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Abstract 

Reinforcement Learning For The 

Control of Large-Scale Systems 

by 

K. H. Chan 

Learning through repeated trials and updating the desirability of repeating a 

certain trial is a fundamental learning process in all animals. This type of learn- 

ing or reinforcement learning can be adopted for use in intelligent engineering 

control and applications which contain high degrees of complexity, uncertainty 

and have non-linear characteristics. Reinforcement learning systems have the 

property of progressively improving their performance based on past experience 

and require little analytical knowledge of the system for optimisation. 
The two main types of reinforcement learning are investigated. The Learn- 

ing Automata (LA), which originates from psychology, and Temporal Difference 

(TD) learning, which owes it's origins to artificial neural networks and hence 

biology. Initially studies of a TD learning agent for PID control of a third 

order dynamic system were investigated, then a Team of Learning Automata 

(TLA) was used on the same control problem as a comparison test. The third 

order system was replaced with a single-machine-infinite-busbar power system 

and the analysis repeated for the TLA. The single agent learning method was 
then extended to multi-agent learning control of a multi-machine power sys- 
tem with three synchronous generators as the basis of a large scale system to 
be investigated. TD learning was then used to evaluate multi-agent PID and 
fuzzy logic control of the multi-machine power system. To conclude some com- 

parisons between the two different types of reinforcement learning were made 
to highlight their advantages and limitations. 
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Chapter I 

Introduction 

Reinforcement learning enables machines to exhibit learning behavior in 

new/unknown or partially known environments. The principle idea is that 

for any system, learning can be achieved by a process of trial and error. Good 

actions are rewarded and are likely to be tried in future trials, while bad actions 

are penalised and are likely to be avoided in future trials. The constant trying 

of actions and discovering their consequences, or exploring, theoretically allows 

an agent to learn without any prior knowledge of that particular environment 

or system. 

Currently many problems are unsolvable simply because it is too difficult to 

determine what the learning agent should do (e. g. in a stochastic environment 
[11 [2)), or the state space is very large that it would be impractical to map 

concisely. If the learning agent could solve problems through trial and error, 

then that would be of great practical value. It is on this basis that the many 

reinforcement learning schemes are able to learn and hence solve problems. 
Learning deals with the ability of systems to improve their responses based on 

past experience. Since the ability of living organisms to cope with uncertainty 
is well known, it is only natural that a lot of effort has been made to incor- 

porate similar features into artificial intelligence systems which can then be 
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1.1 Learning 2 

applied to engineering problems. Many subjects can relate to the development 

of reinforcement learning as well as artificial intelligence (AI) in general. Sub- 

jects such as computer science, mathematics, biology, psychology, cybernetics 

and now even extending to engineering with current emphasis on pragmatic 

problem solving. It is also interesting to know that reinforcement learning has 

managed to play an important role in all the above mentioned fields. 

1.1 Learning 

Learning is the acquisition of useful information or knowledge and can de- 

velop in many ways in artificial intelligence (as well as in natural intelligence). 

Although many learning algorithms have been used to successfully solve var- 
ious problems, historically, the most important learning paradigm has been 

that of supervised learning [3]. In supervised learning the learner is required 

to associate pairs of items presented by a "teacher" during training. When 

later presented with just the first item of the pair, the learner is supposed to 

recall the second. Two other types of learning have also been essential in the 

evolution'of biological intelligence: unsupervised learning and reinforcement 
learning. In unsupervised learning, a system is only presented with a set of 

examples as inputs. The system is not given any external indication as to what 

the correct responses should be nor whether the generated responses are right 

or wrong. Statistical clustering models such as the Kohonen self-organising 

map [41 have no knowledge of the number of clusters and are examples of un- 

supervised learning. Basically, unsupervised learning aims at finding a certain 
kind of regularity in the data represented by the examples. To find meaningful 

regularity, there must be some redundancy in the input data to describe or 

classify the examples. 

Reinforcement learning is somewhere between supervised learning, in which 
the system is provided with the desired output, and unsupervised learning, in 

REINFORCEMENT LEARNING K. H. Chan 



1.1 Learning 

which the system gets no feedback at all on how it is doing. In reinforcement 

learning, the system receives an evaluative feedback, the scalar reinforcement 

signal r(t) that tells the system whether its output response is right or wrong, 

but no information on what the right output should be is provided. Since little 

or no information is given on what the right output should be, the system 

must employ some random (or structured) search strategy so that the space of 

plausible and rational choices is searched until a correct answer is found. The 

reinforcement learning paradigm can further be classified as associative and 

nonassociative reinforcement learning. 

An associative reinforcement learning scheme requires information in the 
form of an environmental scalar reinforcement signal as well as a context or 

input vector. It attempts to form associations between the input and output 

vector from stimulus-action training pairs (comparable to supervised learning). 

Thathachar, Phansalker [51 and Barto, Anandan [6], have successfully employed 

these methods using stochastic learning automata to solve pattern-classification 

problems. The reinforcement scheme Barto and Anandan used was called an 

AR-P or associative reward-penalty scheme. The algorithm is a combination of 

a stochastic learning automata algorithm and a pattern classification algorithm 

based on stochastic approximation [6]. 

A nonassociative reinforcement learning scheme is one which receives a 

scalar reinforcement signal from the environment in response to the application 

of an action selected from an admissible finite set (and no context vector). 
The objective is to use the reinforcement scalar to guide the choice of action 

selection towards that action which is deemed optimal in some sense and is 

comparable to unsupervised learning. 

REINFORCEMENT LEARNING K. H. Chan 



1.2 Supervision or Criticism 

1.2 Supervision or Criticism 

Reinforcement learning is an approach to machine intelligence that 
lorigi- 

nates from psychology and contain elements of Dynamic Programming [71 [81 

[91 [101 [111 and Supervised learning [4] [121 to solve problems that either dis- 

cipline could not otherwise have solved on their own. Dynamic programming 

has traditionally been applied to problems involving optimisation and control 

[131 [9], however dynamic programming is limited in the size and complexity 

of the problems it can solve. Supervised learning is a general method used 

for training a parameterised function approximator, such as a neural network. 

In order to learn, supervised learning requires input-output data pairs from 

the function to be learned and form a mapping between input-output pairs 

through training. In a way the learning agent tries to behave as instructed by 

the environment. 

Reinforcement learning on the other hand uses a general evaluative feed- 

back, the reinforcement signal r(t), this gives an overall indication if a chosen 

action was good or bad, usually to a certain degree based on a probability 

measure. Thus the reinforcement signal r(t) behaves like a guide or critic 

and provides criticism as opposed to supervision. Reinforcement learning as a 
learning control method tries to make the environment behave in a way desired 

by the learning agent. The goal directed way reinforcement learning behaves 

is more intuitive and flexible and the advantage of reinforcement learning be- 

comes more apparent when uncertainty exists [141 in the system such as in a 

stochastic system, or when the system is too complex and hence mapping such 

a large state space completely becomes prohibitively impractical. Other prac- 
tical concerns are for stochastic systems where the possible output mappings to 

any given input will not be a simple one to one relation and obtaining data for 

training (learning) becomes un-feasible, in these situations simple supervised 
learning can not help. 
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1.3 Various Learning Techniques 5 

Reinforcement learning appeals to many researchers because of this gener- 

ality by learning from trial and error for any given goal. The process of trial 

and error learning is fundamental to all living animals which reinforcement 
learning has borrowed from in order to emulate and understand this aspect of 

animal learning behaviour. From the biological and cognitive points of view, 

reinforcement learning is much closer to the modern animal learning theory 

than is supervised learning. Moreover animals can learn extensively about 

their environments using just external reinforcement signals from the world 

or other animals, Lin and Lin [15] describes the situation as very similar to 

learning many high-level intelligent actions such as how to drive a car. It 

can also be argued that most real life systems are complex and/or stochastic 
(noisy/random) in nature. The use of reinforcement learning can overcome 

these obstacles and achieve good performance where other learning methods 
fail or achieve poor results. Therefore reinforcement learning should be the one 

of the first considerations in learning control. 

1.3 Various Learning Techniques 

Throughout its development much insightful research has evolved the ýa- 

sic reinforcement learning paradigm from its roots in psychology and animal 
learning behaviour. Some of the techniques arise from a need to solve par- 

ticular classes of problem but many seek to improve the efficiency at which a 

solution can be found. The main developments in reinforcement learning will 

be described to give a flavour of these techniques. The learning automata and 

temporal difference learning are described in more detail in later chapters but 

are mentioned here for perspective. 
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1.3 Various Learning Techniques 6 

1.3.1 Learning Automata 

From the very beginnings of reinforcement learning based on psychology the 

learning automaton was both unique and revolutionary at the time. Introduced 

by Tsetlin (1973) [161 [171, the learning automaton is a low memory machine for 

solving selection learning problems due to its nature of trial and error learning 

which is the heart of all reinforcement learning. The basic learning architec- 

ture consists of the learning automaton interacting with an environment which 

returns a reward signal based on the action selected and its outcome on the 

cilrrent state of the environment. Good actions are rewarded by returning a 

positive scalar value to reinforce the probability of selecting that good action 
in future while punishing bad actions by returning a negative scalar value to 

diminish the probability of selecting that bad action in future. The net result is 

that the learning automaton learns to select good actions that are beneficial to 

the environment while avoiding bad actions, the environment being a generic 

term used to describe any problem space, such as the control of a generator 

output in a power system network. The learning automaton is a simple concept 

that so far seems to closely model the fundamental way animals learn when 

placed in new and unknown environments. Apart from applications of learning 

automata a lot of work has been done to improve and compare various types of 
learning schemes used in the updating of the internal states of a learning au- 

tomata. Narendra and Thathachar [17], Thathachar and Phansalker [51 study 
the convergence of the learning automata either individually or in structures 

of teams and hierarchies, Lanctot and Oommen [181 compare different types 

of variable structure stochastic automata to see which ones converge fastest. 

In a similar piece of work Rajaraman and Sastry [191 compare the rates of 

convergence of the pursuit algorithm using finite time analysis for both the 

continuous and discretised forms of the pursuit algorithm. The pursuit algo- 
rithm being a popular update scheme used to adjust the states of a learning 
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1.3 Various Learning Techniques 7 

automaton. 

1.3.2 Dynamic Programming 

Bellman [71 coined the term dynamic programming (DP) as a substitute for 

describing the mathematical theory of multi-stage decision processes. Dynamic 

programming is a collection of mathematical method for optimising sequential- 

decisions and shares many principles with other reinforcement learning meth- 

ods, it is mainly used in stochastic control [81 and problems in which a Markov 

Decision Process (MDP) [101 [201 can be formulated. Common objectives, such 

as the consequence of long-term and short-term effects when choosing a partic- 

ular action in a given state need to be addressed, since a "bad" action may be 

required in the short-term to reach the optimal state in the long-term (temporal 

credit assignment [21]). The primary objective of learning is to construct an 

optimal action selection policy or simply policy that will maximise the agents 

performance. DP methods can compute optimal policies given a perfect model 

of the environment as a XIDP [16]. 

A problem that exists for conventional DP methods occur when the state 

space is infinite or relatively large. The most difficult aspect of applying DP 

is often the modelling of the decision task, learning methods particularly re- 

inforcement learning methods have great practical importance. DP methods 

can solve these problems theoretically, but the computational solution may 

not be obtainable due to memory limitations, especially when the number of 

variables is large. The term used to describe this problem by Bellman [7] and 

others is - "the curse of dimensionality". In order for a learning method to be 

useful in improving a decision policy it must converge sufficiently rapidly so 

that the amount of computation required is less than would be required to find 

an explicit solution using DR This is the problem that Incremental Dynamic 

Programming IDP methods such as Q-learning and TI) try to resolve. 
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1.3 Various Learning Techniques 8 

Within DP policy iteration and value iteration are the most often used 

methods. 
Policy iteration manipulates a policy directly, rather than finding it in- 

directly from the optimal value function. The policy determines which action 

should be performed in each state and is a mapping from states to actions. The 

value function is a mapping from states to state values and can be approxi- 

mated using a function approximator (e. g. a multi-layered perceptron trained 

using backpropagation). The value of a state being defined as the sum (or 

expected sum) of the reinforcements received when starting in that state and 

following some policy to a terminal state. The value of a state can be changed 
by selecting different actions. If the state values improve then the policy is 

adjusted to select that new action when in that state. When no improvements 

are possible, then the policy is guaranteed to be optimal. The basic method is 

described below, 

1. choose an arbitrary policy 

2. compute the value function for the given policy 

I improve the Policy at each state 

4. if policy is optimal then stop, otherwise go to 1 

Another way of finding an optimal policy is to find the optimal value func- 

tion. The optimal value function can be found using an 
' 
iterative algorithm 

called value iteration. If V(xt) is an approximation of the value function with 

xt a state vector, then the approximation of the optimal value function in 

a given state is equal to the true value of that state plus some error in the 

approximation, given by 

V(xt) = e(xt) + V*(xt) (1.3-1) 
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1.3 Various Learning Techniques 9 

where e(xt) is the error in the approximation of the value of the state occupied 

at time t and V*(xt) is the optimal value in that state. Similarly the update 

approximation at time t+1 can be expressed by 

V(xt+, ) = e(xt+, ) + V*(xt+, ) 

By this definition a relationship exists between the values of successive states, xt 

and xt+,. This relationship can be described by the following equations (1.3.3) 

V*(xt+l) = r(xt)+-yV*(xt) 

V(xt + 1) = r(xt) + -yV(xt) 

In which the new or updated value is determined by the previous -y discounted 

value plus some reward (sometimes penalty) feedback response from the envi- 

ronment. The errors of successive states can be described using equation (1.3.4) 

e(xt) = -ye(xt+, ) 

r (xt) is the immediate reinforcement and y is known as the discount factor. The 

discount factor is used to exponentially decrease the weight of reinforcements 

received in the future, -y is a number in the range of 0 ... 1 and is used to weight 

near term reinforcement more heavily than distant future reinforcement where 

the closer y is to 1 the greater the the weight of future reinforcements. 
In describing the way learning experience is accumulated by the system the 

term agent or learning agent is often used. The term agent is best described 

by Sutton and Barto [161 in which the learner and decision maker are known 

as the agent. also everything external to the agent in which it interacts with 
is known as the environment. This definition of agent and environment is used 
in the general literature and also used here. 

The total amount of payoff received by the agent over time depends on 
the number of time periods over which this total is determined, the sequence 

of actions and states that occurred and the outcomes of any random factors 
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affecting the payoffs and state transitions. The number of time periods over 

which the total amount of payoff is determined is called the horizon of the 

decision task. If the horizon is finite (e. g. the state space is small and/or 
deterministic), then the total payoff is simply the sum of the individual payoffs 

received at each time period until the task's horizon is reached. If the horizon 

is infinite (e. g the state space is large and/or stochastic), then this sum may 

not be finite, a problem solved by using a discount factor y that allows payoffs 

to be weighted according to when they occur. The choice of an appropriate 
discount factor ensures that the weighted sum is finite even for infinite horizon 

tasks, Sutton and Barto [22] call this imminence weighting. 
For value iteration, if the function approximator, V(xt) used to represent 

V*(xt) is a lookup table, then one can find the optimal value function by 

performing sweeps through state space, using an updating algorithm given by 

AlVt = max,, (r(xt, u) + -yV(xt+l)) - V(xt) 

Where ZýWt is the updated reinforcement weight, u is the action performed in 

state xt and causes a transition to state xt+l and T(xt, u) is the reinforcement 

received when performing action u in state xt. This assumes that the function 

approximator is a lookup table, which in many practical problems with large 

or continuous state space poses problems. Hence one extension to the the 

basic value iteration method is to use gradient descent on the error function 

for every update of AlVt. The value iteration algorithm can be described by 

the following 

1. Set x to be the current state 

2. If xEU, then stop 

I Select an action uE q(x) 

4. Execute action u, as a consequence, the agent receives reward r(x, u) 
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and is in the current state, then the number of steps is incremented i. e. 

t1 

5. Set LlVt=maxu(r(xt, u) +, yV(xt+, )) - V(xt) 

6. Go to 1. 

Where G is the set of goal states and A is the set of actions in any state. 

1.3.3 Temporal Difference Learning 

Temporal Difference (TD) learning was formulated by Sutton (1988) [31 

to improve conventional DP methods. Sutton also found links with reinforce- 

ment learning and neural networks from research involving ADALINES (adap- 

tive linear elements). Apart from the learning automaton, temporal difference 

learning is the other major development in reinforcement learning. From the 

basic TD algorithm Sutton produced a general form for TD by introducing 

a continuous factor AE [0,11 to produce TD(A), the factor A is used to give 

relative weight to the importance of actions in a action sequence model by 

modelling a forgetting factor when learning. 

Two fundamental reasons for the development of TD learning exist, the first 

is due to its relation with DP and the problems associated with conventional DP 

methods, mainly the need for a perfect model and thus for large environments 
the computational requirements become impractical which limits the use of 
DP. The side effect of this also means that TD learning is suitable for on-line 

model free learning. The second important point that TD learning addresses is 

the problem of credit assignment, after a long sequence of actions which ones 

contribute to the final solution more than the others or relative to the other 

actions taken in the sequence of choices. 
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1.3.4 Q"Learning 

Another important reinforcement learning method found in the literature 

is, Q-1earning developed by Watkins [211 [231 [24] [161 [251 and viewed as a form 

of model free dynamic programming that allows an agent to act optimally in 

Markov decision processes. In Q-1earning a value function of the form Q(St, at) 

is used and known as the state-action function or simply the Q-function, one 

step Q-1earning can be calculated using equation (1.3.6). 

Q(st, at) +- Q(st, at) + a[rt+l + ymaXaQ(st+,, at+, ) - Q(st, at)] 

Q-learning learns the state (st) action (at) function by following a greedy pol- 
icy that chooses actions that return the highest value for any current state. 
Q-learning is guaranteed to converge as long as all state-action pairs are con- 
tinually updated [16]. From Watkins pioneering work much research has fol- 

lowed in trying to improve and apply Q-learning. Examples such as Sarsa [231 

[161, Summation Q-Learning Q(A) [23] try to improve on the basic Q-learning 

method. The term Sarsa is derived from the quintuple (st, at, rt+,, St+,, at+, ) 

that makes up a transition from one state-action pair to the next based on equa- 
tion (1.3.6) with the assumption that if st+l is terminal, then Q(st+,, at+j) is 

defined as zero [161. Summation Q-learning updates the Q-function based on 
the expected return given the current action probability instead of the max- 
imum value of Q(st+,, at+, ) [231. Q(A) is a method of combining Q-1earning 

and TD(A) by Peng and Williams [231. One-step Q-learning makes minimal. 
use of information received by the system since only a single prediction of the 
Q-function value is updated for a single state-action pair per time step. TD(A) 

methods offer a way of allowing multiple predictions to be updated per tirqe 
step and hence speeds up convergence. The TD(A) method uses a standard 

one-step Q-learning update to improve the current prediction of the Q-function 

and then using the temporal differences between successive greedy predictions 
to update it from there on. 
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1.3.5 W-Learning 

IV-learning consists of a hierarchical structure of learning agents, each spe- 

cialised to optimise/control one aspect of the complete learning system. A 

simple example to explain W-learning is to use a two-link robot arm with a 

manipulator performing a pick up task in an environment with obstacles. The 

objective of the robot arm is thus to successfully pick up the target object while 

avoiding the obstacles. For W-learning in this case there are two main tasks to 

optimise/control, first the robot arm is required to reach the object then pick 

it up and secondly the arm has to avoid the obstacles along the way. There will 

be two learning agents in this problem, one of the agents has the goal, reach 

the target and pick up the object, the other learning agent has the goal, avoid 

the obstacles. At each time step the competing agents each suggests an action, 
but only one action is executed. Which agent is obeyed changes dynamically. 

Each agent can function in the absence of the others and will try to reach its 

own goal, but each is also frustrated by the presence of the other agents. The 

switching between agents can be complex and a better solution would be to 

have a simple switch which the agents can use to organise themselves from. 

W-learning was developed from Q-learning by Humphrys [26]. The simplest 

scheme involves each action having a measure of importance or weight W 

(hence W-learning) when in a given state and then executing the action with 
the largest W. To be exact the learning agents are A,,..., A, at each discrete 

time step all the agents observe the world to be in some state x. Each agent 
Ai then suggests an action ai with weight W, the action ak(x) is then executed 

where 
Wk(x) = maXiEl,..., nwi(X) 

The agent Ak is called the leader [261 in the competition for state x at the 

moment. The actions ai(x) are those that the agent has learnt to take to 

pursue its goals. This is where the NV-values IlVi(x) come from and how they 
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change in response to not being obeyed. Schemes using "importance" values are 

common in multi-behavior models but are normally hand designed, generating 

them continuously and on-line is a simple task for reinforcement learning. 

1.4 Applications of Learning Methodologies 

The development of reinforcement learning has provided many ideas, new 

algorithms and applications. The flexibility of reinforcement learning has 

meant that a lot of previous work and applications are very diverse and can. 

sometimes seem to be unrelated. The use of reinforcement learning can cover 

aspects such as process control to higher cognitive action processes and even 

emotional states of animal psychology. The broad range of examples available 

that use reinforcement learning means that reinforcement learning is not a spe- 

cialisation in any one area of research. Recently a lot of work in diverse fields 

have now been bridged by reinforcement learning. 

In the following examples a trend from simple single learning agents towards 

more complex distributed network or hierarchy of learning agents is evident and 
seems to be the way future reinforcement learning control is heading. 

1.4.1 Applications of Learning Automata 

Being the earliest reinforcement learning method, the learning automaton 
has been applied to a wide range of control problems. The original reason 
by Tsetlin for developing the learning automaton was in order to solve the n- 
armed bandit problem [161 [171. The number of learning systems applications 
has also increased with the advent of highly integrated computers which makes 
technology cost-effective. Applications vary from the simple maze problems in 

which a 'Mouse' learns to find the 'cheese' situated in the maze to playing com- 

plex sequential two player games, such as chess. Narendra and Thathachar 

REINFORCEMENT LEARNING K. H. Chan 



1.4 Applications of Learning Methodologies 15 

[171 provides extensive theory for using learning automata to game playing 

complex sequen tial games either using single learning automaton or intercon- 

nected learning automata and even developing the theory to include games 

with N-players, where N> 2. It is also interesting to note that Narendra and 

Thathachar [17] mentions potential applications regarding information routing 
in networks, priority assignment in a queuing system (similar to task schedul- 

ing) and image compression. 

When the number of actions increases, the behaviour of a single automaton 

will be slow. This problem can be avoided by using a hierarchical structure of 

automata [51, [271, [28]. In this structure, the automaton contained in the first 

level of the hierarchy selects randomly an action which activates an automaton 
in the second level of the hierarchical structure of automata. In turn, this 

automaton selects randomly an action and activates an automaton in the third 

level of the hierarchy. This procedure is repeated until the activated automaton 
in the last level of the hierarchy selects randomly an action which corresponds 

to the output of the hierarchical structure of automata (environment input). 

NVu and Pugh [281 [291 used a team of learning automata in order to learn 

the optimal controller parameters of a PID controller in order to generate power 

efficiently from a synchronous turbo-generator in a single machine infinite bus- 

bar power system. Frost et al [30] used a set of continuous learning automata 
to control a vehicles roll dynamics with semi-active suspension. Hobday, NVu 

and Gordon [311 used learning automata to optimise a fuzzy logic controller in 

a multi-arm robot manipulation task, the automata would learn to co-ordinate 
the efforts of each arm when performing a particular task. Barto and Anan- 

dan [6] used stochastic learning automata with the associative reward-penalty 
(AR-P) update scheme in order to compare existing supervised learning pat- 
tern recognition methods against learning automata methods. Work related to 

pattern recognition was also studied by Thathachar and Sastry [27] in which a 
team of mutually cooperating learning automata perform a probabilistic search 
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through the space of unknown pattern classes in order to learn an optimal clas- 

sifier. Gullapalli [321 compares discrete action space problems and problems 

requiring continuous action space problems using a multi-linked robot arm for 

the evaluation of successful control. Li et al use interconnected learning au- 

tomata to coordinate and control a multi-machine power system using dynamic 

quadrature boosters to enhance the stability of electric power generated. 
Apart from direct applications of learning automata, other uses for the 

learning automata is in the form of synthesising neural networks by Najim, 

Chtourou and Thibault [331. Instead of the more common use of learning au- 

tomata for optimisation of control processes Najim, Chtourou and Thibault 

apply stochastic learning automata with variable structures to solve the opti- 

misation problem associated with the estimation of neural network parameters. 

1.4.2 Applications of Dynamic Programming 

The model dependence of dynamic programming makes it difficult to apply 
to stochastic control systems which are the main applications for other rein- 
forcement learning. Not including IDP methods such as Q-learning and TD(A) 

learning which were developed to overcome the model dependence of classical 
DP methods and are therefore much more popular, it is rare to find practical 

optimisation applications using DP. 

1.4.3 Applications of Temporal Difference Learning i 

Since the realisation of the limitations posed by DP, TD learning has be- 

come a popular choice of reinforcement learning scheme for the solution of 

many problems. 
One early application to TD learning was to test it on the inverted pendu- 

lum problem, Barto Sutton and Anderson [341 used TD learning to successfully 
keep a simulated inverted pendulum from falling over, while an actual mechan- 
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ical test rig was built by Jervis and Fallside [351 to evaluate TD learning's 

control performance. Of all applications one of the most well known using 

TD learning is Tesauro's TD-Gammon player (1992) for Backgammon [161 [361 

and possible the first ever application of TD learning by Samuel (1959) in his 

celebrated checker (draughts) playing programming [3] [161. Both these game 

playing examples use TD learning to learn optimal game positions by learning 

through self play and observing the consequences. Game playing is a popular 

evaluation and comparison method for reinforcement learning techniques, Yee 

et al [37] used the game of tic-tac-toe (noughts and crosses) to test a TD learn- 

ing agent's ability to identify and define concepts that improve its performance 

in performing tasks in general. 
Barto, Sutton and Watkins [381 apply TD learning to solve a route-planning 

problem in which from any arbitrary start position in the environment the TD 

learning agent seeks to find the most optimum path to reach a goal state 

while learning to avoid obstacles in the environment. The classic mountain-car 

problem was solved using TD learning by Sutton [391, while Tham and Prager 

[40] worked on applying TD learning to control a multi-linked robot arm for 

manipulating objects in an environment with obstacles. 

Lin and Kan [411 implement a fuzzy command acquisition network for 

speech recognition using TD reinforcement learning to update the fuzzy weights 
in a fuzzy predictor whose task is to learn by translating verbal commands into 

the desired actions. Boyan [421 also discusses how TD learning is used to train 

a neural network for phoneme recognition in speech. 
From single agent learning applications to multi-agent learning, Crites and 

Barto considered the problem of optimising elevator performance in a tall office 
building [431. The simulated system consisted of a building with 10 levels and 4 

elevators, each with a capacity to hold 20 passengers. Singh and Bertsekas [441 

looked into channel allocation in cellular telephone systems using TD learning 

to maximise services in the dynamic network. Both of these stochastic dynamic 
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optimisation problems demonstrate the versatility of reinforcement learning in 

large-scale systems and the type of problem that they are suitable for solving. 

1.4.4 Applications of Q-Learning 

Q-learning and its derivatives have commonly been used in robot navigation 

tasks, often obstacle course or maze environments are designed to test the 

"robotic learning agent". Rummery [23] compared Q-learning, Sarsa and Q(A) 

by implementing a multi-layer perceptron neural network and using each Q- 

learning method as an update rule for the weights in the neural network in 

order to learn and navigate an obstacle course. Those findings show that Sarsa 

was the most successful in producing the most number of robotic agents that 

completed the task as well as having the quickest convergence times. Robot 

navigation tasks were also studied by Koenig and Simmons [451 in which the 

shortest path in a maze problem with the added complexity of one way paths 
being introduced in the environment. Of the classic test problems in machine 
learning Q-learning has been tried on the n-armed bandit problem by Duff [46], 

while Jervis [471 applied Q-learning to the inverted pendulum problem. Sutton 

and Singh [481 [161 used Sarsa to try and solve the mountain-car problem in 

which a car is in the valley between two mountains but does not have sufficient 

power to directly drive up a forward facing mountain side but must learn to 

gain momentum by reversing (i. e. choose a less optimal action) in order to 

eventually drive up the mountain side. 
Examples of practical applications with relevance to engineering found in 

the literature exist. Tharn and Prager use Q-learning to decompose the task 

of a robotic manipulator arm with "Q-modules" built from Cerebellar Model 
Articulation Controllers (CMACs) [491. Each Q-module is in charge of the 

position of a part of the whole robotic arm, for a two link flexible arm with 
manipulator three Q-modules are required, one for position of the upper arm, 
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one for position of the forearm and one for position of the hand (manipulator) - 
The problem to be solved was to position the manipulator in order to perform 

a task such as pick up an object while learning to avoid various objects placed 

in certain parts of the environment. Clausen and Wechsler developed Quad Q- 

Learning and applied it to image compression. Quad-Q-learning is a method 

that is suitable for problems that can be solved by dividing the problem state 

space into smaller more easily solvable sub-problems, Clausen and Wechsler use 

the term "divide and conquer" [501. Finally Boyan and Littman use a modified 
form of Q-learning labelled Q-routing to generate efficient packet routing in 

a dynamically changing communication network, in which a simple 36 node 
irregularly connected network was simulated. The principle feature being that 

each node only uses local information provided by its immediate neighbour in 

order to make optimal actions when passing on packets of data. Although this 

problem is similar to a robot navigation task, sometimes the optimal route 

a data packet takes will not always be based on the shortest route and is 

more often based on the quickest time which may be a longer route. Piater 

[51] recognised a similar application for route planning based on traffic light 

control in a road junction, where an action by the learning agent is to set the 

traffic lights to a certain combination of settings. the learning agent tries to 

reduce delays waiting at traffic lights and improve traffic flow in general. 

1.4.5 Applications of W-Learning 

Humphrys developed and applied W-learning to solve the ant-world problem 
[261. Almost all previous work that use multiple reinforcement learning agents 
in teams or hierarchies have concentrated on the co-operation between each 
learning agent in the team or hierarchy. Humphrys's approach was to think of 
the complete learning agent as a series of competing tasks, such that for the ant- 
world problem, the body of the learning agent or 'ant' consists of a number 
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of competing priorities such as seek food, find shelter and avoid predators 

while it moves in its environment. A similar proposition by Humphrys was to 

have a 'robot dog' mainly to detect intruders in a house but also have other 

priorities, such as fire detection vacuuming the room, re-charge its batteries, 

empty the vacuum bag when the need arises or priorities change. Many real and 
interesting systems in life posses multiple parallel and conflicting goals, among 

which the attention of the learning agent as a whole must constantly switch, 

this is the action-s election problem that the agent must face. W-learning is an 
interesting phase in reinforcement learning and seeks to approach a problem 
from another perspective only time will tell if it becomes as popular as the 

better established TD and Q-learning. 

1.5 Learning Control of Large-Scale Systems 

The concept of distributed learning and learning embedded in systems of 
interaction is a relatively new development with great promise. With emphasis 

on the construction of information through multi-agent interactions, a system 
interaction approach of learning offers a shift in perspective, from an emphasis 

on the content of learning to the emergent process of learning. Multi-agent 

learning becomes something accomplished with others rather than alone and 

the structure of role relationships between agents and environments which sus- 
tains learning should be carefully examined. 

Reinforcement learning algorithms, such as the Sutton's Temporal Differ- 

ence (TD) [31 were inspired and motivated by animal learning behaviour and 
classical conditioning [221. Subsequently the TD algorithm proved highly suc- 
cessful in game theoretic examples such as playing Chess and Backgammon. 
Later TD methods also proved useful in solving prediction and control prob- 
lems, balancing the inverted pendulum being an early example [341. Now 
TD methods and the other incremental dynamic programming schemes [521 
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are emerging as useful tools for prediction and control of general adaptive 

real-time systems or stochastic systems using embedded learning agents. Re- 

searchers have customarily focused their attention on upon asymptotic learn- 

ing of maximally-efficient strategies, and not on the optimal learning of these 

strategies [461, but as will be seen most learning agents can still effectively 

solve problems without having to learn a completely optimal strategy for most 

cases. 

According to Duff, the most successful applications have been to large, 

complex problems for which the computational effort required by traditional 

engineering methods would be unduly burdensome and perhaps unjustified, 

given that in many cases only approximate models of the underlying systems 

are known [461. With this remark we can take the case of large, complex prob- 
lems to include large-scale systems such as distributed power system networks 

and use reinforcement learning to optimise the efficiency of such a system. 

1.5.1 Connectionist Systems 

Boyan [421 defines connectionism as 

The study of computational models inspired by models of the brain 

and links connectionism to artificial intelligence (Al), machine learning (ML) 

and statistical pattern recognition (SPR). There is growing interest in the ar- 
tificial intelligence community for simulated or artificial neural networks. The 

main reason for this is to avoid the limitations of conventional serial sym- 
bolic processing by investigating parallel systems, such as artificial neural net- 
works and teams of interconnected learning automata. Since the permanent 
knowledge in such systems is stored in the weights associated with the connec- 
tions rather than in memory cells, such architectures were called connectionist 
systems. The connectionist system adapts to control problems by having its 

weights changed to improve some performance criterion. The changing of the 
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weights is governed by the learning method or algorithm to achieve an optimal 
(or suboptimal) performance in the controller. 

The use of learning algorithms and connectionist systems have been suc- 

cessfully applied to areas such as 

* Modelling 

* System Identification 

* Prediction 

e Pattern Classification/ Recognition 

e Adaptive Control 

1.5.2 Large-Scale Systems 

Two classic applications of the TD algorithm have been Samuel's Draughts 

player [31 and Tesauro's Backgammon player [241, both used a TD algorithm to 

update a neural network to learn the corresponding game through competitive 

play. Recently the TD learning methods and the closely related Q-learning 

algorithm (by Watkins [241) have emerged as useful methods in solving real 

engineering problems. Early work with TD learning for practical problem solv- 
ing and control tasks began with route planning and navigation for simulated 
robotic agents in maze solving problems. The usefulness of TD reinforcement 
learning for optimising control performance in general has led to increasing re- 

search into TD learning for the intelligent control of distributed systems, such 
as multi-arm robots; channel allocation in cellular phone systems [441; packet 
routing in information networks [531 and improving elevator performance in 
large office buildings [431. 

What contributes to a large-scale system? Since no formal definition has 
been found in the literature and relating to the applications investigated so 
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far, a convenient description would be to imply any system containing enough 

uncertainty as to be impractical to be solved using conventional or classical 

methods used so far in learning or adaptive control in engineering. Hence the 

current need for intelligent learning and control in some form embodied by a 

learning agent, such as the learning automata or neural network in order to 

make good control decisions when faced with uncertainty. 

From previous examples such as efficient information routing in networks 

and improving elevator performance in large office buildings, it is apparent that 

in order to make a realistic model for a learning agent to learn all the possible 

states and optimal actions would become a next to impossible task requiring 

unrealistic amounts of processing power. Reinforcement learning methods pro- 

vide a more elegant approach to solving the uncertainty problem and doesn't 

require a model either complete or partial in order to learn and make good 

control decisions. The added benefit with a model free learning system is that 

the learning agents are not limited by an often approximated model and can be 

easily retrained if changes occur frequently such as for different fault. conditions 
in large-scale power systems. 

Further expanding upon the practical applications the use of TD and in 

particular multi-agent learning for power system control has been investigated 

in this research. 

1.5.3 Learning Control 

The fundamental basis of all reinforcement learning involves interaction be- 

tween the learning agent and its environment 131. The role of the environment 
is like that of a teacher or guide and the interaction between learner and teacher 
can be described as experience. In the case of power system control, the accu- 

mulated experience is used to make better control decisions by learning what 
are good and what are bad actions to take for any state or given situation in 
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that environment. Eventually this will lead to improved control decisions and 

power system performance based on an optimal parameterised controller, such 

as the popular Proportional Integral and Differential PID controller or Fuzzy 

Logic Controller FLC. By using temporal difference reinforcement learning [3] 

it is possible to continuously learn and update these parameterised controllers 

making this multi-agent learning method suitable for on-line parameter opti- 

misation. 

TD learning originally developed by Sutton [3] is based on conventional 

dynamic programming methods and the Widrow-Hoff rule for neural network 
learning [3,34]. One of the most important aspects of learning is that of 

assigning credit. In reinforcement learning the reinforcement feedback signal 

r(t) gives an immediate (or short term) indication of how good or bad the 

decision was for a particular state. However this is insufficient in many real 

problems and the long term values of each state must be estimated or known 

for efficient prediction and/or control, that is the credit assignment problem. 

Unlike most prediction and learning methods in which credit is assigned by 

means of the difference between predicted and actual outcomes, the TD method 

assigns credit by using the difference between temporal successive predictions. 
The TD method also has the advantage of incremental learning and unlike 

conventional dynamic programming it does not need to finish a long sequence of 

actions before updating it's knowledge base, but can learn new knowledge after 
successive predictions, this also reduces the overall computation and memory 
requirements for learning. 

In the proceeding chapters two important reinforcement learning meth- 

ods will be described in detail, the learning automata and temporal difference 

learning. Both are studied and used for intelligent control of large-scale power 

systems, various single agent and multi-agent learning architectures have been 

employed. The learning automaton is a direct development from psychology 
and is one of the earliest reinforcement learning methods to be formulated. 
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Thus it contrasts with TD learning which is a relatively new development in 

the history of reinforcement learning. 

1.5.4 Power System Problem Formulation 

The application of multi-agent reinforcement learning is explored for the 

control of large-scale power systems. This involves the application of reinforce- 

ment learning such as temporal difference learning to optimise a controller such 

as a fuzzy logic controller in a distributed power system. Ultimately a three 

machine power system has been simulated to evaluate the dynamic perfor- 

mance of the generators as well as observing the multi-agent learning control 

performance. Initial preliminary studies were performed using a single gener- 

ator to a single load connected by a single transmission line. This basic power 

system is also known as a Single Machine Infinite Busbar (SMIB) system. The 

SMIB was later expanded in stages to the final multi-machine multi-agent re- 
inforcement learning control system. In all cases the synchronous generator 
outputs such as the terminal voltage or speed deviation were optimised to pro- 

vide good damping characteristics over a wide range of operating conditions. 
Complete details of the synchronous generators and power distribution network 

are described later in the relevant chapters. 

1.6 Contribution of the Thesis 

A review of the literature regarding reinforcement learning has been under- 
taken, mainly to study the methods and applications undertaken by previous 
research. The viability of using reinforcement learning to distributed large- 

scale systems, in particular the power syste , rn network optimisation problem 
was proposed and presented to apply multi-agent reinforcement learning. Ini- 

tial tests used a 3rd order dynamic system to validate the TD learning and 
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learning automata methods for optimising control. 
Research then continued using learning automata and a single machine infi- 

nite busbar system (SMIB) but as work progressed and more literature became 

available it was understood that developments in TD learning would provide a 
better opportunity for applying distributed multi-agent reinforcement learning. 

Also the use of adaptive heuristic critics (AHCs) as neuron-like learning ele- 

ments, the TD learning neural network was developed to solve the multi-agent 

reinforcement learning problem. 
Reinforcement learning provided a means of automatic and continuous 

learning of control parameters in conventional parameterised controllers such 

as the PID or fuzzy logic controller. This also made it suitable for on-line 
learning control of the power system network. The final evaluation resulted in 

using TD learning control of PID control followed by similar experiments with 

a fuzzy logic control in a multi-machine power system, both were investigated 

and implemented in simulation studies. 
It has been demonstrated using computer simulations that each temporal 

difference reinforcement learning can learn to solve global optimisation prob- 
lems using only local information and without directly communicating knowl- 

edge between agents but use the global reinforcement feedback signal r(t)as 
a guide to optimising the global problem. Each learning agent is in effect an 
autonomous intelligent system and by placing these autonomous intelligent sys- 
tems at strategic points in the problem environment, the de-centralised nature 
of learning also provides a certain amount of redundancy in the learning con- 
trol problem. Finally some of the practical aspects of reinforcement learning 

are also discussed. 
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Chapter 2 

The Learning Automata 

Early reinforcement learning ideas originated from interest by psychologists 

in animal behaviour. Later this was developed into the learning automaton by 

Tsetlin [16'1 [17] to solve the n-armed bandit problem, the learning automaton 

observed the system states and used a feedback reward signal r(t) to evaluate 
the observed states in order to update a policy based on a probability measure 
for improving future actions. 

Essentially the learning automaton, comprises a decision maker (the au- 

tomaton) and an environment (the system or plant to be controlled/optimised), 
these are connected in the classic feedback configuration shown in Figure 2.1. 
The automaton has a finite number of actions and corresponding to each action, 
the response of the environment can be either favourable or unfavourable with 
a certain probability. Using the theory of Markov processes the asymptotic 
behaviour of the automaton can be established. 

The objective in the design of the automaton is to determine how the choice 
of the action at any stage should be guided by past actions and responses. The 
important point is that the decisions must be made with little knowledge of the 
environment. The environment may have time varying characteristics, or the 
decision maker may be part of a hierarchical decision structure but unaware 
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of its precise role in the hierarchy. Alternatively, the uncertainty is due to the 

fact that the output of the environment is influenced by the actions of other 

agents unknown to the decision maker. In all cases the automaton must be 

designed to improve some overall performance function. Both deterministic 

and stochastic rules for choosing the action at any stage are of interest. In the 

latter case the automaton updates the probabilities of the various actions on 

the basis of the information received. 

2.1 The Environment 

A learning automaton system is a sequential machine characterised by a 

set of internal states, a set of input actions, a state probability distribution, a 

reinforcement scheme and an output function. These aspects will be described 

with the aid of Figure 2.1. 

Figure 2.1: The learning automaton. 
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The environment represents the system which communicates with the learn- 

ing system and supplies it with information. In the context of automatic con- 

trol, the environment corresponds to the process to be controlled. In optimi- 

sation terms the environment represents the realisation of the function to be 

optimised. The environment is said to be stationary if the penalty probabili- 

ties are not dependent on the time, otherwise it is said to be nonstationary, for 

example periodic, slowly varying or random. The environment can be defined 

mathematically by the triple jq, g, P }. 

1- a; -- 101102) 
.... a, } represents a finite input set of actions. 

2. c= Icl, c2, ..., c, } represents a set of penalty probabilities for indicating 

the value of the input actions a= jal, a2, .... a, j 

3.0 = 101,02} = 10,1} represents a binary output set of feedback rewards 
for the automaton 

Each element of ci of c corresponds to one input action ai The input a(n) 

to the environment belongs to a and may be considered to be applied to the 

environment in discrete time steps n where n=0,1,2,.... The output P(n) of 

the environment belongs to 0 and can take on one of two values 01 and 02. 

For mathematical convenience 01 and 02 are chosen to be 0 and 1 respectively. 
An output P(n) =1 is identified with a failure (unfavourable response) and 
O(n) =0 with a success (favourable response). The element ci of -c which 
characterises the environment is given by 

Pr(P(n) = 1/a(n) = ai) = ci (i = 1,2,..., r) (2.1.1) 

Consequently, ci represents the probability that the application of an action ai 
to the environment will result in a penalty Output- 

ýhe 
output set of the environment has thus far been assumed to be binary 

for simplicity. In some real physical environments this may be unrealistic 
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and hence the output set will need modifying. Models in which the output 

can take only one of two values, 0 or 1 for example, are referred to as P- 

models. An arbitrary threshold may be necessary to convert the actual outputs 

of the system into binary outputs, thereby discriminating between favourable 

and unfavourable responses of the environment to a given action. A further 

generalisation of the environment allows finite output sets with more than 

two elements to take discrete values in the interval [0,11. This is achieved by 

the normalisation and quantisation of the performance index, such models are 

referred to as Q-models. When the output of the environment is a continuous 

random variable which assumes values in the interval [0,11, it is referred to as 

an S-model. Q- and S-models provide improved discrimination of the nature 

of the response of the environment to a given action and hence are of greater 

practical utility. However the concepts developed here have concentrated on 

using the P-model environment for simplicity, the same concepts can easily be 

extended to the Q- and S-model. 

2.2 The Automaton 

The learning automaton collects data from the environment and processes 
it to achieve a desired goal. They perform a kind of mapping between the in- 

puts and outputs of the random environment where they operate. They can be 

compared to adaptive systems, in which the behaviour of the system is slightly 
improved at every time by estimating in real time the parameters of the plant 
model or controller to attain a specified goal. In a learning automata, the 

probability distribution is adjusted using a reinforcement scheme (an adapta- 
tion mechanism which is at the heart of a learning automaton) to achieve the 
desired objective. 

The automaton can be described mathematically by the quintuple 10, ft, 
G }, note that the output of the environment is also the input of the automa- 
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ton, similarly the output of the automaton is the input to the environment, 

see Figure 2.1. 

1. The state of the automaton at any instant n, denoted by O(n) is an 

element of the finite set 0= {01,02,..., 0, } 

2. The output or action of an automaton at the instant n, denoted by a(n), 

is an element of the finite set a= Jab a2, I Or} 

3. The input of an automaton at the instant n, denoted by P(n), is an 

element of a set 0. This set could be either a finite set or an infinite 

set, such as an interval on the real line. Thus 8 or 
2= I(a, b)} 

4. The trunsition function F(. . )determines the state at the instant (n+ 1) 

in terms of the state and input at the instant n, 0(n+l) =. F[O(n), #(n)], 

or. F(. .) is a mapping from 0 x, 3 -+ 0 and could be either deterministic 

or stochastic 

The output function 9(. ) determines the output of the automaton at any 
instant n in terms of the state at that instant, a(n) = G[O(n)], or G(. ) 
is a mapping 0 -+ a and is again either deterministic or stochastic. 

Basically, the automaton takes in a sequence of inputs and puts out a se- 

quence of actions. The working of the automaton as the observation time n 
successively takes values over the set of nonnegative integers 0,1,2,... can be 

conceived as follows. Given initial state 0(0), the action Q(O) is defined by! P(. ). 

With the knowledge #(0) of the input and the transition function F(. .) the 

next state 0(l) is determined. When these operations are performed recur- 
sivelY, the state sequence and the action sequence are obtained for any given 
input sequence. Note that the state and the action at any instant n depend 

on only the state and input at the previous instant n-1 and not on other 
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I- 

past states or inputs. Knowledge of the environment is therefore not essential 

to learning, making the learning automaton a very powerful engineering tool. 

The main limiting factor is the time required by the automaton to learn, this 

may limit the kind of applications that are suitable for the learning automaton, 

assuming of course that the convergence to the desired goal exists. 

The automaton is called a deterministic automaton if F(. .) and 9(. ) 

are both deterministic mappings. In such a case, for any given initial state 

and input the succeeding state and action are uniquely specified. If F(. .) or 

9(. ) is stochastic, the automaton is called a stochastic automaton. In this case 

there is, in general, no certainty concerning the states and action that follow 

a given initial state and input sequence; one can only consider probabilities 

associated with successive states and actions. 

2.3 The Stochastic Automaton 

At present a lot of research is interested in systems with much uncertainty, 
this was a result of systems becoming more and more complex as technology 

advanced. New approaches to control engineering problems were needed, the 

stochastic learning automaton being one of them. 
Consider a stochastic automaton in which at least one of the two mappings 

T and 9 is stochastic. If the transition function Y is stochastic, given the 

present state and input, the next state is random and Y gives tile probabilities 

of reaching the various states. Thus F can be specified in terms of the condi- 
tional probability matrices F(01), F(02),..., F(O,, ) where each F(O) for 0E0 
is an sxs matrix associated with an input symbol P and whose entries are 
given by 

Pr{O(n + 1) = oj I O(n) = Oi, P(n) = P} 

i=1,2,..., s j=1,2,..., S J3=01)02i---7flm 
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Thus fjoj represents the probability that the automaton moves from state Oi 

to state Oj following an input P. For the P-model case 3= 10,1} is a binary 

output from the environment regarding a favourable response or unfavourable 

response. 

The stochastic mapping 9 can be similarly represented by a conditional 

probability matrix G of dimension sxr whose entries are given by 

gij = Prja(n) = aj I O(n) = oi} 

i=1,2,..., s j=1,2,..., r (2.3.2) 

Hence, gij denotes the probability that the state Oi corresponds to action aj. 
Since fjoj and gij are probabilities, they lie in the closed interval [0,11. Fur- 

tj tj 
ther, starting from an initial state Oj, the automaton necessarily has to go to 

one of the s states at the next instant. Hence, to conserve probability measure 

we have 

t 
fi0ji for each 0E0 and i (2.3.3) 

j=1 
Similarly, 

r 1: gij =1 for each i (2.3.4) 
j=1 

The equations imply that the sum of row entries in each of the matrices is 

unity or the matrices F and G are stochastic 

2.3.1 Fixed Structure and Variable Structure Automata 

If the conditional probabilities fij and gij are constant i. e. , independent 

of n and the input sequence, then such a stochastic automaton is said to be 

a fixed-structure stochastic automaton. Sometimes it is necessary or useful to 

update the transition probabilities fij at each n on the basis of the input at 
that instant. In this case, the automaton is called a variable-structure stochastic 
automaton. 
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The main characteristics of the automata can be summarised as follows 

* For a deterministic automaton, the transition matrices F(P) consist of 

elements that are only 0 or 1 

* For a fixed-structure stochastic automaton, the elements of F(O) are 

constants taking values in the interval [0,11 and each F(P) is a stochastic 

matrix 

* In the case of a variable-structure stochastic automaton, the elements of 
F(O) are in [0,11 but are no longer constants as they are updated with 

n. 

2.4 Variable Structure Stochastic Automata 

The theory of Markov processes forms the principle vehicle for the study of 
variable-structure automata. To define a general Markov Chain, it is convenient 
to introduce a transition probability or stochastic matrix which contains the 

probabilities of transition between successive states p= jpjj} with i, j varying 

over a finite (or countable) state space such that 

1- pij 'Et 0 for all i, 

Epij =1 for all i 
jes 

2.4.1 Reinforcement Schemes 

In general terms a reinforcement scheme can be represented either by 

p(n + 1) = T[p(n), a(n), #(n)] (2.4.1) 

or by 

0 fi'j(n + 1) = T'[fý(n), O(n), O(n+ 1), O(n)] (2.4.2) tj 
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where T and T' are mapping functions. 

Reinforcement schemes are generally classified on the basis of 

1. the asymptotic behaviour of a learning using the scheme e. g. , expedient, 

c-optimal or optimal, or 

2. the nature of the mapping T or T' e. g. , linear, nonlinear or hybrid, or 

3. the properties of the Markov process describing the learning automaton 

e. g. , ergodic or non-ergodic. 

If p(n + 1) is a linear function of p(n), the reinforcement scheme is linear, 

otherwise it is nonlinear. Sometimes, two or more schemes are combined to 

form a hybrid scheme. 
The aim of such a scheme is to realise the advantages (in a practical sense) 

of the constituent schemes, for example, speed of convergence or variance. The 

particular constituent scheme to be used at any moment could then be deter- 

mined by the value of p(n). Similar remarks hold for the transition probabilities 

given by rol (n + 1). fij 

The basic idea behind a reinforcement scheme is rather simple. If the 

automaton selects an action ai at instant n and a favourable input e. g. (P(n) = 
0) results, the action probability pi (n) is increased and all the other components 

of p(n) are decreased. For an unfavourable input (O(n) = 1), pi(n) is deceased 

and all the other components are increased. These changes in pi(n) are known 

as reward and penalty respectively. Occasionally, the action probabilities may 
be retained at their previous values and in such a case this is known as inaction. 

The same idea can be used to update the transition probabilities. If O(n) = 
Oj, 0 (n + 1) = Oj and 0 (n) = 0, fý, (n) is increased when 0=0 and decreased 

when 0=1. To preserve the stochastic nature of the transition matrix, the 

other elements of the 0 row must be changed in the opposite fashion. The rest 
of the transition probabilities are maintained at the original values. The precise 
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manner in which the p(n) is changed depending on the action ai performed 

at stage n and the response O(n) of the environment, completely defines the 

reinforcement scheme. 

2.5 The General Reinforcement Scheme 

2.5.1 Action Probabilities 

A general scheme for updating action probabilities can be represented as 
follows. If 

a(n) = ai (i = 1,2, ..., 

pj(n + 1) = pj(n) - gj[p(n)] when P(n) =0 

pj(n+l)=pj(n)+hj[p(n)] when 0(n)=l 

r 
for all j :Ai. For preservation of the probability measure we require E pj (n) 

j=1 
1 so that 

r 
pi (n + pi (n) + 1: gj (p(n)) when P (n) =0 

r 
pi(n + pi(n) -E hj(p(n)) when P(n) =1 (2.5.2) 

j=l, ji4i 
For this to hold true the following assumptions are made regarding the func- 

tions gj and hj with j == 1,2,..., r. 

Assumption 1 gj and hj are continuous functions 

Assumption 2 gj and hj are nonnegative functions 

Assumption 30< gj (p) < pj and 0< [pj + hj (p)] <1 
r 

for all i=1,2, r and all p whose elements are all in the open interval (0,1). 
for all i=1,2, r and all p whose elements are all in the open interval (0,1). 
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The updating scheme is given at every instant separately for that action 

which is attempted at stage n (i. e. , action aj) in equation (2.5.2), and sep- 

arately for all those actions that are not attempted (i. e. , actions aj, j 0 i) 

in equation (2.5.1). While the action that is performed is either rewarded or 

penalised on the basis of the environment's response, it is not clear how the 

probabilities of the other actions are to be changed. Hence, in the form stated, 

the question of determining the updating scheme becomes one of determining 

the functions gi and hi. It is further implied in equation (2.5.1) that as long 

as j0i, the functions gi and hi are independent of the particular ai chosen. 
The continuity assumption on gi and hi is one of mathematical convenience. 

The fact that both gi and hi are nonnegative maintains the reward and penalty 

nature of the updating. Assumption 3 ensures that all the components of 

p(n + 1) remain in (0,1) when those of p(n) are in the same open interval. 

Strict inequality is imposed in equation (2.5.3) so that p(n + 1) 0 p(n) when 

all the components of p(n) are in the open interval (0,1). 

2.5.2 Transition Probabilities 

A general reinforcement scheme, in which the transition probabilities rather 
than the action probabilities are updated, has the following form. If 

O(n) = Oi, O(n + 1) = oj 

, A(n+l) fjok(n) f 'R ik gik[FO(n)] 

filk(n+l) filk(n)+hik[Fl(n)] 

for all k=1,2,..., sk :Aj. Further 

, 
(n + (n) AP ij 

(n + 

gik[FO(n)] 
k=l, k? 4-j 

hik[Fl(n)) 
k=l, kOj 

when 0(n) =0 

when P(n) =1 (2.5.3) 

when P(n) =0 

when 0(n) =1 (2.5.4) 
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and for all u: ý- i and/or 6(n) 0p 

f 1,3 (n + (n) 
v 

(2.5.5) 

In this algorithm, gik(. ) and hik(. ) are nonnegative continuous functions map- 

ping sxs stochastic matrices into R[O, 11. It is also clear that the algorithm 

updates only the i1h row elements of the state transition matrix associated with 

P(n) and that the remaining transition probabilities are maintained at their 

previous values. As in the case of action probabilities, the functions gik(. ) and 

hik(-) satisfy subsidiary conditions to assure that all the transition probabilities 

remain in the interval (0,1). 

2.6 Linear Reward-Penalty (LR-P) Scheme 

The linear reward-penalty scheme is perhaps the earliest scheme considered 
in mathematical psychology (Bush and Mosteller, 1958 [171). The properties of 

this scheme have been studied in detail by a number of research workers in this 

field (Fu and McLaren, 1965; Fu and McMurtry, 1966; Chandrasekaran and 
Shen, 1968; Viswanathan and Narendra, 1972; Norman, 1972; Lakshmivarahan 

and Thathachar, 1973 [171). 

Consider a learning automaton with two actions (reward and penalty in 

this case) and let 

gj(p(n)) = apj(n) 

hj (p (n)) =b (1 - pj (2.6.1) 

where a and b are reward and penalty parameters with 0<a<1,0 <- <b<1- 
Substituting equation (2.6.1) in equations (2.5.1) and (2.5.2) the updating 

algorithm can be written as 

pi(n+l)=pl+a(l-pl(n)) a(n)=al, o(n)=O 
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p, (n + (1 - b)pl (n) a(n) = a,, P(n) =1 

p, (n + (1 - a)pl (n) a(n) = a2, P(n) =0 

pl(n + 1) pi + b(l - pi(n)) a(n) = a2,, 3(n) =1 (2.6.2) 

equation (2.6.2) is referred to as the general LR-P updating algorithm. From 

this equation it follows that if action ai is attempted at stage n, the probability 

pj (n) (j :A i) is decreased at stage n+1 by an amount proportional to its value 

at stage n for a favourable response and increased by an amount proportional 

to [1 - pj(n)] for an unfavourable response. 
The specific case when a=b is called the linear reward-penalty scheme 

(LR-p) and results in symmetric equations. From equation (2.6.2) it is seen 

that the effect on the probability action a, is the same whether a, is performed 

and results in a favourable (unfavourable) response or a2 is performed and 

results in unfavourable (favourable) response. 

0 
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Chapter 3 

Reinforcement Learning 

3.1 Introduction 

Reinforcement learning has been defined by Haykin as [41 

the on-line learning of an input-output mapping through a process 
of trial and error designed to maximise a scalar performance index 
called a reinforcement signal. 

Kaelbling, Littman and Moore [211, produced a survey on reinforcement learn- 

ing. The survey describes many more specific reinforcement learning methods 

and deals with many of the problems encountered when applying reinforce- 

ment learning. It gives a scope of how reinforcement learning methods have 

developed by necessity and interest, such as the dynamic programming, learn- 

ing automata, value iteration, policy iteration, IV-learning, Q-learning, and 

Temporal difference (A). 

In this research the main interest is in the learning automata and incre- 

mental dynamic programming (or dynamic programming-based reinforcement 
learning). Bradtke [13] uses the term incremental dynamic programming (IDP) 

to distinguish them from traditional dynamic programming (DP) algorithms. 
IDP algorithms attempt to find a globally optimal solution by incrementally 
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improving the local reinforcement payoff as experience is gained through inter- 

action with the environment. The main advantage of using IDP algorithms over 

traditional DP algorithms is that IDP methods are computationally cheaper 
[3]. One of the most familiar IDP algorithms is Sutton's Temporal difference 

(TD) algorithm [131, [241, [541, [31, [22], [551, [371. Samuel's draughts player 
(1959) [31 is one the earliest applications to use the TD learning method. 

It is a striking feature of the reinforcement learning solution that it can 

achieve the effects of planning and lookahead without using a model of the 

opponent (or environment) and without conducting an explicit search over 

possible sequences of future states and actions [161. 

The scope of reinforcement learning encompasses many schemes and learn- 

ing algorithms [211. However the fundamental property of all these methods 

can be explained by equation (3.1.1) [16] [4]. Where R(t) is the expected sum of 

the immediate reinforcements r(t) discounted by gammat. The factor gamma' 
is used to keep the expected value R(t) a finite value when a large or periodic 

sequence of actions is used during learning. The fundamental principle being 

to maximise R(t) when following a reward driven goal or minimising R(t) when 
following a penalty driven goal or learning. 

00 
R(t) = EE -ytr (t) 

t=O 
Mainly due to its simple concept as a cognitive process by using trial and 

error learning to acquire experience, reinforcement learning has attracted in- 

terest from first psychology, then science, mathematics and now engineering 
for its application in the intelligent control of complex systems. 

Some fundamental aspects and other important points regarding reinforce- 

ment learning will be highlighted in order to better explain the roles and pro- 

cesses involved. 
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3.2 Variation, Selection and Retention 

A few of the most important evolutionary processes for learning are varia- 

tion, selection and retention. When the performance of a system fails to meet 

targeted aspiration levels the problem driven search routines are triggered gen- 

erating variation. These variations lead to further selection as the learning 

agent seeks to gain a better understanding of the environment through explo- 

ration. 
Selection among variations in an adaptive learning perspective occurs when 

the results of actions are compared to some preset aspiration levels. In keep- 

ing within the scope of searching through the problem space a learning agent 

should keep those variations that helped them reach their targets and try other 

variations to replace those that failed. In short, successful actions tend to be 

repeated and unsuccessful actions should provoke further search. The impor- 

tance of selection in reinforcement learning is emphasised due to the way in 

which a policy is built or learned as the agent evolves. Although the term 

evolve used in this case is not biological evolution, there are a lot of similar- 
ities, as tasks change and goals move, new selections are required while old 

one become extinct until a stable equilibrium is found when the desired goal 
is reached. 

Retention mechanisms are critical for learning, for without a way to store 
and retrieve routines or knowledge, learning agents gain nothing from expe- 

rience. From an adaptive learning perspective, the results of the search are 

stored in routines and performance programs that can be reused when needed. 
Learning is then embodied in a set of interlocking role behaviours between 
learning agent and environment, supported by internal state transitions, ac- 
tion descriptions and external interactions. 
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3.2.1 Actions 

Some actions in the learning agent are simple random variations, a method 

often used to encourage exploration. Other actions are the result of repetition, 

when it is best to repeat the same past action since no better alternative has 

been learnt yet, some would treat repetition as just another action only if 

the underlying rationale for repetition has also been learnt, arguing that only 

intentional learning should count as real learning. 

Most actions by learning agents are intendedly rational within the scope of 

the task to be solved, but often they are denied complete rationality because of 

limitations. In complex systems a learning agent is sometimes precluded from 

making optimal choices by cognitive deficiencies and peculiarities, limits on 

information availability, and constraints on information processing. Informa- 

tion search costs (most often the cost is time) will lead most actions to choose 

satisfactory, rather than optimal alternatives. Learning agents also act with 

self interest at the expense of other learning agents, although the scheme and 

multi-agent learning architecture used in this research there is no conflict of 

interest when agents act selfishly. 

3.2.2 Optimal Control 

For a deterministic system containing no disturbances, given any closed- 
loop policy and initial state, there exists an open-loop policy that produces 
the exact system behaviour. However for a stochastic system, or a system with 

unmodelled disturbances this cannot be true because the outcome of random 

or unmodelled event cannot be anticipated in designing an open-loop policy. 
Game-playing systems such as Tesauro's backgammon player [24], [541 and 
Samuel's draughts player (1959) [31, always use closed-loop control for this 

reason, with the opponent acting as a kind of disturbance. For tile same 

reason closed-loop control is usually better than open-loop control for single 
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agent problems involving uncertainty. 
The most familiar control objective is to control a system so that its output 

matches some desired setpoint or tracks the setpoint trajectory as close as 

possible when disturbances are present. In an optimal control problem, the 

objective is to find the best trajectory within some function that controls the 

systems behaviour. A typical optimal control problem is finding the minimum- 

cost trajectory from an initial start state to some defining goal state. Thus 

many optimal control problems are also related to problems involving heuristic 

search algorithms (reinforcement learning). 

3.2.3 Hidden States 

The solution to optimal control problems requires the access of system state 
information. Sometimes, the system state is not immediately apparent from 

the information available. The problem of hidden state information has been 

termed perceptual aliasing by researchers concerned with building autonomous 

agents that learn through interaction with their environment [131, [56). Most 

problem environments for autonomous learning agents can be modelled as a 
Markov decision problem. 

One solution to overcome the problem of hidden states has been developed 

by McCallum [571. McCallum used a reinforcement learning approach, called 
instance-based state identification and applied it to robot navigation and task 

problems. The approach applies instance-based (or memory-based) learning to 
history sequences, this history information uncovers the hidden state(s) using 
state identification techniques. 

3.2.4 Markov Decision Problems 

Many problems of practical importance have been formulated as Markov 
decision problems, and extensive treatment of the theory and application of 
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this framework can be found in many books [10]. Any problem that can be 

cast as a Markov decision problem is theoretically solvable using reinforcement 
learning. A Markov decision problem contains a set of states 0 which contain 

a subset of start states S and a set of actions a. A reinforcement function R 

and an action model A are required such that R(O, a) is the expected imme- 

diate reinforcement for taking action a in state 0 and A(Oj I Oj, a) gives the 

probability that executing action a in state Oi will lead to state Oj with i0j. 

In order to be a Markov decision problem the choice of action must depend 

only on the current state observation 0, if knowledge of prior actions or states 

affects the current choice of action then the decision problem is not Markov. 

One of the simplest and common examples to cast as a Markov decision 

problem is that of a two-dimensional robot navigator. This is normally illus- 

trated as a grid-world, with each grid element being a state. Some states are 
freely accessible while others contain obstacles to limit the directions a robot 

can take. The problem posed is that of finding the shortest path from an initial 

start state to some goal state. The objective of the robot is to find the optimal 

policy, this maximises a return or payoff, usually a scalar reinforcement signal. 
The policy maps states to actions and the magnitude of the payoff received in 

response to an action is inversely related to the cost of the path travelled (so 

that maximising the total payoff will minimise the total path cost). 

3.3 Properties of Reinforcement Learning 

There are only two fundamental elements to a reinforcement learning sys- 
tem, one is the learning agent itself, the other is the environment. The emphasis 
on learning by trial and error with the environment acting as a teacher/guide 
has been stated. Without the environment there wouldn't be any of the in- 
teraction needed for the learning agent to learn. But there will always be 

an environment since the point of the learning agent is to solve some task 
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the nature of a goal in reinforcement learning can be a simple decision/action 

such as choosing a good control action or a situation such as don't get lost 

(e. g. the exit in maze solving problems) or even high level actions such as 

a change in state of mind, an example of which is from avoiding predators 
to searching for food as used by the ant problem [261. In the three by three 

grid environment (or world) all transitions from state to states are limited to 

moving perpendicular to the current state or only moves of north, east south 

and west from the current state are permitted unless an outer edge prevents 

such a transition. 

3.3.1 Reward and Penalty 

The first thing all reinforcement learning needs to know is what is currently 

good and what is currently bad. A reward function is used to guide the rein- 
forcement learning agent to reach a desired goal or achieve a certain objective. 
It is a scalar value mapped to each state to indicate the desirability of that state 
when a given action is performed from that state. All the reinforcement learn- 
ing agent has to do is to maximise the accumulated rewards (or minimise the 

penalty) in order to reach its objective. The reward function defines what are 

good and bad events and give an immediate measure of this, they are used to 

alter the agents policy. For example the terminal voltage of a turbo-generator 

needs to be within a certain range, 1.2kVtol. 4kV, and at a time t the terminal 

voltage is 1.2kV, then the condition is a good one, therefore return a reinforce- 

ment feedback signal r(t) =1 to indicate this. Else if the action selected by a 
Policy is followed by a low reward r(t) - 0, the policy is then changed to select 
some other action when in that situation is encountered in the future. 

The feedback reinforcement signal r(t) is the first important element that 

all reinforcement learning agents use in order to come to a useful decision for 

selecting future actions. The actual nature of the reinforcement feedback signal 
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varies from one problem to another. The most common is to use a binary signal 

of the form 0 for good situations and -1 to indicate bad/undesirable situations 

since most reinforcement learning has been defined as a problem of maximising 

the expected sum of discounted payoffs r(t) by satisfying equation (3.1.1), 

where the parameter -y is a discount factor to return a finite sum if the sequence 

of events is very large or infinite. This enables the design of a control system 

to be simplified by allowing it to discover the control policy for itself but by 

necessity the task must be fully described by the payoff function. 

In its simplest form the agent is basically trying to maximise the rewards 

which is what our simple illustration will hope to achieve. The choice of se- 
lecting a suitable reward function r(t) will mainly depend upon how to best 

represent the states of an environment. For example if the task is best served 
by minimising a risk then a reward function of the form r(t) =1 for an unde- 

sirable state and r(t) =0 for a desirable state can be used. In this case the 

risk is minimised if the shortest path from any arbitrary start state to any goal 

state is taken. If the case had been to maximise a profit then r(t) =0 for a 

good state and r(t) = -1 for a bad state can be used. Although there will be a 
limited way of choosing a reward function r(t) for a particular task, in general 
the best reward functions take into account the fact that some environments 
are very large or can have continuous periods (loops) and include a discount 
factor to compensate. 

For the purposes of the illustration and referring to Figure 3.1 a simple 

reward function is used, all states return a reward of r(t) = -1 unless it is the 

goal state (State 'A') then r(t) = 0. 

3.3.2 The Value of a State 

A value function in reinforcement learning is used to provide an indication 

of the value of a state. The value of a state is its expected accumulated reward 
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for starting from that state until reaching some desired goal state. The value 

of a state is used by the learning agent to guide its actions in order to reach 

the goal state in the most efficient way. Where the reward is an immediate 

desirability of a state, the value indicates how valuable the state is in the long 

term by taking into account the states that follow and the rewards available 
in those states. So a state can have a low reward but a high value because 

it is often followed by states with high rewards, the reverse can also be true. 

The value function uses the rewards generated by the reward function in order 

to assign a value to each state. Without rewards, values cannot be estimated, 

while values are estimated to achieve more reward by maximising the expected 

accumulated reward. It is these values which the agent uses to choose actions 

and hence change or follow a policy. Rewards are determined by actions taken 

in the environment, but values must be estimated and re-estimated from the 

sequence of observations the agent makes in its lifetime. 

In the simple example using Figure 3.1 the first stage any reinforcement 
learning must do is to explore its environment, this is usually achieved by some 

sort of searching such as a random search in this case actions from an arbitrary 

start state are randomly chosen from tile possible four actions available, these 

are to move up, down, left or right. If the start state is 'E' then suppose the 

random search followed this trajectory, E, 11, G, D, 11, B, A. Each non goal 

state transition returns a -1 reward signal which is added to tile current sum 

until the goal state is reached, so using this example a value of -6 is assigned to 

state 'E'. After further exploration trials starting from state 'E' tile trajectories 

that do not lead to further improvements in the state values are E, B, A, or E, 
D, A. Both of these provide the value of -2 to state 'E' which is the optimal 
value for this state. The other states are also optimised in this manner, the 
optimal values for each state are shown in Figure 3.2. The value function is 

arguably the most important component in a reinforcement learning system. 
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or E, D, A in order to maximise the accumulated rewards. 

3.3.4 System Model 

A model of the environment is an optional part of reinforcement learning. 

Models though are sometimes useful for planning by the reinforcement learning 

agent. Most reinforcement learning systems can be applied without any knowl- 

edge of the environment but some build up a model as learning progresses and 

then use this for planning. Traditional dynamic programming methods are lim- 

ited to solving problems with manageable state-space dimensions. Incremental 

dynamic programming methods such as TD learning overcome this limitation 

by updating knowledge after every action (state to state transition) rather than 

waiting for a whole sequence of many actions to finish. 

Early reinforcement learning techniques for adaptive control, such as the 

learning automaton [211, [171, [28], and later incremental dynamic program- 
ming such as TD learning 1131, [211, [45), [58], did not require a model of the 

plant/environment to be developed. Therefore when a model of the plant is 

unknown, two alternatives for the development of an adaptive control system 

are available [581. 

e Estimate a model and from this develop a control rule 

* Develop a control rule without building a model 

If a model-based approach is used, then it will be necessary to build a model 
first. There are two primary arguments for taking a model-based approach. 
First, building a system model and then using that model to solve tile optimal 
control problem is often much easier than trying to solve the optimal control 
problem directly. This is especially true for most linear systems where a model 
can be easily built. However, solving even a very simple problem of this type 
using a direct or model-free approach can be relatively difficult [131., The second 
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reason for using a model-based approach is that, once the model is formed it 

may be used as a basis for solving many related control problems. 
Two examples of model-based reinforcement learning are Dyna, developed 

by Sutton [3], [591, [521 and prioritised sweeping, developed by Moore and 

Atkeson [58). A Dyna architecture integrates trial and error (reinforcement) 

learning with execution time planning into a single process, operating alter- 

nately on the real system and a model of that system. Incremental learning 

methods such as TD-learning have fast real time performance because they use 

the most optimal policy which is not necessary the actual final optimal pol- 

icy, while traditional control methods are slower but more accurate by waiting 

until they have obtained the optimal policy after full use of all the observa- 

tions. Prioritised sweeping combines both advantages into one system by using 

all previous experiences to prioritise important dynamic programming sweeps 

and also guide the exploration of state-space. 
For a model-free control system design the primary argument is that it 

may be less expensive to find the optimal (or an acceptable) controller by 

direct interaction. It is relatively easy to model a linear dynamic system, 
however to obtain an accurate model of a stochastic complex system such as the 

financial market can be difficult or impossible. The usual approach is to idealise 

such complex systems using approximations, the result is a model that is only 

accurate within certain constraints. For some applications, especially safety 

critical ones, this is usually not acceptable. Even if an accurate model of the 

system is known, a model-free control system may still be required, since it will 

often be the case that the derivation of an optimal controller obtained directly 

from that model, is analytically and computationally intractable. Consider 

the game of backgammon [421, [131, [241, [171. The state transition function 

for backgammon is specified by the rules of the game. However, backgammon 

is estimated to have at least 1011 states. Trying to find the optimal policy 
for the game of backgammon using a traditional model-based approach is an 
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intractable problem. 
Other motivations for using model-free methods such as the learning au- 

tomaton are: the interesting fact that these methods nevertheless do learn and 

the possibility that they simulate some types of biological learning [221. Since 

the main interest is in model-free reinforcement learning methods, the research 

effort will be concentrated here. 

3.4 Limitations to Learning by Experience 

Apart from random action selection when faced with any new environment 

are there any other techniques that can be used? Since in the initial stages any 

action will acquire new knowledge using a random selection does not pose a 

problem. The problem however is knowing when to use the acquired knowledge 

instead of searching for more maybe less useful knowledge (e. g. when the 

current calculated state value is worse than the previous state value). This is 

the explorationlexpliotation problem encountered by all self learning agents. In 

most reinforcement learning techniques there is a switching between exploring 
(updating state values) and exploiting (using the current state values to drive 

a policy). It is formalising a strategy in order to successfully change from 

exploration to exploitation which is the challenge. 
In the illustrated example there are only a small and finite number of states, 

the optimal state values can be quickly found since the possible ways to ran- 
domly choose actions from any state is also finite and manageable. Given 

enough time any reinforcement learning agent can eventually through explo- 

ration find all the optimal state values. However that is the question, when will 
it find all the state values (preferably the optimal ones) and will it even know 
it has explored all the states. Presumably learning will stop when all the state 
values cannot be improved anymore, in which case it has explored all states. 
For stochastic systems and systems that have a very large state space learning 
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can take a long time which may be undesirable or unacceptable. One way to 

alleviate this problem is to use a team of reinforcement learning agents each 

exploring a subset of the state space so collectively they will reduce the explo- 

ration time and acquire knowledge quickly. However the co-ordination between 

reinforcement learning agents will need to be studied to see how they use their 

knowledge to gain wisdom if they are to collectively make good decisions. Two 

types of co-ordination are possible they can either become competitive and 

come to decisions based on which reinforcement learning agent has the most 
influence and therefore takes charge, or they can become co-operative in which 

all knowledge is shared and used to come to an agreeable action between agents. 
So far the most prominent examples of these two opposing view points are by 

Humphrys [261 with W-learning using selfish motivations in learning agents and 
Wu [281 using learning automaton in a team architecture with shared reward 
functions. 

3.4.1 Experience in Reinforcement Learning 

There are essentially two ways of using experience in reinforcement learning. 

One is called model or indirect learning, and the other direct reinforcement 
learning. The possible relationships between experience, model, value and 
policy can be shown in Figure 3.3 [161. Indirect methods make fuller use of 
a limited amount of experience and can converge to a good policy with fewer 

interactions. On the other hand direct methods are much simpler and are 

not affected by past model experiences (or bias) if the environment changes, 
thereby requiring to re-learn another model of the environment. 

However both methods use their experience to change a policy which up- 
dates the values which are used to further improve the policy. The universal 
task for all reinforcement learning agents is to maximise the accumulated re- 
wards using the state values as a guide. This interactive relation with the state 
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values and the policy repeats until no more improvement in the accumulated 

rewards can be made. When this happens the state values can no longer be 

improved and the policy is said to be an optimal policy, i. e. the most efficient 

way of reaching the desired goal. 

The choice of method will depend upon the type of task being solved 
(stochastic, linear, non-linear, deterministic, noisy, etc ... 

) and what is required 

of the reinforcement learner to achieve. The learning automaton and TD rein- 
forcement learning methods are both examples of direct reinforcement learning 

that explicitly learn from trial and error. There have been some developments 

in making TD methods more model based by Sutton, known as Dyna [60] 

which is an architecture for learning, planning and reacting. Also conventional 
dynamic programming methods cannot lQarn without a model, so it is evident 
that modern reinforcement learning methods span the entire spectrum from 

low level, trial and error learning to high level deliberative planning. 
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3.4.2 Pure Delayed Reward and Avoidance 

One of the most important aspects of learning is that of assigning credit. 

Here the agent solves a credit- assignment problem in order to find the optimal 

policy [451, i. e. which action(s) of an action sequence to blame if the total 

reward is non-optimal. It is not necessarily optimal to always execute the action' 

with the largest immediate reward, because executing actions with smaller 

immediate rewards may be necessary to make large future rewards possible. 
This is called the problem of delayed rewards or reinforcement learning with 
delayed rewards. The learning agent'has difficulty in assigning credit to good, 

or blame to bad actions/states because no evaluative feedback is given until the 

end of a trial or learning sequence. In reinforcement learning the reinforcement 
feedback signal r(t) gives an immediate (or short term) indication of how good 

or bad the decision was for a particular state. However this is insufficient in 

many real problems and the long term values of each state must be estimated 

or known for efficient prediction and/or control, that is the credit assignment 

problem. 
For example, a reinforcement agent is required to play the game of draughts. 

The sign of the reinforcement scalar at the terminal state indicates whether 
the terminal state is a goal state (reward) or a state that should be avoided 
(penalty). The state space is the position of each players pieces on the game 
board, the available actions the agent can make are the set of legal moves. The 

reinforcement function is defined to be zero after every turn except when an 

action results in a win (+1 reinforcement) or a loss (-1 reinforcement). The 

goal of the learning agent is to maximise the reinforcement so it will learn that 

states corresponding to a win are goal states and states resulting in a loss are 
to be avoided. 
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3.4.3 Minimum Time to Goal 

Reinforcement functions of this type find the shortest path or trajectory to 

the goal state. An example of this is a stationary car between two steep inclines 

as described by Sutton [161, the goal of the driver (reinforcement learning agent) 
is to reach the goal state on top of the hill by driving up the incline. The state of 

environment is the position and velocity of the car. Three actions are available 

to the agent in each state, forward acceleration, backward acceleration or no 

acceleration. The problem is that the car cannot simply drive up the hill due to 

the steepness of the incline. The driver must learn to use momentum in order 

to gain enough velocity to successfully climb the hill. In order to maximise 

the reinforcement scalar, the agent learns to choose actions that minimises the 

time taken to reach the goal state and hence learns the optimal strategy for 

driving the car up the hill. 

3.4.4 Exploration Versus Exploitation 

The fundamental question to all reinforcement learning is to find the goal 

state in an optimal or efficient manner. Since initially the agent is faced with 

an unknown environment, the agent must perform a search or exploration of 

the state space. In order to explore the agent must choose an action that is 

not considered the best for the purpose of gaining new knowledge of unseen or 

seldom seen states. The need for the learning agent to explore is fundamental in 

identifying the optimal as well as sub-optimal states and sufficient exploration 

of the state space must be conducted. Sutton [161 shows many examples when 

reinforcement learning is better overall after some time is used to explore tile 

environment seeking better actions/decisisions rather than purely following a 

greedy policy. 
Take the example of a robot in an unknown environment, initially some 

time has been spent exploring and acquiring knowledge of its environment. 
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use exploration to maximise the knowledge gained during learning while also 

minimising the costs of exploration and learning time. In practical systems, 

the standard strategy is to exploit most of the time and explore from time to 

time. The two main search strategies involved in reinforcement learning are, 

one use a stochastic search of the environment to ensure sufficient exploration, 
the other is to use a statistical technique, such as choosing an action based 

on action probabilities which are increased or decreased with experience. The 

learning automaton is an example of the latter. 

The dilemma is that just exploring or just exploiting will not achieve the 

task the agent is set. So far there isn't a unique way of combining exploration 

with exploitation that can solve all tasks. However there are some common 

sense guides. For off-line learning agents, the strategy could be to explore 

and exploit at equal intervals building up knowledge for planning. For on-line 

search strategies too much exploration initially could be dangerous, for example 

a navigation robot colliding with an obstacle too often can leave it damaged 

and unable to complete its task. One method is to explore cautiously at first, 

building up fundamental knowledge of the environment. When the learning 

agent becomes more confident, it explores more in order to acquire knowledge 

at a faster rate. After sufficient exploration the agent exploits more, using the 

knowledge gained when exploring to ensure it converges to a policy (hopefully 

the optimal policy). However it may be wise to still explore a little after 

convergence to a policy, because the current best policy may not be optimal 

and exploration may find a better policy. This can be illustrated in Figure 3.4. 
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Chapter 4 

Temporal Difference Learning 

4.1 Introduction 

Temporal difference learning emerged from the study of ADALINES (adap- 

tive linear elements) by Sutton [341, [31 and motivated by adaptive systems 

such as artificial neural networks. Temporal difference (TD) learning was later 

formalised by Sutton [31 when he realised that they were closely related to 

conventional dynamic programming. Although TD reinforcement learning is 

based on conventional dynamic programming methods and the Widrow-Hoff 

rule for neural network learning [31 [341, they have many advantages over ei- 

ther method. TD has the advantage of incremental learning and the updating 

of weights is performed each step incrementally rattler than all at once after 

a complete sequence of events. So unlike conventional dynamic programming 

it does not need to finish a complete sequence of actions (which can be very 

long) before updating its knowledge base, and can learn new knowledge after 

successive predictions. The other advantage is that the overall computation 

and memory requirements for TD learning is relatively small compared to tra- 

ditional dynamic programming making TD learning more suitable for practical 

applications. 
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Like the development of the learning automaton temporal difference learn- 

ing is a milestone in furthering the practical evolution of reinforcement learning. 

Temporal difference learning has brought a lot of disciplines closer together. 

The neuron like structure of temporal difference was a progression from previ- 

ous work on neural networks [31 which are further based on biological models 

of the brain [4], [12]. The decay of the eligibility traces in temporal difference 

learning has a basis in animal behaviour and models the memory forgetting 

factor in animals as a function of time 1221. Early reinforcement learning using 

the learning automaton started from the psychologists point of view in which 

temporal difference learning is part of but no longer confined to [3], [541, [171. 

The incremental updating nature of temporal difference learning was also an 

improvement on another well established mathematical computation method 

known as dynamic programming, which has origins in mathematics and com- 

puter science 171, [81, [13], [9), [10), [59], [521. Finally with the increased interest 

in temporal difference learning many engineers are seeing the advantages of this 

reinforcement learning method and applying them to control large-scale sys- 

tems. 

4.2 Temporal Difference Learning 

The temporal difference learning is a relatively recent reinforcement learn- 

ing algorithm for optimising control and machine learning in general. As men- 

tioned in the introduction Temporal Difference (TD) learning has already at- 

tracted a diverse range of applications, from playing complex games such as 
Samuel's Draughts player (1959) [31 and Tesauro's Backgammon player [241, 

to improving elevator performance [431 in large office buildings. The reason for 

using reinforcement learning for many of the examples is due to the stochas- 
tic nature of those systems, making it a difficult task using conventional non 

reinforcement learning control methods. 
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Learning to predict is one of the most important tasks required in learning. 

The conventional approach to prediction learning is to adjust the parameters 

in the predictor based on the error between actual and predicted values. TD 

learning updates the predictor parameters by using the error between succes- 

sive predictions. Accordingly, learning occurs in TD methods whenever there 

is a change in prediction over time. The training examples are taken from 

the temporal sequence of input vectors and hence TD methods are unsuper- 

vised and learn on-line, sometimes these methods are referred to as adaptive 

prediction methods [381. 

Sutton formalised a complete class of TD learning methods in a paper 

published in 1988 comparison with supervised learning [3]. The general TD 

method was introduced called TD(A), where A is a weighting factor with a 

value 0<A<1. Instead of updating a state value (or approximate value) 

based on the values of the immediate successor states, TD(A) bases the update 

on an exponential weighting of values of future weights. With the two extreme 

cases TD(O) being similar to Q-learning and TD(1) being similar to supervised 
learning, since TD(1) updates the value (or approximate value) of state n solely 

on the value of the terminal state [421, [3]. The general temporal difference (A) 

algorithm for updating weights w(t) in a connectionist system such as a neural 

net has the form given in equation (4.2.1). 

t 

Aw(t) = a(p(t) _ p(t _ 1)) E \t-k Vwp(k) 
k=l 

The features are the temporal difference error p(t) - p(t - 1) which drives 

the learning, with a being a learning rate and V, p(k) provides gradient in- 

formation to indicate if the improvements need to be adjusted positively or 

negatively. The factor A is a trace decay, where A=0 models short term 

memory and only the past single step is remembered, when A=1 long term 

memory is modelled and all the previous steps are remembered. The most 

useful and practical representation of memory fading is one that has a value 
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(0 <A< 1). 

In all reinforcement learning the learning agent tries to maximise the ex- 

pected sum of discounted payoffs r(t) received by satisfying equation (3.1-1). 

Temporal difference learning is a method for predicting the expected sum of 
discounted payoffs. The agent learns by minimizing the error difference be- 

tween the predicted and actual values. 

4.2.1 Adaptive Heuristic Critic and TD(A) 

The temporal difference reinforcement learning algorithm was later adapted 
for use within the adaptive heuristic critic (AHC) architecture using neuron 
like structures by Sutton, Barto and Anderson [341 to solve difficult learning 

control problems. The AIIC also makes it easier to applying TD learning 

because of its neuron like structure for connectionist architectures. Similar 

methods to the AIIC in which a critic is used to enhance the action evaluation 

are also known as actor-critic methods [161. 

The adaptive heuristic critic reinforcement learning system uses TD meth- 

ods of prediction and learning control to solve stochastic sequential decision 

tasks. The two important elements of the AIIC are the adaptive c7itic element 

and associative search element [341. 

A block diagram to this approach is given in Figure 4.1 and consists of two 

components, the critic (AHC) and reinforcement learning component (11L). 

The reinforcement learning component is designed or chosen to maximise the 
heuristic reinforcement value, f, that is computed by the critic. The critic 

uses the external reinforcement signal to learn to map states to their expected 
discounted values given that the policy being executed is the one currently 
in the RL component [211. The system is designed to learn under delayed 

reinforcement, this is a temporal sequence of input state vectors (Sti muli) that 

eventually result in the generation of the heuristic reinforcement signal. Instead 
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of acting to maximise instantaneous reward r, the AHC tries to maximise the 

heuristic reinforcement value f computed by the critic. TD learning and the 

AHC is one of the first methods to address the credit assignment problem 
because of its use of learning by delayed reinforcement. This is achieved by 

the use of eligibility traces for modelling the decay of short term memory in 

animals. 

r, reward 

x, state 
Adaptive Critic Element: ACE 

A 
r, heuristic value 

Associative Search Element: ASE 1Ps, action 

Figure 4.1: Architecture for the Adaptive Heuristic Critic [211. 

The adaptive heuristic critic system contains an adaptive critic element 
(ACE) and an adaptive search element (ASE). As learning proceeds the ASE 

constructs associations between inputs and outputs by searching under the 
influence of a reinforcement feedback. The reinforcement feedback r is zero for 

example in non fail states and -1 in fail states. The ACE uses r to provide 
a more informative evaluation function, the heuristic reinforcement, which is 

used by the ASE to evaluate if an action selected was good or bad. 
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4.2.2 The ACE 

The central idea behind the ACE is an algorithm that predicts the future 

reinforcement and is a function of the system state vector. Barto et al [341 

uses the following equation to determine the prediction p(t), the ACE predicts 

performance p(t) by using equation (4.2.2), 

n 

vi (t) xi (t) (4.2.2) 

subsequently the ACE weights vi(t) are updated using equation (4.2.3), 

Vi(t + 1) = Vi(t) + O[r(t) + -yp(t) - P(t - 1)]Ti(t) (4.2.3) 

where the eligibility trace Yj (t) by equation (4.2.4) is used to model the gradual 

fading of memory. 

Yi xi (t) (4.2.4) 

The ACE output, known as the heuristic reinforcement f (t), is given by equa- 

tion (4.2.5) 

f (t) = r(t) + 7(p(t) - p(t - 1)) (4.2.5) 

where #,, y, A are constants in the range 0,1 and the external reinforcement 

r(t) =0 except at failure r(t) = -1, however the reinforcement feedback signal 

r(t) range can be selected depending upon the nature of the optimisation task, 

such as maximising reward, then r(t) =1 indicates a good action and r(t) =0 
is a poor action for example. Another example is when minimising an error 
then r(t) =0 is representative of a good action and r(t) =1 means a bad 

action selection. The feedback signal r(t) in temporal difference learning is 

very similar to the reinforcement feedback signal 0 for the learning automata. 
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The purpose of the heuristic reinforcement is to provide an indication of 

the long term value for each state. The ACE uses the immediate reinforcement 

signal r(t) to generate the heuristic reinforcement value f (t). The role of the 

ACE is to act as the value function in reinforcement learning. 

4.2.3 The ASE 

The ASE uses the improved heuristic reinforcement signal f (t) to gener- 

ate the control action s(t). The ASE weights wi(t) are updated using equa- 
tion (4.2.6), 

wi (t + 1) = wi (t) + ai (t) ei (t) (4.2.6) 

with eligibility traces ei(t) updated by equation (4.2.7) 

ei (t + 1) = 6ei (t) + (1 - ö) y (t) xi (t) (4.2.7) 

where parameter a and ý are constants in the range 0,1. Note the similarity 
between updating the ACE weights vi(t) and the ASE weights wi(t) when 
equation (4.2.5) is substituted for f in equation (4.2.6). The ASE control 
output s(t) is given by equation (4.2.8)ý 

s(t) =f (Z wi(t)xi(t) + noise(t» (4.2.8) 
i=I 

The control output s(t) is used to determine what new action is required after 
evaluation by the AHC when r(t) is returned. The function f (. ) can be any 
function which can provide the output of the controller with a useful set of 
actions. For non-linear systems a sigmoidal or other non-linear function that 

can be used to provide a continuous output range from 0,1, which can then be 
further discretised to provide a finite output set. The usage of function f (-) 

can be better illustrated in the case study example of balancing an inverted 
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pendulum which follows. In that case only two output actions were required 

push cart left or push cart right, there the choice of using a threshold activation 

function sufficed. 

4.3 Inverted Pendulum control 

Sutton, Barto and Anderson used the adaptive heuristic critic architecture 

with temporal difference learning to successfully balance the inverted pendu- 
lum problem to validate their idea. The result being that successive trials 

for balancing the inverted pendulum would lead to success longer, or in other 

words the learning agent learned to improve its current performance relative 

to past performances. 
The TD learning used to balance the inverted pendulum problem can be 

described with the aid of the flow chart, Figure 4.2 shown below. 

Figure 4.3 shows how the ACE and ASE elements relate in the adaptive 
heuristic architecture Barto, Sutton and Anderson used to solve the inverted 

pendulum control problem [341. 

As learning proceeds the ASE constructs associations between input and 

output by searching under the influence of a reinforcement feedback. The rein- 
forcement feedback r is zero everywhere except for the states in which the pole 
falls or the cart hits* the ends of the track as shown in Figure 4.4, when this 
happens the agent receives a -1 reinforcement. The ACE uses r to provide 
a more informative evaluation function (the heuristic reinforcement) than the 

reinforcement feedback r alone can provide. Referring to Figure 4.3 each situ- 
ation is represented by a states in the inverted pendulum system. Four input 

variables, x, cart position on the track, i, cart velocity, 0, angle of inverted 

pendulum relative to the vertical (vertical position is equal to zero degrees) and 
6 is the angular velocity. The decoder converts the four parameters into 162 

states for use in the ASE and ACE. Two actions are available to the learning 
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agent, these are move the cart to the left or move the cart to the right. This 

is somewhat simplistic in that if the agent learns one action (e. g. push left) 

in a given situation is wrong then the sole alternative (i. e. push right) must 
be the correct action in that state. The agent selects a policy based on the 

heuristic reinforcement that will maximise the total pure reinforcements r in 

order to select a sequence of actions required to balance the inverted pendulum 
for as long as possible. The effect of this learning can be seen in Figure 4.5. 

Again the common elements that make up a reinforcement learning system can 

be identified in the adaptive heuristic critic architecture. First the policy is 

determined by the ASE which chooses actions biased by the ACE, the ACE 

itself is the value function for generating long term values (the heuristic rein- 
forcement) for each state, and the feedback rewards r are used to measure the 

states immediate utility. 

A simulation of the inverted pendulum balancing problem was used to il- 

lustrate the learning of the ACE/ASE reinforcement learning system. Each 

trial begins with the cart pole state x=0, :i=0,0 = 0,6 =0 and ends with a 
failure signal r= -1 indicating 0 has left the interval [-12', 12*1 or x has left 

the interval [-2.4m, 2.4m]. All initial trace variables ej and weights vi, wi were 

also zero at each trial start. As more trials were made the learning agent would 
try to improve its performance each time so that after many trials it could keep 

the inverted pendulum balanced the longest, see Figure 4.3. Each trial length 

varied and was determined by the length of time the learning agent could keep 

the inverted pendulum balanced, a total of 100 trials was performed and in 

most cases as observed in the results Figure 4.5, the current trial performance 
was an improvement on the previous trial. 

In the inverted pendulum problem with only two actions to select from, 

push cart left or push cart right, the function f(x) in the output function 

equation (4.2.8) can simply be the threshold activation function defined by 
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equation (4.3.1), 

Px) +1 if x>0 (control action right) (4.3.1) 
-1 if x<0 (control action left) 

where a, 5 are constants in the range [0,11. The role of the ASE is to generate 

policies that will lead to optimal actions and hence optimal control when in any 

given state provided by the current heuristic reinforcement value f (t). Thus 

the ASE is the policy generator in this reinforcement learning method. 
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Start 

Initialise all leaming weights and traces to 
zero 

Using previous ACE, ASE weights and traces, 
calculate prediction p(t) from equation (4.2.2). 
Select action based on prediction with 
equation (4.2.6) and equation (4.3.1) 

Perform control based on selected action s (t) 

If pcndulum is still balanccd 

True 

trial length less than 500,000 

True 

Evaluate current reinforcement signal r(t) 

Update ACE weights and traces with 

equation (4.2.3). Deterrnine r(l) for ASE with 
equation (4.2.4) 

Update ASE weights and traces with equation 
(4.2.5) 

False 

False 

Stop I 

Figure 4.2: Flow chart for learning to balance an inverted pendulum using 
temporal difference learning control. 
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Adaptive Controller PW 
Adaptive Critic Element 

(ACE) 
VI 9 V2 

X1 

X2 
A 

State Decoder r(t) 
X, ,P 

Associative Search Element 
(ASE) 

W1 0 W2,..., WS 

y(t) 

Environment 

xlxlo, o 

r(l) 

Figure 4.3: The task of balancing an inverted pendulum using the adaptive 
heuristic critic architecture and temporal difference reinforcement learning. 
The ACE and ASE can each be implemented using a neural network. 
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X=O 

Figure 4.4: Inverted pendulum control problem. 
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Figure 4.5: Inverted pendulum balancing simulation results. 
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Chapter 5 

Learning Control of Dynamic 

Systems 

Learning control is an intelligent form of adaptive control. Adaptive con- 

trol allows systems to respond to problems in the environment. The ability 

to learn from changes due to unforeseen (or un-anticipated) environmental cir- 

cumstances goes one step further than just adaptive control. The flexibility of 

reinforcement learning makes it suitable for applications in which exact knowl- 

edge of a system, at all times is unknown. Such a system is usually dynamic and 

often stochastic in nature. The stochastic nature of some problems also makes 
it difficult to apply conventional adaptive control, thus making reinforcement 
learning an invaluable alternative, and sometimes the only option. 

5.1 TD(A) Learning Control 

Parameterised controllers such as the PID and FLC are suitable for the 
implementation of learning control in which the nature of adjusting parameter 

values to improve a controllers performance is intuitive and progressive. 
The general idea and process is better illustrated with the aid of the flow 
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chart, Figure 5.1and diagram, Figure 5.4. 

This procedure is the most basic and describes the action selection process 

for optimising a single parameter in a controller. For extension to multiple 

parameter optimisation in a controller (as will be described later) it becomes a 

simple case of scaling the desired number of learning agents (one learning agent 

per parameter). All the learning agents work in parallel and are independent 

of each other, therefore no conflict of interest occurs between learning agents. 

5.2 Applying TD (A) for Control of Dynamic 

Systems 

Temporal difference learning was used to optimise the parameters of a PID 

controller. A preliminary test using a single learning agent was studied to opti- 

mise the Ifp parameter of a PID controller, while the other two parameters K, 

and KD were preset to fixed values, although not as flexible as a PID controller 
it did prove that the temporal difference reinforcement learning scheme could 
learn to control a simple system. The principle of the complete optimisation 

task is shown in Figure 5.3. 

Using this principle each of the PID parameters Kp, K, and ICD has its 

own learning agent to update it. The update is performed by the tempo- 

ral difference reinforcement learning scheme and adaptive heuristic architec- 

ture described previously. Thus for the PID optimisation task, three learning 

agents were required. The simulation study comprised three parts as shown 
in Figure 5.3, the PID controller, the plant and the temporal difference neural 

network. Note that the PID controller and plant make up the learning envi- 

ronment. A pseudo random binary signal was used to excite the system during 

training, see Figure 5.2, y(ref) the reference for the plant output y(out) is set 
to zero. 
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Start 

Initialise all learning weights and traces to zero 

Use action determined by s (t) to select controller parameters in 
equation (5.2.4) 

1 

Perform control u(t) based on selected action s(t) 

Use Runge-Kutta numerical method to solve differential 
equations of plant and give result 

compare actual output of plant with desired or reference output 
and evaluate r(t) from the error difference between actual and 
desired output using equations (5.4.1) (5.4.2) (5.4.3) 

If plant is optimal OR True 
If training time is greater than stop time M- 

Falsc 

Use r(t) to update ACE weights and traces with equation (4.2,3), 
A 

prediction p(t) with equation (4.2.2) and r(t) with equation (4.2.4) 

Update ASE weights and traces with equation (4.2.5) 

Evaluate action selections (t) from equations (4.2.6) and (5.2.5) 

Stop I 

Figure 5-1: Flow chart for learning control of a dynamic system with PID 
control using temporal difference learning. 
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Figure 5.2: A pseudo random binary signal used to train the temporal difference 
neural network. 

5.2.1 The Plant 

For the initial testing of the temporal difference learning scheme a third 

order system was used to represent the plant. A third order system with 

corresponding transfer function is shown in equation (5.2.1). This example 

was used in the simulation originally came from an exercise paper in which a 

manual solution could be found and provided a starting point for initial testing. 

Y(S) s+4 (5.2.1) 
U(S) S3+8S2+17s+10 

and in state space representation by equation (5.2.2), 

yl. .010, X, " . 0. 

252 001 X2 +0U (5.2.2) 

--10 -17 -8_ X3 
. 

1. 

with output function represented by equation (5.2.3), 
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Environment 

PRBS Excitation(t) 

y(reo(t) = PLANT 11P Y(Out)(t) 

U(t) 

PID ControUer 

Selected Actions ap ail I ak, Reinforcement I 

Signal r 

Temporal Difference 
Neural Network 

Figure 5.3: Using temporal difference reinforcement learning to optimise a PID 

controller. 

Xl' 

y=[4 1 01 X2 (5.2.3) 

. 
X3. 

5.2.2 The PID Controller 

PID controllers are popular and proven systems, in fact the nature of tuning 

a PID controller by varying its parameters makes it ideal for learning systems 
that incrementally update these parameters in a continuous manner. The tem- 

poral difference learning is such an incremental learning scheme and can be 

used to continuously tune the PID parameters. Noise, drift and other environ- 

mental changes can potentially be corrected for by the ability of the temporal 

difference learning scheme to continuously learn. This is the major aim that 
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the discussed learning schemes try to achieve in order to ensure that the PID 

parameters are always optimised. The PID controller used in the simulation 

study was based on the one used by Wu [28] and shown in equation (5.2.4), 

see also Figure 5.3. 

u(t) = u(t-l)+Kp[y(t) - y(t - 1)] + Kly(t) + KD[Y(t) - 2y(t - 1) + y(t - 2)] 

(5.2.4) 

where Ifp, K, and KD are the PID parameters to be optimised, y(t) is the 

feedback to the PID controller and u(t) is the controller output. 

5.2.3 The Temporal Difference Neural Network 

At first the action selection for the temporal difference neural network was 

only limited to selecting the Ifp parameters while If, and KD were fixed. 

Figure 5.4 shows the initial configuration of the temporal difference neural 

network. This initial configuration is very similar to the one used by Sutton, 

Barto and Anderson in their inverted pendulum control task [341. 

Modifications were made to the threshold activation function f (x) in equa- 
tion (4.2.8), this has been replaced by a sigmoid activation function, such as 
the logistic function given by equation (5.2.5), 

f(x)= 2 (5.2.5) 
1 exp(-ax) 

where a is a constant and determines the slope of the sigmoid function. The 

threshold function used in the inverted pendulum example only assumes dis- 

crete values of 0 or 1, but the sigmoid function assumes a continuous range of 

values between 0 and 1. For the PID controller parameter selection a sigmoid 

activation function is preferred. A total of ten actions were made available 
to the ASE output s(t) to select I(p. The actions of the temporal difference 

neural network were divided into discrete values in a set range. The range 

REINFORCEMENT LEARNING K. H. Chan 



5.2 Applying TD(A) for Control of Dynamic Systems 79 

Temporal Difference Neural Network PW 
Adaptive Critic Element 

(ACE) 

VI I V2, .... V, 

A 

r(t) r(t) 

Associative Search Element 
(ASE) 

WI t W21 .... WS 

SW 

Kp Action Select 

Mean and Covariance aKp(t) 

x, a 

Plant (3" Order System) PID Controller 
Ki and Kd Preset 

Figure 5.4: PID controller using temporal difference reinforcement learning to 
select Kp parameter with K, and KD preset. 

was chosen after preliminary tests indicated where the best PID coefficients 

would be. If a learning scheme is given enough time to perform a thorough 

search of any large range then learning will eventually find an optimal solution, 
in order to save time in the learning process the preliminary tests narrowed 
the potential search range for each parameter in order to speed up learning. 

The main point of the tests and simulations was in order to see if learning 

would converge and select optimal actions. A long learning time will always 
be a potential weakness for all learning schemes which rely on minimal initial 
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knowledge of their environments. 
For the initial testing when only ICp is optimised the actions are shown in 

Table 5.1, which also shows the eventual action selections available for the other 

PID controller parameters. Each parameter is given a choice of ten actions 

equally subdivided from a range of values. Each action available is chosen by 

using the output of the activation function which outputs a continuous value 

between zero and one. The output of the sigmoid activation function is divided 

into ten regions with each region representing one action, so for example if 

the sigmoid activation function outputs a value in the range 10 < output 

0.1}, then the first action is chosen which represents the first value of the PID 

controller parameter 11, Cp[i) :i= 0} choosing a coefficient of jKp = 0} etc 

At this point If, and KD are not changed. 

Quantised output: i 0 1 2 3 4 5 6 71 8 9 

action (Kp(i)) 0 3 6 9 12 15 18 21 24 27 

Quantised output: j 0 1 2 3 41 5 6 71 8 9 

action (KI(j)) 0 3 6 9 18 27 

Quantised output: k 0 1 2 3 41 5 6 7 8 

action (KD(k)) 0 1 21 3 4 6 7 8 

Table 5.1: Action selection for PID controller by temporal difference learning 
neural network. 

To monitor the progress of learning and compare the actions selected all 
the action frequencies were uniformly initialised. In this case there were ten 

actions with an initial frequency for selecting any particular action of a on 
in ten chance. As the temporal difference neural network trains tile action 
frequency will be updated, in general if the action used was good then the 

frequency of selecting that action is improved and vice versa. The frequency 

sum must be conserved and thus as one frequency was changed the others 
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must also be changed in an inversely proportional manner. One example of 

the action frequency updates for Kp is shown in Figure 5.5. 

0.25 

; o, 0.2 

0.15 

0.1 

0.05 

0 
1 10 

Kp Actions to Select 

Figure 5.5: Action probabilities for the PID controller parameter Kp after 
training of the temporal difference neural network with K, and KD preset. 

The input to the temporal difference neural network was formed by calcu- 

lating the mean and covariance of the plant output for a given sample size or 

window. This was repeated at each time step to drive the learning, selection 

and updating of the action probabilities. Various window sizes were tried but 

a window size in the region of between 200 and 400 provided sufficient infor- 

mation for learning improvement while simultaneously allowing for a relatively 

quick training time. 

The weights of the temporal difference neural network converge as shown 
in Figure 5.7 and the resulting dynamic response to a step input after training 

is shown in Figure 5.8. However it can be seen that the step response could be 

further improved, the next stage of developing the temporal difference neural 

network was to extend it to optimise two of the three PID controller parameters. 
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Figure 5.6: Mean and covariance for y(out) from plant and input to the tem- 
poral difference neural network, with a window size of 300 samples. 
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Figure 5.7: The temporal difference neural network weights from the ACE and 
ASE for optimising the Kp parameter of the PID controller with K, and KD 
preset. 
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Figure 5.8: Step response of the plant with the PID controller parameter 1cp 
optimised by the temporal difference neural network where K, and KD are 
preset. 

This initial test however illustrates the value of using a temporal difference 

neural network. 

5.3 Optimising PID Control Parameters Us- 

ing A TD (A) Neural Network 

The simplest way to extend tile temporal difference neural network was to 

treat the ACE/ASE pair as a single learning agent and have a learning agent 

optimise one of the PID controller parameters, this is very much like the team 

of learning automaton principle by NVu [281, but in this case using temporal 

difference learning agents. The Kp and KD parameters were optimised in the 

next test with the K, parameter left preset as before. The architecture for 

optimising these two PID controller parameters is shown in Figure 5.9. Thus 

a single learning agent when using a temporal difference neural network com- 

REINFORCEMENT LEARNING K. H. Chan 



5.3 Optimising PID Control Parameters Using A TD(A) Neural Network 84 

Figure 5.9: Optimisation of Kp and KD parameters of a PID controller using 
a temporal difference neural network. 

prises a critic the ACE, an action selector, the ASE and an output neuron, such 

as a sigmoid activation function. The inputs to the temporal difference neural 

network have been unchanged and still comprise the mean and covariance of 

the plant output y(out). 
From the action probability results for selecting Kp in Figure 5.10 and KD 

in Figure 5.11 it can be seen that the resulting step response Figure 5.12 of 

the plant due to the selected parameters has improved over the result of tile 

previous test, when only Kp was optimised. This gave further confidence that 
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Figure 5.10: Kp action probabilities after training of temporal difference neural 
network to optimise Kp and KD parameters of a PID controller with K, preset. 
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Figure 5.11: KD action probabilities after training of temporal difference neural 
network to optimise Kp and KD parameters of a PID controller with K, preset. 
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Figure 5.12: Step response of the plant with the PID controller parameters Kp 

and KD optimised by a temporal difference neural network where K, is preset. 

the eventual use of three temporal difference learning agents, each optimising 

a single PID controller parameter would also prove successful. 

5.4 Optimising Kp, K, and KD 

The final test was to try and extend the temporal difference neural network 
to optimise all three PID controller parameters. Again using the principle that 

one learning agent consists of a critic, action selector and an output sigmoid 

activation function, the resulting architecture shown in Figure 5.13 was used. 
After initial testing of the full temporal difference neural network, it was 

found that the action selection process by the output neurons did not converge 

very well to the optimum actions. Although most of the time the optimal 

actions were chosen the other actions had action probabilities very similar to 

the optimum action. An example of this is shown in Figure 5.14 where actions 

two, three and four have similar probabilities to each other even though there 
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Figure 5.13: Optimisation of PID parameters using a temporal difference neural 
network. 
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Figure 5.14: Action probabilities that do not converge well to one action. 

is an optimal action (the tenth action) the probability of this isn't large enough 
to be decisively selected each time the PID controller parameters are chosen 

so a bad action being chosen is still just as likely. 

In order to overcome this the learning rates of the temporal difference learn- 

ing neural network algorithm, namely a, P, -y, 5 and the forgetting factor A in 

equation (4.2.3) and equation (4.2.6) were adjusted to see if there would be a 
better response from the neural network. Another factor in improving the ac- 
tion selection process was to change the noise distribution in equation (4.2.8) 

which affects the exploration of actions and normalising the feedback signal 

r similar to the method used in the learning automata and given by equa- 
tions (5.4.1), (5.4.2) and (5.4.3). Where r becomes a cost function and is used 
to measure the performance of the controller after each action selection. The 

cost function was obtained using equation (5.4.1), 
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N 

J(k) E(y(ref) _ Y(OUt))2 

i=l 

where N is the window size or sampling interval for calculating the mean and 

covariance of the outputs y(out), where y(ref) = 0. In order to use this cost 

measure as the reinforcement feedback signal it must be normalised first. This 

was achieved using equation (5.4.2), 

r(k) =J.. a,, (k) - J(k) 
Jma, (k) - Jmi, (k) 

(5.4.2) 

where 

Jma, (k) 
J(k) 

Jma, (k - 1) 

if J(k) > Jmax(k - 1) 

otherwise 

I 
(5.4.3) 

Jmi, (k) 
J(k) 

Jrnin(k - 1) 

if J(k) < Jmin(k - 1) 

otherwise 

I 

The original form of the feedback signal r was purely just 1 or 0, with 1 

representing a good action for when the covariance was calculated to some 
upper limit for example r=1 when covariance < 0.5 else r=0. This 

meant that the feedback signal returned a discrete signal that represented 

a completely good action or a completely bad action but not a continuous 
feedback signal representing various levels of success and failure. The purpose 
of equation (5.4.2) was used to rectify this and improve the action selection 
process. 

It was found that the convergence of the neural network weights were very 
sensitive to changes in the learning rates a, 0, y and J. Also by increasing 

the amount of noise present in the ASE output in equation (4.2.8) the ex- 

ploration of the action space by the learning agents increases, however there 

was a limit to the amount of exploration that was desirable due to the ex- 
Ploration/exploitation nature of all learning tasks. There is a balance which 
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must be found (and is different for differing tasks) between exploring and using 

existing knowledge in order to choose optimal actions to complete a given task. 

Therefore to discover such actions, it has to try actions that it has not selected 
before or to explore as well as having to exploit what it already knows in order 

to obtain better rewards. 

5.5 Results for Optimised PID Controller 

The final simulation results show the potential possibility of temporal dif- 

ference learning for the control large-scale systems. This example also provides 

a practical use of temporal difference learning beyond that of playing complex 

games such as backgammon and draughts. The results after optimising the 

PID Controller parameters are shown in Figures 5.15 to Figure 5.20. As shown 

the weights converge quickly during training and the step response of the plant 

after selecting the optimal PID controller parameters is satisfactory. 
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Figure 5.15: Mean and covariance input used to train the temporal difference 
neural network for optimising a PID controller. 
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Figure 5.16: Temporal difference neural network weights for optimised PID 

controller. 
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Figure 5.17: Kp action probabilities for optimised PID controller using a tem- 
poral difference neural network. 
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Figure 5.18: K, action probabilities for optimised PID controller using a tem- 
poral difference neural network. 
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Figure 5.19: KD action probabilities for optimised PID controller using a tem- 
poral difference neural network. 
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Figure 5.20: Step response of system plant using optimal Kp, K, and KD 
parameters of a PID controller selected using a temporal difference neural 
network. 

5.6 Learning Control Implementation using Learn- 

ing Automata 

The learning automaton was next used to optimise tile parameters of the 

popular PID controller. A team of learning architecture was used as shown in 

Figure 5.21 [281. This study was performed to compare the performance of TD 

learning and the learning automata. 
Using this principle each learning automaton seeks to optimise one param- 

eter, thus for the PID optimisation, three learning automaton are required, 
for Kp, KI and KD. The objective in the design of the learning automata is 

to determine how the choice of action at any stage should be guided by past 

actions and responses. The important point is that the decisions are made 

with little knowledge of the environment, making the learning automaton very 
flexible to changes in the environment. The environment may have time vary- 
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Unknown environment IP 

S49h 

...................................... 
cOM r= cc' 

(X 2M 
IE CC 2 

N 
aN(k) r= cc 

................................... 

Figure 5.21: N learning automata operating in an unknown environment with 
identical payoff [281. 

ing characteristics, or the decision maker may be part of a hierarchical decision 

structure but unaware of its precise role in the hierarchy. Alternatively, the 

uncertainty is due to the fact that the output of the environment is influenced 

by the actions of other agents unknown to any particular decision maker. 
A flow chart Figure 5.22 below shows the general updating of the action 

parameters in the PID using a team of learning automata, see also Figure 5.23 

5.7 Applying Learning Automata 

The simulation study comprised three parts as shown in Figure 5.23, the 
PID controller, the plant and the team of learning automata. Note that the 
PID controller and plant make up the environment. 

5.7.1 The Plant 

The simulation study of the team of learning automata architecture used 
a third order system to represent the plant. The plant was identical to the 
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Start 

Initialise all parameters, make all action probabilities uniform 

Randomly select actions a" a' a' with probabilities P(Cf P) P(a 1) P(a D) 
ijkIik 

Use selected actions ap a' aD in PID controller, equation (5.2.4) iikI 

Perform control action on plant with PID parameters selected 

Use Runge-Kutta numerical method to solve differential equations of plant 
and give results 

I 

Use result to calculate performance index J the cost function with 
equation (5.7.1) 

Use J to calculate P: [0, I] with equations (5.7.2) and (5.7.3) to determine the 

utility of the selected actions ap aý aD 

IijkI 

I Use P: [0,11 to update the action probabilities using equation (5.7.4) to the 
effect that IF the selected action a is good THEN P(a) increases ELSE IF 

selected action cc is bad THEN P(Ct) decreases 

N 

Modify the rest of the unselected action probabilities such that P(Jji) =I 

False IF selected actions af al aD have 1jk 

ed t ome desired limit (e. g. P(ap) > 0.9 AND P(Cfj') > 0.9 AND P(akl)) > 0.9 

OR training time > stop time 
'i 

True 
I Stop 

Figure 5.22: Flow chart for the optimisation of PID parameters using a team 
of learning automata. 
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Selected Actions a, " 

Figure 5.23: Optimisation of PID parameters using a team of learning 
automata. 

one used in the study of the TD learning neural network. The third order 

system transfer function equation was given by equation (5.2.1) and in state 

space representation by equation (5.2.2). The output function can be seen in 

equation (5.2.3), 

5.7.2 The PID Controller 

The PID controller used in the simulation study was based on one used by 

NVu [28], it is the same as that used in the TD learning simulation and with 
the form shown in equation (5.2.4), see also Figure 5.23. 

5.7.3 The Team of Learning Automata 

The team of learning automata is a co-operative method for applying multi- 

agent learning. Each automata shares a part of the task using a common 
feedback reward signal 0 to achieve a global goal, in this case to optimise 
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an on-line PID controller. The actions of each automaton were divided into 

discrete values within a given range. The range was chosen after preliminary 

tests indicated where the best PID coefficients would be. It was interesting 

to compare if the learning automata selected PID coefficients similar to the 

manually selected ones in the initial tests. 

All the action probabilities were uniformly initialised, so for ten actions 

the initial probability for selecting each action was a tenth. As each learning 

automaton gains experience and learns the action probabilities will be updated, 

in general if the action used was good then the probability of selecting that 

action is improved and vice versa. The probability sum must be conserved 

and thus as one probability was changed the others must also be changed 
in an inversely proportional manner. Initially the choice of actions is rather 

coarse but can be improved by fine tuning the PID coefficients. For example 

the Kp coefficients increment in steps of three (see Table 5.1), if the best 

coefficient fell between these limits how could we have found that out? One 

method is to centre a new search around the best coefficient, reset all the action 

probabilities and learn again. Therefore to discover such actions, it has to try 

actions that it has not selected before. As with the TD learning neural network 

each automaton has to exploit what it already knows in order to obtain reward, 
but it also has to explore in order to make better action selections in the future. 

N 
1: (y(ref) - y(out))' 
i=l 

here N is the RungeKutta numerical method sampling interval for calculating 
the outputs y(out). This essentially gives an error measure between our actual 

y(out) and reference y(ref) signals by comparing the area between y(out) and 

y(ref), the error is reduced as y(out) equals y(ref), see Figure 5.24. 

In order to use this cost measure in each learning automaton it must be 

normalised. This was achieved by using equation (5.7.2) 
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0(k) = 
J,,,,, ý(k) - J(k) 

J,,,,, (k) - J,,, i,, (k) 
(5.7.2) 

where 

(k) 
J(k) I 

Jm,, (k - 1) 

if J(k) > J,,,. (k - 1) 

otherwise 

I 
(5.7.3) 

(k) 
J(k) I 

Jmi. (k - 1) 

if J(k) < Jnin(k - 1) 

otherwise 

I 

The feedback reward signal P was used to update the action probabilities for 

each automaton. The reinforcement scheme used was a linear reward-penalty 

L(, 
-p) scheme and is given by equation (5.7.5) [281, 

RQ(k + 1) = P,, (k) + Olp(k)(1 - P,, (k)) - 02(l - P(k))Pn(k) (5.7.4) 
n 

when m=n 
)) 

[7 

r 
P, ',, (k+l) = P,,, (k)-0jP(k)P,,, (k)+02(1- 0 (k T -1 P, ',, (k) 

when m0n 

where Pcl is the selected action probability, 01 and02 are learning rates, P, ' , 
are the probability updates for the other un-selected actions, and r is the total 

number of actions available (r = 10 was used in this simulation). 
It must be emphasised that during learning the action selection is random 

and the randomness must be uniform, otherwise there will be biases in the se- 
lection process which will not give the desired effect of exploring all actions with 

equal chance. The results of the probability updates for each PID parameter 
is shown in Figure 5.25. As each automaton learns the action probabilities are 
increased or decreased depending upon the utility of the action experienced. 

After finding which action are the best to take the learning automata must 

use its knowledge to optimise the PID controller. The results shown in Fig- 

ure 5.25 indicate that p(kp[41), p(ki[41) and p(kd[31) are the best. Referring 
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Figure 5.24: Dynamic response of plant, J is a cost measure used to calculate 
Beta the feedback reward signal. Beta =1 indicates that the PID coefficients 
are good and the associated action probabilities are increased. 
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Figure 5.25: How the learning automata update their action probabilities with 
experience. 
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Figure 5.26: Dynamic response of plant for the optimised PID controller, OP- 
timised using a team of learning automata. 

to Table 5.1 these action probabilities relate to the PID coefficients Kp = 12, 

Ki = 12 and Kd = 3. The results of these actions are shown in Figure 5.26. 

It is interesting to observe that the team of learning automata optimised 
the PID control coefficients to give a desired output without any overshoot. 
Early testing of the PID controller showed that the output with the smallest 

cost function would give some overshoot but the rise time is fast resulting in a 

small error area. It was expected that the optimised PID controller would give 

such a dynamic response and return a result with the smallest cost value J. An 

example of this is shown in Figure 5.25, where a cost of Vrj = 1.41287xl 0-20 is 

obtained yet the output suffers from some overshoot. However tile optimised 
PID controller gives a cost of V-j = 2.8321xlO-18 but doesn't suffer from 

overshoot. So although the team of learning automata isn't solving the problem 
of minimising the cost function directly, it can use J or really 0 the normalised 
cost function to guide it into choosing actions that can solve the problem. 
The situation arises though that there is a possibility for not finding a global 
optimal solution but a local optimal which can be a limitation to using multi- 
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Figure 5.27: Control response of plant with PID controller using non-learning 
control but using conventional manual design. 

agent learning. 

Both reinforcement learning control methods, TD learning and learning 

automata provide an automatic method for learning control parameters in 

a progressive and adaptive manner. Conventional hand designed controllers 

and those whose parameters are tuned manually require some knowledge of 

the system to be controlled, which isn't always possible. Using the 3rd or- 

der system (equations (5.2.1)) as a comparative test between learning control 

and conventional non-learning manual design control methods, using the root 

locus method to find the coefficients of the parameters in a third order sys- 

tem. The PID controller parameters evaluated by manual tuning provides a 

response shown in Figure 5.27. When compared, the learning control provides 

a more than adequate automatic method of tuning control parameters for use 

in dynamic systems, but more importantly it has the ability to respond to 

unforeseen changes in a dynamic system, such as fault§ and changes in system 

performance by re-learning a new control response. 
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Chapter 6 

Learning for Power System 

Control 

As a practical and important application to a large scale optimisation prob- 

lern power systems were identified as providing a range of opportunities for 

using reinforcement learning. Therefore the problem of power system control 

and optimisation was investigated. It was also understood that using temporal 

difference learning on power system control and optimisation had never been 

studied before. Following the previous successful work using interconnected 

learning automata for optimising the parameters of a PID controller, further 

study of using a neural network based reinforcement learning schemes such as 

temporal difference reinforcement learning was investigated. As demonstrated 

in the previous chapter the ability of learning control is a flexible and powerful 

method of optimising a parameterised controller. 

6.1 Power System Control Problems 

Power systems provide a consumer with electrical energy, the quality of this 

energy needs to be maintained, primary factors that ensure this quality are, 
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1 

104 

e Constant frequency 

* Constant voltage 

o Reliability 

* Purity of sinusoidal waveform 

The frequency and voltage of a system is dependent upon the active power 

balance in other words when the power output is equal to the power demand 

plus system (e. g. transmission) losses. In reality a power system is never in 

such a state of equilibrium because the power demand changes continuously as 

consumers switch on and switch off appliances. Since the consumers behaviour 

cannot be predicted the need for adaptive control is essential in power systems. 

Reliability depends on the ability of a power system to survive sudden 
faults, overloads and loss of generators, transformers and transmission lines. 

If the damage is severe enough then some consumers will experience power 

interruption. Of. course in some cases even a very short interruption is fatal, 

such as in a hospital operating theatre. 

The purity of a sinusoidal is only recently becoming important. Any non- 

linear load absorbs a non-sinusoidal current, the harmonics of a non-sinusoidal 

current cause harmonic voltage drops and distortions in the power [611. Tradi- 

tionally rectifiers and fluorescent tubes have been the causes of these voltage 
distortions. However the present use of power electronics in appliances, such 

as transistors and thyristors in television rectification, light dimming switches 

washing machine controllers'etc... can only mean that this problem will in- 

crease. 
Some of the types of unwanted disturbances that occur in power trans- 

mission are shown in Figure 6.1. Power system reliability in terms of short 
term interruptions such as Outage and Sag have been primary reasons for a 

concept known as Custom Power [621. Custom Power is a response to poor 
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power quality present in factories homes and offices, the aim is to provide a 
better quality of supply, since in times of greater electronic (especially com- 

puter) expansion, poor power quality cannot be tolerated. The instabilities 

in the power supply can result in computer data loss, which can be expensive 

to correct. Harmonics, Impulses and Swells interfere with electronic circuits 

and stress the electrical insulation of end use equipment reducing the lifetime 

of electrical equipment. The use of reinforcement learning to optimise/control 

FACTS, Flexible AC Ransmission Systems (or other power system) devices 

can be used to realise the concept of custom power [63] [64] [651. 

Power Supply Reliability 

Outage 

Power Supply Quality 

hfW 
Hannonics Swell 

Sag 

Impulse 

Figure 6.1: Disturbances in power supply systems [621. 

The learning automata was used to initially test the power system control 

problem on a single machine infinite busbar system in a simulation study. 
Although this work had already been performed by Wu [281 it provided a 
foundation upon which further research was developed. 
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Form the initial single machine power system with infinite busbar a more 

complex power system was developed. This power system had three generators 
in the simulated power system network with two loads and using TD learning 

to update a parameterised fuzzy logic controller instead of a PID controller. 

6.2 Power System Models 

For initial tests a single-machine-infinite-busbar (SMIB) power system has 

been used to represent the reinforcement learning environment, Figure 6.2 

shows the general SMIB. 

V, ZI=R, +JXI vs 
2-ý 

7Z, 
Is 

(\JJLL 
Synchronous Generator 

Z2=R, +JX2 

YI Y=G+JB 

Figure 6.2: A single-machine-infinite-busbar power system [611. 

Where i is the current, Vt is the terminal voltage Z, and Z2 are the impedances 

of transmission lines 1 and 2 respectively. Y is the self admittance, G is the 

conductance and B is the susceptance. R, and R2 are tile resistances, X, and 
X2 are the reactances in transmission lines 1 and 2 respectively. V, is the 

voltage of a single-machine-infinite-busbar power system. 
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Figure 6.3: Turbo-generator system to be controlled. 

6.3 Non-linear Model of Turbo-Generator 

The development of a turbo generator model for simulation studies was a 
fundamental requirement. The basis for producing the turbo-generator model 

was provided by Wu [281, the model state equations for the various elements and 
their initial conditions are shown in the relevant subsections and are described 

later. A system block diagram of the turbo generator is shown in Figure 6.3. 

The model is as realistic as possible and was used to test the optimisation 

of PID control parameters using a team of learning automata architecture. 
The following is a list of symbols used in the model of the single-machine- 

infinite-busbar-system. 
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List of symbols 

5 rotor angle with respect to infinite bus 

w rotor speed 
Ifd field current 
Id, Iq stator currents in direct and quadrature-axis circuits, respectively 

Ikdi Ikq damper circuit currents in d- and q-axes, respectively 

Vt generator terminal voltage 

Pt, Qt power and reactive power delivered at terminal, respectively 

V) flux linkages 

VR exciter voltage 

Xtri XL transformer and transmission line reactances, respectively 

Rt, RL transformer and transmission line resistances, respectively 

R,, stator resistance 

Xd, Xq synchronous reactances in d- and q-axes, respectively 

Xad; Xaq d- and q-axis mutual reactances, respectively 

T,., exciter time constant 

T, f, Kq regulator stabilising circuit time constant and gain, respectively 

Ta,,, Ta compensation coefficients of automatic voltage regulator 

VR(max) 
i 
VR(min) maximum and minimum limitations of excitation voltage, re- 

spectively 

Vc input to excitation system 

T. airgap torque 

T,,, generator shaft torque 

H inertia constant 

Kd mechanical damping coefficient 

UGm, UGj actuating signal to governor on inlet and intercept valves, respec- 

tively 

Gvm, Gvj position of inlet and intercept valves, respectively 
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PO internal boiler steam pressure 
FHp, Fip, FLp power fraction from HP, IP and LP stages of turbine 

THp, Tjp, TLp time constants associated with HP, IP and LP stages of turbine 

TGvm, TGvj time constants of inlet and intercept valves, respectively 
TR, ff turbine reheat time constant 
A deviation from steady-state value 

6.3.1 Turbine and Boiler 

The boiler is represented by an internal steam pressure Po and has been 

assumed to be a constant steam source. The steam raised by the boiler is used 

to drive a three stage turbine H. P high pressure, LP intermediate pressure and 
L-P low pressure respectively. The steam passes through each stage from high 

to low pressure turbines which drive a synchronous generator see Figure 6.3. 

The power fractions available from each stage are calculated from the follow- 

ing equations (6-3.1), (6.3.2) and (6.3.3). These were calculated continuously 
for the system dynamic response using the RungeKutta numerical method to 

observe the continuous output. Equation (6.3.3) was calculated every 20ms to 

give a feedback to the learning system for performance evaluation. 

ýfd 

ýd 

ýkd 

ýq 

ýkq 

Te 

REINFORCEMENT I 

= Aw (6.3.1) 

= wo(T,,, -T, -KdAw)1211 

= WO(Vfd - RfdIfd) 

= WO(Vd + V)q + Id(R, + Re)) + V)q AW 

= -woRkdIkd 

= WO(Vq - Od + Iq(Ra + Re)) V)d Aw 

= -WoRkqIkq 

= OdIq - 7PqId 
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Of d 'Xfd -Xad Xad Ifd" 

Od Xad - 
(Xd + Xe) Xad Id 

Okd Xad -Xad Xkd Ikd (6.3.2) 

Oq -(xq + Xe) Xaq Iq 

. 
'Okq -Xaq Xkq Ikq 

Vtd ý Vbsin5 + R, Id - (Xt, + XL)Iq (6.3.3) 

Vt 
q= Vbcos5 + R, Iq - (Xtr + XL)Id 

V t= 
(V2 2 

tq) 
1/2 

4 td 
+ VI 

Pt = VtdId + VtqIq 

Qt = VtqId - VtdIq 

where 
Re = Rtr + RL7 xe = Xtr + XL 

the parameters used in the simulation for the synchronous turbo-generator are 

given in equation (6.3.4). 

H=3.25, 
Rfd = 0.0015p. u., 
Rkd = 0.0078p. u., 
Rkq = 0.0084p. u., 

Kd = 0.025 

Xad = 1.86P. U., Xq = 1.91P. u. 

Xi, q = 1.77p. u., XW = 1.94p. u. 
Xfd = 1.97p. u., Xkq = 1-96P-U- 

Ra = 0.005p. u., Xd = 2. Op. u. 

6.3.2 The Governor System 

(6.3.4) 

The governor controls (or regulates) the amount of steam pressure available 
from the boiler and previous turbine stages. In this system two governor control 

signals are present, the first UGM controls the inlet from the boiler regulating 

steam pressure to the H. P turbine stage, while the second UG, controls the 
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intercept valves regulating steam pressure to the LP and L. P turbine stages. 
The regulation of the steam pressure at a constant level controls the speed of 

the turbines, allowing the synchronous machine to generate electric power at 

a constant frequency. 

kH 
p= (GvmPO - Yip)ITHp (6.3.5) 

kRH 
= (YHP 

- YRII)ITRH 

ki p= (Gv, VRH - Yjp)ITp 

kL P = (pip - YLPVTLP 
dvitf 

= (UGm - GGm)ITGvAf 

dvj = (UGI - Gvl)ITGvj 

T,,, = FjipYiip + FIpYlp + FLpYLp 

where 
0< Gv, &f < Gvm(,,,,, ý), 0< Gvj < GVI(max) 

dvAf(Mi, 
) 

dvm < dvm(m") (6.3.6) 

dvi(mi, ) dvi: 5 dvi(m,. 
) 

the parameters used in the simulation study for the governor system are shown 
in equation (6.3.7). 

FIlp = 0.24, 

Flp = 0.34, 

FLp = 0.42, 

Po = 1.2 

THp = 0.3s, 

Tip = 0.3s, 

TLP = 0.72s, 

6.3.3 Excitation System 

TGVAf 
--= 

OAS 

TGVI 0-01S 

TRG 10. Os 
(6.3-7) 

The excitation system provides a voltage Vfd to the generator which is used 
to control the magnetic field in the rotating machine generating a three phase 
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alternating-current output. The three phase output is mathematically repre- 

sented by its transformed direct and quadrature components. The excitation 

voltage is used to calculated the magnetic flux in the generator, , these flux cal- 

culations are further used to calculate the currents in the machine. Finally the 

terminal voltage can be determined after the generator output is changed by 

the transformer, for transmission through power lines to the consumer. 

r IýR : -- (I(a (Vc + Tac ý 
c) - VR) / Ta 

Iýfd (VR - Vef - Vfd)ITex 

Iýe f (Ife f Ilf d- Ve f)/ Te f 

where 

VR(min) 
. 
15 VR - Vef '51 VR(max) 

Vfd(min) :5 Vfd :5 Vfd(max) 

(6.3.8) 

the parameters for the excitation system used in the simulation study are shown 

in equation (6.3.9). 

Tex = 0.01s, T., = 0.1514, T. = 0.0154 

T, f = 0.3s, Kq = 0.15, K. = 0.05 

where 

-0-005'5 V fd "S' 0.005 

6.3.4 Transmission System 

The synchronous generator represented in this model has its output power 

controlled by the excitation system. The power output generated at the ter- 

minals must give a terminal voltage (Vt) equal to any losses in transmission 

line(s) plus the constant load voltage required by the consumer (Vs=1.0 p. u. ). 
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The transmission line(s) characteristics need to be taken into account for losses 

in order for a correct value of terminal voltage (Vt) to be calculated. 

the following are the parameters used to model the transformer (equation (6.3.10)) 

and transmission lines (equation (6.3.11)). 

Rt, = 0.038p. u., Xt, = 0.1p. u. (6.3.10) 

RL = 0.025p. u., XL = 0.35p. u. (6.3.11) 

6.4 Applying Reinforcement Learning 

The popular PID controller is used in a power system. The parameterised 

nature of the PID controller makes it a suitable candidate for the application 

of reinforcement learning. The methodical and automatic nature of improving 

the parameter action selection through continuous learning is shown in the 

following example using reinforcement learning of a PID controller to optimise 

the performance of a turbo-generator. 

6.4.1 Parameter Optimisation of a Turbo-Generator PID 

Controller 

A team of interconnected learning automata have been used to success- 
fully optimise a PID controller in a turbo-generator system [28]. The team 

of interconnected learning automata (Figure 5.21)are able to learn optimal 
PID control parameters of an unknown turbo-generator system in a noisy en- 
vironment without persistent excitation signals. Each automata in the team 

controls/optimises one parameter of a complex dynamic system, in this case 
the PID controller of a turbo-generator system. At every instant the internal 

states of each learning automata are updated according to some probability 
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distribution and an action (of a finite set) is taken. Each automaton has 

a uniform probability distribution initially, with all actions having an equal 

probability set by pn' (k) =1 /rj (n = 1,2, ... rj) and updated according to input 

0 The response P from the environment is used in the reinforcement scheme (or 

learning algorithm) to update the state probabilities by giving identical pay- 

offs to every automaton in the team. The reinforcement scheme is described in 

equation (6.4.1) [281 and a flow chart, Figure 6.4 illustrates how the learning 

was implemented. 

pý(k+l) = g(k)+0310(k)(1-p3, (k))-0'2(1-0(k))&(k) (6.4.1) 12 

when m=n 

pý (k + 1) (k) - 01,0 (k)pý (k) + 6P2(l -, 3(k)) pý (k)] 

when m On 

Where nE1,2, ..., rj and m=1,2,..., rj, O(k) E [0,1], with 0< 0', <1 and 
0< W2 <1 being the reward and penalty parameters, respectively. The inputs 

to the environment a= jal, a2,... ' aNI represents a finite input set, where aj 
is a subset of the input provided by the jth automaton Aj, (j = 1,2,... ' N). 

A reward probability of the environment corresponding to action a(k) defined 

by equation (6.4.2) [28] 

Silti2t---, iN= Ep (k) Ia (k) = [ceil 
9 ce'j2) "'? aiNNI (6.4.2) 

The expected payoff at instant k is given by equation (6.4.3) 

E(k) pil (k)ýj2, (k) 
... pi' (6.4.3) (k) si,, i . ..... iN IV 

ilsi2t ... 12N 

Where 1ýj, (k) is the probability that Aj chooses action ai .j at instant k. For 

systems with a wide range of parameter values such as the turbo-generator 

system, search with subsets of actions can be used [281. The basic method 
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involves searching a subset of actions until some performance criterion'is met 

and then expand or contract the subset according to the action probabilities, 

which are reset (back to initial uniform distribution) from time to time. This 

keeps the number of working values low for rapid search, as well as allowing 
for a global search to find the optimum parameter value. 

The advantage of a reinforcement learning method such as the learning 

automata is that learning can be carried out directly (on-line), based on the 

control actions and system performance, thus direct knowledge of the system 

model is never required. For real turbo-generators, obtaining an "exact" system 

model can be difficult and expensive if not impossible in some cases. 
A simulation study of a non-linear turbo-generator was used to test the 

reinforcement learning approach, although similar to the approach used in the 

previous there are some differences. The learning was carried out in a stochastic 

environment where only noise is present and without the use of a persistent ex- 

citation signal (such as the PRBS used previously. The PID control parameters 

were optimised by a team of interconnected learning automata searching for 

the optimum control actions. Each learning cycle is one second of real time. 

The parameters to be optimised were Kp, the proportional coefficient, KD, 

the differential coefficient and y, a stabilizing signal coefficient, the integra- 

tion coefficient, K, was kept constant since it was not sensitive to the control 

performance. The parameter ranges were set as Kp E [3,01, KD E [0.2,01 

and -1 E [0, -0.21, a sampling interval of 7- = 20ms was used and the control 

performance was evaluated during a period of 2s. 

Figure 6.5 shows an example of the learning, where the probability of the 

optimum control action approaches one and the other action probabilities van- 
ishing to zero as learning progresses. The interesting fact that tile optimum 

control parameters were obtainable in a noisy environment without the use of a 

persistent excitation signal and the ease of implementing the team of intercon- 

nected learning automata to any real unknown industrial turbo-generator when 
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Figure 6.4: Flow chart of turbo generator system PID controller optimisation 
using a team of interconnected learning automata. 
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Figure 6.5: Optimisation of KD parameter in a turbo generator PID controller 
using a team of interconnected learning automata. 
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Figure 6-6: Control performance of team of interconnected learning automata 
in a power system optimisation problem. 
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Figure 6.7: Stability response of the team of interconnected learning automata 
in a power system after recovering from a three phase short circuit. 

required. This example illustrates the great potential of using reinforcement 

learning methods to complex engineering problems. 
The final control performance of the system after training can be seen in 

Figures 6.6 and 6.7. 

6.4.2 Learning Time 

In most reinforcement learning methods there must be a balance between 

gaining new knowledge and using learnt knowledge for effective control per- 

formance. The fundamental limitation is the learning time required to make 

use of any information the environment can provide. In practice the time for 

simple system such as this single machine infinite busbar system the learning 

time is not a major concern when using modern computer processors which 
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typically have high clock speeds of hundreds of megahertz. For more complex 

systems the learning and computational time will grow accordingly. One ob- 

vious way in which to reduce these increased learning times is to use parallel 
learning processes. For the PID controller it is a simple matter to have a sep- 

arate learning automaton optimising each PID parameter. Taking this idea 

one step further for multi-machine power systems for example then learning 

control need not be centralised but can be distributed as demonstrated in the 

next chapter using a multi-agent reinforcement learning scheme. 
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Chapter 7 

Multi-Agent Learning for 

Control of Multi-Machine Power 

Systems 

Being able to predict and control stochastic systems has always fascinated 

scientist and researchers. A lot of real world systems are stochastic such as the 

financial stock market, weather forecasting and information routing. One other 
important aspect of natural intelligent systems is their distributed nature and 

sometimes described as connectionist systems [661, [5). The move from large 

complex centralised intelligence to simple distributed but connected intelligence 

was influenced by biological models of the brain, which are powerful, flexible 

and highly adaptive, but also not yet completely understood. 
Early work with temporal difference learning for practical problem solv- 

ing and control tasks, began with route planning and navigation for simulated 

robotic agents in maze solving problems. This evolved to encompass non sta- 
tionary environments in order for the robotic agents to learn and adapt to 

changes in the environment [451, [671, [681. The robot navigation idea has been 

taken one step further for information routing in the ever expanding world 
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of accessible information such as the internet or simply the telephone. The 

idea was to have an intelligent adaptive agent at each network node whose 

only concern is to route packets of information efficiently. However only local 

information was known to each reinforcement agent but the optimal solution, 

for routing information as quickly as possible from source to destination was 

a global one. It is this co-operation and co-ordination between agents which 

interests researchers and gives the information network an intelligent and adap- 

tive capability. 

By following the evolution the application of multi-agent reinforcement 

learning is explored for the control of large-scale systems. In particular the 

use of multi-agent learning (or distributed learning control) by means of TD 

reinforcement and the adaptive heuristic critic neuron like structures was used 

to optimise the performance of a multi-machine power system. 

7.1 Multi-Machine Power System Learning Con- 

trol 

The usefulness of TD reinforcement learning for optimising control per- 

formance in general has been described by many examples in chapter 1 and 
demonstrated in chapter 5. 

The concern here is to apply reinforcement learning for control of syn- 

chronous generators in a multi-machine power system. Previous studies used 

the learning automata-based reinforcement learning for controlling power sys- 

tems [281 [691, the TD reinforcement learning method is proposed to optimise 

controller parameters, on-line in real time, in the large-scale power system. 
Two types of parameterised controller were evaluated, the PID controller and 

the fuzzy logic controller. The multi-agent reinforcement learning scheme has 

been evaluated in a simulation study. The simulated system is concerned with a 
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Figure 7.1: Optimisation of power system controllers using multi-agent learning 
[701. 

three-machine power system which has multi-mode oscillations. The simulation 

results show that the proposed scheme has satisfactory learning performance 

and following a fault disturbance such as a three- phase-groundi ng short circuit, 
the learning controllers can damp out the multi-mode oscillations of the power 

system rapidly. 
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7.2 Architecture of network 

List of symbols used 
6i = rotor angle of i-th machine, in degrees 

Wi = rotor speed of i-th machine, in radian per second 

WO = synchronous speed, in radian per second 
Vdi, Vqi = stator voltages in d- and q-axesof i-th machine, in p. u. 

Idi, 16 = stator currents in d- and q-axes of i-th machine, in p. u. 

Vt i= generator terminal voltage of i-th machine, in p. u. 

P. = input mechanical power of i-th machine, in p. u. 

P'j, Q'i = power and reactive power delivered at the terminal of i-th 

machine, in p. u. 
Eq'i = internal transient voltage in q-axis of i-th machine, in p. u. 

Hi inertia coefficient of i-th machine, in seconds 

Di damping power coefficient of i-th machine, in p. u. 

'rdi 7 Xqi synchronous d- and q-axis reactances of 

i-th machine, in p. u. 

Xdi transient reactance in d-axis of i-th machine, in p. u. 
Tdoi the field winding time constant, in seconds 

Yij the Gij +i Bij transfer admittance between buses i and j, 

in p. u. 

Yi i the Gii +j Bij self-admittance of bus i, 

in p. u. 

Gij, Bij transfer conductance and susceptance between buses i and 

j, in p. u. 

Yij = the magnitude of Yij, in p. u. 

aij = 7r/2- arctan(-Bij/Gij) 

Ui = excitation control of i-th machine, in p. u. 

subscript, representing steady state of variables 
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Ll and L2 in Figure 7.1 are the system load admittances given by, Ll = 
8.6 - 6.88j and L2 = 9.8 - 7.8j The operating conditions for the generators 

are shown in Table 7.5. All the power system parameters are presented in 

Tables 7.1,7.2,7.3,7.4. 

7.2.1 Multi-Machine Power System Model 

The three generators in the power system network were each simulated 

using a fifth-order model given by equations (7.2.1). 

d(6) 
- dt W- WO 

d(w) 
dt 

"' (p. 
211 

ý(E, ') 

dt =1 77[Efd - 
Eql 

do 

Tio -Eq' + Eq - (Xd Xd)Id + 
dt 

T 
Eq' 
dt 

11 
it d Eý 

-Ed + (X' 
- Xq. Tq q0 dt 

Ud 
= -RId 

+ 41(" Iq + E" qd 

Uq 
= -RIq - X"Id+ E" dq 

pe = UdId + UqIq 

(7.2.1) 

All generators come equipped with AVRs but only generator 2 is equipped 

with a governor. The AVR action is determined by the following equation (7.2.2), 

Ef = 
KA 

(Vref 
- Vt) 

1+ TAS 

and the governor is modelled using equation (7.2.3). 

(7.2.2) 

,_r 
(a + b) d(w) (7.2.3) q [T-l; 

--T-g, ) dt 
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Parameter values for the multi-machine power system model 

Loads (admittances) in p. u. 

Ll = 8.6 - 6.88j, L2 = 9.8 - 7.8j 

Node No. Impedance 

1-3 0.015+0.10j 

4-5(l) 0.075+0.50j 

4-5(2) 0.1125+0.75i 

2-5 0.060+1.40j 

5-6 0.225+1.50j 

3-6 0.025+0.15j 

Table 7.1: Transmission line parameters in p. u. 

7.3 Multi-Agent Learning PID control 

The adaptive heuristic critic (AIIC) was used as the basis for optimising the 

control parameters in this study of TD reinforcement learning. The adaptive 

capability of the neuron like structures enable learning and hence intelligent 

actions to be performed. Each of the control parameters is optimised using 

an adaptive critic element (ACE) and an associative search element (ASE). 

As learning proceeds, the ASE constructs associations between inputs and 

outputs by searching under the influence of a reinforcement feedback signal 

r which gives an immediate indication of how good the chosen actions are. 
Figure 7.2 shows how the neurons are configured into a neural network for 

optimising the control parameters of a single PID controller. Each of these TD 

neural networks acted as a learning agent (see Figure 7.1). The idea is that 

for a large-scale system these learning agents can be distributed through the 
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Parameters Unit 1 Unit 2 Unit 3 

Xd 1.0260 0.1026 0.1026 

xq 0.6580 0.0658 0.0658 

1 Xd 0.3390 0.0339 0.0339 

It Xd 0.2690 0.0269 0.0269 

x1l q 0.3350 0.0335 0.0335 
Tdl 

o 0.3670 03670 0.3670 

Td". 0.0314 0.0314 0.0314 
Tql 

0 
0.0623 0.0623 0.0623 

H 2.8000 28.000 28.000 

Table 7.2: Parameters of the generators in p. u. 

Parameters Unit 1 Unit 2 Unit 3 

T9 0.250000 0.250000 0.250000 

a -0.001328 -0.00015 -0.00015 
b -0.170000 -0.01700 -0.01700 

Table 7.3: Parameters of the governors. 

system at relevant points to solve a local optimisation problems. By solving 

their own local optimisation problem they also effectively coordinate with each 

other to solve a global optimisation problem. The TD reinforcement learning 

agents do not share knowledge with each other, and effectively they are unaware 

of each others existence. One advantage is that they can still solve a global 
optimisation problem if one of them breaks down, in effect this principle has 

built in redundancy. For any size system it is a simple case of scaling the 

required number of reinforcement learning agents to suit the task being solved. 
Figure 7.3 shows how the TD neural network is implemented with a PID 
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Parameters I Unit 1 Unit 2 Unit 3 

KA 30 30 30 

TA 0.01 0.01 0.01 

K, 1 1 1 

T, 0 0 0 

Table 7.4: Parameters of AVRs and exciters. 

Generator I P(P. u. ) Q(P. u. ) V(p. u. ) ZO (degree) 

1 0.7564 1.0930 1.300OZ5.0 

2 7.5537 9.0095 1.250OZ6.0 

3 9.2769 9.6574 1.10OZ0.0 

Table 7.5: Generator operating conditions. 

controller in order to optimise the system performance. The PID controller 

used in this simulation study is given by equation (7.3.1). 

U(t) = U(t - 1) + icp[y(t) - Y(t - 1)] + (7.3.1) 

Kjy(t) + KDJY(t) - 2y(t - 1) + y(t - 2)] 

The predictions for the AIIC using TD learning is the same as that used in 

the 3rd order dynamic system in chapter 5 equation (4.2.2) as were the ACE 

weights, ASE weights and trace decays being updated using equations (4.2.3) 

(4.2.6) respectively. The f (t) outputs from the ACE was calculated from equa- 

tion (4.2.5) and the action selection output for the ASE was given by equa- 
tion (4.2.8) with a sigmoidal activation function determined by equation (5.2.5). 

The reinforcement feedback r(t) was formulated as a cost function using 

equation (7.3.2) and used to measure the performance of the controller after 
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Figure 7.2: The TD neural network architecture used to optimise a PID con- 
troller [701. 

each Kp, K, and KD action selection. 

N 
(Yref (t) -Y (0)2 (7.3.2) 

where N is the window size or sampling interval for calculating the mean and 

covariance inputs xi to the TD neural network from the measured output y(t). 

7.3.1 Simulation Results 

The power system investigated is divided into three areas. Each area serves 
its own load with only a small load transferred through the transmission line. 

Both generators 1 and 2 serve load L1, while generator 3 serves load L2, with 

only a small load transferred through the transmission line. The power system 
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Figure 7.3: Using TD reinforcement learning to optimise a PID controller for 
each generator in the multi-machine power system [70]. 

possesses a nature of multi-mode oscillations [711, which can be seen in Fig- 

ure 7.4. The inertia constant for generator 1 was 10% of that of generators 2 

and 3. The outputs of all exciters and controllers are limited to 7 p. u.. Each 

machine is controlled by a learning PID controller. A three-phase-to-ground 

short circuit at one of the double transmission lines, at point A, as illustrated in 

Figure 7.1, was simulated. The transmission line is switched off at t=0.3 ms 

and is switched back on at t=0.7 ms when the fault is cleared. 

The PID control parameters are optimised using a TD learning neural not- 

work. Each PID parameter is set a range and within this range TD learning is 

used to try and find the best value for each PID parameter through a process of 

selection and then observing the results of the multi-machine performance after 
a three phase short circuit. As each action ai"', ajI and ak' (corresponding to a 
parameter value) is chosen the probability of it being chosen is also updated, 
to the effect that if the action gives a good performance then the probability of 
choosing that action again is increased. After many search and observe train- 
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Figure 7.4: Stability response of the multi-machine power system after recov- 
ering from a three phase short circuit without control. 

ing sequences the best control parameters will be the ones whose probabilities 

are closest to one. These should then be the optimal control parameters for 

controlling the multi-machine system in the event of a three phase short circuit 
fault. The range of values available to each PID control parameter Ifp, Kit Kds 

were [1000,3000], [1000,20001 and [100,2001 respectively, with a choice of ton 

actions available in the range set. 

In general for a desired learning performance, the larger the window size N 

is in equation (7.3.2), the better r(t) can be formulated and in our tests N= 

2000 was used throughout. y(t) and Yrd(t) are the changes in angular velocity 
Aw of the generator rotor with a reference of Awr,, f =0 rads s-1. Aw was used 
in this simulation as our performance parameter to be optimised. However, 

other outputs from the generators could be used also, the only requirement is 

that the evaluative feedback can show how good the control action is so that 

a useful r(t) can be inferred from the measurement. 
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Figure 7.5: Stability response of the multi-machine power system after recov- 
ering from a three phase short circuit with multi-agent control. 

The multi-agent learning system can successfully learn to optimise the con- 

troller parameters. Figure 7.5 shows the deviation of the angular speed AW 

of the generators controlled by the learning PID controller equipped on each 

machine in the power system. The simulation runs for 10000 samples with a 

time step interval of 0.001 corresponding to 10ms of time. Training of the TD 

neural network is achieved by constantly running the program, after 100 runs 

of 10000 samples we observe the accumulated number of times each action has 

been selected, the ones chosen most often should then be the optimal control 

parameters. Each controller is then set to the best parameters found during 

learning and the response of Aw observed. The PID control output can be seen 
in Figure 7.6 showing the control outputs settling, during the transient process, 

which provide optimal control to the multi-machine power system. The termi- 

nal voltages of each generator also recovers quickly after the three-phase-short 

circuit fault, which is illustrated in Figure 7.7. 
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Figure 7.6: PID control outputs optimising the multi-machine power system 
performance after a three phase short circuit. 
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Figure 7.7: Terminal voltage recovery for the multi-machine power system after 
a three phase short circuit. 
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The simulation results show that the presented scheme had a satisfactory 

learning performance and after a fault disturbance, such as a three-phase- 

grounding short circuit, the learning PID controllers successfully damp out the 

multi-mode oscillations of the power system rapidly. 

7.4 Multi-Agent Learning Fuzzy Control 

The next simulation involved the application of Temporal Difference (TD) 

learning to optimise fuzzy logic controllers in a distributed power system. As 

used in the evaluation of the PID controller previously, the three machine 

power system is simulated to evaluate the dynamic performance of the gener- 

ators as well as observing the multi-agent learning control performance. The 

parameters for each of the fuzzy logic controllers are optimised in parallel using 

TD reinforcement learning agents. The fuzzy control parameters are updated 

independently and simultaneously. 

The same TD learning neural network and multi-machine power system 

(Figure 7.1) was used, but a fuzzy logic controller was used instead of a PID 

controller. The control actions from each TD learning neural network that 

makes up a learning agent is shown in Figure 7.8. As for the PID simulation 

study the cost function to evaluate f (t), r(t) and output function were updated 
in the same manner using the same equations, as were the AIIC weights and 
trace decays. A flow chart, Figure 7.9 describes how the learning fuzzy control 

was implemented. 

Figure 7.10 shows how the TD neural network is implemented with a fuzzy 
logic controller in order to optimise a single synchronous machine. 

For design of adaptive fuzzy logic controllers an important aspect to con- 

sider is the choice or shape of the membership functions. A non-linear continu- 
ous fuzzy membership function of the form shown in Figure 7.11 was employed 
for the fuzzy logic controller. This type of membership function is useful for 
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Figure 7.8: The temporal difference neural network architecture for optimising 
a fuzzy logic controller [72] [731. 

determining the accelerating and decelerating power needed to control each 

synchronous generator as it deviates from normal operating speeds. These 

fuzzy membership functions N(O) and P(O) (Li et al [691 and Hassan et al 
[741) are described by equations (7.4.1) and (7.4.2). It can be seen that the 

function S(O, a, b, c) has limits [0,11 and that changes in a, b, c as variables in 0 

give us the desired result of changing the shape of the membership function in 

Figure 7.11. In order to determine a control, the synchronous generator speed 
deviation is sampled to give an indication of the rate of change of Aw over a 

sampling interval T,. 
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Start 

I Initialise all parameters I 

For each generator select control action parameters for fuzzy logic controllers 
based on TD learning Neural Network, equations (7.4.1) (7.4.2) and (7.4.3) 

1 

Perform Fuzzy Logic control u (t) on generators with equation (7.4.4) 

I Use Runge-Kutta numerical method to evaluate performance of generators I 

IF performance of 
generators is within performance 

_criteria 
OR time > training time 

False 

Calculate rewards r(t) with equation (7.3.2) 

Determine prediction p(t) for next leaming iteration with equation (4.2.2). 

Update all ACE weights and traces with equation (4.2.3) and determine r(t) 
using equation (4.2.4) 

Update all ASE weights and traces with equation (4.2.5), determine outputs 
s(t) of TD neural network to select next set of action parameters for fuzzy 
logic controllers, equations (4.2.6) and (5.2.5) 

Stop 

Figure 7-9: Flow chart for multi-machine learning fuzzy logic control with TD 
learning neural networks. 
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Figure 7.10: Using TD reinforcement learning to optimise a fuzzy logic con- 
troller [721 [731. 

N, (0) 
1- S(o; Oo, Omi, Om) 0< om 
S(O; Om) 0m2,27r) 0> om 

P, (0) N, (0) 

where 

Om = (27r + Oo)/2 (7.4.2) 

Omi = (Oo + Om)/2 

Om2 = (27r + Om)/2 

and 

REINFORCEMENT LEARNING K. 11. Chan 



7.4 Alulti-Agent Learning Fýizzy Control 137 

C= (21c + 00) /2 

1.1 

U 

Figure 7.11: Fuzzy membership function [721 [73] [741 [691. 
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Figure 7.12: The rotor angle position on the phase plane [721 [731 [741 [691. 

The variable 0 can be determined from Figure 7.12, where A is the rotor accel- 

eration, A= (Aw(t) - Aw(t - 1)IT. ); As is a scaled acceleration proportional 
to a scaling factor F., A, = F,, A. Both A, and Aw are used to compute R(t), 
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where R(t) = -, /(A' + AW2) . The determination of 0 can be obtained using 3 
sin(O) = A. /R(t) for 0<0< 27r. The control action from the fuzzy logic 

controller is given by equation (7.4.4) 

, 
(t)[N, (O) - P. (O)lu,,,,,. (7.4.4) u(t) = Gc 

where G, is a ramp function G, (t) = R(t)ID, for R(t) < D,, Gc #) =1 when 

R(t) ý: D, and u,,,,,. is a coefficient limiting the maximum output control of 

the fuzzy logic controller. In order to change the distribution of the fuzzy 

membership function for improved control performance, it is observed that 

the three parameters, 00, F. and D,. can be adjusted and optimised using the 

temporal difference reinforcement learning. 

7.4.1 Simulation Results 

All power system parameters and initial conditions were left unchanged as 
for the early study with the PID controller. Tile outputs to all exciters and 

controllers were limited to 7p. u. Each machine is controlled by a learning fuzzy 

logic controller, at point A in Figure 7.1 a three-phase- to-ground short circuit 
fault was introduced. The transmission line was switched off at t=0.3ms and 
then switched back on at t=0.7ms when the fault had been cleared. 

The fuzzy logic control parameters are optimised using a temporal difference 
learning neural network. Each fuzzy control parameter is set a range and within 

this range temporal difference learning is used to try and find the best value for 

each parameter. The process of selection and then observing the results of the 

multi-machine performance after a three phase short circuit is used to evaluate 

the actions selected. As each action a?, ', aý'a and a"' (corresponding to a Ik 
parameter value) is chosen the probability of it being chosen is also updated, 
to the effect that if the action gives a good performance then the probability of 

choosing that action again is increased. After many search and observe training 
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Figure 7.13: Generator speed responses to a three-phase-ground short circuit 
with multi-agent fuzzy control. 

sequences the best control parameters will be the ones whose probabilities 

converge closest to one. These should then be the optimal control parameters 
for controlling the multi-machine system in the event of a three phase short 

circuit fault. 

After initial evaluations the range of values for each control parameter pa- 

rameter was set. Fuzzy logic controller one, corresponding to generator 1 was 

set the range 00 E [1.5,2.0] radians, F, E [0.005,0.011 and D,. E [0.01,0.11. For 

controllers 2 and 3a suitable range was found to be Oo E [1.5,2.0] radians, 
F. E [0.01,0.11 and Dr E [0.05,0.5], all ranges were equally divided to give ton 

available actions within the set range. 
The multi-agent learning system can successfully learn to optimise the con- 

trol parameters. A comparison between the system without control, Figure 7.4 

and with the fuzzy controllers optimised, Figure 7.13 shows that temporal 

difference learning can successfully select parameters that will lead to good 
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control performance of the multi-machine power system. The simulation runs 
for 10000 samples with a time step interval of 0.001 corresponding to 10s of 

time. Training of the temporal difference neural network is achieved by con- 

stantly running the program, after 1000 runs of 10000 samples we observe the 

accumulated number of times each action has been selected, the ones chosen 

most often should then be the optimal control parameters. Each controller is 

set to the current best parameters found during learning and the response of 
Aw observed. Figure 7.14 illustrates the learning history for the 0 parameter 

of the fuzzy logic controller. 
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Figure 7.14: Optimisation of 0 action parameters using temporal difference 
reinforcement learning. 

As observed although training takes a long time to converge to probability 

one, the early trend shows that the TD learning agent can select optimal control 
actions quite quickly. The complete training time may not be required and may 
the use of an existing optimal (or even suboptimal) action selected may still be 

beneficial in a control situation, this will also enable reinforcement learning to 
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be used in applications that require quick or even real time response. Further 

the use of the chosen fuzzy membership function was due to its well established 

history in past control problems Q741 [691). Perhaps the more common types of 

membership functions, such as trapezoidal or triangular membership functions 

may improve upon the control performance. The combination of reinforcement 
learning with fuzzy control as demonstrated here may provide a bridge between 

artificial intelligence and natural intelligence. Fuzzy logic already allows this 

to some extent but with the inclusion of a learning method that works by trial 

and error may lead to a more natural form of control which is more intuitive 

and easier to understand in human terms. From the other perspective this 

methodology also allows artificially intelligent machines to exhibit behaviour 

which seems more natural. 

REINFORCEMENT LEARNING lf. H. Chan 



Chapter 8 

Conclusion 

8.1 Summary 

The use of reinforcement learning to control a large-scale system such as 

a multi-machine power system has been demonstrated. The success of this 

method is highlighted partially by the learning automaton approach and mainly 
by the temporal difference learning approach and neural network configuration 

using adaptive heuristic critics working in parallel, providing robust control to 
dynamic systems. 

Reinforcement learning control and multi-agent reinforcement learning con- 
trol has been shown to be a valid method of optimising dynamic systems, this 

has been achieved by the following simulation studies. 

1. Developing and using a temporal difference learning neural network in a 
3rd order dynamic system for optimising PID control parameters 

2. Using a team of learning automata to optimise PID control parameters 
in a 3rd order dynamic system. 

I Using a team of learning automata to optimise PID control parameters 
in a single-machine-infinite-busbar power system. 
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4. Using multi-agent temporal difference learning neural networks in a multi- 

machine power system to optimise PID control parameters. 

5. Using multi-agent temporal difference learning neural networks in a multi- 

machine power system to optimise fuzzy logic control parameters. 

8.2 General remarks 

This study has involved multi-agent learning to co-ordinate and solve global 

dynamic optimisation problems. The learning agents are able to do this us- 

ing only local limited knowledge and without the need to communicate this 

knowledge to each other has been demonstrated. Individually these learning 

agents can solve useful learning problems but they also provide a flexible way 

to expand to much larger scale problems, so that the number of learning agents 

can be increased or decreased to suit the t? Lsks involved. Multi-agent learning 

results for the fuzzy logic control and PID control show that temporal differ- 

ence learning can be applied to complex systems on-line, providing continuous 

and parallel learning to improve a controllers performance. 

The advantages of using well known simple learning agents as building 

blocks for a distributed hierarchical structure is the robust nature of tile learn- 

ing system. If one learning agent fails then the rest can compensate within 
limits without it, since they will re-learn to optimise the same situation but 

with one less learning agent in the architecture. 

The application of reinforcement learning to optimise parameterised con- 

trollers is both intuitive and flexible in learning control of dynamic systems. 
This method of learning and control has great potential for future engineer- 
ing applications as well as being a useful tool for control of large-scale power 
systems. The co-ordination between learning agents in a multi-agent learning 

architecture also warrants further investigating. 
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8.3 Limitations of approach 

Reinforcement learning is best applied to systems that will benefit from 

continuous learning control that works in the background continuously sam- 

pling the environment for changes, the controller parameters are set for general 

control but are then fine tuned and reset when an un-desired disturbance occurs 

to regain control of the system. 

As with all learning approaches to problem solving the main criticism lies in 

the amount of time that is required for learning (or training). The flexibility of 

reinforcement learning control as it learns by trial and error is offset by the fact 

that, in order to come up with an optimal solution a price needs to be paid as it 

searches and explores the potential possibilities before settling and converging 

on the final solution. Without containing any preset information to improve 

its initial search the price in learning time can be expensive. This is somewhat 

offset by modern computational processing power and trends suggest a rapid 
increase in processing power in the future. Some applications requiring critical 

real time performance may not benefit so well from reinforcement learning 

control, while a model or some initial knowledge of a system may help, this 

will only limit the learning agent for that given situation or environment, thus 

removing much of the flexibility of learning by experience. As with all control 

methods some applications will be better suited for reinforcement learning than 

others. 

Another limit found in the simulation studies was the fact that depending 

upon the preset parameter ranges for the action selection process, learning a 

parameter sometimes resulted in two or more actions having similar or equal 

chances of being selected and so no one unique solution was found. In general 
these actions or parameter values tended to be close to one another (having 

a similar value) and each provided reasonable control performance when eval- 
uated individually in the final control test after learning. This indicates that 
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the learning agent may be having problems withg local optima as examplified 
in the results seen in Chapter 5, Figure 5.14 

The solution may be to provide a continuous action space, unlike the dis- 

cretised one used in the simulation study or just provide for a longer learning 

time, but as mentioned above increased learning time may not be so practical. 
Using a continuous action space new methods of selecting an action will need 

to be implemented so that the learning agent can expand the action range for 

general search then decrease and home in on a particular action value when it 

has identified the region the optimal action resides in. 

8.4 Recommendations for further study 

The emphasis in co-ordinated control using multi-agent reinforcement learn- 

ing relies upon the co-operation between learning agents, each solving it's own 
local optimisation problem without impeding the progress of the others. An- 

other approach to learning as in biological systems is competitive learning or 

survival of the fittest. A method proposed by Humphrys [26] and based on 
Q-learning follows this approach is one existing example and similar method 

may be devised in order to solve an optimisation problem based on competing 
learning agents. 

PID and fuzzy logic controllers have been used to control the excitation 
system in the power system control problem, alternative types of control can 
be implemented. In the literature the use of flexible A. C transmission sys- 
tems (FACTS) provide another application of reinforcement learning control 
in power systems. Many FACTS devices exist [631 [641 [651 providing a large 

scope for further investigation. 

From power systems to other large-scale control problems in engineering 
further studies in distributed learning and alternative architectures for arrang- 
ing the multi-level agents can be improved upon. The use of such multilevel 
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learning systems, accelerates the learning process (more so for the initial rate 

of learning) and simplifies their realisation. Many of the easily identifiable dis- 

tributed systems have been investigated, traffic light control [51]; packet rout- 
ing in information networks [531; channel allocation in cellular phone systems 
[441 and improving elevator performance in large office buildings [43]. One idea 

suggested by Narendra and Thathachar [171, but so far has not been studied in 

the reinforcement learning context, mentions potential applications regarding 

priority assignment in a queuing system. Priority queuing could be applied to 

task scheduling which is important in industry for maintaining inventory and 

maximising efficiency in production. 
Reinforcement learning is a fundamental and essential process in all animals 

and has helped us achieve things that were not possible until tried (and tried 

and tried). This concept has been imitated to enable machines (or learning 

agents) to exhibit intelligent behaviour. The scope of reinforcement learning 

encompasses not only engineering but also science, psychology, biology and 

maths and may some day include other disciplines that so far seem unrelated 

as we seek to improve our knowledge of reinforcement learning both natural as 

well as artificial. 
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