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ABSTRACT

This thesis explores the applicability of Shannon's informational entropy and Jaynes'
maximum entropy formalism in civil engineering inference. A well-established use
of the maximum entropy formalism is in the estimation of probability distributions
from statistical data. The present research, however, is concerned with generating
solutions to wider, more general problems in which available data are incomplete and
are not directly related to probabilities. In a nutshell, this research is an attempt to
answer the following questions.

1. How can least biased flows be inferred in a looped network given only the nodal
inflows and outflows and the direction of flow in each link?

2. Is there a correlation between entropy and reliability in water distribution
networks?

The above questions are the focal points of this iesearch, but it is instructive to
consider the following auxiliary question. What is water distribution network
reliability? In this research, by visualising a flow network as a continuous
experimei.::, a multispace probability model is deriveci. Computational resuLs suggest
that entropy could be a useful surrogate reliability measure. The original and
innovative aspects of this work are stated below.

1. A rigorous multiple-space probability model is derived for flow networks by using
the relative frequency interpretation of probabilities. The conditional entropy
formula is then used to derive a general formula for the entropy of network flows.
Also, using the method of Lagrange multipliers, a convenient formula is derived
for the maximum entropy of any parallel flow network in which each source node
supplies all the demand nodes.

2. It is established that, for single-source networks, maximum entropy flows are such
that each demand node receives equal proportions of the demand at tha node
from the paths supplying the node. The above property is used to develop an
algorithm for calculating maximum entropy flows in single-source networks.
Notable properties of the algorithm are its conceptual and practical simplicity,
and computational efficiency.

3. Through entropy, it is demonstrated that there are reliability-related advantages
in designing the pipes of a network to be similar in size. Moreover, it is seen that
with similar-size pipes, some inference on the hydraulic behaviour of a network
is quite possible. Also, entropy is shown to provide a means of controlling pipe
diameter optimization. Furthermore, it is shown that flow entropy has the
desirable computational properties and appears to possess the qualitative
properties of a reliability measure. It is also found that a convenient way of
making sure that a network has an acceptable amount of all-round resilience is
to calculate the maximum entropy flows for the network and then size the pipes
to carry those flows.

4. State reliability is defined as the ratio of the flow supplied to the flow required
for that state. Network reliability is then obtained by summing the state
reliabilities weighted by their respective probabilities of occurrence. Defined and
calculated as suggested above, network reliability is more meaningful,
mathematically correct, and pressure-dependency of flow and less-than-fully
satisfactory service are accounted for.
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NOTATION

superscript denoting the optimum value of a variable.

a	 dimensionless conversion factor for units.

fi	 Lagrange multiplier.

vector of the /3s.

6,q,	 equal change in the flows in loop I.

iSq	 change in q.

Ax	 change in x.

VC	 gradient of C.

constant cost coefficient for pipes.

coefficient for piecemeal linearisation of cost per unit of b, .

A	 Lagrange multiplier.

• Lagrange multiplier.

vector of the ps.

• density of water.

Crn- i	 sample standard deviation.

(1	 empty set.

/7„,..	 the maximum value that the quantity shown in the brackets can

attain.

afi,	 effective number of independent paths to node n through link jn.

a.	 a constant for node 72.

A	 a positive scaling constant.

b„	 a constant for node 72.

Bu	 benefit parameter for link if.

• total cost of pipes.

Cr	 ith minimal cut set.

ci,	 Hazen-Williams coefficient of pipe ij.

Co.	 Hazen-Williams coefficient of segment m of pipe U.

db,	 dual variable for the minimum pressure constraint for node n.

cl,„	 dual variable for the maximum pressure constraint for node n.

• dual variable for the length constraint for link if .

dp	 number of paths in which link k is used.

a,	 dual variable for the /th loop constraint.

dp	 dual variable for the pth path constraint.

• vector representing all the dual variables of a problem.

• set of all the demand nodes.

Du	 diameter of pipe if.

Dup,	 diameter of segment m of pipe if.

D„.„	 maximum pipe diameter.

minimum pipe diameter.

D set of commercially available discrete pipe diameters.

b„	 = Dr.

el	 exponent of the diameter in the cost function for pipes.

e2	 = ed2.63.

• rate at which a network dissipates energy.

friction factor of pipe ij.

F(z)	 vector of the values of simultaneous equations at the point 1.

<Fj > expected value of the jth expectation constraint.

• acceleration due to gravity.

111	 headloss across a fitting.

• headloss in pipe if.

hu„,	 headloss in segment m of pipe U.

hu,.	 headloss in pipe if for the rth flow regime.

hp	 known headloss for path p.

h„	 known headloss for path p for the rth flow regime.

41n	 = E hu when referring to lower bound on node p.essure.
(J.

= E hu when referring to upper bound on node pressure.
u. !In

= E hu .
41.

lip	 = E hu .
II. hip
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• maximum headloss between the source(s) and any node.

• value of H for state i.

HU	value of H when link ij has failed.

H.	 value of H when link m has failed.

maximum desirable head at node n.

H„,i„,„	 minimum desirable head at node n.

H„	 total head at node n.

total head at node n for the rth flow regime.

H,	 total head at source node a.

II	 vector of the H„.

• source head required to satisfy all uemands.

H'„,„,„ head below which the supply at node n is zero.

• a constant for node n.

set of all the nodes having an external inflow.

IJ	 set of all the links in a network.

IJ0	 set of all the links in a network or its reduced configurations.

set of all the links in loop I.

IJ„	 set of all the links along a specified path from a selected

source to node n.

IJ„,	 set of all the links along a specified path from a selected

source to node n for the rth flow regime.

IJ„	 set of all the links in path p.

IJ„	 set of all the links in path p for the rth flow regime.

• Jacobian.

a general coefficient.

• arbitrary positive constant.

K,	 coefficient of fitting.

set of all the loops to which link (j belongs.

L.	 equivalent length of fitting.

Lu	 length of link tj.

Lu„,	 length of segment m of link ;J.

LP	 linear programming.

LPG	 linear programming gradient.

(n)	 subscript or superscript denoting iteration number.

nu	 Manning's coefficient for pipe ij.

n1	 number of finite schemes.

nl„	 total number of links in all the paths supplying node n using

link jn.

np„,	 number of paths to node n using link jn.

number of outcomes or events; also, number of states.

N,	 number of equations.

number of events or outcomes in the ith finite scheme.

• number of candidate segments for link ij.

• number of variables.

NI3ii	 expected number of breaks per year per unit length of pipe ij.

NC	 number of minimal cut sets.

ND„	 set of all the nodes (or links) immediately downstream of node n.

ND„,	 set of all the nodes (or links) immediately downstream of node n for

the rth flow regime.

ND,,	 set of all the link outflows at node n which are part of a loop.

NI	 number of source nodes.

NIJ	 number of links. .

NJ	 number of expectation constraints.

NL	 number of loops.

NLP	 non-linear programming.

NN	 number of nodes.

NO	 number of demand nodes.

NP	 number of paths having a known headloss.

NP„	 number of paths serving node n.

NR	 number of flow regimes.

NU,, . set of all the nodes (or links) immediately upstream of node n.
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NU„,.	 set of all the nodes (or links) immediately upstream of node n for the

rth flow regime.

Ci
	 ith outcome or event.

outcome or event identified by ij,

0	 vector of outcomes or events.

a	 ith finite scheme.

Po.
	 fraction of 71, provided by qm; Vn a I.

Pn0
	 fraction of T„ satisfying q,,o; Viz D.

Pi
	 probability of ith outcome or event.

PII
	 probability of the outcome or event identified by if .

vector of probabilities.

13( )
	

probability of the event or outcome indicated in the parentheses.

p(0)
	

probability that no link is in the failure mode.

p(m)
	

probability that only link m has failed.

notation reserved for probabilities which, as a set, do not

constitute a finite scheme.

probability that a particle of flow in a network is from source

node n.

P,,0	 probability that a particle of flow in a network leaves the

network at demand node n.

qc1,,	 external inflow at node n.

external inflow at node n for the rth flow regime.

qu
	 flow from node i to node j; flow in link if.

(-- q(,) flow in segment m of link ij.

qu
	 flow in link if for the rth flow regime.

flow in link.m.

q0
	 external inflow or outflow at node n.

q,,0
	 external outflow at node n.

qn0r
	 external outflow at node n for the rth flow regime.

external inflow or outflow at node n for the rth flow regime.

vector representing the flows of a network.

the ith independent flow in a looped network.

vector representing the independent flows.

(f.ci	 actual abstraction at node n, as opposed to the nominal

demand qno.

no.i	 actual abstraction at node n for state i

q' „,,,u	 actual abstraction at node n when link if has failed.

Qo	 sum of the link flows of a network.

sum of link inflows at node n.

(-2.4	 sum of the link inflows and link outflows at node n.

subscript to identify flow regimes.

• network reliability.

R'	 network reliability for st4e

Rd	 reliability of link U.

R,,,	 reliability of link m.

1?,,	 reliability of node n.

• reliability of node n for state i.

• average reliability of the less-than-fully connected network

configurations.

Fe„	 average reliability of node n for the less-than-fully connected

network configurations.

R'	 network unreliability.

R'u	 unreliability of link if.

R',,,	 unreliability of link m.

• entropy of a probabilistic system.

.S0	entropy of the distribution of supplies or demands.

Sff	 entropy of the distribution of the demands.

Si	 entropy of the distribution of the source supplies.

S„,„,,	 maximum entropy value of a network.

S'	 network entropy based on inflows at all nodes.

• entropy of node n.

• entropy of inflows at node n.
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S°	 network entropy based on outflows at all nodes.

Sg	 entropy of outflows at node n.

minimum allowable value of network entropy.

S'„	 modified entropy of node n.

network entropy based on both inflows and outflows at all nodes.

entropy of node n based on both nodal inflows and outflows.

set consisting of all the terminal nodes.

ti,,	 the ratio qi„/(2,.

To	 total supply or demand.

7'„	 total flow reaching or leaving node n.

To	 total flow suppliable when network is in state i .

ro,u	 total flow suppliable when link if has failed.

• the uniform probability distribution.

Ely	 flow velocity in pipe if.

v,„„„	 maximum flow velocity.

v„,o,	 minimum flow velocity.

a constant positive weight for link zj.

• a general variable.

• a general vector.

• a general constant.

• a general constant.

Z+	 the set of positive integers.

CHAPTER 1 INTRODUCTION

1.1 ENTROPY-BASED INFERENCE ON CIVIL ENGINEERING

SYSTEMS

Mathematical system models play an important role in the planning, design

and operation of civil engineering projects. These models often require large

amounts of data for their implementation and it is often the case that the

required data are incomplete, unavailable or uncertain. It is not uncommon,

when faced with incomplete data, to apply engineering judgement or a rule

of thumb to estimate the missing data, but this approach is not always

justifiable. Using ad-hoc procedures and informed guesswork in thi way may

introduce errors into designs and subsequerlt operational strategies.

Illuminating examples of the above phenomenon are found in Basu and

Templeman (1985). Using carefully-chosen data, that paper shows, for example,

that estimates of structural reliability can differ by factors measurable in

orders of magnitude depending on the distributions used to represent the load

and strength data. It is noted therein that load and strength data tend to

cluster around their respective most likely values: it is intuitively obvious that

data associated with rare occurrences are often scarce. With data clustered

around the most likely value, there may be several analytical probability

distributions which appear to fit the data equally well. However, these

distributions have different tail characteristics and, as such, lead to different

estimates of failure probability. Different tail characteristics result in different

estimates of the probability of failure because the failure probability is

calculated from the overlapping tail regions of the probability distributions

of load and strength. It is therefore evident that it is inappropriate to use some

known analytical distribution, for example, normal, log-normal, gamma, etc.,

to represent random data as such a distribution introduces extrinsic

information and hence bias and errors into subsequent calculations. It can be
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seen from the foregoing discussion that there is a strong case for the

development of consistent methodologies and a logical approach to data

estimation.

In recent years, methods of logical inference based on the maximum entropy

formalism (Jaynes, 1957) have been developed. Perhaps the most obvious use

of the maximum entropy formalism is to infer least biased values for a set of

probabilities subject to constraints on those probabilities. A somewhat similar

application is in the estimation of least biased probability distributions from

experimental data. As an example, experimentally-determined values of a

continuously varying property such as the yield stress of mild steel, for

example, can be used to infer the least biased probability distribution of that

property. (The reader who is interested in the generation of maximum entropy

probability distributions may consult Basu and Templeman, 1984) However,

Templeman (1992) suggests that the maximum entropy formalism can be used

to generate solutions to wider, more general problems which are not directly

concerned with probabilities and in which the available information is

incomplete. In the belief that the maximum entropy formalism has consieerable

potential for civil engineering data estimation, the present research was

originally conceived to examine and develop information theoretic

entropy-based methods for a range of problems. These problems include the

estimation of structural parameters and behaviour, and the estimation of pipe

parameters and the hydraulic performance of inaccessible water Supply

networks. It was also thought that existing entropy-based methods of

estimating traffic flows from limited data would be examined so as to address

these problems in a unified fashion and to develop a rigorous method capable

of tackling them all. However, the above objective is presently regarded as a

distant goal.

The material presented in this thesis is but part of ongoing research into

possible civil engineering applications of information theoretic entropy and

2

the maximum entropy formalism. The innovative aspects of the research

reported in this thesis can roughly be divided into two main parts. The first

part is concerned with methods of calculating maximum entropy flows in

networks with incomplete information; the second part is an exploratory

investigation into possible uses of flow entropy in the design and reliability

analysis of water distribution networks.

1.2 CALCULATING MAXIMUM ENTROPY FLOWS IN NETWORKS

In suggesting that the applicability of the maximum entropy formalism extends

to wider problem beyond the realm of probabilities, Templeman (1992) raised

th .. following question. How can least biascd flows be inferred iz a looped

water distribution network in which the only available information is the

values of the nodal inflows and outflows and the direction of flow in each

pipe? There are in general very many flow patterns which satisfy the principle

of conservation of mass in any looped flow network. As such, flow equilibrium

alone will not lead to a unique soluti'on to the problem posed above. On the

other hand, the physical laws governing flow in pipe networks cannot be

applied to the problem because there is no information on the pipe lengths,

diameters and roughness coefficients. Templeman (1992) put forward some

ideas on how the Shannon entropy function (Shannon, 1948) can 1-e used to

infer least biased flows in networks with incomplete data. However, he realised

that the results obtained do not agree with those given by the method of

superposition of equal path flows described herein. By intuition, it was

concluded that the flows given by the method of superposition of equal path

flows appear more reasonable.

One of the objectives of this research is to examine the prublem of inferring

least biased flows in networks with incomplete data, determine ways of

introducing probabilities to flow networks in a rigorous manner, establish

what form the entropy function should take for flow networks and find out
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how the maximum entropy formalism may be used to infer least biased flows

in networks with incomplete data.

networks. These simplistic measures are supplemented by a new, more

comprehensive reliability measure developed herein.

1.3 ENTROPY AND THE RELIABILITY AND DESIGN OF WATER
	

1.4 OBJECTIVES OF THE PRESENT RESEARCH

DISTRIBUTION NETWORKS
The objectives of this research are as set out below.

The use of entropy and entropy maximization in water distribution networks

represents the second phase of this research, and it may be viewed as an

application of the ability to calculate the entropy of network flows and

maximum entropy flows in networks. The ul t imate aim of this phase is to use

flow entropy in a water distribution network layout optimization framework.

The idea that entropy can be used in this wg.y is inspired in part by the work

of Erlander (1977) in which the use of entropy as a simplistic measure of

accessibility in a transportation system is advocated. Thus, Erlander (1977)

states that a transportation system having a low value of entropy has a low

level of accessibility whereas a high value of entropy corresponds to an even

distribution of journeys throughout the network.

There is a very close relationship between the layout and hydraulic behaviour

of a water distribution network. Therefore, a precondition to the use of entropy

for layout optimization is a demonstration that entropy can somehow reflect

certain performance-related properties like resilience and reliability. This

demonstration is the central theme of much of the rest of the new material

covered in this thesis. More specifically, the objective is to show that, in

general, the entropy of a water distribution network increases as the

resilience/reliability of the network increases. For water distribution networks,

properties like performance, resilience and reliability are nct straightforward

to define and quantify, and there are no universally agreed definitions.

Therefore, several measures including headloss, energy dissipation and the

probability that no pipe is broken are used herein to rank water distribution

4

1. To develop a rigorous probability model for flow networks. The

probabilities in this model should satisfy flow equilibrium and the

mathematical properties of probabilities.

2. To determine the form of Shannon's entropy function that is appropriate

for flow networks.

3. To use the maximum entropy formalifm to infer least biased flows in

networks with incomplete data.

4. To show that flow entropy has the necessary properties of a reasonable

reliability measure for water distribution networks.

1.4.1 LAYOUT OF THESIS

In an attempt to compare like and like, an entropy-constrained least cost water

distribution network model has been formulated. By varying the value of the

entropy constraint, different designs are obtained and any differences in the

designs are attributed to the value of entropy specified for each design. The

background material in this thesis is therefore arranged as follows. In Chapter

2, the problem of minimizing the cost of the pipes of a water distribution

network is reviewed. In Chapter 3, aspects of water distribution networks

relating to reliability are reviewed. Chapter 4 is a brief introduction to the

maximum entropy formalism.

The remainder of this thesis is arranged as follows. Chapter 5 is concerned

with the development of a rigorous framework for inference on flow networks
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with incomplete data. By visualising flow through a network as a continuous

experiment, the relative frequency interpretation of probabilities is used to

formulate a multiple-space probability model for the flows on the links of a

general flow network. Some of the shortcomings of a single-space probability

model, from a flow network perspective, are highlighted. By generalising the

formula for the entropy of multiple-space probability schemes and showing

equivalents in the probability model for network flows, a formula is set up for

the entropy of network flows. The problem of inferring least biased flows

given incomplete information is then examined.

Chapters 6 and 7 are an attempt to show that flow entropy reflects the

resilience of a water distribution network. In Chapter 6, numerical examples

and simulation are used to investigate the miationship between the hydraulic

behaviour of a network and flow entropy. The influence of flow entropy on the

sizing of pipes is examined. The effect of flow entropy on flow rerouting is

assessed. For a more rigorous assessment of the qualities of entropy, a new

way of defining and calculating reliability is used in Chapter 7 to compare

different least cost entropy-constrained designs of the same network. By basing

the reliability calculations on head-driven simulation and the actual flow

delivered, the new reliability measure reflects pressure dependency of supply

and the way in which water users are affected. Finally, the main Ideas and

conclusions of Chapters 5 to 7 are summarised in Chapter 8. Some suggestions

for further research are discussed. A possible way of using entropy to solve the

joint pipe diameter and layout optimization problem is noted.
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CHAPTER 2 OPTIMUM DESIGN OF WATER

DISTRIBUTION NETWORKS

2.1 INTRODUCTION

In recent years, interest in the cost optimization of looped water distribution

networks has increased. The need to replace systems of increasing age and to

use public funds efficiently and economically has focused attention on both

the cost and reliability aspects of water supply systems. A heavily redundant,

highly looped network with large pipes provides a very reliable system with

in-built resilience under exceptional conditions. Some exceptional conditions

include increased demands for fire fighting and the need to maintain supply

even when some pipes are temporarily taken out of service so that repairs can

be done. This chapter is concerned with the optimum design of water

distribution networks of prespecified layout. The constraints of the design

problem consist of the constitutive equations, and additional constraints which

are described in this chapter. As seen in Chapter 3, certain design strategies

require a separate analysis of the constitutive equations; this approach is

sometimes used to simplify the computational solution of the optimum design

problem. In Chapter 3 the reliability and layout aspects of the optimum design

problem are considered.

In this chapter, the constitutive equations for water distribution networks are

presented. Three possible formulations of these equations are given; it is seen

later in this chapter and subsequently in this thesis that the methods of

analysis and design of pipe networks are dependent upon the way that the

constitutive equations are set up. The analysis of flow in pipe networks is

described in brief. Also, the optimum design problem, i.e., the least capital

cost design of a pipe network, is described. Two methods of solving this

problem that are widely held to be among the best are described. The method
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developed by Alperovits and Shamir (1977) is described in detail. The

formulation of Quindry, Brill and Liebman (1981) is then presented, but only

briefly because of the similarities in its overall approach to the Alperovits and

Shamir method.

2.2 CONSTITUTIVE EQUATIONS

The flow of water in pipes is subject to a loss of energy. The energy loss per

unit weight is called a head loss. Energy loss is caused by frictional resistance

along the wall of the pipe, which opposes fluid motion. Also, energy loss

occurs at points along a pipe where the cross-section changes, there is a bend,

or there are fittings, such as flow measuring devices, valves, etc. H .,ad losses

other than that caused by frictional resistance are called separation or minor

losses. In a pipe network, the constitutive equations are the pipe head loss

or energy equations, the equations for flow equilibrium at each node and the

equations for the conservation of energy, which are the loop and path

equations.

Note: notation

Double subscripts are used throughout herein to identify flows, lengths,

friction factors, head loss and diameters, etc. Flow and head loss from node

i to node j are denoted by qu and hu respectively. Also, flow and.head loss will

be positive in the direction of flow, and negative otherwise. For diameters,

lengths and friction factors, the order of the subscripts has no positional

significance. Thus, for example, Lu, Cu and Du are, respectively, the length,

friction coefficient and diameter of the pipe between nodes i and j. Also, qw

and qm denote the external inflow and outflow respectively at node i. In other

words, node zero is taken to be the origin or destination a external flows.

However, op is also used for the external inflow or outflow at node i. In such

a case, qi will be either positive or negative, depending on Whether it is an

inflow or outflow, but the actual sign depends on the sign convention adopted.

8

2.2.1 HEAD LOSS EQUATIONS

2.2.1.1 FRICTION HEAD LOSS

The foremost head loss equation for pipes flowing full is the Darcy-Weisbach

equation.

2L.. v-s	 f.f

ki Du 2g

in which L and Du are, respectively, the length and internal diameter of pipe

if; hu is the head loss, which is positive in the direction of flow; NI is the mean

flow velocity in the pipe; g is the acceleration due to gravity; fu is the friction

factor, which is dimensionless and depends or the flow rate and the roughness

of the pipe. Jeppson (1976, pp. 30) has tabulated several equations for fu for

various flow conditions.

In general, fu cannot be written explicitly in terms of the flow rate and the

roughness of the pipe. Consequently, some iterative scheme is usually needed

for its determination. Empirical approximate equations, which are easier to

use than the Darcy-Weisbach equation, are available. The most frequently met

approximation is the Hazen-Williams equation:

hu= aLimuicoisszivitis7 • 	 (2.2)

where a is a dimensionless conversion factor for units (a = 10.67 in S.I. units);

Cu is the Hazen-Williams coefficient and qu is the flow rate, which is positive

in the direction of flow.

Another empirical approximate head loss equation is Manning's equation.

2 217,5.333	 (2.3)

in which nu is Manning's coefficient and a, here, equals 10.29 in S.I. units.

9
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The Hazen-Williams equation, Eq. (2.2), is used throughout herein. However,

it will be understood that any alternative head loss equation may be used,

instead, if it is considered appropriate.

2.2.2 CONTINUITY EQUATIONS

At each node, the inflows must balance the outflows. Therefore, the nodal

flow equilibrium or continuity equations are

2.2.1.2 MINOR LOSSES

In Water supply networks, friction is usually the predominant cause of head

loss. However, minor losses are not always negligible. Usually, the concept of

equivalent length is used to account for the effect of minor losses. The

equivalent length is the length of pipe of the same diameter, as the pipe with

the fitting, that would cause the same head loss as the fitting. In general,

except for example valves, the head loss across any fitting depends on the flow

rate in the pipe with the fitting. Using the equivalent length, Eq. (2.1) racy

be written as

hf=4f- = Kf -
Lie UU	 Vu
r	 2	 2

(2.4)

where hr is the head loss across the fitting; L. is the equivalent length of the

fitting, for the given flow conditions; Kr is a coefficient for the fitting. From

Eq. (2.4),

=	 (2.5)

See, for example, Douglas, Gasiorek and Swaffield (1979, pp. 274) for some

typical values of Kr.

Effective length

The effective length of a pipe is the sum of its physical length and the

equivalent length of all its fittings. Throughout herein, it is assumed that all

pipe lengths are effective lengths.

E gin — E q„,4 = 4, n =1,...,NN
	

(2.6)

je NU„	 he ND„

in which q, is the external inflow or outflow at node n; the set NU. consists

of the upstream nodes of all internal inflows at node n; the set ND„ consists

of the downstream nodes of all internal outflows at node n; NN is the number

of aodes.

If all external inflows and outflows are known, Eqs. (2.6) are not linearly

independent. Continuity at the NNth node will automatically be satisfied if

it is satisfied at all the other (NN— 1) nodes, assuming that the inflows

balance the outflows. Therefore, when all external flows are known, only

(NN— I) equations will be necessary in Eqs. (2.6). However, if at least two

reservoirs and pumps are present, the flow from (to) these sources will depend

on the flows and pressures throughout the system. Consequently, these

external flows will not be known. Therefore all the NN Eqs. (2.6) will be

linearly independent and will be required.

2.2.3 EQUATIONS FOR CONSERVATION OF ENERGY

2.2.3.1 LOOP EQUATIONS

In a pipe network, conservation of energy requires the net loss of energy

around a closed loop to be zero. Therefore, an equation may be written for

each loop.
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2.2.4 VALVES AND PUMPS

E hu=0	 (2.7)

in which LI, consists of all links in loop 1 and NL is the number of loops. The

number of loops NL refers to the number of "basic" or "natural" loops as

depicted in Figure 2.1a. However, as shown in Figure 2.1, there are many ways

in which links can be selected to define the loops.

2.2.3.2 PATH EQUATIONS

The total head loss along any path must equel the difference in head between

the end points of that path. An equation may therefore be written for each

path along which the head loss is known.

E hu= hp p =1,...,NP	 (2.8)
V. Lip

in which IJ„ consists of all links specified for path p, which connects the end

points of that path; hp is the known head loss for path p; NP is flu: number

of paths having a known head loss. In general, NP will be, at most, one less

than the number of constant head nodes. Furthermore, to ensure linear

independence of the path equations, the NP paths must be specified such that

none of the paths duplicates information contained in any other path. Finally,

an equation may be written for each link.

hu= Hi — Hi Vij e IJ	 (2.9)

in which H, and 1/1 are the total heads at nodes i andj respectively. The total

head at a node is the sum of the elevation and the pressure head at that node.

Pumps and valves require special treatment. Jeppson (1976, pp. 80-113 and

129-144) has described ways of modelling pumps and valves. His treatment is

quite extensive and includes many examples, with detailed solutions. This

thesis, however, is not particularly concerned with pumps and valves.

2.3 ANALYSIS PROBLEM

Usually, analysis consists of determining the pipe flow rates go the nodal

heads H, and the pipe head losses hd, given ell the pipe lengths, diameters and

roughness characteristics. Also, the external flows are usually specified.

Thus, the analysis problem typically has three kinds of variable. However, it

is sometimes desirable to set up and solve the constitutive equations in terms

of one kind of variable, which may then be used in explicit equations for the

other variables. Also, the performance of solution strategies generally depends

on the formulation of the system of equations (see e.g. Jeppson, 1976, pp. 69).

Three formulations are therefore presented next. The system of equations may

be based either on the pipe flow rates, the nodal heads, or corrective loop flow

rates, which are described shortly.

2.3.1 SYSTEMS OF EQUATIONS

2.3.1.1 PIPE FLOW RATES AS UNKNOWNS

The equations for head loss and continuity, Eqs. (22) and (2.6) respectively,

have been written with the flow rates, qu, as the independent variables or

unknowns. It follows that the unknowns in the loop and path equations, Eqs.

(2.7) and (2.8), are the qu. Following Jeppson (1976), these equations, which are

based on the (unknown) pipe flow rates, will be called the q-equations or

q.system of equations. For a network in which the number of links is NIJ,

the following identity has been proven.
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0.46LrIH, - Hi I
It is possible to express all pipe flow rates in terms of a corrective flow rate

around each loop. Thus

NW, = NN + NL — 1	 (2.10)

Therefore there will be as many equations as unknown pipe flow rates in Eqs.

(2.6), (2.7) and (2.8). (If NN rather than (NN— 1) continuity equations are

required, the flow from/to the unknown external source will be the extra

variable, i.e., as many variables as equations. Without loss of generality,

subsequent equations are written for (NN— 1) continuity equations only.)

2.3.1.2 NODAL HEADS AS UNKNOWNS

The Hazen-Williams equation, Eq. (2.2), may be written with the head loss as

the independent variable. On substituting hki with the nodal heads from Eqs.

(2.9), Eqs. (2.2) may be written as

n =1,...,NN — 1	 (2.12)
Ljn"

je (N(I„UND,,) .

These equations, which are based on the (unknown) nodal heads, will be called

the H-equations. Also, as the head loss in every pipe is considered explicitly,

the H-equations completely describe the flow in a pipe network without

recourse to the loop or path equations. Finally, there will be as many

continuity equations as unknown nodal heads; usually, one nodal head will

be constant and known.

2.3.1.3 CORRECTIVE LOOP FLOW RATES AS UNKNOWNS

Ci.D1,',63sign(Hi — H.) I —	 I 0.54

253 	 (Hi — 111) qu= aCuDu' Vij E IJ	 (2.11a)

in wh'ch, here, a = 0.2785 in S.I. units. Also, Eqs. (2.11a) have been %mitten

such that the qu will always have the correct signs. However, to avoid overflow

when the heads at adjacent nodes are nearly equal, it is perhaps better to

determine the sign of qu according to whether 111 is greater or less than H, in

which case Eqs. (2.11b) below may be used instead. The qu will be positive if

H is greater than II, and negative otherwise.

2.6.3aCuDu sign(	 Hill —	 54

0.54
Ay

Using Eqs. (2.11b), the continuity equations, Eqs. (2.6), may be written in terms

of the nodal heads as

(n)(n—I) E . (n)= qu + aqi	Vij e IJ
le lu

in which q1). is an estimated flow rate; Aql") is a correction to be applied, with

regard to flow direction, to all flows in loop 1; ql;) is the corrected flow rate.

More appropriately, bracketed superscripts (or subscripts) indicate values that

apply in successive iterations in any iterative scheme. This notation is

maintained throughout herein. Finally, i consists of all loops sharing link if.

In other words, 11,, Vij e IJ, is the set which consists of all loops

=1,...,NL, such that link if a IJ,. The unknowns in Eqs. (2.13) are the

Aq,. Eqs. (2.13) may be inserted in the head loss equations to give a complete

set of equations, based on the AT. These equations are called the Aq system

of equations.

Vij eIJ	 (2.11b)

(2.13)
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{ (n-1) + De)

11.852

If lu

hr Cthifir[qt-110.852

413524.82
Vij, n=1, 2	 (2.15a)

(n+1)	 (n) 	 F(x)
x =x dF(x)Iclx (2.16)

Vif, a = 3, 4, 5, ...	 (2.15b)

(8+1)	 (n)	 (n),	 •X	 X - c./00_./14 ) (2.17)
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This system contains NL equations, one for each loop, in the NL Aq,'s, each

of which corresponds to a loop. This system, like the q-system, requires the

loop and path equations. Unlike the tatter, however, it does not directly

involve the continuity equations. To set up the Aq equations, the initial flow

estimates, 0) must satisfy continuity. Therea fter, successive iterates will also

satisfy continuity.

2.3.2 NUMERICAL SOLUTION

The equations for flow in pipe networks are highly non-linear. The analysis

problem involves the solution of a suitable system of equations. There are

three main numerical approaches, which are presented next.

2.3.2.1 LINEAR THEORY METHOD

The Hazen-Williams equation may be linearised as

equations, which are also linear in the qt1), they form a system of linear

equations which can be solved by any suitable algorithm, for example,

Gaussian elimination. The resulting 0), however, will not necessarily satisfy

the continuity, loop, path and head loss equations, because the 0- 1) are

estimates. However, the above procedure may be used in an iterative scheme,

such as the following.

1. Set n to 1. Set all 0) to 1.

2. Set up the q-system of equations.

3. Solve the equations by a suitable means.

4. Test for convergence.

5. If convergence criteria are satisfied, exit. Otherwise, continue.

6. Increase ii by 1 and go to step 2.

The linear theory method was developed by Wood and Charles (1972), who

suggested the use of Eqs. (2.15b) for faster convergence. They also observed

that all 0) may be set to unity, as in the above algorithm. Also, Isaacs and

Mills (1980) used the H-equations in a similar way, but concluded that the

H-equations are better suited to a network with some heads known, whereas

the q-equations will work better if external flows are known.

2.3.2.2 NEWTON-RAPHSON METHOD

Vij e	 (2.14)

Martin and Peters (1963) used the Newton-Raphson iterative scheme for the

solution of a system of non-linear equations. The Newton-Raphson formula for

a single function, F(x)= 0, in one variable, x, is

in which the 0), V(j, are usually set to unity.

hr =

+ n0-2) .852
XL,q,(7)[ U	 2

CP152D97V
The equivalent formula for a system of equations is (see e.g. Burden and

Faires, 1985)

Eqs. (2.15) are linear in the do and may be used to set up the path and loop

equations which are, consequently, also linear. Together with the continuity
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V/, Vij e /J/	(2.22)
d:Iti2D*-1:87v

Thus the loop equations are

h (n)
ctiv[q4(7-1) AqIn)] 1.8S2

in which F is the vector of the values of the simultaneous equations at the

point x; x is the vector of the variables; J is the Jacobian, which is the matrix

of the first partial derivatives of each F with respect to each of the x's.

Usually, inversion of J is computationally expensive and is avoided by using

the following updating scheme. First, set

(n+1) =ry.,„(n)1
u(n)=V—`

in which Ax is the vector of the change in each x. Premultiplying both sides

of Eq. (2.18) by J,„, gives

jfri Ax (n+1) F(x(n))	 (2.19)

The linear Eqs. (2.19) are solved for Ax04,), wtAich is then used in the following

updating formula.

x (n+1) = x (n) Ax (n+1)	 (2.20)

Obviously, the symmetry of J may be exploited for greater computational

efficiency. The Newton-Raphson method, which has just been described, may

be used to solve the H-, q- or Aq-system of equations for pipe networks. Also,

Shamir and Howard (1968) have described a generalised formulation of the

Newton-Raphson method. Under certain conditions, their approach enables the

analysis of networks with mixed variables, including diameters, external flows,

etc. See, for example, Shamir and Howard (1968) for further details on the

Newton-Raphson method. Additionally, see Wood and Rayes (1981), for

example, for a comparative study of various pipe network solution strategies.

2.3.2.3 HARDY-CROSS METHOD

In the Hardy-Cross method the constitutive equations are solved sequentially,

rather than simultaneously, in each iteration. Also, each equation is solved for

a single variable only, while keeping all the other variables fixed. The method

is demonstrated here for the Aq-equations.
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First, Eqs. (2.13) are simplified as

qu =qu	 vi, vii e(n)	 (n-1)	 (n)	 (2.21)

That is, when considering the links in loop I, the corrections due to other

loops sharing these links are neglected. The resulting head loss equations are

h (un) = 0 V/
	

(2.23)
Cie Id,

in which the /th equation has only one variable which is tse). Each of these

equations may be solved separately for its Ag o' to any desired accuracy, using

the univariate Newton-Raphson iterative formula, Eq. (2.16). The resulting

Aq, are then used in Eqs. (2.13) or (2.21) to correct the pipe flow rate. Thus

ends one iterative cycle.

A new cycle can be started by setting up and solving Eqs. (2.23) again, etc.

This process can be continued until, for example, the changes in all the pipe

flow rates in successive cycles become insignificant, and the loop and path

equations are satisfied. See, for example, Jeppson (1976, pp. 147) for a sample

step-by-step implementation of the Hardy-Cross method.

2.4 LEAST COST DESIGN OF PIPES

This section describes ways of cheaply designing a water distribution network

after the demand at each node of the network has been specified. Also, it is

assumed herein that the layout has been specified along with the direction of
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flow in each link. Sometimes, a network may have different flow patterns and

these flow patterns need to be considered in the design process. As an example,

a network which has a storage tank has one flow pattern when the tank is

filling up and a different pattern when the tank is emptying. Also, as explained

by Templeman (1982b), reliability considerations may make it necessary to

consider a multiplicity of flow patterns when designing a distribution system.

Various aspects of reliability are considered in Chapter 3.

In the remainder of this chapter, some of the ways of formulating and solving

the problem of minimizing the cost of constructing a water distribution

network are described. This probkm of minimizing the cost of a network can

take different forms including those of Chaptrr 3. The version of this problem

which is considered in this chapter is for a general network in which the

layout and flow patterns including the direction of flow in each link are

specified. If the layout of a network is specified, then, the length of each link

is known. Therefore, the problem of minimizing the cost of the network

consists of determining the cheapest set of diameters for the pipes of the

network, including the pipe flow rates.

2.4.1 OBJECTIVE FUNCTION AND CONSTRAINTS

Cost objective function

It is customary to minimize the capital cost of the pipe network. Usually, the

cost per unit length of pipeline is given by a function of the form

F(Du) yD" V ij a IJ	 (2.24)

where the coefficients y and el depend on the units of Du. In general, e t is

greater than unity and, typically, lies between about 1.25 and 2.0. The total

cost of pipes is therefore

C = YELuDed
	

(225)

kielJ

where C is the total cost of pipes. Eq. (2.25) is the objective function which

is minimized over the diameters Du; y and el will be known and, for a fixed

layout, the length A, will be constant and known.

When minimizing Eq. (2.25), the constraints of the network, which are

described below, have to be satisfied. The constraints of the problem of

minimizing the cost of the network are the constitutive equations plus

ccnstraints due to practical considerations, which restrict the velocqy of flow

in each pipe, the pipe diameters and the nodal heads. Also, the flow rates

cannot be negative. These additional constraints may be written as:-

Maximum and minimum flow velocity constraints

umin oki 5 u„,„„ Vij e IJ	 (2.26)

in which vu is the flow velocity in pipe if; um.„ and v„„„ are lower and upper

bornds, respectively, on the velocities. The velocity tki is given by

Vij e IJ	 (2.27)

Substituting for tit, in Eqs. (2.26) and rearranging,

	7rvnii n q,	 "mx
4	

a

	

--	 V ij E IJ	 (2.28)

	

D?	 4

Maximum and minimum nodal pressure constraints

Viz	 (2.29)

v(i =	 2
itD

Hi H
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(2.25)(2.30) Minimize C = yELuD(71
VD,

Usk,

h=H— H, Vn

q,,- E qkrt = qn n =I ..... NN — 1
js NU„	 hi ND„

(2.2)

(2.6)

(2.7)

(2.8)

(2.28)

(2.32)

(2.33)

(2.34)

in which the H„,J, and are, respectively, the lower and upper bounds on

the nodal heads H.. According to the path equations, Eqs. (2.8), the head loss

along any path must equal the difference in head between the end points of

that path. Thus for any source s, s E l, where the set I consists of all source

nodes,

The objective function and all the constraints, including the constitutive

equations, of the problem of minimizing the cost of pipes are now brought

together as Problem 1.

Problem 1

where the set IJ,, consists of all 1:nks along a specified path from a selected

source to node n. Eqs. (2.30) may be written as

H„= Hs — E hu V n	 (2.31)
us 14,

Therefore, substituting for H„ in Eqs. (2.29),

11,— H„,„„„5	 hu511,—Hminn Vn	 (2.32)
Ije

Maximum and minimum pipe diameter constraints

4, 1„5 D, e DD � D,„„„ V ij e IJ	 (2.33)

in which Dig is the set of available discrete pipe diameters; D,..5 and D,,,,5 are

the upper and lower bounds, respectively, on the diameters.

Non-negativity of flows

qu � 0 Vii E	 (2.34)

22

subject to:

= ce/,,j(q4j/Cii) L8s214'	 V ij E IJ

E h d = 0 I = 1 	 NL
Us 1.1,

Eh, =	 p =1,...,NP
4;is

, "'max
4	 4

Hs — Hmax.„ E hu	 — H„, i,,,,, V n
jje IJ„

Dmin 5 Du e DD � D„,,,„ V ij e IJ

qu � 0 V ij e IJ

E

In Problem 1, the Lu are constant and will be known. Also, the

Hazen-Williams coefficient will be known, and, if all pipes are made from the

same material, the Cu will be equal. The variables of Problem 1 are therefore

the 4, qu and hu, Vtj e IJ. Also, the objective function of P..oblem 1 includes

only the capital cost of pipes. However, if it is considered appropriate, the

objective function may be modified to include other costs, such as operating

costs. See, for example, Awumah and Goulter (1992), Cheng and Ma (1989) for
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(2.25)

(2.35)

Vij e IJ, Vr
/rum; n Insic

5-54	 4

qpnr
	 r n	 — 1, Vr

	 (2.36)

le NU„,	 ha Npnr

Ehur =0 1- 1	 vr

	 (2.37).

Lu. -1 +	 (2.41)

in which 41,42 are the lengths of the first and second replacement pipes,

respectively, for link ij .

some alternative cost functions. In the present research, however, only the

capital cost of pipes is considered.

The above representation of the problem is for a single design load. However,

if there are multiple demand patterns, it may be necessary to consider each

flow regime explicitly in the constraints. Thus, corresponding to each demand

pattern is a set of nodal heads, pipe flow rates and head losses. Consequently,

for multiple demand patterns, all the constraints should be stated for each

demand pattern. However, the diameter constraints do not depend on the flows

and should be included only once. Also, an additional subscript r is used to

identify the variables in the rth flow regime. Thus gip. and hi.,, are, respectively,

th pipe flow rate and head loss in link ij for the rth fib' regime,

Vij e IJ, r where NR is the m.mber of demand patterns. Also,

H„,, Vn, Vr, is the head at node n for the rth load case, etc. Note that the

external inflow or outflow at node n is q,,, qo„, or qflo, for the rth regime.

Finally, the sets NU„, ND. and IJ„ also take the subscript r to identify the

appropriate flow regime. Pro'b'lem 1 Ior mulYiple load cases is stated below as

Problem 2.

Problem 2

Minimize .C=yEk/Dil
VD,/

1.852 ID ;I:87 V e /ET, V r
kb.= all/gib-IC& 

h-. — hpr p 1,...,NP, Vr	 (2.38)
jje

(2.39)

Hs —	 SH,— Hmin, Vfl, Vr	 (2.40)
jje

Dmne D05Dm 	 Vij IJ
	

(2.33)

q0 � 0 Vij e IJ, V r	 (2.41)

2.4.2 SOLUTION OF PROBLEM 1 (OR 2)

Problem 1 (or 2) is highly non-linear and extremely difficult to solve (Yates,

Templeman and Boffey, 1984). The problem may be simplified slightly if

continuous, as opposed to discrete pipe diameters, are used in the optimization.

If continuous pipe diameters are used, some optimum diameters may not be

available. Such pipes can be replaced in the actual network by two pipes in

series which are equivalent to the pipe that is being replaced. To replace such

pipes, first, the head loss in the equivalent pipes should be the same as in the

pipe being replaced. Also, in order for the actual network to remain at least

near optimal, the replacement pipes are usually selected from Do such that, in

magnitude, the diameters of these pipes lie either side of, and as close as

possible to, the continuous IA. The superscript * is used for the optimum value

of a variable. Furthermore, the sum of the lengths of the replacement pipes

must equal the length of link ij.

Thus to determine the length of the replacement pipes, the following

simultaneous equations can be set up and solved.
subject to:
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(2.43)

(2.44)

(2.45)

(2.46)

11.852

vl
h=h i + 2 = — ,T1F7	 4.87	 Cu-D.:

41.2

where, for example, hu, and Dul are respectively, the head loss and diameter

for the first replacement pipe for link ij. The selection of the diameters

m 1, 2, from DD has already been explained. They are therefore known.

Also, all quantities in Eqs. (2.41) and (2.42) are known, except Ly, and L.

Furthermore, the equations • are linear in the unknown lengths and can be

solved to give

h	 ..v 2L v
L. —.

411	 — k2

4. — /cll.',"
— ki _ h2

in which the coefficients le, and k2 are

	

a	 cu)1.852

	

h i - 
1

aolu* / co1.852

k2

In Eqs. (2.42) to (2.46) it is assumed that Co = C 2,2 = Cu. However, different

values May be used for these coefficients, if necessary, without any difficulty.

Returning to Problem 1, it is therefore possible to solve it, with the

discreteness constraint relaxed, by any suitable algorithm for constrained

non-linear programming. Also, any optimum diameter 4 suea that DI,ODD can

be replaced in the actual network, as described above, by two commercially

available pipes connected in series. Furthermore, there will be in general

many local minima. Consequently, it may be useful to solve the problem a few

26

times with different starting points to select the solution with the smallest

objective function value. However, much research has gone into developing

solution methods for Problem 1 (or 2) and two widely-used approaches are

described next.

2.4.2.1 LINEAR PROGRAMMING GRADIENT METHOD

The Linear Programming Gradient (LPG) method (Alperovits and Shamir, 1977)

is based on the Ay-equations. The method solves Problem 1 (or 2) as two

subproblems which are linked in an iterative scheme. The details of each

subproblem are presented in turn immediat oly following the present outline

of the overall strategy. The first subproblem minimizes the cost of the network

for a complete set of specified pipe flow rates. In this phase a linear

programming problem is set up and solved. The results of this linear program

are then used in the second subproblem, the gradient phase, to modify the pipe

flow rates to further reduce the total cost of pipes. The resulting flow rates

are then used to set up another linear programming problem. The new linear

programming problem is solved, new flow rates are determined, etc. This cycle

is repeated until there is no significant reduction in cost between successive

cycles.

Details of the linear programming phase are given next. For simplicity,

reference will be made to Problem 1 only. For a given flow rate, the head loss

equation, Eq. (2.2), is non-linear in the diameter only. It follows that for a

complete set of specified pipe flow rates, Problem 1 is non-linear in the

diameters only. However, the problem is linear in the known pipe lengths and

this property is exploited in the LPG method. For a complete set of specified

pipe flow rates, it is desired to convert Problem 1 into a linear programming

(LP) problem. This is achieved by reformulating the problem in such a way

that the lengths, in which the problem is linear, rather than the diameters, in

which the problem is non-linear, become the unknowns.
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(2.49)

(2.50)

Minimize C= yE ZDnvm vm

iielJ m=1
Nij

hv=E11,1„, VU e IJ

Thus suppose each pipe is made up of several segments of known diameter but

unknown length. Figure 2.2a shows a conventional pipe and Figure 2.2b shows

an equivalent three-segment pipe. For the given segments, the transformed,

but equivalent, optimization problem is concerned with finding the optimum

length of each segment of known diameter. Thus let La,,, denote the length of

segment m of link ij. As the length of each link is constant, the sum of the

lengths of the segments of each link must be equal to the length of that link.

That is,

ELu„, =	 Vij e IJ
	

(2.47)

Lu,,, � 0 V Um	 (2.48)

in which Nu is the number of segments specified for link ij. N4 may vary from

link to link, as seen later herein. These equations, Eqs. (2.47), are the length

(compatibility) equations and are linear in the Lor„,. They are an extra set of

constraints in the LPG formulation of Problem 1. Also, the objective function

is given by

C y IL.. Dt1wit um
	 (2.49)

&cm .71.1

in which Do„, is the diameter of segment m of link ij. Thus C is linear in the

segmental lengths, given the segmental diameters. Furthermore, from

continuity, the flow rate in each segment of link if equals the pipe flow rate

qu of that link. Finally, the head loss in link ij is the sum of the head loss

in each segment of that link, i.e.,

in which hip,, is the head loss in segment in of link if. The head loss in a

segment is given by the head loss equation, i.e.,

L

"
— 

Lyn'	 D'.87

*I-IC.)1852
V 

	

urn

	 Vijm	 (2.51)

which is linear in the	 if qii and Di.* are specified.

On the other hand, the velocity constraints Eqs. (2.28) of Problem 1 are not a

function of the L. As such, they do not lend themselves to the variable

transformation of the LPG formulation. However, knowing qih Eqs. (2.28) can

be used to obtain lower and upper bounds for the D4. The resulting values can

be used with the pipe diameter constraints, Ecs. (2.33), to obtain the segmental

diameters to be specified for each link. As Vie selection of segmental diameters

is based on pipe flow rates, both the number of segments and their diameters

will in general be different for each link.

After carrying out the variable transformation described above, this

transf)rmed, but equivalent, problem is then linear in the L,1„, and is stated

below as Problem 3. In Problem 3, the nodal flow continuity equations, Eqs.

(2.6) have been omitted because they are used when specifying the pipe flow

rates for the linear program. Also, Problem 3 is the LP formulation

corresponding to Problem 1 which is for a single flow regime. The LP

formulation for multiple load cases follows from Problem 3 in the same way

that Problem 2 is derived from Problem 1. This, however, is not done herein.

Problem 3

ni=1	 subject to:
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or (qui co1.852

D1:87Um

(qui co1.852

	 Lum hp p = 1,...,NP
Lj

4.87
tim

..	 1 =1,...,NLLinn -0 (2.52)

(2.53)

a(qui co 1.852

	 L m � Hs Hrnjn.n Vn
urn

(2.54)

IJ, m=1

(is lJp m=1

a(qui co I .852

ry1.87	 hm � 115 Hmax.n
Urn

Problem 3 is an LP problem with continuous variables, the segmental lengths,

and can be solved by the Simplex method (see e.g. Winston, 198). At the

solution of Problem 3, a and the LZI„, will be available. Also available will be

the optimum value of the dual variable for each constraint (see e.g. Winston,

1987). Referring to Problem 3, there is a dual variable (11 , 1 =1,...,NL, for the

/th loop constraint; a dual variable cl„, p=1,...,NP, for the pth path

constraint; similarly, c4,, Vn, for the minimum service pressure constraint at

node n; du, Vn, for the maximum service pressure constraint at node n;

d41 , Vija IJ, for the length constraint for link (j. Thus, at the solution of the

LP problem, the di, 4, 4, (4,, and dti will be available. Denote by d the

vector of all the dual variables. In the gradient phase of the LPG method, 4-

is used to modify the pipe flow rates so that if Problem 3 is set up and solved

Vn	 (2.55)

(is IJ„

Nu

ELu„, =
ln-= I

Lum 0 Vijm

M=1

Vij e IJ	 (2.47)

(2.48)

for the new pipe flow rates, the new value of C' will be lower than the current

value of C'. The gradient phase is described next.

The gradient phase of the LPG method (Alperovits and Shamir, 1977; Quindry,

Brill, Liebman and Robinson, 1979; Fujiwara, Jenchaimahakoon and

Edirisinghe, 1987) is concerned with adjusting the pipe flows so that the

optimum design for the new flows is lower in cost than the optimum design

for the old flows. That is, the vector of flow changes Aq is sought so that

C. (q + 4)5 C . (q)	 (2.66)

in which the elements of 3 are the pipe flow rates. Using the Aq-equations

gives g as

(5)	 (n- I)	 E . (n)	 • •
qv — qv +	 Vaqi	 ij e IJ

le ki

in which the superscript (n — 1) denotes values on entering the gradient phase

and (n), values found in the gradient phase; n is the cycle or iteration number.

The problem of determining the Aq; at each iteration is a non-linear

programming problem that may be approached in different ways. It will

usually be necessary to find the gradient of C (cost) with respect to each Alp,

i.e., VC(Aq). However, C is related to the Aq, only indirectly, through the loop

constraints; Aqi is the correction for all pipes in loop 1. On the other hand, any

path constraint with a path IJ,, p =1,...,NP, using any links contained in loop

1, I = 1 ..... NL, will be affected whenever Eqs. (2.13) are applied. Also, the nodal

pressure constraints will be affected in a similar way. Thus C in Problem 3

is related to the Aq, through all the problem constraints, except the length

compatibility conditions, Eqs. (2.47). It is therefore possible to write:

C = itt:„ , , /6, , Cho in which

(2.13)

30 31



4= E	 p =- 1,...NP
v. IJ,, m=I

is the head loss in path p;

NN	 NN

ac g in	 ac 0125
agin Aqi	aeq,

n=1

(2.67)

V/	 (2.61)

=11',	 1	 1,...NLEh um
U. 1J, mn I

'13' the >zena >oss around >oop

(2.58)

/7..= E Eh on Vn
	 (2.59)

jje 1.1„

is the head loss in the path specified for node n;

N41

E Ehun, V n
	 (2.60)

de 14 ns=1

Also, h,„ and ha are equal but, respectively, they correspond to the minimum

and maximum nodal pressure constraints which are different from ea.z.h other.

Finally, Eqs. (2.67) to (2.60) are all functions of the pipe flow rates and, hence,

functions of Aq, , 1 = 1,...NL. That is: lip = f(Liq,	 Aqm.); h, =Mgt 

g i„ =	 qt .... . Aqm.); h ==	 vp, vt, V n. Using the chain rule

(see e.g. Kreyszig, 1983), the components of VC(4d) are

ac

alz„ aAqi+

NP

ac
aeq,

The squiggle — is used merely to set apart the i's pertaining only to the second

summation in the above equation. Also, the first term in each of the products

is the dual variable for the constraint in question, i.e.,

acialip=c4, p; aCidzi = d,, VI; aciah,„-- du, , Vn; BC1811 2„=d, , `dn. At the

solution of Problem 3, the LP phase, the optimum values of these dual

vo riables will be available. It remains to find expressions for the gradients

of each constraint with respect to each O.q,, i.e., the second term in each

product in Eqs. (2.61). This is done next.

The head loss equation for segment m of link i j, Eq. (2.51), is written here in

terms of the flow changes d.q,:

ho„,— 

ak„,[qu +E.Aqi 

11.852

	

(2.62)

The equations for the h, Eqs. (2.67) to (2.60), are all sums of various subsets

of the he,,,. The required gradients can be found by summing the gradients of

the appropriate hu„,. Thus,

ahu„,

where the plus sign applies if qu„, and dap are both clockwise or both

anticlockwise in loop 1. Otherwise, the negative sign applies. From Eq. (2.63),

for example,

—Lt352 hojqu 1 e
adq	 (2.63)

=0 lftlu
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ai:
= 1.852 E (i/gil)Ehifrn 1= 1,...,NL

dAqi
m=l

le lu

(2.64)

Therefore, finally, the first summation of Eq. (2.61) is

NP	 Nii

— 1.852Xdp	tl/qii)Zho, I = 1 ..... NL
aAqi

p--.1 tie	 m=1

is lu

al;
(2.65)

Xac

aAqi

Nu

— ±1.852Edi E (1./qii)Ehum 1=1,...,NL
m=1

(2.66)

(2.67)
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NN

ak2„
NN

ah24 BA%	 1.852Ed2„	 (1/4)Ehu. 1= 1 , 	 NL	 (2.68)
5=1	 n1	 isI.J,	 m.I

Is lo

Inserting the expressions of Eqs. (2.65) to (2.68) in Eq. (2.61) gives the equation

for the components of VC(Az):

NP Nu

aC ±Edp L (i/g)Ehk,„,

vc, . 011.852) dm,	
p=1

la lu

Nu

.b Zdi z (l iqu)Ehu„,± Dr115 d2„)E (ilqu)Ehimi

ni=1	 n=1	 14,	 m.	

= 1,...,N	 (2.69)

Is lj
Is iu

in which the substitution	 d, p 1,...,NP, has been used.
alzp

Corresponding expressions for the other terms in Eq. (2.61) can be obtained in

a similar way. These expressions are:

where the squiggle -- is used again merely for contrast.

NN

ac 84'15

ai;,„ aAqi — 
1.852Zdm E (1/qu)Zhum 1 =1,...,NL

rt=1 ifs IJ„	 m=1
le I11

Eq. (2.69) gives the gradient of the cost C with respect to the flow change

around each loop and is the expression sought. It may be used in the

determination of the loop flow adjustments. On entering each gradient phase

of the LPG iterative scheme, all the quantities in Eq. (2.69) will be available.

The VC, contain information that may be used in a suitable optimization

algorithm. Such an algorithm can be used to find Ai, which, when used in

Eqs. (2.13), gives the flow rates for the next linear program. In this document,

however, no actual algorithm for calculating Ago) or go> is given. It is perhaps

more appropriate to refer to the original publications and, for example, Gill,

Murray and Wright (1981), for methods of optimization. Alperovits and Shamir

(1977) used a steepest gradient-based heuristic whereas Fujiwara,

Jenchaimahakoon and Edirisinghe (1987) used a quasi-Newton method with a

BFGS update (see e.g. Gill, Murray and Wright, 1981).

Once has been found, the pipe flow rates are updated using Eq. (2.13). The

resulting g is used in the next LP phase. The LP results are then used in •

another gradient phase. And thus the cycle continues, with successive
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reductions in cost, until some suitable

description of the linear programming

Problem 1 is now complete. There

alternative, but quite similar approach,

convergence criteria are satisfied. The

gradient approach to the solution of

follows a brief presentation of an

to the LPG method. agi5binsign(Hi—H) 1111—
qn n =-- 1,	 NN-1	 (2.71)

L1154

2.4.2.2 GRADIENT FORMULATION OF QUINDRY, BRILL AND LIEBMAN

The number of variables, usually, at least three per link per load case, in the

LPG formulation grows very rapidly as the size of the network increases:

Quindry, Brill and Liebman (1981) have described a method that is similar in

strategy to the LPG method. However, it uses continuous variables for the

-dr..meters and assumes that each link consaits of a single pipe-..f uniform

diameter, In consequence, the number of variables is much smaller than in

tk\s, kRQ kxxtkvzol.,

The Quindry, Brill and Liebman formulation differs from the LPG approach

mainly in the way that the linearisation is brought about. However, like LPG,

a linear programming phase and a gradient step are linked in an iterative

cycle such that the design at the end of each cycle is cheaper than the

previous cycle's. The method is based on the H-equations, Eqs. (2.12). Thus, if

a complete set of nodal heads are specified, these equations are non-linear in

the diameters only; the Lom are known constants. These equations may then

be linearised by defining a new variable (Lai and Schaake, 1969) as

by .n Dr Y(j e IJ	 (2.70)

This gives Eqs. (112) as

ie (NU, uND„)

in which q„ is the external inflow or outflow at node n. Eqs. (2.71) are linear

in the 4.

Also, using Eq. (2.70), the cost function Eq. (2.18) becomes

F( ;)ii)= yt):1	 -	 (2.72)

in which e,=c,/2.63 and is typically about 0.50 to 0.80. This cost function is

nonlinear in D. However, if several cost functions are used for the b„ as

shown in Figure 2.3, then, the cost may be linearised as

9b4 VU e IJ	 (2.73)

where the cost coefficient j; takes on different values for each cost band. The

objective function is then

A
C=) L- .	( 2.74)

ijelJ

With the objective function and constraints linear in bo, the problem can be

solved by linear programming. However, the cost coefficieat jr for each nu

depends on the value of that Ek at the starting point of the computational

solution of the LP problem. On the other hand, 4, may not lie in the same

cost band as at the start of the computational solution of the LP problem. In
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(a)

(b)

such a case, the initial value of ih will be incorrect. It is therefore necessary,

at the solution of each linear program, to reassign values to the j+ based on

the D and resolve the problem. This process should continue until the values

of theCt. are the correct values for the 4.

Like in LPG, the results of the linear program can be used to calculate

adjustments to the nodal heads. The updated heads may then be used to set

up another linear program, and so on, until there is no significant difference

in the cost of successive LP designs, or there is convergence of the nodal

heads. Quindry, Brill and Liebman (1981) have described a gradient step in

which the changes to the nodal heads are cal ,mlated. They have also presented

a derivation of VC(B). Alternatively, steps similar to those used herein in the

derivation of VC(q) may be used to obtain 7C(H). For more on the Quindry,

Brill and Liebman (1981) formulation, the interested reader should consult the

original publication and a far ranging discussion by Templeman (1982b).

To conclude this section on the solution of Problem 1, it may be noted that

the Alperovits and Shamir (1977) LPG method can handle network components

other than pipes. The interested reader may consult their paper. Also, Lansey

and Mays (1989) have presented a formulation that uses both simulation and

nonlinear programming. In this approach, in each iteration of the

optimization, a network solver is used to evaluate the continuity and energy

equations. Thus, by implicitly solving the constitutive equations, the

constraint size is reduced. This enables distribution networks with many

components under various loading conditions to be handled. However, the

method is computationally expensive and requires a large amount of computer

time.
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Figure 2.1 Choosing the loops of a network: (a) to (c) are some, but not, all, of the

possible choices. (d) is an example of a poor choice. (d) is not a good choice because the three

right hand side links are unaccounted for and the three resulting loop equations are not linearly

independent: for example, every link in the outer loop is included in one of the inner loops.
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Figure 2.3 Schematic of piecemeal linearisation of pipe cost per unit of 1-4j
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CHAPTER 3 WATER DISTRIBUTION NETWORK

RELIABILITY AND ITS OPTIMIZATION

3.1 INTRODUCTION

It is widely accepted that the supply of water in urban areas should be reliable

and available on demand. However, a water supply system is a network with

many components which are subject to random failures. To lessen the impact

of failures within the distribution system, pipe networks for urban water

supply are usually designed with loops. These loops reduce the possibility of

some demand points being completely cut off from the rest of the network.

The effect and severity of each component failure will be different. Also,

following a failure in a looped network, the behaviour of the reduced network

will be different from its normal mode of operation and, in general, will not

be predictable without hydraulic simulation of the reduced network. For these

and other reasons which are discussed later in this chapter, it is difficult to

define reliability in the context of urban water supply. In a moment, some

definitions and measures of reliability from the literature are presented. Later,

separate sections of this chapter consider how some of these measures can be

calculated and optimized. Also, surrogate measures are very relevant to the

present work and various aspects of these measures are considered separately

in this chapter. -

The issue of reliability is slightly different for tree-type . networks. Usually,

there will be no uncertainty regarding the consequence of a pipe failure in a

tree-type network. Obviously, there is some uncertainty about the actual

effects of failure on consumers, but that is outside the scope of the present

research. Although some of the material in this chapter may be applicable to

tree-type water distribution networks, the focus of the present research is on

looped networks.

Two types of failure may be identified within a water distribution system.

These include mechanical failure of the components, for example, pipes, valves,

etc. Also, hydraulic failure may be said to have occurred if the system is

incapable of delivering the right quantity of water at the right pressure.

Hydraulic failure may ensue from a mechanical failure. Also, hydraulic failure

at a node may arise because of excessive abstraction elsewhere in the network,

for example, for fire fighting, leading to a reduction in pressures throughout

the network. It may be noted that extraneous factors such as power supply

and availability of water are also involved in the wider reliability issue.

However, the work reported in this thesis is concerned only with failures due

to an increase in demand or a pipe failure.

When a pipe breaks, there is loss of water and pressure at the point of

breakage. This continues until the flow of water to the broken pipe is stopped.

However, the pressure may not be fully restored because it will usually be

necessary to take certain pipes out of service to isolate the broken pipe. This

may lead to increased pipe flows and hence extra head loss in the reduced

netwo..k. It is this extra loss of pressure that may lead to hydraulic failure if

the shortfall in pressure reaches a critical level.

It has been explained above that a distribution network can suffer from both

mechanical and hydraulic failure. Therefore, it is sometimes necessary to

distinguish between mechanical and hydraulic reliability. Mechanical

reliability measures the probability that the component or system being

considered is operational at any time. The mechanical reliability of a network

depends on the arrangement or layout of its components and the mechanical

reliability of the individual components. On the other hand, hydraulic

reliability is a measure of the probability that the system car. supply the right

amount of water at the right pressure. Although hydraulic reliability depends

on mechanical reliability, it is largely governed by the hydraulic performance

of the network. In turn, the performance depends on the layout and capacities
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of the pipes, the number, locations and capacities of storage facilities and

pumps, the spatial and temporal variations in supply and demand, the number

and positions of valves and other appurtenances, etc.

The above characterization of mechanical and hydraulic reliability appears

straightforward. In practice, however, the issue is very complicated. In fact,

there is no comprehensive or universally accepted practical definition of

reliability in the context of water distribution. By "practical definition" is

meant any definition or measure that is both sufficiently realistic and easy to

calculate. Furthermore, the complexity of the optimum design problem is

reduced considerably if the reliability measure can be optimized directly.

Walski (1987) has pointed out that a reliability measure should reflect the way

that water users are affected. He therefore asserts that the indicator of

reliability should include the length of time and number of users out of

service, with units of "user-days of outage per unit time" or gallons per year

of shortfall. Similarly, Wagner, Shamir and Marks (198813) have stated that

the amount of required flow not supplied is a good overall indict tor of

network reliability. However, they warn that: a low shortfall could be obtained

by disconnecting, at any sign of emergency, one node of moderate demand in

order to supply the others; and so the percentage of time spent in subnormal

conditions should be noted for each node. On the other hand, Goufter (1987)

has stressed that a true measure of reliability must somehow recognize both

the probabilistic nature of failures and the severity of such failures.

Also, with regard to hydraulic failure, it is increasingly recognized that supply

at a node does not stop immediately the head falls below the desired minimum

level (Wagner, Shamir and Marks, 1988b; Cullinane, Lansey and Mays, 1992).

It is therefore inappropriate to use a zero-one relationship to describe the

changes in nodal supply in response to changes in nodal pressure near the

desired minimum head. Between the desired minimum pressure and the
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absolute minimum pressure below which service is unacceptable, there is

reduced but perhaps acceptable service. Cullinane, Lansey and Mays (1992)

have observed that the transition from full service through reduced service to

failure is better represented by a continuous fuzzy function. As an example,

Wagner, Shamir and Marks (1988b) have assumed that the reduction of supply

from normal supply to no flow is related to the square root of the actual nodal

head. This assumption is motivated by the consideration that hydraulic laws

for flow through devices show that flow is proportional to the square root of

head. Thus the actual flow supplied is given as follows.

E	

11,,, i,,,— lin	1°3

q. °	 Ilmin,n—Irmin,n J q,
0

in which q'.0 is the actual abstraction at node n, Viz; qno is the demand at node

n, Vn; H„,;„„ is the desirable minimum head at node n, Vn; H'„„„.,, is the

irreducible minimum head at node n, 'In; H,, H„ , is the actual

head at node n, 'In.

To sum up, the following properties are desirable for a realistic measure of

reliability.

1. It should be a time-based probabilistic measure.

2. It should reflect the shortfall in flow.

3. It should recognize the pressure dependency of demand. Furthermore,

reduced service should be recognized and accounted for somehow, rather

than be counted- as failure.

4. It should be sufficiently easy to calculate. Furthermore, it would be most

useful if it lends itself to direct optimization.
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3.2 SOME RELIABILITY MEASURES

There are probably many possible indicators of reliability for water

distribution networks. These may be divided roughly into two groups. One

group consists of Measures for properties that are inherently related to

reliability. Usually, the exact relationship between these surrogate measures

and reliability is unclear. The entropy measure proposed herein is one such

measure. Surrogate measures have an important place in the reliability and

design of water distribution networks. As such, they are covered separately in

Section 3.5. A second group of reliability indices consists of actual reliability

measures and these are considered next.

On their own, measures of mechanical reliability may be used to check for

unreliability due to inadequate network connectivity or unreliable

components. It has been shown (e.g. Proven and Ball, 1983) that the problem

of calculating reliability exactly for a general network on the basis of

connectivity only is extremely difficult to solve. Tung (1985) has reviewed

some of the methods for calculating the mechanical reliability of water

distribution networks. He concluded that the cut set approach with first order

approximation (see e.g. Billington and Allan, 1983) is the most efficient from

a computational viewpoint. A cut set is a set of system components which, if

it fails, causes the system to fail. A summary of the cut set method is given

in appendix A.

There are many indices of mechanical reliability. They measure the

expectation of the level of connectivity in a network at any time. Some useful

measures from the literature are now presented. Tung (1985) has defined

network reliability as the probability that flow can reach a:I demand points,

and unreliability as the probability that any demand point cannot be reached.

Let B and stand for network reliability and unreliability respectively.

Tung's definition may be written as:
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demand nodes are reachable)
(3-2)

R' =--p(at least one demand node is isolated)	 (3.3)

Also, Wagner, Shamir and Marks (1988a) have used a similar definition:

R p(all demand nodes are connected to a source)
	

(3.4)

Also, they have defined nodal reliability R„, Vn, as:

Rn = p(node n is connected to a source) Vn 	 (3.5)

Turning to hydraulic reliability, i t has been explained herein that it is very

der endent upon mechanical reliability. Since the latter is difficult to !alculate,

it might be expected that the former is difficult to calculate too. In fact, the

problem of finding the probability that each node in a distribution network

will receive sufficient supply is extremely difficult to solve (Valliant, 1979).

Also, it has been seen that the constitutive equations for a distribution

network are a highly non-linear system of equations whose analysis is

computationally expensive. Furthermore, it is not possible to dedut:e the

performance of a network with a failed component from the normal mode of

operation of the network. This is due to the complex ways in which flows in

a looped network are rerouted. It is therefore necessary in general Li analyse

a reduced network to know whether it is likely to fail hydraulically. In a

network subject to random component failures, it will be necessary to analyse

many reduced network configurations to find the exact probability that the

network will perform satisfactorily. In general, the amount of computer time

required for such calculations is very large, as there are up to 2N"

configurations, where NIJ is the number of links, to consider. It is therefore

common to make some approximations when calculating hydraulic reliability.

Several useful measures of hydraulic reliability from the literature are

presented next. Wagner, Shamir and Marks (1988a) have defined network
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reliability as the probability that all specified nodal demands can be supplied.

Also, Bao and Mays (1990) have defined reliability as the probability that the

system can provide the demanded flow rate at the required pressure head.

Finally, following Carey and Hendrickson (1984), Fujiwara and de Silva (1990)

have defined reliability in terms of the expected minimum total shortfall. That

is, the unreliability is taken as the ratio of the expected minimum total

shortfall to the total demand. The reliability is then defined as the complement

of the unreliability. Thus,

expected minimum total shortfall
R' 	— 

total demand	
(3.6)

R = 1 — R'	 (3.7)

An outline of how the above measures m iy be calculated is given next. To

obtain the probability of sufficient supply, Wagner, Shamir and Marks (1988a)

assigned a capacity to each link, as explained shortly. They then determined

whether each reduced network configuration can provide enough flow by

modelling it as a maximum flow network problem. The problem of determining

the n aximum flow of a network subject to maximum link capacities is well

known and efficient LP solution methods have been developed for it (see e.g.

BTaare.e. %WI Jarvis, 19771. Knowing the probability that the network will be

in each reduced configuration, it is therefore theoretically possible te calculate

the probability that the network will satisfy the demands. This probability is

given by the complement of the joint probability of the configurations that

cannot supply the required flow. That is, the reliability is the complement of

the probability that the network will be in any of the reduced configurations

which cannot supply the required flow.

The capacity of each link was set based on an assumed maximum hydraulic

gradient of 0.01. It may be noted that pipes in a distribution network do not

actually have a capacity; the flow through a pipe is in general determined by

the amount of available pressure in the network.

Also, the definition of Bao and Mays (1990) is conceptually similar to the

probability of sufficient supply. It is the probability that the system can

provide the demanded flow rate at the required pressure head. However, Bao

and Mays (1990) used a completely different approach in quantifying this

measure. They were not concerned with hydraulic failure ensuing from

mechanical failure. Rather, they were interested in the hydraulic reliability

with regard to some given probability distributions for the nodal demands or

pressure head requirements. A demand-based hydraulic network simulation in

which all nodal demands are met, irrespective of actual pressure levels, was

used. For each node, the hydraulic reliability was defined as the probability

that the actual nodal pressure is equal to or greater than the minimum

re quired. Based on this definition, nodal relii.bility may be obtainee using the

following equation.

R,z = p(H„ � 	 F(11n)c111 Vn	 (3.8)

where F(H„) is the probability density function of the pressure head of the

supplied flow at node n, Va. The interested reader may consult Bao and Mays

(19901 for the distributions used. For the system reliability, Bao and Mays

used three complementary measures: the reliability of the most unreliable

node; the average of the nodal reliabilities; the sum of the nodal reliabilities

weighted according to the respective nodal demands.

Finally, the definition of Fujiwara and de Silva (1990), Eqs. (3.6) and (3.7), is

addressed next. To reduce the number of failed configurations to be

considered (out of a total of rid where NIJ is the number of links), Fujiwara

and de Silva (1990) assumed that the probabilities of coufigurations with

multiple failed links are negligible. Thus Eqs. (3.6) and (3.7) are based on

states with no more than one failed link. For each configuration, the maximum

flow delivered is approximated using a maximum flow network model with
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capacities assigned to each link. How these capacities are decided is discussed

in the next section which deals with the optimization of reliability. Knowing

the maximum flow delivered, the minimum shortfall for each state is given by

the difference between the total demand and the maximum flow delivered. The

expected minimum total shortfall for the system -is then given by the sum of

the shortfall for each state, weighted according to the respective state

probabilities. Finally, the reliability is given by Eqs. (3.6) and (3.7).

3.3 LAYOUT AND RELIABILITY OPTIMIZATION

The reliability of a water distribution network is inherently linked to its

lay 'rut. Most of the material in the literature is concerned with ptimizing

reliability for prespecified layouts and thes are considered shortly. However,

some effort has gone towards layout design which is dealt with immediately.

3.3.1 LAYOUT AND PIPE DIAMETER OPTIMIZATION

The p.-oblem of optimizing the layout of a distribution network car take

different forms. For example, the optimum layout for the network of Figure

3.1a could be a subset of the links shown in the figure, but it could also

involve layouts with extra nodes such as Figure 3.1b. There appears to be no

published material in which the possibility of introducing extra nodes is

considered. All subsequent references herein to layout optimization will be

limited to the selection of a subset from all the possible links that connect the

existing nodes.

Layout optimization is extremely difficult, partly because it involves Problem

1 which has been considered in Chapter 2. Also involved are Gther subproblems

that are very difficult to solve and these are pointed out in the course of this

review. Besides, reliability considerations significantly increase the complexity

of the problem of simultaneously optimizing the layout and components of a

water distribution network; layout optimization is intimately related to the size

of the components. The following review of layout optimization is structured

in such a way that the main strategies that have been used are highlighted.

To this end, it will be necessary to explain some, but not all, of the approaches

in some detail.

Layout optimization models may be classified as follows. Those that start with

all the potential links of the network and then go on to delete some of these

links in an attempt to reduce cost while satisfying some reliability criteria.

Some oi the Sartml\aMatv.. ktn <his. c.e,tegaty axe those by Morgan and Goulter

(1985), and Awumah, Bhatt and Gou/ter (1989). The above models are

considered shortly. A second category incl-rdes models that begin with a

spanning tree and then go on to add redundant links in an attempt to meet

some reliability criteria while keeping the cost of the network as low as

possible. The models in this category that are reviewed below are those by

Rowell and Barnes (1982), and Loganathan, Sherali aria Shah (1990).

Rowe!I and Barnes (1982) used two main steps. In step 1, a spanning-tree layout

is simultaneously found and designed by solving a non-linear minimum cost

flow problem. In step 2 redundant links are selected from the non-tree links

to provide an alternative supply path to each demand node. This is a very

difficult problem to solve (see e.g. Rowell and Barnes, 1982; Loganathan,

Sherali and Shah, 1990). Rowell and Barnes used a 0-1 integer programming

formulation which also determines the diameter of the added redundant links.

However, there are some weaknesses in the method. First, the formulation of

the non-linear minimum cost flow model is based on the assumption that all

the links in the initial tree will have the same hydraulic gra,lient. Goulter and

Morgan (1984) have pointed out that this assumption is invalid. Perhaps more

serious is the absence of any mechanism to ensure that any loop and path

constraints are not violated following the addition of redundant links.
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On the other hand, Loganathan, Sherali and Shah (1990) assured hydraulic

consistency of the network by including a phase in which the network is

redesigned following the addition of redundant links, but with minimal

adjustment to the initial near optimal core tree design. Also, the approach has

other important differences from Rowell and Barnes. Firstly, neither in the

design of the core tree nor the final looped network are diameters determined

at the same time as flows. Flows are first determined and then diameters are

found using the LP step or the 'L'PG metlioa.

The design of the spanning tree is as follows. An initial tree-type design is

required to initiate the procedure. For single-source networks a minimum

spanning tree (see e.g. Templeman, 1982a) is specified and its flows determined

SS DMCOSA.S1Uk., . V CIS CRultkple-e.ource networks, a linear minimum cost flow

model is used to determine the flow direction in each link and to obtain an

initial spanning tree, including link flows. The rest of the procedure is the

same for both single- and multiple-source networks. The initial tree with

known flows is designed by LP. The next step is to sequentially add each

potential link not already in the current tree and remove a link in the

7•PB»)bng )Dop to obtain a less expensive spanning %lee design. Ttv-t process

ends with a near optimal core tree in which no further substitutions are

possible.

Secondly, Loganathan, Sherali and Shah formulated the problem of finding

redundant links based on connectivity only. The resulting 0-1 integer

programming problem is thus solvable by an LP-based heuristic (see original

publication and reference therein). The ensuing looped network is then

redesigned by LP while keeping any changes to the core tree to a minimum.

This phase needs some judgement by the designer and the interested reader

may consult the original publication.

The method appears able to find good solutions (see demonstration examples

in original publication). It decomposes a complex problem into efficiently

solvable subproblems. In particular, it may be noted that the problem of

finding redundant links is not solved with an integer programming algorithm.

However, the cost of constructing the looped network is kept down by using

mostly minimum diameter pipes for the redundant links. Such use of minimum

diameter pipes is questionable (Wagner, Shamir and Marks, 1988a). This issue

is discussed further in Chapter 6.

The models just described first select a core tree and add loop-completing links

to it. In contrast, the models considered next start with all the potential links

an..: eliminate those that are excess to reo n iirements. Awumah, Lhatt and

Coulter (1989) were able to formulate a 0-1 integer program by using assumed

irtiiia) nodal hoods. The main constraint of the formulation, from a reliability

point of view, is the requirement that each node be connected by at least two

links. Furthermore, network specific constraints are used to ensure that no

nodes can be cut off by the failure of a single link. The need for such

constraints in the present formulation is illustrated in Figure 3.2. However,

the method requires several candidate diameters for each link and this leads

to very many variables. In particular, there is also a 0-1 integer variable for

each link and for each candidate diameter.

On the other hand, the method of Morgan and Goulter (1985) is an LP-based

heuristic. A key feature of the formulation is that, for a given network, the

number of variables and constraints remain constant no matter how many

demand patterns are considered. This is the result of a clever choice of

decision variables. For each link, two variables are defirv-d. One of these

represents the length of pipe of the current diameter to be replaced by the next

smallest diameter. The other represents the length of pipe of the Current

diameter to be replaced by the next largest diameter. Obviously, at most one
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of the two will be non-zero at the solution, so the number of non-zero variables

will be at most equal to the number of links.

The method addresses the reliability issue by ensuring that the design is

sufficiently resilient. To this end, a multiplicity of flow patterns based on

potential link failures and fire fighting demands (Templeman, 1982b) are

considered. For multiple flow patterns, each pattern is simulated. Nodal

pressure constraints are specified for the worst cases only, so that there are

as many constraints as there are links, i.e., the same as the maximum number

of non-zero decision variables. The rationale is that the maximum number of

non-zero decision variables must be equal to *he number of constraints. It may

be noted that by using a network solver, the loop and nodal flow equilibrium

equations are satisfied implicitly.

However, the formulation does not have an in-built capability for removing

links. Instead, at the end of each iteration a link is removed manually, based

on a heuristic link-weighting scheme. Also, link removal is sequential and may

lead to results that are quite suboptimal. Finally, the analysis of all flow

regimes for multiple load patterns is computationally expensive.

Thus far, reliability and cost optimization have been considered in the context

of joint layout and component design. Also, no components other than pipes

have been mentioned even though some of these formulations may be used for

systems with other components. It will be recalled that the present research

deals with pipes only. The remainder of this section is devoted to reliability

optimization for fixed layouts.

3.3.2 PIPE DIAMETER OPTIMIZATION

The problem of minimizing the cost of constructing a water distribution pipe

network, without explicit regard to reliability, has been described in Chapter

2. In this subsection, reliability considerations are integral to the optimum
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design problem. For a fixed layout, the reliability-based optimum design

problem consists of sizing the prespecified components of the water distribution

network to some reliability specifications, at the least possible cost. Reliability

can be assured in different ways. For example, a multiplicity of demand

patterns, including very adverse cases, could be added to the constraints. Thus

many of the methods for basic pipe diameter optimization could be used for

some form of reliability-based pipe diameter optimization. However, the

difficulty of solving the problem increases with each additional load case. In

this section, only models that optimize the reliability of pipes directly and

explicitly are reviewed. In these models, reliability is defined on the interval

[0, 1]. They include Su, Mays, Duan and Lansey (1987); Cullinane, Lansey and

M,ys (1992); Fujiwara and de Silva (1990). Some reliability defin ; tions and

methods of evaluation have been present( d in Section 3.2. The aim of this

subsection is primarily to show how some of these measures can be optimized

directly.

First, the model of Su, Mays, Dunn and Lansey (1987) is an NLP formulation

in wh:ch continuity and loop equations are satisfied implicitly by a sirmilation

model. Only the cost objective function and the other usual constraint

functions are specified explicitly. The value of the reliability constraint is

calculated by the minimum cut set method. The minimum cut sets are

determined by simulating link failures. A failure that results in any nodal

heads being too low is a minimum cut set for those nodes and the system.

Reliability is defined as the probability of sufficient flow/pressure.

The main strength of the model is that reliability is calculated quite

accurately and is optimized directly. However, the use of simulation for system

optimization and, in particular, in the determination of reliability requires a

large amount of computer time. Also, the gradients of the reliability constraint

cannot be calculated analytically. Finite difference approximations are used.

In this model, the computational expense of calculating these gradients is very
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considerable because evaluation of the reliability function itself requires

simulation. Finally, all non-zero shortfalls in flow/pressure are not included

in the definition of reliability.

Second, the model of Cullinane, Lansey and Mays (1992) is an NLP

formulation that may be used to directly optimize a simulation-based reliability

measure. The method is conceptually similar to the approach of Su, Mays,

Duan and Lansey (1987). The main disadvantage of the model is that it

requires a large amount of computer time.

Last, in Fujiwara and de Silva (1990) reliabiliLy is optimized using an LP-based

heuristic. Thus a benefit parameter Bu is calculated for link ij, Vi), using the

following equation.

Bu =--- aR exp[ DC—01] Vi) (3.9)[tou	 + 1] —
aqu.

in which By	 is the benefit parameter for link ij, Vi): the full meaning of this

parameter will be clear in a moment; wu is a constant positive weight for link

if, Vi); A is a positive scaling constant; C is the total system cost; R is the

system reliability and qu is the flow in link ij, Vij. Also, it may be noted that

the benefit parameter Bu, Vi), was originally termed "length", as opposed to

the terminology herein.

The rationale for Eq. (3.9) is that:

a) The benefit increases if —a-A, Vij, increases, and vice versa.
a'dub) The benefit increases if —, V(j, decreases, and vice versa.
aqu

c) The Bo Vi), are always strictly positive. This is assured by the (+1) term;
aRthe —, Vt.), are always non-negative (see Fujiwara and de Silva, 1990).aqu

Thus Bu is an indicator of how beneficial, in terms of both cost and reliability,

it is to increase flow in link if, Vij. The interested reader may consult

Fujiwara and de Silva for more details.

To determine which flows should be increased, the network is transformed to

an equivalent supersource-supersink version as shown in Figure 3.3. Then, the

path, from the supersource to the supersink, having the highest total benefit

EBu, where the summation is taken over all links in the path, is found using

any longest path algorithm (see e.g. Bazaraa and Jarvis, 1977). The flow in

each link on this path is increased by a small predetermined amount (same

increment for all links) and other link flows adjusted accordingly.

The above phase provides the linkage between an LP pipe-sizing phase and the

previously described Fujiwara and de Silva (1990) model (Section 32) for

calculating reliability. In the iterative scheme consisting of the above phases,

the flows found using the benefit parameter are used as both link flows and

' capacities in the reliability model.

The strength of this formulation is its computational efficiency; it uses only

LP. Also, it has a mechanism that attempts to increase reliability at a minimal

cost. However, the definition of link capacities is blurred. The maximum

throughput obtained for the capacitated network used in the reliability model

may be an underestimate. Also, it is assumed that this underestimation should,

to some extent, compensate for the neglect of pressure dependency of flows in

the reliability calculations.

3.4 SURROGATE RELIABILITY APPROACHES

In has been seen in the preceding sections of this chapter that the definition,

quantification and optimization of reliability in looped water distribution

networks are fraught with difficulty. In an attempt to bypass some of these

difficulties, graph and information theory principles have been applied. In the

graph theory approaches, a degree of invulnerability is assured by emulating

some of the properties of less vulnerable graphs. In this section, two graph

theory-based papers are reviewed. They include Jacobs and Goulter (1989), and
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Kessler, Ormsbee and Shamir (1990). This review follows shortly. On the other

hand, A wumah, Bhatt and Goulter (1990, 1991, 1992) have used

information-theoretic entropy to define a quantifiable surrogate for

redundancy/reliability. The above research is closely related to the work

reported herein and is discussed in some detail after the following paragraphs

on the use of graph theory.

3.4.1 GRAPH THEORY-BASED APPROACHES

Jacobs and Goulter (1989) have presented a layout-only model. The model is

essentially an application of the fonowing graph theory result:

damage-resistant optimal graphs are regular in degree at all nodes. The degree

of a node is the number of links connected Co it. As for the method, integer

goal programming is used to generate a regular network, by minimizing the

differences between the degrees of the nodes of the network. This network is

then examined for weaknesses. The weaknesses may include, for example, a

subnetwork not connected to the rest of the network. Network-specific

constraints are then added and the model rerun. This sequence is repeated

until all weaknesses have been removed. However, no hydraulic

considerations are involved in the formulation. The only involvement of flows

is by a heuristic weighting of each node by the inverse of its demand.

However, this turned out to be quite ineffectual. Also, no costs enter the

formulation and neither do link capacities or lengths.

However, the approach of Kessler, Ormsbee and Shamir (1990) is very different.

The concept of two trees is used to design a network that is invulnerable to

a single failure. In the layout phase of this method, two spanning trees are

selected. The trees are selected such that they overlap and, together, they

ensure the existence of an alternative path to each demand node following a

single link or node failure. The trees are found with graph theory algorithms

(see original paper for details). After finding the two trees, the pipes are sized
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by LP. Invulnerability is conferred to the network by designing each tree so

that, on its own, it can supply all the demands of the entire network at

adequate pressure. This is done by specifying a lower bound on the nodal

pressure for each node of each tree.

A useful feature of the two trees approach is the joint, although sequential,

treatment of both layout/reliability and component optimization. Also, both

paths to each demand node are actually designed. As such, there is a good idea

of the extent to which each of the paths to each node can be relied on.

However, the method is only applicable to single-source networks. Also, there

is no means of determining the best pair of trees prior to a full design and

evaluation of each pair. Furthermore, the invllnerability cannot be optimized

directly or quantified.

Also, there is a slight theoretical weakness in the formulation. There are no

loop equations in the constraint set which consists of length constraints

(Chapter 2) and a lower bound on the head at each node of each tree. There

is no guarantee that conservation of energy around the loops of the n3twork

will not be violated, as the nodal pressure constraints are inequalities. For

example, consider any node with two non-overlapping supply paths which,

obviously, start from the single source. It appears that the head loss around

the loop defined by these paths will be zero only if the allowable head loss is

the same for both paths, and the nodal pressure constraint of each tree is

active or the two slacks are the same at the solution. There is no guarantee

that these conditions will be met in general.

3.4.2 PREVIOUS ENTROPY-BASED RESEARCH

This subsection is mainly a review of independent work on entropy in the

context of water distribution network reliability by Awumah et al. (1990, 1991,

1992). They have proposed several entropy-based functions which are all
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NN	 NN

(3.11)	 S E(Q./Q0),S. — E(Q,/Q0) in(Qn/Q0
n=i	 ti=4

(3.13)

considered here. Also, Awumah and Goulter (1992) have used entropy to

formulate an optimum layout/reliability problem. For convenience the

arbitrary constant K in Shannon's entropy function is set to unity.

in which qu, Vij, is the flow in link ij and IJ consists of all the links of the

network.

Before reviewing Awumah et al. it may be noted that Jowitt and Xu (1993)

have proposed an entropy-related model for calculating the shortfall at the

nodes of a water network following the failure of a pipe. The data for the

model are the pipe flow rates, demands and source supplies under normal

operating conditions. Based on the premise that the flows arriving at each

node of the network mix perfectly, equations are set up for the destinations

of the flow at each source, the origins of the flow at each node, and the origins

and destinations of the flow in each pipe. Knowing the quantity of flow

reaching each node from each pipe, and neglecting flow rerouting, it is

possible to estimate the shortfall suffered at each node subsequent to the

failure of each pipe. Jowitt and Xu have shown that the equations of the model

for determining the composition of pipe flows by source and by destination

turn out to be the same as those given by the gravity model; the gravity model

can be derived using the maximum entropy formalism.

3.4.2.1 BASIC ENTROPY-BASED FUNCTION

The following function has been proposed by Awumah, Goulter and Bhatt

(1991) as a measure of the redundancy in a water distribution network.

S - E (q„/e0)	 (3.10)
(ielJ

in which S is the entropy (or redundancy) of the network; Qo is the sum of the

link flows, i.e.,

It is seen in the next chapter that Shannon's entropy (Shannon, 1948), on

which Eq. (3.10) is based, is defined only for mutually exclusive probabilities

or events. However, the probability-like quantities, go/Q(4 Vij, are not

mutually exclusive. This can be seen by considering any flow network in

which some links are connected in series, for example, Figure 3.4a. For any

pair of links (ij, jh), V(ij, jle), at least part of the flow in jk comes from ij.

In other words the flow in jh is dependent upon the flow in ij. These flows are

clearly not independent and as such are not mutually exclusive. In

consequence, Eq. (3.10) is not consistent witf the requirements of Shannon's

entropy. A more rigorous formulation is de•reloped in Chapter 5.

3.4.2.2 MODIFIED ENTROPY FUNCTION

The following substitution may be used to transform Eq. (3.10), but without

changing it:

q.in	 qin
— — —
Q0

=
 Q. Qo •

in which Q„, Vn, is the sum of the link flows entering node n, i.e.,

E qi„ Vn	 (3.12)
je NU,,

in which NU,,, Viz, represents the upstream nodes of link inflows at node n.

The transformed but equivalent equation is therefore
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Vn, Vj a NU„	 (3.19)gin = nPin

in which

=- - E (qin1Q,,)1n(q),,IQ„) Vn	 (3.14)
in NU„

is the entropy (or redundancy) of node n, Vn. A different and more complete

definition of nodal entropy is presented in Chapter 5.

In an attempt to account for the interactions between adjacent nodes in a

network, Awumah, Goulter and Bhatt (1991) used the following equation.

3.4.2.3 INTERDEPENDENCIES BETWEEN PATHS

In general, the paths supplying a node may have some links in common. To

account for such path dependencies, Awumah at al. (1990) proposed the

following function for nodal entropy.

—	 (qin1(4)1n(qi,ja,„Q„) Vn	 (3.18)
in NU,

in which Op,, Vj e NUn, Vn, is the effective number of independent paths to

node n through link jn. The value of aft, is given by

S'n = Sn +	 Vn	 (3.15)
je NU,

in which tj,,, 0 4,5 1, Vn, is the fraction of the modified entropy Si' of node

j, j a NU„, that is passed on to node n and is:

tin = qinjQj Vn, Vj e NU„	 (3.16)

Also, to calculate the modified entropy, Eq. (3.15), of any node, it is necessary

to first calculate the modified entropy of its predecessor nodes. If S'„ is used

instead of S. in Eq. (3.13) the modified network entropy is obtained and is:

NN	 NN

S = E(Qn1Q0)S' n — E(Qn1Q0) In(Q5/Q0)
	

(3.17)
rb=i	 n=i

Awumah et al (1991) observed that the S'„, Vn, give higher values of entropy

for the network than the S., Va. However, there is little evidence that the

former relate better to the conditions in a water distribution network.
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in wt ich npj„, Vn, Vj a NU„, is the number of (dependent or indepondent)

paths to node n that use link jn; nli„, V n, Vj a NU., is the total number of

links in all the paths supplying node n, that use link in; d is the number of

paths in which link k is used. (If the links of a network are numbered, they

may be identified by a single subscript as in the above equation) The

interested reader may refer to Awumah at al. (1990) for more on Eqs. (3.18)

and (3.19). However, there is little evidence that Eqs. (3.18) are efficacious.

Also, it may be noted that the calculation of the path parameter aj,, is

computationally very expensive as it relies on path enumeration.

3.4.2.4 FLOW REVERSAL

It will be recalled that so far, nodal entropy has been defined in terms of link

inflows only. In pipe networks, the direction of flow in a link may change
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Jzi
(a) Possible links in a

	
(b) A layout for the network of (a)

simple network
	

with an extra node

Figure 3.1 Two layouts for a simple network
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Joint layout and pipe diameter optimization with regard to reliability has been

seen to be extremely complex. Also, there is no completely satisfactory model

for solving this problem. The two independent paths approach is both difficult

to formulate and solve. The two trees method is inapplicable to multiple-source

networks. The entropy-based formulation of Awumah and Goulter (1992) fails

to preserve loops. Furthermore, it may be noted that all these layout models

do not define reliability on the [0, 1] interval.

In conclusion, the optimization of layout/reliability in water distribution

networks remains a challenge. There is no doubt that there is a need for a

layout/reliability design model. The excessiva computational requirements of

"exact" reliability models give added impetus to the search for a reasonable

and quantifiable *surrogate for reliability. Entropy apart, there appear to be

no such measures. Already, there is some limited evidence from the work of

Awumah, Goulter and Bhatt (1990, 1991, 1992) that further research into

entropy has potential for success.

Figure 3.2 Illustration of global and local looping: at least two of the links depicted

by broken lines must be included to ensure network-wide looping.
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CIO

(a )
1

(c)

supersource

C140 	 C130	 C130

supersink

(a) A simple network
	

( b) Equivalent supersource—supersink
representation of the network of (a)

Figure 3.3 A network and its supersource—supersink equivalent

(b)

(d)	 (e)

Figure 3.4 Some layouts for the network shown in (a): (a), (E), (c), (d) and (c)

represent stages in the layout model of Awumah and Goulter (1992). 	
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Figure 3.5 Graphical representation of the cost-defined similarity between

entropy and reliability: the cost savings are the differences between the costs of the

maximum entropy design and the submaximum entropy designs; the reliability is the average

source node.demand node Mechanical reliability; the neiweirk entropy is calculated from Eq.

(3.13) using Eqs. (3.18) and (3.19); it may be noted that boils graphs are plotted to the same cost

scale; the graphs used in this figure are taken from Awumah and Coulter (1992) and are based

on the layouts in Figure 3.4.
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CHAPTER 4 INTRODUCTION TO THE MAXIMUM

ENTROPY FORMALISM

4.1 INTRODUCTION

The concept of entropy first arose in classical thermodynamics which is

concerned with the macroscopic properties of matter. Entropy evolved further

with statistical mechanics which is concerned with predicting microscopic

phenomena on the basis of some known macroscopic parameters such as

temperature and pressure. Shannon (1946) introduced entropy in the context

of information theory as a quantitative measure of the amount of information

or uncertainty in a probability distributicn. He demonstrated that the

expression for entropy has a deeper meaning quite independent of

thermodynamics. Only Shannon's information-theoretic entropy is directly

relevant to the present research and is presented shortly.

Shannon's measure enabled the information content of different probability

distributions to be compared quantitatively. Before Jaynes' (1957) work, it was

common to determine the probability distribution of a phenomenon by

augmenting some known information about the phenomenon with assumptions

such as "equal a priori probabilities." Then, and only then, would the entropy

of the distribution be calculated. Jaynes (1957) suggested that Shannon's

measure could be used to make probabilistic inference without recourse to

"additional assumptions not contained in the laws of mechanics." Furthermore,

he stated:

In freeing the theory from ... hypotheses of the above type, we make it
possible to see statistical mechanics in a much more general light. Its
principles and mathematical methods become available for treatment of
many new physical problems.

Thus Jaynes proposed that, for a given phenomenon, Shannon's measure could

be used to generate a probability distribution that would have the greatest

amount of information or entropy. He concluded that:

In the problem of prediction, the maximization of entropy is not an
application of a law of physics, but merely a method of reasoning which
ensures that no unconscious arbitrary assumptions hove been introduced.

This approach i known as the maximum entropy formalism and is described

in this chapter.

A major component of the present research is to identify the right formulation

of Shannon's informational entropy for a general flow network. But first, it is

necessary to describe Shannon's entropy. Also, the present work is concerned

with probabilistic inference on water distribution networks based on partial

information. This aspect stems fro.n Jaynes' maximum entropy formalism. In

this chapter, Shannon's entropy is presented. Also, its properties are given,

with emphasis on the joint entropy of sep .rate finite probability schemes

because of the relevance to the present work. The maximum entropy formalism

is then described. Finally, the relevance to the present work is highlighted.

4.2 INFORMATIONAL ENTROPY

Imagine an experiment with more than one possible outcomes, for example, the

tossing of a coin. The result of each trial in such an experiment cannot be

predicted with complete certainty. Also, the degree of uncertainty will vary,

depending on the experiment. It would be said for instance that there is, say,

a 60% chance or a probability of 0.5 that each trial in a coin tossing

experiment will result in a head. Furthermore, if for some reason, the chance

of a head resulting is 99%, then, the outcome of each trial is very predictable.

It is therefore seen that the probabilities associated with each outcome of a

probabilistic experiment convey some information about that experiment. In

this section, Shannon's measure of the information content of a probability

scheme is presented. But, first, the meaning of a finite probability scheme is

given.
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4.2.1 DEFINITION OF FINITE PROBABILITY SCHEMES

If a set of events or outcomes are such that one, and only one, of them can

occur at each trial, then, the events or outcomes are mutually exclusive.

Furthermore, if one of these events must occur at each trial, it means that the

set is exhaustive and it represents a complete system. Also, the events of a

complete system together with their corresponding probabilities form a finite

scheme. Finally, the events or outcomes of a finite scheme are denoted by

oi , i =1,...,N, where N is the number of outcomes or events. The corresponding

probabilities are denoted by pi , i —1,...,N. Thus the finite scheme 0 is given

by

0	 =
(2E) (0;02 ... ON)

IP2 ••• PN

	 (4.1)

By definition, the probabilities of a finite scheme are non-negative, i.e.,

p � 0 Vi
	

(4.2)

and satisfy the normality condition, i.e.,

•

i pi = '	 (4.3)
i.1

4.2.2 ENTROPY OF FINITE SCHEMES

There is some uncertainty associated with every probabilistic scheme. Also,

the degree of uncertainty is different for different schemes. For example, there

is more uncertainty about a scheme with probabilities (0.5, 0.5) than a scheme

with probabilities (0.01, 0.99). Shannon (1948) put forward the following

measure for the uncertainty represented by a finite probability distribution.
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—	 logpi	(4.4)
1=1

in which S is the entropy or amount of uncertainty; K is an arbitrary positive

constant; logarithms may be taken to any suitable base (see, for example,

Jones, 1979): natural logarithms are used herein. It is axiomatic that the

, i =1 ..... N , represent a finite scheme, i.e., the probabilities are non-negative,

exhaustive, mutually exclusive and satisfy the normality condition Eq. (4.3).

Also, Wog° 0 by definition. Shannon's entropy, Eq. (4.4), is a measure of

uncertainty, or conversely, a measure of information as uncertainty and

inr.'Irmation are complementary. Thus the information gained as a 14 mit of an

event happening is equivalent to the uncer..ainty removed.

4.2.3 SOME PROPERTIES OF SHANNON'S ENTROPY

Some of the more obvious properties of Shannon's entropy are presented next.

These are the properties that might be expected of a reasonable measure of

uncertainty. There are many other properties which are mostly

mathematically-derived and for these, the interested reader may consult, for

example, Guiasu (1977), Jones (1979), and Kapur and Kesavan (1987). The

following properties, some of which are merely obvious statements, are stated

without proof. The proofs are straightforward and are not repeated here but

the interested reader may refer to Guiasu (1977), for example. However, the

entropy of a scheme composed of two finite schemes is derived here.

1. S 0

The equality applies if, and only if, any one probability is unity and all

the rest are zero. Obviously there is no uncertainty in such a scheme.

2. S(pi, pN) S(pl, pN, 0)
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S(0102)=—K Pu

(i);I SdP(S inlAailS)PON

=—KEp(S)ln p (13 i)	 75;1
	

(Si)p(ai la) In [P(; I Si)]

Also, Xp(15;14) =- 1, Vi, and
1

S(02 101) — KE

	

(Sdp(aii8dInp(311Si)
	

(4.10)

= —K

poi n 2;) poi si)pod 	(4.5)

in which there are (N+ 1) entries on the right hand side. This property

ensures that the uncertainty stays the same if an impossible outcome is

included in the scheme.

S. S 5S(U)

where U is the uniform distribution in which pi =1IN , Vi. The equality

holds if, and only if, all the probabilities are equal. Thus S assumes its

maximum value for the uniform distribution U and this agrees with one's

expectation.

4. The maximum value of S increases with the number of outcomes, as

expected. From property 3, if U is substituted in Eq. (4.4), the maximum

value of SIK is 1n(N).

6. The entropy function S is continuous. F.Irthermore, it is invariant with

respect to positional changes in the p, , Vi.

6. S is a concave function. This property is important in the statement of the

maximum entropy formalism as seen in Section 4.3.

7. Entropy of Compound Probability Schemes

The following property which is the definition of the entropy of a scheme

composed of two separate schemes has direct relevance to the present research.

The relevance is seen in Chapter 5. Suppose there are two finite schemes

a -- (M)T and 02 =-- (0) T; the hat and squiggle are being used for contrast only.

Suppose also that 0, and 02 are merged to form a compound finite scheme

0,02. The probability distribution that describes 0102 is given by

Pu = PO, n i= 1, ..., NI ; j = 1, ...,N2 , where N,, i= 1,2, is the number of

outcomes in scheme i, i = 1,2; POI fl ad), VU, is the probability of the

simultaneous occurrence of both i:I, and '4. Also, the sets of probabilities a", E"

and 2 are related by the following formula for conditional events (see

Billington and Allan, 1983, for example):

where p( i ll),), Vij, is the (conditional) probability of	 given that iS, has

happened. Also, {61 fl 31} -{ 45,111 6,} . Therefore

Pk' = Pii = P(Si1)PCS,i)
	

(4.6)

In the special case where 0, and 02 are mutually independent,

P(3) 1 S)=	 vu
	

(4.7)

p(ala) =	 vij
	

(4.8)

It follows from Eq. (4.6) that, for mutually independent schemes,

Vij
	

(4.9)

Following the above procedure, these formulae may be extended if more than

two schemes are involved.

The entropy of a compound scheme can easily be deduced now by using Eq.

(4.5) in (4.4).

is the conditional entropy of a given that 0, first occurs. Therefore
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sp, I = spo
	

(4.13)

Similarly, or by applying Eq. (4.13) in (4.12),

s(01 1.92) = spo
	

(4.14)

It follows from Eq. (4.11) that for mutually independent probability schemes Oi

sca = sow + sc021
	

(4.11)

Also,

sp1)+s(192 1.9,) = spo + s(al 02)
	

(4.12)

The proof of Eq. (4.12) merely involves the use of (4.6) instead of (4.5) in the

above derivation of (4.11). The identity (4.12) means that the entropy of a

compound scheme does not change if the positions of its constituent schemes

are interchanged.

If 0, and 0 are mutually independent, the s .thstitution of p(5,16,) .,,p(), V tj,

in Eq. (4.10) gives

S(02 I 1 )--= —14ZPAdZP(20 In P(a)

That is, for independent schemes a and 02,

1. The joint entropy or uncertainty of two independent schemes is the sum of

their separate uncertainties.

2. In general, the joint entropy or uncertainty of two schemes is the entropy of

one scheme plus the conditional entropy of the other.

3. The entropy or uncertainty of a compound scheme is invariant with respect

to changes in the relative positions of its constituent schemes.

The above definitions, Eqs. (4.11) and (4.15), for the entropy of a compound

scheme may be extended if more than two finite probability schemes are

involved by applying the procedure set out above. Property 2 is a key

requirement of consistency for any reascnable measure of uncertainty

(Khinchin, 1953; Jaynes, 1957). Also, it is central to the definition of the

entropy of a flow network. All these issues .re considered further in Chapter

5 in which the appropriate form of the entropy function for a flow network is

developed.

Finally, the uniqueness of Shannon's entropy as a measure of uncertainty or

information is stated next as a theorem. The statement of the theorem is taken

from Khinchin• (1953). The proof is not repeated here but the interested reader

may consult Khinchin.

4.2.3.1 THE UNIQUENESS THEOREM

Among the properties of entropy, the following two can be considered to be

basic.

1. For given N and for Ep, =1, the function takes its largest value for
1.1

and 02,

S(0102)-= S(01)+ S(02)

The foregoing results may be summarised as follows:

pi — 11N , Vi.

2. S(0,02)= S(02)+ S(02102).

(4.15)	 3. A third property which must obviously be satisfied by any reasonable

definition of entropy is S(pi,	 S(pip2,...,pN, 0), where there are

(N + 1) entries on the right hand side.
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(4.4)S =—

Theorem

Let S be a function defined for any integer N and for all values of p, , Vi, such

that p, � 0, Vi, and is, = 1. If for any N this function is continuous with

respect to all its arguments, and if it has the properties 1, 2 and 3 above, then

where K is an arbitrary positive constant.

This well-established theorem shows that Shannon's entropy for a finite

scheme is the only one possible if it is to have certain general properties which

seem necessary in view of the actual mean:rtg of the concept (as a measure

of uncertainty or as an amount of information). The proof of this theorem is

somewhat outside the scope of the present outline of Shannon's informational

entropy. The interested reader could refer to Khinchin (1953), Jones (1979), etc.

4.3 THE MAXIMUM ENTROPY FORMALISM

Consider the following problem. In a situation where little or no information

is available about a probabilistic system, which probability distribution best

describes the system and how can it be found? According to Laplace's

principle of insufficient reason, all the outcomes of a finite probability scheme

should be considered to be equally likely if there is no reason to think

otherwise. Thus the uniform distribution U should be adopted whenever the

selection of any other distribution cannot be upheld or there is no information

based on which a different distribution may be selected. This criterion seems

intuitively objective: U is maximally noncommittal to unava:lable information

and is therefore unbiased. However, in many instances some information may

be available. A serious shortcoming of the principle of insufficient reason is

that it has no means of dealing with such eventualities. It is seen shortly that

the so-called principle of insufficient reason is a special case of the maximum

entropy formalism, which is a logical method of probabilistic inference. The

maximum entropy formalism is described next.

Suppose a random variable x takes on discrete values Xi , i = 1,...,N, with

probabilities p(x=x,)=p1, Vi. Suppose also that the pi ,Vi, cannot be

determined from observations on x but are known to satisfy relationships of

the form:

,Fii(x)= < Fj> j 1, ..., NJ	 (4.16)

in which < F,>, Vj, is the (known) expected .ralue of the F,, Vi. For example,

if for some j, F,,(x)=x) , Vi, then, <F1 > is the mean of the x,, Vi. What can

logically be inferred about x if (NJ + 1)< N, i.e., the NJ constraints Eq. (4.16)

together with the normality condition Eq. (4.3) are less than the

=1,...,N? Clearly, many distributions will satisfy Eqs. (4.3) and (4.16).

Which of these should be chosen and on what basis?

Shannon's entropy may be used to measure the uncertainty in a . probability

distribution provided the distribution is known a priori. Also, it has been seen

in Section 3.2 that the distribution with which is associated the most

uncertainty is the uniform distribution U. Furthermore, U is maximally

noncommittal to unavailable information. This suggests that the distribution

which has the highest value of entropy and is compatible with the available

information, i.e., Eqs. (4.16), is maximally noncommittal, unbiased and best

describes the finite scheme within the limitations of the available information.

Jaynes (1957) postulated that Shannon's entropy could be used for logical

probabilistic inference rather than merely as a measure of uncertainty. Thus

:Jaynes stated:

In making inference on the basis of partial information we must use that
probability distribution which has maximum entropy subject to whatever is
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(4.17)	 I	 As explained earlier, the maximum entropy formalism makes :t possible to find

the most unbiased probability distribution for a system. Thus if p(x Vi,

is interpreted as the probability of x being in state i, Vi, then the maximum

entropy distribution is the only one which is such that every possibility or

8180

known. This is the only unbiased assignment we can make; to use any other
would amount to arbitrary assumption of information which by hypothesis
we do not have.

The above method of inference is known as the maximum entropy formalism.

It is equivalent to solving the following problem.

Problem 4

Maximize SIK =	 (4.4)

Subject to:

Di = 1
	

(4.3)
i=t

= < Fi > Vj	 (4.16)
1=1

pi � 0 Vi
	

(4.2)

Problem 4 is a convex programming problem (Templeman and Li, 1985). As

such there is a unique global maximum point 137, Vi, which is calhd the

maximum entropy distribution. There is an analytical solution to Problem 4

and it can be found by examining the stationarity of its Lagrangean. In

Chapter 5 it is shown that the problem of maximizing the entropy of the flows

of a parallel network has the format of Problem 4. By setting up and solving

Problem 4 for a general parallel network, it is shown how expressions may be

derived for the pi . The solution to Problem 4 is

[NJ	 I

exp DiFfi
.1=1

Pi

1=1

in which the j, j =1, ..., NJ, are Lagrange multipliers. Templeman and Li

(1985) have shown how the values of the Lagrange multipliers may be

calculated conveniently using unconstrained non-linear programming. It

should be noted that Problem 4 is the classical maximum entropy problem. It

may not always be possible or easy to formulate the constraints or S in the

problem of inferring least biased probabilities as in Problem 4.

If the entropy is maximized subject to the normality condition only, the result

is p*-= U. This may be seen by examining the stationarity of the Lagrangean

of this special case. This result concurs with the principle of insufficient

reason. Also, for a given system, the maximum entropy distribution has the

property of being the most uniform distribut'on that satisfies the constraints

of the system. In other words, of all the distributions satisfying Eqs. (4.16), the

maximum entropy distribution is the least different from U.

The relevance of the maximum entropy formalism to the present work has been

touched upon briefly in the introduction to this chapter. If the problem of

inferr'ng network flows can be couched in probability-like quantities, t`len, in

theory, it should reduce to the problem of inferring the maximum entropy

distribution which can be tackled by the maximum entropy formalism. This is

taisen up in the next chapter. Secondly, it has been seen in Chapter 3 that

there are complex issues surrounding reliability in the context of looped water

distribution networks. It appears, from the maximum entropy formalism, that

it would be safe to size the pipes to carry flows that are maximally

noncommittal to factors that cannot easily be predicted; subject, to the extent

that is practicable, to whatever is known.



state, however remote, that is not excluded by the available information is

ascribed a non-zero probability. This property would appear to give a sense

of flexibility in the context of reliability in looped water distribution networks.

An entropy-based approach to the problem of designing a reliable water

distribution network is presented in Chapter 6. Other motivations for the

approach are given there.

4.4 THE CONTINUOUS CASE

Where a random process is continuous the maximum entropy formalism still

applies. In general, the above theory remains unaltered, but integrals over the

co.Itinuous domain replace the summations and probability density functions

replace the discrete probabilities. The corresponding maximum entropy

problem may therefore be stated as follows.

Maximize SIK — fix) In( f(x))dx	 (4.18)
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(4.19)

j = 1, ..., NJ	 (4.20)

in which x is a continuous random variable; F, is a function of x; <F1 > is the

expectation of F1 ; the range b] of the integrals may extend to

[— oo, + oo); NJ is the number of expectation constraints; f(x) is a probability

density function. It is worth noting that the above integrals may not exist,

and the entropy can be negative because fix) can be greater than unity. Also,

because the entropy is defined in terms of a probability density rather than a

probability, the entropy may not be invariant to a change of variables. For the

above reasons, some results for discrete distributions may not be applicable to

82

certain continuous distributions. This research is concerned with discrete

probabilities only.

4.5 THE MAXIMUM ENTROPY FORMALISM IN CIVIL ENGINEERING

Use of the maximum entropy formalism is widespread and it might be

somewhat misleading to mention here any particular applications outside civil

engineering. As a starting point, the interested reader could refer to Jones

(1979), Guiasu (1977), Walsh and Webber (1977), Levine and Tribus (1979),

Kapur and Kesavan (1987), Li (1987), Templeman and Li (1987, 1989), Kapur

(1989). In addition to Awumah et al. (1990, 1991, 1992) and Jowitt and Xu

(11—)3) which have been mentioned in Chapter 3, some civil e. gineering

applications are stated below.

Basu and Templeman (1985) and Siddall and Diab (1971) have used the

maximum entropy formalism in structural reliability analysis and probabilistic

design. Basu and Templeman (1985) argue that by fitting a maximum entropy

probability distribution to available data, a more logical and rigorous

approach to structural reliability analysis results (see Chapter 1, Section 1.1).

Also, Munro and Jowitt (1978) have used the maximum entropy formalism in

decision analysis in the ready-mixed concrete industry. The principal problem

is concerned with making optimal decisions under uncertainty about future

orders. They argue that the evaluation of prior probabilities for the order

states should be made objectively and not be affected by any personal bias.

The maximum entropy formalism was therefore used to estimate the least

biased probability distribution associated with the orders for each mix.

Traffic Engineering is an area of entropy-based research wliich is concerned

with estimating trip matrices from limited data. The fundamental approach is

to seek the trip matrix which can be realised in the most number of ways. To

determine this matrix, a combinatorial formula for the number of possible
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f(x)dx 1

a
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F (x)f(x)dx <F1>
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arrangements of trips is set up. A monotonic increasing function of the number

of trips is then maximized. The problem of inferring trip matrices has also

been approached from an information-minimizing viewpoint in which the

objective is to minimize the information content of a limited number of

observations on the road network. The interested reader may refer, for

example, to van Zuylen and Willumsen (1980), Willumsen (1981) and Bell

(1983). Entropy is also used for inference on traffic streams at road junctions;

see, for example, Mountain et al. (1983a, 19836, 1986a, 1986b). A closed-form

solution is derived herein for the above problem of estimating turning flows

at road junctions. In other words, it is shown that the problem is solved by the

gravity model.

Recently, entropy has been applied to open Aannel flow by Chiu (1987, 1988,

1989, 1991). The approach hinges on a probabilistic interpretation of the

velocity distribution across the channel. Thus, the maximum entropy

probability density function of the velocity is found by maximizing the entropy

of the velocity distribution subject to constraints. These constraints include

the normality condition, and first, second and third statistical moments which

represent the hydrodynamic transport of mass, momentum and energy

respectively.

Although the above sample is not exhaustive, it serves to highlight the

observation that at the present time entropy is mostly used where there is a

more-or-less obvious and natural probabilistic interpretation.

CHAPTER 5 CALCULATING MAXIMUM ENTROPY

FLOWS IN NETWORKS

5.1 INTRODUCTION

Much of this research grew from the simplified problem shown in Figure 5.1a.

Suppose that the figure represents a water_mSTribution network. There is one

source with a known inflow and 3 demand points, each with-a known demand.

Suppose further that the layout of the network and the flow directions in all

the pipes are known but no other information of any kind is available. Under

these conditions how can values be estimated for the flow rate in each pipe,

assuming that the total demand equals the supply?

Any solution to the above problem must be such that at each pipe junction

or node, the inflows including any external input balance the outflows

including any node outflow. Node flow equilibrium or continuity therefore

provides 4 linear equations in 4 variables. The variables are the unknown

volumetric pipe flow rates. Thus

q 12 + q 13 = q01

q 12 - q24 = (720

(1 13 - 934= q30

q24 q34 = q40

However, these equations are not linearly independent as any one is a linear

combination of the others. For example, the last equation caii be obtained by

subtracting the second and third from the first. Therefore, one equation is

redundant as it does not contain any information that is not deducible from

the rest. In effect there are only 3 usable equations in 4 variables. The
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continuity equations are therefore not enough to uniquely determine the pipe

flow rates.

The problem of not having enough equations from continuity does not arise

when dealing with tree-type networks such as the one depicted in Figure 6.1b.

For such systems, knowledge of the external inflows and outflows is the only

information needed to determine the pipe flow rates from the continuity

equations. The problem of Figure 5.1a, however, is different and progress seems

impossible without extra information. If the value of any one of the flows were

known there would be no difficulty, as the problem of calculating the link

eitectimel, be. euume.vted. Us the pteblettl eakutatiug lit& flews

for a tree-type network. It would therefore be reduced to a strairhtforward

exercise in backsubstitution, using any 3 of the 4 continuity equations to

obtain the other flows.

An important distinction between a tree-type distribution or collection network

and the network of Figure 5.1a is that the latter has a loop. In general, the

preser ce of loops ensures that at least one node in a network is reachi ble by

at least two routes. For the problem under consideration, node 4 can be

ixn Clue% mule but usin% only ties xeutew. Nta. heck 2ealy tie&

3 only or via nodes 2 and 3 simultaneously. It is this possibility of choice of

route for supplying node .4 that provides the difficulty in calculating flows.

Nodes 2 and 3 can each be supplied by one route only, as dictated by the

direction of the arrows. The problem of Figure 6.1a may therefore be posed

in a slightly different way. Should the flow to node 4 be split between the two

available routes? If the answer is yes, what is the best ratio? Otherwise, which

route should or should not be used and why? These are fundamental questions

which encapsulate the issues to be addressed.

The context in which the simplified problem of Figure 5.1a may arise is

considered here for a water distribution network only. It is not uncommon for
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the general plan layout of a distribution network to contain no information

on pipe lengths, diameters, friction coefficients and other data. Sometimes

some of the necessary data are found in various detailed drawings or tables.

For very old networks, much of the information may be missing or may have

changed over time. Such water distribution systems are usually buried. For

various reasons, it may not be possible to obtain the missing information for

every pipe. The most obvious restrictions on obtaining additional information

are usually time and cost. A possible alternative is to physically measure the

pipe flow rates. This can be time consuming and requires equipment which

can be expensive. Faced with these difficulties, a method of quickly

estimating the pipe flow rates would be most useful.

The basic flow inference problem is now stated. There is a set of sources and

a set of demand nodes. The value of each source supply is known and each

demand node has a known abstraction. There is some network linking all the

sources and demand nodes. Also, there may be any combination of all the

possible node interconnections: source node to source node, demand node to

demand node and source node to demand node. It is desired to estimate the

flows within the connecting network. This, in essence, is the flow inference

problem and it arises if there are more unknown link flow values than the

available flow equilibrium equations.

To see how the notion of uncertainty is related to the flow inference problem

consider, for example, a buried water distribution network. When the inflow

and outflow rates are known, the system is operating in a unique way. This

means that each pipe has a unique flow rate and hence there is no randomness

in the system. In fact, there are known physical laws governing fluid flow in

pipe networks and these laws have been presented in Clu-pter 2 for water.

Given sufficient further information, it would therefore be possible to do a

rigorous analysis of the pipe network. The analysis would yield the exact

value of the flow rate in each pipe, along with other parameters. It follows
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that there is no uncertainty in the physical system itself. But there is

uncertainty about the behaviour of the system on the part of the observer in

view of the observer's inability, in the absence of further information, to

determine unique values for the system parameters.

The work reported in this chapter is concerned with maximum entropy flows

in any general flow network. However, networks in which there are only

source node-demand node links have special properties which are highlighted

in this chapter. Moreover, analytical results exist for these networks and so

they are treated separately throughout this chapter. In this chapter, the

maximum entropy formalism is used for inferring the least biased flow

est:mates for the links of a flow network. Cnnceptually, there are :.wo main

hurdles to surmount. First, how can flows be described in a completely

probabilistic way as required by Shannon's entropy? Second, what is the

definition of entropy for a flow network? These issues are addressed in this

chapter. In particular:

1. The relative frequency interpretation of probability provides a link

between the purely mathematical concept of probability and the empirical

concept of regularity in behaviour in repeated or continuous experiments.

2. The conditional entropy definition of the entropy of a compound

probability scheme provides a basis for defining the entropy of the flows

of any general network.

3. The problem of inferring the least biased flows is cast as an entropy

maximization problem subject to flow equilibrium. This problem is

examined and shown to be a convex programming problem and, as such,

has a unique global maximum point.

4. The principle of insufficient reason is used to develop an efficient

algorithm for calculating maximum entropy flows for single-source

networks.

The work in this chapter leads naturally to the problem of designing an

optimally reliable water distribution system. In this regard, some of the

questions to be answered are the following. Is reliability enhanced if the

distribution system is designed to carry maximum entropy flows? Is entropy

maximization subject to all the constraints of a distribution network, including

cost, a possible method of reliability optimization? More fundamentally, is

flow entropy a reasonable surrogate for reliability? These and other related

matters are the purview of Chapter 6. However, a prerequisite to those issues

is the material in this chapter.

5.2 PROBABILITY SCHEMES FOR NETWORK FLOWS

The properties of a finite probability scheme have been enumerated in Chapter

4. In this section, a means of representing network flows in probabilistic terms

is presented. Several sets of probabilities are described and relationships

between the different sets are established. The probability definitions used

herein are based on the relative frequency interpretation of probabi l ity in

which the probability of an event is the limiting value of the ratio of its

frequency to the sum of the frequencies of the individual events. The

probability schemes defined here are used subsequently in this chapter to

define the entropy of a flow network and infer network flows given insufficient

data and, in Chapter 6, to optimize reliability in water distribution networks.

It is useful to consider first the definitions of series and parallel connections

in the context of flow networks:

1. Two or more links in a flow network are said to be in parallel if the

operation of each is independent of the rest.

2. Two or more links in a flow network are said to be in series if at least one

is incapable of operating independently of one or more of the rest.

88 89



(5.4)

(5.5)

(52)
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3

6

and

(ono n omoi	 n,m =4, 5, 6	 (5.7)

91

3	 6

To ,= Egon ..Eqr,0
n=1	 n=4

As an example, Figure 6.1a has both series and parallel connections. Link 2-4

is fed by 1-2 and, as such, the former is dependent on the latter. These two

links are therefore in series. In contrast, links 1-2 and 1-3 would each still be

able to carry flow if the other failed. They are therefore in parallel. Also, a

network such as Figure 6.1a in which there are both series and parallel

connections is called a series-parallel network. It must be emphasised that the

above definitions have been adapted for flow networks and may not

necessarily apply to other networks.

One way of defining probabilities for flow networks applies to parallel

networks only and is described now. A more general method is considered

shortly.

5.2.1 PARALLEL NETWORKS

Consider the network of Figure 5.2 in which there are no series connections.

Sever11 finite probability schemes may be defined for this network an these

are taken in turn. First, the set consisting of the source inflows

goo, n = I, 2, 3. Corresponding to these flows, events oo,, , n = 1, 2, 3, may be

defined as the event that flow enters the network at node n, n =1, 2, 3. The

corresponding probabilities P. may be obtained by normalising the goo, Vn,
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POn = P(00n) = -(7-7,°n
	

n =1, 2,3
	

(5.1)

in which To is the total supply or demand, i.e.,

Also, Poo is the fraction of To provided by source n, n 2, 3. To see that

the probabilities represented by Eqs. (5.1) are a finite scheme, firstly, Eqs. (5.1)

automatically satisfy non-negativity and normality, i.e.,

EPon = 1;
 
P0 � 0 Vn
	

(5.3)

n=1

Secondly, it follows from Eq. (5.3) that the set is exhaustive as the sum of the

probabilities would be less than unity otherwise. Finally, the

oo,„ a = 1, 2, 3, are mutually exclusive in the sense that an element of flow

can enter the network by any, but only one, of the source nodes. Thus

(004 n oo„,} = I }	 m), n, ,n = 1, 2, 3

in which {1 represents the empty set.

There are similar definitions for the demands q.,.,, n = 4, 5, 6.

q" n=4, 5, 6Pno=/*no)=-W-

where the o„,, may be considered as the event that flow leaves the network at

node n, n =4, 5, 6, and P„0 the probability that flow leaves the network at

node n, n =4, 6, 6. Also,

EPnO =1

n=4



in which I and D represent the sets of source and demand nodes respectively. pu= p(ou)=—
qii 

V ij E IJ
To

(5.16)

(6.17)(5.9) Epii = 1
ije IJ

Pon =— Vn e
To

(6.13)

(5.14)

The above definitions are valid for any parallel network in which there are

any number of source nodes and demand nodes. Eqs. (5.1) to 5.7) may therefore

be generalised as follows.

j. Probabilities may therefore be defined as for the supplies and demands.

Proceeding straight to the general definitions,

T.= E qu = Eq.= Eq).
	

(5.15)

TO = E4On = Eq nO

	 °el.!	 iel	 •eD

nel	 neD
	

in which IJ represents all links of the network.

qno
Pno = — Vn e D

To

(oon n 00.1 = )	 V n, E I

to.. n 0„,01	 Vn, m e D

EPon =1
nel

EPno=
neD

Finally, referring again to Figure 52, probabilities are now defined for the

link flows qu, i = 1, 2, 3, j =4, 5, 6.

5.2.1.1 SINGLE-SPACE PROBABILITY MODEL FOR LINK FLOWS

One approach for converting link flows to probabilities considers all the link

flows as elements of a single probability space. Let ou, i 1, 2, 3, j = 4, 5, 6,

represent the event that flow enters the network at node i and leaves at node

Similar equations to (5.11) or (5.12) have not been written, but it is obvious

that the oo, Vij a IJ, are mutually exclusive. If this were not so, the left hand

side equality of Eqs. (5.15) would not hold as E qv would be greater than To
(1,1J

because of double counting.

5.2.1.2 MULTIPLE-SPACE PROBABILITY MODEL FOR LINK FLOWS

A second approach for introducing probabilities in a parallel flow network

defines separate finite schemes for each node of the network, giving rise to

multiple probability spaces. Thus, for each source node n, n a I, the link flows

qkk , h e ND, are normalised as

—
	 Vn eI, Vk e ND„	 (5.18)

in which ND„ represents the set of all demand nodes connected to source node

n; pkk is the probability that a particle at node n, n el, proceeds to node

k, Vk a ND.. It follows from Eqs. (5.18) that

E	 Vila/	 (5.19)

keND„
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(5.20a)

(5.21)

got;	 qnll

k. ND,,

Similarly, for each demand node n, Vn e D,

gin
Vn e D, Vj e NUn

Pin =' 47to

in which NU„ represents the set of all source nodes connected to demand node

n; p, is the fraction of q0, V n e D, carried by link jn, Vj a NU„. Also,

z\-2, pin =1 Vn ED
	

(5.22)
je NU.

go=	 gin Vn e D	 (5.23a)
je NU.

The multiple probability space formulation represented by Eqs. (6.18) to (5.23)

considers each node in isolation, without regard to conditions elsewhere in the

network. However, in general, conditions at the nodes of a network are not

independent of other nodes. Therefore, the multiple-space probabilities are in

fact conditional probabilities which are dependent on conditions at the source

or demand nodes respectively. Thus, given that there is flow at node n, p,,k is

the conditional probability that a particle at node n, Vn e I, proceeds to node

k, V k e ND,,. Similarly, given that flow reaches node n, Viz e D, p, is the

conditional probability that a particle of flow at node n arrives there via link

in, Vj a NU, . The node-based probabilities are therefore related by the

conditional probability formula as follows:

13(o0non) = 140„kl oon)140on) = PonPnk Vn e I, Vh e ND„	 (5.24)

p(oino„0)= p(oin ono)p(ono) n e D, Vj a NU„= PAPn0 V	 (5.25)
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in which gorko.k) is the true or absolute probability that an element of flow

follows link nk, Vn e I, Vk a ND„; p(o,o„,,) is the true or absolute probability

that an element of flow follows link jn, Vn a D, Vj a NU.. Eqs. (5.24) and

(5.25) are essentially the same and both give the absolute probability of flow

being in a link.

It may be noted that each of the foregoing probability schemes is associated

with an equation for flow equilibrium. These include Eqs. (62), (5.8), (5.15),

(5.20a) and (6.23a). However, depending on the way they are defined, the

probabilities themselves as depicted in Figure 5.2b may or may not satisfy flow

equilibrium at each node. This is readily seen by observing that in Eqs. (522),

for example,	 p, equals unity rather thar P„0. Viz e D. It must. therefore
NtIn

be realised that although the p,, i,j --= 0, 1, ..., may sometimes be equivalent to

scaled flows, they are in fact probabilities which may not be used

interchangeably with flows.

The problem of defining and maximizing entropy for a flow network centres

mainly around the modelling of flows as probabilities and then finding a

suitable formulation of entropy for these probabilities. The required

probabilities have been defined for a general network in which there are no

series connections. These probabilities satisfy all the requirements of a finite

scheme. However, the flows must be defined so that they are always positive

to ensure that the probabilities remain non-negative. How these probabilities

are used to define flow entropy is described in Section 5.3.

5.2.2 GENERAL NETWORKS

Two ways of modelling flows as probabilities have been defiaed for a parallel

network. These include a node-based approach which leads to multiple

probability spaces. This is the more general approach as it is possible to define

probabilities on the nodes of any general network including those having
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series connections and it is seen shortly how this can be done. An alternative

way of defining the flows of a parallel network in probabilistic terms is to

define a single scheme in which the elements are the normalised link flows.

It is not possible to do this for a network in which there are series

connections. In this subsection, the properties peculiar to parallel networks

from the viewpoint of probabilistic flow modelling are highlighted. It is then

shown that globally normalising link flows in a general network does not

produce a finite probability scheme. Finally, a method of defining probabilities

that applies to any flow network is suggested.

Some of the restrictions inherent in a parallel network can be seen by

co, aparing Figures 5.1a and 5.2a. Each source node in Figure 5.2 • directly

supplies each demand node connected to it, without routing the flow through

other nodes as in Figure 5.1a. It follows that each demand node in Figure 5.2a

receives flow from its supply nodes directly. Also, it follows that each link in

the network must be a direct connection between a source node and a demand

node. This means that there cannot be any source node-source node or demand

node-demand node connections. Before describing a scheme which applies to

any network, the shortcoming of the single-space model is explained.

Two ways of normalising the link flows are described next and it is shown that

neither represents a finite scheme. In a parallel network, the sum of the link

flows equals the total demand or supply To. This is not the case for more

general networks. To see this, reconsider Figure 5.1a in which

To go t = (in+ q13. It is therefore obvious that the sum of the link flows Qo

which also includes qu and goo must be greater than To. In general,

Qo � To
	 (5.26)

in which the equality applies if, and only if, all links are in parallel. The

property represented by Eq. (5.26) is due to double counting in Qo for networks
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having series connections. For example, in Figure 5.1a, the flow in link 2-4 is

included both as q24 and in q12. In other words, for non-parallel networks,

{ounojk i #	 V(i a IJ, Vjk a IJ
	

(527)

By virtue of Eqs. (5.27) the ou, Vij a IJ, associated with the links of a flow

network are in general not mutually exclusive. It follows that neither of the

schemes obtained by normalising link flows on T. or Qo constitutes a finite

probability scheme. However, it should be noted that the qulTo,Vij a IJ, may

be considered as the probability Ai that an element of flow entering the

network will pass through link if; the bar is used herein to denote probabilities

that, as a set, do not represent a finite scheme. It is permissible to treat the

)5,, as probabilities from the frequency interpretation of probability in which

the probability of an event is the limiting value of its relative frequency. The

relative frequency of an event is the frequency or number of occurrences of

it divided by the sum of the frequencies of all the events in the set. On the

other hand, the probability-like quantities quIQ., Vij a IJ, even though they

sum to unity, may not be interpreted as probabilities. They do not conform to

the definition of relative frequency in which each elementary entity must be

included only once. The significance of this observation in the present context

is highlighted later in the appraisal of the entropy functions proposed by

Awumah, Goulter and Bhatt (1990, 1991, 1992).

In many respects, the model to be described in a moment for general networks

is similar to the multiple-space model for parallel networks. However, the

former allows for the possibility of internal and/or external inflows and/or

outflows being present at any node. It is assumed that each node may have

either an external inflow or an external outflow but not both. Also, the

existence of source node-source node or demand node-demand node

connections in general networks means that the internal inflows at a node

will not in general equal the nodal demand. Similarly, the sum of the internal

outflows at a source node will not in general equal the external inflow.
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(5.9)

(5.10)

Therefore, unlike parallel networks, the probability of flow reaching a node

is in general unknown, unless the values of all link flows are known. It will

be recalled that the main reason herein for modelling network flows as

probabilities is to enable probabilistic inference on networks on the basis of

partial information. Under these circumstances the values of the link flows

will be unknown in advance. As such, the total amount of flow reaching a

general node will not be known.

A multiple-space probability model co' goaeral networks is described next. Let

T„ represent the total flow reaching or leaving node 71, n = 1, NN, i.e.,

Tn = E gin x gni n =1,...,NN
	

(5.28)
le NU„	 he ND„

in which NU,, and ND„ respectively include any external inflow and outflow.

Thus T,, is the sum of all inflows, including any source supply, or the sum of

all outflows, including any demand, at node n, Vn. It has been explained with

regard to parallel networks that the od„ , Vu, Vj e NT],,, and the

o,,, Vh e ND„, are two sets each having mutually exclusive elements.

This property holds for any network. Also, each set of events is obviously

exhaustive. Thus the sets {oi„:j e NU„) and (o„,:k a ND„), Vu, represent finite

schemes. Following the relative frequency viewpoint, the following

probabilities may be defined.

pa =.
_	 Tn	

Vu	 (5.29)

in which fl,,, Vn, is the probability that flow reaches node n;

TO = DO)* =' DA°
	 (5.8)

nal	 neD

It may be noted that

NN

Erin � 1
	

(5.30)
n=l

where the equality holds for parallel networks only and therefore the

, Vn, do not in general represent a finite scheme. It has already been seen

from Eqs. (5.26) and (527) that the j; , Vij e IJ are not mutually exclusive:
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pu —	 Vij e IJ

in which "j5,, is the probability that there is flew in link ij, Vije IJ. Eqs. (5.31)

can be related to Eq. (5.30) by substituting (5.28) in (5.29) to give

17„ .= E	 Pon Vn e /	 (5.32a)
kin NU„

j5„ =	 + Pno Vn e D	 (5.325)
tie ND„

in which the sets NU„ and ND„, Vn, consist of links rather than no lea and

qon	 „P =— vn el
°n To

gni)
Pn0 = —To Vn e D

The probabilities represented by Eqs. (5.9) and (5.10) are, respectively, the

fraction of the total supply provided by source node n, Vn a I, and the fraction

of the total demand consumed at node n, Vu a D. The probabilities introduced

so far are needed in the definition of network flow entropy as shown in

Section 5.3. Furthermore, a rigorous probability model is a basic necessity for

(5.31)
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(5.33)

(5.34)

Shannon's entropy and the maximum entropy formalism used herein for

reliability optimization. It remains to define conditional probabilities for all

the inflows and outflows at all nodes of the network and this is addressed

immediately.

Two finite schemes may be defined for each node:

qin
pin =	 Vn, Vj e NU„

(ink
Pnk=	 V n , VkeND,,

in which py, is the conditional probability tha'. flow which is destine-I to reach

node n, Vn, uses link jn, Vj a NU,,; pkk is the conditional probability that

flow which is destined to pass through node n, Vn, is included in

q„ Vh E ND„ . It should be noted that the finite schemes described by Eqs.

(5.33) and (5.34) respectively include:

pan = 	 Vn e I4012	 (5.35)

problem. The p0„ , 'In e I, and po, 'In e D, are therefore unknown

expectations the values of which are to be predicted by the maximum entropy

formalism. Of course, the values of the T,,, 'In, are known in a parallel

network in which:

T= q0,, Vn e I
	

(6.37)

T.= q.,:, Vn e D
	

(5.38)

The conditional probabilities of Eqs. (6.33) and (6.34) may be related to

absolute probabilities as follows.

p (on 11 0,,k) = p(on)gonk I 0.) = /3.Pnk 'In, 'Ik e ND.

Using Eqs. (5.29) and (5.34) for ,15„ and pa , 'In, Vh a ND,,, respectively gives

_ 7'n qnk	 qnk

15nPnk — To T„ — To

Substituting Eqs. (5.31),

fink = finPrtk 'In, Vk e ND„	 (6.39)

4,10
p 0 = — vneD

n	 Tn
(5.36) There is a similar expression relating the 	 and pp,,	 Vj e NU„, and it is

in which po„, Vn E I, is the probability that a source node receives its total

inflow 7'„ from its external inflow qoo; po, Vn e D, is the probability that a

demand node uses its total inflow T, to satisfy its demand q,,a

The po„ , V n a I, and p„o. Vn e D, are needed to make the sets represented by

Eqs. (5.33) and (5.34) exhaustive. More important, there is uncertainty about

the proportion of 71„ D, satisfying consumption at node n, or the

proportion of T„, 'In e I, that q.„ represents. This uncertainty stems from the

uncertainty surrounding the T„, 'In, themselves which, in general, are

unknown and must be inferred along with link flows in the flow inference

-fijn = Pin&	 Vj e NUn
	 (6.40)

It may be noted that all pa (but not the Ts) have been defined so that they

automatically satisfy normality. Also, all probabilities remain non-negative if

non-negativity of flows is enforced. Furthermore, all flows must always be

defined in the direction in which they are positive. Finally, any node having

only one (internal or external) inflow has only one element, unity, in the set

represented by Eqs. (5.33). Similarly, the set represented by Eqs. (5.34) reduces

to the singleton {1} for any node having only one (internal or external)

outflow.
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Single-space link probabilities

1.5/10 =0.15

P14=2.5/10 =0.25

Pli= 5/10 = 0.5

P24 1/10=0.1

Multiple-space link probabilities
Oil tflow probabilities

PI3 = 1.5/4 -= 0.375

P1 4 = 2.5/4 =0.625

P23 5/6=0.833

= 1/6= 0.167

inflow probabilities

P13 = 1.5/6.5 =0.231

P23 = 5/6.5 =0.769

P14 = 2.5/3.5 =0.714

P24 = 1/3.5 = 0.286

Example 2: General Networks (Figure 5.3b)

T0=8+2=4.5+5.5=-10

T1 =8=1+7; ITI=8/1°="

T2 = 2 + 1= 3; 152 = 3/10 = 0.3

T3 = 7 = 2.6 + 4.5; P3 = 7/10 = 0.7

T4 = 3 -I- 2.5 = 5.5; 174 = 5.5/10 = 0.55

P01 = 8/10=0.8

Armed with the above probabilistic model, the problem of defining and

interpreting entropy in the context of flow networks can now be tackled and

this is done in Section 5.3. To end this section, some numerical examples are

provided next. These examples are rather trivial, but they may help clarify

some of the definitions and observations that have been presented.

5.2.3 NUMERICAL EXAMPLES

The two examples below are based on the networks of Figures 5.3a and 5.313.

The flows have been selected arbitrarily, but they satisfy continuity. Also, to

avoid lengthy explanations in the following calculations, the values of the

flows in each network are arranged so th . .t no two flows have the same

numerical value. For example, regarding Figure 5.3a, 1.5 (units) must refer to

17/3.

Example 1: Parallel Networks (Figure 5.3a)

T0 =4+6=6.5+3.5=1.5+2.5+5+1= 10

T1=4=1.5+2.5

T2 = 6 =5 + 1

To = 6.5 = 1.5 + 5

T4=3.5=2.5+1

P01 =p i = 4/10 = (1.5 + 2.5)/10=0.4

P22 =p2 =6110 =(5+ 1)/10 =0.6

P30 = Ps = 6.6/10 = (1.5 +5)110=0.65

Po =1,4 = 3.5/10 = (2.5 +1)/10=0.35
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PO2 = 2/10 0.2

Pao 4.5/10 =0.45

5.5/10 = 0.55

node 1:

Pm'. 8/8 =1.0

P12 = 1/8

node 2:

=0.125; P 12 = 7/8 .= 0.875

Po	 2/3 = 0.667; P 12 =1/3 = 0.333

P2. = 3/3 =1.0

node 3:

P13 = 7/7=1.0

Po =4.5/7 = 0.643; P34 = 2.5/7 =0.357

node 4:

P24 = 3/5.5 = 0.545; p3.4 = 2.5/5.5 = 0.455

P40 = 53/5.5 =1.0

The interested reader may use the figures in these examples to verify any

properties given in this section. For example, for Figure 5.3b, ifi„ =-- 2.35> 1 .
•.1

framework of the last section is used here to define the flow entropy of a

network. The question that needs an answer is the following. What form does

Shannon's entropy take for a general flow network? It has been seen in

Section 6.2 that the flows of a network can in general be described by a

multispace probability scheme. Also, the entropy of a compound scheme has

been defined in Chapter 4. It is shown here how that definition may be applied

to a flow network. The structure of the entropy function for parallel networks

is quite straightforward and is addressed first.

5.3.1 PARALLEL NETWORKS

It has been seen that it is possible to describ.t link flows in a parallel network

with a single-space probability scheme. Shannon's function may therefore be

applied directly. Shannon's entropy for a finite scheme is

S= —	 (5.41)

in which S is the entropy; K is an arbitrary positive constant; N is the number

of outcomes; p, is the probability of the ith outcome, Vi. For a parallel network

SIK is given by

5.3 ENTROPY OF NETWORK FLOWS
	

S — KEpulnpu	 (5.42)
kism

In this section a formula is developed for the entropy of the flows of a general

network. Informational entropy is a measure of the amount of uncertainty in

a probabilistic system and is couched in probabilities. On the other hand,

network flows do not directly involve probabilities but are capable of being

interpreted in a probabilistic fashion as in Section 5.2. The probability

in which IJ represents the set of all links of the network; pu represents the

ratio of the flow in link if, Vij a IJ, to the total supply To and is:

VifeIJ
	

(5.16)
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T0— Equ—Eq.-Eqn,
deLl	 nil	 neD

(5.16)

has been seen in Chapter 4 that the entropy of a compound scheme may be

defined by using the notion of conditional entropy. It is now explained how

conditional entropy can be used to define the entropy of the flows of a general

network.
in which q,, Vij e IJ, is the flow in link if; I represents the set of all source

nodes; D represents the set of all demand nodes; q0,, is the source supply at

node n, Vn e I; q„o is the demand at node n, Vn e D. It will be recalled that

there are no restrictions on what the q, Vij e hi, might be. The only

condition is that they be arranged in parallel or be capable of being

represented as a parallel network. A practical example is considered in Section

5.4. However, the example below is a trivial demonstration.

Example 3

In this example the value of SIK is calculated for the flows of Figure 5.3a.

The probabilities are given by Eqs. (5.16) and have been calculated in Example

1. Substituting those probabilities in Eq. (5.42) gives SIK= 1.208. It may be

noted that a value has not been assigned to K. There is no real need to do so

and any value of entropy mentioned herein is deemed to represent SIK rather

than S, even when the K is omitted (or implicitly set to unity). In fact, K is

assumed to be unity in the rest of this thesis and, as such, does not appear in

most of the equations which follow.

It must be emphasised that Eq. (6.42) applies to parallel networks only. A more

general definition is given in the next section. The value of the entropy of the

network of Figure 5.3a used in Example S is calculated again but in

accordance with the general definition and the same value of 1.208 is obtained

as seen shortly.

5.3.2 GENERAL NETWORKS

In probability terms, a general flow network may be regarded as a compound

scheme made up of many finite schemes which are not independent. Also, it
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It will be recalled from Chapter 4 that

S(0 1 02) = s(0,a) = s(a) + S(0, I 0,). s(02) + S(0, 102)
	

(5.43)

in which 0102 is a compound scheme composed of the schemes 02 and 02;

S(0,02) is the joint entropy of 01 and 02; S(02101) is the conditional entropy

of 02 on the assumption that 0, has occurred and is:

s(0,100=—E
	

(adp(3i IS) In p(oi 1S;)	 (5.44)

in which the hat and the squiggle respectively identify elementary events in

a and 02 . Also, S(0,102) follows similarly, but with the roles of 01 and 02

interc'aanged, i.e.,

s(01 102)=_E	 p(Si 3.,)
	

(5.45)

In fact, Eqs. (5.44) and (5.45) represent the same thing as whichever scheme

occurs first can always be represented by 0, and the other by 02.

Relating Eq. (5.44) to flow entropy, the p(5,r) or p(6,15,), Vij, in Eqs. (5.44)

and (5.45) are conditional probabilities which correspond to the p,„ and

p ,, Vn, Vj a NU., Vk a ND,, of a flow network. It will be recalled that pi„

is defined for flow that is destined for node n while p,,k is defined for flow that

is destined to pass node n. In both cases it is assumed that o„ does occur. Also,

the AO() and p(i), Vi, Vj, are absolute probabilities which correspond to the
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(5.46a)

(5.34)

(5.28)

(5.47)

„ and 15„,,, Vn, Vj e NU., Vk a ND„ . Thus the Si and the dj are the various

ways in which 03 and 0: respectively happen. Similarly, os„ and o„,e are

respectively the various ways in which flow can reach or leave node n.

Therefore, in accordance with Eq. (5.44), the respective conditional entropies

can be written for the inflows and outflows at any node.

Let Si, be the conditional entropy of the inflows at node n, Va. Also, let S;>,

be the conditional entropy of the outflows at node n, Vn. Using Eq. (5.44) and

the above established correspondence between the probabilities, the following

equations are obtained.

	

s: = —	 pinp,,k in pnk

jeIVU„ keND„

	

= —	 p„k Inp„k
keND„	 jeNU„

T„Also, from Eqs. (5.23) and (5.29), ,15„ = 	 = — , Vn. It follows that
ONU„

n =1,...,NN

where:

Pith = 
(Ink 

V n, '1k e ND„

	

Tn =	 (ink n
je NU„	 ke ND„

Similarly, the conditional entropy of the inflows at node n, Vn, is

	

=	 pj,„lnpin n =1,...,NN
jeNU„

Having defined conditional entropies for the nodes of a flow network, it

remains to establish how these nodal entropies can be combined to give the

entropy of the network. The key lies in Eq. (5.43). Suppose there are three

schemes, instead of two as in Eq. (5.43). What is the joint entropy S(010:0,)

of a , 03 and 03? To answer this question, let a otos, so that

0,0,03= 0303. Applying Eq. (5.43) to -a0, gives

s(51 02) = s(51) + S(02 ) -C9
	

(5 A8)

Repeating the operation on a gives

S(51 )= S(0 1 03)=- S(01 )+ S(0„ I0)
	

(5.49)

Substituting Eq. (5.49) in (5.48) and using a - 0203,

s(0oop„) = S(0 1 ) + s(o„ 1 01 ) + s(02 1 0,0)
	

(5.50)

in which S(021 0,0..) is the conditional entropy of 03 on the assumption that

the joint scheme 03 0, has occurred. However, if 03 is considered to be the

second rather than the third scheme, and Os the third rather than the second,

then Eq. (5.50) can be written as

s(0,02a0 = s(01 ) + s(02 10,) + s(0310102)
	

(6.51)

The entropy of a compound scheme is invariant with respect to positional

interchanges amongst the constituent schemes as has been seen in Chapter 4.

In the above manner an equation can be obtained for any number of

constituent schemes. The general structure of that equation is easy to see from

Eq. (5.51) and hence it can be deduced for any number of schemes. Thus,

S(0102...081 ) = spo + so92 	+ +s(On, I 0,02...0„,_,) +

gin—p. 
T Vn, Vj E NU„„ 

(6.33) +S(0„ 1 10102...0„ 1 _ 1 )	 n1 =2,3, ...; 2 <trier <ni	 (5.62)

It should be noted that the ND,, and NU. in Eqs. (5.46a) and (5.47) respectively

include any demand or supply at node n, V n.

in which the number of finite schemes is n1; Z+ represents the set

{0, 1, 2, 3, ...).
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The link between S(0. 1 1 0102...0„ 1 _ 1) and S3 and S, n =1,...,NN, in the

context of a flow network is the following. Any assumption that flow has

reached a node entails an inherent assumption that flow has reached all its

predecessor nodes. Therefore, for a flow network, S(0,,II 0i02...0.1-1) represents

S or S., inflows and outflows respectively. In S(0„110102...0.1 ‘) the position

of individual schemes does not matter, the expression being a representation

of the conditional entropy of any scheme on the assumption that all the rest

have occurred.

A final issue concerns the identification in a flow network of a finite scheme

in which the probabilities can be described absolutely as opposed to

cooditionally. That is, a scheme the entropy of which corresponds ts) the first

term of Eq. (5.52). There are two such schemes which are respectively the

Po„ , n e I, and P„0 , n e D.

In accordance with Eq. (5.62) the entropy of the flows of a network can be

written either for inflows or for outflows as follows.

NN

Si =	 (5.53)

n=1

in which S' is the network entropy based on the inflows; Sf, is the conditional

entropy of inflows, including any source supply, at node n, Vn, as given by

Eqs. (5.47); S6' is the entropy of the distribution of To amongst the demand

nodes, i.e.,

-	 In P„0	(5.54)
neD

Also,

(5.55)

is the network entropy based on the outflows, in which S;', is the conditional

entropy of outflows, including any demand, at node n, Vn, as given by Eq.

(5.46a);

= — ZPa. In POn
	 (5.56)

nel

is the entropy of the distribution of To amongst the sources. For Eqs. (5.53)

and (5.65) respectively, the q.o, Vn a D, and go„ , Vn e I, may be regarded as

inflows into a supersink and outflows from a supersource. Furthermore, S° is

the entropy of the outflows given, tacitly, the inflows. It follows from the

identity of (5.43) that the entropy of the outflows must equal the entropy of

the inflows, i.e.,

(5.57)

However, it may be noted that in general  S, Vn, just as

S(02 101) # S(01 102) in general. The numerical examples considered below

demonstrate the use of the above equations.

5.3.3 EXAMPLES AND COMMENTS

The identity (5.57) and other observations are highlighted with the examples

which follow.

Example 4

This example is trivial but it shows that the multispace formulations of Eqs.

(5.53) and (5.55) give the same value of entropy as the well-established and

incontrovertible single-space formulation of Eq. (5.42) for parallel networks.
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Also, the identity (5.57) is verified. The calculations are for the network of

Figure 5.3a whose value of entropy has been found by the single-space

approach in Example 3 to be 1.208. All the probabilities for this network have

been calculated in Example 1. First, S° is calculated.

S=0.6730116 [Eq. (5.56)]

S°	 sf;
0.6615632; =:-= 0.4505612;_—_== 0; -=—=0 [Eqs. (5.46a)/

PI	 P2	 P3	 134

4.-- 0.2646252; 4 = 0.2703367; s; = 0;	 = 0

• = 1.208 [Eq. (5.55)1

The above value of 1.208 is the desired result.

Next, Si is calculated.

4=0.6474466 [Eq. (5.54)1

si si	 si
= 0;	 = 0;	 = 0.5402041;	 = 0.5982695 (Eqs. (5.47)1

Pt	 P2	 P3	 •	 P4

• = 0;	 0; S=0.3511326; S= O.2093943

of Figure 6.3b the probabilities of which have been computed in Example 2.

Proceeding as in Example 4, 8' = S. = 1.258, and it is seen that Eq. (5.67) holds.

Example 6

In this example, an easy way of visualising Eqs. (5.55) and (5.57) is described.

Eq. (6.65) for the entropy of the outflows is defined in a way which seems

intuitively natural as it follows the progress of the flows. However, suppose

the directions of all flows in Figure 6.3b are reversed as shown in Figure 5.3c.

The value of the entropy of the resulting outflows can be found using Eq.

(5.55) and is 1.258, which equals the value calculated in Example 5. In fact,

it can be seen that all the "outflows" of Figure 5.3c are the inflows of Figure

5...b. In other words, all the entries in Eq. (5.55) for Figure 6.3c ar. identical

to the corresponding entries in Eq. (5.53) for Figure 5.36.

Example 7

This example is based on the network of Figure 5.3d. It seems intuitively

sensible that the entropy of a tree-type single-source network should be zero

because the uncertainty associated with the link flows is zero. The extent to

which Egs. (5.63) and (5.55) agree with this notion is examined here. For the

flows of the network of Figure 5.3d, Si = S. = 0.997228. Also, the entrcpy of the

demands s( is 0.997228. That is,

• = 1.208 [Eq. (5.53)/
	 s° = s' =	 (5.58)

This value of 1.208 is the desired result, i.e., the entropy of the outflows equals

the entropy of the inflows (equals the entropy of the single-space scheme for

a parallel network). It may be noted that, being a parallel network,

)15„ =p„, %in, in this example.

Example 5

In this example, .9 and S. are calculated for the flows of the looped network

112

The above property holds for any tree-type single-source network. It can be

seen, for example in Figure 6.3d, that all terms in Eq. (5.63) except S/ have a

value of zero; 1 In 1 =0. Eqs. (6.58) follow from the identity of (6.67). Also, it

follows from Eqs. (6.58) that the value of S given by Eq. (6.S3) or (5.55) is the

entropy of the demands and, therefore, the entropy of the link flows must be

zero as required. Similarly, for a tree-type multiple-source network having a

single demand node,
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S° =si-s:
	

(5.59)

One way of seeing that Eqs. (5.59) hold is by reversing the flows of Figure 6.3d

as explained earlier in Example 6 for Figures 5.3b and 5.3c.

Also, it follows from Eqs. (5.58) that, for the same demands, all tree-type

layouts of a network consisting of demand nodes and a single source node

have the same value of entropy St Similarly, the entropy of the flows of a

multiple-source network having only one demand node is the same for all

tree-type layouts if the percentage contributions of the source supplies remain

unchanged, and the value of the entropy is given by S6 , from Eqs. (5.59). For

a hoped network having tree-type portions, any such portions may Le omitted

for entropy purposes. However, since a treks-type configuration has a constant

value of entropy, any tree-type branches in a looped network merely add a

constant value to the real value of interest.

Henceforth, the superscripts o and i on S are used only when it is strictly

necessary. Also, only one of Eqs. (5.53) and (5.55) is referred to unlets it is

strictly necessary to mention both.

5.3.4 OTHER DEFINITIONS OF NETWORK ENTROPY

In Section 5.4 it is shown how flow entropy can be used to infer network flows

but first, this section on the definition of network entropy is concluded with

some comments relating to the definitions of Awumah, Goulter and Bhatt

(1990, 1991, 1992). Firstly, it has been seen in Section 5.2 that normalising link

flows on their sum gives ratios which in general cannot be regarded as

probabilities. It follows that the entropy-motivated definitio.i of Eq. (3.10) is

questionable. Also, Eq. (3.13) is questionable as it is equivalent to (3.10).

However, it is necessary to examine Eq. (3.13) itself because Awumah, Bhatt

and Goulter have given several different equations for the S, Vn, which are
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then substituted in Eq. (3.13). The Q„ , 'In, are the sums of the /ink inflows

at node n. Normalising the Q„, 'In, on the sum of the link flows Qo gives

ratios which are not probabilities as there is double counting in Q 0. Therefore,

from an entropy viewpoint, the second term of Eq. (3.13) is theoretically

incorrect. Furthermore, the first term is questionable because the Q„1Q0 , 'In,

are not proper weights. It follows that there is some uncertainty about the

soundness of all the derivatives of Eq. (3.13): Eq. (3.17); Eq. (3.13) based on

(3.18); Eq. (3.18) based on (3.20).

Secondly, it will be recalled from Section 5.2 that there, is uncertainty

associated with the external inflows or outflows at each node of a flow

network. Although the values of supplies an demands may be known, there

is uncertainty in the sense that it cannot be stated in percentage terms how

much the source supply at each node contributes to the total flow reaching

that node or, for a demand node, how much of the total inflow satisfies

abstraction at that node. However, the definition of nodal entropy of Eq. (3.14)

is based on the uncertainty associated with link flows only and, as such, is

incomplete. This weakness has been addressed herein in Eq. (5.55).

A third observation is concerned with the possibility of defining network

entropy in such a way that it is based on both the inflows and outflows at the

nodes. This is different from the approach of Eqs. (5.53) and (5.55) in which the

inflows and outflows respectively are used separately. From a purely

information-theoretic viewpoint, Eqs. (5.53) and (5.55) appear to be correct

definitions of network entropy as they agree with the single-space approach

- for parallel networks and are rigorously derived. However, if the

gm, 'In e I, and q„., 'In a D, are regarded as constants, then, it may not be

necessary in certain cases to include ,58 or Sff which, consequently, are also

constants. Also, considering that S6 # S, and hence Sf, # S;', in general, it may

sometimes be desirable to define nodal and network entropy respectively as

follows:
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= sf, + S: V n	
(5.60)

NN

S=
	

Sn	 (5.61)

n=1.

Eqs. (5.60) are considered superior to (3.20) of Awumah, Bhatt and Goulter as

the latter does not account for the uncertainty due to any nodal abstraction

or external inflow. This is additional to the previously mentioned fundamental

weaknesses of the Awumah, Bhatt and Goulter (1990, 1991, 1992) equations.

partial information, the probability distribution which has maximum entropy

subject to whatever is known must be used. For a flow network, the entropy

is maximized subject to the nodal flow equilibrium equations.

First, it is shown that in the problem of inferring network flows, even if S is

preferred over S, it is sufficient to maximize either S' or S. only. ,§ is the

network entropy based on both the nodal inflows and outflows.

NN

=	 (5.61)

A . an example, the value of entropy given by Eq. (5.61) for the • etwork of

Example 4, Figure 6.3a, is calculated from the figures of that example as

-= 1.095. However, it is probably easier to calculate 51 from Eqs. (5.62) below

than (5.61).

n=1

An upper bound on S is

[g] = [XS,t
MAX

n.I
MAX

NN

[

s:]

tonl
max

= 2S i — — 4 =2S° — 4 — 4

5.4 CALCULATING MAXIMUM ENTROPY FLOWS IN NETWORKS

(5.62) in which [],„,, denotes the maximum value that can be attained. Constants

may be added to both sides of the above equation without destroying the

equality. Therefore

Having established what the appropriate entropy function for network flows

is, the problem of determining the least biased flows can now be addressed.

The problem consists of finding the least biased flows for the links of a looped

network given only the supplies and demands, and the flow directions in the

links. It has been seen in Section 5.1 that knowledge of the nodal supplies

and demands is not sufficient for unique determination of the link flows in a

network that is not tree-like. This problem of inferring least biased link flows

for looped networks therefore requires inference based on partial information.

In this section, it is explained how Jaynes' maximum entropy formalism can

be used for probabilistic inference on the link flows of a non-tree-type network.

The maximum entropy formalism states that in making inference based on
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[,§- + 4 + 4] - 4 + [Zs'[max	 .
N

N., ni..1 +

= [S°].+ [S]m.= 2[S].

This result means that maximizing S is the same as maximizing S.

5.4i PARALLEL NETWORKS

Two approaches for introducing probabilities into flow networks having only

parallel connections have been considered in Section 52. One approach leads
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NN 1 I

in=



>p1= 1
(kW

EPnk = Pon
ke ND,

(5.17)

Vn e I
	

(5.20b)

V n a D; (NO —1) equations	 (5.231))

n[ E Pnk POni
ke ND,

to a single probability space. The other leads to a multiple-space probability

scheme. There is an appropriate entropy function for each approach and each

function may be maximized subject to flow equilibrium at each node. Both

approaches give identical results as shown next.

5.4.1.1 SINGLE PROBABILITY SPACE MODEL 	 E Pjn Pn0
je

The appropriate entropy function for the single-space scheme is:

S = _	 p in pu 	(6.42)
uiIJ

pu T,0 . V ij e It/qU
	

(5.16)

The flow equilibrium equations are:

q0n	 E qnk
	 (5.20a)

ke ND,

or, dividing through by To,

j	
he ND„
E Pnk = POn Vael

grip	 ,„ Vri e D
je NU„

or, dividing through by To,

12LT E Pin Pn0 V n e D

-0 JI NU,
	 (5.236)

The maximum entropy Droblem for parallel flow networks is therefore:

Problem 5

Maximize S —EIVInPu
vpu	 ugh!
	 (6.42)

subject to:

in which the number of links NIJ is greater than (NI + NO), the number of

available equations; NI is the number of source nodes; NO is the number of

demand nodes.

(...blem 5 fits the format of Problem 4 and, as such, it is a convex

programming problem with a unique maximum point. There is an analytical

solution to Problem 5 and it can be found by examining the stationarity of its

Lagrangean which may be written as:

L(E, A, fl, p)-= — Epu In + (1 + A)[Zpu — 11
ijelJ	 ijelJ

no!

n[ Pjn PAO]
.6 NU„

neD

in which A, fi„, Vn e/, Vn e D, are Lagrange multipliers and it is

assumed that all the demand constraints but one are included in D.

Stationarity of the Lagrangean with respect to a typical probability per yields:

— lnpq— 1 + (1 + A) + fl i, + = 0	 (6.64a)

(5.20b)

0.23a)

(5.63)
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(5.65a)

(5.65b) (5.68)
1exp(A)=

E exp(131 +
jjelJ

exp(A)E exp(fli + = 1
(ielJ

Substituting the result of (5.66) and proceeding as for 	 gives

exp(pi.)
rico

exp(pj)
jeD

qu	go; qici

To To To
Vij e IJ

exp(P)Eexp(aj)
jeD

Eexp(fli)Zexp(iii)
iel	 jeD

exp(iii.)

	

	 no
.coe

Eexp(P)
iel

• = exp(A) exp(fle + 	 (5.64b)
Stationarity of the Lagrangean with respect to a typical multiplier Pr Yields

the demand constraint for node j:

Stationarity of the Lagrangean with respect to A yields the normality condition

Eq. (5.17). Substituting (5.64b) in (5.17) gives:

E Pu. = P.e0
	 (5.23c)

ie NU,

• Sstituting (5.65b) in (5.64b) gives:

exp(fli,) exp(ai)
• — 	

Lexp(i3i)Zexp(iii)
iel	 jeD

Suvstituting (5.67b) and (5.68) in (6.66) gives

	

. 
= [ 

 exp(8,..)	 expoo (5.66)

	

Eexp(ilz)	 Eexp(pj) — 
Poi•Pio

iel	 jeD

Stationarity of the Lagrangean with respect to a typical multiplier /1,. yields

the supply constraint for node i':

E Pei = Poe
	 (5.20c)

je NDi.

When generalised for all i and j, the above result gives

*	 W::
134i =	 Jo	 v 6 "

Reverting to flows,

(5.69)

Substituting the result of (5.66), this becomes:

Vij e IJ	 (5.70)
(5.67a)

The result of Eqs. (5.70) is the well-known gravity model nf Transportation

Engineering (Erlander, 1977; Kapur and Kesavan, 1987). Also, substituting the

	

(5.676)	 probabilities of Eqs. (5.69) in the entropy function (5.42) gives the maximum

entropy value for parallel networks as
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(5.465)

(5.18)

5.4.1.2 MULTIPLE PROBABILITY SPACE MODEL

S. = - E (PoiPjo)in(PoiPio)	 (5.71)

For a fully-connected parallel network in which each source node supplies all

the demand nodes,

e = - Ep„„ In Pon – EP„o In P
.ssv	 Awl)

in which D includes all demand nodes. It is recommended that Eq. (5.72) be

used for calculating the maximum entropy value of any fully-connected

meNnitnk isyetrawiee 'nzai Sewer terns %Alan Eq. ‘611). E qs. kb:11) and

(5.72) have (NI x NO) and (NI + NO) p lap terms respectively. It should be

noted that the value of (NI x NO) for the number of p logp terms in Eq. (5.71)

applies only if the network is fully connected.

Example 8: Junction Turning Flows

Eqs. (5.70) give the value of the maximum entropy estimates of the link flows

of any parallel flow network. Essentially, this example shows how junction

turning flows can be represented as a parallel network which, in consequence,

is solved by Eqs. (6.70). Referring to Figure 5.4, the qm, goo, Vn, respectively

represent the inflows and outflows on the arms of the junction. There are 12

traffic streams, as a driver approaching the junction from any of the four arms

can proceed along any of the other three arms. However, there are only 8 flow

equilibrium equations one of which is redundant; there is one equilibrium

equation for each node of Figure 5.4b. Given no additional information, the

problem of estimating the link flows requires inference based on partial

information. Since the network representation of the flows is a parallel

network, the solution is given by Eqs. (6.70).

An alternative approach to the above single-space formulation is now

described. The appropriate entropy function for the multispace scheme for

parallel networks is:

NN

S So -ESn
	 (5.73)

n=1

Either Eq. (5.53) or (5.55), their equivalence having been shown, may be used

for calculating the conditional entropy in Eq. (5.73). Adopting Eq. (5.55), So is

the entropy of the distribution of the source supplies, and, for a parallel

network:

sg = — Epo„ In Pon	 (5.56)
nel

go.Pon = p n = —
To 

Yr: e/	 (5.9)

S„= – p„ E pnnln pnn Vn e I; S„= 0 Vn D
ke ND„

qnk Vn e I, V h ND„Pak — q0n

in which the bar on the p, Vn, has been dropped because, for parallel

networks, these probabilities are a finite scheme.

With probabilities defined at the supply nodes in Eqs. (5.18), flow equilibrium

constraints are needed at the demand nodes and are

qno	 V n ED; (NO – 1) equations.	 (5.23a)
NU„
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qftPnk = qk0 Vk a D; (NO — 1) equations, n[ E Pnk — 1]
ke

Pk[ E POnPnk Pk0]
nG NU

(5.76)

ne NUk	 net
	

keD

which, when divided through by To become
	 Proceeding in a similar way to the solution of Problem 5, the solution is:

L(p, fl, p) S +

P:k = P k0 Vn a I, Vie a ND„	 (6.77)

Using Eqs. (5.74), the link flows are given 13,

The multispace maximum entropy problem for parallel flow networks is

therefore:

Marimize S = —ZPon in Pon — EPon	 p, lnpnk	 (5.75)
nel	 net h e ND„

subject to:

E pnk 1 Vn eI
	

(5.19)
rike ND„

E PonPas = Pk0 Vk E D; (NO —1) equations.	 (5.23b)
NUk

• q0nq k0 
= q0nPnk = q0nPk0 =	 V nk a IJ

To

These flows are identical to the link flows of Eqs. (5.70) found for the

single-space formulation of Problem 5. Also, it may be noted that if tho value

of the source supplies are known, the first term of the objective function is

constant and is therefore not strictly necessary for the the optimization.

Finally, the above results can also be arrived at by using Eq. (6.53), but with

supply constraints.

5.4.2 GENERAL NETWORKS

5.4.2.1 PROBLEM FORMULATION AND SOLUTION

(5.78)

From Eqs. (5.18),

qnk = q0nPnk Vnk a IJ

Eqs. (5.23a) and (5.74) give demand constraints as

(5.74)

There is an analytical solution to Problem 6 which can be found by examining

the stationarity of its Lagrangean. Its Lagrangean may be written as:

P

• 

OnPnk Pk0
n NUk

Vie a D; (NO— 1) equation.3.	 (5.23b)

Problom 6

In this formulation the variables are the p, Vn eI, Vk s ND,,, and Eqs.

(5.19) are the normality constraints. If, however, either the q0,, Vn e I, or the

q„0 , Vn a D, are unknown, then an extra normality constraint would be

required for the Pm,, V n a I, or P.0 , Vn e D, which would also be variables.
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The maximum entropy problem for the flows of a general network is similar

to Problem 6 as might be expected. This problem is formulated next. The

entropy function for general networks is
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(5.806)

(5.82)

subject to:

NN E 13.k .-- 1 WI

S	 Es:	 (5.55)	 ke ND„
(5.79)

In a general network, the constraints are the flow equilibrium equations.

Using outflow probabilities,

E PjPJPfl n 1, NN — 1
je NU„

� 0 Viz; Pnk � 0 Vn, Vk e NDn

The variables of Problem 7 are all the ps and Tis. However, if the

gm, V n e I, are unknown, then, the Pon , Viz e I, are variables too. Also, it may
(5.79)

be noted that Problem 7 does not have the same format as the classical

maximum entropy problem of Problem 4. Furthermore, comparing Problems 6

and 7, it can be seen that the former is a special case of the latter. As such,

the solution to Problem 7 also solves Proble.n 6, but not vice versa. Finally,

(5.28)	 a similar and equivalent problem can be set up for the inflow probabilities.

E pnk = 1 Viz
ke ND„

The continuity equations are:

Egin = E q„k n 1, ...,NN
j NU„	 ke ND„

From Eqs. (5.34), qy=	 , Vij e IJ, giving in (5.28),

E Tpin = E Tnp,th Tn[ E pnh] Viz	 (5.80a)
j. NU,,	 hiND,	 kw ND„

Substituting Eqs. (5.79) and dividing through by To gives

E P,jPjnP,i Viz	 (5.806)
Jo NU„

The maximum entroPY Problem is therefore:

Problem 7

NN

Maximize S — Ens In Pon	 E Pnk In Pnk
	 (5.81)

nil	 /1n1 hI ND,,

Problem 7 is a constrained non-linear programming (NLP) problem which may

be solved with any suitable algorithm. The resulting p's can be used to obtain

the Ts from Eqs. (5.29) as

ToK Viz;	 (5.83)

the q's from Eqs. (5.34) as

•	 •	 •

	

qu =Tp4	 Vije IJ

Some numerical examples are considered shortly, but first, Problem 7 is

reformulated in terms of flows. From this reformulation it is deduced that the

problem of determining maximum entropy flows is a convex programming

problem. Essentially, Problem 7 consists of maximizinz S subject to

non-negativity of the flows and flow equilibrium at all nodes. The variables

of the actual problem are the link flows. The problem may therefore be

written as:

(5.84)
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Problem 8
	 NL =NU— (NN —1) 	 (5.88b)

Maximize S =Fo(q)
	 (5.85a)

subject to:

F„(q)-= 0 re.	 NN —1
	 (5.86)

qu �.0 VijeIJ
	 (5.57a)

in which constraints (5.86) are the flow equilibrium equations (5.28) and F0(9)

is S with the link flows substituted for probabilities, using Eqs. (5.28), (529),

(59), (5.34) and (5.36).

Problem 8 has a unique global maximum point. To establish that this is the

case, it is sufficient to show that Problem 8 is a convex programming problem.

The necessary and sufficient conditions are that the constraints represent a

convex set and F0(q) be concave. Both conditions are satisfied in Problem 8.

Firstl:r, constraints (5.86) are linear in the problem variables and, an such,

represent a convex set. Secondly, to show that F(q) is concave, it is shown

that S(p) of Eq. (5.81), being equivalent to Fo(q), is concave. Concavity is a

well-known property of — Ep, lnp, given that the pi , Vi, are a finite scheme

(Templeman and Li, 1985). Also, the sum Of any number of concave functions

is concave. It follows that S(p) is concave since the F., Vn, are non-negative.

This convexity result for Problem 8 can be exploited in its numerical solution.

Firstly, the flow equilibrium constraints are equalities which may be used to

eliminate some unknown link flows and so reduce the size of the problem. The

number of unknown link flows that can be eliminated is given by the

following equation which has been introduced in Chapter 2 as Eq. (2.10).

NIJ—NL=NN-1	 (5.88a)
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in which NIJ is the number of links; NL is the number of loops; NN is the

number of nodes. Actually, NL corresponds to the difference between the

number of flow equilibrium equations and the number of links, or the number

by which the number of unknown link flows exceeds the number of available

flow equilibrium equations. The right hand side of Eq. (5.88a) therefore gives

the number of unknown link flows which may be eliminated while NL from

Eq. (5.88b) gives the number of independent link flow variables. All the

problem variables and functions can therefore be expressed in terms of the

independent variables.

By using the flow equilibrium constraints to eliminate some variables, these

constraints are satisfied implicitly and are therefore eliminated from the

problem. Also, the number of variables eliminated is generally considerable

as demonstrated by Eq. (5.88a). Denoting the independent flows by

i„ i = 1, NL, Problem 8 can be written as:

Problem 9

Maximize S =F0(i)	 (5.855)

Subject to:

F(11) � 0 m =1, ..., NIJ
	

(5.875)

in which q„,=F„, is the flow in link m, m=1, ..., NIJ.

Secondly, Eqs. (5.87b) are a system of linear inequalities which define the

feasible region of the problem. Outside this region, at least one flow is

negative and so S is undefined in the infeasible region. Therefore the minimum

point of S is guaranteed not to violate Eqs. (5.87b). It is therefore possible to
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solve Problem 9 with standard algorithms for unconstrained optimization. This

approach has been adopted in the present research as it provides a simple and

quick solution procedure. For the numerical examples presented shortly,

Fo(i) has been maximized using the NAG library routine E04JAF which is

a routine for unconstrained optimization.

The number of independent flows is equal to the number of loops and the

redundant links should be selected so that there is one for each loop. Even

parallel networks can be thought of in terms of loops as demonstrated in

Figure 6.5. More practical details on the solution of Problem 9 are given

below in Example 9 and later in this subsection. Also, an easy means of

calculating maximum entropy flows for sirgle-source networks has been

devised and is described in Subsection 5.4.3. The rest of this subsection consists

of practical details, examples and comments. The comments mostly highlight

the apparent reasonableness of the present formulation of the maximum

entropy flows problem.

Example 9

The calculation of probabilities and S have previously been demonstrated. In

this example the emphasis is on the constraints of Problem 9. A formalised

approach for reducing the number of constraints and variables is given later

in this subsection, but the following is a simple demonstration. The analysis

is for the network of Figure 5.6a.

The flow equilibrium equations are:

q01 q12 q13

T2 .° q12 q20 q24

T3 q13 q30 + q34 + q35

T4 = 424 + 434 = q40 946
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T5= 435 = q50 q56

There are 7 links of which 2 are redundant. Let q i2 and q34 be the independent

flows. The other 5 flows can be expressed in terms of the independent flows

using the above equations. Thus:

'134 = q34

q13 = 401 — q12

124 = q20 + 412

q35 =goi — 4730 — 11 12 — qa4

q46 = q20 — q40 q 12 q34

q56 q01 q30 q50 q12 q34

The ultimate constraints are the non-negativities of all the above flows. If the

flume/ ical values of Figure 5.6a for the nodal inflows and outflows ar?. used,

they give the following inequalities of which those that are binding are

numbered with asterisks.

4 12 � 0

q34 � 0 (*)

q 13 = 0.284 — q 12 � 0	 q 12 5 0.284

424 = —0.028 + 4 12 � 0 as 4 12 � 0.028 (*)

q35 0.261 — q12 — q34 � 0E=q12+q3450.251

q46 '-- —0.103 + 412 + 434 � 	 412 + 434 0.103 (*)

q66= 0.159	 (412 — q34 � 0	 q12	 q34 0.159 (*)
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It can be seen from the graphical representation of the binding constraints in

Figure 5.613 that the feasible region is a trapezium the vertices of which are (

q34 q12) n (0, 0.103), (0.075, 0.028), (0.131, 0.028), (0, 0.159). With all flows defined

in terms of the independent flows, all the probabilities and S can be calculated

for any feasible point (q,4 , q12), as demonstrated in Figure 5.6c by the

topographical representation of the values of the entropy function. In practice

it is quite easy to find a feasible (starting) point as feasibility merely consists

of satisfying continuity at all nodes. At the optimum, (S, q,2, 434)* = (1.9151,

0.0841, 0.0562), from which (q12 , g34 q, 924, q, * = (0.0841, 0.0562,

0.0187, 0.1998, 0.0562, 0.1107, 0.0373g. The optimum point is shown in Figure

5.6b while the maximum entropy flows are shown in Figure 5.6d.

Commenting on these results, firstly, it can be seen in Figure 5.6d that node

4 receives exactly half of its total inflow from each of its supply paths 1 -2-4

and 1-34. Also, node 6 is supplied by three paths, 1-2-4-6, 1-34-6 and 1-3-5-6,

each of which contributes one third of the required flow. Nodes 2, 3 and 5 have

only one supply path each, on which, obviously, they are entirely dependent

for their respective flows. It can be seen that these results agree with Laplace's

principle of insufficient reason in the sense that, on a node-by-node basis, these

flows correspond to the uniform distribution U. A similar but slightly different

interpretation is the following. In formulating the problem constraints, only

two things are specified, namely, flow equilibrium at each node and the links

or paths supplying each node. It would therefore be absurd if the maximum

entropy flows did not correspond to U. There is more on this issue in

Subsection 5.4.3. Secondly, it is reassuring to note that, based on the above

observations, the maximum entropy inflow probabilities seem reasonable even

though the nodal entropy used is more explicitly related to the nodal outflows

than inflows. The results of this example provide further evidence that the

present formulation of network entropy is probably right.
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Thirdly, it is useful to re-examine Figure 5.6b from a layout/reliability

perspective. In Chapter 6, many reasons are given to suggest that entropy can

be used as a surrogate measure of reliability for water distribution networks.

The following observations are repeated there, but with more detailed

explanations as those details are not very appropriate here. Referring to Figure

5.6b, each edge of the trapezium corresponds to a layout in which one link

carries no flow. For example, the edge given by q,2 = 0.028 corresponds to

gm .= 0. Obviously, the vertices, being the point of intersection of adjacent

edges, correspond to layouts in which two links carry no flow. For example,

the point (q34 = 0.075, qm = 0.028) corresponds to q. = = 0. Although more

explicit arguments are given in the next chapter, it seems intuitively sensible

thp t the most reliable layout or flow distrib Ition should be as far away as

possible from each of the four edges because these edges correspond to layouts

with less reaunaancy than the layout °I Figure b.ba. 'it Is thereIore reasonable

to expect (q,,, q,0* to be around the centre of the trapezium of Figure 5.6b.

In fact, i'=-- (q31, TO' bisects the line in the feasible region that passes through

§'• and is parallel to the parallel sides of the trapezium. In other words, is

midway between the edges qm = 0 and (In= 0.028. However, i* is slightly nearer

the edge q24+ 912-= 0.159 than qu + q12= 0.103. The fact that the optimum point

is not midway between the parallel edges may be slightly disappointing, but,

as .explained in Chapter 6, the edge q34 + q12 = 0.103 is slightly mots critical

than the opposite edge. As such, it is reasonable for the optimum point to be

nearer the "safer" of the two parallel edges. Nevertheless, 4. is roughly in the

central region of the trapezium as expected. The above discussion demonstrates

the fact that the maximum entropy flows for the network of Figure 5.6a are

maximally noncommittal and the most neutral with respect to the possibility

of any link flows being zero. Therefore, this example provides further evidence

that entropy can be used for layout/reliability optimization.

Finally, an observation concerning the convexity result for the problem of

determining maximum entropy flows in networks may be made. It can be seen
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from the topographical representation of the entropy function in Figure 5.6c

that, as expected, the surface depicted is smooth and bounded by "vertical

planes," and there is a single peak, without any saddle or local maximum

points. This figure confirms the convexity result for the case of a two-loop

network.

5.4.2.2 DEPENDENT AND INDEPENDENT FLOWS

In view of the advantages of solving Problem 9 rather than Problem 7, it is

useful to be able to select redundant links and calculate dependent flows in

a formal way.

Selection of Redundant Links

To calculate the dependent flows as described shortly, the redundant links,

which carry the independent flows, have to be identified first and this is

straightforward. There is one redundant link per loop and any of the links in

a loop may be chosen as the redundant link for that loop. There are therefore

NL, i.e., NIJ —(NN— 1), redundant links. To conform to the requirements of

the scheme for calculating the dependent flows which is described below, the

redundant links should be numbered with NN, NN + 1, ..., NIJ. The rest of

the links should be numbered with 1, 2, 3, ..., NN— 1. As an example, the links

of the 3-loop, 14-link network of Figure 6.7 are numbered such that the 3

selected redundant links are numbered 12 to 14 with the other links numbered

1 to 11. It may be noted that the positions of the redundant links are

interchangeable and so too are the non-redundant links.

Calculation of Dependent Flows

Essentially, the following is a scheme for calculating the dependent variables

of a linear system of equations in which there are more variables than

equations. However, the values of .enough variables are needed so that the

values of the rest of the variables can be found from the equations. The
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variables with specified values are the independent variables and the number

of these variables is equal to the difference between the total number of

variables and the number of equations. It can therefore be seen that there will

be enough equations to enable the values of the dependent flows to be

calculated by any standard algorithm for solving systems of linear equations.

As such, what is described below is merely a means of ordering the variables

of a linear system with more variables than equations such that an algorithm

such as Gaussian elimination, for example, can be used to resolve the system.

The following explanation is done on the basis of any general linear system

of equations. Since the constraints of the problem of calculating maximum

entropy flows are the continuity equations which are linear, a scheme such

as the one described here can be applied to those constraints. Thu g, suppose

there are 3 linear equations in 5 variables-r, , i = 1, ..., 5, of the form

Defixi =-- v j-- 1, 2, 3
	

(5.89)
i=

in which the Itfi , Vji, are constant coefficients and the values of the right

hand sides yi , Vj, are known. Also, suppose the values of 2 (= 5 - 3) of the

variables can be specified. Assuming that the specified variables are x 4 and

x6 , Eqs. (5.89) can be written as

3	 5

EkjiXi = yj —	 = zi j = 1, 2,3
	

(5.90)
I	 i=4

Eqs. (5.90) are a system of linear equations which are solvable by any suitable

method, for example, Gaussian elimination. The linear system of (5.90) can

be generalised for any number of variables N. and any number of equations

N. such that N.> N. with the last (N6 — N.) variables specified. The (N6—N.)

specified variables are the independent variables while the remaining N.

variables are the dependent variables. Thus:
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N.

= z	 = 1, .., Ne	 (5.91)

Zi = yi —	 hilxi j = 1, ...,	 (5.92)
N.+I

The above approach may be used as the basis of a routine for calculating the

dependent flows if values are specified for the independent flows. Relating the

above equations to the continuity equations, Eqs. (2.6), of a distribution

network, the y,, j= 1, ...,	 correapond to the external inflows or outflows

at the nodes, i.e., the q, n = 1, NN — 1. Also, the x, , i = 1, ..., N„,

correspond to the link flows q„„ m = 1, ..„ NU. Thus the dependent variables

x1 , i = 1, ..., N„ correspond to the dependent flows q,,,, in = 1, ...,NN — 1, while

the independent variables z, i = N.+ 1, ..., N„, correspond to the independent

* flows q„, , nt = NN,...,NIJ.

Finally, the ha , Vji, correspond to the elements of the continuity matrix which

describes both the connectivity of the network and the direction of Low in

each link. Thus the subscripts j and i correspond to n and m respectively

which identify the nodes and links respectively. Values for the k.„ (4) are

obtained as follows. If the sign convention that q. is negative if q. represents

a source supply and positive if q, represents a demand, then:

h.= 0 if link m is not connected to node n, Vnm

k...= +1 if node n is the downstream node of link m, Vnm

km = —1 if node n is the upstream node of link m, Vnm

Alternatively, the sign convention could be reversed by rmersing the above

signs of the q. and k.„,. Also, in the above discussion it is assumed that the

nodes are numbered consecutively from unity, i.e., 1, 2, 3, ..., NN, while the

non-redundant links are numbered 1, 2, 3, ..., (NN— 1), and the redundant
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links, NN, NN + 1, ..., NM. Proceeding as described above, it is possible to set

up the continuity constraints of Problem 8 in a routine way for any general

network. Furthermore, as Problem 9 can be solved as an unconstrained

optimization problem, the problem of calculating maximum entropy flows for

any general network can be solved easily and efficiently using standard

routines for unconstrained optimization in conjunction with standard routines

for the solution of systems of linear equations. However, for single-source

networks, a very simple method of calculating maximum entropy flows more

efficiently has been developed and this approach is described in the next

subsection.

It will be recalled that one of the ultimate aims of the present research is to

use entropy to simplify the problem of optimally designing reiiable water

distribution systems. The following example provides another demonstration

that the present extension of the entropy of finite probability schemes to

network flows gives consistent results. In particular, the results of this example

highlight some implications for the design and reliability of water distribution

systems.

Example 10

This example is based on the network of Figure 6.8a. Numerical values for

the inflows and outflows at nodes 1 and 2 are shown in Figures 5.8c and 5.8d.

In Figure 6.8d the inflows at nodes 1 and 2 of Figure 6.8c are interchanged.

Although the network of Figure 6.8a is not a parallel network, the subnetwork

consisting of links 1-3, 1-4, 2-3 and 2-4 has only parallel connections, as shown

in Figure 5.8b. Therefore, it seems intuitively sensible that at the solution of

Problem 7 or 9 for the network of Figure 6.8a, the flows of the parallel

subnetwork of Figure 5.8b should agree with those given by the gravity model

or the single-space maximum entropy formulation for parallel networks.

Obviously, unlike parallel networks in which T. equals the external inflow or

outflow at node n, the values of Ts and 7 4 are unknown for the network of
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Figure 68a. However, it is shown in this example that at the solution of

Problem 7 for the network of Figure 5.8a, the flows of the links shown in

Figure 5.8b satisfy the gravity model result of Eqs. (5.70). In other words, it is

verified that the following equations, the origin of which is explained shortly,

hold at the solution.

q 1.3 = q01(q 1.3 + 92..1)/ T0 = q01 73/ TO

q2.3. 902(q 1.3 q23. )1T0=q02T3.1To

(7 .14 q01(q + '7070 = q01(T: q3.4)/ TO

172.4 = (702 (q /*4 '7;4 )/ TO = q02( T4. q3.4)/ To

Th I above expressions are adapted from Eqs. (6.70). (q. q.) and (q, q.) are

respectively the total flow supplied directly from the sources to nodes 3 and

4. Also, from Figure 5.8a, T4 q,4 +1/24 + q.. This gives q.+	 7'4—

Furthermore, from Eqs. (5.70), the four relationships stated above should hold

for any combination of nodal inflows and outflows, as long as these flows

balance. Solving Problem 9 computationally for the inflows of Figures 5.8c and

5.8d gives the maximum entropy link flows of Figures 5.8c and 5.8d

respectively, and these flows agree with the above expressions.

Another observation on the results of Figures 5.8c and 5.8d is that the link

flows in the lower half of the network are the same in these figures. Further

study reveals that they remain the same for any combination of source flows

at nodes 1 and 2 totalling 55 units, for demands as in Figure 5.8a. The reason

for this is that nodes 1 and 2 are both connected to the rest of the network

in exactly the same way and so the network is unable to distinguish

topologically between the two source nodes. Therefore, intuitively, this

invariance result for the flows of the lower half of the network appears

consistent. Furthermore, this invariance result is desirable from both design

and reliability viewpoints. Designing the pipes of a water distribution network

having the connectivity of Figure 58a to carry maximum entropy flows would
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appear to confer a considerable degree of invulnerability upon the lower half

of the network to possible variations in the source flows. How far this is

borne out is investigated in Chapter 6 in a more general context.

-

In both Examples 9 and 10 there are no counterintuitive results, and there are

positive indications that the definitions of probabilities and entropy and the

formulation of Problem 7 are correct.

5.4.3 PATH FLOWS IN SINGLE-SOURCE NETWORKS

Instead of solving Problem 7 or 9 a diffe.ent approach can be used for

single-source networks. The approach which is described next considerably

simplifies the problem of calculating maximum entropy flows, but is in general

applicable to single-source networks only. In a single-source network, all

paths start at the source. Consider any demand node served by more than. one

path. Given no further information about the paths, the maximum entropy

formalism dictates that the uniform distribution U be used for the probability

of each path supplying the node. Therefore, all the paths supplying .i node

should have the same probability of doing so. This means that flow to a node

should be distributed equally amongst all the paths supplying that node.

Therefore, to obtain the maximum entropy flows for a single-source network,

each node should be taken in turn and its demand divided equally amongst

all paths supplying it. The final network flows are then obtained by

superposition of these path flows. That is, for each link, the flow for all paths

through that link should be summed to obtain the maximum entropy flow for

that link. The maximum value of the flow entropy for the network may then

be calculated from these flows.

The network of Figure 5.9 is used to demonstrate the above procedure. The

demand at each node is treated separate/y, as shown in Figure 5.10. Thus, for

example, node 3 is served by two paths 1-3 and 1-2-3, each of which must carry
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5 units of flow (half the demand of node 3). In Figure 5.11, the maximum

entropy flow in each link is obtained by summing the flows in all paths using

that link. Calculating the entropy for these flows gives S 2.159. To check

that the above values are correct, Problem 9 has been solved computationally

for the network of Figure 5.9. The results are shown below and are identical

to those obtained above.

(S. q 14, q 13, q23, q35, q 12 , q25 , q34)

= (2.159, 5.000, 18.000, 18.000, 16.000, 36.000, 8.000, I0.000y

5.4.3.1 ALGORITHMS FOR CALCULATING MAXIMUM ENTROPY FLOWS

Tl.e present method of superposition of equal path flows has been cormalised

as described next. The description is fairly general but is based on the

network of Figure 5.9 for clarity. Following the description, algorithms are

presented for the proposed method. It is assumed for the time being that the

number of paths NE serving node n, n = 1,...,NN, is known, but a method for

calculating NE is described shortly.

Consider Figure 6.12. The number of paths to each node is enclosed in a box

next to the node. Nodes 4 and 5 are terminal nodes, which do not have any

link outflows. The procedure starts with any terminal node; say, node 4. The

total outflow at that node is divided by 3, this being the number of paths to

it. The quotient is then multiplied by 1 and 2 respectively, these being the

respective number of paths to nodes 1 and 3 which are the immediate upstream

supply nodes to *node 4. The products, respectively, are the flows in links 1-4

and 34.

The next step is to choose any node immediately upstream of node 4 whose

link outflows have all been calculated. The procedure explained above for

node 4 is then repeated for the chosen node. Returning to Figure 5.12, both

nodes 1 and 3 have unknown link outflows and so they cannot be treated yet.
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At this point, the procedure stops and restarts at any terminal node that has

not yet been dealt with. That is, node 5 in the present example. If node 5 is

processed as explained for node 4, the flow in link 2-5 is 8 units and for link

3-5, 16 units.

At this stage, the only unprocessed node with all its outflows known is node

3. Its total outflow is 36 units. This flow is partitioned according to the

aforementioned procedure by dividing it by 2 and multiplying the result by 1

for each of the two incoming links. The flow in link 1-2 can now be found.

It is the sum of the outflows from node 2, including the demand at node 2. The

process ends here. The flows obtained by the procedure just described are

identical to those found by superposing equal path flows for each node.

A further refinement to the method concerns path enumeration which is not

an attractive proposition, even for networks of modest size. (See, for example,

Aggarwal, Gupta and Mishra, 1973) However, there is a way round this

difficulty. It can be observed, for example, in Figure 5.12, that each NE, is

the sum of all the NPs of the immediate upstream nodes. In other words, the

number of paths to each node is the sum of the number of paths to all nodes

upstream of, and directly supplying, the node being considered. This is a fact

whi zh can be exploited to weight the nodes and thus avoid expEcit path

enumeration. The steps involved are as follows.

1. Assign 1 to the source.

2. Select any node whose upstream nodes have all been processed. Sum the

numbers assigned to all nodes immediately upstream of the chosen node.

Assign the total to the present node.

3. Repeat step 2 until all nodes have been processed.

Throughout, the assumption that the direction of flow in each link is known

continues to apply. Also, it should be noted that this method of calculating

the number of paths to each node applies to single-source networks only.
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A final detail is concerned with the order in which nodes can be processed

when weighting the nodes or calculating link flows. Node weighting depends

on conditions immediately upstream of a node whereas the calculation of

flows depends on conditions immediately downstream of a node. Therefore, if

nodes are numbered such that the order matches the node weighting sequence,

- as in Figure 5.12, for example, then, link flows can be calculated by taking the

nodes in reverse order. Thus, a possible sequence is obtained if each node is

numbered as soon as all nodes immediately upstream of it have been

numbered. The algorithms presented subsequently herein, for node weighting

and for calculating maximum entropy flows, assume that the nodes of the

network have been numbered according to this convention. The nodes may

therefore be numbered with the following alcirithm.

Node numbering algorithm

1. Number the source with I. Set n to 1.

2. Increase n by 1. Select any node whose immediate upstream nodes have

all been numbered and number it with n.

3. If n NN, exit. Otherwise, go to step 2.

Simple algorithms are now presented for node weighting and flow distribution

respectively. Before applying these algorithms, the nodes must first be

numbered with the node numbering algorithm. As defined previously,

n = 1, ...,NN, is the number of paths from the source to node

n,n =1, NN.

Node weighting algorithm

1. Set n to the source number, 1. Set NP„ to 1.

2. Increase n by 1 and calculate NP.:
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NPJ

je NUn

in which NU, represents the set of upstream nodes of inflow links at node

n.

3. If n =NN, exit. Otherwise, go to step 2.

Flow distribution algorithm

1. Set n to the number of nodes lIN.

2. Calculate T„:

T. =	 (ink
he ND„

in which any demand at node n must be included.

3. Calculate q,,, Vjn a NU„

NP.
qin = Np.

4. If n = 1, go to step 5. Otherwise, reduce n by 1 and go to step 2.

5. Calculate S' if necessary. Exit.

These algorithms are rigorous for single source networks. However, they are

in general inapplicable to multiple-source networks for the following reasons.

The proposed method is a direct application of the result that maximization

of Shannon's entropy function subject only to normality of the probabilities

leads to the uniform distribution U. The corresponding rebult for a general

network with multiple sources requires all the sources to contribute the same

quantity of flow to the total supply as SS attains its highest possible value if

all the Po, are equal. In general, this condition will not be met as the flows
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from different sources will usually be unequal. Furthermore, the flow

directions in a multiple-source network will be such that, for each node, the

path flows will be unequal in general.

However, in any network, if the flow directions and the distribution of the

source flows are such that all paths serving a node can carry the same amount

of flow, then, the proposed method will give the right result. This also applies

to any multiple-source network that is effectively operating as a single-source

network. An example is provided next to illustrate some of the above points,

but it must be stressed that the proposed method is intended as an alternative

to numerical optimization for single-source networks only.

Example 11

A sample two-source network in which all the conditions for uniformity of the

path flows are satisfied is shown in Figure 5.13a. Link 1-2 is a direct

connection between the sources. The node weighting algorithm may be applied

to multiple-source networks with source-source connection. However, each

sourcE is given a weight of unity in step 1. To see why, suppose the sources

are replaced by a supersource numbered 0 with 55 units. Suppose further that

link 1-2 is replaced by a direct link from the supersource to nodes 1 and 2

respectively as shown in Figure 5.136. If the node weighting algorithm is

carried out on this transformed, but equivalent network, both nodes 1 and 2

are assigned a weight of 1. This provides confirmation that each source in a

multiple-source network, with all sources interconnected, should have a weight

of unity. It may be noted that there need not be a direct link for every

source-source combination. It is sufficient that each source be directly

connected to at least one other source.

To obtain the maximum entropy flows for multiple-source networks with

source-source. connections, the flow algorithm may be applied as described for

single-source networks, but with a slight modification. In step 2, (T. — qm) is

found, and used in step 3, instead of T„ . The external inflow tio„ will be zero

for all nodes other than source nodes. Also, this modified version of the

algorithm may be used for networks having a single source. Finally, the value

of S may be calculated once the maximum entropy flows are available. The

problem of Figure 5.13a has been solved by both numerical optimization using

the NAG library routine E04JAF and the present method. Both methods give

the same results, of which the flows are shown in Figure 6.I3a.

However, in a general network, if at least one of the requirements for equality

of path flows is not satisfied, the single-source method cannot be used. For

example, in Figure 5.14, the flow direction of 2 —.1 in the source-connecting

link is the reverse of the direction in Figure r..13a. Figures 5.13a and 5.14 are

identical in every other respect. The problem of determining the maximum

entropy flows for the network of Figure 5.14 cannot be solved by the present

single-source method as demonstrated by the optimum point which is

(S. 423 , 413, 434, 43S, 421 , 414 , 925)

(1.947, 12.917, 28.871, 8.871, 22.917, 0.000, 6.129, 7.083)

The3e maximum entropy flows are shown in Figure 6.14. The fact that the

optimum point contains a zero element is an indication that the single-source

method cannot solve this problem. This example shows that the present method

is in general inapplicable to multiple-source networks.

The material in this subsection is, obviously, also applicable to multisource

networks with a single demand point. Flow reversal, as used in Figures 5.3b

and 6.3c obviously holds true. If the flows of single-source network are

reversed in this way, the resulting network has multiple sources and a single

demand node. Moreover, it will be recalled from Eq. (5.57) that the entropy

of inflows equals the entropy of outflows.
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With regard to the reliability and design of water distribution systems, several

interesting comments may be made on the maximum entropy flows of Figures

5.13a and 5.14. Figure 5.14 has a lower value of S' = 1.947 than Figure 5.13a

whose value is 2.020. This bodes well for the possible use of flow entropy in

layout and reliability optimization for several reasons. At the optimum, the

network of Figure 5.13a with three loops has more redundancy than the

network of Figure 5.14 with two loops. It is therefore fitting that Figure 5.13a,

with a better layout and higher level of redundancy, should have a higher

value of entropy. Also, by correctly setting certain link flows to zero, entropy

maximization has the capability of identifying links which are either

superfluous or are having an inappropriate direction of flow. This property

is highly desirable in the context of layout oF timization. Furthermcre, in both

Figures 5.13a and 6.14, the flow from node 3 to node 4 is greater than the

direct supply from source node 1 to node 4. Similarly, the flow from node 3

to node 5 is greater than the direct supply from source node 2 to node 5 in

both figures. This seems desirable from a resilience/flexibility standpoint if

there is variation in the source supplies and/or the demands. Node 3 has a

direct connection to both sources and both demand nodes. The flows in links

34 and 3-5 may vary considerably if the source supplies or the demands vary.

Therefore, designing links 3-4 and 3-6 to have larger capacities would enhance

the network's flexibility.

There are many computational advantages of using the algorithms of this

subsection. These advantages can be summed up by saying that the

single-source method is non-iterative and does not require optimization. Even

the explicit solution of the system of equations for flow equilibrium at the

nodes of the network is avoided. In other words, the algorithm ensures that

continuity is satisfied without explicitly solving the continui4 equations. The

above advantages have associated benefits including minimal computer

memory requirements. It is evident from the above properties that the

proposed method is computationally very efficient. Other advantages of the
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method are that it is simple both conceptually and in its application. This

simplicity makes it easy to use the present approach for hand calculations on

small networks. Also, computer implementation of the algorithms for weighting

nodes and calculating link flows is straightforward.

5.5 SUMMARY AND CONCLUSION

In this chapter, it has been shown how the concept of entropy for finite

probability schemes may be applied to general flow networks. Using the

relative frequency interpretation probabilities, various ratios of the flows

in a general network have been cast in a probabilistic light. Probabilities

obtained in the above way do not always r institute a finite scheme. Given

properly defined probabilities, if the sum of these probabilities is greater than

unity, then, the probabilities do not represent a finite scheme.

Two kinds of flow network have been defined including parallel and

non-parallel networks. Parallel networks are characterised by their having

source node to demand node connections only. Also, the sum of the link flows

of a parallel network equals the total supply or demand. This property makes

it possible to convert the link flows of a parallel network into a finite

probability scheme by normalising the link flows on their sum.

Well-established results of entropy maximization including the gravity model

are therefore directly applicable to the resulting single-space probability

scheme. On the other hand, more general networks require a conditional

probability model because the flows in series-connected links are not mutually

exclusive. Such a conditional probability model is based on multiple

probability spaces which are obtained by normalising the ortflows or inflows

at each node on the total flow arriving at that node. The concept of entropy

can be applied to the resulting multiple-space probabilities by means of the

conditional entropy formula for compound probability schemes.
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With network flows successfully modelled as probabilities and an equation

derived for the entropy of network flows, the problem of inferring least biased

estimates for the values of the link flows of a general network has been cast

as an entropy maximization problem subject to flow equilibrium. It has been

shown herein that this problem is a convex programming problem and, as such,

has a single maximum point. Also, it has been shown how this convexity

result, together with the linearity of the constraint set, can be exploited to

simplify the numerical solution of the problem of inferring maximum entropy

flows for any general network.

Furthermore, it has been shown in this chap.er that, on a node-by-node basis,

maximum entropy flows for single-source networks correspond to the uniform

distribution U in the sense that each demand node receives equal proportions

of the demand at that node from each of the paths serving the node. This

property has been used herein to develop a simple but rigorous and efficient

algorithm for calculating maximum entropy flows in single-source networks.

Although the said algorithm is path based, a simple node weighting technique

has been developed herein to circumvent explicit path enumeration. The above

path-based approach has many advantages of which the main ones are that:

it is a simple method which is suitable for use either by hand or on the

computer; there is no need for linear or non-linear programming; the method

is non-iterative; the system of equations for flow equilibrium are not solved

explicitly.

A potential benefit of the present path-based method for calculating maximum

entropy flows is that, in conjunction with the LP phase of the LPG design

method, it opens up the possibility of using standard routines for linear

programming as a quick and easy way of designing reliable sidgle-source water

distribution systems. The above conjecture is supported by some evidence from

three of the examples of this chapter. In Example 9, it is stated that maximum

entropy flows would appear to be maximally noncommittal with respect to the
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possibility of any link flows being zero, these zero link flows being associated

with less redundant layouts. In Example 10, it is suggested that designing the

pipes of a water distribution network to carry maximum entropy flows would

appear „to make the network considerably invulnerable to possible variations

in the flows of the network. In Example 11, several potential benefits of using

entropy in a layout optimization framework are mentioned. It is also observed

in that example that, with respect to a sample network, the links with larger

maximum entropy flows turn out to be those links which are more likely to

experience a considerable amount of variation in their flows. Therefore,

designing these links to have larger capacities would appear to enhance the

flexibility of the network.

The observations of the previous paragraph provide further justification for

the present attempt to use flow entropy as a surrogate for reliability. Further

evidence that entropy can be used as a surrogate reliability measure is

reviewed in Chapter 6. Entropy is then used in that chapter as a constraint

in a cost-minimizing model for designing water distribution systems. Numerical

examples are presented and discussed.
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(a) A looped network: flow equilibrium
alone does not, permit the unique
determination of the link flows.

Figure 5.1 Looped and tree —type networks

q40	 q30
(b) A tree—type network: link flows
can be found by using flow
equilibrium at each node.

2.0
	 8.0

1.0

7.0

4.5
(e) Network of (b) with all flows
reversed (Example 6)

5.

2.0
	

8.0

( b) Network of Examples 2 and 5

1.36

/2
0.28

4	 3

0.75
	 0A3f. 3

5.

36	 6

(b) probabilities

60

1360

4

(a) flows

o

E2

q
04

q02

65

35

(a) Network of Examples 1, 3 and 1.

(d) Network of Example 7

Figure 5.3 Sample networks with assumed flows

Figure 5.2 A parallel network: every link connects a source node
to a demand node directly.

(a) A four—arm road junction (b) Network representation of a four—arn-
road junction

Figure 5.4 Network representation of a road junction
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( b) Loop—emphasising representation of
the network of (a)

Figure 5.5 Loop-emphasising representation of a parallel network

( a) A parallel network
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Figure 5.66 Graphical representation of the constrain a wt.& optimum point

of Problem 9 for the network of Fig. 5.6a
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Figure 5.6a Network to demonstrate the constraints of Problem 9
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Figure 5.6d Maximum entropy flows for the network of Fig 5.60
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Figure 5.6c Topographical representation of the entropy function for the

network of Fig. 5.6a: (a) shows a view from the edge (face) given by rilt =0.023; (13) shows

a view from the edge (face) given by ciu+qn =0.103.

Figure 5.7 Network to demonstrate the selection of independent flows
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Figure 5.9 A single—source network used to demonstrate
the calculation of equal path flows

10.0 

(a)

24.0
(c)

Figure 5.10 Equal path flows from the source (node 1) to each
of the demand nodes 2. 3. 4 and 5

Figure 5.8 Networks and results for Example 10: the demands are shown in (a); two

instances of the inflows at nodes 1 and 2 are shown in (c) and (d), along with the corresponding

maximum entropy flows; in (d), the inflows of (c) at nodes 1 and 2 are interchanged; in (b), (a)

is reduced to emphasise the parallel subnetwork consisting of the links shown in (b).

(d)
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Figure 5.13a Maximum entropy flows for
a two—source network which has equal
path flows to each demand node

Figure 5. 13b Supersource representation
of the network and flows of Fig. 5.13a
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Figure 5.14 Maximum entropy flows for a two—source
network with unequal path flows to each demand node
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Figure 5.11 Maximum entropy flows for the network of Fig. 5.9: the flows are

found by superposing the path flows of Fig. 5.10.

59.0

Figure 5.12 Number of paths to each node for the network of Fig. 5.9: the

respective number of paths to the nodes are shown in the boxes next to the nodes.
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CHAPTER 6 ENTROPY-BASED APPROACH TO THE

DESIGN OF WATER NETWORKS

6.1 INTRODUCTION

It is well known that the conventional manual method of designing water

distribution networks leads inevitably to very expensive designs. In essence,

the approach consists of using intuition and experience to specify a highly

redundant layout with many loops and then conservatively designing the

network so that the pipes have excess capacity. Together with the extensive

looping, the excess capacity of the pipes is relied on in times of emergency

including greatly increased demands to supply the necessary flow. An integral

part of the above design process is to verify that the network is sufficiently

resilient by simulating a few extreme load cases. By virtue of the existence

of both spare capacity in the pipes and multiple supply paths to the nodes of

the network, the resulting design is very reliable because it is extremely

resilient and damage tolerant. Obviously, a design such as the one described

above has a very high capital cost.

For more effective control of the cost of constructing water distribution

systems, cost minimization methods are used. There is a large amount of

material in the literature on the problem of minimizing the (capital) cost of

water distribution systems, and the main approaches to the solution of this

problem have been described in Chapter 2. It is a well-known fact that this

problem of minimizing the capital cost of a water distribution system is

extremely difficult to solve: the problem has many variables, many constraints,

is highly non-linear, and is non-convex. Also, the size of the problem is nearly

linearly proportional to the number of demand patterns as there is a set of pipe

flow rate and head loss variables and, hence, a set of constraints for each

demand pattern. In fact, Yates, Templeman and Boffey (1984) have shown that
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the problem is NP-hard. Moreover, Templeman (1982b) has stated that research

into the solution of this least cost design problem should be focused on the

development of quick heuristic methods which can find an approximate

Optimum.

From a reliability perspective, there are several shortcomings of existing least

cost design methods (Templeman, 1982b). For a single demand pattern, the

cheapest design has a tree-like configuration. In such a design/layout, each

node has only one supply path and, consequently, the system is not sufficiently

damage tolerant as some nodes are isolated from the rest of the system if any

link breaks. To prevent the optimization peocess from producing a tree-like

design, a looped layout is prespecified and a minimum diameter constraint

added to the constraint set. Using a minimum diameter constraint in this way

does not really resolve the tree-type branchedness problem as the design which

results from the optimization process is essentially branched, with the diameter

of the loop-creating links set to the minimum allowable pipe size.

However, from a reliability standpoint, there is some doubt about the value

of having minimum diameter loop-creating pipes in an essentially branched

network. Not being explicitly designed to carry some predetermined flow, the

assumed alternative paths which rely on the minimum diameter

loop-completing links may not be usable if there is insufficient pressure in the

system. Head loss is very sensitive to pipe diameter, and forcing a large

amount of flow through a small diameter pipe may require a prohibitive

amount of pressure. There is a demonstration of this phenomenon in the

numerical examples provided in this chapter. Furthermore, as observed by

Templeman (1982b), optimization tends to remove redundancy and so any spare

capacity which is not required by the design demand patter.' is removed. The

removal of redundancy seriously curtails the ability of a network to cope with

other demand patterns than that for which the network was specifically

designed. One way of lessening this loss of resilience is to incorporate a
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multiplicity of demand patterns into the cost optimization process. However,

this approach is not very satisfactory because, as explained earlier in this

chapter, doubling the number of demand patterns, for example, almost doubles

the size of the optimization problem and, as such, the problem becomes much

more time-consuming to solve.

Nevertheless, in the absence of a satisfactory and quickly calculable

quantitative measure of resilience or reliability, it seems inevitable that a

multiplicity of demand patterns should be explicitly considered in the design

process to ensure that the resulting design has the flexibility to cope with such

eventualities as the failure of a link or fire ;ighting demands at each node of

the network. However, it has been seen above that a serious impediment to the

inclusion of multiple demand patterns in the optimization process is the size

of the problem that would result. It is therefore obvious that it would be

advantageous to reduce the size of the basic design problem which has been

presented in Chapter 2 as Problem 1. For example, if the number of constraints

can be reduced by 60%, then, two demand patterns may be considered

explicitly without significantly increasing the difficulty of solving the pi oblem.

It is shown in this chapter how the number of constraints of Problem 1 can

be reduced in a very straightforward and routine way. In fact, apart from the

constitutive equations, very many of the constraints are almost always slack

at the optimum.

Still on the question of making sure that a water network is sufficiently

resilient/reliable, an alternative to the explicit consideration of multiple

demand patterns is to explicitly consider reliability in the design problem.

Various strategies that are based on this approach have been described in

Chapter 3 in which it has been seen that the ensuing optimization problems

are generally even more difficult to solve than the basic pipe diameter

optimization problem. Any candidate accurate measure of reliability which,

when used in the optimum design problem, can achieve the necessary
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resilience needs to be based on the simulation/analysis of multiple flow

patterns, and calculating such measures is very difficult and time consuming.

It is evident from the above discussion and Chapters 2 and 3 that the problem

of designing a reliable water network as cheaply as possible is formidable. It

is therefore obvious that any formalised cost-effective method of solving this

problem should be acceptable. Thus, in the spirit of Templeman (1982b),

perhaps the emphasis should move away from locating an optimum in the

strict mathematical programming sense. It is therefore reasonable to place

emphasis, instead, on the ability of a design procedure to quickly strike an

acceptable compromise between reliability and cost. As demonstrated

throughout the remainder of this chapter, the . above philosophy is central to

the present research.

This chapter describes a new approach to water network design and reliability.

This approach uses pipe flow entropy as a surrogate measure of reliability.

Flow entropy does not measure reliability directly, but, as demonstrated in this

chapter, appears in general to have all the characteristics of an accurate

quantitative and qualitative reliability measure. Also, flow entropy has the

advantage of being easy to calculate for existing systems and easy to

incorporate into cost optimization procedures.

In this chapter, firstly, the reasons previously mentioned herein for supposing

that entropy maximization can be useful in a water network optimization

framework are restated, followed by additional justification including some

evidence from the literature. Secondly, it is shown that most of the constraints

of Problem I which are additional to the constitutive equations can safely be

omitted from the constraint set. Thirdly, an entropy-constrail.ed mathematical

programming problem for the least cost design of water distribution networks

is presented. Fourthly, numerical examples are presented, the results of which

are discussed. In particular, it is shown that designing the pipes of a water
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network to carry maximum entropy flows does confer a considerable amount

of fie,xibility on the network and that flow entropy can be used to significantly

reduce the tendency of cost minimization models to produce essentially

branched designs. Lastly, conclusions which may have far-reaching

implications for the optimum network design process are drawn.

6.2 BACKGROUND TO THE ENTROPY-BASED APPROACH

Apart from A wumah et al. (1990, 1991, 1992) and Jowitt and Xu (1993) which

have been reviewed in Chapter 3, there is little published material on the

potential uses of entropy in the context of water supply network design and

re i ability. However, there is some evidence in the literature that E degree of

uniformity in the pipe diameters and flow rates is desirable. Unfortunately,

there is no well-developed method of bringing forth such uniformity. Although

the said evidence of the need for uniformity is not directly related to entropy,

it has been seen in Chapter 4 that if uniformity is expressed in the form of a

probability distribution, then it can be related to the maximum entropy

forma,ism. It is therefore reasonable to suppose that the maximum Entropy

formalism can somehow be used to bring about uniformity in a water

distribution system. In this section, previous research elsewhere in which it

has been suggested that it is useful to design water networks such that the

pipe diameters or flows are uniform is cited. The relevant points from some

of the numerical examples of Chapter 5 are restated from a reliability

viewpoint. The maximum entropy flow distribution is then characterised.

Evidence regarding the desirability of uniformity in pipe diameters and flows

is presented next. To this end, an aspect of the traditional method of pipe

network design is considered first, followed by a very brief literature review.

Traditionally, velocities are usually confined between about 0.25nt3/s and about

5m/s. This condition forces large pipes with small flows to be replaced by

smaller pipes and small pipes with large flows by larger pipes. This process
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results in a collection of pipes that are not very dissimilar in diameter. In a

similar vein, Rowell and Barnes (1982) have stated that when designing a

network, pipes with extremely high hydraulic gradients are inefficient and

should be replaced by larger ones, while pipes with extremely low gradients

should be replaced by smaller pipes. The outcome of the application of this

philosophy is a network in which all pipe diameters are fairly similar in

magnitude.

Also, Goulter and Coals (1986) have reported that minimizing the differences

in the reliabilities of pipes connected to each node seemed an effective way

of improving overall network reliability. It is quite common practice to base

pipe failure rates on diameters (Su, Mays, ?)uan and Lansey, 1987) and so

minimizing the differences in the reliabilities of pipes is similar in effect to

minimizing the differences in diameters. In a looped distribution network with

relatively few tree-type branches, there is a node at each end of most links

if, ij e IJ, where IJ is the set of all links of the network. In other words, most

nodes are the meeting points of at least two pipes. However, to simplify the

presert explanation, it is assumed that this is the case for all nodes. Therefore,

any attempt to minimize the differences in the reliabilities or diameters of the

pipes meeting at any node n, Vn, has an effect on the pipe(s) at the other end

of each link jn,jn a NU„, and each link nia, nk a NA. NIA, and NA,

respectively represent the set of all the links carrying flow to and away from

node n, n =1,...,NN, where NN is the number of nodes in the network.

Therefore, imposition of this requirement results in the diameter of each pipe

in the network being as close as possible to that of all the other pipes meeting

at each end of the pipe. This condition leads to uniformity of all diameters

of the network.

Finally, Walters (1988) has suggested that reliability could be improved by

ensuring an even division of flow between the pipes converging at each node.

Also, Awumah, Goulter and Bhatt (1991) have stated that it is desirable to
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have links of equal capacities incident at each node. They argued that as the

head loss in a pipe is roughly proportional to the square of its flow, a smaller

pipe suffers a disproportionately high increase in head loss because of a small

increase in its flow.

Taken to their logical conclusions, the above observations imply a need for

uniformity in diameters and flows throughout a water distribution network. It

can therefore be seen that through uniformity, entropy and reliability are

somehow related. However, for a deeper insight into why entropy can be used

improv e tke reliability of n water network, it iv, neeessory to directly relate

reliability to the essence of entropy which is uncertainty, and this is easy to

do. Water distribution network reliability centres around uncertai..ty. There

is uncertainty about component failures, pipe capacities and/or sufficiency of

pressure, flow rerouting, durations of failures and repairs, impact of

inadequate supply on consumers, variations in demands and supplies, etc.

There is even some uncertainty about the meaning of reliability itself in the

context of water supply.

it "eema, Dtergore, that entropy has a part to play in the reliability of water

networks. As explained in Chapter 4, it appears on the basis of the maximum

entropy formalism that it would be safe to size the pipes of a network to carry

flows which are maximally noncommittal to factors which cannot easily be

predicted, and, to the extent that is practicable, subject to whatever is known.

Referring once more to Chapter 4, it will be recalled that the maximum

entropy distribution is the only one which is such that any possible occurrence

which is not excluded by the available information is ascribed a non-zero

probability, however unlikely such an occurrence may appePr. This suggests

that a "maximum entropy design" of a network would possess an in-built

flexibility to cope with flows which the network was not specifically designed

to carry.
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It has been shown in Chapter 5 how to calculate the entropy of the flows of

a network and how to calculate maximum entropy flows for a looped network

given the nodal inflows and outflows and the direction of flow in each link.

Flow entropy is used in Section 6.4 as a surrogate for reliability. It is therefore

useful to briefly characterise maximum entropy flows from a

reliability/flexibility viewpoint. It has been stated in Chapter 5 that for a

single-source network, the maximum entropy flow distribution corresponds to

the uniform probability distribution U in the sense that, for each node, all

supply paths to the node carry equal proportions of the demand at that node.

For a more general interpretation, reconsider the network of Example 9

(Figure 5.6a) which is shown here as Figure 6.1a. If the possibility of flow

reversal is ignored, then, Figures 6.1b to 63i represent the possible layouts for

supplying the demands of Figure 6.1a. Figure 5.6b, which is the graphical

representation of the constraints and optimum point of the maximum entropy

flows problem of the network of Figure 5.6a (Figure 6.1a), is shown here as

Figure 6.1j. The four edges of the trapezium which represents the feasible

regiou. each correspond to one of the four layouts having six links, Figures

6.1b to 6.1e. For example, Figure 6.1b corresponds to the edge q34 -= 0. Also, the

four vertices each correspond to one of the layouts having live links, Figures

6.1f to 6.1i. As an example, Figure 6.1f corresponds to the vertex

(q3, qt2)= (0, 0.159).

The layouts of Figures 6.1a to 6.1i are now examined from a

resilience/flexibility perspective. Each of the four tree-type layouts has only

one flow distribution which satisfies all the demands of the network. On the

other hand, each of the four single-loop layouts can meet the demands in very

many ways. The two-loop layout has even more ways 3f supplying the

demands. Also, it is easy to see that if appropriate link flows of the two-loop

layout of Figure 6.1a are set to zero, then, this layout can take on the

respective flow characteristics of all the other layouts, but the reverse is not

167



true. As such, the two-loop layout is the most flexible. In a similar way, the

single-loop layout of Figure 6.1b can take on the respective flow

characteristics of the tree-type layouts of Figures 6.1f and 6.1h, but not vice

versa. In this way, one can see that the tree-type layouts are the least flexible.

It can therefore be expected that to minimize inflexibility, the network should

be designed to carry flows which are as far away as possible from each of the

distributions of the tree-type layouts. Recalling the comments of Example 9

relating to the position of the optimum point and, referring to Figure 6.1j, the

point representing the maximum entropy flow distribution lies exactly midway

between the edges q34 = 0 and q,, = 0.028. Putting it another way, the feasible

-region syi-in-netrizz& skNosan at the point representing the

meximum entropy flow distribution lies on the axis of symmetry. Ar. such, the

optimum point is not unduly close to any of the vertices, which have been

shown to represent the most inflexible layouts. Therefore, lengthways (i.e. in

the direction perpendicular to the axis of symmetry), the optimum point lies

in the expected position from a flexibility viewpoint.

With flexibility still in mind, it remains to justify the location of the optimum

point along the axis of symmetry. Obviously, (qu, •712)* is nearer the

boundary 1= q34 (1'12= 0.159 than the boundary f a -I- a, = 34 . 12 = 0.103. However,

f 0.159 corresponds to the layout of Figure 6.1c while f= 0.103 corresponds

to Figure 6.1d. Each of these layouts has two links the removal of any one

of which would result in node isolation. The links in question are 3-5 and 4-6

for Figure 6.1c, and 3-5 and 5-6 for Figure 6.1d. For Figure 6.1c the worst case

failure is that of link 3-6 which would result in a node with a demand of 0.092

being isolated. For Figure 6.1d the worst case failure is also that of link 3-5,

but the total demand at the isolated nodes is 0.148, a much higher value than

0.092 for Figure 6.1c. For this reason, the boundary f= 0.159-Figure 6.1c) may

be said to be safer than the opposite boundary 1=0.103 (Figure 6.1d).

Therefore, the optimum point being closer to the boundary f= 0.159 is not

counterintuitive; exactly how close to this boundary the optimum point should

be depends on the value of the nodal abstractions. Finally, it is obvious that,

as desired from the point of view of flexibility, the maximum entropy flow

distribution is based on the two-loop layout of Figure 6.1a; i* does not lie on

any of the boundaries of the feasible region.

From the above discussion, it can be concluded that the maximum entropy

flow distribution is the most central of all the distributions capable of

satisfying the demands of the network. Although the above conclusion is not

totally unexpected, it suggests that the magnitude of the possible changes to

the values of the link flows of a network can be minimized by designing the

network to carry maximum entropy flows. Fmm the point of view of flexibility

in water supply, as observed near the beginning of this section, the headloss

in a pipe is approximately proportional to the square of the flow rate. Thus,

for example, if the pipe flow rate is doubled, the headloss is almost quadrupled,

resulting in an increase in headloss of almost 300%; if the flow rate is trebled,

the corresponding increase in headloss is approximately 800%. It is therefore

self-evident that if the increases in pipe flow rates can be minimized

throughout the network, then, the additional headloss in the system due to any

increases in pipe flow rates will also be minimized in consequence. Also, if the

increase in headloss is minimized, the resilience of the network should be

considerably enhanced as the network is then able to carry flows for which

it was not specifically designed without suffering exceedingly high headlosses.

This is the essence of the flow entropy-based approach to the design of reliable

water networks, and this design method is described in Section 6.4.

6.3 REDUCING THE SIZE OF PROBLEM 1

Before adding an entropy constraint to Problem 1 in the next section, some

rather obvious ways of reducing the size of this problem are mentioned here.

It has been observed herein that Problem 1 has many variables and many

constraints. For large networks the computational expense of solving this
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problem can be very large. Any simplification of the problem is therefore

worthwhile. For convenience, Problem 1 is restated below. The symbols used

in Problem 1 have previously been defined and those definitions are

maintained here.

Problem 1

Minimize C= yZI,u14	 (6.1)
1�Du

iialJ

subject to:

he= aLu(quICu) 18521Dr Vij a IJ

E qkn q. n =	 —
je NU„	 ke ND„

of how independent flows may be selected and dependent flows calculated have

been given in Chapter 6, Section 5.4. However, the decision to use the above

simplification or not will generally depend on the solution strategy used to

solve the optimization problem. In any case, it is useful to take into

consideration the fact that it is more straightforward to obtain general

expressions for the partial derivatives of the constraint functions if each link

flow is a variable, i.e., if the dependent-and-independent flows approach is not

used. It is also obvious that the pipe headloss equations can, for example, be

reduced to the function

hu fiLu,Dii ,qu, Cu) = aLu(q u1C01'8521Dr

whose value is hu for specified values of L Dd q, . In this'	 the kJ

variables and constraints can be eliminateo.

In the following discussion, reference is made to the network of Figure 6.2 for

illustrative purposes, but the material in this discussion is generally

applicable. In addition to the constitutive equations, for the network of Figure

6.2, tE ere are: 7 non-negativity constraints on the flows; 10 node pi essure

(6.6)	 constraints, i.e., an upper and a lower limit for each of the 5 demand nodes;

similarly, 14 flow velocity constraints; 14 diameter constraints. There are,

(6.7a) therefore, 24 non-linear velocity and node pressure constraints in addition to

the constitutive equations for the network of Figure 6.2. It is now shown that

for this network, only the minimum diameter constraints and the minimum

node pressure constraint for node 6, which is a terminal node, are strictly

essential to the solution of the problem.

(6.8a)

(6.9)

This section is not primarily concerned with the constitutive equations, which

are fundamental to the optimization problem. However, it it. obvious that the

number of pipe flow rate variables can be reduced considerably if the problem

is solved in terms of selected independent flows. This approach also removes

the flow equilibrium constraints from the actual optimization process. Details
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Firstly, the exponential increase in cost with diameter ensures that a large

diameter pipe is not used if a smaller one will do. The D.,,, constraints may

therefore be removed. However, it is vital to ascertain from the final results

that no diameter exceeds D„... Any such violated constraints should be

reinstated and the program rerun. This process of reinstating violated
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constraints and rerunning the program should be repeated as necessary. The

cost function also makes each v,„., constraint more likely to be in the active

set than the corresponding constraint because of the preference for small

diameter pipes. The u,, constraints may therefore be eliminated in favour of

post-optimization verification as described above. Furthermore, it is probably

easier to solve the problem without the upper bounds on the flow velocities,

check the velocities at the solution and resolve the problem with any violated

upper bounds reinstated.

Secondly, except perhaps for some critical nodes, for example near a reservoir,

high residual pressures are not very likely to be a problem in a cost

minimization formulation. As explained ea r lier, small diameter pipes are

preferred, and any available pressure tends to be completely used. It follows

that each rather than the corresponding is more likely to be

critical. Therefore it seems that explicit consideration of the upper limits on

the nodal pressures is not generally necessary. Of course, it must be confirmed

at the solution that no node has a residual pressure that is too high.

Thirdly, closer examination of the 11„,1 „ . „ constraints reveals that these

constraints need not be specified for every node. For a fixed layout and set

of flow directions, nodes furthest from the sources tend to have the lowest

pressures. Thus, reconsidering Figure 6.2, the following equations can be

written for 1J4 and 1,18 respectively.

Zhu h 12 +h 24	 — Hmin 4	 (6.10)
41E/J4

zhu m hi,	 h46 =	 hü +h48 � 	 //min
	 (6.11)

ijeMs	 VELT,

Equations similar to Eqs. (6.10) and (6.11) can be written for all pairs of

directly-connected nodes, but the following discussion which is based on nodes

4 and 6 is generalised shortly for the whole network. There are three cases

to consider for the values of H1—	 /, say, and HI — Hwn.e = /, say,

respectively. Either A = A, or A >A, or A < A . If A � then, it follows from

Eqs. (6.10) and (6.11) that the minimum head constraint will be binding for

node 6 and slack for node 4. In such a case, there is no need to explicitly

consider a minimum head constraint for node 4. However, if A < A , then, the

status of the minimum head constraint for node 4 at the solution of the

optimization problem cannot be predicted in advance. In this case, it is

necessary to include a minimum head constraint for node 4 in the problem.

To generalise the above results, let the ',clues of A and A be called the

maximum allowable headlosses for nodes 4 and 6 respectively; where there are

multiple sources, these terms still apply, but node 1 (or 111) in the expressions

for A and A respectively is replaced by whichever source nodes are specified

for the respective paths selected for the nodes. It. can therefore be said that

there is no need to specify a minimum pressure constraint for a non-terminal

node, if the maximum allowable headloss for that node is not less than the

maximum allowable headloss for the terminal node downstream of the

non-terminal node being considered. For this reason, it will usually be

necessary to explicitly consider minimum head constraints for terminal nodes

only. It is therefore safe to omit minimum head constraints for all non-terminal

nodes and check at the solution that these omitted constraints ate not

violated. If any omitted constraint is violated, it should be considered

explicitly.

One more observation concerns reintroduction of bounds initially assumed

slack into the problem. As both the A„,„ and D„,., cvnstraints cannot

simultaneously be binding for unequal values of D„„„ and Au„, each D„,.„

constraint that is violated should replace the corresponding ag, constraint

and vice versa. The above observations regarding the statuses of upper and
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lower bounds at the solution also apply to the velocity and pressure head

constraints.

programming problem is formulated in this section followed by numerical

examples and discussions in Section 6.5.

In the above manner, the size of Problem 1 and, in consequence, the

computational effort needed for its solution can be reduced considerably. As

an example, for the network of Figure 6.2, if the above simplifications are

applied, only the 7 minimum diameter constraints and the minimum head

constraint for node 6 are initially explicitly considered. However,

post-solution verification that no omitted constraints have been violated is

essential. Rather than a manual check, this verification process can be

included in the optimization program. A (sub)routine which, when a solution

is round, checks the constraints of Problem 1 to identify those that are violated

is very easy to write and may be included 'n the optimization program.

6.4 ENTROPY-BASED OPTIMUM DESIGN OF RESILIENT WATER

NETWORKS

It has been concluded in Section 6.2 that the maximum entropy flow

distribution is the most central of all the flow distributions capable of

satisfying the demands of a flow network. Also, it has been suggested that the

magnitudes of the potential changes to the values of the link flows of a

network can be minimized by designing the network to carry maximum

entropy flows. As explained in Section 6.2, if the increases in pipe flow rates

can be minimized throughout the network, then, the additional headloss due

to any increases in pipe flow rates will also be minimized in consequence. If

a water distribution network is designed in such a way that it can

accommodate moderate changes to its flow distribution without the headloss

increasing excessively, then, the network should be considerably resilient. In

this section and the next, the effects of incorporating flow entropy into

Problem I are studied from a flexibility standpoint. A mathematical
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6.4.1 FORMULATING THE ENTROPY-BASED OPTIMUM DESIGN PROBLEM

The present research is exploratory in nature and this fact has largely dictated

the way in which the entropy-based optimum design problem has been

approached. Three possible formulations can be identified including a cost

objective function with an entropy constraint, an entropy objective function

with a cost constraint, and a multiple-objective approach in which both

entropy and cost are included in the objective function. The

en'ropy-constrained cost minimization approach is used herein be -ause the

cost minimization model and its shortcomings are well known. As such, it

should be easy to appreciate the effects of adding an entropy constraint to

Problem 1. Various ways of simplifying Problem 1 have been discussed in

Section 6.3. The resulting problem, with an entropy constraint added, is stated

below as Problem 10. In Problem 10, S, is the the maximum value of the flow

entropy of the network which is obtained by solving Problem 9; S' is a specified

minimum allowable value of entropy for the network; S' is reserved for the

actual value of the entropy constraint at the optimum.

Problem 10

Minimize C YZLuDZ;
VDu

subject to:

h .. — aL..(q..1001-8521v v

E 9.J4— JD q h4 qn
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in which t is the set of all terminal nodes; all other symbols have previously

been defined and those definitions are unchanged. The present research is

exploratory and no attempt has been made to develop a special algorithm for

Problem 10, which is non-linear in both the objective and constraint functions.

Furthermore, Problem 10 may be non-convex and, as such, may have local

minima which are not necessarily global. Any suitable algorithm for

constrained non-linear programming may be used to find a local minimum of

Problem 10. The numefica1 examples oi Section 6.5 kvasie lseetx val‘ted

computationally using the NAG library routines E04VDF and E04UCF for

non-linear constrained optimization.

6.5 MAJOR NUMERICAL EXAMPLES AND DISCUSSION

The main conclusions of the present research are based on the results of

Examples 12 and 13 which follow shortly. In each example, Problem 10 is

solved computationally for different values of the minimum allowable value

of flow entropy a for a network with a predetermined fixed layout. The

solution of Problem 10 for a specified value of S represents a possible design

of the network being considered. Thus, for each sample network, different

designs are generated in this way, from the minimum to the maximum entropy
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value of the sample network being considered. It will be recalled from Chapter

5 that for a single source network, the minimum value of entropy is the

entropy value for the case in which each demand node is supplied by one path

only. The loop and minimum diameter constraints in Problem 10, however,

force the entropy constraint to become slack at a value which is slightly

higher than the minimum entropy value of the network being considered, and

this happens if a sufficiently low value of a is used. In other words, the

minimum diameter constraints prevent the optimization process from

completely eliminating any pipes and, as such, these constraints ensure that

all loops are retained. With the loops retained, vanous Tactors cornkchne

make sure that there is flow in the loop-completing links. For example, the

lo,p constraints have to be satisfied, and whenever a pipe is pl.( gent, it is

probably cheaper to use it to carry some flow than not to use it at all. Finally,

with the loop-completing links carrying some flow, any of the spanning-tree

configurations with which the minimum value of entropy for the network is

associated cannot be attained. This explains why the entropy constraint is

generally slack at a value slightly higher than the minimum value for the

looped network being considered.

The aim of Examples 12 and 13 is to demonstrate that flow entropy is a good

surrogate (or reliability and that designing water distribution networks to

carry maximum entropy flows provides a very convenient means of sizing the

pipes of the network so that the distribution system is considerably resilient

and cost effective. To this end, in Examples 12 and 13, it is shown by-various

measures notably headloss and energy that, generally, as the entropy of a

network increases, the flexibility/reliability of the network increases.

It is convenient at this point to briefly explain the philos4phy behind, and

some of the practicalities of, the use of headloss and energy to assess the

performance/flexibility of a water distribution network. The energy and

headloss measures described below are general trend indicators only. A more
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rigorous analysis is presented in Chapter 7. The hydraulic performance of a

looped network design can be assessed by demand-driven simulation, an

approach which assumes that all network demands are satisfied. A possible

implementation of such a demand-driven simulation consists of analysing the

pipe network by the Hardy-Cross method with initial pipe flow rates for the

Hardy-Cross iterations which satisfy both continuity and the network supplies

and demands. In other words, the initial pipe flow rates must be such that in

addition to nodal flow equilibrium being satisfied at each node, any external

inflow or outflow at a node must equal the supply or demand at that node.

The values of the external flows are unchanged at the solution of the

Hardy-Cross algorithm and, as such, all the demands are satisfied no matter

it the pressures throughout the network are.

A demand-driven simulation can therefore be used to consider the following

two emergency situations: single link failures with the design or normal

demands and "fire fighting" demands which, as explained shortly in Example

12, mimic fire fighting requirements at each node in turn. The procedure for

calculating the headloss measure for a single-source network is described next.

For each pipe failure (with normal demands) or each "fire fighting" load (on

the full network), the notional head required at the source to satisfy all

demands is found as follows. First, a demand-driven simulation of the (full or

reduced, i.e., with one link closed off) network is carried out. Second, the head

loss in any specified path from the source to the most pressure-critical node

is found by summing the head losses in all links in the path. Third, the total

head loss is added to the minimum desirable head at the most pressure-critical

node. Strictly speaking, however, it is sufficient to calculate the notional

usable head H required to satisfy all demands as follows.

H = max <	 Vn e t >	 (6.12)
(jelJ„

in which t represents the set of all terminal nodes, i.e., nodes not having any

pipe outflow. It may be noted that in general t changes according to changes

in the demands and layout of the network. This rather devious notional

headloss parameter allows quite rigorous comparisons. Other simple measures

such as percentage demand satisfied at adequate pressure do not account for

non-zero shortfalls in pressure or supply.

Turning to energy, which is also used in this chapter for assessing designs,

Rowell and Barnes (1982) have suggested that, for a given flow, the efficiency

of a pipe can be gauged from the rate at which the pipe dissipates energy.

Therefore, it would appear that a network can be assessed on the basis of the

total amount of energy that the network disgipates per unit time. The total

energy E dissipated by a pipe network can he calculated as

E pg E quit u
	 (6.13)

where IJ.n is the full or reduced network as appropriate, p and g are the lensity

of water and acceleration due to gravity respectively.

6.5.1 EXAMPLE 12

The layout and demands of the sample network used in this example are taken

from Alperovits and Shamir (1977). The reduced version shown in Figure 6.3

does not include the link between the reservoir and the first demand node.

Also, the inflow at node 1 is the net flow. All node and pipe data are as given

in Figure 6.3 and Table 6.1. The cost of the pipes in £ per metre is taken as

yD 4 , Vij, in which the diameter is in metres, y = 900. The value of Dmin is taken

as 0.1m. Problem 10 has been formulated and solved computationally for the

network of Figure 6.3 for various values of minimum allowable entropy S.

The values of entropy used have been selected such that the range of possible
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values for the sample network is well covered. The minimum and maximum

entropy values for the demands and flow directions shown in Figure 6.3 are

1.616 and 1.915 respectively.

The NAG library routine E04VDF has been used for the numerical

optimization. The routine E04VDF is an easy-to-use version of the NAG

library routine E04VCF which is a comprehensive routine for constrained

non-linear programming. The routine uses sequential quadratic programming

and requires the partial derivatives of the objective and constraint functions.

Also, by treating bounds, linear constraints and non-linear constraints

separately, the routine works in the region within which the optimization

problem is "meaningful"; an upper and a lower bound are specified. or stated

as non-existent, for each variable and each linear or non-linear constraint.

Beginning with the user-provided initial point, once a point that is feasible

with respect to the bounds and linear constraints is found, the problem

functions are thereafter evaluated only at points which are feasible with

respect to the bounds and linear constraints. As such, the routine is suitable

for optimization in an entropy framework because the entropy func. ion is

undefined for flows that are infeasible with respect to the (linear) flow

equilibrium constraints. It will be recalled from Problems 7, 8 and 9 that,

because of the entropy function, Problem 10 is undefined outside the feasible

region of Problem 7.

As stated earlier, the network of Figure 6.3 has been designed using the

formulation of Problem 10 for different values of h with the design load of

Table 6.1. The design results are summarised in Tables 6.2 and 6.3 which show

the optimum diameters and flows respectively. As all links are of equal length,

some statistical measures of spread, namely, the sample standard deviation and

the coefficient of variation, are also shown for the diameters. The mean

diameter and the above measures of spread are used herein in a somewhat

qualitative manner as general trend indicators.

The hydraulic performance of the entropy-constrained designs has been

assessed by simulation as described earlier using a consumption-based

approach that assumes total demand satisfaction. Two kinds of emergency

have been considered. The results in Tables 6.4 and 6.5 are for single link

failures with normal demands. Tables 6.6 and 6.7 are for the "fire fighting"

loads in Table 6.1 which mimic fire fighting requirements at each node in turn.

The only difference between the "fire fighting" demands and the design

demands is that an arbitrary fire fighting demand of of 0.25m 118 replaces the

design demand of each node in turn. Obviously, the inflow at node 1 is

adjusted so that the inflow equals the sum of the outflows. The fire fighting

demand of 0.25rn3/s is approximately 88% of the total design demand of 0.284

nz' ss. As an example, Case 1 in Table 6.1 coi responds to the case c r a fire at

'node2, xv3 tite clettnstvi the is (125a0(s instead of 0.028tre(s which is the

normal demand at node 2. Also, additional information regarding the position

of critical nodes and links is presented in Tables 6.8 to 6.11. Details on these

tables are given the first time that the tables are referred to in the following

discussion.

6.5.1.1 DISCUSSION

Much of interest can be said about the results of Tables 6.2 to 6.11, and these

results are considered below under various headings.

Cost and pipe-diameter properties of the entropy-constrained designs

The diameters and flows of Tables 6.2 and 6.3 respectively clearly show the

network becoming less and less implicitly branched as the entropy increases;

a pictorial representation of the pipe diameters is provided in Figure 6.4. The

above observation is supported by the sample standard deviations and

coefficients of variation of the diameters. Furthermore, the averages of the

diameters increase with entropy. To see how reliability and pipe diameter are

related, some findings of a case study are quoted. Clark, Stafford and Goodrich

180 181



(1982) carried out a study involving over 6,854km of mains. The peak demand

of the distribution network in question was over 11.39m 3/s. It was concluded

that:

1. Large diameter pipes tend to have a longer period before the first
maintenance event than do smaller diameter pipes.

2. ... once a length of pipe begins to require maintenance, the maintenance
rate increases exponentially.

It may therefore be said that large diameter pipes are more reliable than

smaller diameter pipes and so the (mechanical) reliability of a network would

be expected to increase if the diameters of the smaller pipes and the "mean

diameter" increase. It follows from the results of Table 62 that (mechanical)

reliability can be expected to increase as encropy increases.

Also, the efficiency of the entropy-constrained designs in terms of cost is

extremely high. The increase in cost from a design with a slack entropy

constraint of 1.678 to the design corresponding to the maximum entropy value

of 1.915 is only 4.8% or, approximately, 6%. It becomes clear in a moment how

much more resilient the design having an entropy value of 1.916 is than the

design with an entropy value of 1.578. There are two complementary :.easons

for this low percentage increase in cost. The first is that the diameters of large

pipes are reduced while simultaneously increasing the diameters of small pipes.

The cost of making small pipes larger is thus, more or less, offset. The second

factor is the exponential nature of the cost function. It ensures that, if all

lengths are equal and the average diameter is constant, the most uniform set

of diameters is the cheapest. This is easily demonstrated numerically for the

case of two pipes.

The above observation would seem to contradict the experience gained from

conventional cost minimization models. However, this appa:ent anomaly can

be explained. Cost minimization proceeds with an overall reduction in the

diameters, up to a point where further reductions would lead to constraint

violation. Cost savings are therefore possible because smaller pipes are

considerably cheaper than large ones. Put in a slightly different way, it is

cheaper to increase the diameter of a small pipe than it is to increase the

diameter of a larger pipe by the same amount. In the present model, the

entropy constraint indirectly limits the overall reduction in diameters. Once

this limit is reached, further cost savings can only come by exploiting the fact

that for a fixed number of pipes and a fixed "average diameter", the cheapest

option is to avoid large pipes as far as possible. In consequence, the most

uniform diameters are preferred.

In the present example, the 5% increase in cost is a small price to pay for the

overall increase in mechanical reliability ce diameters. This leads to the

conjecture that even for more complex networks, any increase in cost is not

very likely to be very much higher than this figure of 5%. This speculation

is based on the fact that there will be many more non-minimum diameter pipes

than minimum diameter pipes since there is only one loop-completing link per

loop. Therefore, by reducing the diameters of the largest pipes slightly, it will

be possible to considerably increase the diameters of the smallest pipes without

substantially increasing the total cost of the pipe network. It would seem,

therefore, that the opportunity to increase the diameters of minimum diameter

pipes in this way will increase as the number of loops increases.

Network performance following the removal of one link

The link failure results in Table 6.4 show several noteworthy points. First, the

maximum notional usable source pressure head required to satisfy all network

demands decreases very rapidly as entropy increases. Of more importance is

the accompanying reduction in the average value. It may therefore be inferred

that problem areas are not being improved at the expense of other areas. In

particular, the high rate of reduction underlines quite drar.catic system-wide

gains in performance. However, the highest value of usable source head for

the maximum entropy design is slightly higher than the design having an

entropy value of 1.900. On the other hand, this increase in the value of the
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maximum head for 5=1.915 is outweighed by the large concurrent

improvement in the next worst case, as demonstrated by the continued

reduction in the average head. It may also be noted that, from a = 1.578 to

S =1.915, there is slight oscillation in general in the values in each row, but

the amplitudes of these oscillations decrease as the entropy increases.

The improvement in hydraulic performance observed in Table 6.4 can be

explained in terms of uniformity in diameters and flows respectively. For a

pipe with given fixed values of length, friction coefficient and flow, the head

loss is nearly inversely proportional to the fifth power of the diameter. The

consequence of this relationship is that, for example, doubling the diameter

of -I pipe while keeping the flow in the pipe constant reduces the h( -id loss in

that pipe by a factor of approximately 2 o: 32; trebling the diameter reduces

the head loss in the pipe by a factor of approximately 3' or 243. The above

characterisation of the relationship between headloss and pipe diameter is,

however, a slight oversimplification because pipe flow rate and diameter

generally tend to increase or decrease hand in hand. Nevertheless, it can be

inferred that an implicit tree-type network is likely to experience much higher

increases in head loss if a link fails than a network having pipes with (similar)

average-size diameters. Additionally, the head loss in a pipe is nearly

proportional to the square of the flow rate. By virtue of this quadratic head

loss-flow rate relationship, a network in which the pipes are designed to carry

uniform flows is less likely to suffer very high increases in head loss than a

network in which the pipes are designed to carry flows that are very dissimilar

in magnitude. The above statement can be justified on the grounds that the

diameter of a pipe depends on the flow rate in that pipe; a pipe carrying a

small flow generally has a small diameter whereas a pipe larrying a larger

flow generally has a larger diameter. The above factors i.e. uniformity of

diameters and flows, including the observation that pipes with the most

uniform diameters are the cheapest if the lengths are equal, explain why it is

possible to considerably improve the implicitly branched network at a cost

increase of only about 5%.

The values in Table 6.5 show a similar behaviour to those in Table 6.4 in that

both the mean and maximum energy dissipated decrease as entropy increases.

However, in assessing designs on the basis of energy dissipation it is useful

to realise that the same flow will dissipate less energy in a large, more costly

pipe than in a smaller one. Therefore, a design with a low rate of energy

dissipation may not necessarily be cost effective. Nevertheless, for each design,

a deeper interpretation is possible by comparing the reduced networks to the

full network. For a = 1.6, for exemple, failure of pipe 4-6 hardly increases the

ass.ount of energy dissipated. This suggests that arc 4-6 is being nculerused in

this implicitly branched network design. A more important comparison is

between the average rate of energy dissipation for the reduced networks and

the rate for their corresponding full network. The difference between these

values is a rough measure of how much, on average, the behaviours of the

reduced networks deviate from the behaviour of the full network and, as such,

this measure can be used to gauge the flexibility of a network. The values

in the last row of Table 6.5 fall very rapidly as the entropy increases,

suggesting that a design with a high value of entropy is much more resilient

than a counterpart having a lower value of entropy.

Also, it can be inferred from Table 6.5 that up to an entropy value of

approximately 1.7, links 2-4 and 4-6 would apparently be really useful only if

a major link failed. However, the pressure requirements may be prohibitive,

as demonstrated by Table 6.4. This suggests that the value of having minimum

diameter loop-forming pipes in an essentially branched network is imaginary

rather than real. Furthermore, from the point of view of stagnation, it is

questionable how much these minimum diameter pipes contribute to

circulation in the present example in view of the magnitudes of their flows.
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Network performance under fire fighting loads

The fire fighting results in Tables 6.6 and 6.7 clearly show resilience/flexibility

increasing with entropy. Despite a slight oscillation in the values for each

node, the averages exhibit a steady downward trend as entropy increases. The

rate of improvement is, however, somewhat lower than is the case for link

failures. It can therefore be concluded that all the results of Tables 6.2 to 6.7

indicate that, for the sample network, flow entropy is a good measure of

flexibility.

Flow entropy as a control parameter

It will be recalled from Section 6.2 that the fact that flows in pipe networks

arc' rerouted in complex ways which are difficult to predict is cne of the

factors which make it difficult to calculate the reliability of water networks.

However, a close examination of the simulated results for the

entropy-constrained designs suggests that if S is sufficiently large, the

behaviour of the network with regard to flow rerouting due to increased

network flows or a single link failure may be less unpredictable. In other

words, entropy can be used to control the flow rerouting characteristics of a

network. The above proposition is discussed next with the help of Tables 6.8

to 6.11 and Figures 6.5 and 6.6.

Tables 6.8 and 6.9 are obtained as follows. For each design, the critical link

is the link which, when removed, results in the reduced network which

dissipates the highest amount of energy or has the highest value of the usable

source head needed to satisfy all demands. The critical node is the terminal

node having the highest value of Z h,) following the failure of the critical

link. Thus, for Table 6.8 for example, the critical link for a =1.578, for

example, is found from Table 6.4 to be 1-3, this being the link the reduced

network for which has the highest value of the net source head needed to

satisfy all the demands. Having found the critical link or worst case failure

according to the headloss or usable source head criterion for this design of
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as= 1.578, the critical node is then obtained from the simulated results of the

above worst case failure. The data of Table 6.8 are obtained in this way by

repeating the above procedure for the other designs. Table 6.9 is obtained in

a similar way, the only difference being that the critical link is determined

from the energy dissipation values of Table 6.5. Tables 6.8 and 6.9 happen to

show identical results, but this may not generally hold true. How Tables 6.10

and 6.11 are obtained is explained shortly.

For the design demands, Figure 6.5a shows the worst case link failure and the

flow directions for the reduced network as determined by simulation for the

S = 1.578, S = 1.600 and b= 1.800 designs. Figure 6.5b shows the above details

for a = 1.900 and a = 1.915. Figure 6.5c is for ,a = 1.700. The notion th t entropy

can be used to control the flow rerouting p,-operties of a network is based on

the flow directions of Figure 6.5. Looking at each diagram in turn, the flows

are routed in Figure 6.5a in such a way that node 6 is the critical node, even

though the demand of 0.092m 3/s at node 5 is over 64% greater than the demand

of 0.056m 3/s at node 6. This rather unexpected way in which the flows are

routed in Figure 6.5a is caused by the pipe connecting node 4 to node 6 having

too small a diameter. This casts further doubt on the use of minimum diameter

loop-completing pipes as a means of providing alternative supply ioutes to

demand nodes. The flow directions of Figure 6.5b, however, accord with

intuition as node 5, in this figure, is farther from the source than node 6 in

terms of reachability. The fact that the flows of Figure 6.5b are routed in a

more obvious way than those of Figure 6.5a is because the pipe diameters of

the designs with an entropy value of 1.900 and 1.915 respectively are more

uniform. Some implications of the ability to predict flow directions for reduced

networks are stated shortly. (In Figure 6.5c, the critical link is 3-5 rather than

1-3 because, for the design with an entropy value of 1.700, De= 100mm while

D24 = 165mm. Therefore, when link 1-3 fails, link 24 can cope better with the

resulting increase in its flow than link 4-6 can when link 3-5 fails. Further
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discussion of this figure is deferred. Results from Example 13 will help to bring

out the significance of the figure.)

Tables 6.10 and 6.11 are based on the simulated performance of the

entropy-constrained designs for the fire fighting flows. Both tables show

identical results, and the critical node in these tables is the node at which a

fire fighting demand causes the worst network performance as measured by

headloss and energy dissipation respectively. Figure 6.6a shows the flow

directions for the worst case fire fighting load for the designs with an entropy

value of 1.578, 1.600 and 1.700 respectively, as determined by simulation.

Figure 6.6b shows the same information for the designs with entropy values

of 1.800, 1.900 and 1.915 respectively. The flow directions of Figure 6.6b are

the same as the design flow directions and are, intuitively, more natural than

those of Figure 6.6a; one would instinctively expect that as node 6 is the

farthest node from the source, node 6 should be the most pressure-critical node.

It may also be noted that in Figure 6.6a, the path 1-3-5-6-4-2 covers a distance

of 5000m compared to a maximum distance of 3000m in Figure 6.6b. The flows

of Fkure 6.61) are routed in a more obvious way because the designs rah an

entropy value of 1.800, 1.900 and 1.915 respectively have more uniform pipe

diameters.

On the basis of the above discussion, it may be conjectured that entropy can

be used to reduce the amount of unpredictability in the way in which flows

are rerouted due to increased network flows or the removal of a link. The

ability to predict how flows will be rerouted in a network is most useful from

both reliability analysis and design perspectives. As an example, if one could

be certain that the critical node for fire fighting flows for the network of

Figure 6.3 will be node 6, then, instead of explicitly considcring fire fighting

flows at each node in the (optimum) design problem, it is probably sufficient

to explicitly consider the fire fighting demand of node 6 only. More generally,

it appears that entropy can be used to force the critical nodes for fire fighting

'flows to be at the design terminal nodes of a network and, in consequence, to

reduce the need to explicitly consider fire fighting flows at all nodes of a

network at the network design stage. It should be noted, however, that the

above appraisal is based on equal fire fighting demands. More work is

necessary to establish what happens when the fire fighting demands differ

considerably from node to node.

6.5.2 EXAMPLE 13

In this example, the design and analysis of Example 12 are repeated, but on

the slightly larger sample network depicted in Figure 6.7. Apart from

properties such as the distribution of demands, for example, that are specific

to the network of Figure 6.7, most of the details of this example are the same

as those of Example 12; any differences between Examples 12 and 13 are stated

here. The main aim of this example is to provide evidence that the conclusions

of Example 12 appear to hold more generally. The layout and demands of the

network of Figure 6.7 are taken from Fujiwara and de Silva (1990). The nodes

are numbered as in Fujiwara and de Silva. The pipe and node data are given

in Figure 6.7 and Table 6.12. As in Example 12, the cost of the pipes in £ per

metre is taken as , Vij e IJ, with y=900 and the diameter in metres.

Also, it may be noted that the fire fighting nodal demand of 0.25m 5/s is 120%

of the total design demand of 0.2081m3/8.

Problem 10 has been formulated and solved computationally for the network

of Figure 6.7 using the NAG library routine E04UCF. The main difference

between E04UCF and E04VCF, which has been described briefly in Example

12, is that the former computes those gradients which are not supplied by the

user using finite difference approximations. In the present Jxample, only the

gradients of the entropy constraint with respect to the pipe flow rates have

been computed in this way. All other gradients have been calculated from

analytical expressions. The minimum and maximum entropy values for the
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network of Figure 6.7 are 1.973 and 2.800 respectively. The values of the

minimum allowable entropy value h used for the entropy-constrained designs

have been chosen so that there is a value at either end of the range, one near

the middle, and two values near the upper limit. The three highest values are

quite close in magnitude and it is instructive to compare the performance of

the corresponding designs. Results of the numerical optimization and

simulations are summarised in Tables 6.13 to 6.17 which are discussed next.

6.5.2.1 DISCUSSION

The results of this example are broadly similar to those of Example 12. This

discussion is therefore brief, although details are given where necessary. The

abl ity of flow entropy to control the posit.on of the critical Hi k is also

discussed from a reliability-based design perspective. Tables 6.13 to 6.17 are

now considered. Starting with Table 6.13, the design having an entropy value

of 2.170 is implicitly branched, while there is a trend of increasing uniformity

as the entropy value increases. Also, the mean diameters show that there is

a trend of increasing mechanical reliability as entropy increases, and the

maximum entropy design is 5.4% more expensive than the essentially branched

design having an entropy value of 2.170.

A closer look at the last four rows of Table 6.13 shows the results for

2.750 to be somewhat out of line. Also, quoting costs in £ 105 to six decimal

places (all the variables, constants, functions, etc. of the computer program

are in double precision), the costs for h = 2.750 and a -= 2.800 are 0.292272 and

0.291767 respectively. It would appear, therefore, from a cost minimization

viewpoint, that the results for a = 2.750 correspond to a poor local optimum.

It is important, however, to bear in mind the dual nature of the present

demonstration: to show that entropy-constrained cost m:nimization is a

possible practical design approach and that reliability generally increases as

entropy increases. In other words, when interpreting the simulation results, it

is useful to consider whether the values corresponding to the design with
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= 2.760, which has the most uniform diameters, weaken the premise that flow

entropy is a possible reliability measure. On the other hand, it must be

stressed that, being, it would appear, a poor local minimum, the redundancy

of the a =2.750 design has not been removed completely. As such, this design

should prove to be quite resilient.

The maximum and, in particular, the mean headloss values in Table 6.14 show

that the resilience of the designs generally increases as the entropy increases.

It can also be seen in the same table that, for entropy values higher than

approximately 2.5, the critical node is node 9, which is the design terminal

node of the sample network; for lower valuer. of entropy, the critical node can

be any node including node 9. This is further evidence that entropy can be

used to force a network to behave in a more predictable way. The usefulness

of knowing the positions of the critical nodes in a network prior to a complete

design and analysis of the network has been stated in Example 12.

Furthermore, it can be seen in Table 6.14 that the position of the critical link

is more predictable if the entropy is higher than approximately 2.750; links 1-2

and 14 are both connected to the source and, as such, one would intuitively

expect that the critical link should be one of these links. Table 6.14 also shows

the next critical link for each design. From the positions of the critical and

next critical links, it can be seen that the critical link for lower values of

entropy than approximately 2.750 can be anywhere in the network. This

provides further evidence that entropy can be used as a control parameter in

a network design framework. If one could be certain about which links in a

network are critical, then, if the need to explicitly design the network to cope

with a single link failure arises, it would probably be sufficient to explicitly

consider the failure of the critical links only. For the present network, it

would probably be necessary to explicitly consider the failure of links 1-2 and

1-4 only; without, for example, examining the spatial distribution of the

demands, it is probably impossible to know which link, 1-2 or 1-4, will be

critical prior to a complete design.
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Table 6.15 is generally as expected and does not contradict Table 6.14 in any

way. It may also be noted that Table 6.15 shows link 4-5 as the next critical

link for an entropy value of 2.170, unlike Table 6.14 in which the next critical

link is link 8-9. However, the above difference merely reinforces the notion

that the critical link can be anywhere in the network if the entropy value is

not sufficiently high. Furthermore, compared to Table 6.14, the positions of the

critical and next critical links are swapped in Table 6.15 for values of entropy

greater than approximately 2.750. This reversal of the statuses of links 1-2 and

1-4 is, however, not counterintuitive since, as observed above, either link can

be the critical link. This is particularly true of this network because of the

symmetry in the layout and demands.

Tables 6.16 and 6.17 also show the trend of increasing resilience as entropy

increases. However, it is worth noting that the design having an entropy value

of 2.750 seems slightly more resilient with respect to fire fighting than the

maximum entropy design. Also, only the design with an entropy value of 2.750

has its critical node at node 9. However, referring again to Figure 6.6, it can

be seen that nodes 3 and 7 are the most downstream nodes in a series or nodes

which have only one supply path: nodes 1, 2 and 3; nodes 1, 4 and 7. These

nodes tend to be few in a looped network. If, in designing a network, fire

fighting flows are explicitly considered at terminal nodes only as suggested in

Example 12, then simulations should be performed to verify that fire fighting

demands can be satisfied at nodes such as nodes 3 and 7. As an alternative

to post-optimization verification that the network can satisfy fire fighting

demands at these critical single-path nodes, these demands could also be

explicitly considered in the design problem in view of the fact that the critical

single-path nodes are generally few in a looped network. In spite of the fact

that the design with an entropy value of 2.750 is more resi:ient with respect

to fire fighting demands, if all the results in Tables 6.14 to 6.17 are taken into

consideration, it can be concluded that the resilience of the designs of the

sample network generally increases as entropy increases.

At first sight, the critical nodes in Tables 6.16 and 6.17 appear not to be in line

with the notion that entropy can control the behaviour of a water network.

However, the sample network is symmetrical and so one would expect nodes

3 and 7 to have the same status. This expectation would naturally be reflected

in any predictions about the behaviour of the network. Looking again at

Tables 6.16 and 6.17, the fact that for an entropy value of 2.776 and 2.800

both nodes 3 and 7 are critical shows that, due to their having a sufficiently

high value of entropy, these designs are behaving in a more regular and more

predictable way. In contrast, for an entropy value of 2.170 and 2.500, only one

of these two nodes is critical in each case. Regarding a‘ = 2.750, the critical

node being node 9 is reasonable and, if a = 2.750, S = 2.775 and as 2.800 are

taken together, then, it can be maintained that entropy increases regularity

in the behaviour of water networks.

Very briefly going back to Example 12, Figure 6.5 has been examined

regarding the positions of the critical nodes. In the light of what has been

stated in Example 13 regarding the positions of critical links, Figure 6.5 is now

reconsidered. Once again, it is seen that if the entropy value is high enough,

the critical link is more likely to be where it is intuitively expected; Figure

6.5b. On the other hand, for lower values of entropy, the critical link can be

anywhere; Figures 6.5a and 6.5c.

In summary, through Examples 12 and 13, it has been shown that generally,

the higher the entropy of a network, the more resilient the network is and the

more regular is the behaviour of the network. Therefore, in view of the fact

that there is good correlation between entropy and resilience, it can be

concluded that entropy is a good surrogate for reliability. It can also be

concluded that entropy-constrained cost minimization is potentially a good

practical design method.
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6.5.3 GENERAL DISCUSSION

Taken together, the discussions of Examples 12 and 13 are fairly

comprehensive. However, a few additional general remarks relating to the

entropy-constrained approach to the optimum design of water distribution

networks are made here. Firstly, it is important to recall that the mapping

between entropy and network flow distribution is not one to one. This absence

of one-to-one correspondence is due to the fact that many, perhaps very

different flow distributions can have the same value of entropy as

demonstrated by Figure 5.6c in Chapter 6. Fortunately, the maximum entropy

flows are unique for any network, since the solution of Problem 7 is unique.

Hnwever, the uniqueness or otherwise of the corresponding maximmn entropy

design remains to be established. This aspect needs further research.

Secondly, since completely different less-than-maximum entropy designs can

have the same value of entropy, there is some uncertainty about the

performance/resilience of networks which are not designed to carry maximum

entropy flows. Also, as networks designed to carry maximum entropr flows

have been shown to be resilient, the following conclusion can be drawn. To

design a water distribution network so that the network has all-round

resilience, the network should be designed to carry maximum entropy flows.

The above conclusion provides the answer to the question raised by Awumah

et al. (1990, 1991, 1992) as to what value of the minimum allowable value of

entropy h should be used for a given network. Furthermore, it has been seen

in Examples 12 and 13 that the maximum entropy design may be of the order

of 5% more costly than a corresponding non-entropy constrained essentially

branched design with loop-completing minimum diameter pipes. As such, the

maximum entropy design is cost effective. Thus, if one w:shes to design a

network to specific reliability targets, then, the necessary explicit reliability

constraints should be added to Problem 1 and the resulting problem solved

computationally using a suitable non-linear programming algorithm. The
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difficulties involved if this approach is adopted have been highlighted herein.

However, if a network having good all-round resilience is acceptable, then, as

suggested earlier, the maximum entropy design should be used.

Finally, it can be concluded that the maximum entropy design approach has

the following two very important implications. First, because maximum

entropy flows are unique and can be found separately by solving Problem 9,

the pipe flow rates are no longer variables in Problem 10. As such, the flow

equilibrium and entropy constraints in Problem 10 become redundant and

should be omitted. The computational solution of the resulting reduced

problem is considerably easier and faster. Second, for any network, the

optimum design problem can be considerably simplified by using the following

two-step procedure. The maximum entropy flows are found by solving Problem

9 using a suitable algorithm for unconstrained non-linear programming. The

pipes are then sized using the linear programming phase of the Linear

Progranuning Gradient (LPG) method. With linear programming, the global

minimum cost design will usually be found, but it may be noted that linear

progrEms can have multiple optima (see, for example, Winston, 1987).

Furthermore, for single-source networks, the algorithm developed in Chapter

5 for calculating maximum entropy flows can be used and, therefore, a

maximum entropy design can be accomplished using linear programming only.

6.6 SUMMARY AND CONCLUSION

Networks designed by the conventional manual method inevitably tend to be

expensive, while the conventional cost minimization approach leads to implicit

tree-type networks for a single dominant load. Using a multiplicity of load

cases or an explicit reliability measure to prevent netwarks from being

implicitly branched increases the difficulty of solving the least cost network

design problem very considerably. There is therefore a need to develop ways

by which the size of the design problem can be systematically reduced so that
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it becomes easier to explicitly consider more than one demand pattern. The

formulation of Problem 10, but without the entropy constraint, represents a

basic attempt to address this need.

It also follows from the above discussion that there is a need for a good and

easily calculable surrogate reliability measure which can be incorporated into

cost optimization procedures. Network flow entropy is perhaps the first such

measure. Network reliability and entropy are related through uncertainty.

Moreover, the higher the value of entropy for a set of nodal inflows and

outflows, the more uniform the link flows of the network are. Also, the more

central a flow distribution is with respect to all the distributions capable of

satisfying flow equilibrium throughout the network, the smaller the potential

changes in the link flows are, and, in consequence, the smaller the increase

in headloss due to any changes in pipe flow rates. Since excessive headloss

adversely affects network performance, the above properties are central to the

ability of flow entropy to act as a good surrogate for water network reliability.

Sample entropy-constrained minimum cost designs have been obtained in this

chapter. These designs show that the entropy constraint increases the

resilience of a network by making the pipes larger and more uniform than they

would otherwise be. A rather unexpected property of the designs is that the

entropy constraint does not appear to make the designs much more expensive.

The sample designs also show that the resilience of these designs increases as

the value of the entropy of the flows increases. The above trend of increasing

resilience with entropy shows that entropy is a good surrogate for reliability.

Furthermore, it has been shown that as the entropy increases, the behaviours

of the network designs become more predictable.

Regarding network design, if a network having good all-round resilience is

acceptable, then, the network should be designed to carry maximum entropy

flows. Such a design can be accomplished by first calculating the maximum

196

entropy flows and then sizing the pipes by linear programming. For

single-source networks, the maximum entropy flows can be calculated using

the simple algorithm developed in Chapter 5. Finally, the fact that entropy can

be used to control the hydraulic properties of a water network may have

profound design and/or reliability implications.

Although, independently, Awumah et al. (1990, 1991, 1992) have used flow

entropy as a surrogate reliability measure, it is felt that the present study is

more authoritative in several respects including the definitions of probabilities

and network flow entropy, the like-and-like basis of the comparisons, better

explanations of why the entropy approach seems to work, and the firmer

conclusions drawn.
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Table 6.1 Node data for the network of Fig. 6.3 (Ex. 12)

Total Least Design 'Fire Fighting" Loads (msla)

Node Head Head Load

3 Case 1 Case 2 Case 3 Case 4 Case 5
(m) (m) (m Is)

1 20.00 20.00 -0.284 -0.506 -0.501 -0.459 -0.442 -0.478
2 0.00 0.00 0.028 0.250 0.028 0.028 0.028 0.028
3 0.00 0.00 0.033 0.033 0.250 0.033 0.033 0.033
4 0.00 0.00 0.075 0.075 0.075 0250 0.075 0.075
5 0.00 0.00 0.092 0.092 0.092 0.092 0.250 0.092
6 0.00 0.00 0.056 0.056 0.056 0.056 0.056 0.250

The negative sign indicates an inflow. The fire fighting loads are the same as the design

loud, but with 0.25 m ils at each nude in turtt, with other nodes at their respective design

demands.

Table 6.2 Optimum diameters (mm) for the network of Fig. 6.3 (Ex. 12)

Link
Network Entropy

1.678 1.600 1.700 1.800 1.900 1.915

1-3 401 401 390 384 365 367
2-4 100 100 165 191 238 235
3-5 338 337 337 329 281 294
4-6 100 100 100 151 250 234
5-6 263 262 262 249 152 185
1-2 157 165 203 224 263 261
3-4 237 237 213 215 247 234

Mean 228 229 239 249 267 258

Ca-1 116 115 100 81 63 58

as-1 0.610 0.504 0.419 0.326 0.245 0224mean

Cost 0.260 0.251 0264 0.259 0261 0.263

The entropy constraint is slack at a value of 1.578; costs are in Ws.
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Figure 6.1 Layouts for the network of Example 9 (Fig. 5.6a shown here as Fig.

6.1a): only the flow directions of (a) have been considered in determining the layouts of (b) to

6).
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Figure 6.1j Graphical representation of the constraints and optimum point of

Problem 9 for the network of Fig. 6.1a

Table 6.3 Optimum flows (m3/s) for the network of Fig. 6.3 (Ex. 12)

Link
Network Entropy

1.578 1.600 1.700 1.800 1.900 1.915

1-3 0.263 0.251 0.234 0.223 0.199 0.200
2.4 0.003 0.005 0.022 0.033 0.057 0.056
3-5 0.147 0.147 0.147 0.139 0.101 0.110
4-6 0.001 0.001 0.001 0.009 0.047 0.038
5-6 0.055 0.055 0,055 0.047 0.009 0.018
1-2 0.031 .0.033 0.050 0.061 0.086 0.084
34 0.073 0.072 0.054 0.051 0.065 0.057

The entropy constraint is slack at a value of 1.578.

Table 6.4 Usable head (m) to satisfy all design demands (Fig. 6.3, Ex. 12)

Failed
Link

Network Entropy

1.578 1.600 1.700 1.800 1.900 1.915

1-3 8817.9 8454.6 1065.2 567.7 219.3 231.6
24 20.6 20.7 28.0 27.6 35.7 34.7
3-5 2896.2 2895.5 2899.2 453.9 215.5 141.9
4-6 20.2 20.4 20.4 22.6 87.7 47.6
5-6 500.8 500.3 601.4 92.2 22.7 26.6
1-2 158.3 155.9 64.1 43.9 46.3 46.2
3-4 267.9 259.5 75.4 372 39.8 33.5

Mean 1811.7 1758.1 663.4 177.9 95.3 80.3
Max 8817.9 8454.6 2899.2 667.7 219.3 231.6

The usable head values are those needed to meet the design load and minimum pressures of

Table 8.1 with the failed link closed oft
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(leo	 C160

Figure 6.2 Network used to demonstrate how to reduce the number
of constraints of Problem 1

0.284

Figure 6.3 Layout and design demands for the network of Example 12:

all flows are in eta ; Lu = 1000m; Cu = 130; VU.

Table 6.5 Total energy (MW) for design demands (Fig. 6.3, Ex. 12)

Failed Network Entropy

Link 1.578 1.600 1.700 1.800 1.900 1.915

1-3 22.375 21.405 2.688 1.434 0.550 0.584
2-4 0.048 0.047 0.054 0.057 0.072 0.071
3-5 4272 4.269 4.279 0.712 0.262 0.210
4-6 0.048 0.047 0.046 0.045 0.087 0.062
5-6 0.322 0.321 0.321 0.090 0.045 0.047
1-2 0.099 0.099 0.084 0.084 0.103 0.102
34 0250 0.240 0.093 0.066 0.074 0.066

Mean 3.916 3.775 1.081 0.356 0.171 0.163
Max 22.375 21.405 4279 1.434 0.550 0.584

Full network 0.0475 0.0467 0.0459 0.0444 0.0444 0.0439

Mean -
3.8685 3.7283 1.0351 0.3116 0.1266 0.1191

Full network

The energy values are those that occur when the (full or reduced) network meets the design

load and minimum pressures of 'fable 6.1 with any failed link closed off.

Table 6.6 Usable head (m) for fire fighting demands (Fig. 6.3, Ex. 12)

Node
Network Entropy

1.578 1.600 1.700 1.800 1.900 1.915

2 5092 424.7 130.4 83.3 502 51.5
3 37.8 38.0 38.4 38.1 37.9 37.8
4 102.3 101.6 102.2 73.2 56.0 55.8
5 50.7 51.0 51.3 49.8 60.8 53.5
6 111.9 113.2 113.6 106.1 106.9 102.8

Mean 162.4 145.7 872 70.1 62.4 60.3
Max 509.2 424.7 130.4 106.1 1n6.9 102.8

The usable head values are those needed to meet the fire lighting loads and minimum

pressures of Table 6.1.
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Table 6.7 Total energy (MW) for fire fighting demands (Fig. 6.3, Ex. 12)

Node
Network Entropy

1.678 1.600 1.700 1.800 1.900 1.915

2 1.317 1.108 0.417 0.229 0.218 0.222
3 0.150 0.150 0.161 0.150 0.157 0.155
4 0.317 0.313 0.314 0.249 0.209 0.212
5 0.182 0.182 0.181 0.181 0.207 0.193
6 0.368 0.370 0.370 0.352 0.354 0.345

Mean 0.467 0.425 0.287 0.246 0.229 0.225
Max 1.317 1.108 0.417 0.352 0.354 0.345

The energy values are those that occur when the network meets the fire lighting loads and

n 'nimum pressures of Table 6.1.

Table 6.8 Headloss-based critical links and nodes for link failures (Fig. 6.3,
Ex. 12)

Network Entropy

1.578 1.600 1.700 1.800 1.900 1 915

Critical Link 1-3 1-3 3-5 1-3 1-3 1-3

Critical Node 6 6 5 6 5 5

The critical link is the link the removal of which causes the greatest extra source head

requirement. The critical node is the terminal node having the greatest value of E hu
014

following the failure of the critical link,

Table 6.9 Energy-based critical links and nodes for link failures (Fig. 6.3, Ex.
12)

Network Entropy

1.578 1.600 1.700 1.800 1.900 1.916

Critical Link 1-3 1-3 3-5 1-3 1-3 1-3

Critical Node 6 6 5 6 6 5

The critical link is the link the removal of which causes the greatest amount of energy to

be dissipated. The critical node is the terminal node having the greatest value of E hu

following the failure of the critical link.

Table 6.10 Headloss-based critical nodes for fi-e fighting (Fig. 6.3, Ex. 12)

Network Entropy

1.678 1.600 1.700 1.800 1.900 1.915

Critical Node 2 2 2 6 6 6

The critical node is the node at which the fire fighting demand causes the greatest extra

sourer head requirement.

Table 6.11 Energy-based critical nodes for fire fighting (Fig. 6.3, Ex. 1.2)

Network Entropy

1.678 1.600 1.700 1.800 1.900 1.915

Critical Node 2 2 2 6 6 6

The critical node is the node at which the lire fighting demand causes the greatest amount

of energy to be dissipated.
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Table 6.12 Fire fighting loads (m'/s) for the network of Fig. 6.7 (Ex. 13)

Node Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

1 -0.4373 -0.4373 -0.4373 -0.4373 -0.4373 -0.4373 -0.4373 -0.3956

2 0.2500 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208

3 0.0208 0.2500 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208

4 0.0208 0.0208 0.2600 0.0208 0.0208 0.0208 0.0208 0.0208

5 0.0208 0.0208 0.0208 0.2600 0.0208 0.0208 0.0208 0.0208

6 0.0208 0.0208 0.0208 0.0208 0.2500 0.0208 0.0208 0.0208

7 0.0208 0.0208 0.0208 0.0208 0.0208 0.2500 0.0208 0.0208

8 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.2500 0.0208

9 0.0625 0.0625 0.0626 0.0626 0.0625 0.0625 0.0625 0.2500

The negative sign indicates an inflow The fire fighting loads are the same as the design

had, but with 0.25m 3/s at each node in turn, with cater nodes at their respective design

demands.

Table 6.13 Optimum designs for the network of Fig. 6.7 (Ex. 13)

Link

Network Entropy

2.170 2.500 2.750 2.775 2.800

.Dia. Flow .Dia. Flow .Dia. Flow .Dia. Flow .Dia. Flow

(nun) (m 3/s) (nun) (m 3/8) (min) (m 3/s) (1nm) (m a's) (rnm) (m3/s)

1-2 201 0.047 309 0.119 294 0.104 294 0.104 294 0.104

2-3 156 0.023 161 0.024 225 0.049 183 0.031 201 0.038

1-4 349 0.161 273 0.089 294 0.104 294 0.104 294 0.104

2-5 100 0.003 267 0.075 197 0.034 234 0.052 221 0.045

3-6 100 0.002 100 0.003 196 0.029 137 0.010 164 0.017

4-5 317 0.116 222 0.044 197 0.034 234 0.052 221 0.045

5-6 151 0.020 286 0.078 179 0.023 222 0.042 207 0.035

4-7 156 0.023 155 0.024 225 C.049 183 0.031 201 0.038

5-8 286 0.079 152 0.019 179 0.023 222 0.042 207 0.035

6-9 100 0.001 272 0.061 216 0.031 216 0.031 216 0.031

7-8 100 0.003 100 0.004 196 0.029 137 0.010 164 0.017

8-9 271 0.061 100 0.002 216 0.031 216 0.031 216 0.031

Mean 191 200 218 214 217

(7n-1 92 80 39 50 41

cn- I 0 484 0.401 0.178 0.232 0.187
mean

Gast 0.277 0.282 0.292 0.290 'J.292

The entropy constraint is slack at a value of 2.170; costs are in 	 108.
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Table 6.14 Usable head (m) to satisfy all design demands (Fig. 6.7, EX. 13)

Failed Network Entropy

Link 2.170 2.500 2.750 2.775 2.800

1-2 109.7 109.5 85.5 76.5 78.9
2-3 115.8 98.9 46.6 45.3 40.6
1-4 1248.6 56.0 79.8 74.8 76.2
2-5 23.9 59.1 30.0 38.3 34.3
3-6 24.1 24.1 34.0 25.8 28.2
4-5 360.2 35.2 30.0 38.3 34.3
5-6 48.7 329.3 28.7 39.2 33.9
4-7 98.5 114.4 46.6 45.4 40.6
5-8 333.9 46.9 28.7 39.2 33.9
6-9 28.3 660.3 42.9 41.1 41.7
7-8 24.0 24.3 34.0 25.8 28.2
8-9 664.1 24.0 42.9 41.1 41.7

Mean 256.3 131.8 44.16 44.23 42.7
Max 1248.6 660.3 85.5 76.5 78.9

Critical link 14 6-9 1-2 1-2 1-2

Next crit link 8-9 5-6 1-4 1-4 1-4

Critical node
i_

7 9 9. 9 9

Table 6.15 Total energy (MW) for design demands (Fig. 6.7, Ex. 13)

Failed Network Entropy

Link 2.170 2.500 2.750 2.776 2.800

1-2 0.094 0.194 0.151 0.135 0.140
2-3 0.066 0.059 0.065 0.050 0.054
14 2.125 0.114 0.155 0.142 0.146
2-5 0.038 0.087 0.044 0.056 0.051
3-6 0.038 0.037 0.045 0.037 0.039
4-5 0.491 0.052 0.044 0.056 0.051
5-6 0.047 0.305 0.040 0.051 0.046
4-7 0.060 0 064 0.065 0.050 0.054

1	

543
6-9

1	 <3.3t2
0.038

1	 0.045

0.443
0.1)41)1	 D0.1)41)

0.048
1).051

1	 0.046
0.046 
0.047	 1

7-8 0.038 0.037 1.045 0.037 D.D39

8-9 0.448 0.037 0.048 0.046 0.047

Mean 0.316 0.123 0.066 0.0633 0.0631
Max 2.125 0.443 0.155 0.142 0.146

Full network 0.0377 0.0366 0.0345 0.0349 0.0346

Mean -
0.2783 0.0864 0.0315 0.0284 0.0285

Full network

Critical link 1-4 6-9 14 14 1-4
Next crit link 4-5 5-6 1-2 1-2 1-2
Critical node 7 9 9 9 9
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Table 6.16 Usable head (m) for fire fighting demands (Fig. 6.7, Ex. 13)

Node
Network Entropy

2.170 2.500 2.750 2.775 2.800

2 181.7 61.9 52.9 52.8 52.3
3 646.5 504.3 117.8 242.3 161.3
4 50.1 56.4 52.9 62.8 52.7
6 82.3 81.5 85.3 80.7 82.0
6 463.0 128.1 135.2 135.4 134.7
7 550.2 586.4 117.8 242.3 161.3
8 129.0 452.3 135.2 135.4 134.7
9 146.7 145.5 136.2 138.0 136.9

Mean 281.2 2F0.8 104.1 134.9 114.6
Max 646.5 686.4 136.2 242.3 161.3

Critical Node 3 7 9 3, 7 3, 7

Table 6.17 Total energy (MW) for fire fighting demands (Fig. 6.7, Ex. 13)

Node
Network Entropy

2.170 2.500 2.750 2.775 2.800

2 0.540 0.183 0.194 0.190 0.191
3 1.693 1.328 0.409 0.697 0.507
4 0.166 0.208 0.194 0.190 0.191
6 0.297 0.296 0.328 0.297 0.307
6 1.267 0.453 0.479 0.480 0.478
7 1.441 1.541 0.409 0.697 0.507
8 0.455 1.238 0.479 0.480 0.478
9 0.437 0.433 0.413 0.417 0.414

Mean 0.789 0.710 0.363 0.431 0.384
Max 1.693 1.541 0.479 0.697 0.506

Critical Node 3 7 9 3, 7 3, 7
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	 I401mm 

Figure 6.4 Pictorial representation of the diameters of the entropy-constrained

minimum cost designs of the network of Fig. 6.3 (Example 12) 	
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entropy -constrained designs of the network of Fig. 6.3 (Example 12): all flows
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Figure 6.5 Worst case link failures of the entropy—constrained designs of the
network of Fig. 8.3 (Example 12): all flows are in m1/s.
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Figure 6.7 Layout and design demands for the network of Example 13: all flows

are in in3/8 Lu = 1000m; C = 130;
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CHAPTER 7 NEW METHODS FOR CALCULATING THE

RELIABILITY OF WATER NETWORKS

7.1 INTRODUCTION

The primary objective of this chapter is to suggest two conceptually simple

ways of calculating the reliability of a water distribution network which

incorporate most of the desirable properties laid down in Chapter 3. The

proposed approaches are dependent on network simulation and, unlike other

methods, can account for less-than-fully satisfactory service. One of the

approaches uses head-driven simulation to obtain a probabilistic reliability

measure on the interval [0, 1). This is the more general approach and is

described in Section 7.3. The other method also defines reliability on the

interval [0, 1], is suitable for single-source networks and is based on pressures

at the source node. These source node pressures are obtained by demand-driven

simulations. This method is described in Section 7.2. Also, the reliability

measures developed in this chapter are applied to the entropy-constrained

minimum cost designs of Chapter 6, to show that these reliability measures are

very sensible and that flow entropy is a good surrogate for network reliability.

In this chapter, network reliability is defined as the ratio of the expected

equivalent flow delivered at adequate pressure to the total demand. The

equivalent flow delivered at adequate pressure is defined as the flow that the

actual network pressures can sustain without the residual pressure at any node

falling below the desirable minimum value. Also, for a single-source network,

the notional source head for complete demand satisfaction is defined as the

theoretical source head required to satisfy all the system demands at adequate

pressure, under specified conditions including component failure and increased

nodal abstraction.

214

As seen in Chapter 6, the value of the source head can be found by„sanalysing

the network using either the q or Aq system of equations which yield the pipe

flow rates. To calculate the source head, each terminal node, which is a node

having no internal outflow, is assigned a nodal head equal to its minimum

desirable value. The required source head A is then given by

= max <H,,.44 + E hi; Vn e t>	 (7.1a)

in which t represents the set of all terminal nodes; .H„u„, is the minimum

desirable head at demand node n; hu is the i;ead loss in link ij; M. is the set

of all pipes in a specified path between the source and demand node n.

However, the net or usable source head H is the real value of interest in the

present calculations and is

H = max <	 Fz, Vu t>	 (7.1b)

For a network having a broken pipe the analysis is as described above, but

the link with the broken pipe section is omitted. That is, it is assumed that

flow to the link in question can be stopped. Also, it may be noted that the

elements of I, i.e., the position of the terminal nodes, may vary according to

the amount of abstraction at each node and the layout of the (full or reduced)

network. As such, the set t is in general different for each network

configuration and flow pattern. It is seen in Section 7.2 how the notional

source head may be used in the calculation of network reliability.

The definition of reliability given earlier is superficially similar to the

definition of Eqs. (3.6) and (3.7) of Fujiwara and de Silva (1990) which is based

on the expected maximum flow delivered. However, the latter does not involve

pressure. Also, the present definition is superficially similar to the probability
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of sufficient supply (Wagner, Shamir and Marks, 1988a) or the probability of

sufficient supply at adequate pressure (Bao and Mays, 1990). However, the

present definition is sharper. Furthermore, the capacitated network approach

of Wagner, Shamir and Marks (1988a) does not fully account for pressure

dependency of flow. Some weaknesses of Bao and Mays (1990) are highlighted

shortly.

The notional source head and the present definition of reliability are

motivated by the following considerations. First, Wagner Shamir and Marks

(1988b) have proposed a way of estimating the shortfall or total flow delivered

for any simulated failure and the approach accounts for reduced service by

us'ng the following equation which was intrcduced in Chapter 3 as Eq. (3,1):

q„o[ 
H„,;,,..-	 11.5

; H	 H.5	 V n_e D
insn,n " nun,n

in which D represents the set of all demand nodes; the q'.0 , Vn a D, are the

rates of abstraction at the demand nodes that the actual network pressures can

sustain without the residual pressure at any node falling below the minimum

desirable level; qo is the demand at node n; H„,,„„ is the minimum desirable

head at node n; H'„,1„, is the irreducible minimum desirable head at node n.

Also, if 1-1„ Eqs. (7.2) do not apply in which case the flow supplied

equals the demand. However, Wagner, Shamir and Marks (1988b) have not

gone on to define network reliability even though they have stated that the

shortfall is a good overall indicator of reliability, or rather, the unreliability.

In Section 7.3 it is shown how Eqs. (7.2) may be used to calculate nodal and

network reliability.

Also, Germanopoulos (1985), Jowitt and Xu (1993) have described a method of

calculating system shortfall using head-driven simulation. The approach is

based on the following equation.
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q'no= El -
 

b,, ex[.-:.1-111 11q,,o VrteD	 (7.3)
H.

in which cr., b„ and if„ are constants for node n. fr„ corresponds to the nodal

pressure at which a given proportion of q,,0 is known to be provided. The above

constants have to be determined for a given network and this may need some

calibration. Eqs. (7.3) may be used instead of (7.2), but the latter have been

used herein.

Second, although Cullinane, Lansey and Mays (1992) have recognised the

importance of reduced service, they have defined network reliability as the

ave,rage of the demand node reliabilities However, this deFnition is

theoretically questionable because the nodal reliabilities are not independent

as conditions at any node are influenced by conditions at other nodes. In

recognition of this difficulty, Bao and Mays (1990) have used the arithmetic

mean of the nodal reliabilities as one of three complementary measures, the

others being the reliability of the most unreliable node and the mean of the

nodal reliabilities weighted according to their respective demands. For

single-source networks, the source head approach is used herein to enable

reliability calculations to be based on the source rather than at the individual

demand nodes. As such, for single-source networks, the difficulties posed by

the interdependencies between the demand node reliabilities are bypassed. The

details are given shortly in Section 7.2. For general networks, the calculations

herein for network reliability are based on the total flow supplied at adequate

pressure rather than the nodal reliabilities. In other words, the reliability at

a node is based on the flow supplied at adequate pressure at that node whereas

network reliability is based on the sum of the abstractions at the demand

nodes.

Third, the use of Eqs. (3.8) of Bao and Mays (1990) in calculating the

probability of sufficient supply disregards reduced service. Also, Su, Mays,
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Duan and Lansey (1987) have defined network unreliability as the probability

of one or more failure modes resulting in one or more nodal heads being lower

than the minimum desirable level. However, this definition is incapable of

distinguishing between shortfalls in head of, for example, lnun and lm.

Furthermore, in calculating reliability, all residual pressures which are less

than the desirable minimum are implicitly assigned a zero utility value

irrespective of the magnitude of the shortfall. The approach used herein

accounts for all non-zero shortfalls in flow or pressure.

Fourth, Bao and Mays (1990) have observed that it is difficult to derive

mathematically and compute the probabiLty that any node in a water

distribution network receives sufficient flow at adequate pressure. Some of the

reasons for this difficulty are that this probaoility is the joint probability that

both flow and pressure are sufficient. Also, the flow and pressure at a node

are not independent of each other. Furthermore, both are affected by

conditions elsewhere in the network in complex ways which cannot be

predicted without simulation. The above difficulty has somewhat been avoided

in the approach used herein as follows. The flows that the actual network

pressures can support are sought. These flows are then combined with the

probabilities that the flows occur, to obtain an estimate of the reliability of

the network, as explained in Section 7.2 for single-source networks and Section

7.3 for general networks. •

7.2 SINGLE-SOURCE NETWORKS

7.2.1 ANALYSIS

In this section a method is developed for calculating he reliability of

single-source networks. A more general approach is given in the next section,

but the procedure described here for single-source networks provides a simpler

and quicker means of doing the analysis. For single-source networks, the
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approach is as follows. It is assumed that all nodal demands and pressures

are satisfied. With this assumption, the problem of calculating the amount of

flow suppliable at adequate pressure may be reinterpreted as follows. What is

the notional usable source head that can satisfy all nodal demands at pressures

no lower than the minimum desirable and how can it be found? Also, given

the demands, the notional usable source head required and the actual usable

source head, what is the demand that the actual usable head can support at

adequate pressure?

To answer the first question, a demand-driven simulation of the (full or

reduced) network is done and the net notion-A source head H is obtained from

Eq. (7.1b), i.e.

H -= max <	 hu Vn e t>
	

(7.1b)
(jehl„

The approach used herein to answer the second question, that is, to determine

the actual flow supplied, is based on Eqs. (7.2) but (7.3) could also bit used.

Finally, given the probability that the flow thus obtained occurs, it is possible

to calculate network reliability as the ratio of the expected equivalent flow

delivered at adequate pressure to the total demand. These ideas are explained

in detail immediately and examples are given later in this section.

The proposed definition of reliability can be written as

Expected equivalent flow supplied at adequate pressure
Reliability	 (7.4a)

Demand

and, for a given network configuration and nodal demands. i.e., for a given

state,

Equivalent flow supplied at adequate pressure
Reliability —

Demand
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p(ij)=
uv

olJ	
Rv —

EIJ

Vij e IJ	 (7.10)

Also, from Eqs. (72), the following equation may be written.

Flow supplied at adequate pressure

in which pi is the probability of the network being in state i, Vi. Substituting

Eqs. (7.6), this becomes

Demand[

 

Minimum desirable residual head
Available residual head 	

10.5	
(7.5a)

in which the flow supplied equals the demand if the available residual head

is greater than or equal to the minimum desirable value. Let 111 represent the

minimum net source head needed to deliver all the required network flows at

the right pressure for the ith network state. Then, assuming that Eq. (7.5a) is

also applicable to the source, this equation may be adapted for the source as

follows.

T' =T[ ±1-1 • Hi � H io,i	 o	 •	 ,
os

(7.5h)

in which H and T. are respectively the net available source head and the total

demand which equals the source supply when the network is operating under

normal conditions; rod is the equivalent total demand satisfied at adequate

pressure or the actual total flow that H can deliver when the network is in

state i and this flow equals the source supply for state i; N is the number of

states. For each state i, the (full or reduced) network is analysed and the net

required head H' is obtained from Eq. (7.1b). For each state i, Eqs. (7.4b) and

(7.5b) give the reliability RI as

• rv = H. fs ;	 i=1,...,N
To	 H'
	 (7.6)

Furthermore, according to Eq. (7.4a), network reliability R is then given by

R=
	 Pi ;
	 � H
	

(7.8)

111
l=1

It remains to define the states and their probabilities p„ i = 1, ..., N. The

design demands are considered for different network configurations which

include the fully connected network and the reduced networks corresponding

to single link failures. For the design demands the states are therefore the

above (full or reduced) networks. Also, pipe., typically have high reliabilities;

see for example, Su, Mays, Duan and Lansey (1987). It follows that the

probability of multiple failures occurring may be negligible in general. The

following equations for the pi, are based on the assumption that link

failures are independent. The rationale for this assumption is that pipe

breakage tends to be caused by factors external to the pipe network and, in

general, does not depend on the number of already broken pipes. The

probability p(0) that all links are working is therefore

p(0)= 1.1Ru	 (7.9)

iielJ

in which Ru is the mechanical reliability of link ij, Vij e	 IJ is the set of

all links of the network.	 Also, the probability p(ij) that only link

if, Vij e IJ, is not working is

R =XRipi	 (7.7)
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=11-1Ru+ I-7 [nRu]
CelJ	 kielJ

	 ,	 H if HU <H (7.12)

jjelJ

R	 Ru
.17 	 (jelJ

fl
1 — 11Ru

u.1.1

(7.16)

R'../R..
v H Ru

\Fe jjelJ
jjelJ

in which

R' = 1—R Vije IJ
	

(7.11)

is the unreliability, or the probability of failure, of link ij, V.

Eqs. (7.8) to (7.10) can be combined to give expressions for network reliability

as follows. When the network is fully connected, the required head equals the

available head, i.e, H, and so, according to Eqs. (7.6), the reliability is

unity. On the other hand, the net source head required IF, Vi, may be less

than H if the network is highly reiundant. In such a case the reliability will

also be unity. Therefore, in Eqs. (7.5b), (7.6) and (7.8), 111 is set to H whenever

IF is less than H. From Eqs. (7.8) to (7.10), retwork reliability is gi /en by

n	 R'iiiR47
jjelJ	 NI-1717

011.1 	

(7.14)
1 — fiRu

ljelJ

Substituting Eq. (7.14) in (7.13) gives

R= nRu +17(1-11Ru)	 (7.15)
Ufa	 jjelJ

which may be rearranged as

in which IF' is the net source head required to satisfy all demands with link

if, Vij, not working. That is, network reliability is

Also, if the second term of Eq. (7.12) is normalised by dividing it by the

probability (1 —p(0)) that the network is not fully connected, the average

reliability IT of the reduced networks is obtained as

A vary high value of Ti means that the network is quite redundant and so link

failures do not significantly affect the performance of the network.. Also, as

the terms for multiple link failures are not included in Eq. (7.12) and these

terms are non-negative, R and if are lower bounds.

7.2.2 EXAMPLES

Several numerical examples are provided next to show that R and TI are

realistic and quite comprehensive. On one hand, Examples 14, 15 and 16 are

based on the two-loop network of Figure 6.3, which, for convenience, is shown

here as Figure 7.1. The required usable head values for the entropy-constrained

designs of this network have been calculated in Chapter 6. For convenience,

(7.13)
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the relevant diameter, flow and headloss data from Tables 6.2 to 6.4 are

repeated here in Tables 7.1 to 7.3. For simplicity in referring to the above

tables, the entropy-constrained designs have been labelled Designs 1 to 6 as

shown in each table. On the other hand, Example 17, which is considered

shortly, is based on the four-loop network of Figure 6.7 which is shown here

as Figure 7.2.

Example 14

This is a simple example to demonstrate how R and Tt are calculated. Also,

it is shown that, for the same values of HY, if the mechanical reliabilities of

the links increase, then, R increases. In other words, it is shown that the

reability measure can reflect the mechanical reliability of a net vork. The

required usable head data used in this exariple are those of Design 2 in Table

7.3.

Let R„, = 0.95; R'„,= 0.05, m = 1,	 7

p(0) = 0.957; p(m) — 0.06 x 0.95° m 1, ..., 7

7

/(Hrn)_° 6 0.6575309
m..1

From Eq. (7.14),

x 0.05 x 0.95 6 x 0.6575309 
R

	

	 — 0.3582789=t0.358
1 — 0.957

and, from Eq. (7.15),

R =0.957 + 0.3582789(1. — 0.957) = 0.806

If these calculations are repeated with X, = 0.99, Vm, the result is

0.408; R = 0.960

If	 0.999, Vm,

--,'-- 0.419; R = 0.996

Commenting on the values of R and R, it can be seen that they agree with

the subjective expectation that more reliable components should increase

reliability. Also, the average reliability k of the reduced networks increases

as the link reliabilities increase. k increases because the probabilities of

multiple failures decrease as the mechanical reliabilities of the links increase.

As the joint probability of multiple failures becomes smaller, J, which is based

on single failures only, approaches the true value of the average reliability

of the less-than-fully connected networks. In other words, the magnitude of the

error in the numerator of Eq. (7.14) becomes smaller as the mechanical

7:el : abilities of the links increase.

Example 15

The aim of this example is to show that R and Tt are sensitive to slight

variations to the design of a distribution network. This demonstration is based

on the headloss values in Table 7.3 which are for Designs 1 to 6 in Tables 7.1

and 7.2. Designs 1 to 6 are based on the network of Figure 7.1 and they have

been obtained as described in Chapter 6.

The reliability measures R and k have been calculated for Designs 1 to 6

assuming equal probabilities of link failure of 0.05 and 0.01 respectively; i.e.

R., =0.95 and 0.99 respectively, Vm. The results of the calculations are shown

in Table 7.4, and these results are discussed next. It can be seen that the

column entries increase from top to bottom which corresponds to an increase

in reliability from Design 1 through to 6. Since the two sets of probabilities

used are the same for all the designs, these values show that R and k seem

capable of correctly reflecting the hydraulic performance of a network. Also,

all R and based on R„,= 0.99 , Vm, are higher than corresponding values

based on R„,= 0.95 , Vm. As observed in Example 14, this shows that R and

B appear to be able to correctly account for mechanical reliability. Finally,
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0.21218E0.462131
Ru—

0.00074D 285 + 0.21218D I 162131

\fly e 1J	 (7.17)

considering the conclusions of Chapter 6 to the effect that reliability increases

from Design 1 through to 6 and the fact that the results of Table 7.4 show the

expected trend of increasing reliability from Design 1 through to 6, it would

appear that R and It are sensible measures of reliability.

Example 16

In this example, the calculations of Example 16 are repeated, but with link

failure probabilities which are a function of the pipe diameters and lengths.

That is, R and IT are calculated for Designs 1 to 6 with more "realistic"

probabilities. Two reliabilities are calculated for each link. One is based on

Eq. (7.17) below which is taken from Cullinane, Lansey and Mays (1992).

in which the diameter D, is in inches. It is not clear from Cullinane, Lansey

and Mays (1992) whether the above equations are link length dependent, but

that does not matter in the present example as all lengths are equal. The

other set of reliabilities for the links is based on Eqs. (7.18) and (7.19) below

which are taken from Su, Mays, Duan and Lansey (1987).

The results of Table 7.6 including the probabilities of full network connectivity

p(0) support the conclusions of Example 16. Network reliability R increases

steadily from Design 1 to Design 6. Also, the subsidiary measure /7 increases

from Design 1 to Design 6. However, it may be noted that I is higher for

Design 3 than Design 4. Further work is necessary to establish whether this

is in fact a true reflection of the average reliabilities of the designs during the

total period of partial connectivity. Finally, all R and IT values based on the

higher reliabilities of Eqs. (7.17) are higher than corresponding values based

on the lower reliabilities of Eqs. (7.18) and this is as expected. These results

therefore reinforce the conclusions of Example 15 regarding the apparent

efficacy of the present source head approach to calculating the reliability of

single-source networks. Moreover, it should be noted that the differences

between the entropy values of Designs 1 and 2 on one hand and Designs 5 and

6 on the other hand are much smaller than for Designs 2 and 3, 3 and 4, and

4 and 5. It is therefore remarkable that R and 17 can correctly tell apart the

two most unreliable designs which are Designs 1 and 2, and the two most

reliable designs which are Designs 6 and 6. Looking again at Designs 1 and

2 in Table 7.1 (and Table 7.2), it can be seen that these two designs look

extremely alike. Despite this likeness, R and 11 can correctly tell apart Designs

1 and 2. Such sensitivity to very subtle changes in a network is desirable and

the fact that R and if appear to possess this capability is worth emphasising.

Ru = exp( — NBA) Vij e IJ	 (7.18)

in which NB, is the expected number of breaks per year per unit length of pipe

Vij, and is given by Eqs. (7.19); Ai is the length of link ij, Vij.

0.6858	 2.7158  , 2.7685	,_	 „
7

NB 
v	 rs1.3131	

Du 
92 + U.042 Vij E IJ

in which the diameter is in inches. As can be seen in Table 7.5, Eqs. (7.17)

tend to give quite high reliabilities whereas (7.18) tend to give quite low

reliabilities.

Example 17

In this example the calculations of Examples 15 and 16 are repeated for the

entropy-constrained designs of the network of Figure 6.7, which, for

convenience, is shown here as Figure 72. The designs and required head

values are also repeated here as Tables 7.7 and 7.8. To facilitate referencing,

these designs have been labelled Designs 7 to 11. This example enables the

previously highlighted properties of R and IT to be observed on this network

which is different from Figure 7.1 in many ways including the number of links,

nodes, loops, the total demand, symmetry, layout, etc. The results of the

(7.19)

226 227



reliability calculations are summarised in Tables 7.9 to 7.11. These results are

discussed next.

9. Taking all the above observations into consideration, it can be said that

the present reliability measures are exhibiting the properties expected of an

accurate reliability measure.

Starting with the network reliability values in Table 7.9 for equal link

reliabilities, it can be seen that all the values are consistent with the

observations of Chapter 6 regarding the reliability of these entropy-constrained

designs: the reliabilities, R and 7 , increase from Design 7 to Design 11 for

both sets of reliabilities. In particular, since the network reliability values

of Table 7.9 are based on equal link reliabilities, the network reliabilities

should follow Table 7.8 very closely. The average headloss values of Table 7.8

lead to the conclusion that Design 11 is better than Design 9 which, in turn,

is better than Design 10, etc. The above rank; are maintained in Tvble 7.9.

The network reliabilities of Table 7.11 are based on more "realistic" link

reliabilities. Once again, it can be seen that the behaviours of both R and k
are generally as expected: all network reliabilities calculated using the Su et

al link reliabilities are lower than corresponding values based on the higher

Cullinane et al. link reliabilities; network reliabilities increase from Design 7

to Design 11 for both sets of link reliabilities; as expected, Design 9 is

consistently better than Design 10. However, comparing Designs 9 and 11 is

not straightforward because both sets of reliability values do not agree with

each other regarding the relative merits of Designs 9 and 11.

Still comparing Designs 9 and 11, it can be seen that both sets of p(0) values

show that Design 9 is mechanically more reliable and this is as expected, from

Table 7.7. However, the respective differences in the mechanical reliabilities

of Designs 9 and 11 are not the same for both sets of reliabilities in Table 7.11.

Since the p(0) values based on Cullinane et al. are almoEl. equal, network

reliabilities based on these values show Design 11 as being superior because

of its superior mean required head; Table 7.8. The p(0) values based on Su et

al., however, are quite different and this tips the balance in favour of Design
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7.2.3 DISCUSSION

There are two main themes in this discussion: the correlation between entropy

and reliability which is considered shortly, and the following discussion of the

reliability measures R and R.

Network reliability analysis

The foregoing examples and comments provide ample evidence that, as

comparative measures for a given layout, R and k are very realistic measures

of water network reliability. However, what can one infer from these measures

about a given network/design, independently of other networks? To put the

question another way, is it possible to compare completely different networks

or layouts on the basis of R and This issue is briefly examined next with

the he'p of the networks of Figures 7.1 and 7.2.

R and R are absolute as opposed to relative measures which, in theory, can

be used to compare different designs/layouts for a given network or even

completely different networks. However, to compare R and k across networks,

the calculations for the different networks must be done to the same accuracy.

For example, the errors in R and k, i.e., the differences between the lower

bounds represented by R and k and the corresponding exact reliability values,

are greater for the 12-link network of Figure 7.2 than for the 7-link network

of Figure 7.1. This is because the network of Figure 7.2 has more pipes than

Figure 7.1 and the number of states which are not accounted for in Eq. (7.12)

is an exponential function of the number of components or pipes. The number

of states which are not accounted for is given by 2 ,̀ ”1 — (NM+ 1), in which

NIJ is the total number of pipes and 2m.' is the total number of states. For 7
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pipes, this number amounts to 2 7 -8= 120. For 12 pipes, the number is

2'2 — 13 = 4083. Therefore, if the individual components of a medium size to

large network are not very reliable, the errors in 1? and Ft will be large. Also,

a network having passive redundancy or spare capacity, i.e., rather large

diameter pipes (considering the available source head), may still provide

considerable, although perhaps much reduced, service with two links

inoperative. Therefore, if the link failure probabilities are not sufficiently low,

multiple-link failures may need consideration. However, the increase in

computational effort would be very considerable and disproportionately high.

For example with 12 links, there are 66 configurations in which only two links

are inoperative. From the above discussion, it would seem that inter-network

or -layout comparisons on the basis of R and 17 are practicable onl y if all the

networks have a similar number of links and similar link reliabilities. Under

these conditions, the errors in the reliability measures would be similar for

all the networks.

Some of the advantages and disadvantages of the net source head approach

are h'ghlighted next. The strengths of the method are that it provides a quick

and easy means of estimating the reliability of a water distribution network,

and subnormal service is accounted for in a consistent way. However, the

main weaknesses are that the method is not suitable for multiple-source

networks and it is not applicable if any demand points are cut off from the

source because a fundamental assumption in the calculation of the net source

head is that all demands are satisfied. Also, no indication of the reliabilities

of individual nodes is given and this could be considered a disadvantage. All

the above weaknesses are addressed in Section 7.3 in which the basic ideas

are the same as those of this section except that reliabilities are calculated

from flows.

Entropy and reliability

Before looking at the correlation between entropy and reliability, it is useful
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to recall that the reliability measurers of this chapter and those of Chapter 6

lead to essentially the same conclusion with regard to the reliability of the

entropy-constrained designs. The comments of Examples 15, 16 and 17 are

based on an implicit assumption that the relative merits regarding reliability

of Designs 1 to 6 on one hand and Designs 7 to 11 on the other hand are

known beforehand. This assumption is due primarily to the analyses of

Chapter 6 in which a fairly good idea of the relative reliabilities of the designs

has been obtained. In Chapter 6, a considerable amount of intuition has been

used in the reliability assessment of the designs and, as stated in that chapter,

the diameter-based statistical measures of mean, standard deviation and

coefficient of variation are somewhat qualitative. A more reliable

diameter-based measure is the probability p(0) that the network is fully

connected. Looking again at the reliability tables in this chapter, it can be

seen that p(0) is in line with the above statistical averages and the headloss

and energy measures of Chapter 6.

In al,, there are three related but rigorous (although not necessarily

comprehensive) reliability measures, p(0), R and /7, in this chapter which can

be ,ised to rank the entropy-constrained designs, in addition to the measures

of Chapter 6. All these measures clearly show that the reliability of a network

generally increases as the entropy increases and, as such, entropy is a good

surrogate for pipe network reliability. The above conclusion has many

important implications for water distribution network reliability and design

and some of these have been set out in Chapter 6. Finally, recalling that

less-than-maximum entropy designs are not unique, graphs of p(0), R and TI

against entropy have not been shown herein. More points/dJsigns are needed

so that scatter diagrams showing the true nature of the above relationships

can be obtained.
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(7.22)Vn e D

VneD
	

(721)

Substituting Eqs. (7.20), this becomes

[
fiRd E (R'ulRu)q'no, u
ijelJ	 (jelJ _ 

tinc,(1 —
uij

VnED	 (7.25)

7.3 GENERAL NETWORKS

Some shortcomings of the demand-driven simulation approach to estimating

network reliability of the last section have been noted. The calculations in

that section are based on the assumption that the head needed to satisfy all

demands can be found. However, an alternative and slightly more elaborate

way of doing the calculations is based on the premise that the actual flow

supplied at adequate pressure can be calculated and this approach is described

next. As seen shortly, the main difference between the equations of this section

and Section 7.2 is that the former are based on flows whereas the latter are

based on heads. Also, the present equations are more generally applicable.

To determine the flows supplied at the nodes, a head-driven simulation of each

state or reduced network is performed. Any suitable equation, for example

(7.2) or (7.3), for calculating the q'„., Vn aD, which are the actual flows

supplied at the nodes at adequate pressure could be used. For each state, the

nodal reliabilities R;„ i =1, N, are defined as the ratio of the equivalent

flow s ipplied at adequate pressure to the demand at node n, Vn a D, i.e.,

1
Rn 77,7(r

which is the expected equivalent flow supplied at adequate pressure divided

by the demand at the node.

When the network is fully connected, q',,o= qno, Vn E D, and so the

corresponding state reliability is unity for all demand nodes, from Eqs. (7.20).

Also, if states with multiple link failures are neglected, then, assuming that

link failures are independent, Eqs. (7.22) become

1
Rn =-- 1 n Ru + 7-770 [ R4j] E (R'ulRu)q' no, c Vn e D

rjelJ	 kielJ	 ijelJ

in which g'„.. d is the flow supplied at node n, V n eD, with link if, Vij E IJ,

inoperative. Also, Eq. (7.9) for the probability p(0) that all links are

operational and Eqs. (7.10) for the probability p(ij) that only a specified link

ij, V ij a IJ, is not working have been used in Eqs. (7.23). The nodal reliability

is therefore

(7.23)

IV
=	 nO,i

qn0
V n e D; i 1,...,N	 (7.20)

Eqs. (7.20) are merely a restatement of (74b) and the left hand side equality

of (7.6); q'.0.1, Vn, Vi, is the flow supplied at adequate pressure at node n

during state i. Also, following Eqs. (74a) and (7.7), the nodal reliabilities R„

are given by

R„
 =[

Ru][1+ 71170 E(R'ulR(i)q'no. u] Vn a D
4:161J	 VelJ

Also, if the second term of Eqs. (723) is normalised by dividing it by the

probability that the network is not fully connected, the average nodal

reliabilities of the less-than-fully connected configurations are obtained as

(7.24)
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(7.16)

which, when substituted in Eqs. (7.24), give

R„ nRu +	 — TIRO Vn e D	 (7.26)
(ielJ	 (jelJ

which, finally, may be rearranged as

R— if Ru

rt n 	
UEIJ 

Vn E D	 (7.27)
1— fiRu.

iiEm

It remains to develop similar equations foi : the reliability R of the network.

The analysis for R is similar to R., Vn a D. However, ro is used instead of

g'.0 and is given by

= Eq'no,	 i --= 1,	 N	 (7.28)

in which T'0. 1 , Vi, is the flow which the network can deliver at adequate

pressure for state i. Following Eqs. (7.24), the network reliability is

R
 =[

nRu][1+	 E (R. ulRü)r 0. u]	 (7.29)
UEIJ	 ° ijelJ

in which Todj , Vij e IJ, is the total flow that the network can supply at

adequate pressure with link if, Vij e IJ, inoperative and is given by Eqs. (7.28).

Finally, Ft is given by

As in Section 7.2, states having multiple inoperative links are not included in

the derivations of R and if and so these reliability measures are lower bounds.

Also, it is worth noting that unlike the last section, the present equations are

applicable to multiple-source networks.

The amount of time remaining for the present research is not sufficient to

write programs to carry out head-driven 9 : mutation and so there are no

examples in this section. However, it is evident that provided the head-driven

simulation is sound, then, the present flow-based equations are likely to be at

least as good as the head-based equations of Section 7.2 which have been

shown to lead to realistic measures of reliability. Nevertheless research into

the methods proposed in this chapter for calculating reliability is necessary

and will be continued.

7.4 SUMMARY AND CONCLUSION

In this chapter a new definition has been suggested for state reliability as the

ratio of the flow supplied at adequate pressure to the demand. A state is

defined as a specified set of nodal demands with a set of operative and/or

inoperative network components. Reliability is obtained by summing the state

reliabilities weighted by their respective probabilities of occurrence. In other

words, reliability is defined as the ratio of the expected equivalent flow

delivered at adequate pressure to the total demand. This new definition of

reliability does away with the ambiguities of existing definitions in the

literature. However, there is an implicit assumption that all the states during

234 235



which some service is maintained can be identified and simulated. To this end,

systematic implicit exhaustive enumeration can be used to simplify state

enumeration and reduce the amount of simulation. What this means in essence

is that, if a state involving certain failed components is found to be

sufficiently improbable to be negligible, then, other states having the same

(and additional) failed components need not be considered as these sates have

even lower probabilities of occurrence. Also, if a state is found to have a

negligible value of p,Ra , then, other states having these (and other) failed

components need not be simulated as their respective values of p,1?' are even

lower. Such an implicit exhaustive enumerr.Lion scheme can be implemented

without too much difficulty if it is carried out systematically.

Referring to the desirable properties that have been identified in Chapter 3 for

a reasonable measure of reliability, first, the proposed measure reflects the

actual flow supplied. Second, the probabilistic nature of component failure is

incorporated in the measure. Third, pressure dependency of flow is recognised

and, furthermore, less-than-fully satisfactory service is accounted for. Last, the

present method is computationally expensive due to the necessity for

sinnlation.

There are two notable features in the present approach. One of these features

is that the difficulties posed by the interdependencies between the demand

node reliabilities have successfully been dealt with. For single-source

networks, these difficulties have been avoided by basing the reliability

calculations on the pressures at the source node. For general networks,

network reliability is computed using the sum of the flows supplied at the

nodes. This is in contrast to existing approaches which determine network

reliability by heuristically averaging the nodal reliabilities, and this is

theoretically questionable.
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The other important aspect of the present approach is its comprehensive

treatment of subnormal service. The quantification of subnormal service in the

context of reliability and design is useful as it permits different designs to be

compared on the same basis. Unlike the present measure, such a comparison

would be difficult if measures such as the percentage of flow supplied at

adequate pressure or the probability of sufficient supply were to be used. These

measures are based solely on the amount of time that the supplied flows equal

or exceed the demands, or the nodal heads equal or exceed the minimum

desirable service pressure (Su, Mays, Duan. and Lansey, 1987; Wagner, Shamir

and Marks, 1988a; Bao and Mays, 1990). In spite of the reservations expressed

in the introduction to this chapter, the probability of sufficient supply is an

inlication of the percentage of time that Vie network can be eniected to

function satisfactorily. However, the pre3ent reliability measure R is an

indication of the expected amount of flow that can be withdrawn from the

network at any given time and, as such, would be expected to be qualitatively

superior. Furthermore, 17 provides an estimate of the expected proportion of

the total demand than can be met when there is a mechanical failure in the

distri1 ution system. Together, R and 17 provide a more accurate pic .ure of

water network reliability than hitherto.

It has been assumed herein that the reliabilities of pipes can somehow be

determined. However, more serious questions have to be answered if flow-based

states are to be included in the reliability calculations. As an example, the

ability to meet fire fighting demands is important, but these demands may have

low probabilities of occurrence. One might therefore wonder whether it would

not be more informative to do additional reliability calculations based on fire

fighting flows only. In other words, there would be perhaps two R values, one

based on normal demands and the other based on fire fightilig demands. Also,

if necessary, a possible means of incorporating flow pattern-dependent states

in the reliability measures would appear to be as follows. First, the major

demand patterns would be identified. Second, these patterns could be weighted
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by some suitable means including their respective probabilities of occurrence.

Third, the reliability could be calculated for each pattern as in Section 7.3.

Last, the overall reliability could then be taken to be the sum of the

reliabilities of the flow patterns weighted according to their respective

weights.

Further work including verification that the conclusions of Examples 14 to 17

are not network specific is necessary. Also, it would be instructive to compare

values of reliability based respectively on demand- and head-driven simulation.

Essentially, the achievement of this chapter is that it has shown how the

various aspects of reliability may be combin ,-d to give a realistic measure of

reliability. Some refinement may be necessary, but the basic elements of the

framework have been established.

Table 7.1 Optimum diameters (mm) for the network of Fig. 7.1 (Exs. 14 to 16)

Link
Network Entropy

1.578 1.600 1.700 1.800 1.900 1.915

1-3 401 401 390 384 365 367
24 100 100 165 191 238 235
3-5 338 337 337 329 281 294
4-6 100 100 100 151 250 234
5-6 263 262 262 249 152 185
1-2 157 165 203 224 263 261
34 237 237 213 215 247 234

Mean 228 229 239 249 257 258

an - 1 116 115 100 81 63 58

0.510 0.504 0.419 0.325 0.245 0.224mean

Cost 0.950 0.251 0.254 0.259 0.261 0.263

Design 1 2 3 4 5 6

Costs ail , in E 101.

Table 7.2 Optimum flows (m'Is) for the network of Fig. 7.1 (Exs. 14 to 16)

1.:	 k
t	 Network Zntropy

1.578 1.600 1.700 1.800 1.900 1.915

1-3 0.253 0.251 0.234 0.223 0.199 0.200
2-4 0.003 0.005 0.022 0.033 0.057 0.056
3.5 0.147 0.147 0.147 0.139 0.101 0.110
4-6 0.001 0.001 0.001 0.009 0.047 0.038
5-6 0.055 0.055 0.055 0.047 0.009 0.018
1-2 0.031 0.033 0.050 0.061 0.085 0.084
3-4 0.073 0.072 0.054 0.051 0.065 0.057

Design 1 2 3 4 5 6
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Table 7.3 Usable head (m) to satisfy all design demands (Fig. 7.1, Exs. 14 to

16)

Failed Network Entropy

Link 1.578 1.600 1.700 1.800 1.900 1.915

1-3 8817.9 8454.6 1065.2 567.7 219.3 231.6

24 20.6 20.7 28.0 27.6 .	 35.7 34.7

3-5 2896.2 2895.5 2899.2 453.9 215.5 141.9

4-6 20.2 20.4 20.4 22.6 87.7 47.5

5-6 500,8 500.3 501.4 92.2 22.7 26.6

1-2 158.3 155.9 54.1 43.9 46.3 46.2

34 267.9 259.5 75.4 37.2 39.8 33.5

Mean 1811.7 1758.1 663.4 177.9 95.3 80.3

Max 8817.9 8464.6 2899.2 567.7 219.3 231.6

Design 1 2 3 4 5 6

Table 7.4 Reliability measures for the network of Fig. 7.1 (Ex. 15)

Denign Entropy
Ru= 0.95	 Vij Ru= 0.99	 Vij

R TI R Ti

1 1.578 0.80638 0.35816 0.95974 0.40739

2 1.600 0.80642 0.35828 0.95975 0.40762

3 1.700 0.822 0.412 0.964 0.468

4 1.800 0.848 0.495 0.970 0.563

5 1.900 0.851 0.506 0.971 0.573

6 1.916 0.859 0.533 0.973 0.606

Table 7.5 Pipe reliabilities for the network of Fig. 7.1 (Ex. 16)

Link

Design 1 (Entropy = 1.578) Design 6 (Entropy = 1.915)

Dia R R Dia R R

(inm) (Eq. (5.17)) (Eq. (5.18)) (rarn) (Eq. (5.17)) (Eq. (5.18))

1-3 401 0.999865 0.930800 367 0.999850 0.925563

24 100 0.999306 0.722742 235 0.999746 0.888189

3-5 338 0.999834 0.920141 294 0.999805 0.909567

4-6 100 0.999306 0.722742 234 0.999745 0.887721

5-6 263 0.909777 0.899680 185 0.999663 0.857715

1-2 157 0.999592 0.830954 261 0.999775 0.898951

3-4 237 0.999748 0.889112 234 0.999745 0.887721

Table 7.6 Reliability measures for the network of Fig. 7.1 (Ex. 16)

Entropy
Based on Eq. (7.17) Based on Eq. (18)

p(0) R I I- p(0) R T?

1.578 0.99743 0.999081 0.642277 0.29737 0.564747 0.380536

1.600 0.99745 0.999092 0.643524 0.30029 0.568503 0.3E3321

1.700 0.99781 0.999224 0.646511 0.35610 0.621047 0.411475

1.800 0.99815 0.999386 0.668312 0.41967 0.678602 0.446184
1.900 0.99827 0.999392 0.648580 0.44231 0.690947 0.445835

1.915 0.99833 . 0.999441 0.665402 0.45434 0.706100 0.461389
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Table 7.7 Optimum designs for the network of Fig. 7.2 (Ex. 17)

Link

Network Entropy

2.170 2.500 2.750 2.775 2.800

Dia.Dia. Di a.Dia. Di a.Dia. Dia.Dia. Dia.Dia.
(mm) 0.„3/0 (nun) (m 3/0 (Mm) (n 3/8) (mm) (m 3m ) (mm) (m3/6)

1-2 201 0.047 309 0.119 294 0.104 294 0.104 294 0.104
2-3 156 0.023 161 0.024 225 0.049 183 0.031 201 0.038
1-4 349 0.161 273 0.089 294 0.104 294 0.104 294 0.104
2-5 100 0.003 i 267 0.075 197 0.034 234 0.052 221 0.045
3-6 100 0.002 100 0.003 196 0.029 137 0.010 164 0.017
4-5 317 0.116 222 0.044 197 0.034 234 0.052 221 0.045
5-6 151 0.020 286 0.078 179 0.023 222 0.042 207 0.035
4-7 156 0.023 155 0.024 225 C.049 183 0.031 201 0.038
5-8 286 0.079 152 0.019 179 0.023 222 0.042 207 0.035
6-9 100 0.001 272 0.061 216 0.031 216 0.031 216 0.031
7-8 100 0.003 100 0.004 196 0.029 137 0.010 164 0.017
8-9 271 0.061 100 0.002 216 0.031 216 0.031 216 0.031

Mean 191 200 218 214 217

an_i 92 80 39 50 41

an- i 0 484
,

0.401 0.178 0.232 0.187
mean

Cost 0.277 0.282 0.292 0.290 0.292

Design 7 Design 8 Design 9 Design 10 Design 11

Costs are in E 106.

Table 7.8 Usable head (m) to satisfy all design demands (Fig. 7.2, Ex. 17)

Failed Network Entropy

Link 2.170 2.500 2.750 2.775 2.800

1-2 109.7 109.5 85.5 76.5 78.9
2-3 115.8 98.9 46.6 45.3 40.6
1-4 1248.6 56.0 79.8 74.8 76.2
2-5 23.9 59.1 30.0 38.3 34.3
3-6 24.1 24.1 34.0 25.8 28.2
4-5 3602 35.2 30.0 38.3 34.3
6-6 48.7 329.3 28.7 39.2 33.9
4-7 98.5 114.4 46.6 45.4 40.6
5-8 333.9 46.9 28.7 39.2 33.9
6-9 28.3 660.3 42.9 41.1 41.7
7-8 24.0 24.3 34.0 25.8 28.2
8-9 664.1 24.0 42.9 41.1 41.7

Mean	 . 256.3 131.8 44.16 44.23 42.7
Max 1248.6 660.3 85.5 76.5 78.9

Design 7 8 9 10 11

Table 7.9 Reliability measures for the network of Fig. 7.2 (Ex. 17)

Design Entropy

t
Ro= 0.96	 V ij Ro. = 0.99	 di/

R k R 11

7 2.170 0.734 0.422 0.9474 0.5370
8 2.500 0.767 0.471 0.9546 0.6000
9 2.750 0.802 0.669 0.9687 0.7249
10 2.775 0.799 0.562 0.9677 0.7155
11 2.800 0.804 0.673 0.9693 0.7297
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Table 7.10 Pipe reliabilities for the network of Fig. 7.2 (Ex. 17)

Link

Design 7 (Entropy = 2.170) Design 11 (Entropy = 2.800)

Dia R R Dia R R

(nun) (Eq. 5.17)) (Eq. 5.18)) (rum) (Eq. 5.17)) (Eq. 5.18))

1-2 201 0.999695 0.869318 294 0.999805 0.909567
2-3 156 0.999588 0.829799 201 0.999695 0.869318
1-4 349 0.999840 0.922318 294 0.999805 0.909567
2-5 100 0.999306 0.722742 221 0.999727 0.881206
3-6 100 0.999306 0.722742 164 0.999612 0.838602
4-5 317 0.999821 0.915508 221 0.999727 0.881206
5-6 161 0.999572 0.823768 207 0.999705 0.873155
4-7 156 0.999588 0129799 201 0.999695 0.869318
E-8 286 0.999798 0.907246 '207 0.999705 0 873155
6-9 100 0.999306 0.722742 216 0.999719 0.878464
7-8 100 0.999306 0.722742 164 0.999612 0.838602
8-9 271 0.999785 0.902476 216 0.999719 0.878464

Table 7.11 Reliability measures for the network of Fig. 7.2 (Ex. 17)

Based on Eq. (717) Based on Eq. (27,18)
Entropy

p(0) R E p(0) R k

2.170 0.994923 0.998583 0.720841 0.093018 0.277135 0.203000
2.500 0.995388 0.998784 0.736462 0.115770 0.325679 0.237391
2.750 0.996564 0.999266 0.786386 0.203985 0.477182 0.343206
2.775 0.996359 0.999216 0.784482 0.185436 0.450748 0.325711
2.800 0.996530 0.999271 0.790024 0.200874 0.474216 0.342052

244 245



CHAPTER 8 CONCLUSION

8.1 INTRODUCTION

Data estimation forms an integral part of the planning, design and operation

of civil engineering projects. This process of data estimation presently involves

a great deal of guesswork. Recent research (Basu and TempLeman, 1985) has

demonstrated that it is inappropriate to base modern design on arbitrary

assumptions and has thereby highlighted the need for consistent methodologies

and a logical approach to data estimation. The present research has explored

the possibility of using Shannon's informational entropy and Jaynes' maximum

entropy formalism in the solution of general problems with incorr?lete data

which are not directly related to probabilities. The problem of inferring least

biased flows in networks has been considered. This has led to further

investigations into possible uses of flow entropy and the maximum entropy

formalism in the optimum design and reliability analysis of water distribution

networks.

Urban water supply systems should be designed to be reliable in operation.

This need for reliability has traditionally been satisfied by using heavily

redundant pipe networks which have large diameter pipes and meny loops.

The loops ensure that there is in theory more than one supply route for each

demand node. Large diameter pipes provide the network with the necessary

resilience to cope with a wide range of flows which the network was not

specifically designed to carry. Unfortunately, it is a reality that an

over-redundant network is very expensive to construct. Moreover, in the

traditional approach to the design of water systems, cost is not a primary

consideration.

For better control over the capital cost of water distribution systems,

mathematical programming techniques have been used to find the cheapest
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design that can satisfy the constraints of the distribution system. However,

it is becoming increasingly clear that a straightforward cost minimization

approach is not suitable for water distribution systems. Optimization, by its

very nature, tends to remove redundancy and so any spare capacity which is

not required by the design demand pattern is removed. Complete removal of

redundancy is not desirable as it reduces network resilience. Since reliability

of water supply and the need to use public funds more economically are both

important, a compromise between cost and reliability is necessary.

One way of making sure that some redundancy is retained is to explicitly

consider a multiplicity of demand patterns in the cost minimization process.

The main disadvantage of this approach jr that each additional demand

pattern considerably increases the computational complexity of solving the

optimization problem. An alternative to explicitly considering a multiplicity

of demand patterns is to design the network to meet explicit reliability

requirements. However, reliability is not easy to define and the difficulty of

calculating it increases as its definition becomes more realistic. The difficulty

of calculating reliability is one reason that it is extremely difficult to optimize

both the reliability and cost of a water supply network.

The approach adopted herein to strike a balance between cost and reliability

is to use flow entropy as a surrogate for reliability. This novel approach

enables the cost of the system to be minimized without the redundancy being

completely removed. The following are some of the other advantages of the

present approach. From a computational viewpoint, flow entropy is easy to

calculate and easy to incorporate in optimization processes. A practical

implication of the above properties is that entropy can be used in a design

framework. Additionally, using an entropy constraint, as in Problem 10,

increases the computational effort only marginally. As such, the entropy

constraint, by itself, will not in general restrict the size of the network that

can be handled. Moreover, evidence has been presented herein suggesting that
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with an entropy constraint, the size of the optimum design problem could be

reduced significantly in a routine manner. From a reliability perspective, the

essence of entropy is uncertainty, and reliability centres around uncertainty.

While it is difficult to state precisely the nature of the relationship between

entropy and reliability, the present research has shown that entropy generally

has the desired properties of a reasonable reliability measure.

8.2 SUMMARY OF THE PRESENT RESEARCH

been overcome by using the relative frequency interpretation of probabilities.

It is perhaps possible to visualise this relative frequency interpretation in the

present context by imagining that routing flow through a water distribution

network is a continuous experiment. Another difficulty is the fact that the

maximum entropy formalism is based on the Shannon entropy function which

was undefined for networks, prior to the present research. This problem has

been addressed by using the conditional entropy formula for the entropy of

compound probability schemes to derive rigorously a general formula for the

flow entropy of networks in which the direction of flow is specified.

The fact that reliability is difficult to calculate has led to the search herein

for an easily calculable surrogate reliability measure. Network flow entropy

1129 most of the desirable computational propirties and appears to iossess the

qualities of a useful reliability measure. Network reliability and entropy are

related through uncertainty. Moreover, the higher the value of entropy for a

set of nodal inflows and outflows, the more uniform the link flows of the

network are. Also, the more uniform a flow distribution is with respect to all

the distributions capable of satisfying flow equilibrium throughout the

network, the smaller the potential changes in the link flows are, and, in

consequence, the smaller the increase in headloss due to any changes in pipe

flow rates. Since excessive headloss adversely affects network performance, the

above properties are central to the ability of flow entropy to act as a good

surrogate for water network reliability. Furthermore, from a design standpoint,

the uniformity of pipe diameters is largely determined by the uniformity of the

pipe flow rates, and this uniformity of pipe diameters has been shown herein

to be vital in providing a network with resilience to carry flows other than

those which the network was specifically designed to carry.

The maximum entropy formalism has been used herein to inft.r the least biased

flows in a general network in which only the flow directions and nodal inflows

and outflows are specified. One of the difficulties faced has been how to

introduce in a rigorous way probabilities to water networks. This problem has

Equations have been derived for the maximum entropy value of parallel

networks in general and fully-connected parallel networks in particular. The

gravity model for calculating maximum entropy flows in parallel networks has

been around for some time, but by deriving closed-form solutions for the

maximum entropy value, the present research has gone one step forward. The

advantage of using the result (5.72) for fully-connected parallel networks is

that it involves fewer p lnp terms than Eq. (5.71). The former has (NI + NO)

terms whereas the latter has (NI x NO) terms for fully-connected networks,

where NI and NO are the number of source and demand nodes respectively.

Also, analytical results derived herein using the present multiple probability

space entropy model are identical to known results based on the existing

single probability space entropy model. In other words, all existing closed-form

results for parallel networks have been rederived using the present

multiple-space model.

Maximum entropy flows have been characterised as the most uniform flows

with respect to all the sets of flows which can satisfy the demands of the

network. Also, it has been shown that maximum elitropy flows for

single-source networks are such that each demand node receives equal

proportions of the demand at that node from each of the paths serving the

node. The above property of maximum entropy flows for single-source networks
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has been used herein to develop a simple but rigorous and efficient algorithm

for calculating maximum entropy flows for single-source networks. The

above-mentioned algorithm has several practical and computational

advantages which are explained in Chapters 5 and 6. Some of the notable

properties of the algorithm are that it is conceptually simple, computationally

efficient, its computer implementation is straightforward, the calculations

involved are not iterative and mathematical programming techniques are not

required.

The entropy-constrained approach has been used herein to introduce entropy

to the least cost pipe network design problem. It is shown in Chapters 6 and

7 that, in general, the resilience/reliability of a netwofic. increases as the flow

entropy increases. As such, it is concluded that flow entropy is a good

surrogate for water network reliability. Awumah et al. (1990, 1991, 1992)

reached essentially the same conclusion, but the present work is more rigorous

in several respects and establishes the entropy-based reliability research on

a firmer base. Also, it is demonstrated in Chapters 6 and 7 that designing

netwo..lis to carry maximum entropy flows does confer a considerable amount

of all-round resilience on the network. Moreover, designing networks to carry

maximum entropy flows considerably simplifies the optimum design problem

by eliminating the flow variables and flow equilibrium constraints. In effect,

the problem is reduced to the problem of sizing the pipes for prespecified flows,

and this can be accomplished by linear programming. In this regard, the

algorithm developed herein for calculating maximum entropy flows in

single-source networks is particularly useful.

Another important outcome of the introduction of entropy to the optimum

design problem is that the designer can exercise control ovei the optimization

process. It is seen that the degree of implicit tree-type branchedness of network

designs reduces as the value of the flow entropy increases. The entropy

constraint increases the resilience/reliability of a network by making the pipes
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more uniform and larger. Also, as entropy increases, it becomes easier to

predict which nodes and links will be critical. Even the flow rerouting

properties become more obvious. The above properties of entropy-constrained

designs may have profound implications for both reliability analysis and the

optimum design problem. Regarding design, the number of link failure and fire

fighting flow patterns that need to be considered explicitly in the optimization

problem can be reduced considerably if it is known which nodes and links are

most likely to be critical. Regarding reliability analysis, the size of the

combinatorial problem involved in an analytical approach in which simulation

is not used, for example, Wagner, Shamir and Marks (1988a), can be reduced

considerably if the flow rerouting behaviour of the network is known. There

is therefore a need for further research into the beh ,viour of

entropy-constrained least cost designs ane the maximum entropy least cost

design in particular.

To compare rigorously the entropy-constrained least cost designs generated

herein, a new, sharper definition of reliability has been suggested. Reliability

has b?en defined as the ratio of the expected equivalent flow delivered (at

adequate pressure) to the total demand. Two ways of calculating reliability

according to the above definition have been put forward. Two notable features

of the present approach are that simple ways to resolve the difficulties posed

by the interdependencies between demand node reliabilities have been found,

and subnormal service is accounted for. The above aspects are best explained

by considering single- and multiple-source networks in turn.

For single-source networks, network reliability calculations are based on the

usable pressure head at the source node. A formula based on some of the ideas

of Wagner, Shamir and Marks (1988b) has been deveoped herein for

calculating how much flow can be supplied when service is subnormal. To

determine the flow supplied when service is subnormal, the actual usable head

at the source is divided by the notional usable head at the source that would
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enable all demands to be satisfied. The product of the total demand and the

square root of the above ratio gives the actual flow supplied when service is

not fully satisfactory. Thus, by basing the calculations on pressures at the

source node, the difficulties posed by interdependencies between demand node

reliabilities, which are discussed in Section 7.1, are avoided. Also, contrary to

existing approaches, subnormal service is fully accounted for in the

calculations. It is possible to quantify subnormal service in the above

calculations because of a subtle re-ersal herein of the roles of normal and

subnormal service.

For multiple-source networks, a more general approach has been used. The

actual flow supplied when service is srbnormal is determined using

head-driven simulation. The total supply is the sum of the actual nodal

abstractions, and it is this total supply that is used in the calculations for

network reliability. Using the total supply in this way differs from current

practice in which network reliability is obtained by averaging the reliabilities

of the individual nodes. Therefore, it can be seen that the present approach

avoith the difficulties posed by interdependencies between demand node

reliabilities.

An allied definition of reliability is based on the notion of state reliability put

forward herein. A state has been defined as a specified set of nodal demands

with a set of operative and/or inoperative network components. State

reliability has been defined as the ratio of the flow supplied at adequate

pressure to the demand. Network reliability is obtained by summing the state

reliabilities weighted by their respective probabilities of occurrence. One

advantage of using state reliability to define network reliability is that it

allows the freedom to chose the states to suit the circumstan.:es. In the above

way, some of the conceptual difficulties associated with the quantification of

reliability are eliminated. Also, it could be said that a partial answer to the

question of what reliability means has been provided. The problem of

calculating reliability is thus reduced to the practical problem of enumerating

states, simulating these states and calculating their probabilities of occurrence.

Lastly, an attractive feature of the present definition of reliability is that the

definition is effectively a statement of the quantity of flow or the fraction of

the demand that the network can be expected to supply at any given time.

In conclusion,

1. The present research has provided further evidence that Shannon's entropy

and Jaynes' maximum entropy formalism may extend to much wider fields

than traditional applications would suggest.

2. Flow entropy has the desirable computational properties and would appear

to have the necessary qualitative properaes of a reliability measure. As

such, flow entropy provides a quick and easy means of estimating the level

of reliability in a water network.

3. A convenient way of making sure that a network has a high level of

all-round resilience is to calculate the maximum entropy flows for the

network and then size the pipes to carry those flows.

4. For a water distribution network, state reliability has been defined as the

ratio of the flow supplied to the flow required for that state. Network

reliability can be obtained by summing the state reliabilities weighted by

their respective probabilities of occurrence. Calculated in the above

manner, network reliability can be made as comprehensive as desired.

8.3 SUGGESTIONS FOR FUTURE RESEARCH

The present research has provided answers to various questions relating to

network flow entropy and water supply networks. Howevar, many aspects

have not been explored herein, and some of these are discussed next. As a

result of this research, it may be easier to find solutions to some of the

problems posed below.
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Calculating maximum entropy flows in networks with pumps, valves,

etc.

Flow entropy has been defined herein solely on the link flows, without regard

to pressure. As such, it appears that there would be in principle no great

difficulty in calculating maximum entropy flows in the presence of such

network components as pumps, valves, reservoirs, storage tanks, etc. However,

information regarding the statuses of some of these additional components

would be needed. As an example, it would be necessary to know whether any

valves are open or closed. Otherwise, the problem may take on a combinatorial

nature. If this is the case, then, maximum entropy flows should be found for

each possible state, the state having the highest value of maximum entropy

selected as the most probable state and the maximum entropy flows for that

state taken as the maximum entropy flows for the network.

Also, if there are at least two reservoirs or tanks and/or pumps, then, the

inflow or outflow to or from some of these sources may not be known. In such

a case, the value of the entropy of the distribution of the demands or source

supplies may not be known. Consequently, the entropy of the sources (or

demands), S8 (or Si), should generally be included in the entropy function

when inferring least biased flows for a network having two or more pumps

and/or tanks. It may also be noted that there may actually be a series of

maximum entropy flows for practical networks, due to variations in demands,

the water levels in service reservoirs, etc., over a 24-hour period, for example.

Whether it is desirable or not to somehow aggregate these maximum entropy

values is one question that should be addressed. With components other than

pipes, however, it is not known whether flow entropy would still be a good

surrogate for reliability and this is an area for further research.

Energy entropy

The relative frequency interpretation of probabilities is a means of introducing

probabilities to phenomena which are not directly related to probabilities. If
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pipe flow rates can be cast in a probabilistic light, perhaps the same can be

done with the rate of energy dissipation, for example. Possible uses of flow

entropy have been demonstrated in this thesis in the context of water supply.

There may be other applications of entropy in other networks. The definitions

and uses of other entropies are worth investigating. In particular, the

"entropy" of the rate at which energy is dissipated in a network may turn out

to be an even better reliability measure and design tool for water networks

than flow entropy. It has been seen in Chapters 6 and 7 that the network

assessments based on the amount of energy dissipated have been broadly

similar to those based on headloss. Also, it has been explained herein why the

uniformity of pipe diameters and flows is desirable. Since energy is a function

of both flows and diameters, perhaps "energy entropy" could be used in the

optimum design problem to give even more uniform flows and diameters than

flow entropy.

Calculating maximum entropy Bows in networks

Problem 7 considerably simplifies the problem of calculating maximum entropy

flows in networks. The formulation of Problem 7 is for a specified set of flow

directions. For a network with NIJ links there are approximately 2,‘" sets of

flow directions. While the flows in most links can be in either direction, a few

links, for example, those connected to a primary source, can carry flow in only

one direction in practice. Suppose it is required to calculate maximum entropy

flows in a network without the flow directions being known? This is a far

more difficult problem to solve than Problem 7. Presently, perhaps the only

obvious way of inferring least biased flows in networks in which the flow

directions are not known is to solve Problem 7 for each possible set of flow

directions and then select the set of maximum entropy flows having the

greatest value of (maximum) entropy. However, with such an exhaustive

enumeration approach, the size of the problem is prohibitive for networks of

realistic size. To put the scale of the problem in perspective, a small network

with 20 links has approximately 2°0 = 1.04867 x 10° sets of flow directions. An
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ambitious research objective may therefore be, for example, to develop a

general methodology and algorithm for calculating maximum entropy or least

biased flows in general networks with arbitrary topologies.

A more modest goal, however, is the development of a general method for

calculating maximum entropy flows, given a set of flow directions, which does

not require mathematical programming. Such a method would be extremely

useful. The simple algorithm developed herein for calculating maximum

entropy flows is generally incapable of handling multiple-source networks. If

such an algorithm could be developed for multiple-source network, then, it

would be possible to use standard, robust linear programming routines to

deo:gn distribution networks without relying on non-linear prograinming to

determine the maximum entropy flows.

Faced with the difficulties posed by possible premature convergence, another

approach may be worth considering. It seems that some progress can be made

by seeking a heuristic which is known to give flows which approximate to

maximum entropy flows most of the time. Perhaps a possible line of attack is

to somehow find the proportions of the total flow arriving at a node that

originate from each source, route the flow from each source or the flow to •

each node, and then superpose these routed flows. Perhaps the microflow

model of Jowitt and Xu (1993), which can also be given a maximum entropy

interpretation, could be useful in this regard. An obvious snag, however, is

that the above-mentioned model has been specifically developed for use when

the values of the link flows under normal operating conditions are known.

On the other hand, in the problem of inferrirg least biased flows in networks,

no such information is available.

A prerequisite to the development of an alternative approach to non-linear

programming for calculating maximum entropy flows in multisource networks

is a detailed study of the general properties of maximum entropy flows. The

present research has rendered possible such a study. This study would establish

some criteria that could be used for terminating a possible iterative scheme for

calculating maximum entropy flows in multiple-source networks. Presently, it

is not obvious how it would be possible to know that the maximum entropy

flows have been found without some quantifiable properties of the flows being

known. In this regard, it may be noted that it would not be sufficient to test

for convergence of both the flows and the entropy function. Premature

convergence of the flows may lead to a false impression of convergence of the

entropy function even though this apparent convergence of the entropy

function may be solely attributable to the fact that the flows themselves are

hardly changing. It can therefore be seen that the problem of developing an

alternative method of calculating maximum entropy flows in general networks

may not be as simple as it might appear at first sight.

Joint pipe diameter, flow directions, layout and reliability optimization

Preliminary calculations during the present research show that flow entropy

could also be used as a measure of "goodness" of layout. Pipe diameter, layout

and ieliability/performance are so intimately related that they cannot be

separated without the resulting design being suboptimal. There is no method

capable of solving the joint flow directions, layout, pipe diameter and

reliability optimization problem, and entropy appears to offer a way forward.

However, there are some computational difficulties associated with layout

optimization. One of these difficulties is that in the loop-based pipe network

equations, the loop constraints, together with the minimum diameter

constraints, do not allow pipes to be eliminated during the optimization

process. The minimum diameter constraints ensure that no pipe diameter is

reduced to a value less than Omission of the minimum diameter

constraints, however, allows some pipes to be eliminated completely, resulting

in a network with a tree-like configuration. Completely eliminating links in

this way creates difficulties for optimization algorithms as any loop which is

opened ceases to exist, yet the loop constraint for the presently non-existent
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loop remains in the constraint set. As such, the said loop constraint is

automatically violated. For this reason, the loop-based formulations are not

suitable for layout optimization.

layout, pipe diameter and surrogate reliability optimization along the lines

suggested above is well worth investigating. There appear to be no satisfactory

procedures for solving the layout aspects of distribution network design.

Luckily, the H-equations, which are the system of constitutive equations

described by Eqs. (2.12) in which the variables . are the nodal heads, are an

alternative to the loop-based formulation of Problem 10. The H-equations, Eqs.

(2.12), describe flow in pipe networks without recourse to loop or path

equations. Therefore, using the H-equations to formulate the optimum design

problem would bypass the optimization difficulties described above regarding

the impossibility of satisfying loop conscraints for loops that become

non-existent as optimization proceeds. Moreover, looking at Eqs. (2.12), there

appear to be no immediately obvious reasons for which either the diameters

or the nodal heads cannot be zero. As such, it appears that there would be no

problems arising from the complete removal of any link, or the elimination

of any node if, for example, the node is neither a source nor demand node. It

follows that the H-equations appear suitable for use in a layout optimization

framework.

With regard to redundancy, optimization using the H-equations would still

result in the optimum design being a branched network in the absence of

reliability or minimum diameter constraints. However, it has been shown

herein that entropy does assure the retention of some redundancy. The

question of how to calculate flow entropy with the H-equations springs up, and

a possible answer is as follows. Referring once more to Eqs. (2.12), it can be

seen that each term in the summation is a pipe flow rate. Furthermore, it can

be determined from the sign of each flow whether the flow is an inflow or an

outflow. As such, network entropy can be calculated since dl the link flows

and the total flow reaching each node can be determined. It is evident from

the above discussion that the H-equations, in conjunction with flow entropy,

hold out the possibility of joint layout and pipe diameter optimization. Joint

Accurate reliability measures

The reliability measure proposed in this thesis allows the inclusion of various

network components including pipes, pumps, valves and reservoirs. However,

there is an implicit assumption that the mechanical unreliability of each

component can be calculated. There appears to be a small amount of

uncertainty in general about how these unreliabilities should be calculated.

More research would probably shed some light on this issue. It can be

conjectured that the maximum entropy formaiism could be used to infer least

biased distributions for pipe unreliability using pipe breakage data. Being

maximally noncommittal with respect to unavailable data, the

above-mentioned maximum entropy distribution would probably be more

dependable than a distribution based on regression analysis.

Another important matter is the way in which the expected equivalent flow

measure proposed herein could be used to calculate the reliability of a network

having multiple flow patterns. A related problem is the calcu!ation of

reliability using extended-period simulation. Some possibilities have been

suggested in Chapter 7. The approach used by Cullinane, Lansey and Maya

(1992) for calculating extended-period network reliability may also provide

some useful ideas. Furthermore, it has been suggested in Chapter 7 that the

ability of a network to meet fire fighting demands at each node should be

quantified separately, in view of the low probabilities of oceurrence of these

demands. Further work is necessary to determine both the probabilities that

should be used in these calculations and whether it is necessary to compute

and report fire fighting reliabilities separately.
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Two ways of calculating reliability have been suggested in Chapter 7, using

demand- and head-driven simulation respectively. It would be instructive to

compare values of reliability given by the two approaches. Both approaches

should give similar results, but any discrepancies would probably imply the

existence of gaps in the understanding of the behaviour of pipe networks

regarding the pressure dependency of nodal abstraction in general and

subnormal service in particular. Also, it has been difficult previously to

compare reliability measures, partly because of the inability to quantify

subnormal service. Ways of resolving the above difficulty have been suggested

in Chapter 7 and, as a result, it may be easier to carry out comparative

assessments of reliability measures. The results of such comparative studies

mRy help to determine the direction which reliability analysis should follow

in the future.

Algorithm development and practical design programs

The focus of this research has been the determination, and demonstration of

the suitability, of a possible surrogate reliability measure, flow entropy. Many

aspecis regarding the development of algorithms for Problems 7, 8 or 9, and

Problem 10 have not been explored. The development of special numerical

algorithms for the above problems is equally important and more work is

needed in this area.

It has been mentioned herein that the difference in cost between a minimum

diameter-constrained least cost network design and a maximum

entropy-constrained least cost network design may be generally of the order

of 6%. It has also been suggested that this difference in cost may be less for

larger networks. More extensive research is needed to confirm the above

conjecture. The recommendation herein that networks should be designed to

carry maximum entropy flows is based on the premise that the maximum

entropy design will not generally be much more expensive than alternative

designs.

Linear programming, together with the suggestions herein for reducing the size

of Problem 10, could be useful in designing networks of realistic size to carry

maximum entropy flows, provided those flows can be calculated. With pipe

networks, some post-design analysis is generally necessary. However, there is

some evidence herein that the hydraulic behaviour of networks designed to

carry maximum entropy flows may be quite predictable. Verification of this

property on a wider scale is needed, and, if confirmed to be generally true, the

amount of post-design analysis of a network designed to carry maximum

entropy flows would be reduced significantly.

In broad terms, there appear to be no great conceptual difficulties in

implementing most of the ideas, concepts and conclusions of this research.

With reference to the computations for the results presented herein, only the

analytical derivatives of the entropy function for the two-loop network used

in Example 12 are network specific. Although a general expression for the

derivatives of the entropy function has not been presented, this expression can

be derived and would further enhance the efficiency of the entropy-constrained

least •-iost design approach. Except the analytical derivatives of the entropy

function for the network of Example 12, all the computational results

presented herein have been obtained using general programs which are not

network specific. On the IBM 3081 mainframe, the amount of computer time

needed to solve the optimization problems and calculate network reliability is

trivial, for the sample networks considered in this thesis. Generally, it is felt

that no serious problem-specific difficulties would be encountered in

developing practical design programs, from a purely computer programming

perspective. However, aspects such as the development of algorithms capable

of performing the necessary optimization for networks of realistic size may be

more problematic. Also, other important aspects of program development such

as data input and manipulation, user-friendliness, the presentation of results,

graphics, etc., may be difficult, but these concerns are not specific to the

present research.
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CHAPTER 8 CONCLUSION

8.1 INTRODUCTION

Data estimation forms an integral part of the planning, design and operation

of civil engineering projects. This process of data estimation presently involves

a great deal of guesswork. Recent research (Basu and Templeman, 1985) has

demonstrated that it is inappropriate to base modern design on arbitrary

assumptions and has thereby highlighted the need for consistent methodologies

and a logical approach to data estimation. The present research has explored

the possibility of using Shannon's informational entropy and Jaynes' maximum

entropy formalism in the solution of general problems with incon-2lete data

which are not directly related to probabilities. The problem of inferring least

biased flows in networks has been considered. This has led to further

investigations into possible uses of flow entropy and the maximum entropy

formalism in the optimum design and reliability analysis of water distribution

networks.

Urban water supply systems should be designed to be reliable in operation.

This need for reliability has traditionally been satisfied by using heavily

redundant pipe networks which have large diameter pipes and meny loops.

The loops ensure that there is in theory more than one supply route for each

demand node. Large diameter pipes provide the network with the necessary

resilience to cope with a wide range of flows which the network was not

specifically designed to carry. Unfortunately, it is a reality that an

over-redundant network is very expensive to construct. Moreover, in the

traditional approach to the design of water systems, cost is not a primary

consideration.

For better control over the capital cost of water distribution systems,

mathematical programming techniques have been used to find the cheapest
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design that can satisfy the constraints of the distribution system. However,

it is becoming increasingly clear that a straightforward cost minimization

approach is not suitable for water distribution systems. Optimization, by its

very nature, tends to remove redundancy and so any spare capacity which is

not required by the design demand pattern is removed. Complete removal of

redundancy is not desirable as it reduces network resilience. Since reliability

of water supply and the need to use public funds more economically are both

important, a compromise between cost and reliability is necessary.

One way of making sure that some redundancy is retained is to explicitly

consider a multiplicity of demand patterns in the cost minimization process.

The main disadvantage of this approach ir that each additional demand

pattern considerably increases the computational complexity of solving the

optimization problem. An alternative to explicitly considering a multiplicity

of demand patterns is to design the network to meet explicit reliability

requirements. However, reliability is not easy to define and the difficulty of

calculating it increases as its definition becomes more realistic. The difficulty

of calculating reliability is one reason that it is extremely difficult to optimize

both the reliability and cost of a water supply network.

The approach adopted herein to strike a balance between cost and reliability

is to use flow entropy as a surrogate for reliability. This novel approach

enables the cost of the system to be minimized without the redundancy being

completely removed. The following are some of the other advantages of the

present approach. From a computational viewpoint, flow entropy is easy to

calculate and easy to incorporate in optimization processes. A practical

implication of the above properties is that entropy can be used in a design

framework. Additionally, using an entropy constraint, as in Problem 10,

increases the computational effort only marginally. As such, the entropy

constraint, by itself, will not in general restrict the size of the network that

can be handled. Moreover, evidence has been presented herein suggesting that
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Maximum entropy traffic flows in road networks

Although the concept of maximum entropy has been used extensively to infer

trip matrices in road networks, it would appear that much of the research is

based on the single-space probability entropy model. Also, the available

information tends to be the volume of traffic on a few links of the network,

in contrast to the present research in which the available information is the

nodal inflows and outflows. It would be interesting to investigate the

applicability of the present multispace probability entropy model to the

inference of trip matrices. Such research may, in turn, shed some light on how

the present method of calculating maximum entropy flows may be adapted to

cope with flow networks in which some link flows are known. Problem 7 is

inapplicable to such a network.
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APPENDIX A CALCULATING SYSTEM RELIABILITY BY THE

CUT SET METHOD

Definitions

A cut set is a set of system components the failure of which causes the system

to fail.

A minimal cut set is a set of system components which, when failed, causes the

system to fail, but does not cause the system to fail if at least one component

of the set is working. In other words, all the components of a minimal cut set

must fail for the system to fail. It follow- that the probability of failure

p(C) of the ith minimal cut set C, is

p(Ci)=11R',n i = 1,...,NC	 (A1.1)
IPS

in which R'„ is the unreliability of the mth component in the minimal cut set

being considered; NC is the number of minimal cut sets.

Calculating System Reliability

Since the failure of each minimal cut set causes the system to fail, it follows

that the failure of any combination of the minimal cut sets causes the system

to fail. The system unreliability R' is therefore given by

13' =P[UC']

	
(A1.2)

The remainder of this short appendix is concerned with the evaluation of the

probability given by Eq. (Al2). For NC-- 2,

P(C1 u	 -p(c1)+p(c2)-P(CI n c2)
	

(A1.3)

P(Ci n	 =p(c1)p(c2)

Eq. (A1.3) can be verified readily using a Venn diagram. For NC=3, the

desired result can be obtained by setting C2 M C2 U C3, substituting in Eq.

(A1.3), and expanding the resulting right hand side. Thus:

P(Ci u c2u c2)

= AC1) +P(C2 u -p(c, n	 u c2))

=P(Ci)+ P(C2+ C3 — C2 fl C.) — 13«C1 n c2) u (C. n C3))

=ACI)+P(C2)+13(C3)-P(C211C3)- P(Ci r + C, fl c2- c, n c211 c.)

= P(C1) +p( 3) + p() — P(C1 n -p(c, n -p(c2 n co

+p(c, n c2 n	 (AI.4)

The above probability can be evaluated using

ncl=rip(c.)

Continuing as in Eq. (A1.4), the following rule can be deduced for any number

of components NC.

To evaluate the unreliability of a system:

add the unreliabilities of all the minimal cut sets,

subtract all the second order products of the unreliabilitie;

add all the third order products of the unreliabilities,

subtract all the fourth order products of the unreliabilities,

etc.
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More generally, add all the odd order products of the unreliabilities and subtract

all the even order products of the unreliabilities.

The above rule can be used to calculate system unreliability, and the

reliability is given by R=1 — R'.

APPENDIX B PUBLICATIONS

The following papers are based on the present research and have been

accepted, for publication.

The above method of calculating reliability gives accurate results, but the

number of terms involved in the calculations increases too rapidly as the

number of minimal cut sets increases. To show the rate of increase, for 1, 2,

3, 4, 5, 6, ... minimal cut sets respectively, there are 1, 3, 7, 15, 31, 63, ... terms.

For this reason, approximations are often used, particularly if the individual

components have high reliabilities. With l'igh component reliabilities, the

unreliabilities of the minimal cut sets are low. In consequence, the values of

the products in the above general rule for ca:culating system unreliability are

small. One approximation is obtained by assuming that second and higher

order terms are negligible. The above assumption leads to an upper bound on

unreliability as

NC

R' =Ep(C'd
	

(A1.6)

The network reliability corresponding to the above unreliability is a lower

bound and, as such, is safe. The reliability is, obviously,

R	 — R'	 (A1.7)

The interested reader may consult Billington and Allan (1983) for more

material on the evaluation of network reliability.

1. Calculating Maximum Entropy Flows in Networks; accepted for

publication in J. Operational Research Society.

2. Optimum Design of Flexible Water Distribution Networks; accepted for

publication in Civil Engineering Systems.

3. Maximum Entropy Flows for Single-Source Networks; accepted for

publication in Engineering Optimization.
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APPENDIX B1 CALCULATING MAXIMUM ENTROPY FLOWS IN

NETWORKS
CALCULATING MAXIMUM ENTROPY

FLOWS IN NETWORKS

T.T. Tanyimboh and A.B. Templeman

Department of Civil Engineering

University of Liverpool

P.O. Box 147, Liverpool L69 3BX, U.K.

ABSTRACT

The paper describes methods for calculating most likely values of link

flows in networks with incomplete data. The object is to present a

thorough and rigorous treatment of maximum entropy flow estimation

methods and to develop a methodological framework capable of handling

different types of network problems.	 A multiple probability space

constrained entropy approach is described for the general network

problem.	 Results are presented and discussed for an example network

intended for water supply.

KEY WORDS : networks, information theory, engineering, probability

INTRODUCTION

The work described in this paper is concerned with methods for

probabilistic inference on networks with incomplete data. It was

initially stimulated by the problem shown in Figure 1. Suppose that a

pipe network transports water from several source nodes to several demand

nodes and that volumetric supplies and demands at all nodes can be

measured and are therefore known. Suppose also that the layout of the

pipe network and the flow direction in each pipe element are known but no

other data whatsoever are available. 	 Under these conditions, how can

'most likely' flow rates in all the pipes of the network be estimated?



If the layout of pipes in Figure I had been a branched system with

no loops the supply and demand data would have been sufficient to

determine uniquely all the unknown internal flow rates in the pipes.

Since the layout in Figure 1 is looped, however, there are more unknowns

than equilibrium equations and more information is needed about all the

pipes in order to carry out a full looped pipe network analysis. In the

absence of this information there are very many possible pipe flow rate

distributions which satisfy the equilibrium conditions. Which of these

many possible solutions is in some sense most likely and how can it be

found?

The problem has practical relevance. Sometimes, especially for old

water supply systems, though plan layouts may be available, details of

the pipe diameters, friction coefficients and other data may have been

lost or may have changed over time. Such water supply networks are

usually buried and it may be time consuming and expensive to obtain these

data for every pipe element in order to determine the flow rates

accurately by calculation. Physical measurements of pipe flow rates

requires equipment and can be similarly expensive and time consuming. In

these circumstances a method of quickly estimating most likely pipe flow

rates would be most useful.

Reduced to its essentials, this problem can be viewed as a

transportation problem. There is a set of sources and a set of

destinations each supplying or demanding known quantities of flow.

Between these two sets of nodes there is some network providing the means

of flow transport. It is desired to estimate the most likely internal

distribution' of flows within this transportation network.

--47t1MG-
Other problems -".-evilh these characteristics arise in different

practical contexts. For example, consider the well known problem in

traffic engineering of estimating the turning flows at a junction or

roundabout. Figure 2a shows a roundabout with four arms, each being a

two-way road. Suppose that traffic flow rates can be measured on each

arm in each direction thus giving four inflows to and four outflows from

the roundabout.	 On entering the roundabout on any arm each vehicle

either turns left and leaves by the first exit, or goes straight on and

leaves by the second exit, or turns right and leaves by the third exit.

The possibility that a driver may make a complete circle and leave by his

entrance road is ignored here although this may be included if special

circumstances make this significant. For a four arm roundabout and three

possible directional choices for a vehicle on any arm, there are

therefore twelve unknown turning flows but only seven independent inflow

and outflow conditions which they must satisfy. The number of possible

solutions is infinite. How can most likely values be estimated for all

the twelve unknown turning flows?

Figure 2b shows a network representation of the turning flow problem

in which the four inflows to the roundabout are shown on the left and the

four outflows on the right. Each link of the network represents a

possible turning flow whose most likely numerical value must be found.

Although the network of Figure 2b is different from that of Figure 1 the

nature of the two estimation problems is closely similar in both cases.

The practical problems outlined above, and others, are closely

related. Methods already exist1.2. ' for solving some of the problems but

are incapable of solving more general network problems. The purpose of

this paper is to address them in a unified fashion to try to determine a

rigorous method capable of tackling all of them. Also there are

different interpretations of the term 'most likely' in a flow distribu-

tion context. One purpose of this paper is to attempt to clarify that

issue. It is shown that the Shannon/Jaynes maximum entropy formalise.'

provides both an interpretation of 'most likely' and a methodology for

determining most likely flows.

UNCERTAINTY AND NETWORK FLOWS

The term 'most likely' used with reference to flow rate estimation

reflects likelihood in the context of observer uncertainty. In the case

of the buried water supply network, when the system is operating and

exhibiting the known inflow and outflow rates, the individual pipes have

unique water flow rates which obey known physical laws. Although those

physical laws are known there is insufficient data to allow the behaviour
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of the sjrstem to be calculated from them. The uncertainty in the problem

arises not from any randomness or uncertainty in the system itself but

from the inability of the observer to deduce its deterministic behaviour.

Given sufficient further data, that observer uncertainty could be

entirely eliminated and the unique pattern of flows would be revealed. If

a method exists whereby some estimate of that flow pattern can be made

without extra data, it therefore follows that the method must in some way

depend upon and manipulate the observer uncertainty about the physical

problem rather than operate methodologically upon the physical processes

of the network itself.

fully-connected if each source node is directly connected to every demand

node, in which case the number of links L -. MN. With these definitions

the following equations represent flow equilibrium at all nodes of the

network.

M+N
E tiJ - I i	 i ,- 1, 	 M	 (1)

j -M+1

M
E tii .. Oj	j - M+1, 	 M+N	 (2)
i-1

The roundabout problem is rather different. Here there are no

physical laws governing turning flows. Individual drivers are free to

make a choice of turning direction so there is inherent uncertainty in

the turning flows themselves. At best, given any amount of extra data, a

model of the roundabout system would only be able to estimate some

statistical average values for turning flows. Additionally, as with the

water supply system, there is observer uncertainty about what any average

turning flow rate is. In this paper the 'most likely' estimation process

operates upon the observer uncertainty rather than upon the uncertainties

in the turning flows themselves.

with t 	 V ij

For a balanced problem, in which the sum of all source flows is

exactly equal to the sum of all flow demands, Eqs. (1) and (2) are not

linearly independent; they contain one redundant equation. Without loss

of generality it is assumed that the final demand equation at node j -

M+N is omitted. Eqs. (1) and (2) therefore comprise Of + N - 1)

equations in L unknown link flows. For the purposes of this paper it is

assumed that L > (M + N - 1), thus a unique solution of Eqs. (1) and (2)

does not exist; many different solutions are possible. Values are sought

for the L link flows t ii satisfying Eqs. (1) and (2) which are in some

sense most likely.
Figure 3 shows a simplified network which incorporates some, but not

all, the characteristic features of the examples described above. In

Figure 3 the nature of the flow is not specified; it may be water,

vehicles or any unspecified commodity. Let there be M source or supply

nodes denoted by i - 1 	 M and let I, be the (known) inflow at source

node i.	 Let there be N demand or destination nodes denoted by j -

M+1, 	 M+N and let 0,..1 be the (known) outflow rate at demand node j.

Also let there be a total of L direct flow-transporting links ij between

source nodes i and demand nodes j, and let t, j denote the (unknown) flow

rate on link ij. Note that the above definitions imply that a node in

the network must be either i, source or a destination node, there are nl

other possibilities. Also, the total number of links L may generally be

smaller than, and cannot exceed, MN. The network can be described as

One solution can be found easily if sufficient of the link flows are

set to zero until Eqs. (1) and (2) become solveable uniquely for the

remaining link flows. This type of result is typically achieved by

linear programming if a linear total transportation cost function

Cost -. E cutij
ij

is added to Eqs. (1) and (2). In Eq. (3) c represents the cost of

transporting one unit of flow along link ij. Linear programming simply

allocates zero flow along the more expensive links and uses only the

cheaper links to carry non-zero flows. However, none of the problems

described above is necessarily of this nature; there is no information to

Minimize
t, j

(3)



the effect that cost minimization is involved in them, and no data values

for the unit cost coefficients. Consequently there are no grounds for

expecting the most likely solution of Eqs. (1) and (2) to have this

characteristic pattern.

Indeed, the LP-type solution is a very poor candidate for the title

of 'most likely'. Given that possible links exist to carry flow it seems

very unlikely that some of them should carry zero flow. The value zero

is at one extreme end of the range of possible values for a link flow: it

seems intuitively more likely that link flows should have values in the

middle of the range rather than at either extreme. Another argument

against zero being a most likely value for some link flows comes from the

fact that only some, but not all, of the links may have this value. Which

links should then be specifically selected to have this zero value rather

than any other links? There is no reason to prefer any particular link

to have this honour rather than any other link. Extrapolating this

argument further, there is no reason to allocate different values to the

flow rates in different links unless the equilibrium equations (1) and

(2) dictate such a solution. By this reasoning, a most likely set of

link flows should be as uniform in value as is permitted by Eqs. (1) and

(2).

This characterization of most likely values as most uniform values,

subject to satisfying the equilibrium equations, has been developed

intuitively. It implicitly uses Laplace's principle of insufficient

reason, which requires that in the absence of any good reason to allocate

different values to unknown quantities the same value should be allocated

to them all. The sufficient reason for a non-uniform choice in this case

is that vilues have to satisfy Eqs. (1) and (2). Laplace's principle

therefore leads to the idea that the most likely flows will satisfy Eqs.

(1) and (2) and wil14Me uniform in value as possible.

Laplace's principle is generally recongnized not to be a fundamental

principle. It is a consequence of the Shannon/Jaynes maximum entropy

formalism 5 (MEF) which provides an ideal tool with which to tackle the

most likely flow problem of Figure 3. Values must be assigned to the L

link flows and each of those values has some observer uncertainty

associated with it. If the uncertainty associated with each link flow

can be represented probabilistically (or as some probability-like

quantity which satisfies all the conditions which are axiomatic to

probabilities) then, by virtue of the MEF, the most likely flow rate

assignment problem of Figure 3 can be posed as the problem of maximizing

the Shannon entropy of the link probabilities subject to whatever is

known about the system, i.e. Eqs. (1) and (2).

THE GRAVITY MODEL

The network flow problems described above are concerned with allocating

flow values but the MEF is couched in terms of allocating probabilities.

The question of how to introduce probabilities into Figure 3 and Eqs. (1)

and (2) is now addressed. Two different ways of doing this will be

examined in detail and will be shown to give the same most likely flow

values.

The first approach considers the equilibrium equations (1) and (2)

and denotes by T the sum of all link flows in the network. Thus:

M+N
T — Et— E I= E Oi

ij	 1-1	 j —M+1

Probability-like quantities p ii , which satisfy non-negativity and

normality conditions associated with probabilities, may be introduced as

ratios of link flow ti , to total flow T. Thus:

pi — tii /T	 V ij
	

(5)

The most likely flow estimation problem now becomes that of maximizing

the Shannon entropy of the link probabilities subject to Eqs. (1) and (2)

with link flows substituted by Eq. (5). i.e.

Maximize : (S/K) — - E p ij ln (Pi)
	

(6)

Pi j	 ij

(4)



of	 the	 internal	 entropy	 is	 determined	 by	 the	 external	 macroscopic

Subject to E	 p, j — 1
ii

M+N

(7) boundary	 conditions,	 but	 removing links	 removes	 potential	 uncertainty

from the internal system and the maximum internal entropy can no longer

reach this absolute macroscopic value.

E	 pij — Ii/T
j —M+1

— 1 	 M (8)

The emergence of the gravity model as representing most likely flow

estimates	 is	 neither new nor unanticipated.	 Transportation engineers

pij — 0j/T
i-1

j M+1, M+N-1 (9) have been using it for many years as an estimator of traffic flows in a

variety	 of	 circumstances.	 Its	 validity	 is	 incontrovertible	 and	 is

Eq. (6) is the Shannon entropy function" in which S is the entropy and K

is an arbitrary positive constant which is not required for maximization.

The above problem represented by Eqs. (6) to (9) has a unique solution

which may be determined by examining the stationarity of its Lagrangean.

The solution may be derived as shown in the Appendix and is:

Pjj —0j/T2
	

V ij	 (10)

and Eq. (5) immediately recovers the required estimates of the most

likely link flow as:

Ii0j/T
	

V ij	 (11)

further strengthened by the fact that it may be derived, as here, from

first principles as a direct consequence of the maximum entropy

formalism. However, it is important to note the restrictions and

limitations implicit in Figure 3 and Eqs. (1) and (2). Consequently, the

gravity model is directly applicable to the roundabout turning flow

problem of Figure 2 but not to the general network problem, for instance

the water supply network of Figure 1 in which all links do not start at a

source and end at a demand node. Also, in general, there may be several

different paths between a source node and a demand node.

In order to handle general networks something more than the gravity

model is required. The key to developing an alternative lies in defining

probabilities in a different way from Eq. (5), and is described next.

which corresponds to the well-known gravity model of transportation

engineering. Substituting the probabilities (10) into the entropy

function (6) gives the maximum entropy value for a fully-connected

network as:

M+N

	

(S/K)" — - E	 (I i /T) In (I y /T) - E	 (0j /T) ln (0j /T)	 (12)

	

i-1	 j—M+1

In the case of a less-than-fully connected network (such as the

roundabout turning flow problem of Figure 2b) result (11) still holds but

yields a maximum entropy value (S/K)" which is smaller than that given by

(12). This indicates that in a fully connected network the maximum value

MULTIPLE PROBABILITY SPACE MODELS

Shannon's entropy is defined for independent and exhaustive probabilities

only. These conditions are satisfied by the probabilities in Eq. (5),

provided all links of the network start at a source and end at a demand

node, as depicted in Figure 3. Essentially, this proviso means that the

probabilities in Eqs. (5) are suitable, in the context of entropy, only

for networks in which there are no links connected in series. For

example, in Figure 1, all link pairs (ij, jk), Vi, j, k — 1, ...,N are

connected in series. In any network with series connections, proba-

bility-like terms may still be defined but may not be independent. For

any series-connected pair of links (ij, jk)„ One flow in link jk is made
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up, at least in part, of the flow from link ij. As such, these flows are

not independent. Consequently, if the corresponding probability-like

quantities are defined as in Eqs. (5), those quantities would not be

independent.

Refering to Figure 3 again, an alternative way of introducing probabili-

ties is to define as the proportion of the total inflow at node i

which is carried onwards by link ij (i.e. the probability that an element

of the flow which enters node i is transported along link if to node j).

With this definition, if the inflow at node i is I L , then the expected

value of the flow on link if will be tij	 Pij I i . Substituting this into

Eqs. (1) and (2) gives:

M+N

E	 17.), J 	1	 i — 1 ..... M	 (13)
j—M+1

E	 j	 Oj	 j — M+1, 	 M+N-1	 (14)

i-1

These equations are equivalent to Eqs. (8) and (9) with the earlier

definition of probabilities. Whereas in the earlier formulation there

was one normality condition (7) which embraced all the probabilities,

there are now M normality conditions (13) and M sets of probabilities.

Furthermore these probability sets are not independent: they are

conditional upon the probabilities associated with the source node

inflows I i , i — 1,...,M. The question which needs to be addressed is

what form:of entropy is the correct one to use with multiple dependent
--

probability spaces?

This question has been addressed by Khinchin 5 who has given several

forms of the Shannon entropy function for multiple probability spaces.

Two general results are useful:

i) For two Independent discrete probability distributions Q and R, the

entropy of the joint distribution QR is the sum of the entropies of Q and

R separately. Thus:

11

S(QR)	 S(Q) + S(R)	 (15)

ii) For two mutually dependent probability distributions Q and R, the

entropy of the joint distribution Q*R (* is used to denote that Q and R

are mutually dependent) is given by

S(Q*R) — S(Q) + S(R1Q)	 (16)

where	 S(RIQ) — E pci Sq (R)	 (17)

pc, is the probability of the q-th outcome in probability distribution Q,

S5 (R) is the entropy of probability distribution R conditional upon the

q-th outcome in probability distribution Q occurring, and S(RIQ) is the

entropy of probability distribution R conditional upon Q occurring.

Important features of the above results are that S(Q*R) is invariant

with respect to changes in position of Q and R. S(R*Q) is therefore

identical to S(Q*R) and is obtained from Eqs. (16) and (17) with the

roles of Q and R interchanged. Also S(Q*R) reduces to S(QR) when Q and R

are independent and further reduces to S(Q), the Shannon entropy function

(6), when there is only one probability distribution. Extensions to more

than two probability distributions follow the rules given above.

Returning to Eqs. (13) and (14), the M probability sets cannot be

treated as independent. 	 For a particular set, i, probabilities

measure the likelihood that the inflow at i is transported to demand node

j, j — 14+1 ..... M+N. These probabilities within set i are independent but

set i itself is conditional upon inflow existing at node i. If p i is

defined to be the probability of inflow at node i then these probabili-

ties can be determined from the network data: pi is given by the

proportion of the total inflows at all source nodes which exists at node

i. Thus:
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pi - I,/ E I, - Ii /T	 i - 1 ..... M	 (18)
i-1

Eqs. (16) and (17) then give the form of the entropy function to be used

with the mutually dependent probability sets defined by Eqs. (13) and

(18):

M+N
S/K - - E p i ln (p i ) - E pi E Pil ln (iis)

i-1	 i-1 j-M+1

which, on substituting the known probabilities pi given by Eq. (18)
becomes

M+N
S/K - - E (VT) In (I i/T) - E (Ii/T) E i is ln (Pis ) ( 20)

i-1	 i-1	 j-M+1

Most likely flows in the multiple probability space formulation are

then given by maximizing the entropy function (20) over probabilities

for all ij, subject to constraints (13) and (14). There is an analytical

solution to this problem which can be found by examining the stationarity

of its Lagrangean in a similar way to result (10), as given in the

Appendix. The solution is:

pis - Os/T	 V ij	 (21)

The link flows are then given by

13

multiple probability space formulations give identical flow regimes and

total uncertainty values. Both formulations are restricted to the

conditions associated with Figure 3 and neither is directly applicable to

the water supply network of Figure 1. The next section describes how the

multiple probability space formulation can be extended to become

applicable to more general networks and uses the Figure 1 example for

demonstration purposes.

MULTIPLE PROBABILITY SPACE GENERAL NETWORKS

Because of difficulties of probabilistic independence, as discussed

earlier, the single probability space model cannot easily be extended to

a network such as Figure 1. Turning to the multiple probability space

approach, the key elements in the model developed earlier for Figure 3

were as follows:

(i) A set of normalized probabilities 17),s was defined at each node i

where the nodal inflow split into at least two outflows. The Pis there-
fore represent the probabilities associated with flow splitting

processes.

(ii) The probabilities Pi s of flows leaving node i were conditional upon
probabilities associated with the arrival of inflow at node i, pi.

(iii)The entropy function used was the conditional entropy function.

(19)

tis	 pss l s	 110s/T
	

V ij	 (22) (iv) Constraints upon the entropy function maximization originated in the

flow equilibrium equations at all nodes except the final demand node.

1

which are exactly the same as the flows (11) calculated earlier for the

single probability space formulation. Substituting the probabilities

(21) into the entropy function (20) and assuming a fully connected

network yields the same maximum entropy value (12) given by the earlier

formulation.

Two different formulations for determining most likely flows in a

network similar to Figure 3 have now been developed. Both the single and

These four elements provide the basis for extending the multiple

probability space model to more general networks such as that shown in

Figure 1. Figure 4 shows the network example of Figure 1 in a more

general form with numerical values of source flows and demands replaced

by algebraic quantities. Figure 4a gives details of the node numbering
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and link connectivities, supplies and demands, and also identifies the

link flow quantities, t 2j . Figure 4b gives details of all the probabili-

ties associated with this particular problem. First, all the elements of

the model are assembled according to requirements (i) to (iv) above.

In accordance with (i) there are flow splitting processes at the

source nodes 1 and 2, and also at nodes 3, 4 and 5. At the source nodes

probabilities are easily defined as ratios of link outflows to the total

link outflows at each node. Thus, since the total of the link outflows

is in this case equal to the known source inflow:

15

Non-negativity of the probabilities is also ensured provided that link

flows are always in the direction defined and never become negative.

In accordance with (ii), all the above probabilities are conditional

upon flow existing at the nodes at which these flow splitting probabili-

ties are defined. In the case of the source nodes . 1 and 2 the

probabilities that flow exists there are known and are given by the first

equality in Eq. (18).

PS - 1 1 1(1 2 + 12 )	 ;	 p2 - 12 /(1 2 + 12 )	 ( 23)

p„ - t12/12 P14 t14/11 (22a) In accordance with (iii)	 the conditional entropy function for the

network of Figure 4 may be assembled systematically using the principles

P23 - t23/12
-
P24 t24//2 (22b) of conditional probability and the conditional entropy definitions 	 (16)

The flow splitting probabilities at nodes 3, 4 and 5 are also ratios

of individual outflows to the sum of the outflows at a node and lead to

the following definitions of probabilities. Note particularly that a

probability must be assigned to the demand from a node. The reason for

doing this is that, although the demand at a node is known, the total

outflow from a node is not known. Hence the ratio of the demand to the

total outflow is not known and a probability is required to represent

this. The use of zero as a second suffix denotes these demand probabili-

ties. Thus:

	

1,34 n t34 /T3	 ;	 P35 n t35 /T3	 1;30 n 03/T3	 (22c)

in which T3 n t„	 t35 03,

	t 46/T4	;	 P4 0 -
	 (22d)

with ;-t + 0,

P5s
	 t22 /T2	;	 i„ - 02 /T2	(22e)

and (17). Starting with the two source nodes there is the entropy, S2,

of the probabilities p1 and p2 that flow exists at the source nodes. This

is:

S2	 -p i ln (p1 ) - p 2 1h (P5)
	

(24a)

There are then the entropies of the probabilities associated with the

link flows leaving the two source nodes. For node 1, probabilities 1713

and i„ are conditional upon p i , and the conditional entropy, S 2 , is

therefore:

sl - -	 (13) 4. p141n ('4)]	 (24b)

For node 2, probabilities i53 and 1)54 are conditional upon p2 and the

entropy is therefore:

S2 - - p2 [P23 1n ( 23 ) + i241n 6201
	

(24c)

At node 3 there is entropy associated with the probabilities for link
with T2 - t„ + 02 .

The way in which Eqs. (22) define the probability sets ensures that they

flows leaving node 3. 	 These flows are conditional upon flow arriving at

node 3.	 Flow can arrive at node three by two routes: 	 from node 1 via

link 1-3, and from node 2 via link 2-3. 	 The probability of flow arriving
satisfy normality without the need for separate normality constraints.

at node 3 by the first of these routes is p 2 i12 and by the second route

is p2 i22 . Thus the conditional entropy at node 3 is:
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-
S,	 - (13013 + po,,][p„ln (p„) + p„ln (p„) + p301n (o)) 	 (24d)

t33 n 11 -	 t14

17

(27a)

t23 n 12 - t„ (27b)

Similarly	 for	 node	 4	 the	 entropy	 of	 the	 flows	 leaving	 node	 4	 is
ts 5 n I, + 12 - 03 -	 t.14 -	 t.24	 - t34 (27e)

conditional upon flow arriving at node 4 from the source nodes 1 and 2,

and also from node 3. 	 Thus the conditional entropy at node 4 is:

t46

t55

- 0,

+ 12 - 03 - 05

+ t„

t14

+ t2 , + t„

t34

(27d)

(27e)

S, n 	 [P5f354	 p2i24	 1334(1'113	 P2/323)] [i46 1n (i46)

p40ln (P40))
	

(24e)

Similarly at node 5 the conditional entropy turns out to be:

S,	 - [ 133 014, 3 	 P2 1-323 ) ] (1356ln	 + 	 6301
	

(24f)

The conditional entropy of the entire network of Figure 4 is then simply

the sum of the separate entropies in Eqs. (24a) to (24f):

S/K — S, + S 1 + S2 + S3 + S„ + S5	 (25)

Im szcatdcmcs sci.tt‘ Ctql, cQmstrainte are generated by the flow

equilibrium conditions at all nodes except the final demand node, node 6

in the network of Figure 4, and are:

ti3 + t„	 I,	 (26a)

t„ + t„ I,	 (26b)

t i , + t„	 t„ + t„ + 03	 (26c)

t„	 4 	 — t„4	 (264)

t„ — t„ + Os	 (26e)

The above model contains both link flow unknowns t1 	 probability

unknowns which are connected through the probability definitions

(22). The first step in solving the model consists of simplifying it to

an easily solveable form. There are several ways in which this can be

done; the way chosen here is to express everything in terms of a reduced

number of link flow variables. The five flow equilibrium constraints

(26) contain eight link flow unknowns but are equalities. 	 They can

therefore be used to express all link flows in terms of just three

independent link flow variables.	 Choosing t 14 , t„ and t„ as the

independent variables yields:

Definitions (22a) to (22e) may then be used to express all the probabili-

ties p in terms of unknowns t„, t„ and t„, and the entropy function

(25) then becomes a function only of these three variables.

The flow directions defined in Figure 4a require that all the link

flow quantities t be non-negative. The final model should

therefore consist of maximizing the entropy function (25) over the link

flow variables t„, t„ and t„ subject to constraints that all the

right-hand side functions in Eqs. (27) and the link flow variables

themselves must be non-negative. However, the final model was actually

solved by NAG library routine E04JAF which is an unconstrained

optimization routine, and the constraints were omitted whilst maximizing

the entropy function. The optimum solution was then substituted into the

constraints to check that they were all satisfied but inactive. The

reasons for adopting this approach were that it provides a much simpler

and quicker solution, and that, as has been argued earlier, it is

expected that the maximum entropy solution will have flows which are as

uniform as possible without any being equal to zero.

The entropy function (25) for the example of Figure 4 was construct-

ed somewhat laboriously using the conditional entropy definitions (16)

and (17). In fact its form is quite simple and has only two types of

terms. The first type comprises the entropy of the source flow probabili-

ties, S,, given by Eq. (24a). In most network examples the source flows

are known and form part of the rvailable data, so these source flow

entropy terms are actually known constants. They may be omitted from the

objective function maximization and are not necessary to the solution

process. The only case in which they are needed is that of a network in

which source flows are not specified and must be estimated along with the

pipe flows. The form of this first type of terms is always
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i-1
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in which p i is as defined in Eq. (18).

The second type of terms are S, to S5 given by Eqs. (24b) to (24f).

Each of these equations represents the conditional entropy at a node of

the network where flow splitting probabilities are defined. The form of

these terms is always the same and consists of the entropies of all the

outflow probabilities, including that of any demand at the node,

multiplied by the total probability of flow arriving at that node by all

possible paths. The form of these terms at any node k in the network is

therefore

Sk — -Pk [E Pk oln (kJ)1
	

(29)
kjeNk

in which Nk is the subset of outflows from node k including any demand.

Pk is the total probability of flow arriving at node k by all possible

paths.

All nodes of the network generate terms of the form of Eq. (29) and

the entropy function sums them all. At a node which has only one outflow

(either a demand or a link outflow) the single entropy term in the [ ] in

Eq. (29) is zero by virtue of the way in which probabilities 17ikj are

defined. This accords with intuition since at such a node there should

be no additional uncertainty to what already exists elsewhere in the

network. The entropy function as defined by Eqs. (28) and (29) therefore

has a coaveniently structured form which permits it to be assembled

easily for any network,
-

The network of Figure 1 is used as a numerical example of the

calculation of maximum entropy flows in a general network. Table 1 gives

numerical results for two instances of Figure 1. In case A the inflows

and outflows are exactly as shown in Figure 1. In case B the inflows at

nodes 1 and 2 are interchanged. In both cases the link flow directions

are as in Figure 1.

The results in Table 1 show several interesting features. Firstly, the

link flows in the lower half of the network are the same for both cases A

and B. Further study reveals that they remain the same for any

combination of source flows at nodes 1 and 2 totalling 55 units. The

reason for this is that nodes 1 and 2 are each connected to the rest of

the network in exactly the same fashion, and they provide flow to nodes 3

and 4 in exactly the same proportions. From Table 1 the proportions of

source flow transmitted from each source to nodes 3 and 4 may be

calculated as 0.7121 and 0.2879 respectively. These proportions of the

total available flow are required at nodes 3 and 4 in order to serve the

demands in the rest of the network using maximum entropy pipe flows. The

network is unable to distinguish topologically between the two source

nodes, and, for demands as in Figure 1, any combination of source flows

at nodes 1 and 2 which totals 55 units will be distributed to nodes 3 and

4 in these same proportions.

Secondly, a means of partially checking the validity of the results

of Table 1 is to consider the example of Figure 1 with all directions

reversed. The two source flows become demands, the four demands become

sources, and the flow directions along all links are reversed. A

complete reversal of all directions in this fashion completely changes

the definitions of flow splitting probabilities and leads to a different

conditional entropy function from Eq. (25). However, it should not

change the intrinsic total uncertainty (entropy) in the system. Solving

the reversed model, therefore, should yield exactly the same results as

those of Table 1. 	 It does, and this provides reassurance that the

calculation are correct.

A third comment which may be made on the results of Table 1 is that

the invariance of the most likely flow values in the links in the lower

half of the network is reassuring from both design and reliability

viewpoints. In the case of a water supply network, designing the pipes

to carry these flows would appear to confer a considerable degree of
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invulnerability upon the lower half of the network to possible variations

in the source flows. The issue of network reliability and the importance

of maximum entropy flows in this context is too large for detailed

examination here but has been studied by Awumah, Goulter and Bhatt2.3.

CONCLUSIONS

The problem of estimating from incomplete data most likely values of

flows on the links of a general network has been studied. Most likely

flows were first characterized as those flows which maximize an entropy

function for the network subject to the available information. Possible

forms of this entropy function were examined and it was shown that a

multiple probability space conditional entropy model was most appropriate

for general network problems. The detailed solution of a typical general

network problem was presented and the results discussed.

A considerable amount of work still needs to be done. The paper has

established the basic elements and outlined the structure of a computer

method for the calculation of most likely flows in any general network.

That computer program needs to be written and tested and the results

examined. The nature of these maximum entropy flows needs to be studied

and interpreted. Conjectures about their potential value in the design

of engineering networks and about possible close relationships between

entropy and reliability need to be critically-examined and tested. The

ability to infer most likely values in networks has many potential uses

which need to be explored. Essentially, this paper has shown how the

calculations may be done: the value of the results remains to be

established.

REFERENCES

1. S. Erlander (1977) Accessibility, entropy and the distribution and

assignment of traffic. Transportation Research, 11, 149-153.

2. K. Awumah, I. Coulter and S.K. Bhatt (1990) Assessment of reliabili-

ty in water distribution networks using entropy based measures. .

Stochastic Hydrology and Hydraulics, 4, (4), 325-336.

3. K. Awumah, I. Goulter and S.K. Bhatt (1991) Entropy-based redundancy

measures in water distribution network design. ASCE J. Hydraulic

Engineering, 117, (5), 595-614.

4. C.E. Shannon (1948) A mathematical theory of communication. Bell

System Technical J., 27, (3), 379-428.

5. E.T. Jaynes (1957)	 Information theory and statistical mechanics.

Phys. Rev., 106, 620-630 and 108, 171-190.

6. A.I. Khinchin (1953) 	 The entropy concept in probability theory.

Uspekhi Matematicheskikh Nauk, 8, (3), 3-20. Translation in A.I.

Khinchin (1957) Mathematical Foundations of Information Theory, Dover,

New York pp. 1-28.



22 23

.	 )

- 0j /T )

exp(A) - 1/ E exp(a, + #j )	 (A2)
ij

Substituting (A2) in (Al) gives

- [	 fr
] 

[ 0.1./T

Pi	 - Ii3O1,/T2

M+N-1
• exp(al .)/ E exp(a i ) I [ exp(pj.)/

j-M+1
Pi

APPENDIX Derivation of result (10) 	 I	 Substituting result (A3), this becomes

The Lagrangean of problem (6)-(9) may be written as:

1,(1),A02 43 )	 E Pij 1n(Pii) + (1 + A) [
ij

M+N 1 M+N-1

+	 E	 a, E
J -M+1

pij	 - I 1 /T
J

+	 E	 fij

j -M+1

Stationarity of	 the Lagrangean with respect to a

pi , j „ yields

M+N-1	 N	 M+N-1
exp(a,,)	 S	 exp(pj,)/ ( E	 exp(a,)	 E	 exp(Pj) )

j-M+1	 i-1	 j-M+1

exp(ai.)/	 E	 exP(ai ) ••• Ii,/T
	

(A4)

Stationarity of the Lagrangean with respect to a typical multiplier, pj„

typical probability, 	 yields the outflow constraint (9) for node j':

E D
ii

- in(p i , j ,) - 1 + (1 + A) + ai , + flj . -0

- exp(A)exp(a i , + fij ,)	 (Al)

Stationarity of the Lagrangean with respect to A yield the normality

condition (7). Substituting (Al) in (7) gives

exp(A)	 E exp(a, + flu) - 1
ij

E P. - Op/T
1-1

Substituting result (A3) and proceeding as for ai , this gives

M+N-1
exP(Pj .)/	 S	 exp(Pj) - 0j/T

j -M+1

Substituting results (A4) and (16) into (A3) gives

(AS)

exp(ai , + pp )/ E exp(a, + pj)
ij

M+N-1
- exp(ai ,)exp(Pj ,)/ (	 E exp(ai ) E

1-1 j-M+1

Stationarity of the Lagrangean with respect to a typical multiplier, ai„

yields the inflow constraint (8) for node i':

M+N

E	 pi,j - Ii./T
j-M+1

which is result (10) when generalized for all i and j.

Result (21) for the multiple probability space model may be derived

in a closely similar manner by examining the Lagrangean of the problem

defined by Egs. (20), (13), and (14).

exp(8j) )	 (A3)
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Table 1 Maximum entropy flows for the network of Figure 1

Figure 1

FIGURE CAPTIONS

Water supply network

flow rate

link Figure 2 a)	 Four-arm roundabout, and b) the turning flows represented

as links of a network

case A case B
Figure 3 Network notation

1	 3 14.242 24.924 Figure 4 Water supply network example of Figure I

1 - 4 5.758 10.076 a)	 Supply, demand and flow definitions

2	 -	 3 24.924 14.242 b)	 Probabilities

2 - 4 10.076 5.758

3 - 4 15.833 15.833

3	 -	 5 8.333 8.333

4 - 6 6.667 6.667

5	 6 3.333 3.333 TABLE CAPTION

(S/K) 2.41098 2.41098 Table 1 Maximum entropy flows for the network of Figure 1
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OPTIMUM DESIGN OF
FLEXIBLE WATER DISTRIBUTION NETWORKS

T.T. Tanyimboh and A.B. Templeman

Department of Civil Engineering
University of Liverpool

P.O. Box 147, Liverpool L69 3BX, U.K.

ABSTRACT

A method for designing flexible water distribution networks is presented.

Flexibility is the extent to and ease with which a distribution network can

cope with eventualities for which it was not specifically designed. This paper

shows that some flexibility can be achieved by maximizing the entropy of the

flows. A sample network is considered and designs for various levels of entropy

are examined. Several indices including energy and head loss are used to

compare the designs. The results suggest that an entropy constraint can reduce

the tendency towards implicitly branched configurations characteristic of cost

minimization models. A striking feature of the proposed methodology is its

apparent ability to produce resilient designs without a substantial increase in

cost. The results further highlight some implications for connectivity-based

reliability measures and core tree approaches to layout optimization.

1. INTRODUCTION

In recent years interest in the cost optimization of looped water distribution

networks has increased. The need to replace systems of increasing age and to

use public funds efficiently and economically has focused attention upon both

the reliability and cost aspects of water supply systems. A heavily redundant,

highly looped network with large pipes provides a very reliable system with

in-built resilience under exceptional loading conditions such as fire fighting

and pipe breakage. Such a system is, unfortunately, also very expensive to

construct. There is clearly a need for a design procedure which is able to

strike an acceptable compromise between reliability/resilience and cost.

There is, however, no comprehensiv, definition of the reliability of a water

distribution network although some key elements have been identified. These

include the mechanical reliability of the entire network and its components,

the shortfall suffered by consumers in the event that a component fails, and

resilience regarding the network's performance under various adverse

conditions. Also, the probabilistic nature of failures and consumption must

be accounted for. Other wider factors such as availability of supply and

operating policies are also involved. This paper, however, deals with

distribution and concentrates on the pipes only.

Of particular concern is the difficulty of quantifying any sufficiently realistic

measure of reliability. On one hand, simulation-b g sed probabilistic measures

can be far ranging. However, they are not easily transferable across networks

and obtaining them can be time consuming. On the other hand, analytical

indicators are difficult to calculate. In any case the majority are mere indices

for various forms of connectivity. These include the probabilities of node

isolation, source-node connectien, availability of alternative paths, and, no

more than a specified number of pipe failures. Fujiwara and De Silva (1990)

have reviewed models incorporating these measures. For water distribution

networks the existence of paths is only the most basic requirement. The paths

must have adequate capacity to be usable. To be fully functional there must

be sufficient pressure in the system to drive and deliver the flow at acceptable

pressures.

More realistic measures of the reliability of water distribution networks have

extremely high computational requirements. For example, Wagner, Shamir arta

2



Marks (1988) proposed the probability of sufficient supply, defined as: "... the

probability that a system can meet a specified level of flow at each demand

point." Also, Fujiwara and De Silva (1990) made certain simplifying

assumptions about the flow capacity of pipes and proceeded to define the

system reliability in terms of the expected maximum flow delivered, as: "... the

complement of the ratio of the expected minimum total shortfall in flow to

total demand ..."

100% reliable, an indicator is sought that reflects the extent to, and ease with

which, a distribution network can cope with eventualities for which it is not

specifically designed. In other words, an index of versatility is required such

that whatever the (unknown) reliability of the system is, when this surrogate

measure is optimized the resulting design should have a reliability that at least

approximates to the optimum.

Regarding design, Templeman (1982) pointed out that cost optimization leads

inevitably towards a branched network with no loops and thus with low

reliability/resilience. Moreover, the addition of a few minimum diameter

loop-completing pipes to such a branched system does very little towards

providing alternative flow paths. Also, Yates, Templeman and Boffey (1984)

concluded that (discrete) pipe size optimization for distribution networks is

NP-hard. Furthermore, reliability requirements increase the complexity of the

optimization problem very significantly as reliability analysis is also NP-hard

(Wagner, Shamir and Marks, 1988, including references therein).

Reliability-constrained cost optimization formulations consequently tend to

comprise two separate models, one for cost minimization, the other for

determining system reliability. The latter sometimes incorporates another

model for hydraulic simulation or analysis. It follows that linking these models

in an optimization framework can be exacting and the consequent iterative

schemes usually suffer from their lack of a proper mechanism for achieving

cost effective increases in reliability.

It is evident from the above discussion that designing cost- and

reliability-optimal networks is a complex process. This study therefore

approaches this optimum design problem from a different angle. An indirect

method that operates on a surrogate reliability measure is proposed. Therefore,

recognising the possible variations in demand and the fact that pipes are not

This pp per demonstrates on a sample network that the flow entropy is a

possible measure of versatility or flexibility. Tanyimboh and Templeman (1992)

have shown how to calculate the entropy of the flows of any network. Also,

flow entropy can be optimized directly. As such, the difficulties of linkage

between separate reliability, hydraulic simulation or analysis and cost

minimization models can be avoided if entropy is used as a surrogate for

reliability in the optimum network design problem. In this paper, an

entropy-constrained least cost model is presented and applied to a sample

network. The model is non-linear and it can be solved by any suitable

constrained non-linear programming algorithm. Also, the results of the

example are discussed and these results appear promising.

2. FLEXIBILITY OF WATER DISTRIBUTION NETWORKS

The versatility of a distribution network is governed by its layout, the

diameter and reliability of the pipes, the number and location of valves, the

number, location and capacity of reservoirs and pumps, etc. This investigation

is, however, restricted to the pipes and this section looks at the qualities of

pipes and flows that might contribute to flexibility in a looped network. Also,

tree-type, branched networks are devoid of flexibility and are consequently

unsuitable for urban water supply in general. It follows that for a fixed layout

a "good" looped network should be rich in flexibility. Thus it is possible to
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glean an idea of what contributes to flexibility by examining some desired

qualities of distribution networks.

all the other links meeting at each end of it. This condition leads to uniformity

of all diameters of the network.

Traditionally, velocities are restricted within fairly tight bounds. This

condition forces large pipes with smnll flows to be replaced by smaller pipes

and small pipes with large flows by larger pipes. This process results in a

collection of pipes that are not very dissimilar in diameter. In a similar vein,

Rowell and Barnes (1982) argued that pipes with extremely high hydraulic

gradients are inefficient and should be replaced by larger ones, while pipes

with extremely low gradients should be replaced by smaller pipes. The

outcome of this philosophy is a network with all pipe diameters in a fairly

narrow band.

Also, Goulter and Coals (1986) reported that minimizing the differences in the

reliabilities of pipes connected to each node seemed an effective way of

improving overall network reliability. It is quite common practice to base pipe

failure . rates on diameters (Su, Mays, Duan and Lansey, 1987) in which case

minimizing the differences in the reliability of pipes is similar in effect to

minimizing the differences in diameters. In a looped distribution network with

relatively few tree-type branches, there is a node at each end of most links

if, if e IJ, where IJ is the set of all links of the network. In other words, most

nodes will be the meeting point of at least two pipes. However, to simplify the

present explanation, it is assumed that this is the case for all nodes. Therefore,

any attempt to minimize the differences in the reliabilities or diameters of the

pipes meeting at any node n, Vn, will have an effect on the pipe(s) at the other

end of each link kn, kn e NUN . and each link nj, nj. e NA,. NU„ and NA

represent the set of all the link and any external inflows and all the link and

any external outflows respectively at node n, n where N is the number

of nodes in the network. Therefore, imposition of this requirement results in

the diameter of each link in the network being as close as possible to that of

Finally, Walters (1988) suggested that reliability could be improved by

ensuring an even division of flow between the pipes converging at each

junction. Also, Awumah, Goulter and Bhatt (1991) asserted that it is desirable

to have links of equal capacity incident at each node. They argued that as the

head loss in a pipe is roughly proportional to the square of its flow, a smaller

pipe suffers a disproportionately high increase in head loss because of a small

absolute increase in its flow.

Taken to their logical conclusion, the above observations imply a need or

desire for some form of uniformity throughout a water distribution network.

It would seem therefore that flexibility can be improved by increasing this

uniformity. However, progress beyond the recognition of this possibility has

hitherto been hampered by the inability to systematically generate such

uniformity. Recently, however, Tanyimboh and Templeman (1992) have

presented a rigorous method for finding the most uniform flows in a general

looped distribution network. Furthermore, they concluded that for water

supply, designing the pipes to carry those flows would appear to confer

considerable invulnerability.

3. FLOW ENTROPY OF LOOPED NETWORKS

The focus of the preceding section was uniformity. It is seen shortly that

uniformity can be related to the more fundamental concert of entropy

maximization. The philosophy of entropy maximization is concerned with the

determination of the most likely probability distribution in situations where

many distributions agree equally well with the (little) information that is

available about the probabilities that are sought. In other words, the question

that is addressed by entropy maximization may be stated in the following way.
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Grove otsly ssiame,,	 not all„ of the information required for unique

naitsom of a complete set of probabilities, what is the most likely value

or each My anal how can these values be found? Jaynes (1957)

established the principles behind probabilistic inference under uncertainty,

His maximains entropy formalism maximizes the Shannon entropy of an

unknown probability distribution subject to whatever is known a priori about

the probabilities- Application of the method results in the most uniform

probability distribution that is compatible with the available information.

That is, this resultant maximum entropy distribution has the property of being

as close as possible to the distribution in which all the probabilities are equal,

whale satisfying all the known or necessary properties of the required

probability distribution.

Water distribution network reliability centres around uncertainty: uncertainty

about component failures, pipe capacities and/or sufficiency of pressure, flow

rerouting, duration of failure and repair, impact of inadequate supply on

consumers, variations in demand, etc. The notion of entropy therefore seems

appropriate for the reliability of water distribution networks provided

appropriate probability-type quantities can be defined. Furthermore, these

probabilities must satisfy the necessary conditions for a complete probability

space including non-negativity, independence and normality. In the method

of finding the most uniform flows of a looped network presented by Tanyimboh

and Templeman (1992), appropriate probabilities are defined for the flows.

These probabilities are then used to set up the entropy function for the flows

of the network. The entropy function for flow networks is presented next.

For a network in which the direction of flow is specified, Shannon's entropy

function takes the following form.

S/K-= So+ EP„8„	 (1)
ne.1

where S is the entropy (Shannon, 1948), K an arbitrary positive constant, and

/3,, the probability of flow arriving at node n. The other symbols are defined

shortly. In Tanyimboh and Templeman (1992) the node probability P„,

n =- 1 	 N, is found by adding the probability of flow arriving at the node by

each path. Algebraic manipulation of the above rule gives a convenient

equation.

T.ITo , V n	 (2)

in which 71 is the total supply or demand; T„ is the total inflow, including any

external inflow, or the total outflow, including any demand, at node

n, n Also, the entropy of the distribution of the total supply among

the sources is So and is obtained from

So =	 (3)

In the above equation, I is the set of all source nodes and po, is the fraction

of the total flow supplied by source i. Its value is given by

Poi = %a/Doi =qoil To, Vi E r
	

(4)
iel

in which q. is the external inflow at node i. In Eq. (1), .S„ is the entropy of

the outflows, including any demand, at node n and it is defined by Eqs. (5)

and (6) below.

7
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S„ —	 InpAi, Vn
njE ND„

(5)
different specified levels of entropy may be compared. The entropy-constrained

model is presented next.

941 E	 = (NI T„ , Vn, Wife	 (6)
nje ND„

The flow notation q,„ i , j = 0,1,...,N, is such that the same symbol q is used

for both internal and external inflows and outflows. For an external inflow,

the first subscript will be zero and the second, the source node number. Also,

the second subscript for a demand will be zero while the first will be the

number of the node where the demand occurs. Otherwise, qv is the pipe flow

from node i to node j.

It must be stressed that Eqs. (1) to (6) apply to a looped network with defined

flow directions in all pipes. It is therefore important that any non-looped

portions of a network under consideration be omitted when setting up SIK.

Also, Eq. (1) is slightly different from and more rigorous with respect to the

requirements of Shannon's entropy (Shannon, 1948) than the alternatives put

forward by Awumah, Goulter and Bhatt (1990, 1991). This and other aspects

of network flow entropy are the subject of a forthcoming publication by the

present authors.

4. ENTROPY-CONSTRAINED LEAST COST MODEL

Eq. (1) may be maximized subject to a budget constraint and the other

constraints of a water distribution network which are presented shortly.

Alternatively, an equivalent entropy-constrained cost minimization model in

which network entropy is adopted as a measure of flexibility may be used.

An entropy-constrained approach is used in this paper so that designs with

9

Entropy apart, the objective and constraint functions have been well

documented elsewhere. They are simply listed below for the case of a

predetermined layout for completeness.

Cost:

Minimize C= yELuDfd
Dy,	

ijEll
	 (7)

where:

C = total cost of pipes.

y = constant cost coefficient.

= effective length of link if.

D,, = internal diameter of pipe if.

e, = exponent greater than 1.0.

Flow equilibrium at each node:

gni = 0, n =1 ..... N — 1.	 (5)
kn. Nt.1„	 4,if ND„

Pipe flow equation:

hu = aLu(quiCul l '8521/4",'i ii e IJ	 (9)
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Entropy constraint:

SIK

The parameter 5„ is a specified minimum value of entropy.

(13)

in which IJ, is the set of all pipes in loop I and L is the number of loops.
	 umin � 4quIxD 5	 , %e lf e IJ

	
(14)

In Eq. (9), hu is the head loss in pipe if, a is a conversion factor for units

which equals 10.67 for the S.I. system and Cu is the Hazen Williams coefficient

for pipe if.

Loop energy equation:

E hu -= 0, I =1,...,L	 (10)
Flow velocity limits:

Energy equation for paths with a constant head loss:

EV 
= hP' p =-- 1,...,P

(is IJp

In the above equation, IJ, and h, are, respectively, the set of all the links in

path p and the constant head loss along that path; P is the number of

specified paths having•a constant head loss.

Node pressure limits:

For any node m,m I, having a constant pressure head,

H,,,„„„ � H„,— E hq2Hmjn, n	 (12)
U.14

The notation in Eq. (12) is such that H, IL.: and are respectively, the head

and the maximum and minimum allowable head at the node identified by the

accompanying node number. The set IJ., is composed of all pipes in any

specified path between any selected constant-head node and node n.

The parameters um.„ and urn., are respectively the selected maximum and

minimum allowable velocities for pipe flows.

Diameter availability:

D„,;„ 5 Du 5	 , Vij a IJ	 (15)

where D.,„ and	 represent the upper and lower limits, respectively, of the

range of available diameters.

Non-negativity of flows:

q � 0, Vij e IJ	 (16)

Eqs. (7) to (16) represent a non-convex constrained non-linear programming

problem in many variables and constraints. The variables are the qu,Du and

hu, if a LI. For large networks the computational expense of solving this

problem can be very large. Any simplification of the model is therefore

worthwhile.

II
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First, some simple observations. The exponential increase in cost with

diameter, Eq. (7), ensures that a large diameter is not used if a smaller one

will do. The R„,„ constraints in Eqs. (15) may therefore be removed. However,

it is vital to ascertain from the final results that no diameter exceeds

Any such violated constraints should be reinstated and the program re-run, a

process to be repeated as necessary. The cost function also makes each u„,,„

constraint more likely to be in the active set than the corresponding un „. The

v..,,, constraints may therefore be eliminated in favour of post-optimization

verification as described above.

The flow velocities are further restricted by all the problem inequalities. The

lower bounds on the node pressure heads may therefore be used to eliminate

the um,, constraints as argued below. Assuming that the system is likely to

have just enough pressure, then the constraints prevent the velocities

from being extremely high. In the event that this assumption is invalid the

post-optimization confirmation is a safeguard.

Except perhaps for some critical nodes, for example near a reservoir, high

residual pressures are not very likely to be a problem in a cost minimization

formulation. As already explained, smaller diameters are preferred. It follows

that each H„„„,„ rather than the corresponding 11„,.,,,„ is more likely to be

critical. Therefore it seems that explicit consideration of the upper limits on

the nodal pressures is not generally necessary. Of course this must be

confirmed at the solution.

Regarding the minimum service pressure constraints, for a fixed layout and set

of flow directions, nodes furthest from the sources tend to have the lowest

pressures. The minimum service pressure constraints for these nodes are more

likely to be binding than the constraints for most of the other nodes.

Therefore, the most downstream nodes have to be considered explicitly when

13

specifying minimum service pressure constraints. The constraints for most of

the other nodes may be omitted, but there is a possibility that some of these

omitted constraints will be violated. Referring to the most downstream nodes

as terminal nodes, if the minimum service pressure of some non-terminal node

is greater than that of the terminal node downstream of it, then, the minimum

service pressure constraint for this node may be violated.

The final observation concerns reintroduction of bounds initially assumed

slack into the problem. As both D„,,„ and cannot simultaneously be binding

for unequal D„,.. and D,,,, each D,„., constraint that is violated should replace

the corresponding D„,,„ constraint and vice versa. This also applies to the

velocity and pressure head limits.

Obviously the pipe flow and node equilibrium constraints are equalities that

may be used to eliminate some variables and constraints. Eqs. (9) therefore

reduce to a function f(14, , Dv , q,, Cv) whose value is hu for specified

Di,, q, C, thus eliminating the 11 4, variables and constraints. Also, for any

looped network it is possible to specify one independent flow variable for each

loop. All other flows may then be expressed in teems of the independent flows

using the node flow continuity equations which are therefore eliminated.

All these arguments may be used to reduce the size of the problem represented

by Eqs. (7) to (16) and, in consequence, to reduce the computational effort

needed for its solution. However, post-solution verification that no omitted

constraints have been violated is essential.

5. NUMERICAL EXAMPLE

The layout and demands of the sample network are taken from Alperovits and

Shamir (1977). The reduced version in this paper does not include the link

between the reservoir and the first demand node. Also, the inflow at node 1

14



is the net flow. All node and pipe data are as given in Figure 1 and Table 1.

The cost of pipes per metre is taken as yD" in which the diameter D is in

metres and y =£900.

The model, simplified as explained in the preceding section, was solved for

various values of entropy with the NAG library routine E04VDF. The values

of entropy used were selected such that the range of possible values for the

sample network was well covered. The results are summarised in Table 2.

As all links are of equal length, some statistical measures of spread for the

diameters are also shown.

The hydraulic performance of the 5 entropy-constrained designs was assessed

bY simulation using a consumption-based approach that assumes total demand

satisfaction. Two kinds of emergency were considered. The results in Tables

3 and 4 are for single link failures With normal demands. Tables 5 and 6 are

for the "fire fighting" loads in Table 1 which mimic fire fighting requirements

at each node in turn.

For each pipe failure (with normal demands) or each "fire fighting" load (on

the full network), the notional head required at the source to satisfy all

demands is found as follows. First, a demand-driven simulation of the (full or

reduced) network is carried out. Second, the head loss in any specified path

from the source to the most pressure-critical node is found by adding the head

loss in all links in the path. Third, the total head loss is added to the minimum

desirable head at the most pressure-critical node. Strictly speaking, it is

sufficient to calculate the notional usable head H required to satisfy all

demands as follows.

11.• max < Zhu Vn e t >	 (17)
014

in which t represents the set of all terminal nodes, i.e., nodes not having any

internal outflow. It may be noted that in general t changes according to

changes in the demands and layout of the network. Also, in a network in

which there are multiple sources, H corresponds to the maximum head loss

that occurs between any source-terminal node pair. This rather devious

parameter allows quite rigorous comparisons. Other measures such as

percentage demand satisfied at adequate pressure do not account for non-zero

shortfalls in pressure or supply.

Also, Rowell and Barnes (1982) suggested that, for a given flow, the efficiency

of a pipe can be gauged from the rate at which the pipe dissipates energy.

Therefore, it would appear that a network can be assessed on the basis of the

total amount of energy that the network dissipates per unit time. The total

energy dissipated, E, is calculated from Eq. (18).

E pgEquhu
	 (18)

4).14

where M. is the full or reduced network as appropriate, p and g are the density

of water and acceleration due to gravity respectively.

6. DISCUSSION

Much of interest can be said about the results of Tables 2 to 6. Each table

will be considered in turn. Firstly, the diameters and flows of Table 2 clearly

Show the network becoming less and less implicitly branched as the entropy

increases. This observation is backed by the sample standard deviation and

coefficient of variation of the diameters. Furthermore, the average of the

diameters increases with entropy. Mechanical reliability is thus enhanced, as

several researchers (for example, Clark, Stafford and Goodrich, 1982) have

reported that large pipes have lower rates of failure than smaller ones.

15
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Also, the efficiency of the method in terms of cost seems extremely high. The

increase in cost from a design with a slack entropy constraint of 1.578, the

minimum value for the network of Figure 1, to the design corresponding to the

maximum entropy value of 1.916 is only 6%. There are two complementary

reasons for this low percentage increase in cost. The first is that larger

diameters are reduced while simultaneously increasing small ones. The cost

of making small pipes larger is thus, more or less, offset. The second factor

is the exponential cost function. It ensures that, if all lengths are equal and

the average diameter is constant, the most uniform set of diameters is the

cheapest.

The above observation would seem to contradict the experience from

conventional cost minimization models. This apparent anomaly can be

explained. Cost minimization proceeds with an overall reduction in the

diameters, up to a . point where further reductions would lead to constraint

violation. Cost savings are therefore possible because smaller pipes are

considerably cheaper than large ones. In other words, it is cheaper to increase

the diameter of a small pipe than it is to achieve the same increase in a larger

pipe. In this model, the entropy constraint . indirectly limits the overall

reduction in diameters. Once this limit is reached, further ' cost savings can

only come by exploiting the fact that for a fixed number of pipes and a fixed

"average" diameter, the cheapest option is to avoid larger pipes as far as

possible. In consequence, the most uniform diameters are preferred.

In the present example, the 5% increase in cost is a small price to pay for the

overall increase in mechanical reliability or diameters. Also, it would seem

that even for larger networks, any increase in cost is not very likely to be very

much higher than this figure of 5%. This is because there will be many more

non-minimum diameter pipes than minimum diameter pipes since there is only

one "redundant" or loop-completing link per loop. Therefore, by reducing the

diameter of the largest pipes slightly, it will be possible to increase the

diameter of the smallest pipes considerably without substantially increasing

the total cost. It would seem, therefore, that the greater the number of loops,

the more there will be room for manoeuvre.

Secondly, the link failure results in Table 3 show several noteworthy points.

First, the maximum notional source pressure head required decreases very

rapidly as entropy increases. Of more importance is the accompanying

reduction in the average value. It may therefore be inferred that problem areas

are not being improved at the expense of other areas. In particular, the high

rate of reduction underlines quite dramatic system-wide gains in performance.

There is, however, a slight increase in the maximum value in the last column.

On the other hand, this increase is outweighed by the large concurrent

improvement in the next worst case, as demonstrated by the continued

reduction in the average head.

The improvement in hydraulic performance observed in Table 3 can be

explained in terms of uniformity in diameters and flows respectively. For pipes

with given fixed values of length, friction coefficient and flow, the head loss

is nearly inversely proportional to the fifth power of the diameter. The

consequence of this relationship is that, for example, doubling the diameter

reduces the head loss by a factor of 2' or 32; trebling the diameter reduces the

head loss by a factor of 3' . or 243. It follows that an implicit tree-type network

is likely to experience much higher increases in head loss if a link fails or

network flows are increased than a r etwork having pipes with (similar)

medium diameters. Additionally, the head loss in a pipe is nearly proportional

to the square of the flow rate. By virtue of this quadratic head loss-flow rate

relationship, a network in which the pipes are designed to carry uniform flOws

is less likely to suffer very high increases in head loss than a network in

which the pipes are designed to carry flows that are very dissimilar in
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magnitude. The above factors, including the observation that pipes with the

most uniform diameters are the cheapest if the lengths are equal, explain why

it is possible to considerably improve the implicitly branched network at a cost

increase of only 5%.

Thirdly, the values in Table 4 show a similar behaviour to those in Table 3.

However, in assessing designs on the basis of energy dissipation it is useful

to realise that the same flow will dissipate less energy in a • large more costly

pipe than in a smaller one. Therefore a design with a low rate of energy

dissipation may not necessarily be cost effective. Nevertheless, for each design,

a deeper interpretation is possible by comparing the reduced networks to the

full network. For SIK = 1.6, for example, failure of pipe 4-6 hardly increases

the amount of energy dissipated. This suggests that arc 4-6 is being underused

in this implicitly branched network design. A more important comparison is

between the average rate of energy dissipation for the reduced networks and

the rate for their corresponding full network. As demonstrated by the last row

of Table 4, the difference between these values falls very rapidly as the entropy

increases, suggesting that a design with a high value of entropy is much more

resilient than a counterpart having a lower value of entropy.

Fourthly, the fire scenario results in Tables 5 and 6 clearly show resilience

increasing with entropy. Despite a slight oscillation in the values for each

node, the averages exhibit a steady downward trend as entropy increases. The

rate of improvement is, however, somewhat lower than is the case for link

failures. Thus, all the results of Tables 2 to 6 indicate that, for the sample

network, flow entropy is a reasonable measure of flexibility.

There remains the question of the correct entropy value to specify, or the true

meaning of entropy in the context of water distribution network reliability and

design. The importance of uncertainty has already been highlighted. Entropy

as used herein is a measure of link flow uniformity that depends on the layout,

spatial distribution of supply and demand, and the size of the network in terms

of the number of nodes and links. For any fixed looped layout determination

of its maximum flow entropy is relatively straightforward. For the purpose of

looped distribution network reliability and design, the datum of zero is

ascribed to all tree-type networks. The reason is that any link failure in a

branched network results in complete loss of supply to at least one demand

point. Such systems possess very little damage tolerance and, as such, will

usually be unacceptable from a reliability perspective. More fundamentally,

there is no uncertainty associated with the flows of the links of a tree-type

branched network. The minimum entropy value for a looped network,

however, will be considerably higher than zero.
Also, it can be inferred from Table 4 that up to an entropy value of

approximately 1.7, links 2-4 and 4-6 would apparently be really useful only if

a major link failed. However, the pressure requirements may be prohibitive,

as demonstrated by Table 3. This casts doubt upon the value of having

minimum diameter loop-forming pipes in an essentially branched network.

Furthermore, from the point of view of stagnation, it is questionable how much

these minimum diameter pipes contribute to circulation in the present example

in view of the magnitude of their flows.

The application of entropy as a convenient design tool does not eliminate the

responsibility of ensuring that the design is of adequate reliability. Therefore

some form of reliability assessment will still be necessary. The nature and

scope of this assessment will depend on the circumstances. It is therefore

envisaged that the entropy-based model will ultimately form part of a design

and verification routine. To start the process, a low entropy value of zero is

specified. For this initial entropy value, the entropy constraint will be slack
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at the solution with a value near the minimum for the network. This provides

a possible starting point for the design and assessment cycles. The design and

assessment process is terminated when the desired goals are achieved.

The final comment concerns the success of the optimization model which is

largely due to the availability of analytical partial derivatives of the entropy

function. Also, the structure of this function permits easy assembly of the

function and its derivatives for general looped networks.

7. SUMMARY AND CONCLUSIONS

A method for indirectly optimizing the reliability of water distribution

networks has been presented. The procedure has been shown to be effective

on a sample network in several respects including cost, hydraulic performance,

resilience and mechanical reliability. In the present paper, the complexities

of direct reliability optimization have been bypassed by using flow entropy as

a surrogate for reliability. Node-by-node assembly of the entropy function and

its partial derivatives permit general application of the formalism without a

disproportionate increase in computational effort. However, the method would

apparently suffer from dimensionality for multiple load cases. On the other

hand, the simulated results suggest that the entropy constraint is similar in

effect to the inclusion of a multiplicity of load cases, provided a threshold

value of entropy is at least equalled.

Also, some evidence from the literature foreshadowing entropy has been

collated. The simulated results confirm that there is a distinct need for

uniformity in a water distribution network including the uniformity of pipe

diameters and flow rates. Moreover, it is found that, for the sample network,

merely linking the end points of a core tree with minimum diameter pipes for

the sake of looping does not necessarily enhance performance or reliability.

However, simulation on a larger scale is needed to establish that the

conclusions are not network-specific. Also, the method as presented herein is

incapable of handling other network components than pipes and this is clearly

an area for further work. Furthermore, although the method goes a long way

beyond simple assurance that altern p tive paths to demand centres exist, flow

entropy operates on flows only. Perhaps further improvements would be

possible if a method that directly recognizes the importance, regarding

flexibility, of both diameters and flows can be found. Finally, the true

relationship between entropy and network reliability remains to be explored

and exploited.
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NODE PRESSURES AND FLOWS

Node

Total

Head

Least

Head

Design

Load

"Fire Fighting" Loads (m3/s)

Casel Case2 Case3 Case4 Case5
(m) (m) (m3(8)

1 20.00 20.00 -0.284 -0.506 -0.501 -0.459 -0.442 -0.478

2 0.00 0.00 0.028 0.250 0.028 0.028 0.028 0.028

3 0.00 0.00 0.033 0.033 0.250 0.033 0.033 0.033

4 0.00 0.00 0.075 0.075 0.075 0.250 0.075 0.075

5 0.00 0.00 0.092 0.092 0.092 0.092 0.250 0.092

6 0.00 0.00 0.056 0.056 0.056 0.056 0.056 0.250

Table I.	 Node Data for Sample Network.

DIAMETERS AND FLOWS FOR RANGE OF ENTROPY VALUES

Link

SmbilIC

1.600 1.700 1.800 1.960 1.915

Dia. Flow Dia. Flow Dia. Flow Dia. Flow Dia. Flow

(mm) (ms/s ; (mm ) (m3/8) (mm ) (m3/8 ) (mm ) (insla ) (min) (msIs

1-3 401 0.261 390 0.234 384 0.223 365 0.199 367 0.200

2-4 100 0.005 165 0.022 191 0.033 238 0.057 235 0.056

3-6 337 0.147 337 0.147 329 0.139 281 0.101 294 0.110

4-6 100 0.001 100 0.001 161 0.009 250 0.047 234 0.038

5-6 262 0.055 262 0.055 249 0.047 152 0.009 185 0.018

1-2 165 0.033 203 0.050 224 0.061 263 0.085 261 0.084

3-4 237 0.072 213 0.054 215 0.051 247 0.065 234 0.057

Mean 229 239 249 257 258

I

(In-! 115 100 81 63 68

an-I 0 504 0.419 0.325 1 0.245 ' i 0.224
mean

Cost 0.251 0.254 0.259 0.261 0263

Table 2. Optimum Design for Different Values or Entropy: N.B. The entropy

constraint becomes slack at Sm,./K = 1.578, and at a cost of 0.250. All costs are

in units of E 101.
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SOURCE HEAD (m) FOR REDUCED NETWORKS

Failed

Link

SminlIC

1.600 1.700 1.800 1.900 1.915

1-3 8454.6 1065.2 567.7 219.3 231.6

2-4 20.7 28.0 27.6 35.7 34.7

3-5 2895.5 2899.2 453.9 215.5 141.9

4-6 20.4 20.4 22.6 87.7 47.5

5-6 500.3 501.4 92.2 22.7 26.6

1-2 165.9 54.1 43.9 46.3 46.2

34 269.5 75.4 37.2 39.8 33.5

Mean 1758.1 663.4 177.9 95.3 80.3

Max 8454.6 2899.2 567.7 219.3 231.6

Table 3. Notional Head Requirements for Link Failures: The source head values

are those needed to meet the design loads and minimum pressures of Table 1

with the failed link closed oft

TOTAL ENERGY (MW) FOR NORMAL FLOWS

Failed

Link

Smin/K

1.600 1.700 1.800 1.900 1.915

1-3 21.405 2.688 1.434 0.550 0.584

2-4 0.047 0.054 0.057 0.072 0.071

3-5 4.269 4.279 0.712 0.262 0.210

4-6 0.047 0.046 0.045 0.087 0.062

5-6 0.321 0.321 0.090 0.045 0.047

1-2 0.099 0.084 0.084 0.103 0.102

3-4 0.240 0.093 0.066 0.074 0.066

Mean 3.775 1.081 0.356 0.171 0.163

Max 21.405 4.279 1.434 0.550 0.584

Full
Network 0.0467 0.0459 0.0444 0.0444 0.0439

"Mean"
-

"Full 3.7283 1.0351 0.3116 0.1266 0.1191

Network"

Table 4. Network Energy Dissipation for Normal Flows: The energy values are

those that occur when the (fun or reduced) network meets the design loads and

minimum pressures of Table 1 with any failed link closed off.
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SOURCE HEAD (m) FOR INCREASED FLOWS

Node

Sininl K

1.600 1.700 1.800 1.900 1.915

2 424.7 130.4 83.3 50.2 51.5

3 38.0 38.4 38.1 37.9 37.8

4 101.6 102.2 73.2 56.0 55.8

5 51.0 51.3 49.8 60.8 53.5

6 113.2 113.6 106.1 106.9 102.8

Mean 145.7 87.2 70.1 62.4 60.3

Max 424.7 130.4 106.1 106.9 102.8

Table 5. Notional Head Requirements for "Fire Fighting": The source head

values are those needed to meet the design loads and minimum pressures of

Table 1, except that at each node in turn 0.25 m 3/s replaces the design load.

29

TOTAL ENERGY (MW) FOR INCREASED FLOWS

Node

Sminf K

1.600 1.700 1.800 1.900 1.915

2 1.108 0.417 0.229 0.218 0.222

3 0.150 0.151 0.150 0.157 0.155

4 0.313 0.314 0.249 0.209 0.212

5 0.182 0.181 0.181 0.207 0.193

6 0.370 0.370 0.352 0.354 0.345

Mean 0.425 0.287 0.246 0.229 0.225

Max 1.108 0.417 0.352 0.354 0.345

Table 6. Network Energy Dissipation for "Fire Fighting": The energy values are

those that occur when the network meets the design loads and minimum

pressures of Table 1, except that the design load is replaced by 0.25 m'is at each

node in turn.
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ABBREVIATED TITLE 	 FIGURE CAPTION

FLEXIBLE WATER NETWORKS
Figure 1 Layout of sample network (with flow notation).

TABLE CAPTIONS

Table 1 Node data for sample network.

Table 2 Optimum design for different values of entropy.

Table 3 Notional head requirements for link failures.

Table 4 Network energy dissipation for normal flows.

Table 5 Notional head requirements for "fire fighting."

Table 6 Network energy dissipation for "fire lighting."
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ABSTRACT

This paper was prompted by growing evidence that Shannon's measure of

uncertainty can be used as a surrogate reliability measure for water

distribution networks. This applies to both reliability assessment and

reliability-governed design. Shannon's measure, however, is a non-linear

function of the network flows. Therefore, the calculation of maximum entropy

flows requires non-linear programming. Hence, a simpler, more accessible

method would be most useful. This paper presents an alternative and rigorous

method for calculating maximum entropy flows for single-source networks. The

propolted method does not involve linear or non-linear programming. Liao, it

is not iterative. Consequently, the method is very efficient. In this paper, the

methodology is described, several examples are presented and an algorithm is

suggested.

KEYWORDS: Networks, water supply, entropy, reliability

NOTATION

Es. = event identified by subscript

I = set of all source nodes

K = arbitrary positive constant

N = number of nodes

ND. = set of all links or nodes immediately downstream of node n

NP„ = number of paths from the source to node n

NU. = set of all links or nodes immediately upstream of node n

poi= (NIT.

Pni=qvIT.

p(E.„) = probability of E,t,,

P. =- p(E„) = probability of E.

qio = external outflow at node i

q„1 = flow from node n to node j

qw = external inflow at node i

S = Shannon's entropy

S„ = entropy of outflows at node n

S. = entropy of external inflows

T. = total outflow from node n

• = total supply or demand

e = optimum value of x

1. INTRODUCTION

Very recently, there has been growing interest in the potential applications

of the maximum entropy formalism in water distribution networks. The areas

of interest, so far, have been assessment of reliability, layout optimization

and/or optimum design with reliability considerations. So far, the results have

been encouraging.

Awumah, Goulter and Bhatt m used the Shannon entropy function' as the basis

of some measures for network redundancy. The development of these measures

involved some intuitive input. They presented evidence' that the measures

could be used for the design of reliable water distribution networks. The

minimum cost gradient formulation of Quindry, Brill and Liebman' was

modified slightly by replacing all the minimum diameter constraints by

minimum nodal entropy limits, one for each node. Awumah, Goulter and
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Bhatt' observed that the modified, non-linear model, could be used for

optimizing both the layout and diameters of the network.

most important, was that implicit tree-type branchedness (Templeman")

decreased as the entropy increased.

Also, Awumah and Goulter° obtained trade-off curves for a sample network.

These included a curve for cost versus reliability. The reliability measure used

was node pair reliability. A second curve related cost to network entropy. The

shape of these curves showed a remarkable degree of similarity. If this holds

for water distribution networks generally, it could be interpreted as evidence

of a close relationship between entropy and (mechanical) reliability.

Tanyimboh and Templeman° have rigorously established the appropriate

entropy function for the flows of a looped transportation network. The

approach relies on a multiple probability space model and the conditional

entropy formula of Khinchina . It applies to any network with known nodal

inflows and outflows. Also, it requires a specified flow direction for each arc.

Maximum entropy flows were calculated for a sample network and it was

observed that, for the sample network, there was uniformity in the probability

that certain key nodes receive their flow from each source. The importance

of this uniformity in the context of reliability was highlighted.

Subsequently, Tanyimboh and Templeman" collated evidence of the need for

uniformity of the flows and/or diameters of a distribution network. The

multiple probability space conditional entropy measure was then incorporated

as a constraint in a non-linear cost minimization model. They observed that

as the specified lower bound upon the value of entropy was increased, so too

did the resilience of the resulting design. Resilience represents the ability to

handle load patterns which are different from those specifically designed for;

in the example of Ref. [10] these different cases were pipe failures and/or large

fire-fighting demands. Also, it was noted that, on average, the diameters

increased. This was taken to be evidence of a correlation between entropy

and (mechanical) reliability. Another related observation, and perhaps the

The above research provides ample justification for more extensive research

into the properties and other potential applications of maximum entropy flows.

However, the entropy function is non-linear. Also, maximum entropy flows

must satisfy flow equilibrium at each node. Consequently, the determination

of maximum entropy flows needs constrained non-linear programming. This

is rather restrictive. A simpler way of calculating maximum entropy flows

would therefore be highly desirable. This paper presents a simple method for

calculating maximum entropy flows for sinee-source networks. The proposed

method is path based. However, explicit path enumeration is not used. This

has been made possible through a simp.e, but efficient, algorithm for

determining the number of paths from the source to each node. Also, neither

linear nor non-linear programming is involved. Further, unlike non-linear

programming, the procedure is not iterative. Thus the method has a very high

computational efficiency.

In this paper, first, the multiple probability space entropy function is

presented. Then, some of the results obtained by Awumah, doulter and

Bhatt1 are interpreted on the basis of this function. This is followed by a

description of the proposed method of calculating maximum entropy flows for

single-source networks. Examples are solved and it is shown that the results

are the same as those given by maximizing the entropy subject to continuity

at each node. Also, an algorithm for determining the number of paths from

the source to each node is presented. Finally, another algorithm, for

calculating maximum entropy flows for a single-source network is presented.

2. ENTROPY FUNCTION FOR LOOPED FLOW NETWORKS

For a distribution network with loops and all the flow directions specified,

Shannon's entropy may be written as in Eq. (1),
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Psj =	"

Vn Vnj e ND„
T. 

2_, giti
ND„

(5)
SIK = So+EPS 	 (1)

n.1

where S is the entropy (Shannon'), K an arbitrary positive constant, and

P„, n=1,...,N, the probability of flow arriving at node n, n=1,...,N, where N

is the total number of nodes in the network. The value of 13,, may be obtained

from Eq. (6), which will be derived shortly. The other terms are defined below.

The entropy of the external inflows is So where

(2)

In the above equation, I is the set of all source nodes and poi is the proportion

of the total supply to the network that is provided by source i. Its value is

given by

401	 qoi
Poi y V/ a I

0

where qoi is the external inflow at node i and T. is the total supply or demand.

In Eq. (I), S,,, n =1,...,N, is the entropy of the outflows, including any demand,

at node n, n=1,...,N. It is defined by Eqs. (4) and (5) in which p„i is the

fraction of T,, carried by link nj , where T„, n =1,...,N, is the total outflow,

including any demand, from node n, n =1,...,N. Also, p,i ,Vn, j = 0, represents

the fraction of T,, that satisfies consumption at node n.

S.= —	 Vn	 (4)
ive ND,,

The set ND,,, n =1,...N, consists of all the outflows, including any demand,

from node n, n 1 ..... N.

The symbol q is used for both internal and external inflows and outflows. For

an external inflow, the first subscript will be zero and the second, the source

node number. Also, the second subscript for a demand will be zero whereas

the first will be the number of the corresponding node. 	 Otherwise,

i , j is the pipe flow from node i to node j. Tanyimboh and

Templernan" stated that Eq. (6) is a convenient formula for the node

probabilities, /3„, n =1,...,N.

Ps = tITo, Vn	 (6)

There follows a simple derivation of this equation. Define E„, 	 as

the event that a particle in the network reaches node n, n Then,

P. p(E„), n =1,...N, is the probability that the event E, n =1,...,N, occurs.

In general, each event is conditional upon the events upstream of it. These

events are consequently not independent. The probability rule for conditional

events may therefore be written, as in Eq. (7), for these events.

P(Ekn Es) = P(E,, Eia)p(Ek), V n, Vh a NUs	(7)

where NU,,, n=1,...N, is the set of all link and external inflows at, and all

nodes immediately upstream of, node n, n -=1,...,N. By virtue of Eq. (7), the

entropy of a network cannot be a simple sum of the entropy at each node (

Khinchin%

The ratio q01T0 , i , j=1,...,N, is the flow carried in link ij, expressed as a

proportion of the total supply. In other words, qu/T0 is the probability that a

particle entering the network will flow through link if. For the set of all links

converging on a node, these probabilities are mutually exclusive. A particular

(3)
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particle can arrive at the node through any, but only one, of the links. Also,

as flow cannot arrive at the node other than by the links converging on that

node, the set is exhaustive. For a node n,n=1,...,N, Ek happens whenever

there is flow in a link kn , kn e NU„. Let Ek„, Vn, kn e NU„ , be the event

that there is flow in link kn. Thus

p(En lEhn)= 1, Vn, V kn e NU„	 (8)

The probability of flow arriving at node n is the joint probability that flow

reaches the node by all links supplying it, i.e.,

P(En) = P(	 Ekn n En} )
	

(9)
/me NU„

Therefore, applying Eq. (7) for p(Ekk (1E,),

p(E)=p(	 n En )	 n En) =	 p(EA,,), n =1,...,N. (10)
Atte NU„/meNU„	 kne NU„

The second equality of Eq. (10) holds because the Ekk, Vn, V kn a NU,, have

been shown to be mutually exclusive. As explained, p(Ekk) is given by qknlTo.

Substituting for AEA.) in Eq. (10) gives the desired result, Eq. (6).

The Eqs. (1) to (6) apply to a network with loops, in which the flow direction

in all pipes is defined. Therefore, to use Eq. (1), any non-looped portions of

a network under consideration should be omitted when evaluating the network

entropy.

The equations suggested by Awinnah, Goulter and Bhatt 4 will be examined

next. These equations appear superficially to resemble the current Eqs. (1) to

(6) but are different in detail. Reasons for preferring the current equations will

be presented. Eqs. (6) and (8) of Awumah, Goulter and Bhatt' are reproduced

here as Eqs. (A) and (B). In Eqs. (A) to (C), the original notation has been

preserved, where possible.

N nO)

= - Ez(qulQdln(quiQd
	

(A)

where S' is the network entropy and Q. is the sum of all link flows, as opposed

to To which is the total supply or demand. Also, h(i) is the number of internal

inflows at node j.

= Z(q/QA - E(Q1) In(q/Q0)
	

(B)

in which g, is the entropy of the internal inflows at node j. It is the same as

S; in the original publication. Therefore,

nO)

—	 In(qu/Q)), j= 1,...,N
	

(C)

Also, Qi is the sum of the internal inflows at node j, as opposed to T;  which

is the sum of all inflows, including external inflows, at the node.

Comparing (A) to (C) with the current (1) to (6), the flows or elementary

events, qv, overlap. This is readily seen from the consideration that

qu (1 qik # 0, Vi ,j ,k =1,...,N. It follows that the probability-like terms gag, in

Eq. (A) are not independent. As such, Eq. (A) (or the equivalent Eq. (B)) is

not appropriate for those terms (Shannon').

Also, perhaps the most obvious difference between Eqs. (1) and (A) is that the

latter does not (directly) account for the spatial distribution of the external

inflows and outflows. In Eq. (1), the relative magnitudes of the sources is
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accounted for by So. Also, the abstraction at each node is accounted for. This

is achieved by defining the nodal entropies S„ as the entropy of all the

outflows, including consumption, at each node.

3. CALCULATING MAXIMUM ENTROPY FLOWS FOR

SINGLE-SOURCE NETWORKS

In a single-source network, all paths start at the source. Consider any demand

node served by more than one path. Given no further information about the

paths, there is no reason for any path to be preferred over any other path to

the demand node. This accords with Laplace's principle of insufficient reason.

More appropriately, it is a direct consequence of the maximum entropy

formalism'. Therefore, all the paths supplyirg a node should have the same

probability of doing so. This means that flow to the node should be distributed

equally amongst all the paths supplying the node.

Therefore, to obtain the maximum entropy flows, each node should be taken

in turn and its demand divided equally amongst all paths supplying the node.

The final network flows are then obtained by superposition of these path flows.

That is, the flow for all paths through a link should be added to obtain the

flow in that link. These are the link maximum entropy flows. The maximum

value of the flow entropy for the network may then be calculated, using Eq.

(1).

The network of Figure 1 will be used to demonstrate the above points. The

demand at each node is treated separately, as shown in Figure 2. In Figure

3, the flow in each arc is obtained by adding the flow in all paths using that

arc. These are the maximum entropy flows. Substituting these flows in Eq.

(1) gives (SIK)* = 2.169

To check that the above values are correct, Eq. (1) was maximized, subject to

flow equilibrium at each node and non-negativity of all the link flows. First,

all the flows were expressed in terms of three selected flows using four of the

nodal continuity equations. Equilibrium at the fifth node holds automatically

because the inflows balance the outflows. The resulting objective function,

with only three variables, was then maximized subject to lower bounds on

these variables. The lower bounds were calculated from the non-negativity

conditions. The NAG library routine E04JAF was used foi the maximization.

The results are shown below. They are identical to those obtained above.

q14, 413, 423, 435, 412, 425, 434).

= (2.169, 5.000, 18.000, 18.000, 16.000, P.6.000, 8.000, 10.000)

Maximum Entropy Flows Algorithm and Example

The method of superposition used in Figures 2 and 3 is not very practical.

First, nodal flow routing, as in Figure 2, requires the tracing of all paths to

each node. Also, a knowledge of the interdependencies between the paths

serving each node is needed. For example, consider Figure 2d. Link 1-2 carries

a flow of 16 units because it is known that the link is shared by two paths

serving node 5. On the other hand, the flow in link 1-3 is 8 units because it

is known that only one path serving node 5 uses that link. Furthermore, in

a looped network, each link will be processed many times, as in Fig-are 2, for

example. It would be more efficient if the flow in each link could be calculated

in a single operation. In consequence, the approach of Figure 2 and 3 is quite

laborious. Also, the effort needed increases very significantly as the number

of nodes or links increases. The method to be described next is derived from

the method of superposition of path flows which has been presented. However,

it addresses all the above weaknesses, except path enumeration, which will be

dealt with shortly. The description of the method is fairly general but is based

on the network of Figure 1 for clarity. Following the description, algorithms

are presented for the proposed method.
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Consider Figure 4. The number of paths to each node is enclosed in a box next

to the node. Nodes 4 and 5 are terminal nodes, which do not have any link

outflows. The procedure starts with any terminal node; say, node 4. The total

outflow at that node is divided by 3, this being the number of paths to it. The

quotient is then multiplied by 1 and 2 respectively, these being the respective

number of paths to nodes 1 and 3, the immediate upstream supply nodes to

node 4. The products, respectively, are the flow in links 1-4 and 3-4.

-The next step is to choose any node immediately upstream, whose link

outflows have all been calculated. The procedure explained for node 4 is

repeated with all the appropriate upstream nodes taking the place of nodes 1

and 3. Returning to Figure 4, both nodes 1 a r.d 3 have unknown link outflows.

In consequence, they cannot be treated yet.

At this point, the procedure stops and re-starts at any terminal node that has

not yet been dealt with. That is, node 6 in the present example. If node 5 is

processed as explained for node 4, the flow in link 2-5 is 8 units and for link

3-5, 16 units.

At this stage, the only unprocessed node with all its outflows known is node

3. Its total outflow is 36 units. This flow is partitioned according to the

aforementioned procedure in the ratio 1:1 between the two incoming links.

This is equivalent to dividing the total outflow from node 3 by 2 and

multiplying the result by 1 in each case.

The flow in link 1-2 can now be found. It is the sum of the outflows from node

2, including the demand at node 2. The process ends here.

The flows obtained by the procedure just described are identical to those found

by superposing equal path flows for each node.

A further refinement to the method concerns path enumeration. Path

enumeration is not a realistic proposition, even for networks of only modest

size. However, there is a way round this difficulty. It can be observed, for

example in Figure 4, that each boxed number is the sum of all the boxed

numbers immediately upstream. In other words, the number of paths to each

node is the sum of the number of paths to all nodes upstream of, and directly

supplying, the node being considered. This is a fact which can be exploited

to weight the nodes and thus avoid explicit path enumeration. The steps

involved are as follows.

1. Assign [1] to the source.

2. Select any node whose upstream nodes 1-ave all been processed. Add the

numbers assigned to all nodes immediately upstream of the chosen node.

Assign the total to the present node.

3. Repeat step 2 until all nodes have been processed.

Throughout, the assumption that the direction of flow in each link is known

continues to apply. Also, it must be noted that this method of calculating the

number of paths to each node applies to single-source networks only.

A final detail of the proposed method for calculating maximum entropy flow

for single-source networks is concerned with the order in which nodes can be

processed when weighting the nodes or calculating link maximum entropy

flows. For both node weighting and flow calculation, it is desirable to know,

at each stage, which nodes can be processed. When calculating flows, a node

can be processed only if all its link outflows are known. Consider Figure 4

again. In describing how link flows are calculated, the nodes were selected in

the order: 4,6,3,2. Another possible order is: 6,4,3,2. These two sequences are,

respectively, the reverse of the two possible sequences for calculating the

number of paths supplying each node. Consequently, a possible nodal
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sequence for flow distribution will be available if the nodes are numbered such

that the order matches the node weighting sequence, as in Figure 4, for

example. Thus the right sequence is obtained if each node is numbered only

after all nodes upstream of it have been numbered. The algorithms presented

subsequently herein, for node weighting and for calculating maximum entropy

flows, assume that the nodes of the network have been numbered according

to this convention. The nodes may therefore be numbered with the following

algorithm.

Node Numbering Algorithm

1. Number the source with 1. Set n to 1.

2. Increase n by 1.

3. Select any node whose immediate upstream nodes have all been numbered.
Number it with n.

4. If n N, exit. Otherwise, continue.

5. Go to step 2.

Simple algorithms are now presented for node weighting and flow distribution,

respectively. Before applying these algorithms, the nodes must first be

numbered with the node numbering algorithm. Define NP, n =1,...N, to be

the number of paths from the source to node n, n 1,...,N.

Node Weighting Algorithm

1. Set n to the source number, 1. Set NP. to 1.

' 2. Increase n by 1.

3. Calculate NP„:

NP.= E NPh

be NU.

4. If n =N, exit. Otherwise, continue.

6. Go to step 2.

Flow Distribution Algorithm

1. Set n to the number of nodes, N.

2. Calculate T.:

E
ND„

3. Calculate qt., Vkn e NU„

NPk
qk.= T. x Np.

4. If n = 1, go to step 7. Otherwise, continue.

5. Reduce n by 1.

6. Go to step 2.

7. Calculate S', if necessary. Exit.

4. GENERAL NETWORKS

The algorithms in this paper are rigorous for single source networks.

However, they are in general inapplicable to multiple-source networks, for the

following reasons. The proposed method is a direct application of the

following result: maximization of Shannon's entropy function, subject only to

normality of the probabilities, leads to the uniform probability distribution in

which all the probabilities are equal. The corresponding result for a general

network with multiple sources requires all the sources to contribute the same

quantity of flow to the total supply; S. in Eq. (2) attains its highest possible

value if all the poi are equal. In general, this condition will not be met as the

flow from different sources will usually be unequal. Furthermore, the flow

directions in a multiple-source network will be such that, for each node, the

path flows will be unequal in general.

However, in any network, if the flow directions and the distribution of the

source flows are such that all paths serving a node can carry the same amount

of flow, the proposed method will give the right result. This also applies to

any multiple-source network that is effectively operating as a single-source
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network. Two examples are next provided to illustrate some of the above

points. However, it must be stressed that the proposed method is intended as

an alternative to numerical optimization, for single-source networks only.

A sample two-source network in which all the conditions for uniformity of the

path flows are satisfied is shown in Figure 5a. Link 1-2 is a direct connection

between the sources. The node weighting algorithm may be applied to

multiple-source networks with source-source connection. However, each source

is given a weight of unity in step 1. Thus, suppose the sources were replaced

by a supersource numbered 0 with 55 units. Suppose, further, that link 1-2

were replaced by a direct link from the supersource to nodes 1 and 2

re. pectively as shown in Figure 5b. If the node weighting algorithm is carried

out on this transformed, but equivalent network, both nodes 1 and 2 would be

assigned a weight of 1. This provides confirmation that each source in a

multiple-source network, with all sources interconnected, should have a weight

of unity. It may be noted that there need not be a direct link for every

source-source combination. It is sufficient that each source be directly

connected to at least one other source.

To obtain the maximum entropy flows for multiple-source networks with

source-source connections, the flow algorithm may be applied as described for

single-source networks, but with a slight modification. In step 2, (71 — qm) is

found, and used in step 3, instead of 7 .„ . The external inflow q., will be zero

for all nodes other than source nodes. Also, this modified version of the

algorithm may be used for networks having a single source. Finally, using Eq.

(1), the value of .9* may be calculated, once the maximum entropy flows are

available. , The problem of Figure 6a was solved by both numerical

optimization using the NAG library routine E04JAF and the present method.

Both methods gave the same result, of which the flows are shown in Figure

5a.

However, in a general network, if at least one of the requirements for equality

of path flows is not satisfied, the single-source method cannot be used. For

example, in Figure 6, the direction of flow in the source-connecting link is the

reverse of the direction in Figure 6a. The problem of determining the

maximum entropy flows for the network of Figure 6 cannot be solved by the

present single-source method. This problem was solved using the NAG library

routine E04JAF. The vector describing the optimum point is

(S/K, q23, q 13, q34, a a a a ).30 .35, .21 , .14, .25:

= (1.947, 12.917, 28.871, 8.871, 22.917, 0.000, 6.129, 7.083)

That the optimum point contains a zero element is an indication that the

sit.gle-source method will not solve this problem. This example aho y,.; that the

present method is in general inapplicable to multiple-source networks.

Comments on Figures 5a and 6

Several interesting comments may be made on the maximum entropy flows of

Figure 5a and 6. Figure 6 has a lower value of S' = 1.947 than Figure 5a,

whose value is 2.020. This bodes well for the possible use of flow entropy in

layout and reliability optimization for several reasons. First, q1, but not oh ,

being zero is desirable. It would be reasonable to augment a smaller source for

even greater flexibility. On the other hand, because of the position of node

3, there is no need for flow to be transferred from source node 2 to source node

1. At the optimum, the network of Figure 5a, with three loops, has more

redundancy than the network of Figure 6, with two loops. It is therefore fitting

that Figure 5a, with a better layout and higher level of flexibility/redundancy,

should have a higher value of entropy. Also, by correctly setting certain link

flows to zero, entropy maximization has the capability of identifying

superfluous links. This is highly desirable in the context of layout

optimization. Furthermore, in both Figures 6a and 6, the flow from node 3 to

node 4 is greater than the direct supply from source node 1 to node 4.
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Similarly, the flow from node 3 to node 5 is greater than the direct supply from

source node 2 to node 5, in both figures. This is desirable, from a

resilience/flexibility standpoint, if there is variation in the source supplies.

Node 3 has a direct connection to both sources and the flow in links 3-4 and

3-5 may vary considerably if the source supplies vary. Therefore, designing

these links to have a larger capacity would enhance the network's flexibility.

Similarly, a larger capacity for these links is desirable if the demands at nodes

4 and 6 vary. The same arguments as for varying source supplies apply.

5. CONCLUSIONS AND SUMMARY

A rigorous, simple, non-iterative algorithm for calculating maximum entropy

flows for single source networks has been -3resented. Although the method is

path-based, a simple node-weighting technique is used to avoid path

enumeration. The above properties give the procedure a high computational

efficiency. This can be very useful in a design or reliability framework, where

very many function evaluations may be necessary. The routine lends itself to

both manual computations, for small networks, and implementation on a

computer, for large systems.

A suggested possible application of the proposed approach is in the design of

flexible single-source water distribution networks by linear programming. In

the Alperovits and Shamir' method, for example, the proposed routine would

give the flows that the pipes should be designed to carry. The gradient step

of the linear programming gradient method would not be needed. Also it

would be useful to compare the reliability of such a design to other designs.

Furthermore, there is some evidence (Tanyimboh and Templeman m) that the

cost of a water distribution network designed to carry maximum entropy flows

may not be mtich higher than if the network is designed with minimum-sized

loop-completing links.
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FIGURE CAPTIONS

Figure 1	 Single-source network.
Figure 2 Equal path flows from the source (node 1) to each of the demand

nodes 2,3,4 and 5.
Figure 3 Maximum entropy flows for the network of Figure 1 found by

superposing the path flows of Figure 2.
Figure 4 Number of paths to each node for the network of Figure 1.

Figure 5a Maximum entropy flows for a two-source network with equal
path flows to each demand node.

Figure 5b Supersource representation of the network and flows of Figure
5a.

Figure 6 Maximum entropy flows for a tw-J-source network with unequal
path flows to each demand node.

Figure 1	 Single source network
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Figure 3. Maximum entropy flows for the network
of Figure 1 found by superposing the
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Figure 2	 Equal path flows from the source (node 1) 
to each of the demand nodes 2,3,4 and 5 
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Figure 4	 Number of paths to each node 

for the network of Figure 1
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Figure 5b Supersource representation of the 
network and flows of Figure 5a.

Figure 6	 Maximum entropy flows for a two—source
network with unequal path flows to each 

demand node
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