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Abstract 

This thesis describes a software simulation based project in the area of Artificial 

Neural Networks, Image Processing and Breast Cancer. Breast Cancer predisposition 

data is used in training for the comparison of two types of feed forward neural 

network. The first being the Multi Layer Perceptron and the second being Conic 

Section Function Neural Networks, which is a hybrid network between Multi-layer 

Perceptrons and Radial Basis Function Neural Networks. This project also uses 

Digital Image Processing methods to extract asymmetry features from digitised 

marnmogram pairs as part of the predisposition criteria. Standard Error Back 

Propagation is used to train the Mutli Layer Perceptron and a mixed Error Back 

Propagation and Orthogonal Least Squares Algorithm is used in Conic Section 

Function Network learning. This document also includes additional work on 

developing Conic Section Function Networks by Genetic Algorithms using the Iris 

Plant Data set. 

The two forms of Neural Network are evaluated using the Log Likelihood Error 

Function by way of the N-Fold Cross Validation Method. Evaluation of classification 

results are compared using Receiver Operator Curves. 

This work is based on the Mathworks MATLAB platform for algorithm simulation 

and RADWORKS imaging software for mammogram digitisation. 

Findings in this study show that convergence in learning is more successful in the 

case of Multi-Layer Perceptrons however gaining successful classification required 

further study. 
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Introduction 

Artificial Neural Networks are applicable in a wide variety of problems such as 

prediction, pattern recognition and classification. Although the founding principles 

and the theories behind Artificial Neural Networks are not new, the advent of 

increasing computing power has seen the application of Neural Networks become 

widespread. Application of Neural Networks in the Medical field more specifically in 

cancer research [14][17][43][49] is recognised as a useful method, especially in 

difficult classifier problems where the data is highly variable and the search space has 

high dimensions. 

One particular sub section of cancer research that has had much work done in relation 

to Neural Networks [40][105] is breast cancer research and in particular 

Mammography. Neural Networks are widely applied in radiographic studies and 

image pattern recognition as a whole. Many recognition networks have been 

developed especially in the detection of micro-calcifications (seen as small speckled 

clusters) in Mammograms which is a known pre-cursor to malignant bodies [ 17] [105]. 

This study however takes a broader view of the breast cancer development problem 

and considers multiple pre-dispositions for cancer. This stance is a more difficult and 

unpredictable problem, cancer is known to have developed in seemingly healthy cases 

with no pre-dispositions. The use of Neural Networks to classify such grey problems 

does have an application here. Clinicians often have to inspect large numbers of 

Mammograms during mass screening programme. This has been known to lead to 

large backlogs and high risk cases being overlooked. 

This project relates to a recent study carried out by Scutt et al [83] investigating 

asymmetry and its relation to cancer development. The first chapter in this thesis 

xill 



describes this study and the use of left and right comparison practices in 

Mammography screening in greater detail. Chapter 2 introduces the principles behind 

Neural Networks and describes a standard Neural Network known as the Multi Layer 

Perceptron. Chapter 3 introduces a novel Neural Network known as the Conic Section 

Function network, this a highly complex network with increased generality which 

may be beneficial in this case. Chapter 4 describes standard Digital Image Processing 

methods applied to mammograms. Chapter 5 gives the results of the use of the Image 

processing methods and also describes methods specific to the Mammograms in this 

study. This chapter also relates to the asymmetry aspect and gives methods for 

extracting these features. Chapter 6 describes the gained asymmetry quantities and 

relates them to cancer and non-cancer cases, this chapter further interprets the data 

with other predisposition information and simulates Neural Networks giving results 

and evaluating discriminating ability of different configurations and the Multi Layer 

Perceptron and Conic Section Function Neural Network. Chapter 7 is additional work 

in relating to specifically Conic Section Function Networks only and the use of 

generalised network development method based on evolutionary principles. The final 

chapter 8 concludes the work done in this study it describes and reflects on the results 

gained in chapters 5,6 and 7. 

xiv 



CHAPTERI 

Mammography and Cancer Risk Assessment. 

1.1 Breast Cancer. 

Breast cancer is among the most common and deadly of all cancers, occurring in 

nearly one in ten women. Mammography is an important type of medical imaging 

used to screen healthy women for small curable breast cancers. X-ray images depend 

on differences in x-ray stopping power (attenuation) to separate tissues. In general, a 

clear separation between normal functioning tissue, and abnormal cancerous tissues is 

not possible since their attenuation is very similar. However both functional tissue and 

cancer can be separated from fatty storage tissues which normally surround active 

breast tissue, even in lean women. This is due to a substantially lower attenuation 

caused by fat. In older women, the functional glandular tissue diminishes, leaving 

only thin supporting tissues clearly outlined by fatty tissues. Mammography in these 

"mature" breasts is very effective, since even small cancers are well outlined by fat. In 

addition, many cancers develop calcium deposits which strongly stop X-rays and are 

easily seen on marnmograms. 

1.2 Analysis of Mammograms. 

The image created by the X-ray process can reveal benign or malignant bodies or 

known predispositions to malignant bodies such as micro-calcifications. The shape of 

the bodies being the main visual factor to its potential malignancy. Round, oval and 

lobular shapes are indeterminate, however irregular more pointed bodies are of more 
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concern because it implies indistinct margins which are more often malignant (tumor 

infiltrating edges). Processes that scar the breast are often irregular. Micro- 

calcifications are also of concern as they are often high risk predispositions to 

malignant bodies. Often less visually obvious then the large turnours and difficult to 

detect. Due to this difficulty mammograrn analysis is often carried out by way of 

comparison from the left breast image to the right. The images are placed on a lit 

view-box back to back creating the centre as a pseudo 'mirror' line. 

Figure 1.2.1 Mammogram Viewpoints 

L R 

The two main viewpoints shown in the above figure are lateral-dorsal (left) and 

cranio-caudal (right). While exact mirror images are not to be expected, from an 

overall vantage point the tissue patterns within each breast should be similarly 

distributed. An asymmetric area may be indicative of a developing mass, a variation 

of normal breast tissue. 

Figure 1.2 gives an example of a mass formation in the left breast detected this mirror 

viewing approach. 
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FIo 1.2.2 '1'\, Plcal Ilositionino ol'Mammograms During Clinical Screening 
tý - t, 

Although LISCILIL this method is not standard and cxpectcd practice I'Or clinicians but 

rather a suggested practice. I lowever this implies the role of sN rnmetry as a potential 

indicator to cancer development. 

1.3 Symmetry and Biological Fitness 

In Evolutionarý Biology anatomical symmetry is knmNn to be an indicator tor Fitness 

and developmental stability. Past studies [711[8-')] slio%N asymmetry or fluctuating 

asymmetry (FA) as a factor effecting various areas In evolutionary biology. The ideal 

phenotype t'Or areas \\ here there are two of a part is deemed to be an exact mirrored 

replica. Fspecially in the case ofexternal parts ofthe body. The unconscious way in 



which humans find a more symmetrical person more attractive than a less 

symmetrical person gives rise to the idea that symmetry is an indicator of health that 

has been evolved. 

Deviation from this ideal symmetry due to developmental instability may be 

one of the predispositions of cancers. Malignant bodies develop in a highly unstable 

manner causing irregular shapes as mentioned in the previous section. 

1.4 Breast Cancer and Asymmetry. 

Consequently studies relating phenotypic asymmetry to conditions in health have 

been carried out [55][56]. Scutt [83] in 1998 gave statistical studies of measured 

asymmetry of various phenotypic traits and compared them to breast cancer 

occurrence. This study focuses on external traits of the breast, using cranio-caudal 

mammograms the largest width and maximum height measured. From this an 

estimated volume was calculated with the assumption that the curved edge of the 

cranio-caudal mammograrn was parabolic. 

The mammograms for Scutt [83] come from a major survey of women who 

had volunteered for a Liverpool study on breast cancer risk factors, the survey 

spanned a decade and took place from 1978 to 1988. This is also the same database 

used in this project. No diagnosed tumours are in any image at the time screening and 

all cases that are known to have developed cancer in later years serve as the cancer 

group and those that did not serve as the control group. 

The fluctuating asymmetry (FA) in this case is the comparison of the two 

measured dimensions (cranio-caudal height and width) and the estimated volumes. 

Scutt showed that for breast cancer and the breast dimensions that there was no 

significant difference between the cancer developing subjects and the control subjects, 
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except Ilor tile most asymmetric cases. The Occurrence 01' IlIgh asý 11111letric cases \kel*c 

Shown to be 111glicr In tile Cancer set. 

Fio 1.4.1 Comparison ofFstimated Breast Volume Difterence 1831 

Distribution ofili-cast Volume FA 
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[83 1 that shows the result in Fig 1.4.1 Used 244 cases for both cancer and The studv 

control sets. At the time mammography all cancer cases were diagnosed as disease 

free and subsequently went on to develop cancer at a later date. The VOILInle FA is tile 

estimated volume of the difference between the left and right breasts over the surn. 

FA here is regarded as relative and the size of the subject is taken into account in 

order to give this comparison. 



1.5 Other Cancer Predispositions. 

Due to the open system nature of human physiology cancer risk assessment is a 

difficult and complicated task. Breast cancer is no exception and is known to have a 

variety of both strong and weak predispositions. The survey mentioned above not 

only took mammograms of the subjects but also collected the medical history and 

details of each subject. The details taken from medical records most related to 

predisposition of cancer were: 

Age 

Family History 

Age at Menarche 

Parenchymal Type 

Oestrogen Exposure 

It is widely accepted that age is a factor as older subjects are at higher risk. Studies 

[55] show that women over 40 are much more prone to be diagnosed with cancer. In 

the Liverpool survey [831 subjects over 45 constitute the bulk of the participants. The 

family history relates to the subject's most closely related female family members and 

their known history of breast cancer development or non development. This is simply 

the number of people known to have been diagnosed with cancer. This is known to be 

an important as it is closely related to the hereditary genotype of the subject. Age at 

menarche is the age at which the subject's menstrual cycle began. Studies indicate 

this to be an important factor and is closely related to Oestrogen exposure which is a 

well known predisposition. The Parenchymal type is the internal breast tissues type 

known as the Parenchyma. This is divided into 4 categories, N I, P I, P2 and DY. Its is 

rare for a subject to have the left breast tissue having a different parenchyma to the 
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right. The four categories relate to the density and composition of the breast tissue, N1 

being the most fatty. PI and P2 to a lesser extent. DY describes Mammary Dysplasia, 

which are sheet like areas of high density. 

1.6 Cancer Risk Assessment Using Artiflcial Neural Networks. 

Since the completion of the Liverpool survey in 1988, to date all further diagnosis of 

cancer have been recorded using the North West Cancer Registry. This gives a 

database of prior details of cases and their outcomes and a suitable data set for non- 

linear classifiers such as Artificial Neural Networks (ANN). 

Classifiers have been extensively used in relation to breast cancer. In 

Mammography the area of micro-calcification detection [105] is the most widespread 

area of ANN usage. This is due to micro-calcifications being difficult to see with the 

naked eye and are often overlooked by clinicians. Other investigations [41][99] 

include attempts to classify the shape of a detected tumour body as benign or 

malignant by inspecting the shape. Irregular shapes are more likely to be malignant. 

This project uses more generalised data and looks at the risk assessment at a 

more comprehensive level. Although this is less specific and deterministic there are 

two main reasons for such an attempt. The first being the advantage of early 

recognition of a high risk case. The second being the reduction of false negatives in 

cancer screening programs that process large numbers of mammograms. Clinicians 

are faced with the difficulty of quickly processing each case due to large numbers, 

whilst being thorough in their inspection. 

This project implements standard and non standard ANN architectures. The 

standard being the Multi Layer Perceptron (MLP). The non standard is the Conic 

Section Function Neural Network (CSF). This architecture is a novel hybrid of MLP 
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and Radial Basis Function (RBF) neural networks. CSF allows for a highly adaptable 

decision making process and is a more generalised form of ANN. A highly general 

and non-linear classification problem such as this may require a versatile ANN and 

learning process. 
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CHAPTER 2 

Artificial Neural Network Theory 

2.1 Information Processing Based on Biological Neurons. P, 

']'he architectures of' Artificial Neural Nctý\orks are inspired by the anatomical 

structure of' neurons and connections ýwhln tile brain. The brain Itself' is 11 

vastly complicated systcrn consisting of' neural cells or ricurons and thcIr 

interconnecting pathvvays known as synapses. The number of' neurons and synapses 

are estimated to exceed 100 billion. Flectrical PLIISeS VVIth varying degrees ol'intensity 

are fired ftorn each neuron to others. The hunian brain averages 100 of' these 

operations per second. In comparison Artificial Neural Networks (ANN) also consist 

of processing units called rieLirons and interconnecting pathways, however at a vastly 

simplified scale. 

Dendrite 

Figure 2.1.1 Biological Neuron 
Direction of' Pllkc,, ý 
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Early work was done by McCulloch and Pitts [69] in 1943 using interconnected logic 

circuits, and Rosenblatt in 1957 [16] attempting to model the properties of biological 

neurons. However due to lack of computer facilities such models did not lead to 

successful applications but did give the foundation for ANN research later. 

2.2 Feed Forward Neural Networks. 

Depending on the type of ANN the neurons and pathways have different qualities 

associated with it and operates on the data that is processed accordingly. The subset of 

ANN used in this project are feed-forward neural networks [10]. The governing 

feature of feed-forward neural networks is that signals are processed without any 

feedback loops. The feed-forward ANN consists of a series of layers, each layer being 

a set of neurons. Data is first presented into the Input Layer, the information is 

processed by the input neurons according to a function quality within each neuron. 

Each input neuron is connected to every neuron in the next layer. The information is 

further processed by each connection or pathway, which each have their own quality. 

Pathway qualities are usually singular values known as weights of which the pathway 

signal is multiplied by. 

2.2.1 Single Layer Feed Forward Networks. 

The most basic form of feed forward neural network is the single layer network 

[ 10] [ 16]. This form consists only of a set of input nodes with pathways leading to one 

set of neurons. The single layer term refers to this one set of neurons. The transfer 
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function within each neuron in this layer gives an output. This layer is known as an 

output layer of neurons. The input nodes are not counted as a layer because no 

computation takes place. 

2.2.2 Multi Layer Feed Forward Networks. 

Similar to Single Layer Feed Forward Networks, Multi Layer Feed Forward Networks 

[10][16] comprise of a set of input nodes and an output layer of neurons. However 

before the output layer are one or more hidden layers of neurons in the case for Multi 

Layer Networks. Figure 2.2.1 shows an example of a fully connected Multi Layer 

Feed Forward Network architecture with one hidden layer. 
Hidden Layer 

Input Layer 
Output Layer 

Connecting Pathways 

Figure 2.2.1 Fully Connected ANN 
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The term 'fully connected' describes the pathways between each layer [ 16]. All input 

nodes are connected to every hidden layer neuron and each neuron has a connection 

leading to every neuron in the next layer. If a problem has output patterns that are 

vastly different from it's input patterns or similarly if a problem is non linearly 

separable the addition of hidden layers can be advantageous. 

The input value from each input node is multiplied by a weight w associated 

with each pathway. If the weight of the connection from input node i to neuronj was 

wy and the transfer function of neuronj wasfj then the process for neuronj is given as 

shown in Eq. (2.1). 

ypi = fi (Iwo xp, + Oi) (2.1) 
1 

where ypj represents the output of neuronj for input pattern p. The Oj term refers to a 

bias value associated with neuron j. The output ypj is further propagated into the next 

layer where the same process takes place. ypj is multiplied by the weight associated 

with the connection in the next layer and then added to the sum of the products of the 

weights and outputs of that layer. This sum is then the input for the transfer function 

of a neuron in the next layer. 

2.2.3 Feed Forward Network Learning. 

Training feed forward networks require algorithms that adjust the weight and bias 

terms so that the outputs of the network are correct for the given input pattern. There 

are numerous different types of algorithm that can achieve this. The two main 

categories of learning algorithm are Supervised and Unsupervised methods. The 
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supervised methods are based on training the network using a known set of desired 

outputs with corresponding input patterns. These desired outputs are compared to the 

actual outputs given by the trainee network. There are various methods to minimize 

the difference between the actual outputs and desired outputs. Details of such methods 

will be given in further sections. Unsupervised learning does not use desired 

responses and are based on self-organising methods [16]. These training processes 

adjust the weights and biases to give similar outputs for similar inputs. 

2.2.4 The Delta Learning Rule. 

This is an example of supervised learning for feed forward networks [10]. A network 

with a single output unit the outputs is 

0= zwjxj +0 
i 

(2.2) 

The function that gives the measure of the discrepancy between the networks outputs 

and the desired is based on the sum of the square of the differences, giving an error 

margin E, is 

E=2]EP =I2: (dp _OP)2 
p, 2p 

(2.3) 

Where d is the desired output and o is the actual output for a set of input patterns 

indexed by P. The method known as gradient descent uses EP to create a suitable 

adjustment to the weights proportional to the negative of the derivative of the error for 
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each input pattern with respect to each weight. This is shown in Eq. 2.4 where y is a 

constant of proportionality. 

Eq. 2.4 is derived from 

From Eq. 2.3 

Apw, = _Y. 
aEp- 

(2.4) 
awi 

aEp aEp aop 
awi ao P awi 

eop 

awi 
= Xi 

and 

gives 

aEp 
= -(dp -op) a0i 

(2.5) 

(2.6) 

(2.7) 

Apw, = y(dp - op)x, (2.8) 

2.3 The Multi-layer Pereeptron. 

The Multi Layer Perceptron's (MLP) topology is that of a fully connected multi layer 

feed forward network. A layer of input nodes connected to one or more hidden layers 

of neurons in turn connected to the appropriate number of output neurons. MLP's are 

the most widely applied form of Multi Layer Feed Forward Network, especially for 

non-linear classification problems and pattern recognition. 

The main characteristic of the MLP is the non-linear transfer function within 

the hidden neurons and the output neurons. This function is known as the sigmoidal 

activation function [ 16] defined by 
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I 
YJ I+exp(-Ax, ) 

(2.9) 

Where yj is the output for neuronj in either a hidden or the output layer and xj is the 

input of that neuron. In MLP's as with all fully connected topologies this input is the 

sum of the values entering the, neurA from all nodes in the previous layer. The A term 

is a biasing constant that can be varied to alter the steepness of the sigmoidal 

activation function. In many cases this constant is set to 1. 

2.3.1 Multi-Layer Perceptron Learning. 

Supervised learning [10][16] for the MLP can be implemented by categorising the 

process in two parts. The first is known as the forward pass of the MLP. This is 

introduction of an input pattern to the input nodes and the inputs values thus 

processed by the set weights and biases to the hidden layer and then to the output 

layer. The output is then obtained. The second category for supervised learning is the 

backward pass. This is the adjustment of the weight and bias values determined by the 

training algorithm using the output obtained from the forward pass. 

yj 

Y2 

Yi 

Wii 

Yn 
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Figure 2.3.1 shows in detail the composition of one neuronj with n number of inputs. 

The forward pass process for this neuronj is 

n 

0i Wy + Y) + tj (2.10) 

The evaluation of yj is calculated using the signioidal activation function given in Eq. 

2.9. Once a forward pass is complete and outputs obtained the required weight 

adjustments for the output layer can be calculated using the supervised learning 

algorithm which will be given detail in further sections. The algorithm adjusts the 

output layer weights first then the hidden layer weights. If there is more than one 

hidden layer the last hidden layer is adjusted first and then the layer preceding it. Thus 

the term. backward pass. The complete procedure is summarised in the following 

figure. 

Forward Pass 

Enter Input 
Pattern 

A 

Process Input 
values in MLP. 
Fixed weights and 
biases 

Desired 
Output 

Obtain 
acquired 
output 

z 

Calculate 
Error Margin 

Adjust 
weights 
and biases 

4 
Calculate 
weight and 
bias adjustments 

Compare 
Acquired and 
desired outputs 

Figure. 2.3.2 Leaming Cycle 

Backward Pass 
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2.3.2 The Error Back Propagation Training Algorithm 

This commonly used supervised learning algorithm calculates the adjustments 

required in the backward pass of the MLP training cycle. The Error Back Propagation 

Algorithm (EBP) [10][16] is an iterative process that seeks to minimise the error 

margin between the acquired outputs of the MLP and the desired. The EBP repeats 

until the error margin is reduced to a satisfactory level. First the MLP, is initialised 

with a set of random weights and biases. Then as in figure 2.3.2 the first set of input 

patterns are entered and the outputs are obtained processed by the random weights 

and biases. The error is then calculated and used to evaluate the necessary adjustments 

to each weight. 

2.3.3 The Generalised Delta Leaning Rule. 

This is the computation method for evaluating the weight and bias adjustments for the 

backward pass procedure in EBP, known as the Generalised Delta Learning Rule [10]. 

Since MLP use non linear the sigmoidal activation functions which is a differentiable 

function of the input 

af = f(iil) 

Where 

ii' = I: wa, + 0, 
i 

(2.10) 

(2.11) 

The error margin E is calculated from each of the differences between the actual 

outputs at the output neurons and the respective desired output. 
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E=I: EP =12: Z (dif - af )2 (2.12) 

p2pi, 

EP =I (di - a, 2, 

awu ei P aýVU 

The desired outputs are d, and 9 is the error margin for pattern p. The derivative of 

the error with respect to the weight is. 

aEP aEP aiP 

Equation 2.11 can be arranged to match the second factor of equation 2.14 as 

ai, p 
= aP awu 

The error signal derivative is 

sip 
aEP 

=-. 
aE P 6aP 

aif eaP aif 

The first product in Equation 2.16 can be written as 

aEP 

aaf 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

= -(djP -a, ") 

The second product in Equation 2.16 is the derivative of the activation functionf for 

neuron i. 

ea iP 
ailp 

Substituting Eqs. 2.17 and 2.18 into 2.16, the error term can be written as 

45,1 = (df - a, ')f(iP) 

This leads to an adjustment value 

Apw. = p5, P af 

(2.18) 

(2.19) 

(2.20) 
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It is proportional to the product of the error terrn on neuron i and the output of neuron 

j connected to it. The sigmoid activation function in Equation 2.9 with A set to 1, can 

be derived to 

f(if) = af (I - a, ") 

Substituting this into Equation 2.19 the error temi can be defined as 

Jif = (dif - af ) af (I - af ) (2.22) 

For the hidden layer neurons the error tenn is calculated using the error ten-ns of the 

neurons that it is connected to and the weights of those connections. 

81P = a, P (I - af) 
1: 8ýhjp Wh i (2.23) 

h 

2.3.4 Adaptive Learning Rate and Momentum 

In equation 2.20 the 7 term known as the learning rate can also be adapted during 

training. Without an adaptive ya constant is chosen, a small 7 can cause the training to 

be slow however a7 that is too large can cause instability and oscillation. Using an 

adaptive learning rate that is dependant on the past weight change using a term known 

as momentum a [6]. 

A w, (t + 1) = yi5, Pa, P + aAw, (t) (2.24) 

Where t is the number of the learning cycle. 
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2.3.5 Log Likelihood Error Function 

Alternative to the error sum of squares error function defined in equation 2.13 the Log 

Likelihood Error function [10] is more appropriate for classification problems with 

binary network targets. For a two class problem with classes with C, and C2 a single 

output a and input vector x. If value y is considered to be the posterior probability for 

C, this can be expressed as 

a =P(Cllx) (2.25) 

Consequently the posterior probability for the second class can be expressed as 

1-a =P(C21x) (2.26) 

If the desired output d for class C, is I and C2 is 0 the posterior probability expression 

can be combined so that the probability for obtaining either desired target is 

p(dlx) = ad(]-a)'-d (2.27) 

The likelihood of observing the training data set of size n can be expressed as 

fl(a n )d' (I -an 
)I-d" (2.28) 

n 

The error function is produced using this expression however it is computationally 

more sensible to use the negative logarithm of this expression as the error function 

giving 
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E= -1: 
td" In a' + (I - d") In(I - a')l (2.29) 

n 

2.3.6 Regularisation using Weight Decay 

The problem of over fitting is one that frequently occurs when minimising the error 

function E in learning algorithms. The method of regularisation [10] uses a penalty 

term Q that is added to the error function value. This term has the effect to stiffening 

the boundaries within the data space so that the learning algorithm does not so readily 

fit the boundaries specifically to the training data and some generality is preserved. 

The influence of the penalty term can be determined by parameter v. 

E=E+vQ (2.30) 

Evaluation of the penalty term in its most simple form is a method known as Weight 

Decay. The sum of the squares of all weights and biases in the network determines C2 

in the weight decay method. 

2.3.7 N- Cross Validation and the Receiver Operator Curve. 

N Cross Validation [86][98][60] is widely used method for evaluating the 

performance of the learning algorithm. The data set used in training can be split into 

an N number of equal blocks. Each block in turn serves as a validation set and the 

remaining serve as the training set. Each block must contain patterns belonging to 

both cancer and non cancer sets. 

Total number of both true and falsely identified outputs from the N validation sets are 

evaluated. Using a variable acceptance threshold within the output range the varying 

21 



number of false positives and false negatives are obtained. The size of which depends 

on the number of acceptance thresholds used. From this two variables are derived, 

first is Sensitivity defined as: 

Sensitivity = 
TruePositives 

TruePositives + FalseNegatvies 

(2.31) 

and Specitivity: 

specitivity =- 
TrueNegatvies 

TrueNegatives + FalsePositives 

(2.32) 

If plotted as Sensitivity (vertical axis) against I- Specitivity (horizontal axis) using the 

variable number of thresholds a characteristic called the Receiver Operator Curve is 

formed [98]. This curve demonstrates the ability to discriminate. An ideal classifier 

would produce a curve tending close a right angle at the top left comer of the axis. A 

random guess with an equal number of true and false outputs would produce a straight 

diagonal line from the origin to the top right comer of the axis. 
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CHAPTER 3 

Conic Section Function Neural Network 

3.1 Introduction to Conic Section Function Neural Networks 

Dorffher [25] describes a hybrid neural network that uses the properties of Multi 

Layer Perceptrons and Radial Basis Function (RBF) networks. MLP and RBF 

networks are both feed forward neural networks that consist of fully connected input, 

output and hidden layers. The described hybrid neural network is called a Conic 

Section Function network (CSF). One of the major differences between MLP and 

RBF is the type of decision boundary that is placed in the input space. Conic Section 

Function (CSF) networks adopt both the MLP unbounded planar boundary hyper- 

planes and the RBF bounded radial boundary hyper-spheres. With the addition of an 

extra parameter that identifies the degree MLP and RBF characteristics, the CSF 

boundary has the ability to change from RBF form to MLP form or vice-versa. This 

ability to change boundary type gives the CSF network enhanced generality. Another 

advantage of having variable decision boundaries is that fewer boundaries are needed 

in the input space. Reducing the number of boundaries also reduces the number of 

hidden layer nodes and thus the network size. 
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3.2 Radial Basis Function (RBF) networks 

Radial Basis Function Networks [67] differ from MLP networks principally in the 

transfer function of the neurons. Using non-linear radially symmetric functions, 

closed decision boundaries are created in the input space known as hyper-spheres. 

Each neuron is associated with one hyper-spherical decision boundary in the input 

space [25]. 

C a 

Figure. 3.2.1 RBF network neuron 

Figure 3.2.1 shows a single RBF neuron with two associated parameters c and 

a. When the input x=c the function F(x) is I when the function F(x) processed by the 

neuron is defined as: 

(X _ C)2 
exp[-- (3.1) 

The c term determines the maximum value of the transfer function. As x deviates 

from c the output drops and becomes negligible as the x values become further from c. 

This function gives significant outputs only when x is over a certain range. Due to this 

RBF neurons are said to have a receptivefield. This is determined by the aterm. 
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3.2.1 Radial Basis Function Topology 

An RBF [67] network is also categorised as fully connected feed forward neural 

networks, consisting of one hidden layer, one input and one output layer. The hidden 

layer consists of neurons as shown in figure 3.2.1. The output layer is a linear 

summation of the outputs from all hidden layer neurons. 

Hidden Layer 

Input Layer 

XI 

X2 

X3 

xn 

Figure. 3.2.2 RBF network architecture. 

Unlike MLP networks the connections from the input layer to the hidden layer are not 

assocciated with weights. Computation of the input vector begins at the hidden layer 
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neurons. The distance between the input vector x and the maximum of the transfer 

function c is given as r. 

r= llx-cll (3.2) 

Once this distance is computed a set of non linear functions known as basisfunctions 

are applied. The basisfunctions evaluate how close the inputs are to the centres of the 

receptive fields. The connections from the hidden layer to the output layer do have 

assocciated weights similar to MLP and evaluates a linear summation. The general 

form for an RBF network is 

AF 

F(x)=2ýw, ý(jjx-c, jj) 
1-1 

(3.3) 

The 0 term represents the basis function and w being the weight term for neuron i for 

N neurons. The c term again represents the centre of the basis function. 

There are a variety of basis functions [21] that can be chosen for 0, typical choices 

are: 

Piecewise linear O(r) =r 

Cubic 

Gaussian 

Thin Plate Splines 

Multi Quadratic 

O(r) = r' 

2 

O(r) = exp(- 

ý(r) =r2 log(r) 

O(r) = 
J(r' + a) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Where a is the width or scaling parameter. The most widley used basis fucntion is 

the Gaussian function. 
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3.3 Conic Sections 

Conic sections are georrictric shapes produced h\ the intersection (it' a pialle and a 

double circular cone. Thcsc intersections can be circles, ellipses. parabolas. or 

hyperbolas. For a circle the plane cuts completclý across oric of' tile cones and is 

papendicular to the axis ofthc cone. 

I 

FigUre. 3.3 ). 1 Circular Conic Section 

When then plane is not perpendiCLIlar to the axis the shape created on the plane is 

elliptical. 

27 



I 

Figure. 3.33.2 Elliptical Conic Section 

However Ifthe plane doesn't cut across onc entire suri'lice or intcrsect both cones. the 

CUrve of the intersection is parabolic. 

I 

Figure. 3.3.33 Parabolic Conic Section 

When the plane cuts through both of the cones parallel to the axis. the curve is 

hyperbolic. 
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Fioure. 33.4 Hyperbolic Conic Section 

I 

Figure. 3.3.5 Plane Come Section 

Using conic sections Dorfiicr [25] applies the variable shapes to t-01-111 decision 

boundaries in the input space. Another method to define the come sections is to 

introduce a variable known as ol)ening angle 2(t). For example in the case the plane 

cutting the cone to torm a circle as in figure 31.3.1 and the distance from tile plane to 

the vertex of the cone is equal to that of the radius ofthe circle the half opening angle 

(t) is 45 degrees. 
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CSF 

Figure 3.3.6 Conic sections 

The shape of the conic section changes as co varies. As the angle increases the circle 

(RBF characteristic) becomes and ellipse which in turn can become un bounded and 

become a parabola and then a straight line (MLP characteristic). 

MLP 

CSF 
Figure. 3.3.7 Conic Section projections. 
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3.4 Conic Section Function Neural Network 

The propagation rule for the feed forward process in CSF networks are a combination 

of MLP abd RBF propagation rules. Use of weights on all connections (MLP) and 

centre values in hidden to output layer connections (RBF). Dorfher [25] describes the 

charracteristics of CSF networks from the following derivation. 

If x is a point on the surface of the cone, co can be any value from - 

Tc/2 to 7r/2. If v is the vertes of the cone and a is a unit vector of the cone's axis then a 

circular cone can be desribed as: 

(jF - ý)d = Cos C011i - ý; Jj (3.9) 

If the vectors and are written in co-ordinate pairs for two dimensional space the cone 

can be desribed as 

(x, -v, )a, +(X2 -V2)a2 = COS COV(XI - VI + (XI - V2 (3.10) 

For n dimensional space 

n+l I H+l 

(xi - vi)a, = cos w, Iy 
, 

(x, -v, )' 
1=1 V 1=1 

This form gives the equation of the cone and input space intersection, if the co- 

ordinate system is set so that the n dimensions are that of the input space by setting 

x,,,, = 0. The co-ordinates of the centre terms c (RBF) can replace the co-ordinates of 

the vertex v. The distance between x and v is the radius of a circular conic section so 

31 



long as the opening angle 2w is 90 degrees. Using this subsitution the equation can be 

written as 

HA 

Jýn+l yj=E(x, -c,, )a, -coso-) E(x, -c, )2 (3.12) 

Which defines the propagation rule of the CSF network. The aij terin represents the 

weight of the connections between the input and hidden layer (MLP). The cy term 

represents the centre co-ordinates (RBF) from input i to hidden neuronj. The Yj term 

represents the activation function for hidden neuronj. 

(j) I 

cil 

X1 

X2 

Xi 

a, j 

Cij Wjk 

Figure. 
3.4.1 Conic 
Section 
Function 
Network 
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3.5 Conic Section Function Network Learning 

The learning process for CSF network training involves the determination of the 

hyper-sphere centre location and then updating the centres along with weights and 

opening angles. Within the data space the learning process can be considered to place 

a number of hyper-sphere (RBF) boundaries and then adjust their location and shape. 

This algorithm is a mixture of a RBF leaning algorithm and a form of EBP for the 

updating of centres weights and opening angles. 

3.5.1 Radial Basis Function Leaning 

The part of the CSF learning algorithm that deals with hyper-sphere and centre 

placement into the data space is known as the Orthogonal Least Squares Learning 

Algorithm (OLS) [21]. This method is method uses a block data set to select to 

determine the number hyper-spheres and their centre values. The RBF network is 

initialised with no hidden neurons. Each iteration of the OLS algorithm adds a hidden 

neuron until a satisfactory error margin is reached [21]. 

The OLS algorithm is derived from linear regression models, according to 

which a desired output d(n) is defined as: 

m 
d(n) p, (n)O, + e(n), n =1,2 ..... 

N (3.13) 

where the Oj are the model parameters, e(n) is the error signal and pi(n) are the 

regressors which are a function of x(n): 
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p, (n) = p, (x(n)) 

Converting equation 3.13 into matrix notation: 

d=PO+E 

where 

d= [d(l), d(2),..., d(N)]T 

P=IP19P29**9PMl 

0= 101902 
".. 'o " 

]T i:! g m 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

pi = [pi (1), p, (2),..., Pi (N)f (3.19) 

E= [e(l), e(2),..., e(N)]' (3.20) 

The regressor vectors pi are transformed into a corresponding set of orthogonal basis 

vectors so that contribution to the output energy from each basis vector w, can be 

calculated, where wj=[wj, W2 ... ... ... wm]. The regression matrix P can be defined as [2 1 ]: 

P= WA (3.21) 

Where A is an MxM triangular matrix with I's on the diagonal and O's below the 

diagonal and W is an NxM matrix with orthogonal columns wi where: 

WT W=H 

Where H is the diagonal with elements hi: 

(3.22) 

T hi = Wi W W, (t)Wj (t), 1: 5 i: 5 M (3.23) 

The orthogonal basis vectors wj spans the same space as pi and equation 3.15 can be 

defined as: 
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d=Wg+E (3.24) 

The orthogonal least square solution [21] is given by 

g =If' ed (3.25) 

where 

(WiTwo 
1: 5 i: 5 m (3.26) 

A classical method known as Gram-Schmidt computes one column of A at a time and 

then orthogonalises P in iterative steps counted by k. At the e step the eh column is 

made orthogonal to each of the previously orthogonalised columns and the procedure 

is repeated until k--M. 

The calculations are 

WI=Pl (3.27) 

T 

a, k = 
Wi k 1: 5 i<k (3.28) (WiT W, ) 

k-I 

Wk =Pk -Eakwi 
i-I 

where k=2 M 

(3.29) 

In RBF training the data block x(n) can be very large and only a subset of is required 

for adequate modelling. A smaller set of regressors M, can be selected using the OLS 

algorithm implemented in a forward regression manner. If the sum of the squares of 

d(n) is defined as: 

k-1 

d'd = 1: g, wTw, +E TE 
i=l 

(3.30) 
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and an error term due to wi defined as 

2T 
g, w, w, i -< m 
(dTd ) 

then the forward regression procedure is as follows 

The first step for 1: 5 i: 5 M 

(j) wi 

(w, W)T 

Q))T (t) wi wi 
1: 5 i 

Q) 2T 
WQ) 

[err](') 
(g' 

dTd 

then find 

[err], (") = max I [err] ('), 1 :5 hý M) 

and select 

Wi = Wi"', = P', 
At the e step where k ý! 2, for 1: 5 i: 5 M, i#i, and i# ik-1, compute 

T 
WwiA 

a, k 1: 5 j: 5 k 
Wý J 

0) 
= 

k-I 
Wk p, -I]a (')w, 

., jk 
j-1 

W= 
(Wk (1) )T 

9k 
( (i)) T Q) Wk Wk 

(3.31) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 
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dTd 

Find 

[err]"' = max([err]('), I:! ý i: 5 Mj # i: # kk 
il 

and select 

k-I 
Wk ": = Wk 

(tk) 
= Ak -fajk 

V) 
Wi 

j. 1 

where ajk=a, k 
(X) 

, 
1: 9 j: 5 k. 

The procedure is terminated at the Mth step when 

[err]j < 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

where 0<p<I is a selected tolerance. A subset of M, significant regressors is 

obtained. 

3.5.2 Updating CSF Weights 

The activation transfer function of the network is 

a, j = fj (yj ) 

The sum of the square of the error for each input and output is given by 

Ep =1 1] (dpj - apj 2j, 

and the change in weight value according to EBP is 

aE 
Apwji oc 

awji 

(3.43) 

(3.44) 

(3.45) 
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The gradient component depends on the ypj neuron, the error from the output of the jth 

neuron is contributed only by the weights wji for i= 1,2,.... l for a fixed j. The 

derivative can be written as: 

aEp 
= 

aEp 

awii aypi 

The second term from equation 3.46 is the derivative of the dot product including 

centres, weights and distance function as in equation 3.12. 

cy n+l p [E (apk - ckj ) wkj- cos co, (3.47) 
awil aWji k=l Ir 

(3.46) 

The values ari and cy, for i--1,2 .... I are constant for a fixed pattern at the input thus: 

ay, 
Civil 

Pi -cy ) (3.48) 

The error term at neuronj is defined as: 

45pi =- 
aEp (3.49) 
aypj 

The equations for the weight adjustment can be written using the error term 5: 

aE 
p= 8p, (ap, - c. awil 

A, wji = qi5pj (a,, - c. ) 

Equation 3.49 can be re-written as 

Spi 
OEP aEp aapj 

O, Ypj aapj oyj, 

(3.50) 

(3.51) 

(3.52) 
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The last temi in equation 3.52 shows change in output over change in input and is a 

first derivative of the activation function: 

aapj 
_ rl f .. % 

av., ý J, 

ý-- Jj kypj) (3.53) 

To evaluate the first term in 3.52 two different cases are considered. For an output 

neuron of the network: 

aEp 
= -(d - -a-.. ) aapj , pj pj , 

(3.54) 

By substituting terms from equations 3.52,3.53 and 3.54 the following expression is 

derived fro any output unit: 

gpj = (dpj - apj )f 'j (ylj ) (3.55) 

The weight adjustment for neuronj in the hidden layer is proportional to the weighted 

sum of all S values at the output layer of nosed connecting to neuron j with the 

output. The output layer error terms contribute to the adjustment of the hidden layer 

weights as: 

aE E 
=Zý-' - '3 ll: (ai-Ck)w, -coswlla-cjll] (3.56) 

k 03Ypk 6ap, k OYpk aap, 

and 

a [I -Cik)Wik - COS o)IIa - cj III ý Wik - COS. 

aap, i, 
(ap, Ilap 

- c, 11 

tVpk 

= 
a, -c, aEp 1,5pk rwk_ 

Cos. ]=A I, 
- k CYpk aapj -k Ila 

-cjlI 

(3.57) 

(3.58) 
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For the hidden layer neurons the 8 terms in equation 3.52 can be defined as: 

16pj = f'j (Y"j ) -A 

From this the updated weights can be written as 

Apw,, = Y7,6pj (ap, -c, ) = i7apj (I - apj)(dpj - apj)(a , -c. ) 

for output neurons 

Apwj, = j7apj (I - apj). A. (a 
P, -c. ) 

also for hidden layer neurons that use the following activation transfer function 

I 
apj 

+ exp-ym 

and its derivative 

f'j (Ypj) = 
aa pj = apj a,, j cypi 

The bipolar continuous activation transfer function can be used: 

apj = =1 I+ exp-y# 

3.5.3 Updating CSF Centres 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

The centre adjustments are calculated using the same procedure as weight 

a ustments. 

aEp 
p C,, acii 

(3.65) 

From the chain rule, the derivative can be written as the change in error as a function 

with respect to the input and the change in input with respect to the centre values. 
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aEp 
= 

aEp o'ypj a 
= -15 pj . 

ypi 
ac ac ac ii cy Pi yY 

The last terin in 3.66 can be detennined as in equation 3.56 to form 

ey 
pj = -wu +Cos co ac' 

acy Ila c, 11 

The centre update for the hidden layer neurons can be written as: 

Apcj, oc apj (I - apj). A. B 

3.5.4 Updating CSF Opening Angles 

Similarly opening angle adjustment is governed by 

APO)i oc - 
aEp 

acoi 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

The derivative of the change in error with respect to opening angle is expressed as 

aEp 
= 

aEp o'ypj 
awj 0-Y pj 

a co j, act)J 

'OY'j 
= sin co -, 

Ila 
- c, 11 =C acoi 

The angle updates for the hidden layer neurons is given by 

Apco, oc apj (I - apd. A. C 

(3.70) 

(3.71) 

(3.72) 
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CHAPTER 4 

Radiograph Image Processing 

4.1 Digital Image Processing 

The principals of typical digital image processing cover a wide range of hardware use 

and software execution of a large variety of algorithms [36]. The first step in the 

process is image acquisition, this is the capture and digitisation of an image. In the 

case of radiographs image capture is done by way of an x-ray source directed at an 

object with a medium sensitive to x rays placed on the other side. Although up to date 

specialist mammography machines contain on board digitisation devices the 

mammograms from this study were taken before the availability of such machines and 

produced only radiographs on film. Thus creating the necessity for separate 

digitisation using specialised scanner devices for radiographs and further conversion 

into universal data types for software processing. 

Object image 
capture onto film 

Scan of film 
radiograph into 
digitised image 

Conversion of 
digitised image into 
numerical data array 

Figure. 4.1.1 Image Acquisition 
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4.2 Segmentation By Region Growing 

Image Segmentation [36] is an image processing technique which deals with the 

analysis of the spatial content of an image. In particular, it is used to separate regions 

from the rest of the image, in order to recognize them as objects. Region Growing is 

an approach to image segmentation in which neighbouring pixels are examined and 

added to a region class if no edges are detected. This process is iterated for each 

boundary pixel in the region. Advantages of region growing are that the borders of 

regions found by region growing are perfectly thin (since we only add pixels to the 

exterior of our region) and connected. Membership in a region can be based on 

multiple criteria in the iteration process. However the main disadvantage to region 

growing is it is computationally expensive. It takes both extensive computing power 

(processing power and memory usage) and time to implement the algorithms 

especially in the case of large images. 

4.2.1 Stack Based Region Growing Algorithm 

Region growing is a classical heuristic method for the separation of region within an 

image also known asfloodfilling [36]. Once a region that is required to be separated 

from the image is identified, the characteristics that are common among all pixels in 

the selected region are established. For radiographs pixel quality are defined within a 

grey scale. In general region growing is an iterative pixel by pixel approach that 

categorises each pixel as being in the region of interest or outside. Using a stack to 

store pixel co-ordinates that have been selected as within the region of interest so that 

unnecessary repetition of testing pixels that have already been categorised. 
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This stack based approach is implemented as follows: 

1. The first stage is to identify the co-ordinates of one pixel that is within the 

region of interest by inspection, this pixel is labelled as the seed pixel and is 

placed at the bottom of the stack. 

2. The co-ordinates of the eight pixels that surround the seed are identified and 

the predetermined condition (for example if the pixel's grey level higher than 

a threshold or not) is tested. All eight neighbouring pixels are tested and only 

placed in the stack on top of the original seed if the result of the condition is 

positive and if this pixel is not already in the stack. 

3. After the seed's neighbours are tested the algorithm checks to see if it required 

to continue by checking if the seed co-ordinates are at the top of the stack. The 

pixel that is labelled as the seed changes if this is not the case and the seed 

becomes the next pixel up in the stack and step 2 is re-iterated. 

4. When the neighbours of all the pixels in the stack have been tested and the 

seed pixel rises to the top the process stops. All pixels that have given a 

positive outcome to the condition have been accounted for in the stack the 

surrounding pixels of these stacked co-ordinates are negative, thus one region 

of a common condition has been identified. 
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satisfy grey level and 

stack conditions? 

YES 

A 

NO 

Place in 
stack 

Are all eight 
immediate 
neighbours 
checked? 

YES 

T 
Is seed at top of 

stack? 

NO 

Move seed to next 
coordinates in 

stack 

Ignore 

NO 

YES 

Go to next immediate 
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Figure. 4.1.2 Stack Based Region Growing Algorithm 
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4.3 Noise Reduction With Neighbourhood Averaging 

Noise reduction is an important part of image processing. In this case where the 

digitised images are created as second generation image, in other words the images 

were not created directly from the object but were scanned from the radiograph, noise 

reduction is especially important. The scanning process can give rise to noisy images 

which can have a large impact on sensitive algorithms such as region growing. 

The neighbourhood averaging method or smoothing takes into account each 

pixel and its nearest neighbours. In a one dimensional case the process finds the mean 

of the grey levels of a set of that are within a maximum distance N from the subject 

pixel. Then sets the subject pixel's grey level to that mean value. The process then 

moves to the next pixel until the end of the image row is reached. This does have the 

effect of blurring the image more prominently if the distance N is large. For am image 

of dimensions y rows and x columns then for row y the process applies the function: 

W 
[g(x - N) .... g(x -+ 9(x) + g(x + 1) ... g(x 

N+l 

(4.1) 

Where g represents the grey level of the pixel at co-ordinates fty). This process can 

be repeated for each row. One flaw in this process however is the averaging of the 

pixels that are within N distance of the image edge. The process has no pixels past the 

edge to evaluate a true mean with. This can be over come by either buffering with 

fake pixels of grey levels similar to that of the pixel at the edge or buffering with fake 

pixels with a zero value. 
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4.4 Image Enhancement High Pass Filtering 

Processing of radiographs often require improvement of image quality. In the case of 

mammograms where boundaries and regions of high contrast are of interest 

enhancement is of these areas is valuable. By transforming the image into the 

frequency domain using Fourier and Inverse Fourier transforms [36] the image can be 

powerfully manipulated using special filters. Defining the spatial image asf(xy) the 

Fourier transform of the image is defined as: 

00 
F(u, v) =1 

ff(x, y) exp[-j2z(ux + vy)Idxdy (4.2) 

-Co 

Where u and v are known as the frequency variables andj represents the component 

as complex. The frequency domain function of an enhanced image G(uv) can be 

yielded if a transfer function H(uv) is used. 

G(u, v) = H(u, v)F(u, v) (4.3) 

Enhancement of high contrast components can be achieved using high pass filters. In 

the frequency domain an ideal high pass filter returns H(uv) as I if u and v in the 

frequency plane gives a point that is more than a threshold value D, The filter returns 

0 if the point falls below the threshold. In a two dimensional frequency plane D,, can 

forms a circular boundary about the origin. 

This distance from the origin is defined as 
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D(u, v) = ý-(u' + v') (4.4) 

H(u, v) 
D. boundary 

U 

Figure. 4.4.1 Ideal High Pass Filter Frequency Domain 

The filter is defined as 

1 
H (u, V) = 

1+[D,, ID(u, v)]'" 

Where n is the known as the order of the filter. 

V 

(4.5) 
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CHAPTER 5 

Mammogram Asymmetry Analysis 

5.1 Symmetry Features 

Previous studies 1831 have shown some correlation I-)ct\\ccil estimated mammogram 

pair volume difference and the eventual occurrence of' malignant bodies and cancer. 

This study calCUlates marrinlogram pair area diflerence fi-om digitised images. as a 

measure of asymmetry. For this measurement the knomi breast tissue region must tic 

separated from the image then further calculation of' the area of' this region. The 

difference between the area of' the left and right image is scaled by considering that 

sum ofthe two areas. This is so that a more true reflection oftlic degree ofasymnictr\ 

is gained. All mammograms are of' cranio-camial \-Ic\\- and acquired \\ Ith the chest 

plate region ol'the sub ject on the left. 

'W 4w 6X cM ILU I-IOU 14W 

Fioure. 5.1.1 Unaltered Crailio CaUdal Iniaoe 
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5.2 Segmentation Results 

The grey scale for pixels is defined numerically as 255 for white and 0 for black. By 

inspecting the variation in grey level for a medium row within the image that contains 

tissue regions as well as non tissue regions the following characteristic is found in 

figure 5.2.1. 

Grey level 

Upper Limit 

Lower Limit 

300 

250 

iso 

100 

601 8.61 9.512 9.514 Cale sale 8 52 9.622 0 524 6 620 0 629 

Breast Tissue 

10 
Row Pixel Number 

Dark Background 
Region 

Figure. 5.2.1 Grey Level Variation of Row Cross Section 

From this cross section the upper and lower limits of the tissue region can be 

determined. The criteria for region growing can be established as the grey level of 

each tested pixel falling within these limits. The region growing process beginning 

with an arbitrary pixel central within the tissue area. 

50 



A common problem that occurred in maný images after the application of' region 

gro-wing is neighbouring non tissue pixels X\ ith similar gl-c\ levels callwd the "1-0\\ Ing 

region to "leak out' and process border areas mth smidar orc\ lc\cls to be 

niNclassil ied. 

Initial Seed 
Reoion 

Leak 

%lisclassified 
keoion 

Fi-ure. 5.2.2 Image of an Unsuccessful Grown Region 

Moreover this method known to be time consurning proved to be highly inefficient as 

large misclassified regions were tested. Although the stack based approach inhcrentlý 

counts the number of pixels for the measurement of tissue area due to the leaking 

effect this process is unsatisfactory. 
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5.2.1 Image Specific Segmentation 

Alternative methods for segmentation specific to the mammograms with the 

characteristics shown in figure 5.2.1 lose generality. However gains faster 

computation time and successful segmentation. One such algorithm is a row by row 

iteration that is based on the known fact that all the images contain tissue region on 

the left edge of the radiograph and not the right. However since an unaltered image 

contains regions that are background to the mammogram film itself as can be seen in 

figure 5.1.1 as a white area, the region that is radiograph film must be selected. This 

can be done by image cropping. 

From horizontal and vertical grey level cross sections of the image the drop 

from the white background area can be seen. Assuming that the film has straight line 

edges the line that forms the film edge can extrapolated by identifying two points 

from each edge of the film. Four straight line equations can be determined based on 

the spatial axis of the image. From this the pixels that fall inside the rectangle formed 

by the lines are identified as pixels from the radiograph. Once the film area of the 

image has been cropped tissue area segmentation can commence. 

Beginning with the highest row the pixels from left to right are tested see if the 

grey levels fall below the lower limit. This will include the leaking regions that do not 

fall below the lower limit however these regions can be eliminated from the area 

calculation later in the process. 

This image specific method proved to be less time consuming and 

computationally intensive. The large misclassified area created by region growing is 

ignored due to the emphasis on the left sided pixels in this algorithm. 
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I-'i, -, Lire. 5.2.3 Ima-c ot'Seomentcd Reoion 
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5.3 Area Calculation 
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One drawback that the image specific segincritation produced Lis coniparcd to region 

growing as the necessity to evaluate the area of the tissue region additionally. By 

fitting a Curve to the right edge of the segmented image and by considering the left 

vertical straight line gained from cropping. the area between these lines can be 

calculated. The equation of the straight line is known however using standard 

regression methods a curve can be best fit to the set of pixels that make lip right edge 

of the tissue region. The co-ordinates of these pixels are known from the ro\\ by row 

segmentation. The area of the space between the two lines and be calculated frorn 

subtraction of the area under the right edge curve and the area under the left edge line. 
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These areas individually can be evaluated using integration as follows: 

X2 ý2 

fa. ý5 + b2 + cý 4dx3+e2 +fx+g - 
fmx+n 

x, 
(5.1) 

Using the co-ordinates of the pixels at the curved edge of the segmented image a 6th 

order polynomial is best fitted to those pixels. For the straight edge of the breast area, 

a straight line is fitted using two points at that edge. The area of the encompassed 

section is calculated. The area under the polynomial (coefficients a to g) is calculated, 

using the two crossover points x'I and X'2 with the fitted line as the limits integration in 

equation 5.1. 

x Line Edge 
(Left) 

X2 

XI 

Figure. 5.3.1 Best fit boundaries 

Polynomial 
Curved Edge 
(Right) 
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5.3.1 Shape Similarity Measure 

In addition to the difference in left and right areas of the mammogram pairs, similarity 

between the curves for a subject is measured as further aspect of asymmetry. The 

measure in this study is a simple morphological translation of 100 points from one 

polynomial to another. In the case of the images in this study the variant attribute is 

represented by the relative positions between the curved and straight edge of the 

segmented image. All of the images have crossover points (used as limits of 

integration in part 1). The vertical distance between these points is used to identify 

100 equally spaced sample points (including the crossover points). This algorithm 

starts by mapping the lowest of these points to the origin (both curves). The Euclidean 

distance between the remaining points on both curves can then be calculated. The 

summation of these distances gives an overall measure. 

sample point 

translation vector 

origin 

Figure. 5.3.2 Demonstration of Translations for Sampled Points 

left and right 
curves 
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However this is not a pure representation of shape as it is influenced by the curve size. 

Using the maximum widths, each curve is scaled (maximum equals 1) in the 

horizontal direction. Scaling in the vertical direction is done by simply discounting 

the vertical element of the translation vector, this assumes all the sample points are of 

equal vertical interval. The summation of the horizontal differences of the 100 points 

is then calculated. 

Two measures are obtained: 

1. Non-scaled shape differences between curve pairs. (size dependant). 

2. Scaled shape differences between curve pairs. (size independent). 

5.4 Asymmetry Feature Extraction Process 

Many of the digitiesed mammogram images were found to have a high degree of 

noise causing the segementation process to yield an uneven edge on the right curved 

side. Reduction of noise was acheived using neighbourhood averaging with small 

integer values of neibourhood size N depending on the degree of noise. After which 

segmentation and the measure of size difference and shape for Asymmetry feature 

extraction is applied. 
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Figure 5.4.1 Asymmetry Feature Extraction Process 

Image Cropping 

Noise Reduction 
Neighbourhood 

Averaging 

Segmentation 

Left Line Edge and 
Right Curve Edge 

Fit 

Area and 
Shape Similarity 
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5.5 Pattern Feature Extraction 

An additional feature obtainable form the digitised mammograrn images is the texture 

of the tissue region. However such radiograph images have highly complex subtle 

tissue pattern structures that reduction to the most prominent features is required. The 

high contrast regions apart from tissue to non-tissue boundaries are formed by a high 

gradient of tissue density change within the subject. This manifests as white 'whisp' 
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like patterns in the mammogram. A high pass filter used to emphasise high contrast 

regions is required with further polarising of grey levels using a threshold value. All 

values of pixels with grey levels under the threshold arc made to 255 to produce an 

image containing only the desired pattern regions. 

Image Cropping 

Noise Reduction 
Neighbourhood 

Averaging 

Segmentation 

High Pass Filter 
Frequency 

Domain 

-T 
Whitening of Pixels 

Under Threshold 
Value 

Figure 5.5.1 Pattern Feature Extraction Process 
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5.5.1 Pattern Complexity Measure 

Further quantification of the filtered image can be processed using an adapted version 

of an image compression algorithm known as quad tree decomposition (QTD). It can 

be said that for a grey scale image a pixel by pixel 'chessboard' of the maximum and 

minimum grey levels is the most contrasted and complicated. The most simple is the 

whole image area with all pixels with the same grey level. QTD is an iterative process 

that initially cuts the image into four equal quarters. If the image is not originally 

square then minimal buffer regions must be added. It is important that these region are 

plain white. The process tests each quarter for any non white pixels present in the 

region. If this criterion returns positive then QTD cuts that quarter into a further four 

quarters. This process continues as far as required ending at single pixel level if need 

be. 
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Figure 5.5.4 Demonstration of QTD process 
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Figure 5.5.4 shows two similar images 'A' and 'B', image 'A' contains more 

branches and is a more complex pattern. QTD applied to both images returns more 

small quarters present in the last diagram for example 'A' than example '13. Both 

images return 4 four large quarters and again 'A' returns more medium quarters. 

However for larger images such as filtered mammograms this process returns quarters 

ranging in size from a quarter of the original buffered image size to a single pixel. 

Images that return a high number of small quarters contain more complex non 

background patterns. The disadvantage of QTD is that the process is very time 

consuming for square images with pixels numbers at 14002 such as these. 
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CHAPTER 6 

Data Interpretation and Neural Network Simulation 

6.1 Asymmetry Calculation Results 

In accordance with principles on cancer pre-dispositions [56], high asymmetry or 

fluctuating asymmetry (FA) [83] is more prevalent in the cancer sets. The comparison 

of this prevalence between the three different forms of FA can be made. The most 

notable being the non scaled difference for shape similarity evaluated using the 

method in section 5.3.1. The contrast between the cancer and non-cancer sets for 

scaled difference is not as high as the features that are influenced by breast size 

(relative area and non scaled difference). 

High symmetry is also prevalent in all cases. However the attributes 

influenced by breast shape (scaled and non-scaled difference) does produce a minimal 

level of asymmetry where few (or none in the case of scaled difference) fall under. 

This is not found in relative area difference. 

The following histograms present the results for a test batch of approximately 

200 pairs of marnmograms. The number of occurrences is plotted against intervals of 

ascending FA with the lower limit inclusive to the interval. Scutt et al [83] 

demonstrated pre-disposition trends using difference in volume. The measures in the 

figures below can be compared to the trend shown in figure 1.4. L 
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Fil-'Llre 6.1.1 Relatke Area DifTcrence Comparison 
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Figure 6.1.2 Scaled Shape Difference Comparison 
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Fi, "Llre 6.1.3 Non-Scaled 'SImpe DiflCrence Comparison 
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Asymmetry calCUlation constitutes one input dimension for training 1ecd fomard 
L- 

neural networks. 

6.2 Other Input Data 

Form the subject database [83] as described in sewion 1. ý the additionA input 

dimensions for ANN interpretation are as l'ollows: 

Feature Max Mill Data Type 

Relative Volume Asymmetry (QUotient) 0.4-38 0 Real (inax I 

Parenchymal Type N'A N/A Cate-orised 

Family History 5 0 Ordinal 

Age at Menarche 18 9 Ordinal 

Pill Use 1 0 Binary 

Table 6.2.1 Input Dimensions 
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With the exception of the relative asymmetry the all of the input data is discrete. The 

two unbounded input factors are categorised as follows: 

Data No of intervals Definition 

Family History 4 0,1,2,3 or more 

Age at Menarche 6 11 or less, 12,13,14,15,16 or more 

Table 6.2.2 Ordinal Input Definitions 

These were categorised from the number of occurrences. The Parenchymal type does 

not need to be further classified. However both the left and right breast of the subject 

must be considered individually. 

A final dimension for use as an input is related to high levels of Oestrogen 

exposure as stated in section 1.5, this factor is most relevant to use or non use of the 

contraceptive pill by the subject. This translates to a binary input for ANN simulation, 

I for use and 0 for non-use. 

Although the subject database contained 898 cases it was found that 564 cases 

had all of the required factors available. Out of which approximately 400 of the 564 

had corresponding pairs of mammograms available and in tact. Due to the clinical use 

of many of the mammograms since as early as 1978 many of the mammograms from 

the archives had been damaged, altered or missing. 
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Input Neuron Representation 

I relative area asymmetry 

2 no family members diagnosed 

3 one family member diagnosed 

4 two family members diagnosed 

5 three or more family members diagnosed 

6 left parenchyma type is class NI 

7 left parenchyma type is class P1 

8 left parenchyma type is class P2 

9 left parenchyma type is class DY 

10 right parenchyma type is class NI 

II right parenchyma type is class P1 

12 right parenchyma type is class P2 

13 right parenchyma type is class DY 

14 menarche age is II or less 

15 menarche age is 12 

16 menarche age is 13 

17 menarche age is 14 

18 menarche age is IS 

19 menarche age is 16 or more 

20 contraceptive pill use (binary) 

Table 6.3.1 MLP Input Layer Representations 
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6.2.1 Ordinal Inputs 

An alternative to the ordinal inputs 2 to 4 and 14 to 19 being represented as all zeros 

and a one for each input pattern, a more relative distribution can be used as an input 

scheme such as a Gaussian distribution with the peak being the I input in the binary 

scheme. The conversion scheme employed is as follows: 

Peak Distance I Distance 2 Distance 3 Distance 4 Distance 5 

1 0 0 0 0 0 

0.7979 0.108 2.67 x 10-4 1.21 xlO-' 
1.1 XIO-14 1.53 xIO" 

Table 6.3.2 Ordinal Input Conversion Scheme 

This conversion is based on the nonnal probability density function: 

y= 
1 

0.5( 
X-9)2] 

exp[- 
0 2; r , IT 

where x is the original binary value, y being the new value and ýt being the location of 

the peak or I value from the input. The a term is set to 0.5 

6.2.2 Missing Data 

Input patterns with missing data can be included in network training by way of 

substituting the missing data inputs by an equal non-zero value for each missing input. 

This value is simply determined as the reciprocal fraction of the number of inputs 

assigned to that input that is missing. 
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6.3 MLP Simulation 

The performance of Multi Layer Perceptron networks are effected by a wide variety 

of attributes mainly in two areas, first the MLP architecture, the number of input 

neurons dictates the dimensionality of the pattern space in which MLP linear decision 

boundaries are placed. The number of hidden layer neurons dictates the number 

decision boundaries. The number of outputs dictates the number of possible 

classifications. The second area is the data used in training. Large sets of training 

patterns are useful however a high number iterations in training with the same data set 

can cause over training. This occurs when the ANN trains too specifically to the 

training set and is not generalised enough. This can be measured if a validation set is 

used, this data sets are composed of patterns not found in the training set but is also 

used to evaluate the network's performance. The risk of over training is accounted for 

by weight decay regularisation described in section 
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Inputlayer Fig. 6.3.1 MLP Architecture 
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6.3.1 Twelve Fold Cross Validation Results 
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6.3.2 Twelve Fold Cross Validationvi, ith Altered Ordinal I nputs Results 
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6.3.3 Twelve Fold Cross Validation with Missing, Data 
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Log Likelihood Network Error for 10000 Epochs 
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6.4 CSF Simulation 

Training CSF networks as described in section 3.5 requires the implementation of 

network initialisation using the OLS algorithm which places the centre points for the 

hyper-sphere boundaries and consequently dictates the number of hidden neurons. 

After the OLS initialisation the update of network weights, centres and opening 

angles is required. However the order and frequency in which the weight, centre and 

angle sets are updated can be various. CSF training can be considered with both 

centre updating and non-centre updating. Non centre updating is considered since 

OLS calculates centre values to minimise the error margin and alteration of the OLS 

calculation may be a disadvantage. Furthermore opening angles need not necessarily 

be updated every epoch and can be set to update per set number of epochs between 

the weight updating. 

The number of centres to be placed to initialise the hidden layer size is predetermined. 

The hidden layer weights are set to zero eliminating the MLP characteristic of the 

CSF network so that the OLS algorithm can commence. Moreover the opening angle 

parameters are set to 7c/4. This defines the CSF boundaries as RBF style hyper- 

spheres. The OLS algorithm then places one boundary and the output of the hidden 

layer is computed. The next stage is to update the output layer's weights. A CSF 

network output is gained and Log Likelihood Error is calculated and regularised using 

weight decay. Then another boundary is places using OLS and the process is repeated 

until the predetermined hidden layer size is reached. At this stage OLS is halted and 

the updating of parameters phase is reached using EBP. In this version of CSF 
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training this next phase updates, first the output layer weights then secondly all hidden 

layer parameters (hidden weights, centres and angles) every epoch. 
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6.4.1 Twelve Fold Cross Validation 
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CHAPTER 7 

Conic Section Function Network Evolution 

7.1 Evolutionary Based Algorithms 

This section describes the development of an evolutionary based algorithm that 

encodes a Conics Section Function Network's architecture and parameters into a 

string data structure known as a genome. Algorithms based on the hybridising 

genome structures as a basis for optimisation are known generally as Genetic 

Algorithms (GA) [35]. Such methods though known to be slow can increase 

generality due to the possible removal of predetermining parameters that inherently 

constrains the search space, for example including choosing hidden layer size before 

the commencement of EBP. Placing the hidden layer size parameter in the genome 

removes the need to choose an initial value. 

7.2 Evolution of Topology 

The variable factors when defining the topology of a feed-forward ANN are the 

number of connections, the positions of the connections, the number of layers and the 

number of neurons in those layers. How much to encode into the genome for use in 

the GA needs to be decided [87]. Ideally all possible solutions are sought after and 

thus encoding every factor would be desirable. However increasing the number of 

factors that are simultaneously being crossed over and mutated in the GA makes the 

possibility of successful evolution lower. For this GA the encoded factor is the 
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number of hidden neurons. This leads to all generated networks having one hidden 

layer and being fully connected. Hence the outcome of the topology part of the 

evolution is simply a positive integer. The complexity of CSF networks lies not in 

their topologies but in their internal parameters however the hidden layer size is an 

important topological factor. The method for encoding the hidden layer size can be 

done by reserving a section of the genome for the evolution of this integer. Ideally this 

number should be unlimited, that would however cause decoding problems since the 

GA needs to recognise where the topology genes end and the parameter genes start. If 

say the maximum allowable number of nodes is 32 then the first five genes can be 

reserved as binary digits. 

7.3 Evolution of Parameters 

One of the main differences between CSF and other feed forward networks is that the 

CSF assigns two parameters to each hidden connection (a weight and a centre) and 

not one [25]. This doubled number of parameters gives rise to the consideration of 

real number encoding of the genome (each gene is a real number). Doing this serves 

two purposes; first it reduces the length of the genome and secondly it helps to keep 

the real value of the parameter and discreteization from binary gene encoding. From 

the topology genes the number of parameters that has to be included is defined. The 

GA can recognise which parameters to include by the use of an active/inactive bit 

prior to each set of parameters within the chromosome. This bit appears before each 

weight and centre value, for every connection, and before every opening angle value 

for every hidden node. This is done to include all the parameters for future 

generations and to maintain equal overall genome length. 
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7.4 The Genome Structure 

The overall length of the genome depends on the maximum hidden layer size, the 

input dimensions and the output dimensions. For example if the maximum hidden 

layer size is 32, the input dimensions 4 and the output dimensions 3 then there must 

be 224 connections accounted for. Therefore the length in this case is 2240 + 32x2 + 

5 making a genome with 741 genes. 

Figure. 7.4.1 Genome Make Up 

5 topology 
genes 

Weight, centre and 
active/inactive 
genes for each of the 224 

Opening angle and 
active/inactive genes each 
of the 32 hidden nodes 

741 

7.5 The Genetic Operators 

The Genetic Algorithms uses three main operators reproduction, crossover and 

mutation. The reproduction operator is a selection procedure based on the fitness 

measure of each of the individual strings. The probability that a string is selected, for 

the next stage in the GA, is proportional to its fitness level. This is a common 

selection procedure also known as roulette wheel selection [35]. Once two 'parent' 

stings are selected the crossover operator cuts both strings at the same point and 

swaps the two sections of the strings that follows the cut point. 

93 



Parent Genomes 

Cut Point 
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Crossover 

Figure 7.5.1 
Single Point 
Crossover 

After 
Crossover 

Next Generation Genomes 

By translating the string into a CSF network and applying input patterns the fitness of 

the chromosome can be evaluated. The difference between the acquired outputs from 

the CSF network and the desired outputs yields the error margin the inverse of which 

can be used as a fitness measure. The higher the fitness of the individual the more 

likely it is to be selected in the 'roulette wheel' selection scheme. This scheme 

generates a random positive integer from a set. This number selects an individual, 

however the fitter individuals have more integers from the set assigned to it, hence 

increasing their chances of selection. Alternative to the roulette wheel selection is 

elitist selection where the fittest cases are automatically chosen for crossover. The 

Mutation operator alters the gene by a random change Ax if x is the value if the gene. 

The likelihood of this change being implemented is set to a uniform percentage, 

usually a small probability (1%). 

7.6 Implementation and Testing 

The development for the algorithm aims to keep the GA as simple as possible, this is 

because in general GA's are notoriously slow as compared to alternative optimisers. 
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A simple test function is implemented. This function simply sums all the variables in 

the genome and deems the largest as the best. 

This first GA implemented an elitist selection procedure, single point 

crossover and random uniform mutation. Ten stings containing 700 real numbers 

ranging from -5 to5 (this is a typical ANN weight range) were randomly generated to 

initialise a population. The two fittest were chosen for crossover (elitist selection) and 

the remaining eight in the population were regenerated for the next generation. One 

crossover point was randomly selected and the fitness of the two offspring are 

evaluated. The following diagram describes this particular test algorithm in more 

detail. 

Initialise population of 10 
individuals 

I ý-Measure fitness value of each 

Select two fittest and apply 
crossover and mutation 

I 
Measure fitness of two 

offspring 

Compare with parents and 
replace parents with any 

offspring that is fitter 

Regenerate remaining eight 
and add parents or offspring 

to population 

Figure 7.6.1 Test 
I GA 

95 



The following diagram demonstrates typical performance of this algorithm. 
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Figure 7.6.2 Test I GA Result 

The maximum fitness value obtainable in this test function is 3500 (all 700 elements 

in the genome reaching 5), this algorithm typically stops converging at the 3000 level. 

The probability of each element mutating was set at 1%. If the mutated element 

exceeded 5 or became less than -5 then the effects of the mutation was cancelled 

instead of setting the result at the limits. The reason for this is so that the algorithm is 

not biased in maximizing numbers, since that is the test scenario. 

Roulette selection is also tested instead of elitist selection, however is found 

not to converge. This may be due to the large size of the genome and consequently the 

small difference between the most fittest and the least fittest. Even with the fitness 
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values squared and cubed the algorithm did not successfully select the better 

individuals for the next generation and hence did not converge toward the 3500 mark. 

A second test algorithm that evolved genomes of length 68 instead of 700 is also 

considered. This is done to test the performance on smaller search spaces. Previous 

experiments [58] have shown that CSF networks can train, using conventional 

algorithms, with 5 hidden nodes for the classic Iris Plant data set [32], CSF is found to 

successfully train [57][58]. For this GA to encode a5 node hidden layer CSF network 

it requires 68 elements (20 input weights, 20 centres, 5 hidden biases, 5 opening 

angles, 15 output weights and 3 output biases). The maximum fitness in this case is 

340. The performance of the algorithm in this version is shown in the following 

figure. 

Figure 7.6.3 Test 2 GA Result 
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This converges directly to the desired limit. With this result the next step was to 

replace the dummy fitness function with a CSF network. The fitness function for this 

case is: 

75 3 

M_o m)2 
IDt'.. 

n 
n=l m=l 

(7.1) 

Where f is the fitness function, t is the desired target from output node m, o is the 

actual output and n is the number of input patterns given. 

Initialise population of 10 
individuals 

Translate into CSF networks 
I 

Evaluate fitness values 75 Input patterns 
I 

Apply elitist 
selection and select two fittest 

I 
Apply single point crossover 
and I% mutation creating 

two offspring 

T 
Replace with new generation if 
fitter than old generation and 
regenerate remaining eight 

Figure 7.6.4 Five 
neuron hidden layer 
CSF test algorithm. 
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The following figure demonstrates the performance of this algorithm on the CSF test 

function. In this case the fitness has no limit, the higher the value off the less error 

there is between the desired and actual outputs of the CSF network: 

Fitness 
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Figure 7.6.5 GA result for CSF Simulation on Iris Data 

The initial fitness in this case is 0.0 15 translating to a margin of error, for 75 samples 

from the Iris Pant data set, to be 67. The highest fitness value obtained in this test is 

0.0557 translating to an error margin of 18. 
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7.6.1 Multi Point Crossover 

Genetic Algorithms can also be implemented using more than one cut point in the 

crossover operation. This is called multi point crossover, figure 7.5.1 demonstrates 

single point crossover where the next generation comprises of one part of each parent. 

If say the number of cut points is three then three positions are randomly selected on 

the chromosome length. Adjacent sections of the genome are then swapped. 

Before 
Crossover 

After 
Crossover 

*,,, T Figure 7.6.6 Multi Point Crossover 
t Points 

z 

The number of cut points can either be set to an optimal constant or it can be dynamic. 

Since the initial population all have similar fitness values the number of cut points can 

be set to a high value at the start of the GA. This will mix the genomes more than 

lower numbers of cut points. As the GA progresses the number of cut points can be 

lowered as not to lose useful genes, especially when used in ANN's where good 

weightings are only good as a set of weights and not as single weight values. The CSF 
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network is prone to this problem more so than other ANN's since CSF complexity lies 

in ifs parameters and not the number of nodes. 
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7.6.2 Gaussian Mutation 

Instead of uniform mutation a Gaussian function can be applied to the probability of 

the mutation value. At present any change in a gene's value by mutation has an equal 

probability of occurrence, so long as that change is within the limits set in the 

mutation operation. If a Gaussian function is applied about zero then smaller changes 

are more likely to occur than larger ones. It may be more useful to create large 

changes at the start of the evolution. However when the GA begins to struggle to find 

fitter chromosomes smaller changes may be better suited. A large change to an 

already good individual will very likely make it worse, good genome that need only to 

be fine tuned should be treated less violently. This can be done by reducing the width 

of the Gaussian curve A as the GA progresses. The mutation function can even begin 

as uniform. 
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Figure 7.6.10 Gaussian Curve 
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CHAPTER 8 

Conclusions 

8.1 Mammogram Asymmetry Analysis 

The methods for region of interest selection (cropping and segmentation) described in 

section 5.2.1 are fast and computationally inexpensive compared to region growing. 

Better segmentations are also achieved. Calculation of the breast tissue relative area 

using integration leads to confirmation of similar findings by Scutt [82][83], the 

relationship between asymmetry factors and eventual cancer development. The non- 

scaling measure of asymmetry described in section 5.3.1 produced only cancer 

developing cases with more than a difference of 11,000. 

Pattern feature extraction method using high pass filtering and the QTD 

algorithm (section 5.4) although highly sensitive and accurate is slow and 

computationally expensive. This asymmetry feature is not used in further processing 

by neural networks. 

Further investigation into asymmetry analysis can include the use of Fractional 

Dimensions [72] as a measure difference in of 'roughness' of the grey scale image 

considered in three dimensions, although for images of such a high pixel number this 

can be computationally expensive. 
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8.2 Multi Layer Perceptron Development 

Regular twelve fold validation in section 6.3.1 demonstrates the MLP did not learn. 

Figure 6.3.15 gives a large overlap of the validation outputs of the two classes and is 

echoed by the Receiver Operator Curve in figure 6.3.16 which is has no significant 

curvature with respect to the diagonal. The log likelihood error value during training, 

in both training and validation sets oscillates with a gradual decrease in oscillation 

amplitude over number of epochs and no consistent convergence is obtained. 

In the case of the MLP using altered ordinal inputs described in section 6.2.1 

the histogram of the validation outputs have less overlap (fig. 6.3.29) with respect to 

the outputs obtained from the MLP with no alteration in input. Again the Receiver 

Operator Curve (fig. 6.3.30) still did not show any significant deviation from the linear 

diagonal however does deviate more than the ROC obtained from the MLP with no 

input alteration. This is quantified by the calculation of the area under the ROC curve 

shown in table 8.1.1. 

The addition of missing data inputs corresponding to family history, thus 

increasing the training set to 852 patterns, increased the output overlap. This lead to a 

reduced deviation from the ROC diagonal in comparison to both regular MLP twelve 

fold cross validation with and without altered ordinal inputs. 

Area Under ROC for Regular 
MLP 

Area Under ROC for MLP with 
altered ordinal inputs 

Area Under ROC for MLP with 
missing d 

0.5614 0.5908 0.5198 

Table 8.1.1 Areas under ROC curves. 
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Multi Laver Perceptron with these configurations and data set does not prove to be all 

adequate classifier. The alteration of the binary ordinal inputs into a distribution based 

real number scheme indicates that further pre-processing may produce improved 

results. The possibility of pre processing of categorised binary inputs with knowledge 

of similarities between the categories can be introduced in further work. 

8.3 Conic Section Function Network Development 

The training pci-l'ormance for the CSF network with this configuration and data set 

proved to be non convergent in the majority of validation sets in the twelve fold cross 

validation (figurcs 6.4.4 to 6.4.10). The initial LITI value for both validation and 

training set is value set by the OLS initiation procedure in figures 6.4.2 to 6.4.13, The 

EBP phase created an increase in LIA' which did not coiivcrgc in most instances. For 

this data set using CSF networks with this configuration are not trainable. The area 

under the ROC curve for the CSF net\, \ork is 0.5746. 
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8.4 Genetic Algorithm 

The Algorithm shown in figure 7.6.4 based on the successful convergence of the 

second test algorithm (figure 7.6.3) encodes CSF network parameters can is tested. 

Figure 7.6.5 shows convergence in the desired direction however the fitness function 

of this trial does not reach realistic SSE values for satisfactory training. 

Variations such as multiple point crossover and non uniform mutation does not 

improve the performance of the algorithm. In summary the best performing operators 

are elitist selection, uniform mutation and single point random crossover. This 

evolutionary method is found to be very slow and yielded poor performance. 

Further investigation into this method can involve the adaptation of the genes from 

real to a set number of discrete values. This may have the effect increasing the pace of 

the algorithm by forcing the search to 'jump' to fixed points in the search space 

created by discrete genes. 
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Abstract 

Asymmetry is a well-known phenotypic indicator for developmental stability. This paper demonstrates 

methods for measuring asymmetry of breasts using digitised mammograms. Although diagnosis of 

cancer was not given to any of the mammograms used at the time of mammography, eventual 

development did occur in half of the set. The relationship between cancer and volume asymmetry has 

been demonstrated previously. This paper follows on to introduce accurate area calculation and shape 

comparison methods. 
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Introduction 

Humans, in common with most other vertebrates, show bilateral symmetry in paired morphological 

traits such as ear size, digit length and breast volume. Perfect symmetry may be disturbed by a number 

of intrinsic and extrinsic factors including the secretion of hormones such as ocstrogcn [5][6]. The 

small deviations from perfect symmetry which result from such factors are termed fluctuating 

asymmetry (FA). FA is a well established biological measure of developmental stability, and is one of 

many issues at the interface between biology and medicine which offer valuable information at the 

whole organism level. Such comprehensive information is a concept familiar to, and frequently used by 

biologists, but often ignored in medicine. 

FA tends to be greater in sexually selected traits, such as breasts than non-sexually selected characters 

[9][4]. The former are more liable to be disrupted during development because they are generally 

elaborate in design and are therefore highly susceptible to mutation [7][8]. Moller et al [11] found that 

large breasts had more FA than small breasts, breast FA was higher in nulliparous women, and that 

breast FA was a predictor of fecundity. The large between-individuals differences in size and 

asymmetry of breasts could be indicative of differences in developmental stability, and possibly disease 

predisposition. Breast volume FA, as measured from mammograms, is related to several of the known 

risk factors for breast cancer [5][6] and patients with breast cancer have higher breast FA than age- 

matched healthy women [ 121. 
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Methodologies 

This was a retrospective study on women who had volunteered for nianinio,, rapll% tile perio(I 

1978-1998 in the Liverpool study on breast cancer risk factors 131. '. --, oiiie 12.900 %koluell llndCf. %%Clll 

mammography during this period, and those who NNere disease-fi-ec at that time but had , tlh. ýcqjlcn1jý 

gone on to develop breast cancer during the intervening 22 \cars to date \%ci-c Identified h\ a data- 

match exercise with records from the North West Cancer Rc,, istt-\. 

Standard and non-standard image specific processing techniques 11-11 are cinplo\c(i I'or tile c\11-action 

of features significant to FA. In Scull ef al, 1121 difference it, volunic N\as evaluate(] flor FA h\ %ýa\ of' 

parabolic approximation using the base lenoth and maximum \%idth of' \ic\% 

rnammograms. This study focuses on area and shape differences also US1111,1 (TOM . O-COIldill 

nianinlograms. 

Part 1: Image segmentation. 

Fach image contains sections that are irrelevant to this study. such as background radiation. name tiu--, 

lefi right indicators and se-gments prodUCed firorn the digitisation process. After the inspcction of' thc 

images and its grey level cross sections, constant characteristics and paranicters NNcre found. Fil-Urc 2 

original 
image 

Fig I 
Ti TLT)IL1I 

below shows the grey levels of a horizontal cross section ofthc mmoc bct'ol"c scollIcIllillioll ill I II-Lll-C 1. 

White is represented as 255 and black at 0. 
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The characteristics of the cross section in fig. 2 were found to be typical among the images and a rule- 

based algorithm specific to images with such cross sections was established. The algorithm identified 

tissue pixels from pixels in the image that are outside of the breast. From left to right the algorithm 

checked each pixel in each row of the image. Once the levels dropped to that of the minimum, which 

was always found to be that of the background radiation, the process halts and proceeds to the next 

row. This gave rise to segmented images of breast tissue as shown in Fig 1. 

Part 2: Curve fitting and Area Calculation. 

After segmentation the FA features can be extracted. Using the co-ordinates of the pixels at the curved 

edge of the segmented image a 6th order polynomial is best fitted to those pixels using a standard linear 

regression method. For the straight edge of the breast area, a straight line is fitted using two points at 

that edge. The area of the encompassed section is calculated by integration. The area under the 

polynomial (coefficients a to g) is calculated, using the two crossover points jej and x2 with the fitted 

line as the limits (eqn I). 
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eqn. I 

Relative area difference is then calculated from the area dill'erence aniong, pairs (iIN I(Ic(l 1)\ Ilic till, ()t- 

the areas. 

Part 3: Shape Similarity Measures. 

Various complex measures 11or similarity between two shapes exist 11. Measures obtained fron, 

isomorphic algorithms for two-dimensional shapes [2] are often used. The nicasure in this studý is tile 

morphological translation of 100 points from one polynomial to another. In tile case of the images in 

this study the variant attribute is represented by tile relative positions between the CLjr%ed and strah-, lit 

edge of the segmented image. All of the images have crossover points (used as limits of integration in 

part 1). The vertical distance between these points is used to identitN 100 equalk spaced sample points 

(including the crossover points). This algorithm starts bý mapping tile 10\\CSI of these points to tile 

origin (both curves). The Euclidean distance between tile remaining points oil both curves can then be 

calculated. The surnination of these distances gives an overall measure. 

I -i g4 

0 sample point 

translation vector 
left and riuht 
C LitA C's 

ori-in 123 



However this is not a pure representation of shape as it is influenced by the curve size. Using the 

maximum widths, each curve is scaled (maximum equals 1) in the horizontal direction. Scaling in the 

vertical direction is achieved by simply discounting the vertical element of the translation vector 

thereby assuming that all sample points are at equal vertical intervals. The summation of the horizontal 

differences of the 100 points is then calculated. 

Two measures are obtained: 

1. Non-scaled shape differences between curve pairs. (size depcndant). 

2. Scaled shape differences between curve pairs. (size independent). 

Results 

The following histograms (Fig. 5,6,7) present the results for a test batch of approximately 200 pairs of 

mammograms. At the time of mammography no diagnosis of cancer had been made. Subsequently half 

of the sample developed breast cancer (labelled cancer on figures) and the rest have not in the 

intervening 22 years. The number of occurrences is plotted against intervals of ascending FA with the 

lower limit inclusive to the interval. 

Relative Area Difference 
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'4 
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I 

'i 

LE 

i 

-Ilf-l lu in 
relative area difference (IOxE. 2) 

Fi- 5 

on"l) w-1 

D, xý , 

in accordance with Nvell-understood principles on pre-dispositions 1121. FA is more preýalcnt ill 

the cancer sets. A comparison of this prevalence bemeen the three different measure,, of FA call be 

made. The most notable beino the non scaled difference for shape similaritN (Fig. 7). 1 he contrast 

between the cancer and non-cancer sets for scaled difference (Fig, 6) is not as ,, real as the feature,., that 

are influenced by breast size (relative area and non scaled difference). Iligh sýnujletrý is also preýjllcrlt 

in all cases althow, h a minimum level of asymmetry exists for the measures based on shape. I'llis is not 

found in relative area difference. 
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Scaled Shape Difference 
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Sciat et a/ [121 dernonstrated predisposition trends usim, diftere in \0111111C. HIC 11MISUres in the lice I 

above figures show similar results and give , rounds for such versions ot- FA to he imestigated on a 

larger scale. 
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Conclusion 

Three new measures of breast asymmetry have been developed using image processing techniques. 

These have been tested on a database of mammograms and the relationship between high asymmetry 

and predisposition to breast cancer, previously identified by Scutt et al [12], has been confirmed. The 

methods presented are fast and computationally inexpensive strategies for measuring asymmetry. 
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Appendix B 



MATLAB CODES 

CREATE DATA CODE 

targets=zeros(564,2); 

for i=1: 564 
if caorno(i)==l 

targets(i, l)=0.9; 
targets(i, 2)=0.1; 

else 
targets(i, l)=0.1; 
targets(i, 2)=0.9; 

end 
end 

%vol=[rvol lvol]; 

relvol=zeros(564,1); 

for ii=1: 564 
difftemp=(rvol(ii)-lvol(ii)); 
sumtemp=(rvol(ii)+lvol(ii)); 
relvol(ii)=(sqrt((difftemp)^2))/sumtemp; 

end 

fh=zeros(564,4); 

for iii=1: 564 
if famhis(iii)==O 

fh (iii, 1) =1; 
else 

if famhis(iii)==l 
fh(iii, 2)=l; 

else 
if famhis(iii)==2 

fh (iii, 3) =1; 
else 

fh(iii, 4)=l; 
end 

end 
end 

end 

lpch=zeros(564,4); 

for iii=1: 564 
if lparench(iii)==l 

lpch(iii, l)=I; 
else 

if lparench(iii)==2 
lpch(iii, 2)=l; 

else 
if lparench(iii)==3 

lpch(iii, 3)=l; 
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else 
lpch (iii, 4) =1; 

end 
end 

end 
end 

rpch=zeros(564,4); 

for iii=1: 564 
if rparench(iii)=-l 

rpch(iii, l)=l; 
else 

if rparench(iii)==2 
rpch (iii, 2) =1; 

else 
if rparench(iii)==3 

rpch (iii, 3) =1; 
else 

rpch (iii, 4) =1; 
end 

end 
end 

end 

agm=zeros (564,6) ; 

for iii=1: 564 
if ageatmen(iii)<=ll 

agm (iii, 1) =1; 
else 

if ageatmen(iii)==12 
agm (iii, 2) =1; 

else 
if ageatmen(iii)==13 

agm (iii, 3) =1; 
else 

if ageatmen(iii)==14 
agm(iii, 4)=l; 
else 

if ageatmen(iii)==15 
agm(iii, 5)=l; 
else 

agm (iii, 6) =1; 
end 

end 
end 

end 
end 

end 
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Area 

%%%%%%% Find crossover points of curve and line for limits of 
Intergration%%%%%% 
limit=size(yyyy); 
hlimit=limit/2; 

lim=limit(2); 

halflimitemp=hlimit(2); 
halflim=round(halflimitemp); 

for count=l: halflim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydi 

ffSA 2); 
end 

%IA=find(sqydiffs==min(sqydiffs)); 
IA=126; 
for count=halflim: lim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydiffs^2); 
end 

sqydiffslatter=sqydiffs(halflim: lim); 
IBtemp=find(sqydiffslatter==min(sqydiffslatter)); 

IB=IBtemp+(halflim-1); 

%%Mcalculate area under curve%%%%%%%%%%%%% 

syms intx; 

curvearea=int(((curve(l)*intx^6)+(curve(2)*intx^5)+(curve(3)*intx"4)+ 
(curve(4)*intXA 3)+(curve(5)*intx^2)+(curve(6)*intx)+(curve(7))), intx, 
IA, IB); 

%%%%Mcalculate area under line%%%%%%%%%%%%%%%%%% 

syms intxx; 

linearea=int((mm*intxx)+cc, intxx, IA, IB); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

breastarea=curvearea-linearea; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp(larea='); 
disp(breastarea); 

disp('Coeff7=1); 
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disp(curve(l)); 

disp('Coeff6=1); 
disp(curve(2)); 

disp('Coeff5=1); 
disp(curve(3)); 

disp('Coeff4=1); 
disp(curve(4)); 

disp('Coeff3=1); 
disp(curve(5)); 

disp('Coeff2=1); 
disp(curve(6)); 

disp('Coeffl='); 
disp(curve(7)); 

Region Growing 

% region growing algorithm 

openadavies; 
initi=700; 
initj=700; 
maxdiff=5; 

%figure; 

%axis([O 1460 0 17521); 
%hold on; 

t=l; 
stack(t)=mamm(initi, initj); 
stacksize=size(stack); 
coordstack(t, l)=initi; 

coordstack(t, 2)=initj; 
i=initi; 
j=initj; 

while t<=stacksize(2) 

flags = zeros(1,8); 

if mamm(i+l, j-l)>=90 
if mamm(i+l, j-l)<=250 

flags(l)=l; 
end 

end 
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if mairn(i+l, j)>=90 
if mamm(i+l, j)<=250 

flags(2)=l; 
end 

end 

if mamm(i+l, j+l)>=90 
if mamm(i+l, j+l)<=250 
flags(3)=l; 

end 
end 

if mamm(i, j+l)>=90 
if mamm(i, j+l)<=250 
flags(4)=l; 

end 
end 

if mamm(i-l, j+l)>=90 
if mamm(i-l, j+l)<=250 
flags(5)=l; 

end 
end 

if mamm(i-l, j)>=90 
if mamm(i-l, j)<=250 
flags(6)=l; 
end 

end 

if mamm(i-l, j-l)>=90 
if mamm(i-l, j-l)<=250 
flags(7)=l; 
end 

end 

if mamm(i, j-l)>=90 
if mamm(i, j-l)<=250 

flags(8)=l; 
end 

end 

if flags(l)==l 
coords=[i+l, j-11; 
flagcheck=ismember(coords, coordstack, lrows'); 

if flagcheck==O 

stacksize=size(stack); 
stack(stacksize(2)+l)= mamm(i+l, j-1); 
coordstacksize=size(coordstack); 
coordstack((coordstacksize(l))+1,1)=(i+l); 
coordstack((coordstacksize(l))+1,2)=(j-1); 

% disp(lnl'); 
end %if 

end 
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if flags(2)==l 
coords=(i+l, j]; 
flagcheck=ismember(coords, coordstack, lrows'); 

if flagcheck==O 

stacksize=size(stack); 
stack(stacksize(2)+l)= mamm(i+l, j); 
coordstacksize=size(coordstack); 
coordstack((coordstacksize(l))+1,1)=(i+l); 
coordstack((coordstacksize(l))+1,2)-(j); 

% disp('n2'); 
end %if 

end 

if flags(3)==l 
coords=[i+l, j+ll; 
flagcheck=ismember(coords, coordstack, lrows'); 

if flagcheck==O 

stacksize=size(stack); 
stack(stacksize(2)+l)= mamm(i+l, j+l); 
coordstacksize=size(coordstack); 
coordstack((coordstacksize(l))+1,1)=(i+l); 
coordstack((coordstacksize(l))+1,2)=(j+l); 

% disp(ln3l); 
end %if 

end 

if flags(4)==l 
coords=[i, j+ll; 
flagcheck=ismember(coords, coordstack, 'rows'); 

if flagcheck==O 

stacksize=size(stack); 
stack(stacksize(2)+l)= mamm(i, j+l); 

coordstacksize=size(coordstack); 
coordstack((coordstacksize(l))+1,1)=(i); 
coordstack((coordstacksize(l))+1,2)=(j+l); 
%disp(ln4l); 

end %if 
end 

if flags(5)==l 
coords=[i-l, j+ll; 
flagcheck=ismember(coords, coordstack, lrows'); 

if flagcheck==O 

stacksize=size(stack); 
stack(stacksize(2)+l)= mamm(i-l, j+l); 
coordstacksize=size(coordstack); 
coordstack((coordstacksize(l))+1,1)=(i-l); 
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coordstack((coordstacksize(l))+1,2)=(j+l); 
% disp('n5l); 

end %if 
end 

if flags(6)==l 
coords=[i-l, j]; 
flagcheck=ismember(coords, coordstack, lrows'); 

if flagcheck==O 

stacksize=size(stack); 
stack(stacksize(2)+l)= mamm(i-l, j); 
coordstacksize=size(coordstack); 
coordstack((coordstacksize(l))+1,1)=(i-l); 
coordstack((coordstacksize(l))+1,2)=(j); 

% disp(ln6l); 

end %if 
end 

if flags(7)==l 
coords=[i-l, j-11; 
flagcheck=ismember(coords, coordstack, lrows'); 

if flagcheck==O 

stacksize=size(stack); 
stack(stacksize(2)+l)= mamm(i-l, j-1); 
coordstacksize=size(coordstack); 
coordstack((coordstacksize(l))+1,1)=(i-l); 
coordstack((coordstacksize(l))+1,2)=(j-1); 

% disp(ln7'); 

end %if 
end 

if flags(8)==l 
coords=[i, j-11; 
flagcheck=ismember(coords, coordstack, lrows'); 

if flagcheck==O 

stacksize=size(stack); 
stack(stacksize(2)+l)= mamm(i, j-1); 

coordstacksize=size(coordstack); 
coordstack((coordstacksize(l))+1,1)=(i); 
coordstack((coordstacksize(l))+1,2)=(j-1); 

% disp('n8l); 

end %if 
end 

disp(stacksize); 
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t=t+i; 
i=coordstack(t, l); 
j=coordstack(t, 2); 

%plot(coordstack(:, 2), coordstack(:, l), Ik. 1); 

end %while 

area=(stacksize(2)+l); 
area 
showfill; 

Flitering and Smoothing 

% Create desired frequency response 
order=20; 
cutoff=0.0001; 
(fl, f2l = freqspace(order, lmeshgrid'); 
d find(fl. ^2+f2. ^2 < cutoff^2); 
Hd zeros(order); 
Hd(d) = 1; 
Hd = 1-Hd; %hipass 

h= fsamp2(Hd); 

filtimage=filter2(h, av); 

f igure; 
colormap(flag); 
imagesc(filtimage); 

% smoothing by 2D median averaging, neighbourhood 10 by 10 for use 
after enhance2!!!!!!!!!!!! 

fav=medfilt2(filtimage, [10 10j); 

fav2=zeros(1384,1460); 

for ccl=1: 1384 
for cc2=1: 1460 

if fav(ccl, cc2)>=l 
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fav2(ccl, cc2)=O; 
else 

fav2(ccl, cc2)=l; 
end 

end 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Conversion from Scan Dat File into Matix 

% covert dat string into matrix. 

fid = fopen ('Idoylel. datl, lrl); 

a=fread(fid); 
status=fclose(fid); 
mamm=zeros(1752,1460); 

for c=1: 1752 
b=a((((c-l)*1460)+l): (c*1460)); 
e=bl; 
mamm(c,: )=e; 

end 

Curve Fitting 

%%%%%%%%% CURVE FITTING LINEAR REGRESSION ALGORTIHM (version 2) 
% and show plot with image 

szcol=size(curvecols); 
maxnumcol=szcol(2); 

%Mfind upper point on curve 
uplevel=min(curvecols(1: 699)); 
Iup=find(curvecols(1: 699)==uplevel); 
Iupmax=max(Iup); 

uptol=uplevel+100; 

cca=699; 

while curvecols(cca)>=uptol 
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upperpoint=cca; 
cca=cca-1; 

end 

%uppercurve=find(curvecols(Iupmax: 699)>uptol); 
%upperpoint=min(uppercurve); 

%%%%%%find lower point on curve 

lowlevel=min(curvecols(700: maxnumcol)); 
Ilow=find(curvecols(700: maxnumcol)==lowlevel); 

ilow=(Ilow+699); 
Ilowmin=min(Ilow); 
lowtol=lowlevel+100; 

ccc=700; 

while curvecols(ccc)>=lowtol 
lowerpoint=ccc; 
ccc=ccc+l; 

end 

%lowercurve=find(curvecols(700: Ilowmin)>Jowtol); 
%lowerpoint=max(lowercurve); 
%lowerpoint=lowerpoint+699; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

curve=polyfit((upperpoint: lowerpoint), curvecols(upperpoint: lowerpoint 
), 4); 

yy=polyval(curve, l: maxnumcol); 

axis ij; 
colormap(gray); 
hold on; 
showseg; 
plot(yy, l: maxnumcol, lrl) 

Segmentation 

% segmetantion heuristic method version 2 

%identify highest row of lower black section 

gradblack=gradient(mamm(:, 1460)); 
mingradblack=min(gradient(mamm(:, 1460))); 
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Iblack=find(gradblack==mingradblack); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%tt 

%find minimum of gradients at rows = 300 and 900 

grada=gradient(mamm(300,: )); 
gradb=gradient(mamm(900,: )); 

mingrada=min(gradient(mamm(300,: ))); 
mingradb=min(gradient(mamm(900,: ))); 

IA=min(find(grada==mingrada)); %%%%%% 
IB=min(find(gradb==mingradb)); %to make dy and dx same dimension - 
added 27/11/00 

dy=-600; 

dx=IA-IB; 

if dx==O; 

for r=l: Iblack 
edgecols(l, r)=IA; 

end 
else 

m= (dy/dx) ; 

c=(300-(m*IA)); 

edgecols=zeros(I, Iblack); 

for r=I: Iblack 
edgecols(l, r)=((r-c)/m); 

end 
end 

rdgecols=round(edgecols); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%find grey level of radiation. using row= 700 

radiation=min(mamm(700,: )); %%%% 

temp=min(mamm(:,: )'); 
temp_ýnax=max(temp(l: Iblack)); 

tolerance=temp_ýnax+1; 

size(temp); 
rad=ones(l, ans(2))*(radiation+15); %%%% 
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rad_new=max(temp', rad'); 

rad_new=rad_new+l; %%%%%% test 

for counter=l: Iblack 

mammrowtemp=mamm(counter, (rdgecols(counter)): 1460); 

Iradbits=find(mammrowtemp<rad 
- 

new(counter)); %%%% 
Iradbits=(Iradbits+((rdgecols(l, counter)-l))); 
check=isempty(Iradbits); 
if check==l; 

curvecols(counter)=rdgecols(counter); 
else 

curvecols(counter)=min(Iradbits); 

end 

end 
Compare Shape 

clear 
load jtinslel 
load jtinsle2 

nslicel=zeros(2,101); 
nslice2=zeros(2,101); 

shiftl=slicel(:, I); 
shift2=slice2(:, l); 

for i=1: 101 
nslicel(:, i)=slicel(:, i)-shiftl; 
nslice2(:, i)=slice2(:, i)-shift2; 

end 

maxl=max(slicel(2,: )); 
max2=max(slice2(2,: )); 

for i=1: 101 
nslicel(2, i)=slicel(2, i)/maxl; 
nslice2(2, i)=slice2(2, i)/max2; 

end 

for iii=1: 101 
nsliceflip(iii)=nslice2(2,102-iii); 
end 

hold on 
plot(nslicel(2,: ), nslicel(l,: )); 
plot(nslice2(2,: ), nslice2(1,: ), Irl); 
plot(nsliceflip, nslice2(1,: ), Igl); 

ysl=(nslicel(2,: ))-(nsliceflip); 
for ii=1: 101 

ysl(ii)=sqrt((ysl(ii))^2); 
end 

sumysl=sum(ysl); 
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save jtinslescaledistflip sumysl 
disp(sumysl) 

%%%%%%%%%%% find 100 shape coordinates on curve %%%%%%%% 

Mload image******* 
clear 
fid = fopen ('Vtrubyl. datl, lrl); 
a=f read (f id) ; 
status=fclose(fid); 
mamm=zeros(1752,1460); 

for c=1: 1752 
b=a((((c-l)*1460)+l): (c*1460)); 
e=b'; 
mamm(c,: )=e; 

end 
%%%%%%%%%%%%%%%%%%%%%% 

segf it2; 

limit=size(yyyy); 
hlimit=limit/2; 

lim=limit(2); 

halflimitemp=hlimit(2); 
halflim=round(halflimitemp); 

for count=l: halflim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydi 

ffSA 2); 
end 

topmin=min(sqydiffs); 
JA=find(sqydiffs==min(sqydiffs)); 

for count=halflim: lim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydiffs"2); 
end 

sqydiffslatter=sqydiffs(halflim: lim); 
IBtemp=find(sqydiffslatter==min(sqydiffslatter)); 
botmin=min(sqydiffslatter); 
JB=IBtemp+(halflim-1); 

M%Mcrossover check %%%%%%% 

if (topmin<2)&(botmin<2); 
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tipdiff=JB-JA; %difference in vertical x over points 

slicesize=tipdiff/100; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for slicenum=1: 101 
xslice(slicenum)=JA+(slicesize*(slicenum-1)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

yslice=polyval(curve, xslice); 

save Xslice xslice 

save Yslice yslice 

else 

disp(lbad fit! initiating curve fit with order 4 points'); 

if topmin<2; 
showcurve2pluslo; 
disp('adding ord 4 lower'); 
showline; 

else 
if botmin<2; 

showcurve2plushi; 
disp(ladding ord 4 upper'); 
showline; 

else 
showcurve2plus; 
disp(ladding ord 4 both'); 
showline; 

end 
end 

%%%%%%% Find crossover points of curve and line for limits of 
Intergration%%%%%% 
limit=size(yyyy); 
hlimit=limit/2; 

lim=limit(2); 

halflimitemp=hlimit(2); 
halflim=round(halflimitemp); 

for count=l: halflim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydi 

ffSA 2); 
end 
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%topmin=min(sqydiffs); 
sqydiffslower=sqydiffs(l: halflim); 
JA=find(sqydiffslower==min(sqydiffslower)); 

for count=halflim: lim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydiffs^2); 
end 

sqydiffslatter=sqydiffs(halflim: lim); 
IBtemp=find(sqydiffslatter==min(sqydiffslatter)); 
%botmin=min(sqydiffslatter); 
JB=IBtemp+(halflim-1); 

%%%%%%%%%%%%%%%%%%% 

tipdiff=JB-JA; %difference in vertical x over points 

slicesize=tipdiff/100; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for slicenum=1: 101 
xslice(slicenum)=JA+(slicesize*(slicenum-1)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

yslice=polyval(curve, xslice); 

save Xslice xslice 

save Yslice yslice 

end 

clear 

Mload next image******* 

fid = fopen ('Vtrubyr. datl, lrl); 
a=fread(fid); 
status=fclose(fid); 
mamm=zeros(1752,1460); 

for c=1: 1752 
b=a((((c-l)*1460)+J): (c*1460)); 
e=bl; 
mamm(c,: )=e; 

end 
%%%%%%%%%%%%%%%%%%%%%% 

segf it2; 

limit=size(yyyy); 

144 



hlimit=limit/2; 

lim=limit(2); 

halflimitemp=hlimit(2); 
halflim=round(halflimitemp); 

for count=l: halflim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydiffs^2); 
end 

topmin=min(sqydiffs); 
JA=find(sqydiffs==min(sqydiffs)); 

for count=halflim: lim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydiffs^2); 
end 

sqydiffslatter=sqydiffs(halflim: lim); 
IBtemp=find(sqydiffslatter==min(sqydiffslatter)); 
botmin=min(sqydiffslatter); 
JB=IBtemp+(halflim-1); 

%%%%%%%%%%%%%%%%%%% 
M%Mcrossover check %%%%%%% 

if (topmin<2)&(botmin<2); 

tipdiff=JB-JA; %difference in vertical x over points 

slicesize=tipdiff/100; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for slicenum=1: 101 
xslice2(slicenum)=JA+(slicesize*(slicenum-1)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

yslice2=polyval(curve, xslice2); 

save Xslice2 xslice2 

save Yslice2 yslice2 

%%%%%%%%%%ý%%%%%%ý%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 

else 

disp(lbad fit! initiating curve fit with order 4 points'); 

if topmin<2; 
showcurve2pluslo; 
disp(ladding ord 4 lower'); 
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showline; 

else 
if botmin<2; 

showcurve2plushi; 
disp('adding ord 4 upper'); 
showline; 

else 
showcurve2plus; 
disp(ladding ord 4 both'); 
showline; 

end 
end 

%%%%%%% Find crossover points of curve and line for limits of 
Intergration%%%%%% 
limit=size(yyyy); 
hlimit=limit/2; 

lim=limit(2); 

halflimitemp=hlimit(2); 
halflim=round(halflimitemp); 

for count=l: halflim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydiffs^2); 
end 

%topmin=min(sqydiffs); 
sqydiffslower=sqydiffs(l: halflim); 
JA=find(sqydiffslower==min(sqydiffslower)); 

for count=halflim: lim 
ydiffs=yyyy(count)-yy(count); 
sqydiffs(count)=sqrt(ydi ffSA 2); 
end 

sqydiffslatter=sqydiffs(halflim: lim); 
IBtemp=find(sqydiffslatter=--min(sqydiffslatter)); 
%botmin=min(sqydiffslatter); 
JB=IBtemp+(halflim-1); 

%%%%%%%%%%%%%%%%%%% 

tipdiff=JB-JA; %difference in vertical x over points 

slicesize=tipdiff/100; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for slicenum=1: 101 
xslice2(slicenum)=JA+(slicesize*(slicenum-1)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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yslice2=polyval(curve, xslice2); 

save Xslice2 xslice2 

save Yslice2 yslice2 

end 

load xslice 

load yslice 

slicel=[xslice; yslice]; 

slice2=[xslice2; yslice2l; 

%ysltemp=yslice-yslice2; 

%xsltemp=xslice-xslice2; 

%for c=1: 101 
%ysl(c)=sqrt((ysltemp(c))^2); 
%xsl(c)=sqrt((xsltemp(c) )A 2); 

%end 

%sumysl=sum(ysl); 
%sumxsl=sum(xsl); 

save Vtrubyl slicel 

save Vtruby2 slice2 

Genetic Algorithm 

% test function CSF neural network SSE of 75 samples from Iris 
database 
% best are smaller SSE values 
% all chomosome numbers between -5 and 5 

%target =0; 
irisdata; 
p=(inpatterns(1: 75,: )),; 
pop=((rand(10,81)-o. 5)*j0); 
gen=l; 

while gen <=50000 

%for i=1: 10; 
%fitness(i)=sum(pop(i,: )); 

%end 
%%%%%%%% nnet translation and fitness %%%%%%%%%% 

for z=1: 10; 
wllong=pop(z, 1: 24); 
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clong=pop(z, 25: 48); 
omlong=((((pop(z, 49: 54))+5)*0.1)*(pi)); 
bllong=pop(z, 55: 60); 
w2long=pop(z, 61: 78); 
b2long=pop(z, 79: 81); 

wl=reshape(wllong, 6,4); 
c=reshape(clong, 6,4); 
bl=bllong'; 
om=omlong; 
w2=reshape(w2long, 3,6); 
b2=b2long'; 

[hiddenout, outoutl=simcon(c, p, wl, om, bl, w2, b2); 

sqdiffs=(targets(1: 75, : )_OUtoUtl). A 2; 

for zz=1: 75 
sse(zz)=sum(sqdiffs(zz,: )); 

end 

fitness(z)=l/(sum(sse)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
(kingfitness, king]=max(fitness); 

others=fitness; 
others(king)=[]; 

[queenfitness, queentemp]=max(others); 

for j=1: 10 
if fitness(j)==queenfitness 

queen=j; 
end 

end 

kingchromo=pop(king,: ); 
queenchromo=pop(queen,: ); 

ranuml=rand*81; 
ranum2=rand*81; 

if ranuml > ranum2 
xp2=ranuml; 
xpl=ranum2; 
else 

xp2=ranum2; 
xpl=ranuml; 

end 
rxpl=round(xpl); 
rxp2=round(xp2); 

andychromo=[kingchromo(l: rxpl) queenchromo(rxpl+l: rxp2) 
kingchromo(rxp2+1: 81)]; 
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eddychromo=[queenchromo(l: rxpl) kingchromo(rxpl+l: rxp2) 
queenchromo(rxp2+1: 81)]; 

mutantselectl=round(rand(1,81)*100); 
mutantselect2=round(rand(1,81)*100); 

for mutantcountl=1: 81 
if mutantselectl(l, mutantcountl)==50 

mutanttempl=andychromo(mutantcountl)+((rand(l, l)-0.5)*2); 
if mutanttempl <=5 

if mutanttempl >=-5 
andychromo(mutantcountl)=mutanttempl; 

end 
end 

end 
end 

for mutantcount2=1: 81 
if mutantselect2(l, mutantcount2)==50 

mutanttemp2=eddychromo(mutantcount2)+((rand(l, l)-0.5)*2); 
if mutanttemp2 <=5 

if mutanttemp2 >=-5 
eddychromo(mutantcount2)=mutanttemp2; 

end 
end 

end 
end 

%%%%%%%%next gen fitness eval for csf********** 

andywllong=andychromo(1: 24); 
andyclong=andychromo(25: 48); 
andyomlong=((((andychromo(49: 54))+5)*0.1)*(pi)); 
andybllong=andychromo(55: 60); 
andyw2long=andychromo(61: 78); 
andyb2long=andychromo(79: 81); 

andywl=reshape(andywllong, 6,4); 
andyc=reshape(andyclong, 6,4); 
andybl=andybllong'; 
andyom=andyomlong; 
andyw2=reshape(andyw2long, 3,6); 
andyb2=andyb2long'; 

[hiddenout, andyoutout]=simcon(andyc, p, andywl, andyom, andybl, andyw2, and 
yb2); 

sqdiffs=(targets(1: 75,: )-andyoutout') A 2; 

for zzz=1: 75 
sse(zzz)=sum(sqdiffs(zzz,: )); 

end 

andyfitness=l/(sum(sse)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

eddywllong=eddychromo(1: 24); 
eddyclong=eddychromo(25: 48); 
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eddyomlong=((((eddychromo(49: 54))+5)*0.1)*(pi)); 
eddybllong=eddychromo(55: 60); 
eddyw2long=eddychromo(61: 78); 
eddyb2long=eddychromo(79: 81); 

eddywl=reshape(eddywllong, 6,4); 
eddyc=reshape(eddyclong, 6,4); 
eddybl=eddybllong'; 
eddyom=eddyomlong; 
eddyw2=reshape(eddyw2long, 3,6); 
eddyb2=eddyb2long'; 

(hiddenout, andyoutout]=simcon(eddyc, p, eddywl, eddyom, eddybl, eddyw2, edd 
yb2); 

sqdiffs=(targets(1: 75,: )-andyoutout'). ^2; 

for zzz=1: 75 
sse(zzz)=sum(sqdiffs(zzz,: )); 

end 

eddyfitness=l/(sum(sse)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%andyfitness=sum(andychromo); 
%eddyfitness=sum(eddychromo); 

if andyfitness>=eddyfitness 

newkinglfit=andyfitness; 
newkingl=andychromo; 
newking2fit=eddyfitness; 
newking2=eddychromo; 

else 
newkinglfit=eddyfitness; 
newkingl=eddychromo; 
newking2fit=andyfitness; 
newking2=eddychromo; 

end 

if newkinglfit>=queenfitness 
if newking2fit>=kingfitness 

pop(king,: )=newkingl; 
pop(queen,: )=newking2; 

else 
if newkinglfit>=kingfitness 

pop(queen,: )=pop(king,: ); 
pop(king,: )=newkingl; 

else 
pop(queen,: )=newkingl; 

end 
end 

end 

newpoptemp=((rand(8,81)-0.5)*10); 
newpop=[newpoptemp; pop(king,: ); pop(queen,: )]; 
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pop=[ I; 
pop=newpop; 
%target=kingfitness; 
results(gen)=kingfitness; 
gen=gen+l; 

%hold on; 
%xlabel ('generations'); 
ýylabel ('fitness value'); 
%plot(1: 3908, results, lk. 1); 

%disp(gen); 
disp(kingfitness); 

end 

EBP 

function 
[wl, bl, w2, b2, w3, b3, i, tr]=tbpx3(wl, bl, fl, w2, b2, f2, w3, b3, f3, p, t, tp) 
%TBPX3 Train 3-layer feed-forward network w/fast backpropagation. 

% [Wl, Bl, W2, B2, W3, B3, TE, TRI 
TBPX3(Wl, B2, Fl, Wl, Bl, F2, W3, B3, F3, P, T, TP) 
% Wi - Weight matrix for the ith layer. 
% Bi - Bias vector for the ith layer. 
% Fi - Transfer function (string) for the ith layer. 
%P- RxQ matrix of input vectors. 
%T- SxQ matrix of target vectors. 
% TP - Training parameters (optional). 
% Returns: 
% Wi - new weights. 
% Bi - new biases. 
% TE - the actual number of epochs trained. 
% TR - training record: (row of errors) 

% Training parameters are: 
% TP(l) - Epochs between updating display, default 25. 
% TP(2) - Maximum number of epochs to train, default = 1000. 
% TP(3) - Sum-squared error goal, default = 0.02. 
% TP(4) - Learning rate, 0.01. 
% TP(5) - Learning rate increase, default = 1.05. 
% TP(6) - Learning rate decrease, default = 0.7. 
% TP(7) - Momentum constant, default = 0.9. 
% TP(8) - Maximum error ratio, default = 1.04. 
% Missing parameters and NaN's are replaced with defaults. 

% Mark Beale, 1-31-92 
% Revised 12-15-93, MB 

if nargin < ll, error('Not enough arguments. 1); end 

% TRAINING PARAMETERS 
if nargin == 11, tp = (]; end 
tp nndef(tp, [25 1000 0.02 0.01 1.05 0.7 0.9 1.04]); 
df tp(l); 

me tp(2); 

eg tp(3); 
ir tp(4); 
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im = tp (5) ; 
dm = tp (6) ; 
mc = tp (7) ; 
er = tp (8) ; 
dfl = feval(fl, 'delta'); 
df2 = feval(f2, 'delta'); 
df3 = feval(f3, 'delta'); 

dwl = wl*O; 
dbl = bl*O; 
dw2 = w2*0; 
db2 = b2*0; 
dw3 = w3*0; 
db3 = b3*0; 
MC = 0; 

% PRESENTATION PHASE 

al = feval(fl, wl*p, bl); 

a2 = feval(f2, w2*al, b2); 

a3 = feval(f3, w3*a2, b3); 

e= t-a3; 
SSE = sumsqr(e); 

% TRAINING RECORD 
tr = zeros(2, me+l); 
tr(1: 2,1) = [SSE; lr]; 

% PLOTTING FLAG 
(r, q] = size(p); 
[s, q] = size(t); 
plottype = (max(r, s) == 1) & 0; 

% PLOTTING 
newplot; 
message = sprintf(ITRAINBPX: %%g/%g epochs, lr = %%g, SSE 
%%g. \nl, me); 
fprintf(message, O, lr, SSE) 
if plottype 

h= plotfa(p, t, p, a3); 
else 

h= plottr(tr(1: 2,1), eg); 
end 

% BACKPROPAGATION PHASE 
d3 = feval(df3, a3, e); 
d2 = feval(df2, a2, d3, w3); 
dl = feval(dfl, al, d2, w2); 

for i=l: me 

% CHECK PHASE 
if SSE < eg, i=i-l; break, end 

% LEARNING PHASE 
(dwl, dbl] = learnbpm(p, dl, lr, MC, dwl, dbl); 
[dw2, db2] = learnbpm(al, d2, lr, MC, dw2, db2); 
[dw3, db3l = learnbpm(a2, d3, lr, MC, dw3, db3); 

MC = mc; 
new 

- 
wl = wl + dwl; new-bl = bl + dbl; 

new 
- 

w2 = w2 + dw2; new-b2 = b2 + db2; 

new-w3 = w3 + dw3; new b3 = b3 + db3; 

152 



% PRESENTATION PHASE 

new_al = feval(fl, new-wl*p, new-bl); 
new-a2 = feval(f2, new-w2*new-al, new-b2); 
new_a3 = feval(f3, new-w3*new-a2, new-b3); 
new-e = t-new-a3; 
new_SSE = sumsqr(new-e); 

% MOMENTUM & ADAPTIVE LEARNING RATE PHASE 
if new SSE > SSE*er 

lr = lr * dm; 
MC = 0; 

else 
if new SSE < SSE 

lr = lr * im; 
end 

wl = new 
- 

wl; bl = new_bl; al = new-al; 
w2 = new 

- 
w2; b2 = new-b2; a2 = new-a2; 

w3 = new 
- 

w3; b3 = new 
- 

b3; a3 = new-a3; 
e= new_e; SSE = new_SSE; 

% BACKPROPAGATION PHASE 
d3 = feval(df3, a3, e); 
d2 = feval(df2, a2, d3, w3); 
dl = feval(dfl, al, d2, w2); 

end 

% TRAINING RECORD 
tr(1: 2, i+l) = [SSE; 1r); 

% PLOTTING 
if rem(i, df) 0 

fprintf(message, i, lr, SSE) 
if plottype 

delete(h); 
h= plot(p, a3); 

else 
h= plottr(tr(1: 2,1: (i+l)), eg, h); 

end 
end 

end 

% TRAINING RECORD 
tr = tr(1: 2,1: (i+l)); 

% PLOTTING 
if rem(i, df) -0 

fprintf(message, i, lr, SSE) 
if plottype 

delete(h); 
plot(p, a3); 

else 
plottr(tr, eg, h); 

end 
end 

% WARNINGS 
if SSE > eg 

disp(I 1) 
disp(ITRAINBPX: Network error did not reach the error goal. ') 
disp(I Further training may be necessary, or try different') 
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disp(I initial weights and biases and/or more hidden neurons. ') 
disp(I 

end 

OLS 

function [wl, bl, w2, b2, k, tr] = solverb(p, t, tp) 
%SOLVERB Design radial basis network. 

% [Wl, Bl, W2, B2, TE, TR1 = SOLVERB(P, T, DP) 
%P- RxQ matrix of Q input vectors. 
%T- SxQ matrix of Q target vectors. 
% DP - Design parameters (optional). 
% Returns: 
% Wl - SlxR weight matrix for radial basis layer. 
% Bl - Slxl bias vector for radial basis layer. 
% W2 - S2xSl weight matrix for linear layer. 
% B2 - S2xl bias vector for linear layer. 
% NR - the number of radial basis neurons used. 
% TR - training record: [row of errors] 

% Design parameters are: 
% DP(l) - Iterations between updating display, default 25. 
% DP(2) - Maximum number of neurons, default =# vectors in P. 
% DP(3) - Sum-squared error goal, default = 0.02. 
% DP(4) - Spread of radial basis functions, default = 1.0. 
% Missing parameters and NaN's are replaced with defaults. 

% See also NNSOLVE, RADBASIS, SIMRB, SOLVERB. 

if nargin < 2, error('Not enough input arguments'), end 

% TRAINING PARAMETERS 
if nargin == 2, tp end 
(r, q] = size (p); 
tp = nndef(tp, [25 q 0.02 11); 
df = tp(l); 
eg = tp(3); 
b= sqrt(-log(. 5))/tp(4); 
[s2, q] = size(t); 

mn = min(q, tp(2)); 

% PLOTTING FLAG 
plottype = max(r, s2) 

% RADIAL BASIS LAYER OUTPUTS 
P radbas(dist(p', p)*b); 
pp sum(P. *P) 1; 
d t'; 
dd sum (d. *d) I; 

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS 
((PI * d) 1 . 1,2) ./ (dd * PPI); 

% PICK VECTOR WITH MOST "ERROR" 

pick = nnfmc(e); 
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used = [I ; 
left = 1: q; 
W= P(:, pick); 
P(:, pick) = PP(pick,: ) 

e(:, pick) = 
used = [used left(pick)]; 
left(pick) = []; 

% CALCULATE ACTUAL ERROR 
wl = P(:, used) '; 
al = radbas(dist(wl, p)*b); 
[w2, b2] = solvelin(al, t); 
a2 purelin(w2*al, b2); 

sse sumsqr(t-a2); 

% TRAINING RECORD 
tr = zeros(l, mn); 
tr(l) = sse; 

% PLOTTING 
newplot; 
if plottype 

h= plotfa(p, t, p, a2); 
else 

h= ploterr(tr(l), eg); 
end 

for k= 

% CHECK ERROR 
if (sse < eg), break, end 

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS 

wj = W(:, k); 

%---- VECTOR CALCULATION 

a= wjl *P (wjl*wj); 
P=P- wi a; 
PP = sum (P. P) I; 

%if any(any(PP == 0)) 
% disp('PP has a 01) 
% keyboard 
%end 

e= ((P' * d)' .^ 2) 
./ (dd * PPI); 

% PICK VECTOR WITH MOST "ERROR" 
pick = nnfmc(e); 
W= (W, P(:, pick)]; 
P(:, pick) = PP(pick,: ) 
e(:, pick) = 
used = [used left(pick)]; 
left(pick) = []; 

% CALCULATE ACTUAL ERROR 
wl = P(:, used)'; 
al = radbas(dist(wl, p)*b); 
[w2, b2j = solvelin(al, t); 

a2 purelin(w2*al, b2); 

sse sumsqr(t-a2); 
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% TRAINING RECORD 
tr(k+l) = sse; 

% PLOTTING 
if rem(k, df) == 0 

if plottype 
delete(h); 
h= plot(p, a2, lml); 
drawnow; 

else 
h= ploterr(tr(1: (k+1)), eg, h); 

end 
end 

end 

[Sl, R] = size(wl); 
bl = ones(Sl, l)*b; 

% TRAINING RECORD 
tr = tr(l: (k+l)); 

% PLOTTING 
if rem(k, df) -0 

if plottype 
delete(h); 
plot(p, a2,1m'); 
drawnow; 

else 
ploterr(tr, eg, h); 

end 
end 

% WARNINGS 
if sse > eg 

disp(' 1) 
disp(ISOLVERB: Network error did not reach the error goal. ') 
disp(I More neurons may be necessary, or try using a, ) 
disp(I wider or narrower spread constant. ') 
dispP 1) 

end 

Log likelihood error and weight decay 

function [wl, bl, w2, b2, i, tr)=tbp2llwd(wl, bl, fl, w2, b2, f2, p, t, tp) 
%TBP2 Train 2-layer feed-forward network w/backpropagation. 

% This function is obselete. 
% Use NNT2FF and TRAIN to update and train your network. 

nntobsf(Itbp2', 'Use NNT2FF and TRAIN to update and train your 
network. ') 
mu=0.001; 
% [WI, Bl, W2, B2, TE, TRI = TBP2(Wl, Bl, Fl, W2, B2, F2, P, T, TP) 
% Wi - SixR weight matrix of ith layer. 
% Bi - Sixl bias vector of ith layer. 
%F- Transfer function (string) of ith layer. 
%P- RxQ matrix of input vectors. 
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%T- S2xQ matrix of target vectors. 
% TP - Training parameters (optional). 
% Returns: 
% Wi - new weights. 
% Bi - new biases. 
% TE - the actual number of epochs trained. 
% TR - training record: (row of errors] 

% Training parameters are: 
% TP(1) - Epochs between updating display, default = 25. 
% TP(2) - Maximum number of epochs to train, default - 1000. 
% TP(3) - Sum-squared error goal, default = 0.02. 
% TP(4) - Learning rate, 0.01. 
% Missing parameters and NaNIs are replaced with defaults. 

% Mark Beale, 1-31-92 
% Revised 12-15-93, M. B. 
% Copyright (c) 1992-1998 by The MathWorks, Inc. 
% $Revision: 1.10 $ 

if nargin < 8, error('Not enough arguments. 1), end 

% TRAINING PARAMETERS 
if nargin == 8, tp = []; end 
tp = nndef(tp, [25 1000 0.02 0.01]); 
df = tp(l); 
me = tp(2); 
eg = tp(3); 
lr = tp(4); 
dfl = feval(fl, ldelta'); 
df2 = feval(f2, ldelta'); 
sumwl=sum(sum(wl)); 

sumw2=sum(sum(w2)); 

sumwý(sumwl+sumw2); 

wdec=(sumsqr(sumw))/2; 

% PRESENTATION PHASE 
al = feval(fl, wl*p, bl); 
a2 = feval(f2, w2*al, b2); 
e= t-a2; 
e2 =e+(mu*wdec); 
%e3 = e+l; 
LLE= sum((t. *log(a2))+((l-t). *log(l-a2))); 
LLE=sum(LLE); 
LLE=-LLE; 
LLE=LLE+(mu*wdec); 

%LLE=t(l,: ). *(log(a2(1,: ). /t(l,: ))); 
%LLEp2=t(2,: ). *(log(a2(2,: ). /t(2,: ))); 
%LLE=LLEpl+LLEp2; 
%LLE=sum(LLE); 
%LLE=-LLE; 

%LLE=LLE+(mu*wdec); 

% PLOTTING FLAG 
(r, q] size (p); 
[s2, q] size(t); 

plottype = max(r, s2) 
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% TRAINING RECORD 
tr = zeros (1, me); 
%tr(l) = LLE; 

% PLOTTING 
newplot; 
message = sprintf(ITRAINBP: %%g/%g epochs, LLE = %%g. \nl, me); fprintf(message, O, LLE) 

if plottype 
h= plotfa(p, t, p, a2); 

else 
h= ploterr2(tr(l), eg); 

end 

for cc=l: me 

% CHECK PHASE 
if LLE < eg, cc=cc-1; break, end 

% BACKPROPAGATION PHASE 

d2 = feval(df2, a2, e2); 
dl = feval(dfl, al, d2, w2); 

% LEARNING PHASE 
(dwl, dbl] = learnbp(p, dl, lr); 
(dw2, db2) = learnbp(al, d2, lr); 

wl = wl + dwl; bl = bl + dbl; 
w2 = w2 + dw2; b2 = b2 + db2; 

%%%%%VALIDATION%%%%%%% 

%[atl at2]=simuff(Ptest, W1, Bl, 'logsig', W2, B2, llogsigi); 

% PRESENTATION PHASE 
al = feval(fl, wl*p, bl); 
a2 = feval(f2, w2*al, b2); 
e= t-a2; 
e2 =e+(mu*wdec); 
%e3 e+l; 
%SSE sumsqr(e); 

sumwl=sum(sum(wl)); 
sumw2=sum(sum(w2)); 

sumw=(sumwl+sumw2); 

wdec2=(sumsqr(sumw))/2; 

%LLE=t(l,: ). *(log(a2(1,: ). /t(l,: ))); 
%LLEp2=t(2,: ). *(log(a2(2,: ). /t(2,: ))); 
%LLE=LLEpl+LLEp2; 
%LLE=sum(LLE); 
%LLE=-LLE; 

%LLE=LLE+(mu*wdec2); 
LLE= sum((t. *log(a2))+((l-t). *log(l-a2))); 
LLE=sum(LLE); 
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LLE=-LLE; 
LLE=LLE+(mu*wdec2); 

% TRAINING RECORD 
tr(cc+l) = LLE; 

% PLOTTING 
if rem(cc, df) == 0 
fprintf(message, cc, LLE) 
disp(wdec2); 
if plottype 

delete(h); 
h= plot(LLE, a2); 
drawnow; 

else 
h= ploterr2(tr(l: (cc+l)), eg, h); 

end 
end 

end 

% TRAINING RECORD 
tr = tr(l: (cc+l)); 

% PLOTTING 
if rem(cc, df) -0 

fprintf(message, cc, LLE) 
disp(wdec); 

if plottype 
delete(h); 
plot(LLE, a2); 
drawnow; 

else 
ploterr2 (tr, eg, h) 

end 
end 

% WARNINGS 
if LLE > eg 

disp(' 1) 
disp(ITRAINBP: Network error did not reach the error goal. ') 
disp(' Further training may be necessary, or try different') 
disp(I initial weights and biases and/or more hidden neurons. ') 
disp(' 

end 

Alteration of Ordinal Inputs 

%%%%%%%%%%%%%%%%%%%%%%%%%%% CONVERSION OF ORDINAL INPUTS INTO PDF 
CURVE %%%%%%%%%%%%%% 

i=l; 

for j=1: 517 
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for i=l: 6 
if P(i, j)==l 

peak=i; 
else 

end 
end 

xtemp=l: 6; 
gauss=normpdf(xtemp, peak, 0.5); 

P(1: 6, j)=gauss'; 

for k=7: 10 
if P(k, j)==l 

peak2= (k- 6) 
else 

end 
end 

xtemp=l: 4; 
gauss2=normpdf(xtemp, peak2,0.5); 

P(7: 10, j)=gauss2l; 

end 

for j=1: 47 

for i=1: 6 
if Ptest(i, j)==l 

peak=i; 
else 

end 
end 

xtemp=l: 6; 
gauss=normpdf(xtemp, peak, 0.5); 

Ptest(1: 6, j)=gauss'; 

for k=7: 10 
if P(k, j)==l 

pea k2= (k- 6) 
else 

end 
end 

xtemp=l: 4; 
gauss2=normpdf(xtemp, peak2,0.5); 

Ptest(7: 10, j)=gauss2l; 

end 
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12 Fold cross validation output and ROC curve calculation 

nntwarn off; 
scuttdata; 

outputs=zeros(564,2); 

-targets=zeros(564,1); 

for iiii=1: 564 
if caorno(iiii)==l 

targets(iiii)=0.9; 
%targets(iiii, 2)=0.1; 

else 
targets(iiii)=0.1; 
%targets(iiii, 2)=0.9; 

end 
end 

outputs(:, 2)=targets; 

relvol=zeros(564,1); 

for ii=1: 564 
difftemp=(rvol(ii)-lvol(ii)); 
sumtemp=(rvol(ii)+lvol(ii)); 
relvol(ii)=(sqrt((difftemp)^2))/sumtemp; 

end 

fh=zeros(564,4); 

for iii=1: 564 
if famhis(iii)==O 

fh (iii, 1) =1; 
else 

if famhis(iii)==l 
fh(iii, 2)=l; 

else 
if famhis(iii)==2 

fh (iii, 3) =1; 
else 

fh (iii, 4) =1; 
end 

end 
end 

end 

lpch=zeros(564,4); 
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for iii=1: 564 
if lparench(iii)==l 

lpch (iii, 1) =1; 
else 

if lparench(iii)==2 
lpch (iii, 2) =1; 

else 
if lparench(iii)==3 

lpch (iii, 3) =1; 
else 

lpch(iii, 4)=l; 
end 

end 
end 

end 

rpch=zeros(564,4); 

for iii=1: 564 
if rparench(iii)==l 

rpch(iii, l)=l; 
else 

if rparench(iii)==2 
rpch (iii, 2) =1; 

else 
if rparench(iii)==3 

rpch(iii, 3)=l; 
else 

rpch(iii, 4)=l; 
end 

end 
end 

end 

agm=zeros(564,6); 

for iii=1: 564 
if ageatmen(iii)<=Jl 

agm (iii, 
else 

if ageatmen(iii)==12 
agm (iii, 2) =1; 

else 
if ageatmen(iii)==13 

agm (iii, 3) =1; 
else 

if ageatmen(iii)==14 
agm (iii, 4) =1; 
else 

if ageatmen(iii)==15 
agm(iii, 5)=l; 
else 

agm (iii, 6) =1; 
end 

end 
end 

end 
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end 
end 

pl=zeros(564, I); 

for iii=1: 564 
if pill(iii)==l 

pl(iii)=O; 
else 

pl(iii)=I; 
end 

end 

%%%%%%%%%%%%%%5A%%. ý, % 1 to 47 section 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Ptest=zeros(20,47); 

agmxtest=agm(1: 47,: )'; 
fhxtest=fh(1: 47,: )'; 
lpchxtest=lpch(1: 47,: )'; 
rpchxtest=rpch(1: 47,: )'; 
relvolxtest=relvol(1: 47)1; 
plxtest=pl(1: 47,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load mlpO; 

[a, OutPutsll=simuff(Ptest, W1, Bl, 'logsig', W2, B2, llogsig'); 

outputsl=outputsll; 
outputs(1: 47,1)=outputsi; 

clear Wl Bl W2 B2; 
clear Ptest; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Ptest=zeros(20,47); 

agmxtest=agm(48: 94,: )'; 
fhxtest=fh(48: 94,: )'; 

163 



lpchxtest=lpch(48: 94,: )'; 
rpchxtest=rpch(48: 94,: )'; 
relvolxtest=relvol(48: 94)1; 
plxtest=pl(48: 94,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 47mlp; 

(a, c)utputsll=simuff(Ptest, W1, Bl, 'logsig', W2, B2, llogsigv); 

outputsl=outputsl'; 
outputs(48: 94,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Ptest=zeros(20,47); 

agmxtest=agm(95: 141,: )'; 
fhxtest=fh(95: 141,: )'; 
lpchxtest=lpch(95: 141,: )'; 
rpchxtest=rpch(95: 141,: )'; 
relvolxtest=relvol(95: 141)1; 
plxtest=pl(95: 141,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 94mlp; 

(a, outputsll=simuff(Ptest, W1, Bl, llogsig', W2, B2, 'logsig'); 

outputsl=outputsll; 
outputs(95: 141,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Ptest=zeros(20,47); 

agmxtest=agm(142: 188,: )'; 
fhxtest=fh(142: 188,: )'; 
lpchxtest=lpch(142: 188,: )'; 
rpchxtest=rpch(142: 188,: )'; 
relvolxtest=relvol(142: 188)1; 
plxtest=pl(142: 188,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 141mlp; 

(a, outputslj=simuff(Ptest, W1, Bl, 'logsig', W2, B2, llogsigs); 

outputsl=outputsll; 
outputs(142: 188,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%t%%%%ý%%%%%%t%%%%%%%%! ý%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Ptest=zeros(20,47); 

agmxtest=agm(189: 235,: )'; 
fhxtest=fh(189: 235,: )'; 
lpchxtest=lpch(189: 235,: )'; 
rpchxtest=rpch(189: 235,: )'; 
relvolxtest=relvol(189: 235)1; 
plxtest=pl(189: 235,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 188mlp; 

(a, outputsll=simuff(Ptest, W1, Bl, 'logsig', W2, B2, 'logsig'); 
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outputsl=outputsll; 
outputs(189: 235,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 

%%%%%% %%% %%%% %%%% %%%%% %%% %%%% %%% %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Ptest=zeros(20,47); 

agmxtest=agm(236: 282,: )'; 
fhxtest=fh(236: 282,: )'; 
lpchxtest=lpch(236: 282,: )'; 
rpchxtest=rpch(236: 282,: )'; 
relvolxtest=relvol(236: 282)1; 
plxtest=pl(236: 282,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 235mlp; 

[a, outputsll=simuff(Ptest, W1, Bl, 'logsig', W2, B2, llogsig'); 

outputsl=outputsll; 
outputs(236: 282,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%t%%%%%%%%%%%%%%%t%ý%%%, ýýk%%ý%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%t 

Ptest=zeros(20,47); 

agmxtest=agm(283: 329,: ),; 
fhxtest=fh(283: 329,: )'; 
lpchxtest=lpch(283: 329,: ),; 
rpchxtest=rpch(283: 329,: ),; 
relvolxtest=relvol(283: 329)1; 
plxtest=pl(283: 329,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
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Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 282mlp; 

(a, outputs 1]=simuff (Ptest, W1, B1, 'logs ig', W2, B2, I logs ig') ; 

outputsl=outputsl'; 
outputs(283: 329,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Ptest=zeros(20,47); 

agmxtest=agm(330: 376,: )'; 
fhxtest=fh(330: 376,: )'; 
lpchxtest=lpch(330: 376,: )'; 
rpchxtest=rpch(330: 376,: )'; 
relvolxtest=relvol(330: 376)'; 
plxtest=pl(330: 376,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 329mlp; 

[a, outputsl)=simuff(Ptest, W1, Bl, llogsig', W2, B2, 'logsig'); 

outputsl=outputsll; 
outputs(330: 376,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 

%%%%%%%%%%%%%%%%%%%%%%M%%%% 

Ptest=zeros(20,47); 

agmxtest=agm(377: 423,: )'; 
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fhxtest=fh(377: 423,: )'; 
lpchxtest=lpch(377: 423,: )'; 
rpchxtest=rpch(377: 423,: )'; 
relvolxtest=relvol(377: 423)1; 
plxtest=pl(377: 423,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 376mlp; 

[a, outputsl]=simuff(Ptest, W1, Bl, 'logsig', W2, B2, llogsig'); 

outputsl=outputsl'; 
outputs(377: 423,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 

Ptest=zeros(20,47); 

agmxtest=agm(424: 470,: )'; 
fhxtest=fh(424: 470,: )'; 
lpchxtest=lpch(424: 470,: )'; 
rpchxtest=rpch(424: 470,: )'; 
relvolxtest=relvol(424: 470)1; 
plxtest=pl(424: 470,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 423mlp; 

[a, outputsll=simuff(Ptest, W1, Bl, 'logsig', W2, B2, 'logsig'); 

outputsl=outputsl'; 
outputs(424: 470,1)=outputsl; 

clear Wl BI W2 B2; 
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clear Ptest; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Ptest=zeros(20,47); 

agrnxtest=agm (471: 517, :)I; 
fhxtest=fh(471: 517,: )'; 
lpchxtest=lpch(471: 517,: )'; 
rpchxtest=rpch(471: 517,: )'; 
relvolxtest=relvol(471: 517)1; 
plxtest=pl(471: 517,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 

load 470mlp; 

[a, outputsl]=simuff(Ptest, W1, Bl, llogsig', W2, B2, llogsig'); 

outputsl=outputsll; 
outputs(471: 517,1)=outputsl; 

clear Wl BI W2 B2; 
clear Ptest; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ý, %%%%%%%%%%%%%%%%%%%%%%%%%%%ý%%%%%%%%I. k%% 

Ptest=zeros(20,47); 

agmxtest=agm(518: 564,: )'; 
fhxtest=fh(518: 564,: )'; 
lpchxtest=lpch(518: 564,: ),; 
rpchxtest=rpch(518: 564,: ),; 
relvolxtest=relvol(518: 564)1; 
plxtest=pl(518: 564,: )'; 

Ptest(1: 6,: )=agmxtest; 
Ptest(7: 10,: )=fhxtest; 
Ptest(11: 14,: )=lpchxtest; 
Ptest(15: 18,: )=rpchxtest; 
Ptest(19,: )=relvolxtest; 
Ptest(20,: )=plxtest; 
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load 517mlp2; 

[a, outputs 1)=simuff (Ptest, W1, B1, I logs ig', W2, B2, I logs ig') ; 

outputsl=outputsl'; 
outputs(518: 564,1)=outputsl; 

clear Wl Bl W2 B2; 
clear Ptest; 

low=zeros(1,282); 
high=zeros(1,282); 

1=1; 
h=l; 

for i=1: 564 
if outputs(i, 2)==O. l 

low(l)=outputs(i, l); 
1=1+1; 

else 
high(h)=outputs(i, l); 
h=h+l; 

end 
end 

low=lowl; 
high=highl; 

n=hist(low, 100); 
m=hist(high, 100); 
hold on 
plot(n); 
plot (m, Ig-1) 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
ccl=l; 
cc2=1; 
cc3=1; 
cc4=1; 

accuracy=zeros(1,101); 
sensitivity=zeros(i, iol); 
specitvity=zeros(1,101); 
oneminusspecitivity=zeros(1,101); 
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for k=0: 100 
thresh=(k/100); 
%disp(thresh); 
for j=1: 282 

if high(j)>thresh 
TP(ccl)=high(j); 
ccl=ccl+l; 

else 
FN(cc2)=high(j); 
cc2=cc2+1; 

end 
end 

for z=1: 282 
if low(z)>thresh 

FP(cc3)=low(z); 
cc3=cc3+1; 

else 
TN (cc4) =low (z) 
cc4=cc4+1; 

end 
end 

NTP=ccl-1; 
NFN=cc2-1; 
NFP=cc3-1; 
NTN=cc4-1; 

accuracy(k+l)=(NTP+NTN)/564; 
sensitivity(k+l)=NTP/(NTP+NFN); 
specitivity(k+l)=NTN/(NTN+NFP); 

oneminusspecitivity(k+l)=l-(specitivity(k+l)); 

ccl=l; 
cc2=1; 
cc3=1; 
cc4=1; 

end 

f igure; 
%axis([O 1,0 1]); 
plot(oneminusspecitivity, sensitivity); 
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