple linear 

regression, a further model, the ultrastructural model has been considered where 

the Xi's are normally distributed with common variance but have an individual 

mean J.Li (Cheng and Van Ness, 1994). 

The functional model is regarded as appropriate when the sample Xi's are 

not a random sample of a general population, but rather come from a 

designed experiment (see Fuller and Carroll, Ruppert and Stefanski (page 7)). 

Carroll, Ruppert and Stefanski generalise the definition of functional models to 

those where any underlying distributional assumption is not important to the 

correction procedure. 

4.1.2 Examples of Measurement Error 

There are a rich literature of examples of measurement errors - epidemiological 

exposures are particularly prone. When a binary factor or a categorical factor 

is measured, the measurement error is called misclassification. Examples of 

such errors are stage data in cancer studies. Whittemore (1990) provides an 

example of Poisson regression of breast mortality from the San Francisco Cancer 

Registry where under a misclassification analysis the assumption of proportional 
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hazards is accepted. Other possibilities of misclassification arise from survey 

sampling such as level of smoking history (e.g. number of packets smoked a 

day) or surveys of diet and nutrition. A recent thesis by Seyed Hassan Saneii 

(1997) considered psychiatric survey data where binary and ordinal covariates 

were missing or subject to misclassification. Diet related mismeasurements, 

such as fat intake or alcohol consumption, whether continuous or categorical, 

are a continuous theme in the literature (Clayton, 1991; Rosner et al., 1989; 

H uakka, 1995). 

Another popular example is measurement of air pollution exposure, in particular 

the level of N02 an individu~l has r~c~ived (Whittemore and Keller, 1988; 

Stephens and Dellaportas, 1992; Hasabelnaby et al., 1989; Tosteson et al., 1989). 

A similar type of exposure problem that has been a popular example in the 

proportional hazards papers is the dose of radiation exposure in the wake of the 

atomic bombing of Japan. Prentice considers this as a Berkson formulation and 

Nakamura as an errors-in-variables problem. 

Specific medical measurements that can be measured with error are blood 

pressure measurements (Hughes et al., 1995) and CD4 counts in relation to 

AIDS (Satten and Longini, 1996). 

4.2 Correction for Measurement Error 

A number of methods are available in order to correct for measurement error . 

One common theme is that in order to perform a measurement error analysis, 



ChA Review of Measurement Error 63 

the extent of error needs to be estimated. This is usually done via validation 

data or replication data. Validation data would typically be available for a small 

subset of the data, in which both the true Xi and observed Zi are available and 

hence the extent of error can be determined. Replication data are available if 

more than one imperfect Z measurement is available. 

4.2.1 Simple Linear Regression 

For the simple linear regression case we have the true model: 

E(YIX) a+{3X 

var(YIX) 

(4.3) 

(4.4) 

When the usual linear regression model is incorrectly applied to the observed 

data Z, we have an induced regression model: 

E(YIZ) = a + (3E(XIZ) (4.5) 

The above demonstrates the fundamental difference between the errors-in-

variables and the Berkson cases. 

e-i-v 

Berkson 

Zi = Xi + Ui ===> E(XIZ) =F Z 

Xi = Zi + Ui ===> E(XIZ) = Z 

(4.6) 

(4.7) 

The reason for the attenuation in the errors-in-variables case is due to the 

regression of the underlying true on the observed. In the basic Berkson 



Ch.4 Review of Measurement Error 64 

formulation there is no attenuation of (3. In fact for errors-in-variables if the 

true data are N(J-L, a~) then (Clayton, 1991): 

(4.8) 

A full derivation of the distribution of X\Z is given in appendix A.I. For the 

errors-in-variables case the degree of attenuation for {3 thus depends on the 

"reliability ratio" : 

a~ - a~ 
a~ 

(4.9) 

where a~ is the variance of the true exposures and a~ the variance of the 

measurement error (Clayton, 1991; Carroll, 1989; Fuller, 1987). Since 0 < oX < 1 

then the true (3x is always underestimated. The induced model for the error-in-

variables case is: 

E(Y\Z) = a + {3(oXZ + (1 - oX)J-L) = a + (3J-L(1 - oX) + oX{3Z (4.10) 

If oX can be estimated or certain assumptions about it (such as a~ = a~) are 

made then the "naive" estimate of {3 can be corrected : 

{3x = (3z(oX -1) (4.11) 

The only effect in the Berkson case is to increase the residual variance, a trait 

of both types of model. 

e-lll-V (4.12) 
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Berkson var(YIZ) = a; + f32 (4.13) 

Note that at f3 = 0 the naive induced model is equivalent to the true model. 

This implies that the usual score test of whether f3 = 0 is valid, but has reduced 

power. 

Variance of the regression parameters 

A correction for measurement error will consistently estimate the slope 

parameter, but by recognising the extra variability within the model will increase 

the variance of the regression parameters. The review of Cheng and Van Ness 

(1994) outlines the difficulty in obtaining valid confidence intervals and in some 

cases their non-existence. The simplest calculation of confidence intervals in this 

problem is a bootstrap resampling mechanism as described in the Regression 

Calibration Algorithm in Carroll,Ruppert and Stefanski chapter 3. 

Denoting the naive estimate as f3naive then we have E(f3naive) = >.f3 and 

var(f3naive) = The method of moments correction for beta f3corr = 

>. -1 f3naive has expectation E (f3corr) = f3 and variance var (f3corr) = >. - 2 O"~aive' This 

leads to a "bias versus variance tradeoff". Consideration of the mean squared 

error of both estimates can then be implemented if required. 

Multivariate Models 

If, in addition to the incorrectly measured covariable, there are other explanatory 

variables within the regression then the estimates of these variables can also be 

biased, sometimes showing the opposite to the true effect. This can only be 
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avoided if the variables are independent. Examination of this is in various papers 

such as Carroll (1989) and Marshall and Hastrup (1996) and has implications for 

design. Nakamura and Akazawa (1994a) examine an unbalanced confounding 

variable in the Cox Model. 

4.2.2 Literature review 

Methods for the correction of measurement error come under a broad umbrella. 

This section provides a literature review for models encountered in epidemiology 

other than survival models. 

The previous section developed regression calibration in the context of simple 

linear regression. The corrected estimate is consistent in this case, but in other 

models it is only an approximate correction procedure. The idea of calibration 

is simple, in that one replaces the observed covariate by the expectation of the 

true covariate given the observed value. The case of logistic regression is covered 

by Rosner, Willet and Spiegelman (1989) who also derive corrected confidence 

intervals. Tosteson et al (1989) consider binary and ordinal probit models and 

derive a test for the conditional independence assumption. Carroll (1989) states 

that Poisson and gamma regression with a log-linear link function consistently 

estimates the slope parameter for randomised studies. 

A recent method for the treatment of measurement error is the SIMEX algorithm 

(simulation extrapolation). This is a simple idea that demonstrates the effect 

of and corrects for measurement error. The idea is that the naive estimate at 

A = 0 has measurement error a~. Additional error data AMa~ is generated for 



Ch.4 Review of Measurement Error 67 

M datasets and added to the original data to give the total measurement error 

a~+AMa~ = (l+AM )a~. Hence a corrected estimate is obtained by extrapolating 

to the case A = -1 (Carroll et al., 1995). 

Likelihood, approximate likelihood via expansion and quasi-likelihood methods 

have not received extensive treatment by authors. The structural likelihood for 

the true data given the observed covariate Z where B are the parameters of the 

measurement model is: 

L(YIZ,~, B) = ! f(YIX, ~)f(XIZ, B)dx 

(Carroll, 1989). Quasi-likelihood methods model the mean and variance of the 

above, and in many ways are simpler to fit. Note that these methods are 

structural as deriving f(XIZ) requires the specification of f(X). 

Rosner et al (1989) expand the likelihood for logistic regression, while Schafer 

(1993) treats the probit model. An example of a likelihood analysis for 

misclassification and Poisson data is Whittemore (1990). 

Functional methods have the advantage of not requiring the specification of 

the distribution of the underlying true covariates. The functional likelihood is 

defined as : 

This is an over-parameterised problem, as the likelihood has to be maximised 

with respect to the n true X covariates as well as 13. Thus for linear regression 
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we estimate n + 3 parameters (Xi, 0:, (3, a). For linear regression this likelihood 

is consistent (Cheng and Van Ness, 1994). However the functional model is 

not usually consistent for non-linear models, in particular the logistic model 

(Nakamura, 1990; Stefanski and Carroll, 1987). 

Stefanski and Carrol (1985) discuss the functional logistic model and generalise 

this to generalised linear models in their later 1987 paper. They propose a 

conditional score. Conditioning the density of Y on the observed data and 

a sufficient statistic for the true data the new model is also a generalised 

linear model whose score equations are unbiased for {3. An alternative method 

,corrected score is proposed by Nakamura (1990). He derives a score equation 

under the observed data with global expectation equal to the score of the 

corrected data. This exists for nearly all generalised linear models except the 

logistic case. 

Bayesian methods for measurement error have received more attention with the 

advent of computer intensive methods such as GIBBS sampling. Conditional 

independence is an inherent idea in the implementation of such methodology. 

Generalised linear models for both Berkson and errors-in-variables problems 

were considered by Stephens and Dellaportas (1992, 1995). Richardson and Gilks 

(1993) provide a review of conditional independence models for epidemiological 

studies with covariate measurement error. Computer software that allows the 

specification of a vast range of models has been developed (Spiegelhalter et al., 

1995) and examples of measurement error fits using the BUGS software are 

given. 
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A bootstrap approach for generalised linear models is presented by Huakka 

(1995). The method was fitted to a multivariate logistic model and compared 

with the likelihood approximation estimate of Rosner, Willet and Spigelman. 

Huakka found his bootstrap approach gave smaller confidence intervals. 

A suite of computer programs for S-Plus designed to fit many correction 

procedures including regression calibration and maximum likelihood for both 

binary and continuous covariates is presented by Bashir and Duffy (1995). 

Measurement error is not restricted to epidemiology, and estimation for other 

types of problem such as complex survey data (Fuller, 1995) have been addressed. 

However epidemiological applications are common. Despite this use of the 

methodology has not been widespread. Lack of validation data is one possibility. 

Willet (1989) cites this and other reasons. Many procedures are bivariate, lack 

confidence intervals and focus on unpopular models such as the probit model. 

He also suggests a bias towards the null hypothesis may (wrongly) be regarded as 

acceptable by some, while others may be put off by over-technical presentation. 

4.3 Covariate Error and the Cox Model 

4.3.1 Attenuation and the Cox Proportional Hazards 

Model 

Recall from the previous chapter that the usual Cox model is defined as: 
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A(t, x) = Ao(t) exp(~T~) (4.14) 

For simplicity consider a single covariate X. As for the case of linear regression, 

if instead of observing the covariate X we observe the stochastically related 

variable Z = X +U and a Cox model is fitted via the usual partial likelihood with 

the Z treated as true data then the resulting estimate of f3 will be attenuated 

towards the null hypothesis of f3 = o. The extent of this attenuation is however 

not as clear as in the usual case. 

Nakamura and Akazawa (1994a) and Hughes (1993) both examine the extent 

of attenuation in the Cox model. Hughes considers the naive partial likelihood 

and derives some important results. U,nder the case of no censoring, he shows 

that the asymptotic expectation of the naive score statistic is not dependent on 

the baseline hazard Ao(t). The expected score can then be solved numerically 

to determine the degree of bias. Hughes gives two figures that show the degree 

of bias for different values of f3 and levels of measurement error when the true 

covariable has a standard normal distribution. Some of the results are shown in 

table 4.1, where the approximations are read from figure 1 (Hughes p.1058) and 

f3z = (degree of attenuation)f3x. 

Recall that for linear regression the degree of dilution of f3 is determined by 
2 

A = ~. Hughes' results show that for the case of no censoring (or a failure 
CTX+CTu 

rate of 100 %) the actual degree of bias can be much larger. This increases as 

f3 increases. Nakamura and Akazawa consider simulated data with 80 % failure 

and conclude that if 1f31 is small the degree of bias is A but for f3 = 1 the degree 
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II !3true I (1~ I degree of attenuation II 
0.5 0.1 0.983 
0.5 0.5 0.625 
0.5 1 0.452 
0.5 2.5 ~ 0.25 

1 0.1 0.855 
1 0.5 0.546 
1 1 0.379 
1 2.5 ~ 0.19 

~ 0.30 
II ~:~ ~ 0.16 II 

2 

II 2 ~ 0.13 II 
~ 0.25 

Table 4.1: Levels of bias for Cox model with no censoring 

2 

of bias is close to 0"1-+(::+0.1)2' 

Hughes also derives the score under two censorship schemes, the first is when 

censoring occurs if the patient is still alive at the end of a study and the second is 

a particular form of random censorship. Under random censorship the baseline 

hazard does not drop out of the asymptotic naive score equation and hence the 

degree of attenuation is also dependent on the baseline hazard. The effect of 

this in the resulting simulation study was marginal however. 

The degree of attenuation is reduced when censorship is present and with only 

20 % failure the degree of bias is extremely close to A, the reliability ratio 

for linear regression. The relationship between attenuation for no censorship 

and attenuation for high censorship is approximately linear, and one can thus 

interpolate the degree of bias for any censorship level. 
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Nakamura and Akazawa also study the effect on a second binary treatment 

variable t::,. when Z is a confounding variable and is unbalanced between levels 

of treatment. The naive estimate of t::,. can lead to a reverse conclusion of effect. 

This is analogous with results on multivariate linear regression. 

4.3.2 Correction for Attenuation and the Cox Model 

Correction for covariate error in the Cox model has received some attention 

by authors. The first papers to appear in the literature are that of Prentice 

(1982a, 1982b). More recent papers are Pepe, Self and Prentice (1989) and 

Clayton (1991) who further the previous work of Prentice. A different approach 

to measurement error is that of Nakamura (1992). 

Adjusting f3 directly from the naive estimate 

The discussion of the level of attenuation in the previous section allows an 

extremely simple correction for f3. Hughes paper allows us to calculate the level 

of dilution for high censorship and no censorship under a considerable array 

of situations after A is estimated, and through interpolation for the degree of 

censoring a good estimate of the level of attenuation can be found. The inverse 

of this is our "adjustment factor" for the observed f3z in order to estimate f3x. 

As the results of Hughes are asymptotic, he undertakes a simulation study to 

examine the adjustment factor for small samples. Although the distribution of 

the corrected estimates were skew they still performed well in overall coverage 

of the true f3. 
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Regression Calibration and the Cox Model 

A regression calibration method for the Cox model is the subject of the early 

papers on covariate error. The basic approach to regression calibration is 

described in chapter 3 of Carroll, Ruppert and Stefanski (1995), namely to 

replace the observed covariate with an estimate for true given observed via the 

measurement model. This method is only appropriate in the Cox model if further 

assumptions are made. 

Prentice (1982a) induces a hazard model: 

.\(t, z) = .\O(t)E{T~t,z} exp(.Bx) (4.15) 

via the conditional independence assumption: 

,\(t, x, z) = .\(t, x) (4.16) 

and the censorship assumption: 

.\(t, x, no censorship in [O,t)) = .\(t, x) (4.17) 

i.e. that the measured covariate does not inform the censorship mechanism. 

The key point is that the induced hazard rarely takes the proportional hazards 

form and the induced relative risk will usually include the baseline hazard. 

Prentice (1982b) shows for example that if the true relative risk is of the form 

1 + f3X and XIZ ""' N(JLz, a~) then the induced model is: 
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(4.18) 

A more general form of the induced model with exponential relative risk is also 

given and is shown to be: 

A(tlz) = Ao(t) f exp({1x) exp{ - exp({1x) f~ Ao(u)du} f(xlz)dz (4.19) 
f exp({1x) f~ Ao(u)duf(xlz)dx 

The usual partial likelihood for the error free model is: 

£({1) = IIi=1 exp({1x) 
~IER(t(j») exp({1xl) 

(4.20) 

where the product is over the r death times from the n observed survival times. 

Using the principle of regression calibration this can be replaced by the 

likelihood: 

(4.21) 

It is useful to consider when one can apply calibration without fear of the 

inclusion of the baseline hazard in the induced relative risk. This is reasonable if 

pr(T ~ tlX) ~ pr(T ~ tlz) . For this to hold, a further rare failure assumption 

is introduced, where pr(T ~ tlX) ~ 1. In the example used by Prentice, where 

failure was succumbing to thyroid cancer following the atomic bombing of Japan 

this was reasonable as less than 2% of those studied actually failed. A further 

possibility is if f (X I Z) is "concentrated" implying that the measurement error 

is small. These assumptions allows interesting comparisons with the work of 
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Hughes. When censorship is large (failure is rare) then the attenuation level 

is close to that of linear regression as is the case if measurement error is small. 

Thus under these conditions regression calibration as practiced for linear models 

is appropriate. 

The reason for the inclusion of the baseline hazard is that we require the 

distribution of XIZ within each risk set. If failure is large then the distribution 

is likely to change over time and this is dependent on the baseline hazard as 

well as the relative risk. Certain distributions do hold their structure in these 

circumstances and these are discussed in Pepe, Self and Prentice. 

A nice result given by Prentice (1982a) is that when (3 = 0 the induced model is 

the same as the true model and hence the score test for (3 = 0 is still appropriate, 

as is the usual case for other induced models. 

Clayton (1991) proposed a modification to the regression calibration method of 

Prentice that removes the complication of the {T ~ t, z} conditioning. Clayton 

instead suggests calibrating the model within each risk set. He also suggests 

a normal discriminant model under the assumption of normality for the true 

covariable and measurement error leading to the estimate for (3: 

~ = Ei~i[:i - Zi] 
~iAial 

(4.22) 

where ~i is the estimated reliability ratio in the ith risk set and a; is the estimate 

of the variance of the underlying true covariates. The results for this estimate 

and the regression calibration estimate were very similar. 
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The induced model 4.18 for the linear relative risk with normal errors was 

dependent only of the cumulative baseline hazard. Prentice (1982b) and Pepe, 

Self and Prentice (1989) suggest using a Kaplan-Meier type estimate of the 

cumulative baseline and then iterating with the partial likelihood. 

Pepe, Self and Prentice also present a product partial likelihood for joint 

estimation of the parameters of the measurement model and the parameters 

of the regression model when a validation study is available. The resulting 

estimates are consistent and asymptotically normal, but the same issues for 

regression calibration and the induced model still apply, i.e. the method is most 

appropriate for studies where failure is rare. The product partial likelihood for 

exponential relative risk with normal errors is derived. In addition a study is 

undertaken to determine the size of data set in relation to the size of validation 

study for the most cost effective design. 

Although we are not considering time dependent covariates in this thesis, 

Tsiatis, DeGruttola and Wulfson (1995) consider a regression calibration for time 

dependent covariables with missing values and measurement error. Covariates 

follow a Gaussian stochastic process that is estimated and then the conditional 

expectation is used in the partial likelihood. 
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Corrected Score and the Cox Model 

Nakamura (1992) proposes an approximate corrected score for the Cox model. 

This follows from his 1990 paper where an exact corrected score is derived for 

certain generalised linear models (Nakamura, 1990). The approximation using 

a Taylor series expansion arises from the fact that no exact corrected score is 

available for the Cox model. Recall that a corrected score for the observed data 

has a global expectation equal to the score of the true covariable. For the Cox 

model with one covariate the score for the jth failure is defined as follows: 

U
.(rl T) _ . _ "EIER(t(j)XI exp({3xl) 

J 1-', X, - x(J) 
"EIER(tU» exp({3xl) 

(4.23) 

For additive normal errors with variance a~ Nakamura defines the (first order) 

correction that holds if (3a~{3 is small: 

Uj({3, z, T) = Uj ({3, z, T} + a~{J ( 4.24) 

A second order correction is also given : 

(4.25) 

An approximate corrected observed information is also derived, and hence 

variance estimates are found in the traditional manner. Nakamura and Akazawa 

(1994a) and Nakamura (1992) examine the performance of {3* (the corrected 

estimate) and state this depends on (3SD(X), .....i!.!J..- and (3au. If these quantities 
:;U(X) 

are small the estimates should perform well. In the simulations where a binary 

treatment variable was also present the corrected estimate performed well in 
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estimating the treatment effect. 

A computer program for fitting the corrected score equations is given in 

Nakamura and Akazawa (1994b). One problem with the practical use of this 

methodology, particularly when l.Baul is relatively large (e.g . .B = 1, au = 1) 

is that negative values of the corrected information matrix can be encountered 

and hence estimation has to be stopped before completion. 

Parametric Survival Models 

Parametric survival models with covariate measurement error have received 

scant attention in the literature, although the exponential and gamma models 

are covered in the wide literature on generalised linear models (however 

the presence of censoring will complicate the corrected score or likelihood 

methodology). The Wei bull model was briefly discussed by Prentice, but he 

concluded the induced model for normal errors with a linear hazard ratio was 

"perhaps too complicated to expect much use". One important feature of a log­

linear exponential model with no censoring is that using regression calibration 

will consistently model the slope parameter (Carroll, Ruppert and Stefanski). 

4.4 Outcome Error in Statistical Models 

The topic of outcome measurement error has not commanded the same attention 

from authors as covariate error, the principal reason being that outcome error 

in the case of many models (such as simple linear regression) will not bias the 

estimates of the model parameters, but merely increase the residual variance. 
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However Carroll, Ruppert and Stefanski do include a chapter on outcome error 

in their book. The principal method suggested is modelling the extra variance 

via quasi-likelihood, although the full likelihood of the observed data Si, where 

Si = ti + Ui, is derived on page 236. The indicator ~ = 1(0} denotes the 

presence ( absence} of validation data. 

( 4.26) 
i=l 

Correction for outcome measurement error in continuous time survival models 

is a problem not previously addressed, although in principle parametric models 

can be fitted using the above technique: The main difficulty is deriving the 

distribution of Si, usually requiring numerical integration. Holt, McDonald 

and Skinner (1991) examine Weibull outcome error in the context of event 

history analysis via simulation, in particular different errors for different levels 

of a covariate and error varying according to size of ti . They show regression 

coefficients have bias and this bias decreases with increased censoring. No 

correction for error is undertaken, but the authors point out that a least-squares 

fit via the log transformation of data incorporating independent multiplicative 

error will give an unbiased estimate of ri· 

Sudman and Bradburn (1973) consider a particular type of outcome error in 

surveys. This is called telescoping, and is due to participants recall, where dates 

are brought forward from the true date towards the date the survey is taken. 

An example is age of first cigarette, where individuals might bring forward their 

smoking start time towards to the date of reporting. 
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4.5 Summary 

In this chapter we have introduced the reader to, and reviewed, the topic of 

measurement error in statistical models. Particular attention was paid to the 

Cox proportional hazards model, where much work has been done on the problem 

of covariate measurement error. No work has however been done on the problem 

of survival time error for the Cox model, which is a feature of cancer registration 

data. 

Many of the concepts introduced for covariate error are pertinent to the next 

chapter on outcome error, in particular the idea of a measurement model relating 

the true variable to the observed one. In the next chapter we consider both 

Berkson and errors-in-variables models (we use the term "Berkson" to imply 

that the distribution of true given observed is not dependent on the underlying 

true value). We examine the effect of and introduce a new approximate partial 

likelihood that incorporates weighted risk sets according to a measurement 

model. The concepts of a corrected score equation and regression calibration 

are important to the new procedure. 

In chapter 6 we apply the new method to the lung cancer data introduced in 

chapter 2 and analysed in chapter 3 under the assumption of no measurement 

error. 



Chapter 5 

Outcome Error in the Cox 

Proportional Hazards Model 

5 .1 Introduction 

Outcome error was reviewed in the previous chapter. No correction for outcome 

error has been derived for the Cox proportional hazards model. In this chapter 

we investigate the effect of outcome error on estimation in the Cox model and 

introduce a new method for dealing with survival error. The motivating need for 

new methodology is the problem of recording of diagnosis in cancer registration 

data. 

81 
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5.2 Outcome Error in the Cox Proportional 

Hazards Model 

Recall from chapters 3 and 4 that estimation for the Cox model is achieved via 

the partial likelihood: 

PL((3) 
r 

II f(failure case t(j)lcensoring in[tU-1)' t(j)], failure case t(j-1); {}) 
j=1 

(5.1) 

Due to the nature of the likelihood, the crucial factor in parameter estimation is 

the order of the failure times t(j) j = 1, .. , r and the respective risk sets at each 

failure time. 

5.2.1 Rounding Error and the Partial Likelihood 

Consider a survival data set where each failure is recorded up to the day of 

survival. In other words, if a patient dies during the fourth day of the study 

their recorded time is three. This can lead to tied data due to " rounding error" . 

Continuous survival data does not permit tied data and various approximations 

for the true partial likelihood were given in section 3.5.2. 

The simplest approximation was suggested by Breslow (1974) where one assumes 

each survival time occurs immediately before each other survival/censoring 

time. For a data set of n observations with r failures and death set D(t(j)) for 
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the mj failures at time t(j) we then have the approximate likelihood: 

(5.2) 

A better approximation is due to Efron (1977) 

The Efron approximation includes each tied time in the denominator according 

to the probability of it being in each risk set, given that each possible risk set 

at the time t(j) is equally likely to occur. Two tied times t(l) = t(2) would be 

included with weights 1 in the first risk set and ~ in the second. Three ties have 

weights 1,~ and ~ in the first,second and third risk sets respectively. 

It is also possible to examine this problem as a Berkson measurement error 

problem. For each tied time we . then have a measurement model for 

truelobserved according to the rounding down of the times. 

truelobs rv U(obs, obs + 1) (5.4) 

This model for truelobs allows us to specify the probability each tied time is in 

each risk set and hence a weighted likelihood in the spirit of Efron. In fact for 
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this model the weights are identical to Efrons, but this will be explained more 

formally later in this chapter. 

The treatment of censoring presents a complication to this idea since in all the 

previous approximations each censored time is assumed to occur after each death 

time. One possible model is: 

true lobs fail rv U(obs,obs + 0.99) 

truelobscens = obs + 0.995 

The reduction in the upper level of the model for true given observed does not 

affect the weighting for each failure time provided the model is applied to each 

failure time. 

5.2.2 Survival Time Measurement Error and the Partial 

Likelihood 

Let us consider now that instead of observing the actual true survival time ti we 

instead observe a related time Si according to some measurement model. This 

would lead us to suspect bias in our estimates from the partial likelihood. For 

covariate error models we have a handle on the size and direction of this bias 

given our knowledge of the measurement and regression models employed. 

The previous section discussed the fact that due to rounding error we do not 

know the true order of survival times, and hence could only approximate to the 
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underlying true partial likelihood. Measurement error on survival time presents 

us with a similar argument. 

Consider five true survival observations ti as in figure 5.1 with exp(fiT *-i) 

1jJ ( i) ,i = 1, ... , 5 then the partial likelihood is as follows 

I 

t1 b , 
I 
I 
I 
I 

t2 C 

, 
I 

t3 P 

t*4-------r----------~----~C 

t~5------~-----------:-----------~ 

I 
I 
I 

t(1) 

I I 
I I 
I I 
I I 

t(2) t(3) 

Figure 5.1: True survival times t l , ... , t5 

1jJ(3) 1jJ(I) 1jJ(5) 
1jJ(I) + 1jJ(2) + 1jJ(3) + 1jJ(4) + 1jJ(5) * 1jJ(1) + 1jJ(4) + 1/J(5) * 1jJ(5) (5.5) 

If instead of observing ti we observed Si = ti + Ui i = 1, .. , n but the extra 

noise did not change the order of the times i.e. s(j) = t(j) j = 1, .. , n then f3 

would be estimated identically. This suggests that the Cox model may have a 

certain robustness against outcome measurement error. However this is just one 

realisation from a whole distribution of possible values. If the measurement error 
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Figure 5.2: Observed survival times S1, ... ,85 
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led to the observed survival times Si as in figure 5.2 then the partial likelihood 

would be as follows 

1/1(1) 1/1(3) 1/1(5) 
1/1(1) + 1/1(2) + 1/1(3) + 1/1(4) + 1/1(5) * 1/1(3) + 1/1(4) + 1/1(5) * 1/1(4) + 1/1(5) (5.6) 

5.2.3 An Example 

At this point some discussion of how measurement error might bias our estimate 

of f!.. may be helpful. The spread of survival times of the true data are determined 

by the baseline hazard AO(t) and the relative risk. The shape of the baseline is 

likely to be of importance, as is the extent of the relative risk. As the rank 

statistic is marginally sufficient for f!.., and is unaffected by the addition or 

subtraction of a constant, it appears intuitive that the mean of the measurement 
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error is unlikely to affect the distribution of f!.. for the observed data. 

Examination of the way the Cox model estimates f!... when the hazards are not 

truly proportional allows us an insight into the bias measurement error may 

bring to a Cox fit. If the hazard ratio is not constant over time, then a weighted 

average of the ratios at each death time provide us with an estimate of f!.... Hence 

if f!... = Q. the Cox model for the observed data is still valid. Consider a specific 

example. 

Suppose that the true survival data ti were generated from an exponential 

distribution ti rv exp( 7i = exp(f!..T ;£)) but instead of observing the true data we 

observe Si = ti + Ui where Ui rv U(O, b). In this case it is simple to calculate the 

distribution ofthe observed data for a particular 7 using the following probability 

identities. 

IS,T ITlslT 

Is [ ISTdT 
irange of T ' 

Using these we have the following: 

Is = f; i7 exp( -7t)dt = HI - exp( -7S)] for 0 < S ~ b 

Is = f:-b t7exp( -7t)dt = Hexp( -7(8 - b)) - exp( -78)] for b < 8 < 00 

Hence we can calculate the survivor functions and hazard f~nctions of the 

observed data: 
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S(s) = { 
l-exE{ -Tsl-T{s-bl O<s~b 

>.(s) = { 
T[l-exE{ -Tsll 

Tb l-exp( -TS)-T(S-b) 

eXE{ -T{s-bl}-exE{ -Tsl b<s<oo 7 
Tb 

True - exp(O.32), U(O,6.928) errors 

CD o 

\ ..... , 
... 

-- observed ........ true 

: .\ ..................................... :::: .... ::-:: .. "" ... ."" ... = ... _-------

o ~------~----~-----~----~------~---~ 
o 5 10 15 

time 
20 25 30 
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O<s~b 

b<s<oo 

Figure 5.3: Survival for true and observed data : exponential true data with 
U(O,b) errors 

Figures 5.3 and 5.4 show the survivor functions and hazard functions for true 

exponential(O.32) data with U(O,6.928) errors. 

Note for two groups with true parameters 7 and 27 the hazards of the observed 

data are no longer proportional, and hence the hazard ratio is not constant over 

time. The hazard ratio for two groups with true parameters 7 and 27 is shown 

graphically for a particular case in figure 5.5. As the hazard ratio is less than the 

true hazard ratio for a subset of the data we would expect the direction of bias 
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30 

Figure 5.4: Hazard for true and observed data: exponential true data with 
U(O,b) errors 

to be towards the null hypothesis. The extent of bias depends on the proportion 

of the data observed in the region where the reduction in the hazard ratio is 

most severe i.e. on the percentiles of the observed (or true) data. For Weibull 

data with uniform errors the integration is not possible analytically. This is also 

true for normal errors, but intuitively it appears the hazard ratio would never 

return to the true level as the distribution of errors is limitless. 
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true data:(exp(O.16),exp(O.32)),errors:U(O,6.928) 
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Figure 5.5: Hazards for observed data: exponential true data with U(O,b) errors 
(2 groups) 

5.3 A Simulation Study to Investigate the 

Effect of Outcome Error 

Consider a single binary covariate with relative risk exp(,8). We wish to 

determine the effect of outcome error on the estimate of ,8, and hence carry out 

a series of monte-carlo simulations to examine the distribution of ,8observed in a 

number of situations. Each experiment will be carried out for two measurement 

models, the usual errors-in-variables model and a biased uniform error of the 

same standard deviation. For each true dataset an observed dataset is generated. 

For each set of parameters for the true model we generate pairs of true and 

observed datasets. For the errors-in-variables model with normal errors the 

observed survival data may include negative times. These are removed from 

the Cox analysis. Most experiments assume a flat baseline (i.e. survival 
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times are from the exponential distribution). We wish to simulate an overall 

median survival for the two groups in each individual experiment. This will be 

determined by baseline hazard and relative risk. We therefore derive the median 

of a mixture of two Weibull distributions with the same shape parameter. 

5.3.1 The Median of a Mixture of Two Weibull 

Distributions 

For two groups of equal number from the Wei bull distribution, with scale 

parameter T for group 1 and T exp(,B) for group 2 we have the mixture density: 

In order to calculate the median we set F(tlx) = ~: 

1 {m ~TptP-l(exp(-TtP))dt + (m ~Texp(,B)ptP-l(exp(-Texp(,B)tP))dt 
10 2 10 2 

-
2 

1 1 
[-2(exp( -TtP))]~ + [-2(exp( -Texp(,B)tP))]~ 

1 1 
1 - 2 exp( -TmP) - 2 exp( -T exp(!3)mP) 

exp( -TmP)) + exp( -T exp(,B)mP) (5.8) 

Writing G = mP,H = exp( -TG),J = exp(!3), then this is the solution to the 

equation 1 = H + HJ. When J = 2 H = v'52-1 and when J = 3 H can be solved 

iteratively to give H = 0.682. The median is thus defined as: 
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111 
m = {-log(-)}ii 

T H 

92 

(5.9) 

Table 5.1: Scale parameter T for baseline group for various characteristics from 
the Weibull mixture with median m 

shape par p relative risk exp(.fl) median m 
3 12 30 

1 2 0.160 0.040 0.016 
0.5 2 0.278 0.139 0.088 
1.5 2 0.093 0.012 0.0029 
1 3 0.128 0.032 0.013 

The data are generated using the rweibull(par1,par2) and rexp(T) functions in 

S-plus. The function rweibull is parameterised slightly differently with parI = 

p and T = (par21/ P)-1. In total 8 different combinations of T,n and exp(.B) were 

chosen. For each of these data medians of 3,12, and 30 (months) were considered 

(note median 3 corresponds to the median survival of 90 days for all lung cancer 

patients, 12 to a 1 yr median survival and 30 to median survival of 2~ years). 

Errors arising from both measurement models with standard deviations 3
1
0' ~, 1 

and 2 months (or about 1 day, 2 weeks, 30 and 60 days) were considered. Hence a 

total number of 192 individual experiments were carried out, with characteristics 

given in tables 5.2, 5.3 and 5.4. Code to create the simulated data is in appendix 

E.5. 



Ch.5 Outcome Error in the Cox Proportional Hazards Model 93 

Table 5.2: Characteristics of individual experiments (exponential baseline - rr 
= 2) 

II n I median surv I Error II 
3 N(O, (fri)2) N(0,(~)2) N(O,l) N(0,22) 

U(0,0.115) U(0,1.732) U(0,3.464 U(0,6. 9281 
50 12 N(O, (fii)2) N(O, U):.!) N(O,l) N(0,2:.l) 

U(0,0.115 U(0,1.732) U(0,3.464 U(0,6.928) 
30 N(O, (1oY N(O,(~):.l) N(O,l) N(0,2:.!) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
3 N(O, (io)2) N(O, (~):l) N(O,l) N(0,2:.!) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
100 12 N(O, (10?) N(O, U):.!) N(O,l) N(0,2:.!) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
30 N(O, (fii):l) N(O, (~?) N(O,l) N(0,2:.l) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
3 N(O, (in)2) N(O, (~?) N(O,l) N(0,22) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
200 12 N(O, (in?) N(O,(~):.l) N(O,l) N(O,2:.!) 

U(0,0.115 U(0,1.732) U(0,3.464 U(0,6.928) 
30 N(O, (1oY N10, U):.l) N(O,l) N(0,2:.!) 

U(0,0.115 U(0,1.732) U(0,3.464) U(0,6.928) 
3 N(O, (io):.l) N(O, U):l) N(O,l) N(0,2:.l) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
500 12 N(O, (1o)<l) N(O, (~):.l) N(O,l) N(0,2<l) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
30 N(O, (in?) N(O, (~?) N(O,l) N(0,2<l) 

U(0,0.115) U(0,1.732) U(0,3.464 U(O, 6.928) 

3 N(O, (in)2) N(O, (~?) N(O,l) N(0,22) 
U(0,0.115) U(0,1.732) U(0,3.464 U(0,6.928) 

1000 12 N(O, (io):.l) N(O, (~):.!) N(O,l) N(0,22) 
U(0,0.115) U(0,1.732) U(O,3.464 U(0,6.928) 

30 N(O, (~)<l) N(O, (~):.!) N(O,l) N(0,22) 
U(O, 0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
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Table 5.3: Characteristics of individual experiments (Weibull baselines - rr = 2) 

II nip I median surv I Error II 
3 N(O, (io)2) N(O, (~)2) N(O,l) N(0,22) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
0.5 12 N(O, (to?) N(O, (~r') N(O,l) N(0,22) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
30 N(O, (to)2) N(O, U?) N(O,l) N(0,2~) 

500 U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
3 N(O, (io?) N(O, (*)2) N(O,l) N(0,22) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
1.5 12 N(O, (to)2) N(O, (~)~) N(O,l) N(0,2:.!) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 
30 N(O, (~)2) N(O, U?) N(O,l) N(0,2:.!) 

U(0,0.115) U(0,1.732) U(0,3.464) U(0,6.928) 

Table 5.4: Characteristics of individual experiments (exponential Baseline - rr 
= 3) 

II n I median surv I Error II 
3 N(O, (to):.!) N(O, (~)2) N(O, 1) N(0,22

) 

U(0,0.115) U(O,1.732) U(0,3.464) U(O, 6.928) 
500 12 N(O, (to):.!) N(O, (~):.!) N(O, 1) N(O, 22) 

U(O, 0.115) U(O,1.732) U(0,3.464) U(O, 6.928) 
30 N(O, Un)2) N(O, (~)2) N(O,l) N(O,22) 

U(0,0.115) U(O, 1.732) U(O, 3.464) U(0,6.928) 
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5.3.2 Results 

In order to continue the flow of the thesis for the reader, detailed tabulations 

of the results are given in appendix B. Tables B.1, B.2, B.3, BA, B.5 give the 

results for the different size data with an exponential baseline and relative risk 

2. For rr 3 with exponential baseline the results are in table B.6. Results when 

the data assume a Wei bull baseline are in tables B.7 and B.B. 

The simulations demonstrate a number of things. The most crucial point is that 

the Cox model does indeed demonstrate a robustness to outcome error - in only 

two experiments was the mean of the observed estimates more than one decimal 

place away from the mean of the true estimates. Most experiments show a bias 

towards the null hypothesis of f3 = O.No positive mean bias exceeded 0.007. 

It is clear that the median survival has a large effect on the mean and variance 

of the bias. Experiments with median survival 3 have larger bias with increased 

variance than those with median survival 12 or 30. The size of the dataset 

does not have an effect on the mean of the bias but, as one would expect, as n 

increases the variance of the bias is reduced. 

The degree of bias is however dependent on the baseline hazard. The observed 

f3 performs best for the case when p = 0.5 and worst when p = 1.5. It is unclear 

without further investigation how the hazard ratio is affected when p =1= 1. One 

would anticipate from the results of these experiments that as p increases the 

loss of proportionality of hazards also increases. Theoretical results would be 

desirable here. 
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The bias is greater with relative risk 3 than the equivalent experiments with 

relative risk 2. Figure 5.6 demonstrates this with greater clarity. The hazard 

ratio is pulled by a larger degree to 1 by the measurement error as the relative 

risk increases. 

........ 

o 

o 

Hazard Ratio for Different Relative Risks 

= ~~ 
rr=2 

-- rr=1 

................................................................................................. 

. .... 

------------- ---

5 10 15 
time 

Figure 5.6: Hazards ratios for different relative risks - exp(O.16) baseline, 
U(O,6.928) errors 

As a rule bias is marginally more severe for the uniform measurement model 

but has reduced variance. It is however unclear as to how the removal of 

negative survival times from the normal measurement model affects the mean 

and variance of the bias. 

It is also desirable to have a measure of the degree of attenuation for each 

experiment. This is an equivalent of the measure ..\ described in chapter 4 for 

covariate measurement error in simple linear regression. Therefore we define the 
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measure: 

E({3obs) 

(attenuation) 

(attenuation)E({3sim) 

E({3obs)/ E({3sim) 

97 

(5.10) 

In other words the measure of attenuation is the mean of the {3 estimate for the 

200 true datasets over the mean of the {3 estimates for the 200 observed datasets 

in each case. The results are in table 5.5. 

The observed estimates have mean within 1% of the true mean for all cases 

except where the median survival is three or p = 1.5. When p = 1 and the 

median survival is 3 the observed mean for error standard deviation 1 is within 3 

% of the true mean. For error standard deviation 2 and p = 1 typical attenuation 

levels are 93 - 95 % for normal errors and 91 - 93% for uniform errors. When 

p = 1.5 attenuation is more severe, and observed means are about 7% less 

than true means for error standard deviation 1 and 20 % less for error standard 

deviation 2. 

It would seem therefore that despite the robust nature of the Cox model when 

survival error is present, a correction procedure is necessary when overall survival 

is poor and measurement error is large. Until it is possible to formulate the true 

nature of bias in terms of the baseline hazard, the relative risk and the type 

and degree of measurement error, a simple and flexible correction that gives 

the analyst a safer level of attenuation is desirable. We therefore formulate an 

approximate likelihood, similar in style to Efron's approximation to rounding 

error. 
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sim median 
char. surv. 

n=50 3 
p=l 12 
rr=2 30 

n=100 3 
p=l 12 
rr=2 30 

n=200 3 
p=l 12 
rr=2 30 

n=500 3 
p = 0.5 12 
rr=2 30 

n=500 3 
p=l 12 
rr=2 30 

n=500 3 
p = 1.5 12 
rr=2 30 

n=500 3 
p=l 12 
rr=3 30 

n=1000 3 
p=l 12 
rr=2 30 

Table 5.5: Attenuation(all experiments) 

Error standard deviation 

fa .!. 1 
N U N U N U 

1.002 1.000 0.995 0.999 0.991 0.990 
1.000 1.000 1.003 0.998 1.000 1.004 
0.999 1.000 1.000 0.999 1.003 0.998 

1.000 1.001 1.008 0.992 0.987 0.972 
1.000 1.000 1.003 0.999 1.002 0.999 
1.000 1.000 1.001 1.000 1.002 1.000 

1.000 1.000 0.996 0.990 0.980 0.973 
1.000 1.000 0.998 0.999 0.999 0.997 
1.000 1.000 1.000 1.000 0.998 0.999 

1.001 1.000 1.007 0.995 1.009 0.990 
0.999 1.000 1.003 0.999 1.004 0.998 
1.000 1.000 1.002 1.000 1.003 0.999 

1.000 1.000 0.994 0.993 0.979 0.975 
1.001 1.000 0.999 0.999 0.997 0.998 
1.000 1.000 0.999 1.000 1.000 1.000 

1.000 1.000 0.979 0.981 0.928 0.933 
1.000 1.000 0.998 0.999 0.992 0.995 
1.000 1.000 1.000 1.000 0.999 0.999 

1.000 1.000 0.996 0.992 0.981 0.973 
1.001 1.000 1.000 0.999 0.998 0.998 
1.000 1.000 1.000 1.000 1.000 0.999 

1.000 1.000 0.997 0.994 0.985 0.978 
1.000 1.000 1.000 1.000 1.001 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

key: Slm char. - slmulatlOn characterIstics 
N: Normal errors, U: Uniform Errors 

mean(l3obserlled) = attenuation * mean(l3sim) 

98 

2 
N U 

0.939 0.935 
0.995 0.999 
0.998 1.002 

0.948 0.907 
1.008 0.992 
1.000 1.000 

0.937 0.914 
0.996 0.990 
1.000 0.998 

1.008 0.976 
1.007 0.995 
1.004 0.998 

0.927 0.918 
0.994 0.993 
0.998 0.998 

0.781 0.794 
0.978 0.981 
0.995 0.997 

0.927 0.915 
0.996 0.992 
0.999 0.998 

0.939 0.923 
0.997 0.994 
1.000 0.999 
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5.4 Formulation of an Approximate Partial 

Likelihood for Measurement Error 

In order to specify the partial likelihood of the underlying true survival times 

their true order is required. The measurement error implies we do not know the 

true order and hence the true risk set at each survival time. Regardless of the 

order ofthe survival times the numerator in the partial likelihood (equation 5.1) 

remains identical. Section 5.2.1 showed a possible approximation for the true 

risk sets in the denominator of the partial likelihood for the case of tied data 

when the true order of times at a particular time is unknown. The next section 

uses a similar argument when measurement error implies that true times may 

not have the same order as observed times. 

5.4.1 Approximating True Risk Sets Given the 

Measurement Model 

In order to formulate a corrected likelihood we require the probability that each 

observed individual is in each true risk set. To do this we can specify the joint 

distribution of all true times given the corresponding observed times. Since each 

of these times are independent, this is the product of their individual true\obs 

distributions. 
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5.4.2 Example 1: Berkson Tied Data 

Consider three tied observed survival times 81 = 82 

rounding error model 

83 from the Berkson 

We can then specify the probability of each arrangement. For example the 

probability tl < t2 < t3 is: 

In fact we have six equally likely orderings of the true survival times 

Thus we can specify the probability each true time is in each risk set: 

P(tl E 1st risk set) = 1, P(t1 E 2nd risk set) = ~,P(t1 E 3rd risk set) = ~ 
3 3 

P(t2 E 1st risk set) = 1, P(t2 E 2nd risk set) = ~,P(t2 E 3rd risk set) = ~ 
3 3 

P(t3 E 1st risk set) = 1, P(t3 E 2nd risk set) = ~,P(t3 E 3rd risk set) = ~ 
3 3 

Thus the Berkson rounding error formulation gives us the probabilities that 

correspond to the Efron approximation for ties. When one employs a rounding 

error measurement model alone we would thus recommend the use of the Efron 
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approximate partial likelihood. 

5.4.3 Example 2: Berkson Normal Error Model 

Now consider three observed survival times 8i that follow the Berkson normal 

error model. 

ti = 8i + Ui where Ui '" N(O, a~) (5.11) 

Suppose 8(1) = 25,8(2) = 50,8(3) = 75 and a~ = 142. The six possible 

arrangements now have much different probabilities of occurring. For instance 

the arrangement t 1, t 2, t3 is much more likely than the arrangement t3, t2, t1' 

Hence the probability tl is in the 3rd risk set is much smaller than that for 

t3. Calculating the individual probabilities of each arrangement is an extremely 

time consuming exercise. For 50 times we would have 50! ~ 3 * 1064 individual 

arrangements. Hence a simpler procedure is required to avoid this. We now 

outline such a procedure. 

5.4.4 Matrix Pij 

Let Pij be an n *p matrix where n is the ordered number of observations and 

p is the ordered number of failures. Define Pij as the probability that the ith 

observation is greater than the jth failure time i.e. the first row is the probability 

that the first observed survival time is greater than the first,second,third .. pth 

failure time. If i is the lth failure time set Pil = . since we do not require the 

probability a given time is greater than itself. 
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For the previous example, ti = Si + Ui, and Ui rv N(O, a;) .Consider the first 

two observed survival times, Sl and 82 and their corresponding true times t1 

and t2. Note E(t1\81) = 81 and E(t2\82) = 82. Then t1\Sl '" N(81' a;) and 

t2\82'" N(82' a~). 

Then P(t2 > td = P(t2 - t1 > 0) and t2 - t1 rv N(82 - 81, 2a;). Then 

P(t2\82 - td81 > 0) = 1 - ~(J2::)' Hence Pij = 1- ~(J;:~) 

For our example 81 = 25, 82 = 50,83 = 75 and we have: 

1 _ ~((50-25)) 
14v'2 

1 _ ~((75-25)) 
14v'2 0.103 0.006 

Pij = 1 _ ~((25-50)) 
14v'2 

1 _ ~((75-50)) 
14v'2 0.897 0.103 

1- ~((25-75)) 
14v'2 

1 _ ~((50-75)) 
14v'2 0.994 0.897 

(5.12) 

5.4.5 Treatment of Censored Times 

Censored observations present a complication to the calculation of Pij . For tied 

data it is usual to assume that censored times occur after all times they are tied 

with. A similar assumption here would be to assume that if a censored time 

can be greater than a failure time according to the measurement model then 

it is definitely greater than that failure time. This is equivalent to setting all 

o < Pij < 1, j = 1, ... ,r for a censored time to 1. 
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5.4.6 Matrix Cij 

Let Gij be an n *p matrix where n is the ordered number of observations and 

p is the ordered number of failures. Define Gij as a weight representing the 

probability that the true time corresponding to the ith observation is in the jth 

risk set. 

Hence Gil = 1 for all i failure times and 0 ::; Gij ::; l(j ~ 2). 

In order to specify Gij we require an approximation to the probability that the 

ith observation is the jth time. For a non-rounding measurement model the 

ith row of the P matrix is likely to tell us that the ith time might be bigger 

than a proportion of the other times. These probabilities typically will have a 

reasonable spread (i.e. we can say that the ith time is extremely likely to be 

greater than some times but unlikely to be greater than most times). For the 

subset of times that the ith time communicates with we then wish our early 

weights to be 1 or close to 1, our middle weights to be close to ~ and our later 

weights to be 0 or close to O. We thus propose the following method to calculate 

the G matrix. 

5.4.7 Algorithm to Calculate Cij When One Knows ~j 

1) Calculate the number of times that the ith time is definitely greater than the 

jth failure timej=l, ... ,r (i.e. where Pij = 1). Call this ngreater. 

2) Calculate the number of times that the ith time might be greater than the 

jth failure time j=l, ... ,r (i.e. where 0 < Pij < 1). Define this set of times 
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as the commset (communication set) for the ith time with ncomm elements. If 

ncomm = 0 proceed to step 5. 

3) Calculate the approximate probability that the ith time is the (ngreater+l)th 

... (ngreater + ncomm + 1 )th time. To do this average the elements of commset, 

giving us p and then allocate according to the binomial probabilities: 

~ P(ith time is (ngreater + j + l)th time) = (ncommCj )p1(l - ptcomm
-

j 

for j = 0, ... ,ncomm 

4) Calculate Cij - the weight representing the probability that the ith time is in 

the (ngreater + l)th ... (ngreater + ncomm + l)th risksets, defined as follows: 

P(ith time E jth riskset , (ngreater + 1) ::; j ::; (ngreater + ncomm + 1)) = 

ngreater+ncomm+ 1 

E ~ P(ith time = kth time) for j = 0, ... , ncomm 
[k=ngreater+j+l] 

5) If ncomm = 0 and the ith time is censored set Cij to 1 if j ::; ngreater and 

Cij = 0 if j = ngreater + 1 

If ncomm = 0 and the ith time is not censored set Cij to 1 if j ::; ngreater + 1 

If ncomm > 0 set Cij to 1 if j ::; ngreater 

6) Set Cij to 0 if j > (ngreater + ncomm + 1 )th time. 

5.4.8 Assumptions Used in Formulating Cij 

The calculations in the algorithm are a great simplification from the actual 

calculations required. In fact two assumptions are employed (in step 3) in order 
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to use the algorithm: 

Assumption 1: The probability the ith time is greater than all times in its 

commset is equal to the average of all probabilities in the commset. This also 

implies that all combinations of times in the commset are theoretically possible 

Assumption 2: The probability that the ith time is greater than the jth time 

is conditionally independent of the probability the ith time is greater than the 

kth(k =I=- j) time. This is expressed mathematically as: 

P(ith time > jth time lith time > kth time) = P(ith time > jth time) 

(5.13) 

Although these assumptions do not in practise hold, if all combinations have a 

small or zero probability then the approximation should prove adequate. 

5.4.9 Example of the C Calculation 

Berkson normal error model 

Recall we have three observed survival times 8(1) = 25, S(2) = 50,8(3) = 75 with 

corresponding 1jJ(i) = exp(/3T J2i) that follow the Berkson normal error model. 

Ignoring the error model and fitting using the observed data gives the partial 

likelihood 

1jJ(1) 'IjJ(2) 'IjJ(3) 
* *--'IjJ(1) + 'IjJ(2) + 'IjJ(3) 'IjJ(2) + 1jJ(3) 'IjJ(3) 

(5.14) 

Given the P matrix: 
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0.103 0.006 

Pij = 0.897 0.103 (5.15) 

0.994 0.897 

we have to work out the approximate probability that each time is the true 

1st,2nd and third time. For the first observed survival time 8(1) ngreater = 0 

and ncomm = 2. We have elements P(12) = 0.103 and P(13) = 0.006. Hence the 

calculation follows a Bin(2,0.0545) distribution. 

~ P(slis 1st time) ~ 2CO * (1 - 0.0545)2 = 0.894 

~ P(slis 2nd time) ~ 2Cl * (0.0545) * (1 - 0.0545) = 0.103 

~ P(8lis 3rd time) ~ 2C2 * (0.0545? = 0.003 

Hence we can work out the weights for the probability that the corresponding 

true time tl is in the true 1st,2nd and 3rd risk sets. 

P(tl E 1st risk set) = C11 = 0.894 + 0.103 + 0.003 = 1 

P(t l E 2nd risk set) = C12 = 0.103 + 0.003 = 0.106 

P(tl E 3rd risk set) = G13 = 0.003 

Following the same procedure for the second and third observed survival times 

we have the C matrix 
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1 0.106 0.003 

Cij = 1 0.75 0.25 (5.16) 

1 0.997 0.894 

5.4.10 Approximating the Partial Likelihood for 

Measurement Error 

Armed with the matrix Cij we can then carry out a correction for measurement 

error in the Cox model. We simply weight each 1/J(i) in the jth risk set by the 

estimate of Cij . 

Recall from our example we had the uncorrected likelihood. 

----c-,..-1/J_(:........:.1 )_---,--,- * 1/J ( 2) * 1/J_(_3) 
1/J(1) + 1/J(2) + 1/J(3) 1/J(2) + 1/J(3) 1/J(3) 

Now using the Cij matrix we then have the approximate partial likelihood. 

1/J (1) * 1/J (2) * _----:---,-----..:.1/J~( 3..!...) ___ -;-:-
1/J(1) + 1/;(2) + 1/J(3) 0.1061/J(1) + 0.751/J(2) + 0.9971/J(3) 0.0031/J(1) + 0.251/J(2) + 0.8941/J(3) 

(5.17) 

This is more formally expressed (where D is the set of deaths and f!. being a p 

vector of covariates): 

L = II exp IF *-j 

JED 2:f:l Cij exp(f!.T *-i) 
(5.18) 

The corresponding log-likelihood is as follows: 
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log L = L [~T ~j - log t Cij exp(~T ~i)l 
JED i=l 

(5.19) 

and the score equations are: 

(5.20) 

with the p * p information matrix having components on the diagonal: 

for k = 1 ... p. The components of I Nkm for k, m = 1 ... p, k =F mare 

Hence we can proceed to estimate ~ via a Newton-Raphson iterative process. 

Appendix C.1 gives an alternative notation for the usual Cox likelihood due to 

Nakamura and shows the new likelihood in this notation. Appendix E.7 gives 

a set of programs based on this notation for S-plus that can fit this likelihood 

in the at present rather restrictive circumstances of one covariate. Additional 

programming in order to extend the programs for several covariates is not 

intended in the course of this thesis. Reasons for this are that the computation 

of the P matrix for large datasets is extremely expensive and hence only small 

datasets (and in turn a small number of covariates) are considered . 
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5.4.11 The Likelihood When No Error is Present 

If no error is present then the approximate likelihood is identical to the Cox 

likelihood. This is due to the fact that all elements of Pij are either 1 or 0 -

ie each time is either greater or less than all other times. Hence the commset 

for each time is always empty and Cij reduces to a matrix showing the 'at risk' 

status of each observation. 

If data display ties only and no additional error then there is no need to 

approximate the elements of Cij and Pij is redundant. In this situation the use 

of the exact C matrix results in the Efron approximation for ties (see sections 

5.2.1 and 5.4.2). 

5.4.12 Errors-in-Variables 

Approximation 

and the Likelihood 

The errors-in-variables model does not allow us to specify tis without specifying 

the distribution of true, and hence no longer allows a semi-parametric Cox model. 

By conditioning on the observed data for this case the distribution of tis is likely 

to be dependent on the parameters of the distribution of t and hence on (1: We 

thus need simple approximations to tis in order to proceed without violating 

the semi-parametric nature of the model and introducing dependency on our 

unknown parameters of {3. 
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Normal errors 

If the underlying true data were normal (which in survival datasets they clearly 

are not), and the error distribution were normal the distribution of tis is also 

normal (see section 4.2.1): 

2 

tis'" N(>.s + (1 - >')J1.(t), >.a[error)) where>. = 2 aCt) 2 
a(error) + aCt) 

(5.23) 

Note for survival data even with large error a~t) ~ a~error) and >. ~ 1 and hence 

a 95% confidence interval for tis is approximately: 

(s - 1.96 * a(error), s + 1.96 * a(error)) (5.24) 

Thus we could approximate the distribution for the calculation of the matrices 

Pij and Cij by merely using a validation subsample to estimate the standard 

deviation a(error) of the measurement error: 

(5.25) 

Uniform errors 

For the U(O,b) errors case with an exponential baseline the distribution of tis 

can easily be derived using the identity ftls = tr. where ft,s and fs are given in 

section 5.2.3. This is defined as: 

ftls = [7 exp( -7)1/[1 - exp( -7S)] for 0 < s < b,O < t < s 
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itls = [7 exp( -7t)]/[exp( -7(S - b)) - exp( -7S)] for s > b,s - b < t < s 

This is roughly flat across the interval [max{O, s-b), s]. Hence if we can estimate 

b we will have a good approximation for the distribution of tis. If we estimate 

the mean J1.(error) = ~ and the variance of the error from validation data we have 

an estimate of u(error) = b2 /12 and this gives: 

p.d.f truelobs true:exp(O.16), error:U(O,6.928), observed = 3 
~r------------------------------------------' 
ci 
'It 

~ci 
B~ 
o 0 
GiN 
§.ci - .... 

ci 
\ -- actual \ --- approx 

o 
ciL-----------------------------------------~ 

0.0 0.5 1.0 1.5 
true 

2.0 2.5 3.0 

p.d.f truelobs true:exp(O.16), error:U(O,6.928), observed = 1 ~ 
~~----------------------------------------~ 
ci 
'It 

~ci 
B~ o 0 
GiN 
§.ci - .... 

ci 
o 

1- actual \ - - - approx 

~~-- -~-- -=-=-----.....:--=-=..::-- -:.=..::.;-- -:..:..::..-:..:.:-- -~-- -=-- -:..=-- -=-::..=.--=---=---

ciL-----------------------------____________ ~ 
6 8 10 12 

true 

Figure 5.7: Actual and approximate distribution of truel observed survival for 
exponential data with uniform errors 

An example is given in figure 5.7. In order to calculate the P matrix we thus 

need the density function of the subtraction of two uniform variables. 
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5.4.13 Probability Density Function of U(a,b) - U(c,d) 

We have X ""' U(a, b) and Y ""' U(c, d). Let W = X - Y . This is an extension 

of the common undergraduate problem of determining the sum of two U(O, 1) 

random variables, see for examples Rice (1988) p.100. Via the convolution 

integral we obtain: 

w-(a-d) 
(b-a)(d-c) (a - d) ~ w ~ min(b - d, a - c) 

fw(w)= min(b~a'd~J min(b-d,a-c)<w<max(b-d,a-c) (5.27) 

(b-c)-w 
(b-a)(d-c) max(b - d,a - c) ~ w ~ b - c 

Example: W = U(8, 14) - U(2, 5) 

1 
6 

fw(w) 

fw(w) = 

w-3 3 ~ w ~ 6 18 

1 6 < w <9 6 
12-w 9 ~ w ~ 12 18 

(5.28) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure 5.8: W = U(8, 14) - U(2, 5) 

A plot of the p.d.f. is given in figure 5.8 
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Probability U(a, b) > U(c, d) 

We wish to calculate the P matrix for the data we are approximating by the 

uniform distribution. Hence we wish to find the probability that a U(a, b) 

variable is greater than a U(c, d) variable. This is equivalent to calculating the 

probability that W = U(a, b) - U(c, d) > O. We can do this via the distribution 

function for the variable W defined in the previous subsection. 

We wish to calculate the distribution function Fw(w) P(W < w). For 

. l"t 1 < 1 slmp ICI y we now assume b-a d-c' 

Fw(w) = 

Fw(w) = 

rw a-(a-d) d 
J(a-d) (b-a)(d-c) S 

r(a-c) a-(a-d) d rw 1 d 
J(a-d) (b-a)(d-c) S + J(a-c) (b-a) S 

r(a-c) a-(a-d) d reb-d) 1 d rw (b-c)-a d 
J(a-d) (b-a)(d-c) S + J(a-c) (b-a) S + J(b-d) ((b-a)(d-c) S 

(a - d) ~ w ~ (a - c) 

(a - c) < w < (b - d) 

(b - d) ~ w ~ (b - c) 

1 [W2 ( d) (a-d)2] 
(b-a)(d-c) ""2 - w a - + 2 

2w-2(a-c)+(d-c) 
2(b-a) 

w 2 Ib_d\2 
2(b-a)+(c-d) + [(b-c)w-T-(b-c)(b-d)+9-1 

2(b-a) (b-a)(d-c) 

(5.29) 

(a - d) ~ w S (a - c) 

(a - c) < w < (b - d) 

(b - d) S w S (b - c) 
(5.30) 

Hence the probability W > 0 is given by 1 - Fw(O): 

Fw(O) = 

(a-d)2 
2(b-a)(d-c) 

(d-c)-2(a-c) 
2(b-a) 

2{b-a)+{c-d) + 2ac+2bd-2ad-{b2 +c2 ) 

2{b-a) 2(b-a)(d-c) 

(a - d) S 0 S (a - c) 

(a - c) < 0 < (b - d) 

(b - d) ~ 0 ~ (b - c) 

(5.31) 
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Note if d~c < b~a then the probability we require is Fw(O) as defined above. 

5.5 Estimation of the Baseline Hazard 

The likelihood we have derived is of the same form as that of Efron, in that 

the contribution to the risk set at each death time is weighted between 0 and l. 

Unfortunately we do not know the true death times but in the spirit of regression 

calibration we can estimate these by taking the mean of our (approximate) 

distribution of tilsi, which is of the form U(ai' bi ) . We thus have: 

(5.32) 

Recall the estimate for the baseline hazard used in conjunction with Efron's 

likelihood is: 

When f!.. = 0 the sum of these estimates is identical to the Nelson estimate of the 

cumulative hazard modified for ties. Using the expected death time E(t(j)ls(j)) 

we have an estimate of the baseline hazard: 

k=no. of previous failures + l+mj 

'\o(E(t(j)ls(j))) ~ L 
k=no. of previous failures + 1 

1 

{~i=l Cik exp(f!..T Xi)} 

(5.34) 
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5.5.1 The Case of No Covariates 

We would also wish to have an estimate of the survivor and hazard functions 

for the case of no covariates, i.e. an equivalent of the non-parametric estimate. 

If we substitute {i = Q in the above estimate we then have 

k=no. of previous failures + l+m; 
~(E(t(j)ls(j))) ~ L 1 

(5.35) 
k=no. of previous failures + 1 

The sum of each contribution provides us with an estimate of the cumulative 

hazard and hence an estimate of the survivor function. 

5.6 Relationship with Interval Censoring 

The employment of the uniform approximation for the distribution of tis is 

in effect creating interval censored data i.e. an interval in which exact failure 

is unknown but assumed equally likely to occur. Methods exist for interval 

censoring (see Collett ch.8) but these assume grouping of data. In other words 

throughout the period of study all individuals are followed up at given times e.g. 

3 months, 6 months, 12 months and if failure/censoring has occurred between 

the previous visit and the current visit the event is interval censored. In fact 

grouping of data is in effect creating Berkson rounding error. 

The approximate likelihood suggested in this thesis provides a method for 

dealing with interval censoring when the intervals can crossover e.g. patient 

1 (0,10) and patient 2 (5,15). In other words interval censoring can be included 
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via a Berkson rounding measurement model for which each rounding interval is 

potentially unique. 

5.7 Verification of the Correction using the 

Simulated Data 

In order to verify the correction procedure the correction was tested against 

the observed data for each experiment in section 5.3 where n = 50,100,200. 

Although in principle it is possible to test the correction for datasets of size 500 

and 1,000 computer memory consideration and speed of calculation make this 

impossible at present. As the simulated datasets do not show a large bias in the 

observed data measurement model the true data with median 3 were also tested 

with error standard deviations of 4,6 . ~nd 8. 'I.'he c?mputer code required to 

calculate the P matrix is given in appendix E.l. Code to calculate the uniform 

probabilities is in appendix E.3. A routine for implementation of the C matrix 

algorithm is in appendix E.4. A parent function to implement the correction via 

one command is in E.6. 

Fully tabulated results are given in appendix D, tables D.l, D.2 and D.3. Notice 

there is a column headed "na" in each table. This represents the number of cases 

where at least one column of the C matrix has consisted entirely of D's. In other 

words at a given death time the calculation has returned zero risk. This is 

due to the approximate nature of the calculation and rounding employed in 

the computer code. Although these cases were removed from the re-analysis in 

reality it would be simple to ensure no column of the C matrix had only zero 
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elements. One suggestion is to include each failure time with weight one in the 

risk set corresponding to it. 

Where the initial bias was negligible (median survival 3 with error standard 

deviations io and ~, median survival 12 or 30 with all errors) the approximate 

corrected likelihood did not incur extra bias in most cases. Where it did the 

extra mean bias is not of concern. The variance of bias is universally improved. 

This guards against the tails of the distribution of bias. There are no missing 

values for any of these cases: 

Where the mean bias in the naive fits was considerable (median survival 3 with 

error standard deviations 1,2,4,8) the new fits showed a great improvement to 

the extent that the new mean {3 was only once over 1 decimal place away from 

the mean of the true fits (n=50, normal errors with error standard deviation 8). 

The levels of attenuation for naive and corrected fits are given in table 5.6. 

There is little evidence that the missing values represent the cases with most 

severe bias in the original fits - see table 5.7. Indeed the correction still holds well 

when there are few missing values and the original attenuation is considerable. 

Where correction for attenuation is considerable the variance of the new {3 is 

increased. This increase is starker for the case of normal errors than uniform 

errors. The extra variance is a feature of all measurement error corrections (see 

chapter 4). The extra variance in the new {3 is not fully reflected in the mean 

of the variance estimates obtained from the corrected likelihood - see table 5.8. 

Hence significance tests and confidence intervals are too conservative if the new 
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sim. 
char. 

n=50 

n=100 

n=200 

n=50 

n=100 

n=200 

sim. 
char. 
n=50 
n=100 
n=200 
n=50 
n=100 
n=200 

Table 5.6: Naive and corrected attenuation 

median 
surv. 

3 
12 
30 

3 
12 
30 

3 
12 
30 

3 
12 
30 

3 
12 
30 

3 
12 
30 

median 
surv. 

3 
3 
3 
3 
3 
3 

Error standard deviation 
error lit ! 1 
type Nai Cor Nai Cor Nai 

N 1.002 1.000 0.995 0.985 0.991 
N 1.000 1.000 1.003 0.996 1.000 
N 0.999 1.000 1.000 0.999 1.003 

N 1.000 1.000 1.008 0.994 0.987 
N 1.000 1.000 1.003 0.999 1.002 
N 1.000 1.000 1.001 1.000 1.002 

N 1.000 0.999 0.996 0.999 0.980 
N 1.000 1.000 0.998 0.999 0.999 
N 1.000 1.000 1.000 0.999 0.998 

U 1.000 0.999 0.999 0.995 0.990 
U 1.000 1.000 1.004 0.997 0.999 
U 1.000 1.000 0.999 0.998 0.998 

U 1.001 1.000 0.992 0.994 0.972 
U 1.000 1.000 0.999 0.999 0.999 
U 1.000 1.000 1.000 1.000 1.000 

U 1.000 1.000 0.990 0.996 0.973 
U 1.000 1.000 0.999 0.999 0.997 
U 1.000 1.000 1.000 1.000 0.999 

Error standard deviation 
error 4 6 
type Nai Cor Nai Cor Nai 

N 0.824 0.992 0.619 0.953 0.522 
N 0.798 0.984 0.654 0.948 0.541 
N 0.799 1.021 0.652 0.g.93 0.526 
U 0.802 0.984 0.681 0.952 0.581 
U 0.787 0.996 0.659 0.978 0.556 
U 0.775 0.969 0.649 0.953 0.550 

ke : sim char. - simulation characteristics y 
N: Normal errors, U: Uniform Errors 

Nai: Naive fit, Cor: Corrected fit 
mean(.Bnaive) = attenuationnaive *mean(.Bsim) 

mean(.Bcorr = attenuationcorr *mean(.Bsim) 

Cor 

0.985 
0.991 
0.997 

0.996 
0.997 
0.999 

1.003 
0.998 
0.999 

0.993 
0.995 
0.997 

0.990 
0.997 
0.999 

0.995 
0.997 
0.999 

8 
Cor 

0.846 
0.885 
0.924 
0.939 
0.945 
0.943 
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2 
Nai 

0.939 
0.995 
0.998 

0.948 
1.008 
1.000 

0.937 
0.996 
1.000 

0.935 
1.000 
1.002 

0.907 
0.992 
1.000 

0.914 
0.990 
0.998 

Note: All simulations: p = 1 (exponential), rr=2 (.Btrue = 0.693) 

Cor 

1.001 
0.985 
0.993 

1.002 
0.994 
0.998 

1.020 
0.999 
0.998 

0.989 
1.000 
0.997 

0.985 
0.994 
0.998 

0.991 
0.996 
0.998 
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Table 5.7: True and observed f3 where the corrected likelihood encountered zero 
risk 

n 
50 
50 
100 
100 
200 
200 
50 
50 
100 
100 
200 
200 

e.t. s.d. n.m. mean f3sim var f3sim mean f30bs var f30bs m.b.obs 

N 6 33 0.5266 0.1033 0.2549 0.1365 -0.2717 
U 6 24 0.6802 0.0784 0.4517 0.0844 -0.2285 
N 6 36 0.6838 0.0435 0.4189 0.0650 -0.2650 
U 6 26 0.6260 0.0484 0.3918 0.0409 -0.2342 
N 6 31 0.6565 0.0228 0.3829 0.0354 -0.2736 
U 6 18 0.7229 0.0207 0.4133 0.0189 -0.3096 
N 8 73 0.6788 0.1128 0.2900 0.1734 -0.3889 
U 8 57 0.6857 0.0784 0.3724 0.0818 -0.3134 
N 8 78 0.6917 0.0435 0.3717 0.0687 -0.3201 
U 8 70 0.6532 0.0484 0.3633 0.0384 -0.2900 
N 8 77 0.6718 0.0228 0.3331 0.0349 -0.3387 
U 8 65 0.6877 0.0207 0.3618 0.0186 -0.3258 

key: e.t. - error type (N normal, U umform) 
s.d. = error standard deviation, n.m. number missing (new fits) 

m.b. = mean bias, v.b. = variance of bias 

variance is employed in these cases. This will be discussed in chapter 7. 

v.b.obs 

0.1839 
0.0817 
0.0487 
0.0240 
0.0207 
0.0182 
0.1764 
0.0903 
0.0635 
0.0419 
0.0276 
0.0211 

A nice graphical representation of the error correction can be seen in figures 5.9, 

5.10, 5.11, 5.12, 5.13 and 5.14. These are plots of the quantiles of the true, naive 

and corrected fits against the quantiles of the standard normal distribution for 

the case of median survival 3 with error standard deviations 2,4,6 and 8. It is 

clear from these that the naive fits show considerable bias whereas the new fits 

have the approximately the same mean as the true fits. The increased gradient 

in the new fits show how the new f3 has increased variance. 
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Err 

Nl 
Ul 
N2 
U2 
N3 
U3 
N4 
U4 
N5 
U5 
N6 
U6 
N7 
U7 
N1 
U1 
N2 
U2 
N3 
U3 
N4 
U4 
N1 
Ul 
N2 
U2 
N3 
U3 
N4 
U4 

Table 5.8: Variance of new f3 and mean of the variance estimates 

ms 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
12 
12 
12 
12 
12 
12 
12 
12 
30 
30 
30 
30 
30 
30 
30 
30 

var f3new I mean(f.v.) var f3new I mean(f.v.) var f3new I mean (f. v.) 
n=50 n=100 n=200 

0.1050 0.0958 0.0435 0.0461 0.0241 
0.0782 0.0942 0.0584 0.0462 0.0223 
0.1020 0.0947 0.0437 0.0459 0.0243 
0.0813 0.0937 0.0593 0.0461 0.0222 
0.1045 0.0946 0.0457 0.0459 0.0253 
0.0868 0.0937 0.0621 0.0461 0.0226 
0.1165 0.0964 0.0523 0.0465 0.0297 
0.1021 0.0950 0.0685 0.0467 0.0237 
0.1401 0.1017 0.0687 0.0483 0.0397 
0.1178 0.0989 0.0659 0.0483 0.0257 
0.1411 0.1022 0.0846 0.0500 0.0491 
0.1215 0.1012 0.0719 0.0499 0.0289 
0.1698 0.1028 0.0995 0.0506 0.0447 
0.1153 0.1026 0.0740 0.0506 0.0354 
0.1055 0.0959 0.0435 0.0461 0.0241 
0.0784 0.0943 0.0585 0.0462 0.0223 
0.1034 0.0955 0.0435 0.0461 0.0240 
0.0784 0.0940 0.0584 0.0461 0.0222 
0.1028 0.0952 0.0434 0.0460 0.0240 
0.0796 0.0939 0.0585 0.0461 0.0221 
0.1020 0.0947 0.0437 0.0459 0.0243 
0.0813 0.0937 0.0593 0.0461 0.0222 
0.1057 0.0959 0.0435 0.0461 0.0241 
0.0784 0.0943 0.0585 0.0462 0.0223 
0.1047 0.0957 0.0435 0.0461 0.0240 
0.0781 0.0942 0.0584 0.0462 0.0223 
0.1037 0.0956 0.0436 0.0461 0.0240 
0.0783 0.0941 0.0584 0.0462 0.0222 
0.1030 0.0953 0.0434 0.0460 0.0240 
0.0792 0.0939 0.0584 0.0461 0.0221 

key: ms = medlan survlval (true data) 
mean(f.v.) = mean(fitted variance estimates) 

N1 : N(O, 3
1
0

2
),N2 : N(O, ~ 2), N3 : N(O, 12

), 

N4 : N(O, 22 ),N5 : N(O, 42 ),N6 : N(O, 62),N7 : N(O, 82) 

0.0266 
0.0228 
0.0226 
0.0227 
0.0227 
0.0228 
0.0230 
0.0230 
0.0239 
0.0233 
0.0246 
0.0241 
0.0245 
0.0248 
0.0226 
0.0228 
0.0226 
0.0227 
0.0226 
0.0227 
0.0226 
0.0227 
0.0226 
0.0228 
0.0226 
0.0228 
0.0226 
0.0227 
0.0226 
0.0227 

U1 : U(O, 0.115),U2 : U(O, 1.732);U3 : U(O, 3.464),U4 : U(O, 6.928), 
U5 : U(O, 13.856),U6 : U(O, 20.785),U7 : U(O, 27.713) 
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5.8 Summary 

In this chapter we have examined a previously unexplored statistical problem, 

namely general outcome error in the Cox model. The only work prior to this 

thesis was on rounding error, where tied data presented a complication to the 

partial likelihood. 

It was unclear how survival error would affect estimation Vla the partial 

likelihood, a procedure dependent on the order of the survival times and the 

risk set at each ordered time. Intuitive arguments suggested that the direction 

of bias would be towards the null hypothesis of no covariate effect, namely that 

the relative risk over time is reduced because of error. An experiment was 

undertaken to give us greater understanding of the bias. It was established that 

the size of bias is dependent on the shape of the baseline hazard, the relative 

risk and the percentiles of survival. If initial survival is poor a greater proportion 

of individuals fail where the effect of error is large, and hence bias is increased. 

Bias is also increased as the relative risk is increased, indeed the proportional 

hazards model is valid for the observed data if there is no covariate effect. The 

impact of the baseline hazard on bias questions the merits of deriving theoretical 

results on bias analogous to the work of Hughes (1993) for covariate error. As 

the baseline hazard clearly affects the nature of bias one would have to specify it 

in order to specify the level of attenuation and hence the semi-parametric nature 

of the Cox model is violated. The variance of bias depends on the size of the 

dataset. 

We presented a new method to incorporate outcome error into the partial 
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likelihood. This utilises simplifying assumptions in order to specify a weight 

representing the probability that a given survival time is in each risk set. When 

no error is present the likelihood is identical to the Cox likelihood, and for the 

case of rounding error exact weights are available and the likelihood is that of 

Efron. Theoretical results on the performance of the approximate likelihood were 

not attempted, but a justification was sought via simulation. The results were 

extremely encouraging. Where the observed Cox fits showed considerable bias 

the corrected fits were greatly improved. An advantage of the new procedure is 

its general nature - it is potentially applicable to any outcome error problem and 

does not require specification of the baseline hazard. The approximate likelihood 

thus offers the cancer registry a powerful tool. A prototype registry analysis is 

given in the next chapter. 

In short in this chapter we have investigated and made progress in a new field 

for statisticians. Where one fears survival data might contain outcome errors 

the new procedure offers an estimation method that incorporates measurement 

error. As this work is still in development, further work is required to correct the 

variance of the covariate effect and establish the effectiveness of the correction 

in a wider variety of situations including censoring. This will be discussed in 

chapter 7. 



Chapter 6 

Outcome Error Analysis of Lung 

Cancer Data 

6.1 Accuracy of Cancer Registry Data 

If the registry had a complete and accurate data set, it would be possible 

to perform full survival analyses and fit mathematical models to each cancer 

in terms of risk factors such as social class, lifestyle, occupation and district. 

However, as the registry has a wide range of sources of data and collects a large 

number of data items errors are inevitable, and if the cancer registry has no 

confidence in the data it holds it would be of little value. This chapter examines 

how errors occur, the scope of those errors and the possible implications of them. 

For the problem of measuring date of diagnosis briefly discussed in chapter 2 

we examine more closely where error might be corning from and how survival 

might be affected, and then employ the new method introduced in the previous 

chapter to correct for measurement error. 

129 
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6.1.1 Sources of Error and Quality Control 

Genuine errors in the data held by the registry can have a number of origins. 

Perhaps the most straightforward type of error is that in simple recording, 

"keying-in" errors by the registry staff, and missing data. Some of these may 

become apparent through computer checks. For instance, if a person's date 

of death is prior to their date of birth, an error has clearly occurred. Other 

more subtle errors can occur if a secondary tumour or recurrence of tumour are 

recorded as a separate case on the registry database. 

Skeet (1991) and Brewster (1995) have both studied the question of assessing 

data quality and provide guidelines in ensuring an acceptable level of quality. 

Brewster suggests the two important criteria in assessing data quality are 

completeness of case ascertainment and accuracy of detail and points to the 

following as useful indicators : 

• Proportion of histologically diagnosed patients. 

• Proportion of Death Certificate Only (DCO) cases where the death certificate 

is the initial and only point of contact with the registry 

• Ratio of mortality/incidence. This can be critically assessed from knowledge 

of the cancer concerned. 

Skeet makes a number of useful observations in ensuring the level of data quality 

remains acceptable. A focus should be made on ensuring consistency in essential 

data items such as sex whilst others such as marital status can be regarded as 

less important. It is argued computer systems should be designed to validate 

these in particular. Skeet argues that" blind re-abstractions" should periodically 
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be carried out to test the quality of the data. A re-abstraction of data is where 

the original sources of data are sought again in order to check these against what 

the registry has recorded. A number of such studies are now examined. 

6.2 Studies • In the Accuracy of Cancer 

Registration Data 

A brief overview of five studies where re - abstraction of cancer registry data 

was carried out is given below. This gives us a handle on the proportion and 

extent of errors one can expect when presented with a cancer registry dataset. 

Three of the studies are from Scotland. Lapham and Waugh (1992) examine 

the accuracy of tumour pathology registration by comparing with pathology and 

hospital notes for ~ 10% of all 1988 cases at the Tayside cancer registry. Of the 

200 cases, 197 were traced. Brewster, Crichton and Muir (1994) reabstracted 

2,200 cases from the whole of Scotland (6.9 % of all 1990 cases) and traced 

records for 92 % (2021 cases). A further paper by the same authors (Brewster et 

at., 1995) is a more detailed examination of the 340 lung cancer cases of the 1990 

study data, of which 309 were traced. West (1976) examines a 1 in 5 sample of 

cases from the South Wales Cancer Registry. Of the 1,800 cases records were 

found for 1,460 (81 %). Finally we examine a site specific study of bladder 

cancer in the Thames region (Gulliford et at., 1993). The study population was 

all men aged less than 75 and 466 of the 609 cases were traced. Table 6.1 gives 

a brief overview of the results of these studies. The overall conclusions of the 

studies were that the quality of cancer registration data is good, but that there 

is room for improvement. 
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Table 6.1: Results of re-abstraction studies of cancer registry data 

no. in error (% of total traced) 
study 

Lapham & Waugh 
Brewster et al (full) 
Brewster et al (lung) 

West 
Gulliford et al 

c.t. site d.o.b. d.o.d. 
197 8 (4) - -
2021 109 (5) 27 (1) -
309 13 (4) 4 (1) -
1460 93 (6) 164 (11) 
466 - 32 (6.2) 16 (7 *2) 

c.t. = number of cases traced 
d.o.b. = date of birth 
d.o.d. = date of death 

Ann. date 
-

243u (12) 
34*1 (10) 
198 (13.6) 

83 (16) 

Ann. date = Anniversary date (date first treated) 

yr diag 
-

131 (5) 
18 (6) 
112 (8) 
24 (5) 

*1 classed as matched if dates lie within six weeks *2 the total dead was 218 

6.2.1 Accuracy of Lung Cancer Data 

One important message of the study of Brewster et al is that although 

identification of site (ICD-9 3 digit code) was extremely good and hence 

incidence figures display a high degree of accuracy, the recording of the fourth 

digit i.e. specific subsite was poor and for the lung cancer data was inaccurate in 

56.5 % of cases (in particular unspecified cases were assigned a specific subsite). 

This however will not affect our analysis as we are concerned only with leD 

162 cases (i.e. primary lung cancer) and not specific subsites. Morphology also 

had a high discrepancy rate with 47.2 % of cases given a new morphology on 

abstraction. 

sex 
-

8 (1) 
3(1) 
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In terms of our analysis, recording of date of birth and sex were sufficiently 

accurate to allow us the assumption of no measurement error. However the 

recording of .date treatment commenced (anniversary date) was only 90 % 

accurate up to six weeks, and 6 % of cases were allocated to the wrong year. 

This is the recorded value of date of diagnosis. Post validation survival estimates 

were not however significantly different. 

In fact there is even greater issue regarding the calculation of survival. As 

Brewster et al state in their 1994 paper: 

"We believe the term 'date treatment commenced' is misleading and should be 

abandoned in favour of 'date of diagnosis' (which is theoretically applicable to 

all patients)" 

The rules for calculating date treatment commenced were as follows (see 

Appendix of 1994 paper): 

• For patients who have received in patient care - insert date of first admission 

for investigation or treatment. 

• For patients who have received out-patient care only, i.e. with no record of 

in-patient care for this cancer - insert date of first out-patient consultation 

• For patients who have received domiciliary care only (i.e. with no record of 

hospital care (out-patient or in-patient) for this cancer) - insert date of diagnosis 

(or estimated date). 

One suggestion is to use the rules regarding recording of 'incidence date' as 
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outlined by Maclennon (1991) which are, in order of priority: 

• date of first consultation at, or admission to, a hospital, clinic or institution 

for the cancer in question; 

• date of first diagnosis of the cancer by a physician or the date of the first 

pathology report - a population-based registry should seek this information only 

when necessary for recording the incidence date; 

• date of death (year only), when the cancer is first ascertained from the death 

certificate and follow-back attempts have been unsuccessful; or 

• date of death preceding an autopsy, when this is the time at which the cancer 

is first found and was unsuspected clinically (without even a vague statement, 

such as 'tumour suspected', 'malignancy suspected') 

For MCCR the rules governing recording date of diagnosis changed for 1993. 

Previous to this year the date of diagnosis was recorded as anniversary date, 

leading to the problems outlined above. The 1993 definition of date of diagnosis 

is as follows: 

• The date of diagnosis is derived from pathology reports (i.e. date of first 

report) 

• For cases without histological confirmation, this becomes the date of first 

attendance or hospital admission during which the diagnosis was made. 

• If no hospital attendance, date of diagnosis by GP etc. 

• If no other information is available the date of death is used. (i.e. the death 

certificate provides the only information on diagnosis) 
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Although this differs with the Maclennon definition of 'incidence date', it ties 

in with his definition of 'most valid basis of diagnosis' - i.e. that the "minimum 

requirement of a cancer registry is differentiation between neoplasms that are 

verified microscopically and those that are not". If one is to use this, then the 

date of diagnosis should be defined by the date of microscopic examination for 

cases where this is available. In other words, date of first pathology report 

represents a gold standard for date of diagnosis of cancer. 

Recording of diagnosis thus presents a particular problem for survival analysis -

cases that do not have microscopic confirmation may have an artificially longer 

survival time, and cases that were diagnosed by their GP alone have even more 

potential for increased observed survival. This phenomenon can be termed 

"window of diagnosis" and is illustrated in figure 6.1. 

We wish to analyse survival on a "level playing field" for each case of diagnosis 

and thus employ a measurement model estimated from internal validation data 

in order to do this. 

6.2.2 Using Internal Validation Data to Estimate the 

Measurement Model 

We now perform a measurement error analysis on a subset of the cases for 1993. 

The reason for choosing the 1993 data was that this is the only year of the 

full dataset for which the above date of diagnosis applies. We take a random 

sample of 500 cases from the 1,655 occuring in 1993 in order to estimate the 
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Figure 6.1: Defining date of diagnosis - potential for artificially lengthening 
survival 

measurement error model and perform a corrected analysis. The sample was 

taken due to memory considerations on S-plus. When calculating large matrices 

the system can run out of memory and work is lost. 

In order to define the true validation data we first need to identify cases who 

have had a microscopic diagnosis. These are defined by the proof variable. If 
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proof = 1,2 histology was confirmed and if proof=3 the patient gave a specimen 

for cytology. A clinical diagnosis is defined as proof=8. Values of 4-7 represent 

haematological and imaging techniques whilst 9 implies the type of proof is not 

known. The proof for the sample of 500 cases is given in table 6.2. 

proof 1 2 3 4 5 6 7 8 9 total 
frequency 241 62 40 0 0 13 15 127 2 500 

Table 6.2: Variable proof for the sample of 500 patients 

For the 343 cases with a microscopic confirmation a summary of date first seen 

at hospital and date of GP referral is given in table 6.3. For a valid measurement 

model it is imperative to assume that the date of diagnosis is indeed the date of 

first pathology report. We therefore discard cases where this date is the same 

as that of date first seen. We will assume for these cases that the date of first 

report was unretrievable and hence date first seen at hospital was recorded. 

These now enter our non-validation group. For validation cases that have a 

date of diagnosis but date first seen at hospital is missing we assume that 

the date of diagnosis is valid but contribution to defining the measurement 

model is impossible. Therefore there are 104 cases that can be used to define 

a measurement model for non-validation cases. Of these 28 patients have three 

individual ordered dates - these can be used to specify the measurement model 

when the observed date of diagnosis is that of date seen GP alone. 

For the 157 cases with a non-microscopic confirmation a summary of date first 
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Table 6.3: Date information for patients with microscopic verification 

d. d = d. 1 
n 216 

d. d > d. 1 d. 1 missing d.d > d. 1 > d. GP 
104 23 

d. d = date of diagnosIs 
d. 1 = date 1st seen at hospital 

d. GP = date of GP referral 

28 

138 

seen at hospital and date of GP referral is given in table 6.4. For cases where 

the date of diagnosis is after date first seen at hospital we will assume this is 

the recorded date of a subsequent hospital visit when a macroscopic diagnosis 

was made. For the 16 cases where all three dates are equal we must model the 

date of diagnosis assuming the patient was never referred to a hospital. 

Table 6.4: Date information for patients with non-microscopic verification 

d. d = d. 1 
n 133 

d. d > d. 1 d. 1 missing d.d = d. 1 = d. GP 
24 0 

d. d = date of dIagnosIs 
d. 1 = date 1st seen at hospital 

d. GP = date of GP referral 

16 

For the 104 cases in the validation group, a histogram of the time from date first 

seen at a hospital to date of diagnosis is given in figure 6.2. For the 28 cases 

used to validate time from GP referral to diagnosis, the histogram is given in 

figure 6.3. A table of the percentiles of the distribution of times is given in table 

6.5. For simplification we assume a uniform distribution with lower limit set at 

the 85 percentile for each case -this is equivalent to saying diagnosis is equally 

likely to occur at any time across the range of the distribution. There is little 

support for this from the histograms, but calculations for uniform distributions 
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were derived in the previous chapter and using a flat distribution for true times 

given observed times proved effective for normal errors despite the bell shape of 

the normal distribution. Each case, regardless of validation status is rounded to 

the nearest day, hence a Berkson rounding error model is also placed on each 

time. 

N 
~ 

o 
~ 
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Figure 6.2: Time from hospital visit to diagnosis for validation group (full 104 
cases) 

percentile 15 35 50 75 85 100 
first seen at hospital 3 8 14 29 52 218 

gp referral 9 21 24 51 64 166 

Table 6.5: Percentiles of date first seen at hospital and date of GP referral to 
date of diagnosis 



Ch.6 Outcome Error Analysis of Lung Cancer Data 

o 

o 

Histogramldavs. < 1
1
pm of time {rom date 

ot GP retera fo dIagnosIs 

111111 1 
i i i 

40 60 80 
days 

140 

i 

100 

Figure 6.3: Time from GP referral to diagnosis for validation group (28 
validation cases with full information) 

In order to calculate the P matrix for the 500 cases, a validation status variable 

must be allocated to the survival times. This has values 0,1,2 depending on 

the measurement model applicable to each individual. A flow diagram showing 

how this variable was allocated is given in figure 6.4. The measurement model 

associated with each level of that status is: 

status 0: (true survival ti\observed time Si) I"'V U(Si, Si + 1) 

status 1: (true survival ti\observed time Si) I"'V U(max(O,si - 52),Si + 1) 

status 2: (true survival ti\observed time Si) I"'V U(max(O, Si - 64), Si + 1) 

In total 127 cases had validation status 0, 357 status 1 and 16 status 2. 
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Figure 6.4: Defining a validation status variable for each patient 

500 cases 

7\ 
d.d>d.1 d.d=d.1 d.d=d.1=d.GP d.d>=d.1 

d.GP=NA 

d.d>d.1 >=d.GP 

d.1=NA 

status 0 status 1 status 2 status 1 

d. d = date of diagnosis 
d. 1 = date 1st seen at hospital 

d. GP = date of GP referral 

status 1 

d.d=d.1 >d.GP 

status 1 

6.3 Naive and Corrected Fits for the Sample of 

500 1993 Cases 

6.3.1 Calculation of the P and C Matrices for the Sample 

Of the sample of 500 patients, 51 were censored (see table 6.6). Hence the 

P matrix and C matrix have dimensions 500 * 449 as there are only 449 risk 
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sets contributing to the new likelihood. Appendix E.2 gives the code for the P 

calculation and appendix E.4 the C calculation. Censored times were assumed 

to be greater than all times in their commset. Calculation of the P matrix took 

about 3hrs but the time required to calculate the C matrix was negligible. 

Table 6.6: Censoring for the 1993 sample of 500 patients 

frequency percent cumulative frequency 
Censored 51 10.2 51 

Dead 449 89.8 500 

6.3.2 Naive and Corrected Fits for the Sample 

Naive and corrected Cox fits were applied to the sample for covariates age, factor 

age (created around the median of age which was 68.90 yrs) and factor sex. The 

assumptions for the naive analysis are as follows: 

• All cases are genuine 1993 cases. 

• All death times are recorded correctly. 

• All classification of death is correct. 

• All dates of diagnosis are recorded correctly. 

• All dates of birth are recorded correctly. 

• All recordings of sex and age are correct. 

The assumptions for the corrected analysis include the measurement model for 

error: 
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Estimated Survivor curves for age (two groups) 
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Figure 6.5: Naive survivor function (using modified Nelson cum. hazard 
estimate) and corrected survivor function estimates for factor age 

• All cases are genuine 1993 cases. 

• All death times are recorded correctly. 

• All classification of death is correct. 

• Dates of diagnosis are subject to error according to validation status 0,1,2. 

• All dates of birth are recorded correctly. 

• All recordings of sex are correct and the assigned measurement model will not 

unduly affect recording of age or classification of factor age. 

The corrected survivor function estimates for factor age using the method 

outlined in section 5.5 are shown in figure 6.5 along with the naive estimate 

calculated using the modified Nelson cumulative hazard estimate for tied data 

closely allied to the correction routine. Code for fitting these is in appendix E.8. 

The survivor curves calculated using the measurement model and C matrix 
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slightly worsen the estimated survival at a given time - the estimated median 

survival is in table 6.7. 

covariable naive median survival (days) corrected median survival (days) 
age < 68.90 156 133 

> 68.90 120 95 

Table 6.7: Predicted median survival estimates for binary factor age 

For the Cox modelling each covariate was fitted individually for the correction 

method due to the restrictions of the new Newton-Raphson routine. Table 6.8 

gives the results of the naive and corrected fits (the corrected p-values were 

calculated using the Wald test). The coefficients of age or factor age were 

virtually the same in the presence of sex, as was sex in the presence of age 

or factor age implying that the restriction to one covariate in the corrected 

fits does not invalidate any conclusions. - Compared to the analysis of the full 

dataset the effects of age and factor age are reduced in both the naive and 

corrected estimates, and the effect of sex is reversed but is now not significant 

as one would expect with a smaller dataset. The correction is small, which is in 

line with our knowledge gained from the simulation studies - the measurement 

model does not suggest a huge level of error as the error standard deviation for 

validation variable status 2 is about t of the median survival for the whole group 

(~ 19 compared to a median survival of 139). 

Figure 6.6 shows the estimated survivor curve for factor age for the naive and 

corrected fits and table 6.9 shows the estimated median survival for each factor 

of age. 
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Table 6.8: Fits to 1993 sample - covariate age,factor sex 

fit type model eqn coeff age (s.e.) p coeff sex (s.e.) p 
Cox naive age + sex 0.0183 (0.00482) 0.00014 0.0249 (0.0993) 0.800 
Cox naive age 0.0184 (0.00482) 0.00014 -
corrected age 0.0187 (0.00482) 0.00010 
Cox naive agefac + sex 0.189 (0.0945) 0.046 0.038 (0.0993) 0.700 
Cox naive agefac 0.188 (0.0945) 0.047 -
corrected agefac 0.196 (0.0945) 0.038 -
Cox naive sex - 0.0349 (0.0993) 0.725 
corrected sex - 0.0341 (0.0993) 0.731 

Cox fit and new fit for binary covariate age 
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Figure 6.6: Naive Cox and corrected Cox survival estimates for factor age 

covariable naive median survival (days) corrected median survival (days) 
age < 68.90 155 131 

> 68.90 121 101 

Table 6.9: Predicted median survival estimates for binary covariate age - naive 
and corrected cox analysis 



Ch.6 Outcome Error Analysis of Lung Cancer Data 146 

6.4 Summary 

In this chapter we have re-analysed a sample of the 1993 data employing a 

measurement model to compensate for the "window of diagnosis". This analysis 

is not intended to be a full outcome measurement error analysis for the lung 

cancer data but illustrates how the new method introduced in chapter 5 can 

be used by the cancer registry. In order to correctly define the measurement 

model the minimum requirement would be to examine the paper records in the 

registry. A full re-abstraction of case notes would be ideal. The inclusion of 

all cases will become possible when calculation of the P matrix in S-plus is less 

memory intensive. 

The analysis does however suggest that measurement error will not unduly bias 

the estimates of covariate effect. Naive and corrected coefficients for age and sex 

were extremely similar. The measurement model employed did reduce predicted 

survival as the observed times are not unbiased estimates of the true times. The 

predicted median survival estimates for binary covariate age were reduced by 

about three weeks for each level. 



Chapter 7 

Further Work and Conclusions 

7.1 Summary of Thesis 

In this thesis we have motivated a particular outcome error problem in survival 

data, namely a "window of diagnosis" for recorded episodes of cancer in the 

system of cancer registration. The Cox model is the routinely employed method 

for the analysis of survival data with available covariates. Together with non­

parametric and fully parametric modelling, the Cox model was introduced 

in chapter 3. Procedures for estimation were reviewed. An analysis of the 

40,130 lung cancer cases with positive survival was also undertaken, with the 

assumption of no error. Age was identified as an important covariate, and 

survival improved over the twenty year period under study. Overall survival 

for lung cancer remains poor however, with the median survival for all cases 

being three months. 

Measurement error was introduced in chapter 4. The emphasis was on covariate 

error in regression models, a widely researched statistical topic. Many of the 

147 
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concepts introduced were vital to the new work in chapter 5. Work on the Cox 

model was extensively reviewed. 

Outcome error is a less well researched topic. We conducted an experiment to 

establish the nature of bias due to measurement error in the Cox model. It 

was demonstrated that despite an inherent robustness to measurement error, 

a correction procedure was desirable when potential bias is large. Due to the 

nature of the partial likelihood rounding error has been considered by authors. 

The Efron approximate likelihood for ties weights each tied time in each risk set 

according to the probability it is in the risk set. We extended this idea to more 

general measurement models, and using simplifying approximations suggested 

a new weighting of risk sets in the partial likelihood. This proved successful in 

bias correction for the particular experiments that were considered. 

Application of the new method was undertaken in chapter 6. Five hundred 1993 

cases were randomly sampled and internal validation was used to establish a 

measurement model for error. The effect on covariate estimates was marginal 

but as the measurement model was biased predicted survival was reduced. 

In this chapter we examine what further work is required. As outcome error 

in the Cox model is a previously unconsidered problem the development of the 

new methodology is still in an embryonic state, and further experiments with 

additional theoretical justification are required. We also conclude the work that 

has been done. 
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7.2 Further Statistical Work 

7.2.1 Effectiveness of the Approximate Partial 

Likelihood 

In chapter 5 a limited simulation study was undertaken to verify the correction 

procedure for a normal unbiased errors-in-variables model and a uniform biased 

errors-in-variables model of the same standard deviation. For each of these 

experiments, an exponential baseline was assumed and no censorship was 

present. Clearly more work is required on verifying the correction for a wider 

variety of situations. 

Little attention was paid to the effect of censoring on the estimate of the Cox 

model with outcome error. This is because the lung cancer data had few censored 

cases and these were in the extremes of the survival di~tribution. Hence censoring 

would have little effect on parameter estimation, other than to increase the 

proportion surviving at later death times. This led us to believe that censoring 

had a protective effect on bias in estimation, as is the case for covariate error. 

We did allude to the presence of censoring in calculating the P and C matrices, 

assuming if a censored time might be greater than a survival time then it is 

assumed to be so. However simulation studies for different types and proportions 

of censoring are desirable in the future, to understand the implications in both 

the naive and corrected likelihoods. 

We established that different shaped baseline hazards led to different levels of 

bias. In particular a Weibull shape parameter of p = 1.5 led to greater bias than 

p = 1 (exponential). Again simulations for the corrected likelihood are desirable 
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here. 

Extensions to multivariate problems are also important. The code given in the 

appendix needs modification in order to fit corrected Cox models with many 

covariates. Investigation is required into how the new likelihood corrects for 

bias when continuous covariates and confounding variables are present. 

The theoretical properties of the new likelihood have not been established. Q-Q 

plots given in chapter 5 show the new fits are approximately normally distributed 

with mean equal to the true Cox fits. Asymptotic expectation and results are 

however important. Due to the approximations involved it is unclear how such 

expectations could be established. For instance, the expectation of the P and 

C matrices as the number of failures tends to infinity. 

7.2.2 Variance of the New {3 

The simulation studies in chapter 5 showed that, particularly for the case of 

normal errors, that the estimated variance of the corrected (3 estimate was too 

small, and hence hypothesis tests are anti-conservative. Carroll, Ruppert and 

Stefanski (1995) outline a procedure to estimate corrected confidence intervals 

using the resampling pairs bootstrap. This involves sampling M pairs of outcome 

and covariate values with replacement from the original data and then estimating 

the corrected variance by: 

var({3) = 1 I: ({3(m) _ ~)2 
M -1 m=l 

(7.1) 
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It would appear this procedure is potentially applicable, though some caution is 

necessary as the resampled data would exhibit heavy ties. The main drawback 

of the procedure is the need to undertake M + 1 calculations of the C and P 

matrices (1 for the original fit, and M for the variance bootstrap). Work is 

required to test whether this would prove effective. At present one should guard 

against making conclusions on P-values calculated using the variance estimate. 

7.2.3 Relationship with Model Mis-specification 

Our example showed that fitting the Cox model to the observed data is 

equivalent to mis-specifying the proportional hazards assumption. Theoretical 

results could be obtained by examination of the likelihood under the observed 

data in order to gauge the asymptotic expectation of the bias. This is closely 

related to the work of Mr Paul Monaghan on the sister project to this. Omission 

of covariates (i.e. increased residual variance) or mis-specifying proportional 

hazards leads to bias in estimates via the partial likelihood. 

The work of Hughes reviewed in chapter 4 did exactly this for the problem 

of covariates following an errors-in-variables model. He demonstrated that 

expected levels of attenuation can approximately be obtained by specifying the 

error standard deviation and level of censoring alone. Hence a direct correction 

of the naive estimate is possible. Our work in chapter 5 showed that the degree 

of bias is clearly dependent on the baseline hazard, implying that theoretical 

bias results could not be obtained based on the measurement model, level of 

censoring and size of error. Therefore although examination of the observed 

likelihood under various baselines may prove interesting, it is unlikely to yield a 
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simple correction. 

This outlines an advantage of the procedure suggested in this thesis, namely 

that specification of the baseline hazard is not required, up to approximation of 

the distribution of truelobserved. 

7.2.4 Further Work in Cancer Epidemiology 

The re-analysis carried out in chapter 6 proved a useful exercise in demonstrating 

the potential of the new methodology for including outcome error in a Cox 

analysis of cancer registration data. The analysis employed was essentially a 

prototype and by no means optimal. 

Observed survival times that were zero or negative were not included, nor were 

Death Certificate Only cases (see chapters 2 and 6). It is perfectly feasible 

to include such cases in a corrected analysis if careful thought is given to the 

measurement model employed. 

The assumed "gold-standard" data is also questionable. In order to verify the 

assumed measurement model examination of within registry paper records or 

re-abstraction of case notes is required. It would also be desirable to examine 

the date of diagnosis for those cases with a microscopic verification but whose 

date of diagnosis was not assumed to be recorded (i.e. the observed diagnosis 

was equal to the observed date first seen). The measurement model employed in 

the chapter 6 analysis was the same as for cases with macroscopic verification, 

but this is unlikely to be the case. 
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There is also little reason that, when carefully considered, a re-analysis could 

not be applied to the whole dataset when calculation of the P matrix becomes 

computationally feasible. Recall that pre-1993 patients were assigned dates of 

diagnosis by anniversary date, or date first treated. One would have to closely 

examine records in order to establish measurement models for true date of 

diagnosis for those cases that received treatment, and those who did not. 

It is also necessary when assuming error in date of diagnosis that there is also 

error in age at diagnosis. For simplicity we made the assumption that error was 

sufficiently small in age as to ignore it. This is not unreasonable, particularly 

for the binary covariate age as the only concern are ages close to the boundary 

of the defined binary covariate. 

7.3 Conclusions 

7.3.1 Statistical Conclusions 

The Cox Proportional Hazards Model 

For continuous survival data, or discrete tied data under the assumption of 

rounding error the Cox proportional hazards model is by far the most commonly 

employed model to estimate the effects of prognostic factors on a survival 

outcome. This is estimated using partial likelihood, based on the factorisation 

of conditional survival probabilities. When the data exhibit ties, a variety of 

" exact" and approximate likelihoods are available. These were reviewed in 
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chapter 3. Many authors agree that the Efron approximation for ties is a simple 

and satisfactory procedure. 

Covariate Error and the Cox Proportional Hazards Model 

Since the first paper appeared on covariate error in the Cox model (Prentice, 

1982) there has been considerable further research. The nature of attenuation 

is well understood and correction for covariate error is now a well established 

statistical principle in Cox modelling. Use of the correction is however less 

common. All the methods examined in chapter 4 of this thesis assume a 

Gaussian error, however this need not always be the case - our employed model 

for diagnosis error would not result in Normal errors for recorded age. 

Attenuation due to Outcome Error in the Cox Model 

We have established by simulation that the Cox model is indeed fairly robust to 

outcome error. Attenuation is unaffected by the mean of the error distribution. 

When overall survival is poor and measurement error is ,large, expected bias in 

the observed covariate effect is considerable. The direction of bias is towards the 

null hypothesis of no covariate effect. The variance of the distribution of bias 

is affected by the size of the dataset, and as one ~ould expect small datasets 

demonstrate greater variance in the bias. Bias is increased when the size of the 

covariate effect is increased, and is affected by the shape of the baseline hazard. 
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Correction for Outcome Error 

Although extreme conditions are required for attenuation to be considerable 

when outcome error is present, it is possible to severely underestimate a covariate 

effect by fitting a naive Cox fit to the observed data. No methodology was 

available to apply a corrected fit for general outcome error problems in the Cox 

model prior to this thesis. By extending the idea of approximating the partial 

likelihood for rounding error we have presented a simple and easily applicable 

procedure for approximating to the true partial likelihood when a measurement 

model for outcome error is assumed. This proved effective in correcting for 

attenuation in a simulation study. The correction procedure is, if employed 

with care, potentially applicable to any type of error, and is also closely related 

to the problem of interval censoring. More work is however required to establish 

how well the correction works for a wider set of baseline hazards, censoring 

levels, types of censorship and multiple covariate problems. 

Joint Correction for Outcome and Covariate Error 

Although this has not been attempted in the thesis, there is no reason why the 

correction procedure could not be used in conjunction with covariate correction 

procedures. The usual assumption however for regression calibration is that 

failure is rare. This implies that changes in risk sets over time are small and hence 

the distribution of the truelobserved covariate does not substantially change over 

the period under study. In this situation one would anticipate that the effect of 

outcome error is also small, as a small number of well spread failure times would 

result in most elements of the C matrix being either close to 1 or close to O. 
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7.3.2 Conclusions for Cancer Epidemiology 

It is reassuring to the cancer registry that the work in this thesis has shown only 

extreme measurement error in survival causes the epidemiologist concern when 

fitting the Cox model. Our main concern has been the "window of diagnosis" 

- the potential for lengthening of survival due to the point at which diagnosis 

is made for an individual cancer episode. It would seem from chapter 6 that 

concern over severe bias due to this is not great - however the selection and 

accuracy of validation cases is still in question. A fully desirable analysis would 

at least require examination of paper records in the registry and ideally a re­

abstraction of case notes. Generally however there would only be a problem for 

an extremely lethal cancer with very poor recording of dates. 

However this is not the only type of data imperfection one encounters when 

analysing a cancer registry dataset. Our analysis in chapter 6 was largely to 

illustrate the potential use of the developed methodology by cancer registry 

researchers. 

There are a number of wider uses and issues that arise from this discussion. 

The main concern is to put all cases on a "level playing field" in order to 

properly estimate the effect of prognostic factors. Between registry comparisons 

of survival are also problematic as recording of dates and quality of data may 

vary considerably. In general more consistent definitions of dates with more 

careful application are required. Detection in certain regions may be superior 

but survival only appears superior due to this early detection. Likewise the 

introduction of screening may only artificially increase a patient's survival. 

Hence there are many possible applications of the new methodology to cancer 
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registration data. 

7.4 Overall Conclusion 

The examination of outcome error in survival data is a previously unconsidered 

problem. Hence the field covered in this thesis is , with the exception of 

rounding error, a novel one. We have proposed a correction for outcome error 

in estimation of non-parametric survivor curves and the semi-parametric Cox 

model that proves successful in correcting for bias. This has many potential 

applications, and is a useful new weapon in the armoury of the cancer registry. 

There is, however, need for additional work in order to gauge the effectiveness 

of the method in a wider variety of settings. 



Appendix A 

A.I Derivation of 

the Distribution of truelobserved for the 

Normal Errors-in-Variables Model 

Under the assumption that the observed variable z is related to the true variable 

x via the traditional errors-in-variables model where x is normally distributed 

we have: 

(A.1) 

Employing the identity fx,z = fxfzlx we can state the joint density of x, z: 

158 
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Then using f I - ~ x Z - f. 

W 
.. \ 0'2 d 2 ntmg 1\ = ~+ an 1 - A = ~ then: 

~ ~ ~+~ 

Jxlz 

Hence x\z '" N(AZ + (1 - A)p, Aa~). 



Appendix B 

B.l Full Results of Simulation Studies - Naive 

Fits to Ascertain Level of Bias 

We desire to determine the effect of outcome error on the naive fit of a 

Cox regression when outcome error is present. Recall a total of 8 different 

combinations of T (Weibull shape parameter) , n (size of total dataset) and 

exp(f3) were chosen. For each combination we then set the baseline hazard so 

the overall total median survival for both groups (i.e. the full n patients) was 

3,12, and 30 (months). Outcome errors arising from both the usual normal 

and a biased U(O, b) measurement model with standard deviations 310'~' 1 and 

2 months were considered. Hence a total number of 192 individual experiments 

were carried out. Each experiment samples 200 values from the distribution of 

the observed (3. A table for the level of attenuation for each case is given in 

chapter five (table 5.5). Detailed results for each experiment are now given: 

160 
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Table B.l: Results for naive fits: exponential data: rr=2 : (n=50) 

n=50, f3true = 0.693 = log 2,seed=1 
normal errors: mean (f3sim) = 0.7221, var (f3sim) = 0.1063 
uniform errors: mean (f3sim) = 0.7020, var (f3sim) = 0.0784 

Error median surv mean (f3obs) var (f3obs) I mean (bias) I var (bias) 

N(O, (to):l) 3 0.7234 0.1053 0.0013 0.0004 
U(O, 0.115) 3 0.7021 0.0785 0.0001 0.0001 
N(O, U)~) 3 0.7186 0.1096 -0.0035 0.0073 
U(O, 1.732) 3 0.7015 0.0821 -0.0005 0.0037 

N(O, 1) 3 0.7157 0.1083 -0.0065 0.0175 
U(0,3.464) 3 0.6951 0.0850 -0.0069 0.0091 

N(O, 2~) 3 0.6781 0.1005 -0.0440 0.0381 
U(O, 6.928) 3 0.6567 0.0864 -0.0453 0.0235 

N(O, (fa?) 12 0.7223 0.1056 0.0002 0.0001 
U(0,0.115) 12 0.7022 0.0786 0.0002 0.0000 
N(O, (~):l) 12 0.7246 0.1038 0.0024 0.0016 
U(0,1.732) 12 0.7007 0.0782 -0.0013 0.0005 

N(O,l) 12 0.7224 0.1056 0.0003 0.0038 
U(0,3.464) 12 0.7048 0.0806 0.0028 0.0014 

N(0,2:l) 12 0.7186 0.1096 -0.0035 0.0073 
U(0,6.928) 12 0.7015 0.0821 -0.0005 0.0037 

N(O, (to?) 30 0.7216 0.1060 -0.0005 0.0000 
U(O, 0.115) 30 0.7020 0.0783 0.0000 0.0000 
N(0,(~)2) 30 0.7224 0.1051 0.0002 0.0005 
U(0,1.732) 30 0.7011 0.0784 -0.0009 0.0002 

N(O,l) 30 0.7245 0.1038 0.0023 0.0013 
U(O, 3.464) 30 0.7008 0.0782 -0.0012 0.0004 

N(0,2:l) 30 0.7209 0.1038 -0.0012 0.0028 
U(0,6.928) 30 0.7031 0.0788 0.0011 0.0010 
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Table B.2: Results for naive fits: exponential data: rr=2 : (n=100) 

n=lOO, !3true = 0.693 = log 2,seed=2 
normal errors: mean (!3sim) = 0.7072, var (!3Bim) = 0.0435 
uniform errors: mean (!3sim) = 0.7113, var (!3Bim) = 0.0585 

Error median surv mean (!30bB) var (!3obs) mean (bias) var (bias) 

N(O, (to)2) 3 0.7073 0.0444 0.0001 0.0002 
U(O, 0.115) 3 0.7117 0.0585 0.0005 0.0000 
N(O, U)2) 3 0.7126 0.0485 0.0054 0.0031 
U(O, 1.732) 3 0.7058 0.0587 -0.0054 0.0008 

N(O, 1) 3 0.6981 0.0494 -0.0091 0.0074 
U(0,3.464) 3 0.6911 0.0582 -0.0202 0.0028 

N(O, 22) 3 0.6705 0.0542 -0.0368 0.0149 
U(0,6.928) 3 0.6454 0.0565 -0.0658 0.0088 

N(O, (fa?) 12 .0.7070 0.0439 -0.0002 0.0001 
U(O, 0.115) 12 0.7114 0.0585 0.0001 0.0000 
N(O, (~)2) 12 0.7095 0.0449 0.0022 0.0007 
U(O, 1.732) 12 0.7108 0.0588 -0.0004 0.0001 

N(O, 1) 12 0.7083 0.0450 0.0011 0.0013 
U(O, 3.464) 12 0.7108 0.0590 -0.0005 0.0003 

N(0,2:l) 12 0.7126 0.0485 0.0054 0.0031 
U(O, 6.928) 12 0.7058 0.0587 -0.0054 0.0008 

N(O, (to?) 30 0.7073 0.0438 0.0001 0.0000 
U(O, 0.115) 30 0.7113 0.0588 0.0001 0.0000 
N(O,(~):l) 30 0.7082 0.0449 0.0010 0.0003 
U(O, 1.732) 30 0.7116 0.0583 0.0003 0.0000 

N(O, 1) 30 0.7087 0.0450 0.0015 0.0005 
U(0,3.464) 30 0.7114 0.0584 0.0001 0.0001 

N(0,2:l) 30 0.7022 0.0455 -0.0001 0.0012 
U(O, 6.928) 30 0.7110 0.0589 -0.0003 0.0002 
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Table B.3: Results for naive fits: exponential data: rr=2 : (n=200) 

n=200, !3true = 0.693 = log 2,seed=3 
normal errors: mean (!3sim) = 0.6888, var ({3sim ) = 0.0240 
uniform errors: mean (!3sim) = 0.7189, var ((Jsim) = 0.0222 

Error median surv mean (!3obs) var ((Jobs) mean (bias) var (bias) 

N(O, (~)2) 3 0.6890 0.0245 0.0002 0.0001 
U(0,0.115) 3 0.7189 0.0222 0.0000 0.0000 
N(O, U)~) 3 0.6860 0.0260 -0.0028 0.0014 
U(0,1.732) 3 0.7120 0.0218 -0.0069 0.0004 

N(O,l) 3 0.6747 0.0259 -0.0141 0.0025 
U(0,3.464) 3 0.6995 0.0215 -0.0194 0.0012 
N(0,2~) 3 0.6452 0.0271 -0.0436 0.0066 

U(0,6.928) 3 0.6574 0.0202 -0.0615 0.0040 

N(O, (to?) 12 0.6886 0.0243 -0.0002 0.0000 
U(O, 0.115) 12 0.7189 0.0223 0.0000 0.0000 
N(O, U}~) 12 0.6873 0.0250 -0.0016 0.0003 
U(0,1.732) 12 0.7181 0.0221 -0.0009 0.0000 

N(O,l) 12 0.6884 0.0254 -0.0004 0.0006 
U(0,3.464} 12 0.7168 0.0220 -0.0022 0.0001 

N(0,22) 12 0.6860 0.0260 -0.0028 0.0014 
U(0,6.928) 12 0.7120 0.0218 -0.0069 0.0004 

N(O, hfi)~) 30 0.6888 0.0242 -0.0001 0.0000 
U(0,0.115) 30 0.7189 0.0223 0.0000 0.0000 
N(O, U)2) 30 0.6890 0.0249 0.0001 0.0001 
U(0,1.732) 30 0.7187 0.0223 -0.0002 0.0000 

N(O, 1) 30 0.6877 0.0250 -0.0012 0.0003 
U(O, 3.464) 30 0.7186 0.0222 -0.0004 0.0000 

N(0,22) 30 0.6887 0.0252 -0.0001 0.0006 
U(0,6.928) 30 0.7176 0.0220 -0.0014 0.0001 
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Table B.4: Results for naive fits: exponential data: rr=2 : (n=500) 

n=500, f3true = 0.693 = log 2,seed=4 
normal errors: mean (!3sim) = 0.6973, var (!3sim) = 0.0076 
uniform errors: mean (!3sim) = 0.6908, var (/3sim) = 0.0084 

Error I median surv mean (!3obs) var (!3obs) mean (bias) I var (bias) 

N(O, (to?) 3 0.6971 0.0076 -0.0002 0.0000 
U(O, 0.115) 3 0.6907 0.0084 -0.0001 0.0000 
N(O, a)<I) 3 0.6934 0.0076 -0.0039 0.0005 
U(O, 1.732) 3 0.6857 0.0086 -0.0051 0.0001 

N(O,I) 3 0.6826 0.0084 -0.0147 0.0010 

U(O, 3.464) 3 0.6735 0.0089 -0.0173 0.0005 
N(0,2<1) 3 0.6467 0.0088 -0.0506 0.0026 

U(O, 6.928) 3 0.6342 0.0092 -0.0566 0.0015 

N(O, (to?) 12 0.6977 0.0076 0.0004 0.0000 
U(O, 0.115) 12 0.6909 0.0084 0.0001 0.0000 
N(O,(~)<I) 12 0.6967 0.0075 -0.0006 0.0001 
U(O, 1.732) 12 0.6903 0.0084 -0.0005 0.0000 

N(O,I) 12 0.6953 0.0074 -0.0020 0.0002 
U(0,3.464) 12 0.6892 0.0085 -0.0016 0.0000 

N(0,2<1) 12 0.6934 0.0076 -0.0039 0.0005 
U(0,6.928) 12 0.6857 0.0086 -0.0051 0.0001 

N(O, (to)<I) 30 0.6975 0.0076 0.0001 0.0000 
U(0,0.115} 30 0.6908 0.0084 0.0000 0.0000 
N(O, 0)2) 30 0.6968 0.0076 -0.0005 0.0000 
U(0,1.732} 30 0.6906 0.0084 -0.0002 0.0000 

N(O,l) 30 0.6970 0.0076 -0.0003 0.0001 
U(O, 3.464) 30 0.6905 0.0084 -0.0003 0.0000 

N(0,2<1) 30 0.6958 0.0074 -0.0015 0.0002 
U(0,6.928) 30 0.6897 0.0084 -0.0011 0.0000 
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Table B.5: Results for naive fits: exponential data: rr=2 : (n=1000) 

n=1000, f3true = 0.693 = log 2,seed=5 
normal errors: mean (f3sim) = 0.6946, var ({3sim) = 0.0040 
uniform errors: mean ({3sim) = 0.7000, var ({3sim) = 0.0044 

Error I median surv mean ({3obs) var ({3obs) mean (bias) var (bias) 

N(O, (fn):l) 3 0.6945 0.0040 -0.0001 0.0000 
U(O, 0.115) 3 0.7000 0.0044 0.0000 0.0000 
N(O, U)2) 3 0.6928 0.0045 -0.0018 0.0003 
U(O, 1.732) 3 0.6961 0.0044 -0.0039 0.0001 

N(O, 1) 3 0.6844 0.0046 -0.0102 0.0007 
U(O, 3.464) 3 0.6843 0.0043 -0.0157 0.0002 

N(O, 22) 3 0.6521 0.0051 -0.0424 0.0015 
U(O, 6.928) 3 0.6458 0.0043 -0.0512 0.0007 

N(O, (in)2) 12 0.6944 0.0040 -0.0002 0.0000 
U(O, 0.115) 12 0.6999 0.0044 0.0000 0.0000 
N(O, U)2) 12 0.6949 0.0041 0.0003 0.0001 
U(0,1.732) 12 0.6998 0.0044 -0.0002 0.0000 

N(O, 1) 12 0.6950 0.0042 0.0004 0.0001 
U(0,3.464) 12 0.6991 0.0049 -0.0009 0.0000 

N(0,2:l) 12 0.6928 0.0043 -0.0018 0.0003 
U(O, 6.928) 12 0.6961 0.0044 -0.0039 0.0001 

N(O, (toy) 30 0.6946 0.0039 0.0000 0.0000 
U(O, 0.115) 30 0.6999 0.0049 0.0000 0.0000 
N(O, (~)2) 30 0.6943 0.0040 -0.0003 0.0000 
U(O, 1.732) 30 0.7000 0.0044 0.0000 0.0000 

N(O, 1) 30 0.6946 0.0041 0.0001 0.0000 
U(O, 3.464) 30 0.6998 0.0044 -0.0001 0.0000 

N(0,2:l) 30 0.6948 0.0041 0.0002 0.0001 
U(O, 6.928) 30 0.6995 0.0044 -0.0005 0.0000 
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Table B.6: Results for naive fits: exponential data: rr=3: (n=500) 

n=500, {Jtrue = 1.099 = log 3,seed=4 
normal errors: mean ({Jsim) = 1.1047, var ({Jsim) = 0.0086 
uniform errors: mean ({Jsim) = 1.0975, var ({3sim) = 0.0094 

Error median surv mean ({Jobs) I var ({Jobs) I mean (bias) I var (bias) 

N(O, (fo)2) 3 1.1046 0.0086 -0.0001 0.0000 

U(O, 0.115) 3 1.0973 0.0094 -0.0003 0.0000 

N(O, (~)2) 3 1.1001 0.0085 -0.0046 0.0006 

U(O, 1.732) 3 1.0890 0.0096 -0.0085 0.0002 

N(O,l) 3 1.0837 0.0091 -0.0209 0.0013 

U(O, 3.464) 3 1.0684 0.0098 -0.0291 0.0006 
N(O, 22) 3 1.0241 0.0098 -0.0805 0.0031 

U(O, 6.928) 3 1.0041 0.0102 -0.0934 0.0020 

N(O, (fo)2) 12 1.1052 0.0087 0.0006 0.0000 

U(O, 0.115) 12 1.0975 0.0094 -0.0001 0.0000 

N(O, U)2) 12 1.1042 0.0086 -0.0005 0.0001 

U(O, 1.732) 12 1.0966 0.0094 " -0.0009 0.0000 

N(O, 1) 12 1.1021 0.0084 -0.0026 0.0003 

U(O, 3.464) 12 1.0949 0.0095 -0.0026 0.0000 
N(O, 22) 12 1.1001 0.0085 -0.0046 0.0006 

U(O, 6.928) 12 1.0890 0.0096 -0.0085 0.0002 

N(O, (fri)2) 30 1.1050 0.0086 0.0004 0.0000 
U(O, 0.115) 30 1.0974 0.0094 -0.0001 0.0000 
N(O, (~)2) 30 1.1042 0.0087 -0.0004 0.0001 
U(O, 1.732) 30 1.0972 0.0094 -0.0004 0.0000 

N(O,I) 30 1.1042 0.0087 -0.0004 0.0001 
U(O, 3.464) 30 1.0968 0.0095 -0.0007 0.0000 

N(O, 22) 30 1.1031 0.0084 -0.0016 0.0002 
U(O, 6.928) 30 1.0957 0.0095 -0.0019 0.0000 
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Table B.7: Results for naive fits: Weibull data: p = 0.5 : rr=2 : (n=500) 

n=500, f3true = 0.693 = log 2,seed=4 
normal errors: mean (f3sim) = 0.6973, var (f3sim) = 0.0076 
uniform errors: mean (f3sim) = 0.6908, var (f3sim) = 0.0084 

Error median surv mean (f3abs) I var (f3ooa) mean (bias) var (bias) 

N(O, (to):.!) 3 0.6981 0.0075 0.0008 0.0002 
U(O,O.115) 3 0.6907 0.0084 -0.0001 0.0000 
N(O, (~?) 3 0.7021 0.0083 0.0048 0.0009 
U(O,1.732) 3 0.6876 0.0085 -0.0032 0.0001 

N(O,1} 3 0.7037 0.0090 0.0063 0.0014 
U(O,3.464} 3 0.6837 0.0086 -0.0071 0.0002 

N(O,2:.!) 3 0.7026 0.0094 0.0053 0.0020 
U(O,6.928) 3 0.6739 0.0088 -0.0169 0.0004 

N(O, (fri)2) 12 0.6967 0.0075 -0.0006 0.0001 
U(0,0.115) 12 0.6909 0.0084 0.0001 0.0000 
N(O, (~):.!) 12 0.6994 0.0079 0.0021 0.0005 
U(0,1.732) 12 0.6903 0.0084 -0.0005 0.0000 

N(0,1) 12 0.7002 0.0081 0.0029 0.0007 
U(0,3.464) 12 0.6894 0.0084 -0.0014 0.0000 

N(0,2:.!) 12 0.7021 0.0083 0.0048 0.0009 
U(0,6.928) 12 0.6894 0.0084 -0.0014 0.0000 

N(O, (to):.!) 30 0.6972 0.0076 -0.0001 0.0001 
U(0,0.115) 30 0.6908 0.0084 0.0000 0.0000 
N(O, U)2) 30 0.6989 0.0076 0.0016 0.0003 
U(0,1.732) 30 0.6906 0.0084 0.0000 0.0000 

N(0,1) 30 0.6993 0.0079 0.0002 0.0004 
U(0,3.464) 30 0.6904 0.0084 -0.0004 0.0000 

N(0,22) 30 0.7001 0.0082 0.0028 0.0006 
U(0,6.928) 30 0.6897 0.0084 -0.0011 0.0000 
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Table B.8: Results for naive fits: Weibull data: p = 1.5 : rr=2 : (n=500) 

n=500, {Jtrue = 0.693 = log 2,seed=4 
normal errors: mean ({Jsim) = 0.6973, var ({Jsim) = 0.0074 
uniform errors: mean ({Jsim) = 0.6908, var ({3sim) = 0.0084 

Error median surv mean ({Jobs) var ((Jobs) mean (bias) var (bias) 

N(O, (fn)2) 3 0.6972 0.0074 -0.0002 0.0005 

U(0,0.1l5) 3 0.6906 0.0084 -0.0002 0.0000 
N(O, U):.l) 3 0.6825 0.0074 -0.0149 0.0005 

U(O, 1.732) 3 0.6778 0.0087 -0.0130 0.0004 

N(O, 1) 3 0.6469 0.0078 -0.0504 0.0017 

U(O, 3.464) 3 0.6448 0.0090 -0.0460 0.0013 
N(0,2:.l) 3 0.5444 0.0087 -0.1529 0.0051 

U(0,6.928) 3 0.5485 0.0093 -0.1423 0.0034 

N(O, (fn)2) 12 0.6973 0.0076 0.0000 0.0000 

U(0,0.1l5) 12 0.6908 0.0084 0.0000 0.0000 
N(O, (~)2) 12 0.6959 0.0076 -0.0014 0.0001 

U(0,1.732) 12 0.6899 0.0085 -0.0009 0.0000 

N(O, 1) 12 0.6918 0.0076 -0.0055 0.0002 

U(0,3.464) 12 0.6871 0.0086 -0.0037 0.0001 
N(0,22) 12 0.6819 0.0074 -0.0154 0.0005 

U(0,6.928) 12 0.6774 0.0087 -0.0134 0.0004 

N(O, (fn)2) 30 0.6973 0.0076 0.0000 0.0000 
U(0,0.1l5) 30 0.6908 0.0084 0.0000 0.0000 
N(O, (~)2) 30 0.6971 0.0076 -0.0002 0.0000 
U(0,1.732) 30 0.6905 0.0084 -0.0003 0.0000 

N(O,l) 30 0.6965 0.0076 -0.0008 0.0000 
U(0,3.464) 30 0.6901 0.0084 -0.0007 0.0000 

N(0,22) 30 0.6941 0.0076 -0.0033 0.0001 

U(0,6.928) 30 0.6885 0.0085 -0.0023 0.0001 
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C.l Estimation 
. 
In the Cox Proportional 

Hazards Model 

Using the notation of Nakamura consider estimation for the Cox model with one 

covariate: 

Cox model: A(tlx) = AO(t) exp(,6x) 

For each JED, the set of deaths with R being the risk set at each j : 

Sj(,6, X) = ~iER exp(,6xi) 

S~(,6, X) = ~iER(Xi exp(,6xi)) 

S; (,6, X) = ~iER(X~ exp(,6xi)) 

The contributions at each JED are: 

l"k l"h d" L (fl X) - exp{Jxj 
1 e 1 00 " j fJ, - Sj({J,X) 

Log-likelihood: lj(,6,X) = ,6Xj -logSj(,6,X) 
, 

(
(.I X) _ (.) Sj({J,X) 

Score : Uj fJ, - x J - Sj ({J,X) 

I 
r t" "IN.( (.I X) _ [Sj({J,X)s:' ({3,X)-(S;({3,X))2)] 

nlorma Ion" J fJ, - [Sj({3,X)]2 
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i.e. 

likelihood: L = TI jEDL j ({3, X) 

Log-likelihood: l = 'E jEDlj ({3, X) 

Score: U = 'E jEDUj ({3, X) 

Information: IN = 'EjEDI Nj({3, X) 

170 

C.2 Estimation for the Cox Model Using the 

Cij Correction Matrix 

The same idea is applied to estimation for one covariate for the new model: 

For each JED, the set of deaths with R being the risk set at each j : 

Sj ({3, X) = 'E~=1 G ij exp({3xi) 

S;({3,X) = 'E~=lGij(xiexp({3xi)) 

S; ({3, X) = 'E~=lGij(X~ exp({3xi)) 

The contributions at each JED are: 

l·k l·h d· L ({3 X) - exp{3Xj 
1 e 1 00 . j, - Sj({3,X) 

Log-likelihood: lj({3,X) = (3Xj -logSi({3,X) 

() s; ({3,X) 
Score: Uj (3, X = Xj - Sj({3,X) 

l
et· . IN· ({3 X) = [Sj({3,X)S;' ({3,X)-(S; ({3,X»2») 

nlorma 10n . J' [Sj({3,X)]2 

i.e. 
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(C.l) 

Log-likelihood: l = L-jEDlj(f3, X) = 

(C.2) 

(C.3) 
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D.I Full Results of Simulation Studies - Naive 

and Corrected Fits 

The likelihood incorporating the C matrix to weight risk sets via a measurement 

model was tested against the simulated data when n=50,n=100 and n=200 for 

both the uniform and normal error models. Larger error standard deviations 

of 4,6 and 8 (where the naive fits demonstrate considerable attenuation) 

were also considered for median survival 3. The column "na" represents the 

number of times the C matrix encountered zero risk (due to rounding and the 

approximations involved) and thus these cases were excluded. 
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Table D.1: Naive and corrected fits: exponential data: rr=2 : (n=50) 

Err 
N1 
U1 
N2 
U2 
N3 
U3 
N4 
U4 
N5 
U5 
N6 
U6 
N7 
U7 
N1 
U1 
N2 
U2 
N3 
U3 
N4 
U4 
N1 
U1 
N2 
U2 
N3 
U3 
N4 
U4 

n=50, {3true = 0.693 = log 2,seed=1 
normal errors: mean (Bsirn) ::::: 0.7221, var ({3sirn) = 0.1063 
uniform errors: mean (Bsirn ) = 0.7020, var (,Bairn) = 0.0784 

ms m.,Bobs V.,Boba m.b·obs v.b·obs m.,Bnew v.,Bnew m.b.new 
3 0.7234 0.1053 0.0013 0.0004 0.7222 0.1050 0.0001 
3 0.7021 0.0785 0.0001 0.0001 0.7013 0.0782 -0.0007 
3 0.7186 0.1096 -0.0035 0.0073 0.7115 0.1020 -0.0107 
3 0.7015 0.0821 -0.0005 0.0037 0.6986 0.0813 -0.0034 
3 0.7157 0.1083 -0.0065 0.0175 0.7114 0.1045 -0.0107 
3 0.6951 0.0850 -0.0069 0.0091 0.6968 0.0868 -0.0052 
3 0.6781 0.1005 -0.0440 0.0381 0.7226 0.1165 0.0010 
3 0.6567 0.0864 -0.0453 0.0235 0.6943 0.1021 -0.0077 
3 0.5953 0.1130 -0.1269 0.0974 0.7160 0.1401 -0.0080 
3 0.5633 0.0865 -0.1387 0.0535 0.6905 0.1178 -0.0138 
3 0.4295 0.1365 -0.2638 0.1353 0.6608 0.1411 -0.0655 
3 0.4778 0.0844 -0.2242 0.0752 0.6683 0.1215 -0.0367 
3 0.3581 0.1734 -0.3522 0.1865 0.6239 0.1698 -0.1470 
3 0.4079 0.0818 -0.2941 0.0890 0.6555 0.1153 -0.0530 
12 0.7223 0.1056 0.0002 0.0001 0.7224 0.1055 0.0003 
12 0.7022 0.0786 0.0002 0.0000 0.7018 0.0784 -0.0002 
12 0.7246 0.1038 0.0024 0.0016 0.7192 0.1034 -0.0029 
12 0.7007 0.0782 -0.0013 0.0005 0.6995 0.0784 -0.0025 
12 0.7224 0.1056 0.0003 0.0038 0.7159 0.1028 -0.0062 
12 0.7048 0.0806 0.0028 0.0014 0.6998 0.0796 -0.0022 
12 0.7186 0.1096 -0.0035 0.0073 0.7115 0.1020 -0.0107 
12 0.7015 0.0821 -0.0005 0.0037 0.6986 0.0813 -0.0034 
30 0.7216 0.1060 -0.0005 0.0000 0.7223 0.1057 0.0002 
30 0.7020 0.0783 0.0000 0.0000 0.7019 0.0784 -0.0001 
30 0.7224 0.1051 0.0002 0.0005 0.7217 0.1047 -0.0004 
30 0.7011 0.0784 -0.0009 0.0002 0.7007 0.0781 -0.0013 
30 0.7245 0.1038 0.0023 0.0013 0.7201 0.1037 -0.0020 
30 0.7008 0.0782 -0.0012 0.0004 0.6995 0.0783 -0.0025 
30 0.7209 0.1038 -0.0012 0.0028 0.7122 0.1030 -0.0050 
30 0.7031 0.0788 0.0011 0.0010 0.6998 0.0792 -0.0022 

key: ms = medlan survIval (true data), m~ = mean, v. = vanance 
m.b. = mean bias, v.b. = variance of bias, na = missing values 

N1: N(O, 3
1
0
2
),N2: N(0,~2), N3: N(0,12), 

N4: N(O, 22 ),N5 : N(O, 42 ),N6 : N(O, 62 ),N7 : N(0,82 ) 

U1 : U(O, 0.115),U2 : U(O, 1.732),U3 : U(O, 3.464),U 4: U(0,6.928), 
U5 : U(O, 13.856),U6 : U(O, 20.785),U7 : U(0,27.713) 
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v.b.new na 
0.0004 0 
0.0001 0 
0.0025 0 
0.0029 0 
0.0079 0 
0.0091 0 
0.0287 1 
0.0294 0 
0.0938 2 
0.0701 2 
0.1158 33 
0.1041 24 
0.1602 73 
0.1114 57 
0.0000 0 
0.0000 0 
0.0004 0 
0.0004 0 
0.0010 0 
0.0011 0 
0.0025 0 
0.0029 0 
0.0000 0 
0.0000 0 
0.0001 0 
0.0001 0 
0.0003 0 
0.0003 0 
0.0007 0 
0.0008 0 
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Table D.2: Naive and corrected fits: exponential data: rr=2 : (n=100) 

Err 
Nl 
VI 
N2 
V2 
N3 
V3 
N4 
U4 
N5 
U5 
N6 
U6 
N7 
U7 
N1 
U1 
N2 
U2 
N3 
U3 
N4 
U4 
N1 
Ul 
N2 
U2 
N3 
U3 
N4 
U4 

n=100, {3true = 0.693 = log2,seed=2 
normal errors: mean ({3sim) = 0.7072, var ({3sim) = 0.0435 
uniform errors: mean ({3sim) = 0.7113, var ({3sim) = 0.0585 

ms m./3obs V·/3obs m.b.obs v.b. obs m.{3new v·{3new m.b.new 

3 0.7073 0.0444 0.0001 0.0002 0.7071 0.0435 -0.0002 
3 0.7117 0.0585 0.0005 0.0000 0.7112 0.0584 -0.0001 
3 0.7126 0.0485 0.0054 0.0031 0.7029 0.0437 -0.0044 
3 0.7058 0.0587 -0.0054 0.0008 0.7071 0.0593 -0.0042 
3 0.6981 0.0494 -0.0091 0.0074 0.7042 0.0457 -0.0030 
3 0.6911 0.0582 -0.0202 0.0028 0.7043 0.0621 -0.0070 
3 0.6705 0.0542 -0.0368 0.0149 0.7084 0.0523 0.0011 
3 0.6454 0.0565 -0.0658 0.0088 0.7003 0.0685 -0.0109 
3 0.5645 0.0611 -0.1428 0.0322 0.6957 0.0687 -0.0149 
3 0.5512 0.0442 -0.1491 0.0199 0.6975 0.0659 -0.0073 
3 0.4625 0.0650 -0.2447 0.0539 0.6705 0.0846 -0.0419 
3 0.4618 0.0409 -0.2385 0.0308 0.6845 0.0719 -0.0268 
3 0.3824 0.0687 -0.3248 0.0681 0.6261 0.0995 -0.0910 
3 0.3894 0.0384 -0.3109 0.0386 0.6619 0.0740 -0.0637 
12 0.7070 0.0439 -0.0002 0.0001 0.7071 0.0435 -0.0001 
12 0.7114 0.0585 0.0001 0.0000 0.7114 0.0585 0.0001 
12 0.7095 0.0449 0.0022 0.0007 0.7065 0.0435 -0.0008 
12 0.7108 0.0588 0.0004 0.0001 0.7102 0.0584 -0.0001 
12 0.7083 0.0450 0.0011 0.0013 0.7050 0.0434 -0.0023 
12 0.7108 0.0590 -0.0005 0.0003 0.7090 0.0585 -0.0022 
12 0.7126 0.0485 0.0054 0.0031 0.7029 0.0437 -0.0044 
12 0.7058 0.0587 -0.0054 0.0008 0.7071 0.0593 -0.0042 
30 0.7073 0.0438 0.0001 0.0000 0.7072 0.0435 0.0000 
30 0.7113 0.0585 0.0001 0.0000 0.7114 0.0585 0.0001 
30 0.7082 0.0449 0.0010 0.0003 0.7070 0.0435 -0.0002 
30 0.7116 0.0583 0.0003 0.0000 0.7109 0.0584 -0.0003 
30 0.7087 0.0450 0.0015 0.0005 0.7066 0.0436 -0.0006 
30 0.7114 0.0584 0.0001 0.0001 0.7105 0.0584 -0.0008 
30 0.7072 0.0455 -0.0001 0.0120 0.7056 0.0434 -0.0016 
30 0.7110 0.0589 -0.0003 0.0002 0.7095 0.0584 -0.0017 

key: ms = medlan survlval (true data), m. = mean, v. = vanance 
m.b. = mean bias, v.b. = variance of bias, na = missing values 

Nl : N(O, 3~ 2),N2 : N(O, ~2), N3 : N(O, 12), 
N4: N(O, 22),N5 : N(O, 42),N6 : N(O, 62),N7 : N(O, 82 ) 

U1 : U(0,0.115),V2: U(O, 1.732),U3: U(0,3.464),U4: U(0,6.928), 
U5 : U(O, 13.856),U6 : U(O, 20.785),U7 : U(O, 27.713) 
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v.b.new na 
0.0000 0 
0.0000 0 
0.0009 0 
0.0008 0 
0.0027 0 
0.0027 0 
0.0094 0 
0.0098 0 
0.0371 5 
0.0262 4 
0.0726 36 
0.0440 26 
0.1013 78 
0.0511 70 
0.0000 0 
0.0000 0 
0.0001 0 
0.0001 0 
0.0003 0 
0.0003 0 
0.0009 0 
0.0008 0 
0.0000 0 
0.0000 0 
0.0000- 0 
0.0000 0 
0.0001 0 
0.0001 0 
0.0002 0 
0.0002 0 
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Table D.3: Naive and corrected fits: exponential data: rr=2 : (n=200) 

Err 
N1 
U1 
N2 
U2 
N3 
U3 
N4 
U4 
N5 
U5 
N6 
U6 
N7 
U7 
N1 
U1 
N2 
U2 
N3 
U3 
N4 
U4 
N1 
U1 
N2 
U2 
N3 
U3 
N4 
U4 

n=200, {3true = 0.693 = log 2,seed=3 
normal errors: mean ({3sim) = 0.6888, var ({3sim) = 0.0240 
uniform errors: mean ({3sim) = 0.7189, var ({3sim) = 0.0222 

ms m.{3obs V.{3obs m.b.obs v.b. obs m.{3new v.{3new m.b.new 
3 0.6890 0.0245 0.0002 0.0001 0.6884 0.0241 -0.0004 
3 0.7189 0.0222 0.0000 0.0000 0.7188 0.0223 -0.0001 
3 0.6860 0.0260 -0.0028 0.0014 0.6880 0.0243 -0.0009 
3 0.7120 0.0218 -0.0069 0.0004 0.7161 0.0222 -0.0028 
3 0.6747 0.0259 -0.0141 0.0025 0.6911 0.0253 0.0023 
3 0.6995 0.0215 -0.0194 0.0012 0.7154 0.0226 -0.0035 
3 0.6452 0.0271 -0.0436 0.0066 0.7027 0.0297 0.0138 
3 0.6574 0.0202 -0.0615 0.0040 0.7127 0.0237 -0.0063 
3 0.5598 0.0344 -0.1406 0.0180 0.7149 0.0397 0.0116 
3 0.5437 0.0193 -0.1580 0.0104 0.6802 0.0257 -0.0226 
3 0.4566 0.0354 -0.2438 0.0265 0.6958 0.0491 -0.0126 
3 0.4552 0.0189 -0.2464 0.0158 0.6683 0.0289 -0.0312 
3 0.3685 0.0349 -0.3318 0.0322 0.6470 0.0447 -0.0713 
3 0.3859 0.0186 -0.3157 0.0201 0.6620 0.0354 -0.0464 
12 0.6886 0.0243 -0.0002 0.0000 0.6888 0.0241 -0.0001 
12 0.7189 0.0223 0.0000 0.0000 0.7189 0.0223 0.0000 
12 0.6873 0.0250 -0.0016 0.0003 0.6879 0.0240 -0.0010 
12 0.7181 0.0221 -0.0009 0.0000 0.7181 0.0222 -0.0008 
12 0.6884 0.0254 -0.0004 0.0006 0.6876 0.0240 -0.0012 
12 0.7168 0.0220 -0.0022 0.0001 0.7171 0.0221 -0.0018 
12 0.6860 0.0260 -0.0028 0.0014 0.6880 0.0243 -0.0009 
12 0.7120 0.0218 -0.0069 0.0004 0.7161 0.0222 -0.0028 
30 0.6888 0.0242 -0.0001 0.0000 0.6888 0.0241 0.0000 
30 0.7189 0.0223 0.0000 0.0000 0.7189 0.0223 0.0000 
30 0.6890 0.0249 0.0001 0.0001 0.6883 0.0240 -0.0006 
30 0.7187 0.0223 -0.0002 0.0000 0.7187 0.0223 -0.0002 
30 0.6877 0.0250 -0.0012 0.0003 0.6879 0.0240 -0.0009 
30 0.7186 0.0222 -0.0004 0.0000 0.7183 0.0222 -0.0006 
30 0.6887 0.0252 -0.0001 0.0006 0.6877 0.0240 -0.0012 
30 0.7176 0.0220 -0.0014 0.0001 0.7175 0.0221 -0.0015 

key: ms = median survival (true data), m. = mean, v. = vanance 
m.b. = mean bias, v.b. = variance of bias, na = missing values 

Nl : N(O, 3
1
0
2),N2 : N(O, ~2), N3 : N(O, 12), 

N4: N(O, 22),N5 : N(O, 42),N6 : N(0,62),N7 : N(O, 82) 
U1 : U(O, 0.115),U2 : U(O, 1.732),U3 : U(O, 3.464),U4 : U(O, 6.928), 

U5 : U(O, 13.856),U6 : U(O, 20.785),U7 : U(0,27.713) 
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v.b.new na 
0.0000 0 
0.0000 0 
0.0004 0 
0.0003 0 
0.0014 0 
0.0011 0 
0.0054 0 
0.0038 0 
0.0179 5 
0.0120 1 
0.0341 31 
0.0198 18 
0.0409 77 
0.0029 65 
0.0000 0 
0.0000 0 
0.0000 0 
0.0000 0 
0.0001 0 
0.0001 0 
0.0004 0 
0.0003 0 
0.0000 0 
0.0000 0 
0.0000 0 
0.0000 0 
0.0000 0 
0.0000 0 
0.0001 0 
0.0001 0 
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E.l S-Plus Code for P calculation 

Simulated Data 

#calculate p for simulated data 
#requires survival time, mean and s.d. of error 
simcalcp <- function(dataset, mu, sdev) 
{ 

len <- length(dataset) 
p <- array(NA, dim = c(len, len» 
for(i in l:(len - 1» { 
A <- max(O, dataset[i] - mu - (2 * sdev» 
B <- max(O.OOl, dataset[i] - mu + (2 * sdev» 
for(j in i:len) { 
C <- max(O, dataset[j] - mu - (2 * sdev» 
D <- max(O.OOl, dataset[j] - mu + (2 * sdev» 
p[i, j] <- unifprobs(A, B, C, D) 
p[j, i] <- 1 - p[i, j] 
} 

p[i, iJ <- -1 
} 

p[len, len] <- -1 
return(p) 
} 
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for 
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E.2 S-Plus Code for P Calculation for Lung 
Cancer Sample 

#calcualate p for 1993 sample data 
# 
nrows <- 500 
ncols <- length(lung93samp$dead[lung93samp$dead -- 1]) 
lungpmx <- array(NA,dim=c(nrows,ncols» 
for(i in l:nrows){ 
cat(i," ") 
counter <- 0 
for(j in l:nrows){ 
if (lung93samp$dead[j] == 1){ 
counter <- counter + 1 
#two validation times - status 0 
if «lung93samp$val[i] == 0) tt (lung93samp$val[j] == O»{ 
A <- lung93sampSsurv[i] 
B <- lung93sampSsurv[i] + 1 
C <- lung93samp$surv[j] 
D <- lung93sampSsurv[j] + 1 
lungpmx[i,counter] <- unifprobs(A, B, C, D) 
} 

tone validation status Q, 1 non-validation status 1 
#status 1 truelobs - U(max(O,obs-52),obs+1) 
if «lung93samp$val[i] == 0) tt (lung93samp$val[j] == 1»{ 
A <- lung93sampSsurv[i] 
B <- lung93samp$surv[i] + 1 
C <- max(O,lung93samp$surv[j] - 52) 
D <- lung93samp$surv[j] + 1 
lungpmx[i,counter] <- unifprobs(A, B, C, D) 
} 

if «lung93samp$val[i] == 1) tt (lung93samp$val[j] == O»{ 
A <- max(O,lung93samp$surv[i] - 52) 
B <- lung93samp$surv[i] + 1 
C <- lung93samp$surv[j] 
D <- lung93samp$surv[j] + 1 
lungpmx[i,counter] <- unifprobs(A, B, C, D) 
} 

tone validation status 0, 1 non-validation status 2 
#status 2 truelobs - U(max(O,obs-64),obs+1) 
if «lung93samp$val[i] == 0) tt (lung93samp$val[j] == 2»{ 
A <- lung93samp$surv[i] 
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B <- lung93samp$surv[i] + 1 
C <- max(O,lung93samp$surv[j] - 64) 
o <- lung93samp$surv[j] + 1 
lungpmx[i,counter] (- unifprobs(A, B, C, D) 
} 

if «lung93samp$val[i] == 2) && (lung93samp$val[j] == O»{ 
A <- max(O,lung93samp$surv[i] - 64) 
B <- lung93samp$surv[i] + 1 
C <- lung93samp$surv[j] 
o <- lung93samp$surv[j] + 1 
lungpmx[i,counter] <- unifprobs(A, B, C, D) 
} 

tone validation status 1, 1 non-validation status 2 
#status 1 truelobs - U(max(O,obs-52),obs+1) 
#status 2 truelobs - U(max(O,obs-64),obs+1) 
if ((lung93samp$val[i] == 1) tt (lung93samp$val[j] -- 2»{ 
A <- max(O,lung93samp$surv[i] - 52) 
B <- lung93samp$surv[i] + 1 
C <- max(O,lung93samp$surv[j] - 64) 
D <- lung93sampSsurv[j] + 1 
lungpmx[i,counter] <- unifprobs(A, B, C, D) 
} 

if «lung93sampSval[i] == 2) tt (lung93samp$val[j] == 1»{ 
A <- max(O,lung93samp$surv[i] - 64) 
B <- lung93samp$surv[i] + 1 
C <- max(O,lung93samp$surv[j] -52) 
o <- lung93samp$surv[j] + 1 
lungpmx[i,counter] <- unifprobs(A, B, C, D) 
} 

#both non-validation status 1 
#status 1 true lobs - U(max(O,obs-52) ,obs+1) 
if «lung93samp$val[i] == 1) t& (lung93samp$val[j] -- 1»{ 
A <- max(O,lung93samp$surv[i] - 52) 
B <- lung93samp$surv[i] + 1 
C <- max(O,lung93samp$surv[j] - 52) 
o <- lung93samp$surv[j] + 1 
lungpmx[i,counter] <- unifprobs(A, B, C, D) 
} 

#both non-validation status 2 
#status 2 truelobs - U(max(O,obs-64) ,obs+1) 
if «lung93samp$val[i] == 2) tt (lung93samp$val[j] -- 2»{ 
A <- max(O,lung93samp$surv[i] - 64) 
B <- lung93samp$surv[i] + 1 
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C <- max(0,lung93samp$surv[j] - 64) 
o <- lung93samp$surv[j] + 1 
lungpmx[i,counter] <- unifprobs(A, B, C, D) 
} 

} 

} 

if (lung93samp$dead[i] -- 1) lungpmx[i,sum(lung93samp$dead[1:i])] <- -1 
} 

#censored times - assume if can be at risk is definetly at risk 
counter <- 0 
for(i in l:nrows){ 
if (lung93samp$dead[i] -- 0) { 
counter <- counter + 1 
cat(counter," ") 
tempmx <- lungpmx[i ,] 
tempmx[tempmx > 0] <- 1 
lungpmx[i,] (- tempmx 
} 

} 
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E.3 S-Plus Code for 
P(U(a,h» U( c,d)) 

#function to calculate P(U(A,B) > U(C,D)) 
unifprobs (- function(A, B, C, D) 
{ 

if«B - A) > (D - C)) { 
kl (- c(A, B) 
k2 (- c(C, D) 

} 

else { 
kl (- c(C, D) 
k2 (- c(A, B) 
} 

if«kl[l] - k2[2]) >= O){temp (- O} 

Calculation 

if«kl[l] - k2[2]) ( 0 11 (kl[l] - k2[l]) >= 0) { 
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of 

temp (- «kl[l] - k2[2])-2)/(2 * (kl[2] - kl[l]) * (k2[2] - k2[l])) 
} 

if«kl[l] - k2[l]) ( 0 11 (kl[2] - k2[2]) >= 0) { 
temp (- «k2[2] - k2[l]) - (2 * (kl[l] - k2[1])))/(2 * (k1[2] - k1[1])) 
} 

if«kl[2] - k2[2]) ( 0 11 (k1[2] - k2[1]) >= 0) { 
temp (- «(2 * kl[1] * k2[l]) + (2 * k1[2] * k2[2]) - (2 * k1[1 
] * k2[2]) - (k1[2]-2) - (k2[l]-2))/(2 * (k1[2] - kl[l] 
) * (k2 [2] - k2 [1] ) )) 
} 
if«kl[2] - k2[1]) ( O){temp (- 1} 
if«B - A) > (D - C)){temp (- 1 - temp} 
temp (- round(temp, 2) 
return (temp) 
} 
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E.4 S-Plus Code for Calculation of C Matrix 

#calculate C - need P matrix and vector of censoring indication 
calculatec (- function(probs, dead) 
{ 

#define C array 
k (- length (probs [1, ]) 
riskmx (- array(NA, dim = c(length(probs[, 1]), k» 
#calulate ngreater,ncomm,commset 
for(i in l:length(probs[, 1]» { 
currentrow (- probs[i, ] 
ngreater (- length(currentrow[currentrow -- 1]) 
ncomm (- length(currentrow[currentrow ( 1]) - length(currentrow[ 
currentrow (= 0]) 
commset (- currentrow[currentrow ( 1] 
commset (- commset[commset > 0] 
#perform steps 3,4,5 & 6 of the algorithm if there is communication 
if(ncomm > 0) { 
risklik (- rep(O, k) 
ave (- mean(commset) 
temp (- 1 - pbinom(seq(-l, (ncomm - 1», ncomm, ave) 
if(ngreater > 0) {risklik[l:ngreater] (- 1 } 
risklik[(ngreater + 1): (ngreater + ncomm + 1)] (- temp 
} 

#perform steps 5,6 if there is no communication 
if(ncomm == 0) { 
risklik (- rep(O, k) 
if(dead[i] -- 0) {risklik[l:ngreater] (- 1} 
if(dead[i] == 1) {risklik[l:(ngreater + 1) (- 1} 
} 

riskmx[i, ] (- round(risklik, 2) 
} 

return (riskmx) 
} 
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E.5 Code for Creating and Fitting Simulated 
Data with Normal or Uniform Errors 

E.5.1 Normal Errors 

# code to create simulated data with normal errors 
# n - dataset size, p = no. of repeats 
# sd error standard deviation 
# bline is basline shape parameter value 
# rho is weibull scale parameter 
# rr is relative risk 
# seedy is seed 
simnormcreation <- function(n, p, sd, bline, rho=l, rr, seedy) 
{ 

set.seed(seedy) 
dataname <- NA 
dataname$seedy <- seedy 
dataname <- dataname [2] 
dataname$sd <- sd 
dataname$bline <- bline 
dataname$rr <- rr 
dataname$cov <- c(rep(O, n/2), rep(l, n/2» 
dataname$truecox <- rep(NA, p) 
dataname$truecoxvar <- rep(NA, p) 
dataname$obsbeta <- rep(NA, p) 
dataname$obsvarbeta <- rep(NA, p) 
dataname$newbeta <- rep(NA, p) 
dataname$newvarbeta <- rep(NA, p) 
for(i in l:p) { 
cat(IIFit: ", i, "\n") 
# if rho not equal 1 Weibull data 
if (rho != l){surv <- c(rweibull(n/2, rho, «l/bline)A(l/rho»), 

rweibull(n/2, rho, «l/(rr * bline»-(l/rho» 
»} 

# if rho equals 1 Exponential data 
if (rho == l){surv (- c(rexp(n/2, bline), rexp(n/2, (bline * rr»)} 
# true cox fits 
truecox <- coxph(Surv(surv, rep(l, n» - dataname$cov) 
dataname$truecox[i] <- round(truecox$coefficients[l], 3) 
dataname$truecoxvar[i] <- round(truecox$var[l, 1], 4) 
cat ("True beta: ", dataname$truecox [i], II Old var: ", dataname$ 
truecoxvar[i], "\n") 
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#observed data creation 
tempsurv <- surv + rnorm(n, 0, sd) 
#remove negaitve times 
posvalsurv <- tempsurv[tempsurv > 0] 
posvalcov <- dataname$cov[tempsurv > 0] 
#observed Cox fit 
posvalcox <- coxph(Surv(posvalsurv, rep(l, length(tempsurv[ 
tempsurv > 0]))) - posvalcov) 
dataname$obsbeta[i] <- round(posvalcox$coefficients[l], 3) 
dataname$obsvarbeta[i] <- round(posvalcox$var[l, 1],4) 
cat("Old beta: ", dataname$obsbeta[i], II Old var: ", dataname$ 
obsvarbeta[i], "\n") 
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#new Cox fits - if not desired make into comments using # at start of lines 
newfittemp <- onetotalfit(tempsurv[order(tempsurv)], rep(l, n), 
dataname$cov[order(tempsurv)], 0, dataname$sd) 
dataname$newbeta[i] <- newfittemp$beta 
dataname$nevvarbeta[i] <- newfittemp$varest 
} 

return (dataname) 
} 
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E. 5.2 Uniform Errors 

# code to create simulated data with uniform errors 
# n - dataset size, p = no. of repeats 
# upper is upper level (b) of U(O,b) errors 
# bline is basline shape parameter value 
# rho is weibull scale parameter 
# rr is relative risk 
# seedy is seed 
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simunifcreation <- function(n, p, upper, bline, rho=l, rr, seedy) 
{ 

set.seed(seedy) 
dataname <- NA 
dataname$seedy <- seedy 
dataname <- dataname [2] 
dataname$upper <- upper 
dataname$bline <- bline 
dataname$rr <- rr 
dataname$cov <- c(rep(O, n/2), rep(l, n/2» 
dataname$truecox <- rep(NA, p) 
dataname$truecoxvar <- rep(NA, p) 
dataname$obsbeta <- rep(NA, p) 
dataname$obsvarbeta <- rep(NA, p) 
dataname$newbeta <- rep(NA, p) 
dataname$newvarbeta <- rep(NA, p) 
for(i in l:p) { 
cat(IIFit: ", i, "\n") 
# if rho not equal 1 Weibull data 
if (rho != 1) surv <- c(rweibull(n/2, rho, «l/bline)~(l/rho»), 

rweibull(n/2, rho, «l/(rr * bline»~(l/rho» 
» 

# if rho equalS 1 Exponential data 
if (rho == 1) surv <- c(rexp(n/2, bline), rexp(n/2, (bline * rr») 
# true cox fits 
truecox <- coxph(Surv(surv, repel, n» - dataname$cov) 
dataname$truecox[i] <- round(truecox$coefficients[l], 3) 
dataname$truecoxvar[i] <- round(truecox$var[l, 1], 4) 
cat ("True beta: ", dataname$truecox [i], II Old var: ", dataname$ 
truecoxvar[i], "\n") 
#observed data creation 

tempsurv <- surv + runif(n, 0, upper) 
#observed cox fits 
tempcox <- coxph(Surv(tempsurv, repel, n» - dataname$cov) 
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dataname$obsbeta[i] <- round(tempcox$coefficients[l] , 3) 
dataname$obsvarbeta[i] <- round(tempcox$var[l, 1], 4) 
cat("Old beta: ", dataname$obsbeta[i]. II Old var:", dataname$ 
obsvarbeta[i]. "\n") 
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#new Cox fits - if not desired make into comments using # at start of lines 
newfittemp <- onetotalfit(tempsurv[order(tempsurv)]. rep(l, n), 
dataname$cov [order (tempsurv)] • O. dataname$sd) 
dataname$nevbeta[i] <- nevfittemp$beta 
dataname$nevvarbeta[i] <- nevfittemp$varest 
} 

return (dataname) 
} 
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E.6 Parent Code for Fitting Simulated Data 

#call to fit new fit for simulated data 
#factor is for U(O,b) errors - it deflates errorsd by sqrt(12)/4 
#hence 2*(errorsd*factor) = b/2 
#the errormean = b/2 hence we have the correct upper and lower levels 
onetotalfit<-function(obstimes, dead, cov, errormean, errorsd, factor = 1) 
{ 

if(factor != 1) {errorsd <- (errorsd * factor)} 
#calculate p 
p <- simcalcp(obstimes, errormean, errorsd) 
#calculate C 
tempc <- calculatec(p) 
#check for encountering zero risk 
canido <- cando(tempc) 
#If possible do the new fit 
if(canido == 1) {onefit <- newtraph(tempc, COV, 0, dead, 5)} 
#If not possible return missing values 
if(canido == 0) { 
onefit <- NA 
onefit$beta <- NA 
onefit$varbeta <- NA 
onefit <- onefit[2:3] 
} 

list(beta = onefit$beta, varest = onefit$varest) 
} 

#checks for zero risk in the C matrix 
cando <- function(cmx) 
{ 

temp <- length(cmx[, 1]) 
#require second half of C elements only 

temp2 <- trunc(temp/2) 
value <- 1 
for(i in temp2:temp) { 

if(sum(cmx[, i]) -- 0) {value (- O} 
} 

return (value) 
} 



Appendices 187 

E.7 S-Plus Code for Newton 
Procedure for Estimating f3 

Raphson 

#newton raphson iterative process 
#requires C matrix, covariate value, starting point, censoring indicator 
#and maximum number of iterations 
newtraph <- function(cmx, cov, beta, cens, itermax) 
{ 

#treat covariate as continuous 
if(is.factor(cov) == T) cov <- as.numeric(cov) - 1 
#create initial values 
n <- length(cov) 
bet anew <- rep(NA, itermax + 1) 

betanew[l] <- beta 
iter <- 0 
count <- 0 
diff <- 1 
#count the number of patients who fail 
for(i in 1 :n) { 
if(cens[i] == 1) {count <- count + 1} 
} 
#repeat until estimate is found or iterations reach maximum number 
while(abs(diff) > 0.0001 tt iter < itermax) { 
iter <- iter + 1 
U <- rep(NA, count) 
I <- rep(NA, count) 
counter <- 1 
for(i in l:n) { 
#calculate score at each failure time 
if(cens[i] -- 1) { 
U[counter] <- calcscore(cmx, cov, bet anew [iter] , i, counter) 
I[counter] <- calcinf(cmx, cov, bet anew [iter] , counter) 
counter <- counter + 1 
} 

} 

#sum individual score contributions 
score <- sum(U) 
#calculate Jacobian 
jacob <- (-1) * sum(I) 
invjacob <- solve(jacob) 
diff <- (invjacob * score) 
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betanew[iter + 1] <- betanew[iter] - diff 
cat ("iteration" , iter, "new estimate", betanew[iter + i], "\n") 
} 

#calculate s.e. estimate via Information 
inf <- rep(NA, count) 
counter <- 1 
for(i in 1:n) { 
if(cens[i] == 1) { 
inf[counter] <- calcinf(cmx, cov, betanew[iter + 1], counter) 
counter <- counter + 1 
} 

} 

infor <- sum(inf) 
varest <- solve(infor) 
beta <- round(betanew[iter + 1], 3) 
varest <- round(varest, 4) 
cat (IIBeta estimate : ", beta, II Var estimate : II , 
#retum values 
list(beta = beta, varest = varest) 
} 

The previous routine also calls the following sub-routines: 

#calculate score equation 

varest, "\n") 

calc score <- function(cmx, data, beta, i, counter) 
{ 

temp1 <- si(cmx, data, beta, counter) 
tempO <- sO(cmx, data, beta, counter) 
temp <- tempi/tempO 
U <- data[i] 
U <- U - temp 
return(U) 
} 

#calculate information 
calcinf <- function(cmx, data, beta, counter) 
{ 

tempO <- sO(cmx, data, beta, counter} 
temp1 <- slCcmx, data, beta, counter} 
temp2 <- s2(cmx, data, beta, counter} 
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temp <- (tempO * temp2) 
temp <- temp - (temp1~2) 

temp <- temp/(tempO~2) 

return (temp) 
} 

sO <- function(cmx, data, beta, counter) 
{ 

sOres <- sum(cmx[, counter] * exp(beta * data» 
return(sOres) 
} 

s1 <- function(cmx, data, beta, counter) 
{ 

s1res <- sum(cmx[, counter] * data * exp(beta * data» 
return(s1res) 
} 

s2 <- function(cmx, data, beta, counter) 
{ 

s2res <- sum(cmx[, counter] * data * data * exp(beta * data» 
return(s2res) 
} 
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E.8 S-Plus Code for Baseline Hazard and Non­
Parametric Hazard Estimate for 1 Group 

#fit the baselinehazard or 
#estimates cumulative hazard for 1 group for lung data 
#needs survival times,censoring indicator 
#if fitting basehazard needs estimate of beta plus covariate values 
#set whichtype to 1 non-parametric cumulative hazard estimation 
#of single sample 
#cmx required also 
basehazard(-function(obstimes, dead, betahat, cov, val, whichtype=2, cmx) 
{ 
#estimate expected true survival 
#need to change if implementing for other measurement models 
tempor (- rep(NA, length(obstimes» 
for(i in l:length(obstimes» { 
if(val[i] == O){lower (- obstimes[i]} 
if(val[i] == l){lower (- max(O, obstimes[i] - 52)} 
if(val[i] == 2){lower (- max(O, obstimes[i] - 64)} 
upper (- obstimes[i] + 1 
tempor[i] (- (upper + lower)/2 
} 
#order times and related values 
temporder (- order(tempor) 
temp (- obstimes[temporder] 
tempdead (- dead[temporder] 
tempcov (- cov[temporder] 
tempor (- tempor[temporder] 
#get timepoints of each death 
ndead (- sum(tempdead) 
whodead (- tempor[tempdead -- 1] 
pointsoftime (- 1 
for(i in 2:ndead) { 
#isolate each survival time 
if «whodead[i] != whodead[i - l]»{pointsoftime (- pointsoftime + 1} 
} 

#returns an array with 4 rows 
#lst row is death times 
#2nd row is no.of deaths at each time 
times (- array(O, dim = c(4, pointsoftime» 
conts (- array(O, ndead) 
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times[l, 1] <- whodead[l] 
times[2, 1] <- length(whodead[whodead -- whodead[l]]) 
counter <- 2 
for(i in 2:ndead) { 
if (whodead [i] ! = whodead [i - 1]) { 
times[l, counter] <- whodead[i] 
times[2, counter] <- length(whodead[whodead -- whodead[i]]) 
counter <- counter + 1 
} 

} 

#calculate the hazard contibutions at each deathtime 
for(i in l:ndead) { 
if(whichtype == 2){conts[i] <- sum«cmx[, i]) * exp(betahat * cov»} 
if(whichtype == l){conts[i] <- sum(cmx[, i])} 
conts[i] <- l/conts[i] 
} 

#3rd and 4th row are the individual contribution to the hazard 
#and the cumulative hazard at a death time 
counter <- 1 
for(i in l:pointsoftime) { 
newcounter <- counter + times[2, i] 
times[3, i] <- sum(conts[counter:(newcounter - 1)]) 
times[4, i] <- sum(times[3, ]) 
counter <- newcounter 
} 

return(times) 
} 
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