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On Kinematic Singularities of Low Dimension
by Catherine Ann Hobbs

Abstract

This thesis is an investigation into the types of singularities that can appear
on trajectories of rigid motions, kinematic singularities, motivated by problems
in mechanical engineering of designing mechanisms. Here we consider rigid mo-
tions of the plane and space with one and two degrees of freedom.

In order to study these singularities weprove a multi-germ transversality re-
sult and also a result about the restrictions on the codimension of the singularity
given by the number of degrees of freedom of the motion. Some of the classi-
fications of the singularities we are interested in have already been completed
but all the simple singularities of space curves and also most of the multi-germs,
both of the plane and of space, are classified here. We also study the unfoldings
and bifurcation sets of all the kinematic singularities on our lists.
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Introduction

The main purpose of this thesis is to investigate the types of singularities that
generically occur on the trajectories of rigid body motions of the plane and of
space with one or two degrees of freedom. The problem arises from questions in
mechanical engineering: what types of singularities would we expect to see on
the trajectory traced out by a robotic arm?

0.1 Motivation - Planar and Spatial Kinematics

A rigid body in Euclidean n -space is an oriented, connected subset of En
containing n+ 1 affinelyindependent points. Displacing these rigidly gives rise to
a rigid body motion. For example, if we have m rigid bodies jointed together,
where some of the bodies are fixed, we obtain a rigid body (also known as a
closed kinematic chain) which moves around to give a rigid body motion. Such
a construction is known as a m-bar linkage, or mechanism. The study of such
mechanisms is known as kinematics.

Perhaps the simplest (though by no means simple) type of such a mechanism
is the four-bar linkage. One bar is fixed, while the others can move in the plane.
The mechanism has one degree of freedom, that is, a point rigidly attached to
the mechanism traces out a curve as the motion progresses. We call this point
the coupler point (as it is generally attached to the bar opposite the fixed one,
the coupler bar) and the curve it traces out is the coupler curve. This curve is
generally of degree 6 and can be quite complicated. An example of a four-bar
mechanism is shown in Fig. 1.

Coupler Curve
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Four- bar mechanisms and features of their coupler curves are widely used

in engineering. A well-known example is the Watt four-bar mechanism (Fig.

2) which was originally designed by James Watt to guide the end of a piston

rod along a fair approximation to a straight line. It is currently used for axle

suspension in some cars [HD].

Fig. 2

Another example is the windscreen wiper mechanism shown in Fig. 3 [Hau].

This application of the four-bar linkage transmits motor-driven rotation of the
crank to reciprocating motion of the wind-screen wiper. The crank and left

rocker arm are pivoted in the vehicle frame at points A and B. The crank coupler

is pivoted in the crank at point C and the left rocker arm at point D. The crank,

crank coupler, left rocker and vehicle frame constitute a four-bar mechanism.

Since the length of BD is greater than that of AC, a full rotation of the crank

causes only a partial motion of the left rocker arm, leading to the desired motion

of the left windscreen wiper. A second four-bar linkage is formed by the right

rocker arm, the rocker coupler, the left rocker (pivoted at B) and the car body.

This second linkage transmits reciprocating motion from the left rocker arm to

the right rocker arm, driving the right windscreen wiper.

Rocker Coupler

Right
Rocker

C

Crank Coupler

Fig. 3
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Planar mechanisms with more than four bars are also used in mechanical

engineering. Sometimes in a particular situation it is more convenient to use

a six (or more) bar mechanism with one degree of freedom. As an example,

consider Hart's "inversor", shown in Fig. 4(a) [H]. This mechanism is a six-bar

linkage, drawn in simplified form in Fig. 4(b), which converts rotary motion into

true straight line motion.

Fig. 4

We can also consider planar mechanisms with two degrees of freedom. In

these cases the coupler point will trace out open sets in the plane (coupler sets).

The simplest closed kinematic chain with two degrees of freedom is the five-bar
mechanism [Hai]. Examples of planar mechanisms with two degrees of freedom

are shown in Fig. 5. The first is a seven-link, two-degrees-of-freedom chain and

the second is a nine-link two-degrees-of-freedom chain [Hai].

Fig. 5

Spatial rigid body motions are also of great interest, though in the past
designers have found them hard to work with as they are not so easily visualized

as planar mechansims. With the use of computer graphics this problem can
be overcome. The example which comes most immediately to mind is that of
the robotic arm. For complete versatility such an arm must have six degrees of
freedom. An example is shown in Fig. 6 [Hau].
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Fig. 6

2

Fig. 7

Another example is the spatial four-bar mechanism, shown in Fig. 7 [Hau].

This has one degree of freedom, like its planar analogue, and so produces a
space curve as its coupler point moves around. In fact, it has been proved
that most spatial four-bar mechanisms will not move [De]. The only mobile
cases are planar four-bars (in 3-space), spherical four-bars (where the joints are
on the surface of a sphere, as in Fig. 7) and the Bennett linkage, shown in
Fig. 8 [HD]. This linkage has opposite links of equal length and twist, and
successive common perpendiculars. However, although it has many interesting
mathematical properties (see for example [H], [SED, it does not appear to have
any practical use.
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:r,
I

Fig. 8

Experimenting with examples of linkages, it is noticeable that there exist
singularities on the coupler curves (or surfaces), some of which remain under
small pertubations of the link lengths. Examples on coupler curves in the plane

are double points (see the Watt linkage in Fig. 2) and tacnodes (see Fig. 1).
Cusps can also appear on coupler curves. These singularities may be useful

features of the coupler curves from an engineering point of view. Double points
are certainly of practical interest: if a transporting mechanism is required to

carry an object to a working position, leave it there by the holder (which is

serving as the coupler) and then retrieve it after a prescribed rotation of the

crank, then the working position must be a double point [Hail.

Cusps on the coupler curve can also be of use in the design of a mechanism.

An example is shown in Fig. 9 [Hail. The coupler point E passing through the

cusps El and E2 drives the output link BJ F so that it oscillates between two

positions BJF2 and BJF4 (also between these two postions it stops momentarily

in positions BJF1 and BJF3)'

"

.~
'IF,

Fig. 9

Another example of the use of cusps is the noise-reducing rocker stop, used
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in typewriters, shown in Fig. 10 [Hai]. In the diagram, the rocker (3) is activated
by the key (1), through a connecting lever (2). The return motion is carried out

by the spring (F2)' Now the rocker (3) must be stopped at both ends. This
can be done by a sudden impact against the base but this produces a harsh

noise. Even the use of sound-reducing materials such as felt is not satisfactory

as they tend to wear through with time. However, the noise can be reduced by

purely mechanical means. The coupler point E of the coupler (5) has a sharp

cusp at points El and E2. The rocker (3) is connected by 4 with the coupler
(5), where 4 is pivoted at E. The rocker can only move between two positions

(which correspond to El and E2)' The spring F1, connected by the crank (7),
pulls the four-bar linkage AoCDBo out of the two positions corresponding to
the end positions of the crank and the coupler curve cusps. A loud noise is thus

avoided since no sharp impacts occur.

Fig. 10

Considerable engineering literature on mechanisms exists, and indeed on

the whole topic of kinematics (see for example [BR], [Hai], [HD], [H]) though

the mathematics associated with the subject has not been studied as much until

recently (see [GN], [Mar]). Also, although many applications for singularity

theory have been found little work seems to have been done to apply it to

kinematics (apart from Donelan, who has looked at mono-germs as local models
for one-dimensional motions of the plane [Dol] and [Do2]). It is clear from the
above examples that the existence of some singularities on the coupler curves
and surfaces is already known and exploited (such as the double point and cusp
on planar coupler curves). It is possible that other types of singular behaviour,
once known to exist, may be of practical value in engineering design and it is the
aim of this thesis to find the singularities which may occur in these situations.
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It is also interesting to find out what might be seen 'nearby' a singularity, i.e.

what we expect to see if we change, very slightly, the parameters that give rise

to a particular type. In the language of singularity theory, we want to analyse

its unfolding, and these analyses are also an aim of this thesis. Here we will

study planar and spatial motions with one and two degrees of freedom. Further

studies, particularly of spatial motions with higher degrees of freedom, are likely

to be of engineering interest.

0.2 Formalizing the problem

Let E( n) be the Lie group of rigid motions of Rn (the semi-direct product
of SO(n) and Rn). Then consider a map

J.L : Rd ---+ E(n)

t t---+ J.L(t)
where d is the number of degrees of freedom of the rigid motion and J.I.( t) is
itself a rigid motion R" _ R" (See Fig. 11). Given any point w E Rn, p(t)

can be applied to it. Ranging over all t gives the path of w in Rn, or the

trajectory of w, This can be thought of as a map

<Pw : Rd ---+ R"

t t---+ (J.I.( t))( w )

.;AI>------ +0-/
I,,-----,

""

Fig.II

It is the trajectory map <Pw : Rd - Rn that is to be studied: what sin-
gularities does it generically exhibit? We shall call these singularities kinematic
"ingularitie",
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0.3 Review of contents

Chapter 1 contains a brief overviewof the definitions and results from sin-
gularity theory that will be needed in the rest of the thesis, on the whole using
the notation of Wall [WaI]. In chapter 2 an important transversality result
is proved which allows the original problem to be translated into a finite di-
mensional one. Further results show that solving the problem is equivalent to
classifying singularities of low codimension, up to A-equivalence.

Some of the classifications of singularities that are required to study the
problem have already been completed and in these cases the relevant singularities
can be extracted straight from these lists and their unfolding spaces can be
analysed. However, when such classifications do not exist it is necessary to
compute them, in particular the cases of mono-germ singularities R -+ R3 and
various multi-germ singularities. The classification of mono-germs R -+ R3 up
to A-equivalence is described in chapter 3. Multi-germ classifications are carried
out as they arise in the next four chapters.

Chapters 4 to 7 contain the investigations of each of the four separate cases
that are to be studied here. Firstly, we look at motions with one degree of
freedom of the plane (chapter 4) and of space (chapter 5). Secondly, we study
rigid motions with two degrees of freedom in the plane (chapter 6) and in space
(chapter 7).

(Part of the material in this thesis has appeared in print or in preprints.
Chapter 3 appears in shorter form in [GHI], the results of Chapters 2, 4 and
5 correspond to the preprint [GH2] and the multi-germ result in Chapter 6 is
included in the preprint [BH].)



Chapter 1 - Definitions and Techniques

1.1 Notation

We will classify singularities of map-germs f :Fn, S ~ FP, 0 (where F = R or
C and S = {XI, ... ,Xr} E F"?") up to A-equivalence, that is, f is A-equivalent
to 9 (f '" g) if there exist diffeomorphisms hI, ••• , h.; : F", Xi ~ F", Xi and
k : FP, 0 ~ FP, 0 such that the following commutes

f
---+

where h = hi in a neighbourhood of Xi. This equivalence is the natural equiv-
alence for our problem: we want diffeomorphic changes of co-ordinates in the
source and target not to affect the classification of the different types of singu-
larity which are possible.

We define A by

A ={Diffeomorphism germs Fn, S ~ Fn, S}

x {Diffeomorphismgerms FP, 0 ~ FP, O}

Write ri" f for the k-jet of the r-germ f and denote the vector space of
k-jets F'", S ~ FP, 0 by rJk (n, p). This is acted upon smoothly by the Lie
group Ak (the set of k-jets of elements of A), and two k-jets are said to be A-
equivalent if they lie in the same Ak -orbit. We also define a subgroup Al of A
by

At ={Diffeomorphism germs F", S --+ Fn, S whose 1 - jet is the identity}

x {Diffeomorphism germs FP, 0 ~ FP, 0 whose 1 - jet is the identity}.

Define A~ as above. We need to know the tangent spaces to the orbits of
the actions of these Lie groups. Following the usual notation, let En = En(S)
denote the ring of function germs F'", S --+ R, and Ep the ring of function germs
FP, 0 --+ R and let mn, mp denote the corresponding maximal ideals. Then let
Of denote the En -module of germs of Coo vector fields over f and define

9
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On = O(1Fn,s), Op = O(lFI',O)' Now we define the following homomorphisms:

tf : On ---+ Of

<p f---+ df. <P

wf : op ---+ Of

1jJ f---+ 1jJ 0 f

(df is the differential of f). Then the tangent space of the A k -orbit rj k f in

rJk(n,p) is given by

and to the A~-orbit:

T At.f = tf(m~.On) + wf(m;.Op).

We also define the 'extended' tangent space:

TAe.] = tf(On) + wf(Op).

For mono-germs (r = 1) we calculate these tangent spaces by forming the

Jacobian ideal of I , (af lax1,"" af laxn). Then we have

T A.f = mn(af lax}, ... ,af laxn) + J*.mp(e}, ... , ep)

(where e, = (0,0, ... ,0,1,0, ... ,0) with 1 in the ith position). Note that TA.f

has a mixed module structure. Similarly,

and

To show how we calculate tangent spaces for multi-germs we introduce the fol-

lowing notation for a multi-germ. Given an r -germ f : F", S ~ FP, 0, where
S = {S1, ... , sp}, we take local co-ordinates at each sr . For ease of calculation

we use different letters to represent these co-ordinates, separating them by a

semi-colon ego the tri-germ f : F2, S --+ F2, 0, where S = {S1, S2, S3}, may be

writtenasf(x,YjX,YjX,y) = (x,y2jXy,y2+X3jX,y). When we act on f with
the Lie group A we can change co-ordinates, via diffeomorphisms, independently

in the source round each Si, but in the target the same "ector field must apply
to each set of co-ordinates. Thus if we have a multi-germ f : F'", S --+ FP, 0
with co-ordinates in (Fn,S) given by (Xl, ... ,XnjXt .... ,Xnj ... jXl, ... ,xn)
we calculate the tangent spaces as follows:
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TA·f = mn(aflax}, ... ,aflaxn) +mn(aflaxl, ,aflaXn) + ...
+ mn(af lail, ... , af lain) +r .mp(e}, ,ep).

TAI.f = m! (of laxI, ,af laxn) + ... +m! (af lai}, ... , af lain)
+ r.m~(e}, ,ep).

TAe·f = £n(af lax}, ,8fI8xn} + ... + £n(8f 18il, ... , 8f 18in)
+ r.£p(el' ,ep).

1.2 Determinacy

We say that f is k-A-determined if every map-germ with the same k-

jet as f is A-equivalent to it (similarly for Ad. A map-germ is A-finite if
it is k -determined for some k < 00. Then, if we know that a map-germ f is
k-determined, it is sufficient to work in the k-jet space rJk(n,p) which is a
finite dimensional vector space. The smallest value of k (if it exists) for a given
map-germ, is known as the degree of determinacy of f. We need some criteria
for finding this degree of determinacy. From [BdPW] we have the followingfor
mono-germs (where L( G) is the Lie algebra of G - equivalent to the tangent
space).

1.2.1 Theorem Let?-i be a strongly closed subgroup of A such that L( JI?-i)

acts nilpotently on Fn+p. Then a CT map-germ f : (F", 0) ~ (FP, 0) is

k - ?-i-determined if and only if

1.2.2 Corollary A CT map-germ f is r -Al -determined if and only if

m~+I.£P C TAI.f + m~+I .(f*mp.£n + m~+1 )£~

This gives exact values for Al -determinacy, and good upper estimates for
values of A-determinacy. These results generalise in the obvious way to multi-
germs.
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1.3 Codimension

In order to distinguish singularities we need invariants. In particular we use
the codimension of a map-germ, which is defined in the followingway:

1.3.1 Definition

(i) The A -codimension of a map-germ I is given by

A-codim(f) = dimj-;A~;
(ii) The Ae -codimensioti of I is given by

Ae -codim(f) = dimF :~~.~

In fact in our case it is often more useful to calculate the Ae -codimension,
but it may be simpler to find the A -codimension. We have the following result
which relates the two:

1.3.2 Theorem {Wi] Given an A -finite non-stable map-germ I :F", 5 ___.
FP,O, where 5 = {8I, ... , 8r} we have

Ae -codim(f) = A-codim(f) + rep - n) - p.

Proof The case r = I is noted in Wall [Wall. For a sketch proof, we note
that TAe.1 contains rn + p more things than TA.I, but En.O, contains rp

more things than mn.O" so

. En.O, d. mn.O,
dimFTAe.1 - rp + rn +p = ImF TA.I

and the result follows.

More formally, we quote a proof from unpublished notes of Wilson [Wi].
Let Ak(f) denote the A-orbit of z = rjk 1(5) in rJk(N, P) (where N is an
n-dimensional manifold and P is a p-dimensional one). Assume that 1(S) = o.
We claim that

codimAk(f) = Aecodim(f) + rn - dim(rjk f)-IAk(f)

(where (rjk f)-IAk(J) is the manifold of equisingular points of 1in N(r».

Proof of claim. For simplicity we will give the proof in the case r = 1 (it is
the same when r > 1). We need a result of Mather ([MalIl], Prop. 7.4):
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Let z = jkf(x). We can identify TzJk(N,P)r with Vf. Under this
identification,

(tfVn + wfVp)r = 'TrfTzAk(f)

where 'Trf: TzJk(N,P) -+ TzJk(N,P)r is the projection along Tz(im jkf).

Now we let Xo be our source point, Yo = f(xo), Zo = jk f(xo). Let
a1, ... ,ac (c = codf) project to generators of

(
Vf ) '" TzoJk(N,P)

tfVn + wfVp ro - 'TrfTzoAk(f)

Let F(X,U1, ... ,Uc) = f(x) + ~ui.ai(x) (,mini-versal deformation of 1').
Let itF : N x RC -+ Jk(N,P) denote the map in which we take k-jets of
F in the N direction only. Thus it F if)Ak(f) at (xo, 0). It follows that
codk(f) = c + n - dimM, where M = (jf F)-1 Ak(f). Now d(jf F) maps
Tro N x 0 into Tzo (Ak (f) + imj kf) and Xo x R C isomorphically onto a normal
space Nzo(Ak(f) + imjk f). It follows that Tro,oM C TroN x o.

At some other point (x, 1.1.) EM, F" is A-equivalent at x to f at Xo, so its
codimension c is the same. But j; F if) Ak(f) holds for (x, u) sufficiently near
(xo,O) by openness of transversality. Thus we again have that d(jf F) maps
TrN x u into Tz(Ak(F,,) + imjk Fu) (where z = jk F,,(x) and Fu is the germ at
x) and x x RC isomorphically onto Nz(Ak(Fu) + imjk Fu). Thus we again have
T(z,u)M C TrN x u. Since 'Tr : M -+ RC has rank 0 everywhere, we conclude
that MeN x O. Thus M = (jkf)-1Ak(f) and the claim is proved.

It remains to note the dim (rj k f) -1Ak (f) = p( r - 1) to give the desired
result. o

1.4 Normal Forms and Unfoldings

During the classification process, when we reach a k-determined k-jet, jk i.
this is known as a normal form (since by definition all other map-germs with
the same k-jet are A-equivalent to it). The plan is to find these normal forms
and then to distinguish them from each other by finding invariants associated
to them.

The next stage is to consider the family of map-germs in the jet space
which contains a given map-germ f, ie. to see what map-germs are near f in
rJk( n, p). Such a family is called an unfolding of f. Certain unfoldings contain
all functions close to f. These are known as uersal unfoldings.
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1.4.1 Definition Given a map-germ f: F'", S --+ FP, 0, then a map-germ

F : Fn x Fq, S --+ FP x Fq, 0

such that F(x,O) = (f(x),O) is called a q-parameter unfolding of i .
Let h: Ft, 0 --+ F", 0 be a germ of a diffeomorphism. Then F is a versal

unfolding of f if every unfolding of f is induced by F, ie. it is isomorphic to

h" F for some h as above.

ITwe choose the smallest possible number of unfolding parameters then we

have a mini-versal unfolding of f. We have the following standard result.

1.4.2 Lemma Given a map-germ f: F'", S --+ FP, 0, consider a subspace T

of rJk(n,p) spanned by elements ft, ... ,fq E rJk(n,p) such that

rJk(T Ae.f) + T = rJk(n,p)

Then

q

(x}, ... , xn, AI, ... , Aq) 1--+ I(Xl, ... , Xn) +L Ai!i(Xl, ... , Xn)
i=1

is a versal unfolding of I·
SO in order to find a versal unfolding for a map-germ I we find TAe.f

and then look for a suitable set {It, ... , Iq} to make up the whole jet space,

rJk(n,p). Clearly, q = Ae-codim(f) . We can then study the space of param-

eters (Al, ... , Aq), the unfolding space.

1.5 Complete Transversals

In some cases the appropriate A-classifications which we need to use have

already been carried out (see [B2), [dPT) , [Ri2J, [Md2]) but, particularly in

the case of multi-germs, this is not always so and we will need to do some

classification of singularities here. The method which we shall use was first

developed by Gibson & Dimca [GD) for contact-equivalence. Bruce & duPlessis

[BdP] have subsequently shown that the same method works for Al -equivalence.
This gives a finer classification than A-classification, which is what we would
like to do, so when the Al -classification has been carried out we have to check
whether different Al -normal forms are actually A-equivalent.

The method is an inductive one: given the k -jet of a map germ f we
look for the (k + I)-jets which have that k-jet. This could be done by listing
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all possibilities, but the complete transversal method allows us to cut down on
the number of such possibilities dramatically in many cases. When we reach a
k -determined k -jet we stop.

The basis of this method is the following :

1.5.1 Theorem [BdPJ Let f be a k -jet in rJk(n,p) and let T be a vector

subspace of the space of map-germs of homogeneous mappings F'", S --+ FP, 0 of

degree k + 1, Hk+l(n,P)r (where S = {s}, ... , sr}). If

rJk+l(TA1.f) nHk+l(n,P)r + T = Hk+l(n,P)r

then any (k + 1) -jet f is Al -equivalent to f + t for some t E T.

In order to reduce the resulting Al -classification to an A-classification, we
use the following result due to Mather:

1.5.2 Theorem (Mather's Lemma) [MaIII]

Let G be a Lie group acting smoothly on a manifold U, and let V be a

connected submanifold of U. Then V is contained in a single orbit of G if

and only if

(i) for all v E V, TvV ~ Tv(G.v) and

(ii) dim Tv(G.v) is independent of the choice of v E V.

We use these results extensively in Chapter 3 to classify mono-germs C, 0 --+

C3, 0 and also in Chapters 4 - 7 to classify multi-germs of various types.



Chapter 2 - Transversality

2.1 Introduction

We want to study one parameter rigid motions of R2 and R3 to see which
singularities can generically occur on the trajectories of such motions. First we
give some definitions (taken from [GG]).

2.1.1 Definition Let X and Y be smooth manifolds and f : X -+ Y be a
smooth mapping. Let W be a submanifold of Y and x a point in X. Then
I intersects W transversally at x (denoted by f ~ W at x) if either

(a) I(x) rI. W, or

(b) I(x) E Wand Tf(x)Y = Tf(x)W + (df)x(TxX). If A is a subset of X
then I intersects W transversally on A (denoted by IitW on A) if f ~ W
at x for all x EA. Finally, I intersects W transversally (denoted by f iI\ W )
if I;f\W on X.

2.1.2 Definition Let X and Y be smooth manifolds as before.

(i) Denote by COO (X, Y) the set of smooth mappings from X to Y.

(ii) Fix a non-negative integer k. Let U be a subset of Jk(X, Y). Then
denote by M(U) the set

{I E cOO(X,Y): jkf C U}

Note that M(U) nM(V) = M(U nV).

(iii) The family of sets {M(U)} where U is an open subset of Jk(X, Y) form
a basis for a topology on coo(X, Y). This topology is called the Whitney c»
topology. Denote by Wk the set of open subsets of Coo(X, Y) in the Whitney
Ck topology.

(iv) The Whitney Coo topology on Coo(X, Y) is the topology whose basis is

W = U~oWk.

16
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Now let E(p) denote the Lie group of rigid motions of RP. We can identify
this with the semi-direct product SO(p) x RP , i.e. any element of E(p) is the
product of a rotation and a translation. If we have a map p :N -+ E(p) , where
N is a smooth manifold of dimension n, then p( t) is a map RP -+ RP defined
by

p(t)(w) = p(t)w + ret)

(where pet) E SO(p) is a rotation and ret) E RP is a translation.) We can then
find the traj ectory of a given point w E RP under p( t) ,

<1>",..., : N ~ RP

t f-+ p(t)(w) = p(t)w + ret)

In section 2.2 we will state and prove a general theorem on transversality
which shows that the problem of classifying the singularities of such trajectories
is equivalent to stratifying jet-spaces into A-orbits. We then prove some gen-
eral results on the codimensional restrictions imposed by the given problem of
classifying singularities of rigid motions.

2.2 Transversality result

The trajectory map <1>",..., induces on k-jet space the map

jk<1>",141 : N ~ Jk(N, RP)

Similarly, on the multijet space we have

J.k... . N(r) ~ Jk(N RP)r ~",...,. r,

Since <1>",141 depends smoothly on w we can define the map

rjk<1>" : N(r) x RP ~ rJk(N,RP)

where, for each point w E RP we take rjk<1>",I4I.

The following transversality result is based on that of [SD], and the proof
modelled on Wall's proof of the same result in [Wa4].

2.2.1 Theorem For any submanifold S <;;; rJk(N, RP), the set of curves

J.L : N -+ E(p) such that rj k<1>" m S is open and dense (and so residual)
in COO( N, E(p», endowed with the Whitney topology.

Proof We need the following lemma:
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2.2.2 Lemma Let Q be any submanifold of the manifold P. Then the set
{f E C<X>(N, P) If iI\ Q} is dense in COO( N, P) , provided we can always embed

f in a family F: N x U --t P which is a submersion.

Proof Let F : N x U --t P be a submersion and Q CPa submanifold. Then
F-1(Q) is a submanifold of N xU, and for each u E U , fu = FINx{u} is
transverse to Q if and only if N x {u} meets F-1 (Q) transversely.

Now changing F for the projection 7r : N x U --t U in the above we see
that equivalently we must have 7rIF-1(Q) transverse to {u} (considered as a
submanifold of U), ie. u needs to be a regular value of 7r1F-1(Q). But by
Sard's Theorem, this holds for all u except those in a set of zero measure. 0

It follows from this that in order to show density we must embed Il 10 a
suitable family'll: N x W --t E(p) such that

rjk~'I1 : N(r) x RP x W --+ rJk(N, RP)

is a submersion.

In fact, in order to show openness, this induced map must be a submersion
when restricted to a chosen compact K = Kl X •.• X K; in N(r) (where Kp is
a compact subset of N for 1 ::5 p ::5 r). This is follows from:

2.2.3 Lemma If K is a compact subset of N(r) of the form Kl x ... x K;
(with K; a compact subset of N, 1~ p ::5 r) and S is a closed submanifold

of rJk(N, RP) then the set {Il E c=is. E(p» : rjk~"IKxRP in S} is open
in Coo(N,E(p».

Proof Write Ts = {Il E c=tt«, E(p» : rjk~"IKxRP if' S}. We want to
show that Ts is open in Coo(N,E(p». Wenote that if the condition .r», it\ S
defines an open set then the condition rjk~"IKxRP if\ S certainly does as well.
Recall that we have a map

.r», :N(r) x RP --+ rJk(N, RP)

Now define
() : C<X>(N, E(p» --+ C<X>(N(r) x RP, rJk(N, RP»

·kn-Il ....._.....rJ '£'"
This is a continuous map (by definition of ~" and by properties of the Whitney
Coo topology).
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The set T = {f E coo(N(r) x RP,rJk(N,RP)) : f th S} is an open
subset of coo(N(r) x RP, .i-;», RP)), since S is a closed submanifold of
.rt», RP). So 8-1(T) is an open subset of COO(N,E(p)) , 8 being contin-
uous. But 8-1(T) = Ts, so Ts is open. o

Now we want to show that openness holds if S is any submanifold of
rJk(N, RP), not just a closed submanifold. Since N is paracompact, we can
write N(r) = Ui Ci, a countable union of sets Ci which are compact and of the
form Kl x ... x Kr, with C't open submanifolds of N(r). We can also write 5
as a countable union 5 = Uj Sj where the Sj are compact (and hence closed)
and the Sj are open submanifolds of S.

Write

Clearly, Ts = ni nj Ti,j, a countable intersection of open sets, and so, by
Lemma 2.2.3, Ts is open for any submanifold 5 ~ rJk(N, RP).

So we are looking at sets Ki x ... x K; in N(r). Since we can piece together
independent deformations of Jl on K, x ... x K; using partitions of unity, and
since the space of multijets is just a product, it is sufficient to find a family of
maps I": N x A ~ E(p) such that

l~[' :N x A x RP ~ Jk(N,RP)

is a submersion.

But here we are finding a suitable submersion by allowing the point w E RP
to alter as well as by deforming It. It is sufficient to consider

j :N x A x RP ~ Jk(N,RP) x RP

j(t,a,w) = (jk~['G(w)(t),w)
(where jk~['G(w)(t) is the k-jet obtained at a fixed a E A and w E RP) since
the map

7rl : Jk(N, RP) x RP __ Jk(N, RP)

is a submersion and j k ~r = 7rl 0 j. Then we can concentrate on deforming f.1

so that we can get a submersion at any point w E RP .

Given that j is a submersion, the product

N(r) x Ar x (RPt __ rJk(N, RP) x (RPr

will be one as well, and we can restrict to K C N(r) , identify Ar with Wand
restrict (RPt to the diagonal.
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Consider the vector space of translations of RP, V. By the proof of Thorn's

Theorem [Wa4], we can find a family of maps

ro : N x A ---+ V

such that jkro : N x A -+ Jk(N, V) is a submersion. Here, A = Af f(L, 1')

where N eLk th order non-degenerate. Since V can be identified with RP,
we then have a submersion onto Jk(N, RP).

Now define r by

ret, a) = ro(t, a) 0 Ji(t).

So we have
~r(t,a,w) = r(t,a)(w)

= (ro(t, a) 0 Ji(t»(w)

= J.l(t)(w) + ro(t, a)

Fixing t and w but allowing a to vary, we get something of the form

ro(t, a)+a, with a constant, and so we have a submersion of A onto Jl(N, RP)
and thus the map

j :N x A x RP ---+ Jk(N,RP) x RP

is a submersion and the theorem is proved.

o
What the theorem tells us that is that if we find a smooth submanifold

of rJk (N, RP) then generically for a given Ji : N -+ E(p) the mapping rj k ~ I'

will be transverse to it. In particular, if we stratify rJk(N, RP) into A-orbits

(which are necessarily smooth submanifolds), we get an induced stratification

of the domain via (rjk'Pp)-I. Thus if we want to classify the singularity types

which occur on the trajectories 'PI' up to A-equivalence it is enough to stratify

rJk(N, RP) into A-orbits. The preimage of each stratum under this map will

either be empty or a smooth submanifold of the domain, of the same codimen-

sion. This means that we have a restriction on the size of the codimension, and
in fact general results can be proved on this matter as follows.

Let smooth manifolds N, P,Q have dimensions n,p, q respectively. Con-

sider a smooth family of maps f w : N -+ P, where w E Q, thought of as a
single smooth map F : Q x N -+ P. Now, for each parameter value wand
positive integer k (order of the jet) we have a r -multi-jet extension

rjk fw : N(r) ---+ rJk(N, P)
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glvmg a map

2.2.4Proposition Given an A-invariantsubmanifold X of rJk(n,p), giving
rise to another A -invariant submanifold Y in .rt»,P), let X have A-

modality m. If rjk F is transverse to Y then for any w E Q with rjk fw E Y
the Ae -codimension of fw is less than or equal to q + m.

Proof First we show that in this situation wehave codim(X) ~ p+q+r(n-p).
rJk(N, P) is the total space of a fibre bundle with fibre rJk(n,p) and base-
space an open subset of (N x Pt. Thus the base-space has dimension rep +n) .
Y lies over the subset of the base-space defined by the condition that the r
targets coincide: this subset has dimension rn + p, and hence codimension
rep + n) - (rn + p) = (r - l)p in the base-space. So, by local triviality,

codim of Y in rJk(N, P) = codim of X in rJk(n,p) + (r - 1)p

By the transversality hypothesis, the codimension of Y cannot exceed the di-
mension q + rn of the domain, so we do have codim(X) ~ p + q + r(n - p).

To prove the result, note that from Theorem 1.3.2 we know that for any
non-A -stable f :N - P the following is true:

Ae-codim(f) = codim of orbit in rJk(n,p) + rep - n) - p

From the above we have
codim of orbit in rJk(n,p) = codim of orbit in X + codim of X in rJk(n,p)

~ m+ p + q + r(n - p)

So Ae -codim (f) ~ m + p + q + r( n - p) + rep - n) - p =m + q. o

Thus if we are considering motions of the plane we have q = 2 and so we
are looking for strata in the jet space with 'codimension' less than 3. ITthe
stratum is an A -simple one then m = 0 and we require the Ae-codimension
to be less than 3, but we have to be more careful when looking at families with
moduli. Similarly, for motions of the plane we require the 'codimension' of the
strata to be less than 4.



Chapter 3 - Simple Singularities of Space Curves

3.1 Introduction

When considering one dimensional motions of space, what we need to look at
are singularities R,O ---+ R3 up to A-equivalence. The classification of such
singularities had not been carried out, so it seemed natural to begin this clas-
sification in order to at least find those singularities with Ae-codimension less
than 3. In fact, here we classify all A-simple singularities of space curves (which
takes us up to Ae-codimension 11) and give invariants to distinguish the singu-
larities. It turns out that this classification was also carried out, independently,
by Farid Tari and Andrew duPlessis [dPT] as part of a wider progranune of
A -classification.

The classification was done by using the method of complete transversals,
as described in section 1.5 of chapter 1. The results are summarised in the two
theorems below. The precise definitions of the terms planar and spatial will be
given in section 3.5 of this chapter.

3.1.1 Theorem Every planar A -simple germ of an analytic map f from C
to C3 is A -equivalent to one of the following normal forms (where G(J) is the
..et of generator .. of the ..emigroup of f, d(J) is the degree of Al -determinacy
of f and c(J) is the Ae -codimension}:

Normal Form G(J) d(J) c(f)

(t,O,O) 1 1 0
(t2, t2m+I, 0) 2,2m + 1 2m+l 2m
(t3, t3m+I, 0) 3,3m + 1 6m-l 6m
(t3, t3m+2, 0) 3,3m + 2 6m+l 6m+2
(t3, t3m+I + t3n+2, 0) m ~ n < 2m 3,3m + 1 6m-l 4m + n + 1
(t3, t3m+I + t3n+2, 0) n < m ~ 2n 3,3n + 2 6n+ 1 4n+m+2
(t4, v, 0) 4,5 11 12
(t\ tll +e,0) 4,5 11 11
(t4,t6 +t2m+l,0) m ?3 4,6,2m + 7 2m+9 2m+8

22
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Normal Form G(f) d(f) c(f)

(t4, e,0) 4, 7 17 18
(t4,e +t9,0) 4,7 17 16
(t4,e +t13,O) 4,7 17 17

3.1.2 Theorem Every spatial A -simple germ of an analytic map from C to
C3 is A -equivalent to one of the following normal forms:

Normal Form G(f) d(f) c(f)

(t3, t3m+1, t3n+2) m:Sn <2m 3,3m + 1,3n + 2 3n+2 2m + 2n + 1
(t3, t3m+1, t3n+2) n<m:S 2n 3,3n + 2,3m + 1 3m+l 2m + 2n + 1
(t3,t3m+1 +t3n+2,t31+2) m:Sn<I<2m 3,3m+l,31+2 31+ 2 2m + n + I + 1
(t3,t3m+2 +t3n+l,t31+1) m<n<I:S2m 3,3m+2,31+ 1 31+ 1 2m + n + 1+1
(t\ t5, t6) 4,5,6 7 8
(t4,t5,t1) 4,5,7 7 9
(t\ t5, tIl) 4,5,11 11 11
(t\ t5 + t7, tll ) 4,5,11 11 10
(t4, t6, t2m+l) 3:Sm 4,6,2m + 1 2m+3 2m+4
(t4, t6 + t2m+1, t2m+3) 3:Sm 4,6,2m + 3 2m+5 2m+5
(t4, t6 + t2m+1, t2m+5) 3:Sm 4,6,2m + 5, 2m + 7 2m + 5 2m+6
(t4, t6 + t2m+1 , t2m+9) 3:Sm 4,6,2m+7,2m+92m+9 2m+7
(t\ t1, t9) 4,7,9 10 13
(t\ t1, t9 + tlO) 4,7,9 10 12
(t\t1,t1O) 4,7,10 13 14
(t4,t1 +t9,t1O) 4,7,10 13 13
(t4,e,t13) 4,7,13 13 15
(t4,e +t9,t13) 4,7,13 13 14
(t4,t1,tI7) 4,7,17 17 17
(t4,t1 +t9,tI7) 4,7,17 17 15
(t4,e +tI3,tI7) 4,7,17 17 16
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3.2 Invariant Semigroups

We can associate a value semigroup to the germ of a curve in the following way.
There is a natural valuation

ord : £1 -- Z U {oo}

</> f---t ord( </> )

where ord(<I» is the order of the power series expansion of <I> at O. Now ord is
a homomorphism of semigroups, where we take the multiplicative structure on
£1 and the additive one on Z. So to any subring A ~ £1 we can associate a
semigroup ord(A) ~ Z. Then we can define the semigroup of a map-germ:

3.2.1 Definition Given a map-germ f: C -+ C3 , and an integer k 2: 0, then
r(m~) ~ £1 is a subalgebra to which we associate the semigroup of integers
S,,(f) = ord J*(m~).

Immediately we have

3.2.2 Proposition S"U) is A -invariant.

Proof Given f E J"(1, 3), we can use diffeomorphisms in the source and
target to change f into an A-equivalent map-germ.

Given a diffeomorphism in the source, </> : C -+ C, and a polynomial
9 : C3

-+ C we compare the order of 9 0 (J 0 </» with that of 9 0 f. We have
ord(g 0 (J 0 <1>)) = ord((g 0 f) 0 </»

= ord(g 01) . ord( </»

(since both 9 0 f and <I> are functions of one variable)

Noword (</» = 1 since </> is a diffeomorphism, so ord(g 0U 0 </>)) = ord(g 0 f) .
Thus the semigroup is 'R.-invariant.

To show that SkU) is 'c-invariant, if we replace f by h 0 f, where h :
C3, 0 -+ C3, 0 is a diffeomorphism, then we have

(h 0 f)*Cm:) = h*U*Cm:))

= rCm!)
So SkU) is A-invariant. o

We now make the following definition:

3.2.3 Definition A semigroup S ~ Z is cofinite when there exists an integer
N ~ 1 such that every integer n > N is in S.
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3.2.4 Proposition Let f E Jk(1,3) and let k ? O. Then f IS A -finite if
and only if 5k(f) is cofinite.

Proof By [Wall we know that f is A-finite if and only if it is £-finite in this
case since p ? 2n, and by [BdPWj we know that a germ is £ -finite if and only
if it is lk -finite. Now f is lk -finite if and only if

mf ..+l.03 ~ r(m~)

for some Nk ? 1 (from [BGdP]). But mf ..+t is generated by tN ..+t and so the
proposition is proved. o

Given an A-finite map germ f we would like to know the exact degree
of At -determinacy, k, or at least a maximum value for the degree of AI-
determinacy, so that we can then work in the jet space Jk(1,3) and find normal
forms for f.

3.2.5 Proposition Let f E Jk(1,3) be A -finite. Then it is Nk - lk-I -
determined, where N" is the maximum number not in SkU).

Proof Since f is A-finite, its semigroup SkU) must be cofinite and so Nk
exists. Now N" is the least integer N for which

and by [BGdP], f is N -£"-1 -determined if and only if (*) holds. 0

So, given an A-finite singular germ f E Jk(1,3) we have a nested sequence
of cofinite invariant semigroups

and hence an increasing sequence of integers

1s No s ». s N2 ~ ...

Now N'l is the degree of It -determinacy and also the degree of E -determinacy
(by [BGdP)). In particular, N2 is an upper bound for the degree of AI-
determinacy.

A semigroup S c Z can be characterized by its generators and so in Theo-
rems 3.1.1 and 3.1.2 we list the generators of St(f) ( in column labelled G(f».
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There are some further invariants of singularities C,o ---+ C3, 0 which we
can look at. First we need the following Lemma (a slightly changed version of

a result from [B2]: the proof is a variation on that of the original, suggested by

J.W.Bruce).

3.2.6 Lemma A map-germ J : e ---+ C3 is A -finite if and only iJ it lS

irreducible, as a parametrization oj an algebraic curve.

Proof It is a standard result in curve theory that by a change of co-ordinates

in the source one can write J as
00 00

J(t) = (tq, L ajtm; 'L bjtn;)
j=l j=l

and that the germ is irreducible if and only if the highest common factor h of

the mj's, nj's and q is 1. It suffices therefore to show that A-finiteness is

equivalent to this arithmetical condition.

It is shown in [Wall that, for p ~ 2n, a singular holomorphic germ J :
(en, 0) ---+ (C", 0) is A -finite if and only if 0 in en is an isolated singularity of

J, and the restriction of J to some neighbourhood of 0 in en is injective. Here

n = 1,p = 3 so certainly p ~ 2n. Also, it is clear that any germ of the above

form does have an isolated singularity at 0 E e. Thus it remains to check that

J is injective on some neighbourhood of 0 if and only if h = 1 .

Suppose first that h > 1. Then we can write J(t) = (x(th),y(th),z(th»
for appropriate holomorphic germs x, y, z. In any neighbourhood of 0 E e
we can choose s,t with s # t and sh = th. Then J(t) = J(s), so J fails to be

injective on that neighbourhood.

Conversely, suppose h = 1. Let C = {(s, t) E e2
: J(s) = J(t)}. C is

a germ of an analytic variety of e2, so it has only finitely many irreducible

components. C cannot coincide with e2 else J is constant. Thus C comprises

finitely many branches. Certainly, C contains the diagonal s = t: we aim to
show there are no further branches - which will establish the result. Let B be a

branch of C through 0 E e2, parametrized as s = u", t = oun + h.o.t. (where

o may be zero). Now x(t) = tq so xes) = x(t) yields oq = 1, h.o.t. = O.
Hence t = os where 0 is a q th root of unity. Now substitute in y( s) = y( t)
and z(s) = z(t) and compare coefficients to get om = 1 for all powers m of t
which appear in f. Since the highest common factor of these is 1 we must have
o = 1, so B is the diagonal in C2, as required. o
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3.2.7 Proposition Any A-finite germ in f: (e,o) ---+ (e3,0) is A-equivalent

to a germ whose components have the form x(t) = tP,y(t) = tq+ h.o.t. ,z(t) =

t" + h. o. t. where p < q < r (we allow the possibility that r = 00), where
no exponent of a power in yet) lies in the semigroup generated by p, and no

exponent of a power in z(t) lies in the semigroup generated by p and q.

Proof A-finiteness has two consequences. First, we can assume that the com-

ponents are polynomial: and it is no restriction to suppose these polynomials

monic. Second, we can assume (Lemma 3.2.6) that at most one component of
the germ is zero. By permuting the co-ordinates we can suppose further that

p ~ q ~ r. By a change of co-ordinates in the source we can write x( t) = tP •

Co-ordinate changes in the target of the form X = x, Y = y - kx'"; Z = z allow

us to get rid of any power of t in yet) whose exponent is in the semigroup gen-

erated by p, without altering the first and third components. Then co-ordinate

changes in the target of the form X = x, Y = y, Z = z - kxllyb allow us to get

rid of any power of t in z( t) whose exponent lies in the semigroup generated by

p and q, without altering the first and second components. 0

A germ in the form described in the above proposition is said to be in a

pre-normal form. The integers p and q are A-invariants, indeed p is the

least positive integer in the value semigroup 81(I), and q is the least integer

in the semigroup which is greater than p and not a multiple of it. We refer to

the minimal order p as the multiplicity of the germ, and to the pair (p, q) as

the invariant pair. Note that r is not an A-invariant: for instance the germs

(t4, t6+t1, tI3), and (t4, t6 +t1, tI5) are in pre-normal form, yet equivalent under

the C-equivalence X = x, Y = y, Z = 2z - y2 + x3 + x2y.

3.3 A-simplicity

Following Lemma 3.1 in [BGa] we have:

3.3.1 Lemma Given any A -finite singular germ J : (e,O) ---+ (e3, 0) in
prenormal form J(t) = (tP, tq + h.o.t, t" + h.o.t.), if p ~ 5 or if p = 4 and
s > 7 then J is not A-simple. (See Proposition 3.6.1 for the converse)



Chapter 9 - Simple Singularities of Space Curves 28

Proof (i) For P ~ 5: Consider the map

'" : C" x C" x C" --+ J2p-l(1, 3)

Then ",(a, b, c) is a typical 2p - 1 jet with no terms of order less than p (and

f = ",(ao,bo, co) for some ao,bo,co).

Claim: Tp.(a,b,c)fm(",) <Z Tp.(a,b,c)A(",(a,b,c» if p ~ 5.

(where fm(",) is the image of CP x CP x CP under jz ).

Proof of claim: Tp.(a,b,c)A(",(a,b,c» = tl(ml,(h) + wl(m3'(h) so it only
contains the following p + 9 vectors (the first p are from the tI part of the

tangent space and the remaining 9 are from the ui] part):

From i] :

(Ef=1ai(p + i - 1)tp+i-1(sx: ai(p + i - 1)tp+i

(Ef~; ai(p + i - 1)tp+i+1

'"'~ b·(p + i - 1)tp+i-1,L.J1=1 1
,",p-l b.( . _ 1) p+i

, L.Ji=1 1 P + l t
,",p-2 b.(p + i_1)tp+i+1
,L.JI=1 1

,Ef=l Ci(p + i - 1)tp+i-1 ).tz: Ci(p + i - 1)tp+i)

,Ef::; Ci(p + i - 1)tp+i+ 1)

b pt2p-1, 1

From wI:

('"'P ·tp+i-l 0 0)L.Ji=l al , ,

('"'1:' b·tp+i-l 0 0)L.J1=1 1 , ,

('"'~ c·tp+i-l 0 0)L.J1=1 1 , ,

(0 ,",P ·tp+i-1 0), L.Ji=l al ,

(0 ,",P b·tp+i-1 0),L.J1=1 1 ,

(0 ,",p ·tp+i-1 0), L.Ji=l C1 ,

(0 0 ,",P ·tP+i-1), ,L.Ji=l al
(0 0 '"'~ b·tp+i-1), , L.J1=1 1

(0 0 '"'~ c·tp+i-1), ,L.J1=1 I

(Since we are working in J2p-l(1,3) we do not need to consider powers of t

higher than 2p - 1).

Now T ( b )Im(ll) = {(tp+i-1 0 0) (0 tp+i-1 0) (0 0 tP+i-l)}~ andp. a, ,c,.. , , " ", , 1=1

thus it contains 3p independent vectors, so if 9 + P < 3p (ie. p ~ 5) then the
claim is proved.

So, when p ~ 5, no "'( a, b, c) can be simple and, in particular, I is not
simple.
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(ii) For p = 4 and q ~ 8: Define the map

.": C4 x C4 ---+ J11(l, 3)
4 4

(a,b) ~ (t4'Lait7+i'Lbit7+i)
i=l i=1

Then .,,(a, b) is a typical ll-jet with first component of order 4 and next com-
ponents of orders greater than 7.

Claim: T,,(a,b)]m(.,,) CZ T,,(a,b)A(.,,(a, b)) if P = 4 and q ~ 8.

Proof 01 claim: T,,(a,b)A(.,,(a, b» = tl(Bl) + wj(B3)

From tI we get 4 vectors:

(4t4,
(4t~,
(4t6,
(4t7,

L:~=1ai(7 + i)t7+i,
E~=1 ai(7 + i)tHi,
E~=1 ai(7 + i)t9+i,
8a1 tIl ,

L:~=1bi(7 + i)e+i)
E~=1 bi(7 + i)tHi)
E~=1 bi(7 + i)t9+i)
8b1 tIl)

And from ui] we get 12 vectors:

(t\ 0, 0)
(t8,0,0)
,,4 . 7+i(L."i=1alt ,0,0)
,,4 . 7+i(L."i=1 bit ,0,0)

Now T,,(a,b)Im(.,,) = {(O,t7+i, 0), (0,0, e+i)} :=1 and so it contains 8 lin-
early independent vectors. From the above, the vectors (0, t8, 0) and (0,0, tS)
are obvious. The remaining relevant vectors are:

4 4
(0,L ai(7 + i)t7+i, L bi(7 + i)t7+i)

i=1 i=l
4

(0,L ait7+i, 0)
i=1

4

(0,L bit7+i, 0)
i=1

4 4
(0,0, L ait7+i) (0,0, L bit7+i)

i=1 i=1

There are only five of them, so we cannot get everything in T,,( a,b) I m(.,,).
Hence the claim is proved, and as before, I cannot be simple. 0
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We now know that in order to classify A -simple germs we only have to

consider f(t) = (tP,tq+h.o.t.,tr+h.o.t.) where p = 2,3,4 and, if p = 4, q < 8.

3.4 The Classification

We use the complete transversal method, described in chapter 1, to classify the

singularities of space curves up to AI-equivalence and then apply the Mather

Lemma (Theorem 1.5.2) to obtain the A-classification from this. In fact, if f has

multiplicity 2 or 3 we can obtain an A-classification from the Al -classification
simply by using diffeomorphic changes of co-ordinates in the source and target.

It is when f has invariant pair (4,5), (4,6) or (4, 7) that we really need to
apply the Mather Lemma.

The values of the Ae -codimensions of each of the germs, given in the state-

ments of Theorem 3.1.1 and 3.1.2, are calculated by the methods described in

Section 1.3. These calculations are found in Appendix B.

We begin with f having multiplicity 2. Note that Proposition 3.4.1 is

essentially given in [W].

3.4.1 Proposition If f E Jk(1,3) is A -finite and has multiplicity 2 then it
i" A -equivalent to (t2, t2m+I, 0) for "ome integer m ~ 1.

Proof Consider (t2, 0, 0) to be the m-jet of f. Then TAl' f contains:

(2ti+t, 0, 0) i ~ 2 (from tf part)

(t2i, 0, 0) i ~2 (from vector fields)

(0,t2i,0) i~2

(0,0, t2i) i ~2

We now use the method of Theorem 1.5.1. Clearly, if m is odd, Jm+I(T Al .
f) nHm+l(I, 3) = Hm+l(1,3) and so T is trivial. For f to be A-finite there

must be a value of 2m ~ 4 for which the (2m + I)-jet is non-zero. Choose the
least such m. Then

J2m+I(T Al . f) n H2m+l(l, 3) = {(em+I, 0, O)}

so T = {(O, t2m+1 ,0), (0,0, t2m+I)} and a complete transversal is

(t2, at2m+I ,/3t2m+1).

So f is AI-equivalent to one of the following:

(i) (t2, t2m+I, 0)
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(ii) (t2,0,t2m+I)

(iii) (t2, em+l, t2m+I).

By smooth changes of co-ordinates, f is A-equivalent to (e, t2m+t, 0). To
find the degree of determinacy of this germ we use Corollary 1.2.2 and look at
the Al -tangent space.

TAI.f = mi(2t, (2m + 1)t2m, 0»)+ I" .m~(l, 0, 0), (0, 1,0), (0,0,1»)

This contains all even powers of t greater than 2 in each position, and all odd
powers of t greater than 2m + 1 in each position (though we do get lower odd
powers in the first and second positions). Thus we have

TAt.f ~ m~m+2 .£3

and,by Corollary 1.2.2, f is (2m+ 1) -determined. Soweget the required normal
form and we do not need to consider higher jets. 0

3.4.2 Proposition If f E Jk(1,3) is A -finite and has multiplicity three then
it i" A -equivalent to one of the following:

(i) (t3,t3m+I,0)
(ii) (t3,t3m+2,0)
(iii) (t3,t3m+t,t3n+2)

(iv) (t3,t3m+1 +t3n+2,O)
(v) (t3,t3m+1 +t3n+2,t31+2)

(vi) (t3, t3m+2 + t3n+1, t3l+1)

(where 1 :5 m)
(where 1 :5 m)
(where 1 :5 m :5 n < 2m or 1 :5 n < m :s; 2n )
(where 1 :5 m :5 n < 2m or 1 :5 n < m :s; 2n )
(where 1 :5 m :5 n < 1 < 2m)
(where 1 :5 m < n < 1 :5 2m)

Proof Suppose (t3,0,0) is the q-jet of f. Then we have

{

{(O,t3m+I, 0), (0, 0, t3m+I)} if q = 3m
T = {(O,t3m+2, 0), (0, 0, t3m+2)} if q = 3m + 1

trivial if q = 3m + 2
For f to be A-finite there must exist an m ~ 1 for which the (3m + 1) or the
(3m + 2)-jet is non-zero. So

{
(t3 a t3m+1 a t3m+1), 1 , 2

f ""' (t3 b t3m+2 b t3m+2), 1 , 2

with (aI, a2) #- (0,0) =f:. (bl, b2). After some linear changes of co-ordinates,

""' { (t3, t3m+1, 0) (i)
f (t3, t3m+2, 0) (ii)
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Neither of these is completely determined so we must go further.

(i) Suppose the q-jet of f is (t3, t3m+!, 0). Then T = {(O, t3n+2, 0), (0, 0, t3n+2)}
if q = 3n + 1 and is trivial otherwise. So a complete transversal for f is
(t3,t3m+1 + alt3n+2,a2t3n+2) and

(6m - 1) determined
(6m - 1) determined
(3n + 2) determined

(Again, the determinacy calculations are carried out using Corollary 1.2.2, as in
Proposition 3.4.1 above.) The first and last of these cases are now complete. Let
(t3, t3m+! + t3n+2, 0) be the q-jet of f. Then T = {(O, 0, t31+2)} if q = 31+ 1
and is trivial otherwise. So a complete transversal is (t3, t3m+! + t3n+2, at31+2)

and we have

{
(t3 t3m+1 + t3n+2 0)

f '" (t3: t3m+1 + t3n+2: t3l+2) (31 + 2) determined

So we have obtained four of the normal forms listed in the proposition.

(ii) Suppose that the q -jet of f is (t3, t3mH, 0). Then we have

if q = 3n, but if q = 3n + lor 3n + 2, T is trivial. So a complete transversal is
(t3, t3m+2 + alt3n+1, a2t3n+1) and, by linear algebra,

{

(t3, t3m+2 ,0) (6m + 1) determined
f '" (t3 , t3m+2 + t3n+! , 0) (6m + 1) determined

(t3, t3mH, t3n+1) (3n + 1) determined

Only the middle case is not now completely determined. Suppose that
(t3,t3mH + t3n+!,0) is the q-jet of f. Then T = {(0,0,t31+1)} if q = 31
and is trivial otherwise, so we have

'" { (t3, t3m+2 + t3n+!, 0)
f (t3, t3mH + t3n+!, t31+1) (31 + 1) determined'

All cases are now computed up to their degree of determinacy, o

3.4.3 Proposition If f i" A -finite and ho» invariant pair (4,5) then it is
A -equivalent to one of the following:
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(i) (t4, tS, 0)

(ii) (t4, tS +e, 0)
(iii) (t4, tS, t6)

(iv) (t4, tS, e)

(v) (t4, tS, tIl)

(vi) (t\ tS +e, tll)
Proof If the 5-jet of I is (t\ tS ,0) then I is at most 11 determined, by
Proposition 3.2.5. Suppose that the p-jet of I is (t4, tS, 0), with 5 :S p :S 10,
then we look for the (p + 1)-jets. We find that

{

{(0,t6,0),(0,0,t6)} p+ 1 = 6
T= {(O,e,O),(O,O,e)} p+1=7

{(O, 0, tll)} P + 1 = 11
and T is trivial otherwise. So I is Al -equivalent to one of

(i) (t4,tS,0)

(ii) (t\ tS, t6)

(iii) (t\ t5 + t6, 0)

(iv) (t\ tS, e)

(v) (t\tS + e,O)

(vi) (t4, t5, til)

(i) This case is 11 determined and we do not need to go any further.

(ii) This case is 7 determined. We find that the possible 7-jets are

{

(t\ tS, t6)
(t\ tS + ae, t6)

I '" (t4 , tS , t6 + be)
(t\ t5 + ae, t6 + be)

We can show that all of these jets are A-equivalent, by Mather's Lemma (see
Section 1.5). Here U = ]1(1,3), G = A(7) and V is the affine family of jets
(t\ tS + ae, t6 + be) in U. The tangent space to V is spanned by (0,e, 0)
and (0,0, e). The A-tangent space is given by

TA.I = mt{(4t3, 5t4 + 7at6, 6l) + 7bt6») + i" .m3 (1, 0, 0), (0, 1,0), (0, 0,1»)

so we get (O,e,O) (from t3~ + ~t4~ - (z,O,O» and (O,O,e) (from t2!!Jt -
4(y, 0, 0) + at4¥, - 5(0, z, 0) + 5b(0, e, 0». Thus the first condition of Mather's
Lemma is satisfied. The second condition (that the dimension of the tangent
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space is independent of the choice of a and b) is also satisfied, by inspection.
Thus we are free to choose any a and b for all values represent the same normal

form. We choose (a,b) = (0,0) and so the normal form is f(t) = (t4,t5,t6).

(iii) This case is 7 determined and is A-equivalent to (t4, t5 +e,0). For if we

consider f(t) = (t4,t5 +at6 + bt7,0) then we have

TA.f = md( 4t3, 5t4 + 6at5 + tu',0») + t" .m3(1, 0, 0), (0, 1, 0), (0,0,1»)

and we find that unless 6a2 = 5b we obtain (0, t6, 0) and (0, e,0). Thus, by

Mather's Lemma, we can choose any values of a and b apart from those on
the parabola 6a2 = 5b and get A-equivalent germs. In particular the choices

(1,0) and (0,1) give A-equivalent germs. (We also note that if 6a2 = 5b then

the vector we obtain by substituting for b in f(t) and differentiating by a is

also in the Ae -tangent space and so we can apply Mather's Lemma again and

choose a representative for (a,b) on 6a2 = 5b, ego (0,0) to give the normal

form (t\ tS , 0) .)

(iv) This case is 7 determined so no further jets need to be considered.

(v) This case is 11 determined so we must look at the 8,9,10 and ll-jets. In fact

we find that T is trivial for p + 1 = 8,9,10 and T = {(O,0, tll)} for p + 1 = 11.
So a complete transversal is (t4, tS + e, atll) and we have the two possiblities

of

(vi) This case is 11 determined so we need go no further with calculations. 0

3.4.4 Proposition If f is A -finite and has invariant pair (4,6) then it is
A -equivalent to one of the following infinite families, where m ~ 3:

(i) (t\ t6 + t2m+I, 0)
(ii) (t\t6,t2m+l)

(iii) (t4, t6 + t2m+l, t2m+3)

(iv) (t4, t6 + t2m+l, t2m+5)

(v) (t4, t6 + t2m+1, t2m+9)
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Proof Suppose (t4, t6, 0) is the q-jet of f. We want to obtain the possible
(q + I)-jets.

We find that T = {a, t2m+l, 0), (0, 0, t2m+l)} if q = 2m and is trivial if
q = 2m + 1. So a complete transversal is (t4,t6 + alt2m+l,a2t2m+l) (where
m 2 3). Then we have

(i) Suppose the q-jet of f is (t4, t6 + t2m+l, 0). Since this genu is at most
(2m + 9) determined we need only consider 2m + 1 ~ q ~ 2m +8. We find that
if q+ 1 = 2m +2i then T is trivial, and it is also trivial if q + 1 = 2m + 7 , since
y2 _ x3 = t2m+7 + h.o.t.

If q + 1 = 2m + 3 then T = {(0,t2m+3,0),(0,0,t2m+3)} and a complete
transversal is

(t4, t6 + t2m+1 + alt2m+3, a2t2m+3).

When a2 f:. ° we obtain f "" (t4, t6 + t2m+l, t2m+3
), which is (2m + 5) deter-

mined. We find that T = {(0,0,t2m+5)} and so f "" (t4,t6 +t2m+l,t2m+3) or
f f'V (t4 , t6 + t2m+1 , t2m+3 + at2m+5). When a2 = 0 we get f "" (t4, t6 + t2m+ 1+
at2m+3, 0). This is (2m + 9) determined. We find that if q + 1 = 2m + 5 then
T = {(0,0, t2m+5) } , if q + 1 = 2m + 7 then T is trivial and if q + 1 = 2m + 9
then T = {(O, 0, t2m+9)} so

{

(t4, t6 + t2m+l + at2m+3 ,0)
f f"V (t4, t6 + t2m+1 + at2m+3, t2m+5)

(t4, t6 + t2m+1 + at2m+3 , t2m+9)
Only the middle case is not fully determined, and in fact we find that in J6 (1, 3)
and J7 (1, 3) T is trivial.

Returning to (t", t6 + t2m+l, 0), if q+ 1 = 2m + 5 then T = HO, 0, t2m+5)}
and so a complete transversal is (t4, t6 + t2m+1, at2m+5). If a f:. ° then
the jet is (2m + 5) determined. Otherwise we go on to J1 (1,3) where we
find that T is trivial, as noted above. However, if q + 1 = 2m + 9 then
T = {(0,t2m+9,0),(0,0,t2m+9)} and a complete transversal is (t4,t6 +t2m+1 +
al t2m+9, a2t2m+9). Then

{

(t4,t6 +t2m+t,0)
f "" (t4 , t6 + t2m+ 1, t2m+9)

(t4, t6 + t2m+1 + al t2m+9, 0)
which are all (2m + 9) determined.
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(ii) Suppose that the (2m + I)-jet of I is (t4,tS,t2m+1). This is (2m + 3)-
determined, so we go on to look at the (2m + 3)-jets. Now T = {(O, 0, t2m+3)}
so a complete transversal is (t4, t6, t2m+1 + at2m+3) and I '"(t4, tS, t2m+l) or
I '"(t4 , tS , t2m+1 + t2m+3), which is (2m + 3) determined.

So we know that if the 6-jet of I is (t\ tS, 0) then J is Al -equivalent to
one of the following:

(i) (t\t6 +t2m+1,0)

(ii) (t\ t6 + t2m+1 + at2m+3, 0)

(iii) (t4, t6 + t2m+1 + aem+9, 0)

(iv) (t4, t6 + t2m+l, t2m+3)

(v) (t4, tS + t2m+l, t2m+a + at2m+5)

(vi) (t4, t6 + t2m+1, t2m+s)

(vii) (t4, t6 + t2m+1 + at2m+3, t2m+5)

(viii) (t4, t6 + t2m+l, t2m+9)

(ix) (t4, t6 + t2m+1 + at2m+3, t2m+9)

(x) (t4, t6, t2m+1)

(xi) (t4, t6, t2m+1 + at2mH)

In fact, using Mather's Lemma, we find that (i),(ii) and (iii) are all A-
equivalent. For consider I( t) = (t4, tS + t2m+1 + at2m+3 + bt2m+9, 0). This is
2m + 9 determined. The A-tangent space is given by

TA.I = ml(4e,6t5 + (2m + I)t2m + a(2m + 3)t2m+2 + b(2m + 9)t2m+8,0»)

+ t:.ma (1, 0, 0), (0, 1,0), (0,0,1»)

and we get the vectors (0, t2mH, 0) (from t91t - 4( x3, 0, 0) - 6(0, xy2, 0» and
(0, t2m+3, 0). By inspection, the dimension of the tangent space will remain
constant whatever the values of a and b and so we can apply Mather's Lemma
and choose (a,b) = (0,0) to get the normal form in (i).

Similarly, (iv) and (v) are A-equivalent. If we look at J(t) = (t4, t6 +
t2m+l, t2m+3 + at2m+5) then we find that it is 2m + 5 determined and we have

TA.J = ml ( 4t3, 6t5 + (2m + 1)t2m, (2m + 3)t2m+2 + a(2m + 5)t2m+4»)

+ 1·.m3(I,0,0),(0,1,0),(0,0,I»)

Then we find that (0,0, t2m+5) is in the tangent space and the dimension is
constant so we can apply Mather's Lemma and choose a = 0.
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Also, (vi) and (vii) are A-equivalent. For consider f(t) = (t4, t6 + t2m+1 +
at2m+3, t2m+5). This is 2m + 7 determined. Then the A-tangent space is given
by

TA.f = m} ( 4t3, 6t5 + (2m + 1)t2m + a(2m + 3)t2m+2, (2m + 5)t2mH»)

+ j*.m3(1,0,0),(0, 1,0),(0,0, 1»)

Then we obtain the vector (0, t2m+3, 0) and observe that the dimension of the
tangent space remains constant, so Mather's Lemma can be applied.

Now (viii) and (ix) are another A-equivalent pair. If we consider f(t) =
(t4, t6 + t2m+l + at2m+3 , t2m+9) then the A -tangent space is given by

TA.f = mt{ (4t3 , 6t5 + (2m + 1)t2m + a(2m + 3)t2m+2, (2m + 9)t2m+8»)

+ j*.m3(1,0,0),(0, 1,0),(0,0, 1»)

Once again, it is easy to find the vector (0, t2m+3, 0) in the tangent space. The
second criterion of Mather's Lemma is also satisfied and so the two germs are
A -equivalent.

Finally, (x) and (xi) are A-equivalent, SInce if we consider J(t) -
(t4, t6, t2m+1 + at2m+3) then we have

TA.I = m.( 4e, 6t5, (2m+1)t2m+a(2m+3)em+2»)+ t: .m3(1, 0, 0), (0, 1,0), (0, 0,1»)

We have the vector (0,0, t2m+3) (from t3-¥, - 4(y, 0, 0) - 6(0, x2, 0» and the
dimension of the tangent space is constant.

So the list in the statement of the proposition is obtained. o

3.4.5 Proposition If J is A -finite and has invariant pair (4, 7) then it is
A -equivalent to one of the following:

(i) (t4,e,O)
(ii) (t4,e +t9,0)
(iii) (t4,e +t13,0)
(iv) (t4,e,t9)
(v) (t4,t1,t9 +tIO)
(vi) (t4,e,tIO)

(vii)
(viii)
(ix)
(x)
(xi)
(xii)

(t\ t7 + t9, tlO)

(t4, e. t13)
(t4,e +t9,tI3)
(t4,e,tI7)
(t4,e +t9,tI7)
(t4,t1 +tI3,tI7)
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Proof Suppose that the q-jet of 1 is (t4, t1, 0). Now 1 must be at most 17
determined, by Proposition 3.2.5, so 7 ~ q s 16.

By considering TAl· 1we can see that T is trivial if q+1 = 8,11,12,14,15
or 16. If q + 1 = 17 then T = {(O,0, t17)} and a complete transversal is
(t4, t7, at17). So 1 '" (t4, t1, 0) or I'" (t4, t1, t17). We need go no further in this
case. If q + 1 = 9 then T = {(O,t9, 0), (0, 0, t9)} and so we have the following
possibilities for I:

{

(t\ e,O)
I'" (t4,t1,t9) (i)

(t4,e +t9,0) (ii)
If q + 1 = 10 then T = {(O,tlO,O),(O,O,tlOn and we have

{

(t\t1,O)
1 '" (t\ t1, tlO) (iii)

(t\t1 +tlO,O) (iv)

Finally, if q + 1 = 13 then T = {(O,t13, 0), (0, 0, t13)} and we have

{

(t4,e,O)
I'" (t4,e,t13)

(t4,t1 +t13,0) (v)
All of these, bar cases (i) to (v), are now finished as they are all k determined

k-jets. We now look further at cases (i) to (v).

(i) Suppose that the 9-jet of 1 is (t\e, t9). This is 10 determined so we need
to look at the possible 10-jets. We find that T = {(O,tlO,O),(O,O,tlO)} and so

{

(t4,t7,e)
(t4,e +t10,t9)

I'" (t4,e,t9+t10)
(t4,e +tlO,t9+tlO)

All of these are 10 determined.

(ii) Suppose that the 9-jet of 1 is (t\ e + t9, 0). This is 17 determined, so if
we think of it as the q-jet of I, where 9 ~ q ~ 16, we want to look at the
(q + 1)-jets. We find that

_ { {(O,tq+l, 0), (0, 0, tq+1 n q+l=10
T - {(O,0, tq+1)} q+l=13,17

but otherwise T is trivial. So if q + 1 = 10 a complete transversal is (t4, e +
t9 + al tlO,a2t10) and
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These are all 10determined. ITq+ 1 = 13 then a complete transversal is (t4, e+
t9, at13) so f I'V (t4, t1 + t9, 0) or f I'V (t4, e + t9, t13) (this is 13 determined).
IT q + 1 = 17 then a complete transversal is (t4, e + t9, at17) and so f I'V

(t4, t1 + t9, 0) or f I'V (t4, e + t9, t17). Both are 17 determined.

(iii) Suppose the 10-jet of f is (t4, e, tlO). ITthis is the q-jet, for 10 ::;q ::; 12,
we want to look at the (k + I)-jets. We find that if q + 1 = 11,12 then T is
trivial but if q + 1= 13 then T = {(O,i13, 0), (0, 0, t13)} an« so we have

These are all 13 determined.

(iv) Suppose that the 10-jet of f is (t4, e+t10, 0). We find that unless q+ 1 = 13
or q + 1 = 17, T is trivial. If q + 1 = 13 then T = {CO, t13, 0), (0, 0, t13)} and
we have

In fact, the last of those three is still not completely determined, but we can
show that it is A-equivalent to (t\ t1 + t13, 0), which is investigated further
later on. If q + 1 = 17 then T = {(O,0, t17)} and so f I'V (t4, t1 + tlO, 0) or
f I'V (t\ t7 + t10, t17), which is 17 determined.

(v) Suppose that the 13-jet of f is (t\ e + t13, 0). IT this is the q-jet, for
13::; q::; 16, we want to find the (q + I)-jets. We find that if q + 1 = 14,15,16
then T is trivial. If q+1 = 17 then T = {(0,0, t17)} and a complete transversal
is (t\e +t13,atI7). So f I'V (t\e +tI3,0) or f I'V (t\t1 +t13,t17), which are
both 17 determined.

We now have the following Al -classification for f I'V (t4, t7, 0) :
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(i) (t4,e,O) (xii) (t4,e +at13,tlO)
(ii) (t4,e +t9,0) (xiii) (t4,e,t10 +at13)

(iii) (t4, e + t9 + at10, 0) (xiv) (t\ e + at13, tlO + bt13)
(iv) (t4,e +t1O,0) (xv) (t4,e +atlO,t13)
(v) (t4,e +t13,0) (xvi) (t4,t1,t13)
(vi) (t4, e, t9) (xvii) (t4,t7 +t9,t13)
(vii) (t4,e +atlO,t9) (xviii) (t\ e, t17)
(viii) (t\e,t9 +tlO) (xix) (t\e +t9,t17)
(ix) (t",e + at1O,t9 + t1O) (xx) (t4,e +t1O,t17)
(x) (t",t7 +t9,t1O) (xxi) (t\ t1 + t13, t17)
(xi) (t4, c,t1O)

Using Mather's Lemma we are able to show that (ii) and (iii) are A-
equivalent. Consider J(t) = (t4, e + t9 + atlO, 0). This is 17 determined and
has A-tangent space

TA.J = m1( 4e, 7t6 + 9t8 + 10at9, O)}+ r .m3((1, 0, 0), (0,1,0), (0, 0,1»)

The vector (0, tlO, 0) is easily seen to be in the tangent space and also the
dimension of the tangent space is constant, so we can apply Mather's Lemma
and set a = 0.

Cases (iv) and (v) are another A-equivalent pair. For if J(t) = (t4, e +
atlO + bt13,0) (which is 17 determined) then the A-tangent space is given by

TA.J = ml ((4t3, 7t6 + 10at9 + 13bt13,0)) + r .m3 ((1,0,0), (0, 1,0), (0,0,1))

Computation verifies that for 14b =1= 17a2 the tangent space contains the vectors
(O,t1O,O) and (O,t13,O). Since the condition 14b I- 17a2 defines a smooth
connected subset of the jet-space we conclude that all jets of form (t4, e +
atlO + bt13, 0) satisfying this condition are A-equivalent. In particular the jets
(t\e +t10,0) and (t4,t1 +tI3,0) are A-equivalent.

Cases (vi) and (vii) are also A-equivalent, since if J(t) = (t4, t1 + at10, t9)
(which is 10 determined) then we have

TA.J = ml ( 4t3, 7t6 + lOat9, 9t8») + r .m3(1, 0, 0), (0, 1,0), (0, 0,1)}

and we obtain (0, t10, 0) from t4-¥t -4(y, 0, 0) +ae ¥t. Sowe can apply Mather's
Lemma and conclude that the two germs are A -equivalent.

Also, (viii) and (ix) are A-equivalent. Consider J(t) = (t\ e + at10, t9 +
tlO). This is 10 determined. The A-tangent space is given by

TA.J = ml ( 4t3, 7t6 + 10at9, 9t8 + Wt9») + r .m3 (1,0,0), (0, 1, 0), (0, 0,1»)
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Once again weobtain (0, tlO, 0) from t4~ - 4(y, 0, 0)+ ae ~ and the dimension
of the tangent space remains constant. Thus we can apply Mather's Lemma.

Cases (xv) and (xvi) are A-equivalent too, since if J(t) = (t4,t7 +atIO,tI3)

(which is 13 determined) then

and we obtain the vector (0, tlO, 0) in a similar way. We apply Mather's Lemma
to see that the two germs are A-equivalent.

Finally we see that (xi), (xii), (xiii) and (xiv) are all A-equivalent. For
consider J(t) = (t4,e + atl3,tlO + btI3). This is 13 determined and has A-
tangent space

Then we get the vector (0, t13, 0) from e -¥, - 4(z, 0, 0) + btlO-¥, and the vector
(0,0, t13) from t41t -4(y, 0, 0)+atl°1,-7(0, z, 0)+ 7b(0, t13, 0). As the dimension
of the tangent space is constant, we can apply Mather's Lemma and choose (0,0)
as a representative for (a, b).

Thus the list in the statement of the proposition is obtained. o

3.5 Planarity

We now return to the question of planarity, mentioned in the statement of The-
orem 3.1.1.

3.5.1 Definition

(i) A germ f: (C, 0) _ (e3, 0) is planar when it is A -equivalent to a germ
having a representative with image contained in a plane in c-.
(ii) A germ f: (e,O) _ (e3,0) which is not planar is spatial.

Clearly, all the germs listed in the statement of Theorem 3.1.1 are planar.
Wewish to show that all the germs in the statement of Theorem 3.1.2 are spatial.
This proceeds via the observation that f is planar if and only if there exists a
submersive germ h : (e3, 0) _ (e,O) for which h 0 f is the germ of the zero
function.
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3.5.2 Proposition Let f be an A -finite singular germ of a space curve in
prenormalform x(t)=tP,y(t)=tq+ h.o.t. ,z(t)=tr+ h.o.t. with r<oo.

If f is planar then r lies in the invariant semigroup S2(g) where 9 = 7r 0 f
and 7r: (C3,0) ~ (C3,0) is given by 7r(x,y,z) = (x,y,O).

Proof Since f is assumed planar, there exists (by the above remark) a sub-
mersive germ h : (C3, 0) ~ (C, 0) with h 0 f the zero germ. Write

hex, y, z) = Ax + By + Cz + 4>(x,y,O) + ztjJ(x, y, z)

where at least one of A, B, C is non-zero, where 4> has neither constant nor
linear terms, and where t/J has no constant terms. Then

°= h(f(t)) = Ax(t) + By(t) + Cz(t) + 4>(x(t), yet), 0) + terms of order> r .

Since the germ is in prenormal form the leading terms tP, tq, in the first
two components cannot cancel out with any other power of t. Thus A = B = °
and C =f. 0. But then r = ord4>(x(t), yet), 0), and hence r lies in S2(g). 0

All the germs f listed in the statement of Theorem 3.1.2 are in prenormal
form, with order r not in the invariant semigroup S2 (g). It follows immediately
from the above Proposition that they are spatial.

The question of planarity of a germ relates to the value sernigroup. From
[SK]we have

3.5.3 Definition A semigroup S C Z is symmetric when there exists an integer
M with the property that if two inieqers a, b satisfy the relation M = a + b
then one of them is in S, and the other is not.

It is well-known that the value semigroup associated to a branch of a plane
curve is symmetric [SK]:and indeed that is the case for all the germs in Theorem
3.1.1. However, there are also germs in Theorem 3.1.2 whose value sernigroup is
symmetric. The list of such germs is shown below:

(t4,t5,t6)
(t\t7,eO)
(t\ e + t9, tlO)
(t4, t6, t2k+l)

(t4, t6 + t2k-1 , t2k+1)
I would like to thank Phillip Cook [C) for extracting the followingfrom the litera-
ture: in any embedding dimension the value sernigroup is known to be symmetric
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if and only if the local ring of the singularity is Gorenstein [Ku]. Moreover it
is well-known that a germ of a (local) complete intersection necessarily has a
local ring which is Gorenstein [M).Thus in any embedding dimension a germ of
a (local) complete intersection gives rise to a symmetric value semigroup. By a
theorem of Serre [Se) all three properties coincide in the special case when the
difference between the embedding dimension and the dimension of the local ring
is at most 2. Thus the above represent the only A-simple spatial germs of space
curves which are (local) complete intersections. Such a germ corresponds to the
zero set of a K-finite germ (C3,O) -+ (C2,O).

In order to find which K:-finite germ each element (tP, tq +r ,tr) (where s
may be zero) on our list is associated with we find a minimal generating system
of equations in X = tP, y = tq + tS and z = i" and then see that, possibly after
some cyclic permutations of co-ordinates and rescaling, we have a normal form
from the lists of K:-finite germs C3, 0 -+ c2, 0 given in [Wa2] and [Wa3]. In
each case the germ turns out to be JC -simple.

FollowingKunz [K)we determine a minimal generating system for germs of
the type (tp,tq,tr). We know that p, q and r have greatest common divisor 1
and we look for integers CI, C2, C3 such that CI is the least positive integer with
PCI E qN + TN, C2 is the least positive integer such that qC2 E pN + rN and
C3 is the least positive integer with TC3 E pN + qN. Then generating equations
are

X Cl _ Y ri Z r2 = 0

yC2 _ XS1 Z"2 = 0

some TI, T2 EN

some SI,S2 EN

zca - xtlyt2 = 0 some it, t2 EN
where X = tP, y = tq and z = i": If there are two independent equations then
we have a complete intersection while if all three are independent then we do
not have a complete intersection.

3.5.4 Case 1 - (t4,t5,t6)

Putting x = t4, Y = t5 and z = t6 and following the method above we
find that a minimal generating set of equations is (xz - y2, x3 - Z2) so we shall
consider the germ 4> : C3, 0 -+ C2, 0 given by

¢>(x, y, z) = (xz - y2, x3 _ z2).

A cyclic permutation of co-ordinates gives the x:: -equivalent germ
(xy - z2,y3 _ x2)
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Scaling x to ix we obtain

(ixy - z2, y3 + x2)

Now scaling z to .Az (.x =I 0) we get
(ixy - .x2z2,x2 + y3)

Choosing .x so that i = -.x 2 and then scaling the first co-ordinate we get the
normal form

which is the K -finite germ Kg.

3.5.5 Case 2 - (t4, t1, t10)

As before, putting x = t4, y = e and z = tlO we get (xz - y2, x5 - z2)
for our minimal generating set and so we look at the germ

tf;(x,y,z) = (xz - y2,x5 - z2).

We can followexactly the same steps as before and perform a cyclic permutation
of the co-ordinates followed by rescaling x and z to obtain the normal form

(xy_z2,x2+y5)

which is K14•

In order to get a minimal generating set we cannot use the method of Kunz
as it stands, but it turns out that using an obvious variation we obtain the
equations xz - y2 + x2 z + 2x4 = 0 and x5 - Z2 = O. So we shall consider the
germ C3, 0 -+ C2, 0 given by

p(x,y,z) = (xz - y2 + x2z + 2x4,X5 _ Z2).

We have to work harder to get this into a normal form. First we swap the co-
ordinates x and y, rescale x to ix, multiply the second component by -1 and
then swap y and z to get the K -equivalent germ

(x2 +YZ+yz2 +2Z4,y2 _ Z5)

Then if we rescale y to 2y and the second component by i we have
Z5

(x2 + 2yz + 2yz2 + 2z4, y2 - "4)
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which has two-jet (x2 + 2yz,y2). Following [Wa2], we would like to have the
germ in pre-normal form

(x2 + 2yz + b(z), y2 + 2xd(z) + c(z»

then we could eliminate y to get the function

4>(x,z) = (x2 + b(Z»2 +4z2(2xd(x) +c(z»

which would give us the Milnor number of p by the formula p(p) = p( 4» - 4.
But in our case we have an extra yz2 term in the first component. To remove
this we set Z = z + z2 so that we get

2 4 2 Z5 )(x + 2yZ + 2Z + h.o.t, y - 4 + h.o.t.

(where the h.o.t. only involve Z). Then we have

4>(x, Z) =(x2 + 2Z4 + ... )2+ 4Z2( _:5 + )

=x4 + 2X2 Z4 + 4Z8 + ... _ Z7 + .
Giving x weight t and Z weight t we get

4>(x, Z) = (x4 - Z7) + {terms of weight> I}

which has Milnor number (4 - 1)(7-1) = 18. So pep) = 14 and we have the
K:-finite germ K14 again.

3.5.7 Case 4 - (t\ t6, t2k+l)

Putting x = t4, y = t6 and z = t2k+I we obtain the minimal generating
set of equations (x3 - y2, z2 - xk-1y) so that we get the germ

( ) ( 3 2 2 k-l)TX,y,Z = X -y,z -x y.

Permuting the co-ordinates cyclically and rescaling x to ix we get

(z3 + x2,y2 _ ixzk-l)

This gives the 1C-finite germ G~, where n + 9 = p( T). Following [Wa2] again,
we find this Milnor number by writing T in the form

(x2 + Z3, y2 + 2xd( z) + c( e )

Here d(z) = -izk-1/2 and c(z) = O. Then
peT) =min(3 + 20rd(c), 6 + 20rd(d»

=6 + 2(k - 1)

=2k -4
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So 1'( T) = 2k - 5 and the required K, -finite germ is G~k-5.

Once again, the method for finding a minimal generating set of equations
cannot be used directly for a germ of this form, and in this case the variation
used in Case 3 does not work either. By trial and error we obtain the equations
x3 _ y2 +2xz+xk-ly_xk-4YZ+X2k-4 = 0 and z2 _xk-1 +Xk-3yz _x2k-3 = o.
These are certainly generators, so we consider the genu

9(x, y, z) = (x3 _y2 +2xz +xk-1y _xk-4yz+x2k-\ Z2 _Xk-1 +xk-3yz _ x2k-3)

If we permute the co-ordinates via x ~ z, y ~ x and z ~ y and then rescale
y to -y, the 2-jet of 9 is (x2 + 2yz, y2) so we have a member of the K serres.

Note that

=4t4k-10 + 4t6k+3 + tSk-4

=4zk+1 x + z2k-l

So we can put 4>(x,z) = (x2 - Z3)2 - 4Zk+1X - Z2k-l which is essentially in
normal form for W~~7 (see [A2]). So the member of the K series we want is

KW~~7'
We summarize these results in the table below.

Normal Form Generating Equations K-Type

(t4, t5, t6) (xz - y2,x3 - z2) Ks
(t4,e,t1O) (xz - y2,x5 - Z2) K14
(t\ e + t9, t1O) (xz - y2 + x2z + 2x\x5 - Z2) K14
( t4 , t6, t2k+ 1) (x3 _ y~xk-ly _ z2) Gh_5 (k ~ 3)
(t4, t6 + t2k-1 , t2k+1) (x3 _ y2 + 2xz + xk-ly _ xk-4yz + x2k-4,

Z2 _ Xk-1 + xk-3yz _ x2k-3) KW~~7 (k ~ 4)

3.6 A Sufficiency Result for A-Simplicity

Finally, we have a sufficiency result for A-simplicity of A-finite genus of space
curves.
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3.6.1 Proposition All A -finite map-germs f : C - C3 with codimension
less than 12 are A -simple.

Proof Given an integer p, 1 < P < k, define the A-invariant set Xp C
Jk(1,3) by

Also, given another integer q > p, where p does not divide q, define the A-
invariant set Xp,q C Xp by

Xp,q = {jk f :jk f has invariant pair (p, q'), q' ~ q}

The classification carried out in this chapter shows that Xl, X2 and X3
are all finite unions of orbits, as are X4,s, X4,6 and X4,7, i.e. everything in
them is A -simple.

We want to consider the codimensions of the sets X4,9 and Xs, the sets
in which we would first expect to find non-A-simple germs (from Proposition
3.3.1). Clearly, Xp is smooth for all p and has codimension 3(p-1) and so Xs
has codimension 12. Consider X4 9. Given an element in X4, we need to know,
what further conditions must be placed on it in order for it to be an element of
X4,9. An element of X4 is written

(alt4+a2ts+a3t6+a4t7 +... ,blt4+~ts+b3t6+b4t1 +... ,Clt4+C2tS +C3t6+C4t1 +...)
(Note that (aI, b1, cr) I- (0,0,0».

Given an arbitrary polynomial, g(x, y, z) = Ax+By+Gz+Dx2 +Exy+ ... ,
we want it to have no tS, t6 or t1 terms. So we need Aal + Bb, + GCI = 0 to
imply

Aa2 + Bb2 + GC2 = 0

Aa3 + Bb3 + CC3 = 0

Aa4 + Bb4 + CC4 = 0

(1)

(2)

(3)

Condition (1) is satisfied if (a2' b2, C2) is a linear combination of (ai, bI,cd ie.

(:: :~~:)
has rank 1. This gives two quadratic conditions to be satisfied.
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Similarly, conditions (2) and (3) are satisfied if

and

each have rank 1, giving four more quadratic conditions.

Since X4,9 is specified by the rank of a matrix being 1 it must be a smooth
manifold. It has codimension 3 x 3+ 2+ 2+ 2 = 15. We can then take the union
of these two smooth manifolds and thus get another smooth manifold with the
least codimension of any element in the union being 12. There are only A-simple
germs in the sets Xp,q up to these, and so all germs up to codimension 11 are
simple. 0

It is in fact possible to find examples of non-A-simple germs with Ae-
codimension 12. Consider f>..(t) = (t5, t6 +,H9, t1 + t9). Calculation shows that
the vector (0, t9, 0) does not lie in the tangent space to the A(9) -orbit for any
choice of A and so all the germs 1>.. are non-simple. The Ae -tangent space is
given by

T Ae.f = £1(5t4, 6t5 + 9Ats, 7t6 + 9t8») + f*£3(1, 0, 0), (0, 1,0), (0,0,1»)

and computation shows that the Ae -codimension is 12.

We now give a table of all the A-simple singular germs (C, 0) ~ (C3, 0)
with Ae -codimension less that 12. The number in the lefthand column is the
Ae -codimension.

2 (t2,t3,0)
3 none
4 (t2,t5,0)
5 (t3, t4, t5)
6 (t2,t1,0) (t3, t4, 0) (t3, t4 + t5, 0)
7 (t3, t5, t1)
8 (t2, t9, 0) (t3, t5, 0) (t4, t5, t6) (t3,t5 + t7,0)
9 (t3, t1, t8) (t4, e.e)
10 (t2,tll,0) (t3, t7 + tS, tll ) (t\ tS + e, tIl ) (t4,t6,t1)
11 (t3, e + t8, 0) (t4,tS + t7,O) (t3, e, tIl) (t3, t8, tlO) (t4,t5,tll)
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4.1 Introduction

For the first step in the programme of studying local models of kinematic sin-

gularities we will look at motions of the plane with one degree of freedom -

this must be the simplest possible case. The results of this chapter should be

applicable to planar mechanisms such as the four-bar linkage, mentioned in the

introduction to the thesis. The following theorem summarizes the results of this

chapter.

4.1.1 Theorem On the trajectory of a generic motion of the plane with one
degree of freedom we locally expect only to see multi-germs A -equivalent to those
in the table below.

Normal Form Ae-Codim Name

(t,O) ° Ao
(t2, t3) 1 A2
(t2,tS) 2 A4
(t,O;O,s) ° Al
(t,0;s,s2) 1 A3
(t,OjS,S3) 2 As
(t, OJ s\ S2) 2 Ds
(t,O;O,s;u,u) 1 D4
(t, 0; 0, Sj U, u2) 2 D6
(t,O;O,Sju,U;V,AV) 3 E7

See Fig. 4.1.1 for pictures of all of these normal forms. The names of

of branches possible in this s
branches.

gives limiting conditions on these
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Fig. 4.1.1
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(i) if r = 1

(ii) if r=2
£-jet;

(iii) if r=3

(iv) if r = 4
verse.

4.1.2 Proposition A multi-germ singularity R,O __ R2, 0 with codimension
less than :I can have at most r = 4 branches. Also

the mono-germ has non-zero £-jet;

at least one branch has non-zero l-jet and the other has non-zero

all branches have non-zero l-jet, and at most two are tangent;

all branches have non-zero l-jet and they are all mutually trans-

Proof We prove this by finding finitely many A-invariant submanifolds

X ~ rJk(l, 2), giving rise to finitely many A-invariant submanifolds Y ~

rJk(N, R2), such that the motions JI. with rjk~" transverse to all the Y have

the required properties. The result then follows from the transversality result,

Theorem 2.2.1. Note that the transversality hypothesis implies that codimension

(X) ~ 4 - r in this case (by Proposition 2.2.3) and so the number of branches,

r, can be at most 4.

Now let X be the submanifold of rJk(1,2) comprising k-jets whose ith

component has zero ai -jet, for 1 ~ i :S r. Then X has codimension 2al + ... +
2ar, and so we have 2al + ... + 2ar $ 4 - r. Thus if r = 1 it is possible to

have zero Ljet if the 2-jet is non-zero. IT r = 2 then one branch may have zero

I-jet if the 2-jet is non-zero whilst the other branch is immersive, and if r = 3

or r = 4 then all branches must be immersive.

Now we choose X to be the submanifold of 3J1:(1,2) comprising three

mutually tangent one-jets. An element of X will have the form

(alt, bltj a2S, b2sj a3U, b3u)

where the matrix

has rank 1. This gives two polynomial conditions on the ai's and the bi's and
so the codimension of X is 2. This is larger than 4 - r and so we have part (iii)
of the proposition.

Finally, let V to be the subvariety of 4Jk(I,2) of four I-jets with at least
one tangency. This can be divided into four smooth manifolds according to the
multiplicity of the lines. If X is the submanifold of four mutually tangent one-
jets then, as above the codimension is given by the rank of a matrix being one
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and gives codimension of X is 3 which is too large. IT X is the submanifold
comprising four 1-jets with three mutual tangencies then two 2 x 2 minors must
be zero and so the codimension of X is 2, and if X consists of four 1-jets with
two of them being tangent then the codimension is 1 as one 2 x 2 minor is zero.
Thus the codimension of X is greater than 4 - r in each case and part (iv) of
the proposition is proved. 0

4.2 Mono-germs (R,O) -+ (R2, 0)

The mono-germs were classified by Bruce [B2]; he also calculated the .Ae-

codimensions of such germs and showed that all those of codimension less than
8 are A-simple. So we can read directly from his list to find which singularities
have codimension $ 2 and we know that these are all .A-simple. Thus we have:

Germ Ae -codimension

f(t) = (t,O) 0
J(t)= (t2,t3) 1
J(t) = (t2, tS) 2

4.3 Bi-germs (R,O) -+ (R2, 0)

Given a hi-germ, F, we know that for the codimension to be sufficiently
small for our purposes at least one of the two branches is an immersion (Propo-
sition 4.1.2). We have the following Proposition (which has also been proved in

[dPTD·

4.3.1 Proposition An.A -finite bi-germ R,O -+ R 2,0 with at least one im-
mersive branch and the other branch with non-zero fl-jet is A -equivalent to one
of the following A -simple normal forms.
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Bi-germ Ae -codimension

(f,OjO,s) 0
(f,OjS,sk) k - 1
(t,OjS2k+l,s2) k + 1
(t,0;S2,S2k+1) 3k
(t,0;S2,s2k+l + s21) k < 1 ~ 2k + 1 1+ k
(t,OjS2,s2k+s2I+l) k~l l+k

Proof Assume that the first branch is immersive. Then we may write it as
(t,O). Using a method similar to that used in [BGi], we will then work with
a subgroup of Al which fixes the x -axis, i.e. we will use deformations which
do not affect y = o. In practise this means that when we are calculating the
tangent space to the orbit of a germ under this group we must use vector fields
preserving y = O. So instead of using vector fields :x and -/y we shall use :x
and y :,. Let us call this subgroup 81.

If both branches of the hi-germ are immersive the two possible J-jets are

(i) (t,OjO,s) and

(ii) (t,O;s,O).

(i) i' F = (t, OJ0, s). This is clearly T-determined so we need go no further, and
we obtain the first bi-germ in table 1. The Ae -codimension can be calculated
from the Ae -tangent space:

T Ae.F = £1(1, 0; 0, 0)) + £1(0, OJ0,1)) + F* '£2 (1,0), (0,1))

= £1.02,2
So the Ae -codimension is O.

(ii) jIF=(t,OjS,O). We have

TBJ.h =mi(l,O») + f;.m~(l,O»).

Thus, using the method of Theorem 1.5.1, T = {(O,sk)} and so a complete
transversal is (t, OJs, ask). In order for F to be A-finite we must have a =I- 0
for some k > 1 (if k = 1 we get case (i»). Then the AI-tangent space is

TAl.F = mi (1, OJ0, 0») +mi (0, OJ1, ksk-l») + F* .m~(l, 0), (0,1))
..... k+l co
:::::!. m2 ·c;:.2,2
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so F is k determined. Calculating the Ae -tangent space in a similar way we

see that the Ae -codimension is k - 1. We now have the second entry in the

table.

Now let us consider bi-germs with only one immersive branch. Since the
second branch is to have non-zero 2-jet (Propostion 4.1.2) there are two possi-

bilities,

(i) (t,0;0,S2) and

(ii) (t,OjS2,0).
Again we work with the group Bl .

(i) Suppose that r:' F = (t, OJ 0, s2). We have

TBl.h = m~ ((0, 2s») + m~ ((1,0») + f2 .m~ ((0, s2»)

So if q is odd, ie q = 2k + 1 then T = {(s2k+1, O)} j otherwise T is trivial.

Thus when q = 2k + 1 a. complete transversal is (t, OJ as2k+I, s2). IT F is to be

A-finite then we need a i= ° for some k ~ 1 so i":" F = (t, OJ S2kH, S2). Then

T Al.F =m~ ((1, OJ0,0») + m~((O, OJ(2k + 1)s2k, 2s») + F* .m~ ((1, 0), (0,1»)
::>m2k+2 e- 2 . 2,2

and so F is 2k + 1 determined. Similarly, the Ae -codirnension is k + 1. We

ha.ve the third entry on the list.

(ii) Suppose that r:' F = (t, OJ s2, 0). We have

TB1.h = m~((2s,0») + m~((l,O»).

So T = {(O, sic)} and a complete transversal is (t, 0; s2, ask). As before, since F
is A-finite we must have a i= ° for some k ~ 1. So jk F = (t, OJS2, sic). Since

this is not k determined we continue with the complete transversal method.
Suppose that jm-1F = (t,OjS,slc). Now we have

TB1.h = m~((2s,ksk-l») + f2.m~((1,0») + f2-m~((O,sk»)

Now if k = 2n + 1

Jm(TB f) nHm(l 2) _ { {(sm, 0), (0, sm)}
I· 2 ,- {sm,o)}

where the first case occurs if m = 2n +2p + 1 for any p ~ 1, or for m > 4n + 1,

and the second case occurs if m = 2n + 2p for °~p ~ n. So either T is trivial
or T = {(O,sm)} where m is even and less than 4n + 2. Then we have

{
(t 0' s2 s2n+l)

F", '"(t,Ois2,s2n+1 +s2p) n < p < 2n + 1
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The latter is completely determined so we can now look at k = 2n. Then we

have

Jm(TB f )nHm(I 2)= {{(sm,o),(o,sm)}
1· 2 , {sm,O)}

with the first case if m is even and the second case if m is odd. Thus if m = 21+1
we have T = {(a, S21+1)} and otherwise T is trivial. So the cases are

{
(t 0· s2 82n)F", ",
(t,O;s2,s2n + S21+1) n < I

The latter is (21+ I)-determined so we have now completed case (ii) and the

table in the statement of the proposition. The codimension calculations are
straightforward. o

From this it is easy to see that the bi-germs we are interested in, those with

codimension ::; 2, are as follows:

Bi-germ Name Ae -codimension

(t,O;O,s) Al °(t, 0; s, s2) A2 1

(t,0;s,s3) A3 2
(t,O;s3,s2) D3 2

4.4 Tri-germs (R,O) _. (R2, 0)

By Proposition 4.1.2, all branches of a tri-germ with codimension less than

3 must be immersive, and also at most two of the branches can be tangent.

4.4.1 Proposition An A-finite tri-germ F with all branches immersions and
with at most two branches tangent is A-equivalent to (t,O;O,s;u,uk) (which is
A -simple) for some k ~ 1.

Proof Given a tri-germ with three immersive branches and no more than two

tangent to each other, we can choose the two non-tangent ones and change co-
ordinates to get them into the form (t, 0; 0, s). As before we use a geometric
subgroup of Al which preserves these two which we shall denote C1• The vector

fields that we shall use instead of the standard ones are x tx and y ty .

By linear algebra, since the third branch has non-zero I-jet, the possible
l-jets are

(i) (t,O;O,SjU,u) or
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(ii) (t,OjO,SjU,O)

(i) IT jlF = (t,OjO,SjU,u) then we find that

TAl.F = m~((I, OJ0, OJ0, 0») + m~((O, OJ0, Ij 0,0»)

+m~((O, OJ0, 0; 1, 1») + F* .m~((1, 0), (0,1»)

2 m~.£2.3

so F is I-determined. The Ae -codimension is 1.

(ii) jlF = (t,OjO,S;u,O) and so

TC1./3 = m~((1,0») + f;·m~((u,O»)

Then a complete transversal is (t, 0; 0, s; u, auk), and since F is A-finite we h
a 10 for some k > 1 (if k = 1 we go to case (i». So jkF = ((t,O;O,s;u,
and in fact this is k determined, with Ae -codimension k.

Thus the relevant possibilities are
Trigerm Ae -codimension

(t,O;o,S;u;u)
(t, 0; 0, s; u, u2) °2

4.5 Four-germs (R,O) -+ (R2, 0)

From Proposition 4.1.2 we see that the only possible four-germ that co'

occur is A-equivalent to one with four immersive branches, (t, 0; 0, s; u, u; v,,
(where A 10,1). Such a multi-germ has a modulus, A, attached to it (the ere
ratio) and so is not simple. Each individual four-germ has Ae -codimension
however, the stratum consisting of all such four-germs has Ae -codimensioi

and thus could occur in our situation.

4.6 Unfoldings of One Dimensional Motions of the Plane

As we have now listed the possible singularities of 1 dimensional motions

the plane, it is interesting to go on to look at the unfoldings of these singularit
i.e. to look at all the germs which are close to them. Using the methods descril:
in section 1.4, to calculate versal unfoldings we look at our calculations of TA
(from the codimension calculations) and then find a suitable set {II, ... , f n }
make up the whole jet space. We then study the unfoldings to get a picture

the parameter space.
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(i) J(t) = (t,O) has trivial unfolding since the Ae -codimension is zero.

(ii) J(t) = (t2, t3). The Ae -codimension is 1, Jl = (0, t) and so the unfolding
is Fa(t) = (t2, t3 + at). The picture in parameter space is shown in Fig. 4.6.1.
The bifurcation set in this case is {a = O}. When a > ° there is no singular
point on the trajectory but when a < ° there is a transverse crossing on Fa(t).
At a = ° we have a cusp.

(iii) J(t) = (t2,t5). The Ae-codimension is 2, II= (O,t3) and h = (O,t) so an
unfolding is Fa,b(t) = (t2, t5 +at3 +bt). The picture in parameter space is shown
in Fig. 4.6.2. Here the bifurcation set consists of the half parabola, a2 = 4b,
where a ~ 0, and the x -axis. The half parabola is a curve of tacnodes.

(iv) J(tjs) = (t,OjO,s). The Ae-codimension is 0 so the unfolding is trivial.

(v) f(tjs) = (t,OjS,s2). The Ae-codimension is 1 and it = (0,1;0,0), so an
unfolding is Fa(tjs) = (t,a;s,s2) and in parameter space we see the picture
shown in Fig. 4.6.3. Again, the bifurcation set is just the point a = 0. When
a < ° there are no singularities on Fa(t); when a = ° there is a tacnode, and
when a > 0, FaCt) has two distinct transverse crossings.

(vi) J(tj s) = (t, OJ S, s3). The Ae-codimension is 2 and it = (0,1; 0,0), h =

(O,O;O,s). So an unfolding is Fa,b(t;s) = (t,a;s,s3 + bs) and the parameter
space is shown in Fig. 4.6.4. The bifurcation set consists of the cuspidal cubic
27a2 = -4b3• On this curve all germs have a double point and a tacnode (which
coalesce at (0,0) to give a crossing with order of contact 3). Inside the cusp
each germ has three distinct double points and outside each has only one double
point.

(vii) f(tjs) = (t,OjS3,s2). The Ae-codimension is 2 and we can choose fl =

(0,1; 0, 0), h = (0, OJ s, 0). So the unfolding is Fa,b(tj s) = (t, aj s3 + bS,82)
and in the parameter space is shown in Fig. 4.6.5. Here the bifurcation set is
made up of the a- and b-axes and the half-line a = -b, where a < 0. Along
this half-line every germ has a triple point. Germs along the x-axis all have a
tacnode (except for Fo,o) and all those on the y -axis have a cusp.
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(viii) J(tjSju) = (t,OjO,SjU,u). The Ae-codimension is 1 and It =
(0, OJ 0, OJ 0, 1), so an unfolding is Fa( i; Sj u) = (t, OJ 0, s; '11" U +a) and the picture
in the unfolding space is shown in Fig. 4.6.6. The bifurcation set is the point
a = 0. Here the trajectory has a triple point j otherwise there are three double
points on Fa( t; s; u).

(ix) J(t;Sju) = (t,0;0,s;u,u2). The Ae-codimension is 2. Choose It =

(O,t;O,O;O,O) and h = (0,1;0,0;0,0), then the unfolding is Fa,b(t;S;U) =
(t, at + b; 0, s; '11" '11,2). Parameter space is shown in Fig. 4.6.7. The bifucation set
in this case is the parabola a2 = -4b together with the y-axis.

Apart from at the origin, along the parabola each germ has a tacnode and
two double points, while inside the parabola the germs have only two double
points. Along the y-axis all germs have one triple and one double point, exclud-
ing the origin.

(x) J(t;s;u;v) = (t,O;O,s;u,u;v,>'v) (where>. I- 0,1). The Ae-codimension
of the stratum is 2 and if we choose it = (0,0; 0, OJ 1,0; 0, 0) and h =

(0,0; 0, 0;0,0; 1,0) then the unfolding is Fa,b(t; 8; Uj v) = (t, OJ 0, 8j u + a, Uj v +
b, >.v). The picture, when >.= 1, is shown in Fig. 4.6.8. The bifurcation set
consists of four lines through the origin. On these lines (apart from at the origin
where there is a quadruple point) the trajectory has a triple point and three
distinct double points, otherwise it has six distinct double points.
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Fig. 4.6.8



Chapter 5 - One-Dimensional Motions of Space

5.1 Introduction

We now go on to look at motions of space with one degree of freedom. We find
that there are fewer types of singularities which can generically occur on the
trajectories of one dimensional motions of space than of those in the plane. The
different possibilities are summarized in the next theorem.

5.1.1 Theorem On the trajectory of a generic motion of space with one degree
of freedom we expect, locally, to see only multi-germs A -equivalent to those in

the following table.

Normal Form Ae-codim Name

(t,O,O) ° Ao
(t2,t3,0) 2 A2
(t, 0, OJ 0, s, 0) 1 Al
(t,0,OjS,S2,0) 3 A3
(t,O,OjO,S,OjO,O,u) 2 D4

The pictures of these normal forms are shown in Fig. 5.1.1. Again, the
names refer to the K, -types of the images of the multi-germs.

As in chapter 4 we now give a result limiting the number of branches a
multi-germ R,° -+ R3

, ° can have in order for the codimension to be less than
4.

5.1.2 Proposition A multi-germ singularity R, ° -+ R3, ° with codimensum
less than 4 can have at most r = 3 branches. Also

(i) If r = 1 the germ must have non-zero two jet;

(ii) If r = 2 both branches must be immersions (i.e. both must have non-zero
one jet);

(iii) If r = 3 all three branches must be immersions and they must all be
mutually transverse.

64
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Fig. 5.1.1
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Proof As in Proposition 4.1.2, we will prove this by finding finitely many
A-invariant submanifolds of rJk(1,3) such that the motions with trajectories
transverse to the corresponding submanifolds of rJk(N, R3) have the stated
properties. By Proposition 2.2.4we know that the codimension of X is ~ 6- 2r
and so we have r ~ 3, giving the first part of the proposition.

Now if X is the submanifold of rJk(1,3) consisting of r -germs with i th
component having zero ai -jet then X has codimension 3al + ... + 3ar. So if
r = 1 we must have codim X ~ 4 so at most the two-jet must be non-zero. If
r = 2 then codim X ~ 2 so both branches must be immersive, and if r = 3
then codim X = 0 so again all branches must be immersive.

Suppose that X is the submanifold of 3Jk(l, 3) comprising three mutually
tangent J-jets. Then an element of X has form

where the matrix

has rank 1. So the codimension of X is 2, which is too large. Similarly, if X
comprises three J-jets with two being tangent then the matrix must have rank
2 and codim X = 1. 0

5.2 Monogerms (R,O) _ (R3, 0)

Mono-germs R, 0 _ R 3,0 were classified in chapter 3. In order to find all
those germs of codimension less than or equal to 3 we simply need to read from
the list in section 3.6. Clearly, all the singular germs we are interested in will
be A-simple, by Proposition 3.6.1. The possibilities are either an immersive
germ, which will be A -equivalent to the normal form (t, 0, 0), or the singular
mono-germ (t2, t3 , 0), giving the first two entries in the table above.

5.3 Bi-germs (R,O) _ (R3,0)

As before, in order to classify the bi-germs we fix one branch and consider
the possibilities for the other one. Both branches are immersions (Proposition
5.1.2) so let the first branch be A-equivalent to (t, 0, 0) and consider the sub-
group, 81, of Al which keeps y = z = 0 fixed. When calculating tangent
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spaces with respect to this group we shall use the following vector fields which
preserve y = z = 0:

a
ax

a
y-ay

a
z-ay

a
y-az

a
z-az

rather than the standard vector fields.

5.3.1 Proposition If F is an A -finite bi-germ (R,O) -t (R3, 0) with
two immersive branches then it is A-equivalent to either (t,O,O;O,s,O) or to
(t, 0, 0; s, sk, 0) for some k > 1. In the first case the Ae -codimension is 1 and
in the second it is 2k - 1. All possibilities are A -simple.

Proof We know that both branches of the hi-germ have non-zero I-jet. By
linear algebra, the possibilities are

(1) F '" (t, 0, 0; 0, s, 0)
(2) F", (t,O,O;s,O,O)

Case(l) Consider F", (t, 0, OJ0, s, 0). If we calculate T81./2 we see that the
bi-germ is I-determined. To find the Ae-codimension we calculate

TAe.F =£t{(I, 0, 0; 0, 0, 0)) + £1(0,0,0; 0,1,0)) + F* '£3(1,0,0), (0, 1,0), (0, 0,1))

=(£1,£1,£1 - {I}; £1,£}, £1 - {I}) + R(O, 0,1; 0, 0,1))

and so the Aecodimension is 1.

Case(2) Suppose that the (k -I)-jet of F IS (t,O,O;s,O,O). We want to
look at the possible k -jets over this. We have

TB1.!2 = m~(I,O,O)) + J;.m~(I,O,O))

Thus, by the method of Theorem 1.5.1, T = {CO, sk, 0), (0, 0, sk)} and a complete
transversalis (t,O,O;s,ask,bsk). If F is to be A-finite then (a,b) i= (0,0) and,
by changes of co-ordinates, F", (t,O,O;s,sk,O). Now

TB1.f2 = m~(I,ksk-l,O)) +f;.m~(I,O,O)) +f;.m~(O,sk,O),(O,O,sk))
k+l t:':J m1 '(;.3,1

So the bi-germ is k -determined and we need continue no further.

To find the Ae-codimension we calculate the Ae -tangent space:

T Ae.F = £1 (1, 0, 0; 0, 0, 0)) + £1 (0, 0, OJ1, ksk-l, 0))

+ F* '£3(1, 0, 0), (0, 1, 0), (0,0,1»)

= (£2, £2, £2; £2, £2 - {I, 8, 82, ... , 8k-2}, £2 - {I, 8,82, ... , sk-l})



Chapter 5 - One-Dimensional Motions of Space 68

and so the Ae -codimension is 2k - 1. o

5.4 Tri-germs (R,O) -+ (R3, 0)

By Proposition 5.1.2, a tri-germ (R,O) -+ (R3, 0) with codimension less
than 4 must have three immersive branches which are all transverse so the one
jet of the tri-germ must be (t, 0, 0; 0, s, 0; 0, 0, u). On calculating the Al -tangent
space we see that this tri-germ is one determined (and A-simple) and so we get
the final entry in the table of Theorem 5.1.1. To work out the Ae -codimension
we simply find the Ae -tangent space:

TAe.F =£1 (1, 0, 0; 0, 0, 0; 0, 0, 0») + £1(0, 0, 0; 0, 1, OJ0,0,0»)

+£I(O,O,O;O,O,OjO,O, 1») + F*.£3(1,0,0),(0, 1,0),(0,0, 1»)

=(£1,£1- {1}'£1 - {l}j£1 - {1}'£1l£1 - {l}j£1 - {1}'£1 - {l},£d

+ R(l,O,O; 1,0,Oj1,0,0),(0,1,0;0, 1,0;0,1,0),(0,0,1;0,0, 1;0,0,1»)

so clearly the Ae -codimension is 3.

5.5 Unfoldings of One-Dimensional Motions of Space

We use the methods of section 1.4 to calculate unfoldings and then analyse
the unfolding spaces.

(i) I(t) = (t, 0, 0). The Ae -codimension is zero and so the unfolding is trivial.

(ii) I(t) = (t2,t3,0). The Ae-codimension is 2 and we choose 11 = (O,t,O) and
12 = (O,O,t), so the unfolding is Fa,b(t) = (t2,t3 + at,bt). Parameter space is
shown in Fig. 5.5.1.

The bifurcation set consists of the a-axis. Along this axis Fa,o is planar,
while above and below the axis it is a twisted cubic.

(iii) I(t;s) = (t,O,O;O,s,O). The Ae-codimension is 1, It = (0,0,0;0,0,1).
So an unfolding is Fa ( t; s) = (t, 0, 0;0, s, a). Parameter space is shown in Fig.
5.5.2. The bifurcation set contains only the point a = o. At this point we have
a transverse double point, but when a =I- 0 there is no singularity on Fa(t; s).

(iv) f(t;s) = (t,0,0;s,s2,0). The Ae-codimension is 3 and we choose fl =
(0,1,0; 0, 0, 0), 12 = (0,0,1; 0, 0, 0) and fa = (0,0,0; 0, 0, s). Then an unfolding
is given by Fa,b,c(t;S) = (t,a,bjs,s2,cs). Parameter space is shown in Fig.
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5.5.3. In this case the bifurcation set is the Whitney umbrella, ac2 = b2• Off the
surface, Fa,b,c( t; s) is non-singular; on the surface itself (apart from the a-axis)
the trajectory has one transverse crossing point; on the positive a-axis it has
two transverse crossing points and at (0,0,0) there is a tacnode.

(v) JCt;s;u) = (t,O,O;O,s,O;O,O,u). The Ae-codimension is 3 and /1 =
(0,1,0; 0,0,0; 0, 0, 0), h = (0,0,0; 1,0,0; 0, 0, 0), J3 = (0,0,0; 0,0,1; 0,0,0). So
an unfolding is F(J.,b,c( t; s; u) = (t, a, 0; b, s, c; 0,0, u). Parameter space is shown
in Fig. 5.5.4. The bifurcation set consists of three orthogonal planes. At the
origin there is a triple point on the trajectory, on the axes F(J.,b,c has two trans-
verse crossing points and on the planes it has one such point. Otherwise the
trajectory is non-singular.

a

Fig. 5.3.4
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6.1 Introduction

We now study motions of the plane with two degrees of freedom and look for the
local models that we would expect to see on the trajectories of such motions.
Examples of such motions are five-bar linkages, as discussed in the Introduction.
By the transversality result, classifyingmotions of the plane with two degrees of
freedom is equivalent to classifying singularities R2, 0 -+ R2, O. The trajectory
of a generic motion of the plane with two degrees of freedom is a union of open
sets in the plane and we expect the boundaries of these sets to exhibit, locally,
the singularities listed in Theorem 6.1.1. Whitney [Wh] in 1955 showed that
stable maps (here he refers to mono-germs) from the plane to the plane must be
immersions, folds or cusps. These all have Ae -codimension O. As for non-stable
map-germs f, we know that

Ae-codim(f) = A-codim(f) + rep - n) - p

and so in this case we have

Ae-codim(f) = A-codim(f) - 2

for all values of r. So in the A-simple case we need to look for multi-germ
singularities with A-codimension less than 5.

6.1.1 Theorem For a generic motion of the plane with two degree8 of freedom,
any multi-germ of a trajectory i8 A -equivalent to one of the normal [orms li8ted
below.

Type Normal Form A-codim

1 (x,y) 0
2 (x, y2) 1
3 (x, xy + y3) 2

42 (x,y3±x2y) 3

5 (x, xy + y4) 3
43 (x,y3 +x3y) 4

72
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Type Normal Form A-codim

6 (x,xy + y5 ± y7) 4
115 (x, xy2 + y4 + y5) 4
11,1 (x2+y3,y2+x3) 42,2
II~ 2 (x2 _ y2 + x3,xy) 4,

(x, y2; X2, Y) 2
(x,y2jX,XY + y2) 3
(X,y2jX,XY + y3) 4
(x,y2; XY + X3, Y) 3
(x, y2; X, y2 + X3) 4
(x, y2; Xy2 ± X3, Y) 4
(x, y2 j XY + X4, Y) 4
(x,xy + y3;XY + X3, Y) 4
(x, y2; X2, Y; x, x + g2) 3
(x, y2; X2, Y; x, xg + g2) 4
(x, y2; X2, Y; x, x + xg + g3) 4
(x y2. X2 y. X X + g2. X >'X + y2) 5, , '" "

In the last case we have ..\=I 0,1. The A-codimension of the orbit is 5 and
that of the whole stratum is 4. The type-numbers in the first column come from
Rieger's list in [Ri2] and Rieger and Ruas [RiR].

In the case of singularities R2, 0 ~ R2, 0 it is not possible to limit the
number of branches of the multi-germ in the same way as before. However,
we have a result which gives codimensional restrictions on the possible types of
behaviour.

6.1.2 Proposition There exists a residual set of motions of the plane with two
degree3 of freedom sucli that an r -germ f of a trajectory of such: a motion has
at most 4 branches (where we restrict to branches which are not A -equivalent
to (x, y») and the following hold:

(i) if r = 1 then the £-jet is non-zero;

(ii) if r = 2 then both branches have non-zero I-jets;
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(iii) if r = 3 then all branches have non-zero l-jets and at most two of these

are tangent;

(iv) if r = 4 then all branches have non-zero l-jet and none of them are

tangent.

Proof As in Proposition 4.1.2we showthis by exhibiting A-invariant submani-
folds X of rJk(2, 2), giving rise to A-invariant submanifolds Y of rJk(R2, R2),
such that the motions p. : R2 -+ E(2) with rjk~1A transverse to Y have the
stated properties. The result then followsfrom Theorem 2.2.1.

From Proposition 2.2.4we see that the transversality hypothesis implies that
the codimension of X is less than 5. This gives no immediate restriction on the
number of branches, r. However,we observe that if any branch is A-equivalent
to (x, y) (which has codimension 0) then it will not affect the remaining branches
either visually or by increasing the codimension. Any number of such planes
could be added to an existing multi-germ and not produce anything new, so we
will assume that in an r-germ none of the branches are A-equivalent to (x,y).

Now let X be the submanifold of rJk(2,2) consisting of k-jets whose ith
component jet has zero ai -jet for 1 $ i $ r. Now the dimension of JO(2,2)
is 0 and that of Jl(2,2) is 4. Thus if r = 1 we can allow the germ to have
non-zero 2-jet. It would seem that for r > 1 we should be able to have one
non-zero 2-jet if the other branches have non-zero l-jets but in fact if one of the
branches has zero Ljet and non-zero 2-jet then the only possibility for the other
r - 1 branches is (x, y) (see Proposition 6.4.1), which we have excluded. Thus
we allow only non-zero J-jets.

For the other parts of the proposition, consider the general form of a Ljet

(alx +bly,a2x +b2y)

(where this could be any of the r branches of an r-germ). Now since we are not
allowing this to be A-equivalent to (x, y) the following matrix must have rank
1:

(:: ::)
This gives one condition on the multi-germ. Thus if X is the submanifold of
fjJk(2,2) comprising 5-jets which are not A-equivalent to (x, y) then it has
codimension 5, which is too large. So we have r ~ 4. If X is the submanifold
of 4Jk(2,2) comprising 4-jets which are not A-equivalent to (x, y) then it has
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codimension 4, which is possible. However, if we impose any further conditions

on X , such as two of the branches being tangent this will take the codimension

over 4. Finally, if X is the submanifold of 3J"(2,2) comprising 3-jets which

are not A-equivalent to (x, y) then X has codimension 3. Now if two of the

branches are tangent one further condition is imposed (another 2 x 2 matrix
must have rank 1) giving codimension 4. No further conditions can be added.

Thus we have proved the Proposition. o

6.2 Mono-germs R2, 0 _ R2, 0

Rieger [Ri2] has classified all the corank 1 mono-germs up to codimension 6

and Rieger & Ruas [RiR] have studied the corank 2 mono-germs. From Propo-

sition 6.1.2 these are the only two cases to consider. We find that in both of

these cases all germs of up to codimension 4 are A-simple.

The corank 1 list is as follows:

Normal Form A-codim c(f) d(f)

1 (x,y) 0
2 (x, y2) 1
3 (x, xy + y3) 2 1 0
42 (x, y3 ± x2y) 3 2 0

5 (x, xy + y4) 3 2 1

43 (x, y3 + x3y) 4 3 0
6 ( x, xy + y5 ± y 7) 4 3 3
1ls (x, xy2 + y4 + yS) 4 3 2

Here c(f) and d(f) are geometrical invariants associated with the map-

germ f. In the complex case, c is the number of cusps and d is the number
of transverse fold crossings which are exhibited on the discriminant of the map-
germ under a generic deformation. However, in the real case c and d are only
upper bounds for these numbers.

In fact, Rieger [Ri2] has given an A-invariant stratification of El J"(2, 2) ,
the corank one k -jets of maps from C2 to C2, such that for k ~ 2, all strata
of codimension at most 6 are the Ar -orbits, or unions of orbits where moduli
figure, of germs whose determinacy degree is less than or equal to 11. Also, the
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We first note that one branch of the bi-germ will be one of the two following
forms:

(i) (x, y2)

(ii) (x, xy + y3) (discounting the possibility of (x, y).)

In order to stratify the jet space ~I2Jk(2, 2) we will use subgroups [3 and
C of A which preserve the fold and the cusp respectively (c.f. Propostion 4.3.1

and [BGil]) and start with each of the two cases above.

6.3.1 Bi-germs with at least one fold

To preserve (x, y2) we can use the vector fields :x and y ty' We define a
subgroup of Al which uses these vector fields instead of tx and ty' Call this
subgroup BI. Now we consider the other branch. Since it has non-zero one-jet
it is of form Ph'" (aX + bY, eX + dY). By linear algebra we see that the two
cases to consider here are

(1) i'J«> (0, Y) and

(II) j1 [z '" (X, 0)

We start with case (I).Now

TBI./2 = m~(O, 1)) + f;·m~(l,O)) + f;·m2(0, Y»)

and so, by the method of Theorem 1.5.1, T = {(X2,0),(XY,0)}. Thus the
possible cases are

{

(X2,Y) (i)
j2h = (0, Y) (ii)

(XY, Y) (iii)

(Note that (x, y2j XY + X2, Y) is A-equivalent to (x, y2j X2, Y). For

(x, y2j XY + X2, Y) = (x, y2j (X + Y/2)2 _ y2 /4, Y)

Then the change of co-ordinates in the target U 1--+ U - v2 /4 gives

But this germ is 2 determined since

TAl'! = m~(l, OJ0, 0), (0, 2yj 0, 0») + m~(O, OJY + 2X, 0), (0, OJY, 1»)

+ f*·m~(l, 0), (0, 1))

;2 m~'£2,2
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so we can ignore the y4 in the first component. A final change of co-ordinates
in the source, given by X ~ X + Y/2, gives

and so the two are A-equivalent.)

Case (i) is 2 determined (by similar calculations to the above) and has
A -codimension 2.

For case (ii) wefind TB1.h and see that T = {(X3, 0), (X2y, 0), (Xy2, O)}.
So a complete transversal is (x, y2j aX3 + bX2y + cXy2, Y). After lengthy
calculations involving considering each combination of (a, b, c) separately we
find that the only possibility for /2 which is finitely determined and has A-
codimension < 4 is

This is 3 determined and has A-codimension 4. All other 3-jets have codimen-
sion greater than 3 in 2J3(2, 2).

In case (iii) we find that T = {(X3 , O)} and so we have

.3f _{(Xy+X3,y)
J 2 - (XY,Y)

The first of these is 3 determined and has A -codimension 3. For the sec-
ond we calculate TBl.h and find that T = {(X4, O)} so either F =

(x, y2j XY + x4, Y), which is 4 determined and has A-codimension 4, or we
get the non-sufficient stratum A4(x, y2j XY, Y). We shall show that this has
A-codimension 5 in the jet-space 2J4(2, 2). Consider TA.I n 2J4(2, 2) (where
1= A4(x,y2jXY,Y)):

T A.I n 2J3(2, 2) =m2(1, OJ0, 0), (0, 2yj 0, 0)) + m2(0, OJY, 0), (0, OJX, 1))

+ j*.m2(1,0),(0, 1))

=(m2,m2 - {y}jm2 - {X},m2 - {X,X2,X3})

So there are 5 elements missing from 2J4(2, 2).

We now look at case (II), where Ph = (X, 0). Now

TB1./2 = m~(l,O)) + 1;.m~(l,O))

and then T = {(O,X2), (0, XY), (0, y2)}. So a complete transversal is

(x,y2jX,aX2 + bXY +cy2)
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and the A-tangent space is

TA.f =ml (1, 0; 0,0), (0, 2y; 0, 0»)+ml (0, 0; 1,2aX + bY), (0, 0;0, bX + 2cY»)

+ j*.m3(1,0),(0, 1))

We find that if c(4ac - b2) f=. 0 then weget the vectors (0, OJ 0,X2), (0,0; 0,XY)
and (0,0; 0, y2) which we need in order to apply Mather's Lemma. This con-
dition defines a smooth submanifold of a, b, c-space and so we can choose any
representative for (a,b,c) where c(4ac - b2) =1= ° to give the normal form, ego
(0,1,1).

If c(4ac - b2) = 0 then either c = 0 or 4ac = b2. Suppose c = O. Then
we get all the required vectors provided b f=. O. So we choose the representative
(0,1,0). If b = c= 0 then 4ac = b2 also. Suppose 4ac = b2. Substituting for a

in (x, y2; X, aX2 + bXY + cy2) and then differentiating with respect to band
c we get the vectors

b 2
(O,OjO, 2cX +XY)

-b 2 2
(0, 0; 0, 4c2 X + Y )

Both of these are in the A-tangent space so we can apply Mather's Lemma once
more and choose a representative for the submanifold 4ac = b2, ego (0,0,1).
We now have the following alternatives for the bi-germ F = (x, y2j h):

{

(X, XY + y2) (i)
j2h = (X, XY) (ii)

(X, y2) (iii)

In case (i) we find that (x, y2j X, XY +y2) is 2 determined with A-codimension
3.

In case (ii), F", (x,y2;X,XY). We calculate TB1.h and find that T =

{(O,Y3)}. Then either PF = (X,y2jX,XY + y3), which is 3 determined and
has A-codimension 4, or we have the non-sufficient stratum A3(x, y2j X, XY)
which has A-codimension 5 in the jet-space (the calculations are similar to those
given in the case of A4(x, y2; XY, Y».

In case (iii) we find TB1./2 and see that T = {CO, X3)}. So either j3 F =
(x, y2j X, y2 +X3), which is 3 determined and has A-codimension 4, or we have
the non-sufficient stratum A3 (x, y2 ,X, y2) which has A -codimension 5 in the
jet-space.

Stratification diagrams representing the above are shown in fig. 6.3.1(i)-(iv).
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Fig. 6.3.1 (i)

2

2 I 2 _.3
(x, y ; XY t X , Y)3

4

Fig.6.3.1(ii)

2
(x, y ; XV, Y)

2

3

4 2 -+
(x, y ; XY + X, Y)

Fig.6.3.I(iii)

2

2
(x, y ; X, XV)

2 I :.
(x, y ; X, XY + Y)3

4

Fig.6.3.I(iv)

2

2 I 2 _J
(x, y ; X, Y + X )3

4
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6.3.2 Bi-germs with at least one cusp

We need vector fields which will preserve (x, xy + y3). The discriminant of
the map-germ is given by F-I(O), where F(X, Y) = y2 + ~X3. This function
has Jacobian (~X2 2Y ), and the kernel of this gives vector fields preserving
F-I(O). So we need to find I(X, Y) and g(X, Y) such that

~X2 I(X, Y) + 2Y g(X, Y) = 0
3

(with the additional information that y2 + ~X3 = 0). Here we choose the
(independent) vector fields

o 20
3yox -2x oy

o a
2x-+3y-

ox oy
We define another subgroup of Al using these vector fields and denote it
Again, we have two possibilities for the other mono-germ:

(I) Ph'" (0, Y) and

(II) i' h '"(X,O)
First consider case (I). Then

TCI.h = m~(O, 1»)+ l;m2(3Y,0), (0,3Y»)

So T = {(X2 ,0), (XY, O)}. The three possible cases are

{

(X2,Y) (i)
j2 h = (XY, Y) (ii)

(O,Y) (iii)
The first of these has already been studied above. For case (ii) we calculate
TC 1.h and find that T = {(X3 ,O)}. So either F = (x, xy + y3; XY + X 3

, Y) ,
which is 3 determined and has A-codimension 4, or we have A3(x, xy +
y3; XY, Y) which has A-codimension 6 in the jet-space. In case (iii), we get
the non-sufficient stratum C2(x, xy + y3; 0,Y) which has A-codimension 5 in
the jet-space.

Now for case (II), where i'h = (X,O). The CI-tangent space is given by

TC1.F = m~(1, 0») + I;.m2(0, -2X2
), (2X, 0»)

and so T = {(0,X2),(0,XY),(0,y2)} and a complete tranversal is j3F =
(x,xy + y3;X,aX2 + bXY + cy2). Unless a = b = c = 0 all cases have been
studied in the subsection above. H all the coefficients are zero we have the non-
sufficient stratum A3(x, xy + y3; X, 0) which has codimension 9 in 2J3(2, 2).
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6.4 A Result on the Codimensions of Multi-germs

Consider the list of all bigenns which have A-codimension less than 5 (in
order of codimension):

Bigerm A-codim Separate Codims

(1) (x, y2; X2, Y) 2 1+1 T
(2) (x,y2;X,XY + y2) 3 1+1 NT
(3) (x,y2;XY +X\Y) 3 2+1 NT
(4) (x,y2;X,XY + y3) 4 1+2 NT
(5) (X,y2;X,y2 +X3) 4 1+1 NT
(6) (X,y2jXy2 ±X3,Y) 4 3+1 T
(7) (x,y2jXY +X4,Y) 4 1+3 T
(8) (x, xy + y3; XY + X3, Y) 4 2+2 T

Here the letters T and NT stand for "Transverse' and 'Non-Transverse',
where 'Transverse' means that the tangents to the discriminant sets of the two
monogerms in a bigerm are mutually transverse. We see that in the T cases, the
codimension is the sum of the two mono-codimensions, while in the NT cases
the codimension is greater than this sum. This suggests, firstly, the following
proposition:

6.4.1 Proposition If F = (/2, /2) is a bigerm then

A-codim(F) ~ A-codim(/I) + A-codim(h) (*)

Proof We prove this by showing that there is an injective inclusion

TA.F -+ TA./I ffiTA./2

( d h al suri . _£[_ (90J-> ..El.i... )an ence a natur surjection T.A.F = ~ -+ EBTA./i .

Suppose this were not the case. Consider 9 E 2Jk(2, 2) with 9 rt TA·it EB
TA./2 but gET A.F. Then there exist some vector fields ¢>t, ¢>2 and t/J in the
appropriate maximal ideals with 9 = t/I(¢>t} + t/2(¢>2) + wF(t/J).

Now wF(t/J) = Ut(t/J(u, v»; i;(t/J(u, v» ( where (u, v) are the co-ordinates
in the target). Since tit (4)d and ftC t/J( u, v» must be in TA.it and th( 4>2) and
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ii(tfJ(u, v) must be in TA./2 we must have g E TA.it EBTA./2, contradicting
the hypothesis. So certainly

A- di (F) - di _!2f_ > di Oft di 012co im - mR TA.F - ImRTA.it + ImRTA.h
= A-codim(fl) +A-codim(h)

o

Secondly, we would like to know what equality in (*) implies geometrically.
From the table above it would seem that there is a connection between this
equality and the discriminants being tangent. First we make a definition:

6.4.2 Definition Let ~l' ~2 be germs at ° E c2 of reduced analytic sets.
We say that (~l' ~2) is trivial if the following is true. Given 2 germs of
diffeomorphisms i1>i : c2 x C, ° _ C2 X C, 0, i1>i(Y, t) = (<Pi(Y, t), t) with
<Pi(Y,O) = Y and <Pl(O,t) = 0, i = 1,2, there is a germ of a diffeomorphism
i1>: C2 xC, 0- C2 xC, ° of the same form with i1>(~i' t) = <Pi(~i' t), i = 1,2.

Intuitively, what this means is that if we can move the ~i about in a one-
parameter family independently then they can be straightened out uniformly.
In particular, when ~l' ~2 are smooth and transverse then we have a trivial
parr,

Then we have the following result, due to Bruce [BR],

6.4.3 Theorem If F = (h,h) is a bi-germ, where Ii: C2
,Xi - C2,0, then

A-codim(F) = A-codim(ft) +A-codim(h)

if and only if the discriminant pair (~(ft), ~(h» is trivial.

Proof Suppose that (~(ft), ~(h» is a trivial pair, and let F, : C2, Xi _ C2, °
be smooth A-trivial families with Fi(x,O) = hex) and Fi(O, t) = °.Then there
are diffeomorphisms i1>i : C2 x C, ° _ C2 X C, ° with i1>i(Y, t) = (¢>i(Y, t), t),
<Pi(Y,O) = Y, <Pi(O,t) = ° and <Pi,t = <pi(-,t) taking ~(Fi,t) to ~(fi = Fi,O).
Since the pair of discriminants is trivial we can find a diffeomorphism it> : C2 x

C,O - C2 X C,O with i1>(y,t) = (¢>(y,t),t) and <Pt taking ~(Fi,t) to ~(Ii) for
all small t.

By a result of [BdPW] we now see that the bi-germ

F: C2 x C,S X {a} --+ c2,0
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(where S = {Xl,X2}) is A-trivial. But the F, were arbitrary (based) A-trivial
families so ~~(x, 0) is an arbitrary element of ffJT AUi). This argument shows
that ¥,(x,O) lies in TA(I).

Nowfor the converse. Suppose that equality holds and consider maps «Pi as
in Definition 6.4.2, where the ~i = ~Ui)' Consider the families fi,t = 4>i (I, t).
These are obviously A-trivial. For small t they define a bi-germ Ft : C2, S -+

C2, O. We claim that equality also holds for this bi-germ. First consider the
natural surjection

V(Ft) ---t V(h,d ffJ VU2,t)
TA(Ft) TAUl,t) T A(h,t)

When t = 0 this map is, by hypothesis, an isomorphism. Moreover, the dimen-
sion of the vector space on the right-hand side remains constant for small t.
So

dim V(Ft) > dime V(ft,t) ffJ V(h,t) )
TA(Ft) - TA(/J,t) TA(h,t)

. vUd V(h)
= dimeTAUd ffJ T A(h) )

. V(Fo)
= dim(TA(Fo»

On the other hand, in a deformation, codimension can only drop so all the
above inequalities are equalities. It follows that TA(Ft) = T AU!,t) ffJ T A(F2,t)

for small t. Since the germs and the bi-germs are all finitely determined we
can work in some sufficiently large jet-space (Jk(2,2)t. On this we have the
action of the jet group product IIi=l Jk (A) which we denote by A k( r), and also
(IIi=lJk('R» x Jk(£) = Bk(r). The latter is the natural group for multi-germs
since it allows only a common change of co-ordinates in the target. Clearly the
orbit Bk(r).Ft is a subset of the orbit Ak(r).Ft. However we have just shown
that they are of the same dimension, so they coincide on some neighbourhood
Ui of Ft. In particular for some neighbourhood U of Fo we have

Un Ak(r).Fo = un (Ut(Ak(r).Ft» ::> Un (Ut(Bk(r).Ft» ::> un Bk(r).Fo.

Since the first and last sets in this chain of inclusions coincide it follows
that the Ft lie in the orbit Bk (r ).Fo for small t. Since we are working in a
sufficient jet-space this means that F, is A-trivial, and consequently the change
of co-ordinates in the target «P whichmakes it trivial has the properties required
in Definition 6.4.2. 0

(In fact this result generalises to r-germs - see [BH].)
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6.5 Tri-germs and 4-germs R2,O -+ R2,O

From Proposition 6.1.2 weknow that any tri-germ will have non-zero l-jets
for each branch and that at most two of these can be tangent. In this section
we seek to show that the only tri-germs with Ae -codimension less than or equal
to 2 are shown in the table below. All are A-simple.

Normal Form A -codim

(x, y2 j x» ,Y j x, x + iP) 3
(x, y2j X2, Yj x, xfj + fj2) 4

(X,y2jX2,YjX,x+xy+y3) 4

Again, we need to stratify ~13Jk(2, 2) in an A-invariant way and then
show that the complement of the union of orbits which we want has codimension
greater than 4 in the jet-space.

We start by considering the simplest form for the first two branches of the
tri-germ: transverse folds (x, y2) and (X2, Y). We shall apply the complete
transversal method to the third branch, and so we use a subgroup of Al which
preserves the discriminants of these two. Thus instead of the standard vector
fields we use x :z and y :". We denote the subgroup B1• The third branch is
either transverse to the first two or tangent to one of them.

Suppose the third branch is transverse to the other two. We can change
co-ordinates so that j 1h = (x, x). Then the Bl -tangent space is given by

TBl.ia = mi((l, 1)) + It .m2((x, 0), (0, x))

and so a complete transversal j2h = (x, x + axfj + bfj2). Thus the possibilities
for h are

The first case is not finitely determined and is a non-sufficient stratum with
codimension 5 in the jet-space 3J2(2, 2).

For the second case, Pfa = (x, x + xy) and so

T81·fa = m~«l, 1+ y),(O,x») + f;.m2«x,O), (O,x + xy»)
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So a complete transversal is j3h = (i, i + iii + aii3). IT a f. ° then this
gives a 3-detenuined tri-germ which has A-codimension 4, while if a = ° we
have a non-sufficient stratum A2(x,y2;X2,Y;i,i + iii) with codimension 5 in
3]2(2,2) .

The final case, (x,y2;X2,Y;i,i + iP)' is 2 determined and has A-
codimension 3.

The other case we have to look at is that of two transverse immersions
with a third branch which has one-jet tangent to one of them. Then j 1h is
A-equivalent to (i,O). The 81-tangent space is given by

T81.h =m~((l,O») + f;.m2((i,0»)

and so, going up to 2-jets, T = {(O,i2), (0, iii), (0, ii2)} and a complete transver-
sal is j2 h = (x, ax2+bxy+cy2). Calculating the A-tangent space tells us that if
c(4ac - b2) f. 0 then the first condition of Mather's Lemma is satisfied. The sec-
ond condition is easily seen to be satisfied and so we can choose a representative
for (a, b, c) where c(4ac - b2) f. 0, eg (0,1,1). IT c = 0, then Mather's Lemma
can be applied to the submanifold provided b f. 0. So we choose (0,1,0). If
c = b = ° then 4ac - b2 = ° too. Consider this case. Substituting for a in
(x, y2j X2, Yj i, ax2 + bxy + cy2) and differentiating with respect to b and c
gives vectors which are in the A-tangent space, so the first criterion of Mather's
Lemma is satisfied. The second one is also satisfied and so we can apply the
Lemma. We choose the representative (0,0,1). Then the possible cases are:

{

(i, iii + ii2)
j2 h = (i, iii)

(i, ii2)
The first of these cases is 2 determined and has A -codimension 4. The other
two are not finitely deternined. Consider (x, y2j X2

, Y; i, iii). Then

So a complete 3-jet transversal is (x, y2; X2, Y; i, ifj + afj3). IT a "# ° then the
tri-germ is 3 determined but has A -codimension 5, and if a = ° then we have
a non-sufficient stratum with codimension 6 in 3J3(2, 2).

The final case, (x, y2; X2 , Y; i, ii2), has 81 tangent space

So T = {(O,i3)} and we have complete transversal (x, y2; X2, Y; i, fj2 + ai3).
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If a '# 0 the tri-germ is 3-determined but the A-codimension is 5, and if a = 0

we have a non-sufficient stratum with codimension 6 in 3J3(2, 2).

If the trigerm is any worse than the above cases then j3 f will be of the
form

'3f ( 3 v2 Y - - - b-3)J = z , xy + y ;.'\., ; x, axy + y

For all values of a and b we have non-sufficient strata with codimensions ~ 5

in the jet-space 3J3(2, 2).

Finally we look at 4-germs R2,O -+ R2,O. By Proposition 6.1.2, each
branch of a 4-germ must have corank 1 and there cannot be any tangencies
amongst the branches. Thus the only 4-germ with Ae -codimension (stratum)
~ 2 is A-equivalent to (x, y2; X2, Y; x, x + 112;X, XY + ,Xy2). Each orbit has
Ae -co dimension 3 but the stratum has Ae -codimension 2.

6.6 Unfoldings of Two-Dimensional Motions of the Plane

In order to look at the bifurcation sets of the singularities on our list we
first make some definitions.

6.6.1 Definition

(i) Given a map-germ f: F", ° -+ FP, ° (where F is C or R), the critical
set of f, Ef, is the set of points in F" where df is not surjective (i. e. where
the Jacobian of f is zero).

(ii) With f as before, the discriminant of f is the set of critical values f("£'I).

Clearly A-equivalent maps have diffeomorphic discriminants. In what fol-
lows we shall be looking at the discriminants of the map-germs on our list and
seeing how they vary with changes of parameters. We note that the geometric
invariants, c and d , described in section 6.2 give us some information about
these discriminants.

Some of these bifurcation sets have been analysed in [Ri2] and [BGi2]but
here we try to give clearer pictures of how the discriminants vary under defor-
mation.
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6.6.2 Unfoldings of Mono-germs

From Rieger [Ri2]we have the following adjancency diagram for corank 1
singularities (the numbers are the type-numbers from the tables in the statement
of Theorem 6.1.1):

1 +-- 2 +-- 3 +-- 42 +-- 43 +-- ...

<, <,
5 +-- 115 +-- ...

<,
6.- ...

For corank 2 singularities we have the following adjacency diagram from
Rieger and Ruas [RiR):

2 +-- 3 +-- 42" +-- ...

T i
II~,2 I~:~

These diagrams tell us what types of singularity we expect to see when we
unfold.

(i) I(x,y) = (x,y). This is an immersion; it is stable so the unfolding is trivial.

(ii) I(x,y) = (x,y2). This is a fold and is also stable. The critical set is given
by 2y = 0 and the discriminant is (x, 0). See Fig. 6.6.l.

(iii) f(x, y) = (x, xy + y3). This is a cusp, which is stable. The critical set is
x + 3y2 = 0 and the discriminant is (_3y2, _2y3). See Fig. 6.6.2.

(iv) I(x,y) = (x,y3±x2y). This is the lips/beaks map and has Ae-codimension
1. Then

TAe·1= (£2, £2 - {y} )

and the unfolding is given by !a(x, y) = (x, y3 ±x2y+ay). From the adjancency
diagram we expect only cusps in the unfolding. In the positive case the critical
set is defined by 3y2 + x2 + a = 0, and the discriminant is (J -3y2 - a, _2y3).
Thus the bifurcation set is a = 0 and the unfoldings are shown in Fig. 6.6.3.
In the negative case the discriminant is (J3y2 - a, 4y3). The bifurcation set is
still a = 0 and the unfoldings are shown in Fig. 6.6.4.

(v) f(x, y) = (x, xy + y4). This is a swallowtail map. We have

TAe. f = (£2, £2 _ {y2})
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and so the unfolding is fa(x, y) = (x, xy+y4 +ay2). Again, from the adjancency
diagram we expect only cusps in the unfolding. The critical set is given by
x + 4y3 + 2ay = 0 and the discriminant is (_4y3 - 2ay, _3y4 - ay2). Then the
bifurcation set is a = 0 and parameter space is shown in Fig. 6.6.5.

(vi) f(x,y) = (X,y3 + x3y). This is known as the goose singularity. The Ae-
tangent space is given by

TAe.f = (£2,£2 - {y,xy})

and so an unfolding is given by fa,b(X,y) = (X,y3 + x3y + ay + bxy). From the
adjacancy diagram we know that the only singularities we expect to see when we
unfold the goose are lips/beaks singularities. These occur when E is singular.
H we write f(x, y) = (X,9(X, v)) with 9(X, y) = y3 + x3y + ay + bxy then this
condition is equivalent to

9" = 9"" = 9x" = 0

(where 9" is the partial derivative of 9 with respect to y and 9x" is the partial
derivative of 9 with respect to x and then y.) These give 9" = 3y2 +x3 +a+bx =

0, 9yy = 6y = 0 and 9xy = 3x2 + b = 0, yielding a = 2x3 and b = -3x2. So
the lips/beaks stratum is parametrized by (2x3, -3x2) The picture in unfolding
space is shown in Fig. 6.6.6.

(vii) f(x,y) = (x,xy+yS ±y7). This is the butterfly map. We have

TAe.f = (£2,£2 - {y2,y3})

and so the unfolding is fa,b(X,y) = (x,xy + yS ± y7 + ay2 + by3). From the
adjacency diagram we expect to see swallowtail singularities and possibly cusp-
and-fold singularities and tacnode singularities. Write f( x, y) = (x, 9(x, y»)
where 9(X, y) = xy + yS ± y7 + ay2 + by3.

The swallowtail stratum is given by the conditions

9" = 9yy = 9""" = 0
So we have

9" = ± 7y6 + 5y4 + 3by2 + 2ay + x

9"" = ± 42y5 + 20y3 + 6by + 2a

9""" = ± 210y4 + 60y2 + 6b
These yield a = 20y3 ± 84y5 and b = -10y2 =F 35y4 so the swallowtail stratum
is parametrized by (20y3 ± 84ys, -lOy2 =F 35y4), which is a cusp.
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The cusp-and-fold stratum occurs when f has a cusp singularity at (x 1, Yl)

and a fold singularity at (X2,Y2) with f(Xl,yd = f(X2,Y2) (and (xI,yd i=
(X2,Y2». Now f(x!,yt) = f(X2,Y2) if and only if Xl = X2 and g(XI,yt} =

g(X2' Y2) (so Yl i= Y2). The condition for a fold at (Xl, Y2) is that gy( Xl, Y2) = 0
and the condition for a cusp at (xbyd is that gy(Xt,YI) = gyy(xI,yd = O. So
there is a real u such that g(XI, y) - u has one real repeated root and one triple
root. Hence

(since 9 is of degree 7). Comparing coefficientswith g(x,y) gives a = 2~Oy~+ ...
and b = 35yi + ... so the cusp-and-fold stratum is parametrized by

-10 3 -5 2("27Y2 + .. ·'SY2 + ...)
As for a tacnode stratum, the conditions for a tacnode are that f has a

fold at (Xb yd and another one at (X2, Y2) with f(xt, yd = f(X2, Y2) (but
(x}, yd =I (X2, Y2» and that the folds are tangent. But then Xl = X2 and since
we must have gz(x}'yd = gz(X!'Y2) then YI = Y2, contradicting (x!'yd i=
(X2, Y2). So no tacnode singularities occur.

The full bifurcation set is shown in Fig. 6.6.7.

(viii) f( X, y) = (x, xy2 + y4 + y5). This is the gull singularity. The Ae -tangent
space is given by

and so a versal unfolding is fo,b(X, y) = (x, xy2 + v' + y5 + ay + by3). From the
adjancency diagram we expect to see swallowtail, lips/beaks and tacnode strata
in the bifurcation space. Write g( X, y) = xy2 + y4 + y5 + ay + by3 .

For the swallowtail stratum the conditions are gy = gyy = g,lYIl = o. So we
get

gil = 2xy + 4y3 + 5y4 + 3by2 + a = 0

gllY = 2x + 12y2 + 20y3 + 6by = 0

g1/1I11= 24y + 60y2 + 6b = 0

Then a = _4y3 - 15y4 and b = -4y - IOy2 so a parametrization of the swal-
lowtail stratum is given by

(_4y3 _ 15y4, -4y - 10y2)
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The lips/beaks stratum occurs when E is singular, so gy = 0 and gxy =
gyy = o. These conditions yield

gy = 2xy + 4y3 + 5y4 + 3by2 + a = 0

gzy = 2y = 0

gyy = 2x + 12y2+ 20y3 + 6by = 0

So x = y = 0 and a = O. Then the lips/beaks stratum is a = O. In fact we see
beaks here rather than lips.

The tacnode stratum occurs when f has two folds (Xl, YI) and (X2, Y2)
with f(XI,yt) = f(X2,Y2) (but (xt,yt) i= (X2,Y2» and the folds are tangential.
The tangent to a fold is given by the image of the tangent of the critical set, E,
by Df. Since E is given by gy = 0, its tangent is given by (gyy, -gxy). Hence
the tangent to the fold is given by

(L ;y) ( !;:y) = gyy(l,gz)

(Note that g"" i= 0). So the tangent has direction (l,gx) at (XI,yt) and at
(X2, Y2). These are parallel if and only if YI = ±Y2. Since f(xt, yt} = f(X2, Y2)
we have Xl = X2· SO YI = -Y2. Now g(Xl,yt} = g(xt,-yt} and gy(xt.yt} =

g,(xt, -yt} = 0 so g(XI'Y) - g(XI,yt} has two repeated roots, YI and -YI.
Hence

Comparing coefficientswe get a = yt and b = -2yI. So the tacnode stratum
is parametrized by (yt, -2yi). The full bifurcation set is shown in Fig. 6.6.8.

(ix) f( X, y) = (x2 + y3, y2 + x3). The Ae -tangent space is given by

TAe.f = (£2 - {y}, £2 - {X} )

and so a versal unfolding is fa."(x, y) = (x2 + y3 + ay, y2 + x3 + bx). From the
adjancency diagram we expect to see lips/beaks singularities in the unfolding
and the condition for this is that the critical set, E, is singular. E is given by
4xy - (3x2 + b)(3y2 + a) = 0 and it is singular if the following hold:

4y - 6x(3y2 +a) = 0

4x - 6y(3x2 + b) = 0

These give 16xy = 4(3x2 + b)(3y2 + a) = 36xy(3x2 + b)(3y2 + a) so either
3y2 + a = 0 or 3x2 + b = 0 or 9xy = 1. The latter can be ignored since we are
working locally. Then if 3x2 + b = 0, either X = 0 or y = 0 so either b = 0 or
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a = 0, and if 3y2 + a = 0 then either y = 0 or x = 0 and so either a = 0 or
b = o. Hence the lips/beaks stratum is {a = O} U {b = O}.

We now look for a tacnode stratum. For this we need two points (x 1, Yl )
and (X2, Y2) which are both singular, have the same image and have tangent
fold lines. In fact, if we follow [B3] we see that in this case the tacnode stratum
is empty.

Computer generated pictures of various unfoldings are shown in Fig. 6.6.9.

(x) f(x,y) = (x2 - y2 + x3,xy). The Ae -tangent space is given by

T A~. f = (£2 - {x, y} , £2 - {x, y} ) + {(2x , y), ( - 2y, x)}

so we can choose an unfolding. Consider unfolding fa,b(X, y) = (x2 _ y2 + x3 +
ax, xy + bx). From the adjacency diagram, the only mono-germ singularities we
expect are cusps.

Computer generated pictures of various unfoldings are shown in Fig. 6.6.10.

6.6.3 Unfoldings of Bi-germs R2, 0 -+ R2, 0

We now want to look at unfoldings of the bi-germs on our list. As with
mono-germs, we shall be looking at the discriminants of the bi-germs. Again we
can find the geometric invariants c and d to give upper bounds for the number
of cusps and transverse fold crossings we expect to see on the discriminant of
each map-germ. These bifurcation sets, as before, appear in Kergosien [K] and
Rieger [Ril] but here we try to give a clearer explanation of their origin and also
clearer diagrams.

(i) f(x, y; X, Y) = (x, y2; x2, Y). This is a stable bi-germ, the transverse fold
crossing. See Fig. 6.6.11.

(ii) f(x,y;X,Y) = (x,y2;X,XY + y2). This bi-germ has Ae-codimension 1.

The ~ -tangent space is

and so the unfolding is

f,,(x, y; X, Y) = (x, y2j X, XY + y2 + a).

The two discriminants are defined by (X,O) and (-2Y, _y2 + a) and the bi-
furcation set is a = O. See Fig. 6.6.12.
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(iii) [t »; YjX, Y) = (x, y2; XY + x3, Y). The Ae -tangent space is given by

so the versal unfolding is

la(x, Y;X, Y) = (x, y2j XY + X3 + a, Y)

Thus the bifurcation set is a = O. See Fig. 6.6.13.

(iv) I(X,YiX,Y) =(x,y2jX,Xy+y3). The Ae-codimensionis 2 and we have

T Ae.f = (£2, £2 - {I, z ]; £2, £2 - {I, X}) + R(O, i, 0,1), (0, Xj 0, X))

So an unfolding is

fa,b = (x,y2 + a + bx;X,XY + y3)

The two discriminants are (x, a + bx) and (_3y2, _2y3). They will intersect if

2y3 - 3by2 + a = 0

The discriminant of this cubic is ab3 - a2 and so the bifurcation set consists of
the union of a = 0 and a = b3. See Fig. 6.6.14.

(v) lex, YjX, Y)
tangent space is

(x, y2; X, y2 + X3). The Ae -codimension is 2 and the

so the versal unfolding is

la,b(X, YiX, Y) = (x, y2; X, y2 + X3 + a + bX)

The discriminants are given by (x,O) and (X, X3 + bX + a), so the bifurcation
set is the cuspidal cubic -4b3 = 27a2 and the pictures in parameter space are
shown in Fig. 6.6.15.

(vi) I(x, YiX, Y) = (x, y2j Xy2 ± x3, Y). The Ae -tangent space is given by

TAe.f = (£2'£2; £2 - {X, XY}, £2)

and so a versal unfolding is

la,b(X, v: X, Y) = (x, y2; Xy2 ± X3 + aX + bXY, Y)

We know that this bi-germ is a lips/beaks map combined (transversely)
with a fold. We expect to see 'cusp-and-fold' singularities and birth (or death)
of lips/beaks singularities.
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The discriminant of the first branch of the bi-germ is just y = o. If wewrite
the second branch as heX, Y) = (g(X, Y), Y), where g(X, Y) = xy2 ± X3 +
aX + bXY, then there will be a cusp singularity when sx = sx x = 0 which
gives y2 ±3X2 +a+bY = ±6X = o. Thus cusps appear when y2 +bY +a = 0,
and meet the discriminant of the first branch (transversely) when Y = 0, which
gives a = 0 as the stratum of cusp-and-fold singularities in the parameter space.

Birth of lips/beaks occurs when sx = gXX = gXY = 0, i.e. when y2 ±
3X2 + a + bY = ±6X = 2Y + b = O. This gives 2b2 + a = 0 as the stratum
of lips/beaks in the parameter space. In the lips case the unfolding diagram is
shown in Fig. 6.6.16. For the beaks case see Fig. 6.6.17.

(vii) f(x, y;X, Y) = (x, y2; XY + X4, Y). The Ae -tangent space is given by

TAe.f = (£2,£2 - {1}j£2 - {X2},£2)

so the unfolding is

fa,6(X,yjX, Y) = (X,y2 + ajXY +X4 + bX2, Y)

The discriminant of the first branch is (x, a) and of the second branch it is
( -3X4 - bX2, _4X3 - 2bX). Clearly, if a = 0 and b < 0 there will be a triple
point in the image. There will also be cusp-and-fold singularities if the line
(x,a) meets the swallowtail with a repeated root i.e. if a = _4X3 - 2bX has a
repeated root. This gives the cuspidal cubic -Sb3 = 27a2. See Fig. 6.6.1S.

(viii) f(x, y;X, Y) = (x, xy + y3j XY +x3, Y). The Ae -codimension is 2 and
the Ae -tangent space is given by

so the versal unfolding is

fa,6(X, YjX, Y) = (x, xy + y3 + a; XY + X3 + b, Y)

The first branch has discriminant (_3y2, _2y3 + a), which is a cuspidal cubic
with cusp at (O,a). The second branch has discriminant (-2X3 + b,-3X2),

which again is a cuspidal cubic, this time with cusp at (b, 0).

The cusp of the first branch meets the other discriminant in a cusp-and-fold
singularity if (0, a) = (_2X3+b, -3X2), which gives the condition -4a3 = 27b2 •

Similarly, the cusp of the second branch meets the first branch in a cusp-and-fold
singularity if (b,O) = (-3y2, _2y3 + a) which gives the condition -27a2 = 4b3 •

Thus the bifurcation set consists of these two cuspidal cubics. See Fig. 6.6.19.
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6.6.4 Unfoldings of Tri-germs and 4-germs R 2 ---+ R 2

(i) [i», y; X, Y; x, f)) = (x, y2; x2, Y; x, x + f)2). The Ae -codimension is 1 and
the Ae -tangent space is given by

So a versal unfolding is

r ( 2 x2 Y - - -2)Ja = X, y; ,; X + a, X + y

Then the three discriminants are (x, 0), (0, Y) and (x+a, x) and the bifurcation
set is clearly given by a = O. See Fig. 6.6.20.

(ii) I(x, Yj X, Y; x, fj) = (x, y2; X2, Yj x, xf) + f)2). This tri-germ has Ae-
codimension 2 and the tangent space is

So we can choose the unfolding

f (2 b x2 Y - - - -2)Ja,b = x, Y + a + Xj ,j x, xy + y

The discriminant of It is then (x, a + bx), and that of fa IS (x, x2 /4). These
intersect if

x2 + 4bx + 4a = 0

which has two distinct solutions if b2 > a, one repeated root (and hence a
tacnode) if b2 = a and no solutions otherwise. There will also be a triple point
in the image if a = 0 so the bifurcation set is the union of this with b2 = a. See
Fig. 6.6.21.

(iii) I(x, Yj X, Yj x, fj) = (x, y2; x2, Yj x, x + xf) + fl). In this case the Ae-
codimension is 2 and we have

So a versal unfolding is

fa,b = (x, y2 + a; X2 + b, Y; X, x + xf) + il)
The discriminants are (x, a), (b, Y) and (-3f)2, -3iP - 2f)3). The first two must
intersect in (a, b), and they all intersect, to give a triple point, if (a-b?+4b3/9 =
O. Clearly, if a = 0 or b = 0 then there will be a cusp-and-fold singularity. Thus
the bifurcation set is shown in Fig. 6.6.22.
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Fig. 6.6.22
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(iv) Finally we come to the 4-germ,

f(x, y; X, Y; x, y; X, Y) = (x, y2; X2, Y; x, x + y2; X, A~Y+ y2)

where A t= 0, 1. The Ae -codimension of the stratum is 2 and the Ae -tangent
space to the stratum is given by

and the bifurcation set consists of the four lines a = 0, b = 0, a = b and
a = Xb . On these lines the image of the unfolding has a triple point. See Fig.
6.6.23 (which gives the case A = -1).

Fig. 6.6.23
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7.1 Introduction

Looking at motions of 3-space which have two degrees of freedom is equivalent
(by the Transversality Theorem) to classifying singularities R2, 0 -+ R3, 0 up
to A-equivalence. We are looking for singularities of up to codimension 3, by
Proposition 2.2.4. In the mono-germ case almost all the relevant possibilities
are simple, with the exception being P3.

7.1.1 Theorem For a generic motion of space with two degree.'Jof freedom,
any mono-germ of a trajectory is A -equivalent to one of the following normal
forms.

Name Normal Form Ae -codimension

So (x, y2, xy) 0
st (x, y2, y3 ± x2y) 1

S2 (x, y2, y3 + x3y) 2

si (x,y2,y3 ±x4y) 3
B± (x, y2, x2y ± yS) 22

B± (x, v', x2y ± y7) 33

ci (x, y2, xy3 ± x3y) 3

H2 (x, y3 , xy + yS) 2
H3 (x, y3 , xy + y8) 3
P3 (x, xy + v", xy2 + cy4) 4

In the case of P3 the Ae -codimension of the stratum is 3 although the Ae-
codimension of each orbit is 4. The names of the singularities which are given in
these tables are taken from David Mond's notation [Md1]. These singularities
have been classified in [Md1] (also see [B]).

109
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7.1.2 Theorem For a generic motion of space with two degrees of freedom, any

bi-germ of a trajectory is A -equivalent to one of the following normal forms.

Name Normal Form Ae -codimension

(x, y, OJ 0, X, Y) °[Atl (x,y, OJ X, Y,Xz ± yZ) 1

[Azl (x,y,OjX,Y,Xz + y3) 2
[A;l (x, y, 0; X, Y, XZ ± y4) 3

(x, y, OJ yZ, XY + y3, X) 1

(x,y,OjYz,XY + y5,x) 2
(x,y,OjYz,XY + Y7,X) 3

[stl (x, y, OJ y3 ± X2Y, y2, X) 2
[S2] (x, y, OJ y3 + X3Y, yZ, X) 3

(x,y,OjX,XY,Yz +X3) 3
(x,y,OjX,y2,XY + y4) 3

7.1.3 Theorem For a generic motion of space with two degrees of freedom,

higher multi-germs of trajectories are A -equivalent to one of the following nor-

mal forms.

Normal Form Ae -codimension

(x,y,OjX,o,YjO,X,Y) °
(x,y,OjX,O,YjX,Y,Y+X2) 1

(x,y,OjX,O,YjX, Y, Y + X3) 2
(x,y,OjX,O,YjX,Y,Xz ± yZ) 2

(x,y,OjX,O,YjX, Y, Y + X4) 3
(x,y,O;x,O,YjX,Y,XY +X3) 3
(x,y,O;x,O,y;X,Y,Xz + y3) 3
(x,y,O;x,O,YjO,X,YjX,Y,X+Y) 1

(x,y,O;x,O,y;O,X, Y;X, Y,X + AY;X,y,x + Ity) 2
(x,y,O; x,O, Y;O, X, Y; X, Y,X + AY; x + ItY,X,Y; x, px + ,y,y) 2
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(where the last two multi-germs on the list are strata and the Ae -codimension

listed is that of the whole stratum.)

We will prove these theorems, as before, by listing all multi-germ singular-

ities with codimension less than 4. In order to begin this listing we have:

7.1.4 Proposition There ezist» a residual set of motions of space with two

degree3 of freedom such that an r -germ f of a trajectory of such. a motion has

r ~ 6 and sucli that the one [ets of all the constituent mono-qerms of f are all
non-zero. Al80 if r = 3 or r = 4 at most one branch of f is not A -equivalent
to (x, y, 0). If r = 5 or 6 then all branches are immersioe.

Proof Following the pattern of Proposition 4.1.2, we look for a finite number

of A-invariant submanifolds X of rJk(2,3) giving rise to a finite number of A-

invariant submanifolds Y of rJk(R2, R3) so that motions J.L with trajectories

rjk~" transverse to the Y satisfy the above properties. Then the result follows

by Theorem 2.2.1.

Firstly, by Proposition 2.2.4, we see that codimension X ~ 6 - r and so

r can be at most 6. IT X is the submanifold of rJk(2,3) with any of the r

branches having zero Ljet then codimension X = 6, so all branches must have
rank 1.

Now if any branch is not an immersion, ie. its L-jet is not A-equivalent to

(x,y,O), then it must have Ljet A-equivalent to (x,O,O). A general Ljet has

form

(ax + by, ex + dy, ex + fy)

So in order to have i' f '" (x, 0, 0) the matrix

must have rank 1. This gives 2 conditions on the jet. So if r = 3 let X
be the submanifold consisting of tri-germs with two branches having Ljet A-
equivalent to (x, 0, 0). Then codimension X ~ 4 but we must have codimension
X ~ 6 - 3 = 3, so this is not possible. Hence we get the third part of the
proposition. Similarly, if we put r = 4, 5 and 6 we get the other parts. 0
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7.2 Mono-germs

From Proposition 7.1.4 we know that we need only look at corank 1 maps
from the plane to space. David Mond has classified these in his thesis [Md1]
(also given in [Md2]). We need to know that everything of codimension less
than 4 (including strata) is contained in these lists. From Theorem 1.2 of [Md2]
we see that the paper contains an A-invariant stratification of ~1 Jk(2, 3) with
the following properties:

(a) For k ~ 11, all strata of codimension less than or equal to 6 are the A k -

orbits, or unions of orbits where moduli figure, of germs whose determinacy
degree is less than or equal to 11;

(b) the complement in ~1 Jk(2, 3) of the union of these strata has codimension
7 (for k ~ 11).

Thus all strata of codimension ::;3 are contained in this stratification and
so the complete list of possibilities is as shown in the table in the statement of
Theorem 7.1.1.

7.3 Bi-germs R2,0 -+ R3,0

In this section we shall show that the only hi-germs from R2 to R3 with
Ae -codimension less than or equal to 3 are those given in the table below.

Name Normal Form Ae -codimension

(x,y,O;O,X,Y) °[At] (x,y, 0; X, Y,X2 ± y2) 1
[A2] (x, y, 0; X, Y, X2 + y3) 2
[At] (x,y,O; X, Y,X2 ± y4) 3

(x,y, 0; y2,XY + y3, X) 1

(x,y,O; y2,XY + y5,X) 2
(x,y,O; y2,XY + Y7,X) 3

[Sf] (x, v, 0; y3 ± x2y, y2, X) 2
[S2] (x, y, OJ y3 + X3y, y2, X) 3

(x,y,0;X,Xy,y2 +X3) 3
(x,y,OjX,y2,XY + y4) 3
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We do this by giving an A-invariant stratification of 2Jk(2,3) for k ~ 2 and,

following Mond [Md2, Theorem 1.2], showing that for k ~ 7 all orbits (note that

all genus on the list are A-simple) of A -co dimension less than or equal to 4 are

At -orbits of germs whose determinacy degree is less than or equal to 7 and that

the complement in 2Jk(2,3) of the union of these orbits has codimension 5 in

the jet-space.

IT both branches are immersive the bi-germ can be written in the form

(x, Y, OJX, Y, <jJ(X,Y» (unless it is the bi-germ consisting of two planes, which
we can write (x, Y, OJ0, X, Y), which is one-determined with Ae -codimension
0). For such bi-germs we have the following result from [Mdl].

7.3.1 Theorem (Mond) Bi-qerms of immersions are classified for A by the

K,. -classes of the separation function <jJ(X,Y).

Proof See [Md1], 1.10:2. o
Using this we find that the bi-germs of immersions with Ae -codimension

$ 3 are [At], [A2] and [At] where these symbols come from the K,. -classes of

the separation functions. So the first part of the stratification of 2 Jk (2, 3) is

given in fig. 7.3.1. The only two non-sufficient strata are then A2(x, Y, OJX, Y, 0)

and A4(x, y, 0; X, Y,X2) which both have codimension 5 (greater than 6 - 2) in

their respective jet-spaces, since for the first case if we let F = (x, y, 0; X, Y,O)

then

TA.F =m2(I, 0,0; 0, 0, 0), (0, 1,0; 0, 0, 0») +m2(0, 0, 0; 1,0,0), (0, 0, 0; 0,1,0»)

+F* .ma(l, 0, 0), (0,1,0), (0, 0,1»)

and so TA.F n 2J2(2, 3) = (£2,£2,£2; £2,£2, £2 - {X, Y,X2 ,XY, y2}). In the

second case, if we let C = (x, Y, OJX, Y, X2) then

TA.C =m2(I, 0, 0; 0, 0, 0), (0,1,0; 0, 0, 0») +m2 (0, 0, 0; 1,0, 2X), (0, 0, 0; 0,1,0»)

+ C*.ma(I,O,O),(O, 1,0),(0,0,1»)

So TA.Cn2J4(2,3) = (£2,£2,£2;£2,£2,£2 - {X,Y,X2,Xa,X4}).

Now we need to consider bi-germs consisting of one immersion and one
branch with I-jet equivalent to (x, 0, 0). To begin the classification we have
the following theorem on bi-germs consisting of an immersion and a cross-cap
meeting transversely from [Md l].
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7.3.2 Theorem (Mond)

(i) The bi-germ (x, v, 0; y2, XY + y2k+1 ,X) is (2k + 1) -determined.

(ii) Every finitely determined germ of an immersion and a cross-cap, meeting

transversely, is equivalent to one of the germs defined in (i).

Proof See [Md1], 1.10.6. o
We then have the following:

7.3.3 Proposition A bi-germ of form F(x, y; X, Y) = (x, y, 0; y2, XY +
y2k+1, X) has Ae -codimension k.

Proof From Mond, Thm.1.10.6, we have an expression for TAe.F:
TAe.F =(£2, £2, m2 - {x, x2, ••• , X

k
-
1
};

£2, £2 - {Y, y3, ••• , y2k-I}, m2 _ {y2, y4, ... , y2k-I})

+ R{(O, 0, xi; 0, 0, y2i), (0, 0, 0; 0, y2i+l, y2i)}O<i<k_I

So we can choose (0,0,0; 0, y2i+I, 0), ° :5 z < k - 1 as a minimal basis for
OF/TAe.F and the Ae-codimension is k. 0

Thus we get the next three entries in the table above.

Now the two possible situations for bi-germs consisting of one immersion
and one non-zero Ljet are

(1) P! = (x,y,O;O,O,X) or

(2) P! = (x,y,O;X,O,O).

We shall consider the first case. If jl! = (x, y, 0; 0,0, X) then the A1-,
tangent space is given by

TAl.! =m~((l, 0, 0; 0,0,0), (0, 1,0; 0,0,0»)

+m~((O,0, 0; 0,0,1») + f* .m~((1,0,0), (0, 1,0), (0,0,1»)
Following the complete transversal method of Theorem 1.5.1 we look for those
elements of H2(2,3h which are not contained in J2(T AI.!) nH2(2, 3h. We
find that

T = {(O,0, OJy2, 0, 0), (0, 0, OJXY, 0, 0), (0,0, OJ0, y2, 0), (0,0, OJ0, XY, O)}

We have already studied the cross-cap case so it remains to look at

.2f {(x,y,O;O,O,X)
J '" 2 )(x,y,OjO, y ,X
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In the first of these A2(x,y,0;0,0,X) is a non-sufficient stratum and has
codimension 6 in the jet-space 2J2(2,3) (with calculations as above).

In the second case we have
TAl./ =m~(l, 0, 0; 0, 0, 0), (0, 1,0; 0, 0, 0»)

+ m~(O, 0, OJ0, 0,1), (0, 0, OJ0, 2Y, 0»)

+r .m~(I, 0, 0), (0, 1, 0), (0,0,1))
and T = {(0,0,0;y3,0,0),(0,0,OjX2y,0,0)}. Thus the possibilities for j3f
are:

{

(x,y,OjO,y2,X) (i)
'3/- (x,y,Ojy3±X2y,y2,X) (ii)
J - (x, y, 0; y3, Y2,X) (iii)

(x, y, OJX2y, y2, X) (iv)

Case (i) leads to a non-sufficient stratum, A3(x, y, 0; 0, y2, X), which has codi-
mension 5 in the jet-space 2J3(2, 3).

Case (ii) Here j3/ = (x, y, 0; y3 ± X2Y, y2, X) which is 3 determined with
Ae -codimension 2. This gives the eighth entry in the table above.

Case (iii) Here j3/ = (x, v. 0; y3, y2, X) and we apply the complete transver-
sal method to get T = {(O, 0, 0; X3y, 0, On so the possible 4-jets are

..i / _ { (x, y, 0; y3, y2, X)
J - (x,y,0;y3+X3y,y2,X)

The first of these two is not 3 determined and the codimension of A4(X, y, 0; y3, y2, X)
in the jet-space 2J4(2,3) is 5 since if F = (x, y, 0; y3, y2,X) then

T A.F =m2(I, 0, 0; 0, 0, 0), (0, 1,0; 0, 0, 0)) +m2(0, 0, 0; 0,0,1), (0, 0, 0; 3y2, 2Y, 0))

+F* .m3(I, 0, 0), (0, 1,0), (0,0,1))

so TA.Fn2J4(2,3) = (&2,&2,&2j&2- {y,XY,X2Y,X3Y},&2 - {y},&2).
The second case, r/= (x, y, OJy3 +X3Y, y2, X), is 4 determined and has

Ae -codimension 3, providing the ninth entry in the table above.

Case (iv) If j3/ = (x,y,OjX2y,y2,X) we can change co-ordinates in the
target via it = u + w3/3 + vw to get

(x, y, OJ X2y, y2, X) "" (x, y, OJ _(y3 + 3Xy2 + X3)/3, y2, X)

"" (x, y, OJ_y3 /3, y2, X)

so we go to case (iii).
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Wehave nowexhausted all possibilities stemming from the one-jet (x, y, 0; 0, 0, X)

and so we obtain the stratification shown in fig. 7.3.2.

Case (2) When the one-jet is (x, y, 0; X, 0, 0), we see that the Al -tangent
space IS

TAl.! =m~(l, 0, OJ0,0,0), (0,1,0; 0, 0, 0») + m~(0, 0, 0; 1,0,0»)

+r .m5 (1,0,0), (0, 1,0), (0, 0,1»)

and so the complete transversal in 2]2(2,3) is

Considering all the combinations of a, (3, "y, 8 and p, allowing each to be
zero or non-zero (yielding 32 possible two-jets), we are left with 3 possibilities
with codimension less than 5 in the jet space 2J2(2, 3). All the others are
non-sufficient strata in 2J2(2,3) with codimension 5 or more. The cases are:

(2)(i) Pf = (x, y, 0; X, XY, y2)

(2)(ii) Pf = (x, y, OJX, y2, XY)

(2)(iii) j2 f = (x, y, OJX, y2, X2 + XY)

We shall follow each of these, looking for the complete transversal in
2 J3 (3,2) and computing determinacy degree and codimension where necessary.

(2)(i) H j2f = (x,y,OjX,Xy,y2) then the complete transversal is T =

{CO, O,Oj0, y3 ,0), (0,0, 0; 0, 0, X3)}. The three-jets j3 f = (x, v, OJX, XY, y2)

and j3 f = (x, y, OJX, XY ± y3, y2) are both non-sufficient strata with codi-
mension 5 in 2J3(3,2). This leaves j3f = (x,y,OjX,Xy,y2 + X3) and
j3! = (x, y, OJX,XY ±y3, Y2+X3) which both have codimension 4 in 2J3(3, 2)
so it is possible that they will be completely determined bi-germs with Ae-
codimension 3. In both cases we use the criterion for determinacy in Corollary
1.2.2 and we are able to show that

so that we see that both bi-germs are 3 determined. They also hoth
have Ae -codimension 3. We now use Mather's Lemma (Theorem 1.5.2)
to show that in fact these two hi-germs are A-equivalent. Consider! =

(x,y,OjX,XY±ay3,y2+X3). Then TA.! contains the vectors (0,0,Ojy2+
X3,O,O), (x3,O,OjX3,0,O), (x3,O,O;O,0,0) and y2-U =(0,0,Oiy2,y3,0),so
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(0,0, OJ 0,y3, 0) is in the tangent space. Since the Ae-codimension of both bi-
germs is the same the criteria of Mather's Lemma are satisfied and the two are
A-equivalent. We use the normal form f = (x, y, OJ X, XY, y2 + X3).

(2)(ii) If j2f = (x,y,OjX,y2,XY) then a complete transversal IS T =

{(O, 0, OJ 0, 0,Xy2), (0, 0, OJ 0, 0, y3)}. First welook at j3 f = (x, y, OJ X, y2, XY).
This has codimension 4 in 2J3(2,3) so we consider the complete transver-
sal in 2J4(2, 3). We find that it is T = {(O,0, 0;0,0, y4)} . Then j4 f =

(x, y, OJ X, y2 ,XY) has codimension 5 in 2J4 (2, 3) so we need not follow it
any further, but j41 = (x,y,OjX,y2,XY + y4) is 4 determined (using Corol-
lary 1.2.2) and has Ae-codimension 3. Thus we have another bi-germ for our
list.

Now we consider PI = (x,y,OjX,y2,XY + XY2). Again, this has
codimension 4 in the jet space 2J3(2,3) so we must consider the complete
transversal in 2J4(2, 3). This yields T = {(O, 0, OJ 0, 0, y4)}. The four jet
j4f = (x,y,OjX,y2,XY + XY2) has codimension 5 in 2J4(2,3) but j41 =

(x, y, OJ X, y2, XY + Xy2 + y4) is 4 determined and has Ae -codimension 3.
We shall return to this case later.

The third possibility here is j3 I = (x, y, OJ X, y2, xy ± y3). Just as above
we find that the complete transversal in 2J4(2,3) is T = {(0,0,OjO,0,y4)} and
that rl = (x,y,OjX,y2,XY ± y3) has codimension 5 in 2J4(2,3) but that
j4 f = (x, y, OJ X, y2, XY ± y3 ± y4) is 4 determined and has Ae-codimension
3.

The final case is that of P f = (x, y, OJ X, y2, xy ± xy2 ±y3). Once again,
we have to go to the four jet level to showthat j4 f = (x, y, OJ X, y2, xy ±Xy2±
y3) has codimension 5 in 2J4(2,3) but that j4 I = (x, y, 0;X, y2 ,XY ±xy2 ±
y3 ± y4) is 4 determined and has Ae-codimension 3.

Now we shall apply Mather's Lemma to show that in fact these four pos-
sibilities are A-equivalent. Consider f = (x, y, OJ X, y2, XY + y4 + aXy2 +
Py3). Just as in case (2)(i) we find that the vectors (0,0, OJ 0, 0,XY2) and
(0,0, OJ 0,0, y3) are in TA.I. The dimension of the tangent space remains con-
stant whatever the values of a and P so we can apply Mather's Lemma. All
cases are A-equivalent to (x, y, OJ X, y2, XY + y4).

(2)(iii) If j2 I = (x, y, OJ X, y2, X2 + XY) then the complete transversal in
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2J3(2,3) is T = {(O, 0, OJ 0, 0, Xy2), (0, 0, OJ0, 0, y3)}. Again there are four
cases to study.

First we look at j3/ = (x, y, 0;X, y2, X2 + XY). This has codimension 4

in 2J3(2,3) so we go up to the four-jet level. Then the complete transversal is
T = {(0,0,0;0,0,y4)} and j4/ = (x,y,DjX,y2,X2 +XY) has codimension
5 in 2J4(2,3) while j4/ = (x,y,D;X,y2,X2 + XY + y4) is four determined
(hy Corollary 1.2.2) with Ae -codimension 3. Now we shall show that this A-
equivalent to (x,y,OjX,y2,XY + y4). Consider / = (x,y,DjX,y2,aX2 +
XY + y4). It is easy to show that the vector (D, 0, OJ 0, 0, X2) is in TA./ since
the vectors xU = (0,0,OjO,2.XY,X2+4Xy3), y3U = (0,0,DjO,2Y\Xy3),
(O,O,OjO,Y4,O), (0,0,OjD,X2,0) and (0,0,OjO,aX2+Xy+y4,0) are in TA./.
Thus we can apply Mather's Lemma to get the required result.

Next, we have j3/ = (x, y, 0;X, y2, X2 +xy ±XY2). Similar calculations
to the ahove show that the only hi-germ with Ae -codimension less than 4 to
follow from this stratum is (x, y, OJX, y2, X2 + xy ± xy2 + y4) which is 4

determined and has Ae -codimension 3. We want to show that it is A-equivalent
to (x, y, OJX, y2, Xy + y4), and once again consideration of the hi-germ / =
(x,y,OjX, y2,aX2 +Xy + bXy2 + y4) shows that the vectors (0,0, OJ 0, 0, X2)
and (0,0, OJ 0, 0, Xy2) are in TA./, independent of the values of a and b.

The third and fourth cases follow similarly, and we get the two 4 determined
hi-germs (x,y,OjX, y2,X2 + xy ± y3 ± y4) and (x,y,DjX, y2,X2 + xy ±
y3 ± xy2 ± y4) which both have Ae -codimension 3. Now we want to show that
these two hi-germs are A-equivalent to the hi-germ (x, y, OJX, y2, Xy + y4).
This time we have to work harder. Putting I = (x, y, OJX, y2, aX2 + XY ±
by3 ±cXy2 ± y4) and calculating TA./ gives the vectors (0,0, OJ0, 0, X2) and

(0,0, OJ 0, 0, XY2) in TA.I provided b i: 0. As in Proposition 3.4.3 (iii), we now
consider the smooth connected suhset of the jet-space defined hy b = 0. The
vector (0,0, OJ 0, 0, y3) is in the tangent space to (x, y, OJX, y2, aX2 + Xy ±
cXy2 + y4) so we can apply Mather's Lemma again and we see that the hi-germ
is equivalent to (x,y,OjX, y2,XY + y4). See Fig. 7.3.3.

Finally, we have to look at the cases where hoth branches of the bi-
germ are non-immersions. The two possibilities are (x, 0, OJ0,X, 0) and
(x, 0, OJX, 0,0). Consideration of the non-sufficient strata AI(x, 0, OJ0, X, 0)
and A1(x,0,OjX,0,0) shows that they have codimensions 4 and 6 in the jet-
space 2J1(2,3) respectively so we need not pursue stratifications from these.



Chapter 7 - Two-Dimensional Motions of Space 121

(i)

Jet level:

2

ex..j,O i 'I-.,i-.'<. y')

I
3

I
4

(ii)

Jet level:

2

I
(x, ';1,0 i IC.~. )C'f)

4
(X,.,,, 0 i J( ... '. lC't* 't"')

('•• :t.O; ..... ~ 1C".x'I~..~

3 I a I I
C.,'j.Oi".Y, "y*"y ." )

(iii)

Jet level:

2

4 6c.:lI.i!!. ..·,...1"......'. 'f.) I (.''''Oi'''''~,J•.~.....-) r. '" .
I C... ,.Oi"...~_,,,,,,,~":t1C *~JI , ...!t••jlC,,"~ oeI-+IC"t""~'"

I

Fig. 7.3.3



Chapter 7 - Two-Dimensional Motions of Space 122

The list of tri-germs from R2 to R3 with Ae -codimension less than 4 will
be shown in this section to consist of the following:

Normal Form Ae -codimension

(x,y,O;x,O,y;O,X,Y) °
(x,y,0;x,0,y;X,Y,Y+X2

) 1
(x,y,0;x,0,y;X,Y,Y+X3

) 2

(x,y,0;x,0,y;X,Y,X2 ±y2) 2

(x,y,0;x,0,y;X,Y,Y+X4
) 3

(x, y,O;x,O, y;X, Y,XY + X3
) 3

(x,y,0;x,0,y;X,Y,X2 + y3) 3

Once again, we seek to stratify the jet-space 3Jk(2,3) for large enough k
and show that the complement in 3Jk(2,3) of all the orbits with A-codimension
~ 3 has codimension 4 in the jet-space.

From Proposition 7.1.4 we know that a tri-germ must have at least two
immersive branches. Certainly we can have three transverse immersions:

(x,y,O;x,O,y;O,X,Y)

This is one-determined and has Ae -codimension 0. Now let us suppose that two
of the mono-germs are immersions (meeting transversely). Then we can change
co-ordinates to get:

(x, y, 0; e, 0, y;«x. Y), 1/J(X,Y), ()(X, Y»

Then the possible I-jets we have to consider are

(i) P f = (x,y,O;x,O,y;X,Y,O)
(ii) i' f = (x, y, 0; x, 0, y; X, Y, Y)
(iii) i' f = (x, y, 0; z, 0, y; X, 0, 0)
(iv) i' f = (x, y, 0; e, 0, y; 0, X, 0)

We shall consider each case in turn.

Case (i) H jll = (x,y,O;x,O,y;X,Y,O) then we calculate the At-tangent
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space and find the complete transversal in 3]2(2,3). We get

H2(2,3)3 - J2(T AI.!) n H2(2, 3)3 ={(O, 0, 0; 0,0,0; 0, 0, X2)

(O,O,O;O,O,O;O,O,Xl'),(O,O,O;O,O,O;O,O, }T2)}

Taking these possibilities one by one we find that they reduce to

(i)(a) j2/=(x,y,0;x,0,y;X,l',X2)
(i)(b) j2/=(x,y,0;x,0,y;X,l',l'2)
(i)( c) j2 I = (x, y, 0; s, 0, y; X, l', Xl')
(i)(d) j2 1= (x,y,O;x,O,y;X, Y,X2 ± y2)

(i)(e) j2/= (x,y,O;x,O,y;X,l',O)

(i)(a) If j21 = (x,y,0;x,0,y;X,l',X2) then the complete transversal in
3J3(2,3) is T = {(O,0,0; 0, 0, 0; 0, 0, l'3)}. The 3-jet

j3 I = (x, y, 0; s,o, y; X, l',X2 + l'3)

is three determined and has Ae -codimension 3. Otherwise A2(x, y, 0; x, 0, Y;X, Y,X2)
is a non-sufficient stratum with codimension 4 in 3]2(2,3).

(i)(b) A2(x, y, 0; s, 0, y; X, Y, y2) is a non-sufficient stratum with codimen-
sion 5 in 3J2(2, 3).

(i)(c) IT j21 = (x,y,O;x,O,y;X,Y,XY) then the complete transversal in
3J3(2, 3) is T = {(O,0, 0; 0, 0, OJ0, 0, X3)}. The 3-jet

j3 1= (x,y,O;x,O,y;X, Y,XY + X3)

is 3-determined and has Ae -codimension 3 while A2(x, y, OJX, 0, YjX, Y, XY) is
a non-sufficient stratum with codimension 4 in 3J2(2, 3).

(i) (d) The 2-jet j21 = (x,y,0;x,0,y;X,Y,X2 ± y2) is 2-determined and
has Ae -codimension 2.

(i)(e) In this case we have the non-sufficient stratum A2(x, y, 0; x, 0, y; X, Y, 0)

which has codimension 5 in 3J2(2, 3).

This completes the stratification from the I-jet jI I = (x, y, OJs, 0, YjX, Y,0).
A diagram of this is shown in fig. 7.4.1

Case (ii) If PI = (x, u. 0; x, 0, y; X, Y,Y) then the complete transversal in
3J2(2,3) is T = {(O,0, 0; 0, 0, 0; 0, 0, X2)}. Then the two jet is

PI = (x,y,O;x,O,y;X,Y,Y +X2)
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which is 2 determined and has Ae -codimension 1. Otherwise, we go on to the 3-
jet level. The complete transversal in 3 J3(2, 3) is T = {(O, 0, 0; 0, 0, 0; 0,0, X3)} .
The three jet j3/ = (x, y, 0; s, 0, Y;X, Y, Y + X3) is 3 determined and has Ae-
codimension 2.

At the four jet level the complete transversal is T = {(O, 0, 0; 0, 0, OJ0, 0, X4)}
and the four jet j4/ = (x, y, OJX, 0, YjX, Y, Y + X4) is 4 determined and has
Ae-codimension 3. Finally, A4(x,y,OjX,0,YjX,Y,Y) is a non-sufficient stra-
tum with codimension 4 in 3J4(2, 3). The stratification diagram is shown in fig.
7.4.2.

Case (iii) We have a non-sufficient stratum AI(x,y,OjX,O,YjX,O,O) which
has A-codimension 4 in the jet-space 3JI (2,3) so there is no need to pursue a
stratification from this one-jet.

Case (iv) The non-sufficient stratum AI(x,y,OjX,O,YjO,X,O) has A-codimension
3 in the jet-space 3JI (2,3), so it is possible that there are tri-germs which lie
above this, are finitely determined and have A-codimension 3. The AI-tangent
space is given by:

TAl'! =m~((l,O, OJ0,0, OJ0, 0, 0), (0,1, OJ0,0, OJ0, 0, 0»)

+m~((0,0,Oj1,0,0;0,0,0),(0,0,0;0,0,1;0,0,0»)

+ m~ ((0,0, OJ0,0, OJ0, 1, O)} + r .m~((l, 0,0), (0,1,0), (0, 0,1»)

and the complete transversal is

j2! = (x, y, 0; s, 0, Yj aXY + /3y2, X, ,X2 + <5XY + py2)

A lengthy calculation involving considering all the possible combinations of
a, f3, " <5 and p (allowing each one to be either zero or non-zero) yields eighteen
possible cases. All except one of these are non-sufficient strata in 3J2(2,3) with
codimensions greater than 3 in this jet space. The remaining case has two jet
A-equivalent to

j2! = (x,y,OjX,O,YjXY,X,XY ± y2)

A complete transversal for this in 3J3(2,3) is T = {(O, 0, OJ 0, 0, OJ y3, 0, O)}.
Now A3(x, y, OJX, 0, Yj XY, X, XY ± y2) is a non-sufficient stratum with codi-
mension 4 in 3J3(2, 3), but consideration of A3(x, Y, OJ X, 0, Yj XY ±y3

, X, XY ±
y2) shows that
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so, using the criterion for Ai -determinacy in Corollary 1.2.2, we see that the
tri-germ is 3 determined. However, it turns out that the Ae -tangent space is

T Ae.f =£2((1,0,0; 0, 0, 0; 0, 0, 0), (0, 1, 0; 0,0,0; 0, 0, 0»)

+£2((0,0,0;1,0,0;0,0,0),(0,0,0;0,0,1;0,0,0»)

+ £2((0,0,0; 0, 0, OJY, 1, Y), (0, 0, 0; 0, 0, 0; X ± 3y2
, 0, X ± 2Y))

+r £3 ((1,0,0), (0,1,0), (0, 0,1»)
=(£2, £2, £2; £2, £2, £2; £2, £2 - {I, y2}, £2 - {I, X})

so the Ae -codimension is 4.

Thus our classification of tri-gerrns with Ae -codimension less than or equal
to 3 is complete. We note that it seems that in order to have low Ae -codimension
we must have three immersive mono-germs in the tri-gerrn.

7.5 4-germs and Higher Multi-germs R2,0 -+ R3,0

We shall show that list of higher multi-germs R 2, ° -+ R 3
, ° contains the

following:

Normal Form Ae -co dimension

(x,y,OjX,o,YjO,X,YjX,Y,X + Y) 1

(x,y,Oj x,O,YjO,X, YjX, Y,X + -XYjX,y,x + py) 2
(x, y, OJx,O,YjO,X, YjX, Y,X + XY;x + py,x,y;x,px + ,y,y) 2

First we look at 4-germs. By Proposition 7.1.4, we know that any 4-germ
must have at least three immersive branches. The 4-germ with four transverse
immersions, which is A-equivalent to four planes meeting transversely, can be
written in the following way:

(x,y,O;x,O,y;O,X,Y;X,Y,X + Y)

This is one-determined and

so the Ae -codimension is 1.
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Now suppose that the fourth branch is still an immersion but is tangent to

one of the other branches. Thus jlf = (x,y,O;i,O,y;O,X,Y;X,Y,O) and the

complete transversal is
T ={(O, 0, 0; 0, 0, 0; 0,0,0; 0, 0, X2), (0, 0, 0; 0, 0, 0; 0, 0, 0; 0, 0, XY),

-2(O,O,OjO,O,OjO,O,OjO,O,Y)}
So we have j2 f = (x, y, OJs, 0, Yj 0, X, Yj X, Y, aX2 + j3XY + ,y2). Consider-

ation of all possible combinations of a, j3 and " with each being either zero
or non-zero, yields only non-sufficient strata with codimension greater than 3 in

the jet-space 4J2(2, 3).

Finally, if the fourth branch is not an immersion then the 4-germ must be

of the form

(x,y,Oji,O,YjO,X,YjX,O,O)

This is a non-sufficient stratum with codimension 4 in 4Jl(2, 3). So the only

4-germ which has Ae -codimension less than 4 is the four transverse planes.

We now look at 5-germs. By Proposition 7.1.4 we know that any 5-germ

must have five immersive branches. Consider the case of five transverse planes

in R3. There will be two moduli associated with such a 5-germ. We can write

it in the following way:

(x, y, OJs, 0, Yj O,X, Y;X, Y,X + ).Yj x,y, x + J.ly)

Then the Ae -tangent space of a single orbit is

T Ae·f = (£2, £2, £2j £2, £2, £2; £2, £2, £2; £2-{1}, £2, £2-{X}j £2-{1}, £2, £2-{Y})

so the Ae -codimension of an orbit is 4, but the Ae -codimension of the stratum

is 2 (since we can also differentiate with respect to ). and J.l). Thus this stratum

does appear on our list of multi-germs of Ae -codimension less than 4.

H we go on to look at 5-germs with five immersive branches, two of which
are tangent, we have a one-jet of the form:

(x, y,Oj i,O, YjO,X, YjX, Y,X + ).YjO,x,y)

This is a non-sufficient stratum in 5J1(2,3) with codimension 2 in the jet-space.
Since we are only interested in 5-germs with codimension less than 2 in the
jet-space ( by Proposition 2.2.4) this case is ruled out.

Finally we consider 6-germs from R 2 to R 3• These must consist of six
immersive branches, by Proposition 7.1.4, and since the codimension in the
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multi-jet space must be zero, by Proposition 2.2.4, wewould expect no tangencies
between these immersions. Thus we look at six transverse planes:

(x,y,Oj x,O,Yj O,X, YjX, Y,X + AYjX + J.lY,X,Yj X, px + IY,Y)

(The letters A, J.l, P and I represent the four moduli associated with such a
germ.) The tangent space to each orbit is then

TAe·f = (£2, £2, £2j £2, £2, £2j£2, £2, £2j £2, £2, £2 - {Y}j

£2 - {Y}'£2 - {1},£2j£2 - {1},£2 - {X,y},f2)
and so the Ae -codimension of an individual orbit is 6 but the Ae -codimension
of the stratum is 2. Thus we have all the multi-germs on our list.
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7.6 Unfoldings of Two-Dimensional Motions of Space - Mono-germs

We now want to look at the unfoldings and bifurcation sets of the mono-
germs on our list. As usual, we use the methods of section 1.4 but we also
have some further techniques for analysing the unfolding spaces of mono-germ
singularities in this case and these are described below in 7.6.3.

We first give a table summarising the unfoldings. The calculations for these
are routine and are given in Appendix B.2.

Name Unfolding Ae -codim C(f) T(f) Jl(iy /Z2)

So (X,y2,xy) 0 1 0 0
S+ (x,y2,y3 +x2y+ay) 1 2 0 01

s- (x, y2, y3 _ x2y + ay) 1 2 0 01

S2 (X,y2,y3 +x3y+ay+bxy) 2 3 0 0
st (x, y2, y3 + x4y + ay + bxy + cx2y) 3 4 0 0
S- (x, y2, y3 _ x4y + ay + bxy + cx2y) 3 4 0 03

B+ (x, y2, x2y + yS + ay + by3) 2 2 0 22
B- (x,y2,x2y _ yS + ay + by3) 2 2 0 22
B+ (x,y2,x2y+y7 +ay+by3 +cyS) 3 2 0 43

B- (x, v', x2y _ y7 + ay + by3 + cyS) 3 2 0 43

ct (x, y2, xy3 + x3y + ay + by3 + cxy) 3 3 0 2C; (x, y2, xy3 - x3y + ay + by3 + cxy) 3 3 0 2
H2 (x, y3 + ay, xy + yS + by2) 2 2 1 0
H3 (x, y3 + ay, xy + y8 + by2 + cyS) 3 2 2 0

P3 (x, xy + y3 + ay, xy2 + cy4 + by + dy3 + ey4) 4 3 1 2

Table 7.6.1

The columns headed C(f), T(f) and JlCIJ2 /Z2) give invariants and come
from the table in [Md2]. In the complex case, C gives the number of cross-caps
the appear in a generic unfolding of the map-germ; it is defined in the following
way [Md2]:
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where 'Rf is the ideal generated by the 2 x 2 minors of d/. T gives the number
of triple points in the complex case and is defined as follows [Md2]:

. OC2,0

T(f) = dimc F (I, ° )
2 • c2,0

where F2(f.OC2,o) is the second Fitting ideal (see section 7.6.3). The third
invariant, J.I.(D2/Z2) is a geometric invariant which is the Milnor number of
the double point curve D2(f) when it is acted on by Z2 (see Marar & Mond
[MdMl]). It can be calculated using the formula [MdMl]

J.I.(jj2/Z2) =Ae-codim(f) - C - T + 1.

Here, we would like to know what happens when we unfold the real germ. From
Mond [Md2]we have the following theorem:

7.6.1 Theorem Let i :R2, 0 -+ R3, 0 be a finitely determined map-germ with
corank 1 at O. Then there ezist arbitrary "mall real deformations 0/ ! exhibiting
C(J) real cross-caps,

In the case of triple points, from Marar & Mond [MdM2]we have

7.6.2 Remark: Let / : R2, 0 -+ R3, 0 be a finitely determined map-germ with
corank 1 at O. Then if / is from the Hie series of singularities, T(J) real triple
points will be exhibited under some small real deformation.

In particular, we will be able to find 1 real triple point when we deform H2
and 2 real triple points when we deform H3. However in the case of P3 no such
result exists. So, except in this case, we know at least that if F : R 2 X R d ,0 -+

R3 X Rd, 0, F(x, t) = (ft(X), t) is the unfolding of f :R2 -+ R3 then there will
be some values of t E Rd such that the image of /t is a singular surface with
C(f) cross-caps and T(f) triple points.

7.6.3 The conditions for cross-caps and triple points

Given / : X -+ Y finite and analytic, we want to look at the set Mk(f) of
points in Y whose preimage consists of k or more points, counting multiplicity.
Following the method in Mond & Pellikaan [MdP], this can be done by looking
at the scheme structure of Mk(f) using the Fitting ideals of the coherent Oy-
module !.Ox. The Mk(f) are the varieties of zeros of these Fitting ideals,
:Fie (0x ). so we first construct these ideals, from a presentation of /.0 x , using
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the algorithm below. The notation is due to Mond; we state the algorithm for
the case I: en,O _ en+1,O.

Given a map-germ I :en, ° - en+!, a which is finite we follow the steps
below in order to find the double point curve and the triple points (if they exist).

(1) Choose a projection 7r : en+1 _ en such that 1= 7r 0 I is still finite (this
is Noether normalization and is always possible). We may suppose that
I(x) = (j(X),/n+1(X)).

(2) Find generators g1 = 1, g2, ... , gh for Oon ,0 = On (source) over On
(target) via 1· ( by the Weierstrass Preparation Theorem these can be
found).

(3) Find the (unique) a~ E On, 1 :::;i,j :::;h such that

gjln+1 = z) a~ 01)9i
I

(4) Now note that In+! = Xn+1 ° I and let A~ be such that

.Ai. = { aj ° 7r i =1= j
} ai07r-Xn+1 Z=J

then we can view the equations as relations among the gi over On+! ,

.A}.gl + ... + .AJ ·gh = a
(5) Then the matrix .A is the presentation matrix of I.On over On+1

O!+1 ~O!+1 -+ I.On -+ °
We define the kth Fitting ideal of I. On , Fk(J.On) to be the ideal in On+1
generated by all (h - k) x (h - k) minors of A for ° :::;k < h. Denote the variety
of zeros of Fk(f.On) by Mk(J). Then:

i" Mo(f) gives the preimage

rMl (f) gives the double point curve in the source

rM2(f) gives the preimages of triple points in the source.

In fact, if 1-1 (en+1) is Gorenstein it can be shown that Ml (f) may be
found by deleting the first column and (n + 1)st row and considering only that
n x n determinant - all others are in the ideal generated by this.

In particular we have:
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7.6.4 Proposition If I: o-.o - C3,O is given by I(x,y) = (x,y2,yp(x,y2))
then p(x, y2) = 0 is the double point curve.

Proof In this case we can assume Gorenstein [MdP].We take J( x, y) = (x, y2) .
The generators of 02 (source, co-ordinates (x, y) ) over 02 (target , co-ordinates
(X, Y» are 1, y. Then we have

Z.l =yp(X, Y)

Z.y =Yp(X, Y)
So the presentation matrix is

A = ( - z p( X, Y) )
Yp(X,Y) -z

and M1(J) = {p(X, Y) = O}= {p(x, y2) = O}. o
Note that this situation occurs for all the mono-germ singularities we wish

to analyse, apart from H 2, H 3 and P3. Excluding these for now, our approach
is to consider the double point curve in the source for each singularity and then
to take its image under the fold map (x, y) ~ (x, y2). This gives the curve of
self-intersection of the singular surface which is the image of the stable mapping
It : R2 ~ R3. We know that if f(x, y) = (x, rex, y), sex, y» then the co-
ordinates of the cross-caps are obtained as a solution of the system of equations

{
~;(x, y) = 0
Z;(x,y) = 0

since this is the condition for the Jacobian of I to drop rank. So, when I is of
the form f( x, y) = (x, y2 , yp( x, y2» then the intersection points of p( x, y2) = 0
with the x -axis give the cross-caps in the image.In order to get the maximum
number of cross-caps we need to look at the conditions on the parameters which
give the expected number of real solutions of p( x, 0) = o. We also want to know
what the transition states are and to look at other interesting features of the
double point curve, such as the geometric implications of P.(iJ2/Z2) -# o.

Insight into the geometry of the double point curve was given in many cases
by using the program Algcurve, developed by Ralph Martin and Richard Morris,
on a Silicon Graphics Iris Workstation, and invaluable help with the problem
was given by looking at rotatable images of the surfaces involved on the same
workstation using Richard Morris's program Compsurf. Some of these beautiful
pictures are reproduced in Appendix A.



Chapter 7 - Two-Dimensional Motions of Space 133

7.6.5 Analysing the Unfoldings

Wenow look at the unfoldingspaces of each germ and use the methods above
to find out what conditions must hold on the parameters to give the maximum
number of cross-caps and triple points, and what the possible transition states
are. From the adjacancy table in Mond [Mdl] (see Fig. 7.6.1) we know what
specialisations we expect to see when we perturb a particular singularity, but
further study is required to see exactly when these transitions occur in terms of
the narameter space, and how they relate to the image.

C3

1
B3 --+ B2

1
53 --+ 52 --+ 51 --+ So

r
H2

r
H3

Fig. 7.6.1

The reader will note that work of this nature, though in the setting of
focal surfaces, has been done by Bill Bruce and Tim Wilkinson [BW], who have
analysed the bifurcation sets of the 5" (for k = 2,3), B" (for k = 1,2,3) and
C3 (also see Wilkinson [W], Arnold [AD.However, here we follow a different
method for determining the bifurcation sets which can be applied to all examples,
including those which do not have 2-jet (x, y2 , 0) .

7.6.6 st
The unfolding is given by Fa(x, y) = (x, y2, y3 + x2y + ay). From Table

7.6.1 we can expect to find at most 2 cross-caps and no triple points when we
unfold. The double point curve in the source is

p(x,y2) = y2 + x2 + a.
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Then p(x,O) = x2 + a so we can only have two distinct solutions if a < o. The
bifurcation set is a = O. So we either get no cross-caps or 2 cross-caps, with
birth occuring at a = o. The picture in the source is shown in Fig. 7.6.2.

a=O a>0

Fig. 7.6.2

and the image of the double point curve is shown in Fig. 7.6.3.

a<O a=O

Fig. 7.6.3

At the point a = 0 the cross-section of the surface is a cusp. We will call
such a point a pinch-point. Parameter space is shown in Fig. 7.6.4.
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o a

Fig. 7.6.4

7.6.7 Sl
The unfolding is fa( x, y) = (x, y2, y3 - x2y + ay). Clearly the double point

curve is
p(x,l) = y2 - x2 + a.

Again, we would expect at most two cross-caps and no triple points. Exactly
the same reasoning shows that the bifurcation set is a = 0, but here we get two
cross-caps when a > 0 and none when a < O. The double-point curve in the
source is shown in Fig. 7.6.5,

a

o
Fig. 7.6.5

while in the target we have (Fig. 7.6.6):

o a

Fig. 7.6.6
See Fig 2, Appendix A.
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7.6.8 52

In this case the positive and negative versions coincide. The unfolding is
given by fa,b(x, y) = (x, y2, y3 + x3y + ay + bxy) and the double-point curve is

p(x,y2) = y2 + x3 + a + bx.

We expect at most three cross-caps and no triple points. Putting y = 0
into p(x, y2) = 0 gives x3 + bx + a = O. This has three distinct real roots when
the discriminant, D, is greater than zero. Here D = -b3/27 - a2/4, so the
bifurcation set is D = 0, ie the cusp 27a2 = -4b3• When D > 0 we get three
real roots and so three cross-caps, whilewhen D < 0 we only have one real root
and so have one-cross-cap. So we have one cross-cap above the cusp, and three
below it. On the critical set itself weeither get three cross-capswith two meeting
at the same point (if a < 0) or one cross-cap and a pinch point (if a > 0), and
only one cross-cap at the origin. The double point curve in the source is shown
in Fig. 7.6.7. The picture in the target is shown in Fig. 7.6.8. Also see Fig 3,
Appendix A.

7.6.9 st
The unfolding is fa,b,c(X, y) = (x, y2, y3 + x4y + ay + bxy + cx2y) and the

double point curve in the source is

p(x, y2) = y2 + x4 + a + bx + cx2.

We would expect to see at most four cross-caps and no triple points. We are
looking for solutions of p(x, 0) = x4 + cx2 + bx + a = O. The discriminant of this
quartic is

The bifurcation set is given by D = 0 which is the algebraic representation of
the swallowtail surface (see Teissier [TeD. On this surface the double point curve
always has a repeated root. At the origin it has a quadruple root, which shows
up in the target as a point where the surface has a cuspidal cross-section (the
birth of across-cap). On the line of self-intersection of the swallowtail surface
there are two repeated roots of the double point curve, so we see two points with
cuspidal cross-section in the target. 'Above' the surface D the double point curve
does not intersect with y = 0 and so the surface is an immersion, and 'below' D
we have two real roots of the double point curve so the surface has two distinct
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cross-caps, while inside the swallowtail we see the maximum number of cross-
caps since the double point curve has four real roots here. These transitions are
shown in parameter space in the source in Fig. 7.6.9 and in the target in Fig.
7.6.10. See Fig 4, Appendix A.

7.6.10 S;-

The unfolding is fa,b,c = (x, y2, y3 - x4y + ay + bxy + cx2y) and the double
point curve is

Again, we expect at most four cross-caps and the bifurcation set is given by the
discriminant of the quartic X4 - cx2 - bx - a being equal to zero: the swallowtail
surface. As in st, on this surface the double point always has at least one
repeated root, which in this case corresponds to two cross-caps coalescing. As
above, the maximwn number of cross-caps is realised 'inside' D = 0 and below
D = 0 we see two cross-caps while above we see none (though in this case S;-
is only an immersion close to the origin when we are above D = 0). Parameter
space in the source is shown in Fig. 7.6.11, while in the target it is shown in
Fig. 7.6.12. See Fig 5, Appendix A.

7.6.11Bt

The unfolding is fa,b(X, y) = (x, y2, x2y + y5 + ay + by3) and the double
point curve is

We would expect to see at most two cross-caps and no triple points. We also
note that 1'( jj2 jZ2) = 2 for this case. That this number is non-zero leads us
to expect that we may see non-transverse self-tangencies on the double point
curve.

To find the condition for the maximum nwnber of cross-caps to appear we
look for solutions of p(x, 0) = 0, so here we consider x2 + a = O. In order to get
two cross-caps we need a < 0, and so the bifurcation set is the line a = o.

We can think of the double point curve as a (symmetrical) quartic X =

-y. - by2 _ a, where X = x2. This is plotted for various values of a and b in
Fig.7.6.13. Self-tangencies of the double point curve occur when this curve is
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tangent to X = o. The conditions for this are that
a

X = X + y4 + by2 + a = ay (X + y4 + by2 + a) = 0

This tells us that X = 0 and that y = 0 or 2y2 + b = o. Substituting X = y = 0
into X + y4 + by2 + a = 0 gives a = 0 and substituting X = 2y2 + b = 0 into
this gives 4a = b2, where b < O. So on these curves in the parameter space we
will see self-tangencies of the double point curve. In fact, when we look at the
actual double point curve in the source (Fig.7.6.14) we see that some of these
self-tangencies reduce to points. The pictures in the target are shown in Fig.
7.6.15. We see two cross-caps when a < 0 and none if a > 0, though in the area
between 4a = b2, b < 0 and a > 0 we see a 'bubble' in the surface. See Fig 6,
Appendix A.

7.6.12 B2
The unfolding is !a,6(X,y) = (X,y2,x2y - y5 + ay + by3) and the double

point curve is
p(X,y2) = x2 _ y4 + a + by2

Again, we expect to see at most two cross-caps and the condition for this to occur
is a < o. The conditions for self-tangencies of the double point curve are given by
4a = _b2, with b > 0, or a = O. Again, we plot the curve X = y4 - by2 - a in the
source (Fig.7.6.16). In this case, when we look at the actual double point curve

in the source (Fig.7.6.17) these self-tangencies are real on the curve 4a = _b2,
where b > O. In the target the surfaces are shown in Fig. 7.6.18. See Figs 7 and

8, Appendix A.

7.6.13 s;
The unfolding is /a,6,c(X, y) = (x, y2, x2y + y7 + ay + by3 + cy5) and the

double point curve is

We would expect to see at most two cross-caps but no triple points. The

condition for two cross-caps is that

p(x,O) = x2 + a = 0

has two real solutions. So the bifurcation set is the plane a = OJif a < 0 there
will be two cross-caps and if a > 0 there will be none.
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We also note that in this case J.L( jj2 jZ2) = 4 so we expect to find self-

tangencies of the double point curve. We shall again consider the double point
curve as a sextic curve X = _y6 - cy4 - by2 - a (where X = x2). The self-

tangencies will occur when the curve is tangent to X = 0 i.e. when

X = X + y6 + a + by2 + cy4 = :y (X + y6 + a + by2 + cy4) = O.

This gives us X = 0 and either y = 0 or 3y2 = -c ±Jc2 - 3b. Substituting
X = y = 0 back into X = _y6 - cy4 - by2 - a gives a = O. The latter case can

only have real solutions if c2 - 3b > 0 and -c ±Jc2 - 3b 2:: O. H b < 0 then there

will be one real solution for v', while if b 2:: 0, c < 0 and c2 - 3b > 0 there will be

two. Otherwise, there will be no solution for y2. Substituting these values of y2

into X = _y6 - cy4 - by2 - a (where X = 0) gives the surface of self-tangencies.

In parameter space we have

D = 27a2 - 18abc + 4ac3 - b2c2 + 4b3

where b < 0 or b 2:: 0, c < 0 and c2 - 3b > O. The surface D = 0 is 'half' of a

cuspidal edge with non-zero torsion. We can study the transitions of the double

point curve in the source (see Fig.7.6.19) and of the image ja,b,c (see Fig.7.6.20)

by taking sections across this surface. When a < 0 there are two cross-caps.

'Inside' the surface (between D and a < 0) we see two cross-caps and a bubble.

As we approach a = 0 the cross-caps coalesce and the bubble remains. Between

a > 0 and D the image still has a bubble, which vanishes on D. 'Behind' both

surfaces the image is just an immersion.

7.6.14 B;
The unfolding is ja,b,c(X, y) = (x, y2, x2y - y7 + ay + by3 + cyl5) and the

double point curve is

p(X,y2) = x2 _ y6 + cy4 + by2 +a

Again we expect at most two cross-caps and the condition for this is that a < O.

The conditions for self-tangencies of the double point curve are that a = 0

or D = 0 where D is given by

D = 27a2 + 18abc + 4ac3 - b2c2 - 4b3 = 0

where b > 0 or b ~ 0, c > 0 and c2 + 3b > O. In the source we see the curves

shown in Fig. 7.6.21 and, in the target, we see the surfaces shown in Fig. 7.6.22.
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Again, when a > 0 we see no cross-caps, though the image is not an immersion.
Between the surface D and a > 0 we see a bubble in the image which gets closer
to the origin as a gets closer to O. This becomes two cross-caps when a < 0

7.6.15 ct
The unfolding is /a,b,c(X,y) = (x,y\xy3 +x3y+ay+by3 +cxy) and so the

double point curve is

We would expect at most three cross-caps and no triple points. The condition
for the maximum number of cross-caps is that p( x, 0) = x3 + cx + a = 0 has
three real solutions, which tells us that we must have 27a2 < -4c3

• Thus the
bifurcation set is the cuspidal edge, 27a2 = -4c3• We note that in this case
fL(D2/Z2) = 2 so we conjecture that we expect to see a curve of self-tangencies
of the double point curve in the parameter space. ITwe use the same method as
for B2 and B3, we must solve

8
x = xy2 + x3 + a + by2 + ex = 8y (xy2 + x3 + a + by2 + cx) = 0

which tells us that a = b = O. So on this line we should see self-tangencies.

We also note that p(x, y2) = 0 can be written y2(x+b)+x3+cx+a = o. Then
if x = -b the coefficient of y2 is zero and we are left with b3

- be+ a = o.This is
a surface in a, b, c-space. It is the surface known as the cusp catastrophe surface,
and in this case it is tangent to the cuspidal edge since maxima and minima for
the cubic a = b(e + b2) at a fixed value of e are given by a = ±fVT, and these
are also the two values of a on the cuspidal edge for a fixed value of c.

In the source we have the curves shown in Fig. 7.6.23 and in the target we
have the surfaces shown in Fig. 7.6.24. We see that inside the cuspidal edge there
are three cross-caps. Two of these coalesce and disappear on the cuspidal edge
so that only one cross-cap remains. On the cusp catastrophe surface the double
point curve becomes reducible. Note the pitchfork transition which occurs inside
the cuspidal edge as b increases. When we consider b = 0 the double point curve
is of the form xy2 +x3 +ex +a = 0, with e < O. This compares with the standard
pitchfork x3 - AX + e. In the (c, b)-plane in the source we see the curves shown
in Fig.7.6.25.
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See Fig 9, Appendix A. We observe that in this case our picture of the
bifurcation set is not the same as Wilkinson's [W]:he has used another unfolding.
In his unfolding the cusp catastrophe surface has been flattened, forcing the
cuspidal edge to become twisted.

7.6.16 C;
The unfolding is ja,b,c(X, y) = (x, y2, xy3 - X3y + ay + by3 + exy), and then

the double point curve is

p(x, y2) = xy2 - x3 + a + by2 + ex.

As above, we expect at most three cross-caps, and the bifurcation set is the
cuspidal edge 27a2 = 4c3• Again, using the methods from the calculations of B2
and B3, the condition for self-tangencies of the double point curve seems to be
a = b = O. By writing the double point curve in the form y2(x+b)-x3+cx-a = 0
we get the exceptional surface a = b(c - b2) when the coefficient of y2 is zero.
In the source we have the curves shown in Fig. 7.6.26 and in the target we have
the surfaces shown in Fig. 7.6.27. Again, on the cusp catastrophe surface the
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double point curve is reducible and inside the cuspidal edge we see the maximum
number of cross-caps. See Fig 10, Appendix A.

7.6.17 H2

The is unfolding fa,b(x, y) = (x, y3 + ay, xy + y5 + by2). We now follow the
algorithm in section 7.6.3. Choose l(x,y) = (x,y3 + ay). Then the generators
for 03 over O2 are 1, y, v', Now

Z.1 = - aY + (X + a2)y + (Y + b)y2

Z.y =Y(Y + b) + (-2aY - ab)y + (X + a2)y2

Z.y2 =Y(X + a2) + (y2 + bY - aX - a3)y + (-2aY - ab)y2

and the presentation matrix is

(

-Z-aY X+a2

A = Y(Y + b) -Z - 2aY - ab
Y(X + a2) y2 + bY - aX - a3

Y+b )
X+a2

-Z - 2aY - ab

We can obtain the defining equation of the double point curve by letting
the top right 2 X 2 determinant, via f*, be equal to zero. This gives:

x2 + 2a2x + a4 + xy4 + y8 + 2by5 + 3ay6 + 4a2y4

+ 4aby3 + axy2 + 2a3y2 + 3a2by + bxy + b2y2 + ab2 = a
which can be plotted by computer (see Figs. 7.6.29(i)-(iv». More simply, to
find the co-ordinates of cross-caps in the image of an unfolding we solve

8 3 8 5 2
8y(Y +ay)= 8y(XY+y +by )=0

This yields
y=±~

so in order to get two cross-caps, as expected from Table 7.6.1, we must have
a < o. H a = a we get one solution to this system of equations, the point (0, 0).
This just gives a distinguished point in the image fa,b, the birth of two cross-
caps. Otherwise there are no solutions. So if a ~ 0 there are no cross-caps in
the image.

To find the condition on the parameters in order to get a triple point in the
image of fa,b we take the variety of zeros of the 1 x 1 determinants of A. Some
of these are multiples of each other. The independent ones are:
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Z + aY = 0 ---+ xy + y5 + by2 + ay3 + a2 y = 0

X + a2 = 0 ---+ x = _a2

Y + b = 0 ---+ y3 + ay + b = 0

The latter gives us a condition on a and b, since if we want three preimages

of a point in the image we must have three real roots for this equation. This

gives the condition

Parameter space is shown in Fig. 7.6.28.

We would like to know what happens to the image fa,b as we cross the cusp.

When 27b2 = -4a3, the cubic

y3 + ay + b = 0

has one repeated root and one other distinct root (if a =1= 0 i= b). This means

that we no longer have a triple point but we get a self-tangency of the double

point curve, which corresponds to the birth (or death) of a triple point. ITwe

return to the computer image of the double point curve, for chosen values of a

and b we see the transition from three crossing points (Figs. 7.6.29(i),(ii)) to

none (Fig. 7.6.29(iv)) via the unstable situation of a self-tangency and a cusp

point (Fig. 7.6.29(iii)).

In the source, when 27b2 < -4a3 the three crossing points will come together

to give a triple point (see Marar [MaD. The unstable position, when 27b2 =

-4a3, is when the triple point vanishes. From the adjacancy table of Fig. 7.6.1,

we know that H2 can only perturb to 8I, so on this curve the image must

be a deformed version of 81, possibly with some distinguished point. When

27b2 > -4a3 and a < 0, we just see two cross-caps, i.e. 81. The isolated point

does not seem to have any physical significance.

See Fig 11, Appendix A, for a computer generated image of H2 showing one

visible cross-cap and the triple point.
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7.6.18 H3

The unfolding is !a,b,c(X, y) = (x, y3 +ay, xy +y8 + by2 +cy5). Again taking
f(x, y) = (x, y3 + ay) we find a presentation matrix with respect to 1,y, y2:

(

-Z - 2ay2 - caY 3a2y + X + ca2 y2 - a3 + b + cY
A = y3 - Ya3 + Yb + y2c -Z - 3ay2 - 2acY + a4 - ab 3a2y + X + a2c

3a2y2 + a2cY + Xy y(y2 - 4a3 + b + cY) -Z + a4 - 2acY - 3aY

The double point curve is:
y14 + Say12 + 2eyll + ylo(7a2 + a3) + 8aey9 + y8(c2 + Sa3 + 2a4 + 2b)

+ y\a3c + x + 10a2c) + y6(3ac2 + a5 + 6ab + lla4
) + y5(8a3c + 2a + a4c + 2bc)

+ y4(a3b + 4a2c2 + ex - a6 + 3a2b + 19a5) + y3(8a4 + 7a2x + 4abc)

+ y2(aex + b2 + 3a3b + 2a3 + 2a3c2 + 5a6) + y(3a2bc + 3a5e + 5a3x + bx)

+ x2 + 2a2ex + ab2 + a7 - 2a4b + a4c2 = 0

Computer plots of this are not very accurate: in particular they tend to
miss the singularities.

Once again, the co-ordinates of the cross-caps in the image are give by

8 8
8y (y3 + ay) = 8y (xy + y8 + by2 + cy5) = 0

and we get y = ±r-;;J3. So there are two cross-caps in the image if a < O.

Conditions for triple points (of which we would expect to see two) are given
by the 1 x 1 determinants of A. We have:

-Z - 2ay2 - acY = 0 _ -xy - y8 - 2ay6 - cy5 - 4a2y4 - y2(b + 2a3) - a2cy = 0

3a2y + X + a2c = 0 _ 3a2y3 + 3a3y + x + a2c = 0

y2 _ a3 + b + cY = 0 _ y6 + 2ay4 + cy3 + a2y2 + acy - a3 + b = 0 (*)

Consider the latter. In order to see two triple points we need this equation
to have six distinct roots, so we must have the discriminant, D, greater than
zero. D is given by solving

o
y6+2ay4+cy3+a2y2+acy_a3+b = ()y(y6+2ay4+cy3+tL2y2+acy_a3+b) = 0

i.e. y6 + 2ay4 + cy3 + a2y2 + acy - a3 + b = 6y5 + 8ay3 + 3cy2 + 2a2y + ac = O.

We get
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D = -((3Ia3 - 27b)2 + (3a)3(2c)2)(C2 + 4a3 - 4b)3

The first component of D = 0 is the folded umbrella, B2 = A3C2, (see Arnold

[AJ) where we have changed co-ordinates as follows:

A= -3a

B = 3Ia3 - 27b

C =2c

Now D = (B2 - A3C2)( C2 /4 + I6/729A 3 +4/27B). The surface D = 0 is shown
in Fig. 7.6.30.

In order to find out what the image fA,B,e looks like in the different con-

nected regions of the parameter space we take sections through the surface. If
we encounter a particular kind of behaviour in a connected region of such a

section we can assume that this behaviour occurs in the whole of that region of

the parameter space.

Consider C = O. In the (A, B)-plane we have B = 0 and -4A3 = 27B (see

Fig. 7.6.32). We would like to know what happens to the image fA,B,e inside

the various regions of the plane. When C = 0 the sextic (*) reduces to

y6 + 2ay" + a2y2 + b - a3 = 0

Substituting Y = v', A = -3a and B = 3Ia2 - 27b gives

Y(Y - ~A)2 - 2.(~A3 + B) = 0
3 27 27

ITwe want to have roots for the original sextic we must have positive roots of

this equation. We find that if
1 4 3 4 3

0< 27(27A + B) < 729A
(ie. the region between B = 0 and -4A3 = 27B, with A > 0) then there are six
real roots of the sextic which come together in the image as two triple points.

Thus in R3, we will see two triple points in the image fA,B,e whenever we are in

the small connected region between the folded umbrella and the other surface.
ITA < 0 or A > 0 and 4A3 < -27 B then the equation has no positive roots for
Y, so there are no real roots for y, but if A > 0 and 4A3 = -27B then we have
roots Y = 0 and Y = A/3 and so we get three real roots for y. We might expect
to see a single triple point in the image here. As the transition from six roots,
through three roots to no roots occurs we would expect the double point curve

to vary as shown in Fig. 7.6.31.
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The only other parts of this section C = 0 to investigate are A > 0 with
B = 0 and A > 0 with B > o. If B = 0 then the equation has a repeated root
at Y = A/9 and another positive root, so there are four roots for y. If B > 0
then there is only a single positive root for Y and so two roots for y. So we will
see no triple points, but there should be two distinguished points in the image.

Now take the section A = O. In the (B, C)-plane we see B = 0 and 16B =

-27C2 ( see Fig. 7.6.33). The sextic (*) reduces to y6 + ty3 - :r = 0, so it
will have two real roots if 16B > -27C2, one if 16B = -27C2 and otherwise no
roots.

Finally we take the section A = 3. In the (B, C)-plane we see B2 = 27C2

and B = 1~7C2-4 (see Fig. 7.6.34). They are tangent at the points (-8, 8/3v'3)
and (-8, -8/3v'3). We already know that in the top region we expect two roots
for the sextic (and thus two distinguished points), in the small central region
we expect six roots (and so two triple points), on the parabola below this three
roots, and in the bottom region no roots. We want to look at the side regions,
and since these are the same on either side of the B-axis we may as well consider
C > o. Choose the point B = 0, C = 2. Then a = -1, b = -~~ and c = 1, and
the sextic is

4(y3 _ y)2 + (y3 _ y) _ - = 0
27

This gives two roots for y3 - y, and since in either case the discriminant of this
cubic is negative, there are two roots for y.

Bringing these results together, we know that if a < 0 and hence A > 0
then there will be two cross-caps in the image, and otherwise none. ITwe are
in the small region between the two parts of the surface D = 0 then we will
have two triple points and two cross-caps in the image, passing to one triple
point and two cross-caps (H2) and then no triples and two cross-caps (St), or
to two distinguished points and two cross-caps (also St). This accords with the
adjacency diagram Fig. 7.6.1, which tells us that we would expect H3 to deform
to H 2, S}, So or an immersion.

A picture of an unfolding of H 3, as drawn on the Iris workstation, is repro-
duced in Appendix A (Fig. 12), but it will be observed that this is quite difficult
to interpret. It is easier to understand the pictures in Fig.7.6.35 (drawn by Ton
Marar), showing the steps in the construction of the image fa,b,c, to have an idea
of the relationship between the triple points and the cross-caps in the image.
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7.6.19 P3

P3 is a unimodular family of germs given by

f(x, y) = (x, xy + y3, xy2 + cy4)

It has been shown by Mond [Mdl] that unless c = 0, 1/2, 1 or 3/2 this germ is

A-finite. The unfolding (of the stratum) is fa,b,d(X, y) = (x, xy + y3 + ay, xy2 +
cy4 + by + dy3), where c oF 0,1/2,1,3/2. We may see three cross-caps and a
triple point in the image of the unfolding, though this is not necessarily the case

(see Remark 7.6.2). We also note that the invariant J.l(D2/Z2) is non-zero in

this case.

The presentation matrix, with respect to the generators 1, y, y2, is

(

-Z + dY H(X, Y) G(X»)
YG(X) -Z + dY - (a + X)G(X) H(X, Y)

YH(X, Y) YG(X) - (a + X)H(X, Y) -Z + dY - (a + X)G(X)

where G(X) = X(1 - c) - ac and H(X, Y) = cY + b - d(a + X).

Then the double point curve in the source is given by

C2y6 + cxy4(3c - 1)+ 3ac2y4 + x2y2(C2 + c -1) - 2cdxy3

+ 2cy3(b - ad) + acxy2(1 + 2c) + x2Y(1 - 2cd - c) + x3(c - 1)2

+ a2c2y2 + xy(b(3c - 1) + a(d - c - 5cd»x2(3c - 1)(c - 1) + d2)

+ 3acy(b - ad) + x(a2c(3c - 2) + 2d(ad - b» + (ad - b)2 + a3c2 = °
This can be plotted by computer but again it does not provide us with very

useful information.

To find the triple point in the image we look at the independent entries in

the matrix. These are -z +dY = 0

cY + b - d(a + X) = 0

X (1 - c) - ac = 0

and they yield the cubic

c(1 - C)y3 + acy + b( 1 - c) - ad = 0

For a triple point, we want this to have three real roots. The surface in (a, b, d)-

space which separates three real roots from one is given by the discriminant,
which is

27(1 - c)(b(1 - c) - ad)2 - 4a3c2 = 0
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We shall refer to this as the triple-point surface. If we rescale a and b we see

that it is a cuspidal edge (which does not depend on d):

27B2 = -4A3

So the cuspidal edge is the d-axis.

Now we look for the conditions for cross-caps. We must solve

x + 3y2 + a = a
2xy + 4cy3 + b+ 3dy2 = 0

These give the cubic

This cubic has three real roots (and hence gives rise to three cross-caps) if the

discriminant, D, is greater than zero. Noting that c #- 3/2, we find that D = 0

is given by

3(3(2c - 3)b + ad)2 + (4a(2c - 3) + 3d2)(9bd - 4a2) = 0

This defines another surface in (a, b, d)-space which we shall call the cross-cap

surface. Again, it has a cuspidal edge. Recall that for a general cubic Ay3 +
3By2 + 3Cy + D the discriminant surface is defined by (AD - BC)2 = 4( .4C -

B2)(BD - C2) and its singular set is the twisted cubic defined by AD - BC = 0,

AC-B2 = 0 and BD-C2 = O. Here we have A = 2(2c-3), B = d, C = -2a/3
and D = b and the cuspidal edge is defined by

4 2o = -3a(2c - 3) - d

2a = 2b(2c - 3) + "3ad

0= bd - ~a2
9

Now we would like to know how the triple point surface and the cross-cap

surface intersect in (a, b,d)-space. It is clear that the cross-cap cuspidal edge
meets the cuspidal edge of the triple point surface (the d-axis) if and only if d = O.
So the two edges intersect only at the origin in (a, b, d)-space independent of c.

We can also easily investigate how the cuspidal edge of the cross-cap surface
intersects the triple point surface itself. If we parametrize the cuspidal edge of
the cross-cap surface by (sy - t)3 then

S3 = 2(2c - 3), 3st2 = -2a,



Chapter 7 - Two-Dimensional Motions of Space 163

So we have defined s uniquely in terms of c and a, b, d in terms of t. Substitution
into the equation for the triple point surface yields

(1- c)(5c- 8)2 = c2(2c-3)
(provided t =I 0). This simplifies to (3c - 4)3 = O. So if c = ! then the whole
cuspidal edge of the cross-cap surface is contained in the triple point surface.
Otherwise they simply intersect at the origin, as mentioned above. In fact the
cuspidal edges are tangent here with the tangent line to both edges being the
d-axis.

Now we come to the question of how the two whole surfaces intersect.
First we note that both surfaces are invariant under the following R *-action
on (a, b, d)-space

(a, b, d; A) ~ (-\2 a, A3b, Ad)

(where A =I 0). This can be checked by direct substitution in the equations.
Thus both surfaces are foliated by twisted cubics (which may degenerate). In
particular, if the two surfaces intersect at a point, then they intersect along a
whole R *-orbit. So if we want to see how the two surfaces intersect in (a, b, d)-
space it is equivalent to look at how they intersect in a general plane, then we
just have to count the real intersections of two algebraic curves. We choose the
plane d = 1 and obtain the curves:

3(3(2c - 3)b + a)2 = -( 4a(2c - 3) + 3)(9b - 4a2)

-27(1 - c)«1 - c)b - a)2 = 4c2a3
(GG)

(TP)

(where CG denotes the cross-cap curve and T P denotes the triple point curve).

As they are cubics we expect that at worst they will intersect in 9 real
points. Now TP is a cuspidal cubic with cusp at the point (0,0) and cuspidal
tangent (1 - c)b - a = O. Since (0,0) is also on CC but is non-singular with
tangent b = 0 there are 2 intersections at the point (0,0). Both curves meet the
line at infinity in the point (0; 1;0). Since this is a simple point of both curves
they must each have a flex at this point, so the intersection multiplicity is at
least 3. Thus there are 4 or less real finite intersections of the two curves away
from (0,0). The exact number, 0, 2 or 4, will depend on the value of c. In order
to find the number of roots we note that TP is rational so we can parametrize it
and then substitute back into the equation for CC. Consider the pencil of lines
b = ).a through the cusp (0,0). Substitution into TP gives

-27(1 - c)«1 - C)A - 1)2a2 = 4c2a3
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so either a2 = 0 or a = -27(1 - c)«l - e)'\ - 1)2/4e2. Then (a, b) lies on CC if
,\ satisfies the following quartic

(3(c -l)(c - 2),\ + (5c - 6»2(p,\2 + Q'\ + R) = 0

where P = 3(e - 1)(2c - 3)(2e - 1), Q = 2(2c - 3)(5c - 3) and R = g(e - 1).
Clearly this always has a repeated root. The quadratic part has discriminant
a(2c - 3)c3, where a is a constant. So there will always be a repeated root of
the quartic and if 0 < e < 3/2 there will be two other real roots. One of these
roots coincides with the repeated root if c = 0 or c = 4/3.

We also note that CC is a cuspidal cubic, for non-exceptional values of c.
Pictures of the two curves for values of c in the different ranges are shown in
Fig. 7.6.36. Computer generated pictures of the two cuspidal edges intersecting,
drawn on a Silicon Graphics Iris workstation using Richard Morris' program
algsur/, do confirm these calculations and pictures.

We observe that the value c = 4/3 appears to have a geometrical significance
not previously observed; it is not one of the exceptional values listed in [Md1]
but it is the one value of c for which the whole cuspidal edge of the cross-cap
surface intersects the triple point surface and it is the only value of c for which
TP is cuspidally tangent to CC.
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7.7 Unfoldings of Bi-germs R 2
, ° ---+ R 3

, °
We give a table of the unfoldings of the bigerms on our list: again the

detailed calculations may be found in Appendix B.2.

Normal Form Unfolding

(I)
(II)
(III)
(IV)
(V)
(VI)
(VII)
(VIII)
(IX)
(X)

(x,y,OjO,X,Y)
(x, y, OJX, Y,X2 ± y2)
(x,y,OjX, Y,X2 + y3)
(x,y,OjX,Y,X2 ± y4)
(x,y,Ojy2,XY + y3,X)
(x,y,Ojy2,XY + y5,X)
(x,y,OjY2,XY + y7,X)
(x, y, 0; y3 ± x2y, y2, X)
(x,y,O; y3 + X3y, y2,X)
(x,y,O;X,XY, y2 + X3)
(x,y,0;X,y2,XY + y4)

stable
(x,y,0;X,Y,X2 ±y2 +a)
(x, y, 0; X, Y, X2 + y3 + a + bY)
(x,y,0;X,Y,X2 ±y4 +a+bY +cy2)
(x,y,Oj y2,XY + y3 + aY,X)
(x,y,Ojy2,XY + y5 +aY + by3,X)
(x,y,Oj y2,XY + y7 +aY + byl + cy5,X)
(x,y, a; y3 ± x2y + bY, Y2,X)
(x,y,a; y3 + Xly + bY + cXY, y2,X)
(x, y, 0; X, XY, y2 +Xl + a + bX + cX2)
(x, y, OJX, y2 , Xy + y4 + a + bX + cy2)

(1)+ The unfolding is Fa(x,yjX,Y) = (x,y,OjX,y,X2 + y2 + a). The first
branch is the x, y-plane and the second is an immersion with second order contact
with this plane. The intersection curve of the plane with the other surface is
X2 + y2 + a = O. The bifurcation set is a = 0. If a > ° then the two branches
do not intersect and if a < ° they intersect in a circle. See Fig.7.7.1.

(1)- The unfolding is Fa(x, y;X, Y) = (x, y, OJX, y, X2 - y2 +a). Again we have
the x, y-plane and an immersion with second order contact. The intersection
curve of the plane with the other surface is X2 - y2 + a = 0. As in (1)+ the
bifurcation set is a = 0. See Fig. 7.7.2.

(II) The unfolding is Fa,b(x, y; X, Y) = (x, y, OJX, y,X2+y3+a+bY). This time
the two immersive branches have third order contact. The intersection curve is
X2 + yl + a + bY = ° and the bifurcation set is given by the discriminant of the
cubic y3 + a + bY = ° being zero, as in the case of S2. This gives the
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cuspidal cubic 27a2 = -4b3 as the bifurcation set, and the intersection curve is
a cubic which varies in just the same way as the double point curve of S2. See
Fig. 7.7.3.

(111)+ The bi-germ consists of two immersions with fourth order contact and
the unfolding is Fa,b,c(X, y; X, Y) = (x, y,O; X, Y, X2 + y4 +a +bY +d'"2). Then
the intersection curve is X2 + y4 + cy2 + bY + a = 0 which will have four real
distinct roots (yielding two ellipses) when the discriminant, D, of the quartic
y4 + cy2 + bY + a = 0 is positive. NowD = 0 gives the swallowtail surface (as
in the case of S3), drawn in Fig. 7.7.4. 'Inside' the surface we get D > 0 and
so four distinct roots; when D = 0 we get repeated roots and when D < 0 we
either have two distinct roots (giving an ellipse as the intersection curve) or no
roots (so no intersection curve). See Fig. 7.7.4.

(I1I)- The unfolding is Fa,b,c(X,YjX,Y) = (x,y,OjX,Y,X2 - y4 + a + bY +

cy2). Again, we have two immersion meeting with fourth order contact. The
intersection curve is X2 - y4 +cy2 +bY +a = O. As above, this will have four real
distinct roots when the discriminant, D, of the quartic _y4 + cy2 + bY + a = 0
is positive. D = 0 gives the swallowtail surface. See Fig. 7.7.5.

(IV) The unfolding is Fa(x, Yj X, Y) = (x, y, 0; y2,XY + y3 +aY, X). This time
the two branches are the x, y-plane and a cross-cap meeting transversely, where
the double point curve of the cross-cap does not lie in the plane. The intersection
curve is given by

x = y2

y = XY + y3 +aY

O=X
so the curve is (y2, y3 + aY,O), a cuspidal cubic when a = O. The bifurcation
set is a = O.We see the usual cusp transitions as a varies. See Fig. 7.7.6.

(V) The unfolding is Fa,b(X,YjX,Y) = (x,y,Ojy2,XY + y5 + aY + by3,X).
The second branch is a cross-cap whose double point curve is a cubic curve. The
intersection curve with the x, y-plane is given by

x = y2

Y = XY + y5 + aY + by3

O=X
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so the curve is (y2, y(y4 + a + by2), 0), a rhamphoid cusp when a = b = o.
The maximum number of distinct real roots occurs when y(y4 + by2 + a) has
five real roots. So we need b2 - 4a > 0 and also positive roots for y2, ie. b < o.
Thus the bifurcation set is b2 = a where b < 0, and we see the usual rhamphoid
unfolding. See Fig. 7.7.7.

(VI) The unfolding is Fa,b,c(X, y; X, Y) = (x, y, 0;y2, Xy + y7 + aY + by3 +
cy5, X). This time the cross-cap has an even more complicated double point
curve. The intersection curve with the x, y-plane is given by

x =y2

Y = Xy + y7 + aY + by3 + cy5

O=X
so the curve is (y2, y(y6 + a + by2 + cy4), 0). In order to see the maximum
number of roots of the sextic y6 + a + by2 + cy4 we need the discriminant of
the cubic Z3 +cZ2 +bZ +a (put Z = y2) greater than zero, and we also require
positive roots for Z. These yield the 'half cuspidal-edge' (c.f. B3)

D = 27a2 - 18abc + 4ac3 - b2c2+ 4b3

where b < 0 or b 2: 0, c < 0 and c2 - 3b > o. We also note that when a = 0
the curve y = y(y6 + a + by2 + cy4) has a factor y3. So Y = 0 will have a
cusp when a = 0 and this is another part of the bifurcation set. See Fig. 7.7.8.
'Inside' the smallest region we actually see three loops of the curve - a further
degeneration from the rhamphoid cusp unfolding. On the surface D = 0 we
always see tacnodes and on the plane a = 0 we always see cusps, as previously
noted. When a < 0 and D > 0 the curve is a crunodal cubic, and when a > 0
and D > 0 we see an acnodal cubic.

(V 11)+ The unfolding is Fa,b(X, y;X, Y) = (x, y,a; y3 +X2y + bY, y2, X). The
second branch is the mono-germ st. This develops two cross-caps if b < 0 and
has none if b > 0 so the line b = 0 is part of the bifurcation set. The intersection
curve with the plane is given by

x = y3 + X2y + bY
y = y2

a=X
so the curve is (y3 + Y(b + a2), y2, a). We have the usual cusp transition, and
the rest of the bifurcation set will be given by b + a2 = o. On this curve we will
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see a cusp; when b + a2 > 0 we will have a crunodal cubic and when b + a2 < 0
we will have an acnodal cubic. When b > 0 the bi-germ will just consist of two
transverse immersions. See Fig. 7.7.9.

(V 11)- The unfolding is Fa,b(x, y; X, Y) = (x, y, a; y3 - X2y + bY, y2, X). The
second branch of this bi-germ is S1 and so, as above, the line b = 0 will be part
of the bifurcation set. The intersection curve with the plane is given by

x = y3 - X2y + bY

y = y2

a=X
so the curve is (y3 + Y(b - a2), y2, a). Again, we have the cusp transition and
the rest of the bifurcation set will be given by b - a2 = O. See Fig. 7.7.10.

(VIII) The unfolding is Fa,b,c(x, y; X, Y) = (x, y, a; y3 +x3y +bY +cXY, y2, X)
The second branch is S2 which has bifurcation set the cuspidal edge 27b2 = 4c3

(see earlier in this chapter). The intersection curve with the plane is given by
x = y3 + X3y + bY + cXY

y = y2

a=X
so the curve is (y3 + Y(a3 + b + ac), y2, a). Once again, the only transitions of
this curve we expect to see are the ordinary cusp transitions. The rest of the
bifurcation surface is clearly a3 + b + ac = 0, the cusp catastrophe surface. The
two parts of the bifurcation set are tangent (c.f. C;). On the cusp catastrophe
surface the two branches always meet in a cusp, but this coincides with different
cross-caps in the unfolding of S2. Inside the cuspidal edge S2 has three cross-
caps so there are three positions for the plane to meet S2 in a cusp, while outside
the cuspidal edge there is only one cross-cap on S2, so only one chance for a cusp
as the plane varies with the value of a. See Fig. 7.7.11.

(IX) The unfolding is Fa,b,c(X,y;X, Y) = (x, y,O; X,XY, y2+X3+a+bX +cX2).
The second branch is a cross-cap which has third order contact with the x, y-

plane. The intersection of the two surfaces in
x=X

y=XY

o = y2 +X3 + a + bX + cX2
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so the curve of intersection is the quintic

y2 = _X2(X3 + CX2 + bx + a)

unless x = O. Note that if x = 0 then y2 = -a, so the plane a = 0 is part of the
bifurcation set. The discriminant of the cubic factor, x3 + cx2 + bx + a, of the
quintic above is given by

D = -18abc + 4ac3 + 4b3 - b2c2 + 27a2.

D =; 0 is the twisted cuspidal edge surface. The bifurcation set is thus the union
of D = 0 and the plane a = O. At the origin there is a sharp cusp. On D = 0
the curve has at least one tacnode (though if a > 0 these tacnodes appear as
points). On the plane a = 0 the intersection curve always has a cusp, though it
may have more than one component. The bifurcation set and transitions in the
intersection curve are shown in Fig.7.7.12.

(X) The bi-germ has unfolding Fa,b,c(X,y;X,Y) = (x,y,O;X,y2,XY + y4 +
a + bX + cy2) and the second branch is a cross-cap which is tangent to the
x, y-plane. The double point curve of the cross cap is tangent to the x, y-plane
at the origin. The two surfaces meet in

x=X

y = y2

o = Xy + y4 + a + bX + cy2

These yield

which can plotted by computer. Clearly if a = b = c = 0 then the curve is
x2y = y4 so Y = 0 or x2 = y3. Note that if a = 0 then the curve is always
singular so the plane {a = O} is part of the bifurcation set. There must be other
parts to this bifurcation set but so far analysis has not revealed them.
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7.8 Unfoldings of Tri-germs R2,0 -. R3,0

We now look at the unfoldings and bifurcation sets for these. The unfoldings

are given in the following table. Calculations of these are routine.

Normal Form Unfolding

(I)
(II)
(III)
(IV)
(V)
(VI)

(x,y,OjX,O,YjO,)(,]7)
(x, y, OJX, 0, 1/j)(,]7,]7 + )(2)
(x, y, OJX, 0, 1/j)(,]7,]7 + )(3)
(x, y, OJX, 0, Yj)(,]7,)(2 ± ]72)
(x, y, OJX, 0, 1/j)(,]7,]7 + )(4)
(x, y, OJX, 0, 1/iX,]7, X]7 + ]73)
(x,y,OjX,0,Yj)(,]7,)(2 + ]73)

stable

(x, y, OJX, 0, 1/jX, ]7,]7 +)(2 + a)
(x, y, OJX, 0, 1/j)(, ]7,]7 +)(3 + a + bX)

(x,y,OjX,O,YjX,]7 +a,X2 ±]72 + b)

(x, y, 0; s, 0, 1/;X,]7,]7 +)(4 + a + bX + cX2)

(x, y,O;X,O,1/iX,]7 + a + bX, X]7 + X3 + c)
(x, y,O; x,O,YjX,]7 + a,X2 + y3 + b + cY)

Case (I) This tri-germ consists of three immersions where one is tangent to the

intersection line of the other two. An unfolding is (x, y, OJX, 0, 1/jX, y, Y +X2+a).

Let the co-ordinates in the target be (u, v, w). Then the first and second branches

meet in (u,O,O). The intersection of the third branch with the plane (x,y,O) is

given parametrically by (u, _u2
- a, 0), so we have a parabola with 0,1 or 2 real

roots. The bifurcation set is {a = O}.

The third branch intersects the plane ()(, 0, Y) in the parabola given para-

metrically by (u, 0, u2 + a). Again,the bifurcation set is {a = O}. Pictures of the

unfolding are shown in Fig. 7.8.1.

Case (I I) This tri-germ consists of three immersions again, where one has

third order contact with the intersection line of the other two. An unfolding

is (x, y, OJX, 0, 1/jX, Y, Y + X3 + a + b)(). Let the co-ordinates in the target be

(u,v,w). Then the first and second branches meet in (u,O,O). The intersection

of the third branch with the plane (x, y, 0) is given parametrically by (u, _u3 -

bx - a, 0), so we have a cubic with 1, 2 or 3 real roots. The bifurcation set is
{_4b3 = 27a2}.

The third branch also intersects the plane (X, 0, Y) in a cubic with 1, 2 or

3 real roots, given parametrically by (u, 0, u3 + bx + a), and so the bifurcation
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set is also {-4b3 = 27a2}. At the origin the two cubics are tangent to (u, 0, 0).
Inside the cusp of the bifurcation set the tri-germ has two 'bubbles', which
degenerate to one bubble on the bifurcation set and then to none. Pictures of
the unfolding are shown in Fig. 7.8.2.

Case (I 11)+ The tri-germ consists of three immersions, two of which are tan-
gent. An unfolding is given by fa.b = (x,y,OjX,O,YjX,Y +a,X2 +y2 +b). Let
the co-ordinates in the target be (u, v, w). The first and second branches meet
in (u,O,O). Then the third mono-germ can be written w = u2 + (v - a)2 + b.
The intersection of this with the first plane (x, y, 0) is then

-b = u2 + (v - a)2

which gives, as curve of intersection,

(i) a circle, centre (0, a), radius R if b < OJ

(ii) the point (0, a) if b = OJ

(iii) the empty set if b > 0. Thus b = ° is part of the bifurcation set.

The intersection with the second plane is

w = u2 +a2 + b

so we always get a parabola, with

(i) no real roots if a2 + b > OJ

(ii) one real root if a2 + b = 0;

(iii) two real roots if a2 + b < 0. So the other part of the bifurcation set IS

a2 + b = 0. See Fig. 7.8.3.

Case (111)- Again we have three immersions where two of them are tangent.
An unfolding is given by fa,b = (x, y,Oi X, 0, Yi X, Y + a, X2 - y2 + b).

If we denote the target co-ordinates by (u, v, w) then the third mono-germ
can be written w = u2 - (v - a)2 + b. So the intersection with the first plane is

-b = u2 - (v _ a)2.

This gives different hyperbolas depending on whether b is less than, equal to or
g:oeaterthan zero so part of the bifurcation set is the line b = 0.
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The intersection with the second plane is

w = u2 - a2 + b

so it is always a parabola, with

(i) no real roots if _a2 + b > OJ

(ii) one real root if _a2 + b = OJ

(iii) two real roots if -a2 +b < O. So the rest of the bifurcation set is -a2 +b = O.
See Fig. 7.8.4.

Case (IV) As in cases (I) and (II), we have three immersions where one has
higher order of contact with the intersection line of the other two - in this case
fourth order contact. An unfolding is (x, y, OJ X, 0, iijX, Y, Y +X4 +a+bX +cX2).
Let the co-ordinates in the target be (u, v, w). Then the first and second branches
meet, as usual, in (u, 0, 0). The intersection of the third branch with the plane
(x,y,O) is given parametrically by (u,-u4 -cu2 - bu -a,O). This is a quartic
with 0,1,2,3 or 4 real roots. As we would expect, the bifurcation set is the
swallowtail surface.

The third branch meets the plane (X, 0, Y) in (u, 0, u4 +cu2 +bu+a) - again
the bifurcation set is given by the swallowtail surface. The greatest number of
distinct roots of the quartic occurs 'inside' this swallowtail, as usual. In this case
this corresponds to three 'bubbles' caught between the branches. On the surface
the quartic has a repeated root and the third branch is tangent to the intersection
line of the two planes at one point at least (two points on the self-intersection
curve of the swallowtail). Above the surface there are no points common to
all three branches while below the surfaces have two points in common and a
single 'bubble' is trapped between them. The various unfoldings are shown in
Fig.7.S.5.

Case (V)The tri-germ consists of three immersions where two are planes and
the third is the cusp catastrophe surface. An unfolding is (x, y, OJ X, 0, iijX, Y +
aX, XY + X3 + b + eX). We again denote the co-ordinates in the target by
(u, v, w). The first two branches meet in (u, 0, 0). The intersection of the first
and third branches is given by u3 +uv-au2 +cu+b = O. This gives a 'pitchfork'
intersection curve. Solving for v gives

( 3 2 b) -1V = -u + au - cu - u
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(provided u =I 0). We expect the curve to have 1, 2 or 3 roots, according as the
cubic _u3 + au2 - eu - b = 0 has 1,2 or 3 solutions. The discriminant of this
cubic is

This is a twisted cuspidal edge. We note that the intersection of the second and
third branches is given by (u, 0, u3 - au2 + cu + b), i.e. we have a cubic curve
and the bifurcation set is again the twisted cuspidal edge D = 0, where D is
given by D = 27b2 + lSabe - a2e2 - 4a3b + 4e3• Above D = 0 the pitchfork and
cubic are distinct. On the surface the pitchfork and the cubic are tangent to the
intersection line of the two surfaces at the same point and below both the cubic
and the pitchfork have three points in common, all tranverse intersections with
the line v = w = 0. See Fig.7.S.6 for these transitions in the tri-germ.

Case (VI) This tri-germ consists of three immersions, two of which have third
order contact. An unfolding is ia,b,c = (x, y, OJ X, 0, iij X, Y +a, X2 +y3 +b+eY).
H we again denote the co-ordinates in the target by (u, v, w) then, as usual, the
first and second branches meet in the line (u, 0,0). Using the target co-ordinates,
the third mono-germ can be written w = u2 + (v - a)3 + b + c(v - a). Then the
intersection with the first plane is

ac - b = u2 + (v - a)3 + ev

which is a cubic which varies in the b, c-plane as shown in Fig. 7.S.7. We can
write u = J( a - v)3 - cv + ac - b. This has solutions when the cubic in v is
positive. The discriminant of the cubic is 27b2 = -4c3, i.e. a cuspidal edge with
the a-axis as the edge, so varying a does not affect the curve.

The intersection of the second and third branches is (u, 0, u2 - a3 + b - ae),
which is a parabola with 0, 1 or 2 roots according as _a3 + b - ae is greater than,
equal to or less than zero. So the bifurcation set is the surface a3 + ac = b, the
cusp catastrophe surface, together with the cospidal edge, 27b2 = -4c3• The
two parts of the bifurcation set are tangent (c.f. the bifurcation set of Cf).

See Fig.7.S.S for the possible transitions in parameter space.
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Fig.7.8.5

Fig.7.8.6
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Fig.7.8.7

Fig.7.8.8
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7.9 Unfolding Higher Multi-germs

(I) Given the 4-germ consisting of four transverse planes, the unfolding is

(x,y,O;x,O,y;O,X, Y;X + a, Y,X + Y)

Then the bifurcation set is the point {a = O}, since if a < ° or a > ° only three
of the planes go through a point.

(II) The stratum of 5-germs consisting of five planes through the origin has
unfolding

(x,y,OjX,o,YjO,X, Yj X + a, v,i( + ,,\VjX+ b,y,x + J1.y)

(where ..\=I 0, J1. and J1. =I 0). Clearly a = ° and b = ° form the bifurcation set
since on these lines four planes will go through the same point. Otherwise only
three of the planes go through the same point.

(III) The stratum of 6-germs which has six immersions going through the same
point has unfolding

(x,y,O; x,O,y;O,X, Y;X, Y,X + ..\Y; x + J1.Y,X+ a,Y; x + b,px + iY,y)

(where none of the four moduli are equal to each other or 0). The bifurcation
set includes the lines a = ° and b = 0, where five of the planes will go through
the same point.
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Fig.3 S2

Fig. 4 s+3
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Fig. 5 S~

Fig. 6 a;-
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Fig. 7 S;

Fig. 8 S;
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Fig. 9

Fig. 10 C;-
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Fig. II H2

Fig. 12 H2



Appendix B - Codimension Calculations

B.l Calculations from Chapter 3

We give the calculations of Ae -codimensions of the simple singularities of
space curves, as listed in Theorems 3.1.1 and 3.1.2.

(i) f( t) = (t2, t2m+1, 0). This is 2m+ 1 determined and the Ae -tangent space
IS

TAe.f = £1(2t, (2m + l)t2m, 0»)+ t:'£3(1,0,0), (0, 1,0), (0, 0, 1»)

So the vectors in the tangent space are

(ti,O,O) 0:::;i:::;2m+l

(O,t2i,0) 0:::; i:::; m
(0, t2m+1, 0)
(0,0, t2i) ° :::;i :::;m
(0,0, t2m+1)

This gives a total of 4m + 6 linearly independent vectors and so the Ae-
codimension is given by

Ae-codimension(f) =dim(J2m+1(1, 3» - (4m + 6)

=2m

(ii) f (t) = (t3 , t3m+ 1,0). This is 6m -1 determined and the Ae -tangent space
IS

TAe.f = cI(3t2,(3m + l)t3m,0») + /*.c3(1,0,0),(0, 1,0),(0,0, 1»)

So the vectors in the tangent space are
(ti, 0, 0) i = 0, 2:::; i :::;6m - 1

(0,t3i,0) 0:::; i:::; 2m-l
(0,t3m+I+3i,0) 0:::; i ~m-l

(0, t6m-1, 0)
(0,0,t3i) 0 ~ i ~2m - 1
(0,0, t3m+I+3i) °s i ~m - 1

This gives 12m vectors and so the Ae -codimension is

Ae-codimension(f) = 18m - 12m = 6m

192
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(iii) f(t) = (t3, t3m+2, 0). This is 6m + 1 determined and the Ae -tangent
space is

T Ae.f = £J((3t2, (3m + 2)t3m+1
, 0)) + t" .£3 ((1,0,0), (0,1,0), (0, 0,1))

So the vectors in the tangent space are

(ti,O,O)
(0,t3i,0)
(0, t3m+2+3i, 0)

(0, t6m+1
, 0)

(0,0, ei)
(0,0, t3m+2+3i)

There are 12m + 4 vectors and so

i = 0, 2 ~ i ~ 6m + 1

°~ i ~ 2m
O~i~m-l

o ~ i s 2m
0~i~m-1

Ae-codimension(f) = 18m + 6 - (12m + 4) = 6m + 2

(iv) f(t) = (t3, t3m+l + t3n+2, 0) where 1 ~ m ~ n < 2m. This is 6m - 1
determined and the Ae -tangent space is

So the vectors in the tangent space are

(ti,O,O)
(0, t3i, 0)
(0, t3m+H3i, 0)
(0, t3n+2+3i, 0)
(0,0,t3i)
(0,0, t3m+H3i)

There are 14m - n - 1 vectors and so

i = 0, 2 ~ i ~6m - 1
o ~ i ~2m-1
0~i~m-1
o ~ i~2m - n-l
o ~ i~2m-1
0~i~m-1

Ae-codimension(f) = 18m - (14m - n - 1) = 4m + n + 1

(v) J(t) = (t3, t3m+1 + t3n+2, 0) where 1 < n < m < 2n. This is 6n + 1
determined and the Ae-tangent space is
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So the vectors in the tangent space are
(ti,O,O) i=O, 2~i ~6n+l
(0, t"; 0) °~ i ~2n
(0,t3m+I+3i,0) °~i ~2n - m

(0, t3n+2+3i, 0) ° ~ i ~n - 1

(0,0,t3i) °s i ~2n
(0,0, t3m+I+3i) °~i ~n - 1

There are 14n - m + 4 vectors and so

Ae-codimension(f) = 18m + 6 - (14n - m + 4) = 4n +m + 2

(vi) / (t) = (t4, tS, 0). This is 11 determined. The Ae -tangent space is given
by

T Ae./ = £1( 4t3, 5t4, 0») + f* .£3 (1,0,0), (0,1,0), (0, 0,1»)

and the linearly independent vectors in this are
(ti,O,O) i=0,3~i~11
(O,ti,O) i=0,4,5,6, 8~i~11
(0,0, ti) i = 0,4,5,8,9,10

This gives 24 vectors and so the Ae -codimension is

Ae -codimension(f) = 36 - 24 = 12

(vii) f(t) = (t4, tS +e,0). This is 11 determined. The Ae -tangent space is
given by

and the linearly independent vectors in this are
(ti,O,O) i=0,3~i~11
(O,ti,O) i=O, 4~i~11
(o.o.e) i=0,4,5,8,9,10

This gives 25 vectors and so the Ae -codimension is

Ae-codimension(f) = 36 - 25 = 11

(viii) Jet) = (t4, t6 + t2m+1, 0), which is 2m + 9 determined. The Ae -tangent
space is

T Ae.f = s,«4t3, 6t5 + (2m + 1)t2m, 0») + f* .£3 (1, 0, 0), (0, 1, 0), (0, 0,1»)
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The vectors in this are
(ti,O,O)
(0,t2i,0)

(0, t2i+1 , 0)
(0,0, t2i)
(0,0, t2m+3)

i = 0, 3 ~ i ~2m + 9
i = 0, 2 ~ i ~m + 4

m~i~m+4
i = 0, 2 ~ i ~m + 4

Thus we have 4m + 22 vectors and the Ae -codimension is

Ae-codimension(J) = 6m + 30 - (4m + 22) = 2m + 8.

(ix) J(t) = (t\ t1 ,0). This is 17 determined. The Ae -tangent space is given
by

and the linearly independent vectors in this are

(ti,O,O) i=O, 3~i~17

(0, r, 0) i = 0,4,7,8,10,11,12,14,15,16,17
(0,0, ti) i = 0,4,7,8,11,12,14,15,16

This gives 36 vectors and so the Ae -codimension is

Ae-codimension(J) = 54 - 36 = 18

(x) J(t) = (t4,t1 + t9,0). This is 17 determined. The Ae-tangent space is
given by

T Ae.J = £1 ( 4t3, 7t6 + 9t8, 0») + 1* .£3 (1,0,0), (0, 1, 0), (0,0,1»)

and the linearly independent vectors in this are

(ti,O,O)
(O,ti,O)
(0,0, ti)

i = 0, 3 ~ i~17
i = 0,4, 7 s i ~17
i =0,4,7,8,11,12,14,15,16

This gives 38 vectors and so the Ae -codimension is

Ae-codimension(f) = 54 - 38 = 16

(xi) J( t) = (t\ t7 + t13, 0). This is 17 determined. The Ae -tangent space is
given by

T Ae.J = £1 ( 4t3, 7t6 = 13t12, 0)) + r .£3 (1,0,0), (0,1,0), (0, 0,1»)
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and the linearly independent vectors in this are

(ti,O,O) i=O, 3~i~17
(O,ti,O) i=0,4,7,8, 1O~i~17
(0,0, til i = 0,4,7,8,11,12,14,15,16

This gives 37 vectors and so the Ae -codimension is

Ae-codimension(f) = 54 - 37 = 17

(xii) J(t) = (ta, tam+! , tan+2) where 1 ~ m s n < 2m. This is 3n + 2
determined and the Ae -tangent space is

TAe.J = £1(3t2, (3m + l)t3m, (3n + 2)t3n+1») + 1*.£3(1,0,0), (0, 1,0), (0, 0,1»)

So the vectors in the tangent space are

(ti,O,O)
(0, t3i, 0)
(0, t3m+I+3i, 0)
(0, t3n+2, 0)
(0,0, t3i)
(0,0, t3m+1+3i)

(0,0, t3n+2)

There are 7n - 2m + 8 vectors and so

i = 0, 2 ~ i ~3n + 2
O~i~n

O~i~n-m

°s i s n
O~i~n-m

Ae-codimension(f) = 9n + 9 - (7n - 2m + 8) = 2n + 2m + 1

(xiii) J(t) = (t3, t3m+1 + t3n+2, t31+2) where 1 ~ m ~ n < 1 < 2m. This is
31+ 2 determined and the Ae -tangent space is

T Ae.f =£1 (3t2, (3m + l)t3m + (3n + 2)t3n+!, (31+ 2)t3l+1»)

+ 1*.£3(1,0,0),(0, 1,0),(0,0, 1»)

So the vectors in the tangent space are
(ti,O,O) i=O, 2~i~31+2
(O,t3i,0) °s i ~I
(0, t3m+1+3i, 0)

(0, t3n+2+3i, 0)

(0,0,t3i)
(0,0, t3m+1+3i)
(0,0, t3l+2)

O~i~l-m
O~i~l-n

°s i s I
O~i~l-m
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There are 81- 2m - n + 8 vectors and so

Ae-codimension(f) = 91+ 9 - (8/- 2m - n + 8) = 1+ 2m + n + 1

(xiv) J(t) = (t\ tS, t6). This is 7 determined. The Ae -tangent space is given
by

T Ae.f = £1((4t3, 5t4, 6ts») +r .£3((1,0,0), (0,1,0), (0,0,1»)

and the linearly independent vectors in this are
(ti,O,O) i=0,3:$i:$7
(O,ti,O) i = 0,4,5,6,7
(O,O,ti) i= 0,4,5,6,7

This gives 16 vectors and so the Ae -codimension is

Ae -codimension(f) = 24 - 16 = 8

(xv) J(t) = (t\tS,t1). This is 7 determined. The Ae-tangent space is given
by

and the linearly independent vectors in this are
(ti,O,O) i= 0, 3:$ i:$ 7
(O,ti,O) i= 0,4,5,6,7
(O,O,ti) i = 0,4,5,7

This gives 15 vectors and so the Ae -codimension is

Ae-codimension(f) = 24 - 15 = 9

(xvi) J(t) = (t\ t5, tll). This is 11 determined. The Ae -tangent space is given
by

TAe.J = £1(( 4t3, 5t\ 11t10») +r .£3((1, 0, 0), (0, 1,0), (0,0,1»)

and the linearly independent vectors in this are
(ti,O,O)
(O,ti,O)
(0,0, ti)

i = 0, 3:$ i :$ 11
i = 0,4,5,6, 8:$ i :$ 11
i = 0,4,5, 8:$ i :$ 11

This gives 25 vectors and so the Ae -codimension is

Ae-codimension(f) = 36 - 25 = 11
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(xvii) J(t) = (t4, tS + e, tll). This is 11 determined. The Ae -tangent space is
given by

T Ae.J = £1((4e, 5t4 + 7t6, 11t1o») + t:.£3((1, 0, 0), (0, 1,0), (0,0,1»)
and the linearly independent vectors in this are

(ti,O,O) i=0,3SiS11
(0, ti, 0) i = 0, 4::; i ::;11
(0,0, ti) i = 0,4,5, 8::; i ::;11

This gives 26 vectors and so the Ae -codimension is

Ae-codimension(f) = 36 - 26 = 10

space IS

(xviii) J(t) = (t4,t6,t2m+I), which is 2m + 3 determined. The Ae-tangent

T Ae.J = £t{(4e, 6tS, (2m + 1)t2m») +r .£3((1,0,0), (0,1,0), (0, 0,1»)

The vectors in this are
(ti,O,O)
(0, t2i, 0)

(0, t2i+1 ,0)
(0,0, t2i)
(0,0, t2i+1)

i = 0, 3 SiS 2m + 3
i = 0, 2 SiS m + 1
i = m,m + 1

i = 0, 2 s i s m + 1
i= m,m + 1

Thus we have 4m + 8 vectors and the Ae -codimension is given by

Ae-codimension(f) = 6m + 12 - (4m + 8) = 2m + 4.

(xix) J(t) = (t4, t6 + t2m+1, t2m+3), which is 2m + 5 determined. The Ae-
tangent space is

T Ae.f = £t{(4t3, 6t5 +(2m+l)t2m, (2m+3)t2m+2»)+ /*.£3((1,0,0), (0,1,0), (0,0,1»)

The vectors in this are
(ti,O,O)
(0,t2i,0)
(0, t2i+1, 0)
(0,0,t2i)
(0,0, t2i+I)

i = 0, 3 ::; i ::;2m + 5

i = 0, 2 SiS m + 2
i=m,m+1,m+2
i = 0, 2 ::; i ::;m + 2
i = m + I,m +2

Thus we have 4m + 13 vectors and the Ae -codimension is given by

Ae-codimension(f) = 6m + 18 - (4m + 13) = 2m + 5.
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(xx) J(t) = (t4, t6 + t2m+l, t2m+s), which is 2m + 7 determined. The Ae-
tangent space is

The vectors in this are
(ti, 0, 0) i = 0, 3 ~ i ~ 2m + 7
(0, t2i, 0) i = 0, 2 ~ i ~m + 3
(0,t2i+1,0) m5i5m+3
(0,0, t2i) i = 0, 2 5 i 5m + 3
(0,0, t2i+l) i = m + 2,m + 3

Thus we have 4m + 18 vectors and the Ae -codimension is given by

Ae-codimension(f) = 6m + 24 - (4m + IS) = 2m + 6.

(xxi) J(t) = (t\ t6 + t2m+1, t2m+9), which is 2m + 9 determined. The A,,-
tangent space is

TAe.J = £t{(4t3, 6t5+(2m+l)t2m, (2m+9)t2m+8»)+ /*.£3(1,0,0), (0,1,0), (0, 0, 1»)

The vectors in this are
(ti,O,O) i = 0, 3 ~ i ~2m + 9
(0, t2i, 0) i = 0, 2 ~ i ~m + 4
(0, t2i+I , 0) m ~ i ~m + 4
(0,0, t2i) i= 0, 2 ~ i ~m + 4
(0,0, t2i+I ) i = m + 3, m + 4

Thus we have 4m + 23 vectors and the Ae -codimension is given by

A,,-codimension(f) = 6m + 30 - (4m + 23) = 2m + 7.

(xxii) J(t) = (t4, t1, t9). This is 10 determined. The Ae -tangent space is given
by

TAe.J = £1(4t3, 7t6, 9t8») + t:.£3(1,0,0), (0,1,0), (0, 0,1»)

and the linearly independent vectors in this are
(ti,O,O) i=0,3~i~10
(O,ti,O) i=0,4,7,S,9,10
(O,O,ti) i=0,4,7,S,9

This gives 20 vectors and so the Ae -codimension is

Ae-codimension(f) = 33 - 20 = 13
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(xxiii) J(t) = (t4, t7, t9 + tlO). This is 10 determined. The Ae -tangent space
is given by

and the linearly independent vectors in this are
(ti,O,O) i=0,3~i~10
(O,ti,O) i = 0,4,7,8,9,10
(O,O,ti) i=0,4,7,8,9,10

This gives 21 vectors and so the Ae -codimension is

Ae-codimension(f) = 33 - 21 = 12

(xxiv) J(t) = (t4,t7,tlO). This is 10 determined. The Ae-tangent space is
given by

and the linearly independent vectors in this are
(ti,O,O) i=O, 3~i~10
(O,ti,O) i = 0,4,7,8,10
(O,O,ti) i=0,4,7,8,10

This gives 19 vectors and so the Ae -codimension is

Ae-codimension(f) = 33 - 19= 14

(xxv) J(t) = (t4,e +t9,t10). This is 10 determined. The Ae-tangent space is
given by

TAe.J = £1 ( 4t3, 7t6 + 9t8, 10t9») + j* '£3 (1,0,0), (0, 1,0), (0,0,1))

and the linearly independent vectors in this are
(ti, 0, 0) i = 0, 3 ~ i ~10
(O,ti,O) i=0,4,7,8,9,10
(O,O,ti) i = 0,4,7,8,10

This gives 20 vectors and so the Ae -codimension is

Ae-codimension(f) = 33 - 20 = 13

(xxvi) J(t) = (t\t7,t13). This is 13 determined. The Ae-tangent space is
given by
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and the linearly independent vectors in this are
(ti,O,O) i=0,3:::;i:::;13

(0, ti, 0) i = 0,4,7,8,10,11,12,13
(0, 0, ti) i = 0,4,7,8,11,12,13

This gives 27 vectors and so the Ae -codimension is

Ae -codimension(f) = 42 - 27 = 15

(xxvii) J(t) = (t\ t1 + t9, t13). This is 13 determined. The Ae -tangent space
is given by

T Ae.J = £1({4t3, 7t6 + 9t8, 13t12») + r .£3(1,0,0), (0, 1,0), (0, O,I)}

and the linearly independent vectors in this are
(ti, 0, 0) i= 0, 3 s i :::;13
(O,ti,O) i = 0,4, 7:::; i:::; 13
(0,0, ti) i = 0,4,7,8,11,12,13

This gives 28 vectors and so the Ae -codimension is

Ae-codimension(f) = 42 - 28 = 14

(xxviii) J{ t) = (f" t1, t17). This is 17 determined. The Ae -tangent space is
given by

T .Ae.J = £t{{4t3, 7t6, 17t16») +r .£3(1,0,0), CO, 1,0), CO, 0,1»)
and the linearly independent vectors in this are

(ti,O,O) i=0,3:::;i:::;17

CO, ti, 0) i = 0,4,7,8,10,11,12,14,15,16,17
CO, 0, ti) i= 0,4,7,8,11,12,14,15,16,17

This gives 37 vectors and so the Ae -codimension is

Ae-codimension(f) = 54 - 37 = 17

(xxix) J{t) = (t\ t1 + t9, t17). This is 17 determined. The Ae -tangent space
is given by

T Ae.J = £1 {(4t3, 7t6 + 9t8, 17tI6») +r .£3 (1,0,0), (0, 1,0), (0, 0,1»)

and the linearly independent vectors in this are
(ti, 0, 0) i = 0, 3:::; i s 17
(0, ti ,0) i = 0,4, 7:::; i :::;17
(0,0, ti) i = 0,4,7,8,11,12,14,15,16,17
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This gives 39 vectors and so the Ae -codimension is

Ae -codimension(f) = 54 - 39 = 15

(xxx) f(t) = (t4,t7 +t13,t17). This is 17 determined. The Ae-tangent space
is given by

and the linearly independent vectors in this are
(ti,O,O) i=0,3::;i::;17
(O,ti,O) i = 0,4,7,8, 10::; i::; 17
(0,0, ti) i = 0,4,7,8,11,12,14,15,16,17

This gives 38 vectors and so the Ae -codimension is

Ae-codimension(f) = 54 - 38 = 16

B.2 Unfolding Calculations from Chapter 7

First from Section 7.6 we have:

Sf: The normal form for st is f(x, y) = (x, y2, y3 ± x2y). Then the Ae
tangent space is

TAe.f=£2(1,0,±2xy), (0,2y,3y2±x2»)+£3(1,0,0), (0,1,0), (0,0,1»)

= (£2, £2, £2 - {y} )

So an unfolding is given by Fa(x, y) = (x, y2, y3 ± x2y + ay).

S2: The normal form for the germ is f(x,y) = (x,y2,y3 + x3y) and the Ae
tangent space is

T Ae.f = £2«1,0, 3x2y), (0, 2y, 3y2 + x3») + £3(1,0,0), (0,1,0), (0,0,1»)

=(£2, £2, £2-{y,xy})

So the unfolding is given by fa,b(X, y) = (x, y2, y3 + x3y + ay + bxy)

Sf: The normal form for st is f(x,y) = (x,y2,y3 ±x4y). The TAe tangent
space 18

TAe.f=£2(1,0,±4x3yO, (0,2y,3y2±x4»)+£3(1,0,0), (0,1,0), (0,0,1»)

= (£2, £2, £2 - {y,xy,x2y})

and 80 the unfolding is fa,b,c(X,y) = (x, y2,y3 ± x4y + ay + bxy + cx2y).
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Bf: The normal form for Bt is f(x, y) = (x, y2, x2y ± y5). The Ae tangent
space IS

TAe.f=£2(1,0,2xy), (0,2y,x2±5y4») +£3(1,0,0), (0,1,0), (0,0,1»)

= (£2, £2, £2 - {y, y3 } )

and so the unfolding is fa,b(X, y) = (x, y2, x2y ± y5 + ay + by3).

Bj=: The normal form for Bt is f(x,y) = (x,y2,x2y±y7) and the A., tangent
space is

T Ae.f = £2(1,0, 2xy), (0, 2y, x2 ± 7y6») + £3(1,0,0), (0,1,0), (0,0,1»)

= (£2, £2, £2 _ {V, y3, y5})

So the unfolding is fa,b,c(X, y) = (x, y2, x2y ± y7 + ay + by3 + cy5).

ct: The normal form for ct is f(x, y) = (x, y2, xy3 ±x3y) and the Ae tangent
space IS

T Ae.f = £2(1,0, y3 ± 3x2y), (0, 2y, 3xy2 ± x3») + £3(1,0,0), (0,1,0), (0,0,1»)

= (£2, £2, £2 - {V, xV, x2y, y3}) + (0,0, y3 ± 3x2y)

Sowe do have a choice of unfoldings. Choosing the one which gives a symmetrical
picture gives fa,b,c(X, y) = (x, y2, xy3 ± x3y + ay + by3 + cxy).

H2: The normal form for H2 is

and the Ae tangent space is given by

TAe.f=£2(1,0,y), (0,3y2,X+5y4») +£3(1,0,0), (0,1,0), (0,0,1»)

=(£2 - {V}, £2 - {V}, £2 - {y2})+(y,0,y2)

We choose the unfolding fa,b(X, y) = (x, y3 + ay, xy + y5 + by2).

Ha: The normal form for H3 is

f(x,y) = (x,y3,xy +y8)

and the Ae tangent space is

TAe.f =£'2(1,0, V), (0, 3y2, x + 8y7») + £3(1,0,0), (0, 1,0), (0, 0,1»)

=(£'2 - {y,y3},£2 - {y},£'2 _ {y2,y5})+ {(y,0,y2),(y3,0,y5)}

We choose the unfolding fa,b,c(X, y) = (x, ya + ay, xy + y8 + by2 + cy5).
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Pa: The normal form for Pa is f(x, y) = (x, xy + y3, xy2 + cy4) and the Ae-
tangent space (of the stratum) is

T Ae.f =£2 (1, y, y2), (0, X + 3y2, 2xy + 4cy3») +r '£3(1,0,0), (0,1,0), (0, 0,1))

=(£2, £2 - {y}, £2 - {y, y3})

and so the unfolding is

Fa,b,d(X, y) = (x, xy + y3 + ay, xy2 + cy4 + by + dy3).

We now give the calculations of unfoldings of hi-germs from Section 7.7.

(I) F(x, v, X, Y) = (x, y, OJX, Y,X2 ± y2). The Ae -tangent space is

TAe.F = (£2,£2,£2j £2, £2,£2 - {1})

and so the unfolding is Fa(x,YjX, Y) = (x,y,OjX, Y,X2 ± y2 + a).

(II) F(x,YjX,Y) = (x,y,0;X,Y,X2 + y3). The Ae-tangent space is

T Ae.F = (£2, £2, £2j £2, £2, £2 - {1, Y} )

and so the unfolding is Fa,b,c(X, y; X, Y) = (x, y, OJX, Y, X2 + y3 + a + bY).

(III) F(x, Yj X, Y) = (x, y, OJX, Y, X2 ± y4). The Ae -tangent space is

T Ae.F = (£2, £2, £2; £2, £2, £2 - {1, Y, y2})

and so the unfolding is

Fa,b,c(X, Y;X, Y) = (x, y, OJX, Y,X2 ± y4 + a + bY + cy2).

(IV) F(x, y; X, Y) = (x, y, OJy2, XY + y3, X). The Ae -tangent space is

T Ae.F = (£2, £2, £2j £2, £2 - {V}, £2)

and so the unfolding is Fa(x,YjX,Y) = (x,y,Ojy2,XY + y3 + aY,X).

(V) F(x, Yj X, Y) = (x, y, OJy2, XY + y5 ,X). The Ae -tangent space is

TAe.F = (£2, £2,£2j £2,£2 - {y,y3},£2)

and so the unfolding is Fa,b(X, v: X, Y) = (x, y, OJy2, XY + y5 + aY + bya, X).

(VI) F(x, Yj X, Y) = (x, y, OJy2, XY + y7, X). The Ae -tangent space is

TAe.F = (£2, £2, £2j £2, £2 - {Y, y3, y5}, £2)
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and so the unfolding is

Fa,b,c(X, YjX, Y) = (x, y,Oj y2,XY + y7 + aY + by3 + cy5,X).

(VII) F(x, Yj X, Y) = (x, Y, OJ y3 ± x2y, y2, X). The Ae -tangent space is

T Ae.F = (£2, £2 , £2 - {I}j £2 - {Y}, £2, £2 )

and so the unfolding is Fa,b(X,y;X, Y) = (x,y,a;y3 ±X2y + bY, Y2,X).

(VIII) F(x,y;X,Y) =(x,y,Ojy3 +X3y,y2,X). The Ae-tangentspaceis

TAe.F = (£2,£2,£2 - {I};£2 - {Y,XY}'£2'£2)

and so the unfolding is Fa,b,c(X, y; X, Y) = (x, Y, a; y3+X3y +bY +cXY, y2, X).

(IX) Fa,b,c(X, y; X, Y) = (x, Y, OJ X, XV, y2 + X3). The Ae -tangent space is

TAe.F = (£2,£2,£2; £2, £2, £2 - {I, X, X2})

and so the unfolding is Fa,b,c(X, y; X, Y) = (x, y, OiX, XV, y2 + X3 + a + bX +
cX2).

(X) Fa,b,c(X,YjX,Y) = (x,y,OjX,y2,XY + y4) and the Ae tangent space is
given by

T Ae.F = (£2, £2, £2i £2, £2, £2 - {I,X, y2})

so the unfolding is Fa,b,c(X, Yj X, Y) = (x, Y, OJ X, y2, XY + y4 + a + bX + cy2)

Finally, we give the calculations of unfoldings of tri-germs from Section 7.S.

(I) F(x, Y;s, Y;X, Y) = (x, Y, 0;s, 0, Yi X, Y, Y + X2). The Ae -tangent space is

TAe.F = (£2, £2, £2i £2, £2, £2j £2, £2, £2 - {I})

and so the unfolding is Fa(x, Yi X, Y; X, Y) = (x, Y, 0; x,O, Y;X, Y, Y + X2 + a).

(II) F(x, Yjs, Y;X, Y) = (x, Y, OJ X, 0, YjX, Y, Y +X3). The Ae -tangent space is

TAe.F = (£2,£2,£2;£2,£2,£2j£2,£2,£2 - {I,X})

and so the unfolding is

Fa,b(X, y; X, jjj X, Y) = (x, Y, OJ X, 0, jjj X, Y, Y + X3 + a + bX).

(III) F(x,Yix,YiX,Y) = (x,y,Oix,0,y;X,Y,X2±y2). The Ae-tangent space
IS
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and so the unfolding is

Fa,b(X,y;x,17;X,Y) = (x,y,O;x,0,17;X,Y,X2 ±y2).

(IV) ( . - -. X Y) - ( O·x \) y-. X,Y, Y + X4). The Ae -tangent space\ F,x,1j,x,y" - ,x,Y, , I I I

IS

and so the unfolding is

Fa,b,c(X,Yi x,YiX, Y) = (x,y,Oj x,O,17jX, Y, Y + X4 + a + bX + cX2).

(V) F(x,Yix,y;X,Y) = (x,y,O;x,O,y;X,Y,XY +X3). The Ae-tangent space
IS

and so the unfolding is

Fa,b,c(x, u. s, y; X, Y) = (x, Y, OJX, 0, 17j X, Y + a + bX, XY + X3 + c).

(VI) F(x, u: x, y; X, Y) = (x, Y, OJX, 0, Yj X, Y, X2 + y3). The Ae -tangent space
IS

TAe.F = (£2,£2,£2j£2,£2,£2;£2,£2,£2 - {l,X})

and so the unfolding is

Fa,b,c(X,y;x,y;X,Y) = (x,y,OjX,O,YjX,Y,X2 + y3).
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