

THE UNIVERSITY of LIVERPOOL

MODELING CORONARY HEART DISEASE IN THE UK: PAST TRENDS AND FUTURE IMPLICATIONS

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy

by

Belgin Unal

November 2003 Liverpool, UK

SUMMARY

Introduction

Coronary heart disease (CHD) is the largest cause of mortality in the United Kingdom (UK), accounting for over 120,000 deaths annually. Like most developed countries. UK mortality rates from CHD have been falling since the 1970s. These trends need to be explained in order to explore different policy options for CHD prevention.

Objectives

The objectives of this thesis were:

- 1. To document and critically review CHD data, and define the burden of CHD mortality and morbidity in England and Wales;
- 2. To explain most of the recent fall in CHD mortality in England and Wales;
- 3. To estimate the life-years gained by modern cardiological treatments, and by changes in cardiovascular risk factor levels;
- 4. To examine the potential benefits of increasing the uptake of cardiological treatments;
- 5. To estimate the potential benefits of reducing cardiovascular risk factors in England and Wales.

Methods

All potentially relevant CHD data were identified, critically reviewed, and then used to assess the burden of disease for England and Wales. The main data sources were official statistics, clinical audits, national surveys and peer-reviewed publications.

The cell-based IMPACT Mortality Model, previously validated in Scotland, New Zealand and Finland was extensively developed and refined to synthesise data for England and Wales describing: a) CHD patient numbers, b) uptake of specific medical and surgical treatments, c) treatment effectiveness d) population trends in major cardiovascular risk factors, and e) effectiveness of risk factor changes, using published trials and meta-analyses.

'Analysis of extremes' sensitivity analyses were performed in each study.

Results

CHD data were surprisingly patchy and mixed in quality. In 2000, an iceberg of disease was demonstrated in the England and Wales population of 51 million, with approximately 60,000 patients undergoing revascularisation each year, almost 3 million patients living with CHD and over 32 million possessing one or more elevated risk factors.

Between 1981 and 2000, England and Wales CHD mortality rates fell by 62% in men and 45% in women aged 25-84. This resulted in 68,230 fewer deaths in 2000, when compared with the 1981 baseline. Approximately 42% of this mortality fall was attributable to treatments in individuals (including 8% from initial treatments of acute myocardial infarction, 11% from secondary prevention, 13% from heart failure treatments, and 3% from hypertension treatments). Some 58% of the mortality fall was attributable to population risk factor reductions (principally smoking 48%, blood pressure 9.5% and cholesterol 9.6%). Adverse trends were seen for obesity, diabetes and physical activity. Overall, the model explained approximately 96% of the mortality fall in men, and 79% in women.

The 68,230 deaths prevented or postponed in 2000 corresponded to approximately 994,610 life-years gained. Specific treatments for CHD patients gained approximately 194,145 life-years (minimum estimate 142,500, maximum estimate 259,220). Population changes in the major risk factors (smoking, cholesterol, blood pressure) accounted for over three times as many life-years gained (approximately 800,465, minimum estimate 602,690, maximum 879,420). Adverse changes in physical activity, obesity and diabetes resulted in a loss of approximately 92,600 life-years (minimum 68,350, maximum 100,760).

In 2000, all medical and surgical CHD treatments together prevented or postponed approximately 25,760 deaths. However, treatment uptakes were generally poor, between 30% and 60%. Increasing treatment uptake to reach 80% of eligible patients (the NSF CHD target) would have prevented or postponed approximately 20,910 further deaths (minimum 11,030, maximum 33,495), almost doubling the actual gain from therapies.

Using 2000 as the baseline, continuation of recent risk factor trends should result in approximately 15,145 fewer coronary deaths in 2010 (min 12,170, max 17,290). However, achieving the modest additional risk factor reductions already seen in the USA and Scandinavia could potentially result in approximately 51,185 fewer deaths in 2010 (minimum 39,395, maximum 72,330).

Conclusions

Coronary heart disease represents a massive burden of disease in England and Wales. Recent falls in CHD mortality rates reflect a combination of risk factor improvements and modern therapies. However, much greater mortality reductions appear possible. Future strategies should therefore maximise the delivery of appropriate therapies to all eligible CHD patients. Most crucially however, effective policies for tobacco control and healthy nutrition might potentially halve current CHD deaths in England and Wales.

ACKNOWLEDGEMENTS

It took a long and hard journey to reach this point. I was very lucky to meet so many knowledgeable, experienced, open hearted and good people on the way. I would like to share my gratitude here.

I would like to thank my supervisor **Professor Simon Capewell**. He shared his knowledge and expertise generously. He was very approachable in every stage of my work. He was very quick and efficient in commenting on what I did or wrote. This work was built very much on his constructive and positive feedbacks. When I was temped to panic or felt lost, he stayed calm and never lost his optimism.

I am also very grateful to my second supervisor, **Dr Julia Critchley**. Julia introduced me to the original Scottish IMPACT Model. This provided a very useful base from which to develop the English IMPACT Model. I also greatly benefited from her helpful comments when finalising the thesis.

I would also like to thank:

Professor Gazanfer Aksakoglu, the head of Public Health Department of Dokuz Eylul University. He was my first teacher who introduced me to epidemiology and biostatistics. He supported me during my career path and encouraged me to apply for this fellowship. He then granted me the permission to work and study here.

Dr Ozgur Aslan who believed in me and supported me in every way. Because of him I started to work in the field of cardiovascular epidemiology.

My colleagues from Public Health Department of Dokuz Eylul University; **Professor Reyhan Ucku, Professor Gul Ergor, Dr Alp Ergor, Dr Yucel Demiral** and **Dr Turkan Gunay.** They undertook my teaching responsibilities back home and supported me professionally and emotionally during my studies here.

Professor Margaret Whitehead, Drs Tim Doran, Vanessa Poustie and Julie Mytton for their constructive comments on individual model chapters.

Drs Rod Taylor and **Dogan Fidan** for their useful questions on the IMPACT Model. Their constructive criticism helped to further improve the model.

Chris West for saving my PC from the viruses when I finished the first draft of my thesis; **Jan Ferguson** for typing some of the lists; **Paul Blackburn** for making IMPACT model appendices available on the webpage and my flatmate **Dr Martien Brands** who listened the progress of my thesis almost every evening, and asked useful questions.

My parents; for being patient and supportive with all my decisions.

My friends; Fausto Sainz Salcez, Orla Cronin, Wael El-Deredy, Clare Bambra, and Yenal Dundar for comforting me whenever I felt blue and reminding me that there is a life beyond and after a thesis.

This work was undertaken in part as a Research Training Fellowship, kindly funded by NHS North West R&D.

TABLE OF CONTENTS

	ABSTRACT	I
	ACKNOWLEDGEMENTS	
	TABLE OF CONTENTS	IV
	LIST OF TABLES	VII
	LIST OF FIGURES	VIII
	LIST OF BOXES	IX
	LIST OF APPENDICES	X
	LIST OF ABBREVIATIONS	XI
1	INTRODUCTION	12
1.1	AIM	13
1.2	OBJECTIVES	13
2	CORONARY HEART DISEASE EPIDEMIOLOGY	14
2.1	CORONARY HEART DISEASE: Definition	14
2.2	CARDIOVASCULAR RISK FACTORS	14
2 .2. 1	Age	14
2.2.2	Sex	
2.2. 3	Smoking	
2.2.4	Blood Pressure and Hypertension	
2.2.5	Serum Lipids	
2.2.6	Diabetes and Glucose Intolerance	
2.2.7	Other Risk Factors	
3	CHD PREVENTION AND TREATMENT	
3.1	EFFECTIVE INTERVENTIONS FOR CHD PRIMARY PREVEN	ΓΙΟΝ 27
3.1.1	Reducing smoking	
3.1.2	Reducing cholesterol	
3.1.3	Reducing blood pressure	2 9
3.1.4	Reducing obesity	
3.1.5	Increasing physical activity	
3.2	EVIDENCE BASED CARDIOLOGICAL THERAPIES	
3.2.1	Angina	32
3.2.2	Unstable angina	. 33
3.2.3	Revascularisation	. 33
3.2.4	Coronary Artery Bypass Graft Surgery (CABG)	. 33
3.2.5	Percutaneous transluminal coronary angioplasty (PTCA)	
3.2.6	Acute Myocardial Infarction	34
3.2.7	Secondary Prevention	. 36
3.2.8	Cardiac Rehabilitation including physical exercise	37

9.2	Methods	116
9.3	Results	116
9.4	Interpretation	126
10	LIFE-YEARS GAINED FROM CARDIOLOGICAL TREATMENTS .	AND
	POPULATION RISK FACTOR CHANGES IN ENGLAND AND WAI	LEN.
	BETWEEN 1981 AND 2000	. 128
10.1	Introduction	128
10.2	Methods	128
10.3	Results	. 131
10.4	Interpretation	. 137
11	IMPACT OF INCREASED TREATMENT UPTAKE ON CHD	
	MORTALITY IN ENGLAND AND WALES IN 2000	. 139
11.1	Introduction	. 139
11.2	Methods	. 140
11.3	Results	. 141
11.4	Interpretation	. 148
12	SMALL CHANGES IN UK CARDIOVASCULAR RISK FACTORS	
	LEADING TO POTENTIALLY BIG REDUCTIONS IN CHD	
	MORTALITY?	. 149
12.1	Introduction	. 149
12.2	Methods	. 150
12.3	Results	. 152
12.4	Interpretation	. 161
13	DISCUSSION	. 163
13.1	Main findings	. 163
13.2	Strengths of the IMPACT Model	. 166
13.3	Limitations of the IMPACT Model	. 167
13.4	How can CHD modelling be improved?	. 170
13.5	Implications for public health practice	. 171
13.6	Policy implications for decision makers	. 171
13.7	Clinical implications	. 172
13.8	Research implications and future research questions	. 172
13.9	Lessons I have learned	. 173
13.10	Conclusions	. 174
14	REFERENCES	. 175
15	APPENDICES	200

9.2	Methods	6
9.3	Results	6
9.4	Interpretation12	26
10	LIFE-YEARS GAINED FROM CARDIOLOGICAL TREATMENTS AND	D
	POPULATION RISK FACTOR CHANGES IN ENGLAND AND WALES	3,
	BETWEEN 1981 AND 2000 12	28
10.1	Introduction12	28
10.2	Methods	28
10.3	Results	31
10.4	Interpretation13	37
11	IMPACT OF INCREASED TREATMENT UPTAKE ON CHD	
	MORTALITY IN ENGLAND AND WALES IN 2000	19
11.1	Introduction13	19
11.2	Methods	10
11.3	Results	1
11.4	Interpretation14	8
12	SMALL CHANGES IN UK CARDIOVASCULAR RISK FACTORS	
	LEADING TO POTENTIALLY BIG REDUCTIONS IN CHD	
	MORTALITY? 14	9
12.1	Introduction14	9
12.2	Methods	5 0
12.3	Results	52
12.4	Interpretation	1
13	DISCUSSION	3
13.1	Main findings	3
13.2	Strengths of the IMPACT Model16	6
13.3	Limitations of the IMPACT Model16	7
13.4	How can CHD modelling be improved?17	0
13.5	Implications for public health practice17	1
13.6	Policy implications for decision makers17	1
13.7	Clinical implications	2
13.8	Research implications and future research questions	2
13.9	Lessons I have learned17	3
13.10	Conclusions	4
14	REFERENCES 17	5
15	APPENDICES	0

4

LIST OF TABLES

3

Table 4.1	Prevalence (%) of coronary heart disease, by age and sex, England, 1998 45
Table 4.2	Estimated numbers of subjects with recognised coronary heart disease or with elevation of one or more cardiovascular risk factors in England and Wales, 2000
Table 6.1	Existing CHD Policy Models
Table 6.2	Quality assessment for major CHD policy models
Table 7.1	Population and patient data sources of information on CHD in the UK, 1981- 2000
Table 7.2	Data sources on CHD treatments in primary care and secondary care in the UK, 1981-2000
Table 7.3	Data sources on cardiovascular risk factors in the UK, 1981-2000
Table 8.1	Social gradients in AMI mortality rates (per 100,000) in the Scottish population 1986-1995 (quintiles of deprivation in men)
Table 8.2	Changes in household income 1981-2000, adjusted for tax, benefits and inflation
Table 8.3	Deaths prevented or postponed by improvements in deprivation, using PAR methodology
Table 9.1	Deaths prevented or postponed (DPP) by medical and surgical treatments in England and Wales in 2000118
Table 9.2	Deaths prevented or postponed as a result of population risk factor changes in England and Wales 1981 and 2000
Table 9.3	Percent contribution of men and women to total DPPs by age groups in England and Wales (1981–2000)
Table 9.4	Percent contribution of treatments and risk factor changes to total DPPs in men and women by age groups in England and Wales (1981-2000)
Table 9.5	Model validation: estimated versus observed changes in CHD deaths in England and Wales 1981-2000
Table 10.	1 Number of life-years gained by medical and surgical treatments of coronary heart disease in England and Wales in 2000
Table 10.2	2 Number of life-years gained by changes in population cardiovascular risk factors in England and Wales between 1981 and 2000
Table 11.1	1 Coronary heart disease mortality reduction in England & Wales in 2000: Effect of increasing treatment uptake to 80%
Table 12.1	1 Observed and projected CHD mortality rates and deaths in England and Wales, 2000-2010
Table 12.2	2 Risk factor levels in the 2000 base year and projections to 2010: a) simply continuing recent trends, b) assuming more substantial reductions achieved elsewhere (men and women aged 25-84 years)

1

Table 12.3 The estimated reduction in CHD mortality in England and Wa	les between
2000 and 2010 on the basis of changes in specific risk factors:	a) continuing
recent trends, and b) with more substantial reductions	

Table 12.4 Reductions in CHD mortality achievable in 2010, stratified by age and sexa) continuing recent risk factor trends and b) with more substantial risk factorreductions.159

LIST OF FIGURES

Figure 4.1 Death rates from CHD, men and women aged 35-74, 1998, selected countries
Figure 4.2 Changes in deaths from CHD, men and women aged 35-74, between 1988 and 1998, selected countries
Figure 4.3 Age-standardised coronary event rates per 100,000 population, men aged 35- 64, MONICA Populations
Figure 4.4 The iceberg of coronary heart disease in England and Wales, 2000
Figure 6.1 Flowchart of search strategy for CHD policy models
Figure 8.1 Flowchart of the IMPACT Mortality Model parameters
Figure 8.2 Potential overlaps between CHD patient groups
Figure 9.1 Coronary heart disease deaths prevented or postponed by treatments and risk factor changes in the England and Wales population between 1981 and 2000.
Figure 9.2 Proportional contributions of specific treatments and risk factor changes to the CHD mortality reduction in England and Wales, 1981-2000: Results of a sensitivity analysis
Figure 10.1 Comparison of deaths prevented or postponed and life-years gained from risk factor changes and treatments given to CHD patients
Figure 10.2 Number of life-years gained from coronary heart disease treatments and population risk factor changes, in England and Wales between 1981 and 2000 by age and sex
Figure 10.3 Proportional contributions of specific treatments and risk factor changes to the total life-years gained from the CHD mortality decline in England and Wales, 1981-2000: Results of a sensitivity analysis
Figure 11.1 Estimated CHD mortality reductions in 2000, and potential gains IF specific treatment uptakes reached 80% of eligible patients
Figure 11.2 Sensitivity analysis showing best estimates for mortality reductions IF specific treatment uptakes reached 80% of eligible patients
Figure 11.3 Age and sex distribution of CHD mortality reductions IF appropriate specific treatment uptakes reached 80% of eligible patients
Figure 12.1 Potential change in CHD mortality in England and Wales between 2000 and 2010 if risk factors a) continue recent trends b) undergo more substantial reductions

LIST OF BOXES

Box 6.1 Summary of structures and methodology used in the six major models 64
Box 6.2 CHD risk factors and treatment categories included in the six major models 67
Box 8.1 Principal changes and refinements made in English IMPACT Model
Box 8.2 Example of DPP calculation: Men aged 55-64 given aspirin for acute myocardial infarction
Box 8.3 Example of Mant and Hicks calculation for secondary prevention following acute myocardial infarction
Box 8.4 Assumptions and overlap adjustments used in IMPACT Model
Box 8.5 Example of mortality fall estimation attributable to change in population risk factor (smoking)
Box 8.6 Example of CHD mortality change estimation due to change in diabetes prevalence
Box 8.7 Example of sensitivity analysis for benefits from treatments given to CHD patients
Box 8.8 Population and patient data sources for England and Wales, 1981-2000 105
Box 8.9 Medical and surgical treatments included in the model: data sources for treatment uptake levels
Box 8.10 Clinical efficacy of interventions: relative risk reductions obtained from meta-analyses, and randomised controlled trials*
Box 8.11 Data sources on cardiovascular risk factors in the UK, 1981-2000111
Box 8.12 Estimated β coefficients from multiple regression analyses quantifying the relationship between changes in population mean risk factors and changes in CHD mortality for men aged under 65
Box 8.13 Relative risks for obesity, diabetes, physical inactivity and deprivation and coronary heart disease mortality (Best, minimum and maximum estimates). 114

LIST OF APPENDICES

Appendix 1 Search strategy for CHD policy models review	
Appendix 2 Data extraction form for the eview of CHD Models	
Appendix 3. Summaries of CHD policy models	
Appendix 4. Summary tables for systematic review of CHD policy models	216
App4. Table 1. Summary table for CHD Policy Model papers	216
App4. Table 2. Summary table for PREVENT Model	222
App4. Table 3. Summary table for Cardiovascular Life Expectancy Mod	lel224
App4. Table 4. Summary table for CHD Policy Analysis Model	
App4. Table 5. Summary table for IMPACT CHD Mortality Model	229
App4. Table 6. Summary table for The Global Burden of Disease Projec	:t231
App4. Table 7. Summary table for other CHD policy models	233
App4. Table 8. List of excluded studies	
Appendix 5. CHD data sources in the UK: Conference proceedings, audit report web sites and personal correspondence used for.	ts, official 249
Appendix 6. CHD Mortality fall in England and Wales between 1981 and 2000: of deaths prevented or postponed by risk factor changes and treatme individuals with CHD, categorised into specific CHD patient group	: Numbers ients in ps250
Appendix 7. Trends in CHD mortality in England and Wales 1981 – 2000	251
Appendix 8. One year case fatality rates (per 1000) for unselected patients on us treatment.	sual 252
Appendix 9. Adjustment for poly-pharmacy in individual CHD patients	
Appendix 10. Estimates of median survival used in sensitivity analyses: for mer women stratified by age groups and by each category of treatment.	1 and 255
Appendix 11. Estimates of median survival used in sensitivity analysis for death prevented or postponed in men and women by risk factor reduction	15 15257
Appendix 12. Good practice in spread sheet modelling (Edwards et al, 2000)	
Appendix 13. Reference list for the appendices	
Appendix 14. Published or submitted papers resulting from this thesis	

LIST OF ABREVIATIONS

ACE	Angiotensin converting enzyme
AMI	Acute myocardial infarction
BRHS	British Regional Heart Study
BMI	Body mass index
CABG	Coronary artery bypass graft
CHD	Coronary heart disease
CPR	Cardiopulmonary resuscitation
CVD	Cardiovascular disease
DALY	Disability adjusted life years gained
DPPs	Deaths prevented or postponed
HDL-C	High density lipoprotein cholesterol
HES	Hospital Episode Statistics
HSE	Health Survey for England
LDL-C	Low density lipoprotein cholesterol
LYG	Life years gained
NHS	National Health Service
OR	Odds ratio
PAR	Population attributable risk
PG IIb/IIIa	Platelet glycoprotein IIb/IIIa inhibitors
РТСА	Percutaneous transluminal coronary angioplasty
QALY	Quality adjusted life years
RCT	Randomised controlled trial
RR	Relative Risk
UK	United Kingdom
US	United States

1 INTRODUCTION

Cardiovascular diseases (CVD) are the most common causes of death among both men and women in all developed countries. It is estimated that coronary heart disease (CHD) will be the largest single cause of disease burden globally by the year 2020¹. CHD causes over 120,000 deaths in the UK annually, 26% of all premature deaths in men and 16% in women².

Increasing health care demands require policy decisions based on good evidence, particularly since resources are limited. By combining local data with trial based effectiveness, models can potentially offer increased transparency to the decision making process (provided their assumptions are clearly stated)³. Models have been extensively used in policy making and resource allocation, since they allow policy makers to simulate the effects of different scenarios within a population.

In 1996, Capewell and colleagues developed and refined a CHD mortality model (IMPACT) combining data from many sources on patient numbers, treatment effectiveness and risk factor trends to estimate the deaths prevented or postponed (DPPs) over a specified time period⁴. Initially, the IMPACT Model was used to examine the CHD mortality declines over a 20 year time period and estimate the proportion that could be attributed to falls in various risk factors or specific treatments. The IMPACT model was first validated against the actual mortality fall observed in Scotland, and then replicated in New Zealand⁵.

In collaboration with the National Public Health Institute (KTL) in Helsinki, Finland, validation and development of the model then progressed, using high quality linked data on deaths and hospital activity, plus MONICA data on risk factors.

While interesting and useful, these projects highlighted various limitations of the original IMPACT methodology. As well as further developing and refining the IMPACT model, it was clearly desirable to apply it to England and Wales using local data, before using the basic model in a variety of further projects.

1.1 AIM

To achieve a refined coronary heart disease model, which

- a) explains most of the recent fall in CHD mortality in England and Wales
- b) quantifies the years of life gained by such mortality falls,
- c) explores potential gains from medical and surgical treatments and
- d) compares potential gains from future changes in cardiovascular risk factors in order to explore future policy options for CHD prevention.

1.2 OBJECTIVES

- To identify, select and review critically CHD data from various national and local UK sources
- 2. To define the burden of CHD in England and Wales using the existing data
- 3. To update and transform the original Scottish IMPACT Model (1975-94) into an English IMPACT Model, and incorporate relevant English and Welsh data.
- To explore, test and develop a variety of methodological refinements to the existing CHD IMPACT Model, including:
 - reviewing β coefficients for smoking, cholesterol and blood pressure
 - seeking β coefficients for diabetes, obesity and physical activity
- 5. To explain most of the recent falls in CHD mortality in England and Wales
- 6. To estimate the life-years gained attributable to modern cardiological treatments, and to changes in cardiovascular risk factor levels.
- To estimate the potential benefit of increasing the uptake of effective cardiological treatments.
- 8. To estimate the potential for cardiovascular risk factor changes to reduce CHD deaths in England and Wales by 2010.

2 CORONARY HEART DISEASE EPIDEMIOLOGY

2.1 CORONARY HEART DISEASE: Definition

The term 'coronary heart disease', also known as ischaemic heart disease, covers a group of clinical syndromes that includes angina pectoris, acute myocardial infarction (fatal and non-fatal) and sudden cardiac death. It may also include those forms of heart failure resulting from ischaemic heart disease. The common underlying pathology is atherosclerosis of the coronary arteries. One or more atheroma plaques grow beneath the coronary artery endothelium. This atheroma expansion results in narrowing of the lumen and may progress to rupture of the endothelial surface, thus triggering thrombosis and hence partial or complete occlusion⁶.

2.2 CARDIOVASCULAR RISK FACTORS

The concept of 'risk factors' refers to any characteristic, which increases the probability of an individual developing CHD. Risk factors can be fixed or modifiable. This concept was first developed during the early epidemiological studies of CHD⁷. The principal fixed risk factors are age, sex and family history⁸. Modifiable biochemical and physiologic factors relate to environment and lifestyle, these include potentially alterable personal characteristics such as smoking, high blood pressure, hyperlipidemia and diabetes. These modifiable factors can then be targeted by interventions aiming to prevent CHD in individuals, or in the population.

2.2.1 Age

In industrial countries, absolute risk for CHD increases exponentially with age in both men and women⁹⁻¹¹ as the result of progressive accumulation of coronary atherosclerosis with ageing. For example, among British men, there is a 2-3 fold increase in mortality rate with each additional decade¹².

2.2.2 Sex

There is a striking difference in CHD mortality between men and women. Death rates among women lag behind those of men by approximately 10 years, more so in younger age groups¹³. This difference diminishes with increasing age, so that women aged 85 years or over have almost the same mortality rate as men¹². Women are apparently protected to some degree by their hormonal function, but this protection diminishes progressively during and after menopause¹². However, it is worth emphasising that the sex differences in CHD are complex, and probably cannot be explained purely on an endocrine basis⁸.

2.2.3 Smoking

Tobacco smoking is a powerful risk factor for CVD. Compared with non-smokers male and female smokers demonstrate at least a two fold increase in the incidence of CHD¹⁴⁻¹⁶. Relative risk is even higher, four or five fold, in younger groups¹⁷. Smoking predisposes to CHD in several ways. Partly through enhanced thrombosis (blood clotting)¹⁸, and also by promoting atherosclerosis^{19:20} and coronary plaque development²¹. If the main effect of smoking is thrombogenic rather than atherosclerotic, it would be plausible to expect that risk might rapidly decline following smoking cessation. Among persons with previously diagnosed myocardial infarction or CHD, smoking cessation reduces the risk for recurrent heart attack and mortality by 40% within two years²². However, the 1990 US Surgeon General's Report states that although the risk is halved within 1-2 years, risk only returns to that of a non-smoker after 15 years of abstinence²³. Hence, all these mechanisms appear potentially important.

2.2.4 Blood Pressure and Hypertension

There is a continuous relationship between the level of blood pressure and the risk of cardiovascular events²⁴. The mechanism whereby hypertension increases coronary events results from both the direct vascular injury which promotes atherogenesis, and also from its effects on the myocardium, including wall stress and increased myocardial oxygen demand²⁵.

Both systolic and diastolic blood pressure levels show a strongly positive log-linear relationship with CHD²⁴. Overall, a two to three fold increase in CHD rate is apparent in hypertensive groups compared to normal blood pressure groups²⁴. In the British Regional Heart Study a two-fold increase in risk of CHD was evident at a systolic blood pressure of over 148 mmHg, with little or no gradient of risk apparent below this level²⁶. However, more recently the Prospective Studies Collaboration analysed

outcome in over one million subjects. A threshold was difficult to detect. They found risk extended down to 75 mmHg diastolic blood pressure²⁷.

However, the arbitrary definition of hypertension has contributed to a plethora of statements issued by national and international authorities over the decades. Although the International Society of Hypertension recently defined 'hypertension' as a systolic blood pressure of \geq 140 mmHg and/or a diastolic blood pressure \geq 90 mmHg in people not taking antihypertensive medication²⁸, this is unlikely to be the last word on the subject.

2.2.5 Serum Lipids

Total cholesterol and a variety of lipid sub fractions have been consistently reported to increase CHD risk.

Total Cholesterol

In most population studies, mean total cholesterol increases with age, mainly between the second and fifth decades. Framingham and other US studies traditionally suggested a total cholesterol level <200 mg/dl as desirable (<5.2 mmol/l), 200 to 239 mg/dl (5.2-6.2 mmol/l) as "borderline-high" and 240 mg/dl (6.2 mmol/l) or over 'high' for both men and women²⁹. However, serum total cholesterol levels are associated with a continuous log-linear graded CHD risk to below 160 mg/dl (<4 mmol/l)³⁰.

Law and colleague's meta-analysis estimated that a change in plasma cholesterol of 0.6 mmol/1 (about 10%) is associated with an overall change of approximately 27% in mortality from CHD in cohort studies, international comparisons and RCTs of lipid lowering in men³¹. A strong age gradient was also observed; a change in serum cholesterol concentration of 0.6 mmol/l was associated with a change in incidence of ischaemic heart disease of 54% at age 40 years, 39% at age 50, 27% at 60, 20% at 70, and 19% at 80³².

Low Density Lipoprotein Cholesterol (LDL-C)

LDL-C is the major fraction of total cholesterol and increases with age, a saturated fat rich diet, and obesity. In the US, the National Cholesterol Education Program (NCEP) Adult treatment panel II has stratified the risk of LDL-C levels as ≥ 160 mg/dl (or ≥ 4.1

mmol/l) being 'high risk'; 130-158 mg/dl (or 3.4 mmol/l - 4.1 mmol/l) being 'borderline high risk'; and <130 mg/dl (or <3.4 mmol/l) being a 'desirable LDL-C'²⁹.

LDL-C has a stronger association with CHD than total cholesterol, and is sometimes used as the primary target for cholesterol-lowering therapy²⁹. Therapeutic lowering of LDL-C appears highly effective in primary and secondary prevention. In a recent large study, a 35% reduction in LDL-C lowering with the HMG-CoA reductase inhibitor, simvastatin, reduced coronary mortality by 42% and total mortality by 30%³³.

A substantial benefit from LDL-C lowering is also reported in primary prevention, with a 1% change in LDL-C level being associated with 2% or 3% change in CHD risk²⁹. Thus in a meta-analysis of primary prevention trials, lipid lowering drugs reduced the odds of a CHD event by 30%³⁴.

High Density Lipoprotein (HDL-C) Cholesterol

HDL-C is protective against CHD. HDL-C is generally increased by regular exercise, or moderate alcohol consumption³⁵. Despite the strong epidemiological association, the biological mechanisms underlying the HDL-CHD link remain poorly understood. Some researchers propose that HDL-C attenuates the atherogenicity of LDL-C; if so low levels of HDL-C may directly promote atherogenesis.

The NCEP²⁹ defines 3 categories of HDL-C: low (<35 mg/dl or <0.9 mmol/l), normal (35 to 60 mg/dl or 0.9 to 1.6 mmol/l), and high (>60 mg/dl or >1.6 mmol/l). The NCEP classifies low HDL-C as a major risk factor; conversely, a high level is considered a "negative" (protective) factor²⁹.

Lipoprotein a

Lipoprotein (a) (Lp a) consists of an LDL-C particle bound by a disulfide bridge to apolipoprotein (a), a structure resembling plasminogen. Lp (a) demonstrates genotypic and phenotypic variation, which then affects plasma LDL-C levels. A high level of Lp(a) (>0.30 g/l) is an important risk factor for premature atherosclerosis and CHD ³⁶.

Apolipoprotein A-I (Apo-AI) and Apolipoprotein B (Apo B)

Apo-AI is a lipid- binding protein and is the major component of HDL. Apo-AI stimulates cholesterol removal from cells and it has antioxidant activity, which prevents atherosclerotic damage³⁷.

Apo B is the main apolipoprotein of chylomicrons and LDL. It is a measure of small. dense LDL particles known to be more atherogenic than LDL. Some mutations in Apo B genes reduce LDL affinity for the LDL receptor. This delays the clearance of LDL from the plasma resulting in hypercholesterolemia and premature atherosclerosis³⁸.

Triglycerides

Elevated triglyceride levels have been variably associated with an increased risk of CHD in men and women^{39;40}. In univariate analyses, triglyceride often emerges as a positive risk factor for CHD. However, in multivariable analyses it frequently appears not to have an independent association with CHD⁴¹.

2.2.6 Diabetes and Glucose Intolerance

Diabetes is an independent risk factor for CHD^{21;42}. Glucose intolerance is an intermediate state between 'normoglycemia' (a fasting blood glucose level less than 110 mg/dl or a random blood glucose level less than 140 mg/dl) and frank diabetes. Current evidence suggests that development of glucose intolerance or diabetes is initiated by insulin resistance and is worsened by the compensatory hyperinsulinemia. The progression to type II diabetes is influenced by genetics and environmental factors that promote obesity such as a sedentary lifestyle and dietary habits⁴³.

Patients with diabetes demonstrate an increased risk for CHD. Although CHD can occur at very young age in insulin dependent (Type I) diabetes, type II diabetes is far more common. In the Framingham Study the risk ratio for CHD was 2.4 (p<0.05) in men and 5.1 (p<0.01) for women with diabetes⁴⁴. Up to 80% of adult diabetic patients die of CVD, and 75% of these deaths are caused by CHD⁴⁵. In addition to the independent risk factor, hyperglycaemia, and insulin resistance, patients with diabetes commonly have other cardiovascular risk factors (e.g. hypertension, low serum HDL-C, high LDL-C and high triglyceride); these additional risk factors increase CHD risk in many diabetic patients⁴⁶. Type II diabetes is sometimes considered part of a dysmetabolic syndrome (Syndrome X) that includes insulin resistance, hyperinsulinemia, obesity, hypertension, and dyslipidemia.

In diabetic patients, myocardial ischemia due to coronary atherosclerosis more commonly occurs without symptoms such as anginal pain⁴⁷. As a result, multivessel atherosclerosis may be present before ischaemic symptoms occur and hence before treatment is instituted. The delayed recognition of various forms of CHD undoubtedly further worsens the prognosis for many diabetic patients.

2.2.7 Other Risk Factors

There are many more risk factors, which may increase the likelihood for developing CHD apart from the major risk factors summarised above. These risk factors include physical inactivity, family history of premature CHD, obesity, diet, antioxidants, the Barker effect, the life course, increased serum homocysteine, and abnormalities in coagulation factors.

Obesity

Obesity, defined as a body mass index (BMI)>30, is widely used as a measure of body fatness in surveys⁴⁸. The increasing prevalence of obesity in many countries is now considered a pandemic; in Britain, over half the adult population are currently overweight or obese⁴⁸.

Visceral or central abdominal obesity, which can be quantified by the waist to hip ratio has been shown to increase CHD risk⁴⁹. Desirable waist to hip ratio appears to be <0.9 for men and <0.8 for women⁴⁹.

Obesity is associated with other major cardiovascular risk factors, including hypertension, diabetes, dyslipidaemia, and physical inactivity. Much of the increased CHD risk associated with obesity is mediated by these associations. However in several prospective studies obesity was found to be a significant independent risk factor for CHD incidence^{50;51}. An ongoing analysis of Prospective Studies Collaboration suggests that CHD risk is increased by approximately 10% for each 5 kg additional weight *(Personal Communication Gary Smith, PSC, Oxford).*

Physical Inactivity

Physical inactivity appears consistently associated with an approximately twofold increase in CHD risk. In an early meta-analysis by Berlin et al., relative risk of death from CHD was 1.9 (95%CI 1.6-2.2) for sedentary compared with active groups⁵². However, not all studies have shown an independent benefit of physical activity after adjusting for potential confounders such as obesity, diabetes, hypertension and deprivation, and adjustments for these factors consistently weaken the beneficial effect of physical activity⁵³. Conversely, physical activity is notoriously difficult to measure accurately, and non-differential misclassification may weaken estimates of its independent effect on CHD risk. A recent British Regional Heart Study (BRHS) paper suggests a modest but statistically protective effect in sedentary individuals who subsequently become more active⁵⁴.

The protective cardiovascular effect of physical activity may be attributable to both direct and indirect mechanisms. Direct physiologic adaptations in response to regular exercise result in more efficient oxygen delivery, and oxygen uptake by exercising muscles⁵⁵. Other important indirect mechanisms include a reduction in blood pressure and improved control of body weight⁵⁴.

Earlier studies and guidelines recommended vigorous exercise for cardiovascular benefit⁵⁶ More recent evidence suggests that moderate exercise (such as walking) also has a cardiovascular benefit. In an 8 year follow up study of 7,735 middle aged men who participated in the British Regional Heart Study an inverse association was observed for moderate levels of activity such as involved sporting activity once a week or lighter activities such as walking, gardening and 'Do It Yourself'⁵³.

The current guidelines from the Centers for Disease Control and Prevention and the Surgeon General's report⁵⁷ therefore recommend at least 30 minutes of moderate intensity physical activity on most or preferably all days of the week (whereas earlier guidelines recommended vigorous aerobic exercise for at least 20 minutes 3 or more times per week).

Alcohol use

Individuals reporting moderate amounts of alcohol intake (approximately one to three units per day) have a 40% to 50% lower CHD risk compared with individuals who are abstinent^{58,59}. However, higher intakes are associated with raised blood pressure. increased CHD mortality and increased total mortality⁶⁰. Although some cohort studies have suggested that wine may be more beneficial than beer or spirits most studies do not support an association between type of alcoholic beverage and prevention of heart disease ⁶¹. Although regular low to moderate consumption of alcohol appears protective against CHD, a general recommendation for alcohol use was not encouraged in the latest WHO/FAO report ⁶² because of other cardiovascular and health risks.

Homocysteine

Increased CHD is seen in various genetic conditions causing increased homocysteine levels. The normal plasma homocysteine levels range from 5-15 μ mol/L; levels grater than 15 μ mol/L are defined as hyperhomocysteinemia⁶³. Higher levels of homocysteine may be a weak independent risk factor for CVD⁶³⁻⁶⁵. A recent systematic review reported that the summary odds ratios (OR) for a 5- μ mol/l increase in homocysteine concentration were 1.06 (95% CI: 0.99–1.13) for 2 cohort studies, and 1.23 (95% CI: 1.07–1.41) for 10 nested case-control studies. The authors concluded that it was premature to formulate public health recommendations on recommended homocysteine levels, screening policies, and prevention measures in the general population. Data from ongoing randomised trials are awaited⁶⁶.

Vitamins and Antioxidants

Diet appears to be a major factor in the aetiology of CVD. However, there is still considerable scientific uncertainty about the relationship between specific dietary components and CVD risk. The Antioxidant Hypothesis suggests that vitamin C and E, β -carotene and other carotenoids, antioxidant minerals such as selenium, zinc and other antioxidants such as flavonoids are protective against CVD⁶⁷. A systematic review of observational studies suggested a weak protective effect of fruit and vegetable consumption for CHD⁶⁸. However RCTs have generally failed to show beneficial effects of antioxidants as food supplements added to diet (β carotene, tocopherol and ascorbic acid) on the risk of myocardial infarction, stroke or CHD mortality.^{67,69}

Currently recommendations for primary prevention focus on increasing intake of fruit and vegetables, rather than using antioxidant supplements^{70;71}. A meta-analysis of cohort studies, reported that the relative risk reduction of CHD in high consumers of fruits and vegetables might be around $15\%^{72}$. Furthermore, the EPIC Norfolk study suggested a 20 µmol/L rise in plasma ascorbic acid concentration (equivalent to about 50 g per day increase in fruit and vegetable intake) was associated with about a 30% reduction in risk of CHD mortality⁷³.

Coagulation factors

Thrombosis has a central role in CHD pathology. Plasma fibrinogen is clearly a risk marker for atherothrombotic events⁷⁴, while some studies suggest that factor VII, factor VIII, von Willebrand factor, and other coagulation markers have significant but weaker effects⁷⁵, with odds ratios typically around 1.2 or 1.3^{76;77}.

Thrombotic factors are important in determining the clinical expression of CHD and in some pharmacological therapies. However their measurement in healthy adults does not alter primary prevention based on the major risk factors⁷⁸.

Socio-economic factors across the life course

The UK CHD epidemic in the 1950s-1960s particularly affected affluent groups. This class differential then slowly reversed so that people in lower social classes now have higher rates of morbidity and mortality from CVD than those in higher classes^{79;80}. This particularly relates to deaths from premature CHD, which are approximately 3 times higher among unskilled manual workers than professionals⁸¹. It is estimated that each year 5,000 lives and 47,000 working years are lost in men aged 20-64 years due to social class inequalities in CHD death rates in England and Wales⁸². Furthermore, since the 1970s, death rates from CHD have fallen more slowly in lower socio-economic groups⁸³.

Childhood and adult deprivation have independent adverse effects on health⁸⁴. Social class in childhood seems to be particularly important for mortality from CVD whereas social class in adulthood is more related to all cause mortality⁸⁰. There is a continuing debate about the extent to which this is related to early life experience or to a higher prevalence of major risk factors⁸⁵.

Changes in socio-economic status can be measured in a variety of ways. In Chapter 8, 1 will describe how change in household income, indexed to 1981, was used as a crude measure of change in deprivation.

Foetal and infant origins of adult disease

It is suggested that CHD is increased by specific patterns of disproportionate fetal growth that result from foetal under-nutrition in middle to late gestation⁸⁶. In other words, a baby's nourishment before birth, "programmes" the subsequent development of risk factors such as raised blood pressure, glucose intolerance, concentrations of fibrinogen, and coagulation factor VIII and hence CHD⁸⁷.

Studies of men born in Britain and in Finland suggested that low birth weight or low weight at one year or both were associated with increased CHD prevalence and mortality rates ⁸⁸⁻⁹⁰.

Genetic factors

The incidence and mortality from atherosclerosis and CHD vary considerably among races, populations and ethnic groups⁹¹. Some individuals with apparently low levels of risk factors show disease symptoms while many others with a high-risk profile do not. CHD may cluster in families, and may be substantially increased in first-degree relatives of persons with an early onset of the disease. The genetics of CHD can be divided into three categories: Family history, phenotypes, and genotypes.

Family History

Family history of CHD provides useful additional information about an individual's risk status⁹². The earlier that clinical CHD or sudden death affected a first-degree relative, the higher the risk ^{93;94}. However, the independent genetic effect of a positive family history is difficult to determine. Familial influences on risk status are almost certainly mediated in part through blood pressure, serum lipid levels and the sharing of other environmental factors. A positive family history of premature CHD should therefore be considered as a reason to screen, detect and management of other family members who may carry heritable risk factors, such as familial hypercholesterolemia⁹⁴.

Phenotypes

A number of prospective studies have reported an inverse association between height and CHD, which persisted even after adjusting for possible confounding factors, such as social class and smoking^{95;96}. Furthermore, in a prospective study, taller men and women had more favourable cardiovascular risk profiles than shorter people⁹⁷. Possible explanations for this association include, height is a marker for exposures influencing childhood growth such as diet, infection, or psychological stress⁹⁸, increasing coronary vessel diameter with height⁹⁹, genes influencing height might be closely linked to those affecting CHD risk or residual confounding, because social class is often poorly measured and controlled for.

Genotypes

Functional polymorphisms can affect genes. This may induce variability of biological mechanisms, which have neutral, beneficial or detrimental consequences. However, Keavney's authoritative review recently concluded that common polymorphisms, with frequent alleles that have relatively small effects and interact with each other and environmental factors are likely to account for most of the genetic component of coronary disease¹⁰⁰. More definitive answers may need to await completion of the UK Biobank Project¹⁰¹.

2.3 CHD RISK SCORING SYSTEMS

CHD is a multifactorial disease. As described above, the major independent risk factors for CHD are elevated serum total cholesterol, cigarette smoking, elevated blood pressure, diabetes mellitus, and age. The quantitative relationship between these risk factors and CHD risk has been elucidated by the Framingham Heart Study⁴² in USA and other studies in Europe such as PROCAM¹⁰², Dundee¹⁰³ and British Regional Heart study¹⁰⁴. These studies suggest that the major risk factors are generally additive in predictive power⁴². Therefore, the total risk of a person can be estimated by a summing the risk from each of the major risk factors.

The absolute risk of developing CHD over the next 10 years can be calculated using the Framingham equation⁴² or a variety of other risk scores¹⁰³⁻¹⁰⁵. The Framingham equation in UK subjects tends to overestimate risk slightly higher compared with the Dundee equation but substantially higher (by approximately 50%) compared with the BRHS¹⁰⁶. The reason for this was not clear and it is suggested that Framingham equation could be used for relative risk estimation rather than absolute risk for CHD¹⁰⁶. Although preventive efforts should target each major risk factor, an assessment of total risk based on the summation of all major risk factors can be clinically useful for identification of high-risk patients who merit prioritisation for more intensive intervention^{107;108}.

Most risk scores estimate risk for persons without clinical manifestations of CHD⁴² and are therefore useful for primary prevention in individuals. For secondary prevention in patients with CHD, there are many guidelines for the management of individual risk factors developed by American^{93;109;110} and European bodies¹¹¹. However, CHD risk scores are less useful for policy makers at the population level. A CHD policy model can be more useful which incorporates a wide range of risk factors and treatment interventions to explain CHD morbidity or mortality trends seen in the population.

I will consider prevention in more detail in the next chapter.

3 CHD PREVENTION AND TREATMENT

Control of CHD is a broad concept and includes primary and secondary prevention strategies.

"Primary prevention" means delaying or preventing CHD in healthy subjects, by modifying lifestyle and environmental factors, and their social and economic determinants that are underlying cause of CHD. Primary prevention can use two main approaches:

In *population-based approaches*, interventions are directed at all individuals in the whole population regardless of their risk factor or disease status. Examples include national legislation to ban tobacco advertising and food policies which promote the consumption of fresh fruit and vegetables and which discourage the dietary intake of excessive salt or saturated fat^{112;113}. **Primordial prevention** is a relatively new term that used interchangeably with population-based approaches. It is defined as attempts to prevent the risk factors in the whole population that may eventually lead to CVD¹¹⁴.

In the *high-risk approach* the target is the individual with one or more elevated risk factors and who is therefore more likely to develop disease in the future. Interventions for these people can be more sophisticated and aggressive. For instance, the detection and treatment of elevated cholesterol or blood pressure, or helping the individual to quit smoking.

The term "secondary prevention" denotes interventions in patients with established CHD, aiming to reduce the likelihood of further events and decrease coronary mortality. Secondary prevention strategies can be aimed at control of risk factors either by lifestyle changes or drug therapies (for instance by using aspirin, beta-blockers, statins or ACE inhibitors). This dual approach has led some authors to consider secondary prevention efforts and treatment of CHD as synonymous terms. In contrast, most clinicians would not use the term secondary prevention to describe the initial treatment of AMI, unstable angina or heart failure or revascularisation.

Secondary prevention targets all manifestations of atherosclerotic disease, which includes angina pectoris or a documented myocardial infarction, a history of coronary

artery revascularisation procedure (bypass graft or angioplasty), peripheral artery disease, aortic aneurysm, stroke or heart failure secondary to CHD^{29,93}.

A comprehensive strategy for CHD prevention should therefore consider all four components, primary and secondary prevention in both individuals and populations.

3.1 EFFECTIVE INTERVENTIONS FOR CHD PRIMARY PREVENTION

Causal relationships between CHD and major risk factors such as smoking, cholesterol, blood pressure and physical activity are well established¹¹⁵. Interventions to change these risk factors through life style changes or medical interventions have been studied widely in many different populations.

3.1.1 Reducing smoking

Many countries started tobacco control programmes in 1970s and have had considerable success in reducing smoking rates. Sweden, Norway, Finland and Iceland all introduced advertising bans back in the 1970s which were followed by substantial reductions in smoking rates or tobacco consumption^{116;117}. In US, smoking prevalence amongst the adults decreased from 37% in 1970 to 23% in 2000¹¹⁸. Smoking prevalence declined even faster in California when more intensive programmes were active, and visibly slowed when these programmes were suspended¹¹⁹. In all these countries CHD mortality decreased significantly in the last few decades.

The risk of CHD declines rapidly in those who quit smoking, to a level comparable with that of people who had never smoked after 2–3 years, independent of the number of cigarettes smoked before quitting²³.

Effective interventions and policies to reduce smoking differ according to the targeted population. Physician's cessation advice is often directed at older smokers and is designed to encourage them to quit smoking. Simple short advice by a physician has a small but significant (2.5% absolute difference in cessation rates) effect on cessation rates¹²⁰. Anti-tobacco media campaigns can be targeted at all people and convey messages like "don't start", "quit now" or "don't relapse". Such campaigns are more likely to be effective as part of a larger campaign aimed primarily at adults¹²¹.

3.1.2 **Reducing cholesterol**

Population cholesterol level is widely influenced by diet. It is suggested that a diet rich in saturated fat is associated with higher CHD risk. Therefore dietary modification remains the cornerstone of CHD prevention¹²².

Interventions at the community level can substantially reduce cholesterol levels in the population. In Finland, the North Karelia Project started in 1972, aiming to reduce risk factors, and a similar national programme followed this. A major decline in CVD risk factors was observed in the following 20 years in Finland. Cholesterol levels decreased approximately 18% among both men and women (from 6.9 mmol/l to 5.7 mmol/l in men and from 6.8 mmol/l to 5.6 mmol/l in women) between 1972 and 1997¹²³.

After an alarming increase in CVD and risk factors in Mauritius, an intensive national non-communicable disease intervention programme was introduced in 1988. The intervention programme aimed at modifying levels of risk factors related to lifestyle, including glucose intolerance, hypertension, hyperlipidaemia, obesity, cigarette smoking, alcohol misuse, and physical inactivity. Primary prevention components of the programme included extensive use of the mass media; fiscal and legislative measures; and widespread community, school, and workplace health education activities. All these components have promoted healthy nutrition, increased exercise, smoking cessation, and reduction in alcohol intake. As well as promoting healthy lifestyles, the government also introduced unsaturated soya bean oil as cooking oil instead of saturated fat rich palm oil. The mean total cholesterol concentration decreased by 14-15% (from 5.5 to 4.8 mmol/l), among adult Mauritians during the five years from 1987 to 1992¹²⁴.

Lowering cholesterol levels in individuals without CHD using drugs is also an option. In a recent systematic review of four randomised clinical trials (RCT) of statins, fibrates and cholestyramine it was found that drug treatment for cholesterol reduction significantly reduced CHD events and CHD mortality, but found no significant effect on overall mortality (OR for treatment *versus* placebo; 0.70, 95% CI 0.62 to 0.79 for CHD events; 0.71, 95% CI 0.56 to 0.91 for CHD mortality; 0.94, 95% CI 0.81 to 1.09 for overall mortality)³⁴.

3.1.3 Reducing blood pressure

Population blood pressure

Population blood pressure has been decreasing in many western countries¹²⁵. Substantial changes in food processing have taken place in the last three decades and intake of preserved foods decreased. This might have largely reduced the salt intake in the populations and caused the secular trend observed in blood pressure in the western countries.

It has been much debated whether a general reduction in sodium intake could decrease the blood pressure of a population and thus reduce cardiovascular mortality and morbidity. To answer this question many studies have been performed in different populations with normal blood pressure and high blood pressure. Evidence from a systematic review shows a small effect of salt restriction in the people with normal blood pressure and therefore does not suggest a general recommendation to reduce sodium intake in the general population¹²⁶. However, reducing sodium intake in people with high blood pressure is very effective, leading to 4 mmHg systolic and 2 mmHg diastolic blood pressure reductions in people with high blood pressure¹²⁶.

Hypertension treatment

Control of hypertension is very important to prevent CHD, stroke and other target organ damage such as kidney diseases, peripheral vascular disease, and retinopathies¹²⁷. However, prevention and treatment of hypertension remain important public health challenges¹²⁸. A survey in England has shown that, whilst most patients with hypertension are detected, those diagnosed as hypertensive often do not continue on treatment and those treated are often not controlled satisfactorily¹²⁹. An increase in hypertension treatment and control in England was reported between 1994 and 1998, but compared with international standards these measures were still low¹³⁰.

Hypertension treatment should start with detailed cardiovascular risk assessment using established CHD risk scoring methods based on Framingham equation¹³¹⁻¹³³. For this purpose the SIGN guideline development group recommends the use of the most recent version of the Joint British chart, which can be used to formulate decisions about antihypertensive, lipid lowering and antiplatelet therapy¹³¹.

Management is based on risk stratification. The treatment target for hypertensive patients is recommended to be a blood pressure of <140/90 mmHg¹²⁸. However, this field continues to change rapidly, thus a target of 115/75 mmHg was recently proposed¹³⁴. To reach this target lifestyle modification and drug treatments are recommended, together or interchangeably in hypertensive patients.

Lifestyle modification to reduce blood pressure

A change in **diet** is recommended, including a diet high in fruit and vegetables; high in pulses and whole grains; high in fat-free and low fat dairy, poultry, fish, shellfish, and meat products; high in all essential nutrients; reduced in salt; reduced in total fat, saturated fat and cholesterol; no more than one or two drinks of alcohol per day; and controlled in calories to prevent or correct obesity¹³⁵. Obese or overweight hypertensive patients should be encouraged to **lose weight**¹³⁶. **Sodium intake** should be reduced by minimising intake of processed food and by not adding salt at table towards a target of <5 g/day¹²⁸. **Increase in physical activity**, at least 30-45 minutes brisk walking most days should be encouraged. Smoking should be actively discouraged¹²⁸. These methods can be used alone or in combination with drugs. Increased potassium intake from fresh fruit and vegetables is also beneficial.

Antihypertensive drug therapies

Effective treatment options for hypertensive patients include thiazide diuretics, betablockers, calcium channel antagonists, and angiotensin converting enzyme (ACE) inhibitors¹²⁸.

Diuretics are inexpensive, effective, generally well tolerated in low doses, and diureticbased treatment regimens have been clearly shown to prevent major cardiovascular events, including stroke and CHD¹³⁷. Diuretics should be used in low doses (maximum of 25 mg daily of hydrochlorothiazide) and often half or less this dose, in order to reduce the adverse effects. Diuretics are recommended as first choice for the treatment of elderly patients¹²⁸.

Beta-blockers are safe, cheap and effective for reducing blood pressure. They can be used as alternative or supplementary therapy to diuretics and calcium antagonists¹²⁸. A meta-analysis of 7 RCTs, aimed to quantify hypertension treatment effect (beta-blocker

and/or diuretics) for stroke, CHD and, total and specific mortality, in men and women¹²⁷. In that analysis hypertension treatment effect was significant for all coronary events, stroke and mortality outcomes in men. However in women hypertension treatment was significant only for stroke, treatment reduced stroke risk by 38% in women and 34% in men. The difference was attributed to untreated risk in women¹²⁷.

Calcium antagonists are effective and well tolerated in lowering blood pressure. Longacting calcium antagonists are preferred and rapid-onset short acting calcium antagonists should be avoided. Calcium antagonists are particularly recommended for elderly patients with systolic hypertension. Adverse effects include tachycardia, flushing, ankle oedema and (with verapamil) constipation¹³⁷.

ACE inhibitors have been proven useful in blood pressure reduction; can reduce cardiovascular mortality and morbidity after myocardial infarction. ACE inhibitors are specifically indicated as first line therapy for hypertension in patients with type 1 diabetes, proteinuria, or left ventricular dysfunction¹²⁸. Angiotensin II antagonists are recommended as alternatives to ACE-inhibitors when cough is a limiting adverse effect.

3.1.4 Reducing obesity

Effective interventions to reduce weight or obesity at the population level have been researched. Systematic reviews and RCTs have found that a combination of advice on diet and exercise, supported by behavioural therapy, is probably more effective in achieving weight loss in obese or overweight people than either diet or exercise advice alone¹³⁸. A low energy, low fat diet is the most effective lifestyle intervention for weight loss. Weight regain is likely, but weight loss of 2–6 kg may be sustained over at least 2 years. Combined personal and computerised tailoring of weight loss programmes may improve maintenance of weight loss¹³⁹. However most studies were carried out on overweight or obese volunteers, not on the general population. Besides these interventions in high-risk people, interventions targeting life styles (such as promoting physical activity and healthy diet) for the whole population may also be required.

3.1.5 Increasing physical activity

There is good observational evidence that moderate to high levels of physical activity reduce the risk of non-fatal and fatal CHD and stroke¹⁴⁰. People who are physically

active (those who undertake moderate levels of activity daily or almost daily, e.g. walking) typically experience 30–50% reductions in relative risk of CHD compared with people who are sedentary, after adjustment for other risk factors¹⁴⁰.

Effective interventions to encourage people to increase their physical activity were evaluated in a systematic review¹⁴¹. Community wide campaigns, school based interventions such as modifying the curricula and individually adapted health behaviour change programmes were reported as the most effective interventions to increase physical activity¹⁴¹. However, studies in this review were mostly from USA, there was little research in the UK. Interventions that encourage walking and do not require attendance at a facility are most likely to lead to sustainable increases in physical activity¹⁴². Brisk walking has the greatest potential for increasing overall activity levels of a sedentary population^{139;142}.

3.2 EVIDENCE BASED CARDIOLOGICAL THERAPIES

Life expectancy is greatly reduced by symptomatic CHD. For instance median survival in a 65 year old man falls to 5 years after a first admission for AMI, and 17 months after a first admission for heart failure^{143;144}. A wealth of evidence from randomised trials and meta-analyses underpins an expanding range of treatments for different forms of CHD. These can improve symptoms, or survival, or both.

The therapies considered in this thesis are detailed in *Box 8.9, Chapter 8*. They included cardio-pulmonary resuscitation, thrombolysis, primary PTCA, aspirin, beta blockers, and ACE inhibitors for the initial treatment of acute myocardial infarction; all secondary prevention medications including aspirin, beta-blockers, ACE inhibitors, statins, warfarin and cardiac rehabilitation; aspirin, CABG surgery and angioplasty with stenting for angina; heparin, aspirin, and platelet IIB/IIIA inhibitors for unstable angina; ACE inhibitors, spironolactone and beta blockers for heart failure; plus anti-hypertensive drugs and statins for primary prevention. The mortality benefits are summarized in *(Box 8.10)*.

3.2.1 Angina

Angina is the commonest symptomatic manifestation of CHD, affecting approximately two million people in the UK². Angina typically presents with central chest pain

induced by exercise, cold or stress. This reflects reversible myocardial ischemia. If the chest pain rapidly disappears with rest or nitrates, it is often termed 'stable' or 'chronic' angina. Such patients are usually given nitrates for symptom relief plus regular aspirin. and beta-blockers or calcium antagonists. Depending on factors including severity of symptoms and the location of the stenoses in the coronary vessels, patients may be referred to a rapid access cardiopulmonary clinic for further assessment, often leading to angiography and CABG surgery or PTCA procedures if indicated^{145,146}.

3.2.2 Unstable angina

Unstable angina presents as angina pain, which occurs with increasing frequency or severity, and which may persist even when a patient is at rest. Unstable angina patients are at increased risk of myocardial infarction or sudden cardiac death. They are generally admitted to hospital, where they are usually treated with nitrates, beta-blockers, aspirin, anti-coagulants such as heparin, and sometimes platelet glycoprotein IIb/IIIa (PG IIb/IIIa) inhibitors or clopidogrel¹⁴⁷. Unstable angina patients are often strong candidates for revascularisation with increasing numbers receiving PTCA stent plus PG IIb/IIIa inhibitors or clopidogrel¹⁴⁷.

3.2.3 Revascularisation

There is good evidence that many people with atheromatous plaques and narrowed coronary arteries can have their anginal symptoms relieved and reduced by restoring blood flow through blocked coronary arteries (revascularisation) or their risks of dying may also be decreased¹⁴⁸. The two most widely used techniques are coronary artery bypass surgery (CABG) and percutaneous transluminal coronary angioplasty (PTCA).

3.2.4 Coronary Artery Bypass Graft Surgery (CABG)

CABG is the surgical procedure to restore blood flow around narrowed or blocked coronary arteries. The goal of the surgery is to improve blood flow and provide relief from chest pain and other symptoms¹⁴⁹. This involves the careful removal of a "clean" vein (graft) from the leg, or arm, and attaching it to bypass the stenosed section of the artery. The majority of the CABG procedures now involve the transfer of one or both internal mammary arteries. Long term results are much better than venous grafts¹⁴⁶.

3.2.5 Percutaneous transluminal coronary angioplasty (PTCA)

PTCA is a procedure in which a cardiac catheter is passed through the skin into an artery, most commonly the femoral artery in the groin or radial artery. The catheter is then threaded into the coronary arteries. The position of the tip of the catheter can be followed using radio opaque dye on X-ray screening. When the tip of the catheter is in the narrowed section of the coronary artery, a small balloon at the tip of the catheter is inflated dilating the narrowed section of the coronary artery. A tubular mesh splint – a stent – is then usually inserted into the dilated artery to act as scaffolding to help keep it open¹⁴⁹. The risk of subsequent restenosis at that site can now be further reduced by medications including PG IIb/IIIa inhibitors, or drug eluting stents¹⁵⁰.

However there is no convincing evidence that PTCA is superior to medical treatment with regard to the risk of myocardial infarction or death in patients with chronic stable angina. PTCA is more effective at relieving anginal symptoms than medical treatments such as beta-blockers, nitrates and calcium channel antagonists¹⁵¹. This advantage decrease over time with little difference remaining at 3 years because of the high rate of restenosis¹⁵¹. PTCA also appears equivalent to CABG in terms of angina relief in the short term, but not long term¹⁵². However evaluation of PTCA and CABG remains difficult as the technology is evolving rapidly. Large RCTs inevitably require long timescales to produce definitive results on therapies, which may then already be obsolete.

3.2.6 Acute Myocardial Infarction

Acute myocardial infarction (AMI) occurs in over 200,000 individuals in the UK each year². AMI is the death of cardiac myocytes due to prolonged ischaemia¹⁵³. AMI most commonly occurs following a complete occlusion of a coronary artery due to plaque rupture and thrombosis¹⁵⁴. It is a severe clinical condition and in approximately 50% of cases leads to sudden death¹⁵⁵. Even after admission to hospital, mean case fatality of AMI in the first month is about 20% (even higher in the elderly) and about one-half of these deaths occur within the first two days^{156;157}.

AMI is thus a life threatening clinical condition, and patients are usually rapidly admitted to hospitals through emergency departments.

Cardiac arrest is the main cause of sudden cardiac death. This sudden complete loss of cardiac output is most commonly due to a major arrhythmia, either ventricular fibrillation, or asystole¹⁵⁸. The patient will die unless adequate circulation is achieved within minutes. This can be achieved by cardiopulmonary resuscitation (CPR) now (mouth-to-mouth breathing and closed chest compressions using the recommended timing and a specific sequence) as well as defibrillation¹⁵⁸.

Adequate CPR may be provided by trained bystanders, paramedics, ambulance staff or hospital staff. Survival after cardiac arrest varies from less than 5% to 60% according to the characteristics of the cardiac arrest event (e.g. cardiac aetiology or not, witnessed or not, ventricular fibrillation or not)¹⁵⁸. However only 5-15% survive long term¹⁵⁹. This still represent a substantial salvage rate, 'saving' approximately as many lives as thrombolysis¹⁵⁹.

All AMI patients should be considered for fibrinolytic treatment (thrombolysis) as soon as possible after symptom onset. Thrombolysis is beneficial up to about 12 hours after the AMI. According to the Fibrinolytic Therapy Trialists' (FTT) meta-analysis, for those presenting within 6 h of symptom onset, approximately 30 deaths are prevented per 1000 patients treated, with 20 deaths prevented per 1000 patients treated for those between 7 and 12 h. Beyond 12 h there is little convincing evidence of benefit¹⁶⁰. Although survival benefit from fibrinolytic therapy in elderly patients was initially considered small, a more recent meta analysis has demonstrated statistically significant benefit in patients over 75 with a relative risk reduction of almost 20%¹⁶¹. Newer thrombolysis agents such as tPA may have marginal additional mortality benefits, compared with the original agent, streptokinase¹⁶².

Additional benefit from aspirin treatment combined with thrombolysis was clearly demonstrated in the ISIS 2 trial, with a reduction of approximately 50 lives per 1000 patients treated¹⁶³. The first 150–325mg dose of Aspirin should ideally be chewed, and a lower dose (75–160mg) given orally daily thereafter¹⁵³.

In selected cases, primary angioplasty can be performed, ideally within 90 min after the first medical contact¹⁵³. This can achieve an additional relative mortality reduction of approximately 30% compared with thrombolysis¹⁶⁴.
Depending on the site and the severity of occlusion, various complications might occur during AMI. Cardiogenic shock, heart failure, and arrhythmia are the most frequent and most important. Intravenous beta-blockers can be useful in AMI, particularly because of their potential to limit infarct size, reduce the incidence of fatal arrhythmias, and to relieve pain¹⁵³. ACE inhibitors are also beneficial. ACE inhibitors were originally just given to patients who had an impaired ejection fraction (ejection fraction <40%) or who experienced heart failure within the first 24 h¹⁵³. However, more recent data suggest benefit when given to majority of AMI survivors, irrespective of their left ventricular function¹⁶⁵.

3.2.7 Secondary Prevention

Secondary prevention treatments are indicated for patients following AMI or revascularisation and, increasingly, for patients with angina or heart failure. These include lifestyle changes in diet, physical activity and smoking cessation, along with a wealth of effective medications. These include antiplatelet and anticoagulant treatment (aspirin, or, occasionally, warfarin), beta-blockers, ACE-inhibitors, statins and cardiac rehabilitation.

The Antiplatelet Trialists Collaboration meta-analysis demonstrated about a 25% reduction in reinfarction and death in post MI and other CHD patients¹⁶⁰. A recent metaanalysis by Freemantle et al suggested that beta-blockers reduce mortality and reinfarction by 20%–25% in those who have recovered from AMI¹⁶⁶. Several metaanalyses have likewise demonstrated that ACE inhibitors reduce mortality after AMI by approximately 23%¹⁶⁷. There is therefore a growing tendency to administer ACE inhibitors to all patients surviving an AMI admission, provided there are no contraindications¹⁵³.

The Scandinavian Simvastatin Survival Study (4S) demonstrated the benefits of lipid lowering by a statin in 4444 post-infarction or anginal patients with serum cholesterol levels of 212–308 mg/dl (5.5-8.0 mmol/l). Overall mortality was decreased from 12% to 8%, a relative reduction of approximately 30%, representing 33 lives saved per 1000 patients treated over a median of 5.4 years. There were corresponding substantial reductions in coronary mortality, and in the need for coronary bypass surgery.³³. A 29% o reduction in mortality has now been demonstrated in cardiac patients with `normal` cholesterol levels of 4-5 mmol/ l^{34} .

3.2.8 Cardiac Rehabilitation including physical exercise

The definition of cardiac rehabilitation defined as 'the process by which patients with cardiac disease, in partnership with a multidisciplinary team of health professionals, are encouraged and supported to achieve and maintain optimal physical and psychosocial health¹⁶⁸.

Cardiac rehabilitation includes the facilitation and delivery of secondary prevention through risk factor identification and modification in an effort to prevent disease progression and the recurrence of cardiac events¹⁶⁹. Individual tailored advice on life style changes such as smoking, dietary modification, cholesterol lowering and physical exercise are the main interventions^{170;171}. Cardiac rehabilitation is also beneficial in heart failure¹⁷².

In CHD patients an increase in physical activity level and improvement in cardiorespiratory fitness are associated with better quality of life and survival¹⁷¹. A recent systematic review of cardiac rehabilitation RCTs, including exercise versus usual care in CHD patients, found that exercise based cardiac rehabilitation reduced the major CHD events (mortality, non-fatal AMI, CABG or PTCA) by 24%¹⁷¹.

3.2.9 Heart Failure

Depending on the extent of the cardiac muscle damage during an AMI, patients may develop acute or chronic heart failure. Acute heart failure is defined as acute dyspnoea characterized by signs of pulmonary congestion sometimes including pulmonary oedema. Chronic heart failure is defined as 'the pathophysiologic state in which an abnormality of cardiac function is responsible for the failure of the heart to pump blood at a rate commensurate with the requirements of the metabolizing tissues'¹⁷³. CHD accounts for just over half the cases of chronic heart failure in the UK^{174;175}. Heart failure patients have a very poor survival particularly those requiring hospital admissions. Heart failure patients are eligible for a broad range of treatment including ACE-inhibitors, diuretics, beta-blockers, aspirin and statins. Diuretics are essential for symptomatic treatment peripheral and pulmonary oedema and it is now recommended

to combine with ACE-inhibitors¹⁷³. Diuretics alone do not appear to decrease mortality¹⁷⁶. ACE-inhibitors reduce mortality and hospital admissions in heart failure patients by approximately 26%, independent of age, sex and baseline use of diuretics. aspirin or beta-blockers¹⁶⁷. Several meta-analyses have shown that beta-blockers in heart failure patients reduce all cause mortality, cardiovascular mortality and hospital admissions by approximately 37%, and 34%^{176;177}.

3.2.10 Smoking cessation in CHD patients

Smoking cessation is a very effective intervention in smokers with CHD. Total mortality rates are reduced by about 36% in patients after angiography, myocardial infarction, bypass surgery or PTCA²². The improvement in survival after smoking cessation is thus comparable to that achieved by bypass surgery 40%¹⁷⁰ and more than that achieved with aspirin 15%¹⁶⁰ or statins 29%³⁴. In smoking cessation, individual counselling, support from physician and nicotine replacement is the most successful approach¹³⁹. Group therapy, behaviour modification techniques, and advice pamphlets are potentially useful additional interventions for smoking cessation¹³⁹.

3.2.11 Dietary modification

Diet modification generally means an emphasis on lowering intake of saturated animal fats and trans- fatty acids (TFAs), and an adequate supply of mono or polyunsaturated fats. This can be achieved by eating less red meat, taking a moderate amount of low fat dairy products, plus at least two fish meals per week. Increased amounts of high fibre with plenty of fruit and vegetables is also desirable for all patients with CHD, independent of their cholesterol level ¹⁷⁰. RCT evaluation suggests that such diets may reduce mortality in post AMI patients by 24% or 29% compared with usual diet^{178,179}.

There is thus wealth of evidence -based therapies available to combat CHD. In the next chapter, I will consider the scale of CHD in the world and in the UK.

4 HOW BIG IS THE GLOBAL CHD PROBLEM?

Cardiovascular diseases are the commonest causes of death among both men and women in all developed countries. In 2001 CVD deaths accounted for 29.3% of the global deaths and almost 50% of these occurred in developed countries¹⁸⁰. According to WHO estimates, 16.6 million people around the globe die of CVD each year. In 2001 there were 7.2 million deaths from CHD¹⁸⁰. It is estimated that CHD will be the largest single cause of disease burden globally by the year 2020¹.

CVD also cause substantial disability. It is estimated that 10% of the total disease related burden, in terms of disability adjusted life year lost (DALYs) were attributable to CVD in year 2001¹⁸⁰.

4.1 International Comparisons

CHD shows dramatic geographic variations. Countries differ up to tenfold in CHD death rates and the prevalence of atherosclerosis (*Figure 4.1*)¹⁵⁶. However, part of this difference may reflect variations in the diagnosis, coding, reporting and validity of CHD deaths between countries. For instance, the true CHD mortality in France and Japan may be two fold higher than suggested by routine statistics^{181;182}. However in the USA CHD might be over-estimated by 7.9% to 24.3% and by as much as two-fold in older persons as a cause of death on death certificates¹⁸³. Therefore within country comparisons¹⁸⁴.

The MONICA Study was planned to overcome this difficulty. Its aim was to use a standardised methodology to measure the trends in cardiovascular mortality and CHD and cerebrovascular disease morbidity and to assess the extent to which these trends are related to changes in known risk factors, life style, health care and major socioeconomic features. These variables were measured at much the same time (1986 and 1994) in 39 defined communities in 26 different countries. The MONICA Study thus aimed to provide comparable data on CHD mortality, morbidity and risk factor trends^{185,125}.

The MONICA cross sectional comparison generally suggested a ten-fold difference in coronary event rates among countries¹⁸⁵. For example age-standardized annual CHD event rates in men aged 35 to 64 ranged from 76 per 100,000 in Beijing, China to 915 per 100,000 in North Karelia, Finland. For women, rates ranged from 30 per 100,000

for Catalonia, Spain to 256 per 100,000 for Glasgow, UK, ¹⁸⁵. This represented a 12-fold gradient in men, and 8-fold in women.

In contrast to most studies such as the Seven Countries Studies¹⁸⁶ and Beaglehole's recent review ¹¹⁵, the major risk factors apparently explained only part of the large variations in CHD mortality between the MONICA countries¹⁸⁵. However, MONICA Study has been repeatedly criticized for 'ecological bias' and may underestimate the relationship between changes in risk factors and population trends in CHD ^{185;187}. This is because a) decreasing response rates to the MONICA surveys was observed over the course of the study¹²⁵ b) possible regression dilution bias; adjusted coefficients may be as much as 60% higher³² c) no allowance for a possible lag time between changes in the risk factor levels and changes in population CHD mortality¹²⁵.

Source: World Health Organisation (2002) http://www.who.ch/-

4.2 CHD Trends

CVD were recognised as a public health problem early in the 20^{th} century. Cardiovascular morbidity and mortality rates increased in most industrialised countries until the 1970s or 1980s before starting to decline¹⁸⁸. In the 1970s CHD death rates were quite high in the majority of developed countries including Finland, Ireland, UK and USA¹⁸⁹. In many of these countries CHD death rates have halved since then. Over the same period death rates in countries from Eastern and central Europe have been rising rapidly (*Figure 4.2*). In Croatia, for example, between 1988 and 1998 death rates rose by over 60% in both men and women²(*Figure 4.2*).

These trends may partly reflect the removal of competing causes of death, the artifactual consequences of shifts in the age distributions of populations, and changes in diagnosis and reporting¹⁹⁰. However such factors cannot entirely explain either the huge international differences or the very consistent mortality trends, with decreases in so many developed countries, and increases in many developing countries.

Source: World Health Organisation (2001) http://www.who.ch/-

Furthermore if large increases and decreases in CHD incidence have truly occurred within a very few decades, this strongly suggests that the main determinants of CHD are environmental rather than genetic or cohort-related. They are therefore potentially preventable¹⁹¹.

The decline in CHD incidence and mortality in developed countries is often attributed to medical innovations in CHD treatment (coronary care units, fibrinolytic therapy, CABG surgery and drugs)^{192;193}. However, it is important to note that substantial falls in mortality occurred in the US and the UK before the introduction of most modern treatments. These falls must therefore have been principally attributable to environmental factors, the strongest candidates being lifestyle changes (cigarettes smoking, diet, and exercise) and reductions in other risk factors^{193;194}.

4.3 How big is the CHD problem in the UK?

After consideration of world trends, in this section, I will now focus on UK CHD burden.

4.3.1 Introduction

Despite substantial declines since 1970s, CHD remains as a major public health problem in the UK. Effective policy decisions to prevent the disease were overlooked for decades. Documenting the CHD burden in the UK provides a useful tool to communicate the importance of the disease with the community and health policy decision makers. Therefore in this section of my thesis, using data from national surveys and statistics I attempted to estimate the current CHD burden in Britain.

4.3.2 Methods

Data were extracted on all patients with established CHD and all subjects with elevated cardiovascular risk factors in the England and Wales population of 52.9 million.

The data sources included: Office for National Statistics^{195;196}, British Heart Foundation Coronary Heart Disease Statistics², special registers^{197;198}, population surveys^{48;199;200}, published papers¹⁴³, grey literature and correspondence with UK experts (*Personal communication with David Cunningham, 2002)* (Box 8.11).

Estimating the number of CHD patients

The specific patient groups comprised acute myocardial infarction, post myocardial infarction, unstable angina, chronic angina, CABG surgery, angioplasty, and heart failure.

The numbers of patients who had CABG or PTCA in 2000 were reported in the relevant national registers^{197;198}. The numbers of unstable angina, AMI and heart failure patients admitted to hospital were gathered from Hospital Episode Statistics (HES)¹⁹⁶. These HSE numbers were then adjusted using an 8% reduction to reflect individual patients rather than episodes¹⁹⁶. The numbers of angina patients in the community were estimated using the corresponding age specific prevalence rates reported in the Health Survey for England (HSE '98) applied to the England and Wales population in that age and sex group⁴⁸. The number of heart failure patients in the community was estimated

using age-sex specific prevalence rates reported in Key Health Statistics from General Practice 1998 ²⁰¹. To avoid double counting, the number of patients admitted to hospital with heart failure was deducted from figures for community heart failure.

The number of patients surviving after an AMI was based on all patients admitted to hospital between 1990 and 2000, using HES data^{196;202}. One month case fatality rates obtained from the SLIDE study¹⁴³ were applied to the total numbers of AMI patients.¹⁴³.

The risk factors included were current smoking, elevated cholesterol (>6.5 mmol/l), hypertension (treated and untreated, >160/95 mmHg), physical inactivity (less than 3 times a week moderate activity), obesity (BMI>30 kg/m²) and doctor reported diabetes (using standard definitions)⁴⁸. Where alternative sources provided discrepant data, the best estimate was selected on the basis of coverage, generalisability and validity.

The number of people with risk factors was estimated by simply applying the prevalence reported in Health Survey in England to the age and sex categorised population of England and Wales (*Table 4.2*).

4.3.3 Results

CHD Mortality

CVD are the main cause of death in UK: accounting for over 200,000 deaths in 2002 and CHD itself caused 110,000 deaths. This represents one quarter of all male deaths and one sixth of all female deaths. CHD is also the most common cause of premature death in the UK causing 26% of premature deaths in men and 16% of premature deaths in women².

CHD Morbidity

CHD morbidity is less well defined, and tends to be described in isolated groups such as admissions for acute myocardial infarction or patients undergoing CABG surgery¹⁴⁸.

Incidence

The MONICA Project included two UK centres; Glasgow and Belfast. These regions reported some of the highest CHD rates in the world. Average annual coronary event

rates per 100,000, between 1985-1994, were 777 and 265 in Glasgow men and women respectively and only slightly lower in Belfast, 695 and 188 respectively (*Figure 4.3*)¹⁵⁶.

Source: Tunstall-Pedoe Het al for the WHO MONICA Project. Lancet (1999) 353; 1547-57.

Prevalence

The Health Survey for England has been carried out annually since 1991. The 1998 survey, which focused on CVD, suggested that the overall self reported prevalence of ischaemic heart disease (angina or heart attack) in adults was 7.1% in men and 4.6% in women. Prevalence of ischaemic heart disease increased with age; 4.3% in men and 1.8% in women aged 45-54, 13.6% in men and 6.3% in women among 55-64 and 23.4% in men and 18.4% in women aged 75 years and over (*Table 4.1*). This means that over 2.5 million people in the UK were living with CHD in 1998².

Table 4.1 Prevalence (%) of coronary heart disease, by age and sex, England, 1	1998
--	------

Age Groups								
CHD* (%)	16-24	25-34	35-44	45-54	55-64	65-74	75 +	Total
Men	0.1	0.4	0.9	4.3	13.6	20.2	23.4	7.1
Women	-	0.3	0.6	1.8	6.3	12.5	18.4	4.6

* CHD: reported as doctor-diagnosed heart attack or angina.

Source: Health Survey for England 199848.

The iceberg of CHD

In England and Wales in 2000, there were thus over 2.5 million patients with recognised CHD (approximately 1.4 million men and 1.1 million women) (*Table 4.2 and Figure 4.4*). In 2000 there were approximately twice as many men as women with MI, and three times as many men underwent CABG surgery or angioplasty (44,258 men versus 13,349 women respectively).

Over 30 million adults in the UK demonstrated one or more elevated major risk factors (21.5 million physically inactive, 14.4 million hypertensive, 9.5 million smokers, 8.0 million with elevated cholesterol, 7.7 million with obesity and 1.1 million with diabetes) (*Figure 4.4*).

Costs

The NHS direct health care costs of CHD in 1999 came to £1.73 billion on the basis of more than half a million hospital admissions, approximately 35,000 CABG surgical operations, 25,000 angioplasties and 2 million GP consultations²⁰³.

In 2000 there were 634,000 individuals consulting to a GP with angina in the UK. The direct cost of the disease was estimated to be £669 million or 1.3% of total NHS expenditure. This cost was due to mainly hospital bed occupancy and revascularisation procedures performed in this patients²⁰⁴.

Every year CHD accounts for 2.5 million life-years lost due to premature deaths in the UK. Totally direct health care costs, cost for productivity loss and informal care costs altogether accounted £7 billion a year²⁰⁵. Which represents a higher cost than for any other single disease for which a comparable analysis has been carried out. In this paper, the number of angina patients (estimated using GP records) seems small in comparison with other reports of angina prevalence; some were almost three fold higher (*Table 4.2*). Overestimation because of self-reported status, or inflation attributable to the Rose questionnaire detected angina appears likely.⁴⁸ However, there might also be angina patients in the community without any GP consultation. If these hidden patients ever presented, addressing this currently unmet need would further increase the total cost of angina to the UK NHS.

Table 4.2 Estimated numbers of subjects with recognised coronary heart disease or with elevation of one or more cardiovascular risk factors in England and Wales, 2000.

	Estimated Patient Numbers					
Established coronary heart disease	Men	Women	Total			
CABG Surgery ¹⁹⁷	20,786	5,525	26,331			
Angioplasty ¹⁹⁸	23,472	7,824	31,296			
Acute myocardial infarction ¹⁹⁶	56,082	33,309	89,391			
Post infarction survivors ^{143;196;202}	213,992	142,661	356,653			
Heart failure: hospital admissions ¹⁹⁶	20,576	20,812	41,388			
Heart failure: patients in the community ²⁰¹	149,329	206,617	355,942			
Unstable angina admissions ¹⁹⁶	45,728	26,872	72,600			
Angina patients in the community ⁴⁸	895,837	716,678	1,612,515			
Total coronary heart disease patients	1,425,802	1,160,298	2,586,116			
Cardiovascular risk factors						
Physical Inactivity (less than 3 times a week	9,508,260	12,018,500	21,526,760			
moderate activity) ⁴⁸						
Total hypertensives (>160/95mmHg) ⁴⁸	7,431,791	6,920,245	14,352,036			
(Treated hypertension) ⁴⁸	(1,559,072)	(2,253,449)	(3,812,521)			
Smoking ²⁰⁰	4,920,830	4,608,280	9,529,110			
High Cholesterol (>6.5 mmol/l) ⁴⁸	3,392,288	4,637,437	8,029,725			
Obesity $(BMI>30 \text{ kg/m}^2)^{48}$	3,499,377	4,163,699	7,663,076			
Reported Diabetes ⁴⁸	616,922	522,685	1,139,607			
People with one risk factor ¹⁹⁹	6,031,600	5,838,230	11,869,830			
People with two risk factors ¹⁹⁹	6,386,400	6,968,210	13,354,610			
People with 3 or 4 risk factors ¹⁹⁹	3,193,200	4,143,260	7,336,460			
People with one or more risk factors ¹⁹⁹	15,611,200	16,949,700	32,560,900			
England and Wales Population, 25+ in	17,740,000	18,833,000	36,573,000			

Figure 4.4 The iceberg of coronary heart disease in England and Wales, 2000.

4.3.4 Interpretation

An iceberg of disease was defined for CHD, with CABG surgery and angioplasty at the tip and, at the base, asymptomatic subjects with one or more risk factors.

CHD thus accounts for a massive burden of mortality and morbidity in England and Wales. However, high cost, high profile revascularisation for the selected few should not distract attention from the huge iceberg beneath.

Coronary heart disease in the UK typifies the iceberg of disease principle. Politicians and health service managers generally concentrate on the relatively few but prominent patients receiving revascularisation, less than 60,000 annually¹⁴⁸. This diverts attention from ten times as many myocardial infarction survivors and heart failure patients (over 700,000) who are also at high risk of death or further events, and who are equally eligible for effective secondary prevention.

I estimated that in England and Wales in 2000, there were over 2.6 million patients with recognised CHD, including chronic angina. This total is consistent with estimates from the British Heart Foundation². Furthermore, for each of these 2.6 million recognised patients, there were more than ten times as many individuals with one or more cardiovascular risk factors.

The quality of data on CHD appeared remarkably patchy and poor, despite CHD being the largest cause of death^{2;206}, as presented in detail in the next chapter. Some imprecision is therefore inevitable. However, this chapter may well represent a reasonable estimate for each defined and mutually exclusive group of patients, using all currently available data sources.

My thesis principally focuses on UK CHD trends. However, before examining trends in more detail, it was clearly important to critically review the quality of the available UK CHD data. This work will be described in a later chapter. But first, I would like to consider the potential value of modelling diseases such as CHD, and, in the following two chapters, give an overview of CHD policy models in use.

5 MODELLING

"All models are wrong but some are useful" (G.E.P. Box. 1978)²⁰⁷

Improving population health through effective interventions remains the fundamental challenge for public health practitioners and policy makers. Decision-makers at the population, clinical, and individual levels often need to choose the 'best intervention' for a health problem. However, limitations on resources, time and information can make the decision process very complex. Assessing the value of a health intervention requires consideration of many elements including the size of the target population, the prevalence of the disease, and the intervention's effectiveness and cost²⁰⁸.

Models are tools that potentially allow users to take into account all these points together and evaluate the intervention options.

5.1 What is a model and why are models used?

A model is a simplification of reality. Models range widely, from simple, descriptive tools (such as a plan of a house), to systems of mathematical equations, which can explain past disease trends^{209;210}, or which predict future events such as disease epidemics^{211;212}. Models are also widely used in environmental surveillance²¹³ and predicting impact of natural disasters²¹⁴. Such models, therefore, intend to increase understanding, facilitate prediction, or assist in decision making²⁰⁹.

Weinstein et al recently defined a model as an 'analytic methodology that accounts for events over time and across populations, based on data drawn from primary or secondary sources, whose purpose is to estimate the effects of an intervention on valued health consequences and costs'²¹⁵. In other words, a model is a logical mathematical framework that permits the integration of facts and values, and which links these data to outcomes that are of interest to health-care decision makers. Models can thus potentially synthesize available evidence on risk factors, health outcomes and costs from many different sources, including data from clinical trials, observational studies, case registries, surveys and routine health statistics²¹⁶.

Models are used to guide, or even dictate, policy decisions in many areas that affect human life and health²¹⁵. Increasing health care demands require policy decisions based on good evidence, particularly since resources are usually limited. By openly and

50

explicitly combining local data with trial based effectiveness evidence, models can offer increased transparency to the decision making process (particularly if their assumptions are clearly stated).

Models can also allow a large amount of evidence to be considered simultaneously; by combining and integrating into a coherent whole different types of data from controlled trials, routine surveillance and expert consensus³. Models have been extensively used in policy making and resource allocation, since they permit policy makers to examine future policy options, or to simulate the effects of different scenarios within a population²¹⁷. However, improved technology potentially allows both practitioners and policy-makers to use these models, without necessarily understanding the modelling assumptions or the limitations of the data³.

5.2 General types of models

There are many models in the health literature. They differ greatly in their methods.

Models can be classified in many different ways, based on their intended use (descriptive or prescriptive), their use of probabilities (descriptive, deterministic or probabilistic)²¹⁸, their analytical methodology (a decision tree or state transition model), their application to a population (longitudinal or cross-sectional), or their purpose (risk assessment, cost, effectiveness etc.). However these classifications are not mutually exclusive, and a model can therefore belong to more than one classification.

Intended use of model

Descriptive models are designed to predict or illustrate the result of a clinical process. **Prescriptive models** are used to compare two or more interventions to estimate the optimal treatment option²⁰⁹. With respect to intended use, Weinstein also distinguishes between **clinical decision models**, designed to guide clinicians or patients, and **health policy models**, which will help decision makers or organisations with choosing the appropriate strategy and allocating healthcare resources²¹⁹.

Use of probabilities

Models can be classified into two broad groups based on their use of probability. Deterministic models use probabilities based on fixed-point estimates. Thus, the probability experienced in a branch is a single fixed value. However, in stochastic (**probabilistic**) models, the probability of experiencing a certain condition is not a single fixed value but a range of values from a defined distribution. Deterministic models are simpler, require less expertise to develop and can be run on less complex computer softwares²²⁰. The majority of models are used to evaluate health care costs and outcomes are deterministic.

The analytical methodology

Models can also be classified according to their use of time. Simple decision trees are very useful for modelling if the events or health states do not occur repeatedly and the likelihood of the event does not change over time. This modelling approach fits very well for acute conditions such as bacterial infection, antibiotic therapy or adverse events in a hospitalised patient. Recursive trees involve treatment patterns or health states that can repeat over time. The model starts with a cohort of individuals and follows them for a period. In each year, individuals have a risk (probability) of developing the outcome. The probability of developing the outcome may change every year, but otherwise each year is a single decision tree. Markov Modelling and other state transition models are the logical extension of recursive trees for more complex events occurring over time²²¹. One limitation of Markov models is that they do not have memory; therefore the chain of preceding events does not influence the likelihood of a given event at a specified time. This limitation could be important for certain clinical outcomes, for example the likelihood of a major depressive patient experiencing an acute episode may depend on the number and timing of previously experienced depressive episodes²²⁰. In general, recursive trees and Markov models are more complex than decision trees models and require more effort, time and expertise.

Longitudinal and cross-sectional models

All models include a population or group to estimate the outcomes. Longitudinal models calculate expected outcomes for 'typical' patients or cohorts and follow them longitudinally through time to evaluate health outcomes resulting from alternative interventions²¹⁸. It is therefore not possible to take into account demographic trends in the population or changes in treatment practice²¹⁷. This approach is used more in decision tree models, and outcomes might for instance be QALYs.

Cross-sectional models record the health outcomes of a cross-section of an entire population or substrata, and then follow each person until the end-point of the analysis²¹⁸. The main difference between the two is that cross-sectional models are based on the general population (stratified into different age and sex groups) whereas longitudinal models are based on a cohort of identical subjects. For instance, patients who survived MI and now eligible for statin therapy could be used to assess cost-effectiveness of this therapy in secondary prevention.

The unit of the model on which estimations are based

Models can be divided into two large groups, working on groups or at the individual level. Spreadsheet or cell based models generally work on groups of individuals whereas microsimulation models work on individual level. Since this difference is the main determinant of the outcomes and estimations, these models need to be considered here in more detail.

Microsimulation models (for example CHD Policy Model²²², POHEM²¹⁰, Mui's Model²²³, and CHD Policy Analysis²²⁴) can simply project future outcomes for a given individual, based on his or her sociodemographic, behaviour, and clinical characteristics. Here, data from different observational studies such as Framingham Heart study are used for risk estimates.

Microsimulation models could start with a representative sample or subsample of individuals from a census or survey. They can be developed using an entirely synthetic population, which resembles the population of interest. In this process, each individual in the cohort is generated separately, and can be subjected to the probability of certain events (such as death or development of a disease) over the simulation period. This kind of model usually uses probabilistic rather than deterministic techniques. Since microsimulation models are based on individual data, they may avoid bias due to aggregation. Also, since they work on individual data, they can easily incorporate many risk factors, and outcomes can be easily broken down according to specification of individuals. However, despite their richness, these models have encountered criticism because of their complexity. Furthermore, development and maintenance of these models can be costly in terms of time and money²¹⁷.

Cell-based models (IMPACT⁴, PREVENT²²⁵) are widely used in decision-making. Their growing popularity can probably be attributed to increases in computer literacy and computer power, plus easier access to organizational data²²⁶.

Cell-based models vary widely in size and complexity. To construct a cell-based model, a population can be divided into subgroups, for instance, by age, sex, treatment and risk factor exposure. It is assumed that all the individuals within any given subgroup are similar if not identical. The probability (or rate) of an event occurring during a specified time period is applied to the specific subgroup. The estimated events for each of the categories are then summed to produce outcomes for the whole population.

Cell-based models can have considerable detail on the population; for instance, sometimes projections can be based on age-sex-race or marital status groups. However, these models do not typically include individual-based longitudinal information, and their estimations are aggregated²²⁶.

Cell-based models have several potential advantages compared to other model types:

- Spreadsheet software is widely available
- Depending on the complexity, the time, cost of building and maintaining it is usually less expensive than microsimulation approaches
- While some require extensive training, most are relatively simple and user-friendly
- Many are very accessible; however, detailed assumptions should ideally be available for review²²⁶.

These models also have some limitations:

- Spreadsheets may include erroneous formulae, incorrect ranges, omitted factors,
 data input errors, incorrect use of built in functions and duplication of effort^{226,227}
- With addition of new variables, the number of cells can become unmanageable

Model classifications are not mutually exclusive; therefore a model can belong to more than one category.

5.3 The steps involved in developing a model

There are important steps to consider in developing a model²¹⁷:

5.3.1 Problem definition

The question that the model is to answer must be explicitly defined before starting to build it. The disease(s) or outcome(s) being modelled, interventions under consideration and the population should all be specified. The problem would usually have a clinical relevance, and cause and effect relation should usually be well established²²⁰.

5.3.2 Model specification

The choice of model will influence the assumptions that need to be made and which will therefore impact on the output. Microsimulation approaches provide flexibility but may require technical experts to help develop and interpret them. Cell-based models are simpler but generally provide aggregate estimates of outcome²¹⁷. However, they can be useful in determining population impact of an intervention.

It is important that models are developed co-operatively with epidemiologists and clinicians. In particular, the researchers must decide whether to include the prevalent population and/or incident population, and how to determine the base scenario against which to compare other scenarios²¹⁷.

5.3.3 Data gathering and incorporating

Once the type of model is decided, the type of outcome parameters must then be determined and estimates of event probabilities obtained or developed.

Deaths prevented can provide useful information but can be relatively limited since it does not consider the length and the quality of that life²¹⁷. In the evaluation of health care interventions a commonly used outcome is life-years-gained (LYG). In this process the intervention that maximizes life expectancy will be identified. However LYG does not take account of the quality of life. Quality adjusted life years (QALY) are therefore another useful measure of effectiveness and has the advantage of unifying mortality and morbidity in one measure²¹⁷. Disability adjusted life years (DALYs), an internationally standardised form of QALY, have been used widely in the WHO Global Burden of Disease Project. DALY expresses years of life lost to premature death and years lived

with disability of specified severity and duration. One DALY is thus one lost year of healthy life²²⁸.

What type of data should be used in the models?

Models require considerable data input and data sources need to be recent and credible. However, the availability of comprehensive high quality data remains a problem.

The data may come from a variety of sources including clinical trials, meta-analyses, surveys, databases, medical records, audits, Delphi panels (expert opinion) and official tariff lists for health care resource use²²⁹.

Clinical trials produce the best evidence of efficacy of an intervention. However, since their study groups are restricted with inclusion and exclusion criteria, generalisation is always an issue so that the outcomes may not reflect the usual practice^{220;229;230}.

Meta-analyses may be a good source of efficacy data, if the outcomes are potentially generalisable to the target population. However, they are often subject to certain biases either from studies available (publication bias) or from the selection of studies for the analysis (inclusion bias; if criteria are chosen to produce intended results). The method of meta-analysis is also important. If there is significant heterogeneity, the results should usually not be combined²²⁰.

Expert opinion can be a useful source when there is no published or reliable information on a particular area²²⁹. General practitioners or specialists can provide information based on their own experience on compliance or treatment uptake. However, such opinions can be subjective, and will differ between experts. Therefore a representative sample of the actual practicing physicians is generally desirable^{220,229}.

Surveys and observational studies can provide vital prevalence data for the models. However, their main objective may be different so that they can provide only limited detail on certain variables. Cohort studies and repeated cross-sectional studies can provide valuable and relatively unbiased information on the natural history of a disease and risk factors and lag times^{220;229}.

Official statistics are often very useful sources for population and mortality information. However, depending on the practice, they can be subject to reporting and

coding inaccuracy. Furthermore, in some countries their precision and ease of access can be questionable ²²⁰.

The data sources used in modelling should therefore be explained in adequate detail. The selection criteria for studies and data sources should be described and the strengths, weaknesses and possible sources of bias should be discussed²²⁰.

All models therefore need to be validated and subjected to sensitivity analysis to identify the impact of different parameters²¹⁷.

5.3.4 Sensitivity analysis

In modelling studies uncertainty in data is a particularly problematic area. Sensitivity analyses should therefore be employed to quantify this uncertainty. There are different types of sensitivity analyses. The most common form is **simple sensitivity analysis**, where one or more parameters of an evaluation are varied across a plausible range²³¹. If only one parameter is changed at a time while the others retain their base-case specifications, it is called *'one-way sensitivity analysis'*. If more than one parameter is changed at the same time then it is called *'multiway-sensitivity analysis'*. Any confidence intervals presented for the estimations can usually be included into sensitivity analyses. Multiway sensitivity analysis can take the form of scenarios, which explore the implications of alternative 'states of the conditions'²³¹.

Threshold analysis is concerned with identifying the critical value of parameters above or below which the conclusion of a study will change²³². It can produce a useful graphical presentation, and is quite helpful when a parameter in the model is continuous and indeterminate. This approach is most often used in cost effectiveness analyses.

The Analysis of Extremes Method involves incorporating the best and worst estimates of inputs, and then generating extreme estimates for output. This kind of sensitivity analysis can be very efficient in dealing with uncertainties in data input. However, this method does not usually provide information about the likelihood of these 'best' or 'worst' scenarios. In most cases, the probability that all the worst cases or good cases occur simultaneously is small²³¹.

Probabilistic sensitivity analysis is more complex than the analysis of extremes, but it usefully allows the modeller to assign ranges, distributions and probabilities to uncertain variables²³¹.

5.4 Assessing model quality

When assessing the quality of a model, one should consider the system being modelled, the elements included and excluded, the model structure, the risk factors and the probable effects of known trends and the model assumptions-stated and unstated²¹⁷. In the ISPOR Task Force Report, Weinstein et al²¹⁶ recommended three dimensions: Model structure, data and validity:

5.4.1 Model structure

The model should be structured to ensure its inputs and outputs are relevant to the decision making process. The health states defined in the model should correspond to the natural history of the disease. The structure of the model should be consistent with the theory of the health condition and with the available evidence on causal relationships between variables. The structure of the model should be as simple as possible while capturing the underlying essentials of the disease process and interventions. The description of the model should be sufficiently detailed so that the model can be replicated mathematically. The assumptions and input parameters, and the logic connecting them to outputs should all be stated clearly (Transparency).

The time horizon of the model should also be long enough to reflect the impact of the interventions²¹⁶.

5.4.2 Data

Systematic reviews of the literature should be conducted on key model variables. Where the data are not available or not reliable, assumptions have to be made and they can be tested with sensitivity analyses. All models should include extensive sensitivity analyses for key parameters. Ranges should accompany the estimates from the model. Data quality and availability should be evaluated and the inclusion or exclusion criteria should be defined for data sources²¹⁶.

Data modelling refers to the mathematical steps that are taken to transform empirical observations into a form that is useful for decision modelling. This involves methods of incorporating estimates of treatment effectiveness from randomised clinical trials, combining disease specific and all-cause mortality rates or risk factor prevalence and interventions. These should be defined in enough detail in the model.

5.4.3 Validation

In the ISPOR Task force report, the validation of models was grouped into three categories:

Internal validation

Models should only be used after careful testing to ensure that the mathematical calculations are accurate and consistent with the specifications of the model. This process can be done by using null or extreme input values and checking whether they produce the expected outputs²¹⁶. Checking the model formulas, inputs and outputs by a second author may also help. The results of the model should make sense in terms of both the theoretical considerations, and also in intuitive terms (face validity) ²¹⁶.

Models should be calibrated against the actual data when possible. However, calibration is possible only if inputs and outputs are available over the time frame being modelled.

Between model validation

Models can also be validated against each other (convergent validity)²¹⁶. Models addressing the same problem would be expected to produce similar results with similar assumptions and input parameters (corroboration).

External validation

Models should be based on best available evidence at the time that they were built. Model outputs or estimates should be consistent with the observed data. Tests of predictive validity -the ability of the model to make accurate predictions of future events- are valuable, but not essential. In some models splitting the data into two timeperiods can be useful to check the predictive validity of a model²³³. For example data for years 1990-1996 are used to generate a regression model, which is then applied to the 1997-1999 dataset, and used to predict outcome for 1997-1999 period. These predictions are then compared against the observed outcomes for 1997-1999. This method may provide information on model's validity for different datasets and periods. Models should never be considered as complete and unchangeable tools to predict future. They should be updated according to new evidence and scientific knowledge²¹⁶. A model should not necessarily be criticized for failing to predict the future. However, it should be possible for a good model to be recalibrated or re-specified to adapt to new evidence as it becomes available²¹⁵.

In the next chapter, I will briefly review existing CHD models.

6 EXISTING CHD HEALTH POLICY MODELS

Models are being increasingly used in health policy decision-making. In terms of CHD health policy models a wide variety exist. Some CHD models consider risk factors alone²³⁴, risk factors and cardiovascular treatments⁴, secondary prevention such as cholesterol lowering treatment²³⁵ or estimates of general practice workload²³⁶. Their quality and utility may vary. In this section, I will describe a systematic review in which I evaluated the strengths and limitations of existing CHD policy models.

6.1 Methods

For this systematic review, we defined a CHD policy model as a tool that may help to explain or predict the outcome of CHD interventions (specific treatment or cardiovascular risk factor change, or the implementation of a new strategy) at the population level.

Search strategy

A search strategy was developed, piloted and run in MEDLINE and EMBASE electronic databases supplemented by screening reference lists of relevant articles and reviews. Electronic searching within the databases included 'coronary heart disease or synonyms' and 'model or synonyms' as key words. Both key words and MeSH headings were used (*Appendix 1*). The search strategy was validated using ten key papers already known to the authors; all ten papers were captured by the search strategy. The search identified 4,531 articles initially, and a further 17 were identified by checking the references. All the records were imported to 'Reference Manager'. By checking the titles and abstracts for the terms 'model', 'coronary heart disease' or 'population', the number of articles reduced to 275. Two independent reviewers (BU, SC) checked the titles and abstracts of all papers initially identified, and then screened the articles for inclusion and appraisal. The two reviewers independently classified each article and agreement was good (Kappa = 0.76).

Inclusion and exclusion criteria

Any CHD modelling study was included if it reported on a key outcome (deaths prevented, life years gained, prevention cost, treatment cost, mortality, prevalence, incidence or disability) in a defined population. Models simply describing animals,

cell lines, clinical series, cohorts or estimates of individual risk were excluded. *Figure 6.1* illustrates the flowchart for the search and review process. Excluded articles are listed in Appendix 4. In total, 75 articles were critically appraised and 26 articles were excluded.

Figure 6.1 Flowchart of search strategy for CHD policy models

Data extraction and assessment of model quality

A pre-piloted form was used for data extraction (*Appendix 2*). Articles were categorised according to the specific models that they described. Each paper was then critically appraised using explicit quality criteria. There are no universally accepted lists of appropriate quality criteria for model papers. However reviews by Weinstein²¹⁵, and Edwards²²⁶, and recent guidelines International Society for Pharmacoeconomics and Outcomes Research (ISPOR)²¹⁶ have suggested useful quality criteria. Using these sources^{215,216,226}, we created a grading system, based on sensitivity, validity and transparency of the model (*Appendix 4*).

Scoring system

Papers were graded on the basis of whether a sensitivity analysis carried out, the validity was checked, data quality presented, illustrative examples were provided, assumptions stated, if model was potentially available to the reader and if potential limitations such as assumptions, confounding, lag times and competing causes were discussed. A simple scoring system was developed, with maximum of ten points available. A point was awarded for each key feature listed above. Each paper was scored and given an overall grading as methodologically 'poor= overall score 0-3', 'adequate=4-7' or 'good=8-10' on an a priori basis.

6.2 Results

A total of 75 articles describing 42 different CHD policy models were finally included from 4,531 initial papers (*Figure 6.1*). Due to space restriction, we presented here summaries of the six principal CHD policy models used to address several health policy questions, all based on large populations, and all with more than one publication (*Table* <u>6.1 and 6.2</u>). Critical appraisals of each paper are provided in Appendix 4.

Papers excluded from the review

Papers excluded and the reasons for exclusion are listed alphabetically in the *Appendix* 4. Table 8. The main reasons for exclusion were that the paper was not a modelling study, it did not report on CDH outcomes, or it was only a review paper.

Model methodology and structure

Model methodology varied widely. 12 (29%) of the 42 models were microsimulation or state transition Markov models, eight (19%) were cell based spread sheets, eight (19%) were life table analyses, four (9%) used Monte Carlo simulation techniques, four (9%) used logistic or linear risk functions, three (7%) used population attributable risk fraction estimations and three (7%) used a variety of other methods such as decision analysis (Appendix 4).

Box 6.1 Summary of structures and methodology used in the six major models

The Coronary Heart Disease Policy (CHDP) Model was developed in 1980s as a state-transition, cell based model²²². It was used to examine trends in CHD mortality^{233;237} and expected gains in life expectancy from risk factor modifications²³⁸. This model was also used to evaluate the cost effectiveness of medical interventions for primary and secondary prevention of CHD²³⁹⁻²⁴² and health promotion activities²⁴³.

The model was based on the 1980 US population and mortality statistics. It consists of three sub-models:

- A *demographical/ epidemiological* model, which represents the disease-free population aged 35-84 years. Here the population is stratified by sex, age groups and cardiovascular risk factors. This model includes risk factors as categorical variables, therefore in total over 5,000 cells are required. It then uses a logistic risk function based on the Framingham equation to calculate the annual incidence rates of CHD events for each cohort.
- A bridge model, which covers subjects for the first 30 days after they develop coronary disease. Using a CHD incidence data from Minnesota, the model initially determines whether the <u>first</u> event is angina, AMI or cardiac arrest²²².
- A *disease history model*, which includes the survivors after the first 30 days, places them in 12 CHD states by age and sex, and then follows them through treatment pathways.

This model allows the user to simulate the effects of an intervention (either risk factor modification, or therapeutic) by changing case fatality rates and observing the effect on mortality, morbidity and costs for up to 30years.

CHD Policy Analysis Model, is a microsimulation model being developed for the Department of Health by the London School of Hygiene and Tropical Medicine and Universities of Southampton and Birmingham^{224;244}. The primary prevention component of the model aims to simulate the impact of different primary prevention strategies on benefits and costs ²⁴⁴. The treatment component of the model evaluates the impact of different treatments given to different groups of CHD patients, commencing with stable angina²²⁴.

PREVENT is a cell based simulation model developed by Gunning-Schepers in the 1980s the Netherlands²²⁵. It can be used to estimate the health benefits of changes in population risk factor prevalence comparing i) continuation of existing trends with ii) alteration of the proportions of the population with given levels of risk factors. The model allows one risk factor to be associated with more than one disease and one disease to be associated with more than one risk factor. Demographic evolution is also taken into account in simulations²²⁵.

Cardiovascular Life Expectancy Model was developed by Grover et al (1992) in Canada to examine the cost-effectiveness of different treatment options for CHD²³⁴. The model includes primary and secondary prevention parts. The primary CHD part calculates the annual probability of dying from CHD or other causes and the annual risk of CHD events (with or without intervention) for a person without symptomatic CHD at entry to the model. The annual risk of developing specific CHD endpoints is based on data from the Framingham Heart Study.

After developing CHD, a person then moves to the secondary CHD model. This part calculates the risk of dying during the 12 months following a nonfatal myocardial infarction. The risk estimations are based on the Framingham logistic equations for primary events but after adjustment for the presence of CHD²³⁴.

The predicted annual cumulative mortality difference with and without the intervention over the remaining total life expectancy represents the total years of life saved after intervention.

The IMPACT CHD mortality model is a cell-based model originally developed by Capewell and colleagues in 1996⁴. Using an MS EXCEL spreadsheet, this model

combines data from many sources on patient numbers, treatment uptake. treatment effectiveness and risk factor trends to estimate the deaths *prevented or postponed* (DPPs) over a specified time period. It can therefore be used to estimate the proportion of a mortality decline over a certain time span that might be attributed to specific treatments or risk factor changes.

The Global Burden of Disease (GBD) model developed at WHO by Lopez and Murray, is an example of models which use population attributable risk percentage (PAR %) estimations. The model can calculate the attributable burden of disease for a specific risk factor, population and time, which is defined as 'the difference between currently observed burden and the burden that would be observed if past levels of exposure had been equal to a specific reference distribution of exposure'. The reference distribution of exposure is defined as the risk factor exposure with lowest relative risk^{245;246}.

The GBD Model has five components: causes of death, descriptive epidemiology of disabling sequel, burden attributed to selected risk factors, projections of burden for the future and sensitivity analyses. Cause of death data are obtained from vital registrations or other sources. Data on 107 disorders and selected disabling sequel were investigated regarding average age of onset, duration, incidence and prevalence. Burden of disease and injury attributable to ten major risk factors were calculated. The model uses attributable fractions, taken from reviews and meta-analyses, applied to the population of a region to calculate the burden of disease of these risk factors²⁴⁶. Burden of disease is measured using disability adjusted life years (DALYs) calculated as the sum of years lost and years lived with disability²²⁸.

Comprehensiveness

Among the 42 models, 29 (69%) included only risk factors for primary prevention and 8 (19%) only considered treatments. Only 5 (12%) models included risk factors and treatments together. The CHD Policy and the IMPACT model were the most comprehensive since they both included a wide range of risk factors, CHD categories and effective treatments (*Box 6.2*). The CHD Policy Analysis Model represents a derivative of the CHD Policy Model²⁴⁴. The CHD Policy Analysis Model eventually aims to include many treatment categories but has not been completed (*Box 6. 2*).

Box 6.2 CHD risk factors and treatment categories included in the six major models.

The Coronary Heart Disease Policy Model includes major risk factors such as smoking, total cholesterol, DBP and relative weight, which are necessary to estimate CHD risk using Framingham Equations. The model considers disease categories such as angina, AMI, sudden death, post MI, CABG, PTCA. Individual CHD treatments are also considered such as statins, aspirin, and beta-blockers in different publications based on this model.

The *PREVENT* Model is a primary prevention model and therefore only considers risk factors: smoking, cholesterol, hypertension, obesity, physical activity and alcohol use.

The Cardiovascular Life Expectancy Model estimates the annual risk of developing specific CHD endpoints based on data published from the Framingham Heart Study. It therefore includes risk factors of age, sex, diastolic blood pressure, total cholesterol, HDL cholesterol level, left ventricular hypertrophy, glucose intolerance and smoking status²⁴⁷.

The CHD Policy Analysis Model resembles CHDP model by Weinstein et al. It has primary prevention and CHD treatment parts. The primary prevention component includes risk factors such as age, sex, systolic blood pressure, total cholesterol, and smoking²⁴⁴. The disease events included are stable angina, unstable angina, myocardial infarction, sudden cardiac death, stroke death, other cardiovascular death, cancer death and death from other known and unknown cause²⁴⁴.

The IMPACT Model considers comprehensive risk factors and CHD categories and treatments. For primary prevention the model includes smoking, cholesterol, blood pressure deprivation, obesity, diabetes and physical activity. It also includes primary prevention with statin therapy.

The Disease categories (and treatments) (included: AMI: Cardiopulmonary resuscitation, thrombolysis, aspirin, PTCA, Beta blockers, ACE inhibitors); Secondary prevention following MI, CABG or PTCA): (Aspirin, Beta blockers, ACE inhibitors. Statins, Warfarin, Rehabilitation); Chronic angina: (CABG surgery, Angioplasty, Aspirin, Statins); Unstable angina: (Aspirin, Aspirin & Heparin PG HB/HA inhibitors); Heart failure: (ACE inhibitors special lactose, aspirin, statins); Hypertension treatments: (All). *The Global Burden of Disease model* includes ten major risk factors for global disease burden. They are malnutrition, poor water quality, unsafe sex, alcohol, occupation, tobacco use, hypertension, physical inactivity, illicit use of drugs, and air pollution²⁴⁶. CHD is included in the model, and is modelled as being caused by tobacco use, hypertension and physical inactivity, and reduced by alcohol at all levels of consumption.

Model Population

Most (33, 79%) of the 42 models included this review considered specific populations, 4 (10%) and 5 (11%) of them were based on patients and hypothetical cohorts respectively.

Most of the models were restricted to young and middle-aged groups, generally 15 to 64 years (*Table1-7 in Appendix 4*). However the CHD Policy Model, IMPACT and CHD Policy Analysis Model considered groups aged up to 84 years. None of the models specifically considered non-Caucasian populations.

Model outcomes

Most common outcomes reported in the models were number of deaths prevented 25 (60%), 17 (41%) life years gained, 17 (41%) CHD incidence and 27 (64%) cost/cost effectiveness. Fewer papers reported on CHD deaths 10 (24%), CHD prevented 9 (21%), prevalence 6 (14%), QALY 6 (14%), DALY 4 (10%) admissions 3 (7%).

Model quality

Relatively few papers included in this review reported on model quality. Although sensitivity analyses were reported in 20 (48%) of the models, the majority were one-way rather than multi-way sensitivity analyses.

Validity of the model was assessed in 10 (24%) of the models. In the CHD Health Policy Model this was done by comparing the CHD deaths estimated by the model to the actual CHD deaths observed in 1990 using US vital statistics²³³. In the IMPACT Model, validity was likewise checked by comparing estimated fall in CHD deaths with observed fall^{4;248}. Six other models also compared model estimates with observed figures^{125;223;249-252}. In PREVENT, model validity was checked by comparing model estimates with another estimation method²⁵³. In the Cardiovascular Life Expectancy Model, predictive validity was checked by comparing the model estimates with events observed in primary and secondary prevention trials^{254;255}. Only two models (7%) reported on calibration of the model estimates against observed data. CHD Health Policy model was calibrated using life years estimated from the model compared with life expectancy from 1980 national statistics²³⁸. Kottke's model used actual mortality rates from the North Karelia cohort for calibration²⁵⁶. Only two of the models had been replicated in different populations (PREVENT^{257;258} and IMPACT⁵).

On *Table 6.2* quality evaluation of six major models were presented in detail. CHD Policy Model and IMPACT Model appeared to be better in reporting the model quality compared with the others.

Transparency and Limitations of the Models

Most models (36, 86%) explicitly stated their key assumptions. Illustrations or examples for estimations were provided in 14 (33%). Working versions of the models were potentially available in only (4, 10%). However, barely one fifth of the models reported on limitations of the models such as competing causes 8 (19%), lag times 7 (17%) or confounding 8 (19%).

The majority of the model papers received intermediate scores of 4-7 points (Appendix 3).

Table 6.1 Existing CHD Policy Models

Name of the model	Type of model	Model setting & Study population(s)	Risk factors included	Disease groups & treatments included	Outcomes	Sensitivity analysis	Validation	Strengths and limitations
CHD Policy Model (Weinstein and Goldman)	State transition Markov Model	USA, Men and Women aged 35-84	Smoking, total cholesterol, DBP and weight to estimate CHD risk using Framingham Equations	Angina, AMI, sudden death, post MI, CABG, PTCA Individual CHD treatments were considered in different studies such as statins, aspirin, beta- blockers etc	Number of deaths prevented, LYG, CHD incidence (number of arrests, angina, AMI), CHD prevalence, CHD mortality, cost per life year	In the initial model none. Subsequently papers reported one way sensitivity analysis	Model was calibrated using 1986 mortality data. Validity: model Estimates were compared with 1990 observed- 92-98% fit reported.	First policy model rather basic. Steadily refined since then. Many papers in high impact journals
PREVENT (Gunning- Scheppers)	Cell based	Netherlands;De nmark, England Depending on the purpose aged <65	Smoking, cholesterol, hypertension, obesity, physical activity, alcohol	None	Number of deaths prevented, life years gained	One way, different scenarios	Not checked	Mainly a primary prevention model. Developed and adopted in many different populations.
CHD Life Expectancy Model (Grover et al)	Life table analysis, Cost- effectivene ss model	Canada, Adult men and women, age group not clear	Smoking, total cholesterol, DBP, glucose intolerance, age	Did not consider CHD disease categories but treatments can be considered for primary prevention None ?	Years of life saved, cost per life year saved, years of life without CHD symptoms	One-way	Calibrated	This model uses hypothetical cohorts of participants. In most of the papers, time and the specific population are not clear.
CHD Policy Analysis (Sanderson and Davies)	Micro simulation	England and Wales, Up to 85 years. Men and women	Smoking, cholesterol, systolic blood pressure	Angina (stable- unstable), AMI, postMI, CABG, PTCA None - ?	Deaths prevented, morbidity prevented, CHD & noncardiac deaths, unstable angina		No validation reported	Future model may include secondary prevention treatments. NO sensitivity analyses. Model fit appears better for men

Name of the model	Type of model	Model setting & Study population(s)	Risk factors included	Disease groups & treatments included	Outcomes	Sensitivity analysis	Validation	Strengths and limitations
					admissions, investigations, angiograms, PTCA, CABG			than women.
IMPACT (Capewell, Critchley and Unal)	Spread- sheet	Scotland, England &Wales, New Zealand, and, Initially M-F aged 45-84. IMPACT Model for England and Wales includes M-F 25-84	Initially smoking, cholesterol, blood pressure deprivation- then obesity, also diabetes and physical activity	This model is comprehensive and considers Vine CHD categories and over 20 specific CHD treatments	Deaths prevented or postponed, life years gained.	Multi way sensitivity analysis using Analysis of extremes	Estimated falls in CHD mortality were compared with observed falls	Considers all major effective treatments available for CHD and all major risk factors. Data quality adequate, used trial and meta- analyses: National population statistics and results from representative studies
Global Burden of Disease Murray & Lopez	Population Attributabl e Parish method	World divided into eight geographic regions M-F all ages	Malnutrition, poor water, unsafe sex, alcohol, tobacco occupation, hypertension, physical activity, illicit drugs, and air pollution	None	Disability adjusted life years (DALYs)	Multi-way sensitivity analysis- discounting and age weighting	None	A comprehensive and global model for WHO strategies. Well documented and described. CHD is included, and modelled as caused by tobacco use, hypertension and physical inactivity, and reduced by alcohol. Data quality: Extremely variable depending on the region

* Abbreviations: AMI- acute myocardial infarction, CABG- Coronary artery bypass graft, MI- Myocardial infarction, LYG- Life years gained, PTCA- Percutaneous transluminal coronary angioplasty
| | Model Structure | | | | | | Data | Quality | | Validation | | | Total |
|---------------------------------|----------------------------------|------------------------|-----------------|--------|---------|-----------------------|---------------------------|----------------------------|---------------------------------------|------------|--------------|-------------------|-------|
| | Natural
history of
disease | Sufficient description | Assumpti
ons | Inputs | Outputs | Inclusion
criteria | Exclusi
on
criteria | Data
sources
defined | Sensitiviy
analyses
carried out | Internal | Exter
nal | Corrobo
ration | |
| CHD Policy
Model | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 34 |
| PREVENT | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 26 |
| CHD Life
Expectancy
Model | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 3 | 3 | 0 | 24 |
| CHD Policy
Analysis | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 0 | 2 | 2 | 0 | 25 |
| ІМРАСТ | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 2 | 33 |
| Global
Burden of
Disease | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 0 | 0 | 28 |

Table 6.2 Quality assessment for major CHD policy models

Appraisal criteria: The elements of the model assessment were listed in table. A general opinion was developed after reviewing all the papers published from that individual model. Each one of the criteria was scored on a 0 to 3 point scale. 0: not reported/ not done, 1: reported superficially/done simply 2:reported with detail 3: discussed

6.3 Interpretation

This is the first comprehensive systematic review of CHD policy models. Previous reviews were restricted to a particular type²⁵⁹⁻²⁶¹ or particular application²⁶¹. The increasingly wide use of modelling has thus far resulted in few attempts to evaluate model quality. We therefore aimed to systematically assess the quality of the modelling methodology rather than simply report on the reported results. A wide variety of CHD policy models have been developed with over 70 publications now available. CHD models have become more complex and comprehensive as a result of improving computer technology and wider usage³. In general, the quality of the models has also improved over time so that more recent papers tend to explicitly report on sensitivity analyses and assumptions and limitations.

Quality assessment of publications, is well described especially for randomised controlled studies²⁶². However, there are no widely accepted quality criteria for modelling papers in general nor specifically for CHD policy models. We therefore developed simple evaluation criteria based on sensitivity analyses, validity, and these comprehensive reporting of assumptions and limitations. These criteria explicitly reflect the main quality components suggested in the recent ISPOR Guideline²¹⁶.

Models can allow a large amount of evidence to be considered simultaneously, by combining and integrating into a coherent whole different types of data from controlled trials, routine surveillance and expert consensus³. Models have been extensively used in policy making and resource allocation, since they permit policy makers to examine future options, or to simulate the effects of different scenarios within a population²¹⁷. However, improved technology potentially allows both practitioners and policy-makers to use these models without necessarily understanding the inherent assumptions or data limitations ³.

Models require considerable data input and data sources need to be appropriate and credible. However, the availability of comprehensive high quality data remains a problem. The data may come from a variety of sources including clinical trials, meta-analyses, surveys, databases, medical records, audits. Delphi panels (expert opinion), routine statistics and official tariff lists for health care resource use²²⁹. Every modelling paper should therefore explicitly report and discuss data quality

73

methodological limitations and assumptions to address these discrepancies. However, few of the papers reviewed here critically evaluated their data quality.

Uncertainties about data are a perennial problem in modelling studies. Sensitivity analyses should therefore be employed to quantify the degree of uncertainty. In general, CHD models have only recently started to report sensitivity analyses^{233;255;263}. The most common approach is where one or more parameters of an evaluation are varied across a plausible range²³¹. Confidence intervals can also be easily included in sensitivity analyses. *One-way sensitivity analysis* (where only one parameter is changed at a time while the others retain their base-case specifications) is obviously less rigorous than *multiway-sensitivity analysis* (where more than one parameter is changed at the same time). However, multiway sensitivity analyses remain uncommon^{3;4;248;264}.

Many of the papers reviewed here failed to provide sufficient detail to allow thorough evaluation. When assessing the quality of a model, one should ideally consider the system being modelled, the elements included and excluded, the model structure, the probable effects of existing trends in mortality and risk factors and the model assumptions- both stated and unstated^{216;217}. The description of the model should be sufficiently detailed so that the model can be replicated mathematically.

In conclusion, CHD models offer a potentially valuable tool for policy development. However, existing models vary widely in their depth, breadth and quality. Few models have been calibrated, replicated or validated against a gold standard. Before being accepted as a policy aid, any model should explicitly include a statement of its aims, assumptions, strengths, outputs and limitations.

7 AN EVALUATION OF UK DATA SOURCES FOR CHD

7.1 Introduction

Chapter 4 described the massive burden of disease generated by CHD in the UK, and also raised potential concerns about the quality of the data describing CHD. This chapter will therefore focus on CHD data quality in the UK.

Policy decisions on health and health care require good evidence, particularly since resources are limited³. Good evidence to describe the current situation means not just information on the effectiveness of interventions, but also valid and reliable data on the disease burden and the provision of health care.

Modelling studies can provide decision makers with good evidence based results and they are based on data availability and quality³. In my thesis I will use IMPACT CHD Mortality model to explore recent CHD mortality trends in England and Wales. I therefore decided to evaluate the availability and quality of UK CHD data sources since 1981. I considered all 'public health' information sources for CHD, as defined in the recent 'Department of Health CHD Information Strategy'²⁶⁵. This included information on patterns of mortality and morbidity (including hospital admissions and episodes) and major cardiovascular risk factors by age, sex, and ethnicity.

7.2 Methods

UK data sources on CHD were initially identified and categorised according to the IMPACT CHD mortality model, which aims to explore CHD mortality trends in England and Wales during 1981-2000²⁴⁸.

To build the IMPACT Model, information was required on a) population based mortality rates and patient numbers with different categories of CHD -acute myocardial infarction, unstable and chronic angina, heart failure, hypertension, CABG surgery and angioplasty; b) uptake of specific medical and surgical treatments; c) effectiveness of specific cardiological treatments and risk factor reductions and d) population trends in major cardiovascular risk factors (smoking, cholesterol, hypertension, obesity, diabetes, physical activity and deprivation)²⁴⁸.

Search Strategy

Potential data sources were identified and obtained by various methods including comprehensive electronic searches using keywords and MeSH headings. Databases searched included MEDLINE, EMBASE and DISSERTATION ABSTRACTS. This search was further supplemented by cross-checking reference lists of the key articles retrieved during the electronic search. I also examined conference proceedings, audit reports, relevant official web sites and personal correspondence (*Appendix 5*).

The main data sources for population and patient data were the Office for National Statistics (ONS)²⁶⁶ and the British Heart Foundation's Annual CHD Statistics². Information on treatment prescription and uptake were obtained from various national and local clinical audits²⁶⁷⁻²⁶⁹ and surveys^{157;201;270;271}. Data on efficacy of interventions and risk factor changes were reviewed from published randomised controlled trials, meta-analyses and population studies.

The British Regional Heart Study²⁷², General Household Survey²⁷³, and Health Survey for England⁴⁸ were the main data sources for risk factor data.

Each data source was evaluated in terms of the following criteria: coverage and completeness (population of interest), coding accuracy (where these are reported in the primary data source), validity (the degree to which a variable measures what it purports to measure²⁷⁴- where this is reported in the primary data source) and generalisability (critical appraisal of the studies for their methodology), ease of access (availability of information either published or electronically), and inclusion of information on age and sex breakdowns, ethnic and socio-economic categories.

7.3 Results

Population and patient data sources

The main data sources for population and patient data are presented in *Table 7.1.* Data from ONS official statistics^{195;266} were easily accessible both electronically and in published form. However Official statistics are not based on autopsies, therefore may over estimate CHD deaths in the elderly. The British Heart Foundation provided another useful source of annually updated CHD statistics for the UK². The source includes data on CHD morbidity, mortality, prevalence, incidence and cost in the UK. Information on patient numbers undergoing CABG surgery has been available from the United Kingdom Cardiac Surgical Register since 1977¹⁹⁷. The register was based on voluntary and anonymous reporting of activity and hospital mortality for CABG, valvular and congenital heart disease surgical procedures performed in NHS Hospitals. Each unit was asked to return a standard questionnaire annually to the Society of Cardiothoracic Surgeons¹⁹⁷. These data were then analysed and published as annual reports. However while reasonably complete, the Register lacks details on age, sex, ethnicity, social status and long-term survival.

Angioplasty patient numbers have been available from the British Cardiovascular Intervention Society's Audit returns since 1989¹⁹⁸. These referred to angioplasty activity in all interventional centres in the UK, both NHS and private. The data had details on procedures and success, but lacked details on age, sex and other individual specific information.

The number of **acute myocardial infarction**, **angina** and **heart failure** admissions to hospitals was available from Hospital Episode Statistics (HES)¹⁹⁶. HES provided information on in-patient care delivered by NHS hospitals in England since 1989. HES collected almost 12 million records per year, and each record contained over 50 items of information. Since these records related to named individuals, it was not possible to access them directly. The database contained information on diagnoses, operations, admission method, patients' age, sex and ethnic group, length of stay, waiting time, maternity care, psychiatric care, Healthcare Resource Groups (HRGs), NHS Trusts and Health Authority areas¹⁹⁶.

HES records described *episodes* of continuous in-patient care under the same consultant¹⁹⁶. In cases where responsibility for a patient's care transferred to a subsequent consultant, there would be two or more records for the same patient. In 1999-2000, approximately 8% of admissions fell into this category¹⁹⁶. HES could not provide details of the drugs used in hospitals, nor information concerning outpatients or patients treated in accident and emergency departments and then discharged home immediately. Another major limitation of the database was being unable to distinguish between first admissions and readmissions.

The number of **angina patients in the community** could be estimated using prevalence of 'ever experienced angina', available from the Health Survey for England(HSE) '98⁴⁸.

77

This was a series of annual surveys about the health of people in England carried out since 1991. The HSE contained a 'core', which was repeated each year, and each survey year has one or more modules on subjects of special interest. The HSE 1993, 1994 and 1998 had CVD modules and could therefore provide useful information on CHD, stroke, hypertension and other cardiovascular risk factors.

In the HSE, angina prevalence was measured as 'self reported angina'. In addition to this, the Rose questionnaire on angina and heart attack⁴⁸ was used as an alternative estimation method. Overall angina prevalence was lower with Rose Questionnaire (2.6% in men and 3.1% in women) than that based on self-reported 'doctor-diagnosed' angina (5.3% and 3.9%). This suggests a possible overestimation in angina prevalence with self reported angina. However, Rose Questionnaire measures current angina rather than ever-experienced angina and prevalence of self reported 'current angina' was closer to prevalence measured by Rose questionnaire (3.2% and 2.5% in men and women)⁴⁸. Angina patient numbers based on GP consultation rates could be expected to be substantially smaller than these prevalence based estimations²⁰⁴.

The population surveyed in HSE has been the population living in private households. Those living in institutions have not been covered. They are likely to be older and, on average, in poorer health than those in private households. Furthermore, a response rate for the survey varied substantially by survey year but was generally low. Interviews were carried out on 69% of individuals targeted, 58% had their blood pressure measured and only 47% gave a blood sample⁴⁸.

The number of heart failure patients in the community was estimated using prevalence of 'treated heart failure' from Key Health Statistics from General Practice. 1998²⁰¹. This report gave the prevalence of various morbidities and treatment data derived from general practitioner records and it provided data for age-sex groups.

Since this source was based on general practitioner consultations, it omitted those symptomatic subjects who did not present to the NHS, but who were detected by epidemiological surveys^{275;276}. Furthermore, there is evidence of substantial limitations in coding accuracy and appropriate treatment of the condition¹⁷⁵. Therefore, the actual number of heart failure patients in the community may be slightly higher than the estimated numbers using prevalence data from Key Health Statistics from General Practice¹⁷⁵.

78

Information	Source	Evaluation
Population statistics (1981- 2000) (number)	Office for National Statistics ¹⁹⁵	Easily accessible, accurate and up-to-date
Deaths by age and sex (1981-2000) (number)	Available online from Office for National Statistics ²⁶⁶ and as published reports ²⁷⁷	Death certification complete standardised coding. Only minority based on autopsy. May over estimate CHD deaths in elderly.
CHD Mortality (rates)	Available as mortality statistics from Office for National Statistics ^{277;278} and from British Heart Foundation Annual CHD Statistics online or published reports ²	Little information on ethnic minority or socio- economic difference.
CABG surgery patients (number)	CABG numbers from 1991-2000 available online on UK Society for Cardiothoracic Surgeons of Great Britain and Ireland's web site (<u>http://www.scts.org/doc/2102</u>) ¹⁹⁷ . To obtain figures for England and Wales CABG numbers for Scotland and Ireland deducted from UK's figures.	Appear accurate. Lack detail on age, sex, ethnic group, social status and long-term survival.
Angioplasty patients (number)	Angioplasty numbers for 1991-2000 available online on British Cardiovascular Intervention Society's web site http://www.bcis.org.uk/audit/Bcis00.ppt ¹⁹⁸ .	Age and sex split not provided.
Angina patients admitted to hospital (number)	Number of angina patients admitted to hospital available from Hospital Episode Statistics 1999-2000 (http://www.doh.gov.uk/hes/index.html) ¹⁹⁶ .	Episodes not individuals. Coding accuracy improving. Lack detail of subgroups. No data on therapy.
Angina patients in the community (number)	Prevalence of 'ever experienced angina' is available from Health Survey for England 1998 ⁴⁸ , and British Regional Heart Study ²⁷⁹ .	Only prevalence not incidence.
Heart failure patients admitted to hospital (number)	Number of angina patients who admitted to hospital was available from Hospital Episode Statistics 1999-2000 (http://www.doh.gov.uk/hes/index.html) ¹⁹⁶	As for angina admissions.
Heart failure patients in the community (number)	Prevalence of treated heart failure patients in the community available from Key Health Statistics from General Practice 1998 report ²⁰¹	GP consultations; therefore omits subjects not presenting to NHS.

Table 7.1 Population and patient data sources of information on CHD in the UK, 1981-2000.

Cardiological treatments

Data sources on cardiological treatments in primary and secondary level are presented in *Table 7.2*.

The precise number of CHD patients who had cardio-pulmonary resuscitation (CPR) in the community (before reaching hospital) was not known, neither was the number of CHD patients who had CPR in hospital. These two figures could only be estimated from various surveys^{157;280;281}.

Information about hospital admissions in 2000 was available online from HES¹⁹⁶. However, trend data, and details of hospital interventions were very limited.

Treatment uptake data were not available routinely, and came principally from isolated surveys and registers. For **treatment at the primary care level**, limited prescription and uptake data were available from the Prescribing Analysis and Cost Tabulate (PACT)²⁸², and a few published local audits and studies^{166;283-287}. Broadly consistent uptake levels were reported for treatments in primary care settings in two different surveys^{288;289}. The EUROASPIRE II Study provided treatment levels for the secondary care of CHD from a small number of selected UK hospitals, but age and sex breakdowns were not generally available²⁶⁹. Furthermore, generalisability of EUROASPIRE II results to whole UK practices is questionable.

Information	Source	Quality & Comments
Initial Treatments For Acute		
Myocardial Infarction		
Community CPR	Estimated using data from UK Heart Attack Study ¹⁵⁷ and Scottish	Ad hoc surveys and ambulance data only.
	Heartstart ²⁹⁰ .	
	Number of myocardial infarction admissions to hospital obtained	-
	from HES.	
Hospital CPR	Number of hospital CPR patients estimated using 2000 HES data.	Isolated surveys only.
	Approximately 11 % of the patients admitted to hospital need CPR	
	(The United Kingdom Heart Attack Study Collaborative Group ²⁷¹	
	and BRESUS Study ²⁸⁰)	
Thrombolysis	The United Kingdom Heart Attack Study Collaborative Group ²⁷¹ ,	Isolated surveys, plus some data on numbers
Aspirin	Nottingham Heart Attack Register ^{269;291}	given thrombolysis. Routine information on
Beta-blocker		hospital treatments for acute myocardial
ACE inhibitor		infarction not available.
Secondary Prevention Following Acute		
Myocardial Infarction, CABG Surgery		
or PTCA		100
Aspirin	Limited data on secondary prevention from General Practice	Isolated surveys ²⁰⁰ and a few ad-hoc audits only.
Beta-blocker	Research Database report ²⁰⁷ and EUROASPIRE II Study ²⁰⁷	
ACE inhibitor		
Statins		*
Wartarin		
Rehabilitation including exercise	No neutine data on themany	No routino doto
Unstable Angina in Hospital	No routine data on therapy	No foutine data.
admissions	Data mainly from a General Practice Research Database report ²⁸⁹	Isolated surveys only
Aspirin for Community Angina	Data manny nom a General Fractice Research Database report	Isolated audits only
Heart failure treatment in the	Key Health Statistics From General Practice 1998 ²⁰¹	Isolated napers
Heart failure treatment in the	Rey meanin Statistics From General Flactice 1990	isolated papers.
Community Treatment of individual patients for	British Regional Heart Study ²⁹² Caerphilly papers ²⁹³ and the	Information limited especially in elderly
i reatment of individual patients for	Health Survey for England 1998 ⁴⁸	internation inniced especially in elderly.
nypertension	Theater our rey for England 1996	

Table 7.2 Data sources on CHD treatments in primary care and secondary care in the UK, 1981-2000.

Cardiovascular risk factor data sources

Population based cardiovascular risk factor data sources and their evaluations are presented in *Table7.3*.

The risk factors considered were blood pressure, smoking, total cholesterol levels, obesity, physical activity, diabetes, and deprivation. Population based risk factor data were available mainly from the British Regional Heart Study^{272,292,294}, the General Household Survey²⁷³, and the Health Survey for England⁴⁸. Information was very limited for the 1980s, but more extensive by the year 2000.

Blood pressure data were relatively limited until recently. The British Regional Heart Study provided some blood pressure data in 1981, but only for men aged 40-59²⁷². The Dietary and Nutritional Survey of British Adults²⁹⁵ reported blood pressure data from 1990 onwards and provided sex and limited age breakdowns (up to 65). The Health Survey for England has included blood pressure data since 1993²⁹⁶.

Smoking prevalence was the exception among the cardiovascular risk factors with good data on trends easily available from successive General Household Surveys^{200;273}. Age, sex and socio-economic status breakdowns were also available.

Data on **cholesterol levels** were very limited during the 1980s²⁹⁴. The Health Survey For England included cholesterol levels from 1993. However, changing laboratory methods used between surveys made the interpretation of these recent trends difficult⁴⁸.

Blood samples were analysed by different laboratories in different Health Surveys. The Royal Victoria Infirmary laboratories in Newcastle upon Tyne analysed blood samples in 1991 to 1993 and 1998 Health Surveys. However, the laboratories of the West Middlesex University Hospital had undertaken analysis of blood samples collected in the 1994 to 1997 Health Surveys. Although they both used the same method (DAX Cholesterol Oxidase) in 1994 and 1998, the equipment used was different. Some caution is therefore necessary when interpreting these results⁴⁸.

Data on obesity (defined as $BMI>30kg/m^2$) were available from two Department of Health surveys in early 1980's²⁹⁷, and also HSE^{295} . However, data on other anthropometric measures such as waist-to-hip ratio, were not available in the early 1980's but only from more recent population surveys⁴⁸. Some indirect evidence of a decline in **physical activity** (an increase in car journeys and decrease in miles walked) was available from the Department of Transport's Statistics for Great Britain²⁹⁸. However, no comprehensive population-based measures were available before the Allied Dunbar Survey in 1990²⁹⁹. The British Regional Heart Study provided physical activity data limited to men aged 40-59^{53;300}. However, definitions of physical inactivity have varied in different surveys, so comparable trend information were not available.

There were some studies on **diabetes** starting from the 1970s mainly focusing on treatment efficacy (The United Kingdom Prospective Diabetes Study)³⁰¹ and mortality in diabetic patients (British Diabetic Association Cohort Study)³⁰². However, early information on trends in diabetes prevalence was available only from one population survey in Poole commencing in 1983³⁰³. The Health Survey for England provided self reported information on diabetes prevalence since 1991²⁹⁶. Trends in general practice consultations between 1994 and 1998 are also now available from the General Practice Research Database³⁰⁴.

Socio-economic information was available on household income, adjusted for tax and benefits, and housing tenure from various sources including Social Trends³⁰⁵ and the General Household Survey ^{200;273}. However, because deprivation scores describe relative deprivation on the basis of cross-sectional data, trend data for deprivation scores have not been generated. Data on socio-economic characteristics defined the occupation of the head of household, equalised income and health authority area type was available from Health Survey for England.

The Barker hypothesis states that low birth weight is associated with increased rates of CHD in later life⁸⁷. To estimate the impact of birth weight trends, population birth weight data is necessary. However birth weight data is routinely available only from 1950s³⁰⁶. Data on earlier years is only available from small population registries. In Hertfordshire, from 1911 to 1948 weight at birth and at age 1 year were recorded routinely³⁰⁷.

Cardiovascular Risk factors	Source		Evaluation		
Information	Initial Year (1981)	Most Recent Year (2000)			
Population blood pressure	The Dietary and Nutritional Survey of British Adults ²⁹⁵ and British Regional Heart Study ²⁷²	Health Survey for England 1998 ⁴⁸	Blood pressure data very limited until recent times. For early years The Dietary and Nutritional Survey of British Adults and British Regional Heart Study (only for men) provided mean blood pressure levels. Health Survey for England included these data since 1993.		
Smoking prevalence	General Household Survey 1980 ²⁷³	General Household Survey 2000 ²⁰⁰	Good data for trends in smoking prevalence easily available from General Household Surveys and British Household Panel Survey categorised by age and sex.		
Cholesterol	British Regional Heart Study ²⁷²	Cholesterol levels measured in Health Survey for England 1994 and 1998 ⁴⁸ . MONICA Glasgow and Belfast trends 1985-1995 available for comparison ³⁰⁸ .	Limited data available for the early 1980s. Changing laboratory methods used in the Health Survey for England (1994-1998) made interpretation of recent trends difficult, even when supported by trends from UK MONICA surveys.		
Obesity	The Heights and Weights of Adults in Great Britain ²⁹⁷	Health Survey for England 98 ⁴⁸	Data on obesity (defined BMI >30) available from two DoH surveys in early 1980s. Data on other anthropometrical measures i.e. waist to hip ratio, were not available in early 1980's but these data available from some more recent population surveys (Health Survey for England).		
Physical activity	British Regional Heart Study ²⁷²	Allied Dunbar Survey 1990 ²⁹⁹	No comprehensive population-based measures were available before Allied Dunbar Survey 1990. British Regional Heart Study data limited to men aged 40-59. Definitions of physical inactivity varied in different surveys so comparable trend information not available directly. Some indirect evidence of a decline in physical activity available from Department for Transport's Transport Statistics for Great Britain report ²⁹⁸ .		
Diabetes	Poole Diabetes Study ³⁰³	Health Survey for England 98 ⁴⁸ , General Practice Research Database ³⁰⁹	Data on diabetes prevalence is either not available or not comparable for early 1980s. More recent trend information is available from Health Survey for England and General Practice Research Database ³⁰⁹ .		
Deprivation	1981 Census data	2001 Census data awaited	Standardised trend data for deprivation score not available. Information available on: household income, adjusted for tax and benefits, housing tenure.		

Table 7.3 Data sources on cardiovascular risk factors in the UK, 1981-2000.

7.4 Interpretation

Information on CHD in the UK is frequently patchy, obsolete or simply not available. Although routinely collected data provide large quantities of health information, often covering the whole population over a long period of time, such sources have limitations and are underused³¹⁰. The Office for National Statistics provides useful updated population and mortality statistics. Furthermore, much of the Office for National Statistics information is available electronically, which makes it much more accessible for users. Likewise Hospital Episode Statistics, which summarise admissions to the NHS hospitals, are also available electronically; however they lack detail on interventions at the hospital level. The British Heart Foundation's HEARTSTATS website is also developing rapidly, and provides an increasingly wide range of CHD statistics plus brief comments (*http://www.heartstats.org/homepage.asp*).

Public health information on CHD in the UK must be improved. At present, the NHS annually spends over £2 billion on a range of evidence-based initiatives for the treatment of CHD. However, evaluation of these initiatives using existing routine data is simply not possible. Furthermore, monitoring this common and devastating disease is almost confined to analysis of mortality statistics. Over 35,000 CABG operations are performed each year, however survival even two years later is not routinely available³¹¹. Thirty day case fatality following admission for AMI or CABG surgery have been used as Department of Health performance indicators³¹². However, variations in performance indicators between individual hospitals are vulnerable to differences in coding practices and case-mix³¹³.

Other Northern European countries have developed and implemented better CHD monitoring systems. The Information and Statistics Division (ISD) in Scotland collects good data on all patients treated for CHD and the procedures they receive. Scotland's routine NHS data is of high quality and data linkage allows the investigation of the epidemiology and treatment of heart disease across the population, with comprehensive analyses then being possible on different forms of the disease, including myocardial infarction and heart failure^{123,144,192,313,314}.

CHD mortality rates in Finland were once the highest in the world³¹⁵. A series of regional risk factor surveys (FINRISK) have been carried out there every five years since the early 1970s^{192;315;316}. These use a standardised methodology, include all the major CHD risk factors, with high participation rates and a large sample size (approximately 14,000 for the

2002 survey). Reliable estimates of trends and their contributions to CHD mortality declines can therefore be made over a 30-year period. They also allow relatively quick identification of adverse developments such as the increase in smoking among women observed in the 1980s to early 1990³¹⁷.

Monitoring of risk factors and of secular trends in risk factor epidemiology is also available in Norway³¹⁸. Cardiovascular risk factor studies have been conducted in different regions since the late 1950s. Since the 1970s, the National Health Screening Service (SHUS) cardiovascular disease screening and prevention programmes visit all municipalities, every three years and achieve high response rates³¹⁸.

In the USA, the National Health and Nutrition Examination Survey (NHANES) has been periodically conducted since the early 1960s to obtain nationally representative information on health, nutritional status, risk factors and health behaviours in the population. NHANES III (1988-94) is the seventh of these³¹⁹ and data from NHANES 1999-2000 is currently available from (webpage: http://www.cdc.gov/nchs/data/nhanes/frequency/filelist%204-2003.pdf)

In England and Wales, the CHD NSF, NHS Plan and CHD Information Strategy all explicitly recognise the huge importance of disease monitoring and service evaluation. All have made a number of specific and sensible recommendations. However, at present over 99% of the £2 billion NHS CHD budget is spent on medical interventions, particularly revascularisation. Less than 1% is currently spent on the monitoring of CHD^{2;265}. These are inadequate resources for even basic information strategy or technology. Furthermore, although some national datasets (such as the Health Survey for England) can support the Information Strategy, such datasets are not 'locally owned' and lack the scale to analyse specific local population groups, such as ethnic minorities³²⁰.

In conclusion, future CHD disease monitoring and evaluation will require more comprehensive and accurate population-based information on trends in patient numbers, treatment uptake and risk factors. This will require adequate resources to improve existing information systems. Regular and comprehensive surveys (including women and elderly people), using standardised methodology will also be essential.

In terms of my thesis, these findings mean that all data, whether routine statistics or surveys have to be treated with some caution. The need for a sensitivity analysis will therefore be explicitly discussed in the next chapter.

8 DESCRIPTION OF THE IMPACT MODEL

In *Chapter 6*, I discussed the concept of modelling and reviewed some of the CHD models in use today. In this chapter, I will describe the IMPACT Model in detail and explain the methodology.

In 1996, Capewell et al. developed and refined IMPACT CHD mortality model⁴. Using an MS EXCEL spreadsheet, this cell-based CHD model combines data from many sources on patient numbers, treatment uptake, treatment effectiveness and risk factor trends to estimate the *deaths prevented or postponed* (DPPs) over a specified time period. It can therefore be used to estimate the proportion of a mortality decline over a certain time span that might be attributed to various risk factor changes or to specific treatments. For example, in Scotland CHD mortality declined by 29% between 1975 and 1994. Using the IMPACT model, it was possible to attribute approximately 40% of the fall to medical therapies and one third to the reduction in population levels of smoking⁴.

The IMPACT model was validated against the actual mortality fall observed in Scotland⁴, and then replicated in New Zealand⁵. It was then used to estimate how many additional deaths could potentially have been prevented by simply increasing the uptake of appropriate treatments by eligible patients³²¹ in Scotland in 1994 (approximately 4,000). The model was also used to estimate the additional deaths which might potentially be prevented in Scotland by further reductions in risk factors such as smoking, cholesterol and blood pressure³²².

In collaboration with the National Public Health Institute (KTL) in Helsinki, Finland, validation and development of the IMPACT model has recently been completed. This used high quality linked data on deaths and hospital activity, plus MONICA data on risk factors¹⁹². The findings suggested that cholesterol reductions were much more important in explaining trends in CHD mortality (1982-1997) in Finland compared with UK (personal communication with Julia Critchley, 2003).

The original IMPACT model was thus restricted to the Scottish population of 5.1 million. Furthermore it demonstrated a number of methodological limitations, including being restricted to 1994, considering only three risk factors and omitting modern therapies such as primary angioplasty for AMI, and PG IIb/IIIb antagonists for unstable angina. The aim of my PhD project was therefore to further develop the IMPACT Model methodology, update it and apply it to the much larger and more complex England and Wales population²⁴⁸. I would then be in a position to examine LYGs, potential impact of improvements in uptake of treatments, or reductions in major risk factors, as well as mortality trends in England and Wales between 1981 and 2000.

8.1 Building an IMPACT Model for England and Wales

Selection of an appropriate population and time frame

The England and Wales population was chosen to examine recent CHD mortality trends because:

- The National Service Framework for Coronary Heart Disease, published in 2000 highlighted an obvious need for such work to support the NSF and to evaluate its impact
- ii) No comprehensive analysis of UK trends in CHD mortality, risk factors and treatments had been published
- iii) Relatively extensive data were available for England and Wales describing the population, mortality trends and, to a lesser extent, morbidity trends

Age range

The model was initially built without an upper age limit. However, it became increasingly clear that data were sparse over the age of 85 years. Furthermore, there was some evidence that the accuracy of CHD on death certificates decreased in the elderly¹⁸³. It was therefore decided to restrict the model to between ages 25 to 84 years.

The baseline (1981) and final years (2000) were chosen on the basis of several factors:

- i) The total duration needed to be at least 10 years in order to cover a reasonable change in mortality rates.
- ii) There needed to be adequate data on risk factors and treatments for the base year
- iii) The final year needed to be as recent as possible to maximise its value to clinicians and policy makers.

After some pilot work, a 20-year period between 1981 and 2000 was chosen to model the mortality trends in England and Wales.

Refining and developing the IMPACT mortality model

The cell-based IMPACT mortality model was further developed and refined during my PhD studies. I added new treatments and new risk factors to the model. I also introduced new methods to quantify the cumulative effects of multi therapy in secondary prevention groups. The methodology sections will provide further detail around these issues. A list of these changes is presented below, and the approaches developed to address these issues are explained in the appropriate sections and boxes (*flagged in italics*).

Box 8.1 Principal changes and refinements made in English IMPACT Model

New treatments added to the IMPACT Model

- Primary angioplasty for AMI patients
- Platelet glycoprotein IIB/IIIA inhibitors for unstable angina
- Spironolactone, aspirin and statins for angina and heart failure patients
- Statins for primary prevention (Box 8.9)

New risk factors added to the IMPACT Model

- Obesity
- Diabetes
- Physical activity
- Deprivation (Page 99-100, Box 8.11)
- Mant and Hicks correction was applied for secondary prevention therapies (Box 8.3)
- New possible overlaps between patient groups considered (Box 8.4)
- Impact of risk factor changes in CHD patients was estimated (Appendix 9)

The model was then revised to incorporate data for England and Wales. Data were identified and incorporated for men and women aged 25 to 84 years in England and Wales detailing;

a) CHD patient numbers,

b) uptake of specific medical and surgical treatments,

c) population trends in major cardiovascular risk factors (smoking, total cholesterol,

hypertension, obesity, diabetes, physical activity and socio-economic deprivation),

d) effectiveness of specific cardiological treatments, and

e) relationship between specific risk factor reductions and CHD mortality.

A flowchart is presented to describe the IMPACT Mortality Model and parameters included in Figure 8.1.

Figure 8.1 Flowchart of the IMPACT Mortality Model parameters

The fall in coronary heart disease deaths

The number of CHD deaths expected in 2000 if the mortality rates in 1981 had persisted was calculated by indirect age standardisation, using 1981 as a base year. The CHD deaths actually observed in 2000 were then subtracted to give the fall in CHD deaths between 1981 and 2000 (*Appendix 7*).

Patient categories included in the IMPACT England and Wales model

ICD9 Codes 410-414 (prior to 2000) and ICD10 codes I20-I25 (since 2000) correspond to Coronary Heart Disease. This definition consists of mainly myocardial infarction or angina. The specific patient groups comprised acute myocardial infarction, post myocardial infarction, unstable angina, chronic angina, CABG surgery, angioplasty, and heart failure.

Treatment categories included in the IMPACT England and Wales model

The model aimed to include all medical and surgical treatments given in 1981 and 2000 in England and Wales. These interventions are listed in *Box 8.9* and included all the interventions considered in earlier versions of the IMPACT Model^{4;5} plus primary angioplasty for myocardial infarction, statins for primary prevention, platelet IIB/IIIA inhibitors for unstable angina, and spironolactone and beta-blockers for heart failure.

Mortality Reduction Estimation by treatments

The mortality reduction for each treatment was calculated using the relative mortality reduction reported in published meta-analyses and trials listed in *Box 8.2* applied to the case fatality observed in unselected patient cohorts^{143;144}. Case fatality rates for patient groups are presented in *Appendix 8*. Survival benefit over a one-year time interval was used for all treatments, thus only DPPs for at least one year were counted in the calculations.

The deaths prevented or postponed for at least a year were therefore calculated as:

Patient numbers eligible X treatment uptake X relative mortality reduction X one-year case fatality

An example of calculation method is presented below in Box 8.2:

Box 8.2 Example of DPP calculation: Men aged 55-64 given aspirin for acute myocardial infarction

In the Antithrombotic Trialists' Collaboration meta analysis, aspirin reduced relative mortality in men with AMI by 15%¹⁶⁰. In England and Wales in 2000, 10,699 men aged 55-64 were eligible, and 95% were given aspirin²⁸⁹. One year case fatality in men aged 55-64 admitted with an AMI was approximately 17%¹⁴³.

The DPPs for at least a year were therefore calculated as:

Patient numbers x treatment uptake x relative mortality reduction x one-year case fatality = 10,699 x 95% x 15% X 17% = 259 DPPs.

Polypharmacy Issues

Individual CHD patients may receive a number of different medications. However, RCT data on efficacy of treatment combinations are sparse. Mant and Hicks³²³ suggested a **cumulative relative benefit** method to estimate the case-fatality reduction achieved by polypharmacy. The potential effect of multiple treatments in an individual patient were therefore examined using the Mant and Hicks approach:

Relative Benefit = $1 - [(1 - Treatment A) X (1 - Treatment B) X (1 - Treatment n)^{323}$. An example of this approach and its use for IMPACT Model is presented in Box 8.3 below:

Box 8.3 Example of Mant and Hicks calculation for secondary prevention following acute myocardial infarction.

If we take the example of secondary prevention following AMI; good meta-analysis evidence suggests that, for each intervention, the relative reduction in case fatality is approximately:

Aspirin 15%¹⁶⁰, beta-blockers 23%¹⁶⁶, ACE inhibitors 23%¹⁶⁷, statins 29%³⁴ and rehabilitation 27%³²⁴.

The Mant and Hicks³²³ approach, recently used by Wald and Law³²⁵, suggests that in individual patients receiving all these interventions, case-fatality reduction is very unlikely to be simply additive ie not 117% (15% + 23% + 23% + 29% + 27%). Indeed, 117% is clearly absurd, implying immortality. Instead, having considered the 15% case fatality reduction achieved by aspirin, the next medication, in this case a beta-blocker, can only reduce the **residual** case fatality (1-15%). Likewise, the subsequent addition of an ACE inhibitor can then only decrease the **remaining** case fatality, which will be 1 - [(1- 0.15) X (1-0.23)]. The Mant and Hicks approach therefore suggests that a **cumulative relative benefit** can be estimated as follows:

Relative Benefit = 1 - [(1 - Treatment A) X (1 - Treatment B) X (1 - Treatment C) X (1 - Treatment D) X (1 - Treatment E)]

In considering appropriate treatments for AMI survivors, applying relative reductions for aspirin, beta-blockers ACE inhibitors statins and rehabilitation then gives:

Relative Benefit = 1 - [(1 - aspirin) X (1 - beta-blockers) X (1 - ACE inhibitors) X (1 - statins) X (1 - rehabilitation)]

= $1 - [(1 - 0.15) \times (1 - 0.23) \times (1 - 0.23) \times (1 - 0.29) \times (1 - 0.27)]$

 $= 1 - [(0.85) \times (0.77) \times (0.77) \times (0.71) \times (0.73)]$

= 0.74 ie a 74% lower case fatality

Potential overlaps between patient groups: avoiding double counting

There are potential overlaps between CHD patient groups (*Figure 8.1*). For example, approximately half the patients having CABG surgery have a previous AMI³²⁶, 20-30% of AMI survivors develop heart failure within 12 months¹⁷⁴, and over 50% of CHD patients have a history of hypertension¹⁴³ (*Figure 8.1*).

Therefore, to avoid double counting, potential overlaps between different groups of patients were identified and appropriate adjustments were made by subtracting one group from another. For instance, I subtracted the number of severe heart failure patients treated in hospital from the total number of heart failure patients in the community (because community heart failure patients could be admitted to hospital on one or more occasions).

A comprehensive list of overlap assumptions is presented in Box 8.4.

Treatment	Assumptions and Overlap Adjustments	Justification
category		
PTCA patients progressing to CABG surgery	 PTCA numbers multiplied by 0.8, assuming that 20% of PTCA go to CABG 	Martin (2002) ³²⁷
Efficacy of PTCA in Angina	- Assumed equivalent to CABG surgery for two vessel disease (maximum estimate), or equal to medical therapy (minimum estimate)	Sculpher (1994) ³²⁸ Folland (1997) ³²⁹ Yusuf (1994) ³³⁰
Angina in the community	 From the total patient numbers with angina in the community, first deducted: Patients already treated for unstable angina in hospital, 50% of those receiving CABG for angina, 50% of those receiving secondary prevention post AMI/post CABG/Post Angioplasty, 	Capewell (2000) ¹⁴³
Heart failure in the community	 Assume 50% of heart failure is due to CHD Deduct patients treated for severe heart failure in the hospital 	Fox (2001) ¹⁷⁴
Hypertension treatment: overlaps with other CHD patient groups	 Total hypertensive patient numbers in community calculated, then deduct: 50% of post AMI patients 50% of community angina patients 50% of community heart failure patients 	Health Survey for England 1998 ⁴⁸
Fall in population blood pressure	 Estimate the number of DPPs by hypertension treatment Then subtract this from the total DPPs attributed to the fall in population blood pressure 	Capewell (1999) ⁴ Capewell (2000) ⁵
Post MI patients	 Assume 50% overlap between post-MI and post-CABG patients 	Capewell (2000) ⁵

Box 8.4 Assumptions and overlap adjustments used in IMPACT Model.

Patient compliance and adherence

Low compliance to prescribed medical interventions is a complex problem especially for patients with chronic diseases. In this model, compliance, the proportion of treated patients actually taking therapeutically effective levels of medication, was assumed to be 100% in hospital patients (because of their continuous supervision by health care staff), 50% in asymptomatic community patients (on the basis of available evidence³³¹) and 75% in symptomatic community patients (as a value intermediate between 50% and 100%). Each assumption was subsequently tested in a sensitivity analysis, as described later in this chapter.

Deaths prevented or postponed by therapies in 1981

A number of effective therapies were already in limited use in 1981. These included CABG surgery, cardiopulmonary resuscitation, beta-blockers for acute myocardial infarction, diuretics for acute left ventricular heart failure, and therapy for moderate and severe hypertension (defined as a diastolic blood pressure >105mmHg). Precise patient data for some of these interventions, including CABG, and eligible hypertensives, were available from the data sources detailed below. Others, such as beta-blocker use for post MI patients and heart failure treatment in hospital and in the community were estimated after consultation with cardiologists in practice in 1981. Again, each assumption was subsequently tested in a sensitivity analysis.

Risk factors included in the model

The review of CHD epidemiology in *Chapter 2*, identified and discussed the key risk factors for CHD. The original Scottish IMPACT only considered the major risk factors, smoking, cholesterol and blood pressure. These were retained in the IMPACT Model for England and Wales, and attempts were made to incorporate additional risk factors such as diabetes, obesity, physical activity and deprivation.

As I discussed in *Chapter 2*, diabetes is an independent risk factor for CHD^{21;42} and it is estimated that up to 80% of adult diabetic patients die of CVD, and 75% of these deaths are caused by CHD⁴⁵. For modelling purpose, diabetes trend data was available from various studies and surveys in England and Wales, although with some limitations.

Obesity is also found to be a significant independent risk factor for CHD incidence^{50,51} and data on obesity trend was available from national surveys.

Physical inactivity is associated with at least a twofold increase in CHD risk⁵². Although adjusting for other cardiovascular risk factors weakens this association, the beneficial effect of physical activity remains statistically significant⁵³.

CHD showed a strong social class gradient. The death rate from CHD is approximately 3 times higher among unskilled manual men of working age than among professional men⁸¹. Data on deprivation and household income were available from routine statistics in the UK^{305;332}.

While inclusion of a number of other risk factors were considered desirable, pilot work demonstrated the lack of reliable population-based data in 1981, or 2000 or both eg low birth weight for foetal origins of disease. However, the model still included all the main risk factors which together have been generally considered shown to explain at least 75% of CHD risk³³³.

Calculating the mortality benefits from changes in specific risk factors

For risk factor changes, the model employs regression (β) coefficients obtained from large cohort studies and MONICA analyses. Each β coefficient quantifies the independent relationship between population change in a specific CHD risk factor, (such as smoking, cholesterol, or blood pressure) and the consequent change in population CHD mortality rate, having adjusted for all other factors considered in that particular analysis. These coefficients were reviewed and summarised in *Box 8.12*.

It has been shown in several studies that the association between blood pressure and CHD is continuous and that a threshold was difficult to detect ^{24;27}. Similar findings apply to serum total cholesterol levels and CHD risk. A β coefficient is therefore very appropriate to quantify the population mortality impact of change in each specific risk factor.

The **population attributable risk fraction** method offers an alternative approach when a) there is a threshold or b) there are insufficient data to generate a reliable β coefficient (for instance diabetes, obesity, activity and deprivation).

The β coefficient approach is preferable for several reasons. Firstly, it is usually more stable across populations, particularly when based on a meta-analysis. Secondly, it usually involves a more reliable adjustment for other factors in a multi-variate analysis. Thirdly, PARs may overestimate achievable impact from a risk factor change (they are often based on RRs obtained from a dichotomised risk factor and population prevalence). Fourthly, the RR of a risk factor is very sensitive to how many other risk factors were included or excluded in the original statistical model³³⁴. For instance, the PAR quoted for physical inactivity can range from less than 10%³³⁵up to 37%³³⁶.

The DPPs between 1981 and 2000 by the fall in each risk factor was then calculated as the product of three variables:

CHD deaths in that group in 1981 base year X relative risk factor decline X β coefficient

An example of this calculation is given below:

Box 8.5 Example of mortality fall estimation attributable to change in population risk factor (smoking).

Mortality fall due to reduction in smoking prevalence in women aged 55-64: In England and Wales smoking prevalence in women aged 55-64 fell from 39% to 23% between 1981-2000, an absolute reduction of 16%, and a relative reduction of 41%, (16/39). Pooling of studies from Finland, Iceland and elsewhere^{187;192;337} produced a β coefficient value of 0.51. (That is to say for every percent fall in smoking prevalence, the population CHD mortality would be expected to fall by 0.51%.) The DPPs between 1981 and 2000 were then calculated as: *CHD deaths in that group in 1981 base year X risk factor decline X* β coefficient: Thus 5,555 X 41% X 0.51 = 1,162 DPPs. This calculation was then repeated a) for men and women in each age group, and

b) for each risk factor

c) using maximum and minimum values in each group, to generate a sensitivity analysis

Population Attributable Risk Fraction Method

A separate method was used for obesity, diabetes, physical activity and socio-economic deprivation, because of the absence of suitable β coefficients^{4;5}. Population attributable risk fraction (PAR) was calculated using the conventional formula (*Box 8.6*).

These risk factors were dichotomised and prevalences were obtained from population studies and surveys⁴⁸. Obesity was defined as BMI>30 kg/m², diabetes was defined as clinically diagnosed diabetes³⁰³, physical inactivity as moderate activity less than 3 times a week⁴⁸.

The number of CHD deaths attributable to each specific risk factor was calculated for 1981 and for 2000. The difference between the two values then represented the DPPs due to the change in that specific risk factor in the population.

An example of this calculation method is presented below in Box 8.6.

Box 8.6 Example of CHD mortality change estimation due to change in diabetes prevalence

Mortality change due to change in diabetes prevalence in men aged 75-84

The number of CHD deaths attributable to diabetes in 1981 and in 2000 was calculated using the PAR fraction. This required estimates of **P**, diabetes prevalence in both years^{48;303;304}, and **RR**, the relative risk of diabetes for CHD mortality (obtained from the EPIC Study³³⁸), and the number of deaths from CHD in each year. The population attributable risk fraction was then calculated as;

Prevalence x (Relative Risk -1)

PAR= -----

(Prevalence x (Relative Risk -1)) +1

In England and Wales, the diabetes prevalence in men aged 75-84 was 4% in 1981 and 7% in 2000. Thus 12% of CHD deaths were attributable to diabetes in 1981 and 18% in 2000 respectively (*Table below*). The number of actual deaths attributed to diabetes was then calculated: 2865 in 1981 and 3,916 in 2000. The difference between these (1,051) represented the change in the number of deaths attributable to the change in diabetes prevalence in the population between 1981 and 2000 (Table).

Table. CHD deaths due to diabetes in 1981 and 2000 in men aged 75-84

	Diabetes Prevalence			CHD deaths		PAR Fraction		Deaths attributable to Diabetes		Mortality Increase
Aged	1981	2000	RR	1981	2000	1981	2000	1981	2000	
65 - 74	a	b	c	d	e	f	g"	f*d	g*e	(f*d) – (g*e)
Best	0.04	0.07	4.00	24205	21772	0.12	0.18	2865	3916	-1051

i f= $(a \times (c-1)/((a \times (c-1))+1))$, ii g= $(b \times (c-1)/((b \times (c-1))+1))$

This calculation was then repeated

a) for men and women in each age group, b) for obesity, physical inactivity and deprivation and c) using maximum and minimum values in each group, to generate a sensitivity analysis

Estimating deaths prevented or postponed by changes in deprivation using the PAR approach

Since satisfactory independent beta coefficients did not exist for deprivation, a population attributable risk (PAR) approach was used.

Deriving the age-specific PARs for deprivation

No recent England and Wales data were available on the socio-economic gradients in CHD mortality. I therefore used the best available alternative, social gradients in AMI mortality rate per 100,000 in the Scottish men categorised by quintiles of deprivation measured as Carstairs deprivation score (Unpublished data from SLiDE Study)³³⁹ (*Table 8.1*).

		AGE GROUPS		
Deprivation Quintile	25-64 years	65-74 years	>75 years	
Most affluent (1)	1.63	16.08	27.92	
2	1.99	17.99	30.18	
3	2.13	18.49	29.63	
4	2.50	19.17	16.54	
Most deprived (5)	2.81	20.07	29.52	
Rate Ratio	1.72	1.25	1.06	
PAR 5 v 1*	0.126	0.047	0.011	

Table 8.1 Social gradients in AMI mortality rates (per 100,000) in the Scottish population 1986-1995 (quintiles of deprivation in men)

*Prevalence of people in the fifth quintile of deprivation category is 20%.

Rate ratios estimated for most deprived quintile were 1.72, 1.25 and 1.06 in men aged 25-64, 65-74 and ≥ 75 respectively. These RRs were consistent with the RRs reported in other studies³⁴⁰. The crude PAR values for AMI mortality in the most deprived quintile compared with the most affluent were then calculated as: 0.126 for ages 25-64 years, 0.047 for 65-74 and 0.011 for men aged ≥ 75 years *(Table 8.1)*.

Changes in deprivation in England and Wales 1981-2000

After considering and testing various options, the most dependable measure of change in deprivation was considered to be the data available on Final Household Income, adjusted for tax and benefits, and adjusted for inflation between 1981 and 2000^{332} . Between 1981 and 2000. income in the most deprived quintile increased from £3.220 to £4.410, after adjusting for tax, benefits, and inflation (*Table 8.2*).

		Household income (£)							
	1981	1999 Crude	Inflation adjustment	1999 adjusted	Absolute change indexed to 1981	% change			
Quintiles	a	b	C	d=b/c	e=d-a	f=e/a			
Most affluent	12,260	35,440	2.0	17,720	5,460	0.45			
2	7,670	20,380	2.0	10,190	2,520	0.33			
3	5,790	15,840	2.0	7,920	2.130	0.37			
4	4,130	11,470	2.0	5.735	1,605	0.39			
Most deprived	3,220	8,820	2.0	4,410	1,190	0.37			

Table 8.2 Changes in household income 1981-2000, adjusted for tax, benefits and inflation

It was then (generously) assumed that reduction in deprivation was equal to increase in household income.

Estimating the number of CHD deaths prevented or postponed by improvement in deprivation

31,632 CHD deaths occurred in men aged 65-74 in 1981 (*Appendix 7*). If the PAR is 0.038, then approximately 1,195 of these deaths could be attributable to being in the lowest deprivation quintile (0.038 x 31,632), (*Table 8.3*).

Thus, approximately 442 deaths were prevented or postponed by a 37% improvement in income/deprivation 1981-2000 (*Table 8.3*).

	CHD deaths 1981	Attributabl e fraction (PAR)	CHD deaths attributable to deprivation in 1981	Relative reduction in deprivation	Mortality Reduction 1981/2000
and a second	́а, а	b 🔁 b	(a x b)	C	(a x b x c)
Men, aged 65-74	31,632	0.038	1,195	0.37	442

Table 8.3 Deaths prevented or postponed by improvements in deprivation, using PAR methodology

Model Validation: Comparison with observed mortality falls

The model **estimate** for the total DPPs by all treatments plus all risk factor changes (or increase in the case of obesity, diabetes and physical inactivity) was summed and then compared with the **observed** falls in mortality for men and women in each specific age group. On an *a priori* basis, any shortfall in the overall model estimate was then formally attributed to other, unmeasured risk factors³⁻⁵.

Sensitivity Analyses

Because of the uncertainties surrounding many of the values, a multi-way sensitivity analysis was performed using Brigg's analysis of extremes method^{231;341}. Minimum and maximum mortality reductions were generated for therapeutic effectiveness, using 95% confidence intervals for relative risk obtained from the most recent meta-analyses or large randomised controlled trials and the minimum and maximum plausible values for the remaining key parameters: Patient numbers, treatment uptake and adherence were based on the quality of the available data: eligible patient numbers $\pm 10\%^{196;201}$, treatment uptake $\pm 50\%$, and compliance $\pm 30\%^{331}$. Corresponding sensitivity analyses were constructed for risk factors, the key parameters being the β coefficient, relative risk, change in risk factor and CHD death numbers in base year.

Illustrative examples of sensitivity analyses and calculations are shown in the Box 8.7:

Box 8.7 Example of sensitivity analysis for benefits from treatments given to CHD patients.

Sensitivity analysis for mortality reduction estimation for men aged 55-64 given aspirin for acute myocardial infarction:

In the ATT meta analysis, aspirin reduced relative mortality in men with acute

myocardial infarction by 15%¹⁶⁰. In England and Wales in 2000, 10,699 men aged 55-

64 were eligible, and 95% were given aspirin²⁸⁹. One year case fatality in men aged

55-64 admitted with an acute myocardial infarction was approximately 1700¹⁴³.

The DPPs for at least a year were therefore calculated as:

Patient numbers x treatment uptake x relative mortality reduction x one-year case fatality = $10,699 \times 95\% \times 15\% \times 17\% = 259$ DPPs.

	Patient numbers	Treatment Uptake	Relative Mortality reduction	One year case fatality	DPPs
	a	b	С	d	(a x b x cxd)
Best Estimate	10,699	0.95	15%	17%	259
Minimum estimate	9,629	0.48	11%	14%	71
Maximum estimate	11,769	0.99	19%	22%	487

This may be described as a "robust" approach for two reasons.

a) maximum and minimum values for each variable were deliberately forced to provide a wider range rather than a narrower one, eg relative mortality reduction $\pm 20\%$ rather than say, $\pm 10\%$.

b) the resulting product, for instance the minimum estimate, was generated by assuming that the lowest feasible values all occurred at the same time, a most unlikely situation.

8.2 Identification and assessment of relevant data for IMPACT Model

In *Chapter 7*, I presented and evaluated the CHD data sources in the UK. The review showed that available information on CHD in the UK is frequently patchy, obsolete or not available. Although the data are scarce with a good assessment of data quality and assumptions or extrapolations they might still be used for modelling. In this section I would like to present how I identified and assessed the data used for IMPACT Model.

To build the IMPACT Model a wide range of data was needed from many different sources. Information on population, demographic changes, mortality and myocardial infarction incidence was principally obtained from routine health statistics from the Office for National Statistics (ONS) and the British Heart Foundation's Annual CHD Statistics². The number of patients admitted to hospital with myocardial infarction, angina and heart failure was obtained from Hospital Episode Statistics (HES). Patients undergoing cardio-pulmonary resuscitation (CPR) in the community or in hospital were enumerated from various surveys. Information on patients undergoing CABG surgery and angioplasty came from the United Kingdom Cardiac Surgical Register and the British Cardiovascular Intervention Society's Audit returns respectively^{197;198}. Surviving patients eligible for secondary prevention therapies after myocardial infarction, CABG surgery or angioplasty were calculated using routine statistics and revascularisation registers (*Box 8.8*).

The number of patients in the community with treated or untreated hypertension or angina was calculated using the 1998 Health Survey for England and the British Regional Heart Study. The number of treated and untreated heart failure patients in the community was obtained from General Practice returns and survey data (Box 8.8).

Information	Source
Population (1981-2000)	Office for National Statistics ^{195,266,277,278} and British
Deaths by age and sex (1981-2000)	Heart Foundation Annual CHD Statistics ² .
CHD mortality rates	
Acute myocardial infarction	Hospital Episode Statistics(HES) ¹⁹⁶
patients	British Heart Foundation Annual CHD Statistics ² .
CABG surgery patients	UK Society for Cardiothoracic Surgeons of Great
	Britain and Ireland's web site
	(http://www.scts.org/doc/2102) ¹⁹⁷ . Figures for
	England and Wales obtained by deducting numbers
	for Scotland and Ireland from UK total.
Angioplasty patients	British Cardiovascular Intervention Society's web
	site http://www.bcis.org.uk/audit/Bcis00.ppt.
Patient numbers eligible for	AMI survivors from Hospital Episode Statistics
secondary prevention	(HES) ¹⁹⁶ plus SLiDE ¹⁴³ . CABG and angioplasty
	patients from websites above.
Angina patients admitted to	Hospital Episode Statistics 1999-2000
hospital categorised as a)	(http://www.doh.gov.uk/hes/index.html) ¹⁹⁶ .
emergencies or b) elective	
Angina patients in the community	Prevalence of 'ever experienced angina' from
	Health Survey for England 1998 ⁴⁸ , and British
	Regional Heart Study ²⁷⁹ .
Heart failure patients admitted to	Hospital Episode Statistics 1999-2000
hospital	(http://www.doh.gov.uk/hes/index.html) ¹⁹⁶
Heart failure patients in the	Prevalence from Key Health Statistics from
community	General Practice 1998 report ²⁰¹ and Stewart et al ²⁸⁶ .

Box 8.8 Population and patient data sources for England and Wales, 1981-2000.

Information on treatment prescription and uptake was obtained from various national and

local clinical audits and surveys (Box 8.9).

Box 8.9	Medical and su	rgical treatments	included in th	e model: data s	ources for
treatmen	at uptake levels				

	Treatment Untake	Source (vear)
TREATMENTS	in 2000 (overeas)	Source (Jean)
	III 2000 (average)	
ACUTE MYOCARD	IAL INFARCTION	
Cardio-pulmonary re	suscitation	
Community	46%	Julian (2002) ¹⁵⁹ , UKHAS-Norris, 1998 ¹⁵⁷
Hospital	99%	Julian (2002) ¹⁵⁹ , UKHAS-Norris, 1998 ¹⁵⁷
	88%	Sayer (2000) ³⁴²
	65% (aged <65)	BRESUS- Tunstall-Pedoe (1992) ²⁸⁰
	57% (aged>65)	
Thrombolysis	54%	UKHAS-Norris, 1998 ¹⁵⁷
	55%	Julian (2002) ¹⁵⁹
	50%	French (1996) ³⁴³
	85%	Birkhead (1999) ²⁸⁴
	Age gradient	Barakat (1999) ³⁴⁴
Aspirin	79%	UKHAS-Norris, 1998 ¹⁵⁷
	70%	Brown(1997) ²⁷⁰
N	86%	French (1996) ³⁴³
Primary angioplasty	<1%	David Cunningham, Myocardial Infarction
		National Audit Project (MINAP) (2002)-
		personal communication
Intravenous	<5%	Hardy (1999) ³⁴⁵ , Owen (1998) ³⁴⁶ , Woods
beta-blockers		(1989) ³⁴⁷
	6.6%	Ferguson (1999) ³⁴⁸
	32%- 56%	Brown(1997) ²⁷⁰
	19%	UKHAS-Norris (1998) ¹⁵⁷
••••••••••••••••••••••••••••••••••••••	19%	UKHAS-Norris (1998) ¹⁵⁷
ACE inhibitors	6%-17%	Brown(1997) ²⁷⁰

Aspirin	61%-70%	Ryan (2001) ²⁸⁹
	81%	EUROASPIRE II (2001) ²⁶⁹
Beta-blockers	44%	EUROASPIRE II (2001) ²⁶⁹
	80%	Myocardial Infarction National Audit Project
		(MINAP) (2002)
ACE inhibitors	27%	EUROASPIRE II (2001) ²⁶⁹
	25%	Ryan (2001) ²⁸⁹
Statins	20%	Reid (2002) ³⁴⁹
	36%	Whincup (2002) ³⁵⁰
	69%	EUROASPIRE II (2001) ²⁶⁹
	10%-60% Men	Ryan (2001) ²⁸⁹
	9%-35% Women	
	33%	British Regional Heart Study (2001) ³⁵¹
	55%M, 40%F	DeWilde (2002) ³⁵²
	50%	Benner (2002) ³⁵³
	36%	Jackevicius (2002) ³⁵⁴
Warfarin	. 4%	EUROASPIRE II (2001) ²⁶⁹
Rehabilitation	14%- 23% post	Bethel (2001) ³⁵⁵
	AMI	
	33%- 56% post	
	CABG	
	34%	EUROASPIRE II (2001) ²⁶⁹
CHRONIC ANGIN	A	
CABG surgery	100%	Society of Cardiothoracic Surgeons of Great
		Britain and Ireland ¹⁹⁷ , Martin (2002) ³²⁷
Angioplasty	100%	British Cardiac Intervention Society
		$(2002)^{198}$. Martin $(2002)^{327}$
Aspirin in community	50%	Ryan (2001) ²⁸⁹
----------------------	-------------	-------------------------------
Statins in community	10%	Ryan (2001) ²⁸⁹
	23%	Whincup (2002) ³⁵⁰
	21%	BRHS (2001) ³⁵¹
	35% and 25%	Reid (2002) ³⁴⁹

UNSTABLE ANGINA

Aspirin & Heparin	60%	PRAIS Study- Collinson (2000) ³⁵⁶
Aspirin alone	30%	PRAIS Study- Collinson (2000) ³⁵⁶
Platelet glycoprotein	50%	PRAIS Study- Collinson (2000) ³⁵⁶
IIB/IIIA inhibitors		

HEART FAILURE IN THE HOSPITAL

ACE inhibitors	58%	Cleland (2002) ³⁵⁷	
Beta-blockers	28%	Cleland (2002) ³⁵⁷	
Spironolactone	10%	Cleland (2002) ³⁵⁷	
Aspirin	50%	Cleland (2002) ³⁵⁷	
Statins	32%	Cleland (2002) ³⁵⁷	

HEART FAILURE IN THE COMMUNITY

ACE inhibitors	68%	Ellis (2001) ³⁵⁸	
Beta-blockers	17%	Cleland (2002) ³⁵⁷	
Spironolactone	12%	Cleland (2002) ³⁵⁷	а _{йан} ,
Aspirin	38%	Ellis (2001) ³⁵⁸	
Statins	43%	Cleland (2002) ³⁵⁷	

HYPERTENSION TREATMENT

	59%	Health Survey for England 1998(2001) ¹³⁰
STATINS FOR PR	IMARY PREVEN	ΓΙΟΝ

3%	Packham (2000) ³⁵⁹

Data on the efficacy of therapeutic interventions were obtained from published randomised controlled trials, meta-analyses and cohort studies (Box 8.10).

Box 8.10	Clinical efficacy of interventions:	relative risk reductions obtained from meta-
analyses,	and randomised controlled trials*	

TREATMENTS	Relative Risk	Source paper: First author (year)	
	Reduction		
ACUTE MYOCARDIAL INFARCTION			
Cardio-pulmonary resuscita	ation (CPR)		
Community CPR	10%	Julian (2002) ¹⁵⁹ , BRESUS Study-Tunstall-	
		Pedoe(1992) ²⁸⁰ , Cobbe(1996) ³⁶⁰	
Hospital CPR	30% aged <65	Julian (2002) ¹⁵⁹ , BRESUS Study- Tunstall-	
	15% aged >65	Pedoe(1992) ²⁸⁰	
Thrombolysis	20%-30%	FTT, Collins(1996) ³⁶¹ , Estess(2002) ³⁶²	
Aspirin	15%	Antithrombotic Trialists' Collaboration	
		$(2002)^{160}$	
Primary angioplasty	30%	Cucherat (2000) ¹⁶⁴	
Beta-blockers	4%	Freemantle (1999) ¹⁶⁶	
ACE inhibitors	7%	Latini (1995) ¹⁶⁵	
SECONDARY PREVENTION	ON IN CHD PA	TIENTS	
Aspirin	15%	Antithrombotic Trialists' Collaboration (2002) ¹⁶⁰	
Beta-blockers	23%	Freemantle (1999) ¹⁶⁶	
ACE inhibitors	23%	Flather (2000) ¹⁶⁷	
Statins	29%	Pignone (2000) ³⁴	
Warfarin	15%	Lau (1992) ³⁶³	
Rehabilitation	27%	Brown (2003) ³²⁴	
CHRONIC ANGINA			
CABG surgery	39%	Yusuf (1994) ³³⁰	
Angioplasty	8%	Yusuf (1994) ³³⁰ , Pocock (1995) ¹⁵² , Folland	
		(1997) ³²⁹	
Aspirin	15%	Antithrombotic Trialists' Collaboration(2002) ¹⁶⁰	
Statins	29%	Pignone (2000) ³⁴	

UNSTABLE ANGINA			
Aspirin alone	15%	Antithrombotic Trialists' Collaboration (2002) ¹⁶⁰	
Aspirin & Heparin	27%	Oler (1996) ³⁶⁴	
Platelet glycoprotein	9%	Boersma(2002) ³⁶⁵	
IIB/IIIA inhibitors			
HEART FAILURE IN HO	SPITAL PATI	ENTS	
ACE inhibitors	26%	Flather (2000) ¹⁶⁷	
Beta-blockers	37%	Shibata (2001) ¹⁷⁷	
Spironolactone	30%	Pitt (1999) ¹⁷⁶	
Aspirin	15%	Antithrombotic Trialists' Collaboration (2002) ¹⁶⁰	
Statins	29%	Pignone (2000) ³⁴	
HEART FAILURE IN TH	IE COMMUNI	ГҮ	
ACE inhibitors	26%	Flather (2000) ¹⁶⁷	
Beta-blockers	37%	Shibata (2001) ¹⁷⁷	
Spironolactone	41%	Pitt (1999) ¹⁷⁶	
Aspirin	15%	Antithrombotic Trialists' Collaboration (2002) ¹⁶⁰	
Statins	29%	Pignone (2000) ³⁴	
HYPERTENSION TREAT	IMENT		
······································	11%	Collins (1990) ³⁶⁶	
STATINS FOR PRIMARY	Y PREVENTIO	N N	
	29%	Pignone (2000) ³⁴	

*Relative Risk calculated as 1- Odds Ratio

Population risk factor trend data were obtained mainly from The British Regional Heart Study, the General Household Survey, and the Health Survey for England (*Box 6.11*).

Cardiovascular					
Risk factors	Source				
Information	Initial Year (1981) Most Recent Year (20				
Smoking prevalence	General Household Survey 1980 ²⁷³	General Household Survey 2000 ²⁰⁰			
Cholesterol	British Regional Heart	Health Survey for England 1994			
	Study ²⁷²	and 1998 ⁴⁸ . Glasgow MONICA			
		and Belfast MONICA trends			
		1985-1995 also available for			
		comparison ¹⁵⁶			
Population blood	The Dietary and Nutritional	Health Survey for England 1998 ⁴⁸			
pressure	Survey of British Adults ²⁹⁵ and				
	British Regional Heart				
	Study ²⁷²				
Obesity	The Heights and Weights of	Health Survey for England 1998 ⁴⁸			
	Adults in Great Britain ²⁹⁷				
Physical activity	British Regional Heart	Allied Dunbar Survey 1990 ²⁹⁹ ,			
	Study ²⁷²	Department of Transport's			
		Transport Statistics for Great			
		Britain ²⁹⁸			
Diabetes	Poole Diabetes Study ³⁰³	Health Survey for England 98 ⁴⁸ ,			
		General Practice Research			
		Database ³⁰⁴			
Deprivation	Trends in Household	Trends in Household Income ³³²			
	Income ³³²				

Box 8.11 Data sources on cardiovascular risk factors in the UK, 1981-2000.

In general data sources provided necessary information for modelling with some limitations. These limitations were discussed in detail in *Chapter 7*.

Data on the mortality reduction from specific population cardiovascular risk factor changes: β coefficients

These were obtained from published randomised controlled trials, meta-analyses and cohort studies. A range of different coefficients describing the relationship between each separate risk factor and CHD mortality were presented below (*Box 8.12 and Box 8.13*). These coefficients represent % change in CHD mortality by 1 % change in mean population risk factors.

Box 8.12 Estimated β coefficients from multiple regression analyses quantifying the relationship between changes in population mean risk factors and changes in CHD mortality for men aged under 65.

	β Coefficients				
Study	Smoking	Cholesterol	Blood Pressure		
Sigfusson 1991 ³³⁷	0.51	2.22	1.06		
Law et al. 1994 ³²	-	1.9 - 5.4*			
Vartiainen et al. 1994 ¹⁹²	0.70	2.00	1.67		
MONICA, 2000 ¹²⁵	0.73	1.31	0.53		
Collins/MacMahon, 1990 ^{24;366}	-	-	2.08		
Seven Countries ^{367;368}	-	2.10	2.09		
Our 'best' estimates	0.51	2.46	1.67		
Minimum	0.40	1.31	0.53		
Maximum	0.73	3.00	2.09		

*adjusted for regression dilution bias

The MONICA study considered the impact of changes in risk factors on changes in CHD mortality at a *population* level. However, the MONICA coefficients have been criticised for 'ecological bias' and may underestimate the relationship between changes in risk factors and population trends in CHD mortality. This is because:

 those who do not respond to risk factor surveys may be at higher risk than attendees, and a decreasing response rate to MONICA surveys was observed over the course of the study¹²⁵.

- the major outcome from the MONICA study was all coronary events, not just CHD mortality, which may slightly dilute the β coefficients obtained.
- MONICA coefficients do not account for possible regression dilution bias; adjusted coefficients may be as much as 60% higher³².
- 4) The principal MONICA estimates made no allowance for a possible lag time between changes in the risk factor levels and changes in population CHD mortality¹²⁵.

The MONICA coefficients for cholesterol and diastolic blood pressure are generally lower than from other sources^{192;368} and have thus been used in our model as minimum estimates using the data for males only. In many MONICA centres, the number of events among females was too small to obtain reliable estimates, and the smoking coefficient appeared particularly anomalous.

The coefficients derived from meta-analyses and the largest cohort studies were therefore regarded in our model as the best estimates. The best estimates were taken from the Sigfusson study in Iceland for smoking³³⁷, from the Law meta-analysis for cholesterol³² and Finland for blood pressure¹⁹². Maximum estimates for cholesterol were taken from Law *et al*³², for smoking from MONICA¹²⁵ and for blood pressure from the Seven Countries^{367;368}.

Minimum estimates for cholesterol and blood pressure came from MONICA Study¹²⁵. The coefficients were reduced in older age groups to reflect good epidemiological evidence suggesting that relative risk is attenuated by age³².

In the sensitivity analyses, the England and Wales IMPACT model proved to be stable with a range of beta coefficients.

There were no suitable Beta coefficients describing the individual relationships between obesity, diabetes, physical inactivity, and deprivation with CHD mortality. Relative Risks were therefore taken from the largest and most recent studies available (*Box 6.13*).

Box 8.13 Relative risks for obesity, diabetes, physical inactivity and deprivation and coronary heart disease mortality (Best, minimum and maximum estimates).

	Relative Risk (95% Confidence Interval)				
	Obesity	Diabetes	Physical	Deprivation	
	(BMI>29kg/m ²)	(clinically diagnosed) ³⁰³	activity (moderate activity 3 times a week) ⁴⁸	(Carstairs score, most deprived 5 th quintile, based on SliDE data) ³³⁹	
Men	Stevens $(1998)^{369}$, RRs ranged from 1.57 to 2.33 [#] by age groups.	Khaw (2001) ³³⁸ , RR=4.24*(1.92- 9.35)	Shaper (1991) ⁵³ RR=0.50** (0.2-0.8)	Smith (1998), Renfrew and Paisley Study ³⁴⁰ .	
				RR=1.24(1.03- 1.49) ⁺	
Women	Stevens (1998) ³⁶⁹ , RRs ranged from 1.00 to 2.24 [#] by age groups. Willett (1995) ⁵⁰ RR=3.56 (2.96-4.29)	Female RRs x 1.5 higher than male, (Members of the British Diabetic Association Study) ³⁷⁰	Lee $(2001)^{371}$, RR=0.55*** (0.37-0.82)	Smith (1998), Renfrew and Paisley Study ³⁴⁰ . RR=1.44 (1.15- 1.80) ⁺	

[#]Adjusted for age, education, physical activity, alcohol consumption.

* Adjusted for age, serum cholesterol, systolic blood pressure, smoking, BMI, MI or stroke history.

** Adjusted for BMI, social class, smoking, total cholesterol, HDL cholesterol, FEV1, breathlessness and heart rate.

***Adjusted for age, treatment, smoking, alcohol, fat consumption, fibre, fruits and vegetables, use of hormones, postmenopausal status, parental history of MI at an early age.

⁺Adjusted for age, blood pressure, cholesterol, BMI, FEV1 score, smoking, angina, ECG ischeamia, bronchitis and social class.

In this chapter, I have described the IMPACT Model and methodology. In the next chapter, I will describe how I then attempted to use the IMPACT Model to analyse the recent CHD mortality trends in England and Wales.

9 EXPLAINING THE DECLINE IN CHD MORTALITY IN ENGLAND AND WALES BETWEEN 1981 AND 2000

Having described the IMPACT Model and methodology in the previous chapter, I will now describe how I then examined the CHD mortality trends in England and Wales between 1981 and 2000.

9.1 Introduction

Since the 1970s, CHD mortality rates have halved in most industrialised countries but somewhat less in the UK². Explanations for the mortality falls remain controversial¹⁵⁶. Many authors credit the increasingly widespread use of effective therapies such as thrombolysis, aspirin, ACE-inhibitors, statins and coronary artery bypass surgery^{372:373}. Others highlight reductions in major cardiovascular risk factors such as smoking, cholesterol and blood pressure^{119;156}. While both components are probably important, answering this complex question appears difficult.

Some researchers have therefore used models of varying degrees of sophistication to try and explain the observed declines in CHD mortality³. The majority consistently suggest that risk factor improvements explain more of the mortality decline than do treatments. For example, it has been estimated that the proportion of mortality decline attributable to risk factor reductions was 57% in the USA between 1980 and 1990²³³, 60% in Auckland, New Zealand between 1974 and 1981¹⁹⁴ and 52% between 1982 and 1993⁵, and 60% in Scotland between 1975 and 1994⁴. Since then, however, many effective therapies have been introduced¹⁴⁸.

A better understanding of the CHD mortality fall in Britain and other countries is clearly essential, both to predict future trends and to clarify policy options for CHD prevention^{148;374}. I have therefore examined how much of the fall in CHD mortality in England and Wales between 1981 and 2000 can be attributed to 'evidence based' medical and surgical treatments, and how much to changes in major cardiovascular risk factors.

9.2 Methods

In the cell-based IMPACT mortality model, described in *Chapter 8*, I identified and incorporated data for men and women aged 25 to 84 years in England and Wales detailing; a) CHD patient numbers, b) uptake of specific medical and surgical treatments, c) population trends in major cardiovascular risk factors (smoking, total cholesterol, hypertension. obesity. diabetes, physical activity and socio-economic deprivation), d) effectiveness of specific cardiological treatments, and e) effectiveness of specific risk factor reductions.

The methods used and identification and assessment of relevant data for English IMPACT Model were presented in *Chapters 7 and 8* therefore only results and discussion will be presented here.

9.3 Results

In England and Wales between 1981 and 2000, CHD mortality rates fell by 62% in men and 45% in women aged 25-84. There were 68,230 fewer CHD deaths than expected from baseline mortality rates in 1981 (Appendix 7).

Medical and surgical treatments (Table 9.1)

Medical and surgical treatments together prevented or postponed approximately 25,765 deaths (minimum estimate 15,390, maximum estimate 45,265). This represented approximately 42% of the total CHD mortality fall, after allowing for treatments given in 1981 (*Figure 9.1*). Substantial contributions came from treatments in individuals for secondary prevention (11.2%), heart failure (12.6%), acute myocardial infarction (7.7%), angina (7.0%), and hypertension (3.1%).

Approximately 4,740 deaths were prevented or postponed by immediate treatments for acute myocardial infarction; the biggest contributions came from cardiopulmonary resuscitation, aspirin and thrombolysis. CABG surgery and PTCA were estimated to prevent or postpone approximately 1,935 and 559 deaths respectively, accounting for 3.8% of the total (*Table 9.1*).

Adjustment for polypharmacy in individual patients

Applying the Mant and Hicks equation to the uptake of multiple medications in individual patients would reduce the total DPPs (25,765) by approximately 2,118 (395 in acute myocardial infarction, 800 in heart failure patients and 923 in secondary prevention) (Appendix 9).

Figure 9.1 Coronary heart disease deaths prevented or postponed by treatments and risk factor changes in the England and Wales population between 1981 and 2000.

TREATMENTS	Patients eligible	Treatment uptake	Deaths	prevented or	postponed	Proportion of overall DPPs (%)			
		(%)*	Best Estimate	Minimum estimate	Maximum estimate	Best Estimate	Minimum estimate	Maximum estimate	
Acute myocardial infarction	66,195		4,740	3,225	8,290	7.7	5.2	13.5	
Community Resuscitation	(3,045)	48%	800	740	960	1.3	1.2	1.6	
Hospital Resuscitation	(7,280)	99%	1,455	680	2,185	2.4	1.1	3.5	
Thrombolysis		46%	1,320	600	1,995	2.1	1.0	3.2	
Aspirin		94%	1,950	1,130	2,780	3.2	1.8	4.5	
Primary angioplasty		1%	40	15	205	0.1	0.0	0.3	
Beta-blockers		4%	20	10	40	0.0	0.0	0.1	
ACE inhibitors		19%	170	45	125	0.3	0.1	0.2	
Secondary prevention			6,900	4,585	12,670	11.2	7.4	20.6	
2' prevention post infarction	313,380		3,844	2,850	5,060	6.2	4.6	8.2	
Aspirin		56%	1,240	640	1,990	2.0	1.0	3.2	
Beta-blockers		34%	970	570	1,635	1.6	0.9	2.7	
ACE inhibitors		19%	440	335	1,440	0.7	0.5	2.3	
Statins		25%	460	430	1,340	0.7	0.7	2.2	
Warfarin		4%	100	60	235	0.2	0.1	0.4	
Rehabilitation		23%	675	305	1,230	1.1	0.5	2.0	
2' prevention post revascularisation	315,680		3,055	1,735	7,610	5.0	2.8	12.4	
Chronic Angina			3,425	1,905	5,890	5.6	3.1	9.6	
CABG surgery (1990-2000)	187,415	100%	1,935	1,125	2,375	3.0	1.8	3.8	
Angioplasty (1990-2000)	112,405	100%	560	160	815	0.8	0.3	1.3	
Aspirin in Community	1,763,635	55%	1,105	625	2,115	1.6	1.0	3.4	
Unstable Angina	67,375		910	620	1,620	1.5	1.0	2.6	
Aspirin & Heparin		59%	465	335	720	0.8	0.5	1.2	
Aspirin alone		30%	235	125	655	0.4	0.2	1.1	
Platelet IIB/IIIA Inhibitors		48%	210	160	245	0.3	0.3	0.4	

Table 9.1 Deaths prevented or postponed (DPP) by medical and surgical treatments in England and Wales in 2000.

TREATMENTS Patients Treatment Deaths prevented or postponed eligible uptake					postponed	Proportion of overall DPPs (%)			
Table 9.1 (Continued)		(%)*	Best Estimate	Minimum estimate	Maximum estimate	Best Estimate	Minimum estimate	Maximum estimate	
Heart failure- total			7,760	4,162	13,596	12.6	6.8	22.1	
Heart failure- in hospital	34,690		4,755	2,295	7,680	7.6	3.7	12.5	
ACE inhibitors		62%	1,850	635	2,625	3.0	1.0	4.3	
Beta-blockers		31%	1,280	745	2,270	2.1	1.2	3.7	
Spironolactone		10%	350	220	675	0.6	0.4	1.1	
Aspirin		50%	870	405	1,535	1.4	0.7	2.5	
Statins		21%	410	290	575	0.7	0.5	0.9	
Community heart failure	242,090		3,210	1,940	6,320	5.0	3.1	10.3	
ACE inhibitors**		56%	1,535	1,020	3,050	2.5	1.7	4.9	
Beta-blockers**		15%	550	330	885	0.9	0.5	1.4	
Spironolactone		10%	205	125	415	0.3	0.2	0.7	
Aspirin		29%	585	350	1,480	1.0	0.6	2.4	
Statins**		17%	335	110	490	0.5	0.2	0.8	
Hypertension Treatment	13,352,870	53%	1,890	840	2,785	3.1	0.0	4.5	
Statins for primary prevention	7,630,760	3%	145	45	410	0.2	0.0	0.7	
Total Treatment Effects- 2000			25,765	15,390	45,265	41.8	27.7	73.5	

* Treatment uptake levels are weighted averages of age specific uptake levels **Treatment efficacy for these groups was reduced by 25% assuming that only about 50% were on the optimal treatment dose.

Major cardiovascular risk factors (Table 9.2)

Changes in the major cardiovascular risk factors together produced a best estimate of 35,830 fewer deaths (minimum estimate 23,155, maximum 62,555) (*Table 9.2*). This therefore accounted for some 58% of the total mortality fall between 1981 and 2000. The biggest contribution came from the reduction in smoking (48.2%), along with decreases in serum total cholesterol levels (9.4%), blood pressure (9.5%) and deprivation (3.5%) (*Table 9.2*). These mortality reductions reflected a substantial decline in smoking prevalence and smaller reductions in mean blood pressure, total cholesterol and deprivation (*Table 9.2*).

Adverse trends were seen for obesity, physical activity, and diabetes. They, together caused approximately 7,650 additional CHD deaths (*Table 9.2*). The prevalence of obesity increased by 186%, resulting in an estimated additional 2,095 CHD deaths. Diabetes prevalence increased by 66% with approximately 2,890 additional CHD deaths, and indirect evidence suggested a 30% decrease in physical activity (with some 2,660 additional deaths (*Table 9.2*).

RISK FACTORS	% Change in risk factor	Deaths _j	prevented or (number)	postponed	Proportion of overall DPPs (%)			
	1981-2000	Best Estimate	Minimum estimate	Maximum estimate	Best Estimate	Minimum estimate	Maximum estimate	
Smoking	-34.5%	29,715	20,035	44,675	48.2%	32.5%	65.5%	
Population blood pressure	-7.7%	5,865	4,245	15,470	9.5%	5.5%	20.6%	
Cholesterol	-4.2%	5,770	3,930	12,100	9.4%	8.6%	27.0%	
Deprivation	-6.6%	2,125	1,065	3,190	3.5%	1.7%	5.2%	
Physical activity	- 30.6%	-2,660	-1,490	-3,460	-4.3%	-2.4%	-5.6%	
Obesity	+186.2%	-2,095	-1,340	-2,585	-3.4%	-2.2%	-4.2%	
Diabetes	+65.6%	-2,890	-2,565	-4,685	-4.7%	-4.2%	-7.6%	
Total risk factor effects	-	35,830	23,155	62,555	58.2%	37.6%	76.2%	

Table 9.2 Deaths prevented or postponed as a result of population risk factor changes in England and Wales 1981 and 2000.

	Total	25-34	35-44	45-54	55-64	65-74	75-84
Men	70%	89%	87%	85%	77%	64%	65%
Women	30%	11%	13%	15%	23%	36%	35%
Men /Women Ratio	2.34	7.95	6.48	5.52	3.29	1.81	1.84
Total DPPs	61,595	185	1,510	6,625	13,750	21,065	18,460

Table 9.3 Percent contribution of men and women to total DPPs by age groups in England and Wales (1981–2000).

In year 2000 most of the DPPs due to cardiac treatments and risk factors changes in England and Wales came from men (70% in men and 30% in women). In younger age groups 85% to 90% of the DPPs were from men. After the age of 65, the ratio of DPPs in men compared with women decreased below 2 (*Table 9.3*).

Table 9.4 Percent contribution of treatments and risk factor changes to total DPPs in men and women by age groups in England and Wales (1981-2000).

	Men	25-34	35-44	45-54	55-64	65-74	75-84
Treatments	37%	19%	28%	33%	37%	42%	34%
Risk factors	63%	81%	72%	67%	63%	58%	66%
Total DPPs	43,155	165	1,310	5,610	10,545	13,555	11,970
	Women	25-34	35-44	45-54	55-64	65-74	75-84
Treatments	54%	69%	51%	50%	50%	48%	63%
Risk factors	46%	31%	49%	50%	50%	52%	37%
Total DPPs	18,445	20	200	1,015	3,205	7,510	6,490

In general, risk factor changes prevented or postponed more deaths in men compared with treatment effects (63% versus 37%). In women, the treatment effect was relatively greater, similar to risk factor changes in all age groups (*Table 9.4*).

Sensitivity Analyses, Validation and Model Fit

Figure 9.2 demonstrates the results of the sensitivity analysis. The proportional contributions of specific treatments and risk factor changes to the overall fall in CHD mortality in England and Wales between 1981 and 2000 remained relatively consistent (*Figure 9.2*). Thus, all secondary prevention treatments together accounted for approximately 11% of the total mortality fall of 68,230. The minimum contribution was 7% and the maximum 21%. This contribution therefore remained consistently larger than that for acute myocardial infarction or hypertension (*Figure 9.2*).

The agreement between the estimated and observed mortality falls for men and women in each age group was generally good *(Table 9.5).* Overall, the model accounted for 90% of the total mortality fall in England and Wales between 1981 and 2000, (96% in men and 79% in women). In general, the model estimates were close to the actual falls in men in all age groups. However, in women model fit less good, 79% overall and only 56% in women aged 75-84 years. As planned, the remaining 10% was attributed to other, unmeasured factors such as dietary changes and life-course effects.

MEN	25-34	35-44	45-54	55-64	65-74	75-84	Total
Estimated fall in CHD deaths	166	1,308	5,609	10,545	13,556	11,969	43,153
Observed fall in CHD deaths	168	1,314	5,571	10,685	15,342	11,740	44,822
Discrepancy	-3	-6	37	-140	-1.786	229	-1,669
Model Fit: Estimated fall / Observed fall in CHD deaths	98%	100%	101%	99%	88%	102%	96%
WOMEN	25-34	35-44	45-54	55-64	65-74	75-84	Total
Estimated fall in CHD deaths	21	202	1,015	3,204	7,510	6,492	18,444
Observed fall in CHD deaths	28	155	998	3,054	7,479	11,695	23,409
Discrepancy	-7	47	17	150	31	-5,203	- 4965
Model Fit: Estimated fall / Observed fall in CHD deaths	76%	130%	102%	105%	100%	56%	79%

Table 9.5 Model validation: estimated versus observed changes in CHD deaths in England and Wales 1981-2000.

Figure 9.2 Proportional contributions of specific treatments and risk factor changes to the CHD mortality reduction in England and Wales, 1981-2000: Results of a sensitivity analysis.

(
Best estimate, - minimum and maximum estimates)

9.4 Interpretation

CHD mortality in England and Wales fell by more than half between 1981 and 2000. Approximately 40% of this fall was attributable to the combined effects of modern cardiological treatments and almost 60% to reduction in major risk factors, particularly smoking. This is consistent with the majority of other studies in the USA¹⁹³, Europe²⁵¹. Scotland⁴, and New Zealand⁵. Although Hunink et al attributed 71% of the recent US decline to 'treatments', this exception was more apparent than real, and principally reflected a different categorisation of risk factor falls in individual patients with recognized CHD. In the entire US population, 50% of the CHD mortality decline was actually explained by risk factor reductions²³³. Furthermore, Hunink et al did not report on specific medical therapies²³³.

Modern cardiological treatments together prevented or postponed approximately 26,000 deaths in 2000. Irrespective of whether best, minimum or maximum estimates were used, the most substantial contributions came from secondary prevention and heart failure treatments. Revascularisation from CABG surgery and angioplasty together accounted for only 4% of the total mortality fall, much as in the USA³⁷⁵. This is a disappointingly small contribution, particularly when considering the large financial and political resources being consumed^{148;205}.

Thrombolysis likewise only accounted for one quarter of the deaths prevented by initial treatments for acute myocardial infarction. This was much less than aspirin and cardiopulmonary resuscitation, as in other studies¹⁵⁹. Furthermore, treating angina patients with aspirin in the community prevented almost twice as many deaths as treating unstable angina patients in hospitals, principally reflecting the larger numbers involved *(Table 9.1)*.

Treatment uptake levels were often poor *(Table 9.1)*. This was more apparent for heart failure treatments in the community. Even though there were approximately ten times more eligible patients for heart failure treatments in the community, low treatment levels and sub optimal doses²⁶⁹ resulted in fewer deaths prevented or postponed compared with hospital heart failure treatments *(Table 9.1)*. Earlier work suggested that if even 80% of eligible patients had received appropriate therapy, approximately 30,000 additional deaths might have been prevented or postponed each year in the UK⁴, equivalent to 100,000 fewer deaths in the USA.

Reductions in the major risk factors between 1981 and 2000 accounted for approximately 36,000 fewer deaths in England and Wales in 2000. The biggest single contribution reflected a large fall in smoking prevalence, from 39% to 28% overall. In sensitivity analyses, the maximum estimate for smoking decline impact remained consistently greater than all treatment effects combined *(Figure 9.2)*. Almost 10% of the mortality fall came from a relatively small reduction (4.2%) in population total cholesterol level. This emphasises the large β coefficient of 1.9 –5.4³², and highlights the potential gains from bigger reductions in population cholesterol. Other unquantified factors such as life-course effects, alcohol and other dietary improvements⁵⁵ accounted for approximately 10% of observed mortality reduction.

The adverse trends in obesity, diabetes and physical inactivity together contributed approximately 8,000 additional deaths in 2000. These cancelled out two decades of improvement in the fall of cholesterol levels. Furthermore, continuing deteriorations are expected^{148;374;376.}

Modelling studies have potential strengths and limitations. These points will be discussed in detail in the discussion section of this thesis.

In conclusion, over half the recent CHD mortality fall in England and Wales was attributed to reductions in major risk factors, and some forty percent to medical therapies.

In this chapter I focused on CHD mortality trends in England and Wales. In the next chapter, I will consider what these DPPs might mean in terms of the years of additional life gained.

10 LIFE-YEARS GAINED FROM CARDIOLOGICAL TREATMENTS AND POPULATION RISK FACTOR CHANGES IN ENGLAND AND WALES, BETWEEN 1981 AND 2000

In the last chapter, I focused on CHD mortality trends in England and Wales between 1981 and 2000. I will now attempt to estimate the years of additional life gained in 2000.

10.1 Introduction

Life expectancy at birth in England and Wales increased by 4.4 years in men and 3.2 years in women between 1981 and 2000³⁷⁷. Much of this has been attributed to reductions in CHD mortality rates, which have halved in two decades. Much of the CHD mortality decline is attributed to the widespread use of effective therapies such as thrombolysis, aspirin, ACE-inhibitors, statins and CABG³⁷². However, reductions in major risk factors such as smoking, cholesterol and blood pressure¹¹⁹ have also made substantial contributions³⁷³.

As I presented in earlier chapters, the majority of studies consistently suggest that improvements in treatment explain less than half of the mortality decline^{3-5;194;233;248}. However, most such analyses have simply concentrated on mortality rather than a gain in longevity. Therefore in this chapter I estimated the life-years gained (LYG) due to cardiological treatments and to changes in cardiovascular risk factor levels that occurred between 1981 and 2000 in England and Wales.

10.2 Methods

Estimating the number of deaths prevented or postponed in England and Wales in 2000

The number of DPPs in 2000 that could be attributed to improved cardiac treatment uptake and risk factor changes since 1981 was estimated using the IMPACT CHD mortality model²⁴⁸. The number of CHD DPPs by each treatment group and risk factor changes was estimated as described in methods section in *Chapter 8*.

Median Survival Data

Medical and surgical treatments

For each treatment category, median survival was obtained from the best available population-based data^{143;144}. Most came from a retrospective cohort study of unselected patients. This is the only UK dataset routinely linking all hospital admission records and all mortality data for an entire population of 5.1 million since 1981^{143;144}. Age-specific median survival values came principally from a large, unselected cohort of 117,718 patients admitted to hospital with a first acute myocardial infarction (AMI)¹⁴³ and all 66,547 patients with a first admission for heart failure¹⁴⁴. The first study also provides long-term survival data in all AMI survivors, including those developing heart failure¹⁴³. Case fatality in subsequent admissions was approximately twice that in first admissions¹⁴³. Median survival estimates for patients with hypertension were based on the mortality (between 7% and 29% dependent on age and sex) observed in the Glasgow Blood Pressure Clinic Cohort³⁷⁸. Estimates of survival following CABG surgery were obtained from local sources³⁷⁹, and a recent cohort study in Scotland³⁸⁰. Angioplasty for angina was assumed to have no additional survival benefit¹⁵². *Appendix 10 and 11* detail the estimates of median survival for each category and their sources.

Deaths prevented or postponed by risk factor declines

Coronary atheroma generally begins early in life, symptomatic manifestations occur late and even then may go unrecognised. The deaths prevented by a risk factor reduction such as smoking cessation may therefore benefit an individual prior to or following the onset of symptomatic disease. Age-specific median survival in a patient with recognised CHD was assumed to be very similar to that in age-matched myocardial infarction survivors. Median survival in asymptomatic individuals was simply based on age specific life expectancy for the general population³⁷⁷. For the subjects with symptomatic but unrecognised CHD, median survival was assumed to lie midway between the values for myocardial infarction survivors¹⁴³ and the general population.

Calculation of life-years gained

The number of LYG in 2000 in each ten-year age group, for men and women in each treatment category and for each risk factor change, was then estimated as the product of the

number of DPPs in England and Wales in 2000, and the estimated median survival for that group.

An example of calculation method is presented below:

Men aged 65-74 given Beta-blockers for secondary prevention of myocardial infarction:

In a meta analysis it was estimated that Beta-blockers reduced mortality in men with post myocardial infarction by $23\%^{166}$. In England and Wales in 2000, 18,180 men aged 65-74 were eligible, 33% were given Beta-blockers²⁶⁹ and compliance to treatment was assumed to be $65\%^{354}$. One year case fatality in men aged 65-74 with post myocardial infarction was approximately $7\%^{143}$. The DPPs for at least a year were therefore calculated as:

Patient numbers x treatment uptake x compliance x relative mortality reduction x one-year case fatality = $18,180 \times 33\% \times 65\% \times 23\% \times 7\% = 63$ DPPs.

Median survival was estimated to be 5.5 years in this group¹⁴³. The number of LYGs was then estimated as: *Deaths prevented or postponed x Median survival* = $63 \times 5.5 = 345 LYGs$.

Estimates of LYGs were adjusted to take into account the influence of 'competing causes of mortality^{238;381}. This inflation was small, generally amounting to less than one extra year of life.

Sensitivity analyses

A sensitivity analysis was performed using the analysis of extremes method²³¹. This addressed the uncertainties surrounding the key variables (patient numbers, treatment uptake and efficacy, the overlap between different treatment categories and median survival). Minimum and maximum estimates of LYGs were generated using 95% confidence intervals where available, otherwise the minimum and maximum plausible values for each variable²³¹ were used(*Appendix 10 and 11*).

10.3 Results

In 2000, there were 68,230 fewer CHD deaths than expected from applying mortality rates in 1981, the baseline year. The age-specific model estimates for DPPs by all interventions were compared with the observed falls in mortality in each age and sex category. The model explained 61,595 fewer deaths, representing 90% of the observed CHD mortality fall *(Chapter 9, Table 9.5).* These 61,595 fewer deaths resulted in a gain of approximately 925,415 life-years among people aged 25-84 *(minimum estimate 745,195, maximum estimate 1,138,655) (Table 10.1* and *Table 10.2).*

Life-years gained by medical and surgical treatments

Specific medical and surgical treatments for patients with CHD prevented or postponed approximately 25,745 deaths in England and Wales in year 2000^{248} . They therefore gained approximately 194,145 life-years (*minimum 142,505, maximum 259,225*) in total (*Table 10.1*). The largest contributions came from secondary prevention for patients following myocardial infarction or revascularisation (32%), heart failure treatments (13%) and hypertension treatments (9%). Coronary artery bypass surgery and angioplasty procedures together accounted for 17% of the LYGs by treatments (*Table 10.1*).

INTERVENTION	Patients eligible	Number of DPPs*	Life-Years Gained* Best estimate	%
			(Minimum to Maximum)	
Acute myocardial infarction	66,195	5,750	38,330 (20,795 to 57,880)	19.7%
Secondary prevention				
Post myocardial infarction	313,380	3,580	24,520 (11,900 to 37,140)	12.6%
Post CABG or PTCA	315,680	3,055	37,660 (35,360 to 39,960)	19.4%
Angina				
CABG	187,415	1,935	25,805 (22,550 to 31,695)	13.3%
PTCA	112,405	560	7,905 (5,405 to 10,410)	4.1%
Unstable angina	72,600	910	5,530 (4,700 to 9,400)	2.8%
Aspirin in community	2,114,665	1,105	9,690 (4,845 to 14,535)	5.0%
Heart failure				
Hospital treatment	41,385	4,755	6,120 (4,895 to 7,340)	3.2%
Community treatment	242,090	3,210	19,240 (7,605 to 21,140)	9.9%
Hypertension treatments	12,592,120	1,890	17,775 (15,290 to 25,485)	9.2%
Statins for primary prevention	7,630,760	145	1,570 (1,370 to 2,285)	0.8%
Total treatment effects in 2000		25,765	194,145 (142,505 to 259,225)	100%

Table 10.1 Number of life-years gained by medical and surgical treatments of coronary heart disease in England and Wales in 2000.

Life-years gained by risk factor changes in the population

In England and Wales, approximately 35,830 deaths were prevented or postponed by risk factor changes in the population between 1981 and 2000. This accounted for some 731,270 LYGs *(minimum estimate 602,695, maximum estimate 879,430),* and represented 79% of all LYGs we estimated in 2000. The largest contribution came from reductions in smoking (54%), blood pressure (28%) and cholesterol (22%) *(Table 10.2).*

Adverse trends between 1981 and 2000 were seen for obesity, physical inactivity, and diabetes. They together caused approximately 7,650 additional CHD deaths. This resulted in a *loss* of approximately –92,640 life-years (*minimum -68,355, maximum -100,770*), effectively halving the gain from population cholesterol reductions (*Table 10.2*).

POPULATION	% Change in	Number of	Life-Years Gained*	%
RISK FACTORS	risk factor	DPPs*	Best estimate	
	1981-2000		(Minimum to Maximum)	
Smoking	-34.0%	29,715	398,080 (304,020 to 446,260)	54.4%
Blood pressure	-7.5%	5,870	207,525 (197,870 to 288,445)	28.4%
Cholesterol	-5.6%	7,900	164,305 (128,310 to 188,145)	22.5%
Deprivation	-6.6%	2,125	53,995 (40,845 to 57,350)	7.4%
Obesity	+186.2%	-2,095	-10,690 (-8,565 to -13,470)	-1.5%
Physical activity	- 30.6%	-2,660	-37,055 (-27,245 to -39,450)	-5.1%
Diabetes	+65.6%	-2,890	-44,895 (-32,545 to -47,850)	-6.1%
Total risk factor e	ffects in 2000	35,830	731,270 (602,695 to 879,430)	100.0%

Table 10.2 Number of life-years gained by changes in population cardiovascular risk factors in England and Wales between 1981 and 2000.

Figure 10.1 Comparison of deaths prevented or postponed and life-years gained from risk factor changes and treatments given to CHD patients.

Although the numbers of DPPs from risk factor changes and treatments given to CHD patients were close to each other, number of LYGs was substantially higher from risk factor changes than treatments (*Figure 10.1*).

Age and sex distribution of life-years gained (Figure 10.2)

The majority of life-years were gained by individuals aged 55 to 74 years. More life-years were gained by men than women in all age groups; 68% (132,505 / 194,145) of the LYGs by medical and surgical treatments, and 69% (510,915 / 731,270) of the LYGs by risk factor reductions, *(Figure 10.2)*.

Sensitivity analyses (Figure 10.3)

The relative contributions from treatments and risk factor reductions remained relatively constant, irrespective of whether best, maximum or minimum estimates were considered *(Figure 10.3).*

Figure 10.2 Number of life-years gained from coronary heart disease treatments and population risk factor changes, in England and Wales between 1981 and 2000 by age and sex.

*Subjects aged 25-34: Changes in risk factors gained 4.665 life vears in men. 574 in women: treatments gained 672 life-vears in men. 219 in women.

Figure 10.3 Proportional contributions of specific treatments and risk factor changes to the total life-years gained from the CHD mortality decline in England and Wales, 1981-2000: Results of a sensitivity analysis.

(
Best estimate, - minimum and maximum estimates).

10.4 Interpretation

CHD mortality rates in England and Wales halved between 1981 and 2000. This resulted in some 70,000 fewer deaths and almost one million additional years of life. A death prevented or postponed in a patient with recognised CHD therefore gained an additional 7.5 years of life on average. Gains were greater in men, younger patients, or those surviving uncomplicated infarction, rather less in older patients or those with heart failure. In contrast, each death prevented or postponed by a risk factor reduction gained an additional 20 years of life on average, substantially more in younger individuals, rather less in older. These findings are generally consistent with previous studies³⁸².

Medical and surgical treatments in 2000 together gained approximately 195,000 life-years, a third from secondary prevention. Much of the remainder came from just three categories – hypertension, angina and heart failure. The LYGs from ACE inhibitors, beta-blockers and spironolactone were particularly impressive given the relatively low prescribing rates in 2000 and the high case fatality in heart failure patients²⁸⁶. This further emphasises that simple inexpensive treatments applied to all eligible patients can potentially produce huge gains¹⁴⁸. Conversely, the substantial resources devoted to revascularisation in 2000 undoubtedly improved quality of life, however gains in life-years were relatively modest *(Table 10.1)*.

Risk factor reductions accounted for a 79% of total LYGs. Gains would have been even greater if there had not been adverse trends in physical activity, obesity and diabetes. These represent a major public health target for the new millennium³⁷⁴. Substantial gains came from the reduction in smoking. This highlights the rapid and substantial benefits from smoking cessation²² and preventing people to start smoking. The UK abolition of tobacco advertising (February 2003) will be valuable³⁸³. However, additional measures will remain essential³⁸⁴, particularly for disadvantaged groups. Modest changes in blood pressure and cholesterol also accounted substantial LYGs. Generally risk factor changes accounted higher LYGs since these were generated in young and middle aged population.

This is the first comprehensive analysis of LYGs from risk factor reductions and cardiological treatments published for England and Wales. However, our mortality analyses are reassuringly consistent with most other studies in Europe²⁵¹, New Zealand⁵ and the USA¹⁹³.

Bunker et al. examined the 7.1 years increase in life expectancy seen in the USA between 1950 and 1989³⁸⁵. Changes in coronary and cerebrovascular disease death rates accounted for 10%-20% of this increase³⁸⁵. This is consistent with our estimates for Scotland (1975-1981)³⁸⁶ and for England and Wales.

Again in the USA, Tsevat et al attributed 1.0 to 1.2 years increase in population life expectancy by lowering blood pressure in men, (and 0.3 to 0.6 years in women), and 0.5 to 1.2 years by quitting smoking in 35-year old men (0.4 to 0.8 in women)²³⁸. Using similar assumptions, Grover et al estimated that reductions in CHD and stroke risk through blood pressure reduction would result in 0.9 to 1.2 years increase in life years in men and 0.6 to 1.3 years in women aged 40^{382} .

There are important implications for clinical and public health practice. In particular, the current UK government emphasis on treatments rather than risk factor reductions must be seriously questioned.

In conclusion, modern cardiological treatments in England and Wales in 2000 gained many thousands of life-years. However, four times as many life-years were generated by relatively modest reductions in major risk factors, principally smoking, cholesterol and blood pressure. Effective policies to promote healthy diets and physical activity, and reduce obesity, might therefore gain substantial numbers of additional life-years in England and Wales.

Having presented the impact of CHD treatment uptake and population risk factor changes in England and Wales, in the following two chapters, I will focus on the 'what if?' questions. What if treatments, or risk factor levels had been different?

11 IMPACT OF INCREASED TREATMENT UPTAKE ON CHD MORTALITY IN ENGLAND AND WALES IN 2000

In this chapter, I will explore the first "What if?" question:

'What would have been the mortality impact of increasing the uptake of cardiological treatments in England and Wales, in 2000?'

11.1 Introduction

In *Chapter 9*, I demonstrated that approximately 40% of the recent fall in CHD mortality rates can be attributed to the increasingly widespread use of effective therapies^{248;373}. Furthermore, cardiology epitomises the evidence-based medicine paradigm. A wealth of evidence from randomised trials and meta-analyses underpins an expanding range of treatments including thrombolysis, aspirin, beta-blockers, statins, ACE-inhibitors, coronary bypass surgery and angioplasty³⁷².

However, benefit can only occur if the eligible patients actually receive the appropriate therapies³⁷². Recent clinical audits and surveys suggest that treatment uptake rates remain disappointingly low for many groups of patients. For instance, following myocardial infarction, only about 25%, 44% and 56% of eligible patients receive statins, beta-blockers or aspirin respectively^{269;289;349;387}. In the community, approximately 60% of angina patients are taking aspirin²⁸⁹, yet barely 50% of heart failure patients receive ACE inhibitors³⁵⁷. Uptake rates are consistently worse in women, the elderly and the deprived³⁸⁸.

Scope remains for substantial increases in treatment uptake; these would potentially result in large reductions in both morbidity and mortality. Recent NHS strategies including the National Service Framework for Coronary Heart Disease¹⁴⁸ are now beginning to address this issue. However, simultaneously tackling all these patient groups would require substantial additional resources^{148;204}.

I therefore examined the scale of the CHD mortality reduction potentially achievable from the increased uptake of specific medical and surgical treatments in England and Wales in 2000, in order to help identifying target groups for prioritisation.

11.2 Methods

The IMPACT mortality model was used to examine the consequences of increasing uptake of specific treatments in each category of patients. The IMPACT Model and the methods used to estimate DPPs were described in detail in *Chapter 8*.

All existing values contained within the model for the year 2000 were left unchanged (numbers of eligible patients, treatment compliance and effectiveness)⁵. The best available data on uptake of specific treatments in each category of patients, as detailed above, were used to calculate the baseline.

The potential mortality benefit if uptake was increased to reach 80% of all eligible patients, (the National Service Framework target)¹⁴⁸ was then calculated, assuming optimal dosing regimens. An uptake of 100% was considered unrealistic³²¹. The corresponding calculation was performed for revascularisation, assuming that CABG surgery and PTCA procedures in 2000 were increased by 80%.

Sensitivity analyses

Mortality effects were analysed by age and sex. The key parameters were all subject to imprecision and uncertainty. Multi-way sensitivity analyses were therefore performed using the analysis of extremes method³⁴¹. Minimum and maximum mortality reductions were generated using 95% confidence intervals from meta-analyses for treatment efficacy, and minimum and maximum plausible values for patient numbers, treatment uptake and adherence³⁴¹. Information sources for number of patients, treatment uptake, treatment efficacies in IMPACT Model were presented in *Chapter 8*.

11.3 Results

In 2000, specific medical and surgical treatments in England and Wales were estimated to prevent or postpone approximately 26,000 deaths for at least one year (minimum estimate 17,110, maximum estimate 49,040) (*Table 9.1*). Some 19% of this fall was attributed to initial treatments for acute myocardial infarction, 26% for secondary prevention treatments, 31% for treatments for heart failure, and 7% for anti-hypertensive therapies (*Table 9.1*). However, uptakes were generally poor. Uptake in MI survivors averaged 56% for aspirin, 34% for beta-blockers, and 25% for statins; and for heart failure patients in the community this averaged 56% for ACE inhibitors, 17% for statins and 15% for beta-blockers (*Table 9.1*).

Mortality benefit of increasing treatment uptake to 80%

Increasing uptake to 80% of eligible patients would have prevented or postponed approximately 20,910 additional deaths at least one year (minimum estimate 11,030; maximum estimate 33,495). Of the 20,910 fewer deaths, 7,285 (35%) would have resulted from increasing heart failure treatments for community and hospital patients, and 4,680 (23%) fewer deaths from increases in secondary prevention therapies following AMI or revascularisation, *(Table 11.1)*.

Extending primary prevention statin therapy to 80% of the 7.6 million healthy individuals with total cholesterol levels above 6.2 mmol/l would have prevented approximately 3,295 deaths, representing 16% of the total gain, compared with 2,370 (11%) fewer deaths from initial treatments for acute MI; 2,680 (10%) from treatments for hypertension and 1,475 (7%) from increases in aspirin and statins for patients with angina in the community.

Only 400 (2%) additional deaths would have been prevented by an 80% increase in revascularisation procedures in 2000, and just 305 (1%) fewer deaths from increases in therapies for unstable angina (Table 11.1 and Figure 11.1).

				Deaths n	revented	or postpo	oned	
TREATMENTS	Eligible Patients	Treatment uptake in 2000	Treatment Efficacy (RRR*)	In 2000	Gain if 80% uptake	(% total gain)	Minimum estimate	Maximum estimate
Acute Myocardial Infarction	66,195			4,740	2,370	(11%)	1329	3414
Community Resuscitation	3,045	0.48	0.11	800	380			
Hospital Resuscitation	7,280	0.99	0.21	1,455	-			
Thrombolysis **		0.47	0.21	1,320	50			
Aspirin		0.94	0.15	1,950	-			
Primary angioplasty***		0.01	0.28	40	1,330			
Beta-blockers		0.04	0.04	20	195			
ACE inhibitors		0.19	0.07	170	410			
2° prevention post infarction	313,380			3,845	3,695	(18%)	2741	4865
Aspirin		0.56	0.15	1,240	65			
Beta-blockers		0.34	0.23	970	720			
ACE inhibitors		0.19	0.23	440	915			
Statins		0.25	0.29	460	645			
Warfarin****		0.04	0.15	100	250			
Rehabilitation		0.23	0.27	675	1055			
2° prevention post revascularisation	157,840			3,055	985	(5%)	561	1638
Aspirin		0.56	0.15	820	100			
Beta-blockers		0.35	0.23	570	150			
ACE inhibitors		0.22	0.23	350	270			
Statins		0.34	0.29	675	205			
Warfarin****		0.04	0.15	54	115			
Rehabilitation		0.35	0.27	585	150			

Table 11.1 Coronary heart disease mortality reduction in England & Wales in 2000: Effect of increasing treatment uptake to 80%

*RRR= relative risk reduction **60% Maximum uptake assumed ***40% Maximum uptake assumed if 60% for thrombolysis

**** 20% maximum uptake assumed for warfarin if 80% on aspirin

ALL SAMAN ALL STATISTICS	ter and the second	A CASE D. L. M. AND	ALPERT STA	Deaths prevented or postponed				
TABLE 11.1 (continued)	Eligible Patients	Treatment uptake in 2000	Treatment Efficacy (RRR)	In 2000	Gain if 80% uptake	(% total gain)	Minimum estimate	Maximum estimate
Angina revascularisation				2,495	400	(2%)	270	560
CABG surgery	187,415	1.00	0.31	1935	275		233	381
Angioplasty*	112,405	1.00	0.08	560	125		36	181
Unstable Angina	67,375			910	305	(1%)	224	419
Aspirin & Heparin		0.59	0.27	465	165			
Aspirin alone		0.30	0.15	235	0#			
IIB/IIIA Inhibitors & clopidogrel		0.48	0.09	210	140			
Chronic stable angina	2,114,670			1,105	1,475			
Aspirin		0.58	0.15	995	370	(2%)	234	790
Statins		0.07	0.29	110	1105	(5%)	958	1,471
Heart failure- in hospital	34,690			4,755	3,350	(16%)	2,178	6,206
ACE inhibitors		0.62	0.26	1,845	595			
Beta-blockers		0.31	0.37	1,280	1044			
Spironolactone		0.10	0.30	350	990			
Aspirin		0.50	0.15	870	119			
Statins		0.21	0.29	410	700			
Community heart failure-	242,090			3,210	3,935	(19%)	1,020	3,048
ACE inhibitors		0.56	0.26	1,535	34			
Beta-blockers		0.15	0.37	550	1,595			
Spironolactone		0.10	0.30	205	965			
Aspirin		0.29	0.15	585	579			
Statins		0.17	0.36	335	763			
Hypertension treatments	13,352,870	0.53	0.11	1,890	945	(5%)	438	1586
Statins for primary prevention	7,630,760	0.03	0.29	145	3,295	(16%)	1,078	5,493
TOTAL				25,765	20,910	100%	11,030	33,495

*Assuming relative risk reduction of 8%, equivalent to CABG for two vessel disease # If 80% get Heparin plus Aspirin, no option for increase in aspirin alone
Figure 11.1 Estimated CHD mortality reductions in 2000, and potential gains IF specific treatment uptakes reached 80% of eligible patients

Sensitivity analyses

The proportional contributions remained relatively consistent using an analysis of extremes approach. Irrespective of whether best, minimum or maximum values were used, the biggest potential mortality reductions came from treatments for heart failure and secondary prevention (*Figure 11.2*).

Of the total of 20,910 additional deaths potentially prevented or postponed, 12,895 (61.7 %) would have been in men and 8,015 (38.3%) in women. Two thirds of the fewer deaths would have occurred in older patients, with 7%, 15%, 22%, and 16% of the total reduction occurring in men aged 45-54, 55-64, 65-74, and 75-84 years respectively (and 2%, 6%, 14%, and 16% respectively in women, *Figure 11.3*).

Figure 11.2 Sensitivity analysis showing best estimates for mortality reductions IF specific treatment uptakes reached 80% of eligible patients.

Figure 11.3 Age and sex distribution of CHD mortality reductions IF appropriate specific treatment uptakes reached 80% of eligible patients.

11.4 Interpretation

In 2000, barely half the patients with cardiac disease actually received the appropriate therapy 157;159;269;289;351;357. If just 80% of eligible patients had received the cardiological treatment indicated, then over 20,000 extra deaths could have been prevented or postponed. This would have almost doubled the reduction in mortality achieved by treatment in England and Wales in 2000, and is consistent with other studies in Scotland and elsewhere^{148;321}.

But how could treatment uptakes be increased? Focused clinical audit can be effective, and has already substantially increased thrombolysis uptake rates for AMI³⁸⁹, and aspirin for secondary prevention²⁶⁹. Evidence -based clinical guidelines are now widely available³⁹⁰, and strategies aiming to achieve treatment uptake levels of 80%-90% have been widely disseminated^{148,390}.

If a strategy for increased uptake were to initially focus only on heart failure and secondary prevention, then an 80% treatment uptake would be expected to result in approximately 12,000 fewer deaths in England and Wales in 2000 (almost two thirds of the total additional benefit). However, such prioritisation would mean focusing mainly on patients in the community.

All analytical models have limitations^{3;233}. The strength and limitations of the models will be discussed in detail in *Chapter 13*.

This study focused on *mortality* reduction, rather than quality of life or symptom relief. Indeed, many cardiological treatments are given principally for symptomatic improvement, such as PTCA and beta-blockers for angina, and diuretics for heart failure¹⁴⁸. Furthermore, increased therapy may also reduce serious morbidity, such as myocardial infarction, stroke or heart failure often leading to repeated hospitalisation. By preventing such events, these treatments can also potentially offset their own costs²⁰⁵. At present, many patients are under-dosed, whereas maximum benefits would only come with optimal dosing¹⁴⁸.

In conclusion, modern cardiological treatments have already contributed substantially to the observed reductions in coronary mortality. However, a more systematic application of proven therapies to reach 80% of eligible patients would almost double the DPPs. Because resources are always limited, future strategies should prioritise the delivery of secondary prevention and heart failure therapies to all eligible patients.

12 SMALL CHANGES IN UK CARDIOVASCULAR RISK FACTORS LEADING TO POTENTIALLY BIG REDUCTIONS IN CHD MORTALITY?

In *Chapter 9*, I described how population risk factor changes apparently explained approximately 60% of the CHD mortality fall between 1981 and 2000. In this chapter, I will now address the very important question:

What is the potential benefit of further reductions in major risk factors?

12.1 Introduction

As I have discussed in earlier chapters, CHD mortality rates have halved in most industrialised countries since the 1980s². However, mortality has declined less in the UK, and CHD remains the single largest cause of death². The UK government recently endorsed CVD as a top priority¹⁴⁸, and in 1999, the "Saving Lives" White Paper set the target of reducing the CHD and stroke death rate in people under 75 years by at least two fifths by 2010, in other words 28,000 fewer deaths in the year 2010³⁷⁴.

In this chapter I have used the England and Wales IMPACT model²⁴⁸, to estimate the number of additional CHD deaths that might potentially be prevented or postponed by 2010. Initially, by simply assuming that cardiovascular risk factors continued their recent trends, and then by assuming the additional small and eminently feasible reductions already seen in many other countries.

12.2 Methods

The IMPACT model has been described in the previous *Chapters 8 and 9* in detail. Here the IMPACT model was extended from 1981 through 2000 to 2010, using population projections and mortality data for men and women aged 25-84, from the Office for National Statistics³⁷⁷. The CHD deaths expected in 2010 were calculated a) by applying the age-specific death rates in 2000 to the 2010 population, and b) by extrapolating current CHD mortality trends to the year 2010³²².

Risk factor projections

a) Assuming recent risk factor trends simply continue to 2010

Recent trends in smoking prevalence using data from the General Household Survey²⁰⁰ were projected to 2010. Recent trends in total cholesterol, blood pressure, body mass index, physical activity and diabetes were obtained from the Health Survey for England, British Regional Heart Study, Glasgow-Belfast MONICA, and other UK surveys^{48;125;303}. Age specific trends were extrapolated to the England and Wales population in 2010.

b) Assuming more substantial reductions in risk factors between 2000 and 2010

More substantial but feasible risk reductions were chosen, based on data from comparable populations in Europe and USA. The calculations were then repeated assuming these greater risk factor reductions.

- Smoking The UK target to reduce smoking prevalence from the current prevalence of 26% to 24% among adults by 2010 does not appear challenging, and may be achieved simply on the basis of current trends^{200;374}. An eminently feasible 2010 prevalence of 17% in all adults aged under 65, as already achieved in California in 2000¹¹⁹, was therefore chosen.
- ii) Cholesterol Reductions in population mean total cholesterol levels between 1981-2000 have been modest in England and Wales, less than 5% in men and women aged 45-64¹²⁵. The annual relative falls of 1.0% in men and 1.4% in women observed in Sweden¹²⁵ were therefore applied to the British population. The projected cholesterol levels for 2010. 5.2mmol/l overall, would then simply resemble those actually achieved in the 1990s in populations such as Gothenberg (Sweden), Stanford (USA) or Perth (Australia)¹²⁵.

- iii) Blood Pressure Population mean diastolic blood pressure fell on average by almost 8% between 1981 and 2000⁴⁸. A further 4% (3.7 mmHg) decrease in diastolic blood pressure between 2000 and 2010 was examined. Such falls have already been observed in several countries including Finland (5.2 mmHg), France (6.0 mmHg) and New Zealand (4.4 mmHg)¹²⁵.
- iv) Obesity Community interventions to reduce obesity prevalence or mean BMI in the general population have mostly failed to achieve sustainable falls³⁹¹. There are currently no UK obesity targets; however, a 15% reduction in obesity prevalence by 2010 was recently proposed in the USA³⁹². I therefore examined the same target for England and Wales.
- v) Physical activity Randomised controlled trials of rigorous, tailored interventions, generally focussed on *individual volunteers*, appear effective, with a 35% median net increase in time spent on physical activity and a net median energy expenditure increase of 64%¹⁴¹. Community interventions have generally failed to produce sustained increases in physical activity. However, a recent systematic review found that a variety of different interventions such as mass media communication and risk factor screening or counselling, increased the proportion of physically active people by 4.2%(-2.9 to 9.4) overall¹⁴¹. This may be compared with the 7%-9% increase reported in the Heart Beat Wales Programme³⁹³. I therefore examined the impact of a 5% potential increase in moderately active people in the England and Wales population by 2010.
- vi) Diabetes Large Finnish and American studies in individuals with impaired glucose tolerance suggest that intensive individualised instructions on weight reduction, food intake and increasing physical activity can produce sustained lifestyle changes and reduce diabetes risk by 58%³⁹⁴. The main mechanisms for this risk reduction appeared to be moderate changes in body weight 3-4 kg (-5%), and moderate exercise for 150 minutes per week³⁹⁴.

However these findings were from selected individuals in a high-risk group rather than the general population. In the absence of any published report of a successful reduction in diabetes prevalence in a community or population, I therefore examined the impact of 5% potential decrease in diabetes prevalence in England and Wales by 2010.

Sensitivity Analysis

Because of the uncertainties surrounding some of the estimates, a multi-way sensitivity analysis was performed using the analysis of extremes method²³¹. Estimated mortality reductions were then generated using minimum and maximum plausible values for the main parameters^{3-5;248}.

12.3 Results

Changes in CHD mortality in England and Wales

a) Trends observed between 1981 and 2000

Overall annual declines in CHD mortality rates were 3.1% in men and 2.3% in women, ranging from 3.2% in the younger men to 1.8% in men aged 75-84 (*Table 12.1*).

b) Estimates between 2000 and 2010

Assuming that recent trends in age-specific death rates continued to 2010, approximately 86,325 deaths would be expected in 2010 (56,565 among men, 29,760 in women). This would represent an overall reduction of 23% (23% and 22% respectively in men and women) from 2000 (Table 12.1).

	Population CHD Mortality (thousands) Rates/100,000		Annual Change in CHD Mortality Rates (1981-2000)	Estimated CHD deaths in 2010 with current trend	Expected CHD deaths in 2010 applying 2000 rates	Fall in CHD Deaths 2000-2010		
	a	b	c=b+(b*d*10)	d	e=a*c	f=a*b	g=e-f	g/f*100
MEN	2010	2000	2010	%	2010	2010	number	%
25-34	3,492	2.4	1.6	-3.2	57	84	-27	-32
34-44	4,070	18.7	12.8	-3.2	521	761	-241	-32
45-54	3,985	89.3	60.6	-3.2	2,416	3,559	-1,142	-32
55-64	3,277	282.4	199.8	-2.9	6,547	9,254	-2,707	-29
65-74	2,291	807.2	612.2	-2.9	14,025	18,493	-4,468	-24
75-84	1,287	1896.9	1563.1	-1.8	20,118	24,413	-4,295	-18
TOTAL	18,402	213.8	148.0	-3.1	43,683	56,565	-12,880	-23
WOMEN								
25-34	3,358	0.6	0.4	-2 7	15	20	-5	-27
35-44	3,855	4.5	3.4	-2.4	133	173	-41	-24
45-54	3,885	18.7	13	-3.0	506	726	-220	-30
55-64	3,342	78.4	55.3	-2.9	1,849	2,620	-771	-29
65-74	2,480	335.2	252.8	-2.5	6,270	8,313	-2,042	-25
75-84	1,700	1053.3	847.9	-1.9	14,415	17,906	-3,492	-19
TOTAL	18,620	173.2	134.1	-2.3	23,188	29,760	-6,572	-22
TOTAL MEN WOMEN	& 37,022	193.2	139.9	-2.7	66,830	86,325	-19,452	-23

Table 12.1 Observed and projected CHD mortality rates a	and deaths in England and Wales, 2000-2010.
---	---

Cardiovascular risk factor changes

The risk factor levels in 2000, and the levels expected in 2010 on the basis of a) recent trends and b) more substantial reductions are detailed in *Table 12.2*.

a) Mortality reductions based on recent trends only (Table 12.3)

All three major risk factors showed declining trends between 1981 and 2000. Assuming that the same trends continued between 2000 and 2010, this would result in approximately 13,760 deaths prevented or postponed (DPPs) in 2010 (minimum estimate 9,540, maximum estimate 16,050-*Table 12.3*).

Approximately 8,880 fewer deaths would be attributable to a fall in smoking prevalence from (26% to 21%), with 2,525 attributable to a reduction in total cholesterol (from 5.8 mmol/l to 5.6 mmol/l) and 5,135 attributable to falls in population diastolic blood pressure (from 74.6 mmHg to 73.7 mmHg, *Tables 12.2 and 12.3*).

Obesity, diabetes prevalence and physical activity showed adverse trends between 1981 and 2000. Assuming the same adverse trends continued to 2010, these risk factors would cause approximately 6,980 additional CHD deaths (2,080 from obesity, 4,200 from diabetes and 705 from physical inactivity) (*Figure 12.1*).

b) More substantial reductions in major risk factors (Tables 12.2 and 12.3)

A total of approximately 50,410 deaths (minimum 37,210, maximum 75,435) could be prevented or postponed by additional but feasible reductions in cardiovascular risk factors.

- Approximately 17,060 fewer deaths assuming that the smoking prevalence fell from 26% to 17%;
- ii) 24,945 fewer deaths assuming that population mean cholesterol levels declined to 5.2 mmol/l among men, and women;
- 6,505 fewer deaths assuming an average additional decrease in mean diastolic blood pressure of 3.7 mmHg across all age and sex groups (from 74.6 mmHg to 70.9 mmHg).
- iv) 850 fewer deaths assuming a 15% decrease in obesity (a reduction from 21% to 18% in men and women by 2010).

- v) 485 fewer deaths assuming a 5% decrease in diabetes prevalence (from 3.0% to 2.9% in men and from 2.1% to 2.0% in women by 2010).
- vi) 1,055 fewer deaths assuming a 5% increase in the prevalence of moderately active people (from 46% to 49% in men and from 37% to 39% in women).

The number of DPPs in 2010 due to these additional risk factor changes could thus be increased more than three fold, from 13,760 to 50,410; if relatively modest improvements in adverse risk factors were achieved (*Tables 12.2 and 12.3*).

These estimates remained relatively stable when subjected to a rigorous sensitivity analysis (Figure 12.1).

Table 12.2 Risk factor levels in the 2000 base year and projections to 2010: a) simply continuing recent trends, b) assuming more substantial reductions achieved elsewhere (men and women aged 25-84 years).

Risk Factor Levels	Smoking %		Cholesterol mmol/l		Diastolic Blood Pressure mmHg		Obesity %		Diabetes %		Physically Active* %	
	Men	Women	Men	Women	Men	Women	Men	Women	Men	Women	Men	Women
2000	28	24	5.8	5.8	76.9	72.3	21	21	3.0	2.1	46	37
a) 2010 recent trends	22	21	5.7	5.7	76.4	71.1	33	24	4.7	3.0	43	34
b) 2010 Additional reductions	17	17	5.2	5.1	73.2	68.6	18	17	2.9	2.0	49	39

*: Moderate or strenuous activity ≥3 times/week for >20 minutes

and and the second of the	Change in R	isk Factor	Deaths prevented or postponed in 2010			
RISK FACTORS	Between 200	0 & 2010	as a result of reductions in risk factors			
	Men	Women	between 2000 and 2010			
			(maximum and minimum estimates)			
Smoking						
Recent trend	-19%	-16%	8,880 (6,115 to 13,610)			
More substantial reduct	tion -40%	-36%	17,060 (9,810 to 30,555)			
Total Cholesterol						
Recent trend	-2%	-2%	2,525 (1,530 to 4,735)			
More substantial reduct	ion <i>-10%</i>	-13%	24,945 (21,615 to 31,185)			
Population blood pressur	e					
Recent trend	-1%	-2%	5,135 (3,850 to 6,630)			
More substantial reduct	ion -5%	-5%	6,505 (4,875 to 8,265)			
Obesity						
Recent trend	57%*	6%*	-2,080* (-1,610 to -8,010)			
More substantial reduction	ion <i>-15%</i>	-15%	850 (385 to 3,425)			
Diabetes						
Recent trend	48%*	30%*	-4,200* (-1,945 to -5,915)			
More substantial reducti	on -5%	-5%	485 (205 to 630)			
Physical activity						
Recent trend	-2%*	-9%*	-705* (-350 to -915)			
More substantial reducti	on 5%	5%	1,055 (525 to 1,370)			
ALL RISK FACTORS						
Recent trend		-	13,760 (9,540 to 16,050)			
More substantial reduction	on -		50,410 (37,210 to 75,435)			

Table 12.3 The estimated reduction in CHD mortality in England and Wales between 2000 and 2010 on the basis of changes in specific risk factors: a) continuing recent trends, and b) with more substantial reductions.

* Worsening trend producing additional CHD deaths

Benefits stratified by age and sex, and comparison with UK targets

Overall, men would benefit more than women ('current trends' 72% of prevented deaths in men and 28% in women; 'additional reductions'60% in men and 40% in women). Approximately 24,000 fever deaths would occur in men and women aged under 75, the age group specified in the government target (*Table 12.4*).

Deaths prevented or postponed by treatments

Medical and surgical treatments in 2000 together prevented or postponed approximately 25,765 deaths²⁴⁸(*Chapter 11*). This figure might well rise to approximately 46,675 fever deaths by 2010, if the National Service Framework targets are achieved, with at least 80% of eligible patients receiving appropriate therapy³⁹⁵. This would therefore represent approximately 20,000 fewer deaths than in 2000.

Sensitivity analyses

There is a consistently huge potential gain from cholesterol reductions in the population. Large DPPs can be achieved also from smoking reduction in the population. Furthermore, DPP gains from smoking can range from as little as 9,810 to very substantial higher values (30,555) (*Figure 12.1*). Table 12.4 Reductions in CHD mortality achievable in 2010, stratified by age and sex a) continuing recent risk factor trends and b) with more substantial risk factor reductions.

	Deaths prevented or postponed				
	Men		Women		
	Number	%*	Number	%*	
25-34 years	3	00/	2	007	
Recent trends	5	070	2	0%	
More substantial reduction	60	0%	10	0%	
35-44 years	100	10/			
Recent trends	180	1%	30	0%	
More substantial reduction	725	1%	140	0%	
45-54 years	055	<i>(</i>) <i>(</i>)			
Recent trends	855	6%	125	1%	
More substantial reduction	3,145	6%	720	1%	
55-64 years	1 245	1007	175	207	
Recent trends	1,345	10%	475	3%	
More substantial reduction	4,115	8%	1,420	3%	
65-74 years	2 400	1007	1.505	1.107	
Recent trends	2,490	18%	1,505	11%	
More substantial reduction	8,560	17%	4,995	10%	
75-84 years	5.070	2707	1 (05	1207	
Recent trends	5,070	3/%	1,685	12%	
More substantial reduction	14,035	28%	12,485	25%	
Total Recent trends	9,935	72%	3,820	28%	
More substantial reduction	30,635	60%	19,775	40%	

* Over total DPPs gain from recent trends (13,760) and more substantial reductions (50,410).

Figure 12.1 Potential change in CHD mortality in England and Wales between 2000 and 2010 if risk factors a) continue recent trends b) undergo more substantial reductions.

(Bars indicate maximum and minimum estimates from the sensitivity analysis).

12.4 Interpretation

Surprisingly modest risk factor reductions could prevent or postpone over 50,000 CHD deaths in 2010 in the UK. This would represent half the 100,000 current annual coronary deaths², and would include some 24,000 fewer premature deaths (aged under 75), as specified in recent government targets.

The biggest potential CHD mortality reductions in the UK would come from decreases in blood total cholesterol: with a 2% - 4% mortality reduction for every 1% decrease in cholesterol³². Yet actual falls in UK total cholesterol have been modest, and current levels remain higher than most of the other Western countries². This is not surprising given the lack of coherent dietary policies in the UK. As I have previously emphasised in *Chapter 3*, elsewhere, complementary national and local programmes have achieved substantial dietary changes^{123;124}.

I found that each percent reduction in UK smoking prevalence would result in some 2000 fewer CHD deaths each year. The recently approved WHO Framework Convention for Tobacco Control has again emphasised the two essential comprehensive strategies: preventing young people from commencing to smoke, and promoting cessation in smokers³⁹⁶. In most of the Scandinavian countries, advertising bans were found to be effective in lowering tobacco consumption¹¹⁷. In the USA intensive health promotion and taxing programmes resulted in more impressive declines, which slowed visibly when these programmes were suspended¹¹⁹.

A 1% reduction in UK population diastolic blood pressure, continuing recent trends, would prevent over 5,000 CHD deaths in 2010. This is because recent relative changes in mean diastolic blood pressure in older age groups were substantial, up to 8%. Thus, assuming a reduction of 5% in **all** age-sex groups, as seen in Scandinavia, would have surprisingly little additional impact, (approximately 6,505 DPPs overall). Population blood pressure has been decreasing in many Western countries in recent decades¹²⁵. Much of this has been attributed to the reduced intake of preserved foods. Dietary salt restriction clearly achieves a small blood pressure reduction in normotensive subjects, and even more in hypertensives, about 4 mmHg systolic / 2 mmHg diastolic¹²⁶ (*Chapter 3*).

The recent UK increases in inactivity, obesity and diabetes are responsible for over 7,000 CHD deaths each year. Effective interventions to change these risk factors in the population are discussed in *Chapter 3*. Systematic reviews of mostly US studies suggest that *in individuals*, exercise interventions promoting walking are more successful than those requiring attendance at a facility¹⁴². The most effective intervention for *obese individuals* is apparently a combination of advice on diet and exercise, supported by behavioural therapy¹³⁸. In the *population*, obesity reduction appears challenging whereas several interventions clearly increase physical activity. These include community wide campaigns, school based interventions and individually adapted health behaviour change programmes¹⁴¹. Furthermore, transport policies that promote walking and cycling may play a major role. No government obesity targets have yet been set. The recommendations by the ongoing Health Select Committee enquiry are eagerly awaited.

The strengths and limitations of the model are discussed in detail in *Chapter 13*. In addition a number of further assumptions were made to estimate the number of deaths that could be prevented with additional risk factor reductions. For example, I assumed that major risk factors might continue to change at similar annual rates until 2010, and that coronary mortality would continue to decline at current rates. Extensive sensitivity analyses were therefore required to consider higher and lower values for each estimate²³¹. These modestly influenced the number of DPPs, but did not alter the relative contribution of each risk factor (*Figure 12.1*).

Furthermore, our findings are generally consistent with a recent report on monitoring the 2010 CHD target³³⁶. This report suggested that reducing mean population cholesterol level to 5 mmol/l or less would prevent approximately 50% of CHD deaths. An (optimistic) 25% reduction in the prevalence of obesity or inactivity might prevent 2% and 1% of CHD deaths respectively³³⁶.

In conclusion, the government's "Saving Lives" target therefore appears eminently achievable and distinctly unchallenging. However, Britain lags behind many other counties and CHD will remain the biggest cause of death for the foreseeable future. Furthermore, continuation of current trends cannot be assumed, particularly given the 'levelling off' in CHD mortality recently seen in the USA³⁹⁷.

The policy implications of these findings will be discussed in the next chapter.

13 DISCUSSION

13.1 Main findings

In my thesis, I first evaluated the data sources available for CHD in the UK. Data were varied in quality. Population and patient data were usually available and accessible from official statistics. Risk factor data were limited for the early 1980s but more extensive by 2000. Data on hospital interventions were not routinely available, but limited prescribing and uptake data for primary and secondary care were available. In general, data for women and the elderly (over 65) were particularly scarce and variable in quality.

Using these available data, I then explored the CHD burden in England and Wales. In 2000, an iceberg of disease was apparent in the England and Wales population of 51 million, with approximately 60,000 patients undergoing revascularisation, over 2.5 million patients living with CHD and over 32 million possessing one or more elevated risk factors (*Chapter 4*).

CHD mortality fell by more than half between 1981 and 2000 in England and Wales. In my thesis, I therefore transformed and developed the IMPACT model to explore this decline. Approximately 40% of the fall was attributable to the combined effects of modern cardiological treatments, whereas almost 60% was attributable to reductions in major risk factors *(Chapter 9)*. These findings were consistent with the majority of other studies that used diverse methodologies in the USA¹⁹³, Europe²⁵¹, Scotland⁴, and New Zealand⁵. Thus in the US population, for instance, 50% of the recent CHD mortality decline was actually explained by risk factor reductions²³³.

Modern cardiological treatments prevented or postponed approximately 26,000 deaths in 2000 in England and Wales. The most substantial contributions came from secondary prevention therapies and heart failure treatments. This is not surprising, because improvements in survival after acute coronary events in the last decade have been documented in many countries, including England and Wales²⁴⁹, thus potentially increasing the number of patients eligible for secondary prevention.

Reductions in the major risk factors between 1981 and 2000 accounted for approximately 36,000 fewer deaths in England and Wales in 2000. The biggest single contribution reflected a large fall in smoking prevalence, from 39% to 28% overall. Almost 10% of the mortality fall came from a relatively small reduction (4.2%) in population total cholesterol level. This

emphasises the potential gains from bigger reductions in population cholesterol, with a 2% - 4% mortality reduction for every 1% decrease in cholesterol³².

In my thesis, I then estimated life-years gained (LYGs) from cardiovascular risk factor reductions and cardiological treatments. This is the first comprehensive analysis of life years gained from risk factor reductions and cardiological treatments published for England and Wales. The fall of 69,000 DPPs corresponded to almost one million additional LYGs in the same period. Surprisingly, cardiological treatments explained only 21% of this gain, mostly from secondary prevention and angina treatments. Although heart failure treatments resulted in over 7,700 DPPs, because of the short life expectancy in these patients, only 25,360 LYGs (or 2% of overall LYGs gained by cardiological treatments and population risk factor changes in England and Wales, in 2000) might actually be gained^{248,264}. Almost 79% of the LYGs came from changes in population risk factors, principally smoking, but also cholesterol and blood pressure *(Chapter 10)*.

A death prevented or postponed in a patient with recognised CHD gained an additional 7.5 years of life on average. Gains were greater in men, younger patients, or those surviving uncomplicated infarction, rather less in older patients or those with heart failure. In contrast, each death prevented or postponed by a risk factor reduction gained an additional 20 years of life on average, substantially more in younger individuals, rather less in older people. These findings are generally consistent with previous studies³⁸². However these LYGs occurred in people whose deaths due to CHD was prevented or postponed, rather than in the whole population. However, population life expectancy might also be increased. Bunker et al. examined the 7.1 years increase in life expectancy observed in the USA between 1950 and 1989. Changes in coronary and cerebrovascular disease death rates accounted for 10%-20% of this increase³⁸⁵. This is consistent with estimates for Scotland (1975-1981)³⁸⁶. Again in the USA, Tsevat et al attributed 1.0 to 1.2 years increase in population life expectancy by lowering blood pressure in men, (and 0.3 to 0.6 years in women), and 0.5 to 1.2 years by quitting smoking in 35-year old men (0.4 to 0.8 in women)²³⁸. Using similar assumptions. Grover et al estimated that reductions in CHD and stroke risk through blood pressure reduction would result in 0.9 to 1.2 years increase in life years in men aged 40, and 0.6 to 1.3 years in women³⁸².

In 2000, barely half the patients with CHD actually received the appropriate therapy in England and Wales. I therefore further explored potential benefits from increasing treatment uptake levels. If just 80% of eligible CHD patients had received the cardiological treatment indicated for them in evidence-based guidelines, then a further 20,500 deaths could have been prevented or postponed. This would have almost doubled the reduction in mortality actually achieved by treatments in England and Wales in 2000*(Chapter 11)*. The largest contributions would come from increasing heart failure and secondary prevention treatments to 80%. Furthermore, such prioritisation would mean focusing principally on patients in the community. These findings were consistent with previous studies³²¹. Furthermore, as discussed in *Chapter 11*, they highlighted the need to identify effective strategies for increasing treatment uptake.

In Chapter 12, I considered the number of additional CHD deaths that might potentially be prevented or postponed by further reductions in major cardiovascular risk factors. Firstly assuming that cardiovascular risk factors simply continued their recent trends to 2010, and then by assuming the additional small and feasible reductions already seen in several other countries. The modest additional risk factor reductions already achieved in Scandinavia and the USA could potentially prevent or postpone over 50,000 CHD deaths in 2010 in the UK. This would halve the 100,000 current annual coronary deaths. However, I only estimated the impact of population risk factor change without considering in detail how these levels could be achieved. There is ongoing debate about whether to target high-risk people or the whole population for risk factor interventions. Kottke et al modelled these two interventions to compare the expected benefits from high-risk and population strategies, using Monte Carlo simulation³⁹⁸. They used actually achieved cholesterol and blood pressure changes without drug treatment in North Karelia between 1972 and 1977³⁹⁹. They found that a 4% reduction in cholesterol, 3% reduction in DBP and 15% reduction in smoking prevalence in the whole population would lead to 12% decrease in nonfatal MI, and 18% decrease in CHD deaths in the US³⁹⁸. However, just targeting people who have 3 risk factors with high levels and reducing their cholesterol to 180 mg/dl (or 4.7 mmol/l), diastolic blood pressure to 80 mmHg and eliminating smoking would reduce nonfatal MI by 2% and CHD death by only 5% in the US³⁹⁸. Their findings were similar for Finnish North Karelia cohorts³⁹⁸. It has been consistently suggested by Rose and others that in populations with a relatively high incidence of CHD, such as England and Wales, targeting entire population would produce larger effects than focusing on high-risk populations^{188;398}.

13.2 Strengths of the IMPACT Model

This study used a cell-based mortality model, which has been tested and refined over a number of years in several different populations^{4;5;321;322;386}. It was extensively developed over the three years of my PhD studentship. The IMPACT Model can now generate estimates for DPPs and life years gained for England and Wales population. Furthermore it can estimate potential gains from further treatment increases³²⁰ or risk factor reductions³²².

In this thesis, I have described the further development of the original IMPACT Model to include new treatment options and risk factors. This has made the IMPACT Model quite comprehensive. Despite its size, the IMPACT Model is user friendly, as it is based in a common spreadsheet package, Excel, and therefore easy to update with new data or to add new treatment options or risk factors.

The IMPACT Model is the first comprehensive CHD mortality model for whole population of England and Wales. In this thesis, I used the model to consider questions relevant to public health policy and CHD NSF¹⁴⁸.

The model incorporated large amounts of data from various selected best available sources. Data quality was assessed first, and missing or incomplete data were dealt with by extrapolation or explicit assumptions. The assumptions used in IMPACT Model were documented and tested. Comprehensive sensitivity analyses were then carried out to explore these limitations.

Comparing with other major models in *Table6.2*, the IMPACT model satisfies most of the quality criteria recommended in the ISPOR Guideline²¹⁶. The IMPACT model considers risk factors and categories of CHD and treatment options in a coherent model. Few of the models reviewed in *Chapter 6* considered risk factors and treatments together. Furthermore, IMPACT's internal validity was extensively checked by two other researchers (SC, JC).

The IMPACT Model estimates were then validated by comparison with the observed reductions in CHD deaths in England and Wales, stratified by age and sex. This method appears acceptable since IMPACT is a descriptive model. External validity or predictive validity may be considered desirable but not be essential for this kind of model^{215,216}.

The validity of this model could be further evaluated using different models for the same question²¹⁵, such as PREVENT or CHD Policy Model (corroboration). However this might well require considerable time and effort.

All modelling studies include a number of assumptions, which need to be clear and well documented for the users. The assumptions used in IMPACT Model were tested and documented.

13.3 Limitations of the IMPACT Model

CHD Data input

All modelling studies have limitations. Models are based on large amounts of data from many sources. However available data may be mixed in quality and lacking in quantity. In case of the IMPACT model, UK CHD data sources lacked precise data for some of the risk factor changes and patient numbers. However, to a certain extent it was possible to extrapolate some of the missing data. This was the case for diabetes and cholesterol trends since data were not available for the beginning of 1980s.

I also needed to make a number of explicit assumptions to cover deficiencies in the UK data on CHD²⁰⁶. This was essential for age specific treatment uptake levels for hospital CHD care, and some of the risk factors in the early 1980s such as blood pressure and cholesterol. Furthermore, different sources reported slightly different uptake levels or risk factor levels. In such cases, I choose the most "reasonable" source after critical consideration of all alternative sources. In modelling studies uncertainties in some data are unavoidable. However, sensitivity analyses are extremely useful to quantify the degree of uncertainty and hence the potential bias. I therefore used rigorous 'analysis of extremes' sensitivity analysis methodology to examine these uncertainties in data²³¹. Reassuringly, the relative contribution of each risk factor and treatment to the overall CHD mortality decline was little changed whether considering best, minimum or maximum estimates (*Figure 9.2*).

When I started to build the IMPACT Model for England and Wales, I aimed to include all age groups over 25. However, risk factor and treatment data for people over 85 years were very limited. Therefore, my final model only included the age groups 25-84. The model fit was also not so good in older women, aged 75-84 years. This probably reflects less satisfactory data quality, particularly less accurate coding for cause of death (*Table 9.5*)^{157,183}. The elderly

population is increasing, and as they will have higher health care needs, it is very important that modelling studies in the future should explicitly include these groups. Fortunately, in the UK and other comparable countries more data have become available for elderly people in 1990s⁴⁰⁰.

Model Outcomes

At the moment, the IMPACT Model focuses only on mortality and LYGs. A recent attempt was made to include cost and cost-effectiveness of the treatments for CHD in England and Wales in 2000⁴⁰¹. Future work should also focus on converting LYGs in to quality adjusted life years (QALYs), and estimating the cost-effectiveness of interventions for primary and secondary prevention strategies. It would also be desirable to include outcomes such as the incidence of CHD or symptomatic relief. Some CHD policy models have included a wider range of outcomes. For instance, the CHD Policy Model can generate estimates for many outcomes such as incidence of CHD events, CHD prevalence, CHD mortality, life years gained, cost per life year and all cause mortality²²². However that model does not include all individual CHD treatment effects.

The IMPACT model was confined to CHD, and did not explicitly consider patients with other CVD such as stroke or peripheral arterial disease. Neither does IMPACT consider the development of other diseases or "competing causes" such as cancer³⁷³. However, since many cancers share some CHD risk factors such as smoking, interventions for reducing smoking would actually decrease deaths from lung cancer and other cancers^{2;119,156}.

The original Scottish IMPACT Model only included three major risk factors - smoking, cholesterol and blood pressure. I therefore introduced new risk factors including diabetes, obesity, physical inactivity and deprivation to the IMPACT Model for England and Wales. This improved the model fit substantially and now IMPACT Model explains 89% of the mortality fall. Furthermore, it has been estimated that these major risk factors explain approximately 85% of the UK variation in CHD risk ³³³. However, other independent risk factors, such as dietary antioxidants, homocysteine and the birth weight, could be included to increase comprehensiveness.

Methodology

Certain methodological issues merit further attention in the IMPACT Model. Risk factor lag times were not explicitly considered. For many carcinogens, the delay between exposure to a carcinogen and overt disease may be decades, however, lag times for CVD are much shorter³⁶⁶. Lag times may therefore be relatively unimportant over a 20-year analysis of CHD, because mortality reduction occurs relatively quickly, within 1-5 years of quitting smoking or reducing cholesterol^{22;32}.

Assumptions

The IMPACT Model used β coefficients to estimate impact of risk factor changes on CHD mortality. Assumptions were made that benefits from concomitant risk factor reductions are "independent" therefore DPPs from each risk factor could be summed. All the beta coefficients and relative risk values were obtained from multivariate logistic regression analyses and therefore adjusted for potential confounding from the major risk factors. However 'residual confounding' from other potentially important risk factors for CHD, including diet (such as consumption of fish oils anti-oxidants and alcohol), and life-course factors and some novel risk factors may remain. These estimates may therefore still overestimate, because most multivariate regression models, of necessity, included data on only a limited range of risk factors. For the MONICA study, for instance, these were smoking (yes or no), systolic blood pressure, total cholesterol, and body mass index¹²⁵. Further development work is clearly needed³.

The IMPACT model also assumes that efficacy, the mortality benefits reported in randomised controlled trial patients can be generalised to effectiveness in unselected patients in clinical practice. Though not ideal, this appears acceptable⁴⁰². A consistent treatment effect independent of the level of risk is also assumed, again, perhaps not unreasonably⁴⁰².

Sensitivity analyses were essential to examine the effect of varying these underlying assumptions, and hence test the robustness of the model²³¹. Maximum and minimum estimates were sometimes wide. However, the relative contribution of each individual intervention remained remarkably consistent. Thus the major potential gains from *treatments* generally came from heart failure and secondary prevention, followed by initial treatments for myocardial infarction and statins. Correspondingly, the largest risk factor impacts always came from smoking and cholesterol, *(Figure 9.2, Figure 10.3, Figure 12.1)*.

13.4 How can CHD modelling be improved?

Modelling is potentially very useful for health policy decision-making. However not all the models are equally suitable for this purpose. Modelling in health is a relatively new scientific field. As model users and developers increase and become more experienced, so modelling standards should also improve as validation becomes routine.

First comes internal validity. The technical accuracy of models must be verified to ensure that the model performs all the calculations correctly. Data entry errors, logical inconsistencies can all be detected during verification²¹⁸.

External validation is also becoming more straightforward. Recently published guidelines now provide basic principles for modelling^{216;220;226}. Furthermore, such guidelines are not prescriptive; they simply attempt to systematize the components of the model and the information needed for model development. Clearly, different circumstances may lead to deviations from these guidelines, depending on the purpose of the model and on resources available (time, data, money). However, promoting and publicising 'best practice principles for managing models, (whether based on spread sheets or on other methodologies) is likely to increase their user friendliness, acceptability and credibility ²²⁶.

How can we improve the IMPACT model?

A number of improvements should be considered:

- Including different outcomes, such as the QALY. This could be achieved by applying published QALY weights to specific patient groups.
- Including CHD events (incidence) or 'number of surgical interventions such as CABG and PTCA avoided' as outcome. This could be done with more reliable data on these outcomes as they become available
- Including new treatments and risk factors. The model can then be updated as new effective treatments become available. It could also be updated with trend data on new risk factors as these become available, for instance low birth weight, or specific dietary factors.
- Consultations between the developers, the potential users of the IMPACT Model and one or more IT specialists could improve the user friendliness of the model. For instance, a more user-friendly "front end". The IMPACT Model could start with a brief introduction, portfolio of exercises, and options to test and compare different policy options. This could

perhaps be achieved by incorporating macros, which could save some columns in the currently large model spreadsheet.

The original Operational Manual for the IMPACT Model was created by our team (SC, JC, BU) and used by collaborating researchers. A revised and updated manual would potentially be very useful to introduce new users to the basic methodology of the model.

13.5 Implications for public health practice

The National Service Framework for Coronary Heart Disease now requires primary care disease registers in every practice. Such registers will certainly help to identify eligible patients, but will require substantial resources¹⁴⁸. Furthermore, it is unclear whether registers alone will substantially increase treatment uptakes⁴⁰³. The National Service Framework for Coronary Heart Disease also requires practices to establish 'cardiac prevention clinics' run by trained nurses and supported by a doctor. Structured care should be provided in these clinics for the patients with CHD. It is recommended that by April 2002, the use of effective medicines after heart attack (especially use of aspirin, beta-blockers and statins) should be improved so that 80-90% of people discharged from hospital following a heart attack will be prescribed these drugs. However, no clear milestones were set for patient care in the population¹⁴⁸. These recent government targets, combined with financial incentives in the new GP contract, may also have positive effects⁴⁰⁴. Greater patient empowerment may also be required¹⁴⁸.

13.6 Policy implications for decision makers

This modelling work provided potentially very useful information for health policy makers. It demonstrates that risk factor changes consistently prevented more deaths and saved more lifeyears in the general population than treatments. This is mainly because the number of individuals eligible for each treatment was much smaller compared than the number of subjects potentially eligible for risk factor changes using the 'population approach'. Some interventions offer only small benefits to individual patients however, when applied to large numbers of people they produce significant health gains for the population and this is known as *prevention paradox*¹⁸⁸. This emphasises the importance and potential of primary prevention strategies. Interventions should therefore target the whole population, and should be comprehensive. Tobacco taxation plus legislation on smoking restrictions in public places, green transport policies and diet interventions can all be particularly valuable. Such policies could produce further substantial reductions in coronary mortality, as already achieved elsewhere^{119;125;192}. Periodic risk factor evaluation for the individuals recommended and interventions directed to the high-risk people rather than the whole population¹⁴⁸. However in the CHD NSF this population approach was rather overshadowed by the individual patient care perspective.

13.7 Clinical implications

This thesis also produced potential useful findings for the clinical management of CHD. Treatments for the secondary prevention of CHD prevented or postponed more deaths than any other intervention in CHD patients. Heart failure therapies also had a major effect, particularly surprising given the often poor prognosis of heart failure in many patients.

Revascularisation from CABG surgery and angioplasty surprisingly accounted for only a very small part of the mortality fall and gains in life-years. Similar findings have been reported from other countries such as USA too³⁷⁵. This is a disappointingly small contribution, considering the large financial and political resources being consumed to promote revascularisation^{148;205}. However, it is important to remember that this thesis has considered only mortality and life years gained as outcomes. Revascularisation might be more effective at relieving anginal symptoms than medical treatments such as beta-blockers, nitrates and calcium channel antagonists¹⁵¹.

The LYGs from ACE inhibitors, beta-blockers and spironolactone were relatively large, given the relatively low prescribing rates in 2000 and the high case fatality in heart failure patients²⁸⁶. This further emphasises that simple inexpensive treatments applied to all eligible patients can potentially produce huge gains¹⁴⁸.

13.8 Research implications and future research questions

- One of the future research questions is related to the modelling methodology. At present I assume that risk factor reductions are independent, as discussed above. It would be worthwhile to explore how much difference does clustering of risk factors make and whether the reductions occur in those with many or only one risk factor.
- 2) CHD mortality did not fall equally in all social classes. It would therefore be desirable to evaluate the risk factor trends in these groups and explore their impact on mortality change.

- 3) More effective methods are needed for changing risk factor distributions in the whole population. There is currently a lack of evidence for some factors, including physical activity, diabetes, and obesity.
- 4) This thesis emphasised effective strategies to reduce CHD mortality in England and Wales. Liaison with local and national policy makers to increase the utility of the model is therefore very important. Several people and groups who worked in various levels of NHS have consulted us to use the model to answer different questions in their practice. We offered training and collaboration, because the model was not sufficiently user friendly to let them use it unaided. Future work should therefore involve efforts to increase the user friendliness of the IMPACT Model, as described above.

13.9 Lessons I have learned

- While building a model, it is very useful to keep a diary, because modelling is an iterative process.
- A list of data and the sources used in the model should be prepared and updated frequently with evaluation, strengths and weaknesses of the sources.
- Building the model involves a lot of teamwork. Good cooperation and communication between the team members is crucial. Regular meetings and supervision can be very helpful.
- There should be also some agreement between the team members on the ways of working on the model. These may involve more practical actions for example writing the formulas in a certain way, not putting the same data source in the spreadsheet more than once but linking it if it is necessary or using the same colour code for some estimates. A 'best practice points' list was suggested by Edwards et al²²⁶ (Appendix 12).
- Teamwork is also important for model verification to check the model for erroneous data entries and formulas.
- While building a model, it is important always to keep electronic back-ups on different computers, since a virus attack or a technical problem can destroy the product of long and painstaking work.

13.10 Conclusions

CHD represents a massive burden of disease in England and Wales. Yet information on CHD is quite patchy and poor. Future CHD disease monitoring and evaluation therefore will require more comprehensive and accurate population-based information on trends in patient numbers, treatment uptake and risk factors. This will require adequate resources to improve existing information systems. Regular and comprehensive surveys (including women and elderly people), using standardised methodology will also be essential.

CHD mortality in England and Wales fell by more than half between 1981 and 2000. Over half this fall was attributed to reductions in major risk factors, and some forty percent to medical therapies. This fall in CHD mortality resulted in almost one million additional years of life. Modern cardiological treatments in England and Wales in 2000 gained many thousands of life-years. However, three times as many life-years were generated by relatively modest reductions in major risk factors, mainly smoking, cholesterol and blood pressure.

In the year 2000, treatment uptake levels were generally poor. Increasing uptake levels to reach 80% in all eligible patients would have almost doubled the deaths actually prevented or postponed. The largest benefits would have come from heart failure and secondary prevention treatments. Furthermore, if the UK managed the modest additional risk factor reductions already achieved in the USA and Scandinavia, this could prevent or postpone substantial numbers of deaths, potentially halving the current coronary mortality by 2010. Cholesterol and smoking reductions would provide the largest gains.

These findings therefore emphasise the importance of a comprehensive strategy which actively promotes primary prevention, particularly for tobacco and diet, and which maximises population coverage of effective treatments, especially for secondary prevention and heart failure.

14 REFERENCES

- 1. WHO. World Health Report 1999. 1999. Geneva, WHO.
- 2. British Heart Foundation Statistics Database. Coronary Heart Disease Statistics. 2002. http://www.bhf.org.uk/professionals/uploaded/bhf%20heartstats%202003%20-%204page.pdf. 12-9-2003.
- 3. Critchley J, Capewell S. Why model coronary heart disease? Eur Heart J 2002;23:110-6.
- 4. Capewell S, Morrison CE, McMurray JJ. Contribution of modern cardiovascular treatment and risk factor changes to the decline in coronary heart disease mortality in Scotland between 1975 and 1994. *Heart* 1999;81:380-6.
- 5. Capewell S, Beaglehole R, Seddon M, McMurray J. Explaining the decline in Coronary Heart Disease Mortality in Auckland, New Zealand between 1982 and 1993. *Circulation* 2000;102:1511-6.
- 6. Davies GJ. Pathophysiaology of acute coronary syndromes. Medicine 1997;25:35-7.
- 7. WHO. World Health Report 1997. 39-45. 1997. Geneva, WHO.
- 8. Lawlor DA, Ebrahim S, Smith GD. Trends in sex differences in mortality from heart disease: sex is not same as gender, and theory was first proposed in 1950s, say authors. *BMJ* 2002;**324**:237-8.
- 9. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. Predicting coronary heart disease in middle-aged and older persons: the Framingham Study. *JAMA*. 1977;**238**:497-9.
- 10. D'Agostino RB, Kannel WB, Belanger AJ, Sytkowski PA. Trends in CHD and risk factors at age 55-64 in the Framingham Study. Int J Epidemiol. 1989;18(suppl 1):S67-S72.
- 11. Kannel WB, Gordon T. Evaluation of cardiovascular risk in the elderly: the Framingham Study. *Bull N Y Acad Med.* 1978;54:573-91.
- 12. Shaper AG. Coronary Heart Disease Risks and Reasons. London: Current Medical Literature Ltd, 1988.
- 13. Wenger NK. Coronary heart disease: an older woman's major health risk. BMJ 1997;315:1085-90.
- 14. Fielding JE. Smoking: health effects and control (1). N Engl J Med 1985;313:491-8.
- U.S.Department of Health and Human Services. Reducing the Health Consequences of Smoking: 25 Years of Progress. A Report of the Surgeon General. Rockville, Maryland: DHHS Publication No. (CDC) 89-8411, 1989.
- 16. Jousilahti P, Vartiainen E, Tuomilehto J, Puska P. Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14 786 middle-aged men and women in Finland. *Circulation* 1999;99:1165-72.
- 17. Nilsson S, Carstensen JM, Pershagen G. Mortality among male and female smokers in Sweden: a 33 year follow up. J. Epidemiol. Community Health 2001;55:825-30.

- 18. Bottcher M, Falk E. Pathology of the coronary arteries in smokers and non-smokers. J Cardiovasc Risk 1999;6:299-302.
- 19. Pech-Amsellem MA, Myara I, Storogenko M, Demuth K, Proust A, Moatti N. Enhanced modifications of low-density lipoproteins (LDL) by endothelial cells from smokers: a possible mechanism of smoking-related atherosclerosis. *Cardiovasc.Res.* 1996;**31**:975-**8**3.
- 20. Powell JT. Vascular damage from smoking: disease mechanisms at the arterial wall. *Vasc Med* 1998;3:21-8.
- 21. McGill HCJ, McMahan A, Malcom GT, Oalmann MC, trong JP. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Effects of serum lipoproteins and smoking on atherosclerosis in young men and women. *Arterioscler Thromb Vasc Biol.* 1997;17:95-106.
- 22. Critchley J, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. JAMA 2003;290:86-97.
- 23. U.S.Department of Health and Human Services. The Surgeon General's 1990 Report on the Health Benefits of Smoking Cessation. Rockville, Maryland: DHHS Publication No. (CDC) 89-8411, 1990.
- 24. MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 1990;335:765-74.
- 25. Pasternak RC, Grundy SM, Levy D. Spectrum of Risk Factors for Coronary Heart Disease. JACC 1996;27:978-87.
- 26. Yusuf S, Lessem J, Jha P, Lonn E. Primary and secondary prevention of myocardial infarction and strokes: an update of randomly allocated, controlled trials. *J. Hypertens. Suppl* 1993;11:S61-S73.
- 27. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. *Lancet* 2002;**360**:1903-13.
- 28. Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA 1995;273:1450-6.
- 29. NCEP. Summary of the second report of the National Cholesterol Education Program(NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adults treatment panel II). JAMA 1993;269:3015-23.
- 30. Neaton JD, Wentworth D. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316,099 white men. Multiple Risk Factor Intervention Trial Research Group. Arch.Intern.Med. 1992;152:56-64.
- 31. Law M, Wald N, Wu T, Hackshaw A, Bailey A. Systematic underestimation of association between serum cholesterol concentration and ischaemic heart disease in observational studies: data from the BUPA study. *BMJ* 1994;308:363-6.
- 32. Law MR, Wald NJ, Thompson SG. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? *BMJ* 1994;308:367-72.

- 33. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383-9.
- 34. Pignone M, Phillips C, Mulrow C. Use of lipid lowering drugs for primary prevention of coronary heart disease: meta-analysis of randomised trials. *BMJ* 2000;**321**:983-6.
- 35. Law M, Wald N. Why heart disease mortality is low in France: the time lag explanation. BMJ 1999;318:1471-6.
- 36. Nguyen TT, Ellefson RD, Hodge DO, Bailey KR, Kottke TE, Abu-Lebdeh HS. Predictive value of electrophoretically detected lipoprotein(a) for coronary heart disease and cerebrovascular disease in a community-based cohort of 9936 men and women. *Circulation* 1997;96:1390-7.
- 37. Bielicki JK, Oda MN. Apolipoprotein A-I(Milano) and apolipoprotein A-I(Paris) exhibit an antioxidant activity distinct from that of wild-type apolipoprotein A-I. *Biochemistry* 2002;41:2089-96.
- Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. *Lancet* 2001;358:2026-33.
- 39. Bass KM, Newschaffer CJ, Klag MJ, Bush TL. Plasma lipoprotein levels as predictors of cardiovascular death in women. *Arch.Intern.Med.* 1993;153:2209-16.
- 40. Gaziano JM, Hennekens CH, O'Donnell CJ, Breslow JL, Buring JE. Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. *Circulation* 1997;96:2520-5.
- 41. Assmann G. Pro and con: high-density lipoprotein, triglycerides, and other lipid subfractions are the future of lipid management. *Am.J.Cardiol.* 2001;87:2B-7B.
- 42. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. *Circulation* 1998;97:1837-47.
- 43. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991;14:173-94.
- 44. Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am. Heart J. 1985;110:1100-7.
- 45. Bonow RO, Bohannon N, Hazzard W. Risk stratification in coronary artery disease and special populations. Am.J.Med. 1996;101:4A17S-22S.
- 46. ADA Consensus Panel. Role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes. *Diabetes*. 1993;2:434-44.
- 47. Wingard DL, Barrett-Connor EL, Scheidt-Nave C, McPhillips JB. Prevalence of cardiovascular and renal complications in older adults with normal or impaired glucose tolerance or NIDDM. A population-based study. *Diabetes Care* 1993;16:1022-5.
- 48. Erens B, Primatesta P. Health Survey for England. Cardiovascular Disease '98. London: Stationery Office, 1999.
- 49. Larsson B, Bengtsson C, Bjorntorp P, Lapidus L, Sjostrom L, Svardsudd K et al. Is abdominal body fat distribution a major explanation for the sex difference in the incidence of myocardial

infarction? The study of men born in 1913 and the study of women, Goteborg, Sweden. *Am.J.Epidemiol.* 1992;135:266-73.

- 50. Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B, Speizer FE et al. Weight, weight change, and coronary heart disease in women. Risk within the 'normal' weight range. JAMA 1995;273:461-5.
- 51. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR *et al.* A prospective study of obesity and risk of coronary heart disease in women. *N.Engl.J.Med.* 1990;322:882-9.
- 52. Berlin JA,.Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. *Am.J.Epidemiol.* 1990;132:612-28.
- 53. Shaper AG, Wannamethee G. Physical activity and ischaemic heart disease in middle-aged British men. Br Heart J 1991;66:384-94.
- 54. Wannamethee SG, Shaper AG, Walker M. Changes in physical activity, mortality, and incidence of coronary heart disease in older men. *Lancet* 1998;**351**:1603-8.
- 55. Marmot M. Aetiology of coronary heart disease. BMJ 2001;323:1261-2.
- 56. Morris JN, Clayton DG, Everitt MG, Semmence AM, Burgess EH. Exercise in leisure time: coronary attack and death rates. *Br. Heart J.* 1990;63:325-34.
- 57. United States Department of Health and Human Services. *Physical Activity and Health: A report of Surgeon General*. Atlanta: 1996.
- 58. Stampfer MJ, Colditz GA, Willett WC, Speizer FE, Hennekens CH. A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women. *N.Engl.J.Med.* 1988;319:267-73.
- 59. Shaper AG, Wannamethee G, Walker M. Alcohol and coronary heart disease: a perspective from the British Regional Heart Study. *Int J Epidemiol.* 1994;23:482-94.
- 60. Goldberg IJ, Mosca L, Piano MR, Fisher EA. AHA Science Advisory: Wine and your heart: a science advisory for healthcare professionals from the Nutrition Committee, Council on Epidemiology and Prevention, and Council on Cardiovascular Nursing of the American Heart Association. *Circulation* 2001;103:472-5.
- 61. Klatsky AL, Armstrong MA, Friedman GD. Red wine, white wine, liquor, beer, and risk for coronary artery disease hospitalization. Am.J.Cardiol. 1997;80:416-20.
- 62. Brouwer IA, van Dusseldorp M, West CE, Meyboom S, Thomas CM, Duran M et al. Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in humans in a dietary controlled trial. J.Nutr. 1999;129:1135-9.
- 63. Grundy SM, Balady GJ, Criqui MH, Fletcher G, Greenland P, Hiratzka LF et al. Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA Task Force on Risk Reduction. American Heart Association. Circulation 1998;97:1876-87.
- 64. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N. Engl. J. Med. 1991;324:1149-55.

- 65. Whincup PH, Refsum H, Perry IJ, Morris R, Walker M, Lennon L et al. Serum total homocysteine and coronary heart disease: prospective study in middle aged men. *Heart* 1999;82:448-54.
- 66. Ford ES, Smith SJ, Stroup DF, Steinberg KK, Mueller PW, Thacker SB. Homocyst(e)ine and cardiovascular disease: a systematic review of the evidence with special emphasis on case-control studies and nested case-control studies. *Int J.Epidemiol.* 2002;31:59-70.
- 67. Asplund K. Antioxidant vitamins in the prevention of cardiovascular disease: a systematic review. J.Intern.Med. 2002;251:372-92.
- 68. Ness AR, Powles JW. Fruit and vegetables, and cardiovascular disease: a review. Int J. Epidemiol. 1997;26:1-13.
- 69. Lonn EM, Yusuf S. Is there a role for antioxidant vitamins in the prevention of cardiovascular diseases? An update on epidemiological and clinical trials data. Can.J.Cardiol. 1997;13:957-65.
- 70. Department of Health. Nutritional Aspects of Cardiovascular Disease. Report of the Cardiovascular Review Group of the Committee on Medical Aspects of Food Policy. 1994. London, HMSO.
- 71. A Report of joint WHO/FAO Expert Consultation. *Diet, Nutrition, and the Prevention of Chronic Diseases.* 2003. Geneva, World Health Organization. Technical Report Series 916.
- 72. Law MR, Morris JK. By how much does fruit and vegetable consumption reduce the risk of ischaemic heart disease? *Eur.J.Clin.Nutr.* 1998;52:549-56.
- 73. Khaw KT, Bingham S, Welch A, Luben R, Wareham N, Oakes S *et al.* Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. European Prospective Investigation into Cancer and Nutrition. *Lancet* 2001;**357**:657-63.
- 74. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 1998;279:1477-82.
- 75. Folsom AR. Hemostatic risk factors for atherothrombotic disease: an epidemiologic view. *Thromb. Haemost.* 2001;86:366-73.
- 76. Catto AJ, Carter AM, Barrett JH, Bamford J, Rice PJ, Grant PJ. von Willebrand factor and factor VIII: C in acute cerebrovascular disease. Relationship to stroke subtype and mortality. *Thromb.Haemost.* 1997;77:1104-8.
- 77. Folsom AR, Wu KK, Rosamond WD, Sharrett AR, Chambless LE. Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1997;96:1102-8.
- 78. Meade TW. Cardiovascular disease--linking pathology and epidemiology. Int J. Epidemiol. 2001;30:1179-83.
- 79. McCarron PG, Smith GD, Womersley JJ. Deprivation and mortality in Glasgow: changes from 1980 to 1992. *BMJ* 1994;309:1481-2.
- 80. Smith GD, Hart C, Blane D, Gillis C, Hawthorne V. Lifetime socioeconomic position and mortality: prospective observational study. BMJ 1997;314:547-52.
- 81. Department of Health. Tackling Health Inequalities 2002 Cross-Cutting Review. 2002. London, H M Treasury.
- 82. Acheson D. Independent inquiry into inequalities in health report. 1998. London, The Stationery Office.
- 83. Capewell S, MacIntyre K, Stewart S, Chalmers JW, Boyd J, Finlayson A *et al.* Age, sex, and social trends in out-of-hospital cardiac deaths in Scotland 1986-95: a retrospective cohort study. *Lancet* 2001;**358**:1213-7.
- 84. Smith GD, Hart C, Blane D, Hole D. Adverse socioeconomic conditions in childhood and cause specific adult mortality: prospective observational study. *BMJ* 1998;316:1631-5.
- 85. Smith GD, McCarron P, Okasha M, McEwen J. Social circumstances in childhood and cardiovascular disease mortality: prospective observational study of Glasgow University students. *J.Epidemiol.Community Health* 2001;55:340-1.
- 86. Barker DJ, Fall CH. Fetal and infant origins of cardiovascular disease. Arch. Dis. Child 1993;68:797-9.
- 87. Barker DJ. Fetal origins of coronary heart disease. BMJ 1995;311:171-4.
- 88. Osmond C, Barker DJ, Winter PD, Fall CH, Simmonds SJ. Early growth and death from cardiovascular disease in women. *BMJ* 1993;**307**:1519-24.
- 89. Fall CH, Vijayakumar M, Barker DJ, Osmond C, Duggleby S. Weight in infancy and prevalence of coronary heart disease in adult life. *BMJ* 1995;**310**:17-9.
- 90. Barker DJ, Forsen T, Uutela A, Osmond C, Eriksson JG. Size at birth and resilience to effects of poor living conditions in adult life: longitudinal study. *BMJ* 2001;**323**:1273-6.
- 91. Bhopal R. What is the risk of coronary heart disease in South Asians? A review of UK research. J. Public Health Med. 2000;22:375-85.
- 92. The Report of Expert Panel, National Cholesterol Education Program: Report of the National Cholesterol Education Program Expert Panel on detection, evaluation and treatment of high blood cholesterol in adults. *Arch Intern Med* 1998;136-48.
- 93. NCEP. Second report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). *Circulation* 1994;89:1331-445.
- 94. Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am. Heart J. 1990;120:963-9.
- 95. Wannamethee SG, Shaper AG, Whincup PH, Walker M. Adult height, stroke, and coronary heart disease. Am J Epidemiol 1998;148:1069-76.
- 96. Yarnell JW, Limb ES, Layzell JM, Baker IA. Height: a risk marker for ischaemic heart disease: prospective results from the Caerphilly and Speedwell Heart Disease Studies. *European Heart Journal* 1992;13:1602-5.
- 97. Gunnell D, Whitley E, Upton MN, McConnachie A, Smith GD, Watt GC. Associations of height, leg length, and lung function with cardiovascular risk factors in the Midspan Family Study. J. Epidemiol. Community Health 2003;57:141-6.

- 98. Gunnell DJ, Davey SG, Frankel S, Nanchahal K, Braddon FE, Pemberton J et al. Childhood leg length and adult mortality: follow up of the Carnegie (Boyd Orr) Survey of Diet and Health in Pre-war Britain. J.Epidemiol.Community Health 1998;52:142-52.
- 99. Palmer JR, Rosenberg L, Shapiro S. Stature and the risk of myocardial infarction in women. Am.J.Epidemiol. 1990;132:27-32.
- 100. Keavney B. Genetic epidemiological studies of coronary heart disease. Int J. Epidemiol. 2002;31:730-6.
- 101. The UK Biobank Project: A study of genes, environment and health . http://www.ukbiobank.ac.uk/ . 2003.
- 102. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. *Circulation* 2002;105:310-5.
- 103. Tunstall-Pedoe H. The Dundee coronary risk-disk for management of change in risk factors. BMJ 1991;303:744-7.
- 104. Shaper AG, Pocock SJ, Phillips AN, Walker M. Identifying men at high risk of heart attacks: strategy for use in general practice. *Br.Med.J (Clin.Res.Ed)* 1986;293:474-9.
- 105. Ramsay LE, Haq IU, Jackson PR, Yeo WW. The Sheffield table for primary prevention of coronary heart disease: corrected. *Lancet* 1996;348:1251.
- 106. Haq IU, Ramsay LE, Yeo WW, Jackson PR, Wallis EJ. Is the Framingham risk function valid for northern European populations? A comparison of methods for estimating absolute coronary risk in high risk men. *Heart* 1999;81:40-6.
- 107. Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. *Circulation* 1999;100:1481-92.
- 108. Marshall T, Rouse A. Resource implications and health benefits of primary prevention strategies for cardiovascular disease in people aged 30 to 74: mathematical modelling study. *BMJ* 2002;**325**:197.
- 109. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Bethesda: National Institutes of Health, National Heart, Lung, and Blood Institute, 1997.
- 110. American Diabetes Association. Clinical practice recommendations. *Diabetes Care* 1999;22(suppl 1):S1-S114.
- 111. Prevention of coronary heart disease in clinical practice. Recommendations of the Second Joint Task Force of European and other Societies on coronary prevention. Eur. Heart J. 1998;19:1434-503.
- 112. Elmer PJ, Grimm R, Jr., Laing B, Grandits G, Svendsen K, Van Heel N et al. Lifestyle intervention: results of the Treatment of Mild Hypertension Study (TOMHS). Prev. Med. 1995;24:378-88.
- 113. Vartiainen E, Puska P, Jousilahti P, Korhonen HJ. Cardiovascular diseases and risk factors in Finland. Prev. Med. 1999;29:S124-S129.

- 114. Stamler J, Fortmann SP, Levy RI, Prineas RJ, Tell G. Primordial prevention of cardiovascular disease risk factors: panel summary. *Prev. Med.* 1999;29:S130-S135.
- 115. Beaglehole R, Magnus P. The search for new risk factors for coronary heart disease: occupational therapy for epidemiologists? Int J. Epidemiol. 2002;31:1117-22.
- 116. Joosens L. The effectiveness of banning advertising for tobacco products. International Union Against Cancer. 1997.
- 117. Dobson AJ, Kuulasmaa K, Moltchanov V, Evans A, Fortmann SP. Jamrozik K *et al.* Changes in cigarette smoking among adults in 35 populations in the mid-1980s. WHO MONICA Project. *Tob.Control* 1998;7:14-21.
- 118. Centers for Disease Control and Prevention. Smoking Prevalence Among U.S. Adults. http://www.cdc.gov/tobacco/research_data/adults_prev/prevali.htm . 5-6-2003.
- 119. Fichtenberg C, Glantz S. Association of the California Tobacco Control Program with Declines in Cigarette Consumption and Mortality from Heart Disease. *N Engl J Med* 2001;**343**:1772-7.
- 120. Silagy C. Physician advice for smoking cessation. Cochrane Database Syst. Rev. 2000;CD000165.
- 121. Hill D. Why we should tackle adult smoking first. Tob. Control 1999;8:333-5.
- 122. Schaefer EJ. Lipoproteins, nutrition, and heart disease. Am.J.Clin. Nutr. 2002;75:191-212.
- 123. Vartiainen E, Jousilahti P, Alfthan G. Cardiovascular risk factor changes in Finland, 1972-1997. Int J Epidemiol 2000;29:49-56.
- 124. Dowse GK, Gareeboo H, Alberti KG, Zimmet P, Tuomilehto J, Purran A *et al.* Changes in population cholesterol concentrations and other cardiovascular risk factor levels after five years of the non-communicable disease intervention programme in Mauritius. Mauritius Non-communicable Disease Study Group. *BMJ* 1995;**311**:1255-9.
- 125. Kuulasmaa K, Tunstall PH, Dobson AJ, France M, Sans S, Tolonen H et al. Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project. Lancet 2000;355:675-87.
- 126. Jurgens G, Graudal NA. Effects of low sodium diet versus high sodium diet on blood pressure. renin, aldosterone, catecholamines, cholesterols, and triglyceride. *Cochrane Database* Syst. Rev. 2003;CD004022.
- 127. Gueyffier F, Boutitie F, Boissel JP, Pocock S, Coope J, Cutler J et al. Effect of antihypertensive drug treatment on cardiovascular outcomes in women and men. A metaanalysis of individual patient data from randomized, controlled trials. The INDANA Investigators. Ann. Intern. Med. 1997;126:761-7.
- 128. Scottish Intercollegiate Guidelines Network (SIGN). Hypertension in older people. 49. 2001. Edinburgh, SIGN.
- Berlowitz DR, Ash AS, Hickey EC, Friedman RH, Glickman M, Kader B et al. Inadequate management of blood pressure in a hypertensive population. N. Engl. J Med. 1998;339:1957-63.

- 130. Primatesta P, Brookes M, Poulter NR. Improved hypertension management and control: results from the health survey for England 1998. *Hypertension* 2001;38:827-32.
- 131. Joint British recommendations on prevention of coronary heart disease in clinical practice. British Cardiac Society, British Hyperlipidaemia Association, British Hypertension Society, endorsed by the British Diabetic Association. *Heart* 1998;80 Suppl 2:S1-29.
- 132. Haq IU, Jackson PR, Yeo WW, Ramsay LE. Sheffield risk and treatment table for cholesterol lowering for primary prevention of coronary heart disease. *Lancet* 1995;**346**:1467-71.
- 133. Prevention of coronary heart disease in clinical practice. Recommendations of the Second Joint Task Force of European and other Societies on coronary prevention. *Eur. Heart J.* 1998;19:1434-503.
- 134. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr. *et al.* The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. *JAMA* 2003;**289**:2560-72.
- 135. Stamler J, Caggiula AW, Grandits GA. Relation of body mass and alcohol, nutrient, fiber, and caffeine intakes to blood pressure in the special intervention and usual care groups in the Multiple Risk Factor Intervention Trial. *Am.J Clin.Nutr.* 1997;65:338S-65S.
- Brand MB, Mulrow CD, Chiquette E, Angel L, Cornel J, and Summerbell C. Dieting to control body weight for controlling hypertension in adults (Cochrane review). (3). 1999. Oxford, The Cochrane library.
- 137. 1999 World Health Organization-International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Subcommittee. J Hypertens. 1999;17:151-83.
- 138. Glenny AM, O'Meara S, Melville A, Sheldon TA, Wilson C. The treatment and prevention of obesity: a systematic review of the literature. *Int.J.Obes.Relat Metab Disord.* 1997;21:715-37.
- Thorogood, M., Hillsdon, M, and Summerbell, C. Clinical evidence. <u>http://www.clinicalevidence.com/lpBinCE/lpext.dll?f=templates&fn=main-h.htm&2.0</u>. 29-5-2003.
- 140. Murphy M, Foster C, Sudlow C, Nicholas J, Mulrow C, Ness A. Cardiovascular disorders: Primary prevention. *Clinical Evidence* 2003.
- 141. Kahn EB, Ramsey LT, Brownson RC, Heath GW, Howze EH, Powell KE et al. The effectiveness of interventions to increase physical activity. A systematic review. *Am.J.Prev.Med.* 2002;22:73-107.
- 142. Hillsdon M, Thorogood M. A systematic review of physical activity promotion strategies. Br.J.Sports Med. 1996;30:84-9.
- 143. Capewell S, Livingston BM, MacIntyre K, et al. Trends in case-fatality in 117 718 patients admitted with acute myocardial infarction in Scotland. *Eur. Heart J.* 2000;21:1833-40.
- 144. MacIntyre K, Capewell S, Stewart S, Chalmers JW, et al. Evidence of improving prognosis in heart failure. Trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. *Circulation* 2000;102:1126-31.
- 145. Erhardt L, Herlitz J, Bossaert L, Halinen M, Keltai M, Koster R et al. Task force on the management of chest pain. Eur. Heart J. 2002;23:1153-76.

- 146. O'Toole L, Grech ED. Chronic stable angina: treatment options. BMJ 2003;326:1185-8.
- 147. Grech ED, Ramsdale DR. Acute coronary syndrome: unstable angina and non-ST segment elevation myocardial infarction. BMJ 2003;326:1259-61.
- 148. Department of Health. National Service Framework for Coronary Heart Disease. 2000. Department of Health:London, <u>http://www.doh.gov.uk/pdfs/chdnsf.pdf</u>. 12-9-2003.
- 149. NHS Centre for Reviews and Dissemination. Management of stable angina. Effective Health Care Bulletin 1997;3:1-8.
- 150. Grech ED. ABC of interventional cardiology: percutaneous coronary intervention. II: the procedure. *BMJ* 2003;**326**:1137-40.
- 151. Coronary angioplasty versus medical therapy for angina: the second Randomised Intervention Treatment of Angina (RITA-2) trial. RITA-2 trial participants. *Lancet* 1997;**350**:461-8.
- 152. Pocock SJ, Henderson RA, Rickards AF, Hampton JR, King SB, III, Hamm CW et al. Metaanalysis of randomised trials comparing coronary angioplasty with bypass surgery. Lancet 1995;**346**:1184-9.
- 153. Van de WF, Ardissino D, Betriu A, Cokkinos DV, Falk E, Fox KA *et al.* Management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology. *Eur.Heart J.* 2003;24:28-66.
- 154. Davies MJ. The pathophysiology of acute coronary syndromes. Heart 2000;83:361-6.
- 155. Tunstall-Pedoe H, Vanuzzo D, Hobbs M, Mahonen M, Cepaitis Z, Kuulasmaa K et al. Estimation of contribution of changes in coronary care to improving survival, event rates, and coronary heart disease mortality across the WHO MONICA Project populations [see comments]. Lancet 2000;355:688-700.
- 156. Tunstall-Pedoe H, Kuulasmaa K, Mahonen M, Tolonen H, Ruokokoski E, Amouyel P. Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. *Lancet* 1999;353:1547-57.
- 157. Norris RM. Fatality outside hospital from acute coronary events in three British health districts, 1994-5. United Kingdom Heart Attack Study Collaborative Group. *BMJ* 1998;316:1065-70.
- 158. Priori SG, Aliot E, Blomstrom-Lundqvist C, Bossaert L, Breithardt G, Brugada P et al. Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur. Heart J. 2001;22:1374-450.
- 159. Julian DG, Norris RM. Myocardial infarction: is evidence-based medicine the best? Lancet 2002;359:1515-6.
- 160. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. *BMJ* 2002;**324**:71-**8**6.
- 161. White HD. Thrombolytic therapy in the elderly. Lancet 2000;356:2028-30.

- 162. Lee KL, Woodlief LH, Topol EJ, Weaver WD, Betriu A, Col J et al. Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. GUSTO-I Investigators. Circulation 1995;91:1659-68.
- 163. Baigent C, Collins R, Appleby P, Parish S, Sleight P, Peto R. ISIS-2: 10 year survival among patients with suspected acute myocardial infarction in randomised comparison of intravenous streptokinase, oral aspirin, both, or neither. The ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. *BMJ* 1998;**316**:1337-43.
- 164. Cucherat M, Bonnefoy E, Tremeau G. Primary angioplasty versus intravenous thrombolysis for acute myocardial infarction. *Cochrane.Database.Syst.Rev.* 2000;CD001560.
- 165. Latini R, Maggioni AP, Flather M, Sleight P, Tognoni G. ACE inhibitor use in patients with myocardial infarction: Summary of evidence from clinical trials. *Circulation* 1995;92:3132-7.
- 166. Freemantle N, Cleland J, Young P, Mason J, Harrison J. beta Blockade after myocardial infarction: systematic review and meta regression analysis. *BMJ* 1999;**318**:1730-7.
- 167. Flather MD, Yusuf S, Kober L, Pfeffer M, Hall A, Murray G et al. Long-term ACE-inhibitor therapy in patients with heart failure or left- ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 2000;355:1575-81.
- 168. Scottish Intercollegiate Guidelines Network (SIGN). Cardiac rehabilitation. (SIGN publication no. 57). 2002. Edinburgh, SIGN.
- 169. Canadian Association of Cardiac Rehabilitation. Canadian guidelines for cardiac rehabilitation and cardiovascular disease prevention. 1st ed. 1999. Winnipeg, The Association.
- 170. Gohlke H,.Gohlke-Barwolf C. Cardiac rehabilitation. Eur. Heart J. 1998;19:1004-10.
- 171. Jolliffe JA, Rees K, Taylor RS, Thompson D, Oldridge N, Ebrahim S. Exercise-based rehabilitation for coronary heart disease. *Cochrane Database Syst. Rev.* 2002;CD001800.
- 172. Ades PA. Cardiac rehabilitation and secondary prevention of coronary heart disease. N. Engl.J Med. 2001;345:892-902.
- 173. Remme WJ, Swedberg K. Guidelines for the diagnosis and treatment of chronic heart failure. Eur. Heart J. 2001;22:1527-60.
- 174. Fox KF, Cowie MR, Wood DA, Coats AJ, Gibbs JS, Underwood SR et al. Coronary artery disease as the cause of incident heart failure in the population. Eur. Heart J. 2001;22:228-36.
- 175. Mair FS, Crowley TS, Bundred PE. Prevalence, aetiology and management of heart failure in general practice. Br.J.Gen.Pract. 1996;46:77-9.
- 176. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999;341:709-17.
- 177. Shibata MC, Flather MD, Wang D. Systematic review of the impact of beta blockers on mortality and hospital admissions in heart failure. Eur.J. Heart Fail. 2001;3:351-7.
- 178. de Lorgeril M, Salen P, Martin JL, Mamelle N, Monjaud I, Touboul P et al. Effect of a mediterranean type of diet on the rate of cardiovascular complications in patients with

coronary artery disease. Insights into the cardioprotective effect of certain nutriments. J Am.Coll.Cardiol. 1996;28:1103-8.

- 179. Burr ML, Fehily AM, Gilbert JF, Rogers S, Holliday RM, Sweetnam PM et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 1989;2:757-61.
- 180. WHO. The World Health Report 2002. 2002. Geneva, WHO/ OMS.
- 181. Saito I, Folsom AR, Aono H, Ozawa H, Ikebe T, Yamashita T. Comparison of fatal coronary heart disease occurrence based on population surveys in Japan and the USA. Int J Epidemiol 2000;29:837-44.
- 182. Nuttens MC, Salomez JL, Tillard B, Richard JL, Pons E, Huart J et al. [Validity of death certificates in the study of ischemic heart diseases]. Presse Med. 1990;19:1143-6.
- 183. Lloyd-Jones DM, Martin DO, Larson MG, Levy D. Accuracy of death certificates for coding coronary heart disease as the cause of death. *Ann. Intern. Med* 1998;129:1020-6.
- 184. Jackson R, Stewart A, Beaglehole R. Trends in coronary heart disease mortality and morbidity in Auckland, New Zealand, 1974-1986. Int J Epidemiol 1990;19:279-83.
- 185. Tunstall PH, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. *Circulation* 1994;**90**:583-612.
- 186. Keys A, Menotti A, Aravanis C, Blackburn H, Djordevic BS, Buzina R et al. The seven countries study: 2,289 deaths in 15 years. *Prev. Med.* 1984;13:141-54.
- 187. Dobson A, Filipiak B, Kuulasmaa K, Beaglehole R, Stewart A, Hobbs M et al. Relations of changes in coronary disease rates and changes in risk factor levels: methodological issues and a practical example. Am J Epidemiol 1996;143:1025-34.
- 188. Rose G. The Strategy of Preventive Medicine. Oxford: Oxford University Press, 1992.
- 189. Thom TJ, Epstein FH, Feldman JJ, Leaverton PE. Trends in total mortality and mortality from heart disease in 26 countries from 1950 to 1978. Int.J.Epidemiol. 1985;14:510-20.
- 190. Fuster V. Epidemic of cardiovascular disease and stroke: The three main challenges. *Circulation* 1999;99:1132-7.
- 191. Nieto FJ. Cardiovascular disease and risk factor epidemiology: a look back at the epidemic of the 20th century. Am.J. Public Health 1999;89:292-4.
- 192. Vartiainen E, Puska P, Pekkanen J, Tuomilehto J, Jousilahti P. Changes in risk factors explain changes in mortality from ischaemic heart disease in Finland. BMJ 1994;309:23-7.
- 193. Goldman L, Cook E. The decline in ischemic heart disease mortality rates. An analysis of the comparative effects of medical interventions and changes in lifestyle. Ann. Intern. Med. 1984;101:825-36.
- 194. Beaglehole R. Medical management and the decline in mortality from coronary heart disease. BMJ 1986;292:33-5.

- 195. ONS-Office for National Statistics. Population: Age and sex, 1971 onwards. *Health Statistics Quarterly* 2001;11.
- 196. Department of Health. NHS Hospital in-patient data for the period 1999-2000 based on Hospital Episode Statistics (HES). <u>http://www.doh.gov.uk/hes/index.html</u> . 17-2-2003.
- 197. Society of Cardiothoracic Surgeons of Great Britain and Ireland. Trends in Surgery for Ischaemic Heart Disease. <u>http://www.scts.org/doc/2102</u>. 20-2-0003.
- 198. de Belder, M. British Cardiac Intervention Society (BCIS) audit returns of interventional procedures 2000. <u>http://www.bcis.org.uk/audit/Bcis00.ppt</u>. 17-2-2003.
- 199. Colhoum H, Prescott-Clark P. Health Survey for England 1994. London: HMSO, 1996.
- 200. ONS-Office for National Statistics Social Survey Division. Living in Britain:Results from the 2000/01 General Household Survey. London: The Stationery Office, 2001.
- 201. Office for National Statistics. Key Health Statistics from General Practice 1998. 2000. London, National Statistics. MB6 No.2.
- 202. Department of Health. Hospital Episode Statistics. Figures for 1995-96. 1-1-1999.
- 203. Petersen, S., Rayner, M., and Press, V. Coronary heart disease statistics. Press, V. 2000. London, British Heart Foundation.
- 204. Stewart S, Murphy N, Walker A, McGuire A, McMurray JJ. The current cost of angina pectoris to the National Health Service in the UK. *Heart* 2003;89:848-53.
- 205. Liu JL, Maniadakis N, Gray A, Rayner M. The economic burden of coronary heart disease in the UK. *Heart* 2002;88:597-603.
- 206. Unal B, Critchley J, Capewell S. Missing, mediocre, or merely obsolete? An evaluation of UK data sources for coronary heart disease. *J Epidemiol Community Health* 2003;57:530-5.
- 207. Box GEP, Hunter WG, Hunter SJ. Statistics for Experimenters. New York: John Wiley & Sons Inc, 1978.
- 208. Hersh AL, Black WC, Tosteson AN. Estimating the population impact of an intervention: a decision-analytic approach. *Stat. Methods Med. Res.* 1999;8:311-30.
- 209. Rittenhouse, B. Uses of Models in Economic Evaluations of Medicines and other Health Technologies. ISBN 1 899040 00X, 7. 10-1-1996. London, BSC Print Ltd.
- 210. Wolfson MC. POHEM- a framework for understanding and modelling the health of human populations. *World Health Stat.Q.* 1994;47:157-76.
- 211. Anderson RM. The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS. Journal of Acquired Immune Deficiency Syndromes. 1988;1:241-56.
- 212. Cohen CH, Valleron AJ. When did bovine spongioform encephalopathy (BSE) start? Implications on the prediction of a new variant of Creuzfeldt-Jacob disease (nvCJD) epidemic. Int J Epidemiol 1999;526-31.
- 213. US Environmental Protection Agency. Requirements for preparation, adoption, and submittal of implementation plans: Final rule. 1996.

- 214. Fawcett W, Oliveira CS. Casualty treatment after earthquake disasters: development of a regional simulation model. *Disasters*. 2000;24:271-87.
- 215. Weinstein MC, Toy EL, Sandberg EA, Neumann PJ, Evans JS, Kuntz KM et al. Modeling for health care and other policy decisions: uses, roles, and validity. Value Health 2001;4:348-61.
- 216. Weinstein MC, O'Brien B, Hornberger J, Jackson J, Johannesson M. McCabe C et al. Principles of good practice for decision analytic modeling in health-care evaluation: report of the ISPOR Task Force on Good Research Practices-Modeling Studies. Value Health 2003;6:9-17.
- 217. Davies R, Roderick P, Raftery J. The evaluation of disease prevention and treatment using simulation models. *European Journal of Operational Research* 2003;150:53-66.
- 218. Mandelblatt JS, Fryback DG, Weinstein MC, Russell LB, Gold MR. Assessing the effectiveness of health interventions for cost-effectiveness analysis. Panel on Cost-Effectiveness in Health and Medicine. J Gen. Intern. Med. 1997;12:551-8.
- 219. Weinstein MC. Methodologic issues in policy modeling for cardiovascular disease. J.Am.Coll.Cardiol. 1989;14:38A-43A.
- 220. Halpern MT, Luce BR, Brown RE, Geneste B. Health and economic outcomes modelling practices: A suggested framework. *Value in Health* 1998;1:131-47.
- 221. Sonnenberg FA, Roberts MS, Tsevat J, Wong JB, Barry M, Kent DL. Toward a peer review process for medical decision analysis models. *Med.Care* 1994;**32**:JS52-JS64.
- 222. Weinstein MC, Coxson PG, Williams LW, Pass TM, Stason WB, Goldman L. Forecasting coronary heart disease incidence, mortality, and cost: the Coronary Heart Disease Policy Model. Am.J. Public Health 1987;77:1417-26.
- 223. Mui S-L. Projecting coronary heart disease incidence and cost in Australia: Results from the Incidence module of the Cardiovascular Disease Policy Model. Australian and New Zealand Journal of Public Health, Vol 23(1) (pp 11-19), 1999.
- 224. Cooper K, Davies R, Roderick P, Chase D, Raftery J. The development of a simulation model of the treatment of coronary heart disease. *Health Care Manag.Sci.* 2002;5:259-67.
- 225. Gunning-Schepers LJ. The health benefits of prevention a simulation approach. *Health Policy* 1989;12:1-256.
- 226. Edwards JS, Finlay PN, Wilson JM. The role of OR specialist in 'do it yourself' spreadsheet development. *European Journal of Operational Research* 2000;127:17-27.
- 227. Cragg. Spreadsheet modelling abuse: An opportunity for OR? Journal of the Operational Reserach Society 1993;44:743-52.
- 228. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997;349:1269-76.
- 229. Nuijten MJ. The selection of data sources for use in modelling studies. *Pharmacoeconomics*. 1998;13:305-16.
- 230. Buxton MJ, Drummond MF, Van Hout BA, Prince RL, Sheldon TA, Szucs T et al. Modelling in economic evaluation: an unavoidable fact of life. Health Econ. 1997;6:217-27.

- 231. Briggs A, Sculpher M, Buxton M. Uncertainty in the economic evaluation of health care technologies: the role of sensitivity analysis. *Health Economics* 1994;3:95-104.
- 232. Pauker SG, Kassirer JP. The threshold approach to clinical decision making. N. Engl. J. Med. 1980;302:1109-17.
- 233. Hunink MG, Goldman L, Tosteson AN, Mittleman MA, Goldman PA, Williams LW et al. The recent decline in mortality from coronary heart disease, 1980-1990. The effect of secular trends in risk factors and treatment. JAMA 1997;277:535-42.
- 234. Grover SA, Abrahamowicz M, Joseph L, Brewer C, Coupal L, Suissa S. The benefits of treating hyperlipidemia to prevent coronary heart disease. Estimating changes in life expectancy and morbidity. JAMA 1992;267:816-22.
- 235. Glick H, Heyse JF, Thompson D, Epstein RS, Smith ME, Oster G. A model for evaluating the cost-effectiveness of cholesterol-lowering treatment. *Int.J. Technol. Assess. Health Care* 1992;8:719-34.
- 236. Randall T, Muir J, Mant D. Choosing the preventive workload in general practice:practical application of the Coronary Prevention Group Guidelines and Dundee Coronary Risk-disk. British Medical Journal 1992;305:232.
- 237. Goldman L, Phillips KA, Coxson P, Goldman PA, Williams L, Hunink MG et al. The effect of risk factor reductions between 1981 and 1990 on coronary heart disease incidence, prevalence, mortality and cost. J.Am.Coll.Cardiol. 2001;38:1012-7.
- 238. Tsevat J, Weinstein MC, Williams LW, Tosteson AN, Goldman L. Expected gains in life expectancy from various coronary heart disease risk factor modifications. *Circulation* 1991;83:1194-201.
- 239. Goldman L, Weinstein MC, Goldman PA, Williams LW. Cost-effectiveness of HMG-CoA reductase inhibition for primary and secondary prevention of coronary heart disease. JAMA 1991;265:1145-51.
- 240. Phillips KA, Shlipak MG, Coxson P, Heidenreich PA, Hunink MG, Goldman PA *et al.* Health and economic benefits of increased beta-blocker use following myocardial infarction.[comment]. *JAMA* 2000;**284**:2748-54.
- 241. Gaspoz JM, Coxson PG, Goldman PA, Williams LW, Kuntz KM, Hunink MG et al. Cost effectiveness of aspirin, clopidogrel, or both for secondary prevention of coronary heart disease.[comment]. New England Journal of Medicine 2002;346:1800-6.
- 242. Prosser LA, Stinnett AA, Goldman PA, Williams LW, Hunink MG, Goldman L et al. Costeffectiveness of cholesterol-lowering therapies according to selected patient characteristics. Ann. Intern. Med. 2000;132:769-79.
- 243. Tosteson AN, Weinstein MC, Hunink MG, Mittleman MA, Williams LW, Goldman PA et al. Cost-effectiveness of populationwide educational approaches to reduce serum cholesterol levels. Circulation 1997;95:24-30.
- 244. Babad H, Sanderson C, Naidoo B, White I, Wang D. The development of a simulation model of primary prevention strategies for coronary heart disease. *Health Care Management Science* 2002;5:269-74.
- 245. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997;349:1498-504.

- 246. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. *Lancet* 1997;**349**:1436-42.
- 247. Grover SA, Ho V, Lavoie F, Coupal L, Zowall H, Pilote L. The importance of indirect costs in primary cardiovascular disease prevention: can we save lives and money with statins? *Archives of Internal Medicine* 2003;163:333-9.
- 248. Unal B, Critchley J, Capewell S. Explaining the decline in coronary heart disease mortality in England and Wales, 1981-2000. Circulation 2004;109:1101-1107.
- 249. Bonneux L, Barendregt JJ, Meeter K, Bonsel GJ, Van der Maas PJ. Estimating clinical morbidity due to ischemic heart disease and congestive heart failure: the future rise of heart failure. *Am.J.Public Health* 1994;84:20-8.
- 250. Bensley DC, Watson PS, Morrison GW. Pathways of coronary care--a computer-simulation model of the potential for health gain. *IMA Journal of Mathematics Applied in Medicine & Biology* 1995;12:315-28.
- 251. Bots ML, Grobbee DE. Decline of coronary heart disease mortality in The Netherlands from 1978 to 1985: contribution of medical care and changes over time in presence of major cardiovascular risk factors. J.Cardiovasc.Risk 1996;3:271-6.
- 252. McNeil JJ, Peeters A, Liew D, Lim S, Vos T. A model for predicting the future incidence of coronary heart disease within percentiles of coronary heart disease risk. *Journal of Cardiovascular Risk* 2001;8:31-7.
- 253. Bronnum-Hansen H, Juel K. Estimating mortality due to cigarette smoking: two methods, same result. *Epidemiology* 2000;11:422-6.
- 254. Grover SA, Paquet S, Levinton C, Coupal L, Zowall H. Estimating the benefits of modifying risk factors of cardiovascular disease: a comparison of primary vs secondary prevention. *Archives of Internal Medicine* 1998;158:655-62.
- 255. Grover SA, Coupal L, Paquet S, Zowall H. Cost-effectiveness of 3-hydroxy-3-methylglutarylcoenzyme A reductase inhibitors in the secondary prevention of cardiovascular disease: forecasting the incremental benefits of preventing coronary and cerebrovascular events. *Archives of Internal Medicine* 1999;159:593-600.
- 256. Kottke TE, Puska P, Salonen JT, Tuomilehto J, Nissinen A. Projected effects of high-risk versus population-based prevention strategies in coronary heart disease. *Am.J.Epidemiol.* 1985;121:697-704.
- 257. Naidoo B, Thorogood M, McPherson K, Gunning-Schepers LJ. Modelling the effects of increased physical activity on coronary heart disease in England and Wales. J.Epidemiol.Community Health 1997;51:144-50.
- 258. Naidoo B, Chambers J. Using the PREVENT model in Birmingham (Society for Social Medicine abstract). Journal of Epidemiology and Community Health 1998;52:683.
- 259. Davies R. An assessment of models of a health system. J Op Res Soc 1985;36:679-86.
- 260. Jun JB, Jacobson SH, Swisher JR. Applications of discrete-event simulation in health care clinics: a survey. J Op Res Soc 1999;50:109-23.

- 261. Fone D, Hollinghurst S, Temple M, Round A, Lester N, Weightman A *et al.* Systematic review of the use and value of computer simulation modelling in population health and health care delivery. *J.Public Health Med.* 2003;25:325-35.
- 262. Juni P, Altman DG, Egger M. Systematic reviews in health care: Assessing the quality of controlled clinical trials. *BMJ* 2001;**323**:42-6.
- 263. Murray CJ, Lauer JA, Hutubessy RC, Niessen L, Tomijima N, Rodgers A *et al.* Effectiveness and costs of interventions to lower systolic blood pressure and cholesterol: a global and regional analysis on reduction of cardiovascular-disease risk. *Lancet* 2003;361:717-25.
- 264. Unal B, Critchley J, Fidan D, Capewell S. Life-years gained from modern cardiological treatments and population risk factor changes in England and Wales, 1981-2000. American Journal of Public Health 2003; (In press).
- 265. Department of Health. Coronary Heart Disease Information Strategy. 2001. http://www.doh.gov.uk/ipu/strategy/nsf/chdisdoc.pdf. 17-6-2002.
- 266. ONS-Office for National Statistics. Deaths, 2000 registrations: Death by age, sex and underlying cause, England and Wales. *Health Statistics Quarterly* 2001;10:60-6.
- 267. EUROASPIRE Study Group. A European Society of Cardiology survey of secondary prevention of coronary heart disease: principal results. *Eur Heart J* 1997;18:1569-82.
- 268. Bowker TJ, Clayton TC, Ingham J, et al. A British Cardiac Society survey of the potential for the secondary prevention of coronary disease: ASPIRE (Action on Secondary Prevention through Intervention to Reduce Events). *Heart* 1996;75:334-42.
- 269. Lifestyle and risk factor management and use of drug therapies in coronary patients from 15 countries; principal results from EUROASPIRE II Euro Heart Survey Programme. *Eur Heart* J 2001;22:554-72.
- 270. Brown N, Young T, Gray D, et al. Inpatient deaths from acute myocardial infarction, 1982-92: analysis of data in the Nottingham heart attack register. *BMJ* 1997;**315**:159-64.
- 271. The United Kingdom Heart Attack Study (UKHAS) Collaborative Group. Effect of time from onset to coming under care on fatality of patients with acute myocardial infarction: effect of resuscitation and thrombolytic treatment. *Heart* 1998;80:114-20.
- 272. Shaper AG, Pocock SJ, Walker M, et al. British Regional Heart Study: cardiovascular risk factors in middle-aged men in 24 towns. *BMJ* 1981;283:179-86.
- 273. ONS-Office for National Statistics-Social Survey Division. General Household Survey 1980. London: Stationery Office, 1982.
- 274. Last J. A dictionary of epidemiology. Oxford: Oxford University Press, 1988.
- 275. McDonagh TA, Morrison CE, Lawrence A, Ford I, Tunstall-Pedoe H, McMurray JJ et al. Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population. Lancet 1997;350:829-33.
- 276. Morgan S, Smith H, Simpson I, Liddiard GS, Raphael H, Pickering RM *et al.* Prevalence and clinical characteristics of left ventricular dysfunction among elderly patients in general practice setting: cross sectional survey. *BMJ* 1999;318:368-72.

- 277. OPCS-Office of Population Censuses and Surveys England&Wales. Mortality Statistics 1981 cause. Review of the Registrar General on deaths by cause, sex and age, in England and Wales, 1981. 1981. London:Stationery Office, ONS.
- 278. ONS-Office for National Statistics. Mortality Statistics cause. Review of the Registrar General on deaths by cause, sex and age, in England and Wales, 1999. 2000. London, Stationery Office.
- Lampe FC, Whincup PH, Wannamethee SG, Shaper AG, Walker M, Ebrahim S. The natural history of prevalent ischaemic heart disease in middle-aged men. *Eur Heart J* 2000;21:1052-62.
- 280. Tunstall-Pedoe H, Bailey L, Chamberlain DA, et al. Survey of 3765 cardiopulmonary resuscitations in British hospitals (the BRESUS Study): methods and overall results. *BMJ* 1992;304:1347-51.
- 281. Pell JP, Sirel J, Marsden AK, Cobbe SM. Sex differences in outcome following communitybased cardiopulmonary arrest. *Eur Heart J* 2000;**21**:239-44.
- 282. NHS Precription Pricing Authority. PACT pages- Cardiovascular prescribing. http://www.ppa.org.uk/news/pact-012002.htm . 17-2-2003.
- 283. Clarke KW, Gray D, Hampton JR. Evidence of inadequate investigation and treatment of patients with heart failure. Br Heart J 1994;71:584-7.
- 284. Birkhead JS. Trends in the provision of thrombolytic treatment between 1993 and 1997. Myocardial Infarction Audit Group. *Heart* 1999;82:438-42.
- 285. Whitford DL, Southern AJ. Audit of secondary prophylaxis after myocardial infarction. *BMJ* 1994;**309**:1268-9.
- 286. Stewart S, Jenkind A, Buchan S, et al. The current cost of heart failure to the National Health Service in the UK. *European Journal Heart Fail* 2002;4:361-71.
- 287. Freemantle N, Mason J, Eccles M. Audit of use of ACE inhibitors and monitoring in general practice. Guidelines on monitoring, on their own, are not sufficient. *BMJ* 1999;**318**:1697.
- 288. Hippisley-Cox J, Pringle M, Crown N, Meal A, Wynn A. Sex inequalities in ischaemic heart disease in general practice: cross sectional survey. *BMJ* 2001;**322**:832.
- 289. Ryan R, Majeed A. Prevalence of ischaemic heart disease and its management with statins and aspirin in general practice in England and Wales, 1994-98. *Health Statistics Quarterly* 2001;12:34-9.
- 290. Sedgwick ML, Dalziel K, Watson J, Carrington DJ, Cobbe SM. Performance of an established system of first responder out-of-hospital defibrillation. The results of the second year of the Heartstart Scotland Project in the 'Utstein Style'. *Resuscitation* 1993;26:75-88.
- 291. Rowley JM, Mounser P, Harrison EA, et al. Management of myocardial infarction: implications for current policy derived from the Nottingham Heart Attack Register. Br Heart J 1992;67:255-62.
- 292. Shaper AG, Ashby D, Pocock SJ. Blood pressure and hypertension in middle-aged British men. J Hypertens 1988;6:367-74.

- 293. The Caerphilly and Speedwell Collaborative Group. Caerphilly and Speedwell collaborative heart disease studies. *J Epidemiol Community Health* 1984;38:259-62.
- 294. Thelle DS, Shaper AG, Whitehead TP, et al. Blood lipids in middle-aged British men. Br Heart J 1983;49:205-13.
- 295. OPCS-Office of Population Censuses and Surveys. The dietary and nutritional survey of British adults. London: HMSO, 1990.
- 296. Bennet N, Dodd T, et al. Health Survey for England 1993. London: HMSO, 1995.
- 297. OPCS-Office of Population Censuses and Surveys- Social Survey Division. The heights and weights of adults in Great Britain. London: Stationery Office, 1984.
- 298. Department for Transport. Transport Statistics Great Britain: 2001 Edition. London: The Stationery Office, 2001.
- 299. The Sports Council and the Health Education Authority. Allied Dunbar National Fitness Survey. London: Belmont Press, 1992.
- 300. Wannamethee G, Shaper AG. Physical activity and stroke in British middle aged men. *BMJ* 1992;304:597-601.
- 301. American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. *Diabetes Care* 2002;25:S28-S32.
- 302. Laing SP, Swerdlow SD, Slater SD. The British Diabetic Association Cohort Study, II: cause specific mortality in patients with insulin-treated diabetes mellitus. *Diabet Med* 1999;16:466-71.
- 303. Gatling W, Budd S, Walters D, et al. Evidence of an increasing prevalence of diagnosed diabetes mellitus in the Poole area from 1983 to 1996. *Diabet Med* 1998;15:1015-21.
- 304. Ryan R, Newnham A, Khunti K, Majeed A. Prevalance of of known diabetes mellitus in general practice in England and Wales 1994-1998. J Epidemiol Community Health 2002;56(Suppl 2):A7.
- 305. Matheson J, Summerfield C. Social Trends 30- 2000 ed. Office for National Statistics. London: Stationery Office, 2000.
- 306. Macfarlane A, Mugford M, Henderson J, Furtado A, Stevens J, and Dunn A. Birth Counts: statistics of pregnancy and childbirth. 2001. Oxford, National Perinatal Epidemiology Unit.
- 307. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. *Lancet* 1989;2:577-80.
- 308. Morrison, C. Mean cholesterol levels from MONICA Glasgow and Belfast 1985-1995. 26-2-1997.
- 309. Gray J, Majeed A, Kerry S, Rowlands G. Identifying patients with ischaemic heart disease in general practice: cross sectional study of paper and computerised medical records. *BMJ* 2000;321:548-50.
- 310. Erens B, Primatesta P, Prior G, (eds). *Health Survey for England the health of minority* ethnic groups 99. London: The Stationary Office, 2001.

- 311. Bain MR, Chalmers JW, Brewster DH. Routinely collected data in national and regional databases--an under- used resource. *J Public Health Med* 1997;19:413-8.
- 312. Department of Health. NHS Performance Indicators : February 2002. http://www.doh.gov.uk/nhsperformanceindicators/2002/technical.html . 2002. 17-2-2003.
- 313. Majeed FA, Voss S. Performance indicators for general practice. BMJ 1995;311:209-10.
- 314. MacIntyre K, Stewart S, Chalmers J, et al. Relation between socioeconomic deprivation and death from a first myocardial infarction in Scotland: population based analysis. *BMJ* 2001;**322**:1152-3.
- 315. Salonen JT. Prevention of coronary heart disease in Finland--application of the population strategy. Ann Med 1991;23:607-12.
- 316. Vartiainen E, Korhonen HJ, Pietinen P, Tuomilehto J, Kartovaara L, Nissinen A *et al.* Fifteenyear trends in coronary risk factors in Finland, with special reference to North Karelia. *Int J* Epidemiol 1991;20:651-62.
- 317. Vartiainen E, Puska P, Jousilahti P, Korhonen HJ, Tuomilehto J, Nissinen A. Twenty-year trends in coronary risk factors in north Karelia and in other areas of Finland. Int J Epidemiol 1994;23:495-504.
- 318. Bjartveit K, Wøien G. Cardiovascular disease risk factors in Norway. Oslo: SUSH, 1997.
- 319. U.S.Department of Health and Human Services. Plan and operation of the third National Health and Nutrition Examination Survey, 1988-1994. *Vital and Health Statistics* 1994.
- 320. The role of Public Health Observatories in implementing the Coronary Heart Disease National Service Framework. Report of a Workshop held by Association of Public Health Observatories. 26-2-2001. <u>http://www.sepho.org.uk/heartdisease/CHD_NSF.pdf</u>.
- 321. Capewell S, Pell JP, Morrison C, McMurray J. Increasing the impact of cardiological treatments. How best to reduce deaths [see comments]. *Eur. Heart J.* 1999;20:1386-92.
- 322. Critchley JA, Capewell S. Substantial potential for reductions in coronary heart disease mortality in the UK through changes in risk factor levels. J. Epidemiol. Community Health 2003;57:243-7.
- 323. Mant J, Hicks N. Detecting differences in quality of care: the sensitivity of measures of process and outcome in treating acute myocardial infarction. *BMJ* 1995;**311**:793-6.
- 324. Brown A, Taylor RS, Noorani H, Stone J, Skidmore B. A Systematic Clinical and Economic Review of Exercise-Based Cardiac Rehabilitation Programs for Coronary Artery Disease. Ottawa, Canada (in press): Canadian Coordinating Office for Health Technology Assessment, 2003.
- 325. Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80%. BMJ 2003;326:1419.
- 326. Wynne-Jones K, Jackson M, Grotte G, Bridgewater B, on behalf of the North West Regional Cardiac Surgery Audit Steering Group. Limitations of the Parsonnet score for measuring risk stratified mortality in the north west of England. *Heart* 2000;84:71-8.

- Martin RM, Hemingway H, Gunnell D, Karsch KR, Baumbach A, Frankel S. Population need for coronary revascularisation: are national targets for England credible? *Heart* 2002;88:627-33.
- 328. Sculpher MJ, Seed P, Henderson RA, Buxton MJ, Pocock SJ, Parker J et al. Health service costs of coronary angioplasty and coronary artery bypass surgery: the Randomised Intervention Treatment of Angina (RITA) trial. Lancet 1994;344:927-30.
- 329. Folland ED, Hartigan PM, Parisi AF. Percutaneous transluminal coronary angioplasty versus medical therapy for stable angina pectoris: outcomes for patients with double-vessel versus single-vessel coronary artery disease in a Veterans Affairs Cooperative randomized trial. Veterans Affairs ACME Investigators. J.Am.Coll.Cardiol. 1997;29:1505-11.
- 330. Yusuf S, Zucker D, Peduzzi P, Fisher LD, Takaro T, Kennedy JW et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet 1994;344:563-70.
- 331. Nichol MB, Venturini F, Sung JC. A critical evaluation of the methodology of the literature on medication compliance. *Ann. Pharmacother.* 1999;**33**:531-40.
- 332. Office for National Statistics. Social Trends. 2001(31). 2001. London, Stationery Office.
- 333. Magnus P,.Beaglehole R. The real contribution of the major risk factors to the coronary epidemics: time to end the "only-50%" myth. *Arch.Intern.Med.* 2001;161:2657-60.
- 334. Heller RF, Buchan I, Edwards R, Lyratzopoulos G, McElduff P, St Leger S. Communicating risks at the population level: application of population impact numbers. *BMJ* 2003;**327**:1162-5.
- 335. Wannamethee SG, Shaper AG. Physical activity in the prevention of cardiovascular disease: an epidemiological perspective. *Sports Med.* 2001;**31**:101-14.
- 336. McPherson K, Britton A, and Causer L. Coronary heart disease: Estimating the impact of changes in risk factors. 1-60. 2002. National Heart Forum 2002. ISBN 0 11 702864 9.
- 337. Sigfusson N, Sigvaldson H, Steingrimsdottir L, et al. Decline in ischaemic heart disease in Iceland and change in risk factor levels. *BMJ* 1991;302:1371-5.
- 338. Khaw KT, Wareham N, Luben R, Bingham S, Oakes S, Welch A *et al.* Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of european prospective investigation of cancer and nutrition (EPIC- Norfolk). *BMJ* 2001;**322**:15-8.
- 339. Capewell S, Chalmers, J., and MacIntyre, K. Social gradients in AMI mortality rates rates (per 100,000) in the Scottish population 1986-1995 (quintiles of deprivation in men). 2000.
- 340. Smith GD, Hart C, Watt G, Hole D, Hawthorne V. Individual social class, area-based deprivation, cardiovascular disease risk factors, and mortality: the Renfrew and Paisley Study. *J.Epidemiol.Community Health* 1998;**52**:399-405.
- 341. Briggs A. Economics notes: handling uncertainty in economic evaluation. BMJ 1999;319:120.
- 342. Sayer JW, Archbold RA, Wilkinson P, Ray S, Ranjadayalan K, Timmis AD. Prognostic implications of ventricular fibrillation in acute myocardial infarction: new strategies required for further mortality reduction. *Heart* 2000;84:258-61.

- 343. French JK, Williams BF, Hart HH, Wyatt S, Poole JE, Ingram C et al. Prospective evaluation of eligibility for thrombolytic therapy in acute myocardial infarction. *BMJ* 1996;312:1637-41.
- 344. Barakat K, Wilkinson P, Deaner A, Fluck D, Ranjadayalan K, Timmis A. How should age affect management of acute myocardial infarction? A prospective cohort study. Lancet North Am. Ed 1999;353:955-9.
- 345. Hardy K, O'Brien S. Intravenous beta blockade in acute myocardial infarction. In one health district, only 0.2% eligible for intravenous blockade received it. *BMJ* 1999;**318**:329.
- 346. Owen A. Intravenous beta blockade in acute myocardial infarction. Should be used in combination with thrombolysis. *BMJ* 1998;317:226-7.
- 347. Woods KL. Thrombolytic drugs in myocardial infarction. BMJ 1989;298:186-7.
- 348. Ferguson JD, Chase AJ, Springings DC, Birkhead JS. Intravenous beta-blokade for suspected myocardial infarction is a neglected therapy (Abstract). *Heart* 1999;81:27.
- 349. Reid FD, Cook DG, Whincup PH. Use of statins in the secondary prevention of coronary heart disease: is treatment equitable? *Heart* 2002;88:15-9.
- 350. Whincup PH, Emberson JR, Lennon L, Walker M, Papacosta O, Thomson A. Low prevalence of lipid lowering drug use in older men with established coronary heart disease. *Heart* 2002;88:25-9.
- 351. British Regional Heart Study Newsletter No.46. 2001. 2001. London, BRHS, Primary Care & Population Sciences, Royal Free & University College Medical School, University College.
- 352. DeWilde S, Carey IM, Bremner SA, Richards N, Hilton SR, Cook DG. Identifying and explaining variation in lipid lowering drug use using the doctors' independent network database. *Journal of Epidemiology and Community Health* 2002;**56(Suppl II)**:A17.
- 353. Benner JS, Glynn RJ, Mogun H, Neumann PJ, Weinstein MC, Avorn J. Long-term persistence in use of statin therapy in elderly patients. *JAMA* 2002;**288**:455-61.
- 354. Jackevicius CA, Mamdani M, Tu JV. Adherence with statin therapy in elderly patients with and without acute coronary syndromes. JAMA 2002;288:462-7.
- 355. Bethell HJ, Turner SC, Evans JA, Rose L. Cardiac rehabilitation in the United Kingdom. How complete is the provision? *J.Cardiopulm.Rehabil.* 2001;21:111-5.
- 356. Collinson J, Flather MD, Fox KA, Findlay I, Rodrigues E, Dooley P et al. Clinical outcomes. risk stratification and practice patterns of unstable angina and myocardial infarction without ST elevation: Prospective Registry of Acute Ischaemic Syndromes in the UK (PRAIS-UK). Eur. Heart J. 2000;21:1450-7.
- 357. Cleland JG, Cohen-Solal A, Aguilar JC, Dietz R, Eastaugh J, Follath F et al. Management of heart failure in primary care (the IMPROVEMENT of Heart Failure Programme): an international survey. Lancet 2002;360:1631-9.
- 358. Ellis C, Gnani S, Majeed A. Prevalence and management of heart failure in general practice in England and Wales, 1994-98. *Health Statistics Quarterly* 2001;11:17-24.
- 359. Packham C, Pearson J, Robinson J, Gray D. Use of statins in general practices, 1996-8: cross sectional study. *BMJ* 2000;320:1583-4.

- 360. Cobbe SM, Dalziel K, Ford I, Marsden AK. Survival of 1476 patients initially resuscitated from out of hospital cardiac arrest. *BMJ* 1996;**312**:1633-7.
- 361. Collins R, MacMahon S, Flather M, Baigent C, Remvig L, Mortensen S *et al.* Clinical effects of anticoagulant therapy in suspected acute myocardial infarction: systematic overview of randomised trials. *BMJ* 1996;**313**:652-9.
- 362. Estess JM, Topol EJ. Fibrinolytic treatment for elderly patients with acute myocardial infarction. *Heart* 2002;87:308-11.
- 363. Lau J, Antman EM, Jimenez-Silva J, Kupelnick B, Mosteller F, Chalmers TC. Cumulative meta-analysis of therapeutic trials for myocardial infarction. *N. Engl. J. Med.* 1992;327:248-54.
- 364. Oler A, Whooley MA, Oler J, Grady D. Adding heparin to aspirin reduces the incidence of myocardial infarction and death in patients with unstable angina. A meta-analysis. JAMA 1996;276:811-5.
- 365. Boersma E, Harrington RA, Moliterno DJ, White H, Theroux P, Van de WF *et al.* Platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes: a meta-analysis of all major randomised clinical trials. *Lancet* 2002;359:189-98.
- 366. Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA *et al.* Blood pressure. stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. *Lancet* 1990;335:827-38.
- 367. Menotti A, Blackburn H, Kromhout D, Nissinen A, Fidanza F, Giampaoli S *et al.* Changes in population cholesterol levels and coronary heart disease deaths in seven countries. *Eur Heart J* 1997;18:566-71.
- 368. van den Hoogen PC, Feskens EJ, Nagelkerke NJ, Menotti A, Nissinen A, Kromhout D. The relation between blood pressure and mortality due to coronary heart disease among men in different parts of the world. Seven Countries Study Research Group. *N.Engl.J Med* 2000;342:1-8.
- 369. Stevens J, Cai J, Pamuk ER, Williamson DF, Thun MJ, Wood JL. The effect of age on the association between body-mass index and mortality. *N.Engl.J.Med.* 1998;338:1-7.
- 370. Swerdlow AJ, Jones ME. Mortality during 25 years of follow-up of a cohort with diabetes. Int.J.Epidemiol. 1996;25:1250-61.
- 371. Lee IM, Rexrode KM, Cook NR, Manson JE, Buring JE. Physical activity and coronary heart disease in women: is "no pain, no gain" passe? JAMA 2001;285:1447-54.
- 372. Sackett DL. Evidence-based medicine and treatment choices. Lancet 1997;349:570-3.
- 373. McGovern PG, Jacobs DR, Jr., Shahar E, Arnett DK, Folsom AR, Blackburn H et al. Trends in acute coronary heart disease mortality, morbidity, and medical care from 1985 through 1997: the Minnesota heart survey. Circulation 2001;104:19-24.
- 374. Department of Health. Saving Lives: Our Healthier Nation. 1999. London, The Stationery Office.
- 375. Doliszny KM, Luepker RV, Burke GL, Pryor DB, Blackburn H. Estimated contribution of coronary artery bypass graft surgery to the decline in coronary heart disease mortality: the Minnesota Heart Survey. Journal of the American College of Cardiology 1994;24:95-103.

- 376. Lang T, Barling D, Caraher M. Food, Social Policy and the Environment: Towards a New Model. Social Policy and Administration 2001;35:538-58.
- 377. ONS-Office for National Statistics. Annual Abstract of Statistics. London: The Stationery Office, 2002.
- 378. Isles CG, Walker LM, Beevers GD, Brown I, Cameron HL, Clarke J et al. Mortality in patients of the Glasgow Blood Pressure Clinic. J. Hypertens. 1986;4:141-56.
- 379. Astbury J. Survival after coronary artery bypass surgery. 1-5 year survival. Data serviced from the SMR20 scheme Scotland 1983-1990. 1991.
- 380. Pell JP, MacIntyre K, Walsh D, Capewell S, McMurray JJ, Chalmers JW *et al.* Time trends in survival and readmission following coronary artery bypass grafting in Scotland, 1981-96: retrospective observational study. *BMJ* 2002;**324**:201-2.
- 381. Yudkin JS. How can we best prolong life? Benefits of coronary risk factor reduction in nondiabetic and diabetic subjects. *BMJ* 1993;**306**:1313-8.
- 382. Grover SA, Paquet S, Levinton C, Coupal L, Zowall H. Estimating the benefits of modifying risk factors of cardiovascular disease: a comparison of primary vs secondary prevention. Arch.Intern.Med. 1998;158:655-62.
- 383. The Tobacco Advertising and Promotion Act 2002. Chapter 36. 2002. London, The Stationery Office . ISBN 0 10 543602 X.
- 384. Smoking Kills: A White Paper on Tobacco. 1998. London, Stationery Office.
- 385. Bunker JP. The role of medical care in contributing to health improvements within societies. *Int.J.Epidemiol.* 2001;**30**:1260-3.
- 386. Critchley JA, Capewell S, Unal B. Life-years gained from coronary heart disease mortality reduction in Scotland: prevention or treatment? *Journal of Clinical Epidemiology* 2003;56:583-90.
- 387. McCallum AK, Whincup PH, Morris RW, Thomson A, Walker M, Ebrahim S. Aspirin use in middle-aged men with cardiovascular disease: are opportunities being missed? Br.J.Gen.Pract. 1997;47:417-21.
- 388. Reid T. Women's health. Coronary heart disease and the risk to women. *Nurs. Times* 1995;91:27-9.
- 389. Robinson MB, Thompson E, Black NA. Evaluation of the effectiveness of guidelines, audit and feedback: improving the use of intravenous thrombolysis in patients with suspected acute myocardial infarction. Int J Qual. Health Care 1996;8:211-22.
- 390. National Institute of Clinical Excellence (NICE). Prophylaxis for patients who have experienced a myocardial infarction: drug treatments, rehabilitation and dietary manipulation. 2001. London, National Institute for Clinical Excellence.
- 391. Jeffery RW, Gray CW, French SA, Hellerstedt WL, Murray D, Luepker RV et al. Evaluation of weight reduction in a community intervention for cardiovascular disease risk: changes in body mass index in the Minnesota Heart Health Program. Int.J. Obes. Relat Metab Disord. 1995;19:30-9.

- 392. U.S.Department of Health and Human Services. *Healthy People 2010*. With Understanding and Improving Health and Objectives for Improving Health. Washington, DC: Government Printing Office, 2000.
- 393. Tudor-Smith C, Nutbeam D, Moore L, Catford J. Effects of the Heartbeat Wales programme over five years on behavioural risks for cardiovascular disease: quasi-experimental comparison of results from Wales and a matched reference area. *BMJ* 1998;316:818-22.
- 394. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P *et al.* Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. *N.Engl.J.Med.* 2001;**344**:1343-50.
- 395. Unal Aslan B, Critchley J, McMurray JJ, Capewell S. Reducing coronary heart disease mortality in England and Wales by increasing the uptake of cardiological treatments. *Journal of Epidemiology and Community Health (Abstract)* 2002;56:A9.

396. World Health Organization. Draft WHO framework convention on tobacco control. <u>http://www.who.int/gb/fctc/PDF/inb6/einb65.pdf</u>. 5-6-2003.

- 397. Cooper R, Cutler J, Desvigne-Nickens P, Fortman SP, Friedman L, Havlik R *et al.* Trends and Disparities in Coronary Heart Disease, Stroke, and Other Cardiovascular Diseases in the United States. *Circulation* 2000;102:3137-47.
- 398. Kottke TE, Gatewood LC, Wu SC, Park HA. Preventing heart disease: is treating the high risk sufficient? J.Clin.Epidemiol. 1988;41:1083-93.
- 399. Puska P, Tuomilehto J, Nissinen A, Vartiainen E. The North Karelia Project. 20 year results and experiences. Helsinki: The National Public Health Institute (KTL), Finland, 1995.
- 400. National Centre for Social ResearchUniversity College London Department of Epidemiology and Public Health. Health Survey for England 2000: health of older people. London: Stationery Office, 2002.
- 401. Fidan D, Unal B, Critchley J, Miners A, Capewell S. Economic analysis of treatments contributing to the recent coronary heart disease mortality decline in England and Wales. *Journal of Epidemiology & Community Health* 2003;57:A14.
- 402. McAlister FA. Commentary: relative treatment effects are consistent across the spectrum of underlying risks, usually. *Int.J.Epidemiol.* 2002;31:76-7.
- 403. Moher M, Yudkin P, Wright L, Turner R, Fuller A, Schofield T et al. Cluster randomised controlled trial to compare three methods of promoting secondary prevention of coronary heart disease in primary care. BMJ 2001;322:1338.
- 404. National Service Framework for coronary heart disease: Delivering better heart services-Progress report 2003. 2003.

15 APPENDICES

LIST OF APPENDICES

. .____

Appendix 1 Search strategy for CHD policy models review	200
Appendix 2 Data extraction form for the eview of CHD Models	201
Appendix 3. Summaries of CHD policy models	205
Appendix 4. Summary tables for systematic review of CHD policy models	216
App4. Table 1. Summary table for CHD Policy Model papers	216
App4. Table 2. Summary table for PREVENT Model	222
App4. Table 3. Summary table for Cardiovascular Life Expectancy Model	224
App4. Table 4. Summary table for CHD Policy Analysis Model	228
App4. Table 5. Summary table for IMPACT CHD Mortality Model	229
App4. Table 6. Summary table for The Global Burden of Disease Project	231
App4. Table 7. Summary table for other CHD policy models	233
App4. Table 8. List of excluded studies	248
Appendix 5. CHD data sources in the UK: Conference proceedings, audit reports, off web sites and personal correspondence used for.	icial 249
Appendix 6. CHD Mortality fall in England and Wales between 1981 and 2000: Num of deaths prevented or postponed by risk factor changes and treatments i individuals with CHD, categorised into specific CHD patient groups	ibers n 250
Appendix 7. Trends in CHD mortality in England and Wales 1981 – 2000	251
Appendix 8. One year case fatality rates (per 1000) for unselected patients on usual treatment.	252
Appendix 9. Adjustment for poly-pharmacy in individual CHD patients	253
Appendix 10. Estimates of median survival used in sensitivity analyses: for men and women stratified by age groups and by each category of treatment	255
Appendix 11. Estimates of median survival used in sensitivity analysis for deaths prevented or postponed in men and women by risk factor reductions	257
Appendix 12. Good practice in spread sheet modelling (Edwards et al, 2000)	258
Appendix 13. Reference list for the appendices	259
Appendix 14. Published or submitted papers resulting from this thesis	266

15 APPENDICES

Appendix 1 Search strategy for CHD policy models review

- 1. exp Cardiovascular Diseases/
- 2. (coronary adj10 (disease\$ or event\$ or atherosclero\$ or arteriosclero\$ or thromb\$)).tw.
- 3. (heart adj10 (attack\$ or isch?emi\$ or arrest or disease\$)).tw.
- 4. (myocardial adj10 (infarct\$ or isch?emi\$)).tw.
- 5. angina\$.tw.
- 6. (CHD or IHD or CAD).mp.
- 7. (CHD or IHD or CAD).tw.
- 8.(sudden\$ adj10 cardiac).tw.
- 9. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8
- 10. coronary.tw.
- 11. exp Myocardial Infarction/
- 12. exp Coronary Disease/
- 13. exp Coronary Arteriosclerosis/
- 14. *Arteriosclerosis/
- 15. exp Arteriosclerosis Obliterans/
- 16. exp Coronary Thrombosis/
- 17. exp Myocardial Ischemia/
- 18. Heart Failure.tw.
- 19. 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18
- 20. model\$.tw.
- 21. simulat\$.tw.
- 22. prevent\$.tw.
- 23. treat\$.tw.
- 24. 20 or 21
- 25. 22 or 23
- 26. 19 and 24 and 25
- 27. POHEM.tw.
- 28. CRISPERS.tw.
- 29. exp Decision Making/ or decision making.mp.
- 30. exp Health Care Policy/ or health policy.mp.
- 31. exp Public Health/ or public health.mp.
- 32. 26 or 27 or 28
- 33. 29 or 30 or 31
- 34. 32 and 33
- 35. limit 34 to human

Appendix 2 Data extraction form for the eview of CHD Models

Paper: (Author, Year)Ref ID:Reviewer:Date:

	Please tick one of the options		
	Yes	No	Unclear
Do the study refer to modelling*?			
2- Does the study deal with the population rather than the individual?			

Does the study report on one or more of the following health outcomes?

	(Please tick)
CHD deaths prevented	
CHD disease prevented	
CHD mortality	
CHD prevalence	
CHD incidence	
CHD prevention OR treatment cost	
Life years gained	
Disability	
Hospital admission for CHD	

Final decision about a paper:

Tick		
	'In'	'yes' to questions 1-2 and includes at least one of the outcomes in question 4
	'Pending'	if any of the sections are 'unclear'
	'Out',	if any of the sections are 'no' **

*: for the purpose of this review, modelling is defined as attempts to create tools which help predicting outcome of interventions or explain observed trends (by risk factor change or specific treatment effect or implementation a new strategy) on population level.

**: If 2 reviewers disagree, they can then discuss

DATA EXTRACTION FORM FOR CHD MODELS REVIEW

Paper: (Author, Year)Ref ID:Reviewer:Date:

A) MODEL DETAILS

Name of the Model:

Author of the model:

Purpose of the model:

Model Setting Country / Area:

Study Population General description of population (Age, sex structure)

Time period which the model covers

Baseline modelling period: Prediction period:

Type of model	Please tick every method
Simulation	
Micro simulation	
Spread sheet	
Life table analysis	
Markov model	
Monte-Carlo model	
Others	· · · · · · · · · · · · · · · · · · ·

Model Description:

<u>RISK FACTORS INCLUDED</u>	Tick please	Form*	Intervention (describe)
Primary prevention			
Smoking			
Cholesterol			
HDL-C			
LDL-C			
Triglycerides			
Drug therapy (ie statins for prim			
prev?)			
Blood pressure DBP/SBP			
Diabetes			
Physical activity			
Deprivation			
Obesity or BMI	······································		
Diet-nutrition			
Other			

Secondary prevention		
(Fieuse specify the TA)	1	
Tx1:		
Tx2:		
Tx3:		
Tx4:	 	
Rehabilitation	 	
Smoking cessation		
Diet	 	
Other		

Disease categories in	ncluded	Please tick		
Angina				
AMI				
Sudden cardiac death	/Arrest		- If the variable v	vas modelled as continuou
Post MI				s calegorical use <u>Cat</u>
Heart failure				
CABG				
PTCA				
<u>DATA SOURCES</u> <u>USED:</u>	Source	Comments on (Please consider rates for survey	quality sample size and response (national data etc)	Limitations
Population data				
Mortality				
number/rate				
Morbidity				
number/rate				
Treatment uptake				
Risk factor				
Prevalence/ trends				
Treatment effectiveness				
Risk factor change effectiveness/ Betas				
Others				

TYPE OF OUTCOMES STUDIEDTick please

Number of deaths prevented	
Number of morbidity (MI/ HF/ etc?) prevented	
CHD mortality	
Prevalence	
Incidence	
Cost (per life year, per death prevented)	
Life years gained	
Hospital admission for CHD	
Others (please describe)	

Please describe 'main' outcome of the study in the author's words:

SENSITIVITY ANALYSIS		No	Yes
Any sensitivity analyses carried out?			
Were 95% CIs for RRs used for sensitivity analy	yses?		
	1		0
Which sensitivity analyses were carried out? (A)	nalysis of extremes, Or	ne- Multi way, othe	? r ?)
Which sensitivity analyses were carried out? (A)	nalysis of extremes, Or Poor	ne- Multi way, othe	gr?)

CALIBRATION

Was the model calibrated?

How was the model calibrated? Describe......

PREDICTIVE VALIDITY	No	Yes
Was the validity of the model tested?		

No

Yes

How was the validity of the model checked? Describe......

How was the validity quantified? (eg % explained).....

TRANSPARENCY	Not available	Yes (Available)
Illustrations/ examples		
Assumptions		
Model availability for reader		

POTENTIAL LIMITATIONS	Not Reported	Reported	Discussed	Method refined
Assumptions				
Confounding				
Lag times				
Competing causes				

Other comments on the study:

Appendix 3. Summaries of CHD policy models

Coronary Heart Disease Policy (CHDP) Model

The CHDP Model was developed in 1980s by Weinstein et al as a state-transition, cell based model¹. Its aim was to project the future mortality, morbidity and cost of CHD in the US¹. CHDP Model was used to examine trends in CHD mortality^{2;3} and expected gains in life expectancy from risk factor modifications⁴. It was also used to evaluate the cost effectiveness of medical interventions for primary and secondary prevention of CHD⁵⁻⁸ and health promotion activities⁹.

This model was based on 1980 population and mortality statistics. The methods, assumptions and limitations of the model were discussed in the published papers. When it was first developed it was not possible to check its validity. After few years it was calibrated using actual CHD mortality data of 1986.

- This model consists of three sub-models:
- A demographical/epidemiological model, which represents the disease- free population aged 35-84. Here the population is stratified by sex, age groups and cardiovascular risk factors. This model includes risk factors as categorical variables, therefore in total over 5,000 cells are required. It then uses a logistic risk function based on the Framingham equation to calculate the annual incidence rates of CHD events for each cohort.
- A *bridge* model, which covers subjects for the first 30 days after they develop coronary disease. Using a CHD incidence data from Minnesota, the model first determines whether the first event is angina, myocardial infarction or cardiac arrest¹.
- A disease history model, which includes the survivors of the first 30 days, places them in 12 CHD states by age and sex, and then follows them through treatment pathways.

The CHDP model allows the user to simulate the effects of an intervention (either preventive, by risk factor modification, or therapeutic) by changing case fatality rates and observing the effect on mortality, morbidity and cost for up to a 30-year period.

Risk factors included

Smoking, diastolic blood pressure, serum cholesterol and obesity (relative weight).

Diseases considered

Angina, myocardial infarction, and cardiac arrest.

Outcomes

The number and rates of all cause and CHD deaths, number and rates of CHD events, number of persons surviving to age 85 with or without CHD, and costs for treatment and preventive interventions for CHD.

Strengths of the model

- Has been progressively refined since 1980s
- Relatively comprehensive model. Includes major risk factors and major CHD categories
- The model was validated by comparing CHD incidence and death estimates with 1986 US vital statistics and hospital discharge data

Potential limitations of the CHDP model

- Numbers of strata can get very large with addition of new risk factors
- It assumes that risk factors are distributed independently in the population rather than clustered as they are in the real world. This may overestimate the effects of multiple risk factor interventions.
- Congestive heart failure and angioplasty are not included
- The Framingham equations may not be entirely appropriate for cardiovascular risk factors in populations in Europe or elsewhere

PREVENT

This is a cell based simulation model developed by Gunning-Schepers (1989) in the Netherlands¹⁰. It can be used to estimate the health benefits for a population of changes in risk factor prevalence comparing i) continuation of existing trends with ii) alteration of proportions of the population with given risk factors. The model allows one risk factor to be associated with more than one disease and one disease to be associated with more than one risk factor. Demographic evaluation is also taken into account in simulations¹⁰.

The Prevent Model was used in many countries including Netherlands^{10;11}, Denmark¹²⁻¹⁴ and the UK¹⁵⁻¹⁷, to explore different health promotion interventions for CHD. Its validity was evaluated by applying it into a synthetic population generated by microsimulation. It was found that the estimates from Prevent Model were higher than the microsimulation

estimations therefore Prevent model slightly overestimated the health benefits of preventions¹³. However, depending on the calculation methods used, the Prevent Model slightly underestimated the smoking attributable deaths in Denmark¹⁴ compared with the method defined by Peto et al¹⁸.

The Prevent Model was adapted to the England and Wales population and used to explore effects of increased physical activity levels for CHD mortality¹⁶. The first strategy was to increase the proportion of moderate activity by 25% and the second strategy was a 25% increase in vigorously activity. Estimates for these two strategies showed useful policy directions in terms of effectiveness of physical activity. The greatest health gain could be achieved by concentrating the health promotion activities on sedentary people, on older people and on men¹⁶. However the model only focused on CHD mortality rather than morbidity or quality of life, despite physical activity having much bigger effect on prevalence of non-fatal diseases¹⁶.

Data can be incorporated on present state and projections for: population structure, total mortality, disease specific mortality and risk factor exposures.

Risk factors included: Smoking, hypertension, cholesterol, lack of physical activity, obesity, and alcohol.

The diseases considered: CHD, stroke, chronic obstructive lung disease, lung cancer, liver cirrhosis, breast cancer, traffic accidents and accidental falls.

Outcomes: Changes in disease-specific mortality and total mortality, and life expectancy.

Strengths

- Has been progressively refined more than a decade
- Has been used to examine a variety of scenarios in different populations
- User friendly
- Does not need huge data input
- The simulations take into account the fact that an increased risk of a disease will not stop immediately after exposure stops but will reduce gradually (lag time)

Potential limitations

- Does not include specific treatments
- Benefits are measured only in terms of mortality, not morbidity or quality of life

- Originally ignores lead time (the length of time between first exposure to a risk factor and full-blown risk) but in later versions of the model this weakness was adressed¹⁶.
- The model assumes that risk factors are independent of each other.
- Does not consider socio-economic variables explicitly
- Includes only population between 15 and 64 years old
- The code is not well documented
- The way risk factors can be described and changed is limited
- It includes risk factors as categorical variables (as prevalence rates) it is not possible to include risk factors as continuous variables

PREVENT PLUS is a more recent but less used version, which covers disease specific hospital days, costs and unhealthy person years¹⁹.

Cardiovascular Life Expectancy Model

This model was developed by Grover et al (1992) in Canada to examine cost-effectiveness of different treatment options for CHD. The model includes primary and secondary CHD prevention model parts. The primary CHD part calculates the annual probability of dying from CHD or other causes and annual risk of CHD events (with or without intervention) for a person without symptomatic CHD at entry to the model. The annual risk of developing specific CHD endpoints is based on data published for the Framingham Heart Study and depends on age, sex, diastolic blood pressure, total cholesterol, HDL cholesterol level and presence of left ventricular hypertrophy, the presence or absence of glucose intolerance and smoking status. The risk of 'all cause death' is based on 1986 Canadian Life Tables after adjustment for the diastolic blood pressure, smoking and glucose intolerance.

Once a person develops CHD then he moves to the secondary CHD model. This part of the model calculates the risk of dying during the 12 months following a nonfatal myocardial infarction. The risk estimations are again based on the Framingham logistic equations for primary events but this time after adjustment for the presence of CHD²⁰.

The predicted annual cumulative mortality difference with vs without intervention over the total life expectancy represents the total years of life saved after intervention.

Risk factors included

Age, smoking, diastolic blood pressure, serum cholesterol and glucose intolerance.

Diseases considered

Angina, myocardial infarction, coronary insufficiency

Outcomes

Life-years gained and years of life free from CHD symptom

Strengths of the model

- They used multivariate logistic coefficients for risk factors
- The model was validated using clinical trials (Helsinki Heart Study, Lipid Research Clinics Study and MRFIT Study).

Potential limitations of the model

- The validation of model only included middle-aged men; it is unclear how the model is validated for other age and sex groups.
- Initially no sensitivity analyses were performed but in recent papers based on the same model, sensitivity analyses were reported.
- The age range and population on which the model focused is not clear in any papers published

CHD Policy Analysis Model

This model was developed for the Department of Health by the London School of Hygiene and Tropical Medicine and Universities of Southampton and Birmingham^{21;22}. The primary prevention component of the model simulates the impact on benefits and costs of different primary prevention strategies²¹. The treatment component of the model evaluates the impact of different treatments given to different groups of CHD patients²².

Both components are micro-simulation models and simulate the experience of individual members of the population in terms of discrete times of events.

The primary prevention component of the model includes risk factors such as age, sex, systolic blood pressure, total cholesterol, and smoking²¹. The disease events included are stable angina, unstable angina, myocardial infarction, sudden cardiac death, stroke death, other cardiovascular death, cancer death and death from other known and unknown cause²¹. Once an individual has had stable or unstable angina or myocardial infarction then he enters into the CHD part of the model²².

The main data sources include the Health Survey for England for population characteristics. and the Framingham Study, which is used to provide data on CHD natural history, in the form of time-to-disease-event distributions conditional on the attributes of the individual concerned. However the Framingham risk estimates may not be easily generalisable to the UK population. The British Regional Heart Study was used to calibrate the baseline risk to the English level. Much of the incidence data were taken from the Bromley Study (in Kent) and the UK Heart Attack Study (based in Oxford). These may not be representative for the UK population. This model is still under development^{21:22} and therefore validity has not been formally tested^{21:22}.

Strengths

- When it is completed it will be comprehensive (will include major risk factors and treatments)
- Discrete event simulation gives advantages

Potential limitations

- Framingham equations may not be generalisable to the UK population
- Does not include heart failure as a state
- At the moment does not include treatments for CHD
- Sensitivity analyses not done
- Not ready for extensive use yet

IMPACT CHD Mortality Model

The IMPACT model is a cell-based model developed by Capewell et al in 1996. The methods, data sources used and assumptions will be described in detail in *Chapters 7, 8, 9*. In this model, principal age groups are from 25 to 84 since the data for over 85s is limited. The model focuses only on mortality and LYGs, not incidence or symptomatic relief. The number of risk factors included into the model is limited; dietary antioxidants are not yet included. Methodological issues merit further attention e.g. lag times, potential interactions between treatment effect and risk factor effects. IMPACT Model assumes that the efficacy in randomised trials can be generalised to effectiveness in clinical practice. It also assumes that DPP benefits from 'concomitant risk factor reductions are independent'. IMPACT does not consider the development of other diseases such as cancer and it is thus restricted when assessing the longer-term implications of different policy options.

The Global Burden of Disease Model

This model was developed at WHO by Alan Lopez and Chris Murray as part of the Global Burden of Disease (GBD) Study in 1992 at the request of the World Bank. The three primary goals of the model were (i) to provide information for debates on international health policy and on international non-fatal health outcomes, (ii) to develop unbiased epidemiological assessments for major disorders, (ii) and to quantify the burden of disease with a measure that could also be used for cost-effectiveness analyses²³. The ten major risk factors included in the model were malnutrition, poor water quality, unsafe sex, alcohol, occupation, tobacco use. hypertension, physical inactivity, illicit use of drugs, and air pollution²⁴.

The model can calculate the attributable burden of disease for a specific risk factor, population and time, which is defined as 'the difference between currently observed burden and the burden that would be observed if past levels of exposure had been equal to a specific reference distribution of exposure'. The reference distribution of exposure is defined as the risk factor exposures with lowest relative risk ²⁴.

Global Burden of Disease Model has five components; causes of death, descriptive epidemiology of disabling sequel, burden attributed to selected risk factors, projections of burden for future and sensitivity analyses. Cause of death data is obtained from vital registrations or other sources. Data on 107 disorders and number of selected disabling sequels were investigated regarding average age of onset, duration, incidence and prevalence. Case fatality rates by age and sex and region were also estimated. Burden of disease and injury attributable to ten major risk factors were calculated. The model uses attributable fractions, taken from reviews and meta-analyses, applied to the population of a region to calculate the burden of disease of these risk factors²⁴.

Burden of disease is measured using disability adjusted life years (DALYs) calculated as the sum of years lost and years lived with disability ²⁵.

CHD is included in the model, and is modelled as being caused by tobacco use, hypertension and physical inactivity, and reduced by alcohol at all levels of consumption.

Strengths

- Comprehensive and global
- Well documented and described

Potential limitations

- Does not provide information about specific health problems, specific forms of CHD, nor specific CHD treatments.

Other models

A number of other CHD policy models were developed, mostly for rather narrow purposes, such as assessing cost effectiveness of a single treatment, or health care planning. Some aimed to explore impact of interventions in the whole population versus high-risk groups. However few papers were published using these models. I systematically reviewed all these papers and summarise them below. (Details are presented in *Appendix 1*).

Cardiovascular Disease Policy Model

This microsimulation model was developed in 1999 by Mui et al²⁶ in Australia, to project the incidence rates for CHD, and the number of hospitalised incident CHD cases and hospital costs, for men and women, aged 45-69, up to 2014. The model has many similarities with Weinstien's CHD Policy Model¹ but the main difference is microsimulation method and inclusion of stroke, beside CHD.

The Cardiovascular Disease Policy Model is based on four integrated submodels:

- *Incidence submodel* conditional to each individuals risk status this model predicts CHD and stroke incidence using Framingham equations.
- Bridge submodel intends to determine the outcome of first CHD event
- **Prevalence** submodel for CHD and Prevalence submodel for stroke simulates subsequent CVD in people with CVD history.

This model's validity was checked by comparing the estimates of CHD and stroke incidences with MONICA data for the same years. The model overestimated incidence of CHD by 50% to 110% in men and underestimated in women by 50% to 70%. Therefore age and sex specific adjustment factors were incorporated to the model²⁶. Currently the model focuses on prevention rather than treatment.

Risk factors included

Smoking, systolic blood pressure, serum cholesterol and relative weight.

Diseases considered

CHD events (angina, myocardial infarction, coronary insufficiency) and stroke

Outcomes

CHD and stroke incidence, hospital admissions

Strengths of the model

- Includes CHD and stroke
- Validity was checked and methods refined
- Changes in risk factors with ageing was considered in the model

Limitations

- Framingham equations are used for CHD and stroke incidence estimates however these equations may not be generalisable to the Australian population
- No sensitivity analyses were performed
- Does not estimate treatment effects

POHEM - The Population Health Model

This model was developed by Wolfson et al at Statistics Canada in Ottawa²⁷. In contrast to the cell-based approach used by Weinstein, it used microsimulation to model the dynamics of a number of risk factors and major diseases including CHD, lung cancer and breast cancer. The CHD component of the model used Coronary Heart Disease Policy Model, transformed to POHEM architecture and uses Canadian risk factor distributions and treatment protocols. Little work using this model has been published²⁷. It concentrated on prevention aspects of CHD rather than treatment.

Pathways of Care

This model was developed by David Bensley et al²⁸ in 1995 to address the health care needs for CHD in Yorkshire Health Authority Region in the UK. It was a spreadsheet model and focused on treatment side of the CHD care rather than disease prevention. The objective of developing this model was to answer 'what if' questions such as 'what if the effect of a 10% reduction in the incidence of angina on number of deaths, angiograms, angioplasties and CABGs?'

Outputs are numbers of angiograms, CABGs, angioplasties and deaths each year over a tenyear period.
Strengths

- Model was developed by a team including cardiologists, cardiac surgeons, public health specialists, statisticians and operational research analyst.
- It was based on a health authority population
- Estimates from the model were validated against observed events
- User friendly, provides visual graphs
- Described clearly

Potential limitations

- Did not include risk factors
- Prevention strategies could only be addressed by directly altering attack rates rather than risk factors
- Did not include specific medical treatments for CHD patients
- Restricted to the age range 35-74

CRISPERS

This model was developed by Dr Park and Dr Zhuo at the University of Minneapolis for their PhDs, submitted in 1987 and 1991 respectively²⁹⁻³². The model uses Monte Carlo simulation method and it was designed to simulate morbidity and mortality from a disease within a structured population. It can also simulate intervention strategies designed to reduce disease effects in the population. Simulation outcomes such as total or age specific incident or prevalent rates of morbidity or mortality can be reported on a yearly basis. Model includes only three major risk factors; smoking, cholesterol and diastolic blood pressure as continuous variables³⁰. These models mainly simulated the impact of population based vs high-risk interventions for risk factors using data from North Karelia Project.

Augustovski 1998

This model was developed as a Markov decision model with a relatively narrow purpose of evaluating the effects of aspirin use for primary prevention in patients with different cardiovascular risk levels. Seven hypothetical cohorts were created for men and women, aged 55 and 65, and with risk categories defined by high cholesterol, high blood pressure, low HDL and smoking status. Framingham equations and incidence were used for CHD events and stroke probabilities³³. The strategy of giving 75-375 mg aspirin for primary prevention

was evaluated. The model was run for 10 years. Validity of the model was checked by comparing the model estimates with Cox parametric regression models. One-way sensitivity analyses were performed. It was concluded that by taking aspirin the lowest risk cohort would lose 1.8 quality adjusted life days and the highest risk cohort would gain 11.3 quality adjusted life days. Therefore the decision for aspirin use for primary prevention depends on patient risk.

Hjort 1986

This model was a simple cost model developed in 1980s in Norway to examine potential benefits of secondary prevention after myocardial infarction. It included post MI patients between 20 and 75 years old. It estimated the benefits of beta-blocker use and smoking cessation in terms of deaths prevented and LYGs. Direct and indirect costs in post MI patients were also estimated. The basic methodology of these estimations, data sources, assumptions, and validity of this model was poorly described. The number of post MI patients for Norway was estimated by extrapolating figures from Norwegian Timolol Study. It was concluded that beta-blocker use increased life years by 0.25-1.6 years in post MI patients. Smoking cessation had a similar effect. Furthermore it was concluded that secondary prevention would increase health services expenses and pensions but the cost seemed modest.

Appendix 4. Summary tables for systematic review of CHD policy models

Author (year)	Purpose of the model	Setting, Time period & Population	Risk factors & interventions included	Disease categories & Treatments included	Outcomes	Key Results	Sensitivity analysis or validation	Transparency	Data Quality & Strengths and Limitations	Overall grading (Score)
Goldman 1984 ³⁴	To analyse potential effect of medical interventions and changes in life style	USA, 1968- 1976, general USA population	Smoking, cholesterol, blood pressure, obesity	AMI, Angina, Sudden death, post MI β Blockers, antihypertensi ve, CABG surgery	Number of deaths prevented	More than half the CHD decline 1968-1976 was related to changes in lifestyle (cholesterol, smoking). About 40% could be directly attributable to specific medical interventions, mainly CCU, medical treatments of CHD and hypertension	None	Assumptions discussed. Model not available. No illustrations, no discussion of confounding, lag times or competing causes.	Data sources adequate. The first published attempt to explain CHD mortality fall in terms of treatments and risk factor changes. Clear estimates and assumptions. Admits limitations.	Poor (2)
Weinstein 1987 ¹	To project future mortality, morbidity, and cost of CHD	USA, 1980- 2010 M-F, aged 35-85	Smoking, cholesterol, blood pressure, obesity (relative weight)	Angina, AMI, Sudden death, CABG No specific treatments included	Number and rate of - CHD events (Arrest, angina, AMI) - CHD deaths - CHD prevalence, incidence - Resource cost of interventions -All cause mortality	Predicted by 2010: 10% decline in CHD incidence rates 38% increase in CHD events 50% prevalence increase 46% increase in deaths	None	Assumptions discussed. Model not available. No illustrations, nor discussion of confounding, lag times or competing causes.	First Policy Model, rather basic, steadily refined since then. Data sources adequate.	Poor (2)

App4. Table 1. Summary table for CHD Policy Model papers

Author (year)	Purpose of the model	Setting, Time period & Population	Risk factors & interventions included	Disease categories & Treatments included	Outcomes	Key Results	Sensitivity analysis or validation	Transparency	Data Quality & Strengths and Limitations	Overall grading (Score)
Goldman 1989 ³⁵	To evaluate long term national effects of lowering cholesterol	USA, 1990- 2015 all 35- 84, M-F	Smoking, cholesterol, blood pressure, obesity (relative weight) <i>Interventions:</i> 1-To reduce high cholesterol (>250 mg/d) to 250 mg/dl in all people, in 1990. 2- population wide cholesterol reductions to reach the same benefit	No disease categories No specific treatments included	Number of disease cases prevented	Targeted programme would reduce CHD incidence by 8- 10% in men 35-54 and by 1-4% in men 55-74. 10mg/dl reduction in men pop mean cholesterol and 23% red in women pop would achieve similar result. Relying on targeted cholesterol reduction would be inadvisable to reduce national CHD.	One-Way sensitivity analysis Model was calibrated but predictive validity notchecked	Illustrations: Yes Assumptions discussed. Model not available. Confounding & lag times discussed, but not competing causes	Data sources adequate.	Adequate (7)
Tsevat 1991 ⁴	To determine potential gains in life expectancy from risk factor modifications	USA, 1990, people who turned to 35 in 1990	Smoking, cholesterol, dbp, relative weight	No disease , categories included No treatments included	Gains in life expectancy	 Pop gain in life expectancy (Years in Men/ Women) IF); a) 10mg/l red in cholesterol- (0.2-0.2 years); 20 mg/l (0.4-0.3yr), all high cholesterol reduced to 240mg/dl (0.3-0.5yr) b) smok halved (0.4-0.4 yr) c) DBP below 88 (1.1-1.1 yr) d) weight ideal (0.6-0.4 yr) e) eliminate all CVD (3.1-3.3 yr) 	One-Way sensitivity analysis Calibrated- life years estimated compared with US life expectancy from 1980 national vital statistics	Model not available. No illustrations. Discussed assumptions, lag times & competing causes but not confounding	Risk factors assumed to be independent therefore coefficients might cause underestimation. Data sources adequate.	Adequate (6)
Goldman 1991	To determine cost effectiveness of HMG-CoA reductase inhibitor in primary and secondary prevention	USA, 1989, 35-84 M-F	Smoking, cholesterol, dbp relative weight	No other , treatments included	Cost per life year saved	Lovastatin 20 mg/d save lives and costs in young men with cholesterol >250mg/dl and have favourable cost effectiveness ratio regardless of cholesterol level except in young women with cholesterol<250mg/dl. Doses of	Different scenarios examined. Calibrated- life years estimated compared with US life expectancy from	Model not available. No illustrations. Discussed assumptions, lag times & competing causes but not confounding	Restricted focus Data sources adequate.	Adequate (5)

Author (year)	Purpose of the model	Setting, Time period & Population	Risk factors & interventions included	Disease categories & Treatments included	Outcomes	Key Results	Sensitivity analysis or validation	Transparency	Data Quality & Strengths and Limitations	Overall grading (Score)
						40 mg/dl had favourable cost effectiveness ratio in men with cholesterol>250mg/dl. By comparison primary prevention with lovastatin had favourable cost effectiveness ratio only in selected groups based on cholesterol levels and other established risk factors.	1980 national vital statistics		Deta societes información	Andrey Chall
Hunink 1997 ²	To examine effect of secular trends in risk factor levels and improvements in treatments on CHD mortality decline in USA, 1980-1990.	USA, 1980- 1990 35-84 M-F	Smoking, cholesterol, HDL, LDL, DBP	Angina, sudden death, post MI, CABG, PTCA Specific treatments not included	Number of deaths prevented	Model explained 92% of the observed decline. 43% of the fall was attributed to treatments and 25% to primary prevention	One-way sensitivity analysis- 95%CIs from case fatalities and Beta coefs. Model calibrated with 1986 mortality data- 98% Validity: (model estimates compared with 1990 observed)-	No illustrations, model is not available. Assumptions discussed and method refined. Discussed Confounding, lag times & competing causes.	Data sources well explained- However model excluded over 85 people, did not consider specific treatments and excluded heart failure.	Adequate (7)
Tosteson 1997 ⁹	To estimate cost effectiveness of population wide approaches to reduce cholesterol in US adult pop.	USA, 1995- 2020, 35-84 M-F, free of CHD	Smoking, cholesterol, HDL, DBP	No disease categories included No treatments included	CHD incidence, LYG, cost per LYG, CE ratio	A population wide programme with the cost (4.95 per person per year) and cholesterol lowering effects (an avr. 2% reduction) would prolong life at an estimated cost of \$3200 per life year saved.	One-Way sensitivity analysis Model calibrated (in previous papers), predictive validity –not checked	No Illustrations Model not available Discussed competing causes but not assumptions, confounding or lag times	Data sources adequate	Adequate (4)

Author (year)	Purpose of the model	Setting, Time period & Population	Risk factors & interventions included	Disease categories & Treatments included	Outcomes	Key Results	Sensitivity analysis or validation	Transparency	Data Quality & Strengths and Limitations	Overall grading (Score)
Goldman 1999 ³⁶	To project the population wide effect of full implementation of ATP II guidelines in the USA	USA, 2000- 2020, 35-84 M-F	Smoking, cholesterol, HDL, LDL, DBP Primary /secondary prevention in high risk persons and primary prevention in moderate risk persons.	Angina, AMI, sudden death, post MI, CABG, PTCA No treatments included	Number of deaths prevented, LYG, QALY	ATP implementation means 500 million person years on lipid lowering treatment (2/3 primary prevention and 1/3 on secondary prevention) with 2 million fewer AMIs, 1.7 million fewer CHD deaths, PLUS 14 million LYGs and 13.5 million QALYS	One-Way sensitivity analysis In previous papers model calibrated Predictive validity –not checked	Assumptions presented. Model not available, no illustrations. No discussion of confounding, lag times or competing causes	Data sources adequate	Adequate (4)
Phillips 2000 ⁶	To examine the potential health and economic impact of increase use of beta- blockers in AMI survivors	USA, 2000- 2020; AMI Survivors in 2000 aged 35 84, followed up for 20 years PLUS successive survivors of first MI from 2000 to 2020	None -	Post MI Treatment: beta blocker use after AMI	Number of deaths prevented, cost per life years, QALY	Increase of beta-blocker uptake from 44% to 92%. Implementing this strategy in MI survivors in 2000: would lead to 4,300 fewer CHD deaths and 3,500 AMIs PLUS 45000 LYGs. Cost per QALY=\$4,500. All first MI survivors annually over 20 years: 72,000 fewer CHD deaths, 62,000 fewer AMIs PLUS 447,000 LYGs. Would save \$118 million during. 20 years	One way sensitivity analysis- different scenarios were explored No validation or calibration in here	No Illustrations. Model not available. Discussed assumptions but not confounding, lag times or competing causes.	Model described well but the purpose was very narrow Data sources adequate	Poor (3)

Author (year)	Purpose of the model	Setting, Time period & Population	Risk factors & interventions included	Disease categories & Treatments included	Outcomes	Key Results	Sensitivity analysis or validation	Transparency	Data Quality & Strengths and Limitations	Overall grading (Score)
Prosser 2000 ⁸	To evaluate cost effectiveness of primary and secondary prevention with cholesterol lowering drugs in separate risk groups	USA, from 1987 for 30 years M-F aged 35- 84	HDL, LDL	Angina, post MI Treatment: Statins Step 1 diet	Number of deaths prevented, QALY, cost effectiveness ratio	Cost per QALY for step 1 diet generally <\$100 k if subjects had more than 1 RF. -Primary prevention with statins expensive varied \$54k- 240 k in men, \$62 k to 1400 k in women. -Secondary prevention with statins \$3800- \$9900 per QALY in men and \$8100-4000 per QALY in women.	One-Way and multi-way sensitivity analysis done Calibrated and predictive validity checked	No Illustrations provided. Model not available. Discussed assumptions, but not confounding, lag times or competing causes.	Useful. Data sources adequately reported	Adequate (5)
Goldman 2001 ³	To estimate impact and cost effectiveness of risk factor reductions between 1981 and 1990.	USA, 1981- 1990 and 1991-2015; 35-84 M-F	Smoking, cholesterol, DBP, obesity	Angina, AMI, sudden death, pot MI, CABG, PTCA No treatments included	Number of deaths prevented, incidence, cost per death prevented	RF changes between 1981- 1990 resulted in 7-11% reduction in CHD incidence rates- 430,000 fewer CHD deaths. 55% of this reduction was from DBP, 38% cholesterol, 7% smoking. Overall RF changes gained 1.9 million QALYs	One-Way sensitivity analysis Calibrated- in other papers	No Illustrations. Model not available. Discussed assumptions, lag times & competing causes but not confounding	Ambitious paper, difficult to understand and cost estimations slightly confusing. Data sources adequately reported	Adequate (6)
Tice 2001 ³	⁷ To examine the potential effect of grain fortification with folic acid and vitamin therapy i.e cyanocobalamine, on CHD events in the US.	USA, 2001- 2010; 35-84 M-F	Smoking, cholesterol, HDL, DBP, diet (folic acid fortification)	Angina, AMI, heart failure, QALYs No other treatments included	Number of deaths prevented, number of CHD events prevented, QALYs	Grain fortification would decrease AMI in men and women by 13% and 8% respectively. 310, 000 fewer deaths and lower costs if all known CHD patients treated with folic acid and cyanocobalamin over 10 years Providing all men over 45 without CHD would save 300,000 QALYs and would save \$2 billion	Multi-Way sensitivity analysis By incorporating homocysteine level distribution from NHANES III. This version of the model apparently predicts CHD mortality within 2% of the 1990 US vital statistics.	No illustrations and model not available. Discussed assumptions, Lag times & competing causes but not confounding	Assumed 100% compliance- Same RR assumed for primary and secondary prevention- no negative effect of rx, - lack of completed RCT evidence Data sources adequately reported	Adequate (6)

Author (year)	Purpose of the model	Setting, Time period & Population	Risk factors & interventions included	Disease categories & Treatments included	Outcomes	Key Results	Sensitivity analysis or validation	Transparency	Data Quality & Strengths and Limitations	Overall grading (Score)
Gaspoz 2003 ⁷	To estimate cost effectiveness of aspirin, clopidogrel or both for secondary prevention	USA, 2003- 2027; 35-84 M-F	No risk factors included	Two treatments for secondary prevention of CHD Aspirin, Clopidogrel	Number of deaths prevented, cost per LYG and QALY	Cost per QALY results: Aspirin for all eligible patients =\$11,000- Aspirin all and clopid for others: =\$31,000- Clopidogrel for all =\$250,000	One-Way sensitivity analysis Using cholesterol changes in 4S Study the model estimated almost perfectly the observed CHD events in the trial.	No illustrations, model not available. Discussed assumptions, lag times & competing causes but NOT confounding or compliance	Narrow focus. Data sources adequately reported	Adequate (6)

Author (year) Purpose of the Model setting, Risk factors Disease Outcomes Overall **Key Results** Sensitivity Strengths / **Fransparency** model Time period included grading categories & analysis & Limitations studied & Population &Data Quality (Score) Treatments Validity included To simulate the health Adequate England, 2000-Reducing smoking by 2.5% Buck. Smoking, None Number of Different Illustrations& Ignore 2029, M-F 1996¹⁵ outcomes associated cholesterol. deaths over 1 yr in the population; assumptions socioeconomic (6)scenarios with health promotion under 65 blood provided. variables would reduce CHD death explored prevented, and prevention and Model not pressure numbers by 2,378 in 2000, cost relative costs of Validity not available. 31,602 in 2029. Reducing Data sources associated with cholesterol 5% over 3 yrs; Discussed adequate checked different health would avert 67,598 CHD confounding & promotion deaths in 2000, 438,396 competing causes CHD deaths in 2029 but not lag times. Increasing physical activity To evaluate effect of England and No treatments Illustrations & Physical activity Naidoo, Smoking, Number of One-Way Adequate included here in physical activity in Wales. cholesterol. deaths would result in small sensitivity model not (5) 199716 reducing CHD deaths Baseyear: 1991 blood prevented. reduction in CHD death analysis available the PREVENT rates (0.15% in men & Model. Assumed LYG Intervention pressure, complete reversal 1994-2005 physical 0.06% in women). Greatest Validity not Discussed of prior risk from health gain can be achieved checked assumptions, lag then 14 years activity, prediction (to by concentrating on obesity times, competing being sedentary. sedentary people, on older 2019). causes but not M-F aged 15people and on men confounding. Data adequate, RR: 1.9 from 64 Much bigger potential Berlin et al still gains from smoking reduction reflects cohorts not interventions. probably a big overestimation. CHD In 1993 PREVENT model Illustrations & Data sources Not reported None No To estimate smoking Denmark, Adequate Bronnummortality estimated 33% of the sensitivity model not poorly reported (4) attributable mortality 1993, M-F Hansen, deaths in men and 23% in analysis available and discussed from lung cancer, 2000¹⁴ women could be chronic bronchitis, attributable to smoking. Validity thus Discussed emphysema, CHD, and stroke, by using The Peto et al method checked assumptions, lag PREVENT Model and estimated 35% of deaths in times, competing men and 25% in women causes but not the method proposed attributable to smoking. confounding. by Peto et al.

App4. Table 2. Summary table for PREVENT Model

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overall grading (Score)
Mooy, 2000 ¹¹	To evaluate three policy options (anti tobacco, cycling, high fruit-vegetable consumption) using PREVENT Model	Netherlands, 1993-2003, M-F under 65	Smoking, physical activity (cycling), diet	None	Life years gained (LYG)	Anti-tobacco policy had greatest impact, a cycling policy resulted in substantial health gain, increased fruit-vegetable consumption had little effect	Different scenarios explored Validity not checked	Illustrations & assumptions provided. Model not available. Discussed lag times but not confounding or competing causes.	Superficial paper lacks detail. Rather brave and optimistic assumptions?? Data sources reported poorly	Adequate (4)
Bronnum- Hansen, 2002 ¹²	To predict effect of reducing prevalence of hypertension, high cholesterol, smoking and increasing physical activity	Denmark, 1999-2008, M-F aged 20- 64	Smoking, cholesterol, hypertension , physical activity	None included	Number of deaths prevented	Reducing smoking by 1/3 over 10 yrs would reduce CHD deaths 10% for men and 15% for women < 65. If % of heavy smokers or hypertensive reduced by 25% the CHD mortality would be 5% lower for men (6-7% lower women.) Reducing number with cholesterol (>8mmol/l) by 25% would lower CHD mortality by 3% in men (6% in women) after 15	One-Way sensitivity analysis Validity not checked	Illustrations & model not available Discussed assumptions & competing causes but not lag times or confounding.	Data sources reported poorly	Poor (3)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overall grading (Score)
Grover, 1992 ²⁰	To evaluate life- time benefits of reducing total cholesterol levels to prevent CHD	Canada, (time not clear), Low risk and high risk M-F	Smoking, total cholesterol, diastolic blood pressure, glucose intolerance, age	No disease categories No other treatments	Years of life saved, Years of life without CHD symptoms Increased life expectancy	In low risk and high risk men and women reducing serum cholesterol levels by 5% to 33% would increase the average life expectancy by 0.03 - 3.16 years. Onset of symptomatic CHD would be delayed among these patient groups by 0.06 - 4.98 years, on average	None Validation only checked for middle age men Not clear about model fit for other age and sex groups.	Illustrations &: assumptions provided Model not available. Discussed lag times but not confounding or competing causes	Fairly clear &, detailed paper. This model used multivariate logistic regression coefficients. Data sources adequate	Adequate (5)
Hamilton, 1995 ³⁸	To evaluate life- time cost effectiveness of statins for treating high cholesterol levels	Canada, 1993??, (not clear) M-F aged 30-70 free of CHD	Smoking, total cholesterol, HDL-C, LDL- C, diastolic blood pressure, glucose intolerance	No disease categories No other treatments	Years of life saved, Cost per life years saved (LYS)	Treatment of hypercholesterolemia relatively cost-effective for men (as low as \$20,882 per LYS at age 50) & women (\$36,627 per LYS at age 60).	One-Way sensitivity analysis Validation reported in previous papers	Illustrations& model not available. Assumptions& competing causes discussed but not confounding or lag times.	Assumed 100% compliance to treatment (!). Treatment effectiveness data from only one RCT, no meta- analysis. Data sources adequate	Adequate (5)

App4. Table 3. Summary table for Cardiovascular Life Expectancy Model

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overall grading (Score)
Grover, 1998 ³⁹	To compare potential years of life saved associated with risk factor modification in the primary and secondary prevention of CVD	Canada, ??, (not clear) Lipid Research Clinics Cohort over 30 M-F	1992 paper not clear	No disease categories No other treatments	Number of CHD, stroke cases prevented, life years saved (LYS)	In hyperlipidemic men and women without CVD lipid therapy benefits greater in high-risk vs low-risk groups (4.74-0.78 vs 2.50- 0.25 LYS, respectively). Similar forecasted benefits among people with CVD. Hypertension therapy benefits also greater for high-risk vs low risk (1.34- 0.29 vs. 0.85-0.13 LYS respectively)	No sensitivity analysis Predictive validity checked by using data from primary and secondary prevention trials.	Illustrations and model not available. Discussed assumptions, confounding, lag times but not competing causes.	Method explained well. Data sources explained	Adequate (5)
Perreault, 1998 ⁴⁰	To compare average and marginal life- time cost- effectiveness of increasing dosages of statins for primary prevention of CHD	Canada, 1992?, (not clear) Hypothetical high risk (smoker, DBP>100mmHg) and low risk (non-smoker, DBP<80mmHg) men and women	Age, sex, cholesterol, HDL-C, diastolic blood pressure, left ventricular hypertrophy, glucose intolerance, smoking	No disease categories No other treatments	Years of life saved, Cost per life years saved	Treatment with lovastatin at a dosage of 20mg/d apparently cost-effective in middle-aged men and women with baseline total cholesterol >6.67mmol/L. Treatments with 40mg/d is also cost-effective for total cholesterol >7.84mmol/L. However 80mg/d not cost- effective for primary prevention.	None Validation was reported in previous papers	Illustrations& model not available. Discussed assumptions, confounding, lag times & competing causes.	Narrow focus. Not based on a real population. Data sources adequate	Adequate (5)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overall grading (Score)
Grover 1999 ⁴¹	To estimate cost- effectiveness of statin therapy in secondary prevention, using 4S study published results	Canada, (Not clear) M-F 40-70 yrs 15% random sample of LRC program	Mean BP, LDL/HDL, smoking, glucose intolerance	No disease categories No other treatments	Recurrent CHD events Cost per life year saved (LYS)	Suggested benefits of long- term statin therapy generally cost effective. Costs for low risk patients with LDL/HDL>5 \$5424 - \$9548 per LYS in men and \$8339-13747 in women. In high-risk patients \$4487 to 8532 in men and \$5138 to 8389 in women.	One-Way sensitivity analysis Model estimates were compared with events observed in 4S trial- predicted and observed rates were quite similar	Illustrations& model not available. Discussed assumptions but not confounding, lag times or competing causes.	Limited to a very narrow focus Little exploration beyond 4S trial Data sources adequate	Adequate (4)
Perreault, 1999 ⁴²	To estimate the potential effect of primary prevention treatment of hyperlipidemia or hypertension to reduce the risk of CHD death	Canada, Years unclear 1986? 1992?, M-F aged 35-74 (Canadian Heart Health Survey Population.)	Smoking, Cholesterol/H DL-C ratio, blood pressure	No disease categories No other treatments	Number of CHD cases prevented	The clustering of modifiable risk factors in hypertensive patients demonstrated the need for comprehensive RF screening	No SA Validation of the model checked previously	Illustrations& model not available. Discussed assumptions, lag times, but not confounding or competing causes.	Adequate data quality for population, risk factors &treatment uptake. But data on treatment effectiveness relatively poor, ignored a meta- analysis.	Adequate (4)
Lowenstey 2000 ⁴³	n To evaluate potential long term cost effectiveness o exercise training for cardiovascular disease risk factors	Canada, 1992, M- F aged 35-54, 55- f 64, 65-74	Age, sex, HDL/LDL ratio, blood pressure, CVD presence, glucose intolerance, smoking	No disease categories No other treatments	Years of life saved, Cost per life years saved	Assuming 100% lifetime adherence, exercise training gained 0.7 life-years in men aged 35-54. Gains smaller in older men and women without CVD, but larger in those with CVD. Still cost effective. Assuming 50% adherence	One-Way sensitivity analysis Validation of the model was checked previously (Grover 1998)	Illustrations& model not available. Discussed assumptions & competing causes, but not confounding or lag times.	Clearly written paper. Data adequate. Sensitivity analyses well described	Adequate (5)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overall grading (Score)
Grover, 2001 ⁴⁴	To estimate long term cost effectiveness of lipid therapy among diabetic patients without CHD versus results in CVD patients without DM	Canada, USA, Italy, Spain, Germany France, 1998, M-F	Smoking, HDL-C, LDL- C, diastolic blood pressure, diabetes, Diagnosed CVD at baseline	No disease categories No other treatments	Years of life saved, Cost per life years saved	Among diabetic men and women who do not have CVD, lipid therapy is likely to be as cost-effective as treating nondiabetic individuals with CVD	No sensitivity analysis Calibration yes	Illustrations& model not available. Discussed assumptions but not competing causes, confounding or lag times.	Assumed all subject were non- smokers! Data sources presented but lacked RCT data on primary prevention in diabetes patients	Poor (3)
Grover 2003 ⁴⁵	To compare cost/effectiveness of lipid modification in primary prevention of CVD (with and without indirect costs)	Canada Restricted to hypothetical cohort of 1000 participants reflecting baseline risk factor levels of the population	Smoking, LDL-C/HDL- C, mean blood pressure, glucose intolerance, age, sex	No specific disease categories, 10 mg daily Atorvastatin for CVD-free people at baseline. People categorised as: low risk: (Normal BP, non smoker) or -High risk: (High BP, smokers).	Direct and indirect cost per life year saved	Lipid therapy with statins can reduce CVD morbidity and mortality. Adding indirect costs associated with productivity losses can result in cost savings to society.	One-Way sensitivity analysis	Illustrations& model not available. Discussed assumptions, confounding & lag times but not competing causes	Data sources poorly explained	Adequate (4)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overall grading (Score)
Babad 2002 ²¹	To evaluate the impact of different primary prevention strategies on health care costs	England and Wales, time? (not clear), 45-84? M-F	Smoking, cholesterol, systolic blood pressure, age, sex	No disease categories No other treatments	Stable angina, unstable angina, MI, Sudden death, stroke death, other CV death, cancer death, other death	None reported	No SA No validation	Confounding: No Lag times: No Competing causes: No Illustrations& model not available. Discussed assumptions but not confounding, lag times or competing causes	Considers treatment adherence, compliance, treatment delay and effectiveness for risk factors. However limited number of risk factors. Data quality adequate. National survey used to populate the model. However Framingham equations greatly over- estimate risk for English population	Poor (2) This model is on the developing stage still
Cooper 2002 ²²	To explore treatment, survival, and subsequent CHD event experience of CHD patients	England and Wales, time ?? (not clear), 85 M-F	No risk factors included	Angina (stable/unstabl e), AMI, post MI, CABG, & PTCA only, no specific medical therapies	Number of deaths prevented, morbidity prevented, CHD mortality, unstable angina admissions, patient investigations, angiograms, PTCA, CABG, noncardiac deaths	CABG: 19 deaths postponed/pr evented per million population	No sensitivity analysis Cardiac deaths estimated by the model were validated against data from ONS- model 12% underestimates. Angina prevalence estimate of the model compared with HSE 94 prevalence. Discrepancies ranged from 1% to 20%	Illustrations & model not available. Discussed assumptions but not confounding, lag times or competing causes	Uncritical and rather arbitrary approach to selection of data sources. Data quality often poor. No attempt to quantify or manage uncertainties. Future model versions to include secondary prevention? Model fit is better for men than women.	Poor (3) This model is on the developing stage still

App4. Table 4. Summary table for CHD Policy Analysis Model

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradin (Score
Capewell 1999 ⁴⁶	To estimate proportion of CHD mortality fall in Scotland 1975-1994 attributable to treatments and to risk factor changes	Scotland, 1975-1994, Population 5.1 million M-F aged 45- 64,65-74, >74	Smoking, cholesterol, blood pressure, deprivation	Comprehensive *See footnote	Deaths prevented or postponed (DPP)	6205 fewer deaths observed in 1994 compared with 1975 base year. Treatments together explained 40% of the mortality fall, 2722 DPPs (min 1373- max 5986); Major Risk factors explained 51% of the fall: 4025 DPPs (3412-4679); 9% attributed to other, unmeasured factors	SA: Multi way sensitivity analysis using - Analysis of extremes method Validation: Estimated falls in CHD mortality were compared with observed falls in CHD mortality	Illustrations available & model available on request. Discussed assumptions & confounding but not lag times or competing causes	Aims to include ALL effective CHD treatments given in 1994. Mortality the only outcome. (Not non- fatal events) Omits diabetes, BMI, Physical activity, diet, antioxidants, Barker. Data quality adequate (Census, MONICA, National population statistics, results from representative studies)	Adequ ate (7)
Capewell 1999 ⁴⁷	To determine the extent to which increases in the uptake of effective treatments could further reduce CHD mortality in Scotland in 1994	Scotland, 1994, all adults 45+	No risk factors considered, apart from medications for hypertension	Comprehensive *See footnote	Deaths prevented or postponed	2722 DPPs between 1975 and 1994, attributable to treatments. (Min1373- max5986) Increasing uptakes to 80% of eligible patients would have prevented or postponed approx 4078 DPPs (1886- 6702). 39% from 2' prevention, 29% from Heart failure, 13% from initial treatments for AMI, 10% from HT and 8% from angina treatments.	Multi way sensitivity analysis using Analysis of extremes Previously validated: comparison of estimated and observed falls in CHD mortality	Illustrations available & model available on request. Discussed assumptions, confounding & lag times. Competing causes not relevant.	Considers a wide range of effective treatments available for CHD. Outcome is mortality only (not nonfatal events). Data quality adequate	Good (8)

App4. Table 5. Summary table for IMPACT CHD Mortality Model

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradin (Score
Capewell 2000 ⁴⁸	To determine how much of the recent CHD mortality fall in New Zealand can be attributed to treatments or to risk factor changes	Auckland 1982-1993, Population 996,000 M-F	Smoking, cholesterol, blood pressure, statins for primary prevention,	Comprehensive *See footnote	Deaths prevented or postponed	558 fewer deaths observed in 1993 than expected from 1982 rate. Medical and surgical treatments estimated to prevent or postponed 310 deaths (101-920), risk factor changes 361(204-596) DPPs [Smoking 204, cholesterol 79 Diastolic BP 97 other factors 28]	Multi way sensitivity analysis- Analysis of extremes Estimated falls in CHD mortality were compared with observed falls in CHD mortality	Illustrations available & model available on request. Discussed assumptions, confounding, lag times& competing causes.	Considered a wide range of effective treatments for CHD. Outcome is mortality only. Nonfatal events not included. Omitted diabetes, BMI, Physical activity, diet, antioxidants, Barker Data quality adequate	Good (9)
Critchley 2003 ⁴⁹	To examine potential for risk factor changes to reduce CHD deaths in Scotland	Scotland, 1994-2010, M- F aged 45-84	Smoking, cholesterol, blood pressure	Treatments not considered	Deaths prevented or postponed (DPPs)	2169 DPPs if recent risk factor trends simply continued to 2010. Additional, modest RF reductions would prevent 4749 deaths. [2167 cholesterol, 1168 smoking, 914 Diastolic BP reductions respectively]. Extrapolation to UK pop suggested approx. 53,000 lives could be saved in 2010.	Multi way sensitivity analysis- Analysis of extremes - Estimated falls in CHD mortality were compared with observed falls in CHD mortality	Illustrations available & model available on request. -Discussed assumptions, confounding, lag times& competing causes.	Considers major risk factors only, omits diabetes, BMI, Physical activity, diet, antioxidants, Barker. Data quality adequate	Good (9)
Critchley 2003 ⁵⁰	To estimate life years gained due to risk factor changes and improved treatments in Scotland between 1975-1994	Scotland, 1975-1994, M-F aged 45- 84	Smoking, cholesterol, blood pressure	Comprehensive *See footnote	Life years gained (LYGs)	Treatments together prevented or postponed 1862 deaths. This resulted in 12025 LYGs (8689-14,461). Risk factor reductions prevented or postponed 2674 deaths resulting in 35991 LYGs (25782-40750). 50% from smoking. 70% of LYGs were in men.	Multi way sensitivity analysis- Analysis of extremes Estimated falls in CHD mortality were compared with observed falls in CHD mortality	Illustrations available & model available on request. Discussed assumptions, confounding, lag times& competing causes	Considers a wide range of effective treatments for CHD. Mortality only. Nonfatal events not included. Omits diabetes, BMI, Physical activity, diet, antioxidants, & Barker. Data quality adequate	Good (9)

*AMI: Cardiopulmonary resuscitation, thrombolysis, aspirin, PTCA, Beta blockers, ACE inhibitors; Secondary prevention (post MI/CABG/PTCA): Aspirin, Beta blockers, ACE inhibitors, Statins, Warfarin, Rehabilitation; Chronic angina: CABG surgery, Angioplasty, Aspirin, Statins; Unstable angina: Aspirin, Aspirin & Heparin; Heart failure: ACE inhibitors; Hypertension treatment

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories& Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overall grading (Score)
Murray 1997 ²⁴	To provide a standardised approach to epidemiological assessments and use a standard unit, the DALY to aid comparisons.	World, 1990	Smoking, blood pressure, physical activity	None None	DALYs	Developed regions experience 12% of the burden and spend 90% of health care. CVD explain 10% of the total DALYs (20% in developed world, 23% in USSR & Eastern Block), 8% in developing countries.	None None	Illustrations & model not available. Discussed assumptions & competing causes but not confounding or lag times.	Large and ambitious. Data quality: Adequate for this model	Poor (3)
Murray 1997 ²³	To compare three scenarios of future mortality and disability for different causes and 8 regions of the world	World, 1990 2020	Smoking	None None	Deaths, DALYs, years of life lost	In established market economies life expectancy will be 88 for women and 78 for men. CVD will remain top cause of death globally. In 2020 CHD will account 20% of DALYs in EME counties and 15% in the world.	Different scenarios (optimistic vs pessimistic) explored. Calibration, Validity – not checked	Illustrations & model not available. Discussed assumptions & competing causes but not confounding or lag times.	Useful for WHO and strategies. Includes trends for CHD and CVD however does not provide information on specific interventions. Data sources adequate	Adequate (4)
Ezzati 2002 ⁵¹	To estimate contributions of selected risk factors to global and regional disease burden	World, 2000	High blood pressure, high cholesterol, high BMI and smoking besides other 22 selected risk factors	None None	DALY	Maternal and childhood underweight accounted 15%; high blood pressure 4.4% (64 million), tobacco 4.1% (59 million), high cholesterol % 2.7 (40 million) of the global DALYs.	None None	Illustrations & model not available. Discussed assumptions & competing causes but not confoundingor lag times.	Data sources adequate	Poor (3)

App4. Table 6. Summary table for The Global Burden of Disease Project

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories& Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overall gradinş (Score)
Murray 2003 ⁵²	To estimate health effects and costs of selected interventions to reduce the risks associated with high cholesterol and high blood pressure in different parts of the world	Three WHO regions (South east Asia, Latin America and Europe), 2000, Whole population	Cholesterol, SBO, smoking, BMI	None Treatments?	Cost per DALY averted	All personal and non- personal interventions explored in this work were cost-effective over all three WHO regions. In low resource settings population intervention strategies to lower salt intake, cholesterol concentration or both would be purchased first. Decision makers would next move to combined strategy of legislated reductions in salt content of processed foods with mass-media campaigns, and then add the absolute-risk approach to management of blood pressure and cholesterol concentration.	Multi-way sensitivity analysis Validity was not checked	Illustrations & model not available. Discussed assumptions & competing causes but not confounding or lag times.	Useful primary prevention model. Focuses on effective interventions. Detailed paper supported with web-tables to explain the method used. Does not include effect of specific treatments. Adherence omitted. Limitations discussed briefly. Data sources adequate	Adequa (4)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradin (Score
Kottke 1985 ⁵³	To compare expected benefit of high-risk and population strategies on the basis of Risk Factor distributions of the male population of Eastern Finland	North Karelia, Finland, 1992, Men aged 25-59 in 1972	Cholesterol Diastolic BP	None Targeting Cholesterol and DBP in NK men.	Number of deaths prevented	Three strategies explored. -Achieved (reducing cholesterol 10% and reducing DBP below 95mmHg) -Good (reducing cholesterol 20% and reducing DBP below 90 mmHg) -Ideal (reducing cholesterol below 190, and reducing DBP below 80). Implementing these 3 (achieved/ good/ ideal). Interventions in a) High-risk people would reduce population CVD by 16%, 28% and 33% respectively b) Population level would reduce population CVD by 31%, 52% and 70%.	None Calibration: used actual mortality rates for NK cohort	Illustrations & model not available. Discussed assumptions & competing causes but not confounding or lag times.	Did not acknowledge any limitations Data quality good However study limited to men aged 25-59 years	Adequ (4)
Nissinen 1986 ⁵⁴	To estimate costs and effects of North Karelia Project hypertension control program during the first 5 yrs	Finland, North Karelia, 1972-1977 M-F 35-64 yrs	Hypertension	None, No other treatments	Life years gained life expectancy, & costs	1239 MI deaths and 327 stroke deaths observed between 1972 and1977. 288 fewer than expected: 134 were attributable to BP treatment. Thus 2143 life years saved; cost per QALY was \$3612 (excluding earnings) and \$322 (including earnings).	None	Illustrations & model not available. Discussed assumptions & competing causes but not confounding or lag times.	Rather old paper Data sources adequate	Poor (3)

App4. Table 7. Summary table for other CHD policy models

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradin (Score
Browner 1986 ⁵⁵	To estimate the overall impact of a risk factor modification programme	USA, 1964-1974 and 1972-1983, men only aged 35-59	Cholesterol	None, No specific treatments	Incidence	With optimistic assumptions about the impact of cholestyramine Rx at various cholesterol. levels about 5% of CHD cases in middle-aged men could be prevented. More realistic assumptions reduced that estimate by half.	None None	Illustrations & model not available. Discussed assumptions but not competing causes, confounding or lag times.	Simplistic model. Model details not clear. Focused only on cholesterol. Model mostly used data from a small trial therefore issues of generalisability poor	Poor (
Hjort 1986 ⁵⁶	To examine potential benefits of secondary prevention after AMI	Norway, 1980? (Not clear), MI survivors aged 20-75 yrs	None	Post MI Bet-blocker	Life years gained	Beta-blockers gained 0.25- 1.6yrs in post MI patients. But Smoking cessation has similar effect and lasts longer: Smoking prevalence 50%, If all quit, 5120 extra survivors and 3.3 LYG gained per quitter.	None None	Illustrations & model not available. Discussed assumptions but not competing causes, confounding or lag times.	Very simple modelling methodology Data: Main data source was Timolol RCT hence generalisability poor	Poor (1)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradii (Score o
Kottke 1988 ⁵⁷	To examine the magnitude of risk factor clustering within individuals and to examine the implications of risk factor clustering for CHD prevention policy	US railroad (USRR) cohort and Finnish North Karelia cohort -USRR-1959-'64, NK: 1972-78 -US railroad cohort- 2571 men aged 40-59 (1959). -North Karelia 3022 men aged 40-59	Smoking, cholesterol, blood pressure	No specific treatments No groups	Number of deaths, number of morbidity, non fatal AMIs	Reducing cholesterol 10%, smok 20% and DBP 5% in general population would lower CHD death by 33%-38% & nonfatal AMIs by 21% -23% (US-NK) -Reducing cholesterol 4%, smok 15% and DBP 3% in general population would lower deaths by 22-18%. & nonfatal AMIs by 12-13% -Single interventions in high- risk groups were less effective i.e. max of 8% reduction in MI or CHD death.	None None	Illustrations & model not available. Not discussed assumptions, competing causes, and confounding or lag times.	Limitations in data sources. -US railroad cohort: Selected- healthy worker effect? Generalisibility to US population is questionable. -North Karelia results more generalisable.	Poor (305
Park 1989 ²⁹	To compare high risk versus population approach to primary prevention in North Karelia	North Karelia, Finland, 1972-77	Cholesterol: simulated reduction to 180mg/dl a) in high risk b) in whole pop. Blood pressure	None, None	Number of deaths prevented	Reducing cholesterol below 180 in top quartile would lead to 34% reduction in CHD deaths. Reducing cholesterol 30mg/dl across pop would lead 24% reduction in CHD deaths.	None None	Illustrations & model not available. -Discussed assumptions & competing causes but not confounding or lag times.	Poor-early model. Lacks detail. Data quality is adequate. North Karelia data were used.	Poor (3)
Martens 1990 ⁵⁸	To assess cost effectiveness of cholesterol reduction with simvastatin or cholesteramine	Holland, 1988, Dutch pop aged 35-70	Cholesterol	None, None	Number of CHD events prevented, life expectancy, cost per life years gained	Simvastatin increased the life expectancy in men and women more than 3 times those with cholestyramine. Simvastatin therapy for men cholesterol>8 mmol/dl increased life expectancy by 1.75 yrs whereas cholestyramine increased 0.48 yr. For men with initial cholesterol >8 mmol/l the cost of life years saved of cholestyramine ranged \$104,000 to \$241,500. For simvastatin cost effectiveness ranged by \$23,000 to \$49,000.	One-way sensitivity analysis None	Illustrations & model not available. Discussed assumptions but not competing causes, confounding or lag times.	Poor- very narrow. Only simvastatin or cholestyramine . Focused mainly on extremely high chol levels 7,8,9. Data sources poor	Poor (2)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradit di (Score or
Zhuo 1991 CRISPERS	To investigate the relationship between the risk coefficients and simulation outcomes using CRISPERS model	Model was developed in Canada using North Karelia population, 1972- 1979, 3022 men aged 40-59	Cholesterol, number of cigarettes, DBP	None, None	CHD mortality, MI incidence, deaths due to other causes	All population approaches are better than high-risk approaches.	Multi-way- discussed Yes-	Illustrations & model not available. Discussed assumptions & competing causes, but not confounding or lag times.	Early modelling study. Includes only young men Data: Adequate	Adequesq (4)
Johannesso n 1991 ⁵⁹	To estimate cost- effectiveness of CVD prevention	Sweden, 35-74 yr M-F free of CVD	Smoking, cholesterol, blood pressure, glucose intolerance, LVH	Angina, AMI, sudden death, None	Life years gained, cost	In this paper they described the model only no results were reported	None None- but planned	Illustrations available but model not available. - Discussed assumptions but not competing causes, confounding or lag times.	Data: Adequate	Poor (St
Macksikak 1992	To predict disease rates in cohorts and to estimate effect of interventions	New South Wales? Australia, Hypothetic cohort of 100,000 men aged 40-64	None	AMI, sudden death, CHD death, death from other causes (7 CHD states were described) No treatment	CHD incidence, AMI		Sensitivity None Validity None	Illustrations & model not available. Not discussed assumptions, competing causes, lag times or confounding.	Relatively narrow age group. Only men included. Arbitrary chosen changes in management and natural history of CHD. -Data sources adequate; national surveys and MONICA were used.	Poor (1)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradir (Score
Jones 1994	To quantify cost- benefit relationship of walking to prevent CHD	USA, time? hypothetical cohort of M-F aged 35-74.	Physical activity (Assumed RR=1.9, 95%CI 1.5 to 2.4)	None	Net cost	At a RR of 1.9 for heart disease associated with sedentary behaviour, \$5.6 billion would be saved annually if 10% of adults began regular walking program. If all currently sedentary people (40%) start to walk 5-hours/per week then this would save annually \$4.3 billion, mostly in men. Walking is beneficial for men aged 35 to 64 yrs and for women aged 55 to 64 yrs.	One-way SA, None	Illustrations & model not available. Not discussed assumptions, competing causes, confounding or lag times	A poor study. No details of methods on calculating the reductions of events or deaths. -Data sources described poorly	Poor (to
Doliszny 1994 ⁶⁰	To assess the possible contribution of CABG o the decline in CHD mortality between 1970 and 1984 in Minneapolis	Minneapolis St Paul, USA, 1970- 1984, 30-74 M-F	Smoking, BP, DM	Angina, AMI, post MI, heart failure, CABG CABG surgery	Number of deaths prevented	CABG contributed modestly to the decline in CHD mortality 1970-84. By 1984, the estimated contribution had increased to 6.6%. Adjustment 'attenuate but does not eliminate' this contribution. It is questionable whether contribution increased 1980s and 1990s because of competition from other therapeutic approaches.	None Split 2/3 and compared predicted number of deaths with observed deaths- there was a good agreement	Illustrations available but model not available. Discussed assumptions but not competing causes, confounding or lag times	Clear well written paper. However very narrow, only looked a CABG. Used entirely different method. Useful method for validation. -Data quality adequate	Adequat (4)
Silagy 1994 ⁶¹	Modelling workload from different servicing options in primary care, in order to avert future CHD events.	d South of England, 1992, 5,727 M-F, aged 35-64 registered with GPs	Smoking, cholesterol, HDL, blood pressure, diabetes, LVH	None, None	CHD events	 517 of the population predicted to get CV event within 10 years (242 in men, 189 in women). a) No screening: 5035 patients need intervention to avert 73/517 CVD events b) limited screening would avert 29/73 events c) extended screening would avert 48/73 events 	None None	Illustrations & model not available. Discussed assumptions but not competing causes, confounding or lag times	This model looks at CHD events not deaths. Includes GP registered patients not the real population. Theoretical interventions not real.	Poor (2)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradin (Score
									Data quality adequate	
Bonneux 1994 ⁶²	To make quantitative analysis of the dynamics of the heart disease epidemic to explore future of heart disease morbidity in the Netherlands	Netherlands, 1985-2010, Dutch population	None	Angina, AMI, post MI, HF None	CHD incidence, prevalence, mortality	Prevalence rates of CHD will decrease among the young and middle aged but increase among elderly by 2010	Extreme scenarios -Model estimates on hospital admission and hospital deaths due to CHD were compared with observed figures in 1985. Looks suspiciously good.	Illustrations & model not available. Discussed assumptions & competing causes, nut not confounding or lag times	Omits sudden deaths. Only looked at hypothetical changes in incidence and survival rates to 2010. Did not consider RFs or Rx. Data: National statistics were used, adequate	Adequ (5)
Bensley 1995 ²⁸	To quantify the potential health gain in terms of a fall in mortality from prevention and treatment policies	Yorkshire- UK, 1989, M-F 35-74	None	Angina, AMI, sudden death, CABG, PTCA, post MI None	Number of CHD deaths, number of CABG, PTCA and angiograms, and costs associated with them /GP referrals	1-Model can be used to examine sensitivity of outputs (deaths) to parameters: attack rate, referral rate, and incidence. 2- Forecasting effects on future deaths of hypothetical reductions in attack rates, SVD rate, hospital death rate and episode rate e.g	One way sensitivity analysis - discussed reasonably but without examples -Numbers predicted by model was compared observed figures in Yorkshire but no further detail provided	Illustrations available but model not available. Discussed assumptions but not competing causes, confounding or lag times	Simple tool to communicate with decision makers, model was built with consulting practising clinicians. However does not include risk factors, data sources rather old and needs to be updated. Model focuses on revascularisati on only; other CHD	Adequate (5)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradir (Score
	designed in CNTD risks, functions to destinon in C2024 Instantion in C2024 Instantion in C2024 Instantion in C2024 Instantion in C2024			Anna Insulation and Insulation County County County County					treatments overlooked i.e. statins. Model does not include heart failure.	
Pharoah 1996 ⁶³	To estimate cost- effectiveness of statins in lowering serum cholesterol in people with varying CVD death risk	UK, Cambridge and Huntington, 10 years period, M-F 45-64	Cholesterol (fifths),	None Statins for primary prevention	Number of CHD deaths prevented, number of CHD cases prevented, and costs per life year saved	The average cost effectiveness for statin therapy for 10 years, in men aged 45-64 with no history of CHD but cholesterol>6.5 mmol/L was £136,000 per life years saved. It was £32,000 with pre-existing CHD and cholesterol>5.4 mmol/L. Cost effectiveness change widely with existing CHD history and cholesterol levels. In women aged 45-54 with angina and cholesterol 5.5-6.0 mmol/l CE: £361,000	Multi-way? - Different scenarios explored None	Illustrations available but model not available. Not discussed assumptions, competing causes, confounding or lag times	It was assumed a typical treatment cost for statins for patients. So the compliance would be the same as reported in studies Data quality adequate	Poor (
Oster 1996 ⁶⁴	To estimate the effects of reducing dietary saturated fat intake on the incidence and economic cost of CHD	USA, 1990-2000, 35-69 yrs persons with cholesterol level of 5.17 mmol/l or higher, free of CHD	Cholesterol, saturated fat intake (Strategy: reducing saturated fat intake by 1 or 3%	None, None	Incidence (CHD) lifetime direct and indirect costs	Reducing dietary saturated fat intake by 1 or 3% in people with high cholesterol levels would reduce CHD incidence by 32,000 and 199,700 respectively and would save \$4.1 and \$12.7 billion over 10 years.	None None	Illustrations& model not available. Discussed assumptions but not competing causes, confounding or lag times	Estimates direct and indirect costs. However it just evaluated impact of diet- saturated fat change through cholesterol, other factors ignored. Data sources adequate	Poor (2)
Bots, 1996	55 To study relative contributions of medical care and	Netherlands, 1978-1985, Dutch pop- age-	Smoking, cholesterol, blood pressure	AMI, Post MI	Number of deaths prevented	Treatments accounted 46% and risk factor changes 44% of the CHD mortality decline in	None Estimated	Illustrations available but model not	Estimates are crude, not age- sex specific-	Adequat (6)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradir i i (Score or
	changes in CVD risk factors to decline in CHD mortality in Netherlands between 1978 and 1985	sex not clear		Beta blockers, anticoagulants, ant platelets, CABG, CCU care		Netherlands between 1978-85	figures compared with observed deaths prevented- 90% explained	available. Discussed assumptions, confounding, lag times but not competing causes.	overlaps between treatments and risk factors not accounted/ mean blood pressure change not considered- PAR method was used Overestimation ?? Data sources adequate	
Lightwood, 1997 ⁶⁶	To estimate short term benefit of smoking cessation	USA, 1990, 35- 64 yrs M-F	Smoking 1% absolute reduction in smoking prevalence	None, None	Number of deaths prevented, hospital admission for CHD and CVD	A national programme that would reduce smoking prevalence by 1% per year would prevent 98 100 hospitalisations for AMIs and strokes (and 1300 deaths of AMI outside the hospital) and eliminate the need to spend ~\$3.2 billion on the treatment of MI and strokes for 7 years.	None None	Illustrations& model available. Discussed assumptions, lag times but not confounding or competing causes.	Very narrow- smoking cessation in prim prevention No sensitivity analysis Data sources adequate	Adequate (5)
Kellet 1997 ⁶⁷	To estimate likely gains in life expectancy of patients with CAD treated with statins	CHD patients who had 2, 3 vessel and left main stem coronary artery disease, aged 40- 80	None	CHD patients who had 2, 3 vessel and left main stem coronary artery disease Two treatment options were possible: medically or surgically	Quality adjusted life expectancy	Statins were estimated to provide a gain in life expectancy for medically managed patients of all ages with CHD, ranging from 4.6 to 10.1 QALY	None None	Illustrations& model available. Discussed assumptions but not lag times, confounding or competing causes.	Very narrow purpose, decision tree analysis. Data sources adequate	Adequate (4)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradii (Score
Riviere 1997 ⁶⁸	To determine the cost effectiveness of simvastatin in the secondary prevention of CHD in Canada	Canada, Average 59.4 years old M-F		None, None	Cost per life year saved	Premise A: no benefit beyond 5.4 yrs and survival curves continue parallel for 15 yrs. Premise B: The benefit from statins is cumulative, survival curves diverge to 10 yrs then continue parallel until 15 yrs. Premise C: The benefits of statins are assumed to continue for 15 yrs, survival curve would diverge for 15 yrs. For Premises B and C cost effectiveness ratios estimated were \$9,867 and \$6,108 respectively.	One-way sensitivity analysis None	Illustrations& model available. Discussed assumptions, but not lag times, confounding or competing causes.	Clear plausible consistent with other studies however includes just one disease and one treatment Data: Adequate However treatment effectiveness was based only on 4S study.	Adeqıpa (4)
Bonneux, 1998 ⁶⁹	To examine whether elimination of fatal diseases will increase health care costs	Netherlands, 1986-1990, Dutch population	None	None None	Life expectancy and life time health care cost	Elimination of CHD would increase life expectancy by 1.9 yrs proportion of CHD in lifetime health costs increase from 2.5% to 6%. The medical cost of added life years would be about £890 to £1400 per life year.	None None	Illustrations available but not model. Discussed assumptions& confounding but not lag times or competing causes.	Data Sources: Based on old data for life expectancy. Poor. Only medical costs estimated.	Poor (3)
Galgali 1998 ⁷⁰	To calculate the potential for prevention by limiting the pop exposure to common risk factors	New Zealand, 1992-97, M-F 55+ yrs	Smoking, cholesterol, hypertension, physical activity, obesity	None, None	Number of CHD deaths reduced	3% reduction in smoking, 3% reduction in hypertension, 6% decrease in physical inactivity, and 3% reduction in high cholesterol (in next 5yrs) would result in 1,228 fewer deaths per year (in next 5 yrs).	None	Illustrations available but not model. Not discussed assumptions, confounding, lag times or competing causes.	Population and mortality data is national- adequate. However RRs based international studies. Could be a limitation.	Poor (2)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradii (Score
Augustovski 1998 ⁷¹	To evaluate the effects of aspirin in primary prevention of CVD patients with different risk profiles	 ? 10 years period (cohorts follow up), - 7 hypothetical cohorts, M-F, age 55-65 with different CVD risk levels 	None (but cholesterol, HDL, SBP, smoking, DM, LVH were used to divide the subjects in risk categories)	None Aspirin 75-375 mg	QALY (end point: CHD or stroke event	Lowest risk cohort (just high cholesterol) would have a loss of 1.8 days QALY. High risk cohort (all rfs +) would achieve 11.3 days QALY	One-Way sensitivity analysis ?? Cox regression analyses for validity	Illustrations & the model not available. Discussed assumptions but not confounding, lag times or competing causes.	Aspirin effectiveness is assumed to be same in women. Compliance ignored, generalisability ? For which pop? Data: Adequate	Adeq (4)
Bonneux 1999 ⁷² (Incidence- prevalence- mortality model)	To estimate changing prevalence of CHD as a consequence of the changing disease history.	Life table population is used for estimations. 10 yrs period- Dutch M-F aged 40-80 in 1980-83 / 1990-93.	None	ACE, recurrent MI, CHD death, CVD deaths, deaths other than CHD	Incidence, prevalence, CHD deaths, hospital discharges	Incidence of first ACE changed little between 1980-83 and 1990-93 among men<60 incidences decreased by 10% among women incidence increased by 9%. Average prevalence of survivors increased sharply, predominantly among elderly: from 12% in 1980s to 16% in 1990s in men >60 and 3.3% to 5.5% in women >60.	One-way sensitivity analysis- using plausible recurrence probabilities	Illustrations & the model not available. Discussed assumptions but not confounding, lag times or competing causes.	Quite broad CHD definition- no detail. Details available from a web page. Data sources reported. Administrative data were used.	Poor (3)
Mui 1999 ²⁶	To project the incidence rates for CHD, and the number of CHD cases, hospital costs for M/F aged 45-69 up to 2014	Australia, 1989- 2014, M-F aged 45-69	Smoking, cholesterol, TC/HDL ratio, blood pressure	None, None	Incidence (CHD and stroke)	If current CHD risk factor distributions change only by a location shift and the treatment availability stays the same CHD incidence will decline 13% in M and 24% in W by 2014	None Model CHD incidence estimates were compared with MONICA data for the same year.	Illustrations & the model not available. Discussed assumptions but not confounding, lag times or competing causes.	Model takes into account changes in risk factors with aging, change in smoking status. Model validity was improved with regressing the rates.	Poor (3)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradii i (Score o
Nation 2000	To grantime effects of achieven's two corporatof volve cap corrections in terms of Abbia and corporation for the set	Strighted, 1996, 1 Stright, 52-P report 1996, 5	Successing Control Tennent I Antioning Antioning Antioning Antioning	Same		Tempeti somid medili in 1972, see National Distantises	Model 50% overestimate s in M and 110% underestimat es for W	Ellestrational for anodel stat systems	Estimates hospitalisation costs. Data: Adequate	Parie (see
Thompson 1999 ⁷³	To explore lifetime health and economic consequences of obesity using a lifetime model.	USA, ?, M-F aged 35-64	Smoking, cholesterol, DBP, diabetes, obesity, age, sex	None None	Number of CHD, stroke event, life expectancy	Lifetime risk of HT, high cholesterolemia, DM, stroke and CHD in men 45-54 increases with BMI. Life expectancy reduced by 1 year in men and women with BMI over 37.5. Lifetime medical care costs for treatment of (High cholesterol, HT, DM, CHD, stroke) are estimated to differ by \$10,000 (\$29,600 vs \$19,600).	None None	Illustrations & the model not available. Discussed assumptions but not confounding, lag times or competing causes.	Data sources reported poorly	Poor (filog
Lindholm 1999 ⁷⁴	To estimate C/E calculation within a defined budget for CHD primary prevention options BP, Cholesterol, treatments and community interventions	Vaterbotten, Sweden, 1996?, M-F 30-69	Smoking, cholesterol, BP, community based interventions (education and screening)	None, None	Cost per life year saved	Hypertension treatment cost depends on cost of drug used. Marginal C/E ratios 17,000- 500,000 ECU/life years saved (mean 55,000 Ecu). Cholesterol lowering drugs 53,000-800,000 Ecu/LYS (mean 83,000 Ecu). Community programme 4,000- 23,000 Ecu/ LYS (mean 12,000 Ecu). Optimal division of resources would require lowering budget for hypertension treatment but increasing cholesterol treatment and community interventions.	One-way sensitivity analysis Based on actual budget of 6.2million ecu	Illustrations & the model not available. Discussed assumptions but not confounding, lag times or competing causes.	Basic model. Assumed no benefits from statins Data: Adequate	Adequat (4)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa gradii (Score
Naidoo 2000 ⁷⁵	To simulate effects of achieving two targets of reducing smoking in terms of AMI and stroke hospitalisation numbers prevented	England, 1996- 2010, M-F aged 35-64	Smoking Target1: reducing smoking prevalence from 28%(1996) to 26% (2005) and to 24%(2010) Target2: More ambitious reductions- from 28%(1996) to 22%(2005) and to 17% (2010)	None	Number of AMI and stroke hospitalisati ons prevented	Target1 would result in 347 AMIs and 214-stroke hospitalisation prevented in 2000 and 6386 AMIs; 4964 strokes in year 2010. Achieving target 2 would result in 739 AMI and 11,304 strokes in 2010. Target 1 would save £524 million and Target 2 would save 1.14 billion NHS costs.	One way sensitivity analysis None	Illustrations & the model not available. Not discussed assumptions, confounding, lag times or competing causes.	Data: Adequate	Poor (Tor
Kuulasma 2000 ⁷⁶	To explain the extent to which risk factor changes explain the variation in CHD events rate trends across 38 populations	38 populations over 30 countries mid 1980s- mid 1990s, M-F aged 35-64	Smoking, total cholesterol, SBP, BMI)	In another paper they considered immediate treatments for AMI and secondary treatment for post AMI patients.	Change in CHD event rates	During the study period risk scores and CHD event rates decreased. Trend model showed a poor fit, but after considering 4 years lag improved. The explanatory power of the analyses was limited (46% in M and 19% in W) by imprecision of the estimates and homogeneity of trends in the study populations.	One-way sensitivity analysis -Validity was checked by comparing estimated falls with observed falls in event and deaths.	Illustrations available but the model not. Discussed assumptions, confounding, lag times but not competing causes.	Weak study design (ecological) Data: From real populations and quality checked therefore adequate.	Adequate (7)
Fichtenber g 2000 ⁷⁷	To estimate whethe California Tobacco Control Programme was associated with lower rates of CHD deaths	r USA, California, 1977-1997, US California, CHD death rates	Smoking	None, None	CHD mortality	Between 1989 and 1992 per capita cigarette consumption declined faster in California by 2.72 pack per year. IHD mortality also declined faster by 2.93/10000 per year. Programme was associated with 33,000 fewer CHD deaths 1989-1997. Effectiveness diminished after	None None	Illustrations & the model not available. -Discussed assumptions & method refined for confounding and lag times. Not discussed	Quite simple model looked at all heart disease mortality. Data: Adequate	Adequate (4)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overal gradin (Score)
	The entrance search and second consequences of topological second		Diserverser			1992 associated with 8,300 more deaths. A large aggressive tobacco control programme was associated with a substantial reduction in deaths from heart disease.		competing causes.		Promis
McNeil 2000 ⁷⁸	To model life time risk of fatal or nonfatal CHD in different risk percentiles	Australia, 1993- 1995, Men aged 20-69 Australia	Cholesterol	None, None	Number of CHD deaths prevented	Top decile of individuals contained 23% of CHD risk, top 30% contained over 50%. Survival curves separate after age 45 in men, 55 in women	None -Predicted individual risk event compared with observed rate in AFCAPS and TEXCAPS primary prevention trials	Illustrations available but the model not. Discussed assumptions but not confounding, lag times or competing causes.	Poor- lots of assumptions- risk at 69 extrapolated to 84 Data: Adequate	Adequpa (4)
Baker 2000 ⁷⁹	To estimate the impact of using thresholds based on absolute risk of CVD to target drug treatment to lower blood pressure in the community	Auckland/ New Zealand, ??, 2158 M-F aged 35-79 sampled from general population	Smoking, cholesterol/HD L, SBP, diabetes, age and sex	No disease categories included. Antihypertensi ve treatments	Number of CVD prevented (angina, MI, CHD death, stroke, TIA, congestive HF, peripheral vascular disease)	46,374 (12%) Auckland residents aged 35-79 receive antihypertensive treatment. It was estimated that 1689 disease over 5 yrs would be averted. Restricting treatments to individuals with >170/100mm/hg and BP between 150/90-169/99 mmHg who have 5 yrs disease risk >10% would avert 19,401. Implementing guidelines and use treatment thresholds based on absolute risk could significantly improve efficiency of antihypertensive treatments.	None	Illustrations & model not available. Discussed assumptions but not confounding, lag times or competing causes.	Risk factor information was available from a national population study. Excluded Maori& Pacific Islander population. Confined to BP only. Assumed 25% of relative risk reduction, might be a high efficacy.	Poor (2)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overa a gradii (Scori o
						property in the second s			Data sources adequate	
Selmer 2000 ⁸⁰	To estimate health and social consequence of reducing daily salt intake by 6 gr per person	Norway, 1995- 2020, over 40 M- F	Blood pressure	None, None	Cost	A 2 mmHg reduction in SBP would reduce stroke by 4.2%, MI by 3.8%. Implies overall 1- 2% reduction in total mortality, Life expectancy in 40-year-old men increase 1.8 months, in women 1.4 months. 25 year benefit: 7000 lower MI deaths, 4500 lower stroke deaths, 87000 LYG (6000 lives saved at year 25) on average 10 LYGs each. Total 150000 LYG (discounted 52000). Net saving \$270 million- 120 million discounted)	One-way sensitivity analysis None	Illustrations & model not available. Discussed assumptions & competing causes but not confounding or lag times.	Narrow Data quality adequate with limitations on generalisability of FINMARK Study to Norwegian pop.	Poor
Malik 2001 ⁸¹	To assess cost effectiveness of ramipril in patients with low, medium, high risk	UK, 1998, men average age 66 from HOPE Trial	None	Highest risk, high risk and low risk patients. Treated with ramipril	LYG, cost per LYG	Cost effectiveness of ramipril was £36600 £13600 and £4000 per life year gained at five years and £5300, £1900, and £100 per life year gained at 20 yrs in low, medium and high risk groups respectively. Treatment of medium risk HOPE population would cost UK NHS £360 million but would prevent 12 000 deaths.	One-way sensitivity analysis None	Illustrations & model not available. Discussed assumptions but not competing causes, confounding or lag times.	Data: Adequate	Poor (3)
Peeters 2002 ⁸²	To measure CVD burden of disease in Framingham cohor by generating years of life lost or lived with the disease	USA, 1941-1991 M-F, aged 18-62 t, years at onset	, None	Angina, AMI, heart failure, stroke, TIA, intermittent claudication	Life expectancy and lives lived with disability	 5,070 individuals without CVD at the beginning, 50% developed CVD and 60% died over 40 years. 34% developed CHD, 20% AMI, 14% stroke, and 14% heart failure. Using life tables it is estimated that at age 50 20% (6.3 yrs for men and 5.7 yrs for women) of a 	None None	Illustrations available but model not. Discussed assumptions & competing causes but not confounding or lag times.	Disease states are not mutually exclusive. Data: Quite few event numbers for women.	Poor (3)

Author (year)	Purpose of the model	Model setting, Time period & Population	Risk factors included	Disease categories & Treatments included	Outcomes studied	Key Results	Sensitivity analysis & Validity	Transparency	Strengths / Limitations &Data Quality	Overice gradbad (Scotted
		100				populations residual life expectancy is spent with CVD. Much of this (4.7 yrs male, 3.7 yrs females) spent on CHD.			able 8.	
Marshall 2002 ⁸³	To develop a model to evaluate costs and health benefits of implementing guidelines for prevention of CVD prevention6 strategies (2 from joint British recommendations)	England, ?1998, Hypothetical cohort of 2000 patients aged 30- 74	Smoking, cholesterol, HDL, blood pressure, diabetes, age, sex, LVH.	None, Aspirin, thiazid, Beta blocker, ACE inhibitor, statin	Cardiovasc ular event prevented	Novel strategies prevent more CVD at lower cost than traditional strategies	One-way sensitivity analysis None	Illustrations & model not available. Discussed assumptions & competing causes but not confounding or lag times.	Lacks detail on model, not very relevant on explaining risk factor or treatment effects on CVD in the population Data sources adequate	Adecili (4)

EXCLUDED STUDIES	Reason for Evolution
(Alphabetical order)	
Assman 1990 ⁸⁴	This is an individual data based statistical model. It is simply a validation study of PROCAM equations using Helsinki Heart Study.
Avins 1998 ⁸⁵	This is a general evaluation of interventions used in North Karelia and Minnesota Heart Health Programmes. No CHD outcomes reported.
Beard 1989 ⁸⁶	Not a modelling study. It is a case control study, which uses PAR estimations.
Bronnum-Hansen 1999 ¹³	No CHD outcomes reported
Cleland 1998 ⁸⁷	This is an individual based statistical model not a population based CHD health policy model.
Cowen 1996 ⁸⁸	CHD is not an outcome in this model, it is an input
Glick 1992 ⁸⁹	Not a population based model.
Grover 1994 ⁹⁰	Review, not an original model paper.
Gunning-Schepers 1999 ⁹¹	General editorial, not an original paper
Gunning-Schepers 1987 ⁹²	General review, not an original paper
Hatziandreu 1988 ⁹³	Decision analysis of hypothetical cohort of 1000 men aged 35 years followed up for 30 years. Not population based model.
Hinzpeter 2000 ⁹⁴	German language. Abstract checked. Cost estimates only.
Kaplan 1988 ⁹⁵	This study used logistic regression analysis and compared two cohort studies. It is not a population CHD health policy model.
Kawachi 1990 ⁹⁶	Outcome is not CHD
Kaplan 2001 ⁹⁷	No CHD outcome reported
Liew 2002 ⁹⁸	This is a general review paper not an original paper
Murray 1994 ⁹⁹	This not a CHD health policy model. This paper aims to explore ways of comparison between intervention and control communities in community intervention trials
Murray 1994 ¹⁰⁰	This paper presents the distribution of DALYs by cause, age, sex and region. However provides very little detail on CVD.
Murray 1994 ²⁵	This paper simply defines the cause of mortality by eight regions of the world, it does not model CHD.
Nissinen 1992 ¹⁰¹	Duplicate paper of Nissinen 1986 ⁵⁴
Peeters 2003 ¹⁰²	This is not a population CHD health policy model. It is an individual based statistical model
Petersen 1982 ¹⁰³	Just reports on RF distributions and individual risk of developing CHD risk. This is not a population CHD health policy model.
Salonen 1986 ¹⁰⁴	General evaluation of community based CHD control programmes
Wolfson 1994	The Population Health Model (POHEM) was developed for chronic diseases but then never used for CHD policy analyses. This paper provides a framework to understand the POHEM Model.

App4. Table 8. List of excluded studies

Appendix 5. CHD data sources in the UK: Conference proceedings, audit reports, official web sites and personal correspondence used for.

Conference proceedings

- British Cardiac Society
- Congresses of European Society of Cardiology
- Society for Social Medicine Meetings 1990- 2003

Audit Reports

- Audit commission http://www.audit-commission.gov.uk
- Dr. Liddy Goyder (Sheffield) for diabetes sources

Official web sites

- British Cardiac Intervention Society http://www.bcis.org.uk/audit/oct01.html
- Health Development Agency http://www.hda-online.org.uk/
- Heart Start Scotland http://www.heartstart.org/
- National Heart Forum http://www.heartforum.org.uk/nationalheartforum.html
- Ambulance Service Association http://www.asancep.org.uk/

Personal correspondence

- David Cunningham
- Julia Critchley
- John Mc Murray
- Gary Smith
Appendix 6. CHD Mortality fall in England and Wales between 1981 and 2000: Numbers of deaths prevented or postponed by risk factor changes and treatments in individuals with CHD, categorised into specific CHD patient groups.

CHD patient groups	Number of DPPs	Minimum and Maximum Estimates	% 100%	
2' Prev Post MI	3,844	(2,850 -5,059)		
Treatments	1,964	1,691 - 2,073	51%	
Cholesterol reduction	333	249-561	9%	
Smoking cessation	1,451	878-2,317	38%	
Blood pressure reduction	96	32-108	2%	
2' Prev Post			1000/	
CABG/PTCA	3,055	(1,737- 7,610)	100%	
Treatments	1,784	1,056- 5,800	58%	
Cholesterol reduction	194	66 -319	6%	
Smoking cessation	818	510-1,148	27%	
Blood pressure reduction	259	105-343	8%	
Chronic Angina	3,424	(1,907- 5,889)	100%	
Treatments	2,032	1,045-3,706	59%	
Cholesteral reduction	198	96-460	6%	
Smaking cossation	1,114	713-1,605	33%	
Blood pressure reduction	80	53-118	2%	
Hospital Heart Failure	4,756	(2,296-7,682)	100%	
nospital ficart Fandro	3 985	1,832-6,326	84%	
l reatments	131	55-265	3%	
Cnolesterol reauction	597	399-1,025	13%	
Smoking cessation Blood pressure reduction	43	10-66	1%	
Community Heart	2 711	(1,938-6,318)	100%	
Failure	3,411	1 102-3 006	53%	
Treatments	1,710	1,102-2,000	11%	
Cholesterol reduction	348	600 - 2 160	33%	
Smoking cessation	1,055	μου -2.100 κρ. 215	3%	
Blood pressure reduction	98	00-215		

	Popula (000	ntion (s)	CHD Morta (/100,0	lity Rates 000)	Change in CHD mortality rate	CHD Deaths observed		Expected CHD deaths in 2000 if 1981 rates persisted	Fall in CHD deaths in 2000
MEN	1981	2000	1981	2000	1981-2000	1981	2000		
AGE	a	b	c	d	%	e	f	(bxc)	(bc-f)
25-34	3,533	4,059	7	2	-63	231	97	265	168
34-44	3,041	4,049	51	19	-63	1,546	744	2,058	1,314
45-54	2,788	3,479	249	89	-64	6,953	3,105	8,676	5,571
55-64	2,682	2,685	681	282	-59	18,255	7,590	18,275	10,685
65-74	2,025	2,036	1,562	807	-48	31,632	16,462	31,804	15,342
75-84	827	1,145	2,927	1,897	-35	24,205	21,772	33,512	11,740
Total	14,896	17,453	556	214	-62	82,822	49,770	94,592	44,822
WOMEN	a	b	С	d		е	f	(bx c)	(bc-f)
25-34	3,482	3,837	1	1	-54	45	22	50	28
35-44	2,994	3,920	9	5	-47	255	1 79	334	155
45-54	2,713	3,483	47	19	-6 1	1,287	654	1,652	998
55-64	2,914	2,752	191	78	-59	5,555	2,192	5,246	3,054
65-74	2,621	2,320	659	335	-49	17,274	7,811	15,290	7,479
75- 84	1,563	1,753	1,727	1,053	-39	26,988	18,574	30,269	11,695
Total	16,287	18,065	316	173	-45	51,404	29,432	52,841	23,409
MEN & W	OMEN								
AGE	8	Ь	c	d		е	f	(bx c)	(bc-f)
25-34	7,015	7,896	4	2	-61	276	119	315	196
35-44	6,035	7,969	69	40	-49	1,801	923	2,392	1,469
45-54	5,501	6,962	150	54	-64	8,240	3,759	10,329	6,570
55-64	5,596	5,437	425	179	-58	23,810	9,782	23,522	13,740
65-74	4,646	4,356	1,053	556	-47	4 8, 906	24,273	47,094	22,821
75-84	2,390	2,898	2,142	1,387	-35	51,193	40,346	63,781	23,435
TOTAL	31,183	35,518	430	193	-55	134,226	79,202	147,433	68,231

Appendix 7. Trends in CHD mortality in England and Wales 1981 – 2000.

Men and Women	Post AMI	CABG	PTC .A	Unstable Angina	Community Angina
25-34	14	12	12	21	
35-44	14	12	12	30	2
4 5- 5 4	29	25	12	43	4
55-64	52	41	25	72	7
65-74	77	62	38	90	11
75-84	97	92	56	117	13
85+	106	138	84	152	15

Appendix 8. One year case fatality rates (per 1000) for unselected patients on usual treatment.

- In SLiDE Study median AMI age was 68 and 75 year for men and for women respectively^{105;106}.

- Case fatality halved in younger decades and doubled in older decades.

- Case fatalities essentially the same in men and women.

Appendix 9. Adjustment for poly-pharmacy in individual CHD patients.

Individual CHD patients may take a number of different medications. However, RCT data on the efficacy of treatment combinations are sparse. Mant and Hicks¹⁰⁷ suggested a method to estimate case-fatality reduction by polypharmacy. This was subsequently also used by Wald and Law¹⁰⁸.

If we take the example of secondary prevention following acute myocardial infarction, good meta-analysis evidence (Appendix 2) suggests that, for each intervention, the relative reduction in case fatality is approximately:

Aspirin 15%, beta-blockers 23%, ACE inhibitors 23%, statins 29% and rehabilitation 27%. The Mant and Hicks¹⁰⁷ approach suggests that in individual patients receiving all these interventions, case-fatality reduction is very unlikely to be simply additive ie not **117%** (15% +23%+23%+29%+27%). Indeed, 117% is clearly absurd, implying immortality. Instead, having considered the 15% case fatality reduction achieved by aspirin, the next medication, in this case a beta-blocker, can only reduce the **residual** case fatality (1-15%). Likewise, the subsequent addition of an ACE inhibitor can then only decrease the **remaining** case fatality, which will be 1 - [(1-0.15) X (1-0.23)].

The Mant and Hicks approach therefore suggests that a **cumulative relative benefit** can be estimated as follows:

Relative Benefit = 1 - [(1 - Treatment A) X (1 - Treatment B) X (1 - Treatment C) X (1 - Treatment D) X (1 - Treatment E)]

In considering appropriate treatments for AMI survivors, applying relative reductions for aspirin, beta-blockers ACE inhibitors statins and rehabilitation then gives:

Relative Benefit = 1 - [(1 - aspirin) X (1 - beta-blockers) X (1 - ACE inhibitors) X (1 - statins) X (1 - rehabilitation)]

= $1 - [(1 - 0.15) \times (1 - 0.23) \times (1 - 0.23) \times (1 - 0.29) \times (1 - 0.27)]$ = $1 - [(0.85) \times (0.77) \times (0.77) \times (0.71) \times (0.73)]$ = 0.74 ie a 74% lower case fatality

This represents a 37% relative reduction (74/117) compared with the simple additive value of 117%.

Following AMI secondary prevention patients are eligible for rehabilitation plus secondary prevention with aspirin, beta-blocker, ACE inhibitor and a statins.

The uptake of medications in 2000 in eligible patients surviving AMI was approximately: Aspirin 56%, beta blockers 34% ACE inhibitors 19%, statins 25%, and rehabilitation 23%. Assuming approximately 10% of total patients received all five interventions. case fatality would be reduced by 37% in this group. This represents 142 fewer DPPs out of a total of 3,844 DPPs. Knowing the uptake of each medication; a matrix approach then can be used to calculate the maximum proportion of patients on four, three and two drug combinations respectively. Assuming that some 5% of total patients received four medications, case fatality would be reduced by 29% in this group. This represents a 55 fewer DPPs out of a total of 3,844 DPPs.

Assuming 1% of total patients received three medications aspirin, ACE inhibitor and a statins, case fatality would be reduced by 19% in this group. This represents a 7 fewer DPPs out of a total of 3,844 DPPs.

The same exercise can then be repeated for the (few) remaining patients receiving any **pair** of aspirin / beta blocker/ ACE inhibitor or statins treatment. Having removed the 10% on quintiple, 5% on quadruple, and the 2% on triple therapy, that leaves approximately 31% patients on these medication pairs. Using the same methodology, **181** fewer DPPs out of a total of 3,844 DPPs were estimated for those combination therapies.

Therefore, after summing these adjustments for polypharmacy in secondary prevention in AMI survivors, the total deaths prevented or postponed might be reduced by approximately 393 (=142+55+7+181). This adjustment represents a reduction of about 15% of the 3,844 DPP total.

The same approach was used to estimate the potential reduction in efficacy with combined therapy for all other patient groups. This suggested that deaths prevented or postponed might be reduced by a total of **2,118** (395 for initial treatment of acute myocardial infarction, 393 for secondary prevention treatments post AMI, 530 for secondary prevention treatments post CABG or PTCA, 562 for heart failure treatments in hospital and 238 for heart failure treatments in the community).

This 2,188 total would represented an approximately 8% reduction of the 25,805 estimated deaths prevented or postponed by treatments, or 3% of the total mortality fall of 68,231 between 1981 and 2000.

Appendix 10. Estimates of median survival used in sensitivity analyses: for men and women stratified by age groups and by each category of treatment.

	Improvements in treatment uptake and efficacy									
Treatment category or Risk factor change	Best estimate		Minimum estimate		Maximum estimate		Reference / assumption			
Post- Myocardial Infarction patients	Men	Women	Men	Women	Men	Women				
25-34	25.0	25.0	18.4	16.2	31.6	33.8	Capewell et al.			
35-44	20.0	20.0	14.8	12.7	25.2	27.3	2000 ¹⁰⁵ . Maximum			
45-54	14.0	14.0	9.4	7.4	18.6	20.6	reported in those with			
55-64	7.0	7.0	2.0	0.2	12.0	13.8	first admission only.			
65-74	5.5	5.5	3.1	1.7	7.9	9.3	difference between			
75-84	4.2	4.2	3.5	2.7	4.9	5.8	'best' estimate and 'maximum' estimates			
Post-CABG patients										
25-34	35.8	35.8	18.5	18.5	53.1	55.6	Astbury ¹⁰⁹ and Pell ¹¹⁰			
35-44	28.6	28.6	18.5	18.5	38.6	41.1				
45-54	20.0	20.0	17.0	17.0	23.0	24.0				
55-64	12.0	12.0	12.5	12.5	11.5	12.5				
65-74	8.5	8.5	9.0	9.0	8.0	7.5				
75-84	6.0	6.0	4.5	4.5	7.5	7.3				
Heart Failure										
25-34	3.5	3.5	2.8	2.8	4.2	4.2	MacIntyre <i>et al.</i> 2000 ¹⁰⁶ , 'Maximum' is			
35-44	2.5	2.5	2.0	2.0	3.0	3.0	survival reported for			
45-54	2.0	2.0	1.6	1.6	2.4	2.4	first admissions only, minimum is difference			
55-64	1.5	1.5	1.2	1.2	1.8	1.8	between 'best' estimate			
65-74	1.3	1.3	1.0	1.0	1.6	1.6	and 'maximum' estimates			
75-84	1.1	1.1	0.9	0.9	1.3	1.3				

Heart Failure treated in the community							
25-34	15.0	15.0	12.0	12.0	18.0	18.0	Median survival
35-44	13.0	13.0	10.4	10.4	15.6	15.6	assumed to be double
45-54	9.0	9.0	7.2	7.2	10.8	10.8	that of severe heart
55-64	6.4	6.4	5.1	5.1	7.7	7.7	failure treated in
65-74	6.2	6.2	5.0	5.0	7.4	7.4	hospital (above)
75-84	5.5	5.5	4.4	4.4	6.6	6.6	
Hypertension							Maximum estimate is
25-34	36.9	39.1	29.3	32.0	48.8	53.3	same as Registrar General's general
35-44	28.6	31.9	22.3	26.3	37.1	43.9	population life table
45-54	22.0	24.1	18.0	20.5	30.1	34.1	on mortality observed
55-64	14.3	16.1	12.9	15.2	21.5	25.3	at Glasgow blood
65-74	9.8	11.2	8.4	10.2	14.0	17.0	pressure clinic, 'minimum' is 50%
75- 84	6.3	7.3	5.1	6.3	8.5	10.4	reduction in survival compared with the population life table.
Angina-CABG and community angina	Same a	s post-C	ABG.		1		Astbury ¹⁰⁹ Pell ¹¹⁰
Angina - unstable							
25-34	25.0	25.0	21.3	21.3	42.5	42.5	Chalmers (2001)
35-44	16.0	16.0	13.6	13.6	27.2	27.2	
45-54	12.0	12.0	10.2	10.2	20.4	20.4	
55-64	7.0	7.0	6.0	6.0	11.9	11.9	
65-74	5.0	5.0	4.3	4.3	8.5	8.5	
75-84	4.0	4.0	3.4	3.4	6.8	6.8	

Appendix 11. Estimates of median survival used in sensitivity analysis for deaths prevented or postponed in men and women by risk factor reductions.

For those with **recognised CHD**, survival was assumed to be the same as that among post AMI patients. For those with **unrecognised CHD**, survival was assumed to be midway between those with recognised CHD and those without symptomatic CHD.

For those with **no symptomatic CHD**, the estimates below apply. 'Best estimates' are those of the Registrar General's life table, minimum estimates are midway between normal expectation of life and expectation for those post-AMI, maximum estimates are inflated to account for estimates of the life-years gained by eliminating 'competing risks'.

	Best esti	imate	Minin Estim	num ate	Maximum Estimate		Source
	Men	Women	Men	Women	Men	Women	
Reduction ir							
25-34	42.8	46.1	34.8	36.7	47.4	51.3	Grover et al. 1994 ¹¹²
35-44	32.8	33.3	26.7	29.9	36.2	36.5	
45-54	26.0	29.0	20.4	22.1	28.9	32.4	
55-64	17.8	20.6	13.2	14.8	20.1	23.4	
65-74	11.9	14.1	9.1	10.4	13.3	15.9	
75- 84	7.4	8.8	6.0	6.8	8.2	9.9	
Reduction ir	n populat	ion blood	pressur	e			
25-34	45.3	49.1	35.7	37.7	48.0	52.1	Tsevat et al. 1991^4
35-44	34.6	40.0	27.6	30.8	36.6	42.8	
45-54	27.7	31.1	21.2	22.9	29.4	33.1	
55-64	19.4	22.9	13.6	15.4	20.7	24.2	4
65-74	12.8	15.3	9.4	10.7	13.6	16.4	4
75- 84	7.9	9.5	6.1	7.0	8.3	10.1	
Reduction ir	n populat	ion chole	sterol lev	vels	Δ		
(Diabetes, O	besity, D	eprivatio	n, Physic	cal Activity		50.5	Grover et al 1994 112
25-34	41.4	44.4	34.3	36.1	40.8	50.5	
35-44	31.7	32.5	26.3	29.4	35.8	36.3	-
45-54	25.0	27.8	20.1	21.6	28.5	31.8	4
55-64	17.0	19.6	12.9	14.5	19.6	22.7	
65-74	11.4	13.4	8.9	10.2	13.0	15.4	4
75-84	7.1	8.5	5.9	6.7	8.1	9.7	

Appendix 12. Good practice in spread sheet modelling (Edwards et al, 2000)

- 1. Keep all the major components of each area of organisational responsibility together and make each component a different module in the spreadsheet.
- 2. Within each module segregate the data model from the logic model.
- 3. Incorporate information about the major assumptions and modelling conventions underpinning the whole of the spreadsheet explicitly **in** the spreadsheet.
- 4. Specify the range of application of the spreadsheet either of the whole spreadsheet or of parts of it.
- 5. Put the name of the file that holds the spreadsheet permanently into the summary model section of the spreadsheet.
- 6. Arrange for the time and date when the results were produced to be automatically printed with the results, linked to the current date of the underlying model.
- 7. Write an information flow diagram to support the SS development.
- 8. Subdivide the logic model modules into logically integrated sub-units.
- 9. For each relationship, check: its 'shape', its dimensions, the units used and its range of application.
- 10. Use factor names rather than cell references.
- 11. Assign titles to the top left hand corner of each of the spreadsheet modules.
- 12. Protect or lock some of the entries in a spreadsheet.
- 13. Never include the values of any coefficients and parameters within formulae: make these factors part of the data model.
- 14. Never input the same piece of data more than once.
- 15. Add notes to data values to indicate their source and any associated confidence level.
- 16. Choose cell widths and appropriate formats to give visual clues as to anomalies in the data.
- 17. Use limit-checking formulae to ensure that the data values are sensible.
- 18. Link graphs to the data to bring attention to less obvious errors.
- 19. Put in reminders that you need to consider (or must change) particular values.
- 20. In organisational databases understand just what the data values refer to so as to avoid 'translation' errors.
- 21. Use macros to help navigate around the system and ensure things are done as intended.

By Edwards et al, 2000¹¹³

Appendix 13. Reference list for the appendices

- 1. Weinstein MC, Coxson PG, Williams LW, Pass TM, Stason WB. Goldman L. Forecasting coronary heart disease incidence, mortality, and cost: the Coronary Heart Disease Policy Model. *Am.J.Public Health* 1987;77:1417-26.
- 2. Hunink MG, Goldman L, Tosteson AN, Mittleman MA, Goldman PA, Williams LW et al. The recent decline in mortality from coronary heart disease, 1980-1990. The effect of secular trends in risk factors and treatment. JAMA 1997:277:535-42.
- 3. Goldman L, Phillips KA, Coxson P, Goldman PA, Williams L, Hunink MG *et al.* The effect of risk factor reductions between 1981 and 1990 on coronary heart disease incidence, prevalence, mortality and cost. *J.Am.Coll.Cardiol.* 2001;**38**:1012-7.
- 4. Tsevat J, Weinstein MC, Williams LW, Tosteson AN, Goldman L. Expected gains in life expectancy from various coronary heart disease risk factor modifications. *Circulation* 1991;83:1194-201.
- 5. Goldman L, Weinstein MC, Goldman PA, Williams LW. Cost-effectiveness of HMG-CoA reductase inhibition for primary and secondary prevention of coronary heart disease. JAMA 1991;265:1145-51.
- 6. Phillips KA, Shlipak MG, Coxson P, Heidenreich PA, Hunink MG, Goldman PA *et al.* Health and economic benefits of increased beta-blocker use following myocardial infarction.[comment]. *JAMA* 2000;**284**:2748-54.
- 7. Gaspoz JM, Coxson PG, Goldman PA, Williams LW, Kuntz KM, Hunink MG et al. Cost effectiveness of aspirin, clopidogrel, or both for secondary prevention of coronary heart disease.[comment]. New England Journal of Medicine 2002;346:1800-6.
- 8. Prosser LA, Stinnett AA, Goldman PA, Williams LW, Hunink MG, Goldman L et al. Costeffectiveness of cholesterol-lowering therapies according to selected patient characteristics. Ann. Intern. Med. 2000;132:769-79.
- 9. Tosteson AN, Weinstein MC, Hunink MG, Mittleman MA, Williams LW, Goldman PA et al. Cost-effectiveness of populationwide educational approaches to reduce serum cholesterol levels. Circulation 1997;95:24-30.
- 10. Gunning-Schepers LJ. The health benefits of prevention a simulation approach. *Health Policy* 1989;12:1-256.
- 11. Mooy JM, Gunning-Schepers LJ. Computer-assisted health impact assessment for intersectoral health policy. *Health Policy* 2001;57:169-77.
- 12. Bronnum-Hansen H. Predicting the effect of prevention of ischaemic heart disease. Scandinavian Journal of Public Health 2002;30:5-11.
- 13. Bronnum-Hansen H. How good is the Prevent model for estimating the health benefits of prevention? J.Epidemiol.Community Health 1999;53:300-5.
- 14. Bronnum-Hansen H, Juel K. Estimating mortality due to cigarette smoking: two methods, same result. *Epidemiology* 2000;11:422-6.
- 15. Buck D, Godfrey C, Killoran A, Tolley K. Reducing the burden of coronary heart disease: health promotion, its effectiveness and cost. *Health Education Research* 1996;11:487-99.
- Naidoo B, Thorogood M, McPherson K, Gunning-Schepers LJ. Modelling the effects of increased physical activity on coronary heart disease in England and Wales. J.Epidemiol.Community Health 1997;51:144-50.

- 17. Naidoo B, Chambers J. Using the PREVENT model in Birmingham (Society for Social Medicine abstract). Journal of Epidemiology and Community Health 1998;52:683.
- 18. Peto R, Lopez AD, Boreham J, Thun M, Heath C, Jr. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. *Lancet* 1992;339:1268-78.
- 19. Public Health Models -Tools for health policy making at national and European level. 1999. Amsterdam, Instutuut voor Sociale Geneeskunde, Universiteit van Amsterdam.
- 20. Grover SA, Abrahamowicz M, Joseph L, Brewer C, Coupal L, Suissa S. The benefits of treating hyperlipidemia to prevent coronary heart disease. Estimating changes in life expectancy and morbidity. JAMA 1992;267:816-22.
- 21. Babad H, Sanderson C, Naidoo B, White I, Wang D. The development of a simulation model of primary prevention strategies for coronary heart disease. *Health Care Management Science* 2002;**5**:269-74.
- 22. Cooper K, Davies R, Roderick P, Chase D, Raftery J. The development of a simulation model of the treatment of coronary heart disease. *Health Care Manag.Sci.* 2002;5:259-67.
- 23. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. *Lancet* 1997;349:1498-504.
- 24. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. *Lancet* 1997;349:1436-42.
- 25. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997;349:1269-76.
- 26. Mui S-L. Projecting coronary heart disease incidence and cost in Australia: Results from the Incidence module of the Cardiovascular Disease Policy Model. Australian and New Zealand Journal of Public Health, Vol 23(1) (pp 11-19), 1999.
- 27. Wolfson MC. POHEM- a framework for understanding and modelling the health of human populations. *World Health Stat.Q.* 1994;47:157-76.
- 28. Bensley DC, Watson PS, Morrison GW. Pathways of coronary care--a computer-simulation model of the potential for health gain. *IMA Journal of Mathematics Applied in Medicine & Biology* 1995;12:315-28.
- 29. Park H. A multistate model for coronary heart disease--an application to different prevention strategies. In'gu Pogon Nonjip 1989;9:159-74.
- 30. Zhuo ZQ, Ackerman E, Gatewood L, Kottke T. Polychotomous multivariate models for coronary heart disease simulation. III. Model sensitivities and risk factor interventions. *Int.J.Biomed.Comput.* 1991;28:205-20.
- Zhuo ZQ, Ackerman E, Gatewood L, Kottke T, Wu SC, Park HA. Polychotomous multivariate models for coronary heart disease simulation. II. Comparisons of risk functions. *Int.J.Biomed.Comput.* 1991;28:181-204.
- 32. Zhuo ZQ, Ackerman E, Gatewood L, Kottke T, Wu SC. Park HA. Polychotomous multivariate models for coronary heart disease simulation. I. Tests of a logistic model. *Int.J.Biomed.Comput.* 1991;27:133-48.
- 33. Kannel WB, Larson M. Long-term epidemiologic prediction of coronary disease. The Framingham experience. Cardiology 1993;82:137-52.
- 34. Goldman L, Cook E. The decline in ischemic heart disease mortality rates. An analysis of the comparative effects of medical interventions and changes in lifestyle. *Ann.Intern.Med* 1984;101:825-36.

- 35. Goldman L, Weinstein MC, Williams LW. Relative impact of targeted versus populationwide cholesterol interventions on the incidence of coronary heart disease. Projections of the Coronary Heart Disease Policy Model. Circulation 1989;80:254-60.
- 36. Goldman L, Coxson P, Hunink MG, Goldman PA, Tosteson AN, Mittleman M et al. The relative influence of secondary versus primary prevention using the National Cholesterol Education Program Adult Treatment Panel II guidelines. Journal of the American College of Cardiology 1999;34:768-76.
- 37. Tice JA, Ross E, Coxson PG, Rosenberg I, Weinstein MC, Hunink MG *et al.* Costeffectiveness of vitamin therapy to lower plasma homocysteine levels for the prevention of coronary heart disease: effect of grain fortification and beyond. *JAMA* 2001;286:936-43.
- 38. Hamilton VH, Racicot FE, Zowall H, Coupal L, Grover SA. The cost-effectiveness of HMG-CoA reductase inhibitors to prevent coronary heart disease. Estimating the benefits of increasing HDL-C. JAMA 1995;273:1032-8.
- 39. Grover SA, Paquet S, Levinton C, Coupal L, Zowall H. Estimating the benefits of modifying risk factors of cardiovascular disease: a comparison of primary vs secondary prevention. *Archives of Internal Medicine* 1998;158:655-62.
- 40. Perreault S, Hamilton VH, Lavoie F, Grover S. Treating hyperlipidemia for the primary prevention of coronary disease. Are higher dosages of lovastatin cost-effective?[comment]. Archives of Internal Medicine 1998;158:375-81.
- 41. Grover SA, Coupal L, Paquet S, Zowall H. Cost-effectiveness of 3-hydroxy-3-methylglutarylcoenzyme A reductase inhibitors in the secondary prevention of cardiovascular disease: forecasting the incremental benefits of preventing coronary and cerebrovascular events. *Archives of Internal Medicine* 1999;159:593-600.
- 42. Perreault S, Dorais M, Coupal L, Paradis G, Joffres MR, Grover SA. Impact of treating hyperlipidemia or hypertension to reduce the risk of death from coronary artery disease.[erratum appears in CMAJ 1999 Jul 13;161(1):21]. CMAJ Canadian Medical Association Journal 1999;160:1449-55.
- 43. Lowensteyn I, Coupal L, Zowall H, Grover SA. The cost-effectiveness of exercise training for the primary and secondary prevention of cardiovascular disease. *Journal of Cardiopulmonary Rehabilitation* 2000;**20**:147-55.
- 44. Grover SA, Coupal L, Zowall H, Alexander CM, Weiss TW, Gomes DR. How cost-effective is the treatment of dyslipidemia in patients with diabetes but without cardiovascular disease? *Diabetes Care* 2001;**24**:45-50.
- 45. Grover SA, Ho V, Lavoie F, Coupal L, Zowall H, Pilote L. The importance of indirect costs in primary cardiovascular disease prevention: can we save lives and money with statins? *Archives of Internal Medicine* 2003;163:333-9.
- 46. Capewell S, Morrison CE, McMurray JJ. Contribution of modern cardiovascular treatment and risk factor changes to the decline in coronary heart disease mortality in Scotland between 1975 and 1994. *Heart* 1999;81:380-6.
- 47. Capewell S, Pell JP, Morrison C, McMurray J. Increasing the impact of cardiological treatments. How best to reduce deaths [see comments]. *Eur. Heart J.* 1999;20:1386-92.
- 48. Capewell S, Beaglehole R, Seddon M, McMurray J. Explanation for the decline in coronary heart disease mortality rates in Auckland, New Zealand, between 1982 and 1993. Circulation 2000;102:1511-6.
- 49. Critchley JA, Capewell S. Substantial potential for reductions in coronary heart disease mortality in the UK through changes in risk factor levels. J. Epidemiol. Community Health 2003;57:243-7.

- 50. Critchley JA, Capewell S, Unal B. Life-years gained from coronary heart disease mortality reduction in Scotland: prevention or treatment? *Journal of Clinical Epidemiology* 2003;56:583-90.
- 51. Ezzati M, Lopez AD, Rodgers A, Vander HS, Murray CJ. Selected major risk factors and global and regional burden of disease. *Lancet* 2002;**360**:1347-60.
- 52. Murray CJ, Lauer JA, Hutubessy RC, Niessen L, Tomijima N, Rodgers A et al. Effectiveness and costs of interventions to lower systolic blood pressure and cholesterol: a global and regional analysis on reduction of cardiovascular-disease risk. *Lancet* 2003;361:717-25.
- 53. Kottke TE, Puska P, Salonen JT, Tuomilehto J, Nissinen A. Projected effects of high-risk versus population-based prevention strategies in coronary heart disease. *Am.J.Epidemiol.* 1985;121:697-704.
- 54. Nissinen A, Tuomilehto J, Kottke TE, Puska P. Cost-effectiveness of the North Karelia Hypertension Program. 1972-1977. *Med.Care* 1986;24:767-80.
- 55. Browner WS. Estimating the impact of risk factor modification programs. American Journal of Epidemiology 1986;123:143-53.
- 56. Hjort PF, Waaler HT. What is the economic impact of secondary prevention to society? European Heart Journal 1986;7 Suppl B:67-73.
- 57. Kottke TE, Gatewood LC, Wu SC, Park HA. Preventing heart disease: is treating the high risk sufficient? J.Clin.Epidemiol. 1988;41:1083-93.
- 58. Martens LL, Rutten FF, Erkelens DW, Ascoop CA. Clinical benefits and cost-effectiveness of lowering serum cholesterol levels: the case of simvastatin and cholestyramine in The Netherlands. *American Journal of Cardiology* 1990;65:27F-32F.
- 59. Johannesson M, Hedbrant J, Jonsson B. A computer simulation model for cost-effectiveness analysis of cardiovascular disease prevention. *Medical Informatics* 1991;16:355-62.
- 60. Doliszny KM, Luepker RV, Burke GL, Pryor DB, Blackburn H. Estimated contribution of coronary artery bypass graft surgery to the decline in coronary heart disease mortality: the Minnesota Heart Survey. *Journal of the American College of Cardiology* 1994;24:95-103.
- 61. Silagy C, Mant D, Carpenter L, Muir J, Neil A. Modelling different strategies to prevent coronary heart disease in primary care. J.Clin.Epidemiol. 1994;47:993-1001.
- 62. Bonneux L, Barendregt JJ, Meeter K, Bonsel GJ, Van der Maas PJ. Estimating clinical morbidity due to ischemic heart disease and congestive heart failure: the future rise of heart failure. *Am.J.Public Health* 1994;84:20-8.
- 63. Pharoah PD, Hollingworth W. Cost effectiveness of lowering cholesterol concentration with statins in patients with and without pre-existing coronary heart disease: life table method applied to health authority population.[comment]. BMJ 1996;312:1443-8.
- 64. Oster G, Thompson D. Estimated effects of reducing dietary saturated fat intake on the incidence and costs of coronary heart disease in the United States. Journal of the American Dietetic Association 1996;96:127-31.
- 65. Bots ML, Grobbee DE. Decline of coronary heart disease mortality in The Netherlands from 1978 to 1985: contribution of medical care and changes over time in presence of major cardiovascular risk factors. J.Cardiovasc.Risk 1996;3:271-6.
- 66. Lightwood JM, Glantz SA. Short-term economic and health benefits of smoking cessation: myocardial infarction and stroke.[comment]. Circulation 1997;96:1089-96.
- 67. Kellett J. Likely gains in life expectancy of patients with coronary artery disease treated with HMG-CoA reductase inhibitors, as predicted by a decision analysis model. European Journal of Surgery 1997;163:539-46.

- 68. Riviere M, Wang S, Leclerc C, Fitzsimon C, Tretiak R. Cost-effectiveness of simvastatin in the secondary prevention of coronary artery disease in Canada. *CMAJ*. 1997;156:991-7.
- 69. Bonneux L, Barendregt JJ, Nusselder WJ, der Maas PJ. Preventing fatal diseases increases healthcare costs: cause elimination life table approach. *BMJ* 1998;316:26-9.
- 70. Galgali G, Beaglehole R, Scragg R, Tobias M. Potential for prevention of premature death and disease in New Zealand. New Zealand Medical Journal 1998;111:7-10.
- 71. Augustovski FA, Cantor SB, Thach CT, Spann SJ. Aspirin for primary prevention of cardiovascular events. Journal of General Internal Medicine 1998;13:824-35.
- 72. Bonneux L, Barendregt JJ, Van der Maas PJ. The new old epidemic of coronary heart disease. Am.J.Public Health 1999;89:379-82.
- 73. Thompson D, Edelsberg J, Colditz GA, Bird AP, Oster G. Lifetime health and economic consequences of obesity. *Archives of Internal Medicine* 1999;159:2177-83.
- 74. Lindholm L, Hallgren CG, Boman K, Markgren K, Weinehall L, Ogren JE. Cost-effectiveness analysis with defined budget: how to distribute resources for the prevention of cardiovascular disease? *Health Policy* 1999;48:155-70.
- 75. Naidoo B, Stevens W, McPherson K. Modelling the short term consequences of smoking cessation in England on the hospitalisation rates for acute myocardial infarction and stroke. *Tob.Control* 2000;9:397-400.
- Kuulasmaa K, Tunstall PH, Dobson AJ, France M, Sans S, Tolonen H et al. Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project. Lancet 2000;355:675-87.
- 77. Fichtenberg C, Glantz S. Association of the California Tobacco Control Program with Declines in Cigarette Consumption and Mortality from Heart Disease. *N Engl J Med* 2001;**343**:1772-7.
- 78. McNeil JJ, Peeters A, Liew D, Lim S, Vos T. A model for predicting the future incidence of coronary heart disease within percentiles of coronary heart disease risk. *Journal of Cardiovascular Risk* 2001;8:31-7.
- 79. Baker S, Priest P, Jackson R. Using thresholds based on risk of cardiovascular disease to target treatment for hypertension: modelling events averted and number treated. *BMJ* 2000;320:680-5.
- 80. Selmer RM, Kristiansen IS, Haglerod A, Graff-Iversen S, Larsen HK, Meyer HE et al. Cost and health consequences of reducing the population intake of salt. Journal of Epidemiology & Community Health 2000;54:697-702.
- 81. Malik IS, Bhatia VK, Kooner JS. Cost effectiveness of ramipril treatment for cardiovascular risk reduction. Heart (British Cardiac Society) 2001;85:539-43.
- 82. Peeters A, Mamun AA, Willekens F, Bonneux L. A cardiovascular life history. A life course analysis of the original Framingham Heart Study cohort. *Eur. Heart J.* 2002;23:458-66.
- Marshall T, Rouse A. Resource implications and health benefits of primary prevention strategies for cardiovascular disease in people aged 30 to 74: mathematical modelling study.[comment][erratum appears in BMJ 2002 Oct 5;325(7367):756]. BMJ 2002;325:197.
- Assmann G, Schulte H. Modelling the Helsinki Heart Study by means of risk equations obtained from the PROCAM Study and the Framingham Heart Study. *Drugs* 1990;40 Suppl 1:13-8.
- 85. Avins AL, Browner WS. Improving the prediction of coronary heart disease to aid in the management of high cholesterol levels: what a difference a decade makes. JAMA 1998;279:445-9.

- Beard CM, Kottke TE, Annegers JF, Ballard DJ. The Rochester Coronary Heart Disease Project: effect of cigarette smoking, hypertension, diabetes, and steroidal estrogen use on coronary heart disease among 40- to 59-year-old women, 1960 through 1982. Mayo Clin Proc 1989;64:1471-80.
- 87. Cleland JG, Walker A. Therapeutic options and cost considerations in the treatment of ischemic heart disease. Cardiovascular Drugs & Therapy 1998;12 Suppl 3:225-32.
- 88. Cowen-ME, Bannister-M, Shellenberger-R, Tilden-R. A guide for planning communityoriented health care: the health sector resource allocation model. *Med-Care* 1996;34:264-79.
- 89. Glick H, Heyse JF, Thompson D, Epstein RS, Smith ME, Oster G. A model for evaluating the cost-effectiveness of cholesterol-lowering treatment. *Int.J. Technol. Assess. Health Care* 1992;8:719-34.
- 90. Grover SA, Coupal L. Risk-benefit assessment of drug treatment to prevent coronary heart disease. Estimating the benefits of risk factor modification. [Review] [23 refs]. Drug Safety 1994;10:301-9.
- 91. Gunning-Schepers LJ. Models: instruments for evidence based policy. J.Epidemiol.Community Health 1999;53:263.
- 92. Gunning-Schepers LJ, Hagen JH. Avoidable burden of illness: how much can prevention contribute to health? Soc.Sci.Med. 1987;24:945-51.
- 93. Hatziandreu EI, Koplan JP, Weinstein MC, Caspersen CJ, Warner KE. A cost-effectiveness analysis of exercise as a health promotion activity. *American Journal of Public Health* 1988;78:1417-21.
- 94. Hinzpeter B, Klever-Deichert G, Wendland G, Lauterbach KW. [Coronary disease and social security. A simulation model on cost analysis]. Herz 2000;25:515-25.
- 95. Kaplan GA, Cohn BA, Cohen RD, Guralnik J. The decline in ischemic heart disease mortality: prospective evidence from the Alameda County Study. *American Journal of Epidemiology* 1988;127:1131-42.
- 96. Kawachi I, Purdie G. Should treatment of mild to moderate hypertension be targeted? Results from a Markov cohort model incorporating multiple risk factors. *Journal of Human Hypertension* 1990;4:651-8.
- 97. Kaplan RM, Ake CF, Emery SL, Navarro AM. Simulated effect of tobacco tax variation on population health in California. *Am.J.Public Health* 2001;91:239-44.
- 98. Liew D, McNeil JJ, Peeters A, Lim SS, Vos T. Epidemiological modelling (including economic modelling) and its role in preventive drug therapy. *Medical Journal of Australia* 2002;177:364-7.
- 99. Murray DM, Hannan PJ, Jacobs DR, McGovern PJ, Schmid L, Baker WL et al. Assessing intervention effects in the Minnesota Heart Health Program. American Journal of Epidemiology 1994;139:91-103.
- 100. Murray CJ, Lopez AD, Jamison DT. The global burden of disease in 1990: summary results. sensitivity analysis and future directions. *Bull. World Health Organ* 1994;72:495-509.
- 101. Nissinen A, Tuomilehto J, Enlund H, Kottke TE. Costs and benefits of community programmes for the control of hypertension. J. Hum. Hypertens. 1992;6:473-9.
- 102. Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Al Mamun A, Bonneux L. Obesity in adulthood and its consequences for life expectancy: a life-table analysis Ann. Intern. Med 2003;138:24-32.
- 103. Petersen CC. Simulation of alternative designs of a cardiovascular risk reduction program for the U.S. Air Force. Journal of Medical Systems 1982;6:149-64.

- 104. Salonen JT, Kottke TE, Jacobs DR, Jr., Hannan PJ. Analysis of community-based cardiovascular disease prevention studies--evaluation issues in the North Karelia Project and the Minnesota Heart Health Program. International Journal of Epidemiology 1986;15:176-82.
- 105. Capewell S, Livingston BM, MacIntyre K, et al. Trends in case-fatality in 117 718 patients admitted with acute myocardial infarction in Scotland. *Eur. Heart J.* 2000;21:1833-40.
- 106. MacIntyre K, Capewell S, Stewart S, Chalmers JW, et al. Evidence of improving prognosis in heart failure. Trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. *Circulation* 2000;102:1126-31.
- 107. Mant J,.Hicks N. Detecting differences in quality of care: the sensitivity of measures of process and outcome in treating acute myocardial infarction. *BMJ* 1995;311:793-6.
- 108. Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80%. BMJ 2003;326:1419.
- 109. Astbury J. Survival after coronary artery bypass surgery. 1-5 year survival. Data serviced from the SMR20 scheme Scotland 1983-1990. 1991.
- Pell JP, Walsh D, Norrie J, et al. Outcomes following coronary artery bypass grafting and percutaneous transluminal coronary angioplasty in the stent era: a prospective study of all 9890 consecutive patients operated on in Scotland over a two year period. *Heart* 2001:85:662-6.
- 111. Chalmers J, Capewell S. Deprivation, disease, and death in Scotland: graphical display of survival of a cohort. *BMJ* 2001;**323**:967-8.
- 112. Grover SA, Gray-Donald K, Joseph L, Abrahamowicz M, Coupal L. Life expectancy following dietary modification or smoking cessation. Estimating the benefits of a prudent lifestyle. Archives of Internal Medicine 1994;154:1697-704.
- 113. Edwards JS, Finlay PN, Wilson JM. The role of OR specialist in 'do it yourself' spreadsheet development. European Journal of Operational Research 2000;127:17-27.

Appendix 14. Published or submitted papers resulting from this thesis

Published papers

1. Unal B, Critchley J, Capewell S. Missing, mediocre or merely obsolete? An evaluation of UK data sources for coronary heart disease. Journal of Epidemiology and Community Medicine.2003; 57:530-535.

2. Unal B, Critchley J, Capewell S. Impact of smoking reduction on coronary heart disease mortality trends during 1981-2000 in England and Wales. Journal of Tobacco Induced Diseases. 2003;1(3):185-196.

3. Unal B, Critchley J, Capewell S. Explaining the decline in coronary heart disease mortality in England and Wales, 1981-2000. *Circulation* 2004;109:1101-7.

<u>Papers in press</u>

2. Unal B, Critchley J, Fidan D, Capewell S. Life-years gained from modern cardiological treatments and population risk factor changes in England and Wales, 1981-2000. American Journal of Public Health 2003; (In press).

Papers submitted for publication

1. Unal B, Critchley J, Capewell S. Small changes in UK cardiovascular risk factors leading to potentially big reductions in coronary heart disease mortality? Journal of Clinical Epidemiology (2004).

2. Capewell S, Unal B, Critchley J, McMurray J. 20,000 avoidable coronary deaths in England and Wales in 2000: the failure to give effective treatments to eligible patients. Annals of Internal Medicine (2004).

Conference proceedings

1. Unal B, Critchley J, Fidan D, Capewell S. Life-years gained from modern cardiological treatments and population risk factor changes in England and Wales, 1981-2000. Society of Social Medicine 47th Annual Scientific Meeting. September 2003, Edinburgh, UK.

2. Fidan D, Unal B, Critchley J, Miners A, Capewell S. Economic analysis of treatments contributing to the recent coronary heart disease mortality decline in England and Wales. Journal of Epidemiology & Community Health 2003;57:A14.

3. Taylor RS, Unal B, Critchley J, Capewell S. Reductions in cardiac mortality with exercisebased cardiac rehabilitation: How much can be attributed to improvements in cardiovascular risk factors? British Cardiac Society Meeting 2003. Heart 2003; 89(Suppl 1): A23.

4. Aslan BU, Critchley J, Capewell S. Impact of smoking reduction on coronary heart disease mortality trends during 1981-2000 in England and Wales. First Annual Meeting of International Society for the Prevention of Tobacco Induced Diseases. Conference book, pg 6, University of Essen, Germany, 2002.

5. Aslan BU, Critchley J, Capewell S. Explaining the decline in coronary heart disease mortality in England and Wales, 1981-2000. J Epidemiol Community Health.2002;56(Suppl 2):A9. (Abst)

6. Aslan BU, Critchley J, Capewell S. Missing, mediocre or merely obsolete? An evaluation of UK data sources for coronary heart disease. J Epidemiol Community Health. 2002;56(Suppl 2): A25. (Abst)

7. Aslan BU, Critchley J, Capewell S. Reducing coronary heart disease mortality in England and Wales by increasing the uptake of cardiological treatments. J Epidemiol Community Health. 2002;56(Suppl 2): A9 (Abst).