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Abstract 

NONLINEAR ADAPTIVE CONTROL 

AND APPLICATIONS IN POWER SYSTEMS 

by 

Lin Jiang 

It is known that the feedback linearization method based on differential 

geometry is vulnerable to handle the presence of parameter uncertainties and 

external disturbances. These problems are approached conventionally by some 

robust or adaptive control methods. However, most robust control methods 

require the upper bounds of uncertainties so that it will result in an overconser

vative control. Nonlinear adaptive controls are always dealing with unknown 

constant parameters in nonlinear systems and are not suitable for handling fast 

time-varying and functional uncertainties. In this thesis, nonlinear adaptive 

control schemes based on state and perturbation observer and their applica

tions in power system have been studied. 

Nonlinear adaptive control schemes based on state and perturbation ob

servers are studied first. The system perturbation is defined to describe the 

combined effect of the system nonlinearities, uncertainties and external distur

bances. A fictitious state is introduced to represent the perturbation in the 

state equations. Two types of observers, high gain observer and sliding mode 

observer, are investigated for the estimation of states and perturbation. The 

on-line estimates of the states and perturbation are used to realize a nonlinear 

adaptive control law without requiring detailed knowledge of the system model 

and full state measurements. By use of the real estimate of the perturbation 

to replace their upper bounds, the over conservative control is avoided. 

Three control schemes have been developed: (1) Nonlinear adaptive control 
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via high gain state and perturbation observer; (2) Nonlinear adaptive sliding 

mode control using sliding mode state and perturbation observer; and (3) De

centralized nonlinear adaptive control of large-scale systems. The stability of 

the closed-loop system including controller and observer has been analyzed with 

mathematical proof and numeric simulation results are presented accordingly. 

The proposed control schemes are applied for control of large-scale power 

systems. 

Nonlinear adaptive control of synchronous generators is studied in a single 

machine quasi-infinite bus power system model. A simple nonlinear adaptive 

controller based on local measurements is designed and simulation results which 

is compared to a conventional nonlinear state feedback linearization controller 

are given. 

Decentralized nonlinear adaptive controllers are designed for control of syn

chronous generators interconnected in a multi-machine power system. The con

troller is developed based on a fully linearizable model and an input/output 

partial linearizable model, respectively. Simulation studies are carried out 

based on a three-machine power system and the results show that the de

signed controller has better performance and robustness, under variations of 

power system operation conditions and disturbances, in comparison with a 

conventional nonlinear state feedback linearization controller. 

Coordinated nonlinear adaptive control of synchronous generators and Thyris

tor Controlled Series Compensators in the multi-machine power system is also 

studied. The nonlinear adaptive controllers are implemented locally, with the 

state and perturbation observers involved, for control of subsystems. Simula

tion results show that the locally installed controller can coordinate each other 

to improve the power system stability. 
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Chapter 1 

Introduction 

1.1 Nonlinear control systems 

1.1.1 Feedback linearization 

When the tasks of a control system or disturbances cause the system to 

cover wide regions of its state space, nonlinear effect will become dominant 

in the system dynamics and nonlinear control may be necessary to achieve 

the desired performance. The last two decades have witnessed a great deal of 

progress in the design and application of feedback control of nonlinear systems 

[I, 2, 3, 4]. The feedback linearization method based on differential geometry 

has been proved to be an effective means of design and analysis of nonlinear 

control systems as was it case for the Laplace transform, complex variable 

theory and linear algebra in relation to linear systems, as described in the 

comprehensive book of Isidori [1] and references therein. 

Feedback linearization deals with techniques of transforming original system 

models into equivalent models of simple form. The basic idea is to transform 

a nonlinear system into a (fully or partially) linear system first, and then use 

the well-known and powerful linear design techniques to complete the control 

design. This methodology helps convert many previously intractable nonlinear 
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1.1 Nonlinear control systems 2 

problems into much more simpler problems solvable by familiar linear system 

methods. It includes two kinds of approaches: the input/state linearization, 

where the full state equation is linearized; and the input/output linearization, 

where the linearizing the input-output map from input to output is empha

sized even if the state equation is only partially linearized [3]. More detailed 

description of this approach is given in Appendix A. 

Although feedback linearization has been used to solve a number of prac

tical nonlinear problems, it still has some drawbacks. One of them is that 

it is vulnerable to handle the presence of parameter uncertainty or external 

disturbances. This is because its effectiveness depends on an accurate system 

model to cancel the system nonlinearity. However, it is unrealistic to assume 

the perfect knowledge of system nonlinearities or that an exact mathematical 

representation of them is available because there exist model approximation, 

imprecision or uncertainty. Another drawback is that the resulting nonlinear 

control law may be complex so that it can not been implemented easily in 

practice. In fact, such a complex nonlinear controller may not always behave 

better than a simple linear controller. In recent years, the problem of control

ling uncertain nonlinear dynamical systems has been a topic of considerable 

interest. Many works in this field have been undertaken by employing robust 

and adaptive control method. We will review these results below. 

1.1.2 Lyapunov control design and sliding mode control 

In the pure model based nonlinear controller ( such as feedback lineariza

tion control), the control law is designed on a nominal model of the physical 

system[3]. How the control law behaves in the presence of system uncertainties 

is not clear at the design stage. In the robust nonlinear control, on the other 

hand, the controller is designed on the consideration of both the exact known 

nominal model and some characteristics of the model uncertainties. Two main 
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1.1 Nonlinear control systems 3 

approaches to the robust control of uncertain systems are the Lyapunov control 

design technique and sliding mode control technique. 

A large amount of work has been undertaken on applying Lyapunov control 

design techniques to stabilize uncertain dynamical systems ( see [5, 6, 7] and 

references therein). This method generally assumes that the uncertainty satis

fies the so-called matching condition and has a known upper bound (possibly 

time varying and state dependent). Under these assumptions, there exists a 

class of continuous state feedback controllers that ensure the convergence of 

the state to an arbitrarily small neighborhood of the origin in finite time. Much 

current robust control theories concern linear systems, that is, the results are 

obtained under the assumption that the nominal part of the system is linear 

(usually finite-dimensional and time-invariant). When the actual system ex

hibits nonlinear behavior, its uncertainty part must be chosen large enough to 

encompass the nonlinear phenomena because its normal part is restricted to be 

linear. A disadvantage of this method is that it ignores the available informa

tion about the existing nonlinearities, and the resulted controller may be over 

conservative (especially when the nonlinearities are significant). A natural at

tempt to improve this drawback of robust linear control is to allow the nominal 

plant to be nonlinear and thereby pursue the nonlinear control by designing a 

robust control Lyapunov function [5]. 

Another robust nonlinear control technique, variable structure systems (VSS) 

based on sliding mode control (SMC) strategy, has also attracted many re

searchers [8, 9, 10, 11, 12, 13]. The theory of sliding mode in control and op

timization has been well studied in the books [14, 15]. The main idea of SMC 

is to maintain the system sliding on a surface in the state space, despite the 

uncertainties or perturbations. This is done by means of a discontinuous con

trollaw that switches between two structures when the system passes through 

that surface. However, classical SMC presents several important drawbacks 

that severely hinders its practical application. In particular, it involves control 
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1.1 Nonlinear control systems 4 

chattering and large control quantity. In general, chattering is highly undesir

able in practice, since it implies extremely high control activity, and further 

may excite high frequency dynamics neglected in the course of modelling, such 

as resonant structural modes, actuator time-delays or sampling effects. These 

problems can be remedied by substituting the discontinuous control with a 

smooth saturation control within a boundary layer [8], or using a second-order 

sliding mode control [16]. 

SMC provides robustness of the control against perturbations (Le., the 

combination of modelling uncertainties and unknown external disturbances). 

These perturbations are assumed to be bounded. The SMC requires the prior 

knowledge of these upper bounds. However, it may be difficult or sometimes 

impossible to obtain these upper bounds. Thus the supreme upper bound 

is chosen to cover the whole range of perturbations. Consequently, the con

trol based on this knowledge becomes over conservative which may cause poor 

track performance and undesirable control oscillations. Sliding mode control 

with perturbation estimation was proposed to remedy this problem with an 

online perturbation estimation [17, 18, 10, 19, 20, 21J. The perturbation is es

timated by the derivative of the state and control input. Replacing the upper 

bounds of the perturbation with its estimates yields desirable level of control 

activity for a given precision of trajectory tracking. The original idea of the 

perturbation estimation stems from Time Delay Control (TDC) [22], in which 

the time-delayed values of derivatives of state variables and control inputs are 

used to cancel the unknown nonlinear dynamics and uncertainties. In the TDC, 

unknown dynamics and disturbances can be easily removed without parameter 

estimation. TDC has been applied to input/output linearization [23], linear 

systems [24], DC servo motor [25, 26] and robot control [27]. A similar method, 

named Disturbance Auto-Rejected Control [28, 29]' has also been proposed and 

applied to power system coordinated control [30]. 

Recently, representing the time-varying uncertainties in finite-term Fourier 
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1.1 Nonlinear control systems 5 

series and updating the Fourier coefficients were proposed to estimate the un

known uncertainties and applied to sliding mode control of nonlinear systems 

[31]. In this method, an updated law for the constant coefficients is derived 

from the Lyapunov design method. Slotine and Coetsee [32] proposed the 

adaptive sliding mode control to reduce uncertainties in the system for further 

improving performance by on-line parameter estimation algorithms. In their 

design, the bounds of the unknown parameters do not need to be available. 

This method suffers the same restriction of the conventional adaptive laws 

derived from the Lyapunov theory, in which the unknown parameters to be 

estimated should be constant. 

1.1.3 Nonlinear adaptive control 

Adaptive control is another important approach to deal with uncertain 

and/ or time-varying systems. One of the reasons for the rapid growth and con

tinuing popularity of adaptive control is its clearly defined goal: to control the 

plants with known structure, but unknown parameters or slowly time-varying 

parameters. Adaptive control has been most successful for the plant models in 

which the unknown parameters appear linearly. Systematic theories have been 

developed for the adaptive control of linear systems. The existing adaptive 

control techniques can also treat important classes of nonlinear systems, with 

measurable states and linearly parameterizable dynamics[3]. 

Interests in adaptive control of nonlinear systems were stimulated by ma

jor advances in the differential-geometric theory of nonlinear feedback control 

in the middle 1980s. Nonlinear adaptive control is a research area that has 

been rapidly growing in the 1990s. The book of Kristic [33] gives a complete 

and pedagogical presentation of nonlinear adaptive control, especially the sys· 

tematic adaptive backstepping recursive design method with unknown constant 

parameters. 
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1.1 Nonlinear control systems 6 

The first adaptive backstepping design was developed in [34]. Its over

parameterization was removed by the tuning functions design [35]. Among 

the early estimation-based results are Sastry and Isidori [36], Pomet and Praly 

[37], etc. One of the first output-feedback design was proposed by Marino and 

Tomei [38, 39]. Kanellakopoulos, Kokotovic and Morse [40] presented a solution 

to the partial state feedback problem. A tracking design where the regressor 

depends only on reference signals was given in [41]. Khalil [42] and Jankovic 

developed semi-global output feedback designs for a class which includes some 

systems not transformable into the output feedback form. However, most of 

the nonlinear adaptive work are dealing with unknown constant parameters of 

nonlinear systems. This adaptive control paradigm is not suitable for handling 

fast time-varying and functional uncertainties. It is known that problems may 

arise from the influence of unknown disturbances and time-varying parameters 

[5]. 

1.1.4 Output feedback control of nonlinear systems 

On the state feedback linearization control of nonlinear systems, the com

plete accessibility of the states is a commonly invoked assumption. Neverthe

less, the states are not directly available or measured economically in practice. 

Therefore, they must be estimated from output measurements using an ade

quate observer. The design of an observer for nonlinear systems has not been 

developed systematically as it has for linear systems. The early results of non

linear observer methods can be found in [43, 44]. Thau [45] incorporated the 

nonlinearities of the plant into the dynamics of the observer design plus re

quired that the nonlinearities be Lipschitz in the states. Thau's results were 

generalized by Kou et al. [46], yet the nonlinearities of the plant still appeared 

in the observer dynamics. Bestle and Zeitz [47] transformed the nonlinear 

plant into an observable canonical form from where the observer design is 
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1.1 Nonlinear control systems 7 

performed. However, finding an appropriate nonlinear, time variable, one-to

one transformation is nontrivial and often impossible by their own admission. 

Moreover, the knowledge of the nonlinearities of the plant must be precise 

since it is needed in the computation of observer dynamics. Daumann and 

Rugh [48] utilized an extended linearization technique to produce an observer 

which, when linearized about any of a family of equilibrium points, has locally 

invariant eigenvalues. Here again, precise knowledge of the plant nonlinearities 

and furthermore, the first derivatives of these nonlinearities must be known in 

order to calculate the gain function of the observer. 

When a robust controller is designed for nonlinear systems, another dif

ficulty is that the observer must be robust so that the closed-loop system, 

including the observer and the controller, is still robust. There are two types 

of nonlinear observer that can be robust against some model uncertainties: high 

gain observer and sliding mode observer. The high gain observer, which can 

estimate robustly the states or the derivatives of the output equivalently (under 

local weak observability), has acted as an important technique for the design of 

output feedback control of nonlinear systems [49]. The combination of globally 

bounded state feedback control with high gain observer allows for a separation 

approach in which the state feedback control is designed first to meet the de

sign objectives, then the high gain observer is designed, fa.."lt enough, to recover 

the performance achieved under state feedback. This separation principle is 

used in much work that utilizes a high gain observer. It is proved that global 

stabilisability by state feedback and uniform observability imply semi-global 

stability by output feedback[50]. A more comprehensive separation principle 

is proved by Atassi and Khalil[51]. Esfandiari and Khalil [71 studied the sta

bilization of fully-linearizable uncertain systems using high gain observers and 

robust state feedback control techniques. They first gave local and global sta

bilization results under output feedback. Then they illustrated the peaking 

phenomenon and how it could lead to shrinking of the region of attraction and 
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1.1 Nonlinear control systems 8 

even destabilization of the system. A key feature of the combination of glob

ally bounded state feedback control and high gain observers is the recovery of 

the region of the attraction. This feature was made explicit in the follow-up 

work by Khalil and Esfandiari [52] where it was shown that their approach can 

achieve semiglobal stabilization. This paper is the impetus for a number of 

research contributions by Khalil and other authors. Some fundamental tools 

for semiglobal stabilization using high gain observers and saturation functions 

were developed by Teel and Praly [50, 53]. A key technical contribution of 

their work is the use of Lyapunov functions to prove asymptotic stability of 

the closed-loop systems under output feedback without resorting to singular 

perturbation arguments as in Khalil's work. High gain observers have been 

applied in the nonlinear servomechanism problem [54, 55, 56, 57], adaptive 

control of nonlinear systems [42, 58]' output feedback sliding mode control 

[59, 60], and control of induction motors [61]. 

In recent years a considerable number of researchers have investigated the 

observer design based on the variable structure system theory, and sliding mode 

concept[14, 62, 63, 64, 43, 65, 66, 67]. The sliding mode observer potentially 

offers advantages similar to those of sliding mode controllers, in particular in

herent robustness to parameter uncertainty and external disturbances. These 

existing methods can be classified in two categories: 1) The equivalent con

trol based methods[14, 62, 63], and 2) sliding mode observer design based on 

the method of Lyapunov[64, 43, 65, 66, 67]. An early sliding mode observer 

for linear systems appeared as the sliding mode realization of a reduced-order 

asymptotic observer [14, 62]. Slotine [63] proposed a sliding mode observer 

for nonlinear systems. The sliding function of this observer uses the estima

tion error of the available measured output. The basic sliding mode observer 

consists of switching terms added to a conventional Luenberger observer [68]. 

The selection of sufficiently large gains ensures the asymptotic convergence of 

the error dynamics. Walcott and Zak [64, 69] studied a sliding mode observer 
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for certain class of nonlinear system based on the method of Lyapunov and 

techniques prevalent in variable structures system (VSS) theory. A system

atic algorithm for the design of this kind of observer was proposed in [65]. A 

comparative study of the techniques mentioned above was also given in [43]. 

Sliding mode observer has been applied for the control of robotic manipulator 

[70, 71]. 

The combination of sliding mode observers and controllers has been studied 

for linear systems with matching nonlinearities[72]. By Sanchis and Nijmeijer 

[73], the combination of the sliding mode observer and controller was stud

ied for affine nonlinear systems. The sliding controller(based on a feedback 

linearization approach) is similar to that defined by Slotine and Sastry [63], 

except that the sliding surface is defined in terms of the estimated states instead 

of the true ones. Edwards and Spurgeon [65] presented a controller/observer 

pair based on sliding mode ideas, that provided robust output tracking of a 

reference signal using only measured output information. 

The integration of the perturbation estimation into the sliding mode ob

server structure can substantially reduce the driving terms of the state observer 

error dynamics and result in a sliding perturbation observer [18]. Consequently, 

the resulting observer is able to provide much better state estimation accuracy. 

The combination of sliding mode perturbation observer with sliding mode con

trol results in a robust algorithm: sliding mode controller with sliding perturba

tion observer. However, it is applicable for general second-order multi-degree of 

freedom systems. And the perturbation term is only approximately estimated. 

A time delay control with a time delay observer, which is actually an observer 

of the linear reference model of time delay control, was proposed in [74] and 

applied to robot control [27] and DC servo motor [26]. 
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1.2 Applications of nonlinear control in power 

systems 

Power systems are complex dynamical systems which involve locally in

stalled devices interacting with each other dynamically and operates with great 

nonlinearities of system components under a wide range of operation conditions 

and various disturbances. Modern power systems are increasingly required to 

operate transmission networks on high power transfer levels under economical 

or environmental constraints. Stability problems that arise from these require

ments include potential voltage instability; e.g. voltage collapse phenomenon, 

as well as a tendency toward poorly-damped power/load angle oscillations that 

can threaten system stability [75, 76]. This calls for the need to conceive and 

design new analytical techniques for robust and reliable system operation. It 

is generally recognized that adequate system dynamic performance depends 

more and more on the proper performance of control. A proper controller is 

the important guarantee for reliable and stable operation of power systems. 

A power system controller design based on the small-signal models of the 

power systems obtained around a specific operation equilibrium point, such 

as Power System Stabilizer (PSS) [77], linear optimal controller [75] and linear 

adaptive controller [78, 79, 80], have been successfully developed in the last 

two decades. Applying such controllers for nonlinear power systems generally 

provides asymptotic stability in a small region about the equilibrium and is 

thus appropriate for the dynamic stability problem, where the primary concern 

is of providing damping following small disturbances. For sudden and severe 

disturbances, which involves significant variations in the system parameters and 

thus the operation point varies far from the pre-fault equilibrium point. Under 

these conditions, linear controllers are generally unable to maintain transient 

stability and the system will lose its stability in the first swing, unless severe 
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countermeasures of discrete-type control devices, such as dynamic resistance 

braking, fast valves, and load-shedding, etc., are put into effect. 

There are more control devices available with the introduction of Flexible 

Alternative Currents Transmission Systems (FACTS) technology into modern 

power systems[81]. FACTS technology provides new opportunities to control 

the interrelated parameters that govern the operation of transmission systems 

including series impedance, shunt impedance, current, voltage, phase angle, 

and the damping of oscillations at various frequencies below the rated fre

quency. Thus, for controller design, the power system models described by 

nonlinear differential equations must be used to achieve a better performance. 

For the case of transient problems, the nonlinear controller is more suitable. 

Many nonlinear controllers have already been developed for this purpose in 

the past two decades, such as, Feedback Linearization Control(FLC), variable 

structure control, Lyapunov control design, nonlinear adaptive control and non

linear predictive control. These works have been reviewed in our work [82] and 

will be given briefly in the following section. Most of these works concern the 

state feedback nonlinear controller but there are a few works which discuss the 

output feedback nonlinear control of power systems. The state observer of syn

chronous generator which requires the accurate nonlinear model was studied 

and applied to the nonlinear field voltage control of generators [83, 84]. 

1.2.1 Feedback linearization control of power systems 

Among these nonlinear control methods, the feedback linearization con

trol based on differential geometric techniques has received a much attention 

[85, 86, 87, 88]. Another feedback linearization approach, Direct Feedback Lin

earization (DFL), has also been proposed and applied to this field [89, 90, 91]. 

Subject to the availability of an accurate reference model and measurements 

of the power system, the inherent system nonlinearity of the nonlinear power 
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system model may be cancelled and replaced with some desired linear behav

iors. Such a nonlinear controller can deal with most of the nonlinearity in the 

power system, such as the nonlinearity of the generator and they can provide 

performance better than those linear model based power system controllers 

and has achieved a significant progress in the power system control[85]. 

The excitation control of synchronous generators plays an important role 

of keeping the generator in synchronism with the power system during major 

disturbances resulting from sudden or sustained load changes, either the loss 

of generating or transmission facilities. Synchronous generator is a nonlinear 

device whose dynamics will change dramatically with the variation of power 

system operation conditions. There are many research works on the feedback 

linearization control of electrical machines, including synchronous generator 

and induction motor[85, 92, 93]. 

Nonlinear control of synchronous generator 

When a synchronous generator is represented as a simplified third-order 

system model, it is input/state linearizable when the rotor angle is chosen 

as the control object [83, 94]; and it is only input/output linearizable when 

the terminal voltage is chosen as the control object[95, 96, 97]. Input/output 

linearization of synchronous generator based on more accurate models of syn

chronous generator, says fifth-order or seventh-order system model, have also 

been studied in [98, 99, 100, 101]. Among these works, [100, 101] the coordi

nated control of rotor angle and terminal voltage were investigated. 

As power system consists of many interconnected subsystems, decentral

ized control of synchronous generator in a multi-machine power systems had 

received much research effort[102, 103, 87, 104]. When there exists an infinite 

bus, load is represented as a constant impedance, synchronous generator is 

modelled in a three-order model and the rotor angle is chosen as system out-
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put, the multi-machine power system is a fully linearizable nonlinear system. 

By representing the interactions between machines with local electrical mea

surements, a decentralized control law was obtained in [102, 87]. In [105], the 

DFL method was employed to design a compensator to linearize the nonlin

ear power system partially at first and then the interactions between machitws 

were taken as disturbances and a robust control method was applied. 

Nonlinear control of FACTS controller 

Nowadays, controllers using power electronics devices are researched and 

developed for damping power oscillation and improving transient stability. 

FACTS devices (or controllers) have already been operated in the real power 

systems. Feedback linearization methods have been used to design the FACTS 

controllers, such as the input/state linearization of Static Var Generator (SVG) 

[106] and High Voltage Direct Current (HVDC) [107], the direct feedback lin

earization of the coordinated control of Static Var Compensator (SVC), ex

citation control and Static Phase Shifter (SPS)[108], excitation control and 

dynamic brake control[I09], super conducting coil control[~lO], and TCSC non

linear control[111J. Most of these works are undertaken based on the single

machine infinite-bus power system model because the introduction of FACTS 

controllers increases the difficulties of modelling multi-machine power systems. 

1.2.2 Robust and adaptive control of power systems 

Due to unpredictable disturbances and faults, model uncertainties and load 

variations, it is unrealistic to have an accurate model of a power system. Con

sequently, with these uncertainties, the cancellation of nonlinearities in FLC 

controller is no longer exact so that the controller performance will degrade 

drastically with varying system topology [91, 112J. This motivated the ap

plication of several control methods, such as robust control theory and the 
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adaptive control, to improve the robustness of FLC controllers. 

It was shown that FLC controller design based on the exact model can deal 

with some model uncertainties[4, 113]. Linear robust control, such as linear Hoc 

control [114] and linear variable structure control [88 , 115], had been used to 

design robust controller for the equivalent linear system. In [116] and [117], the 

nonlinear power system was modelled as a linear nominal model plus nonlinear 

uncertainties and then linear robust control theory had been used to design 

the decentralized controller of multi-machine power system. In [118], nonlinear 

Hoo decentralized controller based on Hamilton-Jacobi inequality method was 

proposed to improve the inter-area damping and dynamic stability. In [119]' a 

nonlinear excitation controller for a synchronous generator using the concept 

of exact stochastic feedback linearization was designed. 

Nonlinear variable structure control had been applied to design robust non

linear controller for power systems, such as, series capacitance and brake re

sistance control to improve the transient stability of single machine infinite 

power system [120], decentralized brake controller in multi-machine power 

systems[121], excitation and governor control of synchronous generator[122] 

and static phase shifter controller[123]. 

Lyapunov control design was also used to design the nonlinear controller of 

power systems, such as, Static VAr Compensator (SVC) controller [124] and 

synchronous generator excitation systems [125, 126] and multi-machine control 

[127, 128]. 

1.3 Major contributions of the thesis 

The thesis reports the research work undertaken based on the review of 

current techniques for control of nonlinear systems and its application in power 

systems [82]. 

The nonlinear adaptive control of nonlinear systems via state and pertur-
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bat ion observer has been studied. Two types of observers, high gain observer 

and sliding mode observer, have been investigated to obtain the estimate of 

states and perturbation. The following results have been obtained: 

• Convergence analysis of observers have been given. It is shown that the 

state estimation performance has been improved as the driving term of 

observer error dynamics is reduced from the perturbation itself to its 

estimation error . 

• Nonlinear adaptive control via high gain observer has been developed. 

The designed controller adopts the real-time estimates of states and per

turbation to yield the adaptive control law. The real time estimate of sys

tem perturbation, which include nonlinearities, time-varying parameters 

and external disturbances, is a function estimation rather than the pa

rameters estimation in most nonlinear adaptive control. A simple adap

tive control law is obtained as the system nonlinearities is included in the 

perturbation and accurate system model is not required for the controller . 

• Nonlinear adaptive sliding mode controller using sliding mode observer 

has been studied. The upper bounds of perturbation is only required in 

the design of observer. Moreover, as the upper bound of perturbation is 

replaced by the smaller bound of its estimation error, an over conservative 

control input is avoided and the tracking accuracy is improved. 

• A decentralized nonlinear adaptive control strategy for large-scale inter

connected systems has been investigated using of state and perturbation 

observer. Three control schemes, decentralized nonlinear adaptive con

troller with high gain observer, decentralized nonlinear adaptive sliding 

mode controller with sliding mode observer and decentralized nonlinear 

adaptive control using continuous feedback controller with sliding mode 

observer, have been developed. The interconnection between subsystems 
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is included in the perturbation of subsystem and can be estimated by the 

function estimation method which can handle with time-varying uncer

tainties and external disturbance. 

The proposed control methods have been applied to design nonlinear adap

tive controllers for power systems. 

• A nonlinear adaptive controller design based on a state and perturbation 

observer has been applied for excitation control of synchronous genera

tors [129]. The designed controller possesses great robustness and it can 

be implemented easily in practice. The simulation results show better 

control performance than the FLC which requires full system states and 

accurate system model. 

• Decentralized nonlinear adaptive excitation control of synchronous gen

erators in the multi-machine power system has been studied. The con

trol design has been investigated based on a fully linearizable model of 

the multi-machine power systems [130] and an input/output partially 

linearizing multi-machine model [131]' respectively. Simulation studies 

have been undertaken on a three-machine power system and the compar

ison with FLC controller design based on accurate model [87] have been 

obtained. 

• Coordinated nonlinear adaptive controller (CN AC) has been developed 

for the excitation control of synchronous generators and TCSCs devices 

to improve the stability of multi-machine power systems [132, 133]. The 

CNAC has a simple form and adaptive nature. It does not ignore any 

system nonlinear dynamic mode but is able to be installed locally and 

implemented with a local measurement. The simulation results obtained 

based on a three-machine power systems show that the CN ACs can coor

dinate each other or with PSSs, provide satisfactory control performance 
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and damp multi-mode oscillations of the power system effectively. 

1.4 Thesis outline 

The thesis is organized as follows. 

Chapter 2: Nonlinear Adaptive Control Using High Gain State and Pertur

bation Observer 

In Chapter 2, we investigate the nonlinear adaptive control of nonlinear 

system via high gain state and perturbation observer. Two types of observers, 

the high gain perturbation observer and the high gain state and perturbation 

observer, are discussed respectively. The estimate of the perturbation is used 

to realize the linearization of the original nonlinear system without requiring 

the exact knowledge of system model. Finally, numerical simulation results of 

an example are given. 

Chapter 3: Nonlinear Adaptive Control using Sliding Mode State and Per

turbation Observer 

In this chapter, sliding mode state and perturbation observer is investigated 

for the nonlinear adaptive control of nonlinear system. As in the last chapter, 

we begin with sliding mode perturbation observer and then the sliding mode 

state and perturbation observer. We mainly employ the estimates of the states 

and perturbation to design the output feedback sliding mode controller. We 

also use the estimate of the perturbation to design a feedback linearization 

controller without the accurate system model. In this case, a linear continuous 

feedback controller, rather than a sliding mode controller, is designed for the 

equivalent linear system. In each case, the stability analysis of the combination 

of the controller and observer is presented for the completeness. Simulation 

results of the same example used in Chapter 2 are presented. 

Chapter 4: Decentralized Nonlinear Adaptive Control Using State and Per

turbation Observer 
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In this chapter, we focus on the decentralized nonlinear adaptive control 

of large scale interconnected systems based on the state and perturbation 

observer. Compared with the linear or nonlinear parametric assumption in 

most of the adaptive control scheme, the function estimation is employed in 

this chapter instead of the parameter adaption law. Two types of observers, 

high gain observer and sliding mode observer, are investigated respectively. 

The nonlinearities and uncertainties existing in each subsystems, plus the in

terconnection among subsystems, are included in the perturbation term and 

estimated by the observer. We also apply these control schemes to the in

put/output linearization of MIMO nonlinear systems. Finally, the design of 

decentralized output adaptive controller for the control of an inverted double 

pendulums on carts without the velocity measurements has been undertaken. 

Chapter 5: Nonlinear Adaptive Control of Synchronous Generators 

In this chapter, the nonlinear adaptive control(NAC) is proposed for the 

excitation control of the synchronous generator with an Automatic Voltage 

Regulator (AVR) installed for regulation of generator terminal voltage, only 

is generator relative rotor angle measured for feedback control. The design of 

NAC does not need an accurate power system model and other measurements, 

but it can provide better control performance, compared with the state feed

back linearization controller which relies on the full system states and detailed 

nonlinear system model. The NAC is evaluated in a single-machine quasi

infinite bus power system. The simulation results are presented to show the 

merits of the novel nonlinear control method. 

Chapter 6: Decentralized Nonlinear Adaptive Control of Synchronous gen

erators in Multi-Machine Power Systems 

This chapter presents a decentralized nonlinear adaptive controller (DNAC) 

for excitation control of synchronous generators interconnected in a multi

machine power system. The DNAC is developed based on a fully feedback 

linearizable multi-machine model and a partial feedback linearizable multi-
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machine model. The DNAC is robust in performance as it does not require 

the exact knowledge of the power system. Moreover, the DNAC is easy to be 

implemented as only one measurement. The simulation study is carried out 

based on a three-machine power system. The results show that the DNAC has 

better performance and robustness, under variations of power system opera

tion conditions and disturbances, in comparison with a conventional nonlinear 

state feedback linearization controller(FLC). 

Chapter 7: Coordinated Control of Synchronous Generators and TCSCs in 

Multi-Machine Power Systems 

This chapter investigates the coordinated nonlinear adaptive controller 

(CNAC) for the coordinated control of generators and Thyristor Controlled 

Series Compensators (TCSCs) in multi-machine power systems. The CNACs 

are implemented locally with the design of state and perturbation observer 

for subsystem, for the coordinated control of generators and TCSCs in the 

multi-machine power system. Simulation studies are undertaken based on a 

three-machine power system to evaluate the effectiveness of the CNAC. The 

simulation results show that the locally installed CNACs can coordinate each 

other to improve the power system stability. 

Chapter 8: Conclusions 

We conclude this thesis with a summary of the results and several sugges

tions for future work which are mostly unsolved problems that remain in this 

thesis. Several preliminary results and system parameters can be found in the 

appendices. 
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Chapter 2 

Nonlinear Adaptive Control 

Using High Gain State and 

Perturbation Observer 

2.1 Introduction 

The high gain observer has been developed as an important technique for 

the design of output feedback control of nonlinear systems. The basic ingredi

ents of this technique include [51]: 

• a high gain observer that robustly estimates the derivatives of the output; 

• a globally bounded state feedback control law, that is usually obtained by 

saturating a continuous state feedback function outside a compact region 

of interest, that meets the design objectives. The global bound of the 

control protects the state of the plant from peaking when the estimates 

of high gain observer are used instead of the true states. 

This technique was first introduced by Elfandiari and Khalil [7] and since 

then it has been the impetus for many research results over the past few years. 

20 
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It was used to achieve stabilization and semi-global stabilization of fully lin

earizable systems [7, 52], and to design robust servomechanisms for fully lin

earizable systems [54]. It was also used for the output adaptive control [42], 

variable structure control [60] and speed control of induction motors [61]. In 

most of these studies, the controller is designed in two steps. First, a glob

ally bounded state feedback control is designed to meet the design objective. 

Secondly, a high gain observer, designed to act fast enough, recovers the perfor

mance achieved under state feedback. This recovery is shown using asymptotic 

analysis of a singular perturbed closed-loop system. 

In this chapter, a nonlinear adaptive control via high gain state and per

turbation observer has been investigated. A perturbation term is defined to 

describe the combined effect of the system nonlinearities, uncertainties and 

external disturbances. And a fictitious state is introduced to represent the 

perturbation in the state equations. Two types of observers, high gain pertur

bation observer and high gain state and perturbation observer, are discussed 

respectively. The estimate of the perturbation is used to achieve the cancella

tion of system nonlinearities and uncertainties, which realizes the linearization 

of the original nonlinear system without requiring the accurate system model. 

Moreover, as such a controller adopts the estimate of states and perturbation 

to yield the control signal, it can be easily implemented in practice. Finally, 

numerical simulation results of an example are given. 

2.2 Model description and problem statement 

A nonlinear system in a controllable canonical form is represented as follows: 

{

:i; = Ax + B (a(x) + b(x)u) 
(2.2.1) 

Y = Xl, 

where Xi, i = 1,2, ... ,n are the state variables, and X = [Xl, X2, ••• ,Xn]T E nn 
is the state vector; u E n the control input; yEn the system output; a(x) : 
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Rn ~ Rand b(x) : Rn ~ R are Coo unknown smooth functions, defined on 

Rn. The n X n matrix A and the n x 1 matrix B are given by 

o 1 0 

001 

o 0 

o 0 

A= B = (2.2.2) 

000 

000 

1 0 

o 1 

The main source of system (2.2.1) is the normal form of a fully linearizable 

nonlinear system which has a relative degree r = n. The details of this system 

is provided in Appendix A. In the design of a nonlinear controller using the 

feedback linearization technique, the most commonly used control structure is 

u = [-a(x) + vJ/b(x), (2.2.3) 

where v is a new control variable for the equivalent linear system. Such a 

controller works based on an exact cancellation of nonlinear terms a(x) and 

b(x). However, the exact cancellation is almost impossible for several rea

sons, such as model simplification, parameter uncertainties and computational 

errors. When nonlinear functions a(x) and b(x) are unknown or with uncer

tainties, many adaptive control schemes or robust control schemes have been 

developed. 

2.2.1 Definition of perturbation and fictitious state 

For system (2.2.1), after assuming the known part of nonlinear functions 

a(x) and b(x) be zero for the simplification of formulations, define the system 

perturbation as 

lJt(x, u, t) = a(x) + (b(x) - bo)u, (2.2.4) 

then the last equation of system (2.2.1) can be rewritten as 

Xn = lJt(x, u, t) + bou, (2.2.5) 
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where bo is a constant control gain which will be decided later. 

If xn can be estimated, then the perturbation can be obtained by 

w(x, u, t) = xn - bou. (2.2.G) 

The original idea of this kind of perturbation estimation stems from the 

time delay control [22, 23], in which the time-delayed values of control input 

and the derivatives of state variables at the previous time steps are used to 

cancel the nominal nonlinear dynamics and uncertainties. A similar method, 

disturbance auto-rejected control, has also been proposed [28]. In the control 

scheme, the perturbation is estimated by an extended-order nonlinear observer 

based on the track-differentiator. 

In the time delay control, the derivatives of state variables are always calcu

lated by numeric differential method, such as backward difference algorithm. It 

is well known that the numerical differentiator will magnify the measurement 

noise. In the past years, high gain observers have played an important role 

in the design of a nonlinear output feedback controller for nonlinear systems. 

They are mainly used to estimate the derivatives of the output. In this section, 

an extended-order high gain observer is designed to estimate the system states 

and perturbation. 

Define a fictitious state to represent the system perturbation, that is, Xn+! = 

w(x, u, t), the state equation of system (2.2.1) may be represented as 

Xn = (2.2.7) 

:in+! = 
y = 

where ~(.) is the derivative of w(.). 
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Then system (2.2.7) can be rewritten in a matrix form: 

{ :' = Alxe + B3U + Bl ~(.) 
(2.2.8) 

= C1Xe, 

where 

Xl 0 1 0 

X2 0 0 1 0 

Xe = , Al = 

Xn 0 0 0 1 

0 0 0 0 Xn+1 (n+1)x(n+1) 

o 
o 

1 

o 

0 

0 

, B 1 = , and C1 = 
0 

1 
(n+1)xl (n+1)x1 

The following assumptions are made on system (2.2.1). 

T 

1 

0 

0 

0 
(n+l)x 1 

A2.1 bo is chosen to satisfy: Ib(x)/bo - 11 ::; () < 1, where () is a positive 

constant. 

A2.2 The function W(x, u, t) : nn x n x n+ --+ n and ~(x, u, t) : nn x n x 

n+ --+ n are locally Lipschitz in their arguments over the domain of 

interest and are globally bounded in x: 

IW(x, u, t)1 ::; II, I~(x, u, t)1 ::; 12, 

where II and 12 are positive constants. In addition, w(O, 0, 0) = 0 and 

~(O, 0, 0) = o. 

Assumption A2.2 guarantees that the origin is an equilibrium point of the 

open-loop system. 
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The control problem is described as follows. Under assumptions A2.l ,....., 

A2.2, a(x) and b(x) are unknown continuous functions, y = Xl is the only 

available measurement, find the output feedback control u, such that the origin 

of system (2.2.1) is stable. 

In order to illustrate the idea of perturbation estimation, first all the sys

tem states are assumed to be available and a high gain perturbation observer 

is designed to track the last system state and obtain the estimate of the per

turbation. Then, when only one state is measurement available , a high gain 

state and perturbation observer is investigated to obtain the estimate of the 

system states and the perturbation. 

2.3 High gain perturbation observer 

Assuming all states x n , i = 1,· .. , n are available and taking Xn as a mea

surement, a high gain track differentiator is designed as 

(2.3.1 ) 

where hI and h2 are gains of the high gain observer. Throughout this section, 

Xi = Xi - Xi refers to the estimation error of Xi whereas Xi symbolizes the 

estimated quantity of Xi. The estimation error Xi = Xi - Xi, i = n, n + 1, 

satisfies the equation 

(2.3.2) 

The above error dynamics can be represented in a matrix form as: 

(2.3.3) 
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where Apo is a Hurwitz matrix. 

2.3.1 Analysis of estimation error 

As in any asymptotic observer, the observer gain Hpo = [hI, h2JT should be 

chosen to achieve the asymptotical error convergence, that is, 

lim xpo = O. 
t-+oo 

In the absence of the perturbation ~(.), the asymptotic error convergence is 

achieved by choosing the observer gain such that the matrix Apo is a Hurwitz 

matrix, e.g., its eigenvalues have negative real parts. For this second-order 

system, Apo is Hurwitzian for any positive constants hI and h2 · 

In the presence of W(·), the observer gain is needed to be determined with 

the additional goal of rejecting the effect of the perturbation ~(.) on the esti

mation error Xpoo This could be ideally achieved, for any perturbation ~(.), if 

the transfer function from ~ (.) to xpo 

is identically zero. 

I3y calculating the IIHpolloo, it can be seen that the norm can be arbitrarily 

small by choosing h2 » hI » 1. In particular, taking 

(2.3.4) 

for some positive constants all a2, and f, f « 1. It can be shown that 

Hpo(s) = ()2 f [f] . 
fS + al fS + a2 fS + al 

Hence, liml-+o Hpo(s) = O. While an infinite gain is not possible in practice, 

the observer gain can be determined such that the estimation error xpo will 

converge exponentially to a small neighbourhood which is arbitrarily close to 

origin. The results is summarized as the following theorem. 
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Theorem 2.1. Consider system (2.2.1), and design a high gain perturbation 

observer (2.3.1). If assumptions A2.1 rv A2.2 hold, then given any constant 

6po , the gain Hpo can be chosen such that the error xpo of the perturbai'ion 

observer (2.3.1), from any initial value xpo(O), converges exponentially to the 

neighbourhood 

(2.3.5) 

Proof: For system (2.3.3), Apo is a Hurwitz matrix; let define the Lyapunov 

function Vpo(xpo) = x~oPpoxpo where Ppo is the positive definite solution of the 

Lyapunov equation PpoApo + A~oPpo = -I. Differentiating Vpo along system 

(2.3.2) one obtains 

which, using assumption A2.2, can be rewritten as 

Take a value 0 < a < 1, it is easy to show that 

if 

where r = 2>'max{Ppoh2 . tant As \ (P.) \\- \\2 < V. (- ) < Upal I-a IS a cons . Amin po Xpo _ po Xpo _ 

Amax(Ppo)\\xpoI\2, applying Corollary 5.3 of Theorem 5.1 in [4], one can conclude 

that if I\xpo(O)1\ ~ 6pol, 3 t l , tl > 0, such that 

(2.3.6) 

and 

(2.3.7) 
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where 

t < 2Amax(Ppo) 1 (1Iipo(O)II) 
1 _ og... 

a Upol 
(2.3.8) 

Thus, 3 a, 0 < a < 1, for any given constant 6po, it has 

Amax(Ppo) 2Amax(Ppo)-r2 
Amin(Ppo) 1 - a 

such that 

o 

2.3.2 Perturbation observer represented in singular per

turbation form 

The perturbation rejection property of the high gain observer (2.3.4) can 

also be seen in the time domain by representing the error equation (2.3.2) in 

the singularly perturbed form. To that end, define the scaled estimation errors 

(2.3.9) 

The newly defined variables satisfy the singularly perturbed equation 

(2.3.10) 

where 

A2 = [-a1 1 1 ' B2 = [0 1 ' 
-a2 0 1 

and the positive constants al and a2 are chosen such that A2 is a Hurwitz 

matrix. 

This equation shows clearly that reducing E diminishes the effect of the 

perturbation ~(.). It also shows that, for small E, the dynamics of the esti

mation error will be much faster'than that of x. Notice, however, that the 

NONLINEAR ADAPTIVE CONTROL L. Jiang 



2.3 High gain perturbation observer 29 

change of variables (2.3.9) may cause the initial condition '1]1 (0) to be of or

der 0(1/t:) even when xn(O) is of order of 0(1). With this initial condition, 

equation (2.3.10) will contain a term of the form (1/t:)e-at/ E for some constant 

a > O. While this exponential mode decays rapidly, it exhibits an impulse-like 

behaviour where the transient peaks to 0(1/t:) value before it decays rapidly 

towards zero. In fact, the function (1/t:)e-at/ E approaches an impulse function 

as t: tends to zero. This behaviour is known as the peaking phenomenon. It 

is important to realize that the peaking phenomenon is not a consequence of 

using the change of variables (2.3.9) to represent the error dynamics in the 

singularly perturbed form. It is an intrinsic feature for any high gain observer 

design that rejects the effect of the perturbation ~ in (2.3.2); e.g., any design 

with h2 » hI » l. 
System (2.3.1) is basically an approximate differentiator. This can be easily 

seen in the special case when the perturbation ~(.) and control u are chosen to 

be zero and thus the observer is linear. For system (2.3.1) the transfer function 

from y = Xn to xpo is given by 

Thus, on a compact frequency internal, the high gain observer approximates 

X n+l = xn for sufficiently small t:. 

2.3.3 Nonlinear adaptive control design via high gain 

perturbation observer 

The estimate of perturbation Xn+l is used to realize the feedback lineariza

tion of the nonlinear system (2.2.1). After the unknown system nonlinearities 

and uncertainties are cancelled by the perturbation estimate, a linear state 

feedback controller is designed for the equivalent linear system. The complete 
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control is designed as follows: 

v = -Kx, 

30 

(2.3.11 ) 

(2.3.12) 

where K = [kl' k2 ," • ,kn]T is the linear feedback controller gains, which make 

the matrix Ao = A - BK be Hurwitzian. 

The analysis of the closed-loop system under the perturbation observer and 

the controller is given as follows. The system is represented in the singularly 

perturbed form: 

x = Aox + BrJ2, (2.3.13) 

(2.3.14) 

The system represented by equations (2.3.13) and (2.3.14) is a standard sin

gular perturbed system, and rJ = 0 is the unique solution of equation (2.3.14) 

when f = O. The reduced system, obtained by substituting rJ = 0 in equation 

(2.3.13), is as: 

x = Aox. (2.3.15) 

The boundary-layer system, obtained by applying the change of time variable 

r = tlf to equation (2.3.14) and setting f = 0, is given by 

drJ 
dr = A 2rJ· (2.3.16) 

For the proof of next theorem, the following corollary, which is a special 

case of Young's inequality, will be used. 

Corollary 2.1: Va,b E R+, Vp > 1, fO E R+ we have 

ab ~ .!..aP + (fO)l/(P-l)l!/(P-l). 
fO 

Theorem 2.2. Let assumptions A2.1 and A2.2 hold, design perturbation ob-

server {2.3.1} and control law {2.3.11} and {2.3.12}; then, there exists fi, fi > 0 

such that, "If, 0 < f < fi, the origin of system {2.3.13} and {2.3.14} is expo

nentially stable. 
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Proof: It is known that the origin of system (2.3.15) is exponentially stable 

in a region n which includes the origin, and system(2.3.16) is also exponen

tially stable in a region 0 which includes the origin, as both Ao and A2 are 

Hurwitzian. 

For the reduced system (2.3.15), let define the Lyapunov function 

Vo(x) = xT Pax, (2.3.17) 

over a ball B(O, r) C nn, for some r > 0, and Po is the positive definite solution 

of the Lyapunov equation PoAo + Air Po = -I. Vx E B(O, r), we have 

Amin{Po)llxI1
2 < Vo(x) :s Amax (Po)lIxI12, (2.3.18) 

oVo Aox < -lIxIl2, (2.3.19) 
ox 

l1oVoIl < 2Amax (Po)llxll· (2.3.20) 
ox 

For the boundary-layer system (2.3.16), we define the Lyapunov function 

W2(T]) = T]T P2T], where P2 is the positive definite solution of the Lyapunov 

equation P2A2 + AI P2 = -1. This function satisfies 

Amin (P2) 11T]1I 2 

OW2A -- 2T] 
OT] 

II
oW2

11 aT] 

< 

< 

:s 

W2(T]) :s Amax (P2)IITJII 2
, 

-IITJII2, 

2Amax (P2) IIT]II· 

(2.3.21) 

(2.3.22) 

(2.3.23) 

Let us consider V (x, T]) = Vo (x) + ,8W (T]) , where ,8 > ° is to be determined, 

as a Lyapunov function candidate for system (2.3.13) and (2.3.14). Choose 

~ < rj then, given Assumptions A2.1 '" A2.2, we have, for all (x, T]) E B(O,~) x 

{IIT]II :s ~} = A 

(2.3.24) 

where B(liTJll,~) E 0, ~ is a positive constant, L1 and L2 are Lipschitz constants. 
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Using equations (2.3.18) f"V (2.3.23) and Young's inequality, it can be shown 

that, V (x, 17) E A, we have 

11 = 8Vo(x) (A x + B 17 ) + j38W2(T/) (A1!z + B ~(.)) ax 0 0 2 aT/ ( 2 
< -llxll2 - ~1I17112 + 2j3L2 II P2 II 1117112 

+(2I1Poll + 2j3LI IIP2 II) IIxli 111711 (2.3.2G) 
< -lIx112 - ~1117112 + 2j3L21I P211111711 2 

+(21IPoll + 2j3LIIIP211){tollxI12 + foll17112) 

< _~lIxIl2 - ~1I17112 - bdlxl12 - b2111J112, 

where bl = t - ~(IIPoll + ,8L1 1I P211), b2 = ~ - 2,8(fo * L1 + L2)IIP211- 2follPoll, 

and fO > O. Now choose fO ~ fO = 411PoII + 4,8LIIIP211( where ,8 > 0 is 

a constant) such that bl > 0, and then it can be shown that there exists 

f~ = 1/(f02 /,8 + 4L2I1P211), such that, for every 0 < f S fi, we have 

(2.3.26) 

Thus it can conclude that the origin of system (2.3.13) and (2.3.14) is 

exponentially stable. o 

2.4 High gain state and perturbation observer 

In this section, the output is chosen as Y = Xl and a (n + 1 )th-order state 

observer is designed to estimate the system states and perturbation. The state 

estimate Xl of system (2.2.8) is obtained using the observer as 

(2.4.1) 
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The observer gain H is chosen as: 

H= (2.4.2) 

where E is a positive constant, 0 < E < 1, to be specified and the positive 

constants ai, i = 1,2", . ,n + 1, are chosen such that the roots of 

are in the open left-half complex plan, where s is the Laplace operator. 

Defining the estimation error as xe = xe-xe , the error dynamics of observer 

(2.4.1) becomes 

(2.4.3) 

For the purpose of analysis, replace the observer error dynamics by the 

equivalent dynamics of the scaled estimation error 

Hence, we have xe = Xe - D(E)TJ, where 

TJ 

D(E) 

l:5i:5n+1. 

Then the error dynamics of observer (2.4.3) can be represented as 

r, - D-l(E)(Al - HC1)D(E)TJ + D-l(TJ)B1 q,(-) 
1 . 

- "iAlOTJ+B1W(.), 
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where 
o 

AlO = 

-an 0 0 1 

-an+! 0 0 0 

is Hurwitzian. 

2.4.1 Observer error dynamics analysis 

To achieve fast enough tracking of the system states and perturbation, the 

observer gains can be chosen such that the estimation error Xl will converge 

exponentially to a small neighbourhood which is arbitrarily close to origin. The 

analysis result is summarized as the following theorem. 

Theorem 2.3. Consider system (2.2.7), design a high gain state and pertur

bation observer {2.4.1} and choose the gain H as described in equation (2.4.2). 

If assumptions A2.1 and A2.2 hold, then given any positive constant 5spo > 0, 

there exits a positive constant E:po , such that VE, 0 < E < E:po ' the observer error 

Xe , from any initial value xe(O), converges exponentially to the neighborhood 

Proof: For system (2.4.4), AlO is a Hurwitz matrix j thus we can define the 

Lyapunov function 

(2.4.5) 

where P lO is the positive definite solution of the Lyapunov equation PlOAlO + 
AioPlO = -I. This function satisfies 

Amin(PlO ) 1\171\2 < lVlO (17) :5 Amax(PlO ) 1117112, (2.4.6) 

aWlOA -- 1017 
017 

< -11171\2, (2.4.7) 

l\a~lOI\ < 2Amax(PlO) 111711. (2.4.8) 
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Differentiating WlO along system (2.4.4) one obtains 

WlO = -~1171112 + 2P1071BI W(.), 
€ 

that, using assumption A2.2, can be rewritten as 

Take a value of a, 0 < a < 1, it is easy to show that 

if 

35 

(2.4.9) 

(2.4.10) 

(2.4.11) 

(2.4.12) 

where <5:po = 2'xmar~oh2 is a positive constant. As Amin(PlO )117111 2 ~ W lO (71) ~ 
• 

Amax(PlO ) 117111 2, applying Corollary 5.3 of Theorem 5.1 of [4], one can conclude 

that if 1171(0)11 ~ <5spol> :3 tl, tl > 0, such that 

and 

where 

Amax(PlO ) 1171(0) II e-(o:/(2'xmax(PIO)))t , 
Amin(PlO ) 

(2.4.13) 

(2.4.14) 

(2.4.15) 

Based on Xi = r/ifn +1-i and 0 < € < 1, we have Ilxeli ~ 117111. Thus, for any 

given constant <5spo , :3 f:po , 0 < f:po < 1 

such that, V € 0 < f < f:po ' 

o 
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2.4.2 Closed-loop stability analysis 

Using the estimates of states and perturbation, an output feedback lin

earization control law is designed for the nonlinear system (2.2.1). The com

plete control is designed the same as that represented by equations (2.3.11) 

and (2.3.12) except that the true states are replaced with the estimated states: 

v = -KI, 

(2.4.16) 

(2.4.17) 

where K = [k1 , k2 ,'" , knJT are the linear feedback controller gains, which 

makes matrix Ao = A - BK Hurwitzian. 

Note that I = x - D'(rJ)r/, In+! = Xn+! - rJn+l, where 

and 

Control (2.4.16) can be represented as: 

1 
U = b

o 
(-xn+! - Kx - K1D(E)TJ), 

where Kl = [K,IJT. 

(2.4.18) 

Applying control (2.4.18) to system (2.2.7), the closed-loop system can be 

represented by 

x = Aox + BK1D(E)rJ 

d/ - AlOrJ + EB4W(X, D(E)rJ). 

(2.4.19) 

(2.4.20) 

System (2.4.19) and (2.4.20) is a standard singular perturbed system, and 

rJ = 0 is the unique solution of system (2.4.20) when E = O. The reduced system, 

obtained by substituting rJ = 0 in system (2.4.19), is obtained as follows: 

x = Aox. (2.4.21) 
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The boundary-layer system, obtained by applying the change of time variable 

T = tiE to (2.4.20) and then setting E = 0, is given by 

d"1 
dT = AlO"1· (2.4.22) 

Theorem 2.4. Consider system (2.2.8) and high gain state and perturbation 

observer (2.4.1), choose the observer gain as described in equation (2.4.2), and 

let assumptions A2.1 and A2.2 hold; then, 3E~, E2 > 0 such that, VE, 0 < E < E2, 

the origin of system (2.4.19) and (2.4.20) is exponentially stable. 

Proof: For the reduced system (2.4.21), we define the same Lyapunov function 

as function (2.3.17). For the boundary-layer system (2.4.22), we define the 

Lyapunov function WlO("1) according to equation (2.4.5). 

Let us consider V2(x, "1) = Vo(x)+,BWlO("1), where,B > 0 is to be determined, 

as a Lyapunov function candidate for system (2.4.19) and (2.4.20). Choose ~ < 

r; then, given Assumptions A2.1 rv A2.2, V (x, "1), (x, "1) E B{O,~) x 11"111 :::; ~ = 

A, we have 

(2.4.23) 

Using equations (2.3.18) I'V (2.3.23) and Young's inequality, it can be shown 

that, for all (X,17) E A, we have 

V; - a~~x)(Aox + BK1D{E)17) + ,Ba~~!])(A~Q!] + B4W(.)) 

< -llxll2 - ~1I1J1I2 

+2,BL4 I1P4 11111J1I 2 + (211 Po II IIKlll IID(E) II + 2,BL3 II PlOll) IIxll 1I1J1I 
< -lIxll2 - ~1I1J1I2 + 2,BL4 I1 PlOlIlI1J1I 2 

+(2I1PoIIIIK11I + 2,BL3 I1PlO IDllxllll1J1I 

< -lIxll2 - ~1111112 + 2,BL4 II PlO II 1117112 
+(2I1PoIIIIK1 1I + 2,BL3I1PlOlI)(:ollxIl2 + Eoll1J1I2) 

< _~lIxIl2 - ~1I1J1I2 - b3 11xll2 - b4 111J1I2, 

(2.4.24) 

where b3 = ~ - fc;(IIK11IIIPoll + ,BL311P101I), b4 = t - 2,B(EO * L3 + L4 )II PlOlI-
2EoIIPoil IIKI II, and Eo > o. 
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Now choose f~ = 411Kl II II Po II + 4,gL3 11PlO ll (where,g > 0 is a constant ), 

fO ~ fO' such that b3 > 0, and then let 102 = ,g/(f02 + 4,gL4 1IPlO ll), V 10,10 :::; 10;, 

b4 > O. Then, it can be shown that 

(2.4.25) 

Thus it can conclude that the origin of system (2.4.19) and (2.4.20) is 

exponentially stable. 0 

Remark 2.1 The designed state and perturbation observer can be regarded 

as a functional estimation method, in contrast to the parameter estimat.ion 

method used in most nonlinear adaptive control. It can deal with fast varying 

unknown parameters, unknown nonlinear dynamics and external disturbances. 

When there does not exist uncertainties and external disturbances and the 

exact system nonlinearities are obtainable, such a controller provides the same 

performance as the state exact feedback linearization controller. But when 

there exists uncertainties, such controller performs much better. 

Remark 2.2 The proposed controller uses the estimates of states and pertur

bation to realize the whole controller, it needs only one measurable output and 

can be easily implemented in practice. 

Remark 2.3 We mainly focus on the nonlinear adaptive control design based 

on the nonlinear canonical system. The proposed control schemes can be ex

tended easily to the input/output linearization of minimum phase nonlinear 

system. 

2.5 Example 

In this section, simulation of the control of a nonlinear system without a 

known system model is performed using the proposed adaptive output feed

back control scheme. Consider a second order nonlinear system in the form of 
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equation (2.2.1) as 

I:: : ;~X) + (b(x) - bo)u + bou 

Y = Xl 

(2.5.1) 

where X = (Xl. X2)T, f(x) = -(2 + sin(xI))x~ - 5(3 + cos(7fxt}) sin(x2), and 

b(x) = 1 + 0.5 sin(xI)' The system, initially at the state of Xl (0) = 5 and 

X2(0) = 0, is required to track the desired trajectory Yr(t) = 5sin(t). By 

defining new states el = Y - Yr and e2 = y(1) - y~l), the track problem of 

system can be converted to the stabilization of system around the origin. As 

0.5 ~ Jb(x)J ~ 1.5, choose bo = 2 to satisfy Assumption A2.1. For system 

(2.5.1), we have perturbation 

w(x, u, t) = f(x) + (b(x) - bo)u 

= -(2 + sin(7fxt})x~ - 5(3 + COS(7fXI)) sin(x2)t 

(-1 + 0.5 sin(xl))u 

< 3Jxd3 + 1.5JuJ. 

Parameters of a HGSPO (2.4.1) are selected to be QI = 300, Q2 = 3 x 

10\ Q3 = 1 X 106 , and t: = 0.01. Parameters of the controller described in 

equations (2.4.16) and (2.4.17) are chosen as kl = 100 and k2 = 20. The 

system responses are shown in Figure 2.1. The estimation error of states Xl 

and X2, and perturbation Ware shown in Figures 2.2 and 2.3. 

2.6 Conclusion 

In this chapter, the nonlinear adaptive control via the high gain state and 

perturbation observer has been studied. Two types of observers, the high gain 

perturbation observer and the high gain state and perturbation observer, have 

been discussed respectively. The designed controller adopts the real time esti

mates of states and perturbation to yield the adaptive, output feedback control 
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law. It can deal with the fast varying unknown parameters, unknown nonlinear 

dynamics and external disturbances. Moreover, the proposed controller needs 

only one measurable state and does not require the detailed system model. It 

can be implemented easily in practice. Finally, the numerical simulation results 

of an example have been given. 

NONLINEAR ADAPTIVE CONTROL L. Jiang 



2.6 Conclusion 41 

5 .---~~----~----~-----r~----~ 

:>-< 0 

- I 

-2 

- 3 

-4 

-~L-----~2------~4~L-~6------~8----~IO 

Time (seconds) 

(a) Output - y(t), . . . Yr(t) 
300~----~----~----~------~----~ 

g 
= 
8 

2 4 6 8 10 
Time (seconds) 

(b) Control u 
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Chapter 3 

Nonlinear Adaptive Control 

Using Sliding Mode State and 

Perturbation Observer 

3.1 Introduction 

Sliding Mode Control (SMC) is shown to be globally stable and robust 

despite the presence of perturbations provided their upper bounds are known 

priori to the control design[8]. However, it may be difficult and even sometimes 

impossible to obtain these upper bounds. Thus the supreme upper bound is 

chosen to cover the whole range of perturbations so that an over conservative 

control input always results in. In [17], Olgac first introduced the perturba

tion estimation with sliding mode control and proposed a new scheme named 

as Sliding Mode Control with Perturbation Estimation (SMCPE). The upper 

bounds of the perturbations is replaced with its estimate so that a desirable 

level of control activity is yielded for a given precision of trajectory tracking. 

In this scheme, the perturbation estimation is implemented by a numerical 

differentiation algorithm. However, it is well known that the numeric differen-

44 
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tiation algorithm is very sensitive to measurement noise. Moreover, a kind of 

Sliding Mode State and Perturbation Observer (SMSPO) is proposed as a tool 

to eliminate the requirement of full state feedback, reducing the implem('nta

tion costs [18]. Consequently, the resulting observer is able to provide much 

better state estimation accuracy. The combination of this kind of SMSPO with 

SMC results in a control algorithm that is robust against perturbations, uti

lizes only partial state feedback and outperforms conventional SMC with full 

state feedback and perfect measurements. However, the perturbation is only 

approximately estimated by using a variable transformation and the analysis 

is mainly for general second-order multi-degree of freedom nonlinear systems 

[18]. 

In this chapter, a new kind of Sliding Mode State and Perturbation Observer 

(SMSPO) is investigated for the output feedback control of nonlinear systems. 

In SMSPO, the perturbation is defined to describe the combined effect of the 

system nonlinearities, uncertainties and external disturbances. And a fictitious 

state is introduced to represent the perturbation in the state equations. As in 

the last chapter, the chapter begins with sliding mode perturbation observer to 

illustrate the perturbation estimation method, and then move to study the slid

ing mode state and perturbation observer. During the design of the observer, 

the sliding condition is first examined, and then the sliding mode dynamics on 

the sliding surface has been investigated with the Lyapunov analysis method. 

In this chapter, the estimates of the states and perturbation are employed 

to design the nonlinear adaptive, output feedback sliding mode controller. The 

upper bounds of perturbation is not included in the controller loop. It is 

only needed in the design of the observer. Moreover, as the real estimate of 

perturbation is used to compensate the system perturbation, the upper bound 

of perturbation is replaced with the relatively smaller bound of its estimation 

error, an over conservative control input is avoided such that the tracking 

accuracy is improved. The nonlinear adaptive control using continuous output 
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feedback and the sliding mode observer has also been studied. In this case, the 

linearization of the original nonlinear system is realized without requiring the 

accurate system model. And a linear continuous feedback controller, rather 

than a sliding mode controller, is designed for the equivalent linear system. In 

each case, the stability analysis of the combined of the controller and observer 

has been given. Numerical simulation results are provided to demonstrate the 

effectiveness of the proposed control schemes. Finally, conclusion is drawn in 

the last section. 

3.2 Problem formulation 

Consider the sliding mode control of the nonlinear systems which has the 

following canonical form: 

{: : Ax + B (a(x) + b(x)u + d(t)) 
(3.2.1) 

where x = [Xb X2, ••• , Xn]T E nn is the state variable vector; u E n the 

control input; yEn the system output; a(x) : nn ~ nand b(x) : nn ~ n 
Coo smooth functions; d(t) : [0, 00] ~ n the external disturbance. The n x n 

matrix A and the n x 1 matrix B are given by 

0 1 0 0 0 

0 0 1 0 0 

A= B= (3.2.2) 

0 0 0 1 0 

0 0 0 0 1 

For system (3.2.1), define the system perturbation as 

w(x, u, t) = a(x) + (b(x) - ba)u + d(t), (3.2.3) 

then the last equation of system (3.2.1) can be rewritten as 

In = w(x, u, t) + bau, (3.2.4) 
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where bo is a constant control gain which will be decided later. 

Define a fictitious state to represent the perturbation: Xn+l = 'l1(x, u, t), 

system (3.2.1) may be represented as 

Xn = Xn+1 + bou (3.2.5) 

Xn+1 - q,(. ) 

Y -

where WO is the derivative of 'l1(.). The state vector is defined as Xe = 

[Xl X2 ... Xn Xn+1 JT. 
The following assumptions are made on system (3.2.1). 

A3.1 bo is chosen to satisfy: Ib(x)jbo - 11 ::; () < 1, where () is a positive 

constant. 

A3.2 The function W(x, u, t) : nn x n x n+ --+ nand W(x, u, t) : nn x n x 

n+ --+ n are globally bounded: 

1'l1(X, u, t)1 ::; III Iq,(x, u, t)1 ~ 12, 

where II and 12 are positive constants. In addition, 'l1(0, 0, 0) = 0 and 

W(O, 0, 0) = o. 

A3.3 The desired trajectory Yd(t) and its up to nth-order derivative are con

tinuous and bounded. 

The control problem is to study the sliding mode control of system (3.2.1) 

in the presence of model imprecision a(x), b(x) and external disturbance d(t). 

There are two cases: one is to design a sliding mode perturbation observer with 

all states available; the other is to design a sliding mode state and perturbation 

observer with only one state Y = Xl available. The control object is to get the 

system state X to track the desired state Xd = [Yd y~l) .•• y~n-l)]T. 
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3.3 Sliding mode perturbation observer 

In this section, all states are assumed to be available and a sliding mode 

perturbation observer is designed to estimate system perturbation. The slide 

mode controller utilize the estimate of system perturbation to compensate the 

real perturbation has been investigated. The upper bound of system pertur

bation is not required in the controller design and an over conservative control 

is avoided. A classical state feedback sliding mode control is designed for com-

parison. 

3.3.1 Design of sliding mode perturbation observer 

Taking Xn as the available measurement, a Sliding Mode Perturbation Ob

server (SMPO) is designed for system (3.2.5) as: 

Xn+! + QIXn + kl sgn(xn) + bou 

Q2Xn + k2 sgn(xn) 
(3.3.1) 

where xn = Xn - Xn, Qi and ki = 0, i = 1,2 are positive gains. The signum 

function is defined as: 

sgn(x) = ( ~ 
-1 

The error dynamics satisfies the equation: 

if Ixl > OJ 

if Ixl = OJ 

if Ixl < o. 
(3.3.2) 

(3.3.3) 

The sliding surface is defined as Spo(x) = xn = o. Introducing function 

Vpo = !S;o' the sliding surface is attractive if Vpo < 0, V Xi ct. Spo. The 

condition for the existence of sliding mode is: 
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if xn < O. 
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The value of the gain kl must be chosen to satisfy the sliding condition of 

the sliding surface Spo = 0 is satisfied, i.e. 

Vt> 0. (3.3.5) 

Hence, the choice of kl depends upon the estimated error of Xn+l. If above 

condition is satisfied, it is guaranteed that the system will reach the sliding 

surface at time ts and thereafter remain inside the sliding surface after t ~ ts. 

It follows that the switch function satisfies Spo(x) = Xn - xn = 0, Vt > ts, 

which in turn implies that Spo(x) = Xn - xn = 0, Vt ~ ts. 

Considering the designed sliding mode observer (3.3.1), the sgn(xn) term 

is a discontinuous input which enforces sliding mode to stay on sliding surface. 

The discontinuous input can be considered as the combination of a low fre

quencyequivalent control term and a high frequency switching term. There

fore, equivalent control is defined as the average value of the discontinuous 

control which maintains the sliding motion on sliding surface [14, 15]. The 

equivalent control is not the actual control signal applied to the system but 

it may be thought of as the control signal which is applied 'on average'. In 

fact, it is the low frequency components of the real control signal[15]. Thus, 

by solving the first equation of system (3.3.3) with replacing Spo(x) and Spo(x) 

by zero, the equivalent control of the sgn(xn) term can be obtained as follows: 
1 _ 

ueq = kl Xn+l· (3.3.6) 

Substituting sgn(xn) term in system (3.3.3) with equivalent control (3.3.6), 

the resulting error dynamics on sliding surface is 

.:. k2 _ . 
xn+1 = - kl xn+1 + w(.). (3.3.7) 

Note that equation (3.3.7) is a filter between q, and Xn+l with a cut-off 

frequency k2/k1• It is desirable to place the break point k2/kl as high as possible 

in order to maximize the attenuation from W(.) to xn+1' and consequently 

improve the estimation accuracy of X n+1. 
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As I~(x, u, t)1 ::; /'2, the stability of the sliding observer is guaranteed by 

setting k2 ~ /2 and the sliding condition is fulfilled by setting 

It is also assumed that "12 is an upper bound of ~(i;, t), meaning that the error 

due to state estimation are negligible compared to the modelling uncertainties 

and external disturbances. This is a reasonable assumption since the estimation 

errors can be reduced by increasing kz / kl independently from ~ ( . ). 

To avoid the chatter of observer output, it is necessary to smooth the dis

continuous function sgn(·) with a saturation function sat(x, f o), where fo is 

the thickness of the boundary layer. This will eliminate another source of the 

control input chatter. The saturation function sat(x, E) is defined as 

sat(x,E) = { ~' 
t ' 

if Ixl ~ f 

if Ixl ::; f. 

where f, 0 < f < 1, is the thickness of the boundary layer. 

(3.3.8) 

Without loss of generality, it can assume that at time t = 0 states Xn and 

xn+! are perfectly known so that In = 0 and In+! = O. That means that the 

observer starts on the sliding surface and will always remain in the boundary 

layer provided that the gain k2 is high enough. Thus, all the sgn(In) terms of 

(3.3.3) can be replaced by sat(xn. 1:0 ) and becomes 

(3.3.9) 

Above error dynamics on boundary layer can be analyzed by the same 

method as a high gain observer described in Theorem 2.2. It shows that after 

the system states have entered the boundary layer IXnl ::; fo, xn and xn+! will 

converge exponentially to a neighbourhood around the origin in a limited time 

and remain in the boundary layer with the chosen gains k i and ai, i = 1,2. 
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3.3.2 Sliding mode control via perturbation observer 

In this section, a sliding mode controller with perturbation observer (81\1-

CPO) is designed for the tracking control of the nonlinear system (3.2.1). A 

classical sliding mode controller is designed at first and then the design of 81\1-

CPO is investigated. Let e1 = Xl - Yd be the tracking error of the output y, 

and let F 

be the tracking error vector. Furthermore, define a sliding surface as 

n 

Ssmcpo(x, t) = L Pi (Xi _ y~i-l)) , (3.3.10) 
i=1 

where Pn = 1 and Pi, i = 2,' .. ,n - 1 are gains for a stable polynomial. If all 

poles of the polynomial are equal to real and negative constant -Ac , gains Pi 

can be chosen as: 

_ Ci- 1 An - i 
Pi - n-1 c , 

h Ci (n-I)! 
were n-1 = i!(n-l-i)!' 

i = 1,2"" ,n, (3.3.11) 

Here some basic results about SMC design is given briefly [3]. For the 

tracking task to be achievable using a finite control, the initial desired state 

Xd(O) must be: 

(3.3.12) 

Otherwise, tracking can only be achieved after a transient. Given the initial 

condition (3.3.12), the problem of tracking X = Xd is equivalent to that of re

maining on the surface Ssmcpo(t) for all t > 0; indeed Ssmcpo = ° represents a 

linear differential equation whose unique solution is X = 0, given initial con

ditions (3.3.12). Thus the problem of tracking the n-dimensional vector Xd 

can be reduced to that of keeping the scalar quantity Ssmcpo at zero. More 

precisely, the problem of tracking the n-dimensional vector Xd ( i.e., the origi

nal nth-order tracking problem in X ) can in effect be replaced by a 1st-order 

NONLINEAR ADAPTIVE CONTROL L. Jiang 



3.3 Sliding mode perturbation observer 52 

stabilization problem in Ssmcpo' Furthermore, bounds of Ssmcpo can be trans

lated into bounds on the tracking error vector x - Xd, and therefore the scalar 

represents a true measure of tracking performance. Specially, assuming that 

Xl(O) - Xdl(O) = 0 (the effect of non-zero initial conditions in error can be 

added separately), we have: 

< (2Ac)\.~:'1' i = 0, 1,," ,n - 1. 
c 

(3.3.13) 

Classical sliding mode controller design 

Assuming that system nonlinearities are unknown and all states are avail

able, a sliding mode controller is designed as 

(3.3.14) 

where ( and cp are control gains and determined to fulfill the attractive condi

tion of the sliding surface Ssmcpo' 

Differentiating (3.3.10) along system (3.2.1) and using control (3.3.14), one 

obtains 

Ssmcpo = y~n) + r:::::} Pi(XHl - y~i)) + \lI(-) + bou 

= -(Ssmcpo - <p sgn(Ssmcpo) + \lI(.). 

Therefore, the attractiveness condition is 

(3.3.15) 

(3.3.16) 

As 1\lI(')lmax =::; /'1, the above condition is obviously satisfied if the gain cp is 

chosen as 

<p ~ /'1· (3.3.17) 

The discontinuity in control ( due to the signum function ) should be 

smoothed to eliminate the control chatter. A replacement of the signum func

tion with the unit saturation function was proposed first by Slotine and Sastry 
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[8]. This operation removes the fundamental cause of control chatter by uti

lizing a continuous control law. The saturation function used for SMC design 

is defined same as equation (3.3.8), i.e., sat(x, fe), where fe is the thickness of 

the boundary layer of sliding mode controller. 

Moreover, the corresponding sliding mode dynamics with the saturation 

function type controller is not desired to exhibit high frequency oscillation 

either. Therefore the Ssmcpo dynamics should be enforced into a low-pass filter 

mode to get rid of the effects of high-frequency components of perturbations. 

This control design method will eliminate another source of control chatter 

[17]. With the unit saturation type control function, the dynamics of Ssmcpo 

within the boundary layer 

take the form: 
• <p 

Ssmcpo + (( + - )Ssmcpo = W(·). 
fe 

(3.3.18) 

(3.3.19) 

This equation acts as a low-pass filter against the perturbations and 

<p 
w=(+-

fe 
(3.3.20) 

is the tuneable break frequency. In order to eliminate the influence of the 

perturbations, this frequency is bounded by an Wmax • This can be achieved by 

choosing a boundary layer fe as: 

<p 
fe = . 

Wmax - ( 
(3.3.21) 

It is desired to keep fe as small as possible for tracking precision. However, for 

a given the bandwidth bound Wmax , it can easily shown from equation (3.3.21) 

that when <p increases due to the increase of perturbations, so does f e• There

fore, this choice of fc introduces a trade-off between robustness and tracking 

accuracy. Note that the actual Ssmcpo variations are expected to be limited 

to a small fraction of the boundary layer thickness fc due to the conservative 

selections of <p. 
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Design of sliding mode controller with perturbation observer 

As shown in equation (3.3.17), the upper bound on the perturbation is 

employed to decide the control gain. The resulting gain is conservative and high 

for practical applications. In fact, most often the worst conditions in which the 

perturbation takes its upper bound does not occur. Therefore, this conservative 

control is not necessary. In this section, the perturbation estimation is utilized 

to design the sliding mode control and a low and reasonable control gain will 

be obtained. It should be pointed out that, when SMPO is used to estimate 

the perturbation, the upper bound of the derivative of perturbation is required 

to guarantee the estimation accuracy. And such a upper bound will cause a 

conservative observer gain. However, the conservative gain is only included in 

the observer-loop, not in the controller loop. Such properties will be illustrated 

as follows. 

Using the estimated perturbation, a sliding mode control law is designed as 

U = ~ [y~n) - ~P;(X;+1 - y~;») - (8_" - <p sgn(8,m,,.,) - q,O] , 
(3.3.22) 

where ~(-) = In+! is obtained from sliding mode track-differentiator (3.3.1). 

The corresponding Ssmcpo dynamics are: 

Ssmcpo = -(Ssmcpo - cp sgn(Ssmcpo) + ~(.). (3.3.23) 

where ~(.) = w(.) - q,(.) is the estimation error in the perturbation. Therefore, 

the attractive condition is 

(ISsmcpol + cp > I~(-)Imax. (3.3.24) 

The above condition is obviously satisfied if the gain cp is chosen as 

Considering kl ~ 1~(-)lmaJo we have 

(3.3.25) 
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Note that in comparison with the conservative control gain in equation 

(3.3.17), cp is rather small. This reduction is because of the driving term of the 

Ssmcpo dynamics decreasing from upper bound of the perturbation w(-) to its 

estimation error W (. ). 
Using the saturation function sat(~, f"c) to smooth the signum function 

sgn(~), the dynamics of Ssmcpo in the boundary layer act as 

. cp -
Ssmcpo + (( + - )Ssmcpo = w(·). 

Ec 

(3.3.26) 

The sliding mode dynamics is similar to equation (3.3.19) except for a 

much smaller driving term. Thus, smaller boundary thickness Ec is obtained 

for the same break frequency bound Wmax • Moreover, the desired low-pass filter 

behaviour of Ssmcpo is obtained by limiting its maximum break frequency to 

WmwC! which can be designed by choosing the boundary layer thickness as: 

cp 
f"c = . 

Wmax - ( 
(3.3.27) 

It can be seen that, for the same break frequency frequency Wmax , the boundary 

layer thickness in equation (3.3.27) is much smaller than SMC application in 

equation (3.3.21) as cp becomes smaller. Thus a better tracking performance 

results. An identical trade-off between robustness and the tracking accuracy 

appears again. 

3.4 Sliding mode state and perturbation ob-

server 

In this section, only one state of the system, Xl, is measurable and a Sliding 

Mode State and Perturbation Observer (SMSPO) is designed. The design of a 

Sliding Mode State Observer(SMSO) is presented for comparison. The SMSPO 

is employed to design two kinds of controller. One is a sliding mode controller 
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with output feedback and perturbation compensation. The other is an adaptive 

output feedback linearization controller which uses the estimated perturbation 

to cancel system nonlinearities and disturbances and the estimated states to 

design a linear output feedback control law for the equivalent linear system. 

3.4.1 Design of a sliding mode state and perturbation 

observer 

Taking Xl as the measured system output, a sliding mode observer for 

system (3.2.5) is designed as follows: 

Xl = X2 + alxl + kl sgn(xI) 

Xn = Xn+1 + anXI + kn sgn(xI) + bou 

Xn+1 = an+1 XI + kn+1 sgn(xI), 

(3.4.1) 

where Xl = Xl - Xl! ki and ai, i = 1, "', n + 1, are positive coefficients. 

The estimate and estimation error of the state vector are defined as Xe = 

[Xl X2 .•. Xn Xn+1] T and xe = Xe - xe = [Xl X2 •.• Xn Xn+l] T, 

respectively. 

The constants ai are chosen as in a Luenberger observer (which corresponds 

to ki = 0, i = 1"" ,n + 1) so as to place the poles of the Luenberger observer 

at desired locations in the open left plane of the complex plane. 

From equations (3.2.5) and (3.4.1), the error dynamics of the observer can 

be obtained as: 

Xl = i2 - alxl - kl sgn(xI) 

xn = in+1 - anXI - kn sgn(xt} 
(3.4.2) 

Xn+l = -an+1XI - kn+1 sgn(xI) + W. 
The sliding surface is defined as Sspo(x) = Xl = O. Introducing the function 

v..po = ~S;po' the sliding surface is attractive if Yapo < 0 for X i Sapo' The 
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condition for the existence of sliding mode is: 

if Xl > 0; 

if Xl < O. 

Such a condition can be guaranteed by choosing kl as: 

57 

(3.4.3) 

(3.4.4 ) 

It can be seen that the choice of gain kl depends upon the estimation error 

of X2. Under the above condition, it is guaranteed that the system will enter 

into the sliding surface at t > ts and thereafter remain Sspo = 0, Vt ~ ts. 

Actually, the dynamic of observer can start in the sliding mode, if Xl (t = 0) 

can be taken as Xl(t = 0). 

It follows that the switch function satisfies Sspo(i) = 0, Vt > ts, which in 

turn implies that Sspo(i) = 0, Vt ~ ts' Thus, from the first equation of (3.4.2), 

the equivalent control which maintains the sliding mode motion on Sspo(x) = 0 

is 
1 _ 

Ueq = kl X2· (3.4.5) 

Substituting sgn(xn} term in system (3.4.2) with equivalent control (3.4.5), 

the resulting error dynamics on the sliding mode take the form: 

X2 = -~i2 + X3 
kl 

X3 !J. - -= - X2 + X4 kl 

(3.4.6) 

xn = -!n.X2 + i kl n 

Xn+l = _ kntt i + ~(-) 
kl 2 , 

or 

(3.4.7) 
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where Xel = [X2 ..• Xn+1 ]T, and n x n matrix Al and n x 1 matrix BI 

_h 1 0 
kl 0 

_& 0 1 0 
kl 

AI = BI = 
0 

-~ 0 0 1 
kl 1 

_kn+l 0 0 0 
kl 

The following theorem states the observer convergence. 

Theorem 3.1. Consider system (3.2.5), and design a sliding mode state and 

perturbation observer (3.4.1). If assumption A3.2 holds for some value "/2, then 

given any constant 8, the gains kl' k2' "', kn and kn+1 can be chosen such 

that, from an initial estimation error xe(O), the observer error xe converges 

exponentially into the neighborhood 

Proof: Assume that a value of kl is taken such that the sliding condit.ion 

(3.4.4) holds for all t. Then the observer stays in the sliding surface Xl = 0, 

:h = o. Applying the equivalent dynamics of the discontinues term during the 

sliding mode, the observation error during sliding is reduced to system (3.4.7). 

Now, define the gains k i , i = 2,3, ... ,n + 1, as 

n k2 n-l kn kn+1 ( ..\)n p +k/ +"'+k/+T= p+ (3.4.8) 

for a positive constant ..\. Thus we have 

i = 1,2,··, ,n, (3.4.9) 

where C~ = 0,( n~ 0),. This means that all eigenvalues of the matrix Al are chosen 
\0 n I ° 

as -..\. 

Define the state transformation as 

i = 2"" ,n + 1. (3.4.10) 
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Then, equation (3.4.7) can be written in terms of z as 

. ~ 
z = )"M z + BI )..n-I ' (3.4.11) 

where z = [Z2 ... Zn+l] T, and n x n matrix At 

o 
_C2 0 1 0 n 

M= 

_cn - I 0 0 1 n 

-c: 0 0 0 

Define the Lyapunov function 

1 T 
WI = 'XZ PIz, (3.4.12) 

where PI is the positive definite solution of the Lyapunov equation P11l;[ + 
AfT PI = -1. Differentiating ~VI along system (3.4.11) one obtains 

. 2 TPI q,(.) 
Wl = -llzll + 2z -EI-).. )..n-I' 

(3.4.13) 

that, using the assumption A3.2, can be rewritten as 

(3.4.14) 

Take a value a, 0 < Q: < 1, it is easy to show that 

(3.4.15) 

if 

(3.4.16) 

where 8% = 2~7:1~1,),2 is a positive constant. As )..min(PI )llzI12 ~ WI(z) ~ 

)..max(PdllzIl 2, applying Corollary 5.3 of Theorem 5.1 of Khalil [4] , one can con

clude that if IIz(O)1I ~ 8:;, there :I tb tl > 0, such that 

IIz(t)1I ~ )..max(PI ) II z(O) Ile-o/(2Amax (Pl))t, 

)..min(PI ) 
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and 

Ilz(t)11 ::; (3.4.18) 

where 

(3.4.19) 

As A is always assumed to be larger than 1, we can observe from equation 

(3.4.10) that 

Thus the previous expressions can be written in terms of Xe2 as 

IIxel(t)11 < An- 1 Amax(P1) 11- (0)11 -2Xm':(Pd t 

Amin(PI) Xel e , Vt < t1; (3.4.20) 

IIxel (t) II < An- I Amax(Pt) 8 
Amin(Pd z, 

Vt 2: tl; (3.4.21) 

tl < 2Amax (Pt) 1 CIXel(O)II) (3.4.22) og 8 . 
a z 

Therefore, for a given positive constant 8, we can take A such that 

8 > Am&x(Pd 8
z 

Amin(PI ) 

Amax( PI) 2Amax( PI h2 
(3.4.23) = 

Amin(Pt) (1- a)A 

is satisfied. This will guarantee the exponential convergence of the observation 

error into 

To complete the proof, it is necessary to show that gain ki can be chosen such 

that sliding condition (3.4.3) holds for all t > O. It is obvious that 

IX21 = IZ21 ::; IIzll 

< Amax(PI ) IIz(O)11 
Amin(PI) 

< Amax(P1) 11- (0)11 
Amin (PI) Xel , 

Vt > O. (3.4.24) 
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Therefore, for a given value of initial estimation error IIx(O) II, the sliding con

dition will be fulfilled for all t if gain ki is chosen as 

Amax(Pt) 
Amin(Pl ) . 

(3.4.25) 

o 
Remark 3.4.1 From the previous theorem we can also obtain bounds for the 

observer state errors Xi, i = 2, "', n, n + 1. From equations (3.4.3) and 

(3.4.18), it is obvious that 

< Ai- 2 i = 2, ... , n + 1, 'Vt > t i . 
(3.4.26) 

Remark 3.4.2 The choice of the observer gains cab be summarized as follows. 

ai, i = 1,2"" , n + 1 are chosen to make all poles of the Luenberger observer 

be real and equal to -~. Thus we have 

i=1,2, .. ·,n+1, (3.4.27) 

where C~+l = i!.~:!~~i)!' 
ki' i = 1,2"" ,n + 1 are chosen as follows: ki is chosen according to 

equation (3.4.25); for a given small positive constant 6, from equation (3.4.23), 

we can obtain that A must satisfy 

Amax (PI) 2Amax (PI h2 
Amin(Pl ) (1 - a)6 

Thus, from equations (3.4.9) and (3.4.25), we have 

k . > k C i - 1 Ai - 1 
,_ In' i = 2,'" ,n + 1. 

(3.4.28) 

(3.4.29) 

Remark 3.4.3 In the above analysis, only the upper bound of the derivative 

of the perturbation is used. This may be reasonable when the control input is 
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bounded in a real system. However, when a complete observer and controller 

system is investigated, the more reasonable and strict assumption is to include 

the controller definition in the assumption. If the Lipschitiz condition in as

sumption A3.2 is considered, a error convergence to the origin will be resulted 

in. 

Remark 3.4.4 A saturation function sat(x, fa) is used to replace the discon

tinuous function sgn(x) so as to avoid the chatter of observer output. When 

the sliding condition (3.4.4) is satisfied, the observer will be guaranteed to en

ter the boundary layer IXll ~ fa for any initial condition Xl(O). After replacing 

sgn(xl) with sat(Xl. fa), the error dynamics (3.4.2) becomes 

Xl = X2 - (al + h )XI 
to 

- ( k )-
(3.4.30) 

xn = X n+! - an + ~ Xl 

Xn+! ( ~)- ~ = - an+! - Xl + . 
to 

The above error dynamics on boundary layer can be analyzed by using the 

same method for a high gain observer presented in Theorem 2.2. It is easy 

to show that after the system states enter the boundary layer IXII ~ fa, Xl 

will converge exponentially to a neighborhood of origin after a limited time 

period and remain in the boundary layer with the chosen gains ki and ai, 

i=l, ... ,n+l. 

3.4.2 Design of a sliding mode state observer 

For comparison with SMSPO, a sliding mode state observer (8M80) for 

the nonlinear system {3.2.1} is designed with the output y = Xl' SMSO can 

be designed and analyzed by using the same method as SMSPO. The same 

SUbscripts is used for the convenience of presentation. In fact, 8MSPO can be 

regarded as an extended-order conventional SMSO. It can estimate not only 

the system states, but also the perturbation term which is represented by the 
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fictitious state. However, the estimation error of the perturbation is critical to 

the accuracy of state estimation in Sl\1SPO, as opposed to the upper bounds 

of the perturbation itself in SMSO. Consequently, the driving term of the error 

dynamics are reduced from the perturbation 'l!(.) in a S1\'IS0 to its estimation 

error q,(.) in a SMSPO. Hence, S~ISPO will provide a better accuracy of state 

estimation. The signum function can also replaced by the saturation function 

to smooth the observer output. The results are briefly given as follows: 

Sliding mode state observer 

Equations of error dynamics 

I
iI 7 X2 - alXI - kl sgn(xd 

in = -anXI - kn sgn(xd + 'l!. 
Equations of reduced-order dynamics on sliding mode 

or 

X2 = -~X2+X3 

X3 = -~X2 + X4 

(3.4.31) 

(3.4.32) 

(3.4.33) 

(3.4.34) 

where Xe2 = [X2 •.• xn r, and (n -1) x (n -1) matrix A2 and (n -1) x 1 
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matrix B2 are 

-~ 
kl 

_h 
kl 

A2 = 
kn-I 

-~ 

_fu 
kl 

1 

0 

0 

0 

1 

0 

0 

o 
o 

1 

o 

o 

o 
1 
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3.4.3 Design of combined sliding mode controller-observer 

By using the estimated system states, a sliding function is defined: 
n 

S~ "( ~ (i-I)) 
smcspo = ~Pi Xi - Yd ' (3.4.35) 

i=1 

where Pn = 1, and Pi, i = 1,··· ,n are gains for a stable polynomial. As 

the true states are not available, the sliding surface depends on the estimated 

states. The actual sliding function is 

n 

S "( (i-I)) 
smcspo = ~ Pi Xi - Yd , 

;=1 

and the estimation error of the sliding function is 
n 

Ssmcspo = Ssmcspo - Ssmcspo = L PiX •. 
i=1 

(3.4.3G) 

(3.4.37) 

The control u is chosen to enforce SsmcspoSsmcspo < 0 outside a prescribed 

manifold ISsmcspol < €C. A desired dynamic of Ssmcspo is selected as 

(3.4.38) 

where ( and cp are control gains, sat (Ssmcspo, €c) is a saturation function defined 

as equation (3.3.8) and used to eliminate the control chatter. In this equation, 

fc represents for the boundary layer thickness of sliding mode controller, as 

contrasted with the (0 in sliding mode observer. To illustrate the advantages 

of SMSPO over SMSO, two sliding mode controllers are designed with SMSO 

and SMSPO, respectively. 
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Controller design via sliding mode state and perturbation observer 

By using the estimated perturbation term Xn+1 to cancel the system nou

liuearities and uncertainties, the sliding mode controller is constructed as: 

_ 1 [(n) A ~ A (i) A A 1 u - b
o 

Yd -Xn+1 - f=: Pi (Xi+1 - Yd ) - (Ssmcspo - r.p sat(Ssmcspo, fc) . 

(3.4.39) 

Differentiating equation (3.4.35) along system (3.4.1), and using the reducf'd 

error dynamics (3.4.6), one obtains 

. n-I k 
SA A b kn - (n) ~ (A (i) i - ) 

smcspo = Xn+1 + OU + k" X 2 - Yd + L.J Pi Xi+l - Yd + k" X 2 , 
1 i=1 1 

that, substituting u with control (3.4.39), leads to 

~ n k- A A 

Ssmcspo = L Pi kt X2 - (Ssmcspo - r.p sat (Ssmcspo, fc)' 
i=1 I 

Therefore, the attractiveness condition of sliding function is 

which, using ki > IX21max in equation (3.4.4), will be fulfilled if 

I A I ~ ki 
( Ssmcspo + r.p > ki L.J Pik"' 

i=l 1 

The above condition is obviously satisfied if gain r.p is chosen as 

n k
i 

r.p > kl L Pik"' 
i=l 1 

which, using equation (3.4.9), leads to 

n 

r.p ;::: kl L Pic~i-l) oX (i-I). 

i=l 

(3.4.40) 

(3.4.41) 

(3.4.42) 

(3.4.43) 

(3.4.44) 

(3.4.45) 

This condition guarantees the existence of a sliding mode on the boundary 

layer ISsmcspol ::; fe • From equation (3.4.37), we can obtain 

(3.4.46) 
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Using Ssmcspo = Ssmcspo - Ssmcspo and equation (3.4.41), the actual Ssmcspo

dynamics becomes 

n n-l 

Ssmcpo + (( + <.p) Ssmcpo = (( + <.p) 2:: pd;i + 2:: p/i;i+ I + Xn+!' 
Ec Ec i=l i=l 

(3.4.47) 

As it can be seen, the driving term of Ssmcspo-dynamics are the sum of the 

estimation errors of states and the estimation error of perturbation. From the 

bound of sliding surface ISsmcspol ~ Ec, the bounds of the states tracking error 

can be obtained as follows: 

I Ssmcspo I ~ Ec => ISsmcspo - Ssmcspol ~ Ec 

=> ISsmcspol ~ ISsmcspol + Ec 

=> ISsmcspol ~ I E~=l Pixd + Ec 

(3.4.48) 

where tl is the time constant defined in equation (3.4.22). If the polynomial 

gains Pi are chosen as in equation (3.3.11), which make all poles of polynomial 

equal to -.xc, thus, from equation (3.3.13), we have 

IX(i)(t) - x~i)(t)1 ::; (2Ac)i ~: + ALI i); )jCLI, i = 0,1, ... , n-1. 
c j=2 c 

(3.4.49) 

The previous analysis can be summarized as following theorem. 

Theorem 3.2. Consider system {3.2.1}, and let assumptions A3.1 '" A3.3 

hold. Design observer {3.4.1}, with gains chosen from equations {3.4.27} to 

{3·4.29}. Let 8 be any arbitrary positive constant. Define the controller as equa

tion {3.4.39} and the gains r.p and ( are chosen according to equation (3.4.45). 

Then the state tracking error will satisfy equation (3.4.49) after a shori period 

of time t l . 

Controller design via sliding mode state observer 

For comparison, a sliding mode controller is designed based on a SMSO 

with system output y = Xl. To obtain desired dynamics described in equation 
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(3.4.38), a sliding mode controller is designed as 

(3.4.50) 

Differentiating equation (3.4.35) along system (3.4.31) , and using system 

(3.4.33), one obtains 

Ssmcspo - 2:~1 Pi(~i _ y~i-l») 

= _y~n) + 2:~:11 plXi+l - y~i») + 2:~=1 ~X2 + bou. 
(3.4.51) 

Then the corresponding sliding surface dynamic under control (3.4.50) is 

Therefore, the attractiveness condition 

can be fulfilled by choosing gain cp as 

n n 

>k ~ ki >k ~ Ci-1\i-l 
cp - 1 L-Pi"k - 1 L-Pi n-l" , 

i=l 1 i=l 

(3.4.52) 

(3.4.53) 

(3.4.54) 

where -,\ is the poles of SMSO. And kl ~ IX21max guarantees the existence of 

sliding mode in SMSO. Condition (3.4.54) will ensure the existence of sliding 

mode within the boundary layer ISsmcspol ::; f c. From equations (3.4.37) and 

(3.4.33), we can obtain 

(3.4.55) 

U' A _ ~ • 

smg Ssmcspo - Ssmcspo - Ssmcspo and equatlOn (3.4.41), the actual Ssmcspo-

dynamics becomes 

n n-l 

Ssmcspo + (( + cp )Ssmcspo = (( + cp) I: PiXi + I: PiXi+l + \11(.). (3.4.56) 
fc fc i=l i=l 
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From equations (3.4.56) and (3.4.47), it can be seen that the driving term 

of Ssmcspo-dynamics in SMCSO are the estimation errors of states plus the 

perturbation itself, as contrasted with the estimation errors of states and the 

estimation error of perturbation in SMCSPO. This will result in the SMCSPO 

having better tracking performance than SMCSO. 

3.4.4 Nonlinear adaptive control using continuous out-

put feedback and SMSPO 

In this section, a nonlinear adaptive control is designed by using continu

ous output feedback control and a SMSPO. The estimate of perturbation Xn+1 

is used to cancel the system nonlinearities and uncertainties so as to achieve 

the linearization of the original nonlinear system without requiring the detail 

system modeL Utilizing the estimated states instead of the real ones, a lin

ear feedback controller is designed for the equivalent linearized system. The 

controller is defined as: 

v = -Kx, 

(3.4.57) 

(3.4.58) 

where K = [kI' k2 ,·.· ,kn]T is the linear feedback controller gains, which make 

the matrix Ao = A - BK is Hurwitzian. 

If attractive condition (3.4.4) is satisfied, the SMSPO will reach the sliding 

surface, that is Xl = 0 and i l = O. Noting that Xel = [X2' ••• ,Xn +1]T, control 

(3.4.57) and (3.4.58) can be represented as: 

U = :0 (-Xn+1 - Kx + KIxel), 

where Kl = [k2 •.. knt 1JT. 

(3.4.59) 

Substituting control (3.4.59) into system (3.2.1), and using the state vari-
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abIes transformation (3.4.10), the closed-loop system can be represented by 

± = Aox + BKlz, 
tiJ(.) 

Z AM z + BI An-I' 

(3.4.60) 

(3.4.61) 

The stability result of closed-loop system (3.4.60) and (3.4.61) is represented 

by following theorem. To make the whole control system be exponentially 

stable, the function W(x, u, t) and ~(x, u, t) satisfy following assumption. 

A3.4 The function w(x, u, t) : nn x n x n+ -+ nand tiJ(x, u, t) : nn x n x 

n+ -+ n are locally Lipschitz in their arguments over the domain of 

interest. In addition, W(O, 0, 0) = ° and ~(o, 0, 0) = 0. 

Theorem 3.3. Consider system {3.2.1} and sliding mode state and pertur'ba

tion observer {3.4.1}, choose the observer gain given in equations {3.4.27} to 

(3·4. 29}, and let assumptions A3.1 '" A3.4 hold. Define the control as that 

given by equations {3.4.57} and {3.4.58}, then the origin of system (3.4.60) 

and (3.4.61) is exponentially stable. 

Proof: For system (3.4.60), we define the same Lyapunov function as 

(3.4.62) 

Over a ball B(O, r) en, for some r > 0, and Po is the positive definite solution 

of the Lyapunov equation PoAo + A6' Po = -1. V x E B(O, r), we have 

Amin(Po )lIxI12 ~ Vo(x) < Amax (Po)lIxIl 2
, (3.4.63) 

aVo A 
- oX ax ~ -lIxIl 2

, (3.4.64) 

II aVo II < 2Amax (Po)lIxll· (3.4.65) 
ax 

For system (3.4.61), we define the same Lyapunov function W1(z) as equa

tion (3.4.12). 
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Let us consider %(x,z) = Vo(x) + ,8WI (z), where ,8, ,8 > 0 is to be de

termined, as a Lyapunov function candidate for system (3.4.60) and (3.4.61). 

Choose ~ < r; 

Choose ~ < r; then, given Assumptions A3.4, \I (x, z) E B(O,~) x 111711 :s ~ = 
A: 

(3.4.66) 

Using equations (3.4.63) to (3.4.65), equation (3.4.12), and the Young's 

inequality, it can be shown that, \I (x, z) E A, we have 

"2 = -llxl12 + 2XT PoBKIZ - ,8l1zl12 + 2,8zT PIBI W-
< -lIxll2 - ,8l1zl12 + 211 PoIIIIKI llllxllllzil 

+~IIPIllllzlI(Llllxll + L211zll) 
(3.4.67) 

< -llx l1 2 - ,8llzl12 + (2I1PoIIIIKI II + ¥nllgll)(~ 
+EollzIl2) + 2~~i3I1PlllllzI12 

< -~llxI12 - ~lIz112 - bI llxl1 2 - b211z112, 

where bI = ! - ~(IIKdIlIPoll + ~L~J:llI), b2 = ~ - 2/3L;U P
lll - 2Eo(IIPoIIIIK11I + 

f3LIIIPl.ll) d 
An ,an EO> O. 

Now choose,8 small enough and EO ~ EO = 411KdlllPoil + 4/3LlU Pdl such that 

bI > 0, and then choose £i = ,8/(E~2 + 4,8L4 II P4 IJ), \I f :s Ei, b2 > O. Then, it 

can be shown that 

(3.4.68) 

Thus we can conclude that the origin of system (3.4.60) and (3.4.61) is 

exponentially stable. o 
The designed controller is adaptive to the time varying unknown parame

ters, system nonlinear dynamics and external disturbances. When there does 

not exist uncertainties and external disturbances and the exact system nonlin

earities is obtainable, such a controller provides the same performance as the 

NONLINEAR ADAPTIVE CONTROL L. Jiang 



3.5 Example 71 

state exact feedback non-linear controller. But when there exists uncertaiu

ties, this controller performs much better. Moreover, this controller use state 

and perturbation estimate to realize the whole controller; it needs only one 

measurable output and can be easily implemented. 

3.5 Example 

In this section, simulation of the control of nonlinear system without known 

system model are performed using proposed adaptive sliding mode control 

scheme. Consider a second nonlinear system used in [31J in the form of equation 

(3.2.1) as 

(3.5.1) 

where x = (Xl, X2)T, f(x, t) = -(2 + sin(1l't))x~ - 5(3 + cos(1l't)) sin(x2), b(x) = 

1 + 0.5sin(t), bo = 2, and d(t) = 5sin(101l't). The system, initially at the 

state of Xl(O) = 5 and X2(0) = 0, is required to track the desired trajectory 

Yd(t) = 5sin(t). For system (3.5.1), we have perturbation 

w(x, 'U, t) = f(x, t) + (b(x, t) - bo)u + d(t) - y~2)(t) 

= -(2 + sin(1l't))x~ - 5(3 + cos(1l't)) sin(x2) 

+5 sin(101l't) + (-1 + 0.5 sin(t))u + 5 sin(t) 

< 31xl13 + 1.51ul + 40. 

Case 1: Classical SMC 

From the initial state condition and control 'U = 0, the bound of the per

turbation Iw(x, 'U, t)lmax = If(x) + d(t)1 ::s 400. Parameters of a classical SMC 

(3.3.14) are chosen as follows. PI = 20 and P2 = 1 such that make .xc = -20; 

<p = 500, <" = 20, and tc = 0.1. The tracking error response is shown in Figure 

3.1 and the control output is shown in Figure 3.2. The unknown perturbation 

f(x) + d(t) is shown in Figure 3.3. 
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Figure 3.1: Tracking error respons y - Yr with SMC 

Case 2: Sliding mode controller with perturbation observer 

Parameters of a SMPO (3.3.1) are selected to be 0:1 = 2 X 103,0:2 = 1 X 106 , 

kl = 1000,k2 = 3500, and Eo = 0.05 , where Eo is the thickness of boundary layer. 

Parameters of SMCPO (3.3.22) are chosen as PI = 20 and P2 = 1 such that 

make A c = -20; cp = 100, ( = 20, and Ec = 0.05. Note that due to the lIsag 

of perturbation estimate \lie·), the value of cp is decreased from 400 in SMC 

to 100. The tracking error, perturbation estimate and antral are showlJ in 

Figures 3.4, 3.5 and 3.6. It can be seen from Figures 3.2 and 3.5 that the 

control output b comes smaller. 

Case 3: Sliding mode controller with state and perturbation observer 

Parameters of a SMSPO (3.4.1) are selected to be 0:1 = 300, 0:2 = 3 X 104 , 

0:3 = 1 X 106 , kl = 100, k2 = 4 X 105 , 0:3 = 4 x 10 and Eo = 0.5. Parameter of 

SMCSPO (3.4.39) are chosen as PI = 20 and P2 = 1 such that make .xc = - 20; 

<p = 100, ( = 20, and Ec = 0.5. The tracking error, perturbation estimate and 

control are shown in Figures 3.7, 3.8 and 3.9. The estimate error of X l and X2 

are shown in Figures 3.10. 
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2000 

1500 

1000 

"0 
500 

.!::l 
c 0 
0 
U 

-500 

- 1000 

- 1500 

-2000 
0 2 4 6 8 10 

Time (seconds) 

Figure 3.2: Control output with SMC 

3. 6 Conclusion 

In this chapter , the output feedback control of nonlinear system based 0 11 

liding mode state and perturbation observer has be n inv stiga t d. By lI SC 

of the estimate of perturbation to replace the upp r bound of perturbation 

a conservative control input is avoided and so that the tracking ac ura y j 

improved by the reasonable control. The fe dback lin arization of nonlin 81' 

system using t he estimation of the p rturbation from SMSPO have also b en 

investigated. In ach case, the complete stabili ty analysis for the controller 

and observ r has been given. The simulation results on an example hav a1 0 

been presented. 
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. Figure 3.3: Perturbation f( x) + d(t) with SMC 
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Figure 3.4: TI:-acking rror response Y - Yr with SMCPO 
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Figure 3.5: Control output with SMCPO 
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Figure 3.6: Perturbation f( x ) + d(t) with SMCPO 
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Figure 3.9: Perturbation est imation error wi th SMCSPO 
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Figure 3.10: Estimate error of SMSPO 
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Chapter 4 

Decentralized Nonlinear 

Adaptive Control Using State 

and Perturbation Observer 

4.1 Introduction 

A number of large-scale systems found in the real world, such as electric 

power systems, industry manipulators and computer networks, are often com

posed of a set of subsystems. The centralized control for large-scale systems 

is usually impractical due to the requirement of a large amount of informa

tion exchange between the subsystems. Therefore, a decentralized control law 

developed based only on local information is often preferable. Because of the 

interactions between the subsystems, the design of a decentralized controller is 

in general more difficult than that of the centralized control [134J. 

Modelling a large-scale system is always difficult or impossible due to its 

complexity. The uncertainties of the large-scale system appear not only in lo

cal SUbsystems but also from interactions. And the fundamental uncertainties 

encountered in the decentralized controller design arise from the strength of 

80 
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the interaction between the subsystems. Therefore, the decentralized robust 

control or adaptive control of both linear and nonlinear large-scale system with 

uncertainties are practically significant and have been well developed in recent 

years [135]. The standard A/-matrix conditions have been proposed in [136] 

and used for the design of a decentralized adaptive controller. The stability of 

the controlled large-scale system is ensured if there exists a positive definite AI

matrix which is related to the bound of the interactions. It is noted that these 

schemes suffer from some severe drawbacks. For example, the positive definite

ness of the M-matrix is hard to verify because it involves unknown constants. 

In addition, the relative degree of each local subsystem of the decentralized 

system can not be larger than two. High gain stabilization techniques were 

proposed in [137] to design decentralized adaptive control which need not re

sort to any M-matrix condition, but at a price of assuming the standard strict 

matching condition about the uncertainties. Using the deterministic approach 

to uncertain systems, nonadaptive decentralized controllers have been designed 

using the possible bounds on the interactions to drive the nominal subsystem 

to the equilibrium state [138]. 

Though several decentralized nonadaptive or adaptive control schemes have 

been proposed to handle bounded or unbounded interactions, most of these 

works are based on the assumptions that the interactions are either bounded 

by constants or first-order polynomials in states, or they are in slow time 

variation. In [139], a class of large-scale system, with the assumption that the 

interactions between subsystems are bounded by a known or unknown pth

order polynomial in states were considered. 

Most works in decentralized control focus on state-feedback and less atten

tion has been paid to the decentralized output feedback problem of large-scale 

nonlinear systems. I3ased on adaptive output feedback control in the cen

tralized control, a decentralized adaptive regulator was designed for systems 

which have the observer canonical form[140]. Recently, the decentralized adap-
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tive asymptotic tracking for a new class of large-scale systems using nonlinear 

output feedback is proposed [135J. This approach does not require any match

ing conditions on the parametric uncertainties nor growth conditions of any 

kind on the subsystem and interacting output nonlinearities. Decentralized 

reduced-order filters are presented to recover the unmeasured states. In most 

of the adaptive control schemes, the linear or nonlinear parametric condition 

are assumed and only unknown constant parameters or slow time-varying pa

rameters can be treated. 

In this chapter, decentralized nonlinear adaptive control (DNAC) of large

scale systems is investigated based on the state and perturbation observer. 

DUring the design of DNAC, high gain observer and sliding mode observer 

have been used to estimate system states and perturbation, respectively. Three 

control schemes, decentralized nonlinear adaptive controller with high gain ob

server, decentralized nonlinear adaptive sliding mode controller with sliding 

mode observer and decentralized nonlinear adaptive control using continuous 

feedback control and sliding mode observer, have been developed. The n011-

linearities and uncertainties existing in each subsystems and the interactions 

between the subsystems are included in the system perturbation and estimated 

by the function estimation method. Most importantly, the usage of the esti

mate of the perturbation, instead of its bound, will result in a reasonable 

control output. 

This chapter is organized as follows. In Section 4.2, the problem statement 

is presented. Then Section 4.3 develops a decentralized nonlinear adaptive 

control via a high gain state and perturbation observer and presents the sta

bility results. In Section 4.4, the decentralized sliding mode control scheme 

is designed based on a sliding mode state and perturbation observer. In this 

section a decentralized states feedback sliding mode controller is presented for 

comparison at first. Decentralized nonlinear adaptive control using continu

ous feedback control and sliding mode observer is also presented. In Section 
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4.5, the benchmark example of double inverted pendulums on carts is used to 

illustrate these control strategies. Finally conclusion will be given in section 6. 

4.2 Problem statement 

Consider a large-scale nonlinear system Q which is composed of N inter

connected subsystems qi, i = 1" .. ,N. Each subsystem qi may be presented 

as: 

qi : (4.2.1) 

Xin; - fi(Xi) + gi(Xi)Ui(t) + Zi(X) + di(Xi, t) 

Yi = Xil, 

where Xi = [XiI, Xi2,"', XinJ T E nni is the state vector of qi, X = [xi, ... ,x~JT 
E nn the state vector of whole system, n = ~!l ni; Ui(t) E n the control 

input of qi; Yi E n the output of system qi; fi(Xi) : nn, -+ n the unknown 

continuous function; gi(Xi) : nni -+ n unknown control gain; Zi(X) : nn -+ n 
the strength of interactions from other subsystems; di(Xi, t) E nn; x n+ -+ n 
the external disturbance of subsystem qi. 

The perturbation of subsystems qi, which represents the combined effect 

of nonlinearities, uncertainties, external disturbance and interactions between 

subsystems, is defined as 

(4.2.2) 

where giO is a known constant control gain. And we assume the known part of 

the system nonlinearities fiO(Xi) = 0 for simplification. 

Then system (4.2.1) may be represented in a matrix form as 

(4.2.3) 
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where 

0 1 

0 0 

Ai= 

0 0 

0 0 

0 

1 

0 

0 

o 
o 

1 

o 

84 

After introducing a fictitious state to represent the perturbation: Xi(ni+ 1) = 

Wi(x, u, t), subsystem qi can be rewritten in a (ni + I)-order state equation as 

{ 

Xie = AIXie + B i29iQUi + Eil ~ (.) 
Yi = Gi1Xie, 

where ~ (-) is the derivative of perturbation W (.) and 

o 
o 

1 

, Ail = 

o 1 

o 0 1 

o 0 0 

o 0 0 

o 
o 

o 

o 
o 

1 

o 

, Gil = 

(n.+l)x(niH) 

T 
1 

o 

o 

( 4.2.5) 

010 
(ni+1) x 1 (ni+1)x 1 (niH) x 1 

Defining the desired track state vector Xri = [Yn, Y~!), ... , y~~i)lT, and the 

tracking error vector ei = Xi - Xri = [eil, ei2, ... , ein,lT, system (4.2.3) may 

be rewritten for the tracking problem as 

( 4.2.6) 

The following assumptions are made on system (4.2.1): 
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A4.1 giO is chosen to satisfy: 

(4.2.7) 

where ()i is a positive constant. 

A4.2 The function Wi(X, u, t) : nn x n x n+ ~ nand q,i(X, u, t) : nn x 

n x n+ ~ n are locally Lipschitz in their arguments over the domain 

of interest and globally bounded in x: 

where /il and '/'i2 are positive constants. In addition, Wi{O, 0,0) = 0 and 

q,i{O, 0, 0) = o. 

A4.3 The desired output Yri and its up to nith-order derivatives (Y;~), ... ,Y;~;)) 

are bounded, i.e., IY;~I ::; hi' 1 = 1, ... , ni, j = 1, ... N, where hj is a 

positive constant. 

Our control problem is formulated as follows. Under assumpt.ions A4.1 '" 

A4.3, find out t.he decentralized, output-feedback control of the form 

(4.2.8) 

such that, the state Xi can track stably the desired state XTi and for any positive 

constant €, the tracking error ei will converge into a neighbourhood around 

origin 

and (4.2.9) 

where Xi is the estimate of system state Xi, Vi and Pi are nonlinear functions. 
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4.3 Decentralized nonlinear adaptive control 

using high gain state and perturbation ob-

server 

In this section, the design of a (ni + 1)th-order high gain state observer is 

designed to estimate the system states and perturbation when the subsystem 

output Yi = Xi! is available. Then the estimates of the states and perturbation 

of subsystem are employed to design a decentralized adaptive output feedback 

linearization control law. The singular perturbation method is used to ana

lyze the stability of the closed-loop system which include the controller and 

observer. 

4.3.1 Design of a HGSPO for subsystem qi 

The high gain state and perturbation observer for subsystem qi (4.2.5) is 

designed as 

(4.3.1) 

The observer gain Hi is chosen as 

(4.3.2) 

where €j, 0 < €j < 1 is a positive constant to be specified and the positive 

constants Ctij, j = 1,2"" ,ni + 1, are chosen such that the roots of 

are in the open left-half complex plan. 
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Throughout this chapter, Xij = Xij - Xij refers to the estimation error of Xij 

whereas Xij symbolizes the estimated quantity of Xij' Defining the estimation 

error vector as Xie = Xie - Xie, the error dynamics of observer (4.3.1) becomes 

(4.3.3) 

For the purpose of analysis, the observer error dyna.mics are repla.ced by 

the equivalent dynamics of the scaled estimation error 

Xij 
TJij = n+1-j' 

fi 

Hence, we have Xie = Xie - Di(fi)TJi where 

TJi = [TJil, TJi2, ••• ,'lJi(n;+l)]T, 

Di(fi) = diag[f~;+l, ... , fi' l](n;+1)x(ni+1)' 

Then the error dynamics of observer (4.3.3) can be represented as 

where 

'iJi = D;l(fj)(Ail - HjCi1)Di(fi)'lJi + D;l(fi)Bil Wi (·) 

= .!.A2'YJ. + B·1\jJ·(·) fi l' It t. 1. , 

-ail 

-ai2 

Ai2 = 

-ain; 

-ai(n;+1) 

1 

0 

0 

0 

1 

0 

0 

o 
o 

1 

o 
is a Hurwitzian. 

( 4.3.4) 

The analysis of the convergence of HGSPO is similar to the HGSPO de

signed in Chapter 2. The observer gains can be chosen such that the estimation 

error XiI will converge exponentially to a small neighbourhood that is arbitrar

ily close to origin. Here, we only give the results in following theorem. 

Theorem 4.1. Consider system (4.2.1), design a high gain state and pertur

bation observer (4.3.1) for each subsystem qi and choose gains Hi described in 
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equation (4.3.2). If assumptions A4.1 ""'-J A4.2 hold for some values giD, li1 and 

li2, then given any positive constant DSP01 > 0, there exits a positive constant 

f:POi , such that Vfi, 0 < fi < f:
POi

' from the initial observer error .Tie(O), the 

observer error .Tie converges exponentially into the neighborhood 

Proof: Refer to Theorem 2.2 in Chapter 2. 

4.3.2 Decentralized nonlinear adaptive control using 

HGSPO 

Using the estimate of perturbation Xi(n,+1) to compensate the system non

linearities, uncertainties and the interactions between subsystems, and the es

timate of system states Xi to replace the true states, a decentralized adaptive 

output feedback linearization controller of subsystem qi is designed as 

(4.3.5) 

(4.3.6) 

where Ki = [ki1' k i2 ,'" ,kin,JT is the linear feedback controller gains, which 

are chosen to make AiD = Ai - BiKi Hurwitzian. 

Note that Xi = Xi - D;(fi)1];, Xi(ni+1) = Xi(n.+1) -1]i(n.+1), where D;(fi) = 

diag[f;'+l, ... ,fi](n.)x(n.) and 1]; = [1]i1, 1]i2,'" ,1]in.]T. Control (4.3.5) can be 

represented as: 

Ui = ~(-Xi(n,+1) + y~~i) - Kiei + K il D i (fi)1]i), 
giO 

where Kil = [Ki' 1]. 

(4.3.7) 

Substituting control (4.3.7) into system (4.2.6). the closed-loop system can 

be represented by 

ei = AiDei + BiK i1Di (€i)1]i, 

fiTJi = Ai21]i+€iBilq,i(ei,Di (€i)1]i)' 
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Note that the bound of control Uj should big enough so that the estimate of 

perturbation Xi(n;+1) can be used to realize the cancellation of the real pertur

bation xi(ni+1)' 

System (4.3.8) and (4.3.9) represents a standard singular perturbed system, 

and 1Ji = 0 is the unique solution of system (4.3.9) when fi = O. The reduced 

system, obtained by substituting 1Ji = 0 in system (4.3.8), is as: 

(4.3.10) 

The boundary-layer system, obtained by applying the state variable transfor

mation Tj = t/fi to system (4.3.9) and then setting fi = 0, is given by 

d1Ji 
-d = Ai21Ji. (4.3.11) 

Ti 

Theorem 4.2. Consider subsystem qi (4.2.1), design a high gain state and 

perturbation observer{4. 3.1), and choose the observer gain described in equation 

(4.3.2), and let assumptions A4.1 '" A4.3 hold; then, 3f:2 , f:2 > 0, so that, 

't/ fi, 0 < fj < f:2 , system (4.3.8) and (4.3.9) is exponentially stable. Moreover, 

property (4.2.9) holds. 

Proof: As AiO is a Hurwitz matrix, we know that the reduced system (4.3.10) 

is exponentially stable in a region of Ri which includes the origin. Thus, we 

can define a Lyapunov function 

(4.3.12) 

over a ball B(O, ri) C R i, for some ri > OJ and PiO is the positive definite 

solution of the Lyapunov equation PiOAiO + ATo~o = -I. 't/ ej E B(O, r), we 

have 
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The boundary-layer system (4.3.11) is also exponentially stable in a region 

of Qi which includes the origin. Thus we define the Lyapunov function Vi2(1]i) = 

1]; Pdf/i, where ~2 is the positive definite solution of the Lyapunov equation 

~2Ai2 + Ah~2 = -1. This function satisfies 

~ Vi2(1]i) ~ '\max(J~2)II1]iI12, 

< -111liI12, 

(4.3.16) 

( 4.3.17) 

(4.3.18) 

Let us consider Vi = 'ViO(ei) + .Bi'Vi2(1]i), where .Bi' .Bi > 0 is a constant 

to be determined, as a Lyapunov function candidate for system (4.3.8) and 

(4.3.9). Choosing ~ < rj; then, given Assumptions A4.11'V A4.2, 'r/ (ei,7]i) E 

B(O,~) x l17]ill ~ ~ = Ai, we have 

(4.3.19) 

Using equations (4.3.13) f'V (4.3.18), and the Young's inequality, it can be 

shown that, 'r/(ei' 7]i) E Ai, we have 

ii = a;:;o (AiOei + Bj 7]i) + .Bi ~i2 (A~!Ji + Bi1Ij!i(·)) 

< -ll eill2 - *ll77il12 + 2.BiLi2I1Pi2 11117]iIl 2 + (211~oll 
+2j3iLilll~211) lIeillll7]dl 

< -lleill2 - * l17]dl2 + 2.BiLi211-R211117]i 112 
+(211-Roll + 2.BiLi11IFblJ)C~o Il eil1 2 + Eill1JiI12) 

< -~lleiI12 - ~1I7]iIl2 - bil lleill 2 
- bi2 117];J12, 

(4.3.20) 

where bil = ~ - E;O (IIPiO lI + .BiLillln21J), bi2 = ~ - 2.Bi(EiO * Lil + Li2 )1I-R211-

2EillPioll, and Ei > o. Now choose .Bi small enough and fj ~ f, = 411-Roll + 
4.BiLilll Fhll such that bi1 > 0, and then choose f:1 = .Bd(Eio2 + 4.BiLi2IIR21J), 

(4.3.21) 
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Thus we can conclude that the origin of system (4.3.8) and (4.3.9) is expo

nentially stable. As the tracking error ei = Xi - Xir will converge exponentially 

to zero, the state Xi can track the desired state Xri asymptotically and finally 

the following asymptotic tracking property is achieved 

lim IYi(t) - Yri(t) I = o. 
t-+oo 

o 

4.4 Decentralized nonlinear adaptive control 

with sliding mode state and perturbation 

observer 

In this section, the sliding mode state and perturbation observer is designed 

for the decentralized output feedback control of the interconnected large-scale 

nonlinear system. First the design of a decentralized state feedback sliding 

mode controller for a subsystem is briefly reviewed. Then after designing a 

sliding mode state and perturbation observer, the decentralized sliding mode 

controller and linear feedback linearization controller are investigated respec

tively. 

4.4.1 Decentralized state feedback sliding mode controller 

In this section, let assume the full states are measurable for design of a 

decentralized sliding mode controller. For subsystem qi, define the sliding 

surface SSffiCj ( ei) as 

ni n 

SSffiCj(ei) = L,:Pij(Xij - y;{-1») = L,:Pijeij, (4.4.1) 
j=1 j=1 

where coefficients Pij, j = 1,··· , ni - 1 and Pin; = 1, are constants and the 

polynomial snj-l + Pi(n;_1)Sn.-2 + ... + Pi2S + Pit is lIurwitzian. 
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Differentiating equation (4.4.1) along system (4.2.6), one obtains 

ni-1 
. (ni) ~ 

Ssmq = -Yri + ~ Pij e i(j+1) + Wi(') + 9iOU i· ( 4.4.2) 
j=l 

A sliding mode controller is designed as 

1 [ ni-1 1 
Ui = -. y~ni) - L Pijei(j+l) - (iSsmci - 'Pi sgn(Ssmq) , 

gtO j=l 
( 4.4.3) 

where (i and 'Pi are control gains and they are determined to fulfill the attractive 

condition of sliding surface Ssmc; as follows: 

( 4.4.4) 

From assumption A3, Wi(-) ::; /'il; thus, the above condition is obviously 

satisfied if gain 'Pi is chosen such that 

(4.4.5) 

To avoid the control chattering, the signum function sgn(x) can be replaced 

with a unit saturation function sat(x, ECi ), where Eci is the boundary layer 

thickness of the sliding mode controller. Moreover, the corresponding Ssmci 

dynamics within the boundary layer is not desired to exhibit high frequency 

oscillation either. Consider the dynamics behaviour of Same;, once it penetrates 

into the boundary layer given ISsmc; I ::; Eci: 

. 'Pi 
Ssmc; + ((i + -)Ssmc; = 'l'i(')' 

Eeo 

This equation acts as a low-pass filter against the perturbation and 

(4.4.6) 

( 4.4.7) 

is the tuneable break frequency. In order to eliminate the influence of the 

perturbation, this frequency has an upper bound Wmaxi. This can be achieved 

by choosing a boundary layer Eci as: 

(4.4.8) 
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It is desired to keep Ec; as small as possible for track precision. However, for 

a given bandwidth bound Wmaxh it can be easily shown from equation (4.4.8) 

that when 'Pi increases due to the increase of perturbations, so docs Ec;. There

fore, this choice of Ed introduces a trade-off between robustness and tracking 

accuracy. 

4.4.2 Design a sliding mode state and perturbation ob-

server for qi 

As it is difficult to obtain the bound of the perturbation, the upper bound 

of perturbation in the worst case is employed for determination of the control 

gain (4.4.5). This results in a conservative and high gain for practical appli

cations. In fact, most often the worst conditions in which the perturbation 

takes its upper bound does not occur. Therefore, these conservative gains are 

not necessary. In this section, the perturbation estimation will be applied to 

remedy this problem in which a high control gain is utilized due to the use of 

Upper bound. When the upper bound is replaced by the estimate of pertur

bation, a low and reasonable control gain will result in. Moreover, although 

the Upper bound of the derivative of perturbation is required to guarantee the 

estimation accuracy and may result in the conservative high gains for observer, 

those conservative gains are only included in the observer-loop, rather than in 

the controller law. Such properties will be illustrated as follows. In fact, as 

the interaction strengths between subsystems are included in the perturbation 

of each subsystem, the procedure of the decentralized controller design for the 

SUbsystem can be treated similarly to the analysis of SISO system in Chapter 

3. Here we briefly review the results as follows. 

For subsystem qi in system (4.2.5), with the measurement Yi = Xii, a (ni + 
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1 )th-order sliding mode observer is designed as: 

Xn; - Xi(n;+1) + O:'inJiil + kin; sgn(Xil) + giOUi 

(4.4.9) 

Xn;+1 = O:'i(n;+1)Xil + ki(n;+l) sgn(xid, 

where Xil = XiI - Xil, k ij and O:'ij, j = 1, ... , ni + 1, are positive coefficients. 

The constants O:'ij are chosen as same as in that for designing a Lucnberger 

observer{ which corresponds to kij = 0, j = 1,· .. , ni + 1 ) so as to place the 

poles of the Luenberger observer at the desired locations in the left half side of 

complex plane. 

From equations (4.2.5) and (4.4.9), the error dynamics of observer can be 

obtained as: 

(4.4.10) 

The sliding surface is defined as SSPOi (Xi) = Xil = O. Introducing the 

Lyapunov function Vapoi = ~S;POi' the sliding surface is attractive if Vapoi ~ 0 

'V Xi 1:. Sspo;. The condition for the existence of sliding mode is: 

{ 
Xi2 ~ kil + O!ilXil, if XiI> 0; 

Xi2 ~ -kil + O:'niil, if ii! < O. 

Such a condition can be guaranteed by choosing kil as follows: 

(4.4.11) 

(4.4.12) 

Under the above condition, it is guaranteed that the system will reach the 

Sliding surface at t = t8 and remain on the sliding surface SSPOi = 0, 'Vt ~ ts. 

Actually, the observer dynamics can start in the sliding mode, if Xi] (0) can be 

taken as Xil{O). 
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By applying Xii = 0 and iil = 0 when the sliding mode takes place, the 

equivalent control can be obtained as the same as which is described in Chapter 

3, that is 

(4.4.13) 

The equivalent control is not the control signal which is actually applied to 

the system but it may be thought of as the control signal which is applied 

'on average' to maintain the sliding motion. In fact, it is the low frequency 

components of the real control signal[15J. 

Substituting equation (4.4.13) to system (4.4.10), the resulting error dy

namics on the sliding mode take the form : 

(4.4.14) 

where Xiel = [Xi2 ••• Xi(ni+1) ]T, and ni x ni matrix Ai3 and ni x 1 matrix 

Bi3 are as follows respectively: 

_l£i1. 1 0 
kil 0 

_!.i.a 0 1 0 
kil 

Ai3= Bi3 = 

-~ 
0 

0 0 1 
kil 1 

ki(n+l) 
-~ 0 0 0 

kil 

The following theorem states the convergence of sliding mode observer. 

Theorem 4.3. Consider system (4.2.5), and design a sliding mode state and 

perturbation observer (4.4. g). IJ assumptions A4.1 '" A4.3 hold for some value 

Til and Ti2, then given any constant 8i , gains kij , and O!ij, j = 1"" I ni + 1, 

can be chosen such that the observer error Xiel converges exponentially into the 

neighbourhood 

Proof: Refer to Theorem 3.3. 
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Remark 4.4.1: Like Theorem 3.3, all poles of Ai3 are placed to -Ai' Thus, 

gains kij , j = 2,3, ... ,ni + 1 are chosen as 

ki (j+1) _ C j ).,i 
-k-- n. i' 

il 
j = 1,2" .. ,ni, 

where C~ = .Ie ni~ .)1' Define the change of variables as , ). n, ). 

- d-2 
Xij = Ai Zij, j = 2, ... ,ni + 1. 

Equation (4.4.14) can be written in terms of Zi as 

Mi= 

q,. 
Zi = AiMiZi + Bi3 A~i~l' , 

-C~i 

-C~. 

_Cni - 1 
ni 

_cni 
ni 

1 

0 

0 

0 

1 

0 

0 

o 
o 

1 

o 

(4.4.15) 

( 4.4.16) 

( 4.4.17) 

Let matrix P;3 be the positive definite solution of the Lyapunov equation 

P;3Mi + Mt Pi3 = -1. 

Remark 4.4.2 Bounds for the observer errors Xij' j = 2, 

can be obtained as follows: 

Ix··1 < 6i 
J' = 2, ... , ni + 1, Vt > tl' 

l) - Ani+l-j ' , 
( 4.4.18) 

Remark 4.4.3 The choice of the observer gains can be summarized as follows. 

aij, j = 1,2, ... ,ni + 1 are chosen to make all poles of the Luenberger observer 

be real and negative -~. Thus we have 

"' .. - Cj d 
UoI) - ni+l<", j = 1,2"" ,ni + 1, (4.4.19) 
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where C j = (ni+l)! 
niH j!(n;H-j)!' 

97 

For a given value of initial estimation error Ilxiel(O)II, the sliding mode 

condition will be fulfilled for all t if gain kil is chosen as 

Amax(1~i3) 
Amin(l~3) . 

For a given small positive constant 8i, Ai must satisfy 

A'> t _ 
Amax (Pi3) 2Amax(Pi3hi2 
Amin(Pi3) (1 - ai)8 j , 

( 4.4.20) 

(4.4.21) 

where ai is a constant, 0 < O'i < 1. Thus, from equations (4.4.15) and (4.4.20), 

we have 

j = 1,2"" ,ni. ( 4.4.22) 

4.4.3 Design of combined sliding mode controller-observer 

Using the estimate of states to replace the true states, the sliding surface 

Ssmei for subsystem qi is defined as: 

ni nt 

Ssmei = LPij(Xij - y~{-1)} = LPij(eij - Xij), ( 4.4.23) 
j=1 j=1 

where coefficients Pij, j = 1,," ,ni - 1, and Pini = 1 are constants and the 

polynomial sn;-1 + Pi(n;_1)Sn;-2 + ... + Pi2S + Pi1 is Hurwitzian. As the true 

states are not available, the sliding surface depends on the estimated states. 

The actual sliding function is defined in equation (4.4.1) and the error of the 

sliding surface is 
n; 

Ssmei = L PijXij. 

j=1 

(4.4.24) 

Control Uj is chosen to enforce SsmciSsmcl < 0 outside a prescribed manifold. 

A desired Same I is selected as 

(4.4.25) 
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where (i and "Pi are control gains, sat(SSmq, EcJ is defined as equation (3.3.8) 

and used to eliminate the control chattering. In this equation, ECj represents 

for the boundary layer thickness of sliding mode controller, as contrasted with 

the Eo; in the sliding mode observer. 

Using the estimated perturbation Xi(ni+l) to cancel the nonlinearities, uncer

tainties and the interactions between subsystems, the sliding mode controller 

is constructed as 

Ui = ~ [Y~~i) - Xi(n;+l) - E Pij(Xi(H1) - Y~{») - (iSsmC! - "Pi sat(SsmCjl EcJ]. 
g~o j=1 

(4.4.26) 

Differentiating equation (4.4.23) along system (4.4.9), and using the reduced 

error dynamics (4.4.14), one obtains 

• ~-1 ~ k 
S A (ni) '" (A (j») '" ij - (44 27) smcl = Xi(n,+l) + giOui - Yri + ~ Pij Xi(Hl) - Yri + ~ Pii-;;-Xi2, .• 

j=1 j=1 11 

that, substituted with control (4.4.26), leads to 

• ni z.. 

Ssmcl = L Pj ;i Xi2 - (i Ssmcl - "Pi sat (Ssmcil Ec,). 
j=1 ~1 

( 4.4.28) 

Therefore, the attractiveness condition of sliding mode controller is 

I A I ~ kij - I (i Ssmq + "Pi > ~Pij-;;-lxi2 , 
j=1 11 

( 4.4.29) 

which, using equation (4.4.12), kil > IXi21malo will be fulfilled if 

nj k 

I A I '" ij (i Ssmc; + "Pi ~ kil ~ Pij -;;-. 
j=1 11 

( 4.4.30) 

The above condition is obviously satisfied if gain t.pi is chosen such that 

n; k .. 
"P . > k'1 '" p .. ....!1.. 1_ 1 ~ I) k ' 

j=1 il 

which, using equation (4.4.15), leads to 

nj 

k L CU-l) \ (j-l) 
"P , > '1 P" , 1\. • ,_ 1 I) n. 1 

j=1 
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This condition guarantees the existence of a sliding mode within the bound

ary layer ISsmql ~ Ee;. From equation (4.4.24), we can obtain the error dynam

ics of the sliding mode as 

( 4.4.33) 

u . ~-
smg Ssmq = Ssmc; + Ssmq and equation (4.4.28), the actual sliding mode 

dynamics becomes 

ni ni 

Ssmc; + {(i + <Pi) Ssmc; = ((i + <Pi) I: Pi/iij + I: Pij i':;(j +!). 
Ec; Ee; j=1 j=1 

( 4.4.34) 

It can be seen that the driving term of Ssmci-dynamics are reduced to the 

sum of the estimation errors of states and the perturbation. The bound of the 

output track error can also be obtained as follows: 

I Ssmc; I ~ Ee; ::} I Ssmq - Ssme; I ~ Ec, 

::} I Ssmc; I ~ I Samei I + Eei 

::} ISsmc;1 ~ I L:;~1 PijXijl + Ee; 

~ >..!.if1 ~;~2 Pij).! + Ee" Vt > i l • , 

( 4.4.35) 

where i l is the time constant defined in equation (3.4.22). If the polynomial 

gains Pij in equation (4.4.1) are chosen to make all poles of polynomial equal 

to -Ae;, thus, from equation (3.3.13), we have 

Ix(j){t)-x(~){t)1 < {2A)j~+~ ~(~)ICI J' = D,l,n-I. (4.4.36) 
, d, - c, ).n, Ani+! L..J A. n-l' 

e; , 1=2 e; 

From the previous analysis, the Lyapunov function candidate can be defined 

as V = L:!1 Vi, where Vi = ~S;mei' for the large-scale system (4.2.1), thus the 

stability analysis of the whole system can be summarized as follows. 

Theorem 4.4. For large-scale nonlinear system (4.2.1), let assumptions A4.1 fV 

A4.3 hold. For each subsystem qi, design observer (4.4.9), with gains properly 

chosen properly according to equations (4.4.19) and (4.4.22), and controller 
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as described by equation (4.4.26) with gains 'Pi are chosen properly according 

to (4.4.32). Then for any bounded initial condition, the system state Xi is 

bounded and will track the desired Xri when SsmCj converge to boundary layer 

ISsmcil < fCi' and the state track error Yi(t) - Yri(t) satisfies equation (4.4.36). 

4.4.4 Decentralized nonlinear adaptive control with con

tinuous output feedback and SMSPO 

In this section, design of a decentralized nonlinear adaptive control using 

continuous output feedback and the state and perturbation estimates from SM

SPO for subsystem qi is discussed. The estimate of perturbation Xi(n;+l) is used 

to compensate the nonlinearities, uncertainties and interactions of subsystem 

qi so as to achieve the decentralized control of global system. Utilizing the es

timated states instead of the real ones, a linear continuous feedback controller, 

rather than a sliding mode controller, is designed for the equivalent linearized 

subsystem. The controller has the form of: 

(4.4.37) 

( 4.4.38) 

where Ki = [kil' ki2 ,' •• ,kin;]T is the linear feedback controller gains, which 

are chosen to make the matrix AiO = Ai - BJ<i Hurwitzian. 

If the attractive condition (4.4.12) is satisfied, the sliding mode observer 

(4.4.9) will reach the sliding surface and then stay on it, that is Xil = 0 and 

Xi! = 0 and the dynamics on the sliding surface satisfies equations (4.4.14). 

Noting that Xiel = [Xi2,Xi3,'" ,Xi(ni+l)]T, control (4.4.37) and (4.4.38) can be 

represented as: 

Uj = 2-( -Xi(ni+1) - KjXi + KilXiel), 
giO 

where Kil = [ki2' ki3 ••• kino 1]T. 
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Substituting control (4.4.37) into system (4.2.1) and using the variables 

transform given by equation (4.4.16), the closed-loop system with controller 

and observer can be represented by 

Xi = AiOXi + BJ<il Zj, 

. Wj (-) 

Zj = AjMjzj + Bil A~j-l' 
t 

( 4.4.40) 

(4.4.41) 

The stability analysis of system (4.4.40) and (4.4.41) is similar to that 

discussed in Chapter 3. Here, the results are summarized briefly as following 

theorem. 

Theorem 4.5. Consider large-scale system (4.2.1), for each subsystem qi de

sign a sliding mode state and perturbation observer (4.4.9), choose the ob

server gains described in equations (4.4.19) "" (4.4.22), and let assumptions 

A4.1 f"V A4.3 hold. Define control as given by equations (4.4.37) and (4.4.38), 

then the origin of system (4.4.40) and (4.4.41) is stable. 

4.5 Application of decentralized nonlinear con

trol in input/output linearization ofMIMO 

nonlinear system 

In this section, the proposed decentralized nonlinear control schemes are 

applied to the input/output linearization of MIMO nonlinear system. After 

the nonlinear system is transferred to a nonlinear normal form, a state and 

perturbation observer is designed for the subsystem. By using the estimate of 

system states and perturbation, the input/output linearization will be achieved 

without the detail system model and with output feedback for MIMO nonlinear 

system. 

The method of input/output linearization has been well described in [1]. A 
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multi-input mUlti-output (MIMO) affine nonlinear system is represented by 

m 

X = f(x) + I: gj(x)Uj 
j=1 

Y hex), 

( 4.5.1) 

(4.5.2) 

where, x E nn, U E nm, y E nm, f : nn --+ nn, gj E 9 and 9 : nn --+ nnxm, 
h : Rn --+ Rm, f, 9 and h are assumed as Coo functions of their arguments, 

defined on Rn. 

In the input/output linearization procedure, the output Yi is differentiated, 

with respect to time, several times until at least one of the control input Uj 

appears. 

The ith subsystem has a Tjth-order relative degree, if rj is the smallest 

integer such that, for at least one of gj(x),j = 1"" ,m, 

• C9JC}(hi(x))) = 0, V x in a neighbourhood of xo, k = 0,1"" ,rj - 2; 

then the rjth derivative of Yi with respect to time could be written as 

~;~i = Cjt(hj(x)) + tCgj (Cjt-l(hi (x)))Uj, ( 4.5.3) 
j=1 

where Xo E nn, Cf(¢(x)) : nn --+ Rand Cgj(¢(x)) : nn --+ R, representing the 

Lie derivative of ¢(x) with respect to f(x) and gj(x) respectively, and 

C~(hi(X)) = hi(x) 

C~(hi(X)) = [! C~-l (hi (x)) ] f(x) 

Cgj (C~(hi(X))) = [!C}(hi(X))] gj(x). 

Equation (4.5.3) can be written in a matrix form as follows: 

D(d/dt)y = A(x) + B(x)u, (4.5.4) 
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where 

A(x) = [L7(h1(x)) ... £,m(hm(x))]T, 

[ 
£gJC?-l(hl(X))) ... £gm(,C?-1(h1(X)))] 

B(x) = 
£gl ('c,m-1(hm(x))) ... Cgm (,Cjm-1(hm(x))) , 

and D(d/dt) == diag[dr ; /dtr;]. 

If B(x) is nonsingular, a control law is obtained in the following form 

u = B(X)-l [-A(x)+ v] , (4.5.5) 

where v E nm is a new input vector. The control law of equation (4.5.5) yields 

m de-coupled linear 8180 systems: 

D(d/dt)y = v. (4.5.6) 

It should be mentioned that the controller (4.5.5) works based on accu

rate mathematical cancellation of the nonlinear terms A(x) and B(x). Exact 

cancellation is almost impossible due to model simplification, parameter un

certainty, and computational errors. If system uncertainties are present, the 

system can no longer be linearized as that shown in equation (4.5.6). 

In this section, a perturbation is introduced to represent the combined effect 

of system nonlinearities, uncertainties and external disturbances of the ith 

SUbsystem. Then the perturbation term is represented by a fictitious state and 

an extended-order sliding mode observer is employed to estimate the system 

states and the fictitious state. The estimate of the fictitious state is used 

to achieve the cancellation of system nonlinearities and perturbations, which 

realize the system decoupling and the input/output linearization of the ith 

nonlinear subsystem. These are discussed as follows. 

For the ith subsystem of system (4.5.4), let 

m 

Wi(X, u, t) = C,/(hi(x)) + L Cgj(C,/-l(hj(x)))Uj 
j=l,#i 

+(bi(x) - biO)uj, 
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then equation (4.5.3) can be rewritten as 

( 4.5.8) 

where 'l1(x, u, t) is defined as a fictitious state, e.g. system perturbation which 

represents the combined effect of the system nonlinearties, uncertainties and 

external disturbances of the ith subsystem; bi{x) = Cg;(C,/-l(hi (x))) and biO 

is a constant control gain which will be determined later. 

Thus for the ith subsystem, the same controller as described in sections 4.3 

and 4.4 can be designed. If the internal dynamic of MIMO system is asymp

totically stable, the whole system is stable under the decentralized controller. 

Thus the input/output linearization will be achieved without the detail system 

model and with only partial state feedback for MIMO nonlinear system. 

4.6 Simulation results 

Consider a system which is composed of two inverted pendulums on two 

carts, interconnected by a moving spring, shown in Figure 4.1.. This system was 

studied as an example in the literature of decentralized control [141, 139, 135]. 

Let assume that the pivot position of the moving spring is a function of time 

and it can change along the full length of the pendulums. For this example 

this motion of the carts is specified as sinusoidal trajectories. The input to 

each pendulum is the torque Ui, i = 1,2, applied at the pivot point. The 

objective of the decentralised adaptive controller is to control each pendulum 

with mass independently so that each pendulum tracks its own desired reference 

trajectory while the connected spring and carts are moving. 

Defining the state vectors Xl = (Xu, X12)T and X2 = (X2l! X22)T, where 

Xu = 01 , X12 = 81, X21 = O2 , X22 = e2• The dynamic equations of the system 
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y 

Figure 4.1: Two inverted pendulums on carts 

can be described as 

X12 

ql : (fL _ ka(t)(a(t)-el») X + 1 U 
el eml2 11 eml2 1 

+ ka(t)(a(t)-el) X _ a x2 - k(a(t)-cl) (8 (t) - 8. (t)) 
eml2 21 JJI 12 eml2 1 2 

! 
X2l = X22 

X - (fL _ ka(t)(a(t)-cl») X + 1 U 22 - cl eml2 21 cm/2 2 

+ ka(t)(a(t)-cl) X - f3 X 2 - k(a(t)-cl} (8 (t) - S (t)) 
cml2 11 1 22 cml2 2 1 

(4.6.1) 

where Ul and U2 are the control torques applied to the pivot point of each 

pendulum, /31 = m/M· sin(xu), !32 = m/AI· sin(x21), 1 the length of of the 

pendulum, c = m/(m+M), k and 9 spring and gravity constants, respectively. 

In the simulation study, let choose 9 = 1 = 1, k = I, m = AI = 10, then 

c = 0.5 and (3i :::; 1. The available system outputs are Yl = Xu and Y2 = X21. 

The desired system outputs are chosen as Yri = sin(3t) and Yr2 = sin(t). Let. 

81(t) = sin(w1t), and 82(t) = L + sin(w2t), where WI =1= W2 and L is the natural 

length of the spring. We also select L = 2 and set a{t) = sin(5t), WI = 2, 

W2 = 3. We assume that the control gain is known so that we choose 910 = 
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920 = 9l = 92 = c';'l2 = 0.2. For subsystem q, and q2, we have perturbation 

WI = (2 - ~ sin(St)(sin(St) - O.S)) Xll + k sin(5t)(sin (St) - 0.5 )X21 

- sin(xll)xr2 - ~(sin(5t) - 0.S)(sin(2t) - sin(3t) - 2) 

< 2.1xll + Xi2 + 0.3X2 1 + 1.2, 

W2 = (2 - t sin(5t) (sin(5t) - 0.5)) X21 + ~ sin(5t)(sin(St) - 0.S) .1: 11 

- sin(x2dx~2 - k(sin(St) - 0.S)(2 + sin(3t) - sin(2t)) 

< 2.1x21 + X~2 + 0.3xu + 1.2. 

Case 1: Decentralized nonlinear adaptive controller via HGSPO 

The parameters of the third-order high gain observer (4.3.1) arc chosen as: 

ail = 300, a i2 = 2.7 x 105 , ai3 = 1 x 106 , I:i = 0.1, i = 1,2. The parameters of 

controller (4.3.5) and (4.3.6) are chosen as: kil = 100, ki2 = 20,i = 1,2. Figures 

4.2 and 4.3 show simulations results where both subsystems are controlled with 

DNAC-HGSPO . Figures 4.4 and 4.S show the estimates of the states and 

perturbation of subsystem q1. 

100~--~----~--~----~--~ 

50 

.= -50 
g 
5 - 100 
U 

- ISO 

-200 

- 1.50n--;:-----4:----_:_6 -----;---""""7,0 -2500~---=------4~---6~---:-----J,o 
Time(seconds) Time (seconds) 

(a) Yl (b) UJ 

Figure 4.2: System responses of ql with the DNAC-HGSPO 

Case 2: Decentralized nonlinear adaptive controller ontroller via SMSPO 

The parameters of third-order sliding mode observer (4.4) ar ho en as: 

ail = ISO, an = 7.5 x 103 , ai3 = 1.2S x 104 , Eo; = 0.01 , kn = 10, k i2 = 
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300r---~----~--~----~----, 

0.8 

-0.2 

-0.4 

-0.6 

-0.8 

250 

200 

'" .= 150 
g 
6100 
U 

50 

o 
V 

-1o:;-----7----~4~L-~6----~------.J10 -500L-----'-----~4 ----~6------:-----:'10 

Time(seconds) Time (seconds) 

(a) Y2 

Figure 4.3: System responses of q2 with the DNAC-HGSPO 

ki2 = 9x 105 , i = 1, 2. The parameters ofDNAC-SMSPO (4.4.26) are cho en as: 

Pil = 20, Pi2 = 1, (i = 2, !.pi = 5, Ec; = 0.1, i = 1,2. Parameters of decentraliz d 

SMC (4.4.3) are chosen as same as DNAC-SMSPO (4.4.26). Figures 4.6 and 

4.7 show simulations results where both subsystems are controlled by DNA -

SMSPO. Simulation results of ubsystem ql contrail d by SMC and DNA -

SMSPO are given in Figure 4.8 for comparison. Figur s 4.9 and 4.10 show th 

estimate of states and perturbation of subsystem Q2 . 

4.7 Conclusion 

The decentralized nonlinear adaptive control of larg -s ale int rcorm 'cted 

systems via state and perturbation observer has been investigat d in this chap

ter. Two kinds of state and perturbation observers , high gain ob rv rand 

sliding mode observer, have been studied respectively for st imating the nonlin

earities, uncertainties and interactions of subsystems. Three control schemes, 

decentralized nonlinear adaptive control with high gain observer, decentralized 

nonlinear adaptive sliding mode control with sliding mode observer and d 11-
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- 3 
-6 

-4 
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(a) Xn 

Figure 4.4: High gain observer responses of q1 

tralized nonlinear adaptive control with continuous feedback control and sliding 

mode observer, have been developed together with the study of their stabili ty 

analysis. These control schemes have also been applied to the input/output 

linearization of MIMO nonlinear systems which leads to decoupling of t he 

large-scale system. Finally, the design of decentralized nonlinear adaptive 011-

troller for the inverted double pendulums on carts, without using the v locity 

measurements and system model, has been undertaken. 
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Figure 4.7: System responses of q2 with the DNAC-SMSPO 
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Figure 4.9: Sliding mode observer responses of q2 with the SMSPO 
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Chapter 5 

Nonlinear Adaptive Control Of 

Synchronous Generators 

5.1 Introduction 

Synchronous generator is used almost exclusively in power systems as a 

source of electrical energy. The generator is supplied with real power for a 

prime mover, usually a turbine, whilst the excitation current is provided by 

excitation system. There are lots of applications in the nonlinear control of 

electrical machines, such as synchronous generator[85J and induction motors 

[92, 93J. In fact, as the synchronous generator is a typical and important 

nonlinear device installed in power systems, it has been studied intensely in 

the field of nonlinear control of power systems[82]. However, there are less 

research works about the output nonlinear control of synchronous generators. 

The state observer for the synchronous generator which requires the accurate 

nonlinear model was studied and applied to the nonlinear field voltage control 

for generators in [83, 84]. 

This chapter investigates the application of the adaptive nonlinear control 

(NAC) for the excitation control of synchronous generators. The nonlinear 
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adaptive control is basically an input/output feedback linearizing control of 

nonlinear systems but it employs output feedback and perturbation estima

tion. An extended-order sliding mode observer is used to estimate system 

states and perturbation. The estimate of states and perturbation allows the 

input/output linearization of the nonlinear system without the requirement of 

accurate model. This constitutes a real-time compensation mechanism against 

the uncertainties and perturbations. The designed controller is able to deal 

with the uncertainties of parameters, unknown system dynamics and external 

disturbances. The new NAC has advantages in simple structure and robust 

performance. 

The synchronous generator with an Automatic Voltage Regulator (AVR) 

installed for regulation of generator terminal voltage is considered. Only one 

measurement, generator relative rotor angle, is needed to form feedback control. 

The design of NAC does not need an accurate power system model and other 

measurements, but it can provide better control performance, compared with 

the state feedback linearization control (FLC) which relies on the full system 

states and detailed nonlinear system model. 

Simulation studies based on a single-machine quasi-infinite bus power sys

tem are undertaken to evaluate the proposed approach. The simulation re

sults show that the NAC can provide superior performance in comparison with 

that obtained from the conventional model based state feedback linearizing 

controller. The chapter is organized as follows. Section 5.2 describes the gen

erator model in a single machine infinite bus power system. The design of 

the nonlinear adaptive excitation controller is discussed in Section 5.3. The 

state feedback linearizing controller is also included in Section 5.3 for compar

ison. The simulation results are presented in Sections 5.4 and 5.5 concludes 

the chapter. 
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5.2 Synchronous generator model 

The controller design is undertaken in a single-machine infinite-bus system 

which is illustrated in Figure 5.1. The generator is connected to an infinite bus 

through a transformer and two parallel transmission lines. A third-order sirn

plified model, called one axis or E~-model, is adopted for the nonlinear state 

feedback linearization control of synchronous generators. As the regulation of 

generator terminal voltage is also an important object of the generator excita

tion control, most of the modern generators are equipped with an Automatic 

Voltage Regulator (AVR). The AVR is also included in the system equations. 

The whole system dynamics are described as follows: 

8 - W-Wo 

W - ~[P. - .Q.(w - wo) - p. J 2H m wo e (5.2.1) 
£;' - T~ (u + E 10 - Eq + v,.) q 

do 

v,. = ~(v,.el - \It) - ~, 

where 

Pe = E~Iq + (Xq - X~)Idlq 

Id = ~ (E~ - Va cos(8)) 
X ds 

1q 
Va sin(6) 

= Xqs 
Eq = E~ + (Xd - X~)Id 

\It = JV2+ V2 d q 

Vd = Xqlq 

Vq = E~ - X~Id, 

where 8 denotes the relative rotor angle, in rad; w the generator speed, in 

rad/ s; Wo the system speed, in rad/ s; Eq and E~ the transient voltage and 

voltage behind the quadrature-axis, respectively; Pm the mechanical power in

put from the prime mover and assumed to be constant, in p.u.; Pe the electrical 
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power output of the generator, in p. u.; H the inertia coefficient of rotor, in sec

onds; T~o the direct axis transient short circuit time constant, in seconds; D the 

damping constant of the generator, in p.u.; X d , X~ the synchronous and tran

sient impedances in the d-axis, respectively; Xq the synchronous impedance 

in the q-axis; X~s = X~ + X T + X s, Xqs = Xq + X T + X s, X T and Xs the 

impedances of the transformer and transmission line, respectively; u the exci

tation control, in p.u.; Id and Iq the generator currents in the d-axes and q-axes, 

respectively; Vd and Vq the generator terminal voltage in the d-axcs and q-axcs, 

respectively; vt and v"ef the generator terminal voltage and its reference value, 

respectively; v", Ka and Ta the control output, control gain and time constant 

of AVR, respectively; BfD the initial excitation voltage and Vs the voltage of 

the infinite bus. 

Vs=1.0 

~I~$ ____ XL ____ ~~ 
Figure 5.1: The single-machine infinite-bus power system 

5.3 Nonlinear adaptive controller design 

By defining state variables as : 

NONLINEAR ADAPTIVE CONTROL L. Jiang 



5.3 Nonlinear adaptive controller design 116 

the state equations of system (5.2.1) can be rewritten in a matrix form as 

X2 

i; = 
~ [p. - .Q X2 - P. (x)] 2H m wo e 

T~ [Ejo - Eq(x) + X4] 
do 

~ [Vref - vt(X)]- f!-
y = h(x) = Xl. 

For this system, we have 

Cgh(x) = 0 

Cfh(x) = X2 

CgCfh(x) = 0 

0 

° + 
1 

T~o 

0 

C2
j h(x) = Wo [Pm _ D X2 - Pe(X)] 

2H Wo 

-WO Va sin Xl + &0 

2HTdoXds 

U 

(5.3.1) 

As CgC}h(x) =f 0, V& =f k1r, k = 0,1,2"" , system (5.3.1) has relative 

degree r = 3. The 3rd-order derivative of y with respect to time could be 

obtained as 

where 

a(x) 

b(x) 

d3 y 
-3 = a{x) + b(x)u, 
dt 

2HTdoX'cts 
= C C2 h( ):::11 -wo Va sin Xl + &0 

9 f X 2HT' X' . 
do ds 

Define the system perturbation as 

'l1(x, u, t) = a(x) + (b(x) - bo)u, 
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then equation (5.3.2) can be rewritten as 

d3 y 
dt3 = w(x, u, t) + bou 

117 

(5.3.6) 

where bo is a constant and chosen as bo < b(x)/2, as b(x) is negative and 

bounded when the synchronous generator operates under a normal operation 

condition. 

By defining new state variables: Zl = y, Z2 = dy / dt = X2, Z3 = d2y / dt2 = X3 

and Z4 = w(.), a new system equation is obtained as 

Zl = Z2 

Z2 = Z3 

Z3 = Z4 + bou (5.3.7) 

Z4 = q,(. ) 
y = Zl' 

A fourth-order sliding mode observer is designed as discussed in section 

(3.4.1). As the generator speed will not shift far away from the synchronous 

speed even when a fault occurs, the maxima of I 22 Imax is relative small. Thus 

it is easy to choose the gain kl so as to guarantee the existence of sliding mode 

referring to equations (3.4.3) and (3.4.4). With the estimates of states and 

perturbation, a control law described by equations (3.4.57) and (3.4.58) can be 

obtained: 

(5.3.8) 

(5.3.9) 

As the relative degree of system (5.3.1) is r = 3, the remaining internal system 

dynamics is 

. Ka ( ()) v,. 
Vr = Ta v;.ef - Vt X - Ta' 

Note that when Zi = 0, i = 1,2,3 , Vt(x) = v;.ef, thus the zero dynamics of 

system (5.3.1) is : 
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It is exponentially stable. The structure of the N AC connected to the generator 

excitation system together with an AVR is shown in Figure 5.2. 

G 

Figure 5.2: The excitation control system with NAC and AVR equipped 

5.3.1 Design of state feedback linearizing controller 

The design of the state feedback linearizing control (FLC) of the syn

chronous generator has been well studied [104, 87, 114]. An AVR is always 

combined directly with FLC to achieve the regulation of the terminal voltage. 

By subtracting the AVR in equation (5.3.1), the control of FLC, Ufle, can be 

obtained from equations (5.3.2) as: 

v-a{x) 
U(k = b(x) - v,.. (5.3.10) 

Control (5.3.10) can be realized by the measurable local variables of the 

generator as follows [87, 114]: 

QeXd ,d ( QeX~) 
Uftc = -Efo + Vi + ~ + Tdo dt Vi + ~ 

-- Vi+-- -+-w+-v Tdo ( QeXd) (dPe D. 211) 
Pe Vi dt Wo Wo 

(5.3.11) 

where Qe is the output reactive power of generator, v = -alZl - a2z2 - a3z3 is 

the control of the equivalent linear system. 
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5.3.2 Remarks 

Remark 5.1: It is assumed that the synchronous machine is stable under a 

proper control. Thus the system states and perturbation term are bounded so 

as to guarantee the existence of appropriate gains of the sliding mode observer. 

Remark 5.2: The NAC has great merit in that only one variable measurement, 

relative rotor angle, is required for implementation of the nonlinear control. 

There are some methods available now for measuring the relative rotor angle 

[142J. Using another measurable variable, such as the rotor speed, is also under 

investigation. 

Remark 5.3: It is well known that the AVR can inject negative damping 

into the system while the power system operates at high power loading with 

a leading power factor, in particular in a long distance tie-line transmission 

system. The nonlinearity injected into the system by adding the AVR was not 

considered in the design of the previous state feedback linearizing controllers. 

In fact, when the rotor angle is chosen as the system output and the AVR is in

stalled, the synchronous generator cannot be exactly input-to-state linearized. 

It only can be input/output linearized as in the NAC design procedure. 

Remark 5.4: Regarding a real power system, the following three a."pccts 

should be considered in design: (1) the fifth-order, or even seventh-order, differ

ential equation may be required as a accurate model to represent the dynamics 

of a synchronous generator; (2) The mechanical power Pm is an input of the 

system, and, in principle, it can be used for control although its dynamics is ex

tremely slow compared with the fast-acting dynamics of the excitation input u. 

The mechanical power input should be considered as an external disturbance; 

and (3) Va and X. are two parameters which characterize the external network 

and they are uncertain in power system operation. If these three factors were 

considered in FLC design, the system nonlinearity could not be cancelled com

pletely by the FLC. This will result in degradation of the control performance 
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inevitably. However, the NAO has a simple structure and its design docs not 

rely on the accurate system model. It can deal with the system nonlinearities 

and uncertainties through real-time compensation. 

5.4 Simulation results 

Simulation studies have been undertaken on a single-machine infinite-bus 

power system, shown in Figure 5.1. The system parameters are given as follow

ing: Xd = 1.0 p.u., X~ = O.4p.u., Xq = 0.6p.u., XT = 0.12 p.u., XL = 1.0 p.u., 

D = 0.008, Tdo = 5.0 sand H = 4.34 s. The excitation system parameters are: 

Ke = 1 and Te = O. The limit of the excitation voltage is: ±9.0 p.u. The AVR 

parameters are: KA = 200, TA = 0.01 s. The system normal operation condi

tions are 60 = 0.6981 rad, Pe = 0.4732 p.u., Vi = 1.1145 p.u. and Wo = 314.15. 

As the advantages of the nonlinear controller over other controllers, such as 

PIn controller, power system stabilizer and linear optimal controller etc., have 

been discussed in [104, 87], only the proposed NAC and its comparison with 

the FLO will be simulated in this chapter. 

The parameters of the fourth-order sliding observer are chosen as: al = 

200, Q2 = 1.5 X 104 , Q3 = 5 X 105 and a4 = 6.25 x 106 so as to place all 

the poles of the Luenberger observer at -50; fJl = 50, fJ2 = 1.5 X 104, fJ'J = 

1.5 X 106
, fJ4 = 5 X 107 so as to set the error dynamic on the sliding mode 

with all poles at ,\ = -100. It should be mentioned that the sliding observer is 

set with high gains to guarantee the quick and accurate tracking performance 

When the fault happens. 

The controller parameters in equation (5.3.9) are chosen as at = 1000, a2 = 

300, aa = 30 so as to place the poles of the linear system at -10. Both N AO 

and FLC use the same parameters for the control of the linear system. The 

constant control gain in (5.3.9) is chosen as bo = -10. The performances of 

the controller are investigated with a three-phase-to-ground short-circuit fault 
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occurring at the sending end of the transmission lines, as shown in Figure 5.l. 

The fault duration is 0.1 s. The robustness of the controller is evaluated in 

the cases of system parameters uncertainties, variat ion of sy tcm operation 

conditions and inter-area oscillation disturbance, respect ively. 

5.4.1 Control performance evaluation 

Figures 5.3, 5.4 and 5.5 show the system responses of the rotor angle and 

terminal voltage to the fault. From the figure, it can be seen that the NAC has 

a better performance than the FLC, with a more smooth damping provided. 

Although a better performance of FLC can be obtained after optim izing its 

parameters, t he NAC performs at least the same as FLC in th is case. Note 

that the FLC uses the full states and the known parameters of the simulation 

system, but the NAC only employs one measurement without requiring the 

details of the system information. 

3~L---~--~2----~3----~4----75----~6--~7 

Time (seconds) 

- NAC, - - FLC 

Figure 5.3: The rotor angle responses to thr e-phase short-cir uit fault 
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Figure 5.4: Terminal voltage Vi responses to three-phase short-circuit fault 

5.4.2 Observer performance and perturbation estima-

tion 

The performance of the sliding mode observer has be n monitored during 

the period of a large system disturbance, in which the observer function ' fu lly 

in its nonlinearities. The system estimates are obtained during the g nerator 

transient process which is caused by the three-phase short circuit. The stima

tion error of system states and the perturbation are shown in Figures 5.6 and 

5.7. From the figures, it can be seen that the observer can provide a curate 

estimates of the system states and perturbation, with a fast track rate without 

any phase delay. 

5.4.3 Robustness against parameters uncertainties 

The variation of system parameters is considered for robustnes evaluation 

of the NAC. In this case, the FLC is designed with inaccurate system param-
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Figure 5.5: Excitation voltage u (three-phase short-circui t faul t) 

eters. In the system simulation, Tdo = 5.0 and H = 4.34 are given. The valu '8 

of Tdo and H decreased by 20% from their original value are us d in the FLG 

The system responses to the fault are shown at Figure 5.9. A big differ n 

between the FLC and NAC performances has been identified , wi th and wi th

out accurate parameters. However, as only the bound values of syst m stat s 

are required in the NAC design, inaccurate parameters will not influen e th ' 

NAC performance with choice of some conservat ive bound values. It is worth 

pointing out that the NAC owns such a merit as it foeu es on th nonlinear

ity estimation, rather than the parameters estimation involv d in conventional 

adaptive control schemes. 

5.4.4 Variation of operation conditions 

The two controllers are evaluated with variation of syst m parameter , X s , 

which is caused by switching off one transmission line aft r the fault. In this 
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case, the impedance of the transmission line is doubled and the generator 

suffers from less damping. The control performances of the two controllers are 

compared with each other, with changes in the impedance of the transmission 

lines, which are shown in Figure 5.8. It can be seen that the FLC performance 

has degraded greatly in this case. An oscillation of the generator rotor angle 

has been caused in the FLC controlled system. However, the NAC can still, 

in this case, provide a same quality of performance no matter what system 

parameters have changed. This is because the system parameters installed 

in the FLC are those obtained before the system parameters change, while no 

system parameter is required for the NAC design. In other words, the nonlinear 

observer is able to track the variations of system operation conditions. 

5.4.5 Effect of inter-area oscillation 

The NAC design is based on a single-machine infinite bus power system 

(SMII3). The design is undertaken for the generator which has low inertia and 

is connected to a high inertia external system by a long tie-line. It is con

cerned that the SMIB-designed nonlinear controller may not perform well in 

the presence of inter-area modes oscillation. Thus it will be necessary to eval

uate the SMIB-designed NAC on a more realistic multi-machine power sys

tem model with different oscillation frequencies. One approach named single

machine quasi-infinite bus, where the infinite bus is modulated in magnitude 

by inter-area-type frequencies, can be used in the simulation of the SMIB sys

tem [112]. We choose Va = 1.0 + 0.12 * sin(5t), corresponding to an inter-area 

fundamental frequency of 5Hz. In order to show the difference between the 

NAC and FLC performances clearly, a relatively high inter-area fundamental 

frequency 5Hz is chosen here. The responses are shown in Figures 5.10 ,...., 5.12. 

The FLC provides weak damping of oscillation. Again, the NAC has the same 

satisfactory performance as that obtained without the inter-area oscillation 
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simulated. This shows that the NAC can completely reject the effect of the 

inter-area disturbance. The estimation of system perturbation is also shown 

in Figures 5.10 f"V 5.12. Similar observations can be made with respect to the 

un-modelled prime-mover dynamics. 

5.5 Conclusion 

A nonlinear adaptive controller has been proposed for excitation control 

of synchronous generators based on a state and perturbation observer. The 

designed controller possesses a great robustness to deal with parameter un

certainties and varying system operation conditions. Moreover, the NAC can 

also take unmodelled system dynamics into account and reject external dis

turbances automatically, as the system dynamics is estimated from real-time 

measurements. Furthermore, the NAC has a simple structure and can be im

plemented easily in practice with a single measurement. The simulation results 

show that the NAC has a better control performance, especially greater robust

ness, compared with the FLC which requires full system states and accurate 

system system model to design. 
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disturbance 
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Chapter 6 

Nonlinear Adaptive Control of 

Synchronous Generator in 

Multi-Machine Power Systems 

6.1 Introduction 

As power system is a large scale nonlinear system which consists of sub

systems interacting with each other dynamically, the control of power system 

using nonlinear control theory has been given a great deal of attention[82J, 

such as feedback linearization based on differential geometry method(FLC) 

[86, 87, 88, 104], direct feedback linearization(DFL)[90, 91], nonlinear adap

tive control[143] and Lyapunov based method[126]. It is well known that the 

application of nonlinear control theory to deal with the inherent power system 

nonlinearities can provide better performance than those linear controller based 

on an approximated linear power system model, especially when power system 

operates on a wide range of operating conditions due to various disturbances 

and different load commands. 

In a multi-machine power system, a decentralized controller with local mca-
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surements is preferred for industry practice. When the synchronous generator 

is modelled as a simplified third order model, a nonlinear decentralized con

troller can be developed based on FLC method and the electrical machine 

theory [86, 87, 88]. It can deal with the variation of operation condition. In 

[90], a DFL nonlinear compensator is designed first to alleviate part of system 

nonlinearities and then a robust method is used to deal with the remaining 

nonlinearities. After the nonlinear power system is transferred to a linear sys

tem with matched nonlinearities, in [126] a Lyapunov based design, and in 

[144] a DFL method, is utilized to design a nonlinear decentralized controller. 

Most of these nonlinear controllers are based on state feedback, in which the 

complete accessibility to full system states is commonly assumed. In practice, 

it is not always feasible and economical to measure all system state variables. 

To resolve the problem, the state observer was studied and applied to the non

linear field voltage control of generators [84]. In this method, the exact system 

nonlinear model is still required to design a nonlinear state observer. 

In this chapter, a nonlinear and adaptive decentralized excitation control of 

synchronous generator in multi-machine power system is investigated by using 

the sliding mode states and perturbation observer. Two kinds of decentralized 

output feedback controller are investigated: a decentralized controller based 

on a fully linearizable model of multi-machine power system and a decentral

ized input/output linearizing controller. During the design of the first kind of 

controller, the synchronous generator is described in a simplified three-order 

model; Whilst the second decentralized controller is based on a detailed power 

system model in which the synchronous generator is modelled using a five-order 

differential equations and an AVR is included for the regulation for terminal 

voltage. Finally, these two different design procedures result in the same type 

of controller for each subsystem. 

For each subsystem, a perturbation term (fictitious state) is introduced to 

represent the combined effect of system nonlincarities, uncertainties and inter-
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connections of another subsystem. Based on the subsystem, a sliding mode 

observer is designed to estimate the system states and the fictitious state with

out requiring the knowledge of system nonlinear functions and parameters. 

The estimated states and perturbation is then used to realize the feedback 

linearizing control. This leads to de-coupling the multi-machine power sys

tem into subsystems automatically without ignoring any system interaction. 

Consequently, a nonlinear output decentralized controller based on local mea

surements is obtained. 

Simulation studies are undertaken in a three-machine power system to eval

uate the effectiveness of the controller. The simulation results are provided to 

demonstrate the merits of the novel nonlinear output control strategy. The 

designed controller requires only one output variable, generator rotor angle, to 

formulate its control law. Simulation studies undertaken in a three-machine 

power system show the effectiveness of the proposed control scheme. 

This chapter is organized as follows. Section 2 describes the design based 

on fully linearizable multi-machine power system model, including the system 

model, the design of the nonlinear state feedback linearizing controller(FLC) 

design which will be used for comparison with the DNAC. The input/output 

linearizing control design is given in section 4. The simulation results are 

presented in section 5 and the conclusion is given in section 6. 

6.2 Design of controller based on fully lineariz-

able system model 

6.2.1 Dynamic model of a multi-machine power system 

A multi-machine power system with n + 1 machines, in which the (n + 1)

th machine is chosen as the reference machine and the fast-speed excitation 

system is utilized on each machine, can be described by a nonlinear dynamic 
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model as follows [76, 86, 87]: 

where 

= Wi -Wo 

= ...!:!<ll.. [p. . - !2i(w· - wo) - P. .J 2H; mt wo ~ e~ 

i = 1, 2"" , n, 

Eqi = E~i + (Xdi - x~i)Idi 
n 

Idi = BiiE~i - I: E~jYijCOS(t5i - t5j - aij) 

j=l.#i 
n 

Pei = GiiE~~ + E~i L E~jYij sin(t5i - t5j - aij), 

j=l.f!i 

(6.2.1) 

where 6j denotes the relative rotor angle, in radj Wi the generator speed, in 

rad/sj Wo the system speed, in rad/sj E qi , E~i and E;i the voltage, transient 

voltage and sub-transient voltage in q-axis, respectivelYj E;i sub-transient volt

age in d-axisj P mi the mechanical power input from the prime mover and as

sumed to be constant, in p.u.j Pei the electrical power output of the generator, 

in p.u.; Hi the inertia coefficient of rotor, in secondsj T~Oi' r;;Oi and T~:n the d

axis transient, d-axis sub-transient and q-axis sub-transient short circuit time 

constant, in seconds, respectively; Xdi, X~i and X~i the synchronous, transient 

and sub-transient impedances in the d-axis, respectively ; Xqi and the syn

chronous impedance in the q-axisj Ui the excitation control, in p.u.; hand lqi 

the generator currents in the d-axes and q-axes, respectively; Vdi and Vqi the 

generator terminal voltage in the d-axes and q-axes, respectivelYj Vti and v;.e/i 

the generator terminal voltage and its reference value, respectively; v;.i, ]{ai 

and Tai the control output, control gain and time constant of AVR, respec

tively; E/dOi the initial excitation voltagej subscript i denotes the variables of 

the ith machinej and subscript 0 the initial value of variable. 

Let Zil = c5j , Zi2 = Wi, Zi3 = E~i' then the system state model can be obtained 
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as: 

Zi = .1i(z) + 9i(Z)Ui 

Yi 1ti (z), i = 1, 2"" , n, 
(6.2.2) 

where 

Zi2 - Wo 

..!!!lL (p. . - !2.i( zo2 - wo) - GooZ2
3 2H; mt Wo tnt 

Fi(Z) = -Zi3 E;=t,#i Zj3Yij sin(zil - Zjt - aij») 

-TJ ° ((1 + (Xdi - Xdi)Bii )Zi3 
do. 

-(Xdi - Xdi) E;=l,#i Zj3Yij COS(Zil - Zjl - aij») 

9i(Z) = [0 0 1/Tdoi ]T 

'Hi(Z) = Zil - <SiQ. 

Define Zi ~ [Zit Zi2 Zi3]T, Z ~ [z[ zf ... z~]T, Y ~ [Yl Y2 ... YnJT, and 

U ~ [Ut U2 ... unJT, the state equations of the whole multi-machine system is 

represented as 

z = F(z) + 9(z)u 

Y = 1t(z), 
(6.2.3) 

where Z E lR3n represent the state variables, u E lRn the control input, and 

Y E )Rn the measured outputs. F, 9 and 'H are sufficiently smooth in a domain 

S C IRan and are defined as follows: 

F(z) - [F[(z) FiCz) '" F!(z)f 

9(z) - block diag[9l(z) 92(Z) ..• 9n(z)] 

'H(z) - ['Ht(z) 1tl(Z) .•. 'Hn(z)JT. 

It has been shown that system (6.2.3) can be linearized by choosing a state 

variable transformation and a nonlinear feedback control law [104, 86, 87]. 

There exists a diffeomorphism T : S -+ ]R3n, defined as 

x = T(z) = ['Ht(z), L:F'H1(z), L}'H1(z), 'H2 (z),'" ,1tn (z), L:F1tn(z), L}1tn(z)r, 

(6.2.4) 
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where x ~ [Xll,X12,X13,'" ,Xil,Xi2,Xi3,'" ,Xn l,Xn 2,Xn 3]T and Xil = Zil -

<SiD, Xi2 = Zi2 - WO, Xi3 = Zi2. The nonlinear transformation, x = T(z), leads to 

a system model with respect to the new state variables x from system (6.2.3): 

where 

D:i (x) -

L}1ti (z) -

= 

(3ij(X) = 

LQi L'}1ti (z) = 

= 

and 

Yi = XiI, 

aE~j T~oj 
-Wo apei 

2HiT~oj aE~j 

i = 1, ... , n, 

j = 1,2, ... ,n, 

= a~~z) F(z), 

a (L:F 1ti (z) ) 9 . ( ) 
[}z J z , 

are the Lie derivatives of 1ti (z) along F(z), and L:F1ti (z) along 9j (z), 

respectivelY[I]. 

(6.2.5) 

(6.2.6) 

(6.2.7) 

(6.2.9) 

It should be mentioned that the DNAC is undertaken based on the system 

model (6.2.5) in which the nonlinearities satisfy the matching condition. 
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6.2.2 Design of the decoupled state feedback linearizing 

controller 

The system in form (6.2.5) can be exactly linearized by a nonlinear state 

feedback control 

U = [,B(X)tI(V - a(x)), (6.2.10) 

and the following linear system is derived 

Xil = Xi2 

Xi2 = Xi3 (6.2.11) 

Xi3 = Vi, i= 1, ... , n, 

where a(x) = {ai(X)}nxl' ,B(x) = {,Bij(X)}nxn and V = [VI, V2,'" ,vn]T is the 

control oflinear system (6.2.11). 

Equation (6.2.10) is a centralised control law and its implementation re

quires all the system states. Design of a decouplcd control law is desired and 

it has been well studied [86, 114,87]. From system (6.2.1), we can obtain: 

(6.2.12) 

From equations (6.2.7), (6.2.9) and (6.2.12), the following equation can be 

given: 
n 

Wo dPei D i • '"" a 
ai(z) = - 2H- dt + 21f.Wi - ~ l-'ijUj. 

, '3=1 

(6.2.13) 

Substituting equation (6.2.13) into system (6.2.5), the dccouplcd model of sys-

tern (6.2.5) can be obtained as: 

Xil = Xi2 

Xi2 = Xi3 (6.2.14) 

Xi3 = --ill; (j)ei - €;; (Wi)), i = 1, 2, ... , n. 
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Based on the synchronous generator theory, we can derive another form of the 

active power of ith machine and its derivative as follows: 

Pei = E~Jqi + (Xqi - X~i)lqi1di 

! Pei - 1qi! E~ + E~i :t 1qi + (Xqi - X~i) :t (h1qi ). 

(6.2.15) 

(G.2.IG) 

Substituting equation (6.2.16) and the third equation of system (6.2.1) into 

system (6.2.14) again, we can obtain: 

(6.2.17) 

where fi(X) and Mx) are given as follows: 

-Wo (Di . I • I ) d (J I )) 
2Hi Wo Wi + EqJqi + (Xqi - Xdi dt di qi 

wo1qi E 
+ 2HiT/un qi 

(6.2.18) 

-wo1qi 
I • 

2HiTdoi 
(6.2.19) 

It can be seen that bi{x) is a nonzero variable within a normal range of 

the generator operation. Thus, system (6.2.14) is linearizable and it can be 

linearized exactly by introducing a state feedback control: 

Vi - fi(X) 

bi{x) 
(6.2.20) 

(6.2.21) 

where aij, j = 1,2,3, are feedback gains and they can be determined by a 

linear optimal control strategy. 

Substituting equations (6.2.18) and (6.2.19) into equation (6.2.20), we can 

obtain the decoupled state feedback excitation control of the i-th machine as 

follows: 

. - E Taoi [2Hi Di . I d I ( I ) d (I I .)] 
U t - qi - -I. -Vi + -Wi + Eqi dt qi + Xqi - Xdi dt eli ql . 

ql Wo Wo 
(6.2.22) 
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6.2 Design of controller based on fully linearizable system model 139 

then the third equation of (6.2.5) can be rewritten as 

(6.2.25) 

where \}I(x, u, t) is defined as 'perturbation'. Introducing a fictitious state Xi4 = 

\}Ii(X(t), u(t), t) to represent the perturbation, system (6.2.5) becomes: 

Yi = XiI i=1,2,···,n, 

where Xij(O) = 0, j = 1, 2, 3, Xi4(0) = -bjQEqiO , ~i(O) = 0, 

biO = (-wolqiO )/(2Hi T/un). 

(6.2.26) 

It is reasonable to assume that the power system under a proper control is 

stable. The boundary values of the system states can be estimated based on 

the maximum value of the states, when a three-phase-to-ground fault occurs 

at the terminal of the generator, which gives a most severe disturbance to 

the machine. During the fault, the electric power Pei will change from P mi to 

around zero within a short period of time, 1:::.. Therefore, the boundary values 

can be obtained as follows: 

I Xi3 I < WOPmi 

2Hi 

I Xi4 I < WOPmi 

2Hi l:::. 

I ~i(-) I < wOPmi 

2Hj 1:::.2· 

6.2.5 Design of decentralized nonlinear adaptive con

troller 

For system (6.2.26), design a fourth-order sliding mode observer as de

scribed in Chapter 3. With proper selection of the observer parameters, the 
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estimate of the system states and the perturbation will converge to their real 

values quickly, e.g. Xij -+ Xij, j = 1,'" ,3 and Xi4 -+ w(·). Then, the esti

mated states can be used to replace the real system states to design the linear 

state feedback control Vi. The complete control law for system (6.2.5) is given 

as follows: 

(6.2.27) 

(6.2.28) 

where aij, j = 1, 2, 3, are gains of the linear feedback controller and the 

estimated perturbation Xi4 will function as a real-time compensation to cancel 

the system nonlinearities and uncertainties. 

6.2.6 Summarization and remarks 

The basic scheme of DNAC can be summarized as follows: 

Step 1: 'fransform the fully linearized nonlinear system (6.2.3) to the nominal 

nonlinear system (6.2.5), as described in section 6.2.1; 

Step 2: Define the perturbation term and fictitious state to represent all the 

uncertainties, external disturbances and known and unknown nonlinear

ities of the nonlinear system (6.2.5), as described in section 6.2.4; 

Step 3: Design an extended-order sliding mode observer to estimate the per

turbation and the system states, as addressed in section 6.2.5; 

Step 4: Employ the estimated perturbation and states to implement the COll

trollaw, equations (6.2.27) and (6.2.28), as in section 6.2.5. 
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6.3 Controller design based on input/output 

linearizing system model 

6.3.1 The detailed model of a multi-machine power sys

tem 

Considering the fast-acting excitation system utilized on each machine, a 

fifth-order model is employed to represent the machine together with a first

order dynamic model of an Automatic Voltage Regulator (AVR) which is used 

to describe the regulation of generator terminal voltage. The multi-machine 

power system including n machines can be described by n interconnected sub

systems as follows: 

8i = Wi -wo 

Wi = ~ [Po . - p..] 211; ml el 

E~i = T~ . lUi + EfdOi + Uri - E qi ] 
do. 

E;i 1 [ " E' (' ")/] E' = T" -Eqi + qi - Xdi - X di di + qi 
doi 

(6.3.1) 

E~i 1 [ 1/ (' ")/ ] - T" -Edi - Xqi - Xqi qi 
qoi 

Uri = !fu(Urefi - Uti) - ~, 
a. a 

where 

Eqi - E~i + (Xdi - x~i)Idi 

Pei = " " "" ) ) EqJqi + EdJdi + (Xqi - Xdi Idi1qi 

U di - X~Jqi + E;i 

" " U qi - XdJdi + Eqi 

Uti - 2 2) 1 (Udi + U qi 1 

lti - 2 2) 1 
(Idi + Iqi l, 

where the definition of variables are same as in section6.2.1. 
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The above n subsystems are interconnected through the transmission net

work. The state variables of the transmission network are represented in a 

x - y coordinate as 

where 

U F = [UX1 U y1 U x2 Uy2 

IF = [Ixl Iyl Ix2 Iy2 

and ZF is the impedance matrix of the network. 

U xn Uyn]T, 

Ixn Iyn]T, 

(6.3.2) 

The transformation between the common x - y coordinate and the d - q 

coordinate of the ith subsystem is given as 

For the ith machine, we have 

6.3.2 Decentralized nonlinear adaptive controller for the 

ith subsystem 

Defining the state variables as 

x - [ xf xT xT x~ ]T, 2 , 
Xi - [ XiI Xi2 Xi3 Xi4 Xi5 Xi6 ]T 

- [ OJ - OiQ Wj - WiO E~i - E~iO E;i - E;iO E~i - E~iO v,.i ] T 
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and choosing the output of the ith subsystem as Yi = hi(x) = XiI. we have 

d 
dtYi - Xi2 

d2 

dt2Yi = 

d3 

dt3Yi = 

wolqi Wo "d 
2HiTdoi (EfdiO - Eqi ) - 2Hi Eqi d/qi 

wolqi [ " I (' ")/ I 2HiT" doi - Eqi + Eqi - xdi - X di di 

Wo "d Wo d /I 1/" ) )] --E '-/' - --[Ed.fdi + (x ,- Xd' h/qi , 2Hi qt dt qt 2Hi dt t q' , 

wolqi 
2HiTdoi . 

Defining the system perturbation as 

(6.3.3) 

then we have 

(6.3.4) 

where biO is a constant, chosen as biO < Mx)/2, as bi{x) is negative and bounded 

when the synchronous generator operates under a normal operation condition. 

As bi{x) =1= 0, "18 =1= hr, k = 0,1,2, .. ·, the ith subsystem (6.3.1) has 

relative degree ri = 3. Defining new system states Zil = Yi, Zi2 = !"Yi' Zi3 = 

~Yi' Zi4 = 'l1 i ('), and then a fourth-order sliding mode observer is applied. 

Finally, the control law of subsystem (6.3.1) can be obtained as: 

(6.3.5) 

(6.3.6) 

As the relative degree of subsystem (6.3.1) is r = 3, the internal system dy-
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namics is 

1 [ E" E' (' 1/)1] E' I T" -Xi4 - qiO + Xi3 + qiO - X di - X di di + qi 
do. 

Xi4 = 

Xi5 - 1 [ "( I " ) J T" -Xi5 - Edio - Xqi - X qi Iqi 
qo. 

(6.3.7) 

Xi6 - ~T. . (Ure/ i - Uti) - ~T.X :. 
at at 

Noting that when Zij = 0, j=l, 2, 3, and Zj3 = 0, the zero dynamics of 

system (6.3.1) is : 

Xi4 - -d-rX i4 Tdoi 

Xi5 - -d-rX i5 
Tqoi 

Xi6 = -~ Til; 

It is exponentially stable. 

Remark 6.1 Based on the result of Chapter 4, the constant value of bi~ must 

satisfy the following condition to guarantee that the nonlinear system (6.2.5) 

can be linearized by the estimated nonlinearity: 

where J.l is a positive constant. As bi{x) is negative when the generator operates 

within its normal region, then 

1 
biD < '2bi{x). 

Remark 6.2 The DNAC described above has a great merit as only one vari

able, variation of rotor angle 8i - 8iD , is required for implementation of the 

nonlinear control law. It should be mentioned that the steady state of the ro

tor angle, 8iO , which will change with the variation of operation conditions, is 

involved in the control. 8iO can be obtained by an ODSS (observation decoupled 

state space) method described in [104] when the system operation condition 

varies. It has been noted that there are some methods available now for mea

suring the relative rotor angle [142]. Using other easily measurable variables, 

such as rotor speed or active power, to replace the rotor angle, is also under 

investigation. 
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Remark 6.3 Another important objective of the generator excitation con

trol is to regulate generator terminal voltage \Ii. Most modern generators are 

equipped with Automatic Voltage Regulators (AVRs). It is well known that 

the AVR can inject negative damping into the system, while the power sys

tem operates at high power loading with leading power factors, particularly in 

a long distance tie-line transmission system. The FLC designed in [88, 114J 

introduces an additional feedback loop to add an AVR in the excitation con

trol system, so as to guarantee the regulation of terminal voltage. However, 

the nonlinearity injected into the system by adding the AVR has not been 

considered in the design of the FLC [112J. 

In this study, an AVR is connected, together with the DNAC, to the ex

citation system to guarantee the regulation of terminal voltage. As the per

turbation, which includes system nonlinearities, is estimated online from the 

real-time measurements, the DNAC can compensate the unmodelled system 

nonlinear dynamics caused by the employment of AVR in the system. The 

structure of the total control system is shown in Figure 6.1. 

Figure 6.1: The excitation system with DNAC installed 
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6.4 Simulation results 

6.4.1 A three-machine power system with multi-mode 

oscillations 

The designed controller is evaluated on a three-machine power system as 

shown in Figure 6.2. This three-machine system is widely employed for inves

tigation on damping of multi-mode oscillations[87, 80J. The parameters of the 

system is given in Appendix B. In this system, multi-mode oscillations can be 

observed following a large disturbance, a three-phase-grounding short circuit 

described below, without control provided, as shown in Figure 6.3. 

G1 #1 #4 #5 

30 
#6 #3 G3 

I'J 

02 
#2 

L2 
I'J 

Ll 

Figure 6.2: The multi-machines power system without infinite bus 

All generators are equipped with AVRs, fast-acting exciters and governors. 

Each generator is simulated by a fifth-order model in the simulation. 

This simulation approach demonstrates an example showing that the DNAC 

can deal with un modelled system dynamics. The fault is simulated as: a three

phase-to-ground short circuit occurs at the end terminal of line 4 - 5(2) at 

t == 0.1 s, where (2) denotes the second line between buses 4 and 5. The faulty 

transmission line is switched off at t = 0.2 s and switched on again at t = 0.7 s 

when the fault is cleared. 
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Figure 6.3: Multi-mode oscillations of the multi-machines power system 

The parameters of DNAC are chosen as follows. For observer (3.4.1) , a i l = 

200, ai2 = 1.5 x 104 , (}i3 = 5 X 105 and (}i4 = 6.25 X 106 so as to place all pol s 

of the Luenberger observer at - 50; k il = 50, ki2 = 1.5 X 104 , k i3 = 1.5 X 106 , 

ki4 = 5 X 107 so as to set the error dynamic on the sliding mode with all poles 

at >. = -100. It should be mentioned that the sliding observer is s t with 

high gains to guarantee the quick and accurate track performan c wh n t he 

fault happens. The controller parameters in equation (6.2.2 ) ar ho en as 

ail = 1000, ai2 = 300 and a i 3 = 30 so as to place the poles of t he .lin ar sy tem 

at -10. Both DNAC and FLC use the same parameters for the control of til 

linear system. In equation (6.2.27), bi~ = -0.2 is chos n for al l ontroll r . 

Three generator units use the same controller parameters. 

The advantages of the FLC in improving th pow l' sy t m stabili ty over 

other controllers such as PID controller, power sy t m stabilizer(PS ) and lin

ear optimal controller etc., have been discuss d in [194, 7]. Therefor in this 

paper the comparison is focused between the DNAC and FL . Th perfor-
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mance of the conventional power system stabilizer (CPSS) is also presented for 

comparison. 

To improve the performance of FLC, the more accurate control law (6.2.22) 

is used in the FLC simulation instead of the control law (6.2.23). It is also as

sumed that all system states and parameters required by the FLC are available. 

The simulation results are presented in the following section. 

6.4.2 Controller performance 

Case 1: System responses, controlled by DNACs on all generators, are 

shown in Figures 6.4 rv 6.7. The system responses with FLCs installed on 

all generators are shown in the figures. In this case, all kinds of oscillations 

are well damped out by DNACs or FLCs. From Figures 6.4 ,...., 6.7, it can 

be seen that the DNACs can provide better performance than the FLCs. As 

the FLC is designed based on a third-order model of generator, there exist 

unmodelled dynamics, such as high order dynamics of generators, AVRs and 

governors. These unmodelled dynamics will degrade the response of FLCs. 

However, as the DNAC uses the real-time estimation of system dynamic modes, 

it can deal with the unmodelled system dynamics. Therefore, the DNAC can 

provide consistent satisfactory control performance, when the system suffers 

from uncertainties, disturbances and variation of operation conditions. 

Case 2: System responses, controlled by DNAC on G2 and CPSS on Gl and 

G3, are shown in Figure 6.8. It is shown that DNAC installed on G2 can 

improve the damping of the inter-area oscillation between G2 and G3. The 

DNAC and CPSS installed on different generators can coordinate with each 

other. 
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6.4.3 Observer performance 

During the period of a large system disturbance, the performance of the 

observer has been monitored. The estimated errors of states are shown in 

Figures 6.9 I"V 6.11. The estimated perturbation is illustrated in Figure 6.12. 

From Figure 6.91"V 6.11, it can be seen that the the observer can provide accurate 

estimates of the system states with a fast track rate. There are relatively 

bigger errors existing in the estimation of X3. This is because there exists 

discontinuity in the states at the instant when the faults happen in the power 

system. In the observer error performance shown in Figures 6.9,6.10 and 6.11, 

the estimation error become big at the instant of t = 0.1 s, t = 0.2 s, t = 

0.7 s , when the fault is simulated, the fault line is disconnected and the 

transmission line is connected again when the fault is cleared, respectively. 

The sliding observer, the same as other kinds of nonlinear observer, cannot 

deal with the discontinuity existed in states very well. However, from the 

simulation results, the sliding observer can still provide a fast track rate and 

accurate state estimation for the DNAC despite of the discontinuity. 

6.4.4 Robustness to system parameters uncertainties 

The robustness of the DNAC and FLC has been evaluated through testing 

the controllers by changing the inertia constants H and the field time constant 

T/ro of all units. In the FLCs, the values of TJo and H are decreased by 10% 

from the original values used in the power system simulation. In this case, the 

system responses to the fault are shown at Figure 6.13. A big difference of the 

FLC performance has been identified, with and without accurate parameters. 

By contrast to the FLC, the DNAC performance remains exactly the same, as 

its design does not require the accurate system parameters. 
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6.4.5 Controller performance under various operation 

conditions 

The above results are obtained based on a certain operation condition Type 

I. In order to test the general effectiveness of the proposed DNAC, different 

operation conditions are simulated. The system responses, controlled by the 

DNACs on all units, under operation condition type II given in the Appendix, 

are shown in Figure 6.14. In this case, although units 1 and 2 operate with 

a leading phase and the system suffers from more severe oscillations when the 

fault occurs, the DNACs can still provide consistent performance which is much 

better than that obtained using the FLCs, as illustrated in the figure. 

6.5 Conclusion 

A decentralized nonlinear adaptive controller has been proposed for exci

tation control of synchronous generators interconnected in the multi-machine 

power system. The DNAC employs the estimated states and perturbation to 

realize the feedback linearizing control of the nonlinear power system. The 

system states and perturbation can be estimated by a robust sliding mode 

observer, without requiring the exact knowledge of the power system. The 

DNAC works as a nonlinear adaptive controller as it is capable of dealing 

with unmodelled system dynamics, parameter uncertainties and external dis

turbances. Moreover, the DNAC can be easily implemented than the FLC as 

only one measurement, relative rotor angle, is required. The simulation results 

show that the DNAC can damp out the multi-mode oscillations effectively and 

provide more satisfactory and robust control performance by contrast to that 

obtained using the FLC. 
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Figure 6.8: Rotor speed responses with DNAC on G2 and CPSS on Gl and 
G3 

under operation condition Type 1,- DNAC + CPSS, - - CPSS 
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Figure 6.13: System responses WI - W 2 with parameters variation 

DNAC, - - FLC 

FLC robustness test 
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Chapter 7 

Coordinated Nonlinear 

Adaptive Control of 

Synchronous Generators and 

TCSCs in Multi-Machine Power 

Systems 

7.1 Introduction 

It has been desired, for a long time, to design decentralized adaptive con

trollers for the coordinated control of power system devices towards an optima.l 

performance of the whole system. However, the previous studies of power sys

tem adaptive control were supported by the linear control theory [78]. Although 

the AI techniques, such as neural networks and learning control [145, 146], 

have been attempted to resolve the problem, the difficulties arising from sys

tem nonlinearities and uncertainties have hampered understanding of nonlinear 

dYnamics interacted between devices and utilizing them for coordinated control 
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of the power system. 

In recent years, Flexible AC Transmission Systems (FACTS) have received 

an increased research interest for power system control. Numerous research 

work has been undertaken on the development of Thyristor Controlled Series 

Capacitor (TCSC) control schemes for power system stability [111]. TCSC, 

Static Voltage Compensator (SVC), Static VAr CONdenser (STATCON), Static 

Phase Shifter (SPS) and Power System Stabilizer (PSS) are all fast-acting 

power system control devices. Although each of them can be used to improve 

power system operation efficiency and dynamic stability, the coordinated con

trol of these devices has not been investigated intensively. 

As a power system is a nonlinear interconnected system, nonlinear control 

methods have been investigated for power system control [108, 147, 112J. Non

linear control theory has also been applied to the coordinated control of FACTS 

devices [105, 148]. However, as these methods reported in the literature require 

accurate system models and parameters in the controller design process, it is 

impossible to guarantee their reliable performance when they are implemented 

in a real multi-machine power system for which the details of system models 

and parameters are always unavailable. 

In this chapter, a coordinated nonlinear adaptive control (CNAC) of syn

chronous generators and TCSCs in the multi-machine power system is inves

tigated. Analysis begins with de-coupling a nonlinear multi-machine power 

system into subsystems using Lie differentiation, which provides a basic sys

tem structure for the input/output linearization of the subsystems, although 

the CNAC design does not require explicit mathematical decomposition of the 

Power system. The CNAC design is then undertaken based on the input/output 

feedback linearizing control of a subsystem by introducing a fictitious state de

fined to represent the combined effect of system nonlincarities, uncertainties 

and external disturbances, which are regarded as an external perturbation ap

plied to the nonlinear subsystem. Furthermore, the CNAC can be designed 
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based on the local measurements without requiring the global system mod01 

and mathematical de-coupling. This leads to de-coupling the multi-machine 

power system into subsystems automatically without ignoring any subsystem 

interaction. Based on a subsystem, the sliding mode observer is designed to 

estimate the system states and the fictitious state. The estimated perturbation 

is then included in the nonlinear feedback control loop to cancel the syst.em 

nonlinearities and uncertainties, which results in a feedback linearizing con

trol without requiring the knowledge of system nonlinearities and parameters. 

Consequently, a nonlinear adaptive de-coupled controller, implemented based 

on local measurements, is obtained. 

The CNACs are applied in subsystems respectively for the coordinated con

trol of generators and TCSCs in the multi-machine power system. Simulations 

studies are undertaken based on a three-machine power system to evaluate the 

effectiveness of the CNACs. The simulation results are provided to demon

strate the merits of the novel nonlinear adaptive control strategy. 

7.2 Power system models 

In order to investigate the coordinated control of TCSCs and synchronous 

generators in the multi-machine power system, the subsystem models in which 

a TCSC or generator is involved, are described below. 

7.2.1 The subsystem including a TCSC 

TCSC is an important device in the FACTS family. With the adjustment 

of the thyristor, it can change its apparent reactance smoothly and rapidly. 

This characteristic meets the demands of modern power systems that must 

operate flexibly and react quickly. TCSC is one kind of a capacitive reactance 

compensator which consists of a series capacitor bank shunted by thyristor 
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controlled reactor in order to provide a smoothly and rapidly variable series 

capacitive reactor. As the TCSC controllers, TSSC (Thyristor Switched Series 

Capacitor) is known as FACTS utilizing thyristor elements. While TSSC con

trols the capacitive reactance by switching thyristor elements, TCSC is able to 

compensate it continuously. 

The description of power system dynamics is focused on the subsystem 

which involves a TCSC. An equivalent two-machine system, shown in Figure 

7.1, can be used to analyze the performance of TCSC installed on a transmis

sion tie-line in the multi-machine power system. The power transfer charac

teristics is described as: 

V1V2. ) P(6) = X s111(61 - 62 
X L - c 

(7.2.1) 

where P( 8) is the power delivered through the transmission line; Vi I V2 the 

magnitude of the transmission terminal voltage at buses 1 and 2 respectively; 

81,62 the phase angle of the two bus voltages respectively; XL the transmission 

line reactance and Xc the equivalent reactance of TCSC. 

Figure 7.1: The equivalent two-machine power system 

The equivalent generator is represented by a classical model. The dynamic 

model of the two-machine power system is expressed as 

i!..Do8 -
dt 
d 
-Dow -
dt 

D.w 

Ws [p. _ Vi 112 " (A 8)] 
H m XL _ XC S111 u 
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where ~8 is the deviation between the angle of the two machines from its 

steady value, with its initial value being ~8oj ~w the relative speed betweell 

the two machines, with its initial value being ~wo = OJ 1/ H = 1/ Hi + 1/ /I2j 

HI and H2 the machine inertia coefficientsj Pm the machine mechanical power 

and Ws the system normal speed. 

7.2.2 The subsystem including a synchronous generator 

This subsystem is considered as a single machine to infinite bus system. A 

simplified third-order model, e.g. E~-model, is adopted for the design of the 

excitation controller of the synchronous generator. The generator dynamics is 

described as follows: 

8 = W-Wo 
Wo D 

W = 2H[Pm - Wo (w - wo) - Pel 

E' 
1 

(7.2.3) = T (U2 + E /0 - Eq) , q 
do 

where 

Pe = E~Iq + (Xq - X~)Idlq 

Eq = E~ + (Xd - X~)Id 

Vd Xqlq 

Vq = E~ - X~Id, 

where 8 denotes the rotor angle, in rad; W the rotor speed, in rad/ Sj E~ and Eq 

the transient voltage and voltage behind the quadrature-axis, respectively; P,n 

the mechanical power input from the prime mover and assumed to be constant, 

in p.u.; Pe the electrical power output of the generator, in p.u.; II the inertia 

coefficient of rotor, in seconds; T~o the field winding time constant, in seconds; 

D the damping constant of the generator, in p.u.; Xd, X~ the synchronous and 

~ansient impedance in the d-axis; Xq the synchronous impedance in the q-axis; 
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U2 the excitation control; Id and Iq the generator currents in the d-axes and 

q-axes, respectively; Vd and Vq the generator terminal voltage in the d-axcs and 

q-axes, respectively; and E fo the initial excitation voltage. 

7.3 Design of nonlinear adaptive controller for 

a SUbsystem 

7.3.1 The CNAC of TCSC 

The main purpose of TCSC control is to damp the inter-area oscillation of 

two interconnected power system areas. In practice, local measurements should 

be used as the controller input signals. In most of the TCSC controllers, the 

voltage angular difference between two buses connected by a transmission line 

has been employed as a promising measurement for damping control [149J. In 

this paper, it is also chosen to mimic the centroid angular difference between 

the machines in the two areas. 

For subsystem 1, equation (7.2.2), defining Xll = A8 - A8o, X12 = Aw, 

choosing the voltage angular difference as the output Yl = Xll, and denoting 

the control as Ul = l/{XL - Xc) - UlO, where UIO = 1/ XL is the control init.ial 

value, then we can obtain: 

where 
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It should be mentioned that bl(O) is a constant and chosen arbitrarily as long 

as it satisfies condition (4.2. 7). 

As the relative degree rl = 2, after defining Zll = YI, Z12 = !tYI, ZI3 = WI (.), 

a third-order sliding mode observer, in the form of equation (3.4.1), is designed. 

With the estimated states and fictitious state, the control law of subsystem 1 

is: 

(7.3.5) 

(7.3.G) 

Denote the compensation rate as p"O < fl < 1, then -p,XL :::; Xc ::; JLXL . 

Finally, the limit of control UI is: ~ iL :::; UI :::; -r:; iL . 

7.3.2 The CNAC of generator excitation system 

For subsystem 2, equation (7.2.3), by choosing the state variables as 

and system output as Y2 = X21, we can obtain: 

(7.3.7) 

where 

and b2{O) is chosen as a constant to satisfy condition (4.2.7). 
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As r2 = 3, after defining Z21 = Y2, Z22 = !JtY2, Z23 = ;2
2
t Y2 , Z14 = W2(')' then 

a fourth-order sliding mode observer is applied. The control law of subsyst(>111 

2 can be obtained as: 

7.4 Simulation Study 

7.4.1 Test system and CNACs setting 

(7.3.10) 

(7.3.11) 

The designed CNAC is evaluated on a three-machine power system as shown 

in Figure 6.2. In this system, the multi-mode oscillations can be observed 

following a disturbance. The system responses, after a three-phase-to-ground 

short circuit occurring at x point, without generator excitation and TCSC 

control provided, are shown in Figure 6.3. The fault is simulated as: a threc

phase-to-ground short circuit occurs at the end terminal of line 4 - 5(2) ((2) 

denotes the second line between buses 4 and 5) at t = 0.1 s. The faulty 

transmission line is switched off at t = 0.3 s and switched on again at t = 0.7 s 

when the fault is cleared. In this case, all generators are equipped with AVRs, 

fast-acting exciters and governors. Each generator is simulated by a fifth-order 

model in the simulation, although the simplified model is used for design of 

the excitation controller. This implies that unmodelled dynamics has been 

considered in the CNAC design and emulated in the simulation study. 

Two sets of parameters are required for the CNAC. One set is associated 

with the sliding mode observer and the other is for the feedback controller. The 

parameters of the CNAC for TCSC are given as follows. The determination 

of the sliding mode observer begins with designing a Luenbergcr observer, by 

choosing O::u = 15,0::12 = 75 and 0::13 = 125 so as to place all the poles at 

-5. Because the maximum value of ~w in p.u. will be less than 0.1 after 
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a serious fault occurs, ku can be chosen to be 5 from equation (3.4.4). In 

order to ensure the stable and fast convergent error dynamics of the sliding 

mode observer when fault occurs, the poles in equation (3.4.2) are placed as a 

relatively high value>. = -50. Then the other gains of the observer are chosen 

as k12 = 5 X 102, k13 = 1.25 X 104• The CNAC parameters, in equation (7.3.6), 

are determined as au = 100, a12 = 20 so as to place the poles of the linear 

system at -10. 

The parameters of the CNAC for generators are given as follows. The 

parameters of the fourth-order sliding observer are chosen as: 021 = 20, 022 = 

150, 023 = 500 and 024 = 625 so as to place all the poles of the Luenberger 

observer at -5; k21 = 50, k22 = 7.5 X 103, k23 = 3.75 X 105, k24 = 6.25 X lOli 

so as to set the error dynamic on the sliding mode with all poles at >. = -50. 

Because the maximum difference of the generator speed in p. u. will be less than 

0.1 after a serious fault occurs, k21 = 50 is large enough to satisfy the existence 

condition of sliding mode, equation (3.4.4). The CNAC parameters in equation 

(7.3.11) are determined as a21 = 1 x 103 , a22 = 3 x 102, a23 = 30 so as to 

place the poles of the linear system at -10. In equation (7.3.5), blO = -0.2. 

In equation (7.3.10), b20 = -0.4. These values are chosen based on equations 

(7.3.4) and (7.3.9), where Ws = Wo = 1.0, to satisfy equation (4.2.7). 

It should be mentioned that although a number of parameters need to be 

chosen, they are not sensitive to the CNAC performance. Although the gener

ators involved in the simulation study have different parameters and operation 

conditions, the CNAC designed for each generator contains the same param

eters of the observer and controller. Therefore, with a little experience, these 

parameters can be easily determined. 

The sampling interval of excitation control is 40ms. Considering the vari

able impedance response of TCSC has a time delay, the sampling interval for 

the TCSC controller is chosen as lOOms. The TCSC is installed at the line 

5 - 6 and it has compensation rate J-t = 0.667. 
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The advantages of the feedback linearizing controller for improving power 

system stability have been shown in comparison with the PID controller, PSS 

and linear optimal controller [87]. However, the feedback linearizing control 

strategy cannot be applied directly for TCSC as its design involves a complex 

system model, even in the case where the model is available. As mentioned 

previously, this paper focuses on designing local controllers for the coordinated 

control of power system without requiring the knowledge of the power system 

model, therefore, a PSS is only employed for comparison. In the simulation 

study, the coordination between the CN AC of TCSC and the CN ACs of gen

erators or PSSs equipped on generators is investigated respectively. The PSS's 

transfer function and parameters are given in the Appendix. 

7.4.2 CN AC of TCSC 

The system responses with the CNAC equipped on the TCSC installed on 

line 5 - 6 are shown in Figures 7.2 '" 7.5, compared with the system responses 

obtained without the CNAC. From the figure, it can be seen that the CNAC 

can provide satisfactory damping to reduce the inter-area oscillation between 

generators 2 and 3, in particular the oscillation of voltage angular difference 

between buses 5 and 6. The dynamic interaction between generators 1 and 2 is 

not presented here as the TCSC control makes little contribution to the local 

mode oscillation between generators 1 and 2. 

7.4.3 CNACs equipped on all generators 

In this case, the CNAC is installed on each generator but not for the TCSC. 

The system responses are shown in Figures 7.6 '" 7.9, where the responses 

of all generators with the PSS installed are provided for comparison. Under 

this circumstance, all oscillation modes have been damped effectively. It is 

worthwhile to point out that all the CNACs have the same structure and 
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Figure 7.2: WI - W3 responses with an CNAC of TCSC installed on line 5 - 6 

- CNAC, - - - Without CNAC 

parameters. 

7.4.4 Coordination between CNAC of TCSC and PSSs 

equipped on generators 

The PSS has been applied for most modern generators. It is n e ary t 

find out whether the CNAC and PSS may cause adverse interaction. Th r -

fore, the interaction and coordination between the CN AC of TCSC and th 

PSS equipped on all generators are investigated. In this case, the cooperation 

between the CNAC and the PSSs has been simulated. The system responses 

are shown in Figures 7.10 f'V 7.13 . From the figure, it can be noted that th 

CNAC of TCSC can coordinate well with the PSSs of generators to improv · 

the system dynamic performance. 
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Figure 7.3: W2 - W3 responses with an CNAC of TCSC installed on line 5 - G 

CNAC, - - - Without CNAC 

7.4.5 Observer performance and perturbation estima

tion 

The performance of the sliding mode observer has been monitor d during 

the period of a large system disturbance, in which the observer functions fully 

in its nonlinearities. The estimation errors of system states and th estimate 

of perturbation of generator 2 are shown in Figures 7.14 and 7.15 respectively, 

where all the generators have the CNAC. It can be seen from the figure that 

the observer can provide accurate estimates to trace the system states a.nd 

perturbation rapidly, especially in the case of an abruptly change of state 

caused by the fault. 
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Figure 7.4: 65 - 66 responses with an CNAC of TCSC installed on line 5 - G 

- CNAC, - - - Without CNAC 

7.5 Conclusion 

In this chapter, a novel nonlinear adaptive controller has be n proposed 

for the coordinated control of synchronous generators and TCSC devices Lo 

improve power system stability. The proposed CNAC is develop d, bas'd 

on a feedback linearizing control strategy and the introduction of a fi ctitiou ' 

state, with a robust sliding mode observer designed to estimate the sy t m 

states and perturbation. Therefore, the CNAC can be designed bas d on the 

subsystem structure without requiring the knowledge of yst m nonlin ariti s 

and parameters. The CNAC has a simple form and adaptive nature. It does not 

ignore any system nonlinear dynamic mode but is able to be install d locally 

and implemented with a local measurement. The simulation results show that 

the CNACs can coordinate each other or with PSSs, to provide satisfactory 

control performance and damp multi-mode oscillations of the pow r syst m 

eifecti vel y. 
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Figure 7.11: W2 - W3 responses with an CNAC of TCSC installed on line 5-6 
and the PSS equipped on all generators 

- CNAC on TCSC and PSS on generators, - - - PSS on generators 
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Chapter 8 

Conclusion 

A summary of the results obtained in this thesis is given below, and by 

this means its contributions are highlighted. Suggestions for future research 

are listed at the end. 

8.1 Summary 

Nonlinear adaptive control based on state and perturbation estimation and 

its application in power systems have been studied in this thesis. After the 

definition of system perturbation to represent the combinatorial effect of the 

system nonlinearities, uncertainties and external disturbances, two state and 

perturbation observers are designed and the nonlinear adaptive control schemes 

are developed. The following results have been presented: 

• The real time estimation of system perturbation, which includes nonlin

earities, time-varying parameters and external disturbances, is a func

tional estimation rather than the parameters estimation. A simple non

linear adaptive control law has been obtained as the accurate system 

model is not required for the controller design. 

• The upper bounds of perturbation are only required in the design of 
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observer, not the controller loop directly. Moreover, as the upper bound 

of perturbation is replaced by the smaller bound of its estimation error, 

an over conservative control input is avoided and the tracking accuracy 

is improved. 

• Nonlinear adaptive control of nonlinear systems via high gain state and 

perturbation observer, nonlinear adaptive sliding mode control using slid

ing mode state and perturbation observer and decentralized nonlinenr 

adaptive control of large-scale interconnected systems have been investi

gated respectively. 

• The stability analysis of the closed-loop system including controller and 

observer for each control scheme has been undertaken and corresponding 

numeric simulation results of example systems have been given. 

• The control of canonical nonlinear system, which can be obtained from 

fully linearizable nonlinear system, has been mainly dealt with. These 

control schemes has been also applied to the input/output linearization 

of minimum phase nonlinear systems. 

The proposed control schemes have been applied to design nonlinear adap

tive controllers for power systems. 

• Nonlinear adaptive control of synchronous generators has been studied. 

The single machine quasi-infinite bus power system model has been used. 

A simple adaptive controller based on local measurements and simula

tion results which is in comparison with a conventional nonlinear state 

feedback linearization controller have been given. 

• Decentralized nonlinear adaptive controller has been designed for the 

excitation control of synchronous generators interconnected in a multi

machine power systems. The controller has been developed based on a 
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fully feedback linearizable multi-machine model and a input/output par

tial linearizable multi-machine model, respectively. The designed con

troller is robust in performance and is easy to be implemented. Simu

lation study is carried out based on a three-machine power systems and 

the results show that the designed controller has better performance and 

robustness, under variations of power system operation conditions and 

disturbances, in comparison with a conventional nonlinear state feedback 

linearization controller. 

• Coordinated nonlinear adaptive control for the excitation control of gen

erators and Thyristor Controlled Series Compensators in multi-machine 

power systems has been studied. The controllers are implemented locally 

with the design of state and perturbation observer for subsystem. Sim

ulation results show that the locally installed controller can coordinate 

each other to improve the power system stability. 

8.2 Recommendations for further study 

We point out several related directions which deserve further investigation 

as follows. 

• Nonlinear adaptive control of non-minimum phase nonlinear system via 

state and perturbation observer. The nonlinear adaptive control of n011-

linear control canonical system and minimum phase nonlinear systems 

have already been investigated. It is worth extending our results to n011-

minimum phase nonlinear systems. 

• Discrete nonlinear adaptive control via state and perturbation observer. 

Our research has been developed mainly for continuous systems. It is 

desired to extend the research into discrete-time systems. 
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• Nonlinear adaptive control under control constraints. During the design 

of the nonlinear adaptive control scheme based on the state and pertur

bation observer, the control output is assumed to be bounded but big 

enough for the purpose of perturbation cancellation. Although this is 

also a common problem in feedback linearization techniques, it is needed 

to investigate how the control constraints will affect the effectiveness of 

the proposed nonlinear adaptive control. 

• Design state and perturbation using the easily measured output is highly 

desired in power system practice. When the nonlinear adaptive control 

of synchronous generator is been studied, the rotor angle is taken as the 

available measurement. However, it is known that the rotor angle can not 

be measured easily in power systems. Thus the easily obtained generator 

variables, such as rotor speed or active power, will be considered in further 

research. 

• The nonlinear adaptive control schemes can lead to more applications 

in power systems, such as the control of induction motor and FACTS 

controllers, such as STACON and UPFC. As the introduction of FACTS 

controller increases the difficulties of modelling multi-machine power sys

tems, the proposed control schemes in this thesis are suitable for the 

delivery of nonlinear adaptive controller for the FACTS devices. 
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Appendix A 

Feedback Linearization Control 

A.I Feedback Linearization Control 

In this section, we review the basic results of nonlinear feedback lineariza

tion control of a single-input single-output (8I80) nonlinear system. This 

method employs a transformation of coordinates and feedback control to trans

form a nonlinear system into a system which dynamic is linear (at least partial). 

It includes two kinds of approach: input-state linearization, where the full state 

equation is linearized; and the input-output linearization, where the emphasis 

is on linearizing the input-output map from input u to output y even if the 

state equation is only partially linearized. 

We consider a single-input single-output affine nonlinear system represented 

by 

x - f(x) + g{x)u 

y - h(x) 

(A.1.1) 

{A. 1.2) 

where x E nn is the state vector, u E n the input, y E R the output. f(x), 

g(x) : nn -.. nn, h : nn -.. n smooth vector fields on the state space nn. We 

will assume f(xo) = 0, h(xo) = 0, Le., Xo E nn is an equilibrium point of the 

unforced system. 
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The point of departure of the whole analysis of the exact linearization via 

feedback is the notion of relative degree of the system. 

Definiton A.I. Nonlinear system (A.1.1) (A.1.2) is said to have a relative 

degree r, r ~ n, at point Xo if 

• £gL,(x)h(x) = 0, V x in a neighbourhood of Xo and k ~ r - 2; 

• £gL'j-l(X)h(x) -f O. 

where Xo E nn, £,(</J(x)) : nn -+ Rand £g(</J(x)) : nn -+ R represent for the 

Lie derivative of </J(x) with respect to f(x) and g(x) respectively, and 

£~(h(x)) = h(x) 

Lj(h(x)) = [!£j-l(h(X))] f(x) 

Lg (£}(h(x))) = [!£}(h(X))] g(x). 

A.I.I Input-state linearization 

System (A.I.1) and (A.I.2) is fully-linearizable if there exists a diffeomor

phism \II : U -+ Rn such that D = \II(U) E Rn and the state transformation 

z = \II(x) transforms the system into the form: 

z = Az + B(a(x) + ,B(x)u) 

y = Cz 

(A.I.3) 

(A.I.4) 

where (A, B) is controllable and ,B(z) is nonsingular Vz E D. With the system 

in form (A.I.3) and (A.1.4), we can linearize it exactly by the state feedback 

control 

u = (-a(z) + v)/ ,B(z) 

to obtain the linear system 

z = Az+Bv 

y = Cz, 
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where v is the linear system control. 

Consider the nonlinear system (A.I.1) and (A.1.2) having the relative de

gree r = n, i.e., exactly equal to the dimension of the state space, at the point 

Xo· In this case, the change of coordinates is required to construct the normal 

form is exactly given by 

~(x) = 

h(x) 

Ljh(x) 
(A.I.8) 

i.e. by the function h(x) and its first n - 1 derivatives along f(x). In the new 

coordinates 

1 ::S i ::S n, (A.I.9) 

the system (A.I.1) will be described in the following form: 

Zl = Z2 

(A.I.lO) 
Zn-l = Zn 

zn = a(z) + j3(z)u 

where Z = (Zl' ... , zn)T, a(z) = L,h(x)lx=III-1(z), and j3(z) = LgLt1h(x)lx=III-1(z)' 

Recall that at the point of ZO = ~(xo), and thus for all z in a neighborhood 

of Zo, the function j3(z) is nonzero. Now, if we choose the state feedback con

trol law (A.I.5) which indeed exists and is well-defined in a neighborhood of 

ZOo Imposing this feedback control yields a linear and controllable canonical 

system characterized by equations (A.I.6) and (A.I.7), where A,B and Care 
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given by 

010 

001 

o 0 

o 0 
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A= B= C=[IO ... OO] 
000 

000 

1 0 

° 1 
(A.Lll) 

The problem of finding an output function >.(x) such that the relative degree 

of the system at Xo is exactly n, namely a function such that 

Lg>.(x) = LgLf>.(x) = ... = LgL'r2>.(x) = 0 

LgL'rl>.(X) =I ° 
Vx (A.LI2) 

(A.LI3) 

is apparently a problem of resolving partial differential equations of the system. 

It has been proven that above conditions are equivalent to 

where 

adj-l >.(x) = 0, 1 $ i $ n - 1 

adf-l >,(xo) =I 0, 

a~g(x) = g(x) 

adjg(x) =' [j,gJ 

= og f(x) _ of g(x) 
ox ox 

adjg(x) = [I, adtlg] (x) , k = 0, 1, ... , n - 1, 

are called Lie products. 

Equation (A.LI4) can be written as: 

8~~) [g(x) adfg(x) ... adf-2g(x)] = 0. 

(A.1.14) 

(A.LI5) 

(A.LI6) 

If equation (A.L16) is solvable in a neighborhood of xo, there exists a function 

>.(x) such that the system (A.LI) has relative degree n at Xo. The well-known 
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conditions (necessary and sufficient) for the solution of the state space exact 

linearization problem are the following. 

A.l Matrix [g(xo) ad}g(xo) ... adf-lg(xo)] has rank n. 

A.2 Distribution D = span [g ad}g ... adr2g] is involutive in a neighbour

hood of Xo. 

The above feedback linearization is exact input-state linearization. The 

transformation of a nonlinear system into a linear one involves solving the first

order partial differential equation (A.1.16), which normally is quite difficult. 

A.1.2 Input-output linearization 

When certain output variables are of interest, as in tracking control prob

lems, the system is described by state and output equations. If system (A.L1) 

and (A.L2) has relative degree n, then it is both input-state and input-output 

linearizable. In the input/output linearization proced~re, output y is differen

tiated, with respect to time, r times until the control input u appears explicitly. 

The rth derivative of y with respect to time could be written as 

(A.L17) 

where Gr(x) = Lfh(x) and (3r(x) = LgL'j-lh(x). If (3(x) =I- 0, the nonlinear 

feedback control law 

(A.LIB) 

yields a rth-order linear SISO system 

d'"y 
-=v 
dtr 

(A.L19) 

where v E R is the control input of the linear system. 
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As system (A.I.1) and (A.I.2) has relative degree r, r < nat xo, thus there 

exist n - r smooth functions ~r+l(x),···, ~n(x) such that 

h(x) 

L'j-lh(x) 

~r+l(X) 

is a local diffeomorphism and satisfies 

~ w(x) 

i = r + 1, ... , n, 

and \lJ(xo) = O. 

(A.I.20) 

(A.I.21) 

System (A.I.l) and (A.I.2) can be transferred into the following form 

z = Arz + Br[o:r{x) + ,Br(x)uJ 

tp = q(z, cp) 

where Ar E Rrxr, BE RTXl, C E Rlxr are given by 

010 

001 

o 0 

o 0 

(A.I.22) 

(A.I.23) 

(A.I.24) 

Br = C = [1 0 .. . 0 0] 

and 

000 

000 

1 0 

o 1 

ar(e) = LgL'j-lh(w-1(e)) 

,Br(e) = L,h(w-1(e)) 

qi(e) = Lf~i(W-l(e)), i=r+l, .. · ,no 

(A.I.25) 

If a nonlinear system is minimum-phase, there always exists a smooth state

feedback control to make the whole system locally stable. 
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Appendix B 

Parameters of the 

three-machine power system 

The parameters of the three-machine power system without an infinite bus 

are given as follows. 

The transfer function of the excitation system with an AVR: 

The transfer function of the governor: 

9 = [a + b/(l + Tgs)l~w, 

The transfer function of the PSS: 
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Table B.1: Generator parameters in p.u. 

Parameters Unit 1 Unit 2 Unit 3 

Xd 1.0260 0.1026 0.1026 

Xq 0.6580 0.0658 0.0658 

x' d 0.3390 0.0339 0.0339 

x" d 0.2690 0.0269 0.0269 

x" q 0.3350 0.0335 0.0335 

T' do 0.3670 0.3670 0.3670 

Til 
do 0.0314 0.0314 0.0314 

Til 
qo 0.0623 0.0623 0.0623 

H 2.8000 28.000 28.000 

Table B.2: Transmission line parameters in p.u. 

Line No. Impedance 

1-3 0.015+0.1Oj 

4-5(1) 0.075+0.50j 

4-5(2) 0.1125+0.75j 

2-5 0.060+0.40j 

5-6 0.225+1.50j 

3-6 0.025+0.15j 

Table 3.3: Parameters of AVRs, exciters and PSSs in p.u. 

KA TA KQ TQ Tl T2 

200 0.01 3.00 1.50 0.30 0.06 
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Table B.4: Parameters of the governors in p. u. 

Tg a b 

0.250000 -0.001328 -0.170000 

Table B.5: Loads (admittances) in p.u. 

L1 L2 

8.6-6.88j 9.8-7.8j 

Table B.6: Operating conditions in p.u. 

Generator p 

0.548 

5.403 

Q V 

1.915 1.1000 

1. 753 1.0500 

Unit 1 

Unit 2 

Unit 3 10.758 3.060 1.000 
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15.0 
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Appendix C 

Notation 

Symbols 

=> implies. 

-+ tends to. 

V for all. 

E belongs to. 

e subsets of. 

0 designation the end of proofs. 

max maximum. 

min minimum. 

sup supremum, the least upper bound. 

inf infimum, the greatest lower bound. 

nn the n-dimensional Euclidean space. 

B(O, r) the ball {x E nnllixii ~ r}. 
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Notation 

Vectors and Matrices 

IIxll 

IIAII 

the absolute value of a scalar a. 

the induced p-norm of vector x, i.e. 

Ilxlip = (IXIIP + ... + IxnIP)I/p, 1 :s; p < 00; 

Ilxll oo = maxilxil· 
the Euclidean norm of a vector x, 

the induced p-norm of a matrix A, 

IIAllp = sUP#olll~lll~p. 
the induced 2-norm of matrix, 

i.e. IIAII = [Amax{AT A))] 1/2. 

193 

diag[a1," ,an] a diagonal matrix with diagonal elements al to an. 

block diag[A I ,·· ,An] a block diagonal matrix with diagonal 

AT{xT) 

Amax{P) (Amin{P)) 

P> O(P 2: 0) 

sat{.) 

sgn(.) 

blocks Al to An. 

the transpose of a matrix A ( a vector x ). 

the maximum and (minimum) eigenvalues 

of a symmetric matrix P. 

a positive definite (semi-definite) matrix P. 

the saturation function. 

the signum function. 
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Notation 

Abbreviations of control systems 

CNAC Coordinated nonlinear adaptive control. 

DNAC 

DFL 

FCL 

HGPO 

HGSPO 

NAC 

SMSO 

SMPO 

Decentralized nonlinear adaptive control. 

Direct feedback linearization. 

Feedback linearization control. 

High gain perturbation observer. 

High gain state and perturbation observer. 

Nonlinear adaptive control. 

Sliding mode state observer. 

Sliding mode perturbation observer. 

SMSPO Sliding mode state and perturbation observer. 

SMCPE Sliding mode control with perturbation estimation. 

SMC Sliding mode control. 

TDC Time delay control. 

VSS Variable structure systems. 
Abbreviations in power systems 

AC Alternating current. 

FACTS Flexible alternating current transmission systems. 

HVDC High voltage direct current. 

PSS Power system stabilizer. 

p.u. Per unit 

PID Proportional-integral-differential. 

STATCON Static synchronous condenser. 

SVC Static VAr compensator. 

SPS Static phase shifter. 

TCSC Thyristor-controlled series capacitor. 

UPFC Unified power flow controller. 

VAr Volt-Ampere reactive. 
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