
UNIVERSITY of LIVERPOOL

Reinforcement Learning For The
Control of Large-Scale Systems

Thesis submitted in accordance with the

requirements of the University of Liverpool
for the degree of Doctor of Philosophy

in

Electrical Engineering and Electronics

by

K. 11. Chan , B. Eng, M. Sc. (Eng)

December 2001

Reinforcement Learning For The

Control of Large-Scale Systems

by

K. H. Chan

Copyright 2001

To my Father, whom I owe much to.

A Kind, Devoted and Dear person.

iii

Acknowledgements

I thank my supervisor Professor Q. H. Wu for his intellectual guidance and

support throughout this research and for his help when organising this Thesis.

I am grateful to The Department of Electrical Engineering and Electronics, The

University of Liverpool for providing the research facilities, making it possible

for me to conduct this research. Thanks to Lin Jiang for helping me debug and

tidy up my programs and Mohamad Sedaaghi and David Stamp for providing

the basic latex thesis format. Many thanks to EPSRC for providing the funding

enabling this research to be possible from the beginning. Much appreciation

goes to my family for their support in everyway possible, my Mum for being

so patient with me during the period of my University life. Special thanks to

my Father for showing by example that learning new things and accomplishing

them against any adversity make us better individuals, it maybe hard work
but we will have benefited from it when it is done.

iv

Abstract

Reinforcement Learning For The

Control of Large-Scale Systems

by

K. H. Chan

Learning through repeated trials and updating the desirability of repeating a

certain trial is a fundamental learning process in all animals. This type of learn-

ing or reinforcement learning can be adopted for use in intelligent engineering

control and applications which contain high degrees of complexity, uncertainty

and have non-linear characteristics. Reinforcement learning systems have the

property of progressively improving their performance based on past experience

and require little analytical knowledge of the system for optimisation.
The two main types of reinforcement learning are investigated. The Learn-

ing Automata (LA), which originates from psychology, and Temporal Difference

(TD) learning, which owes it's origins to artificial neural networks and hence

biology. Initially studies of a TD learning agent for PID control of a third

order dynamic system were investigated, then a Team of Learning Automata

(TLA) was used on the same control problem as a comparison test. The third

order system was replaced with a single-machine-infinite-busbar power system

and the analysis repeated for the TLA. The single agent learning method was
then extended to multi-agent learning control of a multi-machine power sys-
tem with three synchronous generators as the basis of a large scale system to
be investigated. TD learning was then used to evaluate multi-agent PID and
fuzzy logic control of the multi-machine power system. To conclude some com-

parisons between the two different types of reinforcement learning were made
to highlight their advantages and limitations.

V

vi

Contents

List of Figures x

List of Tables xiv

I Introduction 1
1.1 Learning 2
1.2 Supervision or Criticism 4
1.3 Various Learning Techniques 5

1.3.1 Learning Automata 6
1.3.2 Dynamic Programming 7
1.3.3 Temporal Difference Learning 11
1.3.4 Q-Learning

...................... ... 12
1.3.5 W-Learning

...................... ... 13
1.4 Applications of Learning Methodologies 14

1.4.1 Applications of Learning Automata 14
1.4.2 Applications of Dynamic Programming 16
1.4.3 Applications of Temporal Difference Learning 16
1.4.4 Applications of Q-Learning 18
1.4.5 Applications of W-Learning 19

1.5 Learning Control of Large-Scale Systems 20
1.5.1 Connectionist Systems 21
1.5.2 Large-Scale Systems 22
1.5.3 Learning Control

................... ... 23
1.5.4 Power System Problem Formulation 25

1.6 Contribution of the Thesis
.................. ...

25

2 The Learning Automata 27
2.1 The Environment 28
2.2 The Automaton 30
2.3 The Stochastic Automaton 32

2.3.1 Fixed Structure and Variable Structure Automata 33
2.4 Variable Structure Stochastic Automata

.............
34

vii

2.4.1 Reinforcement Schemes
34

2,5 The General Reinforcement Scheme
36

2.5.1 Action Probabilities
36

2.5.2 Transition Probabilities
37

2.6 Linear Reward-Penalty (LR-p) Scheme
38

3 Reinforcement Learning 40
3.1 Introduction .. ******'*''* **'****"*'* *****

40
3.2 Variation, Selection and Retention

42
3.2.1 Actions

43
3.2.2 Optimal Control

43
3.2.3 Hidden States 44
3.2.4 Markov Decision Problems

44
3.3 Properties of Reinforcement Learning 45

3.3.1 Reward and Penalty 47
3.3.2 The Value of a State 48
3.3.3 The Policy 50
3.3.4 System Model 51

3.4 Limitations to Learning by Experience 53
3.4.1 Experience in Reinforcement Learning 54
3.4.2 Pure Delayed Reward and Avoidance 56
3.4.3 Minimum Time to Goal 57
3.4.4 Exploration Versus Exploitation 57

4 Temporal Difference Learning 60
4.1 Introduction ... **, *, ***,, ***,,, *,, * ,***,, 60
4.2 Temporal Difference Learning ... *,,, *,,,, * ,*,... 61

4.2.1 Adaptive Heuristic Critic and TD(, \) 63
4.2.2 The ACE

.................... 65
4.2.3 The ASE

....................
66

4.3 Inverted Pendulum control
67

5 Learning Control of Dynamic Systems 73
5.1 TD(A) Learning Control

......................
73

5.2 Applying TD(A) for Control of Dynamic Systems
74

5.2.1 The Plant
... ****, ***

76
5.2.2 The PID Controller

.....................
77

5.2.3 The Temporal Difference Neural Network
78

5.3 Optimising PID Control Parameters Using A TD (A) Neural Net-
work

83
5.4 Optimising Kp, K, and KD 86
5.5 Results for Optimised PID Controller

...............
90

5.6 Learning Control Implementation using Learning Automata .- 93

viii

5.7 Applying Learning Automata
94

5.7.1 The Plant
94

5.7.2 The PID Controller
96

5.7.3 The Team of Learning Automata
96

6 Learning for Power System Control 103
6.1 Power System Control Problems

103

6.2 Power System Models
106

6.3 Non-linear Model of Turbo-Generator
107

6.3.1 Turbine and Boiler
109

6.3.2 The Governor System
.................. .

110
6.3.3 Excitation System 111
6.3.4 Transmission System

................... .
112

6.4 Applying Reinforcement Learning
................ . 113

6.4.1 Parameter Optimisation of a Turbo-Generator PID Con-
troller

113
6.4.2 Learning Time 118

7 Multi-Agent Learning for Control of Multi-Machine Power
Systems 120
7.1 Multi-Machine Power System Learning Control

121

7.2 Architecture of network,, *,,. *, *,, ** 123
7.2.1 Multi-Machine Power System Model 124

7.3 Multi-Agent Learning PID control
125

7.3.1 Simulation Results 128
7.4 Multi-Agent Learning Fuzzy Control

133
7.4.1 Simulation Results

138

8 Conclusion 142
8.1 Summary

142
8.2 General remarks

143
8.3 Limitations of approach

144
8.4 Recommendations for further study

145

Bibliography 147

ix

List of Figures

2.1 The learning automaton 28

3.1 A simple three by three grid state space representation (the
environment) showing the reinforcement reward feedback signals
and one goal state 'A 46

3.2 The optimal state values of a simple three by three grid envi-
ronment with one goal state 50

3.3 Relationships among learning, planning and acting [16]
...... 55

3.4 On-line and off-line exploration/exploitation strategies 58

4.1 Architecture for the Adaptive Heuristic Critic [211 64
4.2 Flow chart for learning to balance an inverted pendulum using

temporal difference learning control 70
4.3 The task of balancing an inverted pendulum using the adaptive

heuristic critic architecture and temporal difference reinforce-
ment learning. The ACE and ASE can each be implemented
using a neural network 71

4.4 Inverted pendulum control problem 72
4.5 Inverted pendulum balancing simulation results 72

5.1 Flow chart for learning control of a dynamic system with PID

control using temporal difference learning 75
5.2 A pseudo random binary signal used to train the temporal dif-

ference neural network 76
5.3 Using temporal difference reinforcement learning to optimise a

PID controller 77
5.4 PID controller using temporal difference reinforcement learning

to select Ifp parameter with IC, and KD preset 79
5.5 Action probabilities for the PID controller parameter Kp after

training of the temporal difference neural network with K, and
KD preset 81

x

5.6 Mean and covariance for y(out) from plant and input to the
temporal difference neural network, with a window size of 300
samples

82
5.7 The temporal difference neural network weights from the ACE

and ASE for optimising the Kp parameter of the PID controller
with K, and KD preset

82
5.8 Step response of the plant with the PID controller parameter

Kp optimised by the temporal difference neural network where
K, and KD are preset

83
5.9 Optimisation of Kp and KD parameters of a PID controller

using a temporal difference neural network
84

5.10 Kp action probabilities after training of temporal difference neu-
ral network to optimise Kp and KD parameters of a PID con-
troller with K, preset 85

5.11 KD action probabilities after training of temporal difference neu-
ral network to optimise Kp and KD parameters of a PID con-
troller with K, preset 85

5.12 Step response of the plant with the PID controller parameters
Kp and KD optimised by a temporal difference neural network
where ICI is preset 86

5.13 Optimisation of PID parameters using a temporal difference neu-
ral network 87

5.14 Action probabilities that do not converge well to one action. .. 88
5.15 Mean and covariance input used to train the temporal difference

neural network for optimising a PID controller 90
5.16 Temporal difference neural network weights for optimised PID

controller
91

5.17 Kp action probabilities for optimised PID controller using a tem-
poral difference neural network

91
5.18 K, action probabilities for optimised PID controller using a tem-

poral difference neural network
92

5.19 KD action probabilities for optimised PID controller using a
temporal difference neural network

92
5.20 Step response of system plant using optimal Kp, KI and KD pa-

rameters of a PID controller selected using a temporal difference
neural network *''*'* '**'*''' 93 :

5.21 N learning automata operating in an unknown environment with
identical payoff [281

......................... . 94
5.22 Flow chart for the optimisation of PID parameters using a team

of learning automata 95
5.23 Optimisation of PID parameters using a team of learning au-

tomata 96

xi

5.24 Dynamic response of plant, J is a cost measure used to calculate
Beta the feedback reward signal. Beta =1 indicates that the
PID coefficients are good and the associated action probabilities
are increased **'****

99
5.25 How the learning automata update their action probabilities

with experience
100

5.26 Dynamic response of plant for the optimised PID controller,
optimised using a team of learning automata

101
5.27 Control response of plant with PID controller using non-learning

control but using conventional manual design
102

6.1 Disturbances in power supply systems [62]
............. 105

6.2 A single-machine-infinite-busbar power system [611
........

106
6.3 Turbo-generator system to be controlled 107
6.4 Flow chart of turbo generator system PID controller optimisa-

tion using a team of interconnected learning automata 116
6.5 Optimisation of KD parameter in a turbo generator PID con-

troller using a team of interconnected learning automata. 117
6.6 Control performance of team of interconnected learning automata

in a power system optimisation problem 117
6.7 Stability response of the team of interconnected learning au-

tomata in a power system after recovering from a three phase
short circuit 118

7.1 Optimisation of power system controllers using multi-agent learn-
ing [70]

................................ 122
7.2 The TD neural network architecture used to optimise a PID

controller [701 * 128
7.3 Using TD reinforcement learning to optimise a PID controller

for each generator in the multi-machine power system [701. .-. 129
7.4 Stability response of the multi-machine power system after re-

covering from a three phase short circuit without control 130
7.5 Stability response of the multi-machine power system after re-

covering from a three phase short circuit with multi-agent control. 131
7.6 PID control outputs optimising the multi-machine power system

performance after a three phase short circuit 132
7.7 Terminal voltage recovery for the multi-machine power system

after a three phase short circuit 132
7.8 The temporal difference neural network architecture for optimis-

ing a fuzzy logic controller [721 [73]
................. 134

7.9 Flow chart for multi-machine learning fuzzy logic control with
TD learning neural networks 135

xii

7.10 Using TD reinforcement learning to optimise a fuzzy logic con-
troller [721 [731

.........
136

7.11 Fuzzy membership function [72] [73] [741 [691
...........

137
7.12 The rotor angle position on the phase plane [721 [731 [741 [69).

- 137
7.13 Generator speed responses to a three-phase-ground short circuit

with multi-agent fuzzy control
139

7.14 Optimisation of 0 action parameters using temporal difference
reinforcement learning

........................
140

xiii

List of Tables

5.1 Action selection for PID controller by temporal difference learn-
ing neural network

80

7.1 Transmission line parameters in p. u 125
7.2 Parameters of the generators in p. u

126
7.3 Parameters of the governors 126
7.4 Parameters of AVRs and exciters 127
7.5 Generator operating conditions 127

xiv

Chapter I

Introduction

Reinforcement learning enables machines to exhibit learning behavior in

new/unknown or partially known environments. The principle idea is that

for any system, learning can be achieved by a process of trial and error. Good

actions are rewarded and are likely to be tried in future trials, while bad actions

are penalised and are likely to be avoided in future trials. The constant trying

of actions and discovering their consequences, or exploring, theoretically allows

an agent to learn without any prior knowledge of that particular environment

or system.

Currently many problems are unsolvable simply because it is too difficult to

determine what the learning agent should do (e. g. in a stochastic environment
[11 [2)), or the state space is very large that it would be impractical to map

concisely. If the learning agent could solve problems through trial and error,

then that would be of great practical value. It is on this basis that the many

reinforcement learning schemes are able to learn and hence solve problems.
Learning deals with the ability of systems to improve their responses based on

past experience. Since the ability of living organisms to cope with uncertainty
is well known, it is only natural that a lot of effort has been made to incor-

porate similar features into artificial intelligence systems which can then be

1

1.1 Learning 2

applied to engineering problems. Many subjects can relate to the development

of reinforcement learning as well as artificial intelligence (AI) in general. Sub-

jects such as computer science, mathematics, biology, psychology, cybernetics

and now even extending to engineering with current emphasis on pragmatic

problem solving. It is also interesting to know that reinforcement learning has

managed to play an important role in all the above mentioned fields.

1.1 Learning

Learning is the acquisition of useful information or knowledge and can de-

velop in many ways in artificial intelligence (as well as in natural intelligence).

Although many learning algorithms have been used to successfully solve var-
ious problems, historically, the most important learning paradigm has been

that of supervised learning [3]. In supervised learning the learner is required

to associate pairs of items presented by a "teacher" during training. When

later presented with just the first item of the pair, the learner is supposed to

recall the second. Two other types of learning have also been essential in the

evolution'of biological intelligence: unsupervised learning and reinforcement
learning. In unsupervised learning, a system is only presented with a set of

examples as inputs. The system is not given any external indication as to what

the correct responses should be nor whether the generated responses are right

or wrong. Statistical clustering models such as the Kohonen self-organising

map [41 have no knowledge of the number of clusters and are examples of un-

supervised learning. Basically, unsupervised learning aims at finding a certain
kind of regularity in the data represented by the examples. To find meaningful

regularity, there must be some redundancy in the input data to describe or

classify the examples.

Reinforcement learning is somewhere between supervised learning, in which
the system is provided with the desired output, and unsupervised learning, in

REINFORCEMENT LEARNING K. H. Chan

1.1 Learning

which the system gets no feedback at all on how it is doing. In reinforcement

learning, the system receives an evaluative feedback, the scalar reinforcement

signal r(t) that tells the system whether its output response is right or wrong,

but no information on what the right output should be is provided. Since little

or no information is given on what the right output should be, the system

must employ some random (or structured) search strategy so that the space of

plausible and rational choices is searched until a correct answer is found. The

reinforcement learning paradigm can further be classified as associative and

nonassociative reinforcement learning.

An associative reinforcement learning scheme requires information in the
form of an environmental scalar reinforcement signal as well as a context or

input vector. It attempts to form associations between the input and output

vector from stimulus-action training pairs (comparable to supervised learning).

Thathachar, Phansalker [51 and Barto, Anandan [6], have successfully employed

these methods using stochastic learning automata to solve pattern-classification

problems. The reinforcement scheme Barto and Anandan used was called an

AR-P or associative reward-penalty scheme. The algorithm is a combination of

a stochastic learning automata algorithm and a pattern classification algorithm

based on stochastic approximation [6].

A nonassociative reinforcement learning scheme is one which receives a

scalar reinforcement signal from the environment in response to the application

of an action selected from an admissible finite set (and no context vector).
The objective is to use the reinforcement scalar to guide the choice of action

selection towards that action which is deemed optimal in some sense and is

comparable to unsupervised learning.

REINFORCEMENT LEARNING K. H. Chan

1.2 Supervision or Criticism

1.2 Supervision or Criticism

Reinforcement learning is an approach to machine intelligence that
lorigi-

nates from psychology and contain elements of Dynamic Programming [71 [81

[91 [101 [111 and Supervised learning [4] [121 to solve problems that either dis-

cipline could not otherwise have solved on their own. Dynamic programming

has traditionally been applied to problems involving optimisation and control

[131 [9], however dynamic programming is limited in the size and complexity

of the problems it can solve. Supervised learning is a general method used

for training a parameterised function approximator, such as a neural network.

In order to learn, supervised learning requires input-output data pairs from

the function to be learned and form a mapping between input-output pairs

through training. In a way the learning agent tries to behave as instructed by

the environment.

Reinforcement learning on the other hand uses a general evaluative feed-

back, the reinforcement signal r(t), this gives an overall indication if a chosen

action was good or bad, usually to a certain degree based on a probability

measure. Thus the reinforcement signal r(t) behaves like a guide or critic

and provides criticism as opposed to supervision. Reinforcement learning as a
learning control method tries to make the environment behave in a way desired

by the learning agent. The goal directed way reinforcement learning behaves

is more intuitive and flexible and the advantage of reinforcement learning be-

comes more apparent when uncertainty exists [141 in the system such as in a

stochastic system, or when the system is too complex and hence mapping such

a large state space completely becomes prohibitively impractical. Other prac-
tical concerns are for stochastic systems where the possible output mappings to

any given input will not be a simple one to one relation and obtaining data for

training (learning) becomes un-feasible, in these situations simple supervised
learning can not help.

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 5

Reinforcement learning appeals to many researchers because of this gener-

ality by learning from trial and error for any given goal. The process of trial

and error learning is fundamental to all living animals which reinforcement
learning has borrowed from in order to emulate and understand this aspect of

animal learning behaviour. From the biological and cognitive points of view,

reinforcement learning is much closer to the modern animal learning theory

than is supervised learning. Moreover animals can learn extensively about

their environments using just external reinforcement signals from the world

or other animals, Lin and Lin [15] describes the situation as very similar to

learning many high-level intelligent actions such as how to drive a car. It

can also be argued that most real life systems are complex and/or stochastic
(noisy/random) in nature. The use of reinforcement learning can overcome

these obstacles and achieve good performance where other learning methods
fail or achieve poor results. Therefore reinforcement learning should be the one

of the first considerations in learning control.

1.3 Various Learning Techniques

Throughout its development much insightful research has evolved the ýa-

sic reinforcement learning paradigm from its roots in psychology and animal
learning behaviour. Some of the techniques arise from a need to solve par-

ticular classes of problem but many seek to improve the efficiency at which a

solution can be found. The main developments in reinforcement learning will

be described to give a flavour of these techniques. The learning automata and

temporal difference learning are described in more detail in later chapters but

are mentioned here for perspective.

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 6

1.3.1 Learning Automata

From the very beginnings of reinforcement learning based on psychology the

learning automaton was both unique and revolutionary at the time. Introduced

by Tsetlin (1973) [161 [171, the learning automaton is a low memory machine for

solving selection learning problems due to its nature of trial and error learning

which is the heart of all reinforcement learning. The basic learning architec-

ture consists of the learning automaton interacting with an environment which

returns a reward signal based on the action selected and its outcome on the

cilrrent state of the environment. Good actions are rewarded by returning a

positive scalar value to reinforce the probability of selecting that good action
in future while punishing bad actions by returning a negative scalar value to

diminish the probability of selecting that bad action in future. The net result is

that the learning automaton learns to select good actions that are beneficial to

the environment while avoiding bad actions, the environment being a generic

term used to describe any problem space, such as the control of a generator

output in a power system network. The learning automaton is a simple concept

that so far seems to closely model the fundamental way animals learn when

placed in new and unknown environments. Apart from applications of learning

automata a lot of work has been done to improve and compare various types of
learning schemes used in the updating of the internal states of a learning au-

tomata. Narendra and Thathachar [17], Thathachar and Phansalker [51 study
the convergence of the learning automata either individually or in structures

of teams and hierarchies, Lanctot and Oommen [181 compare different types

of variable structure stochastic automata to see which ones converge fastest.

In a similar piece of work Rajaraman and Sastry [191 compare the rates of

convergence of the pursuit algorithm using finite time analysis for both the

continuous and discretised forms of the pursuit algorithm. The pursuit algo-
rithm being a popular update scheme used to adjust the states of a learning

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 7

automaton.

1.3.2 Dynamic Programming

Bellman [71 coined the term dynamic programming (DP) as a substitute for

describing the mathematical theory of multi-stage decision processes. Dynamic

programming is a collection of mathematical method for optimising sequential-

decisions and shares many principles with other reinforcement learning meth-

ods, it is mainly used in stochastic control [81 and problems in which a Markov

Decision Process (MDP) [101 [201 can be formulated. Common objectives, such

as the consequence of long-term and short-term effects when choosing a partic-

ular action in a given state need to be addressed, since a "bad" action may be

required in the short-term to reach the optimal state in the long-term (temporal

credit assignment [21]). The primary objective of learning is to construct an

optimal action selection policy or simply policy that will maximise the agents

performance. DP methods can compute optimal policies given a perfect model

of the environment as a XIDP [16].

A problem that exists for conventional DP methods occur when the state

space is infinite or relatively large. The most difficult aspect of applying DP

is often the modelling of the decision task, learning methods particularly re-

inforcement learning methods have great practical importance. DP methods

can solve these problems theoretically, but the computational solution may

not be obtainable due to memory limitations, especially when the number of

variables is large. The term used to describe this problem by Bellman [7] and

others is - "the curse of dimensionality". In order for a learning method to be

useful in improving a decision policy it must converge sufficiently rapidly so

that the amount of computation required is less than would be required to find

an explicit solution using DR This is the problem that Incremental Dynamic

Programming IDP methods such as Q-learning and TI) try to resolve.

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 8

Within DP policy iteration and value iteration are the most often used

methods.
Policy iteration manipulates a policy directly, rather than finding it in-

directly from the optimal value function. The policy determines which action

should be performed in each state and is a mapping from states to actions. The

value function is a mapping from states to state values and can be approxi-

mated using a function approximator (e. g. a multi-layered perceptron trained

using backpropagation). The value of a state being defined as the sum (or

expected sum) of the reinforcements received when starting in that state and

following some policy to a terminal state. The value of a state can be changed
by selecting different actions. If the state values improve then the policy is

adjusted to select that new action when in that state. When no improvements

are possible, then the policy is guaranteed to be optimal. The basic method is

described below,

1. choose an arbitrary policy

2. compute the value function for the given policy

I improve the Policy at each state

4. if policy is optimal then stop, otherwise go to 1

Another way of finding an optimal policy is to find the optimal value func-

tion. The optimal value function can be found using an
'
iterative algorithm

called value iteration. If V(xt) is an approximation of the value function with

xt a state vector, then the approximation of the optimal value function in

a given state is equal to the true value of that state plus some error in the

approximation, given by

V(xt) = e(xt) + V*(xt) (1.3-1)

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 9

where e(xt) is the error in the approximation of the value of the state occupied

at time t and V*(xt) is the optimal value in that state. Similarly the update

approximation at time t+1 can be expressed by

V(xt+,) = e(xt+,) + V*(xt+,)

By this definition a relationship exists between the values of successive states, xt

and xt+,. This relationship can be described by the following equations (1.3.3)

V*(xt+l) = r(xt)+-yV*(xt)

V(xt + 1) = r(xt) + -yV(xt)

In which the new or updated value is determined by the previous -y discounted

value plus some reward (sometimes penalty) feedback response from the envi-

ronment. The errors of successive states can be described using equation (1.3.4)

e(xt) = -ye(xt+,)

r (xt) is the immediate reinforcement and y is known as the discount factor. The

discount factor is used to exponentially decrease the weight of reinforcements

received in the future, -y is a number in the range of 0 ... 1 and is used to weight

near term reinforcement more heavily than distant future reinforcement where

the closer y is to 1 the greater the the weight of future reinforcements.
In describing the way learning experience is accumulated by the system the

term agent or learning agent is often used. The term agent is best described

by Sutton and Barto [161 in which the learner and decision maker are known

as the agent. also everything external to the agent in which it interacts with
is known as the environment. This definition of agent and environment is used
in the general literature and also used here.

The total amount of payoff received by the agent over time depends on
the number of time periods over which this total is determined, the sequence

of actions and states that occurred and the outcomes of any random factors

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 10

affecting the payoffs and state transitions. The number of time periods over

which the total amount of payoff is determined is called the horizon of the

decision task. If the horizon is finite (e. g. the state space is small and/or
deterministic), then the total payoff is simply the sum of the individual payoffs

received at each time period until the task's horizon is reached. If the horizon

is infinite (e. g the state space is large and/or stochastic), then this sum may

not be finite, a problem solved by using a discount factor y that allows payoffs

to be weighted according to when they occur. The choice of an appropriate
discount factor ensures that the weighted sum is finite even for infinite horizon

tasks, Sutton and Barto [22] call this imminence weighting.
For value iteration, if the function approximator, V(xt) used to represent

V*(xt) is a lookup table, then one can find the optimal value function by

performing sweeps through state space, using an updating algorithm given by

AlVt = max,, (r(xt, u) + -yV(xt+l)) - V(xt)

Where ZýWt is the updated reinforcement weight, u is the action performed in

state xt and causes a transition to state xt+l and T(xt, u) is the reinforcement

received when performing action u in state xt. This assumes that the function

approximator is a lookup table, which in many practical problems with large

or continuous state space poses problems. Hence one extension to the the

basic value iteration method is to use gradient descent on the error function

for every update of AlVt. The value iteration algorithm can be described by

the following

1. Set x to be the current state

2. If xEU, then stop

I Select an action uE q(x)

4. Execute action u, as a consequence, the agent receives reward r(x, u)

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 11

and is in the current state, then the number of steps is incremented i. e.

t1

5. Set LlVt=maxu(r(xt, u) +, yV(xt+,)) - V(xt)

6. Go to 1.

Where G is the set of goal states and A is the set of actions in any state.

1.3.3 Temporal Difference Learning

Temporal Difference (TD) learning was formulated by Sutton (1988) [31

to improve conventional DP methods. Sutton also found links with reinforce-

ment learning and neural networks from research involving ADALINES (adap-

tive linear elements). Apart from the learning automaton, temporal difference

learning is the other major development in reinforcement learning. From the

basic TD algorithm Sutton produced a general form for TD by introducing

a continuous factor AE [0,11 to produce TD(A), the factor A is used to give

relative weight to the importance of actions in a action sequence model by

modelling a forgetting factor when learning.

Two fundamental reasons for the development of TD learning exist, the first

is due to its relation with DP and the problems associated with conventional DP

methods, mainly the need for a perfect model and thus for large environments
the computational requirements become impractical which limits the use of
DP. The side effect of this also means that TD learning is suitable for on-line

model free learning. The second important point that TD learning addresses is

the problem of credit assignment, after a long sequence of actions which ones

contribute to the final solution more than the others or relative to the other

actions taken in the sequence of choices.

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 12

1.3.4 Q"Learning

Another important reinforcement learning method found in the literature

is, Q-1earning developed by Watkins [211 [231 [24] [161 [251 and viewed as a form

of model free dynamic programming that allows an agent to act optimally in

Markov decision processes. In Q-1earning a value function of the form Q(St, at)

is used and known as the state-action function or simply the Q-function, one

step Q-1earning can be calculated using equation (1.3.6).

Q(st, at) +- Q(st, at) + a[rt+l + ymaXaQ(st+,, at+,) - Q(st, at)]

Q-learning learns the state (st) action (at) function by following a greedy pol-
icy that chooses actions that return the highest value for any current state.
Q-learning is guaranteed to converge as long as all state-action pairs are con-
tinually updated [16]. From Watkins pioneering work much research has fol-

lowed in trying to improve and apply Q-learning. Examples such as Sarsa [231

[161, Summation Q-Learning Q(A) [23] try to improve on the basic Q-learning

method. The term Sarsa is derived from the quintuple (st, at, rt+,, St+,, at+,)

that makes up a transition from one state-action pair to the next based on equa-
tion (1.3.6) with the assumption that if st+l is terminal, then Q(st+,, at+j) is

defined as zero [161. Summation Q-learning updates the Q-function based on
the expected return given the current action probability instead of the max-
imum value of Q(st+,, at+,) [231. Q(A) is a method of combining Q-1earning

and TD(A) by Peng and Williams [231. One-step Q-learning makes minimal.
use of information received by the system since only a single prediction of the
Q-function value is updated for a single state-action pair per time step. TD(A)

methods offer a way of allowing multiple predictions to be updated per tirqe
step and hence speeds up convergence. The TD(A) method uses a standard

one-step Q-learning update to improve the current prediction of the Q-function

and then using the temporal differences between successive greedy predictions
to update it from there on.

REINFORCEMENT LEARNING K. H. Chan

1.3 Various Learning Techniques 13

1.3.5 W-Learning

IV-learning consists of a hierarchical structure of learning agents, each spe-

cialised to optimise/control one aspect of the complete learning system. A

simple example to explain W-learning is to use a two-link robot arm with a

manipulator performing a pick up task in an environment with obstacles. The

objective of the robot arm is thus to successfully pick up the target object while

avoiding the obstacles. For W-learning in this case there are two main tasks to

optimise/control, first the robot arm is required to reach the object then pick

it up and secondly the arm has to avoid the obstacles along the way. There will

be two learning agents in this problem, one of the agents has the goal, reach

the target and pick up the object, the other learning agent has the goal, avoid

the obstacles. At each time step the competing agents each suggests an action,
but only one action is executed. Which agent is obeyed changes dynamically.

Each agent can function in the absence of the others and will try to reach its

own goal, but each is also frustrated by the presence of the other agents. The

switching between agents can be complex and a better solution would be to

have a simple switch which the agents can use to organise themselves from.

W-learning was developed from Q-learning by Humphrys [26]. The simplest

scheme involves each action having a measure of importance or weight W

(hence W-learning) when in a given state and then executing the action with
the largest W. To be exact the learning agents are A,,..., A, at each discrete

time step all the agents observe the world to be in some state x. Each agent
Ai then suggests an action ai with weight W, the action ak(x) is then executed

where
Wk(x) = maXiEl,..., nwi(X)

The agent Ak is called the leader [261 in the competition for state x at the

moment. The actions ai(x) are those that the agent has learnt to take to

pursue its goals. This is where the NV-values IlVi(x) come from and how they

REINFORCEMENT LEARNING K. H. Chan

1.4 Applications of Learning Methodologies 14

change in response to not being obeyed. Schemes using "importance" values are

common in multi-behavior models but are normally hand designed, generating

them continuously and on-line is a simple task for reinforcement learning.

1.4 Applications of Learning Methodologies

The development of reinforcement learning has provided many ideas, new

algorithms and applications. The flexibility of reinforcement learning has

meant that a lot of previous work and applications are very diverse and can.

sometimes seem to be unrelated. The use of reinforcement learning can cover

aspects such as process control to higher cognitive action processes and even

emotional states of animal psychology. The broad range of examples available

that use reinforcement learning means that reinforcement learning is not a spe-

cialisation in any one area of research. Recently a lot of work in diverse fields

have now been bridged by reinforcement learning.

In the following examples a trend from simple single learning agents towards

more complex distributed network or hierarchy of learning agents is evident and
seems to be the way future reinforcement learning control is heading.

1.4.1 Applications of Learning Automata

Being the earliest reinforcement learning method, the learning automaton
has been applied to a wide range of control problems. The original reason
by Tsetlin for developing the learning automaton was in order to solve the n-
armed bandit problem [161 [171. The number of learning systems applications
has also increased with the advent of highly integrated computers which makes
technology cost-effective. Applications vary from the simple maze problems in

which a 'Mouse' learns to find the 'cheese' situated in the maze to playing com-

plex sequential two player games, such as chess. Narendra and Thathachar

REINFORCEMENT LEARNING K. H. Chan

1.4 Applications of Learning Methodologies 15

[171 provides extensive theory for using learning automata to game playing

complex sequen tial games either using single learning automaton or intercon-

nected learning automata and even developing the theory to include games

with N-players, where N> 2. It is also interesting to note that Narendra and

Thathachar [17] mentions potential applications regarding information routing
in networks, priority assignment in a queuing system (similar to task schedul-

ing) and image compression.

When the number of actions increases, the behaviour of a single automaton

will be slow. This problem can be avoided by using a hierarchical structure of

automata [51, [271, [28]. In this structure, the automaton contained in the first

level of the hierarchy selects randomly an action which activates an automaton
in the second level of the hierarchical structure of automata. In turn, this

automaton selects randomly an action and activates an automaton in the third

level of the hierarchy. This procedure is repeated until the activated automaton
in the last level of the hierarchy selects randomly an action which corresponds

to the output of the hierarchical structure of automata (environment input).

NVu and Pugh [281 [291 used a team of learning automata in order to learn

the optimal controller parameters of a PID controller in order to generate power

efficiently from a synchronous turbo-generator in a single machine infinite bus-

bar power system. Frost et al [30] used a set of continuous learning automata
to control a vehicles roll dynamics with semi-active suspension. Hobday, NVu

and Gordon [311 used learning automata to optimise a fuzzy logic controller in

a multi-arm robot manipulation task, the automata would learn to co-ordinate
the efforts of each arm when performing a particular task. Barto and Anan-

dan [6] used stochastic learning automata with the associative reward-penalty
(AR-P) update scheme in order to compare existing supervised learning pat-
tern recognition methods against learning automata methods. Work related to

pattern recognition was also studied by Thathachar and Sastry [27] in which a
team of mutually cooperating learning automata perform a probabilistic search

REINFORCEMENT LEARNING K. H. Chan

1.4 Applications of Learning Methodologies 16

through the space of unknown pattern classes in order to learn an optimal clas-

sifier. Gullapalli [321 compares discrete action space problems and problems

requiring continuous action space problems using a multi-linked robot arm for

the evaluation of successful control. Li et al use interconnected learning au-

tomata to coordinate and control a multi-machine power system using dynamic

quadrature boosters to enhance the stability of electric power generated.
Apart from direct applications of learning automata, other uses for the

learning automata is in the form of synthesising neural networks by Najim,

Chtourou and Thibault [331. Instead of the more common use of learning au-

tomata for optimisation of control processes Najim, Chtourou and Thibault

apply stochastic learning automata with variable structures to solve the opti-

misation problem associated with the estimation of neural network parameters.

1.4.2 Applications of Dynamic Programming

The model dependence of dynamic programming makes it difficult to apply
to stochastic control systems which are the main applications for other rein-
forcement learning. Not including IDP methods such as Q-learning and TD(A)

learning which were developed to overcome the model dependence of classical
DP methods and are therefore much more popular, it is rare to find practical

optimisation applications using DP.

1.4.3 Applications of Temporal Difference Learning i

Since the realisation of the limitations posed by DP, TD learning has be-

come a popular choice of reinforcement learning scheme for the solution of

many problems.
One early application to TD learning was to test it on the inverted pendu-

lum problem, Barto Sutton and Anderson [341 used TD learning to successfully
keep a simulated inverted pendulum from falling over, while an actual mechan-

REINFORCEMENT LEARNING K. H. Chan

1.4 Applications of Learning Methodologies 17

ical test rig was built by Jervis and Fallside [351 to evaluate TD learning's

control performance. Of all applications one of the most well known using

TD learning is Tesauro's TD-Gammon player (1992) for Backgammon [161 [361

and possible the first ever application of TD learning by Samuel (1959) in his

celebrated checker (draughts) playing programming [3] [161. Both these game

playing examples use TD learning to learn optimal game positions by learning

through self play and observing the consequences. Game playing is a popular

evaluation and comparison method for reinforcement learning techniques, Yee

et al [37] used the game of tic-tac-toe (noughts and crosses) to test a TD learn-

ing agent's ability to identify and define concepts that improve its performance

in performing tasks in general.
Barto, Sutton and Watkins [381 apply TD learning to solve a route-planning

problem in which from any arbitrary start position in the environment the TD

learning agent seeks to find the most optimum path to reach a goal state

while learning to avoid obstacles in the environment. The classic mountain-car

problem was solved using TD learning by Sutton [391, while Tham and Prager

[40] worked on applying TD learning to control a multi-linked robot arm for

manipulating objects in an environment with obstacles.

Lin and Kan [411 implement a fuzzy command acquisition network for

speech recognition using TD reinforcement learning to update the fuzzy weights
in a fuzzy predictor whose task is to learn by translating verbal commands into

the desired actions. Boyan [421 also discusses how TD learning is used to train

a neural network for phoneme recognition in speech.
From single agent learning applications to multi-agent learning, Crites and

Barto considered the problem of optimising elevator performance in a tall office
building [431. The simulated system consisted of a building with 10 levels and 4

elevators, each with a capacity to hold 20 passengers. Singh and Bertsekas [441

looked into channel allocation in cellular telephone systems using TD learning

to maximise services in the dynamic network. Both of these stochastic dynamic

REINFORCEMENT LEARNING K. H. Chan

1.4 Applications of Learning Methodologies 18

optimisation problems demonstrate the versatility of reinforcement learning in

large-scale systems and the type of problem that they are suitable for solving.

1.4.4 Applications of Q-Learning

Q-learning and its derivatives have commonly been used in robot navigation

tasks, often obstacle course or maze environments are designed to test the

"robotic learning agent". Rummery [23] compared Q-learning, Sarsa and Q(A)

by implementing a multi-layer perceptron neural network and using each Q-

learning method as an update rule for the weights in the neural network in

order to learn and navigate an obstacle course. Those findings show that Sarsa

was the most successful in producing the most number of robotic agents that

completed the task as well as having the quickest convergence times. Robot

navigation tasks were also studied by Koenig and Simmons [451 in which the

shortest path in a maze problem with the added complexity of one way paths
being introduced in the environment. Of the classic test problems in machine
learning Q-learning has been tried on the n-armed bandit problem by Duff [46],

while Jervis [471 applied Q-learning to the inverted pendulum problem. Sutton

and Singh [481 [161 used Sarsa to try and solve the mountain-car problem in

which a car is in the valley between two mountains but does not have sufficient

power to directly drive up a forward facing mountain side but must learn to

gain momentum by reversing (i. e. choose a less optimal action) in order to

eventually drive up the mountain side.
Examples of practical applications with relevance to engineering found in

the literature exist. Tharn and Prager use Q-learning to decompose the task

of a robotic manipulator arm with "Q-modules" built from Cerebellar Model
Articulation Controllers (CMACs) [491. Each Q-module is in charge of the

position of a part of the whole robotic arm, for a two link flexible arm with
manipulator three Q-modules are required, one for position of the upper arm,

REINFORCEMENT LEARNING K. H. Chan

1.4 Applications of Learning Methodologies 19

one for position of the forearm and one for position of the hand (manipulator) -
The problem to be solved was to position the manipulator in order to perform

a task such as pick up an object while learning to avoid various objects placed

in certain parts of the environment. Clausen and Wechsler developed Quad Q-

Learning and applied it to image compression. Quad-Q-learning is a method

that is suitable for problems that can be solved by dividing the problem state

space into smaller more easily solvable sub-problems, Clausen and Wechsler use

the term "divide and conquer" [501. Finally Boyan and Littman use a modified
form of Q-learning labelled Q-routing to generate efficient packet routing in

a dynamically changing communication network, in which a simple 36 node
irregularly connected network was simulated. The principle feature being that

each node only uses local information provided by its immediate neighbour in

order to make optimal actions when passing on packets of data. Although this

problem is similar to a robot navigation task, sometimes the optimal route

a data packet takes will not always be based on the shortest route and is

more often based on the quickest time which may be a longer route. Piater

[51] recognised a similar application for route planning based on traffic light

control in a road junction, where an action by the learning agent is to set the

traffic lights to a certain combination of settings. the learning agent tries to

reduce delays waiting at traffic lights and improve traffic flow in general.

1.4.5 Applications of W-Learning

Humphrys developed and applied W-learning to solve the ant-world problem
[261. Almost all previous work that use multiple reinforcement learning agents
in teams or hierarchies have concentrated on the co-operation between each
learning agent in the team or hierarchy. Humphrys's approach was to think of
the complete learning agent as a series of competing tasks, such that for the ant-
world problem, the body of the learning agent or 'ant' consists of a number

REINFORCEMENT LEARNING K. H. Chan

1.5 Learning Control of Large-Scale Systems 20

of competing priorities such as seek food, find shelter and avoid predators

while it moves in its environment. A similar proposition by Humphrys was to

have a 'robot dog' mainly to detect intruders in a house but also have other

priorities, such as fire detection vacuuming the room, re-charge its batteries,

empty the vacuum bag when the need arises or priorities change. Many real and
interesting systems in life posses multiple parallel and conflicting goals, among

which the attention of the learning agent as a whole must constantly switch,

this is the action-s election problem that the agent must face. W-learning is an
interesting phase in reinforcement learning and seeks to approach a problem
from another perspective only time will tell if it becomes as popular as the

better established TD and Q-learning.

1.5 Learning Control of Large-Scale Systems

The concept of distributed learning and learning embedded in systems of
interaction is a relatively new development with great promise. With emphasis

on the construction of information through multi-agent interactions, a system
interaction approach of learning offers a shift in perspective, from an emphasis

on the content of learning to the emergent process of learning. Multi-agent

learning becomes something accomplished with others rather than alone and

the structure of role relationships between agents and environments which sus-
tains learning should be carefully examined.

Reinforcement learning algorithms, such as the Sutton's Temporal Differ-

ence (TD) [31 were inspired and motivated by animal learning behaviour and
classical conditioning [221. Subsequently the TD algorithm proved highly suc-
cessful in game theoretic examples such as playing Chess and Backgammon.
Later TD methods also proved useful in solving prediction and control prob-
lems, balancing the inverted pendulum being an early example [341. Now
TD methods and the other incremental dynamic programming schemes [521

REINFORCEMENT LEARNING K. H. Chan

1.5 Learning Control of Large-Scale Systems 21

are emerging as useful tools for prediction and control of general adaptive

real-time systems or stochastic systems using embedded learning agents. Re-

searchers have customarily focused their attention on upon asymptotic learn-

ing of maximally-efficient strategies, and not on the optimal learning of these

strategies [461, but as will be seen most learning agents can still effectively

solve problems without having to learn a completely optimal strategy for most

cases.

According to Duff, the most successful applications have been to large,

complex problems for which the computational effort required by traditional

engineering methods would be unduly burdensome and perhaps unjustified,

given that in many cases only approximate models of the underlying systems

are known [461. With this remark we can take the case of large, complex prob-
lems to include large-scale systems such as distributed power system networks

and use reinforcement learning to optimise the efficiency of such a system.

1.5.1 Connectionist Systems

Boyan [421 defines connectionism as

The study of computational models inspired by models of the brain

and links connectionism to artificial intelligence (Al), machine learning (ML)

and statistical pattern recognition (SPR). There is growing interest in the ar-
tificial intelligence community for simulated or artificial neural networks. The

main reason for this is to avoid the limitations of conventional serial sym-
bolic processing by investigating parallel systems, such as artificial neural net-
works and teams of interconnected learning automata. Since the permanent
knowledge in such systems is stored in the weights associated with the connec-
tions rather than in memory cells, such architectures were called connectionist
systems. The connectionist system adapts to control problems by having its

weights changed to improve some performance criterion. The changing of the

REINFORCEMENT LEARNING K. H. Chan

(

1.5 Learning Control of Large-Scale Systems 22

weights is governed by the learning method or algorithm to achieve an optimal
(or suboptimal) performance in the controller.

The use of learning algorithms and connectionist systems have been suc-

cessfully applied to areas such as

* Modelling

* System Identification

* Prediction

e Pattern Classification/ Recognition

e Adaptive Control

1.5.2 Large-Scale Systems

Two classic applications of the TD algorithm have been Samuel's Draughts

player [31 and Tesauro's Backgammon player [241, both used a TD algorithm to

update a neural network to learn the corresponding game through competitive

play. Recently the TD learning methods and the closely related Q-learning

algorithm (by Watkins [241) have emerged as useful methods in solving real

engineering problems. Early work with TD learning for practical problem solv-
ing and control tasks began with route planning and navigation for simulated
robotic agents in maze solving problems. The usefulness of TD reinforcement
learning for optimising control performance in general has led to increasing re-

search into TD learning for the intelligent control of distributed systems, such
as multi-arm robots; channel allocation in cellular phone systems [441; packet
routing in information networks [531 and improving elevator performance in
large office buildings [431.

What contributes to a large-scale system? Since no formal definition has
been found in the literature and relating to the applications investigated so

REINFORCEMENT LEARNING K. H. Chan

1.5 Learning Control of Large-Scale Systems 23

far, a convenient description would be to imply any system containing enough

uncertainty as to be impractical to be solved using conventional or classical

methods used so far in learning or adaptive control in engineering. Hence the

current need for intelligent learning and control in some form embodied by a

learning agent, such as the learning automata or neural network in order to

make good control decisions when faced with uncertainty.

From previous examples such as efficient information routing in networks

and improving elevator performance in large office buildings, it is apparent that

in order to make a realistic model for a learning agent to learn all the possible

states and optimal actions would become a next to impossible task requiring

unrealistic amounts of processing power. Reinforcement learning methods pro-

vide a more elegant approach to solving the uncertainty problem and doesn't

require a model either complete or partial in order to learn and make good

control decisions. The added benefit with a model free learning system is that

the learning agents are not limited by an often approximated model and can be

easily retrained if changes occur frequently such as for different fault. conditions
in large-scale power systems.

Further expanding upon the practical applications the use of TD and in

particular multi-agent learning for power system control has been investigated

in this research.

1.5.3 Learning Control

The fundamental basis of all reinforcement learning involves interaction be-

tween the learning agent and its environment 131. The role of the environment
is like that of a teacher or guide and the interaction between learner and teacher
can be described as experience. In the case of power system control, the accu-

mulated experience is used to make better control decisions by learning what
are good and what are bad actions to take for any state or given situation in

REINFORCEMENT LEARNING K. H. Chan

1.5 Learning Control of Large-Scale Systems 24

that environment. Eventually this will lead to improved control decisions and

power system performance based on an optimal parameterised controller, such

as the popular Proportional Integral and Differential PID controller or Fuzzy

Logic Controller FLC. By using temporal difference reinforcement learning [3]

it is possible to continuously learn and update these parameterised controllers

making this multi-agent learning method suitable for on-line parameter opti-

misation.

TD learning originally developed by Sutton [3] is based on conventional

dynamic programming methods and the Widrow-Hoff rule for neural network
learning [3,34]. One of the most important aspects of learning is that of

assigning credit. In reinforcement learning the reinforcement feedback signal

r(t) gives an immediate (or short term) indication of how good or bad the

decision was for a particular state. However this is insufficient in many real

problems and the long term values of each state must be estimated or known

for efficient prediction and/or control, that is the credit assignment problem.

Unlike most prediction and learning methods in which credit is assigned by

means of the difference between predicted and actual outcomes, the TD method

assigns credit by using the difference between temporal successive predictions.
The TD method also has the advantage of incremental learning and unlike

conventional dynamic programming it does not need to finish a long sequence of

actions before updating it's knowledge base, but can learn new knowledge after
successive predictions, this also reduces the overall computation and memory
requirements for learning.

In the proceeding chapters two important reinforcement learning meth-

ods will be described in detail, the learning automata and temporal difference

learning. Both are studied and used for intelligent control of large-scale power

systems, various single agent and multi-agent learning architectures have been

employed. The learning automaton is a direct development from psychology
and is one of the earliest reinforcement learning methods to be formulated.

REINFORCEMENT LEARNING K. H. Chan

1.6 Contribution of the Thesis 25

Thus it contrasts with TD learning which is a relatively new development in

the history of reinforcement learning.

1.5.4 Power System Problem Formulation

The application of multi-agent reinforcement learning is explored for the

control of large-scale power systems. This involves the application of reinforce-

ment learning such as temporal difference learning to optimise a controller such

as a fuzzy logic controller in a distributed power system. Ultimately a three

machine power system has been simulated to evaluate the dynamic perfor-

mance of the generators as well as observing the multi-agent learning control

performance. Initial preliminary studies were performed using a single gener-

ator to a single load connected by a single transmission line. This basic power

system is also known as a Single Machine Infinite Busbar (SMIB) system. The

SMIB was later expanded in stages to the final multi-machine multi-agent re-
inforcement learning control system. In all cases the synchronous generator
outputs such as the terminal voltage or speed deviation were optimised to pro-

vide good damping characteristics over a wide range of operating conditions.
Complete details of the synchronous generators and power distribution network

are described later in the relevant chapters.

1.6 Contribution of the Thesis

A review of the literature regarding reinforcement learning has been under-
taken, mainly to study the methods and applications undertaken by previous
research. The viability of using reinforcement learning to distributed large-

scale systems, in particular the power syste , rn network optimisation problem
was proposed and presented to apply multi-agent reinforcement learning. Ini-

tial tests used a 3rd order dynamic system to validate the TD learning and

REINFORCEMENT LEARNING K. H. Chan

1.6 Contribution of the Thesis 26

learning automata methods for optimising control.
Research then continued using learning automata and a single machine infi-

nite busbar system (SMIB) but as work progressed and more literature became

available it was understood that developments in TD learning would provide a
better opportunity for applying distributed multi-agent reinforcement learning.

Also the use of adaptive heuristic critics (AHCs) as neuron-like learning ele-

ments, the TD learning neural network was developed to solve the multi-agent

reinforcement learning problem.
Reinforcement learning provided a means of automatic and continuous

learning of control parameters in conventional parameterised controllers such

as the PID or fuzzy logic controller. This also made it suitable for on-line
learning control of the power system network. The final evaluation resulted in

using TD learning control of PID control followed by similar experiments with

a fuzzy logic control in a multi-machine power system, both were investigated

and implemented in simulation studies.
It has been demonstrated using computer simulations that each temporal

difference reinforcement learning can learn to solve global optimisation prob-
lems using only local information and without directly communicating knowl-

edge between agents but use the global reinforcement feedback signal r(t)as
a guide to optimising the global problem. Each learning agent is in effect an
autonomous intelligent system and by placing these autonomous intelligent sys-
tems at strategic points in the problem environment, the de-centralised nature
of learning also provides a certain amount of redundancy in the learning con-
trol problem. Finally some of the practical aspects of reinforcement learning

are also discussed.

REINFORCEMENT LEARNING K. H. Chan

Chapter 2

The Learning Automata

Early reinforcement learning ideas originated from interest by psychologists

in animal behaviour. Later this was developed into the learning automaton by

Tsetlin [16'1 [17] to solve the n-armed bandit problem, the learning automaton

observed the system states and used a feedback reward signal r(t) to evaluate
the observed states in order to update a policy based on a probability measure
for improving future actions.

Essentially the learning automaton, comprises a decision maker (the au-

tomaton) and an environment (the system or plant to be controlled/optimised),
these are connected in the classic feedback configuration shown in Figure 2.1.
The automaton has a finite number of actions and corresponding to each action,
the response of the environment can be either favourable or unfavourable with
a certain probability. Using the theory of Markov processes the asymptotic
behaviour of the automaton can be established.

The objective in the design of the automaton is to determine how the choice
of the action at any stage should be guided by past actions and responses. The
important point is that the decisions must be made with little knowledge of the
environment. The environment may have time varying characteristics, or the
decision maker may be part of a hierarchical decision structure but unaware

27

2.1 The Environment 28

of its precise role in the hierarchy. Alternatively, the uncertainty is due to the

fact that the output of the environment is influenced by the actions of other

agents unknown to the decision maker. In all cases the automaton must be

designed to improve some overall performance function. Both deterministic

and stochastic rules for choosing the action at any stage are of interest. In the

latter case the automaton updates the probabilities of the various actions on

the basis of the information received.

2.1 The Environment

A learning automaton system is a sequential machine characterised by a

set of internal states, a set of input actions, a state probability distribution, a

reinforcement scheme and an output function. These aspects will be described

with the aid of Figure 2.1.

Figure 2.1: The learning automaton.

REINFORCEMENT LEARNING K. H. Chan

2.1 The Environment 29

The environment represents the system which communicates with the learn-

ing system and supplies it with information. In the context of automatic con-

trol, the environment corresponds to the process to be controlled. In optimi-

sation terms the environment represents the realisation of the function to be

optimised. The environment is said to be stationary if the penalty probabili-

ties are not dependent on the time, otherwise it is said to be nonstationary, for

example periodic, slowly varying or random. The environment can be defined

mathematically by the triple jq, g, P }.

1- a; -- 101102)
.... a, } represents a finite input set of actions.

2. c= Icl, c2, ..., c, } represents a set of penalty probabilities for indicating

the value of the input actions a= jal, a2, a, j

3.0 = 101,02} = 10,1} represents a binary output set of feedback rewards
for the automaton

Each element of ci of c corresponds to one input action ai The input a(n)

to the environment belongs to a and may be considered to be applied to the

environment in discrete time steps n where n=0,1,2,.... The output P(n) of

the environment belongs to 0 and can take on one of two values 01 and 02.

For mathematical convenience 01 and 02 are chosen to be 0 and 1 respectively.
An output P(n) =1 is identified with a failure (unfavourable response) and
O(n) =0 with a success (favourable response). The element ci of -c which
characterises the environment is given by

Pr(P(n) = 1/a(n) = ai) = ci (i = 1,2,..., r) (2.1.1)

Consequently, ci represents the probability that the application of an action ai
to the environment will result in a penalty Output-

ýhe
output set of the environment has thus far been assumed to be binary

for simplicity. In some real physical environments this may be unrealistic

REINFORCEMENT LEARNING K. H. Chan

2.2 The Automaton 30

and hence the output set will need modifying. Models in which the output

can take only one of two values, 0 or 1 for example, are referred to as P-

models. An arbitrary threshold may be necessary to convert the actual outputs

of the system into binary outputs, thereby discriminating between favourable

and unfavourable responses of the environment to a given action. A further

generalisation of the environment allows finite output sets with more than

two elements to take discrete values in the interval [0,11. This is achieved by

the normalisation and quantisation of the performance index, such models are

referred to as Q-models. When the output of the environment is a continuous

random variable which assumes values in the interval [0,11, it is referred to as

an S-model. Q- and S-models provide improved discrimination of the nature

of the response of the environment to a given action and hence are of greater

practical utility. However the concepts developed here have concentrated on

using the P-model environment for simplicity, the same concepts can easily be

extended to the Q- and S-model.

2.2 The Automaton

The learning automaton collects data from the environment and processes
it to achieve a desired goal. They perform a kind of mapping between the in-

puts and outputs of the random environment where they operate. They can be

compared to adaptive systems, in which the behaviour of the system is slightly
improved at every time by estimating in real time the parameters of the plant
model or controller to attain a specified goal. In a learning automata, the

probability distribution is adjusted using a reinforcement scheme (an adapta-
tion mechanism which is at the heart of a learning automaton) to achieve the
desired objective.

The automaton can be described mathematically by the quintuple 10, ft,
G }, note that the output of the environment is also the input of the automa-

REINFORCEMENT LEARNING K. H. Chan

2.2 The Automaton 31

ton, similarly the output of the automaton is the input to the environment,

see Figure 2.1.

1. The state of the automaton at any instant n, denoted by O(n) is an

element of the finite set 0= {01,02,..., 0, }

2. The output or action of an automaton at the instant n, denoted by a(n),

is an element of the finite set a= Jab a2, I Or}

3. The input of an automaton at the instant n, denoted by P(n), is an

element of a set 0. This set could be either a finite set or an infinite

set, such as an interval on the real line. Thus 8 or
2= I(a, b)}

4. The trunsition function F(. .)determines the state at the instant (n+ 1)

in terms of the state and input at the instant n, 0(n+l) =. F[O(n), #(n)],

or. F(. .) is a mapping from 0 x, 3 -+ 0 and could be either deterministic

or stochastic

The output function 9(.) determines the output of the automaton at any
instant n in terms of the state at that instant, a(n) = G[O(n)], or G(.)
is a mapping 0 -+ a and is again either deterministic or stochastic.

Basically, the automaton takes in a sequence of inputs and puts out a se-

quence of actions. The working of the automaton as the observation time n
successively takes values over the set of nonnegative integers 0,1,2,... can be

conceived as follows. Given initial state 0(0), the action Q(O) is defined by! P(.).

With the knowledge #(0) of the input and the transition function F(. .) the

next state 0(l) is determined. When these operations are performed recur-
sivelY, the state sequence and the action sequence are obtained for any given
input sequence. Note that the state and the action at any instant n depend

on only the state and input at the previous instant n-1 and not on other

REINFORCEMENT LEARNING K. H. Chan

2.3 The Stochastic Automaton 32

I-

past states or inputs. Knowledge of the environment is therefore not essential

to learning, making the learning automaton a very powerful engineering tool.

The main limiting factor is the time required by the automaton to learn, this

may limit the kind of applications that are suitable for the learning automaton,

assuming of course that the convergence to the desired goal exists.

The automaton is called a deterministic automaton if F(. .) and 9(.)

are both deterministic mappings. In such a case, for any given initial state

and input the succeeding state and action are uniquely specified. If F(. .) or

9(.) is stochastic, the automaton is called a stochastic automaton. In this case

there is, in general, no certainty concerning the states and action that follow

a given initial state and input sequence; one can only consider probabilities

associated with successive states and actions.

2.3 The Stochastic Automaton

At present a lot of research is interested in systems with much uncertainty,
this was a result of systems becoming more and more complex as technology

advanced. New approaches to control engineering problems were needed, the

stochastic learning automaton being one of them.
Consider a stochastic automaton in which at least one of the two mappings

T and 9 is stochastic. If the transition function Y is stochastic, given the

present state and input, the next state is random and Y gives tile probabilities

of reaching the various states. Thus F can be specified in terms of the condi-
tional probability matrices F(01), F(02),..., F(O,,) where each F(O) for 0E0
is an sxs matrix associated with an input symbol P and whose entries are
given by

Pr{O(n + 1) = oj I O(n) = Oi, P(n) = P}

i=1,2,..., s j=1,2,..., S J3=01)02i---7flm

REINFORCEMENT LEARNING K. H. Chan

2.3 The Stochastic Automaton 33

Thus fjoj represents the probability that the automaton moves from state Oi

to state Oj following an input P. For the P-model case 3= 10,1} is a binary

output from the environment regarding a favourable response or unfavourable

response.

The stochastic mapping 9 can be similarly represented by a conditional

probability matrix G of dimension sxr whose entries are given by

gij = Prja(n) = aj I O(n) = oi}

i=1,2,..., s j=1,2,..., r (2.3.2)

Hence, gij denotes the probability that the state Oi corresponds to action aj.
Since fjoj and gij are probabilities, they lie in the closed interval [0,11. Fur-

tj tj
ther, starting from an initial state Oj, the automaton necessarily has to go to

one of the s states at the next instant. Hence, to conserve probability measure

we have

t
fi0ji for each 0E0 and i (2.3.3)

j=1
Similarly,

r 1: gij =1 for each i (2.3.4)
j=1

The equations imply that the sum of row entries in each of the matrices is

unity or the matrices F and G are stochastic

2.3.1 Fixed Structure and Variable Structure Automata

If the conditional probabilities fij and gij are constant i. e. , independent

of n and the input sequence, then such a stochastic automaton is said to be

a fixed-structure stochastic automaton. Sometimes it is necessary or useful to

update the transition probabilities fij at each n on the basis of the input at
that instant. In this case, the automaton is called a variable-structure stochastic
automaton.

REINFORCEMENT LEARNING K. H. Chan

2.4 Variable Structure Stochastic Automata 34

The main characteristics of the automata can be summarised as follows

* For a deterministic automaton, the transition matrices F(P) consist of

elements that are only 0 or 1

* For a fixed-structure stochastic automaton, the elements of F(O) are

constants taking values in the interval [0,11 and each F(P) is a stochastic

matrix

* In the case of a variable-structure stochastic automaton, the elements of
F(O) are in [0,11 but are no longer constants as they are updated with

n.

2.4 Variable Structure Stochastic Automata

The theory of Markov processes forms the principle vehicle for the study of
variable-structure automata. To define a general Markov Chain, it is convenient
to introduce a transition probability or stochastic matrix which contains the

probabilities of transition between successive states p= jpjj} with i, j varying

over a finite (or countable) state space such that

1- pij 'Et 0 for all i,

Epij =1 for all i
jes

2.4.1 Reinforcement Schemes

In general terms a reinforcement scheme can be represented either by

p(n + 1) = T[p(n), a(n), #(n)] (2.4.1)

or by

0 fi'j(n + 1) = T'[fý(n), O(n), O(n+ 1), O(n)] (2.4.2) tj

REINFORCEMENT LEARNING K. H. Chan

2.4 Variable Structure Stochastic Automata 35

where T and T' are mapping functions.

Reinforcement schemes are generally classified on the basis of

1. the asymptotic behaviour of a learning using the scheme e. g. , expedient,

c-optimal or optimal, or

2. the nature of the mapping T or T' e. g. , linear, nonlinear or hybrid, or

3. the properties of the Markov process describing the learning automaton

e. g. , ergodic or non-ergodic.

If p(n + 1) is a linear function of p(n), the reinforcement scheme is linear,

otherwise it is nonlinear. Sometimes, two or more schemes are combined to

form a hybrid scheme.
The aim of such a scheme is to realise the advantages (in a practical sense)

of the constituent schemes, for example, speed of convergence or variance. The

particular constituent scheme to be used at any moment could then be deter-

mined by the value of p(n). Similar remarks hold for the transition probabilities

given by rol (n + 1). fij

The basic idea behind a reinforcement scheme is rather simple. If the

automaton selects an action ai at instant n and a favourable input e. g. (P(n) =
0) results, the action probability pi (n) is increased and all the other components

of p(n) are decreased. For an unfavourable input (O(n) = 1), pi(n) is deceased

and all the other components are increased. These changes in pi(n) are known

as reward and penalty respectively. Occasionally, the action probabilities may
be retained at their previous values and in such a case this is known as inaction.

The same idea can be used to update the transition probabilities. If O(n) =
Oj, 0 (n + 1) = Oj and 0 (n) = 0, fý, (n) is increased when 0=0 and decreased

when 0=1. To preserve the stochastic nature of the transition matrix, the

other elements of the 0 row must be changed in the opposite fashion. The rest
of the transition probabilities are maintained at the original values. The precise

REINFORCEMENT LEARNING K. H. Chan

2.5 The General Reinforcement Scheme 36

manner in which the p(n) is changed depending on the action ai performed

at stage n and the response O(n) of the environment, completely defines the

reinforcement scheme.

2.5 The General Reinforcement Scheme

2.5.1 Action Probabilities

A general scheme for updating action probabilities can be represented as
follows. If

a(n) = ai (i = 1,2, ...,

pj(n + 1) = pj(n) - gj[p(n)] when P(n) =0

pj(n+l)=pj(n)+hj[p(n)] when 0(n)=l

r
for all j :Ai. For preservation of the probability measure we require E pj (n)

j=1
1 so that

r
pi (n + pi (n) + 1: gj (p(n)) when P (n) =0

r
pi(n + pi(n) -E hj(p(n)) when P(n) =1 (2.5.2)

j=l, ji4i
For this to hold true the following assumptions are made regarding the func-

tions gj and hj with j == 1,2,..., r.

Assumption 1 gj and hj are continuous functions

Assumption 2 gj and hj are nonnegative functions

Assumption 30< gj (p) < pj and 0< [pj + hj (p)] <1
r

for all i=1,2, r and all p whose elements are all in the open interval (0,1).
for all i=1,2, r and all p whose elements are all in the open interval (0,1).

REINFORCEMENT LEARNING K. H. Chan

2.5 The General Reinforcement Scheme 37

The updating scheme is given at every instant separately for that action

which is attempted at stage n (i. e. , action aj) in equation (2.5.2), and sep-

arately for all those actions that are not attempted (i. e. , actions aj, j 0 i)

in equation (2.5.1). While the action that is performed is either rewarded or

penalised on the basis of the environment's response, it is not clear how the

probabilities of the other actions are to be changed. Hence, in the form stated,

the question of determining the updating scheme becomes one of determining

the functions gi and hi. It is further implied in equation (2.5.1) that as long

as j0i, the functions gi and hi are independent of the particular ai chosen.
The continuity assumption on gi and hi is one of mathematical convenience.

The fact that both gi and hi are nonnegative maintains the reward and penalty

nature of the updating. Assumption 3 ensures that all the components of

p(n + 1) remain in (0,1) when those of p(n) are in the same open interval.

Strict inequality is imposed in equation (2.5.3) so that p(n + 1) 0 p(n) when

all the components of p(n) are in the open interval (0,1).

2.5.2 Transition Probabilities

A general reinforcement scheme, in which the transition probabilities rather
than the action probabilities are updated, has the following form. If

O(n) = Oi, O(n + 1) = oj

, A(n+l) fjok(n) f 'R ik gik[FO(n)]

filk(n+l) filk(n)+hik[Fl(n)]

for all k=1,2,..., sk :Aj. Further

,
(n + (n) AP ij

(n +

gik[FO(n)]
k=l, k? 4-j

hik[Fl(n))
k=l, kOj

when 0(n) =0

when P(n) =1 (2.5.3)

when P(n) =0

when 0(n) =1 (2.5.4)

REINFORCEMENT LEARNING K. H. Chan

2.6 Linear Reward-Penalty (LR-p) Scheme 38

and for all u: ý- i and/or 6(n) 0p

f 1,3 (n + (n)
v

(2.5.5)

In this algorithm, gik(.) and hik(.) are nonnegative continuous functions map-

ping sxs stochastic matrices into R[O, 11. It is also clear that the algorithm

updates only the i1h row elements of the state transition matrix associated with

P(n) and that the remaining transition probabilities are maintained at their

previous values. As in the case of action probabilities, the functions gik(.) and

hik(-) satisfy subsidiary conditions to assure that all the transition probabilities

remain in the interval (0,1).

2.6 Linear Reward-Penalty (LR-P) Scheme

The linear reward-penalty scheme is perhaps the earliest scheme considered
in mathematical psychology (Bush and Mosteller, 1958 [171). The properties of

this scheme have been studied in detail by a number of research workers in this

field (Fu and McLaren, 1965; Fu and McMurtry, 1966; Chandrasekaran and
Shen, 1968; Viswanathan and Narendra, 1972; Norman, 1972; Lakshmivarahan

and Thathachar, 1973 [171).

Consider a learning automaton with two actions (reward and penalty in

this case) and let

gj(p(n)) = apj(n)

hj (p (n)) =b (1 - pj (2.6.1)

where a and b are reward and penalty parameters with 0<a<1,0 <- <b<1-
Substituting equation (2.6.1) in equations (2.5.1) and (2.5.2) the updating

algorithm can be written as

pi(n+l)=pl+a(l-pl(n)) a(n)=al, o(n)=O

REINFORCEMENT LEARNING K. H. Chan

2.6 Linear Reward-Penalty (LR-P) Scheme 39

p, (n + (1 - b)pl (n) a(n) = a,, P(n) =1

p, (n + (1 - a)pl (n) a(n) = a2, P(n) =0

pl(n + 1) pi + b(l - pi(n)) a(n) = a2,, 3(n) =1 (2.6.2)

equation (2.6.2) is referred to as the general LR-P updating algorithm. From

this equation it follows that if action ai is attempted at stage n, the probability

pj (n) (j :A i) is decreased at stage n+1 by an amount proportional to its value

at stage n for a favourable response and increased by an amount proportional

to [1 - pj(n)] for an unfavourable response.
The specific case when a=b is called the linear reward-penalty scheme

(LR-p) and results in symmetric equations. From equation (2.6.2) it is seen

that the effect on the probability action a, is the same whether a, is performed

and results in a favourable (unfavourable) response or a2 is performed and

results in unfavourable (favourable) response.

0

REINFORCEMENT LEARNING K. H. Chan

Chapter 3

Reinforcement Learning

3.1 Introduction

Reinforcement learning has been defined by Haykin as [41

the on-line learning of an input-output mapping through a process
of trial and error designed to maximise a scalar performance index
called a reinforcement signal.

Kaelbling, Littman and Moore [211, produced a survey on reinforcement learn-

ing. The survey describes many more specific reinforcement learning methods

and deals with many of the problems encountered when applying reinforce-

ment learning. It gives a scope of how reinforcement learning methods have

developed by necessity and interest, such as the dynamic programming, learn-

ing automata, value iteration, policy iteration, IV-learning, Q-learning, and

Temporal difference (A).

In this research the main interest is in the learning automata and incre-

mental dynamic programming (or dynamic programming-based reinforcement
learning). Bradtke [13] uses the term incremental dynamic programming (IDP)

to distinguish them from traditional dynamic programming (DP) algorithms.
IDP algorithms attempt to find a globally optimal solution by incrementally

40

3.1 Introduction 41

improving the local reinforcement payoff as experience is gained through inter-

action with the environment. The main advantage of using IDP algorithms over

traditional DP algorithms is that IDP methods are computationally cheaper
[3]. One of the most familiar IDP algorithms is Sutton's Temporal difference

(TD) algorithm [131, [241, [541, [31, [22], [551, [371. Samuel's draughts player
(1959) [31 is one the earliest applications to use the TD learning method.

It is a striking feature of the reinforcement learning solution that it can

achieve the effects of planning and lookahead without using a model of the

opponent (or environment) and without conducting an explicit search over

possible sequences of future states and actions [161.

The scope of reinforcement learning encompasses many schemes and learn-

ing algorithms [211. However the fundamental property of all these methods

can be explained by equation (3.1.1) [16] [4]. Where R(t) is the expected sum of

the immediate reinforcements r(t) discounted by gammat. The factor gamma'
is used to keep the expected value R(t) a finite value when a large or periodic

sequence of actions is used during learning. The fundamental principle being

to maximise R(t) when following a reward driven goal or minimising R(t) when
following a penalty driven goal or learning.

00
R(t) = EE -ytr (t)

t=O
Mainly due to its simple concept as a cognitive process by using trial and

error learning to acquire experience, reinforcement learning has attracted in-

terest from first psychology, then science, mathematics and now engineering
for its application in the intelligent control of complex systems.

Some fundamental aspects and other important points regarding reinforce-

ment learning will be highlighted in order to better explain the roles and pro-

cesses involved.

REINFORCEMENT LEARNING K. H. Chan

3.2 Variation, Selection and Retention 42

3.2 Variation, Selection and Retention

A few of the most important evolutionary processes for learning are varia-

tion, selection and retention. When the performance of a system fails to meet

targeted aspiration levels the problem driven search routines are triggered gen-

erating variation. These variations lead to further selection as the learning

agent seeks to gain a better understanding of the environment through explo-

ration.
Selection among variations in an adaptive learning perspective occurs when

the results of actions are compared to some preset aspiration levels. In keep-

ing within the scope of searching through the problem space a learning agent

should keep those variations that helped them reach their targets and try other

variations to replace those that failed. In short, successful actions tend to be

repeated and unsuccessful actions should provoke further search. The impor-

tance of selection in reinforcement learning is emphasised due to the way in

which a policy is built or learned as the agent evolves. Although the term

evolve used in this case is not biological evolution, there are a lot of similar-
ities, as tasks change and goals move, new selections are required while old

one become extinct until a stable equilibrium is found when the desired goal
is reached.

Retention mechanisms are critical for learning, for without a way to store
and retrieve routines or knowledge, learning agents gain nothing from expe-

rience. From an adaptive learning perspective, the results of the search are

stored in routines and performance programs that can be reused when needed.
Learning is then embodied in a set of interlocking role behaviours between
learning agent and environment, supported by internal state transitions, ac-
tion descriptions and external interactions.

REINFORCEMENT LEARNING K. H. Chan

3.2 Variation, Selection and Retention 43

3.2.1 Actions

Some actions in the learning agent are simple random variations, a method

often used to encourage exploration. Other actions are the result of repetition,

when it is best to repeat the same past action since no better alternative has

been learnt yet, some would treat repetition as just another action only if

the underlying rationale for repetition has also been learnt, arguing that only

intentional learning should count as real learning.

Most actions by learning agents are intendedly rational within the scope of

the task to be solved, but often they are denied complete rationality because of

limitations. In complex systems a learning agent is sometimes precluded from

making optimal choices by cognitive deficiencies and peculiarities, limits on

information availability, and constraints on information processing. Informa-

tion search costs (most often the cost is time) will lead most actions to choose

satisfactory, rather than optimal alternatives. Learning agents also act with

self interest at the expense of other learning agents, although the scheme and

multi-agent learning architecture used in this research there is no conflict of

interest when agents act selfishly.

3.2.2 Optimal Control

For a deterministic system containing no disturbances, given any closed-
loop policy and initial state, there exists an open-loop policy that produces
the exact system behaviour. However for a stochastic system, or a system with

unmodelled disturbances this cannot be true because the outcome of random

or unmodelled event cannot be anticipated in designing an open-loop policy.
Game-playing systems such as Tesauro's backgammon player [24], [541 and
Samuel's draughts player (1959) [31, always use closed-loop control for this

reason, with the opponent acting as a kind of disturbance. For tile same

reason closed-loop control is usually better than open-loop control for single

REINFORCEMENT LEARNING K. H. Chan

3.2 Variation, Selection and Retention 44

agent problems involving uncertainty.
The most familiar control objective is to control a system so that its output

matches some desired setpoint or tracks the setpoint trajectory as close as

possible when disturbances are present. In an optimal control problem, the

objective is to find the best trajectory within some function that controls the

systems behaviour. A typical optimal control problem is finding the minimum-

cost trajectory from an initial start state to some defining goal state. Thus

many optimal control problems are also related to problems involving heuristic

search algorithms (reinforcement learning).

3.2.3 Hidden States

The solution to optimal control problems requires the access of system state
information. Sometimes, the system state is not immediately apparent from

the information available. The problem of hidden state information has been

termed perceptual aliasing by researchers concerned with building autonomous

agents that learn through interaction with their environment [131, [56). Most

problem environments for autonomous learning agents can be modelled as a
Markov decision problem.

One solution to overcome the problem of hidden states has been developed

by McCallum [571. McCallum used a reinforcement learning approach, called
instance-based state identification and applied it to robot navigation and task

problems. The approach applies instance-based (or memory-based) learning to
history sequences, this history information uncovers the hidden state(s) using
state identification techniques.

3.2.4 Markov Decision Problems

Many problems of practical importance have been formulated as Markov
decision problems, and extensive treatment of the theory and application of

REINFORCEMENT LEARNING K. H. Chan

3.3 Properties of Reinforcement Learning 45

this framework can be found in many books [10]. Any problem that can be

cast as a Markov decision problem is theoretically solvable using reinforcement
learning. A Markov decision problem contains a set of states 0 which contain

a subset of start states S and a set of actions a. A reinforcement function R

and an action model A are required such that R(O, a) is the expected imme-

diate reinforcement for taking action a in state 0 and A(Oj I Oj, a) gives the

probability that executing action a in state Oi will lead to state Oj with i0j.

In order to be a Markov decision problem the choice of action must depend

only on the current state observation 0, if knowledge of prior actions or states

affects the current choice of action then the decision problem is not Markov.

One of the simplest and common examples to cast as a Markov decision

problem is that of a two-dimensional robot navigator. This is normally illus-

trated as a grid-world, with each grid element being a state. Some states are
freely accessible while others contain obstacles to limit the directions a robot

can take. The problem posed is that of finding the shortest path from an initial

start state to some goal state. The objective of the robot is to find the optimal

policy, this maximises a return or payoff, usually a scalar reinforcement signal.
The policy maps states to actions and the magnitude of the payoff received in

response to an action is inversely related to the cost of the path travelled (so

that maximising the total payoff will minimise the total path cost).

3.3 Properties of Reinforcement Learning

There are only two fundamental elements to a reinforcement learning sys-
tem, one is the learning agent itself, the other is the environment. The emphasis
on learning by trial and error with the environment acting as a teacher/guide
has been stated. Without the environment there wouldn't be any of the in-
teraction needed for the learning agent to learn. But there will always be

an environment since the point of the learning agent is to solve some task

REINFORCEMENT LEARNING K. H. Chan

3.3 Properties of'Reinforcenjent Learning 46

A c
r= 0 r= -1 r= -1

F

Figure 3.1: A simple three 1)
,v

three grid state space represciltiltioll 0110 ("1-
vii-ollillent) showill". the reinforcement I-eward f, edback signals and one goal
state

wit'llill the (, Ilx-ll. olllll(, Ilt. However, no explicit ktiowle(lge of the enviromm"It is

required. inaking reinforcement learning vol'Y flexible its Nvell its powel-1,111.

The learning apolit oll the Other hand is Illore Withill 0101V ; lný

folli. identifiable slib-cleillents NvIlich slittoll has identified that ; 11. (, to

all reinforcement learning [161. Those are

oA reward Function

0A vallic function

A poll C. %

0A of the onvii-ollillent (optional)

What it reinforcement learning systelil needs to do and Ilow the. N. cilli be

achieved N\ III he Illustrated III Order to understand ill(, strategics For

theill Illore eflicielld. v if possible.
A simple threc bly diree grid state spilce structure (See I"I"'Ilre 3.1) Is used

to help ilhistrat, c the points (liscussed. Each state is h1heled from -A' to T with
ýA' indicat, ed as being soil, (, desirc(l goal stilt(, for some learning agent to reach,

REINFORCEMENT LEARNING K. /1. Chan

3.3 Properties of Reinforcement Learning 47

the nature of a goal in reinforcement learning can be a simple decision/action

such as choosing a good control action or a situation such as don't get lost

(e. g. the exit in maze solving problems) or even high level actions such as

a change in state of mind, an example of which is from avoiding predators
to searching for food as used by the ant problem [261. In the three by three

grid environment (or world) all transitions from state to states are limited to

moving perpendicular to the current state or only moves of north, east south

and west from the current state are permitted unless an outer edge prevents

such a transition.

3.3.1 Reward and Penalty

The first thing all reinforcement learning needs to know is what is currently

good and what is currently bad. A reward function is used to guide the rein-
forcement learning agent to reach a desired goal or achieve a certain objective.
It is a scalar value mapped to each state to indicate the desirability of that state
when a given action is performed from that state. All the reinforcement learn-
ing agent has to do is to maximise the accumulated rewards (or minimise the

penalty) in order to reach its objective. The reward function defines what are

good and bad events and give an immediate measure of this, they are used to

alter the agents policy. For example the terminal voltage of a turbo-generator

needs to be within a certain range, 1.2kVtol. 4kV, and at a time t the terminal

voltage is 1.2kV, then the condition is a good one, therefore return a reinforce-

ment feedback signal r(t) =1 to indicate this. Else if the action selected by a
Policy is followed by a low reward r(t) - 0, the policy is then changed to select
some other action when in that situation is encountered in the future.

The feedback reinforcement signal r(t) is the first important element that

all reinforcement learning agents use in order to come to a useful decision for

selecting future actions. The actual nature of the reinforcement feedback signal

REINFORCEMENT LEARNING K. H. Chan

3.3 Properties of Reinforcement Learning 48

varies from one problem to another. The most common is to use a binary signal

of the form 0 for good situations and -1 to indicate bad/undesirable situations

since most reinforcement learning has been defined as a problem of maximising

the expected sum of discounted payoffs r(t) by satisfying equation (3.1.1),

where the parameter -y is a discount factor to return a finite sum if the sequence

of events is very large or infinite. This enables the design of a control system

to be simplified by allowing it to discover the control policy for itself but by

necessity the task must be fully described by the payoff function.

In its simplest form the agent is basically trying to maximise the rewards

which is what our simple illustration will hope to achieve. The choice of se-
lecting a suitable reward function r(t) will mainly depend upon how to best

represent the states of an environment. For example if the task is best served
by minimising a risk then a reward function of the form r(t) =1 for an unde-

sirable state and r(t) =0 for a desirable state can be used. In this case the

risk is minimised if the shortest path from any arbitrary start state to any goal

state is taken. If the case had been to maximise a profit then r(t) =0 for a

good state and r(t) = -1 for a bad state can be used. Although there will be a
limited way of choosing a reward function r(t) for a particular task, in general
the best reward functions take into account the fact that some environments
are very large or can have continuous periods (loops) and include a discount
factor to compensate.

For the purposes of the illustration and referring to Figure 3.1 a simple

reward function is used, all states return a reward of r(t) = -1 unless it is the

goal state (State 'A') then r(t) = 0.

3.3.2 The Value of a State

A value function in reinforcement learning is used to provide an indication

of the value of a state. The value of a state is its expected accumulated reward

REINFORCEMENT LEARNING K. H. Chan

3.3 Properties of Reinforcement Learning 49

for starting from that state until reaching some desired goal state. The value

of a state is used by the learning agent to guide its actions in order to reach

the goal state in the most efficient way. Where the reward is an immediate

desirability of a state, the value indicates how valuable the state is in the long

term by taking into account the states that follow and the rewards available
in those states. So a state can have a low reward but a high value because

it is often followed by states with high rewards, the reverse can also be true.

The value function uses the rewards generated by the reward function in order

to assign a value to each state. Without rewards, values cannot be estimated,

while values are estimated to achieve more reward by maximising the expected

accumulated reward. It is these values which the agent uses to choose actions

and hence change or follow a policy. Rewards are determined by actions taken

in the environment, but values must be estimated and re-estimated from the

sequence of observations the agent makes in its lifetime.

In the simple example using Figure 3.1 the first stage any reinforcement
learning must do is to explore its environment, this is usually achieved by some

sort of searching such as a random search in this case actions from an arbitrary

start state are randomly chosen from tile possible four actions available, these

are to move up, down, left or right. If the start state is 'E' then suppose the

random search followed this trajectory, E, 11, G, D, 11, B, A. Each non goal

state transition returns a -1 reward signal which is added to tile current sum

until the goal state is reached, so using this example a value of -6 is assigned to

state 'E'. After further exploration trials starting from state 'E' tile trajectories

that do not lead to further improvements in the state values are E, B, A, or E,
D, A. Both of these provide the value of -2 to state 'E' which is the optimal
value for this state. The other states are also optimised in this manner, the
optimal values for each state are shown in Figure 3.2. The value function is

arguably the most important component in a reinforcement learning system.

REINFORCEMENT LEARNING K. H. Chan

3.3 Properties of Reinforcenjent Learning

IB ic

__1_v = -1__iv_= _-2

v= -2 jv= -3
H 11

v= -2 Iv= -3 lv= -4

50

Figure 3.2: The optimal state values of a simple t lirce by t hree (Mid (I'Vil'01111WIlt,
with Olle goal statv.

3.3.3 The Policy

A policy (leterinines the behaviour of it rvinforcemvntý Iciu-ning itgrent and is

it limpping front perceived staMw of an environment, to act, ions avaiLible to the

Icill-ning lg(, Ilt whell in those stat, es. As shown by the lem-ning, mitomitton it

policy (. all cit her be (Ict erillillisfic or st, ochast ic. A reinforcellient lem-nill",

(an (Splom, an environment bY continually (. 1milging the policy.

policy, Or policies will be foull(l thilt will Illaxinlise (or millinlise depellding

on the task) the tot, al reward receiv(ql w0n using that, policy. Whell thi. "
Imppens Ole policy is said t, o be it optimal. This is whilt psychologists (. all

. st i lit it/ it's -rcspoilsc rules [161.

III most cases of I'vinfOrcement Icarifing tit(, ()ptltnal is it simple titsk

to achleve if tit(, vallies of each state are ()ptIIIIisvd first, the ()JOHIml

SII11plY beconw. s the p(Alcy that uses the state vallies that 111immi'se t1w

or ininimise the risk. s. This tYpe (A' has been refC1.1-ed h) its it

policil bY Watkins using III,, Q-1carning inethod [381, [. 1(; 1, [2 11, J; -) 11, [I [I. III

the Illustrated example (Sce Figure 3.1 and Figure 3.2), frmn t It(, stat e It(' t-)
gree(ly Policy would select actions to move through states E, B, A, or G, 1), A,

RFINFORCEMENT LEARNING K. //. Chu"ll,

3.3 Properties of Reinforcement Learning 51

or E, D, A in order to maximise the accumulated rewards.

3.3.4 System Model

A model of the environment is an optional part of reinforcement learning.

Models though are sometimes useful for planning by the reinforcement learning

agent. Most reinforcement learning systems can be applied without any knowl-

edge of the environment but some build up a model as learning progresses and

then use this for planning. Traditional dynamic programming methods are lim-

ited to solving problems with manageable state-space dimensions. Incremental

dynamic programming methods such as TD learning overcome this limitation

by updating knowledge after every action (state to state transition) rather than

waiting for a whole sequence of many actions to finish.

Early reinforcement learning techniques for adaptive control, such as the

learning automaton [211, [171, [28], and later incremental dynamic program-
ming such as TD learning 1131, [211, [45), [58], did not require a model of the

plant/environment to be developed. Therefore when a model of the plant is

unknown, two alternatives for the development of an adaptive control system

are available [581.

e Estimate a model and from this develop a control rule

* Develop a control rule without building a model

If a model-based approach is used, then it will be necessary to build a model
first. There are two primary arguments for taking a model-based approach.
First, building a system model and then using that model to solve tile optimal
control problem is often much easier than trying to solve the optimal control
problem directly. This is especially true for most linear systems where a model
can be easily built. However, solving even a very simple problem of this type
using a direct or model-free approach can be relatively difficult [131., The second

REINFORCEMENT LEARNING K. H. Chan

3.3 Properties of Reinforcement Learning 52

reason for using a model-based approach is that, once the model is formed it

may be used as a basis for solving many related control problems.
Two examples of model-based reinforcement learning are Dyna, developed

by Sutton [3], [591, [521 and prioritised sweeping, developed by Moore and

Atkeson [58). A Dyna architecture integrates trial and error (reinforcement)

learning with execution time planning into a single process, operating alter-

nately on the real system and a model of that system. Incremental learning

methods such as TD-learning have fast real time performance because they use

the most optimal policy which is not necessary the actual final optimal pol-

icy, while traditional control methods are slower but more accurate by waiting

until they have obtained the optimal policy after full use of all the observa-

tions. Prioritised sweeping combines both advantages into one system by using

all previous experiences to prioritise important dynamic programming sweeps

and also guide the exploration of state-space.
For a model-free control system design the primary argument is that it

may be less expensive to find the optimal (or an acceptable) controller by

direct interaction. It is relatively easy to model a linear dynamic system,
however to obtain an accurate model of a stochastic complex system such as the

financial market can be difficult or impossible. The usual approach is to idealise

such complex systems using approximations, the result is a model that is only

accurate within certain constraints. For some applications, especially safety

critical ones, this is usually not acceptable. Even if an accurate model of the

system is known, a model-free control system may still be required, since it will

often be the case that the derivation of an optimal controller obtained directly

from that model, is analytically and computationally intractable. Consider

the game of backgammon [421, [131, [241, [171. The state transition function

for backgammon is specified by the rules of the game. However, backgammon

is estimated to have at least 1011 states. Trying to find the optimal policy
for the game of backgammon using a traditional model-based approach is an

REINFORCEMENT LEARNING K. H. Chan

3.4 Limitations to Learning by Experience 53

intractable problem.
Other motivations for using model-free methods such as the learning au-

tomaton are: the interesting fact that these methods nevertheless do learn and

the possibility that they simulate some types of biological learning [221. Since

the main interest is in model-free reinforcement learning methods, the research

effort will be concentrated here.

3.4 Limitations to Learning by Experience

Apart from random action selection when faced with any new environment

are there any other techniques that can be used? Since in the initial stages any

action will acquire new knowledge using a random selection does not pose a

problem. The problem however is knowing when to use the acquired knowledge

instead of searching for more maybe less useful knowledge (e. g. when the

current calculated state value is worse than the previous state value). This is

the explorationlexpliotation problem encountered by all self learning agents. In

most reinforcement learning techniques there is a switching between exploring
(updating state values) and exploiting (using the current state values to drive

a policy). It is formalising a strategy in order to successfully change from

exploration to exploitation which is the challenge.
In the illustrated example there are only a small and finite number of states,

the optimal state values can be quickly found since the possible ways to ran-
domly choose actions from any state is also finite and manageable. Given

enough time any reinforcement learning agent can eventually through explo-

ration find all the optimal state values. However that is the question, when will
it find all the state values (preferably the optimal ones) and will it even know
it has explored all the states. Presumably learning will stop when all the state
values cannot be improved anymore, in which case it has explored all states.
For stochastic systems and systems that have a very large state space learning

REINFORCEMENT LEARNING K. H. Chan

3.4 Limitations to Learning by Experience 54

can take a long time which may be undesirable or unacceptable. One way to

alleviate this problem is to use a team of reinforcement learning agents each

exploring a subset of the state space so collectively they will reduce the explo-

ration time and acquire knowledge quickly. However the co-ordination between

reinforcement learning agents will need to be studied to see how they use their

knowledge to gain wisdom if they are to collectively make good decisions. Two

types of co-ordination are possible they can either become competitive and

come to decisions based on which reinforcement learning agent has the most
influence and therefore takes charge, or they can become co-operative in which

all knowledge is shared and used to come to an agreeable action between agents.
So far the most prominent examples of these two opposing view points are by

Humphrys [261 with W-learning using selfish motivations in learning agents and
Wu [281 using learning automaton in a team architecture with shared reward
functions.

3.4.1 Experience in Reinforcement Learning

There are essentially two ways of using experience in reinforcement learning.

One is called model or indirect learning, and the other direct reinforcement
learning. The possible relationships between experience, model, value and
policy can be shown in Figure 3.3 [161. Indirect methods make fuller use of
a limited amount of experience and can converge to a good policy with fewer

interactions. On the other hand direct methods are much simpler and are

not affected by past model experiences (or bias) if the environment changes,
thereby requiring to re-learn another model of the environment.

However both methods use their experience to change a policy which up-
dates the values which are used to further improve the policy. The universal
task for all reinforcement learning agents is to maximise the accumulated re-
wards using the state values as a guide. This interactive relation with the state

REINFORCEMENT LEARNING K. H. Chan

3.4 Limitations to Learning by Experience

10 Value/Policy I
AL

I

Planning Acting

Direct Reinforcement Learning

IIv
Model Experie ce

Model Learning

I

Figure 3.3: Relationships among learning, planning and acting [161.

55

values and the policy repeats until no more improvement in the accumulated

rewards can be made. When this happens the state values can no longer be

improved and the policy is said to be an optimal policy, i. e. the most efficient

way of reaching the desired goal.

The choice of method will depend upon the type of task being solved
(stochastic, linear, non-linear, deterministic, noisy, etc ...

) and what is required

of the reinforcement learner to achieve. The learning automaton and TD rein-
forcement learning methods are both examples of direct reinforcement learning

that explicitly learn from trial and error. There have been some developments

in making TD methods more model based by Sutton, known as Dyna [60]

which is an architecture for learning, planning and reacting. Also conventional
dynamic programming methods cannot lQarn without a model, so it is evident
that modern reinforcement learning methods span the entire spectrum from

low level, trial and error learning to high level deliberative planning.

REINFORCEMENT LEARNING K. H. Chan

3.4 Limitations to Learning by Experience 56

3.4.2 Pure Delayed Reward and Avoidance

One of the most important aspects of learning is that of assigning credit.

Here the agent solves a credit- assignment problem in order to find the optimal

policy [451, i. e. which action(s) of an action sequence to blame if the total

reward is non-optimal. It is not necessarily optimal to always execute the action'

with the largest immediate reward, because executing actions with smaller

immediate rewards may be necessary to make large future rewards possible.
This is called the problem of delayed rewards or reinforcement learning with
delayed rewards. The learning agent'has difficulty in assigning credit to good,

or blame to bad actions/states because no evaluative feedback is given until the

end of a trial or learning sequence. In reinforcement learning the reinforcement
feedback signal r(t) gives an immediate (or short term) indication of how good

or bad the decision was for a particular state. However this is insufficient in

many real problems and the long term values of each state must be estimated

or known for efficient prediction and/or control, that is the credit assignment

problem.
For example, a reinforcement agent is required to play the game of draughts.

The sign of the reinforcement scalar at the terminal state indicates whether
the terminal state is a goal state (reward) or a state that should be avoided
(penalty). The state space is the position of each players pieces on the game
board, the available actions the agent can make are the set of legal moves. The

reinforcement function is defined to be zero after every turn except when an

action results in a win (+1 reinforcement) or a loss (-1 reinforcement). The

goal of the learning agent is to maximise the reinforcement so it will learn that

states corresponding to a win are goal states and states resulting in a loss are
to be avoided.

REINFORCEMENT LEARNING K. H. Chan

3.4 Limitations to Learning by Experience 57

3.4.3 Minimum Time to Goal

Reinforcement functions of this type find the shortest path or trajectory to

the goal state. An example of this is a stationary car between two steep inclines

as described by Sutton [161, the goal of the driver (reinforcement learning agent)
is to reach the goal state on top of the hill by driving up the incline. The state of

environment is the position and velocity of the car. Three actions are available

to the agent in each state, forward acceleration, backward acceleration or no

acceleration. The problem is that the car cannot simply drive up the hill due to

the steepness of the incline. The driver must learn to use momentum in order

to gain enough velocity to successfully climb the hill. In order to maximise

the reinforcement scalar, the agent learns to choose actions that minimises the

time taken to reach the goal state and hence learns the optimal strategy for

driving the car up the hill.

3.4.4 Exploration Versus Exploitation

The fundamental question to all reinforcement learning is to find the goal

state in an optimal or efficient manner. Since initially the agent is faced with

an unknown environment, the agent must perform a search or exploration of

the state space. In order to explore the agent must choose an action that is

not considered the best for the purpose of gaining new knowledge of unseen or

seldom seen states. The need for the learning agent to explore is fundamental in

identifying the optimal as well as sub-optimal states and sufficient exploration

of the state space must be conducted. Sutton [161 shows many examples when

reinforcement learning is better overall after some time is used to explore tile

environment seeking better actions/decisisions rather than purely following a

greedy policy.
Take the example of a robot in an unknown environment, initially some

time has been spent exploring and acquiring knowledge of its environment.

REINFORCEMENT LEARNING K. H. Chan

3.4 Liniantions to Lo; irning- bY Experience

Off-line scarch

EXPLORE
I

FXPLOIT

On-line search

millinlise

Explormion

11, ilile

Figure 3A: On-line and otf-lille explorat 1011 /('Xl)l()i t at Im I Strategies. rl

58

Experience gained during exploration Itilist, al'so be considered during

Selection to 11111111111se ally llegative reinforcements (penalties) stich as

with ohstacles (which call be ffital). However, the robot ([()(, s not know which

; 1(. tl()Ils will leml t, () a collision lilitil all ()F the spaue has heell expl()I-ed.
Sonletililes it is possible for it to be slifficielitIly go()(I thm the

cmillAete state space is not, required, liellce there is this bet Nvecli ('Xl)l()-

rarion and (wIdAtatim rhis tvionso, purplodation, problem k fundament al

to all reinforcenwnt hurning awim thp AM reinforcement l(vanung agowt will

REINFORCEMENT LEARNING K. H. Chan

3.4 Limitations to Learning by Experience 59

use exploration to maximise the knowledge gained during learning while also

minimising the costs of exploration and learning time. In practical systems,

the standard strategy is to exploit most of the time and explore from time to

time. The two main search strategies involved in reinforcement learning are,

one use a stochastic search of the environment to ensure sufficient exploration,
the other is to use a statistical technique, such as choosing an action based

on action probabilities which are increased or decreased with experience. The

learning automaton is an example of the latter.

The dilemma is that just exploring or just exploiting will not achieve the

task the agent is set. So far there isn't a unique way of combining exploration

with exploitation that can solve all tasks. However there are some common

sense guides. For off-line learning agents, the strategy could be to explore

and exploit at equal intervals building up knowledge for planning. For on-line

search strategies too much exploration initially could be dangerous, for example

a navigation robot colliding with an obstacle too often can leave it damaged

and unable to complete its task. One method is to explore cautiously at first,

building up fundamental knowledge of the environment. When the learning

agent becomes more confident, it explores more in order to acquire knowledge

at a faster rate. After sufficient exploration the agent exploits more, using the

knowledge gained when exploring to ensure it converges to a policy (hopefully

the optimal policy). However it may be wise to still explore a little after

convergence to a policy, because the current best policy may not be optimal

and exploration may find a better policy. This can be illustrated in Figure 3.4.

REINFORCEMENT LEARNING K. H. Chan

Chapter 4

Temporal Difference Learning

4.1 Introduction

Temporal difference learning emerged from the study of ADALINES (adap-

tive linear elements) by Sutton [341, [31 and motivated by adaptive systems

such as artificial neural networks. Temporal difference (TD) learning was later

formalised by Sutton [31 when he realised that they were closely related to

conventional dynamic programming. Although TD reinforcement learning is

based on conventional dynamic programming methods and the Widrow-Hoff

rule for neural network learning [31 [341, they have many advantages over ei-

ther method. TD has the advantage of incremental learning and the updating

of weights is performed each step incrementally rattler than all at once after

a complete sequence of events. So unlike conventional dynamic programming

it does not need to finish a complete sequence of actions (which can be very

long) before updating its knowledge base, and can learn new knowledge after

successive predictions. The other advantage is that the overall computation

and memory requirements for TD learning is relatively small compared to tra-

ditional dynamic programming making TD learning more suitable for practical

applications.

60

4.2 Temporal Difference Learning 61

Like the development of the learning automaton temporal difference learn-

ing is a milestone in furthering the practical evolution of reinforcement learning.

Temporal difference learning has brought a lot of disciplines closer together.

The neuron like structure of temporal difference was a progression from previ-

ous work on neural networks [31 which are further based on biological models

of the brain [4], [12]. The decay of the eligibility traces in temporal difference

learning has a basis in animal behaviour and models the memory forgetting

factor in animals as a function of time 1221. Early reinforcement learning using

the learning automaton started from the psychologists point of view in which

temporal difference learning is part of but no longer confined to [3], [541, [171.

The incremental updating nature of temporal difference learning was also an

improvement on another well established mathematical computation method

known as dynamic programming, which has origins in mathematics and com-

puter science 171, [81, [13], [9), [10), [59], [521. Finally with the increased interest

in temporal difference learning many engineers are seeing the advantages of this

reinforcement learning method and applying them to control large-scale sys-

tems.

4.2 Temporal Difference Learning

The temporal difference learning is a relatively recent reinforcement learn-

ing algorithm for optimising control and machine learning in general. As men-

tioned in the introduction Temporal Difference (TD) learning has already at-

tracted a diverse range of applications, from playing complex games such as
Samuel's Draughts player (1959) [31 and Tesauro's Backgammon player [241,

to improving elevator performance [431 in large office buildings. The reason for

using reinforcement learning for many of the examples is due to the stochas-
tic nature of those systems, making it a difficult task using conventional non

reinforcement learning control methods.

REINFORCEMENT LEARNING K. H. Chan

4.2 Temporal Difference Learning 62

Learning to predict is one of the most important tasks required in learning.

The conventional approach to prediction learning is to adjust the parameters

in the predictor based on the error between actual and predicted values. TD

learning updates the predictor parameters by using the error between succes-

sive predictions. Accordingly, learning occurs in TD methods whenever there

is a change in prediction over time. The training examples are taken from

the temporal sequence of input vectors and hence TD methods are unsuper-

vised and learn on-line, sometimes these methods are referred to as adaptive

prediction methods [381.

Sutton formalised a complete class of TD learning methods in a paper

published in 1988 comparison with supervised learning [3]. The general TD

method was introduced called TD(A), where A is a weighting factor with a

value 0<A<1. Instead of updating a state value (or approximate value)

based on the values of the immediate successor states, TD(A) bases the update

on an exponential weighting of values of future weights. With the two extreme

cases TD(O) being similar to Q-learning and TD(1) being similar to supervised
learning, since TD(1) updates the value (or approximate value) of state n solely

on the value of the terminal state [421, [3]. The general temporal difference (A)

algorithm for updating weights w(t) in a connectionist system such as a neural

net has the form given in equation (4.2.1).

t

Aw(t) = a(p(t) _ p(t _ 1)) E \t-k Vwp(k)
k=l

The features are the temporal difference error p(t) - p(t - 1) which drives

the learning, with a being a learning rate and V, p(k) provides gradient in-

formation to indicate if the improvements need to be adjusted positively or

negatively. The factor A is a trace decay, where A=0 models short term

memory and only the past single step is remembered, when A=1 long term

memory is modelled and all the previous steps are remembered. The most

useful and practical representation of memory fading is one that has a value

REINFORCEMENT LEARNING K. H. Chan

4.2 Temporal Difference Learning 63

(0 <A< 1).

In all reinforcement learning the learning agent tries to maximise the ex-

pected sum of discounted payoffs r(t) received by satisfying equation (3.1-1).

Temporal difference learning is a method for predicting the expected sum of
discounted payoffs. The agent learns by minimizing the error difference be-

tween the predicted and actual values.

4.2.1 Adaptive Heuristic Critic and TD(A)

The temporal difference reinforcement learning algorithm was later adapted
for use within the adaptive heuristic critic (AHC) architecture using neuron
like structures by Sutton, Barto and Anderson [341 to solve difficult learning

control problems. The AIIC also makes it easier to applying TD learning

because of its neuron like structure for connectionist architectures. Similar

methods to the AIIC in which a critic is used to enhance the action evaluation

are also known as actor-critic methods [161.

The adaptive heuristic critic reinforcement learning system uses TD meth-

ods of prediction and learning control to solve stochastic sequential decision

tasks. The two important elements of the AIIC are the adaptive c7itic element

and associative search element [341.

A block diagram to this approach is given in Figure 4.1 and consists of two

components, the critic (AHC) and reinforcement learning component (11L).

The reinforcement learning component is designed or chosen to maximise the
heuristic reinforcement value, f, that is computed by the critic. The critic

uses the external reinforcement signal to learn to map states to their expected
discounted values given that the policy being executed is the one currently
in the RL component [211. The system is designed to learn under delayed

reinforcement, this is a temporal sequence of input state vectors (Sti muli) that

eventually result in the generation of the heuristic reinforcement signal. Instead

REINFORCEMENT LEARNING K. H. Chan

4.2 Temporal Difference Learning 64

of acting to maximise instantaneous reward r, the AHC tries to maximise the

heuristic reinforcement value f computed by the critic. TD learning and the

AHC is one of the first methods to address the credit assignment problem
because of its use of learning by delayed reinforcement. This is achieved by

the use of eligibility traces for modelling the decay of short term memory in

animals.

r, reward

x, state
Adaptive Critic Element: ACE

A
r, heuristic value

Associative Search Element: ASE 1Ps, action

Figure 4.1: Architecture for the Adaptive Heuristic Critic [211.

The adaptive heuristic critic system contains an adaptive critic element
(ACE) and an adaptive search element (ASE). As learning proceeds the ASE

constructs associations between inputs and outputs by searching under the
influence of a reinforcement feedback. The reinforcement feedback r is zero for

example in non fail states and -1 in fail states. The ACE uses r to provide
a more informative evaluation function, the heuristic reinforcement, which is

used by the ASE to evaluate if an action selected was good or bad.

REINFORCEMENT LEARNING K. H. Chan

4.2 Temporal Difference Learning 65

4.2.2 The ACE

The central idea behind the ACE is an algorithm that predicts the future

reinforcement and is a function of the system state vector. Barto et al [341

uses the following equation to determine the prediction p(t), the ACE predicts

performance p(t) by using equation (4.2.2),

n

vi (t) xi (t) (4.2.2)

subsequently the ACE weights vi(t) are updated using equation (4.2.3),

Vi(t + 1) = Vi(t) + O[r(t) + -yp(t) - P(t - 1)]Ti(t) (4.2.3)

where the eligibility trace Yj (t) by equation (4.2.4) is used to model the gradual

fading of memory.

Yi xi (t) (4.2.4)

The ACE output, known as the heuristic reinforcement f (t), is given by equa-

tion (4.2.5)

f (t) = r(t) + 7(p(t) - p(t - 1)) (4.2.5)

where #,, y, A are constants in the range 0,1 and the external reinforcement

r(t) =0 except at failure r(t) = -1, however the reinforcement feedback signal

r(t) range can be selected depending upon the nature of the optimisation task,

such as maximising reward, then r(t) =1 indicates a good action and r(t) =0
is a poor action for example. Another example is when minimising an error
then r(t) =0 is representative of a good action and r(t) =1 means a bad

action selection. The feedback signal r(t) in temporal difference learning is

very similar to the reinforcement feedback signal 0 for the learning automata.

REINFORCEMENT LEARNING K. H. Chan

4.2 Temporal Difference Learning 66

The purpose of the heuristic reinforcement is to provide an indication of

the long term value for each state. The ACE uses the immediate reinforcement

signal r(t) to generate the heuristic reinforcement value f (t). The role of the

ACE is to act as the value function in reinforcement learning.

4.2.3 The ASE

The ASE uses the improved heuristic reinforcement signal f (t) to gener-

ate the control action s(t). The ASE weights wi(t) are updated using equa-
tion (4.2.6),

wi (t + 1) = wi (t) + ai (t) ei (t) (4.2.6)

with eligibility traces ei(t) updated by equation (4.2.7)

ei (t + 1) = 6ei (t) + (1 - ö) y (t) xi (t) (4.2.7)

where parameter a and ý are constants in the range 0,1. Note the similarity
between updating the ACE weights vi(t) and the ASE weights wi(t) when
equation (4.2.5) is substituted for f in equation (4.2.6). The ASE control
output s(t) is given by equation (4.2.8)ý

s(t) =f (Z wi(t)xi(t) + noise(t» (4.2.8)
i=I

The control output s(t) is used to determine what new action is required after
evaluation by the AHC when r(t) is returned. The function f (.) can be any
function which can provide the output of the controller with a useful set of
actions. For non-linear systems a sigmoidal or other non-linear function that

can be used to provide a continuous output range from 0,1, which can then be
further discretised to provide a finite output set. The usage of function f (-)

can be better illustrated in the case study example of balancing an inverted

REINFORCEMENT LEARNING
, K. H. Chan

4.3 Inverted Pendulum control 67

pendulum which follows. In that case only two output actions were required

push cart left or push cart right, there the choice of using a threshold activation

function sufficed.

4.3 Inverted Pendulum control

Sutton, Barto and Anderson used the adaptive heuristic critic architecture

with temporal difference learning to successfully balance the inverted pendu-
lum problem to validate their idea. The result being that successive trials

for balancing the inverted pendulum would lead to success longer, or in other

words the learning agent learned to improve its current performance relative

to past performances.
The TD learning used to balance the inverted pendulum problem can be

described with the aid of the flow chart, Figure 4.2 shown below.

Figure 4.3 shows how the ACE and ASE elements relate in the adaptive
heuristic architecture Barto, Sutton and Anderson used to solve the inverted

pendulum control problem [341.

As learning proceeds the ASE constructs associations between input and

output by searching under the influence of a reinforcement feedback. The rein-
forcement feedback r is zero everywhere except for the states in which the pole
falls or the cart hits* the ends of the track as shown in Figure 4.4, when this
happens the agent receives a -1 reinforcement. The ACE uses r to provide
a more informative evaluation function (the heuristic reinforcement) than the

reinforcement feedback r alone can provide. Referring to Figure 4.3 each situ-
ation is represented by a states in the inverted pendulum system. Four input

variables, x, cart position on the track, i, cart velocity, 0, angle of inverted

pendulum relative to the vertical (vertical position is equal to zero degrees) and
6 is the angular velocity. The decoder converts the four parameters into 162

states for use in the ASE and ACE. Two actions are available to the learning

REINFORCEMENT LEARNING K. H. Chan

4.3 Inverted Pendulum control 68

agent, these are move the cart to the left or move the cart to the right. This

is somewhat simplistic in that if the agent learns one action (e. g. push left)

in a given situation is wrong then the sole alternative (i. e. push right) must
be the correct action in that state. The agent selects a policy based on the

heuristic reinforcement that will maximise the total pure reinforcements r in

order to select a sequence of actions required to balance the inverted pendulum
for as long as possible. The effect of this learning can be seen in Figure 4.5.

Again the common elements that make up a reinforcement learning system can

be identified in the adaptive heuristic critic architecture. First the policy is

determined by the ASE which chooses actions biased by the ACE, the ACE

itself is the value function for generating long term values (the heuristic rein-
forcement) for each state, and the feedback rewards r are used to measure the

states immediate utility.

A simulation of the inverted pendulum balancing problem was used to il-

lustrate the learning of the ACE/ASE reinforcement learning system. Each

trial begins with the cart pole state x=0, :i=0,0 = 0,6 =0 and ends with a
failure signal r= -1 indicating 0 has left the interval [-12', 12*1 or x has left

the interval [-2.4m, 2.4m]. All initial trace variables ej and weights vi, wi were

also zero at each trial start. As more trials were made the learning agent would
try to improve its performance each time so that after many trials it could keep

the inverted pendulum balanced the longest, see Figure 4.3. Each trial length

varied and was determined by the length of time the learning agent could keep

the inverted pendulum balanced, a total of 100 trials was performed and in

most cases as observed in the results Figure 4.5, the current trial performance
was an improvement on the previous trial.

In the inverted pendulum problem with only two actions to select from,

push cart left or push cart right, the function f(x) in the output function

equation (4.2.8) can simply be the threshold activation function defined by

REINFORCEMENT LEARNING K. H. Chan

4.3 Inverted Pendulum control 69

equation (4.3.1),

Px) +1 if x>0 (control action right) (4.3.1)
-1 if x<0 (control action left)

where a, 5 are constants in the range [0,11. The role of the ASE is to generate

policies that will lead to optimal actions and hence optimal control when in any

given state provided by the current heuristic reinforcement value f (t). Thus

the ASE is the policy generator in this reinforcement learning method.

REINFORCEMENT LEARNING K. H. Chan

4.3 Inverted Pendulum control 70

Start

Initialise all leaming weights and traces to
zero

Using previous ACE, ASE weights and traces,
calculate prediction p(t) from equation (4.2.2).
Select action based on prediction with
equation (4.2.6) and equation (4.3.1)

Perform control based on selected action s (t)

If pcndulum is still balanccd

True

trial length less than 500,000

True

Evaluate current reinforcement signal r(t)

Update ACE weights and traces with

equation (4.2.3). Deterrnine r(l) for ASE with
equation (4.2.4)

Update ASE weights and traces with equation
(4.2.5)

False

False

Stop I

Figure 4.2: Flow chart for learning to balance an inverted pendulum using
temporal difference learning control.

REINFORCEMENT LEARNING K. H. Chan

4.3 Inverted Pendulum control 71

Adaptive Controller PW
Adaptive Critic Element

(ACE)
VI 9 V2

X1

X2
A

State Decoder r(t)
X, ,P

Associative Search Element
(ASE)

W1 0 W2,..., WS

y(t)

Environment

xlxlo, o

r(l)

Figure 4.3: The task of balancing an inverted pendulum using the adaptive
heuristic critic architecture and temporal difference reinforcement learning.
The ACE and ASE can each be implemented using a neural network.

REINFORCEMENT LEARNING K. H. Chan

4.3 Inverted Pendulum control 72

X=O

Figure 4.4: Inverted pendulum control problem.

18000

16000

14000
gi c6.1

o12000 *= ci
10000

rA .
ei

ID. zi

Qi M 8000

6000

4000

2000

0

Figure 4.5: Inverted pendulum balancing simulation results.

REINFORCEMENT LEARNING K. H. Chan

0 20 40 60 80 100
Number of Trials

Chapter 5

Learning Control of Dynamic

Systems

Learning control is an intelligent form of adaptive control. Adaptive con-

trol allows systems to respond to problems in the environment. The ability

to learn from changes due to unforeseen (or un-anticipated) environmental cir-

cumstances goes one step further than just adaptive control. The flexibility of

reinforcement learning makes it suitable for applications in which exact knowl-

edge of a system, at all times is unknown. Such a system is usually dynamic and

often stochastic in nature. The stochastic nature of some problems also makes
it difficult to apply conventional adaptive control, thus making reinforcement
learning an invaluable alternative, and sometimes the only option.

5.1 TD(A) Learning Control

Parameterised controllers such as the PID and FLC are suitable for the
implementation of learning control in which the nature of adjusting parameter

values to improve a controllers performance is intuitive and progressive.
The general idea and process is better illustrated with the aid of the flow

73

5.2 Applying TD(A) for Control of Dynamic Systems 74

chart, Figure 5.1and diagram, Figure 5.4.

This procedure is the most basic and describes the action selection process

for optimising a single parameter in a controller. For extension to multiple

parameter optimisation in a controller (as will be described later) it becomes a

simple case of scaling the desired number of learning agents (one learning agent

per parameter). All the learning agents work in parallel and are independent

of each other, therefore no conflict of interest occurs between learning agents.

5.2 Applying TD (A) for Control of Dynamic

Systems

Temporal difference learning was used to optimise the parameters of a PID

controller. A preliminary test using a single learning agent was studied to opti-

mise the Ifp parameter of a PID controller, while the other two parameters K,

and KD were preset to fixed values, although not as flexible as a PID controller
it did prove that the temporal difference reinforcement learning scheme could
learn to control a simple system. The principle of the complete optimisation

task is shown in Figure 5.3.

Using this principle each of the PID parameters Kp, K, and ICD has its

own learning agent to update it. The update is performed by the tempo-

ral difference reinforcement learning scheme and adaptive heuristic architec-

ture described previously. Thus for the PID optimisation task, three learning

agents were required. The simulation study comprised three parts as shown
in Figure 5.3, the PID controller, the plant and the temporal difference neural

network. Note that the PID controller and plant make up the learning envi-

ronment. A pseudo random binary signal was used to excite the system during

training, see Figure 5.2, y(ref) the reference for the plant output y(out) is set
to zero.

REINFORCEMENT LEARNING K. H. Chan

5.2 Applying TD(A) for Control of Dynamic Systems 75

Start

Initialise all learning weights and traces to zero

Use action determined by s (t) to select controller parameters in
equation (5.2.4)

1

Perform control u(t) based on selected action s(t)

Use Runge-Kutta numerical method to solve differential
equations of plant and give result

compare actual output of plant with desired or reference output
and evaluate r(t) from the error difference between actual and
desired output using equations (5.4.1) (5.4.2) (5.4.3)

If plant is optimal OR True
If training time is greater than stop time M-

Falsc

Use r(t) to update ACE weights and traces with equation (4.2,3),
A

prediction p(t) with equation (4.2.2) and r(t) with equation (4.2.4)

Update ASE weights and traces with equation (4.2.5)

Evaluate action selections (t) from equations (4.2.6) and (5.2.5)

Stop I

Figure 5-1: Flow chart for learning control of a dynamic system with PID
control using temporal difference learning.

REINFORCEMENT LEARNING K. H. Chan

5.2 Applying TD(A) for Control of Dynamic Systems 76

I

0.5

0

C6

0.5

-1

Y(Out) y(ref) PRBS

It

r: v::::::

10 20 30 40 50 60

Time (seconds)

Figure 5.2: A pseudo random binary signal used to train the temporal difference
neural network.

5.2.1 The Plant

For the initial testing of the temporal difference learning scheme a third

order system was used to represent the plant. A third order system with

corresponding transfer function is shown in equation (5.2.1). This example

was used in the simulation originally came from an exercise paper in which a

manual solution could be found and provided a starting point for initial testing.

Y(S) s+4 (5.2.1)
U(S) S3+8S2+17s+10

and in state space representation by equation (5.2.2),

yl. .010, X, " . 0.

252 001 X2 +0U (5.2.2)

--10 -17 -8_ X3
.

1.

with output function represented by equation (5.2.3),

REINFORCEMENT LEARNING K. H. Chan

5.2 Applying TD(A) for Control of Dynamic Systems 77

Environment

PRBS Excitation(t)

y(reo(t) = PLANT 11P Y(Out)(t)

U(t)

PID ControUer

Selected Actions ap ail I ak, Reinforcement I

Signal r

Temporal Difference
Neural Network

Figure 5.3: Using temporal difference reinforcement learning to optimise a PID

controller.

Xl'

y=[4 1 01 X2 (5.2.3)

.
X3.

5.2.2 The PID Controller

PID controllers are popular and proven systems, in fact the nature of tuning

a PID controller by varying its parameters makes it ideal for learning systems
that incrementally update these parameters in a continuous manner. The tem-

poral difference learning is such an incremental learning scheme and can be

used to continuously tune the PID parameters. Noise, drift and other environ-

mental changes can potentially be corrected for by the ability of the temporal

difference learning scheme to continuously learn. This is the major aim that

REINFORCEMENT LEARNING K. H. Chan

5.2 Applying TD(A) for Control of Dynamic Systems 78

the discussed learning schemes try to achieve in order to ensure that the PID

parameters are always optimised. The PID controller used in the simulation

study was based on the one used by Wu [28] and shown in equation (5.2.4),

see also Figure 5.3.

u(t) = u(t-l)+Kp[y(t) - y(t - 1)] + Kly(t) + KD[Y(t) - 2y(t - 1) + y(t - 2)]

(5.2.4)

where Ifp, K, and KD are the PID parameters to be optimised, y(t) is the

feedback to the PID controller and u(t) is the controller output.

5.2.3 The Temporal Difference Neural Network

At first the action selection for the temporal difference neural network was

only limited to selecting the Ifp parameters while If, and KD were fixed.

Figure 5.4 shows the initial configuration of the temporal difference neural

network. This initial configuration is very similar to the one used by Sutton,

Barto and Anderson in their inverted pendulum control task [341.

Modifications were made to the threshold activation function f (x) in equa-
tion (4.2.8), this has been replaced by a sigmoid activation function, such as
the logistic function given by equation (5.2.5),

f(x)= 2 (5.2.5)
1 exp(-ax)

where a is a constant and determines the slope of the sigmoid function. The

threshold function used in the inverted pendulum example only assumes dis-

crete values of 0 or 1, but the sigmoid function assumes a continuous range of

values between 0 and 1. For the PID controller parameter selection a sigmoid

activation function is preferred. A total of ten actions were made available
to the ASE output s(t) to select I(p. The actions of the temporal difference

neural network were divided into discrete values in a set range. The range

REINFORCEMENT LEARNING K. H. Chan

5.2 Applying TD(A) for Control of Dynamic Systems 79

Temporal Difference Neural Network PW
Adaptive Critic Element

(ACE)

VI I V2, V,

A

r(t) r(t)

Associative Search Element
(ASE)

WI t W21 WS

SW

Kp Action Select

Mean and Covariance aKp(t)

x, a

Plant (3" Order System) PID Controller
Ki and Kd Preset

Figure 5.4: PID controller using temporal difference reinforcement learning to
select Kp parameter with K, and KD preset.

was chosen after preliminary tests indicated where the best PID coefficients

would be. If a learning scheme is given enough time to perform a thorough

search of any large range then learning will eventually find an optimal solution,
in order to save time in the learning process the preliminary tests narrowed
the potential search range for each parameter in order to speed up learning.

The main point of the tests and simulations was in order to see if learning

would converge and select optimal actions. A long learning time will always
be a potential weakness for all learning schemes which rely on minimal initial

REINFORCEMENT LEARNING K. H. Chan

5.2 Applying TD(A) for Control of Dynamic Systems 80

knowledge of their environments.
For the initial testing when only ICp is optimised the actions are shown in

Table 5.1, which also shows the eventual action selections available for the other

PID controller parameters. Each parameter is given a choice of ten actions

equally subdivided from a range of values. Each action available is chosen by

using the output of the activation function which outputs a continuous value

between zero and one. The output of the sigmoid activation function is divided

into ten regions with each region representing one action, so for example if

the sigmoid activation function outputs a value in the range 10 < output

0.1}, then the first action is chosen which represents the first value of the PID

controller parameter 11, Cp[i) :i= 0} choosing a coefficient of jKp = 0} etc

At this point If, and KD are not changed.

Quantised output: i 0 1 2 3 4 5 6 71 8 9

action (Kp(i)) 0 3 6 9 12 15 18 21 24 27

Quantised output: j 0 1 2 3 41 5 6 71 8 9

action (KI(j)) 0 3 6 9 18 27

Quantised output: k 0 1 2 3 41 5 6 7 8

action (KD(k)) 0 1 21 3 4 6 7 8

Table 5.1: Action selection for PID controller by temporal difference learning
neural network.

To monitor the progress of learning and compare the actions selected all
the action frequencies were uniformly initialised. In this case there were ten

actions with an initial frequency for selecting any particular action of a on
in ten chance. As the temporal difference neural network trains tile action
frequency will be updated, in general if the action used was good then the

frequency of selecting that action is improved and vice versa. The frequency

sum must be conserved and thus as one frequency was changed the others

REINFORCEMENT LEARNING K. H. Chan

5.2 Applying TD(A) for Control of Dynamic Systems 81

must also be changed in an inversely proportional manner. One example of

the action frequency updates for Kp is shown in Figure 5.5.

0.25

; o, 0.2

0.15

0.1

0.05

0
1 10

Kp Actions to Select

Figure 5.5: Action probabilities for the PID controller parameter Kp after
training of the temporal difference neural network with K, and KD preset.

The input to the temporal difference neural network was formed by calcu-

lating the mean and covariance of the plant output for a given sample size or

window. This was repeated at each time step to drive the learning, selection

and updating of the action probabilities. Various window sizes were tried but

a window size in the region of between 200 and 400 provided sufficient infor-

mation for learning improvement while simultaneously allowing for a relatively

quick training time.

The weights of the temporal difference neural network converge as shown
in Figure 5.7 and the resulting dynamic response to a step input after training

is shown in Figure 5.8. However it can be seen that the step response could be

further improved, the next stage of developing the temporal difference neural

network was to extend it to optimise two of the three PID controller parameters.

REINFORCEMENT LEARNING K. H. Chan

5.2 Applying TD(A) for Control of Dynamic Systems 82

0.5

0.4

0.3

10 0.2

0.1

0

-0.1

-0.2

mean covariance

0 250 500 750 1000 1250

Time (seconds)

Figure 5.6: Mean and covariance for y(out) from plant and input to the tem-
poral difference neural network, with a window size of 300 samples.

1.2

1

cu 0.8
Iti

0.6-
E
< 0.4 -

0.21

0
0 250 500 750 1000

Time (seconds)

1250

Figure 5.7: The temporal difference neural network weights from the ACE and
ASE for optimising the Kp parameter of the PID controller with K, and KD
preset.

- V(O) V(I) - W(O) - W(I) j

REINFORCEMENT LEARNING K. H. Chan

5.3 Optimising PID Control Parameters Using A TD(A) Neural Network 83

1.2

1

0.8

0.6
E
< 0.4

0.2

0
05 10 15 20 25 30 35 40

Time (seconds)

Figure 5.8: Step response of the plant with the PID controller parameter 1cp
optimised by the temporal difference neural network where K, and KD are
preset.

This initial test however illustrates the value of using a temporal difference

neural network.

5.3 Optimising PID Control Parameters Us-

ing A TD (A) Neural Network

The simplest way to extend tile temporal difference neural network was to

treat the ACE/ASE pair as a single learning agent and have a learning agent

optimise one of the PID controller parameters, this is very much like the team

of learning automaton principle by NVu [281, but in this case using temporal

difference learning agents. The Kp and KD parameters were optimised in the

next test with the K, parameter left preset as before. The architecture for

optimising these two PID controller parameters is shown in Figure 5.9. Thus

a single learning agent when using a temporal difference neural network com-

REINFORCEMENT LEARNING K. H. Chan

5.3 Optimising PID Control Parameters Using A TD(A) Neural Network 84

Figure 5.9: Optimisation of Kp and KD parameters of a PID controller using
a temporal difference neural network.

prises a critic the ACE, an action selector, the ASE and an output neuron, such

as a sigmoid activation function. The inputs to the temporal difference neural

network have been unchanged and still comprise the mean and covariance of

the plant output y(out).
From the action probability results for selecting Kp in Figure 5.10 and KD

in Figure 5.11 it can be seen that the resulting step response Figure 5.12 of

the plant due to the selected parameters has improved over the result of tile

previous test, when only Kp was optimised. This gave further confidence that

REINFORCEMENT LEARNING K. H. Chan

5.3 Optimising PID Control Parameters Using A TD(A) Neural Network 85

0.3

0.2

LO 0.15

0.1
w C4

0.05

0

0.25

23456789 10

Kp Actions to Select

Figure 5.10: Kp action probabilities after training of temporal difference neural
network to optimise Kp and KD parameters of a PID controller with K, preset.

0.25

0.2

0.15

2.0.1

09 0.05

0
456789 10

Kd Actions to Select

Figure 5.11: KD action probabilities after training of temporal difference neural
network to optimise Kp and KD parameters of a PID controller with K, preset.

REINFORCEMENT LEARNING K. H. Chan

5.4 Optimising Kp, Ki and KD 86

1.2

1

4,0.8 PC
0.6

0.4

0.2

05 10 15 20 25 30 35

Time (seconds)

Figure 5.12: Step response of the plant with the PID controller parameters Kp

and KD optimised by a temporal difference neural network where K, is preset.

the eventual use of three temporal difference learning agents, each optimising

a single PID controller parameter would also prove successful.

5.4 Optimising Kp, K, and KD

The final test was to try and extend the temporal difference neural network
to optimise all three PID controller parameters. Again using the principle that

one learning agent consists of a critic, action selector and an output sigmoid

activation function, the resulting architecture shown in Figure 5.13 was used.
After initial testing of the full temporal difference neural network, it was

found that the action selection process by the output neurons did not converge

very well to the optimum actions. Although most of the time the optimal

actions were chosen the other actions had action probabilities very similar to

the optimum action. An example of this is shown in Figure 5.14 where actions

two, three and four have similar probabilities to each other even though there

REINFORCEMENT LEARNING K. H. Chan

5.4 Optimising Kp, Ki and KD 87

Figure 5.13: Optimisation of PID parameters using a temporal difference neural
network.

REINFORCEMENT LEARNING K. H. Chan

5.4 Optimising Kp, K, and KD 88

0.25

; ýb 0.2

0.15

0.1

T 0.05
C4

0
1 10

Kp Actions to Select

Figure 5.14: Action probabilities that do not converge well to one action.

is an optimal action (the tenth action) the probability of this isn't large enough
to be decisively selected each time the PID controller parameters are chosen

so a bad action being chosen is still just as likely.

In order to overcome this the learning rates of the temporal difference learn-

ing neural network algorithm, namely a, P, -y, 5 and the forgetting factor A in

equation (4.2.3) and equation (4.2.6) were adjusted to see if there would be a
better response from the neural network. Another factor in improving the ac-
tion selection process was to change the noise distribution in equation (4.2.8)

which affects the exploration of actions and normalising the feedback signal

r similar to the method used in the learning automata and given by equa-
tions (5.4.1), (5.4.2) and (5.4.3). Where r becomes a cost function and is used
to measure the performance of the controller after each action selection. The

cost function was obtained using equation (5.4.1),

REINFORCEMENT LEARNING K. H. Chan

5.4 Optimising Kp, K, and KD 89

N

J(k) E(y(ref) _ Y(OUt))2

i=l

where N is the window size or sampling interval for calculating the mean and

covariance of the outputs y(out), where y(ref) = 0. In order to use this cost

measure as the reinforcement feedback signal it must be normalised first. This

was achieved using equation (5.4.2),

r(k) =J.. a,, (k) - J(k)
Jma, (k) - Jmi, (k)

(5.4.2)

where

Jma, (k)
J(k)

Jma, (k - 1)

if J(k) > Jmax(k - 1)

otherwise

I
(5.4.3)

Jmi, (k)
J(k)

Jrnin(k - 1)

if J(k) < Jmin(k - 1)

otherwise

I

The original form of the feedback signal r was purely just 1 or 0, with 1

representing a good action for when the covariance was calculated to some
upper limit for example r=1 when covariance < 0.5 else r=0. This

meant that the feedback signal returned a discrete signal that represented

a completely good action or a completely bad action but not a continuous
feedback signal representing various levels of success and failure. The purpose
of equation (5.4.2) was used to rectify this and improve the action selection
process.

It was found that the convergence of the neural network weights were very
sensitive to changes in the learning rates a, 0, y and J. Also by increasing

the amount of noise present in the ASE output in equation (4.2.8) the ex-

ploration of the action space by the learning agents increases, however there

was a limit to the amount of exploration that was desirable due to the ex-
Ploration/exploitation nature of all learning tasks. There is a balance which

REINFORCEMENT LEARNING K. H. Chan

5.5 Results for Optimised PID Controller 90

must be found (and is different for differing tasks) between exploring and using

existing knowledge in order to choose optimal actions to complete a given task.

Therefore to discover such actions, it has to try actions that it has not selected
before or to explore as well as having to exploit what it already knows in order

to obtain better rewards.

5.5 Results for Optimised PID Controller

The final simulation results show the potential possibility of temporal dif-

ference learning for the control large-scale systems. This example also provides

a practical use of temporal difference learning beyond that of playing complex

games such as backgammon and draughts. The results after optimising the

PID Controller parameters are shown in Figures 5.15 to Figure 5.20. As shown

the weights converge quickly during training and the step response of the plant

after selecting the optimal PID controller parameters is satisfactory.

0.04

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

- Mean - Covariance

250 500 750 1000 1250

Time (seconds)
Figure 5.15: Mean and covariance input used to train the temporal difference
neural network for optimising a PID controller.

REINFORCEMENT LEARNING K. H. Chan

5.5 Results for Optimised PID Controller 91

16

14
z 12

10

r. "
45 =
,

."

9z

F. -4

V(O)(O) - v(l)(0) - w(o)(0)
w(l)(0) - v(O)(1) - VMM
W(O)(I) - w(l)(1) v(O)(2)
v(l)(2) - w(O)(2) - w(l)(2)

:; --- -__---

0 250 500 750 1000 1250

Time (seconds)

Figure 5.16: Temporal difference neural network weights for optimised PID

controller.

0.4

0.35

0.3

0.25
c 2 0.2 ; iw

0.15

1: 4 0.1

0.05

0
234 5 6 789 10

Kp Actions to Select

Figure 5.17: Kp action probabilities for optimised PID controller using a tem-
poral difference neural network.

REINFORCEMENT LEARNING K. H. Chan

5.5 Results for Optimised PID Controller 92

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
23456789 10

Ki Actions to Select

Figure 5.18: K, action probabilities for optimised PID controller using a tem-
poral difference neural network.

0.35

0.3

C7 0.25

0.2

0.15

0.1

0.05

0
23456789 10

Kd Actions to Select

Figure 5.19: KD action probabilities for optimised PID controller using a tem-
poral difference neural network.

REINFORCEMENT LEARNING K. 1j. Chan

5.6 Learning Control Implementation using Learning Automata 93

1.2

1

0.8

0.6

0.4

0.2

05 10 15 20 25 30 35

Time (seconds)

Figure 5.20: Step response of system plant using optimal Kp, K, and KD
parameters of a PID controller selected using a temporal difference neural
network.

5.6 Learning Control Implementation using Learn-

ing Automata

The learning automaton was next used to optimise tile parameters of the

popular PID controller. A team of learning architecture was used as shown in

Figure 5.21 [281. This study was performed to compare the performance of TD

learning and the learning automata.
Using this principle each learning automaton seeks to optimise one param-

eter, thus for the PID optimisation, three learning automaton are required,
for Kp, KI and KD. The objective in the design of the learning automata is

to determine how the choice of action at any stage should be guided by past

actions and responses. The important point is that the decisions are made

with little knowledge of the environment, making the learning automaton very
flexible to changes in the environment. The environment may have time vary-

REINFORCEMENT LEARNING K. H. Chan

5.7 Applying Learning Automata 94

Unknown environment IP

S49h

......................................
cOM r= cc'

(X 2M
IE CC 2

N
aN(k) r= cc

...................................

Figure 5.21: N learning automata operating in an unknown environment with
identical payoff [281.

ing characteristics, or the decision maker may be part of a hierarchical decision

structure but unaware of its precise role in the hierarchy. Alternatively, the

uncertainty is due to the fact that the output of the environment is influenced

by the actions of other agents unknown to any particular decision maker.
A flow chart Figure 5.22 below shows the general updating of the action

parameters in the PID using a team of learning automata, see also Figure 5.23

5.7 Applying Learning Automata

The simulation study comprised three parts as shown in Figure 5.23, the
PID controller, the plant and the team of learning automata. Note that the
PID controller and plant make up the environment.

5.7.1 The Plant

The simulation study of the team of learning automata architecture used
a third order system to represent the plant. The plant was identical to the

REINFORCEMENT LEARNING K. H. Chan

5.7 Applying Learning Automata 95

Start

Initialise all parameters, make all action probabilities uniform

Randomly select actions a" a' a' with probabilities P(Cf P) P(a 1) P(a D)
ijkIik

Use selected actions ap a' aD in PID controller, equation (5.2.4) iikI

Perform control action on plant with PID parameters selected

Use Runge-Kutta numerical method to solve differential equations of plant
and give results

I

Use result to calculate performance index J the cost function with
equation (5.7.1)

Use J to calculate P: [0, I] with equations (5.7.2) and (5.7.3) to determine the

utility of the selected actions ap aý aD

IijkI

I Use P: [0,11 to update the action probabilities using equation (5.7.4) to the
effect that IF the selected action a is good THEN P(a) increases ELSE IF

selected action cc is bad THEN P(Ct) decreases

N

Modify the rest of the unselected action probabilities such that P(Jji) =I

False IF selected actions af al aD have 1jk

ed t ome desired limit (e. g. P(ap) > 0.9 AND P(Cfj') > 0.9 AND P(akl)) > 0.9

OR training time > stop time
'i

True
I Stop

Figure 5.22: Flow chart for the optimisation of PID parameters using a team
of learning automata.

REINFORCEMENT LEARNING K. H. Chan

5.7 Applying Learning Automata 96

Selected Actions a, "

Figure 5.23: Optimisation of PID parameters using a team of learning
automata.

one used in the study of the TD learning neural network. The third order

system transfer function equation was given by equation (5.2.1) and in state

space representation by equation (5.2.2). The output function can be seen in

equation (5.2.3),

5.7.2 The PID Controller

The PID controller used in the simulation study was based on one used by

NVu [28], it is the same as that used in the TD learning simulation and with
the form shown in equation (5.2.4), see also Figure 5.23.

5.7.3 The Team of Learning Automata

The team of learning automata is a co-operative method for applying multi-

agent learning. Each automata shares a part of the task using a common
feedback reward signal 0 to achieve a global goal, in this case to optimise

REINFORCEMENT LEARNING K. H. Chan

5.7 Applying Learning Automata 97

an on-line PID controller. The actions of each automaton were divided into

discrete values within a given range. The range was chosen after preliminary

tests indicated where the best PID coefficients would be. It was interesting

to compare if the learning automata selected PID coefficients similar to the

manually selected ones in the initial tests.

All the action probabilities were uniformly initialised, so for ten actions

the initial probability for selecting each action was a tenth. As each learning

automaton gains experience and learns the action probabilities will be updated,

in general if the action used was good then the probability of selecting that

action is improved and vice versa. The probability sum must be conserved

and thus as one probability was changed the others must also be changed
in an inversely proportional manner. Initially the choice of actions is rather

coarse but can be improved by fine tuning the PID coefficients. For example

the Kp coefficients increment in steps of three (see Table 5.1), if the best

coefficient fell between these limits how could we have found that out? One

method is to centre a new search around the best coefficient, reset all the action

probabilities and learn again. Therefore to discover such actions, it has to try

actions that it has not selected before. As with the TD learning neural network

each automaton has to exploit what it already knows in order to obtain reward,
but it also has to explore in order to make better action selections in the future.

N
1: (y(ref) - y(out))'
i=l

here N is the RungeKutta numerical method sampling interval for calculating
the outputs y(out). This essentially gives an error measure between our actual

y(out) and reference y(ref) signals by comparing the area between y(out) and

y(ref), the error is reduced as y(out) equals y(ref), see Figure 5.24.

In order to use this cost measure in each learning automaton it must be

normalised. This was achieved by using equation (5.7.2)

REINFORCEMENT LEARNING K. H. Chan

5.7 Applying Learning Automata 98

0(k) =
J,,,,, ý(k) - J(k)

J,,,,, (k) - J,,, i,, (k)
(5.7.2)

where

(k)
J(k) I

Jm,, (k - 1)

if J(k) > J,,,. (k - 1)

otherwise

I
(5.7.3)

(k)
J(k) I

Jmi. (k - 1)

if J(k) < Jnin(k - 1)

otherwise

I

The feedback reward signal P was used to update the action probabilities for

each automaton. The reinforcement scheme used was a linear reward-penalty

L(,
-p) scheme and is given by equation (5.7.5) [281,

RQ(k + 1) = P,, (k) + Olp(k)(1 - P,, (k)) - 02(l - P(k))Pn(k) (5.7.4)
n

when m=n
))

[7

r
P, ',, (k+l) = P,,, (k)-0jP(k)P,,, (k)+02(1- 0 (k T -1 P, ',, (k)

when m0n

where Pcl is the selected action probability, 01 and02 are learning rates, P, ' ,
are the probability updates for the other un-selected actions, and r is the total

number of actions available (r = 10 was used in this simulation).
It must be emphasised that during learning the action selection is random

and the randomness must be uniform, otherwise there will be biases in the se-
lection process which will not give the desired effect of exploring all actions with

equal chance. The results of the probability updates for each PID parameter
is shown in Figure 5.25. As each automaton learns the action probabilities are
increased or decreased depending upon the utility of the action experienced.

After finding which action are the best to take the learning automata must

use its knowledge to optimise the PID controller. The results shown in Fig-

ure 5.25 indicate that p(kp[41), p(ki[41) and p(kd[31) are the best. Referring

REINFORCEMENT LEARNING K. H. Chan

5.7 Applying Learning Automata 99

0.5

1 0, ýL ---
-0.5,

048 12 16 20 24 28 32 36
Time (seconds)

-Y(Out) --- Y(ref) /J- = 2.66655 x 10 '10 Beta = 0.734079

Gg,

05

1

0ý 048
12 16 20 24 28 32 36

Time (seconds)

CL

a
0.5

048 12 16 20 24 28 32 36
Time (seconds)

I

Figure 5.24: Dynamic response of plant, J is a cost measure used to calculate
Beta the feedback reward signal. Beta =1 indicates that the PID coefficients
are good and the associated action probabilities are increased.

REINFORCEMENT LEARNING K. H. Chan

5.7 Applying Learning Automata 100

I

0.8

0.6

0.4

0.2

IT

0*8 0.61

0.4

0.2

o

Updating of Ki action probabilities

P(Kp[Ol)

P(Kp[l])

P(Kp[21)

P(Kp[31)

P(Kp[41)

P(Kp[51)

P(Kp[61)

P(Kp[71)

P(Kp[81)

0 10 20 30 40 50 60 70 80 90
Time (seconds)

1

0.8

0.6
.0 cm m
': ' 0.4
9t

0.2

0

P(Ki[Ol)
P(Ki[ll)
P(Ki[21)

-P(Ki[31)
P(Ki[4])

P(Ki[51)

P(Ki[61)

P(Ki[71)

P(Ki[8))

P(Ki[91)

P(Kd[OD

P(Kd[11)

P(Kd[21)

P(Kd[31)

P(Kd[41)

- P(Kd[51)

- P(Kd[6))

- P(Kd[71)

P(Kd[81)

P(Kd[91)

Figure 5.25: How the learning automata update their action probabilities with
experience.

REINFORCEMENT LEARNING K. H. Chan

01r, I.
0 10 20 30 40 50 60 70 80 90

Time (seconds)

0 10 20 30 40 50 60 70 80 90
Time (seconds)

5.7 Applying Learning Automata 101

- Y(Out) --- y(ref) JJ = 2.8321 x 10 '18 Beta =1

0.5

0

Time (seconds)

Figure 5.26: Dynamic response of plant for the optimised PID controller, OP-
timised using a team of learning automata.

to Table 5.1 these action probabilities relate to the PID coefficients Kp = 12,

Ki = 12 and Kd = 3. The results of these actions are shown in Figure 5.26.

It is interesting to observe that the team of learning automata optimised
the PID control coefficients to give a desired output without any overshoot.
Early testing of the PID controller showed that the output with the smallest

cost function would give some overshoot but the rise time is fast resulting in a

small error area. It was expected that the optimised PID controller would give

such a dynamic response and return a result with the smallest cost value J. An

example of this is shown in Figure 5.25, where a cost of Vrj = 1.41287xl 0-20 is

obtained yet the output suffers from some overshoot. However tile optimised
PID controller gives a cost of V-j = 2.8321xlO-18 but doesn't suffer from

overshoot. So although the team of learning automata isn't solving the problem
of minimising the cost function directly, it can use J or really 0 the normalised
cost function to guide it into choosing actions that can solve the problem.
The situation arises though that there is a possibility for not finding a global
optimal solution but a local optimal which can be a limitation to using multi-

REINFORCEMENT LEARNING K. H. Chan

048 12 16 20 24 28 32 36

5.7 Applying Learning Automata 102

1.2

0.8

0.6

0.4

0.2

-0.2
048 12 16 20 24 28 32 36

Time (seconds)

Figure 5.27: Control response of plant with PID controller using non-learning
control but using conventional manual design.

agent learning.

Both reinforcement learning control methods, TD learning and learning

automata provide an automatic method for learning control parameters in

a progressive and adaptive manner. Conventional hand designed controllers

and those whose parameters are tuned manually require some knowledge of

the system to be controlled, which isn't always possible. Using the 3rd or-

der system (equations (5.2.1)) as a comparative test between learning control

and conventional non-learning manual design control methods, using the root

locus method to find the coefficients of the parameters in a third order sys-

tem. The PID controller parameters evaluated by manual tuning provides a

response shown in Figure 5.27. When compared, the learning control provides

a more than adequate automatic method of tuning control parameters for use

in dynamic systems, but more importantly it has the ability to respond to

unforeseen changes in a dynamic system, such as fault§ and changes in system

performance by re-learning a new control response.

REINFORCEMENT LEARNING K. H. Chan

0

Chapter 6

Learning for Power System

Control

As a practical and important application to a large scale optimisation prob-

lern power systems were identified as providing a range of opportunities for

using reinforcement learning. Therefore the problem of power system control

and optimisation was investigated. It was also understood that using temporal

difference learning on power system control and optimisation had never been

studied before. Following the previous successful work using interconnected

learning automata for optimising the parameters of a PID controller, further

study of using a neural network based reinforcement learning schemes such as

temporal difference reinforcement learning was investigated. As demonstrated

in the previous chapter the ability of learning control is a flexible and powerful

method of optimising a parameterised controller.

6.1 Power System Control Problems

Power systems provide a consumer with electrical energy, the quality of this

energy needs to be maintained, primary factors that ensure this quality are,

103

6.1 Power System Control Problems
1

104

e Constant frequency

* Constant voltage

o Reliability

* Purity of sinusoidal waveform

The frequency and voltage of a system is dependent upon the active power

balance in other words when the power output is equal to the power demand

plus system (e. g. transmission) losses. In reality a power system is never in

such a state of equilibrium because the power demand changes continuously as

consumers switch on and switch off appliances. Since the consumers behaviour

cannot be predicted the need for adaptive control is essential in power systems.

Reliability depends on the ability of a power system to survive sudden
faults, overloads and loss of generators, transformers and transmission lines.

If the damage is severe enough then some consumers will experience power

interruption. Of. course in some cases even a very short interruption is fatal,

such as in a hospital operating theatre.

The purity of a sinusoidal is only recently becoming important. Any non-

linear load absorbs a non-sinusoidal current, the harmonics of a non-sinusoidal

current cause harmonic voltage drops and distortions in the power [611. Tradi-

tionally rectifiers and fluorescent tubes have been the causes of these voltage
distortions. However the present use of power electronics in appliances, such

as transistors and thyristors in television rectification, light dimming switches

washing machine controllers'etc... can only mean that this problem will in-

crease.
Some of the types of unwanted disturbances that occur in power trans-

mission are shown in Figure 6.1. Power system reliability in terms of short
term interruptions such as Outage and Sag have been primary reasons for a

concept known as Custom Power [621. Custom Power is a response to poor

REINFORCEMENT LEARNING K. H. Chan

6.1 Power System Control Problems 105

power quality present in factories homes and offices, the aim is to provide a
better quality of supply, since in times of greater electronic (especially com-

puter) expansion, poor power quality cannot be tolerated. The instabilities

in the power supply can result in computer data loss, which can be expensive

to correct. Harmonics, Impulses and Swells interfere with electronic circuits

and stress the electrical insulation of end use equipment reducing the lifetime

of electrical equipment. The use of reinforcement learning to optimise/control

FACTS, Flexible AC Ransmission Systems (or other power system) devices

can be used to realise the concept of custom power [63] [64] [651.

Power Supply Reliability

Outage

Power Supply Quality

hfW
Hannonics Swell

Sag

Impulse

Figure 6.1: Disturbances in power supply systems [621.

The learning automata was used to initially test the power system control

problem on a single machine infinite busbar system in a simulation study.
Although this work had already been performed by Wu [281 it provided a
foundation upon which further research was developed.

REINFORCEMENT LEARNING K. H. Chan

6.2 Power System Models 106

Form the initial single machine power system with infinite busbar a more

complex power system was developed. This power system had three generators
in the simulated power system network with two loads and using TD learning

to update a parameterised fuzzy logic controller instead of a PID controller.

6.2 Power System Models

For initial tests a single-machine-infinite-busbar (SMIB) power system has

been used to represent the reinforcement learning environment, Figure 6.2

shows the general SMIB.

V, ZI=R, +JXI vs
2-ý

7Z,
Is

(\JJLL
Synchronous Generator

Z2=R, +JX2

YI Y=G+JB

Figure 6.2: A single-machine-infinite-busbar power system [611.

Where i is the current, Vt is the terminal voltage Z, and Z2 are the impedances

of transmission lines 1 and 2 respectively. Y is the self admittance, G is the

conductance and B is the susceptance. R, and R2 are tile resistances, X, and
X2 are the reactances in transmission lines 1 and 2 respectively. V, is the

voltage of a single-machine-infinite-busbar power system.

REINFORCEMENT LEARNING K. H. Chan

6.3 Non-linear Model of Turbo-Generator 107

SE - f(VU) '4

Vk VR(-) Vs vfdi-) vm

++ + I
VREF I +T. S

VR(-) Vt*-*

BOILER - - - F
K ,S

l

RATE INLET POSITION PO I+T. (S
LIMIT VALVE LIMIT

r Gvm

H. P. STAGE I. P. STAGE

I+ TKp S I+ Tip S Fv I+ TLp S ::::
Eý

M.

R. + Jx. RL + JXL
L. P. STAGE GENERATOR

I
I+ TtH S

UC4

RATE INTERCEPT POSITI
LIMIT VALVE LIMIT

Figure 6.3: Turbo-generator system to be controlled.

6.3 Non-linear Model of Turbo-Generator

The development of a turbo generator model for simulation studies was a
fundamental requirement. The basis for producing the turbo-generator model

was provided by Wu [281, the model state equations for the various elements and
their initial conditions are shown in the relevant subsections and are described

later. A system block diagram of the turbo generator is shown in Figure 6.3.

The model is as realistic as possible and was used to test the optimisation

of PID control parameters using a team of learning automata architecture.
The following is a list of symbols used in the model of the single-machine-

infinite-busbar-system.

REINFORCEMENT LEARNING K. H. Chan

6.3 Non-linear Model of lbrbo-Generator 108

List of symbols

5 rotor angle with respect to infinite bus

w rotor speed
Ifd field current
Id, Iq stator currents in direct and quadrature-axis circuits, respectively

Ikdi Ikq damper circuit currents in d- and q-axes, respectively

Vt generator terminal voltage

Pt, Qt power and reactive power delivered at terminal, respectively

V) flux linkages

VR exciter voltage

Xtri XL transformer and transmission line reactances, respectively

Rt, RL transformer and transmission line resistances, respectively

R,, stator resistance

Xd, Xq synchronous reactances in d- and q-axes, respectively

Xad; Xaq d- and q-axis mutual reactances, respectively

T,., exciter time constant

T, f, Kq regulator stabilising circuit time constant and gain, respectively

Ta,,, Ta compensation coefficients of automatic voltage regulator

VR(max)
i
VR(min) maximum and minimum limitations of excitation voltage, re-

spectively

Vc input to excitation system

T. airgap torque

T,,, generator shaft torque

H inertia constant

Kd mechanical damping coefficient

UGm, UGj actuating signal to governor on inlet and intercept valves, respec-

tively

Gvm, Gvj position of inlet and intercept valves, respectively

REINFORCEMENT LEARNING K. H. Chan

6.3 Non-linear Model of lbrbo-Generator 109

PO internal boiler steam pressure
FHp, Fip, FLp power fraction from HP, IP and LP stages of turbine

THp, Tjp, TLp time constants associated with HP, IP and LP stages of turbine

TGvm, TGvj time constants of inlet and intercept valves, respectively
TR, ff turbine reheat time constant
A deviation from steady-state value

6.3.1 Turbine and Boiler

The boiler is represented by an internal steam pressure Po and has been

assumed to be a constant steam source. The steam raised by the boiler is used

to drive a three stage turbine H. P high pressure, LP intermediate pressure and
L-P low pressure respectively. The steam passes through each stage from high

to low pressure turbines which drive a synchronous generator see Figure 6.3.

The power fractions available from each stage are calculated from the follow-

ing equations (6-3.1), (6.3.2) and (6.3.3). These were calculated continuously
for the system dynamic response using the RungeKutta numerical method to

observe the continuous output. Equation (6.3.3) was calculated every 20ms to

give a feedback to the learning system for performance evaluation.

ýfd

ýd

ýkd

ýq

ýkq

Te

REINFORCEMENT I

= Aw (6.3.1)

= wo(T,,, -T, -KdAw)1211

= WO(Vfd - RfdIfd)

= WO(Vd + V)q + Id(R, + Re)) + V)q AW

= -woRkdIkd

= WO(Vq - Od + Iq(Ra + Re)) V)d Aw

= -WoRkqIkq

= OdIq - 7PqId

. jEARNING K. H. Chan

6.3 Non-linear Model of 7brbo-Generator 110

Of d 'Xfd -Xad Xad Ifd"

Od Xad -
(Xd + Xe) Xad Id

Okd Xad -Xad Xkd Ikd (6.3.2)

Oq -(xq + Xe) Xaq Iq

.
'Okq -Xaq Xkq Ikq

Vtd ý Vbsin5 + R, Id - (Xt, + XL)Iq (6.3.3)

Vt
q= Vbcos5 + R, Iq - (Xtr + XL)Id

V t=
(V2 2

tq)
1/2

4 td
+ VI

Pt = VtdId + VtqIq

Qt = VtqId - VtdIq

where
Re = Rtr + RL7 xe = Xtr + XL

the parameters used in the simulation for the synchronous turbo-generator are

given in equation (6.3.4).

H=3.25,
Rfd = 0.0015p. u.,
Rkd = 0.0078p. u.,
Rkq = 0.0084p. u.,

Kd = 0.025

Xad = 1.86P. U., Xq = 1.91P. u.

Xi, q = 1.77p. u., XW = 1.94p. u.
Xfd = 1.97p. u., Xkq = 1-96P-U-

Ra = 0.005p. u., Xd = 2. Op. u.

6.3.2 The Governor System

(6.3.4)

The governor controls (or regulates) the amount of steam pressure available
from the boiler and previous turbine stages. In this system two governor control

signals are present, the first UGM controls the inlet from the boiler regulating

steam pressure to the H. P turbine stage, while the second UG, controls the

REINFORCEMENT LEARNING K. H. Chan

6.3 Non-linear Model of 7brbo-Generator ill

intercept valves regulating steam pressure to the LP and L. P turbine stages.
The regulation of the steam pressure at a constant level controls the speed of

the turbines, allowing the synchronous machine to generate electric power at

a constant frequency.

kH
p= (GvmPO - Yip)ITHp (6.3.5)

kRH
= (YHP

- YRII)ITRH

ki p= (Gv, VRH - Yjp)ITp

kL P = (pip - YLPVTLP
dvitf

= (UGm - GGm)ITGvAf

dvj = (UGI - Gvl)ITGvj

T,,, = FjipYiip + FIpYlp + FLpYLp

where
0< Gv, &f < Gvm(,,,,, ý), 0< Gvj < GVI(max)

dvAf(Mi,
)

dvm < dvm(m") (6.3.6)

dvi(mi,) dvi: 5 dvi(m,.
)

the parameters used in the simulation study for the governor system are shown
in equation (6.3.7).

FIlp = 0.24,

Flp = 0.34,

FLp = 0.42,

Po = 1.2

THp = 0.3s,

Tip = 0.3s,

TLP = 0.72s,

6.3.3 Excitation System

TGVAf
--=

OAS

TGVI 0-01S

TRG 10. Os
(6.3-7)

The excitation system provides a voltage Vfd to the generator which is used
to control the magnetic field in the rotating machine generating a three phase

REINFORCEMENT LEARNING K. H. Chan

6.3 Non-linear Model of 7brbo-Generator 112

alternating-current output. The three phase output is mathematically repre-

sented by its transformed direct and quadrature components. The excitation

voltage is used to calculated the magnetic flux in the generator, , these flux cal-

culations are further used to calculate the currents in the machine. Finally the

terminal voltage can be determined after the generator output is changed by

the transformer, for transmission through power lines to the consumer.

r IýR : -- (I(a (Vc + Tac ý
c) - VR) / Ta

Iýfd (VR - Vef - Vfd)ITex

Iýe f (Ife f Ilf d- Ve f)/ Te f

where

VR(min)
.
15 VR - Vef '51 VR(max)

Vfd(min) :5 Vfd :5 Vfd(max)

(6.3.8)

the parameters for the excitation system used in the simulation study are shown

in equation (6.3.9).

Tex = 0.01s, T., = 0.1514, T. = 0.0154

T, f = 0.3s, Kq = 0.15, K. = 0.05

where

-0-005'5 V fd "S' 0.005

6.3.4 Transmission System

The synchronous generator represented in this model has its output power

controlled by the excitation system. The power output generated at the ter-

minals must give a terminal voltage (Vt) equal to any losses in transmission

line(s) plus the constant load voltage required by the consumer (Vs=1.0 p. u.).

REINFORCEMENT LEARNING K. H. Chan

6.4 Applying Reinforcement Learning 113

The transmission line(s) characteristics need to be taken into account for losses

in order for a correct value of terminal voltage (Vt) to be calculated.

the following are the parameters used to model the transformer (equation (6.3.10))

and transmission lines (equation (6.3.11)).

Rt, = 0.038p. u., Xt, = 0.1p. u. (6.3.10)

RL = 0.025p. u., XL = 0.35p. u. (6.3.11)

6.4 Applying Reinforcement Learning

The popular PID controller is used in a power system. The parameterised

nature of the PID controller makes it a suitable candidate for the application

of reinforcement learning. The methodical and automatic nature of improving

the parameter action selection through continuous learning is shown in the

following example using reinforcement learning of a PID controller to optimise

the performance of a turbo-generator.

6.4.1 Parameter Optimisation of a Turbo-Generator PID

Controller

A team of interconnected learning automata have been used to success-
fully optimise a PID controller in a turbo-generator system [28]. The team

of interconnected learning automata (Figure 5.21)are able to learn optimal
PID control parameters of an unknown turbo-generator system in a noisy en-
vironment without persistent excitation signals. Each automata in the team

controls/optimises one parameter of a complex dynamic system, in this case
the PID controller of a turbo-generator system. At every instant the internal

states of each learning automata are updated according to some probability

REINFORCEMENT LEARNING K. H. Chan

6.4 Applying Reinforcement Learning 114

distribution and an action (of a finite set) is taken. Each automaton has

a uniform probability distribution initially, with all actions having an equal

probability set by pn' (k) =1 /rj (n = 1,2, ... rj) and updated according to input

0 The response P from the environment is used in the reinforcement scheme (or

learning algorithm) to update the state probabilities by giving identical pay-

offs to every automaton in the team. The reinforcement scheme is described in

equation (6.4.1) [281 and a flow chart, Figure 6.4 illustrates how the learning

was implemented.

pý(k+l) = g(k)+0310(k)(1-p3, (k))-0'2(1-0(k))&(k) (6.4.1) 12

when m=n

pý (k + 1) (k) - 01,0 (k)pý (k) + 6P2(l -, 3(k)) pý (k)]

when m On

Where nE1,2, ..., rj and m=1,2,..., rj, O(k) E [0,1], with 0< 0', <1 and
0< W2 <1 being the reward and penalty parameters, respectively. The inputs

to the environment a= jal, a2,... ' aNI represents a finite input set, where aj
is a subset of the input provided by the jth automaton Aj, (j = 1,2,... ' N).

A reward probability of the environment corresponding to action a(k) defined

by equation (6.4.2) [28]

Silti2t---, iN= Ep (k) Ia (k) = [ceil
9 ce'j2) "'? aiNNI (6.4.2)

The expected payoff at instant k is given by equation (6.4.3)

E(k) pil (k)ýj2, (k)
... pi' (6.4.3) (k) si,, i iN IV

ilsi2t ... 12N

Where 1ýj, (k) is the probability that Aj chooses action ai .j at instant k. For

systems with a wide range of parameter values such as the turbo-generator

system, search with subsets of actions can be used [281. The basic method

REINFORCEMENT LEARNING lf. H. Chan

6.4 Applying Reinforcement Learning 115

involves searching a subset of actions until some performance criterion'is met

and then expand or contract the subset according to the action probabilities,

which are reset (back to initial uniform distribution) from time to time. This

keeps the number of working values low for rapid search, as well as allowing
for a global search to find the optimum parameter value.

The advantage of a reinforcement learning method such as the learning

automata is that learning can be carried out directly (on-line), based on the

control actions and system performance, thus direct knowledge of the system

model is never required. For real turbo-generators, obtaining an "exact" system

model can be difficult and expensive if not impossible in some cases.
A simulation study of a non-linear turbo-generator was used to test the

reinforcement learning approach, although similar to the approach used in the

previous there are some differences. The learning was carried out in a stochastic

environment where only noise is present and without the use of a persistent ex-

citation signal (such as the PRBS used previously. The PID control parameters

were optimised by a team of interconnected learning automata searching for

the optimum control actions. Each learning cycle is one second of real time.

The parameters to be optimised were Kp, the proportional coefficient, KD,

the differential coefficient and y, a stabilizing signal coefficient, the integra-

tion coefficient, K, was kept constant since it was not sensitive to the control

performance. The parameter ranges were set as Kp E [3,01, KD E [0.2,01

and -1 E [0, -0.21, a sampling interval of 7- = 20ms was used and the control

performance was evaluated during a period of 2s.

Figure 6.5 shows an example of the learning, where the probability of the

optimum control action approaches one and the other action probabilities van-
ishing to zero as learning progresses. The interesting fact that tile optimum

control parameters were obtainable in a noisy environment without the use of a

persistent excitation signal and the ease of implementing the team of intercon-

nected learning automata to any real unknown industrial turbo-generator when

REINFORCEMENT LEARNING K. H. Chan

6.4 Applying Reinforcement Learning 116

Start

I Initialise turbo-generator system and parameters I

I Discretisc PID control action parameter ranges, for optirnising I

Select a subset of learning automata actions for search

Set learning automata action probabilities to give a uniform probability distribution
for all actions in subset

I

Randornly select an action

Apply parameter values to PID controller determined
by actions selected

I

Evaluate turbo-generator performance and obtain
reward probabilities or penalty probabilities

I

Evaluate payoff P from generator performance

False

Learning "*ý
cycles > 800

T True rue
Use reinforcement scheme to update action probabilities
according to payoff 51

Did action
, 'ýselccted result in
suboptimal (optimal within
action subset) PID control

-,, parameters "",

True

False

False

Learning '\ True r-
cycles > 900 >--Ol Stop

False ,, oo" Are PID cow
parameters
optimal

True

Figure 6.4: Flow chart of turbo generator system PID controller optimisation
using a team of interconnected learning automata.

REINFORCEMENT LEARNING K. H. Chan

6.4 Applying Reinforcement Learning 117

1.2 rKD(l)

KD
K KD
KD(2)

K KD
D(3)
D(4)

0.8
KD(5) A:

.0 4* ýI- KD(6)
0.6-

KD(7)
W 4ý6 CL4 0.4-

KD(8)
KD(9)

0.2 1
Pý KD(10)

KD(I 1)

0 ---- T-'--T"'--- T"- KD(I 2)

o 20 40 60 80 100 120 140 160 180 200 220 240 KD(13)

Time (seconds) KD(14)

Figure 6.5: Optimisation of KD parameter in a turbo generator PID controller
using a team of interconnected learning automata.

1.2

uls

0.6

0.4

0.2

0

Figure 6-6: Control performance of team of interconnected learning automata
in a power system optimisation problem.

REINFORCEMENT LEARNING K. H. Chan

8 10 12 14 16 18

Time (seconds)

6.4 Applying Reinforcement Learning 118

1.5

0.5

0

-0.5
c

012345

Time (seconds)

Figure 6.7: Stability response of the team of interconnected learning automata
in a power system after recovering from a three phase short circuit.

required. This example illustrates the great potential of using reinforcement

learning methods to complex engineering problems.
The final control performance of the system after training can be seen in

Figures 6.6 and 6.7.

6.4.2 Learning Time

In most reinforcement learning methods there must be a balance between

gaining new knowledge and using learnt knowledge for effective control per-

formance. The fundamental limitation is the learning time required to make

use of any information the environment can provide. In practice the time for

simple system such as this single machine infinite busbar system the learning

time is not a major concern when using modern computer processors which

REINFORCEMENT LEARNING K. H. Chan

6.4 Applying Reinforcement Learning 119

typically have high clock speeds of hundreds of megahertz. For more complex

systems the learning and computational time will grow accordingly. One ob-

vious way in which to reduce these increased learning times is to use parallel
learning processes. For the PID controller it is a simple matter to have a sep-

arate learning automaton optimising each PID parameter. Taking this idea

one step further for multi-machine power systems for example then learning

control need not be centralised but can be distributed as demonstrated in the

next chapter using a multi-agent reinforcement learning scheme.

REINFORCEMENT LEARNING K. H. Chan

Chapter 7

Multi-Agent Learning for

Control of Multi-Machine Power

Systems

Being able to predict and control stochastic systems has always fascinated

scientist and researchers. A lot of real world systems are stochastic such as the

financial stock market, weather forecasting and information routing. One other
important aspect of natural intelligent systems is their distributed nature and

sometimes described as connectionist systems [661, [5). The move from large

complex centralised intelligence to simple distributed but connected intelligence

was influenced by biological models of the brain, which are powerful, flexible

and highly adaptive, but also not yet completely understood.
Early work with temporal difference learning for practical problem solv-

ing and control tasks, began with route planning and navigation for simulated

robotic agents in maze solving problems. This evolved to encompass non sta-
tionary environments in order for the robotic agents to learn and adapt to

changes in the environment [451, [671, [681. The robot navigation idea has been

taken one step further for information routing in the ever expanding world

120

7.1 Multi-illachine Power System Learning Control 121

of accessible information such as the internet or simply the telephone. The

idea was to have an intelligent adaptive agent at each network node whose

only concern is to route packets of information efficiently. However only local

information was known to each reinforcement agent but the optimal solution,

for routing information as quickly as possible from source to destination was

a global one. It is this co-operation and co-ordination between agents which

interests researchers and gives the information network an intelligent and adap-

tive capability.

By following the evolution the application of multi-agent reinforcement

learning is explored for the control of large-scale systems. In particular the

use of multi-agent learning (or distributed learning control) by means of TD

reinforcement and the adaptive heuristic critic neuron like structures was used

to optimise the performance of a multi-machine power system.

7.1 Multi-Machine Power System Learning Con-

trol

The usefulness of TD reinforcement learning for optimising control per-

formance in general has been described by many examples in chapter 1 and
demonstrated in chapter 5.

The concern here is to apply reinforcement learning for control of syn-

chronous generators in a multi-machine power system. Previous studies used

the learning automata-based reinforcement learning for controlling power sys-

tems [281 [691, the TD reinforcement learning method is proposed to optimise

controller parameters, on-line in real time, in the large-scale power system.
Two types of parameterised controller were evaluated, the PID controller and

the fuzzy logic controller. The multi-agent reinforcement learning scheme has

been evaluated in a simulation study. The simulated system is concerned with a

REINFORCEMENT LEARNING K. H. Chan

7.1 Alulti-Alachine Power System Learning Control 122

Reinforcement
Learning
Agent I

Controller I Reinforcement
#4 #5 - Learning

00 Agent 2
Generator I ýA

Controller 2
Reinforcement

#1 #6
Learning
Agent 3 Generator 2

#3
Controller 3 L2

4

Generator 3

#2 . *Ll

Figure 7.1: Optimisation of power system controllers using multi-agent learning
[701.

three-machine power system which has multi-mode oscillations. The simulation

results show that the proposed scheme has satisfactory learning performance

and following a fault disturbance such as a three- phase-groundi ng short circuit,
the learning controllers can damp out the multi-mode oscillations of the power

system rapidly.

REINFORCEMENT LEARNING K. H. Chan

7.2 Architecture of network 123

7.2 Architecture of network

List of symbols used
6i = rotor angle of i-th machine, in degrees

Wi = rotor speed of i-th machine, in radian per second

WO = synchronous speed, in radian per second
Vdi, Vqi = stator voltages in d- and q-axesof i-th machine, in p. u.

Idi, 16 = stator currents in d- and q-axes of i-th machine, in p. u.

Vt i= generator terminal voltage of i-th machine, in p. u.

P. = input mechanical power of i-th machine, in p. u.

P'j, Q'i = power and reactive power delivered at the terminal of i-th

machine, in p. u.
Eq'i = internal transient voltage in q-axis of i-th machine, in p. u.

Hi inertia coefficient of i-th machine, in seconds

Di damping power coefficient of i-th machine, in p. u.

'rdi 7 Xqi synchronous d- and q-axis reactances of

i-th machine, in p. u.

Xdi transient reactance in d-axis of i-th machine, in p. u.
Tdoi the field winding time constant, in seconds

Yij the Gij +i Bij transfer admittance between buses i and j,

in p. u.

Yi i the Gii +j Bij self-admittance of bus i,

in p. u.

Gij, Bij transfer conductance and susceptance between buses i and

j, in p. u.

Yij = the magnitude of Yij, in p. u.

aij = 7r/2- arctan(-Bij/Gij)

Ui = excitation control of i-th machine, in p. u.

subscript, representing steady state of variables

REINFORCEMENT LEARNING K. H. Chan

7.2 Architecture of network 124

Ll and L2 in Figure 7.1 are the system load admittances given by, Ll =
8.6 - 6.88j and L2 = 9.8 - 7.8j The operating conditions for the generators

are shown in Table 7.5. All the power system parameters are presented in

Tables 7.1,7.2,7.3,7.4.

7.2.1 Multi-Machine Power System Model

The three generators in the power system network were each simulated

using a fifth-order model given by equations (7.2.1).

d(6)
- dt W- WO

d(w)
dt

"' (p.
211

ý(E, ')

dt =1 77[Efd -
Eql

do

Tio -Eq' + Eq - (Xd Xd)Id +
dt

T
Eq'
dt

11
it d Eý

-Ed + (X'
- Xq. Tq q0 dt

Ud
= -RId

+ 41(" Iq + E" qd

Uq
= -RIq - X"Id+ E" dq

pe = UdId + UqIq

(7.2.1)

All generators come equipped with AVRs but only generator 2 is equipped

with a governor. The AVR action is determined by the following equation (7.2.2),

Ef =
KA

(Vref
- Vt)

1+ TAS

and the governor is modelled using equation (7.2.3).

(7.2.2)

,_r
(a + b) d(w) (7.2.3) q [T-l;

--T-g,) dt

REINFORCEMENT LEARNING K. H. Chan

7.3 Multi-Agent Learning PID control 125

Parameter values for the multi-machine power system model

Loads (admittances) in p. u.

Ll = 8.6 - 6.88j, L2 = 9.8 - 7.8j

Node No. Impedance

1-3 0.015+0.10j

4-5(l) 0.075+0.50j

4-5(2) 0.1125+0.75i

2-5 0.060+1.40j

5-6 0.225+1.50j

3-6 0.025+0.15j

Table 7.1: Transmission line parameters in p. u.

7.3 Multi-Agent Learning PID control

The adaptive heuristic critic (AIIC) was used as the basis for optimising the

control parameters in this study of TD reinforcement learning. The adaptive

capability of the neuron like structures enable learning and hence intelligent

actions to be performed. Each of the control parameters is optimised using

an adaptive critic element (ACE) and an associative search element (ASE).

As learning proceeds, the ASE constructs associations between inputs and

outputs by searching under the influence of a reinforcement feedback signal

r which gives an immediate indication of how good the chosen actions are.
Figure 7.2 shows how the neurons are configured into a neural network for

optimising the control parameters of a single PID controller. Each of these TD

neural networks acted as a learning agent (see Figure 7.1). The idea is that

for a large-scale system these learning agents can be distributed through the

REINFORCEMENT LEARNING K. H. Chan

7.3 Multi-Agent Learning PID control 126

Parameters Unit 1 Unit 2 Unit 3

Xd 1.0260 0.1026 0.1026

xq 0.6580 0.0658 0.0658

1 Xd 0.3390 0.0339 0.0339

It Xd 0.2690 0.0269 0.0269

x1l q 0.3350 0.0335 0.0335
Tdl

o 0.3670 03670 0.3670

Td". 0.0314 0.0314 0.0314
Tql

0
0.0623 0.0623 0.0623

H 2.8000 28.000 28.000

Table 7.2: Parameters of the generators in p. u.

Parameters Unit 1 Unit 2 Unit 3

T9 0.250000 0.250000 0.250000

a -0.001328 -0.00015 -0.00015
b -0.170000 -0.01700 -0.01700

Table 7.3: Parameters of the governors.

system at relevant points to solve a local optimisation problems. By solving

their own local optimisation problem they also effectively coordinate with each

other to solve a global optimisation problem. The TD reinforcement learning

agents do not share knowledge with each other, and effectively they are unaware

of each others existence. One advantage is that they can still solve a global
optimisation problem if one of them breaks down, in effect this principle has

built in redundancy. For any size system it is a simple case of scaling the

required number of reinforcement learning agents to suit the task being solved.
Figure 7.3 shows how the TD neural network is implemented with a PID

REINFORCEMENT LEARNING K. H. Chan

7.3 Multi-Agent Learning PID control 127

Parameters I Unit 1 Unit 2 Unit 3

KA 30 30 30

TA 0.01 0.01 0.01

K, 1 1 1

T, 0 0 0

Table 7.4: Parameters of AVRs and exciters.

Generator I P(P. u.) Q(P. u.) V(p. u.) ZO (degree)

1 0.7564 1.0930 1.300OZ5.0

2 7.5537 9.0095 1.250OZ6.0

3 9.2769 9.6574 1.10OZ0.0

Table 7.5: Generator operating conditions.

controller in order to optimise the system performance. The PID controller

used in this simulation study is given by equation (7.3.1).

U(t) = U(t - 1) + icp[y(t) - Y(t - 1)] + (7.3.1)

Kjy(t) + KDJY(t) - 2y(t - 1) + y(t - 2)]

The predictions for the AIIC using TD learning is the same as that used in

the 3rd order dynamic system in chapter 5 equation (4.2.2) as were the ACE

weights, ASE weights and trace decays being updated using equations (4.2.3)

(4.2.6) respectively. The f (t) outputs from the ACE was calculated from equa-

tion (4.2.5) and the action selection output for the ASE was given by equa-
tion (4.2.8) with a sigmoidal activation function determined by equation (5.2.5).

The reinforcement feedback r(t) was formulated as a cost function using

equation (7.3.2) and used to measure the performance of the controller after

REINFORCEMENT LEARNING K. H. Chan

7.3 Multi-Agent Learning PID control 128

ACE (0)

A
r (01) Kp Action

S((0 AKSE(() I-
Selected

ASE (0) 0)

ACE (1)

S

Inputs A

r (1) KI Action -1 'i
Se

, _,.

r

S((I
Selected

ACS E

((I,))

r (1)

1)

ACE (2)

A

r (2) KD Action
Selected

ASE (2) 1--for (2)""
'I

r
Reinforcement feedback signal

Figure 7.2: The TD neural network architecture used to optimise a PID con-
troller [701.

each Kp, K, and KD action selection.

N
(Yref (t) -Y (0)2 (7.3.2)

where N is the window size or sampling interval for calculating the mean and

covariance inputs xi to the TD neural network from the measured output y(t).

7.3.1 Simulation Results

The power system investigated is divided into three areas. Each area serves
its own load with only a small load transferred through the transmission line.

Both generators 1 and 2 serve load L1, while generator 3 serves load L2, with

only a small load transferred through the transmission line. The power system

REINFORCEMENT LEARNING lf. H. Chan

7.3 Multi-Agent Learning PID control 129

r ---------------------------------------
Environment

PRBS Excitation

Y.. <t) + Generator Y(t)

U(t)

PID Controller

--- ----------------------------------
aj

P
a' aD r(t) ik

Selected Actions Reinforcement
Signal

Temporal Difference
F,,

e. ral Network

Figure 7.3: Using TD reinforcement learning to optimise a PID controller for
each generator in the multi-machine power system [70].

possesses a nature of multi-mode oscillations [711, which can be seen in Fig-

ure 7.4. The inertia constant for generator 1 was 10% of that of generators 2

and 3. The outputs of all exciters and controllers are limited to 7 p. u.. Each

machine is controlled by a learning PID controller. A three-phase-to-ground

short circuit at one of the double transmission lines, at point A, as illustrated in

Figure 7.1, was simulated. The transmission line is switched off at t=0.3 ms

and is switched back on at t=0.7 ms when the fault is cleared.

The PID control parameters are optimised using a TD learning neural not-

work. Each PID parameter is set a range and within this range TD learning is

used to try and find the best value for each PID parameter through a process of

selection and then observing the results of the multi-machine performance after
a three phase short circuit. As each action ai"', ajI and ak' (corresponding to a
parameter value) is chosen the probability of it being chosen is also updated,
to the effect that if the action gives a good performance then the probability of
choosing that action again is increased. After many search and observe train-

REINFORCEMENT LEARNING K. H. Chan

7.3 Multi-Agent Learning PID control 130

3

2-2

-3

-4

Omegal - Omega2
Omegal - Omega3
Omega2 - Omega3

456789 10
Time (seconds)

Figure 7.4: Stability response of the multi-machine power system after recov-
ering from a three phase short circuit without control.

ing sequences the best control parameters will be the ones whose probabilities

are closest to one. These should then be the optimal control parameters for

controlling the multi-machine system in the event of a three phase short circuit
fault. The range of values available to each PID control parameter Ifp, Kit Kds

were [1000,3000], [1000,20001 and [100,2001 respectively, with a choice of ton

actions available in the range set.

In general for a desired learning performance, the larger the window size N

is in equation (7.3.2), the better r(t) can be formulated and in our tests N=

2000 was used throughout. y(t) and Yrd(t) are the changes in angular velocity
Aw of the generator rotor with a reference of Awr,, f =0 rads s-1. Aw was used
in this simulation as our performance parameter to be optimised. However,

other outputs from the generators could be used also, the only requirement is

that the evaluative feedback can show how good the control action is so that

a useful r(t) can be inferred from the measurement.

REINFORCEMENT LEARNING K. H. Chan

7.3 Alulti-Agent Learning PID control 131

2

1.5

V 05

0
E

-0.5

u
1.5

Figure 7.5: Stability response of the multi-machine power system after recov-
ering from a three phase short circuit with multi-agent control.

The multi-agent learning system can successfully learn to optimise the con-

troller parameters. Figure 7.5 shows the deviation of the angular speed AW

of the generators controlled by the learning PID controller equipped on each

machine in the power system. The simulation runs for 10000 samples with a

time step interval of 0.001 corresponding to 10ms of time. Training of the TD

neural network is achieved by constantly running the program, after 100 runs

of 10000 samples we observe the accumulated number of times each action has

been selected, the ones chosen most often should then be the optimal control

parameters. Each controller is then set to the best parameters found during

learning and the response of Aw observed. The PID control output can be seen
in Figure 7.6 showing the control outputs settling, during the transient process,

which provide optimal control to the multi-machine power system. The termi-

nal voltages of each generator also recovers quickly after the three-phase-short

circuit fault, which is illustrated in Figure 7.7.

REINFORCEMENT LEARNING K. H. Chan

456789 10
Time (seconds)

7.3 Afulti-Agent Learning PID control 132

2.5

6
2

1.5

0.5

Figure 7.6: PID control outputs optimising the multi-machine power system
performance after a three phase short circuit.

1.4

1.2

0.8

0.6

0.4

so 0.2

U ()

-- Generator I- Generator 2- Generator 3

456789 10
Time (seconds)

Figure 7.7: Terminal voltage recovery for the multi-machine power system after
a three phase short circuit.

REINFORCEMENT LEARNING K. H. Chan

456789 10
Time (seconds)

7.4 Multi-Agent Leaming Fuzzy Control 133

The simulation results show that the presented scheme had a satisfactory

learning performance and after a fault disturbance, such as a three-phase-

grounding short circuit, the learning PID controllers successfully damp out the

multi-mode oscillations of the power system rapidly.

7.4 Multi-Agent Learning Fuzzy Control

The next simulation involved the application of Temporal Difference (TD)

learning to optimise fuzzy logic controllers in a distributed power system. As

used in the evaluation of the PID controller previously, the three machine

power system is simulated to evaluate the dynamic performance of the gener-

ators as well as observing the multi-agent learning control performance. The

parameters for each of the fuzzy logic controllers are optimised in parallel using

TD reinforcement learning agents. The fuzzy control parameters are updated

independently and simultaneously.

The same TD learning neural network and multi-machine power system

(Figure 7.1) was used, but a fuzzy logic controller was used instead of a PID

controller. The control actions from each TD learning neural network that

makes up a learning agent is shown in Figure 7.8. As for the PID simulation

study the cost function to evaluate f (t), r(t) and output function were updated
in the same manner using the same equations, as were the AIIC weights and
trace decays. A flow chart, Figure 7.9 describes how the learning fuzzy control

was implemented.

Figure 7.10 shows how the TD neural network is implemented with a fuzzy
logic controller in order to optimise a single synchronous machine.

For design of adaptive fuzzy logic controllers an important aspect to con-

sider is the choice or shape of the membership functions. A non-linear continu-
ous fuzzy membership function of the form shown in Figure 7.11 was employed
for the fuzzy logic controller. This type of membership function is useful for

REINFORCEMENt LEARNING K. H. Chan

7.4 Multi-Agent Learning Fýuzzy Control 134

ACE (0)

A r (0) F. Action a- iected OOÄ OSe'i

ASE (0ý)L s(0) ASE (0) S(O)

ACE (1)

Inputs A

xj r (1) D, ýction ýellected

ASE (1) +CS (1)

ý

ACE (2)

A
r 0() Action

Selected
-u I

A SE (2ý) S (2)1ýý

r
Reinforcement feedback signal

Figure 7.8: The temporal difference neural network architecture for optimising
a fuzzy logic controller [72] [731.

determining the accelerating and decelerating power needed to control each

synchronous generator as it deviates from normal operating speeds. These

fuzzy membership functions N(O) and P(O) (Li et al [691 and Hassan et al
[741) are described by equations (7.4.1) and (7.4.2). It can be seen that the

function S(O, a, b, c) has limits [0,11 and that changes in a, b, c as variables in 0

give us the desired result of changing the shape of the membership function in

Figure 7.11. In order to determine a control, the synchronous generator speed
deviation is sampled to give an indication of the rate of change of Aw over a

sampling interval T,.

REINFORCEMENT LEARNING K. H. Chan

7.4 Afulti-Agent Learning Fuzzy Control 135

Start

I Initialise all parameters I

For each generator select control action parameters for fuzzy logic controllers
based on TD learning Neural Network, equations (7.4.1) (7.4.2) and (7.4.3)

1

Perform Fuzzy Logic control u (t) on generators with equation (7.4.4)

I Use Runge-Kutta numerical method to evaluate performance of generators I

IF performance of
generators is within performance

_criteria
OR time > training time

False

Calculate rewards r(t) with equation (7.3.2)

Determine prediction p(t) for next leaming iteration with equation (4.2.2).

Update all ACE weights and traces with equation (4.2.3) and determine r(t)
using equation (4.2.4)

Update all ASE weights and traces with equation (4.2.5), determine outputs
s(t) of TD neural network to select next set of action parameters for fuzzy
logic controllers, equations (4.2.6) and (5.2.5)

Stop

Figure 7-9: Flow chart for multi-machine learning fuzzy logic control with TD
learning neural networks.

REINFORCEMENT LEARNING K. H. Chan

7.4 Multi-Agent Learning azzy Control 136

r -------------------------------------- -I
Environment

'Cit PRBS Excitation

+ Generator Aqt)

U(t)

Fuzzy Logic
Controller 4 -

----------- ----------------- ---------- - F, D, 00
a, aj ak r(t)

Selected Actions Reinforcement
Signal

Temporal Difference
E I

Neural Network ___ j

Figure 7.10: Using TD reinforcement learning to optimise a fuzzy logic con-
troller [721 [731.

N, (0)
1- S(o; Oo, Omi, Om) 0< om
S(O; Om) 0m2,27r) 0> om

P, (0) N, (0)

where

Om = (27r + Oo)/2 (7.4.2)

Omi = (Oo + Om)/2

Om2 = (27r + Om)/2

and

REINFORCEMENT LEARNING K. 11. Chan

7.4 Alulti-Agent Learning Fýizzy Control 137

C= (21c + 00) /2

1.1

U

Figure 7.11: Fuzzy membership function [721 [73] [741 [691.

0<a

S(O; a, b, c)
2((0 - a)/(c - a))2;

)2;

a<0<b (7.4.3)
1- 2((0 - c)l(c - a) b<0<c

1; 0>c

ý, (1»

Figure 7.12: The rotor angle position on the phase plane [721 [731 [741 [691.

The variable 0 can be determined from Figure 7.12, where A is the rotor accel-

eration, A= (Aw(t) - Aw(t - 1)IT.); As is a scaled acceleration proportional
to a scaling factor F., A, = F,, A. Both A, and Aw are used to compute R(t),

REINFORCEMENT LEARNING K. H. Chan

00 p= (27c - 00) /2 21c

7.4 Alulti-Agent Learning nizzy Control 138

where R(t) = -, /(A' + AW2) . The determination of 0 can be obtained using 3
sin(O) = A. /R(t) for 0<0< 27r. The control action from the fuzzy logic

controller is given by equation (7.4.4)

,
(t)[N, (O) - P. (O)lu,,,,,. (7.4.4) u(t) = Gc

where G, is a ramp function G, (t) = R(t)ID, for R(t) < D,, Gc #) =1 when

R(t) ý: D, and u,,,,,. is a coefficient limiting the maximum output control of

the fuzzy logic controller. In order to change the distribution of the fuzzy

membership function for improved control performance, it is observed that

the three parameters, 00, F. and D,. can be adjusted and optimised using the

temporal difference reinforcement learning.

7.4.1 Simulation Results

All power system parameters and initial conditions were left unchanged as
for the early study with the PID controller. Tile outputs to all exciters and

controllers were limited to 7p. u. Each machine is controlled by a learning fuzzy

logic controller, at point A in Figure 7.1 a three-phase- to-ground short circuit
fault was introduced. The transmission line was switched off at t=0.3ms and
then switched back on at t=0.7ms when the fault had been cleared.

The fuzzy logic control parameters are optimised using a temporal difference
learning neural network. Each fuzzy control parameter is set a range and within

this range temporal difference learning is used to try and find the best value for

each parameter. The process of selection and then observing the results of the

multi-machine performance after a three phase short circuit is used to evaluate

the actions selected. As each action a?, ', aý'a and a"' (corresponding to a Ik
parameter value) is chosen the probability of it being chosen is also updated,
to the effect that if the action gives a good performance then the probability of

choosing that action again is increased. After many search and observe training

REINFORCEMENT LEARNING K. H. Chan

7.4 Afulti-Agent Learning Fuzzy Control 139

1.5

p4

.c
0.5

> cu

.
et -0

20
'Z

-0.5

L -1

- Generator I-- Generator 2- Generator 3

10

Time (seconds)

Figure 7.13: Generator speed responses to a three-phase-ground short circuit
with multi-agent fuzzy control.

sequences the best control parameters will be the ones whose probabilities

converge closest to one. These should then be the optimal control parameters
for controlling the multi-machine system in the event of a three phase short

circuit fault.

After initial evaluations the range of values for each control parameter pa-

rameter was set. Fuzzy logic controller one, corresponding to generator 1 was

set the range 00 E [1.5,2.0] radians, F, E [0.005,0.011 and D,. E [0.01,0.11. For

controllers 2 and 3a suitable range was found to be Oo E [1.5,2.0] radians,
F. E [0.01,0.11 and Dr E [0.05,0.5], all ranges were equally divided to give ton

available actions within the set range.
The multi-agent learning system can successfully learn to optimise the con-

trol parameters. A comparison between the system without control, Figure 7.4

and with the fuzzy controllers optimised, Figure 7.13 shows that temporal

difference learning can successfully select parameters that will lead to good

REINFORCEMENT LEARNING K. H. Chan

7.4 Afulti-Agent Learning Fuzzy Control 140

control performance of the multi-machine power system. The simulation runs
for 10000 samples with a time step interval of 0.001 corresponding to 10s of

time. Training of the temporal difference neural network is achieved by con-

stantly running the program, after 1000 runs of 10000 samples we observe the

accumulated number of times each action has been selected, the ones chosen

most often should then be the optimal control parameters. Each controller is

set to the current best parameters found during learning and the response of
Aw observed. Figure 7.14 illustrates the learning history for the 0 parameter

of the fuzzy logic controller.

I

0.8

.M 0.6

0.4

0.2

-ýýTheta 11

Theta 2

Theta 3

Theta 4

-Theta 5

- Theta 6

- Theta 7

Theta 8

Theta 9

Theta 10
0

Figure 7.14: Optimisation of 0 action parameters using temporal difference
reinforcement learning.

As observed although training takes a long time to converge to probability

one, the early trend shows that the TD learning agent can select optimal control
actions quite quickly. The complete training time may not be required and may
the use of an existing optimal (or even suboptimal) action selected may still be

beneficial in a control situation, this will also enable reinforcement learning to

REINFORCEMENT LEARNING K. H. Chan

0 2000 4000 6000 8000 10000

Time (seconds)

7.4 Afulti-Agent Learning bbzzy Control 141

be used in applications that require quick or even real time response. Further

the use of the chosen fuzzy membership function was due to its well established

history in past control problems Q741 [691). Perhaps the more common types of

membership functions, such as trapezoidal or triangular membership functions

may improve upon the control performance. The combination of reinforcement
learning with fuzzy control as demonstrated here may provide a bridge between

artificial intelligence and natural intelligence. Fuzzy logic already allows this

to some extent but with the inclusion of a learning method that works by trial

and error may lead to a more natural form of control which is more intuitive

and easier to understand in human terms. From the other perspective this

methodology also allows artificially intelligent machines to exhibit behaviour

which seems more natural.

REINFORCEMENT LEARNING lf. H. Chan

Chapter 8

Conclusion

8.1 Summary

The use of reinforcement learning to control a large-scale system such as

a multi-machine power system has been demonstrated. The success of this

method is highlighted partially by the learning automaton approach and mainly
by the temporal difference learning approach and neural network configuration

using adaptive heuristic critics working in parallel, providing robust control to
dynamic systems.

Reinforcement learning control and multi-agent reinforcement learning con-
trol has been shown to be a valid method of optimising dynamic systems, this

has been achieved by the following simulation studies.

1. Developing and using a temporal difference learning neural network in a
3rd order dynamic system for optimising PID control parameters

2. Using a team of learning automata to optimise PID control parameters
in a 3rd order dynamic system.

I Using a team of learning automata to optimise PID control parameters
in a single-machine-infinite-busbar power system.

142

8.2 General remarks 143

4. Using multi-agent temporal difference learning neural networks in a multi-

machine power system to optimise PID control parameters.

5. Using multi-agent temporal difference learning neural networks in a multi-

machine power system to optimise fuzzy logic control parameters.

8.2 General remarks

This study has involved multi-agent learning to co-ordinate and solve global

dynamic optimisation problems. The learning agents are able to do this us-

ing only local limited knowledge and without the need to communicate this

knowledge to each other has been demonstrated. Individually these learning

agents can solve useful learning problems but they also provide a flexible way

to expand to much larger scale problems, so that the number of learning agents

can be increased or decreased to suit the t? Lsks involved. Multi-agent learning

results for the fuzzy logic control and PID control show that temporal differ-

ence learning can be applied to complex systems on-line, providing continuous

and parallel learning to improve a controllers performance.

The advantages of using well known simple learning agents as building

blocks for a distributed hierarchical structure is the robust nature of tile learn-

ing system. If one learning agent fails then the rest can compensate within
limits without it, since they will re-learn to optimise the same situation but

with one less learning agent in the architecture.

The application of reinforcement learning to optimise parameterised con-

trollers is both intuitive and flexible in learning control of dynamic systems.
This method of learning and control has great potential for future engineer-
ing applications as well as being a useful tool for control of large-scale power
systems. The co-ordination between learning agents in a multi-agent learning

architecture also warrants further investigating.

REINFORCEMENT LEARNING If. H. Ch an

8.3 Limitations of approach 144

8.3 Limitations of approach

Reinforcement learning is best applied to systems that will benefit from

continuous learning control that works in the background continuously sam-

pling the environment for changes, the controller parameters are set for general

control but are then fine tuned and reset when an un-desired disturbance occurs

to regain control of the system.

As with all learning approaches to problem solving the main criticism lies in

the amount of time that is required for learning (or training). The flexibility of

reinforcement learning control as it learns by trial and error is offset by the fact

that, in order to come up with an optimal solution a price needs to be paid as it

searches and explores the potential possibilities before settling and converging

on the final solution. Without containing any preset information to improve

its initial search the price in learning time can be expensive. This is somewhat

offset by modern computational processing power and trends suggest a rapid
increase in processing power in the future. Some applications requiring critical

real time performance may not benefit so well from reinforcement learning

control, while a model or some initial knowledge of a system may help, this

will only limit the learning agent for that given situation or environment, thus

removing much of the flexibility of learning by experience. As with all control

methods some applications will be better suited for reinforcement learning than

others.

Another limit found in the simulation studies was the fact that depending

upon the preset parameter ranges for the action selection process, learning a

parameter sometimes resulted in two or more actions having similar or equal

chances of being selected and so no one unique solution was found. In general
these actions or parameter values tended to be close to one another (having

a similar value) and each provided reasonable control performance when eval-
uated individually in the final control test after learning. This indicates that

REINFORCEMENT LEARNING K. H. Clian

8.4 Recommendations for further study 145

the learning agent may be having problems withg local optima as examplified
in the results seen in Chapter 5, Figure 5.14

The solution may be to provide a continuous action space, unlike the dis-

cretised one used in the simulation study or just provide for a longer learning

time, but as mentioned above increased learning time may not be so practical.
Using a continuous action space new methods of selecting an action will need

to be implemented so that the learning agent can expand the action range for

general search then decrease and home in on a particular action value when it

has identified the region the optimal action resides in.

8.4 Recommendations for further study

The emphasis in co-ordinated control using multi-agent reinforcement learn-

ing relies upon the co-operation between learning agents, each solving it's own
local optimisation problem without impeding the progress of the others. An-

other approach to learning as in biological systems is competitive learning or

survival of the fittest. A method proposed by Humphrys [26] and based on
Q-learning follows this approach is one existing example and similar method

may be devised in order to solve an optimisation problem based on competing
learning agents.

PID and fuzzy logic controllers have been used to control the excitation
system in the power system control problem, alternative types of control can
be implemented. In the literature the use of flexible A. C transmission sys-
tems (FACTS) provide another application of reinforcement learning control
in power systems. Many FACTS devices exist [631 [641 [651 providing a large

scope for further investigation.

From power systems to other large-scale control problems in engineering
further studies in distributed learning and alternative architectures for arrang-
ing the multi-level agents can be improved upon. The use of such multilevel

REINFORCEMENT LEARNING K. H. Chan

8.4 Recommendations for further study 146

learning systems, accelerates the learning process (more so for the initial rate

of learning) and simplifies their realisation. Many of the easily identifiable dis-

tributed systems have been investigated, traffic light control [51]; packet rout-
ing in information networks [531; channel allocation in cellular phone systems
[441 and improving elevator performance in large office buildings [43]. One idea

suggested by Narendra and Thathachar [171, but so far has not been studied in

the reinforcement learning context, mentions potential applications regarding

priority assignment in a queuing system. Priority queuing could be applied to

task scheduling which is important in industry for maintaining inventory and

maximising efficiency in production.
Reinforcement learning is a fundamental and essential process in all animals

and has helped us achieve things that were not possible until tried (and tried

and tried). This concept has been imitated to enable machines (or learning

agents) to exhibit intelligent behaviour. The scope of reinforcement learning

encompasses not only engineering but also science, psychology, biology and

maths and may some day include other disciplines that so far seem unrelated

as we seek to improve our knowledge of reinforcement learning both natural as

well as artificial.

REINFORCEMENT LEARNING K. H. Chan

Bibliography

[11 CINLAR E. Introduction to Stochastic Processes. Prentice-Hall, 1975.

[21 POZNYAK A. S. and NARM K. Learning Automata and Stochastic Op-

timisation. Springer, 1997.

[31 SUTTON R. S. Learning to predict by the methods of temporal differences.

Machine Learning, 3: 9-44,1988.

[41 IIAYKIN S. Neural Networks: A Comprehensive Foundation. MacMillan

College Publishing, 1994.

[5] THATHACHAR NI. A. L. and PHANSALKER V. V. Convergence of teams

and hierarchies of learning automata in connectionist systems. IEEE

Ransactions on Systems Man and Cybernetics, 25(11): 1459-14G9, Nov

1995.

[6] BARTO A. G. and ANANDEN P. Pattern-recognising stochastic learning

automata. IEEE Transactions on Systems Man and Cybernetics., 3: 360-

375, May/Jun 1985.

[7] BELLMAN R. E. Dynamic Programming. Princeton University Press,

1957.

[8] BERTSEKAS D. P. Dynamic Programming and Stochastic Control. Aca-
demic Press, 1976.

147

BIBLIOGRAPHY 148

[91 DENARDO EN. Dynamic Programming: Models and Applications.

Prentice-Hall, 1982.

[101 HOWARD R. A. Dynamic Programming and Markov Processes. The Tech-

nology Press of MIT and John Wiley and Sons inc, 1960.

[111 BARTO A. G. BRADTKE S. J. and SINGH S. P. Learning to act using

real-time dynamic programming. Artificial Intelligence., 72: 81-138,1995.

[121 KOSKO B. Neural Networks and Fuzzy Systems. Prentice-Hall, 1992.

[131 BRADTKE S. J. Incremental dynamic programming for on-line adaptive

optimal control. CMPSCI Technical Report., pages 62-94,1994.

[141 GULLAPALLI V. Learning control under extreme uncertainty. Advances

In Neural Information Processing Systems, HANSON S. J. COWAN J. D.

and GILES C. L. (Ed), 5,1993.

[15] LIN C. J. and LIN C. T. Reinforcement learning for an art-based fuzzy

adaptive learning control network. IEEE Transactions on Neural Net-

works, 7(3): 709-731, May 1996.

[161 SUTTON R. S. and BARTO A. G. Reinforcement Learning. MIT Press,

1998.

[171 NARENDRA K. S and THATHACHAR M. A. L. Learning Automata, an
introduction. Prentice Hall International Editions, 1989.

[181 LANCTOT J. K. and OONINIEN B. J. Discretised estimator learning au-
tomata. IEEE Transactions on Systems Man and Cybernetics, 2(6): 1473-

1483, Nov/Dec 1992.

[191 RAJARANIAN K. and SASTRY P. S. Finite time analysis of the pursuit
algorithm for learning automata. IEEE Transactions on Systems Man and
Cybernetics - part B: Cybernetics, 26(4): 590-598, Aug 1996.

REINFORCEMENT LEARNING K. H. Chan

BIBLIOGRAPHY 149

[20] BRADTKE S. J. and DUFF M. O. Reinforcement learning methods for

continuous-time markov decision problems. NIPS-94 Conference, Denver

CO., Nov 1994.

[211 KAELBLING L. P. LITTMAN M. L. and MOORE A. W. Reinforcement

learning: A survey. Journal of Artificial Intelligence Research, 4: 237-285,

1996.

[221 SUTTON R. S. and BARTO A. G. Time derivative models of pavlovian

reinforcement. Learning and Computational Neuroscience: Foundations

of Adaptive Networks, MIT Press, GABRIEL M. and MOORE J. (Ed),

pages 497-537,1990.

[231 RUNINIERY G. A. Problem solving with reinforcement learning. Master's

thesis, University of Cambridge, 1995.

[24] SUTTON R. S. (Ed). . Machine Learning: Special Issue on Reinforcement

Learning, 8(3/4), May 1992.

[251 WATKINS C. J. C. 11. and DAYAN P. Technical note q-learning. Macitine

Leaming, 8: 279-292,1992.

[261 HUNIPIIRYS M. Action selection methods using reinforcement learning.

Master's thesis, The University of Cambridge, Trinity Hall, 1996.

[271 THATHACHAR M. A. L. and SASTRY P. S. Learning optimal discriminant
functions through a cooperative game of automata. IEEE Ransactions

on Systems Man and Cybernetics, 17(l): 73-85, Jan/Feb 1987.

[28] WU Q. H. Reinforcement learning control using interconnected learning

automata. International Journal of Control, 62(l): 1-16,1995.

[291 WU Q-11. PUGH A. C. Reinforcement learning control of unknown dy-

namic systems. IEE Proceedings-D, 140(5): 313-322, Sept 1993.

REINFORCEMENT LEARNING K. 11. Chan

BIBLIOGRAPHY 150

[30] FROST G. P. HOWELL M. N. GORDON T. J. and WU Q. H. Dynamic

vehicle roll control using reinforcement learning.

[311 HOBDAY S. WU Q. H. and GORDON T. J. A learning automata based

fuzzy logic controller. IFAC, 13th Triennial World Congress, San Fran-

cisco, USA, pages 411-416, July 1996.

[321 GULLAPALLI V. A stochastic reinforcement learning algorithm for learn-

ing real-valued functions. Neural Networks, 3: 671-692,1990.

[331 NAJINI K. CHTOUROU and THIBAULT J. Neural network synthesis us-

ing learning automata. Journal of Systems Engineering, 2: 192-197,1992.

[341 BARTO A. G. SUTTON R. S. and ANDERSON C. W. Neuronlike adap-
tive elements that can solve difficult learning control problems. IEEE

Transactions on Systems Man and Cybernetics., 13(5): 834-846, Sept/Oct

1983.

[351 JERVIS T. T. and FALLSIDE F. F. Pole balancing on a real rig using

reinforcement learning. Master's thesis, Cambridge University Engineering

Dept, Cambridge, Dec 1992.

[361 TESAURO G. Temporal difference learning and td-gammon. Communi-

cations of the ACM, 38(3), Mar 1995.

[37] YEE R. C. SAXENA S. UTGOFF P. E. and BARTO A. G. Explaining tem-

poral differences to create useful concepts for evaluating states. AAAI-90

Proceedings eighth National Conference on Artificial Intelligence, 2: 882-

888,1990.

[381 BARTO A. G. SUTTON R. S. and WATKINS C. J. C. 11. Learning and se-

quential decision making. COINS Technical Report., pages 89-95, Sept

1989.

REINFORCEMENT LEARNING K. H. Chan

BIBLIOGRAPHY 151

[391 SUTTON R. S. Generalisation in reinforcement learning: Successful ex-

amples using sparse coarse coding. Advances in Neural Information Pro-

cessing Systems, MIT Press, pages 1038-1044,1996.

[40] THANI C. K. and PRAGER R. W. Reinforcement learning for multi-linked

manipulator control. from FTP site for downloading reinforcement learn-

ing papers, ftp.. -Ilftp. cs. umass. edu/pub/ýnw/pub/ýutton/` .

[411 LIN C. T. and KAN M. C. Adaptive fuzzy command acquisition with rein-

forcement learning. IEEE Transactions on Fuzzy Systems, 6(l): 102-121,

Feb 1998.

[421 BOYAN J. A. Modular neural networks for learning context-dependent

game strategies. Master's thesis, University of Cambridge, 1992.

[431 CRITES R. 11. and BARTO A. G. Improving elevator performance using

reinforcement learning. Advances in Neural Information Processing Sys-

tems, TOURETZKY D. S. MOZER M. C. and HASSELMO M. E. (E d), 8,

1996.

[441 SINGH S. P. and BERTSEKAS D. Reinforcement learning

for dynamic channel allocation in cellular telephone systems.
from FTP site for downloading reinforcement learning papers,
ftp: //ftp-cs. umass. edu/pub/anw/pub/ýutton/*

[451 KOENIG S. and SIMMONS R. G. Complexity analysis of real-time rein-
forcement learning applied to finding shortest paths in deterministic do-

mains. Master's thesis, Carnegie Mellon University: School of Computer
Science, 1992.

[461 DUFF M. O. Q-learning for bandit problems. from
FTP site for downloading reinforcement learning papers,
ftp., //ftp-cs. umass. edu/pub/ýnw/pub/ýutton/*

REINFORCEMENT LEARNING K. H. Chan

BIBLIOGRAPHY 152

[47] JERVIS T. T. Connectionist adaptive control. Master's thesis, 'ftinity

Hall, Cambridge, 1993.

[481 SINGH S. P. and SUTTON R. S. Reinforcement learning with replacing

eligibility traces. Afachine Learning, 22: 123-158,1996.

[49] THANI C. K. and PRAGER R. W. A modular q-learning architecture for

manipulator task decomposition. from FTP site for downloading rein-
forcement learning papers, ftp.. -//ftp. cs. umass. edu/pub/ýnw/pub/ýutton/`

[501 CLAUSEN C. and WECHSLER 11. Quad-q-learning. IEEE Transactions

on Neural Networks., 11(2): 279-294, Mar 2000.

[51] PIATER I Controlling traffic signals. from FTP site for downloading rein-
forcement learning papers, ftp.. -//ftp. cs. umass. edu/pub/ýnw/pub/ýutton/`

[521 SUTTON R. S. Planning by incremental dynamic programming. Proceed-

ings ninth Conference on Machine Learning, pages 353-357,1991.

[531 BOYAN J. A. and LITTMAN M. L. Packet routing in dynam-

ically changing networks: A reinforcement learning approach.

from FTP site for downloading reinforcement learning papers,
ftp: //ftp. cs. umass. edu/pub/ýnw/pub/ýutton/` -

[54] KAELBLING L. P. (Ed). Machine Learning: Special Issue on Reinforce-

ment Learning, 22(1/2/3), Jan/Feb/Nlar 1996.

[551 SUTTON R. S. and SINGH S. P. On step-size and bias in temporal-
difference learning. Proceedings of the eighth Yale Workshop on Adaptive

and Learning Systems, pages 91-96,1994.

[561 CHRISMAN L. Reinforcement learning with perceptual aliasing: The

REINFORCEMENT LEARNING K. H. Chan

t

BIBLIOGRAPHY 153

perceptual distinctions approach. Proceedings of the tenth National Con-

ference on Artificial Intelligence, CA, AAAI Press, pages 138-188.

[57] McCALLUM R. A. Hidden state and reinforcement learning with instance-

based state identification. IEEE Transactions on Systems Man and Cy-

bernetics - part B: Cybernetics, 26(3): 464-473, Jun 1996.

[581 MOORE A. W. and ATKESON C. G. Prioritised sweeping: Reinforcement

learning with less data and less real time. Machine Learning, 13: 103-130.

[59] SUTTON R. S. Integrated architectures for learning, planning and reacting
based on approximating dynamic programming. Proceedings of the seventh
International Conference on Machine Learning, pages 216-224,1990.

[601 SUTTON R. S. Dyna, an integrated architecture for learning, planning

and reacting. Working Notes of the 1991 AAAI Spring Symposium, pages

151-155,1991.

[611 YU Y. N. Electric Power System Dynamics. Academic Press, Inc, 1983.

[621 HINGORANI N. G. Introducing custom power. IEEE Spectrum, pages
41-48, Jun 1995.

[63] HANINIAD A. E. Analysis of power system stability enhancement by

static var compensators. IEEE Transactions on Power Systems, PWRS-
1(4): 222-227, Nov 1986.

[641 WANG H. F. and SWIFT F. J. A unified model for the analysis of facts
devices in damping power system oscillations part ii: Multi-machine power
systems.

[651 WANG II. F. and SWIFT F. J. A unified model for the analysis of facts de-

vices in damping power system oscillations part i: Single-machine infinite-
bus power systems.

REINFORCEMENT LEARNING K. H. Chan

BIBLIOGRAPHY 154

[661 CRITES R. H. Large-scale dynamic optimisation using teams of reinforce-

ment learning agents. Master's thesis, The University of Massachusetts

Amherst, 1996.

[671 KOENIG S. and SIMMONS R. G. Unsupervised learning of probabilistic

models for robot navigation. Proceedings of the International Conference

on Robotics and Automation (ICRA-96), 1996.

[681 MITCHELL T. M. and THRUN S. B. Explanation-based neural network
learning for robot control. Advances In Neural Information Processing

Systems, MOODY J. E. HANSON S. J. and LIPMAN R. P. (Ed), 5,1993.

[69] LI B. H. WU Q. 11. WANG P. Y. and ZHOU X. X. Learning coordinated
fuzzy logic control of dynamic quadrature boosters in multi-machine power

systems. Proc. IEE. Part C, Generation, Transmission and Distribution,

146(6): 577-585, Feb 1999.

[701 CHAN K. H. JIANG L. TILLOTSON P. R. J and WU Q. 11. Reinforce-

ment learning for the control of large-scale power systems. Proceedings of

the Second International Symposium Engineering of Intelligent Sys (EIS

2000), Jun 2000.

[711 CAO Y. J. WU Q. 11. JIANG L. and CHENG S. H. Nonlinear control of
power system multi-mode oscillations. International Journal of Electrical

Power V Energy Systems, 20(l): 61-68,1998.

[721 CHAN K. H. JIANG L. TILLOTSON P. R. J and WU Q. H. Learning
fuzzy logic control of synchronous generators in multi-machine power Sys-
tems. Proceedings of the 35th Universities' Power Engineering Conference
(UPEC 2000), Jun 2000.

[73] CHAN K. H. JIANG L. TILLOTSON P. R. J and WU Q. 11. Reinforcement

REINFORCEMENT LEARNING K. H. Chan

BIBLIOGRAPHY 155

learning for fuzzy logic control of large-scale power systems. IEE Control

Seminar, Learning Systems for Control, page 3/13/5, May 2000.

[741 HASSAN M. A. M. MALIK O. P. HOPE G. S. A fuzzy logic based stabilizer
for a synchronous machine. IEEE Transactions on Energy Conversion,

6(3): 407-413, Sept 1991.

REINFORCEMENT LEARNING K. H. Chan

