
QUALITY METRICS

IN
SOFTWARE ENGINEERING

ph.D

QUALITY METRICS IN SOFTWARE ENGINEERING

FAWAZ A. MASOUD

1987

Quality Metrics
In

Software Engineering

Thesis Submitted in Accordance with the Requirements
of the University of Liverpool, United Kingdom, for

the degree of Doctor in Philosophy.

by
FAWAZ A. MASOUD

June 1987

ABSTRACT

In the first part of this study software metrics are
classified into three categories: primitive, abstract
and structured. A comparative and analytical study of
metrics from these categories was performed to provide
software developers, users and management with a correct
and consistent evaluation of a representative sample of
the software metrics available in the literature. This
analysis and comparison was performed in an attempt to:
assist the software developers, users and management in
selecting suitable quality metric(s) for their specific
software quality requirements and to examine various
definitions used to calculate these metrics.

In the second part of this study an approach towards
attaining software quality is developed. This approach
is intended to help all the people concerned with the
evaluation of software quality in the earlier stages of
software systems development. The approach developed is
intended to be uniform, consistent, unambiguous and
comprehensive and one which makes the concept of software
quality more meaningful and visible. It will help the
developers both to understand the concepts of software
quality and to apply and control it according to the
expectations of users, management, customers etc.. The
clear definitions provided for the software quality terms
should help to prevent misinterpretation, and the
definitions will also serve as a touchstone against which
new ideas can be tested.

DEDICATION

This theses is dedicated to my parents, my wife, my
children for their support and patience and to the memory
of my late brother.

ACKNOWLEDGEMENTS

I would like to thank Professor Michael Anthony
Hennell for his guidance and supervision throughout my
student life at the University of Liverpool.

I am also thankful to the Yarmouk University, Irbid,
Jordan, for financing this research.

I would like also to thank the research group of
LDRA and the coworker of the S. C. M. department at
the University of Liverpool for giving their time to fill
in the circulation of the software quality attributes
relationship matrix.

I would like to express my gratitude to my parents
for their influence and support.

Finally, I would like to thank my wife San-a who
encouraged and gave moral support to me.

tHAPTER 1

1.1
1.2
1.3
1.4
1.5

,tHAPTER 2
2.1
2.1.1
2.1.1.1
2.1.1.2
2.1. 2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4
2.1.2.5
2.1. 3
2.1.3.1
2.1.3.2
2.1.3.3
2.1.3.4

t=HAPTER 3
3.1
3.2
3.2.1
3.2.2
3 . 3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.1.6
3.3.1.7
3.3.1.8
3.3.1.9
3.3.1.10
3.3.1.11
3.3.2
3.3.2.1
3.3.2.2
3 .3 •2 .3
3.3.2.4
3.3.2.5

CONTENTS

INTRODUCTION
INTRODUCTION AND PROBLEM DEFINITION
OBJECTIVES
SCOPE
LIMITATION
AUTHOR'S CONTRIBUTION

LITERATURE BACKGROUND
INTRODUCTION

Primitive Software Metrics .
Halstead's Metric
Function Points Metric .
Abstract Metrics
McCabe's Metric
Knot's Metric
Discriminant Cohesion Metric
Scope Metric
Oviedo's Metric
Structured Metrics . . .
Haney's Stability Metric
Myer's Metric
S. Henry And D. Kafura's Metrics ...
Yau And Colofello's Logical Stability Metrics

EVALUATION OF THE SOFTWARE METRICS
INTRODUCTION
CRITERIA OF GOODNESS . . .

General Criteria Of Goodness .
Specific Criteria Of Goodness ...

COMPARISON BETWEEN THE PRESENT METRICS .
Primitive Software Metrics .
Applicability
Validity
Sensitivity
Procedurising
Language Independency
Simplicity .
Positivity .
Modula rity . . .
Linearization
Unstructuredness .
Structuring Transformations
ABSTRACT METRICS
Applicability
Validity .
Sensitivity .
Procedurising
Language Independency

.
.

Page 2

· 1-1
1-12
1-13
1-13
1-14

2-1
2-1
2-1

· 2-6
2-12
2-12
2-17
2-23
2-30
2-34
2-39
2-39
2-43
2-50
2-53

· 3-1
· 3-8
· 3-8
3-12
3-13
3-14
3-14
3-16
3-17
3-18
3-19
3-20
3-21
3-21
3-22
3-24
3-27
3-27
3-28
3-29
3-30
3-34
3-34

Page 3

3.3.2.6 Simplicity ..
3.3.2.7 Positivity ..
3.3.2.8 Modularity ...
3.3.2.9 Linearization
3.3.2.10 Unstructuredness
3.3.2.11 Structuring Transformation.
3.3.3 STRUCTURED METRICS
3.3.3.1 Applicability
3.3.3.2 Validity .
3.3.3.3 Sensitivity .
3.3.3.4 Procedurising .
3.3.3.5 Language Independency
3.3.3.6 Simplicity .
3.3.3.7 Positivity .
3.3.3.8 Modularity .
3.3.3.9 Linearization
3.3.3.10 Unstructuredness
3.3.3.11 Structured Transformation ...
3.4 COMMENTS AND CONCLUSIONS ..

. . . .

3-34
3-36
3-36
3-38
3-38
3-40
3-42
3-43
3-45
3-45
3-46
3-47
3-47
3-48
3-49
3-49
3-50
3-50
3-50

i('HAPTER4 SOFTWARE QUALITY
4.1 INTRODUCTION . . . · · · · . . · · 4-1
4.1.1 Definitions And Criticism . 4-2
4.2 DESIRABLE APPROACH · · · · · 4-10
4.2.1 Definition Of The Used Terms · · · . . . 4-11
4.2.1.1 Software Quality · · · · · · . · · 4-12
4.2.1.2 Software Quality Characteristic 4-15
4.2.1.3 Software Quality property 4-16
4.2.1.4 Software Quality Attribute · · . 4-16
4.2.1.5 Software Qualities · · · · 4-17
4.2.1.6 Software Quality Factor · · · 4-18
4.2.1.7 Software Quality Criteria 4-18
4.2.1.8 Software Quality Metric 4-19
4.2.1.9 Software Quality plan · · · 4-21
4.3 IDENTIFICATION AND DEFINITION OF VARIOUS QUALITY

ATTRIBUTES. . · · · · · · · · · · · · · 4-21
4.4 INTERNAL VIEWS OF SOFTWARE QUALITY · · · 4-24
4.5 THE DETAILS OF THE SOFTWARE QUALITY PLAN: 4-26
4.5.1 Introduction: · · · · · · · · · · · · . 4-26
4.5.2 Purposes Of The Quality Plan: · · · · 4-28
4.5.3 The Clarification Of The Terms Used In The

Quality Plan · · · · · · 4-29
4.5.4 Tools And Support 4-30
4 .5.4 .1 The Defined Attributes · 4-30
4.5.4.2 Synonyms List · · · · · · · 4-31
4.5.4.3 Relationship Matrix · . . 4-32
4.5.4.4 Classification List Of The Quality Attributes 4-32
4.5.4.5 Further Classification Of The Quality

Attributes . · · · · · · · · . . . 4-39
4.5.5 The Life Cycle Of The Quality plan 4-43
4.5.5.1 1* Quality Requirements Phase: . . · . 4-44
4.5.5.2 2* Quality Factors Phase: . . . 4-47
4.5.5.3 3* Quality Model Phase: · · · 4-49
4.5.5.4 v* Verification And Validation Phase: 4-62
4.5.6 The Diagram Of The Quality Plan Life Cycle 4-66

Page 4

4.6 CONCLUSIONS:.................. 4-73

tHAPTER 5

5.1
5.2
5.3

tpPENDIX A

A.1
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9
A.10
A.11
A.12
A.13

fPPENDIX B

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28

SUMMARY AND CONCLUSION

INTRODUCTION
CONCLUSION
SUGGESTIONS AND FUTURE WORK

GLOSSARY OF DEFINITIONS OF USED TERMS

MANAGEMENT
SOFTWARE QUALITY ASSURANCE
SOFTWARE QUALITY ATTRIBUTE
SOFTWARE QUALITY CHARACTERISTIC ...
SOFTWARE QUALITY CRITERIA
SOFTWARE QUALITY FACTOR
SOFTWARE QUALITY METRIC
SOFTWARE QUALITY PLAN
SOFTWARE QUALITY PROPERTY
SOFTWARE QUALITIES
SOFTWARE QUALITY
SOFTWARE SYSTEM
USER

DEFINITIONS OF VARIOUS QUALITY ATTRIBUTES

ACCESSABILITY:
ACCURACY:
ADAPTABILITY:
AUDITABILITY:
AUGMENTABILITY:
COERCION: .
COHESION: .
COMMUNICATIVNESS:
COMPATIBILITY:
COMPLETENESS:
COMPLEXITY:
COMPREHENSIVENESS:
CONCISENESS:
CONFORMANCE: .
CONNECTIVITY:
CONS ISTENCY: ..
CORRETNESS:
COUPLING:
EFFECTIVENESS:
EFFICIENCY: .
ELASTICITY: .
ERROR-TOLERANCE: .
EXPANDABILITY:
FEASIBILITY: .
FLEXIBILITY:
GENERALITY:
INDEPENDENCE:
INTEGRITY: ..

. . .

.. 5-1
5-4

· 5-7

A-1
A-1
A-2

. A-2
A-2
A-2

• • • • . . A-2
· A-2

... A-2
· A-3

A-3
· A-3

A-3

B-1
B-1
B-2
B-2
B-2
B-2
B-2
B-3

· B-3
· B-4

B-4
B-4
B-4

· B-5
B-5
B-5

· B-5
B-5
B-5
B-6
B-6
B-6
B-6
B-7

· B-7
B-7

· B-7
· B-8

B.29
B.30
B.31
B.32
B.33
B.34
B.35
B.36
B.37
B.38
B.39
B.40
B.41
B.42
B.43
B.44
B.45
B.46
B.47
B.48
B.49
B.SO
B.S1
B.S2
B.S3
B.S4
B.S5
B.S6
B.S7
B.S8
B.S9
B.60

tPPENDIX D
:1

D.l

Of;

If\PPENDIX E
j~

~PPENDIX F

i;PPENDIX G
"

PPENDIX H

INTEROPERABILITY:
INTRAOPERABILITY:
LEGIBILITY:
MAINTAINABILITY: .
MEASURABLITY: ...
MODIFIABILITY: .
MODULARITY:
OPERABILITY: .
PORTABILITY: .
PREDICTABILITY:
READABILITY: .
REDUNDANCY: .
RELIABI LITY: . . .
RESILIENCY:
REUSABILITY: .
ROBUSTNESS:
SECURITY:
SELF-DESCRIPTIVE:
SENSITIVITY:
SIMPLICITY:
STABILITY:
STRUCTUREDNESS:
SURVIVABILITY:
TESTABILITY: . .
TRACEABILITY:
TRANSPORTABILITY:
TRUSTWORTHY: . . .
UNAMBIGUITY: . . .
UNDERSTANDABILITY:
UNIFORMITY:
USABILITY:
VERACITY:

TABLES

Page 5

B-8
. . B-8
. . B-8

B-8
B-9
B-9
B-9
B-9
B-9

B-10
B-10
B-10
B-10
B-11
B-11
B-11
B-12
B-12
B-12
B-12
B-13
B-13
B-13
B-14
B-14
B-14
B-14
B-15

. B-15
B-15
B-15
B-16

INTRODUCTION

THE SYNONYMS OF SOFTWARE QUALITY ATTRIBUTES

. . . D-1

RELATIONSHIP MATRIX

THE ATTRIBUTES OF THE ANALYSIS PHASE

THE LIFE CYCLE SUMMARY

SOFTWARE QUALITIES

t.PPENDIX I

Page 6

REFERENCES

•• APlPlI.
!•••

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION AND PROBLEM DEFINITION

The research in the area of software quality metrics
generally and software quality particularly is still in a
state of flux. This is because the area is in its
infancy. There is a great demand for ideal software
quality metrics and a real need for distinct and precise
definitions of software quality and related terms.
Software metrics can be considered as the means of
measuring software qualities. These measurements are
required for quantitative comparison, cost estimation and
quality evaluations. In practice, a software metric is
the representation of the level of confidence gained
through numerical control of software production. This
representation can show the extent to which a software
system possesses a specified attribute that affects the
quality. However, the term software quality, for which
various metrics have been developed and applied, is one
of those terms in Software Engineering which has not yet
been defined clearly, precisely and properly despite
numerous attempts. Moreover, other terms related to

page 1-2

software quality such as criterion, factor,
characteristic, attribute, etc., are also not defined
precisely and clearly by Software Engineers. These terms
are used by various authors with different meanings.
Authors also use different terms for the same thing and
the same term for different things. For example, Hocker
et al [PP.2, 90] use the terms attribute and criterion
for the same thing.

The term quality characteristic is used by McCall et
al [46] as a quality factor. Kitchenham et al [PP. 8,
84] use the terms quality factor, quality attribute and
quality characteristic with the same meanings. Further,
the term quality is used by Jones [27] to denote the
absence of defects from the software without defining the
term quality. Yourdan [7] has used the term quality
without having any definition. He considered a high
quality software system design, as one which consists of
modules having a high degree of functional cohesion.

The IEEE standard glossary [13] has defined the term
software quality. In their definitions, they have used
certain terms or words without giving any definition.
For example, the terms "characteristics" and "attributes"
have been used without giving a definition in the
glossary. This confuses the users, management and
developers.

Page 1-3

Boehm et al [29] have not given any specific
definition of terms software quality and software quality
characteristic when they were discussing and developing
their hierarchy of software quality characteristics.

A study similar to Boehm's approach was carried out
by McCall et al [46] to define software quality aspects.
They have defined quality as: "a general term applicable
to any trait or characteristic, whether individual or
generic; a distinguishing attribute which indicates a
degree of excellence or identifies the basic nature of
something". In the above definition, the authors have
not given any definition for the terms characteristic and
attribute which are used in their definition.

A recent study has been carried out by Bowen, Wigle,
and Tsai [79], to explain software quality. It is
observed that they have also not explicitly defined the
term software quality.

Garvin D.A.
distinct views of

[92] has
product

synthesised five various
quality. He derived these

views from philosophy, economics, marketing, and
operation management. These views are entirely general
and not related to any particular product. However, it
needs more care when applying them to a software product.

Kitchenham et al [PP. 394, 70] have discussed the
term quality in the light of the Garvin approach which is
of a general nature.

Page 1-4

Due to the discrepancies and ambiguities in the
definitions, it was felt to be unwise and difficult to
use them during this study. Therefore, efforts were made
to develop clear definitions of these terms to assess the
software quality(ies).

Later during the study of software metrics, it was
observed that, up to now, efforts in developing software
quality metrics have been concentrated on very few
quality attributes such as complexity, stability, etc ..
On the other hand, for certain important quality
attributes such as usability, readability, etc., real
metrics are still not available. Moreover, some desired
attributes of software quality can only be satisfied at
the expense of other attributes. For instance,
reliability may be influenced by cost, size complexity,
etc .. Further, the quality of a software system is
environment dependent, thus, it is inadequate to
establish a single figure for software quality. Instead,
meaningful attributes which contribute to software
quality must be identified.

The evaluation of the available software metrics is
mainly needed to select a suitable candidate metric (s)
which can be used as a measurement, estimation and
forecast of the quality of a software system. To
evaluate the available software metrics, a set of
criteria of goodness is essential. A perfect set of
criteria of goodness which can be applied to all
categories of software metrics is still not available.

Page 1-5

Moreover, the pressing
metrics may cause a
implement these metrics

demands for immediatly usable
quick decision to accept and
without detailed examination.

Such a quick acceptance may lead to a danger in the area
of software engineering, through the selection of invalid
metrics. Therefore, the people concerned should realise
the potential benefits of having a set of criteria of
goodness which a metric has to satisfy and clear
definitions of software qualities.

Researchers have made considerable efforts to
establish useful metrics. Halstead [2] has developed
software metrics which have received much attention in
literature of software science. These metrics are based
on counting the lexical tokens in the program.

Many attempts have been made to create quantifiable
control flow complexity metrics such as McCabe [5] ,
woodward [8] etc .. These metrics are based on graph
theory. Further many other researchers such as Henry et
al [6], Haney [47] etc., have developed a number of
software stuctured metrics. These metrics are based on
system component connections. There are a large number
of software metrics available, but the difficult problem
is, how to evaluate and select a suitable and reliable
one.

It is difficult for the user, management and
developer to decide which metric(s) should be selected to
evaluate software quality. The reasons for this are:

Page 1-6

i. most of the available software metrics were developed
to measure the in-hand code,

ii. these metrics concentrate on very few software
quality attributes such as complexity, stability,
etc. ,

iii. metricians never show the shortcomings of their
metrics,

iv. most of these metrics were validated on
programs,

small

To compare and evaluate these metrics, their validity,
applicability, etc., is a tedious job. The following are
some possible approaches for helping to solve this
problem. Some of these approaches were applied
previously; some of these approaches are not possible to
apply; some of them are applied in this study.

1. Describe each metric and record general information
about each one, such as their use, objectivity,
validity and economy in using them, etc ..

2. Compare a group of different metrics by showing their
purpose, advantages and disadvantages and show their
ability to evaluate certain aspects of software
quality.

3. Compare each metric against an ideal one. A metric
which is commonly used and applicable at different
phases of the software system life cycle.

page 1-7

4. Select a set of metrics of similar behaviour and
evaluate against
suitable one(s) to
quality.

certain properties, then apply the
certain attributes of software

5. Classify software metrics into different categories
according to their purpose, behaviour, etc., and
select suitable metric(s) to create a tool to measure
the software quality.

6. Define software quality and its related terms and
identify more attributes which may have impact over
the software quality. Apply the suitable metric(s)
to measure the possible quantifiable quality
attributes.

7. This approach is derived after modification of
approaches five and six. It is as follows:
a. classify software metrics into different categories
according to their purpose, behaviour, etc., and select
the popular metrics from each category as a sample study
and evaluate them against a set of criteria of goodness,
b. define software quality and its related terms and
identify more attributes which may have impact on
software quality. Apply the metric(s) which are selected
according to the approach given in section a) of this
approach to measure the possible quantifiable quality
attributes.
c. define software quality and its related terms from an
internal viewpoint. The internal view relates to the

Page 1-8

structure or construction of the software.

The first approach in this list was adopted
partially by Hocker et al [90] in which they describe 50

software metrics. However, their study was too abstract
to be considered for metrics evaluation and selection.
Moreover, it was not possible to describe all the
available software metrics due to their number. Curtis [
PP. 2, 1] stated that " There are more complexity
metrics than practicing computer scientists".

The second approach was adopted partially by Baker
et al [23]. They have studied and described three
software metrics. The purpuse of their study was to
select a suitable metric(s) to assess software
complexity. The shortcoming of their approach is the
lack of cover for so many necessary aspects of these
metrics such as applicabilty, validity, sensitivity,
etc ..

The second approach also was adopted by Kitchenham
[87] on a limited basis. She described and discussed
Halstead's and McCabe's metrics for the purpose of
assessing the ability of these metrics to provide an
objective indicator to selected subsystems of the rCL
operating system VME/B. This approach was restricted to
a specific aspect of software quality and therefore
cannot assess all aspects of software quality.

Page 1-9

The third approach is infeasible because at present
there is no ideal metric which is accepted univesally and
applicable to all different phases of the software system
life cycle.

The fourth approach was adopted by Sinha et al [38].
Their study was restricted to a certain number of metrics
as samples from a single specific category. That
category
approach.

was the one which is based on a graph theory
There may be a need to develop new criteria of

goodness for each individual category.

The fifth approach was adopted by Ince et al [16].
They have studied, classified and described different
software metrics for the purpose of evaluating and
selecting suitable metric(s) to be used in a tool to
select an optimally designed quality. Their study was
restricted to a certain number of metrics. They did not
show any detail of the studied metrics. This approach
depends on the way the studied metrics are selected.

The sixth approach was adopted partially by Boehm et
al [29] McCall et al [46], Bowen et al [79], and
Kitchenham et al [84]. The shortcoming of these
approaches is that, the terms quality, quality
characteristic, quality attribute, quality criterion,
etc., have not been defined clearly and precisely.
Moreover, there are no sound metrics available to measure
the software quality.

Page 1-10

The seventh approach is a modification of the fifth
and sixth ones, and it is the one which is adopted in
this study. In chapter 2 of this study, software metrics
are classified into three categories so that an
analytical comparative evaluation of the available
metrics can be carried out easily. These categories are:

1. Primitive software science metrics which are based on
counting lexical tokens of a program.

2. Abstract software metrics which are based on graph
theory.

3. Structured software metrics which are based on
software system component connections.

In chapter 2, a sample of metrics from each category
is described in detail. An example is given for most of
those described metrics so that the metrics can be easily
understood. Further, a counter example is also given for
most of the metrics described so that the user/management
may be made aware of some of their limitations. To
facilitate the selection of a suitable metric, a set of
criteria of goodness is developed in chapter 3 against
which software metrics can be judged and evaluated.
a set of criteria of goodness is generated

Such
after

performing a comprehensive study of the popular metrics
which are discussed in the software literatue such as [2,
3, 4, 5, 6, 7, 8, 12, 21, 37, 39, 40, 41, 42, 43, 45, 47,
63, 73, 74, 87, 102, etc., J. Such a set of criteria of

Page 1-11

goodness is needed. This is because gathering empirical
evidence about the usefulness of a quality metric is
hardly worthwile if it fails to satisfy even intuitive
criteria of goodness. Also comments and conclusions are
developed in chapter 3 to show the advantages and the
disadvantages of each of the above mentioned categories
and the metrics which are taken as samples in the
comparison study. This may help the management, user,
developer, etc., to choose a suitable metric(s).
Moreover, all the above mentioned problems concerning
software quality and its related terms are considered in
chapter 4 which consists of the following:

i. the development of clear definitions for the terms
software quality, quality characteristic, software
quality property, software quality attribute,
software quality factor, software quality criteria,
software quality metric and software quality plan.

ii. identification and definition of various quality
attributes,

iii. identification of the internal views of software
quality,

iv. development of a software quality plan.

This approach will enable the developers to understand
the concepts of software quality and help them to apply
and control it according to the expectations of users,
management, customers etc.. The clear definition of

Page 1-12

these terms may help to prevent misinterpretation. These
definitions will also serve as a touchstone against which
new ideas can be tested.

The final chapter contains the conclusions and
suggested future work.

1.2 OBJECTIVES

This study is designed to achieve the following
objectives:

i. to perform an analytical comparative study of the
metrics selected.

ii. to determine, which software qualities, the metric(s)
can measure.

iii. to develop a description scheme for the selected
metrics.

iv. to establish clear definitions of software quality
and related terms.

v. to identify and define various quality attributes
which may have impact over the software system life
cycle.

vi. to establish internal views of software quality.

vii. to develop a detailed software quality plan.

Page 1-13

1.3 SCOPE

The following define the scope of this study:

1. evaluate in an analytically comparative manner the
metric(s) which are commonly used in Software
Engineering literature.

2. study and examine the selected metrics in each
category on the basis of their available referenced
material, published literature and direct discussion
with some of the authors.

3. attempt to develop uniform, consistent, unambiguous
and comprehensive terminologies and their definitions
for possible future use.

4. recommend feasible approach which can be adopted in
future to improve the quality of the software system.

1.4 LIMITATION

It was not possible or prudent
compare all the available software
following reasons:

to describe
metrics for

and
the

1. most of the metrics which are from the same category
have similar behaviour and properties. For instance,
McCabe's metric [5] and Myer's interval metric [44].
Further, Van Verth [101] uses extentions of Oviedo's
metric [56] together with certain modularity metric
to measure student programs.

Page 1-14

2. to consider a large number of metrics would make the
study difficult to handle and non-transparent.

3. attention should only be given to those metrics which
are sufficiently described in the literarture.

It was not possible to relate the internal views of
software quality with the external views due to
restricted time and finance.

1.5 AUTHOR'S CONTRIBUTION

In this thesis the author attempts to identify the
problems which the software users, developers,
management, engineers are facing when using existing
software metrics to evaluate software quality. For this
purpose, a set of criteria of goodness is developed in
chapter 3 against which the available software metrics
can be judged. Further, clear and distinct definitions
of software quality and its related terms are developed
in this study. Seven different internal software quality
viewpoints are also identified and defined. The number
of quality attributes is extended to 60. This is
achieved by identifying and defining these software
quality attributes. The definitions of the above
mentionened 60 attributes are given in appendix [B].
Attempts are made to include all the attributes which
describe improvement to or achievement of the quality of
a software system to any extent and at any phase of the
system development life cycle. It was observed that out

Page 1-15

of these 60 attributes some of them are synonyms. A list
of these synonyms is generated in this study. These
synonyms are expressed in terms of their general meanings
as defined in [82J. The list of synonyms is given in
appendix [DJ. In addittion to providing definitions of
the quality attributes and list of synonyms, it was also
decided to investigate the extent to which experienced
software engineers were familiar with, and consistent in
their use of, software quality attributes. This was done
by asking coworkers in Liverpool University and LDRA to
indicate what they understand to be the nature of the
relationship between each of the different software
quality attributes. The coworkers who took part in the
experiment were each given a relationship matrix, and
asked to identify the nature of the relationships among
the software quality attributes as shown in appendix [EJ.

A composite response was constructed from each
individual response by including all the relationships
which were agreed unanimousely. The composite response
is shown in appendix [EJ.

A detailed quality plan which provides a clear
strategy for selecting the desired quality attributes and
which provides a frame work to examine the possible
effects or behaviour of a certain quality attribute is
also developed. Further, new ideas and suggestion for
future work are given.

...........

CHAPTER 2
LITERATURE BACKGROUND

2.1 INTRODUCTION

Metrics for software products can be classified into
the following categories:

2.1.1 Primitive Software Metrics

The primitive metrics are based on counts of lexical
tokens in a program or program interface features. This
type of metric can be applied during the implementation
phase of the software development life cycle. Halstead's
metric and Albrecht's function points metric are two
examples in this category and are discussed in the
following sections.

2.1.1.1 Halstead's Metric -

Halstead [2] is the first who presented lexical
analysis in his theory of software science. He argued
that algorithms have measurable characteristics analogous
to the physical laws. In a given program he counted the
number of unique or distinct operators(=n1), unique or

Page 2-2

distinct operands(=n2), total usage of all of
operators(=Nl), and total usage of all of operands(=N2).
Halstead divided the operators into three groups:

1. fundamental operators such as; =, +, *, I, and, .NE.,
etc. ,

2. keyword operators such as; IF () THEN, DO, GOTO, END
OF STATEMENT, which is abbreviated by EOS, etc.,

3. specific operators such as; names of functions,
subroutines and entry points.

The operands consist of the all variable names and
constants.

Halstead's metrics are developed from the above
quantities and are;
a. Vocabulary size: n = nl+n2,
b. Observed program length: N= Nl+N2,
c. Calculated program length:

N' = n1*I01(n1) + n2*I0g2 (n2),
d. Program volume: V = N*IOg2(nl+n2),
e. Program mental effort: EVIL, (see below for L),
f. Program time equation: T = EIS where,

S = 18 (Stroud number),

Further, Halstead [2] assumed that the potential
volume V' is the most compact representation of the
algorithm. Since the most compact representation is
considered to be the one corresponds to a single
procedure call, Halstead calculated V' as:

Page 2-3

V' = (N1'+N2 ')*log (n1'+n2 ') where;
n1' is the number of unique operators for a procedure call,
n2' is the number of unique operands for a procedure call,
N1' is the total number of operators for a procedure call,
N2' is the total number of operands for a procedure call,
and program level: L = V'/V.

Since V' is not always easy to determine. Halstead [2]
developed a formula which he argued gives an estimate L'

for the program level which is calculated as:
L' = (2*n2)/(n1*N2) and
program intelligence content:
I = L'*V.
The example shown in figure 2.1 and table 2.1 make
Halstead's metric more clear.

figure 2.1

ISUM = 0
I = 0

10 ISUM = ISUM + I
I = I + 1
IF (I.LT.I0) GO TO 10
PRINT* , ISUM

Halstead's metrics for this sample program are
calculated from table 2.1

Table 2.1

I i [ope r a t o r l f Lv i Ii loperandslf2,i I

1 IEOS 16 11 IISUM 14
2 1= 14 12 II 15

I 3 IIF 11 13 110 13
I 4 IPRINT 11 14 11 11
I 5 1+ 12 15 10 12
I 6 1* 11

7 I(11
8 I) 11
9 I, 11
10 I.LT. 11
11 IGO TO 11

--
In1=11 IN1=20In2=SI IN2=lSI

n n1 + n2 = 16.
N = N1 + N2 20 + 15 = 35.
N' n 1 * 10g2 (n 1) + n2*10g (n2)

2.
11*10g (11) + 5*10g (5)

2 2
49.83

V N* 10g
2

(n1 + n2)
= 35*10g (16) = 140.48

2
etc ..

Page 2-4

Page 2-5

The scope of Halstead's metric can be extendeded to
other phases of the system development life cycle. For
instance, they can be applied on the design phase
provided that the design phase notations are represented
as tokens. Using these tokens, metrics can be derived
similar to Halstead's metrics. To the author's knowledge
Halstead's metrics have not yet been applied to any other
phase, except the implementation phase, of the software
system development life cycle.

However, it is not difficult to produce examples
where Halstead's metrics fail to be good indicators about
coding. For instance, in ALGOL-58 it is difficult to
differentiate between operands and operators. Figure 2.2
illustrates this dificullty.

Figure 2.2
procedure sub = (ref real z,real x,y) void:

z := x + Yi

sub(c,a,b);
(The two ALGOL-58 statements are equivalent to
the FORTRAN assignment statement c = a + b).

According to Hammer et al (22) the empirical results of
Halstead's metrics are inaccurate. Typical research
based on the software science metrics is described in [2,
3, 4, 53, 54, 55, 58, etc,). More comments on
Halstead's metrics are presented in chapter 3.

Page 2-6

2.1.1.2 Function Points Metric -

Albrecht A.J. [76] has developed a metric called
the function points metric. His metric is in the same
class as Halstead's metric [2], but instead of counting
operands and operators as in the Halstead case, Albrecht
counts the number of external functions in the program.
Albrecht's function points metric is developed to
estimate the complexity of a function which a program
performs in terms of input and output data. The general
approach is to list, and count the number of external
user inputs, inquiries, outputs, master files, and
interfaces to be delivered by the development project.
Albrecht A.J [76] has pointed out that" these factors
are the outward manifestations of any application. They
cover all the functions in an application". These counts
are weighted by numbers so as to reflect the function
value to user/customer. The weights used were determined
by Albrecht through debate and trial. The following
weights are recommended:

a. number of inputs * 4,

b. number of outputs * 5,

c. number of inquiries * 4 ,

d. number of master files * 10,

e. number of interfaces * 7 •

The weighted sum of the inputs, outputs, inquiries,
master files and interfaces is called the function points
count. This weighted sum is adjusted for other factors.
It can be adjusted within a range of -/+ 25 percent,

Page 2-7

depending up on the assessment of a person who is
assessing the complexity of the project. The weight
given to project influence factors which are given in
table 2.2 were recommended by Albrecht et al [75]:

Table 2.2
...
IWeights given to project influence factors Iweight I

not present, or no influence if present 0
insignificant influence 1
moderate influence 2
average influence 3
significant influence 4
strong influence 5

The project influencing factors are to be considered when
the complexity of any system has to be evaluated or
assessed. The function points metric is computed as:

FP = FC * W * PIF where,
W is a weighting factor,
PIF is the project influencing factors,
FC is the function points count,

The example which is shown in figure 2.3 may help in the
understanding of Albrecht's function points metric. In
this example, assume that there is a project to develop a
payroll system. This system may have the following
external functions:

a. 6 external inputs of moderate complexity level,
b. 6 external outputs of complex level,
c. 2 master files of average complexity level,
d. 3 inquiries of simple level,
e. 2 system interfaces of highly complex level.

Assume that the project influencing factors which are

Page 2-8

given in table 2.3 are to be considered in developing the
above system:

Table 2.3

1 PROJECT INFLUENCING FACTORS IWEIGHT

1-----------------------------1-----------1
1 communication facilities 1 0 1

on-line processing 3
complex processing logic 5
conversation difficulty 2
system flexibility 4

------------------------------1-----------1
1 TOTAL 14 I

The above weighting numbers are taken from table
2.2. To simplify the example, all the function providing
elements of a specific form are assigned the same level
of complexity, e.g. each input, is considered to be of
moderate complexity.

Page 2-9

Figure 2.4

I COMPLEXITY WEIGHT SCALE/LEVELS I
I • • . . . • . • • • •.•.•... I
I FUNCTION ISIMPLEIMODERATEI AVERAGEICOMPLEXIHIGH I
I ELEMENT I , , , ICOMPLEX'

input 12 3 4 5 6
output 13 4 5 6 7
master Ifile 15 7 10 13 15
inquiry 12 3 4 5 6
interface 14 5 7 9 10

I COUNTS I FUNCTION , WEIGHT , FUNCTION I
I I I I POINT ,---

6 external inputs(, I
moderate complexity)' * 3 - 18 I

6 external outputs (, I
complex) I * 6 - 36 ,
master file (averagel I

2 complexity) , * 10 - 20 I
3 inquiry(simple) , * 2 - 6 ,

system interface(, ,
2 highly complex) , * 10 - 20 I--

I Total unadjusted function points count - 100 ,1--
Metric computation from figure 2.4 is given below:

FP = FC * W * PIF where,
W is a weighting factor,
PIF is the project influencing factors - 14,
FC is the function points count,
W - .01 + constant,
FP = 100 * [.8 + (14 * .01)] - 94,

(the constants .8 and .01 are developed according
to the trial and debate).

Page 2-10

Some of the objectives of Albrecht's function points
metric are the following:

1. to define a productivity measure for applications
development and maintenance functions that avoids the
problems inherent in productivity measures based on
lines of code [72J,

2. to help the management to focus their attention on
different levels of applications development
productivity being achieved within a data processing
facility.

The scope of Albrecht's function points metric is as
follows:

i . it can be applied during the early
software system development life
because the function points counts

phases
cycle.

can be

of the
This is

obtained
relatively easily in earlier stages of the system
development through the discussion with the
user/customer. It can be applied also after the
implementation phase either to help in evaluating the
cost of maintenance or to give an indication to the
user/management about the complexity of the software
system.

ii. to help the managers to analyse applications
development and maintenance work,

Page 2-11

iii. to highlight productivity improvement opportunities,

iv. to measure the equivalent functions of end user
applications regardless of language, technology,
technique or development environment.

The following are some important properties of
Albrecht's function points metrics:

1. it is technology independent. The metric gives the
same value for equivalent application functions which
are based on external design documents regardless of
programming languages or methodologies,

2. it is not affected by the programming style,

3. it is user oriented,

4. it is easy to implement.

However, Albrecht's function points metric needs
more research to be performed, in order to improve it
against the following:

i. the wastage of time and work due to indecisive
user/management,

ii. effect of inexperienced programmer, analysts, etc.,
there should be some adjustment factor to normalise
such effects,

Page 2-12

iii. there should be some sound criteria for assessing the
weights of the function points metric counts instead
of depending on the individual assessment and trial
and debate strategy.

2.1.2 Abstract Metrics

The abstract metrics are based on graph theory. In
this category for example the researchers measure the
properties of a program control flow diagram. The
researchers have developed metrics which are derived from
a flow graph representation of a program and use these to
show the difficulty of carrying out tasks such as coding,
debugging, testing and modifying software. This type of
metric can be applied to the implementation phase and to
the design phase of the software development life cycle.
The following are some of the important metrics taken as
a sample from this category:

2.1.2.1 McCabe's Metric -

Thomas McCabe [5] has developed a complexity metric
which is based on the control flow graph representation
of a program. The control flow graph is defined as a
directed graph in which each basic block of the program
is represented by a node, and the possible flow of
control between these blocks is represented by an edge.
McCabe's metric is denoted by V(G), and is computed as:

V(G) = E-V+2P where;

Page 2-13

E is the number of edges in the flow graph
representation of the program,

V is the number of nodes in the flow graph
representation of the program,

P is the number of connected components in the
flow graph.

McCabe has recommended that: the upper bound of
complexity, V(G) in any particular module should have a
maximum value of "10". Programmers should consider the
upper limit of complexity while developing software
modules. If the complexity of a module is greater than
"10", then the module should be decomposed or recoded.
This enables a software engineer to control the size of a
program by setting an upper limit to the measure instead
of using just physical size. If a program is decomposed
into m connected components, then the value of McCabe's
metric for that program will be the sum of the cyclomatic
complexities of the components calculated as:

V(G)
m

L V(Gi) where,
i=l

V(Gi) is the complexity of the individual
modules

McCabe showed that the cyclomatic complexity of any
structured program is equal to the number of predicates
in the program plus one. Further, McCabe represented the
control flow graph of a program as a directed graph.
This directed graph can be reduced by interactively
replacing each subgraph corresponding to a structured

Page 2-14

program feature with a single entry/exit node until no
further replacement is possible. Applying McCabe's
metric to the reduced graph G' gives a measure which is
termed the essential cyclomatic complexity. McCabe's
essential cyclomatic complexity number, EV(G')-l for a
structured program. The examples shown in figures 2.5
and 2.6 make McCabe's metric more clear.

Figure 2.5

READ X
IF (X.LT.10) GO TO 10
Y - F(X)

GO TO 20
10 PRINT* X ,Y
20 STOP

page 2-15

The flow graph representation of this code is given in

figure 2.6.

Figure 2.6

10 PRINT* X,Y

READ X

IF(X.LT.10) GOTO 10

Y =F(X)

STOP

V(G) = e-n+2p
= 5-5+2
=2.

Page 2-16

However, McCabe's metric will always give a certain value
for any type of flow graph, i.e. planar (a graph is
planar if it can be drawn in a plane such that no two
edges intersect except at vertices.), non-planar (a graph
is non-planar if it cannot be thus drawn in a plane.),
connected (a graph is connected if there is at least one
path between every pair of vertices.), non-connected (a
graph is non-connected if no path exists between some
pair of its nodes.), etc .. This value can not reflect
the "context" of the nodes in a certain flow graph, and
hence, misleading results may be obtained. For example,
a program can become more structured when its statements
are rearranged in a certain way and hence both it and its
flow graph become less complex. This problem can be
overcome by applying other metrics to the flowgraph. The
knot metric K is a candidate in such situations. Figure
2.7 (a) and (b) illustrates this.

Page 2-17

Figure 2.7 (a) 2.7 (b)

V(G) = 3

K = 4
V(G)

K

3

1

More comments about McCabe's metric are presented in
chapter 3.

2.1.2.2 Knot's Metric -

The Knot's metric is a measure
which has been proposed by Hedley
Knots's metric is based on control flow
the actual sequential source program.

of structuredness
et al [8]. Their
edges drawn on

The Knots measure
is denoted by K and it is calculated as the number of
unavoidable crossing points of the control flow edges.
This is defined mathematically by Woodward et al [8] as:
if a jump from
ordered pairs of

line A to line B is represented by the
integers (A,B) then the jump (X,Y)

causes a Knot to occur, if any of the following two
conditions is satisfied:

Page 2-18

1. MIN{A,S} < MIN{X,Y}, < MAX{A,S}
AND MAX{X,Y} > MAX{A,S}

OR

2. MIN{A,S} < MAX{X,Y}, < MAX{A,S},
AND MIN{X,Y} < MIN{A,S}.

Woodward et al [8] used the idea of control graph
reduction to define what they called the "essential
knots" of a program. A control flow graph as defined
earlier is a directed graph, G, in which the nodes
represent the basic blocks and the edges represent
control flow between the blocks. A control flow graph of
a computer program can be represented as a directed
graph. Such a directed graph can be reduced by replacing
the subgraphs corresponding to admitted primitives of
structured programming by a single node. This technique
can be used to discover the lack of structure in a
program by continuing graph reduction until no further
reduction is possible, and then applying the knot metric
to the resulting graph G' to give a measure of program
unstructuredness. Woodward et al [8] stated that " a
structured program will be reducible to a single node
with zero knots. This leads to a definition of the
remaining knots as the essential knots of the program".
However, this approach is analogous to McCabe's essential
cyclomatic complexity number, EV(G')=l for a structured
program. A program given in figure 2.8 is an easy
example of a FORTRAN program which makes the knot metric
more clear. This program contains two Knots, which is

page 2-19

which is the measure of complexity of the whole program.

Figure 2.8

10 M=N

20 KK=NN

[
25

130

IF (KK-M) 30,40,50
IL(M)=I
IC(N)=I

GO TO 10
o WRITE* ,KK

STOP

If a program has m modules, then the complexity can
be computed as the sum of the Knot counts of the modules
calculated individually.

There are some possible situations where the Knot's
metric fails to distinguish between certain code
constructs. For example, the Knot metric gives the same
values for the FORTRAN inclusive IF ... ELSE constructs and
iteration constructs. Such a situation is shown in
figure 2.9 (a) and (b). The value of the Knot's metric
is the same for the two given programs.

Page 2-20

F i gu re 2.9 (a) (b)

y=O
I=O
WHILE(I.LT.10) DO

NO WHILE
PRINT* Y

Note that the number of Knots
two programs.

one for the above given

Further, the purpose of the CASE STATEMENT in
programming languages is to simplify the control flow in
situations that require more than 2-way selection.
Therefore, using an n-way CASE STATEMENT should not be
penalised in the same way as using the equivalent nested

IF ...THEN ...ELSE structures. The value of the Knot's
metric will increase, in most situations, for the CASE
construct. For example, the code in figure 2.10 (a) will
generate 10 Knots. The equivalent nested IF ..THEN ..ELSE
code will generate 6 Knots which is shown in figure 2.10
(b). Thus, Knot's metric has distinguished between the
two constructs but penalised the wrong one i.e CASE
STATEMENT.

Page 2-21

Fi gu r e 2. 10 (a)

10, 20, 30, 40, 50

GO TO 60
STATEMENT

STATEr1ENT
GOTO 60
STATEMENT
GOTO 60
STATEr'lENT
STATEMENT

The value of the Knot's metric K 10

Page 2-22

Figure 2.10 (b)

IF

FI

The value of the Knot's metric K = 6.

The Knot's metric is language dependent in detail. This

is because the structure of some languages is similar to

a tree structure where no intersections are involved such

as LISP. It can be concluded that the Knot's metric is
also language independent in principle. This is because,

it is based on control flow edges drawn on the actual

sequential source program.

page 2-23

2.1.2.3 Discriminant Cohesion Metric -

Emerson [21] has developed a metric to measure
module cohesion which works at the level of statements in
a program. It is based on the graph theory approach
which is used to quantify the closeness of interactions
between control flow paths and reference variables. He
considered those variables which represent a value that
can change overall in time, i.e., he excluded literal and
symbolic constants. Essentially what is done is to
construct a flow graph for any given module m in two
stages:

1. draw a directed graph G
graph. Each node in
statement in module m and

which is a standard flow
G represents one executable

the edges represent the
execution order of a program statements,

2. add a terminal node to the graph and make it
accessible by an edge from every node in the graph
which corresponds to a STOP or RETURN statement,

3. draw a reduced flow graph F by deleting from the
first one any node corresponding to an executable
statement of the module m which does not contain a
reference to a variable. The incoming edge of a
deleted node in the reduced flow graph F will
terminate at the successor of that node.

The Emerson's metric is defined as an average cohesion of
the reference sets of that module, and it is computed as:

Page 2-24

1 n IRil dim Ri.
K(F) = - [~ --------------] whereas;

n i=1 IVF-{T}I dim F
K(F) denotes the cohesion metric,
n the number of the variables in the module,
F ,. the flow graph of the given module,
R~ ... is the reference set for variable i in a

flow graph F, i.e., Rt is the set of nodes
of F corresponding to executable statement,
which refer to the ith variable,

T ""
the total number of nodes of the flow graph F,
is an added terminal node of the flow graph F,

VF ..

dim F is the maximum number of independent paths
through F that cover all vertices in F,

dim R~ is the maximum number of independent paths
through F that cover all vertices in RL.

Emerson's metric may become more clear by an example
which is shown in figure 2.11 (a), (b) and (c).

Page 2-25

Fi gu r e 2. 11 (a)

DIMENSION STR(26)

INDEX=l
10 IF(STR(INDEX).EQ.EOF) GO TO 20

INDEX=INDEX +1

IF(STR(INDEX).NE.C) GO TO 10

GO TO 30

20 INDEX=O

30 WRITE(5,50) C

50 FORMAT(9X,A)

STOP

The standard flow graph of the above program is

given in figure 2.11 (b) and the reduced flow graph is

given in figure 2.11 (c).

page 2-26

Figure 2.11 (b)

INDEX=O

INDEX=1

IF(STR, INDEX)

INDEX=INDEX+1

IF(STR,INDEX,C)

WRITE*,C

Figure 2.11(b) is a standard flow graph of the code

given in figure 2.11 (a) where the variables are

displayed opposite to the nodes of the flow graph.

Figure 2.11 (b)

INDEX=1

IF(STR,INDEX)

INDEX=INDEX+1

WRITE*,C

In the given reduced flow graph in figure 2.11

(c),(the nodes in which the variables were not referenced

are discarded) the referenced variables are displayed

opposite to the nodes of the flow graph. The reference

page 2-27

sets will be constructed as following:
R, contains the variable INDEX which appears in

nodes 1, 2,3 ,4 , and 5.
RZ contains the variable STR which appears in nodes

2 and 5.
R3 contains the variable C which appears in nodes

5 and 6.
According to Emerson the cohesion of the above sample
program will be calculated as:

3

K(M) l/n(L(IR~ldim R l)/ (1 VF- {T} 1 dim F) .
i;.1where n=3 in the given example, i = 1 , n,

IR,I =5,
1Rz.1 =2,

IRJI =2,
dim R·I.=3,
dim F =3,
IVF-{T} 1=6,

K(M) = 1/3[(5*3/6*3) + (2*3/6*3) + (2*3/6*3)],
.5.

Emerson [21] in his discriminant metric classified
the module cohesion levels into three sets comprising the
module cohesion levels which are given by Yourdon [7].
These module cohesion levels are of a subjective nature
which are difficult to determine. Therefore, his metric
fails to give a consistent indication about certain
software philosophy. For example, the program which is
shown in figure 2.12 is considered to be a purely
functional module. The value of Emerson discriminant's

Page 2-28

metric will be 0.5 whereas according to his metric, this
value must be nearly 1.

figure 2.12

READ N
IF (N.LE.O) GO TO 10
IFACT-1
DO 20 I-l,N

IFACT-IFACT*l
20 CONTINUE

PRINT* ,IFACT
10 PRINT* "IFACT-I"

STOP
END

Further, Emerson's discriminant metric can yield a
value of one for an infeasible code. For example, the
code in figure 2.13 has a value of one which is not
sensible for such infeasible code.

page 2-29

figure 2.13

READ X
IF (X.LT. 4) GO TO 10

PRINT* "X>=4";X
IF (X.LT.2) GO TO 20

PRINT* "x>=2";X

10 PRINT* "X<4"iX

20 PRINT* "X<2"iX

figure 2.14

PRINT X<4

X

IF(X)

(X)

PRINT X<2

Page 2-30

The path corresponding to the false branch in the
first IF statement of the code given in figure 2.13, and
the true branch in the second IF statement is infeasible.
This is because it would be followed if X>=4 and X<2,

which is contradictory. All the modules which were
examined by Emerson were small and were functional
modules. Therefore his metric was not validated on a
large scale problem or on modules with different types of
cohesion.

2.1.2.4 Scope Metric -

Harrison W. et al [39] have developed a metric that
they call the scope metric. This metric is based on the
control flow graph representation of a program.
constructed as follows:

It is

1. construct a flow graph F of a certain program, with a
single entry node and a single exit node,

2. the exit or terminal node in the flow graph is given
a weight of complexity equals to zero,

3. each non-selection node is given a
complexity equals one,

weight of

4 . for each selection node in F
constructed consisting of all

a subgraph F 'is
the nodes in the

different paths which can be taken at the decision
node and which pass through a node x, x is =

selection node, (including a selection node itself,

page 2-31

in a self loop). Subject to the restriction F'

should be the smallest such subgraph. The adjusted
complexity of that selection node is calculated to
be: the number of nodes in subgraph F' plus one
(excluding the selection node itself and x). The
overall complexity of the flowgraph F is the sum of
the complexities of both the selection and
non-selection nodes. The Scope metric is calculated
as:

(n-l)
r = 1 - where;

w

n is the total number of nodes in the flow graph
w is the complexity of the flow graph.

The scope metric will become clearer by studying the
example shown in figure 2.15 , table 2.4 and table 2.5

page 2-32

figure 2.15

Page 2-33

Table 2.4

Idecision nodes 11 1---------------1
1 l a [b I c I1---------------------------------1
I subgraph Ib, c Ib, die, fl
I Ie, f, I Ig I
I Ig, d I I I1-----------------1---------------1
I complexi ty 16 12 13 I

I nodes included
I in complexity
I
1

I I
Ib, c Ib
le, f, I
Ig I

I Ile, f I
I I
I I

Table 2.S

I node 1 complexity I

a 16
b 12
c 13
d 11
elI
f 11
g 11
h 10

ITOTAL 115

The scope metric is computed from this example as:
r = 1 - 7/15 - .53.

However, the scope metric is not always acceptable.
For example, it is not reliable in some cases where the
programs can be rearranged to give flow graphs with
different values of the scope metric. This is shown in
f i gu re 2.16 (a), (b).

Page 2-34

f i gu re 2.16 (a) (b)

r .5

r = .33

In figure 2.16 two flow graphs are given with one
decision node. Although both graphs depict one decision,
the number of nodes involved, and hence the scope metric
is not the same for each of them. Further more, if the
flow graph has a number of disconnected components, it is
not given how the scope metric can be calculated.

2.1.2.5 Oviedo's Metric -

Oviedo [56] has developed a software metric based on
control flow and data flow complexity. He computed the
total program complexity as:

C = aCF + bOF where;
CF is a control flow complexity of the

flow graph of a given program,
is a data flow complexity of a givenOF
program,

a and b are appropriate weighting factors.
The control flow complexity CF of a flow graph of a
program is computed as
connecting program blocks.

the total number of branches
That is, simply the number of

Page 2-35

edges in the flow graph.
complexity of a certain
definitions are required:

To compute the data flow
program, the following

1. a variable definition occurs when a variable is
assigned a value either through an assignment
statement, input statement, or subroutine call, e.g.
x = 1, read y, etc ..

2. a variable is referenced when the value of a variable
is used, either in assignment statement, e.g.
x = y + b,
or in an output statement, e.g. write x, etc ..

3. a computer program block is defined by [56] as:
a. a program statement, or
b. an end statement, or
c. a boolean expression with its associated keywords

that is IF Bl, WHILE B1 DO, UNTIL B1, or
d. a group of sequentially executed statements.

4. a variable is locally available for a block if that
variable is defined within the block.

5. a variable is locally exposed if it is referenced in
a block and not defined in that block.

6. a variable defined in a block n can reach a block n
if there is a path from n to n such that the variable
is not locally available in any block on the path.

The data flow complexity of node n , denoted by df is

Page 2-36

the number of prior definitions of a locally exposed
variable in n that can reach n . Data flow complexity
for the whole program is computed as:

11

DF = 2:"dft, where i = 1, [n] ,
L::'I

where n is the number of nodes in a
given program.

The complexity of the program will be calculated by:
C = aCF + bDF.

Oviedo's metric will become clearer by studying the
example shown in figure 2.17 (a) and (b).

Page 2-37

figure 2.17 (a) (b)

READ A,B,C READ A, B, C
IF (A) THEN IF A

B=l B=l C=l
J=2 J=2 J=3
K=5 K=5

y B + J + C
ELSE

C=l
J=3

ENDIF
Y=B+J+C

The data flow complexity of the given program is
computed as:

OF = complexity of nO + n1 + n2 + n3,
nO = o , since no prior definition reaches to

this block,
n1 n2 =0, since they have no locally exposed

variables,
n3 = 6, since node n3 has three localy exposed

variables, i.e B, C,and J. For each locally
exposed variable, the following number of
prior definitions reach node n3:

B 2,
C = 2,

J = 2.

page 2-38

Therefore, the program has a data flow complexity of 6,
and since there are the 4 branches, the total program
complexity will be:

C = 4 + 6 = 10,
where a and b have been chosen to be unity.

However, the first part of Oviedo's metric fails to
consider the context of each edge in the flow graph
representation of a program. For example, in the flow
graph which is shown in figure 2.18 the context of the
edge (nO,n1) may be different from the context of the
edge (nO,n2), etc ..

figure 2.18

read x
if x = 1 then

= x*3 y = x**2
SQR(y)

x = y + z

n x*t

The second part of Oviedo's metric, the data flow
complexity, is not supported by any research which
ivestigates its effects on the program complexity. Also,
the weighting factors a and b are not easy to determin~
and they depend on a personal assessment. For example,

Page 2-39

Oviedo in his initial study considers a = b = one. The
metrics discussed above are some important examples of
control flow based metrics.

2.1.3 Structured Metrics

The structured metrics deal with measuring the
structured properties of software design. Many authors
have described how to measure or assess the qualities of
a system by measuring properties such as connectivity and
cohesion [16]. Yourdon [7) has used cohesion and
coupling as metrics to measure the qualities of modules.
Researchers have attempted to predict resources (errors,
coding time, etc ...) expenditure during detailed design,
integration testing, and maintenance phases [16]. Such
metrics can have significant impact on the software
design and development task. This is because structured
metrics can be taken early in the life cycle of software
system development task [9]. The following are some of
the important structure metrics:

2.1.3.1 Haney's Stability Metric -

Haney [47] has developed a metric for determining
the stability of large systems which depends on module
connections. Haney's metric is based on the assumption
that the intermodule connections are the main causes of
high cost and delayed delivery dates. These type of
problems usually occur in systems where modules are
heavily connected (higly coupled) and any change to a

page 2-40

single module causes subsequent changes in most of its
connecting modules. The system's resistance to such
changes is called system stability. Haney assumed that a
system consists of n modules and p •• is&.J the probability
that a change in module i induces a change in module j.
Further, with each module i, there is an associated
number N which is the number of changes that must be made
in module i upon the integration with the system. The
probability that a change to module i propagates to
module j in two steps is given by:

"~(P~~)*(Pkj) which represents the sum of probabilities
that a change in module i is propagated
to module k and then to module j.

In general, the (ij)th element of the probability matrix
P raised to the kth power represents the probability that
a change in module i will propogate to module j in k
steps.

Haney has computed the total number of changes made
to all modules during the integration phase as:

c = V (I + P + p**2 + p**3 + ...) where:
I is the n*n identity metric,
V is a row vector, where V represents the initial

number of changes made to module i when it is

integrated into the system.

Derivation of Haney's metric becomes clearer when an
example which is given in figure 2.19 is considered. In
this example three modules A, Band C interact.

Page 2-41

Figure 2.19

The metric is calculated by the following steps:
a. for each pair of modules i,j estimate the probability

that a change in module i will force a change in module
j. These changes constitute the probability matrix which
is shown in table 2.6.

Table 2.6 probability matrix (P).

A B c

B.2 0
C .1 .3

.11.3
o

A 0 .2

b. construct a vector V by estimating for each module i
the number of changes required at integration time, VL.
This is given in table 2.7.

page2-42.

Table 2.7.

A 13.1
V = B 4.5

c 2.1

c. compute the total number of changes as:
... 1

C = v* (I-P) .

-I
3.1 1 -.2 -.1

C 4.5 * -.2 1 -.3
2 .1 -.1 -.3 1

-3.1 1.07311 .27123 .18868
C = 4.5 * .27123 1.16745 .37736

2 .1 .18868 .37736 1.13208 /

C 6.88
4.66

4.94

d. sum up the elements of the column vector C to obtain
the total number of changes N, which is equal 16.48 in
this particular example.

Page 2-43

2.1.3.2 Myer's Metric -

Myer, G.J., [88] has developed a structured metric
which depends on the degree of interdependence among the
components of a program. The major step in calculating
this metric is to develop a complete dependence metric
(COM) which describes all dependencies among all modules.
Once such a matrix is obtained, the following can be
determined easily:

i. The summation of all elements in the matrix divided
by the dimension of the matrix (no. of the modules)
can give the expected number of modules that must be
changed when any single module is changed. The same
metric is used by Myers [41] to
complexity of the overall program.

compute the

ii. The summation of all elements in any row i in the
matrix can give the expected number of the modules
that must be changed when module i is changed.

To compute the above metric the
To

complete
derive the

dependence
completematrix must be derived.

dependence matrix, the first order dependence matrix must
be derived. The first order dependence matrix is derived
using the following steps.

1. Evaluate the coupling among all of the modules in the
program. Table 2.8 contains the values of module
coupling levels which are suggested by Myers [88].
These values can be used to evaluate the coupling

Page 2-44

among all modules in the program.

Table 2.8

.....................
I Coupling I Value I

--------------------1
content 0.951
common 0.701
external 0.601
control 0.501
stamp 0.351
data 0.201

2. Using table 2.8 construct an M*M coupling matrix, C,
where; M denotes the number of modules in the
program.

3. evaluate the strength (cohesion) of each module in
the program. Table 2.9 contains the values of module
cohesion levels which are suggested by Myers [88].

Page 2-45

Table 2.9

..........................
ICohesion 1 Value 1
-----------------1-------1
Icoincidential 1 0.95
Ilogical 0.40
Iclassical 0.60
Iprocedural 0.40
Icommunicational 0.25
linformational 0.20
Ifunctional 0.20

4. Using table 2.9 construct a vector 5 of M elements
which corresponds to the cohesion levels of the given
modules.

5. Determine the first order dependency matrix (D) by
the following formula.
D· .
IJ

D •.
IJ

DiJ
Dij

= 0.15 (s· + s· + 0.7 C•. if C•. f: 0,I J IJ IJ
= 0 if Cij = 0,
= 1 if i = j .

is called the dependency matrix of the modules,
and 0 is the probability that module j will
have to change when module i is changed.
S'and s· are the strength of the two modules i
" J

and j.

Page 2-46

C. is the coupling between modules i and j.'J
D;j = 0 if there is no coupling.

6. Derive a complete dependence matrix (E) as following
a. find all the paths between modules i and j . The
probablity of a path is the product of all the
probability of edges in that path,
b. if there is only one path, then E· • = E· • = P(x)IJ Jl.

where; P(x) is the probability of the path.
c. if there are two paths, then

Eij = EJi = P(x) + P(y) - P(x)*P(y) where;
P(x) and P(y) are the two path probabilities.

d. if there are three or more paths, find the three
paths with the highest probablities. Call these
paths x, y and z. Then
E ij = Ej ~ = P (x) + P (y) + P (z) - P (x)*P (y) - P (x)* P (z)

- P(y)*P(z) + P(x)*P(y)*P(z).

The above metric becomes clearer by considering the
example shown below in the figure 2.20 which illustrates
the relationship between three modules A, Band C.

page 2-47

Figure 2.20

In the above example assume that module A and S, A
and C are data coupled and C and S are external coupled.
Also assume that A has procedural cohesion, S has
functional and C has classical cohesion. The Myers's
metric can be determined by the following steps:

1. using table 2.8 evaluate the coupling among all the
modules in the program.

2. construct an MxM coupling matrix, where M is the
number of modules in the program. This matrix is
shown in table 2.10.

Table 2.10 coupling matrix of M*M order.

A

A 1. 0

S 0.2
C 0.2

S

0.2
1.0
0.6

C

0.2
0.6
1.0

Page 2-48

3. using table 2.9 evaluate strength of each module in
the program. This is given in table 2.11.

Table 2.11

A 0.4
B 0.2
C 0.6

4. construct the first order dependency matrix D by the
formula given above.

The matrix D is shown in the table 2.12.

Table 2.12

A

A

1.00

B 0.23

c 0.29

B

0.23

1.00

C

0.29

0.54

1.000.5

Using this the 1st order dependence matrix derive a
complete dependence matrix. The complete dependence
matrix is given in table 2.13.

Page 2-49

Table 2.13

A

A

1. 00
B

0.35
C

0.38

B 0.35 1.00 0.32

c 0.38 0.32 1.00

From this complete dependence matrix the overall
design metric can be obtained by summing up all the
elements of the complete dependence matrix and dividing
the sum by the number of modules (the dimension of the
rna t r ix) .

Unfortunately, Myers's metric has not been validated
[901 • Moreover, the metric is based on unestablished
assumptions such as the module cohesion, the module
coupling, the symmetric relation between the modules
interaction, etc. The computation becomes very difficult
to perform for a medium or large scale systems. The
first order and complete dependence matrices are assumed
to be symmetric. Practically this is not neccessarly
true because the effect of a module A on B is generally
not the same as the effect of a module B on A.

Page 2-50

Moreover, the problem with Haney's metric [47],
Myers's metric [88] and similar methods such as those of
Schuster [14], and N.L. Soong [15] is that for large
systems model validation is difficult. This is because
the model inputs have not been automatically obtained.
One more weakness of these metrics is the assumption that
all modifications to a module have the same ripple
effect.

2.1.3.3 S. Henry And D. Kafura's Metrics -

Structured metrics based on information flows have
been developed by S. Henry and D. Kafura [6]. Their
metrics measure:

1. Procedure complexity:
The procedure complexity depends on two factors;

a. the first factor is the internal complexity of the
procedure. This is based on counting the number of
lines of code in the procedure,

b. the second factor involves the complexity of the
procedure's connections to its environment. This
involves the information flow connections of a
procedure to its environment. The information flow
can be determined by the fan-in and the fan-out.
The fan-in and the fan-out represent the total
possible number of combinations of an input source
to an output destination.

The whole procedure complexity is computed as:

Page 2-51

P(C) - L* (fan-in*fan-out)**2 where;
L is the procedure length expressed in lines

of code,
fan-in is the local flows into a given procedure

plus the number of data items from which
the procedure reads,

fan-out is local flows coming out from a given
procedure plus the number of data items
to which the procedure writes.

According to Henry et al [6], the local flow of
information from module A to module B occurs if one
or more of the following conditions hold:

1. if module A calls module B,

2. if module B calls module A and A returns a value
to a, which a subsequently utilizes, or

3. if module C calls modules A and B passing an
output value from A to a.

The above procedure complexity can be helpful in
locating the stress point the procedure with
heaviest data traffic) of the software system.

ii. Module complexity metric:
The module complexity is computed as the sum of the
complexities of the procedures within the module.
Where a module is defined as: with respect to a data
structure D the module consists of those procedures
which either directly update 0 or directly retrieve

Page 2-52

information from 0 [6].

iii. Interface complexity:
Interface complexity depends on two factors; the
interfaces which connect the system components, and
the number of information paths used to transmit
information between the components of the system.
The interface complexity between module A and module
B is computed as:

S (A-->B) - (E + I)*N where;
S (A-->B) denotes the strength of connections

from module A to module B,

E is the number of procedures exporting
information from module A,

I is the number of procedures importing
information into module B,

N is the number of information paths
between modules A and B.

The above formula is used by Henry et al [6] to determine
the coupledness between any two modules.

However, the following comments can be made about
Henry et aI's metrics:

1. the procedure complexity involves counting lines of
code in a procedure and may thus be considered a weak
metric because lines of code may be interpreted in

Page 2-53

different ways. Therefore, the complexity of a
procedure may not be determined correctly by the
metric.

2. the fan-in and fan-out are inadequate for computing
the complexity of a procedure. This is because a
procedure which contains complicated code may be
called only once. On the other hand an easy code
procedure may be called many times. These cases are
not distinguished.

3. The metrics which focus on the interfaces which
connect the system components are based on Myers's
approach [88] in which he divides the module's
coupling into several levels. Henry et al have
recognised two of them.
coupling levels. These

That is, content and common
two module coupling levels

are classified by Yourdon [7] as poor ones.
Moreover, such a classification has a subjective
nature, where the quantification may not be possible.

2.1.3.4 Yau And Colofello's Logical stability Metrics -

Yau and Collofello [45] have developed stability
metrics for software maintenance which calculate the
stability of modules within a system as well as total
system stability. They are based on recording the ripple
effects resulting from program modifications. They have
divided the logical stability of a module into two
aspects. The first aspect concerns the intramodule

Page2-S'"

change propogation. This involves the number of
interface variables affected in one module by the change
in a variable i. The other concept concerns the
intermodule change propagation. This involves the number
of modules affected by changes in the interface
variables.

Intramodule change propagation is used to construct
the set Zr~ of interface variables which are affected by
logical ripple effect as a result of modification to
variable definition i in module k. This set contains
global variables which are referenced by module k, input
parameters to modules called by module k and the output
parameters of module k. Intermodule change propagation
is used to construct the set X~which consists of the
number of modules affected by change in interface
variable j of module k. Both intramodule and intermodule
changes are used to compute the expected impact of a
primitive modification to a module on other modules in
the program. A metric is constructed to evaluate the
dimensions of the ripple effect which occur as result of
modifying a variable definition. This metric is
associated with each variable definition in order to
determine the impact of modifying the variable definition
during maintenance. This metric will compute the logical
complexity of modification for each variable definition i
in every module k and is denoted by LCMki' Moreover, a
set of the modules involved in the intermodule change
propagation as a result of modifying variable definition

pagel-5S

i of module k can be constructed as:

Wk~ = UXkr'
j~Zk':

The other metrics developed by Yau and Colofello are
given below:
a. The logical complexity of modifications is computed as:

LCM ~L = .z:... C t, whe re;

Ct is the complexity of a module t,
WkL is number of modules affected by

the change in variable i.

b. The potential ripple effect of a modification
in module k is calculated as:
LREte. = 2: [P(ki)* LCMI(t1 where;

i E- Vk

P(ki) is the probability of change in variable
i in module k.

c. The logical stability of a module k is calculated as:
LS~ = 1 I LRE~ for each module k.

d. The potential ripple effect of a program modification
is calculated as:

n

LREP = ~

k=l
P(K)*LRE~ 1 where;

P(k) = lin which is adopted as the probability of a
change in module k among a total of n modules.

e. The logical stability of a program is calculated as:

Page 2-56

LSP ...1 / LREP.

These metrics can be determined by the following
procedure which is given by Yau and Colofello [45]:

1. determine the set V~for each module k, which consists
of all variables which are defined in module k,

2. determine the set Tk for each module k, of all
interface variables in module k, i.e., global
variables, the variables which are an input parameter
to a called module and the variables which are an
output parameter of module k,

3. determine the set Z~t of interface variables which
is a subset of Tk' affected by modifying the variable
definition i of module k.

4. for each interface variable j of set Tk, compute a
set Xkj \ consisting of those modules which are
affected by the modification of the interface
variable j.

5. compute the set
W~l =_j x(kj) for each variable definition

jEZR~

i in every module k. The set W~L consisting of the
set of modules involved in intermodule change
propagation as a consequence of modifying variable
definition i of module k,

Page 2-57

6. compute

LCMk?i = Z c,
t t.W k L

for each variable definition i, in
every module k, where C is the
McCabe's complexity measure of
module t,

7. for each variable definition i in every module k,
compute
P(Ri) 1 / (number of element in V~) where;

is the probability that aP(Ri)
particular variable definition i of
module k will be selected for modification,

8. compute
LRE iq = [P(Ri) * LCMI<:_L) and

LSk = 1 / LREk for each module k,

9. compute LREP and LSP as follows:

n
LREP = 2_ P(k)* LRE \(J where;

k=l

P (k) = 1/n, n is the number of modules
in the program,

LSP = 1 / LREP.

However, Yau et al., have not yet validated their
metrics. This is admitted by Yau et al themselves [45).
Further, the problems with their metric are:
1. they assume that the probability of the modification

Page 2-58

is the same for all variables of the module,
2. they assume that the probability of the modification

is the same for all modules of a program.
Additionally, it is very difficult to determine their
metric manually and it becomes extremly so in the case of
large systems.

••• JP
'IP •••

CHAPTER 3
EVALUATION OF THE SOFTWARE METRICS

3.1 INTRODUCTION

Recent estimates suggest that up to 90 percent of
annual expenditure on systems in a large organisation is
devoted to developing and maintenance of software systems
[68, 28]. One of the reasons for this is that the
software
without
quality.
importance

components of these systems were developed
applying the correct concepts of software
For example, most of them did not consider the

of having desired quality attributes in the
software system, such as clear documentation,
maintainability, etc ..
quality metrics to

Also the nonavailability of ideal
measure the software quality

attributes has led to increases in the cost of developing
and maintaining software systems. A solution to this
problem is to improve software quality. This can be done
by introducing clear concepts of software quality and
applying software quality metrics during and after the
development of the software system.

Page 3-2

A survey of the software literature revealed that in
the last 10 years many researchers have made considerable
efforts to establish such metrics. For example, Halstead
[2] has developed software metrics which received much
attention in the literature of software sciences. McCabe
[5] has developed another software metric which appears
to be dominant, at least for measuring the control flow
complexity of a program. Many attempts have been made to
quantify the control flow complexity, for example,
Woodward et aI's Knot count (8] and Harrison et al's
Scope metric [39].

Further, many other researchers have developed a
number of structured software metrics. These metrics
have been created mainly to examine up to which level the
components of a software system are connected. For
instance, Haney [47] has developed a metric based on
module connection which measure the stability of a
software system.

However, they have not given any proven evidence in
support of claims they have made about their metrics. It
is therefore difficult to say how reliable these claims
are.

There are very many software metrics available, and
it is a difficult problem to evalute and select a
suitable and reliable one. Most of these metrics measure
the complexity attribute of a control flow graph of a
computer program. Baker et al [23] chose three software

Page 3-3

metrics for the purpose of comparing and evaluating them.
These metrics were Halstead's metrics [2], McCabe's
metric [5], and the Knot metric [8]. Baker et al have
showed some basic properties of each of them. However,
the drawback of their approach was that they did not
consider all the necessary aspects of these metrics such
as the validity, applicability, etc. Therefore Baker et
aI's descriptions are not enough to select a suitable
metric. Further, they did not mention any thing about
the structured metrics which are very important at least
for the management of software systems.

A similar study was carried out by Sinha et al [38].
In their study they selected the Scope metric [39],
McCabe's metric [5], and the Knot metric [8]. They
suggested a list of properties for the purpose of
comparing between these metrics. However, they
considered only one attribute of software quality: the
complexity of a program control flow graph. Moreover,
they studied a sample from only one category of software
metrics, i.e. the one which depends on graph theory.

Kitchenham [87] has described and discussed
Halstead's and McCabe's metrics briefly. The purpose of
this study was to assess the ability of these metrics to
provide an objective indicator for selected subsystems of
the ICL operating system VME/B. Some results of her
study are as follows:

page 3-4

1. McCabe's and Halstead's metrics offer little help in
the evaluation of the VME/B subsystems,

2. McCabe's and Halstead's metrics are good measures of
program complexity which is based on the size of the
program.

However, the Kitchenham study does not identify
the conditions under which these metrics mayor may
not be used beneficially.

A further study was carried out by Hacker et al [90]
in which SO software metrics were described and
ivestigated. Their description consist of the following
points:

1. the name of the metric and a brief explanation of
what the metric can measure,

2. the method of constructing the metric,

3. a scale by which a given metric can be judged,

4. a description of the measurement process,

s. identification of the quality factor to which the
given quality metric refers to.

Hacker et al [90] have identified goodness criteria
for the selection of suitable metric(s). Some of their
criteria were enlarged in this study, e.g. validity, the
other criteria were either not included, e.g.

Page 3-5

reliabilty, or replaced by another criteria of goodness,
e.g. economy. Validity was used by Hacker et al [90] to
indicate "the extent to which a mesure actually measures
that quality characteristic which it should measure or
which it claims to measure". The term validity was
enlarged in this study and it was interpreted
appropriately in order to determine; the size of the
system on which the metric(s) can be validated and the
purpose/ reason which it was designed to assess. The
reasons for such enlargement are the following:

1. to show those metrics which were validated on small
size programs and are difficult to be validated on
large software systems, e.g.
Myers's metric [44], etc ..

Haney's metric [47],

2. to show those metrics which were considered to
measure the complexity of the program and fail to do
so, e.g. Halstead's metrics.

The criteria of goodness objectivity and reliability
which are given by Hacker et al [90] are not included in
this study. This is because of the following reasons:

1. Hocker et al describe the objectivity criteria as
"the extent to which the quality values obtained by
means of the measure are free from subjective
influences of various evaluators" [90 1 • Since it is
impossible for a software engineer to be free from a
subjective influence and the contribution can not be

Page 3-6

measured so this criterion of goodness was not
included in this study. For example, some people
consider the length of code as a complexity measure
whereas other people do consider it as a weak measure
of complexity.

2. Hocker et al describe the reliability criterion of
goodness as: "the degree of exactness to which a
product property or a combination of properties is
measured, regardless of whether the quality
characteristic to be measured is actually identified
by this". This definition requires a knowledge of
both the measured value and the exact value. It
would seem that using the value solves the problem.
This definition is therefore inadequate. Moreover,
reliability is one of the software quality atrributes
which has many aspects and may be assessed
differently by different users. Therefore, it was
felt to be unwise to include it as one of the
criteria of goodness.

The "economy" criterion of goodness is used by
Hocker et al [90] to indicate "the efforts which are
required for obtaining quality values by means of the
measure". Since efforts depend on individuals and their
ability, amount of automation, understanding and
experience, and the criterion of goodness economy has
many other aspects such as cost, time, manpower, etc.,
which make the comparison study very difficult, so it is

Page 3-7

replaced by the criterion simplicity which means the ease
of computation of a software metric(s). However, the
above approach may not be enough to choose the candidate
metric of interest. This is because Hocker et aI's study
[90] is too abstract to be considered for metric
selection. They have not considered examples which show
the validity or the invalidity of any described metric.

Boehm et al [29] have selected metrics based on the
correlation to quality, and the expected gains of using
metrics. However, their criteria are specific since they
are mainly concern with the FORTRAN programming language.

McCall et al [46] selected metrics using statistical
evaluation (rating) of the relationship between quality
factors and the quality metrics using regression and
cross-validation. There is no single metric which can be
considered to give a universally useful rating of
software quality and further software quality metrics are
not comprehensive [29]. Therefore, the overall result of
rating would be more suggestive than conclusive.

In the following section a set of detailed criteria
of goodness are given against which each software metric
can be evaluated. The set of developed criteria of
goodness may not be comprehensive but at least it covers
most of the points which have been mentioned. Further,
it is applicable to the three different categories of
software metrics which are considered in this study.
These criteria of goodness are discussed in the next

Page 3-8

section.

3.2 CRITERIA OF GOODNESS

The main objective of this section is to generate a
list of criteria of goodness for software metrics. These
criteria of goodness can be used to evaluate the existing
software metrics and to rate one metric against another.
Such criteria of goodness can be classified in two
categories:
a. general criteria of goodness,
b. specific criteria of goodness.

3.2.1 General Criteria Of Goodness

General criteria of goodness are those criteria
which can be applied to any metric for the purpose of
evaluation. They are discussed below:

i. Applicability: the term applicability means the
suitability of metric(s) to the output of different
phases of the system development life cycle, i.e.,
number of the software life cycle phases in which the
metric under study can be applied.

ii. Validity: the term validity is used and interpreted
appropriately in order to determine; the size of the
system on which the metric(s) can be validated and
the purpose/reason which it was designed to assess.

page 3-9

iii. Sensitivity: the term sensitivity is used to show
the capability of a software metric for being
responsive to the changes in the structure,
environment, properties, etc., of the software
system.

iv. Procedurising:

A procedure is defined in [107] as: "A body of
a program, written out once only, named with an
identifier, and available for execution anywhere
within the scope of the identifier". An example of
procedure is a subroutine of FORTRAN, a procedure of
ALGOL, a function of C, etc.. Procedures are used to
reduce the amount of coding where several statements
are duplicated at different parts of a program.
Generally the complexities of these procedures
constitute the complexity of the whole program [66].
Therefore, to compute the complexity of a program in
a software system it is necessary to compute the
complexity of each procedure which is called into the
program. A procedure may be called into the main
program and then the following assumptions are
possible:

1. assume that each procedure is only called once
and the control flow returns to the point of
call. In this case the complexity of the whole
program can be calculated as:

n
C = C' +~(C~-l) where;

page 3-10

C' is the complexity of the main program,
Cl is the complexity of each procedure,
n is the number of procedures.

2. assume that a given procedure is called more than
once, then the following strategies may adapted:

Z.a) add the value of the complexity of a
given procedure every time the
procedure is called. In this case
the complexity of the whole program
can be calculated as:

n
C = C'+~Nl*(C~-l) where;

,.,; ,
C' is the complexity of the main

program,
N~ is the number of calls of the

ith procedure,
Cl is the complexity of each

procedure,
n is the number of procedures.

2.b) consider that only one copy of the
procedure flow graph is used and the
edges are added to the main flow
graph for calls and returns. Almost
always the overall program flow
graph becomes non-planar and the
complexity of the whole program
may be increased by:

n

C' + Z. (2N~ -3) •\. '~I
The second alternative produces an unsatisfactory

Page 3-11

solution because the procedurising issue, which is a
desirable criterion of goodness, is excessively
penalised whenever possibility 2.a or 2.b is used.
It can be concluded from the above that the first
assumption is the best solution. Therefore, the
first assumption is recommended and considered in
this study. It may be beneficial to examine the
behaviour of these metrics against the criterion of
goodness procedurising.

v. Language independency: language independency means
the software metric(s) should be computable for any
software system, independent of the language in which
the system is written. There may be an exception for
the systems which are written in some functional
languages such as PROLOG, APL,.etc •.

vi. Simplicity: simplicity means the ease of computation
of a software metric(s). The efficiency of the
computation of such metric(s) is excluded. This is
because at this stage, the worthiness of these
metrics is the subject of debate. Therefore, the
comment is made only on the difficulty of software
metrics computation. It is better to have a metric
which is easy to compute.

vii. Positivity: the term positivity is used here to mean
that when a software metric has a numeric value then
that value must always be equal or greater than zero.
The value of a software metric can be zero for a null

Page 3-12

program, otherwise it must be greater than zero.

viii. Modularity:

A module can be defined as: a collection of
executable statements, procedure declarations, data
structure declarations, and operators declarations.
A module may contain zero or many procedure bodies,
e.g. the segment of CORAL 66, the package of ADA,
the program of COBOL, the module of RTL/2, etc.
[106]. Modularity is derived from module and it can
be defined as: the extent to which a software system
can be decomposed into modules provided that a change
in one module has a minimal impact on other module.
Modularity can be achieved by isolating frequently
occurring sequences of duplicate code [55]. It is
worthwhile knowing how much the modularization issue
can affect the value of the software metrics.

3.2.2 Specific Criteria Of Goodness

The specific criteria of goodness are those which
can only apply to a particular type of metric such as
McCabe's metric [5], Woodward et aI's Knot metric [8],
etc.. Example of some of these criteria of goodness are
given below:

1. Linearization
two-dimensional

this is a process for expressing a
flow graph algorithm as a

one-dimensional set of program statements. The

Page 3-13

purpose of linearisation is to enable a particular
machine to execute that algorithm, i.e. a
transformation from a graph to a coding. This
criterion of goodness is revelant to the knot metric.

2. Unstructuredness: the term is used to mean that the
program is not restricted to specific style or
programming
programming.

techniques such as structured
Some available software metrics can

determine and recognise the unstructuredness of a
software system.

3. Structuring transformation: the structuring
transformation can be defined as a design strategy in
which the structure of a system can be expressed in a
better and simpler way. For example, the more a
software system deviates towards a pure tree
structure the better the design under some criteria.
One of these structuring transformation techniques is
node-splitting. It will be useful to know to what
extent such techniques can help to decrease or
increase the value of a certain software metric

3.3 COMPARISON BETWEEN THE PRESENT METRICS

The purpose of this section is to give a comparison
between software metrics. This comparison is based on
the criteria of goodness, which are defined in previous
section. These criteria of goodness were generated after
performing a comprehensive study of a selection of the

Page 3-14

most popular metrics.

These metrics are available in the literature, for
example in [2,5,6,7,8,21,39,41,47, 48, 49, 51, 52, 59,
86, etc.]. It was not possible to cover all these
metrics. Hence in this study a sample of software
metrics from each category was taken, so as to carry out
the comparison study.

3.3.1 Primitive Software Metrics

Since Halstead metrics have received considerable
attention in the software literature, it was decided, in
this study, to apply the above criteria of goodness, to
Halstead metrics.

3.3.1.1 Applicability-

Applicability as defined earlier means, the number
of phases of the system development life cycle in which
the metric(s) can be applied. There are several life
cycles models [64], [65], etc .. The life cycle model
which is referred to here, is the one which was developed
by M. u. Shaikh [50], and the summary of this life
cycle is given in appendix [G]. The reason for selecting
this life cycle model is its global nature and
applicability to a wide class of problems.

Page 3-15

Halstead's metrics which are based on collecting the
lexical tokens in a program, are applicable to the
implementation phase of the life cycle. This is accepted
by Halstead [2]. According to Baker, et al [23] the
software science metrics are generally developed to
measure overall program complexity. It would be possible
to apply Halstead's metrics to the output of each phase
of the life cycle provided that at each phase notations
can be represented as lexical tokens. However, the main
difficulty which may arise is the decision about which
entity should be treated as an operand and which as an
operator. This difficulty causes problem in the well
known language ALGOL 68. For example, Halstead [2J
considered that, the operands are the variables and
constants in a program. Woodward [8lJ has shown by
giving an example from the NAG library (this is shown in
figure 3.1) that the procedure call dot(x,y) counts as an
operator occurrence but the REAL variable local to the
procedure, also called dot, is in this case counted as an
operand.

Figure 3.1
PROC dot=(REF[]REAL a,b)REAL:BEGIN

REAL dot:30.O;

end;

s:=dot(x,y);

Page 3-16

The above example shows only a simple case of confusion
in counting operands and operators. There are other
situations which also cause confusion. For example, a
function reference may serve as an operand and operator
at the same time.

3.3.1.2 validity-

It is observed that most of the software metrics
were validated on small programs due to limitations
placed on researchers, such as time available and size of
the program allowed [43].

However, it is possible that most of Halstead's
metrics can be validated on large systems, because these
metrics are mainly developed from counting the number of
operators and operands, in the program. This counting is
easy to perform. For example, a compiler does this in
its symbol table [4]. But the question is whether these
metrics are measuring what they were designed to assess?
The answer is unfortunately no. This is because overall
program length cannot represent the real difficulty that
the programmers may face. The program length cannot
represent the real complexity which the programs possess.
For example, a small program which contains, predicate
nesting and sequence statements is more difficult and
more complex than a very big program which contains only
a large sequence of assignment statements. The program
level (the difficulty of understanding a program) is
computed in Halstead [53] as:

Page 3-17

2 n2
L a ()*(--)

nl N2

This definition has been changed later to L • (V'/V), see
Halstead [2], and the original definition renamed to
L'=(2/nl)(n2/N2). Halstead considered Land L' to be
identical. This has resulted in a doubtful situation
where all software science developers compute L but
derive their algebraic arguments in terms of L' which
nobody ever measures. Additionally, see table 2.1 in
appendix [Cl, which shows that the values of Land L' are
not identical and the calculation of their values were
approximated. The metric of the time equation is
computed as:

T-E/S, where
T- the time is needed to generate a program
E- the software science metrics of effort
S= 18 (stroud number)

In the above equation the definition of T is largely
speculative and it needs empirical confirmation [22]. It
seems to be that Halstead's metrics are not achieving the
actual aims, which they were designed to assess.

3.3.1.3 Sensitivity-

It is obvious that Halstead's metrics are sensitive
to the changes in the structure of the system which cause
an increase in the number of operands and operators in
the program(s). However, the changes which do not

Page 3-18

increase the number of operands and operators but do
alter their frequency of occurence will not effect the
value of all of Halstead's metrics. Only those that
depend on the number of ocurences of the
operators/operands.
sensitive to the

Further, Halstead's metrics are
errors which cause an increase in the

size of the code in the software system. Otherwise, the
errors which do not increase the number of operands,
operators or their frequency of occurence will not effect
the value of Halstead's metrics. Thus modifications and
restructuring may not be measured.

3.3.1.4 Procedurising-

Generally the calling of the procedure, functional
statement, subroutine, subprogram, etc .. will increase
the number of tokens in the program. This is because the
procedure call has been treated as an operator in the
field of software science. Hence, the value of E (the
effort metrics) and the value of V (the volume metrics)
will increase. So the performance of Halstead's metrics
are not in favour of the procedurising issue. This is an
unsatisfactory result, because procedurising is generally
a desirable practice, and it is penalised by these
metrics.

Page 3-19

3.3.1.5 Language Independency -

Halstead's metrics n (program vocabulary), N
(program length) and V (the program volume) are obviously
language independent according to the definition given.
According to the more usual definition of language
independency they are language depedent. This is because
these metrics are directly depend on counting the number
of operators, operands, and their occurrence in the
program, and the definition of operators and operands
varies from language to another. For example, the metric
V is expected to increase as it is translated from a high
level language to low level language. This result is
shown by Fitzsimmons et al [4], where a FORTRAN
implementation of an interchange sort algorithm had a
volume of 204.4 bits, whereas the same algorithm had a
volume of 328.5 bits, when it was implemented in Assembly
Language. It is believed that the metric L (program
level) will decrease with both an increasing number of
operators and an increasing number of recurrent uses of
operands [2], therefore, L will be language dependent.
The metric E (program effort) is calculated as E-V/L.
Since the volume is inversely proportional to the level
of abstraction "L". Then as the volume of a program
increases and the level of
effort should increase.

a program decreases, the
Therefore E is language

dependent. The metric I (intelligence content) is
claimed to be a constant for all implementations of an
algorithm [2], i.e. I is independent of the language in

Page 3-20

which a certain algorithm is coded. Halstead proved his
claim by an experiment of implementing Euclids algorithm
for finding the greatest common divisor using eight
languages. The values of I were not exactly equivalent.
Further, Christensen et al [93] performed the same
experiment using slightly different languages. The
values of I were not equivalent. The two experiments are
presented in tables 2.2 and 2.3 in appendix [C) .
However, the above experiments were made for small
programs, and even then the values of I were not
equivalent.

Further, Halstead [2] calculated the intelligence
content(I) as:
I - L' * V where;
V is the volume of the program,
L' is the program level,
V obviously varies with both the algorithm coded and the
language used. Hence, it can be concluded from the above
and the tables 2.2 and 2.3 which are given in the
appendix [C], that most likely I is language dependent.

3.3.1.6 Simplicity-

The Halstead's metrics E, V and N are the most
frequently referred to and discussed in software
literature such as [23, 55, 58, etc ...], and these are
easy to compute. For example the operands of a program
can be identified and tabulated easily provided knowing
what is constitutes the operands and operators. This

Page 3-21

identification and tabulation can be done by a compiler's
symbol table [4]. Therefore, it is clear that most of
Halstead metrics are easy to calculate provided that
decisions about what constitutes an operator and what
constitutes an operand are clear and are made in advance.

3.3.1.7 Positivity-

The values of Halstead's metrics always have a
non-negative value. This is because he counts operators
and operands in the program to calculate the values of
these metrics.

3.3.1.8 Modularity-

Modularity may cause a reduction in a program's
observed length, and therefore Halstead's metrics
involving this will be affected by the modularization
issue. For example in a program which calculates the net
pay of hourly workers and salaried workers, there will be
a part somewhere in the program to calculate the normal
deductions for the hourly paid workers. It may also
possible to have a similar part in another place in the
program to calculate the normal deduction for the
salaried workers. According to modularity principles,
the two similar parts must be combined in one subunit
which must be isolated and then interfaced with the other
subunits of the program. This modularity principle will
cause a reduction in the observed program length, hence
the value of Halstead's metrics will be decreased.

Page 3-22

Therefore, Halstead's metrics do reflect the reduction in
the code which occurs as a result of applying a
modularity technique. This is because the number of
tokens will be decreased in the case of modular
programming. However, there is an exception in case of
housekeeping statements such as declaration which may
increase the number of tokens in a program.

3.3.1.9 Linearization-

To execute, any algorithm represented by a

two-dimensional flow graph, on a particular machine, that
must be linearized. There may be many possible
linearizations of a particular flow graph [57]. The code
of one linearization may have a shorter length than the
code of another linearization. Baker et al [23] claimed
that Halstead's metrics vand E reflect such difference in
linearizations. He showed this by an example which is
given here in figure 3.2 (a), (b) and (c).

page 3-23

Figure 3.2 (a) Figure 3.2 (b)

IF (A) THEN
IF (B) THEN D
ELSE

E: IF (E) THEN NULL
ELSE GOTO H
END IF

END IF;
F: F

ELSE
IF (C) THEN GO TO E
ELSE

IF (I) THEN GO TO F
ELSE G
END IF

END IF
END IF

H: H
Figure 3.2(c)

IF (A) THEN
IF (B) THEN D; GO TO F
ELSE GOTO E
END IF

ELSE
IF (C) THEN

E: IF (E) THEN NULL
ELSE GOTO H
END IF

ELSE
IF (I) THEN NULL
ELSE G; GOTO H
END IF

END IF;
F: F

END IF
H: H

The code given in figure 3.2(b) and (c) are equivalent
linearizations of the flow graph in figure 3.2(a). Baker
et al concluded that, as the code in figure 3.2(b) is
shorter than the code in figure 3.2(c), therefore V
(program volume) and E (program effort) will be lower for
the code in figure 3.2(c).

Page 3-24

However, the code of different linearizations of a
flow graph can be equal in length, have the same
vocabulary but, may be different in the ordering of the
statements. Such orderings, which are the points of
issue of the linearization criteria of goodness, will
strongly affect the program's complexity, readability,
clarity, etc .., whereas the length of the code will not
detect such effects. Therefore, Halstead's metrics do
not correctly reflect the real
different program linearisations.

difference between

3.3.1.10 Unstructuredness-

It is possible to construct a program using the
following control structure:

1. Sequence

2. Selection

3. Repetition

There is a general agreement that using these structures
to a certain extent will make the control flow easy to
follow. Halstead's metrics do not recognise such
structures. For example, if a program is written with
the use of only IF THEN, REPEAT UNTIL, and
DO ...WHILE, the program will contain a certain number of
tokens. If the program contains any other structures,
the count will yield another number of tokens.

Halstead' metrics will tell nothing
In both

aboutcases

page 3-25

unstrueturedness of the program. For example figure 3.3
(a) and (b) are two different programs to sum up the
numbers from 1 to 10.

Fi gu r e 3.3 (a) Figure 3.3 (b)--------------
1-0
ISUM-O
WHILE (I.LE.10) DO
ISUM-ISUM+I
1-1+1
END WHILE
PRINT* ,ISUM

ISUM-O
DO 20 1-1,10
ISUM-ISUM+I
20 CONTINUE
PRINT· ,ISUM

The program in figure 3.3(a) is using DO .•.WHILE to solve
the problem. The program in figure 3.3(b) is using
DO ...loop, to solve the same problem. The number of
oeeurenees of operators and operands are more for the
program in figure 3.3(a) than the program in figure
3.3(b), as shown in table 3.3 and 3.4, henee,the values
of Halstead's metries will be more for the DO ..WHILE
program than the DO ..loop program, whereas the WHILE
structure is much more powerful than the DO loop (96).

Table 3.3

Page 3-26

iloperator f2,i
IIEOS
21-
31WHILE
41ENO WHILE
SIPRINT
61 .LE.
71+
8 I (
91)

10 I ,
111*
12100

fl,i II loperand
6 I I
4 2 ISUM
1 3 10
140
151
1
2
1
1
1
1
1

5
4
1
2
1

nl-12--
Nl-21 n2-S N2-13--

Table 3.4--iloperator If1,i Ii loperand If2,i I---11EOS 14 11 IISUM 14 I21- 13 12 II 11 I3100 11 13 10 11 I41PRINT 11 14 11 12 ISICONTINUE 11 15 110 11 I61+ 11 16 120 12 I71* 11 1 I I ISI, 11 I I I 1--n1-S N2-13 n2-6 N2-11 1--
However, l't hmay appen that Halstead's metrics have
minimum values when the program is a structured one.
This occurs when the number of tokens are decreased in
the program. But nothing more can be inferred from the
metrics. Therefore, Halstead's metrics are not sensitive
to the unstructuredness criterion of goodness.

Page 3-27

3.3.1.11 Structuring Transformations -

One of the well-known structuring transformations is
node splitting. Node splitting is a technique by which
duplication of code is involved to produce a structured
flow graph of that code [23]. Halstead's metrics do not
perform nicely when they are evaluated in the
node splitting. This is because node

light of
splitting

duplicates the code which will increase the value of
Halstead' metrics. Moreover, the increase in the value
of Halstead' metrics will give no indication whether the
program structure is improved or not. But still the
value of the metrics will be more, in case of applying
node splitting transformation, which is not a good
indication according to Halstead [2].

3.3.2 ABSTRACT METRICS

There are many software metrics having a theoretical
basis in graph theory which have been proposed to
quantify the control flow complexity of a program. These
metrics are available in the software literature [5, 8,
21, 23, 37, 39, 40, 56, 59, etc.].

McCabe's metric [5] and Woodward et aI's Knot metric
[8J will be considered as examples for a comparison,
since they have received the most empirical attention.

Page 3-28

3.3.2.1 Applicability-

McCabe's and the knot metric are designed to measure
the control flow complexity of a program. Therefore,
they are applicable to the implementation
software development life cycle. The

phase of the
output of the

design phase may be the following: graphs, tables, data
design, program design, module design, etc.
McCabe's metric can be applied to some of the components
of the output of the design phase, where the data flow
graph and control flow graph are involved .. For example,
the design of each module, may be documented by a module
input/output diagram, a module control flow diagram, a
module data flow graph, etc., therefore it is possible to
apply McCabe's metric to measure the complexity of the
module control flow diagram. The result, is a certain
McCabe number, which has an indication about the design
phase.

The knot metric can only
graphs

be
and

applied to
control flowlinearisations of data flow

graphs. A knot in the linearisation of a two dimensional
graph occurs. when two control flow lines must cross. It
seems to be that both metrics may be applied to those
phases of the system development life cycle where the
control flow graph, data flow graph, etc., are involved.
This is usually only at design and implementation phases.
Both might also be used for assessing the complexity of
petri-net (and similar) specifications.

Page 3-29

3.3.2.2 validity-

McCabe has recommended a maximum value of "10" for
module complexity. This value is used as a "yardstick"
for deciding that a program is big and should be split
into separate routines. However, this number may be
invalid in the case of large programs such as compilers,
which could usually include a large case statement.
Therefore, McCabe's metric becomes less relevant and the
given upper limit should be re-evaluated. McCabe's
metric is not realizing all the objectives which, the
metric was developed to achieve. For example, adopting
McCabe's suggested value of 10 as a condition for a
program to be decomposed, will have no effect on a large
module dealing with straight line code. Furthermore, it
is generally agreed that adopting a structured
programming technique will make the control flow graph
easy to follow, and hence will decrease the value of
McCabe's cyclomatic complexity. It is shown by (61) that
some programs have a higher value in structured form than
in their original unstructured form.

Regarding the knot's metric, where a knowledge of
program control flow jumps in terms of line number is
involved, it becomes very difficult for a programer to
draw a mental map for a very large program. Therefore
the knot's metric becomes less applicable to large-scale
systems. The knot's metric was designed to measure the
complexity and unstructuredness in a piece of code. The
knot's metrics will always represent the complexity

Page 3-30

by alternation in FORTRAN-like languages. The knot
metric may give irrelevant indications about control flow
complexity incurred by iteration, or straight line code
[23]. Furthermore, the value of the knot metric will
represent the unstructured form of the program. This can
be achieved when the intersections caused by the use of
IF ...THEN ...ELSE or CASE statements in the program are
ignored [8]. Generally, the knot metric assesses what it
was designed to assess.

3.3.2.3 Sensitivity-

Relatively, McCabe's metric is insensitive to
program restructuring. This is shown by Woodward et al
[8] by the example which is given in Figure 3.4(a) and
(b) •

3.4 (a)

V(G)= 3

K - 4

Page 3-31

Figure 3.4 (b)

V(G)= 3
K = 1

In the given example McCabe's measure V(G)=3 for both
flow-graphs before and after restructuring.

Page 3-32

McCabe's metric takes no account of program nesting. For
example, Figure 3.5(a) and (b) shows two flow-graphs for
which McCabe's measure is identical. Even though it is
more easy to analyse and understand the sequence of loops
in Figure 3.5(a) than those in Figure 3.5(b).

3.5 (a)

V(G) = 8 - 6 + 2 4.

Page 3-3j

3.5 (b)

V(G) = = 4.

Generally it can be said that McCabe's metric is
insensitive to the changes in the structure of the
system. The Knot's metric will not be sensitive to those
programs which are well structured (using only inclusive
IF ...THEN ...ELSE and DO WHILE control flow operators).
Therefore, the Knot's will be insensitive to the changes
in which edges crossing are not involved. Otherwise, the
knot metric is sensitive to the changes in the structure
of the system in cases where crossing of edges control
are originated. Moreover,the knot metric is very
sensitive to the unstructuredness form of a program. For
example, figure 3.4 (a) and (b) shows such sensitivity.
This is because the knot metric was intended to measure
the unstructuredness of the program.

page 3-34

3.3.2.4 Procedurising-

Calling of a procedure, functional statement,
module, etc., which does not generate any control
transfer, should not affect the McCabe and knot metrics.
This can be a valid assumption when a CALL statement
which invokes a subprogram is treated as an assignment
statement.

3.3.2.5 Language Independency -

McCabe's metric is language independent, since it is
based on the flow graph representation of any program.

The knot metric is language dependent in detail,
that is, dependent on the detailed syntax of the
language.
principle.

However, it is language independent in
This is because it is based on control flow

graph edges drawn on the actual sequential
program.

source

3.3.2.6 Simplicity-

McCabe presents two simple ways to calculate the
program complexity (V(G)) these are given below:

1. V(G)= number of predicates + 1

2 • V(G)= number of regions in a planar graph of the
control flow.

Page 3-35

Difficulties may arise in deriving the control flow
graph of a program, for
certain program construct

it is not always clear how
should be represented. For

example, in ALGOL-6B, the program fragment:
if x then y else z fi

b:=l;
can be represented as:

y z

but how should the segment:
a:= if x then y else z fi;

be represented. If such a construction is reordered or
restructured before the control flow graph is derived
then this graph represents an equivalent program.
However, given a control flow graph, the above two
formulae are easy to compute. Therefore, McCabe's metric
is easy to obtain and it can also be generalised, so that
it can be applied to any graph.

The knot metric is also easy to compute and it
becomes easier when there exists an automatic software
tool to scan program written in FORTRAN-like languages.

page 3-36

3.3.2.7 Positivity-

The value of McCabe's metric V(G»-l for any
program, it is equal to one for a program which has only
a sequential code. Hence it is non-negative.

The knot metric also has a non-negative value for
any program. It is always zero for a sequential program,
and will remain zero for any program as long as there is
no control flow paths intersections in that program. It
can be concluded from the above that the knot metric
satisfies the positivity criterion of goodness.

3.3.2.8 Modularity-

McCabe has suggested a value of "10" as the maximum
complexity measure for a module to be manageable.
According to McCabe [5) if the complexity of a module is
greater than or equal "10" a further redesign is needed
for that particular module. Further, McCabe represented
the control flow graph of a program as a directed graph.
This directed graph can be reduced by replacing the
proper subgraphs a proper subgraph G' of G can be
defined as a subgraph of G with the condition that G'
not- G) in a program's flow graph with single entry and
exit nodes. By continuing graph reduction until no
further reduction of the graph, G, is possible, and then
applying McCabe's metric, the obtained measure is the
essential cyclomatic number. McCabe's essential
cyclomatic complexity number can be used to discover

Page 3-37

whether a certain program needs further modularization or
not. This is can be done by applying the essential
cyclomatic number technique to a module in a program. If
that module is highly complex, and its cyclomatic number
could not be reduced to less than or equal "10", then a
further modularization would require the redesign of that
module. This shows that McCabe's metric in such case can
be affected by the modularity criterion. However, in
some cases the relevance of the number "10", which is the
upper limit of module complexity can vary depending on
whether the code is sequential or deeply nested. This
shows that McCabe's metric may fail to reflect the
modification which is caused by modularisation.

The value of the knot metric will decrease as a
result of program modularization. For example let m be
the number of "knots" of a piece of code repeated n times
and hence separated from a program with k knots. Since
the modularization issue recommends the separation of the
repeated code and and its call as a procedure,
subroutine, functional statement, etc., the overall
complexity of the program after modularization will be
k-(n-1)m, which is always less than k. Therefore, the
knot metric may reflect the modification which is caused
by modularisation. However, in some cases where the
complexity produced due to sequential code or
nesting the knot metric may fail to reflect
modification which is caused by modularisation.

deep
the

Page 3-38

3.3.2.9 Linearization-

McCabe's metric does not reflect the complexity
incurred by a particular linearization. This is because
the cyclomatic complexity is computed using the flow
graph which carries no information regarding the
linearization issue. The knot metric, on the other hand,
specifically makes use of the linear ordering of nodes in
the flow graph to capture the control flow complexity
difference. For example, figure 3.4(a) which was given
before shows a program with four knots before
linearization. Figure 3.4(b) shows the same program with
one knot after linearization.

3.3.2.10 Unstructuredness-

Generally a structured program can be separated into
one entry and one exit units. This can be done when no
arbitrary transfer of control into or out of the body of
such units is allowed. In this case they become easy to
understand. The arbitrary transfer of control into or
out of the above units will make the program
unstructured. Such unstructuredness should be recognized
by the control flow complexity metrics. McCabe's metric
does recognise unstructured forms of a program. Consider
the following program constructs:
1. SEQUENCE,
2. IF,
3. WHILE,
4. UNTIL,

page 3-39

5. CASE.
McCabe argues that if a program is restricted to the
above constructs, then, the program will be structured.
The complexity of such a program can be reduced by
replacing each proper subgraphs in a flow graph of that
program by a single nodes. By continuing graph reduction
until no further reduction of the graph is possible, and
then applying McCabe's metric to measure the cyclomatic
complexity, the obtained measure is the essential
cyclomatic
unstructuredness. This shows

shows the program
that McCabe's metric in

number, which

such case can discover the program's unstructuredness.
However, if McCabe's metric is computed by the number of
predicates plus one then it may not discover the program
unstructuredness. This is because McCabe's metric will
be concerned with the number of predicates which mayor
may not be the same for structured or unstructured
programs. Oulsnam G. [60] stated that McCabe's metric
can not serve as a reliable measure for unstructured
programs.

The knot metric can recognise unstructured forms of
a program. This can be shown by applying the essential
knot measure which is similar to McCabe's essential
measure. Therefore, the knot metric can be considered as
a measure of unstructuredness. This is because a
structured program can be reduced to single node which
contains no knots. But usually there will be unavoidable
intersections due the IF ...THEN ..•ELSE or CASE statements

Page 3-40

alterations in the program. If these intersections are
ignored, then any other intersections will correspond to
the unstructuredness of a program [8].

3.3.2.11 structuring Transformation -

Generally McCabe's metric will be affected by the
duplication of the code which is incurred in the program
due to a structuring transformation. For example node
splitting may decrease the cyclomatic complexity of a
flow graph. This is shown in the example which given in
figure 3.6 (a) and (b).

page 3-41

Figure 3.6 (a)

V(G) = 8 - 7 + 2
= 3.

Figure 3.6 (b)

V(G) 8 - 8 + 2

= 2

Page 3-42

The knot metric will also decrease with every application
of a structuring transformation [38]. Thus a structuring
transformation which duplicates the code can be sensed by
both the knot metric and McCabe's metric.

3.3.3 STRUCTURED METRICS

The structured metrics are mainly used to measure
the following:

1. the stability of a software system. This metric is
developed by Haney [47] which is based on module
connectivity.

2. the degree of interdepedence among the components of
a program. This metric is develop by Myers [88].

3. the information flow between system components. This
metric is developed by Henry et al [6].

4. the logical stability of a program. This metric is
developed by Yau et al [45] and it is based on
recording the ripple effect resulting from program
modification.

The common factor between the above metrics is that all
of them are measuring up to which level the components of
a software system are connected. The researchers have
attempted to use software structured metrics to predict
resource expenditure during the design and the
implementation phases of the software system life cycle.

Page 3-43

Among the above metrics, Henry et al [6] claimed
that their metrics have been validated on the source code
of the UNIX operating system. Further, the information
flow technique reveals more of the software system
connections than other metrics such as [47, 88, etc.,].

For the above two reasons, it was decided in this
study to apply the generated criteria of goodness of
section 2 to Henry et aI's metrics [6].

3.3.3.1 Applicability-

Henry et al's structured metrics are based on the
measurement of information flow between system
components. Certain metrics are developed to measure
procedure complexity, module complexity and module
coupling. The procedure complexity metric is based on
counting lines of code in a given procedure and the
information flow connection of a procedure to its
environment. The module complexity metric is based on
the sum of the complexities of the procedures within the
module. The module coupling metric is based on the
extent to which two modules are coupled to each other.

Henry et aI's metrics [6] may apply to the design
phase of the software system life cycle. This is because
the major elements in the information flow analysis can
be determined at the design phase. This needs a precise
design language to be used. Moreover, it also needs
sufficient information to generate the information flow

Page 3-44

relations. However,the following difficulties may arise:

i. there is not a sufficient and precise known design
language which can be used as a tool so that the
developer will be enabled to apply such metrics to
the design phase.

ii. some design methodologies use only graph notation
without any details. They justify their method by
saying that one graph is worth one thousand words.
Thus, Henry et aI's metrics may be difficult to be
applied to such design methodologies.

The code length metric can be applied to an
implementation phase of the software system life cycle.
This is because the code length metric was defined by
Henry et al [6] as " the number of lines of text in the
Source code for the procedure". This is equivalent to
counting the number of statements in a program. However,
such a metric cannot represent the full complexity of a
procedure. This is because a procedure with small length
but which contains predicate nesting and iterating
statements is more complex than a procedure with a large
length which contains simply a sequence of assignment
statements. The coupling metric can be used as a tool
during the implementation phase to indicate the effect of
modifying a module on the other modules of a software
system.

Page 3-45

3.3.3.2 Validity-

Once a metric has been developed it must be
validated on a practical software system so that it can
be assured that the metric does measure what it is
intended to measure. Henry et al [6] claim that their
metrics were validated on the UNIX operating system. The
validation effort involved a correlation of procedure
complexity with the occurence of changes in the UNIX
code. Henry et al [6] show that the complexity metrics
obtained through information flow analysis indicate a
high correlation to actual changes for the UNIX operating
system.

3.3.3.3 Sensitivity-

If a software metric is to be used to assess the
software system then it is essential that it is
responsive to a software system change. Henry et aI's
metrics will be sensitive to those changes which increase
the following:
a. procedure code,
b. interfaces (fan-in and fan one) between the procedures.
This is because the developed procedure metric depends on
the above two factors. Moreover, Henry et aI's metrics
can be sensitive to those programming techniques which
minimise the value of their metrics. For example, the
languages which involve no procedures interfaces.
However, it is not shown by Henry et al which programming
techniques minimize the metrics and how these metrics

Page 3-46

behave with such techniques. It is believed that such
programming techniqes which minimize the metrics should
be examined to assure that reduction in the metrics
consistenly produce improvement in the program [67].
Also a programming technique which modifies the program
in a desirable way with respect to an attribute must not
produce undesirable side effects in another attribute.

3.3.3.4 Procedurising-

Henry et al [6] have considered the complexity of a
software system produced from a small number of
procedures which are heavily interfaced to each other.
Their metric of information flow assigns a value of
complexity to each procedure. As a demonstration of the
usefulness of their metric, Henry et al applied their
metric to UNIX operating system. They discovered that
their metric produced a high value for those procedures
which are highly interconnected. It can be concluded
from the above that Henry et aI's metrics heavily
penalise the procedure with a large number of
interconnections. This is an unpromising result, because
procedurising is generally a desirable practice and it is
heavily penalised by Henry et aI's metries.

Page 3-47

3.3.3.5 Language Independency -

Henry et aI's metrics deal
software system connectivity by

directly with the
observing the flow of

information among software system components. Since such
information flow can be determined for any language
therefore Henry et al's metrics are language independent.

3.3.3.6 Simplicity-

Henry et aI's metrics are based on information flow
connections termed fan-in and fan-out. Such information
flows are determined by generating a set of relations for
each procedure which express the flow of information
through a procedure from input parameters and global data
structure to output parameters and global data
structures. Henry [6] stated that: "Using the relations
generated on a procedure-by-procedure basis it is
possible to combine these relations to form the complete
stucture of information flow by a simple structure
process". It may be infeasible to generate such
information flow manually. This is because for a large
scale system it is a time consuming operation. However,
Henry et al [6] claim that the information flow method is
a completely automatable process using fairly standard
data flow analysis techniques which are developed in [97]
and [98]. If this claim is true then it is clear that
imformation flow metrics are easy to compute.

page 3-48

3.3.3.7 Positivity-

The value of Henry et aI's metrics procedure is
computed as:
P(C) = L * (fan-in *fan-out)**2.
This value is always positive. This is because L
represents the procedure length expressed in lines of
code which is always greater than zero. Moreover, the
information flow terms are squared which is also always
greater than zero. The coupling metric is computing as:
(8-->B) • (E + I) * N where;
E is the number of procedures exporting information

from module A,
I is the number of procedures importing information

into module B,
is the number of information paths between theN

modules A and B.
From the above formula, it is certain that the value of
the modules coupling metric will always be non-negative.
A value of zero for P(C) may, however, be obtained for
quite complex procedures if either fan-in or fan-out is
zero, e.g. a zero value may be obtained for procedures
which are called by users rather than called by other
procedures. However, the upper limit for Henry et aI's
metrics is not defined.

Page 3-49

3.3.3.8 Modularity-

It is one of the goals of modularisation to ensure
that each procedure occurs in one and only one module
[67]. When a procedure is located in more than one
module, the modularisation becomes improper, this is
because coupling will increase between the modules. The
above problem can be discovered by Henry et aI's module
metric. This is because those procedures which violate
the modularity principle will increase the value of the
module metric and should be more prone to errors due to
their connections to more than one module. However,
those procedures which are proportionaly distributed
among modules may minimise the value of the module
metric. To have a minimum value of the module metric is
considered by Henry et al as a satisfactory result
towards modularity. However, this is not the only way to
minimise their metrics. For example, the value of a
module's metric will be minimum when writing a program as
a Single module with no procedures, and hence, no flow of
information between procedures.

3.3.3.9 Linearization-

Henry et aI's metrics do not measure the complexity
incurred by a linearization process. This is because the
value of their metrics is computed using the information
flow between procedures. Such a flow of information
carries data from one procedure to another and nothing
regarding the linearization issue.

Page 3-50

3.3.3.10 Unstructuredness-

Henry et aI's metrics can not differentiate between
structured or unstructured programs. This is because
their metrics depend on procedures interfaces. Such
interfaces may be the same for structured or unstructured
programs.

3.3.3.11 Structured Transformation -

The structured transformation which is considered
here is node splitting. This node splitting involves a
duplication of code.
will be affected

Generally Henry et aI's
by the duplication of code.

metrics
This is

because node splitting generally will increase the number
of procedures connections and modules coupling and hence
the value of Henry et aI's metrics will be increased.

3.4 COMMENTS AND CONCLUSIONS

As mentioned in the previous chapter, the software
metrics can be divided into three categories. That is,
primitive, abstract and structured. The following
comments may arise on the first category which is
represented by Halstead's metrics:

i. Most of the linear relationships which are assumed in
the software science metrics seem to be
non-deterministic. For example, in a deterministic
system the mass of an object is calculated as:

Page 3-51

M = D*V
where;

D is the density of an object,
V is the volume of an object.

This relation can almost always be determined
correctlly for any object. In the case of Halstead's
metrics most of the relations between the parameters
are nondeterministic and dependent on an estimation.
Further no attempt has been made to use operational
research or probabilistic models for the
relationships. Even though the existence of a high
correlation between the measurements of program
length, volume, size and the number of bugs in the
program can be demonstrated, this does not ensure
that program length, size and volume are essentially
good predictors of errors. Neither can it be
suggested that errors can be reduced by reducing the
program length, size and volume [67].

ii. The software science metrics are mainly derived from
four measurements, i.e., number of unique operators,
number of unique operands, total number of operator
occurrences, and total number of operand occurrences.
Halstead assumed that all types of operators in a
program are the same whereas this is not true.
Operators may have two different meanings in syntax
and semantics. For example, real multiplication,
integer multiplication, and logical AND. The same
occurs with real addition, integer addition, and

Page 3-52

logical OR. Further, in some languages such as
ALGOL-68, it is very difficult to differentiate
between operands and operators. For instance, figure
3.7 (a) and (b) illustrates such difficullty.

page 3-53

Figure 3.7 (a)

procedure sub = (ref real z,real x,y) void:- - -
z := x + y;

sub(c,a,b);

(The two ALGOL-68 statements can be made
equivalent to the FORTRAN assignment statement

c-a+b).

Fi gu re 3.7 (b)

procedure sub - (~ ~ z,~ x,y) ~:

z := x * y;

sub(c,a,b);

(The two ALGOL-68 statements can be made

equivalent to the FORTRAN assignment statement

c=a*b).

The use of these operators should be treated

more carefully.

page 3-54

iii. Halstead tried to develop his metrics by combining
theories from both computer sciences and psychology.
Some of the psychological assumptions used in his
work are difficult to justify for the purpose for
which he applied them. For example, Halstead
considered the metric of the time equation T to be a
good estimate of time needed by a programmer to
generate a single module in a program. This metric
is derived analogously to a hypothesis in Psychology
presented by John Stroud [94]. He states that the
mind is capable of making a limited number of
elementary discriminations per second. This number
is denoted by S and it ranges from 5 to 20. Halstead
selected S to be equal to 18 claiming that this
number gave the best results during experimentation.
However, the Stroud number which is used to derive
the time equation metric has not been generally
accepted among the psychologists [43]. Indeed,
Curtis [1] states, "computer scientists would do well
to immediately purge from their memory the Stroud
number 18 mental discriminations per second". This
is because some complicated tasks such as program
generating and understanding may not be restricted to
the suggested number.

iv. According to Hammer et al [22] the empirical results
of Halstead's metrics are inaccurate.

Page 3-55

The second category of software metrics(those which
are based on the graph theory) are related to the order
in which the various statements of a program are
executed. Any alteration in the program statements
sequential flow can be used as a measure of control flow
complexity. Some of the control flow metrics are related
to the important criteria such as the number of errors
present in a piece of code and the time available to find
and correct these errors [3]. Static measures have been
created, in terms of which the source programs are
analysed, and the software metrics are obtained and
quantified. The researchers have also attempted to
create a dynamic measure by introducing data flow, data
structure, and analysing the program performance during
execution.

Examples from this category are McCabe's metric and
the knot metric. McCabe's metric can be computed easily
by the formula:
V(G) - number of predicates plus one

in a well structured program.
The ordering of the program constructs is not important
in McCabe's metric. It cannot detect the difference
between two arrangements of a program's construct. The
arrangement of the program's construct in a certain order
may improve the program structure. This difference can
be detected by some other metrics such as the knot metric
etc .. This is shown in the example given in figure 3.B
(a) and 3.8 (b)

page 3-56

F i gu re 3.8 (a) F i gu r e 3.8 (b)

V(G)= 6-5+2=3

K=4

V(G)= 6-5+2-3

K=l

Additionally the structure of certain programs could
be better than others but they could have the same

McCabe's measure. For example, the two flow graphs which

appear in figure 3.9 (a) and (b) depict the structure of

two programs. The graph in figure 3.9 (a) appears to be

more structured than the graph in figure 3.9 (b), even

though they have the same McCabe's cyclomatic number - 4.

page 3-57

Figure 3.9(a). Figure 3.9(b).

V(G) = 6 - 4+ 2 = 4.

V(G) = e - n + 2*p
V(G) = 10 - 8 + 2 = 4.

McCabe's metric is language independent. It does
not distinguish between the structured and unstructured
programs.

The knot metric which is based on control flow jumps
has the following defects:

1. it does not show any program complexity incurred by
the straight line code of the program,

2. it is language dependent in detail but not in
principle for example, the COBOL performed paragraph
increases the number of knots essentially.

page 3-58

The common weak points of the second category
metrics are the following:

i. their relevance decreases for large scale systems,

ii. they have considered the correlation coefficient to
be the sole measure of the relationship between two
variables. For example, the correlation between
errors and complexity, errors and the size of the
code, etc., whereas a high correlation indicates only
that some relationship exists, but does not show what
the relationship is. Hamer et al [22] have warned of
the pitfalls in using the correlation coefficient to
confirm an identity relationship between two
variables.

iii. no clear distinction is drawn between different types
of bugs and the origin of those bugs. Jackson [10]
has showed that many bugs originate from a mismatch
between the structure of the problem and the
structure of the solution of the problem.

The final category of software metrics has certain
advantages for a manager's overall understanding of
system complexity and its impact on system costs and
performance. For instance, the metrics [42] which is
measuring interconnectedness among segments of a software
system will enable the manager to predict the maintenance
cost of the software system. This is because such
metrics deal with a macro-level of the system which may

page 3-59

be easy to understand [42]. Although the last category
is based on structure properties of software design and
seems to have some strong attractions, there is not
sufficient research to give a true assessment of its
value. The general problems which may arise with
structured metrics are the following:

1. for a large system model validation is difficult,
because the model inputs have not been automated,

2. the assumption that all modifications to a module
have the same ripple effect is not relevant.

Generally it can be concluded that, no approach at
present can be considered as a standard and true measure
of software systems. The metrics which are available now
are not sensitive to errors. Metricians never show the
negative results of their metrics whereas positive ones
are published proudly.

•• &lPlP ••
lIi

•••

CHAPTER 4
SOFTWARE QUALITY

4.1 INTRODUCTION

Software quality is one of those terms. in Software
Engineering which has not yet been defined precisely and
properly for all the purposes despite numerous attempts.
In recent years software developers have made
considerable efforts to define the quality aspects of
software systems such as (29) , (46), [70], etc.. In
section 1.1 below, there is a brief critical review of
the definitions and concepts of the term software quality
which are used or defined by various authors.

This chapter is divided into six sections. Section
4.1 contains the introduction and several definitions of
the term software quality defined by various authors.
This section also contains the criticism of these
definitions. Section 4.2 contains the suggested approach
to make software quality more clear and visible. This
section splits into another subsection that is, 4.2.1
which contains the definition of the various terms used
in this study. In Section 4.3 efforts have been made to
identify and define 60 important software quality

Page 4-2

attributes. These attributes may have impact over the
quality of the software system. Section 4.4 contains the
"internal" views of software quality. In section 4.5 a
detailed quality plan is presented which contains the
following phases which will be described later.

a. software quality requirements phase,
b. software quality factors phase,
c. a software quality model phase,
d. validation and verification phase.

Finally, in section 4.6 conclusions of the overall
chapter are presented.

4.1.1 Definitions And Criticism

The IEEE standard glossary [13J has defined the term
software quality as:

i. "the totality of features and characteristics of a
software product that bear on its ability to satisfy
a given need".

ii. "the degree to which software possesses a desired
combination of attributes".

iii. "the degree to which a customer or user perceives
that software meets his or her composite
expectations".

iv. "the composite characteristics of software that
determine the degree to which the software in use
will meet the expectations of the customer".

Page 4-3

In the above definitions, certain terms or words are
used without definition. For example, the terms
"characteristic" and "attribute" have been used without
giving its definition in the glossary. This may confuse
the users, management and developers.

Jones [27] has used the term quality to denote the
absence of defects in the software. He uses error
detection and removal tasks to indicate a certain
quality.
defects:

a. prevention of defects from occurring,

He suggested two ways to minimise program

b. detection of defects and removal.

From Jones analysis it can be concluded that a
better software system will be a result of less defects
in a software program. From this it is clear that Jones
regards a defect free program as being high quality.
Other parties may disagree arguing that say usability is
more important. Further, prevention and detection of
defects is not sufficient alone without the quality
management. Frewin et a1 [26J stated that" while an
effective prevention programme can thus reduce the
overall cost of quality management, it should never be
used as a reason for dismissing the need for such
management: faults will always be with us, and it will
always be an asset to be able to increase confidence in
the belief that a process or a product has few if any
faults -without a full quality management programme,
there can be no such confidence". However, it is

page 4-4

important in defects prevention and detection to apply
quality assurance techniques and try to limit the
propogation of defects through the different phases of
the system development life cycle. For example, the
defects wich occur in earlier phases should be corrected
Soon (if possible) before moving to the further phase in
the life cycle. Some defects for example, may be avoided
by adapting a specific programming style. For example,
structured programming.

Yourdon [7] has divided up a software system into a
collection of interacting modules. He pointed out the
interrelationships between the modules, and suggested
certain criteria for evaluating the quality of a software
design. According to Yourdon's criteria, the quality of
a module is classified into seven levels of cohesion.
These levels are functional, sequential, procedural,
communicational, temporal, logical and coincidental. For
example, one of his criteria to determine the functional
cohesion module is to sum up a module's intended function
by a precise verb-object name as, READ, CALCULATE,
DEDUCT, etc .. He considered a high quality software
system design, as one which consists of modules having a
high degree of functional cohesion. However, Presland S.
G. [11] argued that generally identifying software
functionality by simple method such as the one given by
Yourdon is not successful in a large system. Also, the
other criteria which are given by Yourdon to determine
the other module cohesion levels are difficult to apply

page 4-5

due to the subjective nature of the definition of these
module cohesion levels. Further, Yourdon does not
consider the role of defects.

Boehm et al [29] have not given any specific
definition of software quality. However they have
developed a hierarchy of software quality
characteristics. This hierarchy is shown in figure 4.1.

At the top level of this hierarchy is the general utility
of a software product which reflects the actual uses to
which software quality is evaluated .. Then the
intermediate level of the hierarchy represents the
quality characteristics such as portability, reliability,
efficiency, etc., which are important for a certain
software system. At the lower level of the hierarchy are
certain
primitive

software quality characteristics, called
characteristics such as, accessibility,

accuracy, etc .. These primitive characteristics are used
as a set of necessary conditions for the intermediate
level characteristics.

page 4-6

Figure 4.1 software quality characteristics tree--
01 General utility

02 maintainability
03 testability

04 accountability
04 accessibility
04 communicativeness
04 self-descriptiveness
04 structuredness

03 understandability
04 legibility
04 conciseness
04 structuredness
04 self-descriptiveness
04 consistency

03 modifiability
04 augmentability
04 structuredness

02 as-is utility
03 reliability

04 self-containedness
04 accuracy
04 completeness
04 robustness/integrity
04 consistency

03 efficiency
04 accountability
04 device efficiency
04 accessibility

03 human engineering
04 robustness/integrity
04 accessibility
04 communicativeness

02 portability
03 device-independence
03 self-containedness

In such a hierarchical structure the characteristics are
related in a one way direction. For example according to
Boehm [30] if a program is maintainable this implies that
it is also understandable and testable.
illustrates this relation.

Figure 4.2

Figure 4.2
maintainability------>understandability

\-----> testability
In the given example the arrows are restricted to a one
way direction.

page 4-7

The above claim is not necessarily true. It can be
easily shown that the relationships between the
characteristics of two different levels may be
interdependent. It depends on which characteristic the
viewer chooses to stress. For example, understandability
may be more important than maintainability. Thus, the
characteristic understandability may appear at the top
level of the hierarchy and maintainability may appear at
the intermediate level of the hierarchy. This is because
if a software system is understandable this could imply
that it is also maintainable. It is also possible that
the characteristic testability may appear at the top
level of the hierarchy and the characteristics
understandability and maintainability at the intermediate
level of the hierarchy structure. This is because a
software system which is testable is also maintainable
and understandable. Figure 4.3 and 4.4 illustrate such
interdependency relationships.

Figure 4.3
understandability----->maintainability

Figure 4.4
testability--->understandability

\-->maintainability

A similar study, to define software quality aspects
has been carried out by McCall, Richards and Walters
[46]. They have defined quality as: "a general term
applicable to any trait or characteristic, whether
individual or generic; a distinguishing attribute which

Page 4-8

indicates a degree of excellence or identifies the basic
nature of something". In the above definition, McCall,
Richards and Walters have not given any definition for
the terms characteristic and attribute which are used in
their definition.

A recent study has been carried out by Bowen, Wigle,
and Tsai [79], to explain software quality. It is
observed that Bowen et al have not explicitly defined the
term software quality. However, they have increased the
number of software quality factors. This was due to an
expansion in the software quality criteria and software
quality metrics.

Garvin D.A.[92] has synthesised five various
distinct views of product quality. He derived these
views from philosophy, economics, marketing, and
operation management. These views are:
a. the transcendent approach of philosophy,
b. the product-based approach of economics,
c. the user-based approach of marketing,
d. the manufacturing-based approach and
e. the value-based approach of production.
These views are entirely general and not related to any
particular product. However, it needs more care when
applying them to a software product.

Kitchenham et al [70] have extended these views
against a background of software system development
products and they have given wider, more useful and

page 4-9

general views of software quality.
described below briefly:

These views are

i. transcendent view: the quality in this case cannot
be measured, but it can be felt and recognized
through experience. An example is hi-fi music.

ii. product-based view: the quality in this case is
related to the ingredients of the product. This
implies that higher quality can be obtained at higher
cost.

iii. user-based view: the quality here is related to the
user requirements and user needs. The primary focus
of this view of quality, is clearly, external to the
producing organisation.

iv. manufacturing-based view: in this case the quality
is related to certain specifications which must be
available in the product.

v. valued-based view: quality in this case is composed
of the two previous views, that is,
manufacturing-based view and user-based view.

Howeve r, Kitchenham did not give any specific, explicit,
or precise definition of the term software quality.
Further, even within one of these views there are further
different perceptions of quality. For example, consider
the user-based view in which user requirements, may be
maintainability, usability, etc.. These qualities may
have further such classification, that is, the external

Page 4-10

view and the internal view. For example, an internal
view of maintainability may be knowing how many paths
contain a particular statement, whereas an external view
can be the time to fix a bug in a piece of code.

Generally, software developers, users, management,
etc. deal with the external views of the software
quality. Few people have attempted to consider the
internal views of software quality. Therefore, one of
the objectives of this study, is to deal with quality
from an internal viewpoint.

4.2 DESIRABLE APPROACH

Research into software quality is still in a state
of flux. Software quality researchers have defined and
used the concept and term of quality in its general and
external meanings, where by external is meant the view of
users/buyers of software, and the internal view relates
to the structure or construction of the software.
However, few researchers have considered the internal
views of software quality. The last point and the
discrepancies in the concept and the term quality and its
use compelled the author to develop a uniform,
consistent, unambiguous
which software quality

and comprehensive approach by

visible.
may become more meaningful and

This approach consists of the following:

Page 4-11

i. the development of clear definitions for the terms
software quality, quality characteristic, software
quality property, software quality attribute,
software quality factor, software quality criteria,
software quality metric and software quality plan.

ii. identification and definition of various quality
attributes,

iii. giving the internal views of software quality,

iv. development of a software quality plan ..

This approach will enable the developers to understand
the concepts of software quality and help them to apply
and control it according to the expectations of users,
management, customers etc.. The clear definitions of
these terms may help to prevent the misinterpretting of
these terms. These definitions will also serve as a
touchstone against which new ideas can be tested.

4.2.1 Definition Of The Used Terms

The terms software quality, quality characteristic,
property, attribute, factor, criteria, metric and quality
plan are used frequently by various authors of Software
Engineering. For example, in the IEEE glossary [131,
McCall et al [46], Kitchenham et al [70] etc. These
terms are being used in various different meanings. This
is because, some of these terms are very difficult to
define and in particular very difficult to distinguish.

page 4-12

The study of the software quality literature revealed
that these terms are used without clear and explicit
definitions. Therefore, there is an acute need to have
clear definitions of these terms which are commonly used
when discussing software quality.

The following are proposals for the definitions of
some important terms related to software quality. These
definitions have arisen from papers in the software
literature such as [29, 32, 33, 34, 70, 99, etc .•] The
definitions supplied are either inferred from the
original documents or are supplied by the author and
coworkers. These terms are used consistently in this
study. Moreover, a glossary of some of the used terms
are defined in appendix [AI. Any term which is not
defined here, is used in its conventional meaning.

4.2.1.1 Software Quality -

Software quality, or quality as it shall be termed
hereafter, is an abstract concept.
defined as a degree of excellence which

Quality can be

number of characterised properties, e.g.
depends on a

reliability,
characterisedmodularity, readability, etc •. These

properties when possessed by a software system, will
enable the software system to satisfy certain constraints
which may be imposed by its developers, customers and
users. For example, the constraints may be the cost,
construction time and conformance to certain predefined
specifications, etc .. Following Garvin [92], quality

page 4-13

will be classified into:
a. transcendent view,
b. product-based view,
c. user-based view,
d. manufacturing-based view and
e. value-based view.
The internal view which is of interest here is primarily
by not wholly related to the manufacturing-based view.

In order to make quality more tangible certain
properties are attributed to it. These properties or
attributes depend on the viewpoint or interest of
specific observers. It will be assumed in this study
that attributes and properties are equivalent. These
attributes will also be referred to generically as
qualities. In order for properties to become
quantifiable or measurable they must be characterised.
That is, a description, notion or similar device must be
used in order to provide a basis for characterisation.
For example, if length is such a property then it can be
characterised by, lines of code, number of lexemes,
number of characters etc .. Moreover, it is possible to
have a number of properties which reflect a given quality
perspective and each property may be characterised in
different ways.

In common with other areas of sciences it is
appropriate to refer to a characterisation as if it is
the property itself in cases where the distinction is not
significant. Thus, line of code in the above example may

page 4-14

be considered in general to be a property of a software
system. The distinction only needs to be made when the
details are under consideration. Frequently, there are
properties of quality which are of considerable interest
but which are too complex for direct consideration. In
these cases it is often possible to discern factors which
clearly contribute or relate to the property of interest.
For example, readability is affected by the factors such
as legibility, vocabulary, type font, etc •. In general,
each factor must itself be characterised with the
informal understanding that references to the
characterisation will usually be understood to refer to
the factor itself. Many of the~e factors may be assessed
in more than one way. For example, with the type of font
there are issues of size, style and density, etc.. Thus
for each factor there may be a number of metrics and for
each metric there must be some criteria which must be
satisfied. These criteria are predefined standards
against which the quality factors may be judged [77J.

The incorporation of the required level of these quality
factors into the software development life cycle can be
achieved by constructing a quality plan.

Sometimes certain characterised properties, such as
reliability, maintainability, etc., may be used as a
definition of product quality [91]. Sometimes qualities
can be meaningful only before or after certain time. For
example, feasibility is meaningful before the
establishment of the system, and reliability is

Page 4-15

meaningful when the system is working [80].

To make the software system successful, reputable,
and compliant with required standards, the following
issues must be considered:

1. the quality must be managed,

2. the achievement of the quality must be the
responsibility of every department and every
individual in a given organisation,

3. there must be a continuous search for quality
improvement. However some companies stop improving
the quality of their products when they feel that
their products prove reputable and have excellent
markets,

4. quality must satisfy all the desired attributes,

5. the quality should be considered first while
developing a software system keeping into account the
long term profit.

4.2.1.2 Software Quality Characteristic -

A characteristic can be defined as: a term used to
give form, notion, description etc., to some abstract
concept. It is very essential to characterise the
software properties so as to determine and to evaluate
the degree or level to which software system approaches
the desired qualities. An example of these properties

Page 4-16

are; maintainability, reliability, etc •.

Note: In other sciences, characteristics are used
as if they were properties themselves.

4.2.1.3 Software Quality Property -

A software quality property is defined by Kitchenham
[lOS] as: "a non-functional feature of a software system
which is exhibited to an extent(i.e. to a degree). The
extent to which a software system exhibits a particular
software quality property bears on its ability to meet
given needs".

This use the word "quality" in the above definition
does not reflect the concept of quality as the sum of
characteristics by which a thing may be identified,
neither does it equate quality to inherent worth. It is
related more to the concept of grade, whereby products,
processes or services intended for the same functional
requirements may meet different sets of needs [104]. It
should be noted that the above definition does not
exclude price and delivery time from any list of software
quality properties.

4.2.1.4 Software Quality Attribute -

A software quality attribute is defined by
Kitchenham [IDS] as: "a software quality property which
is characterised in abstract terms only, (i.e. by a
verbal definition which does not include directly

Page 4-17

observable or measurable properties)".

The above definition equates software quality
attributes to what Boehm et al call "intermediate quality
characteristics" [28), and McCall et al call "quality
factors" [46].

4.2.1.5 Software Qualities _

Software qualities is a generic term used to refer
to a group of software attributes. The term "a software
quality" is used as a synonym for" a software quality
attribute" [105].

Software qualities is not the prural of software
quality. Software quality, as it defined in the IEEE
glossary, cannot be used in the prural, neither can it be
qualified by the indefinite article.

Page 4-18

4.2.1.6 Software Quality Factor -

A software quality factor is defined by Kitchenham
[IDS] as: "a property which can both be characterised in
terms of one or more directly observed and/or measurable
features, and be related to some facet of a software
quality attribute".

This definition implies that both software quality
attributes and software quality factors are inherently
multi-dimentional. There is no implication that a
software quality attribute can be completely described in
terms of its related software quality factors, neither is
there any implication that a software quality factor
relates to only to a single software quality attribute.
The above definition equates software quality factors to

Boehm et al call "primitive qualitywhat

characteristics", and what McCall et al call "quality
criteria".

4.2.1.7 Software Quality Criteria -

Software quality criteria is defined by Kitchenham
[IDS] as: "software quality criteria is the plural of
software quality criterion. A software quality criterion
is that value or characteristic which determines whether
or not a particular feature of a software quality factor
conforms to the requirements set on it".

Page 4-19

For software quality factors which are characterised
in terms of measurable features, the software quality
criteria correspond to the measurement values required
(i.e. targetted/planned) for that feature. A software
quality factor can be said to have reached its required
"level", if all the feature that relate to the software
quality factor conform with their respective software
quality criteria [105].

4.2.1.8 Software Quality Metric -

A software quality metric is defined by Kitchenham
[105] as: "a quantitative feature of a software product
or process used to characterise a software quality
factor. A software quality metric must be named, and
defined in terms of the software products and processes
to which it is relevant, its units, and measurement
collection procedures. A software quality metric value
may be obtained by applying the measurement procedures to
the relevant software product or process".

N.b a software quality criteria is a software
quality metric value obtained not by measurement, but by
reference to a standard, a plan, a requirement, or a
target in order to judge a value obtained by measurement
[105] .

A software quality metric can be an objective one
where numerical values can be obtained (e.g. McCabe's
metric [5]). Alternatively, it can be based on a

Page 4-20

subjective ranking scale (e.g. module cohesion and

coupling [7]). AS an example of these definations
consider the software quality attribute "complixity"
which may be defined as "the degree of intricacy of a
software system or its components". A quality factor
related to complexity may be "structured design
complexity" and defined as "the intricacy of a structure
diagram of the call relationships between system
procedures" and characterised in terms of the maximum
fan-out from procedures". The software quality metric
providing a measure of "maximum fan-out" is the maximum
number of lines emanating from a box in a structured
diagram of the system. The software quality criteria
used to judge the value observed in a particular system
must be determined in advance by the project or quality
manager, the developers and the users. It may for

example be set at 7 • Faiplure to limit the maximum

fan-out to 7 or less would prompt a redesign of parts of

the system (e.g. introducing an extra level, with

associated procedures, into the design) . It should be

noted that "structured design complexity" might also be
characterised in terms of the "average fan~out frbm
procedures", or indeed any other metric related to
structured charts, in each case a different software
quality criteria would be necessary to judge the observed
metric values, and by inference to judge the software
quality factor.

Page 4-21

There is still some potential difficulty in
distinguishing between the definition of software quality
factors and identification of software quality metrics,
but it is believed that these definitions have provided a
useful starting point for the research reported in this
thesis, and it is hoped that they provide a basis upon
which more refined definitions can, if necessary, be
built.

4.2.1.9 Software Quality Plan -

A software quality plan may be defined as an
aggregate of methods, procedures, approaches,
constraints, measures and metrics, etc., which can guide
in developing a software system which is adequate and
achieves a specific set of software quality factors.

4.3 IDENTIFICATION AND DEFINITION OF VARIOUS QUALITY
ATTRIBUTES.

The effort is made to identify and define certain
important software quality attributes. During this
effort 60 possible quality attributes were defined.
These definitions are given in appendix [B] •

Considerations were made to include all the attributes
which can improve or effect the quality of a software
system to any extent and at any phase of the system
development life cycle. It was observed that out of
these 60 attributes some of them are synonyms. The list
of these synonyms of the software quality attributes are

Page 4-22

generated in this study. These synonyms are in terms of
their general meanings as defined in [82]. This list of
synonyms will help the user and developer/management to
communicate easily without misinterpretation of the
meaning of given attributes. The list of synonyms is
given in the appendix [D]. In addition to providing
definitions of the quality attributes and list of
synonyms, it was also decided to investigate the extent
to which experienced software engineers were familiar
with, and consistent in their use of, software quality
attributes. This was done by asking coworkers in
Liverpool University and LDRA to
understand to be the nature of the

indicate what they
relationship between

each of the different software quality attributes. The
relationships they were asked to consider were:

*

*

independency,
interdependency,
direct dependency,
indirect dependency.

*

*
Independency occurs if two software quality attributes
are mutually independent, e.g. readability might be
judged to be independent of accuracy and vice versa.

Interdependency occurs if two
attributes are mutually dependent

software quality
on each other, e.g.

error tolerance might be judged to be dependent on
robustness and vice versa.

Page 4-23

Direct dependency occurs if a software quality
attribute depends on another, but the convers is not
true, e.g. accuracy is necessary condition for
correctness, but the reverse is not true.

Indirect dependency occurs if a software quality
attribute occurs as a by-product of other software
quality attributes, e.g. reliability may be viewed as a
side-effect of correctness, testability and
understandability.

The coworkers who took part in the experiment were
each given a relationship matrix, and asked to identify
the nature of the relationships among the software
quality attributes as shown in appendix [EJ. They were
not, however, shown the definitions of the software
quality attributes given in appendix [EJ, nor were they
shown the list of synonyms shown in appendix [OJ.

A composite response was constructed from each
individual response by including all the relationships
which were agreed unanimousely. The composite response
is shown in appendix [EJ. The following points may be
observed by inespection of the composite relationship
matrix:

1. the relationship matrix is internally inconsistent,
i.e. interdetermancy relationships which should be,
by definition, symmetrical, are not so in all cases,
and the dependency relationships which should be, by
definition, asymmetrical, are symmetric in some

page 4-24

cases,

2. the relationships identified in the relationship
matrix are not consistent with the definitions in
appendix [B) or the synonyms in appendix [D]. For
example, portability and transportability which are
defined in very similar terms and are shown as mutual
synonyms in appendix [D) , are identified as
independent in the relationship matrix. In addition,
reliability and usability which have very different
definitions, and no synonyms in common are identified
as interdependent.

It can be concluded from this experiment that:
a. software quality attributes are not self-defining,
b. software engineers will use their own unstated

definitions of software quality attributes in the
absence of agreed standard definitions,

c. unstated definitions will be mutually inconsistent.

4.4 INTERNAL VIEWS OF SOFTWARE QUALITY

The quality of a sofware system may have at least
the following internal views. These views are related to
sofware systems:

i. information-based view: the quality of a sofware
system, in this case, is related to certain
attributes which make the software system well
documented and informative. For example, attributes
such as accessibility, communicativity,

Page 4-25

comprehensiveness, self-descriptiveness, etc.,

ii. relationship-based view: the quality of a software
system is related to certain attributes, which convey
relationships between the components of the software
system. For example, cohesiveness, connectivity,
consistency, intraoperability, modularity, etc.,

iii. performance-based view: quality in this case, is
related to certain attributes which indicate that how
the software system does its tasks effectively. For
example, accuracy, conciseness, efficiency,
predictability, stability, etc.,

iv. variation-based view: the quality of a software
system is related to those attributes which make the
software system capable of being changed. For
example, adaptability, augmentability, changeability,
elasticity, expandability, maintainability,
modularity, etc.,

v. safety-based view: the quality of the software
system is related to certain attributes which prevent
a product induced accident which may be effect human
life, welfare or property. The attention is directed
to a product which is accident free in operation and
to any indirect impact upon safety - the so called
side effect -. For example, the quality of a medical
software system which shows drugs interactions and
side effects is related to attributes such as
integrity, security, trustworthness, etc.,

Page 4-26

vi. generality-based view: the quality of a software
system is related to certain attributes which make
the system capable of being used for various classes
of problems or environments. For example,
flexibility, generality, portability, reusability,
etc.,

vii. time-based view: the quality of a software system is
related to those attributes which have a temporal
significance. In this case, the attributes are
meaningful at a particular point of the system
development life cycle.
reliability, etc ..

For example, feasibilty,

4.5 THE DETAILS OF THE SOFTWARE QUALITY PLAN:

4.5.1 Introduction:

The complex nature of software quality is one of the
reasons that software systems are difficult to build
according to the expectations of the users, management
and developers. Without a software quality plan, the
user/ management/developer may not know how to establish
and communicate the quality requirements for a software
system. The user generally does not know which software
attributes should be selected to achieve the desired
level of quality. The project manager may not able to
determine which/what quality attributes have been
achieved in his or her software system. Frewin et al
[26] has discussed the quality plan in brief as a part of

page 4-27

quality management without giving any definition of the
quality plan or any detail.

The suggested quality plan in this study can guide
which quality attributes should be incorporated in a
software system to achieve the desired purpose. For
example, a quality plan especially addressing tactical
software will contain quality attributes which are not
common to general software such as pay-roll system.
Therefore, it is very essential to establish a software
quality plan in advance to help in such problems as well
as in other problems. The software quality plan as
defined earlier is an aggregate of methods, procedures,
approaches, constraints, characteristics, attributes,
etc. which can
which is adequate
qualities. This is an

in developing a software system
achieves a specific set of
advance preparation of all the

guide
and

actions necessary to obtain a satisfactory product.

This quality plan can be used for the establishment
of software having desired qualities. This is because
this quality plan gives guide lines to choose quality
attributes which pertinently contribute to the quality of
the software system. This quality plan may help to
achieve the possible quality which is acceptable to the
customer at the price he is prepared to pay, and at
certain wanted time.

Page 4-28

This quality plan is mainly concern with the
software systems, but it may be used for the other
systems. This quality plan may also be useful to the
software quality researchers.

4.5.2 Purposes Of The Quality Plan:

The purposes of this quality plan are given below:

i. to develop a structure, set up or skleton which can
help the management and software system developers in
obtaining a desired level of qualities of a software
system,

ii. to provide clear strategy, policy and criteria to
select the quality attributes in order to achieve
software of desired qualities,

iii. to provide the ways, tactics, means, etc. which can
incorporate the selected quality attributes and can
obtain a software of desired qualities,

iv. to provide a frame work and uniform guide lines which
can direct the software developers to examine the
possible effect
attributes.

or behavior of the quality

v. to provide a conceptual shape against which the
delivered software system can be examined.

Page 4-29

4.5.3 The Clarification Of The Terms Used In The
Quality Plan

To have clear definitions of terms and concepts
which are used in the quality plan are very
essential. This is because different parties i.e.
users, managenent or developers may differ in their
interpretation of these terms. This may particularly
happen when language and definition of these terms
are not clear. The following are essential
precautions which should be taken into consideration
while developing a quality plan:

i. certainity of terms i.e. the quality
requirements must be stated in a precise,
definite and clear terms,

ii. consistency of terms i.e. the same terms must be
used for the same purpose to refer to
characteristics, factors, etc. through out the
quality plan,
Note: most of the other people are making such
mistakes e.g. Boehm [29], McCall [46], etc.,

iii. do not use terms which cannot define an exact
level of performace i.e. qualities must be
specific and capable of measurement to the
accuracies specified. For example, terms like
highy reliable, highly accurate, good performance
suitable for the purpose intended etc. should be
avoided [103]. However, there are some

page 4-30

attributes which are impossible to measure in a
universally expected way. Such attributes can be
excluded from this restriction.
accessibility, readability, etc ..

For example,

4.5.4 Tools And Support

In this section there is brief discussion about the
tools and support which can be used in this quality plan.
The following tools and support are suggested to be used
in this quality plan:
a. a list of the defined attributes,
b. synonyms list of the quality attributes,
c. relationship matrix between the quality attributes,
d. classification list of the quality attributes,
e. further classification list of the quality attributes.

4.5.4.1 The Defined Attributes -

The definitions of these quality attributes may help
to prevent the misinterpretting of them. These
definitions will also serve as a guide book to the
developer/user/ management against which new ideas can be
tested. The definitions of these attributes are given in
appendix [8j.

Page 4-31

4.5.4.2 Synonyms List -

A list of synonyms for the defined quality
attributes is given in appendix [D) for the purpose of
use in this quality plan. These synonyms are in terms of
their general meanings as defined by [82]. This list of
synonyms will ease the communication between user,
management, developer, etc. without misinterpretation of
the meanings of given attributes. As it stands in
appendix [D), the synonyms list should not be used to
covert a user's requirements autamitically into the
developers terminology because it does not indicate which
of the natural language synonyms are rendered
inapplicable by the particular definition given to a term
within the context of software quality attributes. For
example, the definition of stability given in appendix
[B) is " The extent to which software system is capable
of resisting the changes that are made to its
components". In appendix [D), the natural language
synonyms for stability are given as consistency and
uniformity. It seems clear that the stated definition of
stability does not include the concept of uniformity. It
therefore important that a user is not led to be believe
that a requirement for uniformity is being met by the
developers working towards achieving stability.

Page 4-32

4.5.4.3 Relationship Matrix -

The concept of a relationship matrix to indicate the
nature of relationships between software quality
attributes is a potentially powerful tool to assist
product managers and developers to determine whether
user's software quality attribute requirements are
feasible, and to develop a plan to achieve the desired
attributes.

The results of the experiment described in section
4.3 make it clear that to develop a practical
relationship matrix which could be used as a project
management tool, it is necessary work from agreed
software quality attribute definitions. Production of a
complete and consistent relationship matrix for the
software quality attribute definitions in appendix [B]
is, however, beyond the scope of this thesis.

4.5.4.4 Classification List Of The Quality Attributes -

The quality attributes are classified in this study
with respect to three main phases of the software system
development life cycle. That is, analysis, design and
implementation phases. The reason for this is to
investigate whether quality issues change as the life
cycle progresses. All the terms have been extracted from
literature addressed solely to the each phase.

a. Analysis phase Attributes
The analysis phase attributes have been developed by

Page 4-33

Shaikh M.U [95] as a part of the ALVEY project test
specification and quality management. The definitions of
these attributes can help the developer to have a clear
concept about the quality at the analysis phase.
Moreover, the developer will be able to identify which
attributes can be included in the analysis phase.
Further, the developer may assess the progress of the
work being done so far by quantifying these attributes
(if possible). These attributes are given in the
appendix [F].

b. Design Phase Attributes
The design phase attributes have been developed in this
study by the author. These design attributes have been
observed in a set of Software Engineering documents such
as [7, 17, 18, 19, 24, 34, 36, 62, 78, 85, 89, etc., J.

These attributes have been collected, defined and
interpreted with respect to the design phase viewpoint.
These attributes can be used by the developer to have a
clear idea and definition about the software qualities at
the design phase. Further, these attributes can be used
as a basis to judge the quality of the design phase of a
software system. These attributes are given below:

1. Documentational attributes
D1. Accessability the degree of ease with which

software components(modules,
subsystems, etc.) can be
accessed while looking at
the design documentation.
For example the extent to

Page 4-34

which the nodes of
the data flowgraph have to be
visited. The most accessible
design might be the one
which tends towards a tree
structure.

D2.Communicativeness the level to which software
design is able to convey and
transmit informations, ideas,
concepts, etc •.

D3.Comprehensiveness the extent to which all the
essential information is
available in the design of
a system.

DS.Legibility the clarity of software design
e.g. environment, objects and
their presentation, etc ..

D6.Readability the degree of ease with which
the design can be read.

D7.Self-descriptiveness the extent to which software
design contains adequate
comments about what the design
is, and what is its purpose.

For example the design of the
a system must show enough
information to the user

Rl.Cohesion

R2.Complexity

Page 4-35

to determine its objectives,
assumptions, constraints, etc.

2. Relational attributes
the extent to which the
software design components,
activities, functions,
purposes etc., are related to
each other within a module,
subsystem, procedure, etc.
The higher the cohesion the
better the design.
Troy et al [89] have given the
following features as
a measure of cohesion

1. the number of interrelations(
effects) listed in the design
document within a module,

2. the average fan-in in the
design structure chart,

3. the number of possible
returned values.

the extent of intricacy
of the system design. Factors
influencing the design's
complexity may include the
scope of control of each
module and the relative
size of the design.

R3.Connectivity

R4.Consistency

RS.Coupling

R6.Modularity

page 4-36

The following are some of the
complexity metrics for a design:

1. the maximum depth of the
design's structure chart,

2. the average fan-in in the
sructure chart,

3. the number of selections, and
loops in the structure chart.

the extent to which the software
design components, activities,
function, purposes, etc.
are easily linked together.

the extent to which the
software design components
contain a uniform notation.

the extent to which the
software design modules are
interrelated. The degree of
coupling depends on how
complicated the connections are
and the type of the connections.

the extent to which the software
design can be decomposed into
smaller units provided that a
change in one unit has minimal
impact on other units.

R7.Structuredness

page 4-37

the extent to which the software
design is using certain
techniqes which will reduce
complexity and improve clarity.

the ability to trace the
consequences of possible changes
in the design.

3. Performance attributes
Pl.conciseness the extent to which a software

R4.Traceability

P2.Effectiveness

P3.Predictability

Cl.Adaptability

design is free from unnecessary
details.

the extent to which a
software design performs its
task completely and efficiently.

the extent to which the software
design predicts the attributes of
the software products.

~ Change attributes
the extent to which software
design is capable of being
changed for other purposes,
without having any ripple
effects.

C2.Augumentability the extent to which additional
features can be added to the
design.

C3.Modifiability

El.Auditability

page 4-38

the capability of accommodating
unexpected changes.

5. Evaluation attributes
the extent to which the
"entities" and their "actions"
can be checked or audited in
order to evaluate their outputs
or effects.

the extent to which a software
design is capable of being
measured in terms of number
of boxes, fan-in, fan-out,
in a structure chart, etc •.

6. Generality attributes
Gl.Flexibility the extent to which a software

E2.Measurability

design is capable of being
expanded, with respect to some
environments.

c. Implemetation phase Attributes
The implementation phase attributes have been developed
by Hennell M.A [34]. These attributes may be considered
as a superset of the analysis and design phases
attributes. This is because most of the software quality
attributes are more meaningful in the implementation
phase.
their

These attributes are defined in the terms of
thegeneral meanings which are applicable to

implementation phase of the software system development
life cycle. These attributes can be used by the software

page 4-39

developer to have a general idea about the qualities of
the software system which may be necessary at the
implementation phase. Further, some of the attributes
may be selected for the purpose of quantifying them.
These attributes are given in the appendix [H].

Further classification of the quality attributes are
presented in the following section:

4.5.4.5 Further Classification Of The Quality Attributes
In this section all the 60 generated software

quality attributes are classified into static, dynamic
and both static and dynamic qualities. The reasons for
such a classification are the following:

1. to ease the modelling of various attributes,

2. to divide and conquer,

3. to assess the dependency of these attributes,

4. to determine the difficulty in using these attributes
for assessing the quality of the output of the system
development activities.

Some more details about
classification are given below:
bl. Static attributes

the quality

page 4-40

attributes

A static quality attribute is one which in no way
depends on times or specific execution paths, e.g.
readability. The following are some of static quality
attributes:
Augmentability
Coercion
Conciseness
Coupleding
Expandability
Feasibility
Intraoperability
Legibility
Modifiability
Modularity
Readability
Redundancy
Self-descriptiveness
Simplicity
Structuredness
Unambiguity
Understandability
Uniformity

b2. Dynamic attributes
A dynamic quality attribute is one which

Page 4-41

becomes
meaningful with a working system e.g. reliability. The
following are some of dynamic quality attributes:
Accuracy
Compatibility
Correctiveness
Error-tolerance
Independence
Integrity
Interoperability
Operability
Portability
Reliability
Resiliency
Reusability
Robustness
Sensitivity
Survivability
Testability
Transportability
Trustworthy
Usability
Veracity

Page 4-42

b3. Static and dynamic attributes

A static and dynamic quality attribute is one which
can be applied to a working system as well as to system
which is under development. Such attributes may behave
differently for the same system. For example, the
quality attribute efficiency (with respect to storage)
will be static in case of a system which is written in
the FORTRAN language where the storage has to be assigned
previously before running the system. The same attribute
will be dynamic in the case of a system which is written
in ALGOL like languages because storage is allocated at
run time. This behavior can cause a problem in assessing
a certain attribute.
Accessability
Adaptability
Auditability
Cohesion
Communicativness
Completeness
Complexity
Comprehensiveness
Conformance
Connectivity
Consistency
Effectiveness
Efficiency
Elasticity
Flexibility

Page 4-43

Generality
Maintainability
Measureability
Predictability
Security
Stability
Traceability

4.5.5 The Life Cycle Of The Quality plan

The life cycle of the quality plan can be defined
as: a set of distinguishable activities occuring in a
certain order during the development of the quality plan.
The time periods during which these activities occur are
called phases. The life cycle approach to a quality plan
may help to ease the achievement of qualities by
separating different aspects of the quality plan into
separate parts. This simplifies the means of achievement
of quality. This life cycle makes quality plan
development easy and systematic. This because the life
cycle approach divides the quality plan into separate
phases which can be easily managed. It enables the
software developer to detect the basic errors earlier in
the development task and decreases the cost of their
elimination. This can be done by knowing the behaviour
of each attribute during the different phases of the
software system. The life cycle of the quality plan may
comprise the following phases :
Note: the numbering of these phases is done according to the

Page 4-44

scheme that:
a. the first figure in the heading followed

by a star is the principle phase number,
b. the second figure in the heading followed

by a star is the subphase/step number,
c. the verification and validation phase

is of special case which is preceeded
by the letter 'v,

1*. software quality requirements phase,
2*. software quality factors phase,
3*. software quality model phase,
V. validation and verification phase.

4.5.5.1 1* Quality Requirements Phase: -

The quality plan should arise as a result of
imposing certain specific requirements from the
user/management. The quality requirements can be defined
as some thing which is deemed to be needed. These
requirements may be imposed at the begining of the
project or may be changed at a later phase. Such changes
of the requirements occur because the demands of the
user/management may not be constant during the system
development phases. Before starting the development of a
software system people concerned with the system have to
agree which quality attributes are important and must be
available in the software system. Such agreement is very
essential, because different people may have different
opinions about which quality attributes are important and

Page 4-45

should be in a software system for a desired purpose.
For instance, a project manager may be concerned with the
attributes which make the quality of a product compliant
with a standard. He may be concerned with the
implementation of functional requirements within cost and
schedule constraints. The end-users may look for those
attributes which can make the software easy to use and
give a quick response time. A maintainer may look for
clear documentation and understandable code. The quality
attributes as expressed in the requirements generally
depend on the opinion of the people who are expressing
the requirements. The quality requirements may vary
significantly in various phases of the life cycle [35].
For example, quality requirements may be different,
interrelated, or overlaped in the analysis phase and
design phase. Early interpretation of the quality
requirements will reduce the chances of misunderstanding
at a later stage of the software system development,
where the cost will be very high [25]. Therefore if the
quality requirements are ill-defined during the earlier
stages, the software may have unsatisfactory results.
The quality requirements phase may consists of the
following subphases:

1.1* quality requirements proposal,
1.2* study of proposal,

1.1*Quality Requirements proposal
In this phase the user/management propose various quality
requirements which they think should be in the software
system. They may propose many things which they want.

Page 4-46

They may propose a set of quality attributes which should
be in the software system. They propose verbally, in
writing, etc .. There may be more than one proposal.
Before submitting such
should consider at

proposal(s) the user/management
first what are the quality

requirements which may be needed in the software system.
The user/management may have their own list of quality
attributes. These proposal(s) will be submitted to the
software developer for technical considerations. For
example, proposals may be to have the following:

i. ease of use of the software system,

ii. optimal resources utilisation by the software system,

iii. a list of quality attributes which should exist in
the software system,

iv. etc ..

Some of the above proposals may be essential and possible
to achieve. For example, ease of use. This proposal can
be solved by training, producing manuals or both. Some
of the above proposals may be difficult to obtain and may
increase the cost. For example, it may not beneficial to
satisfy the user proposal(s) when he/she is asking for
all existing quality attributes to be achieved in the
required software system. The output of this subphase
may be a set of quality requirements which may be
proposed by the user and management jointly keeping each
others interests.

Page 4-47

1.2* study of Proposal
Usually user and management face difficulties in
expressing
requirements.

correctly and precisely their exact
The developer must explain to the

user/management what are the relevant and beneficial
proposals. In this subphase, developer and technical
personnel must study the proposal given by the

The purpose of the study will be to
actual needs and to record possible

user/management.
determine their
benefits that can be achieved, taking into consideration
how to satisfy these needs, satisfy standards, cost
manpower constraints, etc .. In order to achieve all this
the developer may use different available tools. The
developer may consult the relationship matrix, list of
synonyms and classification list of quality attributes
which are developed in this study, or any other suitable
tool. The output of this sub phase is an initial list of
quality attributes studied by the developer and technical
personnel. This initial list of quality attributes may
follow some changes in the coming phases(if needed).

4.5.5.2 2* Quality Factors Phase: _

After reaching agreement on the quality attributes,
a set of the quality attributes will be selected by
technical personnel in consultation with the
user/management. These selected attributes are the ones
which may be characterised for the purpose of quantifying
them. These are called quality factors. More reasons

Page 4-48

for such selection may be the following:

1. to satisfy the technical and management requirements,

2. to satisfy the technical and management standard.

3. to satisfy certain constraints such as cost, manpower
etc.

The selection of the quality factors may depend sometimes
on the status of the software system. For example, if a
software system is an experimental one, where software
specifications will have a high rate of change, the
flexibility factor will have more weight than any other
factor. If network and communication capabilities are
required or system to system interfaces are needed, then
the interoperability factor becomes extremely important.
If the life cycle of the software system is expected to
be very long, then the maintainability factor will be
important, etc .. Sometimes tailoring or limiting the
achievement of the quality level becomes desirable. This
tailoring may be done as a result of certain constraints,
which are mentioned before, such as cost, time, manpower
etc., purpose of the software. Such a modified quality
plan will represent the set of selected attributes for
which the quality plan will generally be acceptable.
However, to achieve this it may necessary to reduce
specific needs, reduce scope etc., of the quality plan.

Page 4-49

It is essential to establish a set of criteria which
can be compared with predefined standards to judge
quality factors.

4.5.5.3 3* Quality Model Phase: -

A software quality model is of great concern to the
developers and users of a software system. This is
because most of the computer programs can be viewed as
models, which are increasingly used in software systems
[71). The quality model can be defined as:. an abstract
representation of agreed required quality concepts,
views, postulates, factors, etc., which can be a guide in
developing a software system of desired quality. The
software quality model may help the user, management or
customer to evaluate and validate some of their
requirements. The quality model, which is considered in
this study, consists of the following steps:

3.1* the objectives of the quality model,
3.2* the scope of the quality model,
3.3* the development of the quality model,
3.4* the framework of the quality model.

3.1* Objective of the Quality Model

A software quality model may have the following
objectives:

a. to guide the managers in the control of
software quality,

b. to produce a consistent standard of software
quality,

Page 4-50

c. to optimise the available constraints such as: cost, time,
manpower, etc., of a given project.

3.2* Scope of the Quality Model

The span of the quality model may be over all the
phases of the software system development life cycle.

3.3* Development of the Quality Model

In this section a set of quality factors is selected
for the purpose of quantifying them. The following
Possibilities should be considered while the software
quality model is under development:

i. some quality factors may
readability,

be intangible, e.g.

ii. some quality factors may conflict with each others.
For example, conciseness may conflict with
readability.

iii. some quality factors are interdependent. For
example, usability, and reliability. If the system
is not usable then the reliability is meaningless, or
vice versa,

iv. some quality factors may be synonyms.
clarity, readability, legibility, etc.,

For example,

v. some quality factors may improve the quality, others
may increase the customer satisfaction, e.g.
cheapness,

TEXT
BOUND INTO THE

SPINE

~FTWARE QUAL I TY Page 4-52

The reasons for choosing such quality factors may the
following:
i.they are easy to characterise,
ii.they can be quantified from an internal viewpoint.
The considered phases of the life cycle, in this study,
are; the analysis, design and implementation phase.
However, a particular factor may correspond to more than
one phase of the software system life cycle.

~ Quantifying the Quality Factors
For each phase of the system development life cycle there
may be a number of distinct factors which could be
quantified in some way. The criteria to decide which
quality factors are relevant to any particular phase must
depend very much on the reason why a measure of that
phase should be required.

In the previous section, the quality factors are
selected for the purpose of quantifying them. In this
section an example is given in figure 4.5 which is an
attempt to show the way of measuring different quality
factors through out analysis, design and implementation
phases.

::>FTWARE QUALITY page 4-53

Figure 4.5
..
IQuality I software system main phases 1
IFactor 1---1I I Analysis I Design I Implementation 11---I I (a) I
ICommuni- metric is not Ithe metric Cl the metric C3 is 1
Icativity defined lis defined as defined as the I
I Ithe number of the number of
I Icommunication interprogram unit

Ilines between communications
Ithe identified which occur when
Isubsystems. the program is
I used.
I (b)
IThe metric C2
lis defined as

e+l
C2 - ---

n

where; e is
the no. of the
communication
lines in flow
graph of the
system design
and n is the
no. of nodes
in flow graph.---

Note: in figure 4.5 the metric C2 is applicable for the
software system design which is based on structured
decomposition. For example, Yourdon's structured
design system [7]. This is because the design in this
case can be represented as a control flow or data flow
graph.

)FTWARE QUAL I TY Page 4-54

Figure 4.6
...
Quality I software system main phases 1
Factor 1---1I Analysis I Design I Implementation I
Legib- I
ility Imetric is not metric is not

Idefined. defined.
1

1--------1-------------- --------------Portab- Imetric is not metric is not
ility Idefined. defined.

1

1

1
1

the metric I is
defined as the
number of the
identations in a
program.
the metric P is
defined as:
P - 152 - 511,- number of

lines of code
changed plus
the number of
lines of code
inserted in
order to
produce the
new system.

51 is the system
before making
changes,

52 is the system
after making
changes.--

Note PFORT verifier which developed by Ryder B. G. [100]
can be considered as a good metric to measure the
quality factor portability. This is because PFORT
verifier provides a number of facilities in debugging
and documentation. Also it produces intraprogram unit
error diagnostic, symbol table and cross reference
tables. These facilities help to find the number of
changes to make a system portable.

Regarding the analysis phase it was not possible to
quantify the above quality factors which are shown in
figures 4.5 and 4.6.
following:

The reasons for that are the

~FTWARE QUAL I TY Page 4-55

a. apparantly the analysis phase is too abstract,
b. a lack of time to dig out the possibility of

quantifying such factors.
3.4* Framework of the Quality Model

Boehm et al [29], McCall [46], Bowen [79] have
developed a model of hierarchy structure relationship
between factors, criteria, and metrics as shown in figure
4.7.

figure 4.7
A model of relationship between quality factors,
quality criterian, and quality metrics.

Factors I

------------\
/ \

/

/

\

\

/ \

/ \

/ \

--------- ----------- -----------
I CrLteri a] I criteria I I criteria I

--------- ----------- -----------

------- --------- ---------
I Metrics I I Metrics I I Metricsl
-------- ---------

DFTWARE QUALITY Page 4-56

The given Model is an easy one. But it is not
showing any details about the quality factor, quality
criteria and quality metric(s). Further Boehm, McCall,
and Bowen have considered the "external" view of quality
factors, criteria, and metrics. That is the view of the
users/buyers of the software. They considered the
quality factors of the final product, without considering
how the overall quality can be affected by the output of
other phases. For example, analysis phase, design phase,
etc.. They are quiet about which quality attributes
correspond to the analysis phase and which quality
attributes correspond to the design phase. They selected
a group of quality factors which are affecting the
quality product. Whatever, grouping is used it is not
clear from their model which is given in figure 4.7.
However, the following may be considered as important
disadvantages with their model:

1. some of the relationships between the quality factors
are not well-defined. For example, efficiency and
flexibility,

2. the relationship of criteria, metrics, and the
software system development life cycle is not well
defined. For example, the metrics must be identified
according to various phases of the life cycle
(analysis, design, implementastion).

IFTWARE QUAL ITY Page 4-57

3. some of the criteria which are used as a necessary
condition for the various factors seem to be
inconsistent. For example, McCall uses the criteria
training, communicativeness, and operability as
associated criterion with the quality factor
usability. However, it will not necessarly true that
quality factor is associated with the given criteria.
This is because the quality factor usability may be
more strongly associated with some other criteria
such as reliability, understandability, etc .•

4. there is no rational distinguish whether the criteria
refine the quality factor or identify the
requirements that the software system must satisfy.

B.A. Kitchenham [33) has developed another
hierarchy model for quality factors, criterion and
metrics relationship which is shown in figure 4.8.

Figure 4.8
A hierarichal model of quality factors,
criteria, metrics and their relationship.

Specification -------- Acceptence test/trial
--------->--------1 Factor 1------->-------------
of quality factor -------- of quality factor

1

1-----------------------1-----------------------
1 I I I
I 1 1 1

IRequirements 1>IDesign 1>lcoding I> ITesting I
Ichecklist 1 [checkLi st 1 lcheckLi st] [checkLi st]

I IMetric Stds. I IMetric Stds. I I I IMetric Stds. Metric Stds.

IFTWARE QUAL ITY Page 4-58

that
Kitchenham [33] claimed that the above
achievement of a quality factor

model shows
depends on the

entire developmenet cycle, and that at each stage certain
checklists comprising standards and metrics should be
used to monitor progress towards the quality factor.
However, Kitchenham did not show how to do that.
Further, the following points are not considered in the
given model.

1. some quality factors cannot be compared directly.
For example, efficiency can be defined according to
the specified requirements. That is, it can be
defined in terms of response time for an enquiry
system, or in terms of average C.P.U. utilization
for an operating system.
to be satisfied at the
obvious.

The corresponding criterion
internal phases is not

2. some systems may have no requirement at all for a
particular quality factor. For example, portability
would have no meaning to those systems which are not
intended to be ported.

The
suggested

following
in this

software quality framework is
study which may tackle the above

mentioned problems.

)FTWARE QUALITY Page 4-59

figure 4.9
Framework of the Quality Model

01 agreed software quality attributes,
02 selected software quality factors,

03.1 software quality metrics,
03.2 metrics collection procedures,

04 software quality criteria.

At the level one of the hierarchy are the quality
attributes which represent a superset of an adverbs which
the developer, management, user, etc., think have impact
over the software quality development task.

At the second level of the hierarchy is a set of
selected quality attributes which are called a quality
factors. These quality factors are selected by the
developer with the consultation of user/management.

At the third level of the hierarchy are the quality
metrics and the procedures which are necessary to collect
them. At this level the quality factors are
characterised so that they become quantifiable. This
step is achieved by defining a set of metrics which can
be compared with a predefined scale (standard) used to
judge the quality factors. The predefined scale is
called quality metric. It is possible that each quality
factor has a set of quality metries. However, a certain
metric may correspond to more than one quality factor.
These metries are generally meaningful to technical
personnel, such as analyst, designer, programmer etc •.

)FTWARE QUAL I TY Page 4-60

At the fourth level of hierarchy are the software
quality criteria. For software quality factors which are
characterised in terms of software quality metrics these
identify the metric values or range of values required in
order for the software to be said to have achieved the
required level of the related quality factor. When
several metrics are related to one quality factor all the
criteria must be met before the quality factor can be
said to have reached its required level. Achieving the
required level of a software quality attributes is, by
definition, equated to achieving the required level of
all the software quality factors related to that
attribute.

The quality model framework can serve as a top-down
hierarchy structure, which may be used to:

i. facilitate the establishment of quality concepts in
terms of quality attributes by
management/user/developer in earlier stages of the
system life cycle,

ii. facilitate the establishment of quality goals in
terms of quality factors by the developer in any
phase of the life cycle,

iii. facilitate the communication of quality goals to the
technical personnel in terms of quality metrics,

)FTWARE QUALITY Page 4-61

iv. facilitate the relationships between established
goals and metrics through quality criteria,

v. facilitate the establishment of metrics to measure
the extent or level to which a certain software
system possesses certain attributes which affect the
software quality.

On the other hand, the framework of figure 4.9 can
be used as a bottom up hierarchy in the following ways:

1. evaluate the product of a software system at metrics
levels,

2. combining the results of the evaluated criterion to
assess the related quality factors.

3. combining the results of the evaluated factors to
establish the related quality attributes.

The model structure which is shown
written in a COBOL programming
possible hierarchical relationship

in figure
notations to
between the

4.9 is
show a

quality
attributes, factors, criteria, metrics and the procedures
to obtain the suggested metrics. This quality model may
help to decide which techniques should be used in order
to achieve the appropriate levels for the quality
metrics. The selection of appropriate techniques and the
achievement of the metric values up to an agreed level
indicates that the required software quality attribute
has been satisfied.

OFTWARE QUALITY Page 4-62

4.5.5.4 v* Verification And Validation Phase: -

The entire task of examining a software product to
confirm that it operates as it is intended to do is often
refered to as verification and validation. Generally,
the people concerned do not differentiate between the two
words. These terms in general are often used when
discussing testing [31].

The word verification is some
uniquely with proof of correctness.
defined by IEEE Glossary [13] as:

times associated
Verification is

1. "The process of determining whether or not the
products of a given phase of the software development
cycle fulfil the requirements established during the
previous phase",

2. "Formal proof of program correctness",

3. "The act of reviewing, inspecting, testing, checking,
auditing, or otherwise establishing and documenting
whether or not items, processes, services or
documents conform to specified requirements" .

Verification is referred to in this study as an
activity of comparing the output of quality plan phases
with the output of ealier phase(s) of the quality plan.
This is done for the purpose of establishment of the
correctness of any two outputs. For example, quality
factors phase may be verified with respect to the quality

OFTWARE QUALITY Page 4-63

requirements phase. This is can be done by checking
whether the qualities are the needed ones or not.

The term validation is defined by IEEE Glossary [13]
as: "The process of evaluating software at the end of
the software development process to ensure compliance
with software requirements".
in this study as the means

validation is referred to
to evaluate the software

development product with the user/managements
requirements for that product. It may also used to refer
to the customer acceptance testing when the final
software system is tested in the environment for which it
was intended.

The purpose of the verification and validation phase
in the quality plan life cycle is to:

1. guide the user/management and the technical personnel
in making decisions about the next step, which may be
to go a head or to stop the project,

2. satisfy the user/management that a certain phase in
the quality plan is done according to the output of
the previous phase,

3. ensure that the software product satisfies the
customer requirements.

The verification and the validation phase may be
activated at any time and in any phase of the quality
plan life cycle. The verification and validation phase

OFTWARE QUALITY Page 4-64

can be achieved by testing, inspecting, reviewing,
auditing and implementation.

Any disagreement after the verification and
validation phase may be due to the following:

1. user/management have changed their minds about their
requirements,

2. the selection of the quality factors was irrelevant,

3. the requirements were not understood correctly and
precisely.

Hence, due to any of the above reasons or the combination
of any of them, it will be necessary to go back and check
the previous phases and do the whole exercise again. The
re-usability of the verification and validation phase in
the quality plan life cycle can improve the quality of
the output of a particular phase in which it is being
used and as a direct result the overall quality of the
software system.

It is not enough to specify that software system has
the qualities which are required by the user(s). It has
to be demonstrated that the required qualities are
present in the system. In order to demonstrate that the
required qualities have being achieved, the following
steps must be considered:

~FTWARE QUALITY page 4-65
I

1. setting standards for:
a. determining cost quality,
b. determining performance quality,
c. determining safety quality,
d. determining reliability quality.

2. evaluation conformance; that is, comparing the
conformance of the software product to the set
standards,

3. comprehensive correction when necessary; that is,
correcting problems and their causes throughout the
whole life cycle, which influence the user
satisfaction,

4. planning and improvements; that is, developing a
continuing effort to improve the quality of the
software system.

The output of the verification and validation phase
will be something which is compared against some
standards. For example, the initial quality attributes
list which is the output of the requirements phase may be
compared with the quality factors phase. This is may be
required to verify that the selected quality factors are
the needed ones. This output will also ensure that the
product of the software system is complying with
predefined standards. For example, end product will be
validated against the user/management requirements. The
output of the verification and validation phase may be

OFTWARE QUALITY Page 4-66

useful for further tasks.

4.5.6 The Diagram Of The Quality Plan Life Cycle

In this section a diagram is given as a guideline
for the use of the quality plan life cycle. As shown in
figure 10 (a), the quality plan contains four phases.
Within each of some phases, a series of subphases or
steps are exist. These subphases or steps participate in
accomplishing the objectives of the particular phase.
The approach is developed to show the input and output of
each phase of the quality plan life cycle. The phases
and steps depicted in figure 10(a) are each described in
another figure which is shown in figure 10 (b), (c), (d),
(e) and (f). These figure are presented to provide an
outline of the phase, subphase and steps of the quality
plan life cycle. The life cycle of the quality plan as
presented in section 4.5.5 and depicted in section 4.5.6
is intended to be a guideline, not a rigid set of
instructions. It can be use as a reference guide to
assist project participants in producing quality results
for their assigned tasks.

FTWARE QUAL I TY
-------.----.~ .." _.._.,.,'-~..=....=..'='.-=' -':::=.=--="7'==s;=;r==~=Page 4-67

Figu re 4.lO (a).
The Life Cycle of the Quality Plan.
linput: proposals I·.~~~~~~~~~~~~~~~~t~~~~~~~~~~~~..

IPhase-i quality requirements I
ISub-phases: I
Il.quality requirement proposalsl
12.study of proposals, I------------------r-------------................ "' .

~--~~~output: initial list of
Iquality attributes

· .
IPhase-2 quality factors
I
I
I------------------r-------------................ "' .

t---~ ...output:
Iset of quality factors I----------------r-----------·."".

IPhase-3 quality model I
ISteps: I
Ii.objectives I
12.scope I
13.development I
14.framework I

IPhase-4
I
I
I
I
I

verification
and

validation

loutput: verify and I
validate output I---------------1----------

:>FTWARE QUAL I TY Page 4-68

Figure 4.10 (b).
The Life Cycle of the Quality plan .. .

linput: proposals

IPhase-1 quality requirements
ISub-phases:
11. ualit re uirement ro osalsl
12.study of proposals,------~-------r---------------...... ~ "' .

~ __ ~{output: initial list of I
Iquality attributes I--------------J -----------·.

IIPhase-2 quality factors
I
I
I----------------~---------------

t-_ ~..J ~~tP~t;...... . .
Iset of quality factors

·Ph~~~~i·q~~iity·~~q~i~~~~~t~.
Isub-phase: Q. requirements
Iproposals overview:
I 1. user/management propose a
I set of quality attributes
I which may be required in

a software system,
. they submit these propo-

sals to the developer for
technical considerations.--------------r-------------· v .

IPhase-3 quality model
ISteps:
11.objectives
12.scope
13.development
14.framework----------------i--------------

~---~~·~~tP~t;·~·~~t~f·q~~iit~·i
I metrics and criteria I--------------r------------· ~ .

IPhase-4 verification I
I and I
I validation I
I I
I I
I I ----------------------------

loutput: verify and
I validate output--------------1-----------

FTWARE QUALI TY

F igure 4.10 (c).

Page 4-69

The Life Cycle of the Quality Plan
linput: proposals-----------------------------· ~ .

IPhase-l quality requirements I
ISub-phases: I
Il.quality requirement proposalsl
12.stud of roposals, I
--~~.-~~~~~~~~~~~!~~~.~~--~~~~--

I,_~output: initial list of
Iquality attributes-----~--------r------------

·:\.t·.
IPhase-2 quality factors I
I I
I I
I I
I I---~--------------..~ .

t--.-aL0utput:
set of quality factors---------------K------------·•. 't;,<

IPhase-3 quality model I
ISteps: I
Il.objectives
12.scope
13.development
14.framework
---------------- -------- -----..............l .

t--~Ioutput: a set of quality
metrics and criteria

---------------------------· J .
IPhase-4 verification
I and
I validation
I
I
I
I----------------1-------------

·· '1 10.

""_-.loLoutput:verify and
I validate output-------------- -----------

..............................
Phase-l quality requirements.
Sub-phase: study of proposals
Overview:

1. developer and technical
personnel must study the
proposals which given by
the user/management,

2. developer explains to
the user/management what
are the relevant and
beneficial proposals,

3. developer and technical
personnel may determine
the user/management
actual needs,

4. developer will record
some possible benefits
can be achieved.

5. developer and technical I
personnel may use the I
tools developed from thel
concepts discussed in
this study
such as:
a. relationship matrix, I
b. synonyms list,
c. classification list

of Q. attributes,
d. etc.,

or any other
suitable tool.

DFTWARE QUALITY

F i gu re 4.10 (d).

Page 4-70

The Life Cycle of the Quality plan.
linput: proposals-------------r---------------· "' .

IPhase-l quality requirements
ISub-phases: I
II.quality requirement proposalsl
12.study of proposals, I

--~~~~~~~~~~~~~l~~~~~~~~~~~~~~--
I
I

~--~output: initial list of
Iquality attributes

factors

~---&output :
Iset of quality--------------r------- ----·.

IPhase-3 quality model
ISteps:
II.objectives
12.scope
13.development
14.framework----------------r--------------.............. + .

~--~output: a set of quality I
I metrics and criteria I--------------r------------· "' .

IPhase-4 verification I
I and I
I validation I
I I
I I
I I
--~~~~~~~~~~~~~~1~~~~~~~~~~~--

loutput: verify and I
validate output I

.............................
Phase-2 Quality Factors.
IOverview:
I 1. technical personnel in

consultation with the
user/management will
select certain quality
attributes which may be
characterised for the
purpose of quantifying
them.

2. technical personnel will
establish a set of
metrics which can be
compared with predefined
standards to judge the
quality factors.

----------------------------_

)FTWARE QUAL I TY Page 4-71

Figure 4.10 (e).

The Life Cycle of the Quality plan.
linput: proposals-------------t---------------............... ", .

IPhase-1 quality requirements
ISub-phases: 1
II.quality requirement proposalsl
12.study of proposals, 1---------------r----------------............. ", .

~---_4output: initial list of 1
'quality attributes 1..~~~~~~~~~~~~~J~~~~~~~~~~~~~~..iph~~~~3'"Q~~iity'~~d~i:"'"

I , IOverview:
IPhase-2 quality factors ,Stepl-objectives:
, , a. to guide manager to
, control the software
, software quality,---------------r------------- b. to produce a consistent............. .,........... .. standards of software

~----4output: ,quality,
Iset of quality facto s' c. to optimise the available
-------------I----~------- constraints such as cost,............... ~.. y(.~.......... time, manpower, etc ..

,Phase-3 quality model Step2-scope: overall phases
,Steps: , of the software system
11.ob'ective life cycle.
12. Step3-development:
13. 1 1. select quality factors
14.f~work 'I from the output of the----~----~T----- -------- 1 quality factor phase,............ ..v~..... 1 2. quantify them with

r----~output: a set of quality 1 1 respect to each phase
1 metrics and criteri~ ~ of the software system.~~~~~~~~~~r~~~~~~~~~~~~~..~Step4-f;!~:W~~~~e.

Phase-4 verification "
and " 01

validation "
, 1

1 1, ,
, ,

1,
,

agreed software quality
attributes,
02 selected software

quality factors,
03.1 software quality

metrics,
03.2 metric collection

procedures,
04 software qu~li~v

criteria.

---------------r--------------."".
,output: verify and
, validate output
------------- ------------

OFTWARE QUALITY

Fi gu re 4.10 (f).

Page 4-72

The Life Cycle of the Quality plan.
linput: proposals

IPhase-1 quality requirements
ISub-phases: I
11.quality requirement proposalsl
12.study of proposals, I
--~~~~~~~~~~~~~~~~~~~~~~~~~~~~--

~ __~~Joutput: initial list of
Iquality attributes

IPhase-2 quality factors
I
I
I---------------r----------------
.

t-----7r.a1.output:
Iset of quality factors-------------r--------------."".

IPhase-3 quality model
ISteps:
11.objectives
12.scope
13.development
14.framework---------------~--------- -----

~--~~~~~t~~t;·~·~~t·~f·~~~iit~·i
I metrics and criteria

IPhase-4 ~erificatio
I and
I validation
I
I
I---------------r--------------............. "' .

loutput: verify and I
I validate output I-------------r------------

.............................
Phase-V verification

and
validation.

Overview:
This phase is of special

nature which can be applied
to:
1. the output of any phase

of the quality plan life
cycle to verify the
result with the earlier
phase,

2. the end product of the
software system to ensure
compliance with userl
management requirements.

)FTWARE QUALITY Page 4-73

4.6 CONCLUSIONS:

A software quality, may become more visible when the
following exist;

1. a clear definition of what quality means,

2. a widely agreed attributes of the quality,

3. a detailed quality plan which comprises:

1. the selection of the
and metrics which

important
are most

quality
related

factors
to the

environment where the
implemented,

software is to be

2. the selection of the methods, techniques, and
approaches which will be employed to accomplish,
develop, verify and operate the software system.

3. a verification and validation phase in which the
output of each phase of the quality plan can be
verified and the end product can be validated a
gainst pedefined standard.

4. software quality metrics which may be employed
to:

a. set up acceptance criteria and standards,
b. evaluate the level of the quality being achieved

against the established requirements,
c. compare the quality attributes of one system with

those of another system (if there is any),

FTWARE QUALITY Page 4-74

d. predict the level of quality which may be achieved
in the future.

A software quality plan may be considered as an
instantiation of these points which can be used by the
software system implementers to identify specific
distinguishing quality attributes which should be built
into the software in order to meet the quality goals.

'••••"•••.".

CHAPTER 5
SUMMARY AND CONCLUSION

5.1 INTRODUCTION

The first part of
evaluate and compare

this
the

thesis is an attempt to

various software quality
behaviour and performance of

metrics. The evaluation of
software metrics is very essential for developers, users,
management and software engineers, etc., to help them in
selecting suitable metric(s), to measure and estimate
software qualities. For this purpose, three different
categories of software metrics were classified into:

1. primitive software science metrics, which are based
on counts of lexical tokens in a program or program
interface features.

2. abstract software metrics, which are based on graph
theory.

3. structured software metrics, which are based on the
software system components connections.

These categories of software metrics are discussed
thoroughly in chapter 2. Then an analytical comparative

!UMMARY AND CONCLUSION Page 5-2

study was performed to selected metrics from the above
classified categories. The criteria of the selection of
such metrics were the following:
a. the popularity of the metric and its frequent use,
b. the availability of literature about the metric.
To facilitate such a comparison a set of criteria of
goodness was developed against which the selected
software metrics were examined and evaluated.

The second part of this thesis is an attempt to:

1. establish clear definitions of the software quality
and their related terms. This was achieved in this
study by the development of clear definitions for the
terms software quality, quality characteristic,
software quality property, software quality
attribute, software quality factor, software quality
criteria, software quality metric and software
quality plan. These definitions are given in chapter
4 of this thesis.

2. to identify and define various quality attributes
which contribute to software quality. This was
achieved by identifying and defining certain software
quality attributes. -During this effort 60 possible
quality attributes were defined. These definitions
of the quality attributes are given in the appendix
[B]. Considerations were made to include all the
attributes which describe
achievement of the quality of a

improvement to
software system

or
to

~y AND CONCLUSION Page 5-3

any extent and at any phase of the system development
life cycle. It was observed that out of these 60
attributes some of them are synonyms. The list of
these synonyms of the software quality attributes are
generated in this study. These synonyms are in terms
of their general meanings as defined in [82J. The
list of synonyms is given in the appendix [DJ. In
addittion to providing definitions of the quality
attributes and list of synonyms, it was also decided
to investigate the extent to which experienced
software engineers were familiar with, and consistent
in their use of, software quality attributes. This
was done by asking coworkers in Liverpool University
and LDRA to indicate what they understand to be the
nature of the relationship between each of the
different software quality attributes. The coworkers
who took part in the experiment were each given a
relationship matrix, and asked to identify the nature
of the relationships among the software quality
attributes as shown in appendix [El.

A composite response was constructed from each
individual response by including all the
relationships which were agreed unanimously. The
composite response is shown in appendix [El.

3. establish an internal view of software quality. In
this study seven different internal viewpoints of
software quality were identified. These viewpoints
are given in chapter 4 of this thesis.

!UMMARY AND CONCLUSION page 5-4

4. develop a detailed quality plan which provides a
clear strategy to select the desired quality
attributes and provide a frame work to examine the
possible affect or behaviour of a certain quality
attribute. This quality plan is developed and
disscussed in detail in chapter 4. The quality plan
comprise the following phases:

a. software quality requirements phase,
b. software quality factors phase,
c. software quality model phase,
d. validation and verification phase.

5.2 CONCLUSION

As a result of the first part of this study the
following conclusions are drawn:

i. during the study of software metrics, it was observed
that, up to now, efforts in developing software
quality metrics have been concentrated on very few
quality attributes such as complexity, stability,
etc .. On other hand, for certain important quality
attributes such as usability, readability, etc., real
metrics are still not available.

ii. the evaluation of the primitive software metrics
against the developed criteria of goodness showed
that the existing metrics have the advantage that
they are applicable at least to the design and
implementation(code) phases of the software system

IlARYAND CONCLUSION page 5-5

life cycle. However, one of
these metrics is that, they are
practically in a weak state.

the disavantages of
theoretically and
Therefore, these

metrics must be treated with great caution.

iii. the evaluation of the abstract software metrics
against the suggested criteria of goodness shows that
these metrics can adequately quantify control flow
complexity with some exceptions. Some of these
exceptions may be the failure of McCabe's metric to
cope with the linearization problem.

iv. the evaluation of the
against the suggested

structured
criteria

software metrics
of goodness showed

that these metrics provide certain advantages for a
manager's overall understanding of system complexity
and its impact on system costs and performance. For
instance, the metrics measuring interconnectedness
among segments of a software system will enable the
manager to predict the maintenance cost of the
software system. This is because such a metric deals
with a macro-level of the system which may be easy to
understand.

v. generally no metric at present can be considered as a
standard which is universally perfect. This is
because these metrics contain some inherent defects.
Also, user/management change their
continuously demanding better quality.

requirements,
Metrics which

are available now are not sensitive to errors.

lMARY AND CONCLUSION Page 5-6

vi. the metrics which are developed so far with few
exceptions are not evaluated or examined thoroughly.

vii. the classification of the software metrics which is
developed in this study would help to determine which
phase of the software system life cycle these metrics
can measure.

As a result of the second part of this study the
following conclusions are drawn:

1. some desired attributes of software quality can only
be satisfied at the expense of other attributes. For
instance, reliability may be influenced by cost, size
complexity, etc ..

2 • the quality of software system
dependent, thus, it is inadequate
single figure for software quality.

is environment
to establish a

3. there are no common and agreed terms of Software
Engineering which are free from misinterpretation.
Therefore, an attempt is made in this study to define
the software quality and its related terms and use
them consistently.

4. software quality becomes more visible when the
following exist:

IMARY AND CONCLUSION Page 5-7

i. clear definitions of software quality,

ii. a widely agreed set of defined quality
attributes,

iii. a detailed quality plan which at least comprises:
* a strategy for selection of the important quality

factors and metrics which are most related to the
environment where the software is to be implemented,

* the selection of the methods, techniques, and approaches
which will be employed to accomplish, develop, verify
and operate the software system,

* a verification and validation phase in which the values
of the software metrics are established. These metrics
may be employed to:
a. set up acceptance criteria and standards,
b. evaluate the level of the quality being achieved

against the established requirements,
c. compare the quality attributes of one system with

those of another system (if there is any),
d. determine the desirable quality attributes of the

software system.
e. predict the level of quality which may be achieved

in the future.

5.3 SUGGESTIONS AND FUTURE WORK

Regarding the software metrics the following
recommendations are suggessted for future work, to be

MARY AND CONCLUSION page 5-8

considered:

1. to determine how software metrics can help to find
and remove errors in software,

2. to determine how software metrics can help to find
the origin of the errors.

3. while developing a software metric the following
points should be considered:

i. it should be of global nature, so that it can be
used in different phases of the life cycle by
changing the essential variables or factors.

ii. it should be sensitive to the changes in the
structure of the system,

iii. it should be sensitive to the errors in the
software systems,

iv. it should include some other important attributes
such as modifiability, reliability, usability,
etc. ,

v. it should be validated on practical software
system,

vi. it should be rigorous i.e., have a mathematical
basis,

Regarding the quality issues the following suggestions
are recommended for future work:

UMMARY AND CONCLUSION page 5-9

1. relate the external views of software quality with
the internal views of the software quality,

2. establish a new department called quality circle
which is a group of employee, usually from the same
area of an organisation.

This group should meet periodically to:
a. examine, analyse and solve the problems of software

system quality,
b. to enhance the communication between employee and

management. This point will have an advantage that
the whole organisation will participate in the
solution of quality problems.

•••••••• A

LOSSARY OF DEFINITIONS OF USED TERMS Page A-2

adequate confidence to assure that the quality in the

software product and confirm that the product is

satisfying the technical and user/customer requirements.

A.3 SOFTWARE QUALITY ATTRIBUTE

(see chapter 4, PP. 4-16).

A.4 SOFTWARE QUALITY CHARACTERISTIC

(see chapter 4, PP. 4-15).

A.5 SOFTWARE QUALITY CRITERIA

(see chapter 4, PP. 4-18).

A.6 SOFTWARE QUALITY FACTOR

(see chapter 4, PP. 4-18).

A.7 SOFTWARE QUALITY METRIC

(see chapter 4, PP. 4-19).

A.8 SOFTWARE QUALITY PLAN

(see chapter 4, PP. 4-21).

A.9 SOFTWARE QUALITY PROPERTY

(see chapter 4, PP. 4-16).

~OSSARY OF DEFINITIONS OF USED TERMS Page A-3

A.lQ SOFTWARE QUALITIES

(see chapter 4, PP. 4-17).

A.ll SOFTWARE QUALITY

(see chapter 4, PP. 4-12).

A.12 SOFTWARE SYSTEM

The term software system is defined in this study
as:

Any combination of documentation, software and the
user/management to fullfil the specific function(s) or
purpose(s) in an environment.

A.13 USER

The term user is defined in this study as:

1. As a person who will be using the software system
such as an operator, software programmer, quality
controller, stock control officer, accountant, etc ..

2. As a person who will be using the software system in
a supervisory capacity such as a person who is in
charge of section in bank, quality control
supervisor, etc ..

LOSSARY OF DEFINITIONS OF USED TERMS

3 . As a person or organisation who will be
software system as the owner, for

page A-4

using the
example, a

government ministry, a banking organisation, etc ..

a••••••• B

APPENDIX B
DEFINITIONS OF VARIOUS QUALITY ATTRIBUTES

The following are the definitions
important software quality attributes.

of various
The source of

each definition is quoted at the end of the definition.
Otherwise these definitions are infered from the
references [83} and [106].

B.1 ACCESSABILITY:

The degree of ease with which software
i .e . , modules, subroutines, ..etc. can be

components,
reached or

may be theused. For example the best software system
one which is based on a tree structure, where its nodes
can be visited easily.

B.2 ACCURACY:

The ability of a software system to produce results
within a pr-defined range. Accuracy may be mathematical,
e.g. a certain function can calculate a result to an
accuracy of
logical, e.g.

five decimal places. Accuracy may be
order of the statements.

IINITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-2

B.3 ADAPTABILITY:

The degree to which a software system is capable of
being changed for the predefined environments, purposes,
functions, ..etc ..

B.4 AUDITABILITY:

The ease of giving an approporiate diagnoses and
showing the way of correcting and monitoring the
shortcomings of an established software system. It is
necessary in auditing to take samples from time to time
from software product for the purpose of study and
checking. The auditability may involve the activities
like; checking, investigation and inspection (69).

B.5 AUGMENTABILITY:

The extent to which a software system can
accommodate expansion in its components.

B.6 COERCION:

The effort made to combine the components which are
not close together in a software system. This may happen
when a software system is highly complex. (34).

B.7 COHESION:

The extent to which the elements of a single module
are functionally related [20]. For example, do the

INITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-3

elements combine together according to some given
criteria. Cohesiveness can be measured by using a
cohesion metric. For example T.J. Emerson's metric (21)

can be used as a measure to show whether the elements of
a module are functionally related, sequentially related,
or logically related etc ... Cohesiveness is a contrast
with coupledness.

B.8 COMMUNICATIVNESS:

The level to which a software system is able to
convey and transmit information, ideas, concepts, etc.
from the given input to the required output. The extent
to which a software system provides a useful and friendly
interfaces with the reader. The following may cause a
poor communication:

1. inadequate coverage of information (not all reliable
data are being transmitted),

2. not all the data received by the responsible person,

3. the data are not generated properly at the source,

4. misinterpretation of data,

5. any single or combination of the above.

B.9 COMPATIBILITY:

The extent to which sofware systems are capable of
existing together in harmony. For example, the data can

'INITIONS OF VARIOUS QUALITY ATTRIBUTES page B-4

be interchanged, the code can be interchanged, ...etc.

B.lO COMPLETENESS:

The extent to which a software product has all its
necessary aspects. For example the software product is
complete with respect to a given criteria. The software
product is complete if all its components are present and
each component is fully developed.

B.ll COMPLEXITY:

The degree of intricacy of a software system or its
components. The complexity of software system can be
measured as:

1. the degree of nesting of its componenets,

2. the total number of fan-in and fan-out of its
components,

3. the extent to which certain components overlap.

B.12 COMPREHENSIVENESS:

The extent to which all the needed information is
available in a software system [34].

B.13 CONCISENESS:

The extent to which a software product is free from
all unnecessary details.

FINITIONS OF VARIOUS QUALITY ATTRIBUTES page B-5

B.14 CONFORMANCE:

The extent to which a software product satisfies the
pre-defined standard (if there is any).

B.15 CONNECTIVITY:

The degree of ease with which a software components
are linked together [34].

B.16 CONSISTENCY:

The extent to which a software system contains
uniform parts. For example, the comments in a program
should not be unnecessary, extensive at one place and
insufficiently informative at another.

B.17 CORRETNESS:

The extent to which software product is free from
errors [13].

B.18 COUPLING:

The degree of interdependence among modules in a
software system. It contrasts with cohesiveness.

B.19 EFFECTIVENESS:

The extent to which a software system performs its
task successfully and efficiently.

'INITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-6

B.20 EFFICIENCY:

The extent to which a system performs its required
functions with minimum consumption of resources, such as
memory space and execution time. The efficiency can be
measured for example in terms of response time for
enquiries for seat reservation system, or in terms of
average CPU utilisation.

B.21 ELASTICITY:

The extent to which a software system is capable of
being extendable without losing its former functions and
becoming applicable to more general problems by
permitting additional features to be added.

B.22 ERROR-TOLERANCE:

The extent to which a system continues to operate
correctly despite internal or external errors.

B.23 EXPANDABILITY:

The extent to which a software system is capable of
accommodating expansion, to provide additional functions
or data storage, or to increase computational capacity.
It can be measured as; the complexity of the system
before and after the expansion for the comparison.
Expandability is a synonym of modifiability and
extendability.

~INITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-7

B.24 FEASIBILITY:

The degree to which the software system is capable
of being carried out successfully for certain
environments, purposes, etc.. For example, developing
the software system within a specific time, with specific
resources, subject to specific pre-defined conditions and
by the personnel available.

B.2S FLEXIBILITY:

The extent to which a software system is capable of
changing, or expanding in response to new requirements
such as change in modes of operations, in operating
environment, interfaces with other software system and
improvement.

B.26 GENERALITY:

The extent to which software system is applicable to
total attributes, such as; flexibility, expandability,
portability, and solving a biger range of problems than
the current one.

B.27 INDEPENDENCE:

The extent to which a software system can be
executed on computer hardware configurations other than
its current one. This attribute is a necessary condition
for portability [30].

'INITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-8

B.28 INTEGRITY:

The degree to which a software system is secure
against unwanted access.

B.29 INTEROPERABILITY:

The extent to which a software system is able to
exchange information with other systems.

B.30 INTRAOPERABILITY:

The extent to which a software system has linkage
between its internal components.

B.3l LEGIBILITY:

The extent to which software system is capable of
being read. The clarity of the objects and their
representation.

B.32 MAINTAINABILITY:

The extent to which a software system facilitates
location and correction of errors which have not been
discovered in the earlier stage of the software
development. Maintainability can be measured as a period
of time needed to repair a failure starting from the time
of the occurrence of the failure.

'INITIONS OF VARIOUS QUALITY ATTRIBUTES page B-9

B.33 MEASURABLITY:

The extent to which a software system is capable of
being assessed. For example, a system can be easily
measurable if every component in the software system is
distenct and clear.

B.34 MODIFIABILITY:

The extent to which a software system is capable of
accommodating changes.

B.35 MODULARITY:

The extent to which software system can be
decomposed into smaller units provided that a change in
one unit has minimal impact on other unit.

B.36 OPERABILITY:

The extent to which a software system is capable of
functioning. For example, loading, initiating, executing
and transmitting.

B.37 PORTABILITY:

The extent to which a software system is able to
operate in
environment.

more than one hardware or software
the effortPortability can be assessed by

needed to install the system in a new environment.

)EFINITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-I0

B.38 PREDICTABILITY:

The extent to which a software system is giving the
same results for the same inputs.

B.39 READABILITY:

The degree to which a software system can be read
and understood easily. For example, program readability
can be increased as a result of reformating task such as:

1. making every statement in the program start on a new
line,

2. puting every GOTO statement and its target on a
separate line,

3. writing all the necessary comments in a clear way,

4. etc ..

B.40 REDUNDANCY:

The amount of duplicated features in a software
system. Generally it is used to increase certain
features such as structuredness of a system.
is often provided to increas~ security.

Redundancy

B.41 RELIABILITY:

The extent to which a software system can perform
consistantly its required purposes or functions under the

IFINITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-11

stated conditions for a specific period of time without
errors.

B.42 RESILIENCY:

The extent to which a software system is able to
adjust easily and to recover from specific events [34].

B.43 REUSABILITY:

The degree to which software system entities such as
data structures, procedures, modules, subsystems, and
programs can be re-used. For example, re-using the

Re-usabilitysoftware system in some other environment.
can be measured by considering the number of changes
which are needed in a program, module, etc .. According
to [33] re-usability of a component may be measured as:
rc = (effort to produce components -

effort to incorporate in a new system) *
(expected number of new system using component).

The re-usability of a system may be measured as:
R = (summation (rc)/total effort to produce system.

over all
reusable
components

B.44 ROBUSTNESS:

The extent to which a software system is able to
~ontinue to function correctly despite some violation of

~FINITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-12

the assumptions in its specification. For example, the
ability of a software program to properly handle inputs
out of range, or in a different format, ..etc. without
degrading its performance or functions.

B.45 SECURITY:

The degree to which a software system is protected
against unauthorized users. For example, protection of
code from additions, or any corruption.

B.46 SELF-DESCRIPTIVE:

The extent to which a software system contains
adequate explanatory comments on its functions. For
example, a software system containing enough information
for its user(s) to determine its objectives, assumptions,
constraints, inputs, outputs, ...etc can be called
self-descriptive.

B.47 SENSITIVITY:

The extent to which a software system outputs are
stable with respect to internal software errors [341.

B.48 SIMPLICITY:

The extent to which a software system is readable,
understandable and clear.

U~FINITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-13

B.49 STABILITY:

The extent to which a software system is capable of
resisting the changes that are made to its components
[15]. For example, a system of three components; input,
mapping function, and reporting mechanism will be a
stable system if any change, in the input component, does
not create any ripple effects in any other components.

B.sO STRUCTUREDNESS:

The extent to which a software system is built using
easily identifiable and understandable items or
techniques such as top down, bottom up, etc.

B.S1 SURVIVABILITY:

The extent to which a software system continue to
perform despite a portion of the system has failed [79].
The survivability can be measured as the number of
survivability-related errors occuring during a certain
time and the total number of executable lines of source
code. For example, if 3 errors per 1000 lines of
executable code is occurred during a specified time,
then survivability measure level = (1-3/1000 = .997).
The survivability may considered as a feature of software
systems which are likely to be used in uncontrolled
conditions [70].

rDEFINITIONS OF VARIOUS QUALITY ATTRIBUTES

B.52 TESTABILITY:

Page B-14

The degree to which defects in a software system can
be detected under some given criteria. The extent to
which a software system is capable of being tested.
Testability considerations should contribute in
developing the check list for requirements, design,
coding and testing [33].

B.53 TRACEABILITY:

The degree to which a software system can be
followed step by step to discover the flow of control,
flow of data, flow of information, etc.. For
example, a structured program is easily traceable. The
extent to which the origin of information can be found.

B.54 TRANSPORTABILITY:

The extent to which a software system is capable of
transfering from one environment to another. For
example, it may be needed to transfer a particular
software system into different environments or different
software systems into the same environments.

B.55 TRUSTWORTHY:

The extent to which a software system is capable of
performming its tasks according to the expectations
without having unwanted side-effects [341.

~EFINITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-15

B.S6 UNAMBIGUITY:

The extent to which a software system is free of
miss-interpretation.

B.S7 UNDERSTANDABILITY:

The extent to which a software system is clear in
purpose and operation to the person who is inspecting it.
For example, whether variable names or symbols are used
consistently throughout the system, the modules are
self-descriptive, etc.. Understandability can be an
outcome of simplicity, self-descriptiveness and
modularity. Understandability may also be viewed from
the viewpoint of a user as the level to which a software
product is clear to him.

B.S8 UNIFORMITY:

The degree to which a software system is consistent
with respect to the style, notations, documentation,
etc ..

B.S9 USABILITY:

The extent to which a software system needs an
effort to understand its inputs and interpret its
outputs. Usability can be determined by assessing how
efficiently and quickly a user of moderate experience and
skill, in a particular environment can understand and use
the system successfully. The usability is a prerequisite

~FINITIONS OF VARIOUS QUALITY ATTRIBUTES Page B-16

for the software re-usability[32].

B.60 VERACITY:

The degree or level to which the output of a

software system can be made correct, accurate, reliable,

and trustworthy.

APPENDIX C

TABLES

Table 2.1 Software Science Parameter for 20 Programmes---
Observed Parameters

Algorithm n2'
Number n1 n2 N2 N

Level

L

L'

CACM 1 8
CACM 2 3
CACM 3 12
CACM 4 5
CACM 5 4
CACM 6 4
CACM 7 3
CACM 8 5
CACM 9 10
CACM 10 3
CACM 11 3
CACM 12 3
CACM 13 3
CACM 14 7

GM 15 32
GM 28 43
GM 36 68
GM 40 58
GM 50 32
GM 118 6

10
14
18
16
15
15
10
15
19
9
9

11
11
15
27
49
47
82
35
13

18
8

41
21
16
13
9

16
41
9
9
9
8

25
100
214
329
433
168
24

56
37

220
61
60
42
29
60

162
25
29
31
30
91

301
944

1318
1944
584
57

104
84

454
137
124
99
59

133
312
48
55
62
61

187
686

1919
2642
3985
1248
122

Sources (Halstead [2]), Table 5.1
V' - (2 + n2') Log2 (2 + n2')
V - N*Log2(n1 + n2)
L - V'/V
L' - (2*n2)/ (n1*N2)

0.066
0.031
0.020
0.028
0.025
0.033
0.046
0.030
0.023
0.058
0.051
0.043
0.045
0.029
0.036
0.016
0.019
0.010
0.018
0.038

0.064
0.031
0.021
0.043
0.036
0.041
0.062
0.036
0.027
0.080
0.069
0.053
0.048
0.037
0.025
0.009
0.011
0.005
0.016
0.065

Page C-2

Table 2.2, from Halstead [2] , Table 6.6 intelligence
content I of Algorithm CACM13 in various languages;
1------ 1

Languages I!------------------- -------------------!
ALGOL 58 14
FORTRAN 15
COBOL 16
BASIC 15
SNOBOL 16
APL 16
PLI/I 16

1 11---------------------------------------1

Table 2.3, from Chritensen et al [93],information
content for programs for Euclids Algorithm for
finding the greatest common divisor.

!------------------!--------------------1
Languages I

1------------------!--------------------
PL/I
FORTRAN
CDC Assembler
ALGOL 68
TABLE LOOK UP
POTENTIAL HLL
BASIC

12.9
10.5
12.2
11. 9
12.0
11. 6
10.5
10.0A P L------------------!--------------------!

Page C-3

APPENDIX 0
THE SYNONYMS OF SOFTWARE QUALITY ATTRIBUTES

0.1 INTRODUCTION

The following are the synonyms of the generated
software quality attributes. These synonyms are in terms
of their general meanings as defined in Roget's Thesaurus
[82) and [83).
<Accessability>
<Accuracy>
<Adaptability>

<Auditability>
<Augmentability>
<Coercion>

:- <simplicity><traceability><flexibility>
:- <veracity>
:- <modifiability><conformance><generality>

<flexibility>
:= <testability>
:= <expandability><strength>
:- <inflexibility>

<Cohesiveness> := <uniformity>
<Communicativness> :- <transmission><accessability>
<Compatibility>
<Completeness>
<Complexity>

:c <uniformity><conformance><cohesiveness>
:- <comprehensiveness><generality>
:= <nonuniformity»complication>

<Comprehensiveness>:= <completeness><generality>
<Conciseness> :- <overconciseness><condense><brief>
<Conformance> := <adaptability><generality><flexibility>

SYNONYMS OF SOFTWARE QUALITY ATTRIBUTES

<Connectivity>
<Consistency>
<Correctness>
<Coupledness>
<Effectiveness>
<Efficiency>
<Elasticity>
<Error-tolerance>
<Expandability>
<Feasibility>
<Flexibility>
<Generality>
<Independence>

<Integrity>

Page 0-2

:~ <interaoperability><coupledness>
:= <uniformity><stability>
:- <accuracy>

:- <connectivity><cohesiveness>
.- <influence>
:- <stability><influence>
:- <resilience><extensibility>
:= <completeness>
:- <elasticity>
:- <accessability>
:- <elasticity>
:- <comprehensiveness>
:- <self-descriptive><unrelatedness>

<noncoformity>
:- <reliability><trustworthy><veracity>

<Interoperability> :- <portability>
<Intraoperability> :- <coupledness>
<Legibility>

<Maintainability>
<Measurablity>
<Modifiability>
<Modularity>
<Operability>
<Portability>
<Predictability>
<Readability>

:_ <comprehensiveness>readability><clarity>
<cohesivness><unambiguity><simplicity>
<understandability>

:_ <auxiliary><improvement><modifiability>
:_ <performance><degree><strategy>
:_ <changeability><adaptability>
:_ <mutation><modifiability>
:- <dynamic><serviceability
:= <transportability>
:= <stability>
:= <legibility><clarity><unambiguity>

<simplicity><comprehensiveness>

ftlfONYMS OF SOFTWARE QUALITY ATTRIBUTES Page D-3

<Redundancy> := <plenty»survivability>
<Reliability> := <stability><unchangeability>
<Resiliency> := <elasticity>
<Reusability> := <serviceability><adaptability>
<Robustness> := <elasticity><resiliency>
<Security> :- <safety><clarity>
<Self-descriptive> :_ <clarity><unamiguity><independence>

<understandability>
<Sensitivity>
<Simplicity>
<Stability>
<Structuredness>
<Survivability>
<Testability>
<Traceability>

:- <changeability>
:= <uniformity>
:= <consistency><uniformity>
:- <composition>
:.. <redundency>
:- <trustworthy><complexity>
:- <accessability><attributable>

<Transportability> := <portability>
<Trustworthy>
<Unambiguity>

:= <reliability>
:- <legibility><clarity><unambiguity>

<simplicity><comprehensiveness>
<Understandability>:_ <legibility><clarity><unambiguity>

<Uniformity>
<Usability>
<Veracity>

<simplicity><comprehensiveness>
:= <stability>
:= <adaptability><serviceability>
:- <accuracy>

APPENDIX E

RELATIONSHIP MATRIX

A relationship matrix is given in this appendix [E]

shows the relationships in various ways such as
independency, interdepency, direct dependency. and
indirect dependency. An idependency relationship is
defined as occurring if two software quality attributes
are mutually independent, e.g. readability might be
judged to be independent of accuracy and vice versa. An
interdependency relationship is defined as occuring when
two quality attributes are mutually dependent on each
other, e.g usability and reliability. A direct
dependency relationship is defined as occurring when the
availabilty of one software quality attribute is
necessary for anathor, for example, accuracy is necessary
for correctness but the reverse is not true. An indirect
dependency relationship is defined as occurring if a
software quality attribute occurs as a by-product of
other software quality attributes, e.g. reliability may
be viewed as a side-effect of correctness, testability
and understandability.

ATTRIBUTES RELATIONSHIP MATRIX
1.

",
In In

>- >-
, SIn In W ~

I
w W u ~ ~ >- ,

'">- z Z In Z
~~

~ >- >- ... en

I
l-':>- ,_ W >- W In In < >- ,_ >- ,_ ~ I~,_ >- >- ... In > ~ In > >- !i! In

In ~ ~ W ...1- ~ - L t:E.... ~ ~ ;:! In In ... In W ,_ >- ffi ti w ... >- >- u ~ ~I'" >- >- ...I >- >- >- ... t: i...I w,_ ;:! !i! >- In InU ... U W In >- ..J -' ,_ ,_ >- z >- r: ~ ;~>- l- I- I- >- I- >- ~ In Et: Iit ~ ~ ~ z z < I- Z ffi~ > Z E~ ~ ...I i~"'1- i;~I I-:i~ :ill -~... In el _, tW u m w 8 ~ ... < > Z _0 ...I Z1 ..J ..J ~E ~E !II ~~ ~ ~ 0 ~i... ~ 1-1- ... W U ~ -' ..J ~

IIi:;i
u ...

In < Z ... i~~ 2i U In I

~ ~
m < Will< <~ ~l:!1

i I,liIn !l I- I- ~ :il ~ E ~iW ...I U U ti2i 8 i~~ ffi • !!!~
~~

~! ~ ... i......
~ ~ • !!; w In ...

~~
....... Intitl ~s !!l !!l ~ 0 If: If: <lit ~ ~ !~Cl

~~ ~~~ ~~ III I...!2i 0 111m it Cl ~ ~< < < < < U u U U U U U U U U U U U W W W U. ",."

1 2 3 'I 5 6 7 8 9 Iil 1 2 3 'I 5 6 7 8 9 Iil 1 223 'I 5 ~6 ~7 ~8 9 Iil 1 32 33 ~'1 ~S ~6 7 8 9 Iil ~1 ~2 3 ~'1 567 8 8 58 ~I 52-.p~.11 SI '111
ACCESSAB IL ITY 1 2 2 2 3 2 2 3 2 3 2 3 2 2 3 3 2 3 3 a IJ
ACCURACY 2 3 3 3 2 3 3 3 2 2 3 3 3
ADAPTABILITY 3 2 3 3 2 3 3 3 2 2 3 1 3 2 2 3 3 2. 12
AUDITABILlTY 'I 3 3 3 3 3 3 3 3 3 2 3 3 3 2 2 a ,,
AUGMENTABIL lTY 5 3 2 3 3 3 3 2 2 2 2 3 2 3 , ,
COERCION 6 3 2
COHESIVENESS 7 7 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 a 3 , 3
COMMUNICATIVENESS 8 3 3 3 3 3 3 3 3 3 3 a~' I
COMPATIBILITY 9 2 3 3 3 .' 3
COMPLETENESS llil 3 2 3
COMPLEXITY 11 3 3 3 3 2 2 2 3 3 3'3
COMPREHENSIVENESS 12 3 2 3 3 3 3 3 3 2 3 2 3 I_

,~

CONCISENESS 13 3 2 3 3 3 2 3 3 3 3 3 3 3 3
CONFORMANCE 14 3 3 3 2 3 3 3
CONNECTIVITY 15 2 3 3 2 3 3
CONSISTANCY 16 3 3 3 3 2 3 3 33 2
CORREcn VENESS 11 2 3 3 I 2 It l
COUPLEDNESS 18 3 3 3 3 3 3 3 2 2
EFFEcn VENESS 19 3 3 3 3 3
EFFICIENCY

28 3 3
ELASTICITY 21 3 2 3 2 2 3
ERROR-TOLLERANCE 22 3 "" 3
EXPANDAB I L ITY 23 3 2 2 3 2
FEASIBILITY

21
FLEXIBILITY 25 2 2 3 3 3 3 3 3
GENERALITY

26 3 3 3
INDEPENDENCE

21 3 3 3 2 2 I 2
INTE6ERITY

28 3
INTEROPERABILITY 28 3
INTRAOPERABILITY 31il 3 3 2
LE6IBILITY

31 3 3 3 3 I 3 , t
""INTAINABIL ITY 323 3 3 3 3 , 1
MEASUREABIL lTY 33 3 3 3 3 3 2 a 3 .1.

MODIFIABILITY
34 3 2 2 3 2 2 2 3 3 3 3 ,

MODULARITY
35 3 3 3 3 3 3 2 2 a 3 2 2 3 3

OPERABILITY
36 a

PORTABILITY
37 2 2

PREDICTABILITY
39 2 2 ,

READABIL ITY
39 3 2 2 2 3 3 2 3 I I

REDUNDENCY
18 2 3 3 2 3

RELIABILITY
11 1 I 2 2 2 2 ,

RESILIENCY
12 3 3 3 2 2 3 2REUSAB I L ITY
13 3 3 3 3 3 3 3 3 3 2 3 3 2

ROBUSTNESS
11 2 3 2 3 3

SECURITY
15 2 2

SELF-DESCRIPTIVE 16 3 323 3 2 3 2 2 2 2 3 2 :I 2 3SENSITIVITY
11 3 3 2 3 2

SIMPLICITY
18 2 2 2 2 3 3 2 2 3 3 3 3 2 2 t 3 3 2 2 2STABILITY
19 2 2

STRUCTUREDNE'SS
58 2 3 3 3 2 2 2 3 3 3 3 3 2 3 3 3 3 3 3 3 2SURVIVABILITY
51 3 3 3 3 2 2 2 2 2

TE'STABILITy
52 2 I 2 3

TRACEABIL ITY 53 2 2 3 2 3 3 2 3 3 3 3 3 2 3 3
TRANSPORTABILITY

54 2 3 2 2
TRUSTWORTY

55 3 1,'
UNAMBIGUITY

56 2 3 2 3 2 3 2 2
UNDERSTANDABILITY 51 2 3 2 2 2 3 2 3 3 2 2 3 3 3 1 2 3 2
UNIFORMITY

58 3 3 2 2 2 2 3 2 2 3 3 3 "USABILITY
59 2 1 1 2 3

VERACITY
61il 2 2 2 3 2 2 3

123'1567 8 91811121311151611181921il212223212526212829383132333135363139394811121311 ..5 ..6 .. , .. 8 ..951515253s4555151I1S1.

KEY: 1 ~ INTERDEPENDENT
2 • DIRECTLY DEPENDENT
3 = INDIRECTLY DEPENDENT

NO ENTRY • INDEPENDENT

, ,
;....
"t'..
••";.
i
.1,1
12
n,~
lSt.
"11~.
It
2'
Ja
ft...
as
it
11
21
21•I'
a'

"34
31

""II
:II....,
42
.3......,
'It..,
••u•I,
II
It
54
II
SI
17
SI
SI•

APPENDIX F
THE ATTRIBUTES OF THE ANALYSIS PHASE

The analysis attributes are developed by Shaikh M.
U. [95] as a part of the ALVEY project test
specification and quality management. These attributes
are given below:
Oocumentational Attributes

Dl.Communicability

02.comprehensiveness

-how the results are expressed

03.Identifiability -the extent to which analys
or its analysis components
can identiy.

D4.Conciseness

OS.Legibility

D6.Self-descriptiveness

D7.Self-explainability

D8.Structuredness -the structure of document
which express the analysis

t ATTRIBUTES OF THE ANALYSIS PHASE

09.Automation.

OlO.Style

Oll.formality

Relational Attributes

Rl.Complexity

R2.Simplicity

R3.Structuredness

R4.Traceability

Page F-2

results.
????????7???7?????7????

-conventions & procedures
followed in the output of
the analysis results.

-the formal language followed
to express the analysis output.

-extent & number of constituent
parts, degree of complications
or intricacy, the extent to which
certain attributes overlap; in human
terms; of the analysis results, of
further actions/tasks.

the structure showing the
relationship of the tasks,
subsystems,etc ..

the ability to trace
(a) the needs/requirements

of the user/management,
(b) the consequences of the

possible changes.

'TTRIBUTES OF THE ANALYSIS PHASE

Performance

PI.Effectiveness

P2.Predictability

P3.Speed

Change

Cl.Amendability

C2.Augumentability

C3.Expandability

C4.Extendability

CS.Flexibility

C6.Maintainability

Page F-3

yielding the results which deliver
always the same design.

yielding the results which may lead
towards slow/fast design.

the extent to which output can be
changed according to the needs.

the extent to which additional
features can be added.

capability of being expanded
with respect to
(a) requirements
(b) facili ties
(c) etc ..

the provision to have
extension facilities,
applications, etc ..

able to adjust according to
the circumstances.

capability for
(a) correction

~TTRIBUTES OF THE ANALYSIS PHASE Page F-4

(b) enhancement
(c) efficiency
(d) etc ..

C7.Stability the output which is unlikely to
be changed or have the minimum
chance to be changed at a later
stage.

Evaluation Attributes

El.Auditability the provision of traces and diagnosis.

E2.Completeness level of details of the output
with respect to something missing
e.g. detailed level of deta model,
process model etc ...

•••••••• G

APPENDIX G
THE LIFE CYCLE SUMMARY

The summary of the life cycle is given for the
purpose of facilitating the determination of the distinct
phases of the system development life cycle. The life
cycle which is considered in this study is the one which
is developed by Shaikh M. U. [SO]. This is because
this life cycle is of global nature and it is applicable
to most of the software systems.

The Summary oe. The_ J:.,ife Cycle

Phases Starting
.-._-_._---_._--_ ..__ .._----------
Point End Product

1 1< Project Proposal

~Study of prol>osal

Proposal about
what the user
& Management want:
to have.

Recommendations about
Analysis Method/MeUlodology,
statement of needs &
brief plan, estimates
about manpower required,
costs, time etc ..

study of the Proposal couments, noles, etc.,
given by the about the proposal and
User & Management.

"Initial Investigation rnvost, igating th(~
proposal using
the informal report,
comments, notes,
etc ..

"Initial P(~asibility
stUdy

2 1< Stra.tegy

3 ~.AnalysiB

output of initial
invest.igation Phase.

output Report of
Project Prol>osal
Ph.i.s~i.e. initial
fea~;bility study
sub-phase.

statements of needs,
brief plan etc.
obtai ned (rom.
Phase .1

informal recommendations,
and a report etc ..

statements postulating
actual needs, costs,
ben1fits, elc ..

Recommendations about
AnalysiS Method/Methodology,
statement of needs and
hrief plan, estimates about
completion date, manpower
required, costs, etc ..
---_._--------_._-_ -

strategy Plan i.e. how
to proceed w~th the
project.

J~tailed proposals
showing definitions of
Requirelllents, Requirements
Specification, important
parameters, information
abo\lt enVironment, etc.,
statistics about costs,
time, manpowe r etc. and
their feasibility to be
USM (or.developing
System Spocificalions.

"'AnalY~11.S 0 L

environment
any ava1.lable
information about
working, working
area, terminologies
being used by the
user/Management elc ..

""Requirell\entsAnalysis Report on Analysis

""Prepare Requirements
SpeCification.

of the environment,
the statement of
needs, brief
plan etc ..

Report oC
Requirements
Analysis

""L~ect.for consistency statement of
Requirements
Speci.fications

"'Search [or eX1sting
available System

""Feasibillty Analysis
and Detailed
PropoS<l.l(s)

4 1t System
Specifications

5 ... DeSi.fJn

The output of
sub-phase
check for
connistency

The output of
sub-phase
eheck for
cons t !3tency

The se lected
detailed Prol~sal
1. •e. out.put. of
the Analysin
Phase.

~ho:tL repo'r L uh()wtnq adoqua t.o
information about the
environment working area.

Statement showing the
agreed Requirements of the
user/Management.

Particular C0mL)rehenfiive
and preca.se statement of
Requirements frOtR the
user/Management and the
environment point of view.

A crl.tically examined report
against any contrad1ction,
IRisleading coanponents, etc ..

May lead to Implementation
Phase if there is available
a suitable SytJtem which is
according tc> Requirements
spec t ficat ion.

set of detailed proposal(s)
giving recommendations,
conclusions, statistics
about costs, til1lC,etc.,
and possible ben1Cits.

Tho technical Plan having
set o[different clear
steps to be used as a basis
for system Design.

--_ ..._._--_.-_ .._------,-------
::'''ystemSp(~cifications Integrated details about
which arc in tcrms of Modules, SulJ-systems, thel.T.
scd. of clear. !;tep:'

Lc'ctml.c"l..1 L<?l:m:;.

(" ;:;ut, :'Y:';lel(,;;, ttl'1/

cont.r o Ls cous t (,llI1L::; pLc .•

ThiS is called a.:l LraJoo or
skleLon.

"'Planning & oeca.es ton use of system
specifications

"'Conceptual Design output of sub -pnase
Planning & Decissi.on
aud system
Specifications.

"'PhYSical Design output of subphaso
conceptual Design.

.---------------------------
t; ~. Ilnplementat iou Frame 01: sklelton

of Soflware System
Developed dur ing
t.ho Design Phas£!.

" ...Transit i.on 1. Systelo
spec i racat.tons ,

infol.mation about.
Funct.ions, real
world, etc ..

2. Deta.iled program
st.at.euent.s in a
pzoqt ameu.nq
Lanquaqe and j ts
documentations.

nasa c structuz:{~ of software
and ~~cri.eB of hierarchica.l
steps, definitions, main
l"unctions, processes,
ol~z:ating pa.rameters,
1/0 data, et,c..
Bas ac asswnpt ious abOut
Design and ideas creatl.ng
Modules, s~-systems, data
bases, etc.. Modp.ls about
enti.Ly types, data element
types, da+a structure,
data flow diagram, etc .•

Integrated det.i'liIs about
dat.a format, d,it.a structure,
data base, daLa dictionary,
FUnctions, Processes,
Modules, sub·-systems, theiz
interfaces to other Modules,
sub·-systems etc ..

Detailed programme
statemenLs ~n sU1table
programming language(s) and
its doculRentatl.ons.

A wOl.king System

•••••••• H_

APPENDIX H
SOFTWARE QUALITIES

These implementation phase attributes are defined by
M. A. Hennell [34]. These attributes are defined in
the terms of general meanings which are applicable to the
implementation phase of the software system development
life cycle.

1. Accessibility: Are all items needed for
comprehension available e.g. are include or copy
statements present. c.f. Comprehensiveness.

2. Communicativity: able to impart information .c.f.
readibility.

3. Comprehensiveness: the extent to which all the
necessary information is present.

4. Identifiability: the extent to which documents or
components of documents can be located.

5. Legibility: capable of being read. Clarity of the
objects and their presentation.

FTWARE QUALITIES Page H-2

6. Readability: the ease with which the software can be
read and understood.

7. Self-descriptiveness: the extent to which the entity
contains adequate commentary on what the entity is
and its purpose.

8. Self-explainability: The extent to which the entity
contains adequate commentary on its mode of
performance.

9. Style: the presentation (or layout) of the test and
information relating to the text.

10. Understandability: the property of being understood
by more than one person e.g. uniform style, standard
names. c.f. comprehendability, Readability.

11. Coercion: the extent to which unrelated objects have
been made to combine togother.

12. Cohesiveness: classes appear to be contentious. Do
the components combine together according to some
criteria?

13. Complexity: see simplicity. The extent and number
of constituent parts. The degree of complications or
intricacy. The extent to which certain attributes
overlap. The degree of interdependence.

'TWARE QUALITIES page H-3

14. Connectivity: the ease with which components link
together.

15. Consistency: with respect to some criteria or some
requirement. Are contradictions present?

16. Coupledness: the extent to which various elements
are interrelated (see connectivity).

17. Independence: not reliant on external entities, the
extent of such reliance, use of overlap or
equivalence.

18. Interoperability: the ability of an entity to be
linked to another externally.

19. Intraoperability: the linkage between the internal
components of a program or system.

20. Modularity: the criteria by which the software is
decomposed into smaller units.

21. Simplicity: the extent to which specific
characteristics are present without complication.

22. Structuredness: the extent to which the software
contains structure of specific types

23. Traceability: the ability to trace
a) the requirements to the corresponding
design or code,
b) the flow of control,
c) the flow of data,

TWARE QUALITIES Page H-4

d) the consequences of a modification.

24. Accuracy: the ability to produce results within a
certain range.

25. Conciseness:
criteria.

minimality with respect to some

26. Effectiveness:
efficiently.

performs its task completely and

27. Efficiency: the extent to which a software item
consumes resources. Such resources can be temporal,
spacial, human, fiscal etc ..

28. Error-tolerance: able to recover from:
a) internal errors,
b) external errors.

29. Predictability: the characteristics of always
yielding the same results for the same inputs.

30. Redundancy: the extent to which there is overlap
between processing elements. The amount of
duplicated or unnecessary features.

31. Reliability: the perception that a software item can
perform a required function under stated conditions
for a stated period of time without error.

32. Resilience: the ability to recover from specific
events. Containing an error recovery mechanism.

rmAKE QUALITIES Page H-S

33. Stability:
Robust the

unlikely to change c.f. Resiliant,
ability to perform its tasks correctly

even though the environment may be incorect.

34. Adaptability: capable of change for other purposes
(see amenability).

35. Amenability: the extent to which a document can be
changed (see adaptability).

36. Augmentability: the extent
features can be added.
Modifiability, Maintainability.

to which additional
c.f Enhanceability,

37. Changeability: the extent to which components of a
document which are subject to change can be
identified and altered.

38. Elasticity: capable of being extended by:
a). application to more general

problems, see Generality,
b). permitting additional features

to be added, see Enhanceability,
Expandability.

39. Expandability: capable of being expanded:
a) with respect to entities,
b) with respect to facilities

or functionality.

rwARE QUALITIES page H-6

40. Maintainability: capability for:
a) correction,
b) enhancement,
c) performance improvement

c.f. Efficiency.

41. Modifiability: ease with which changes can be made
c.f. Maintainablity.

42. Repairability: the extent to which faults can be
located and corrected.

43. Auditability: the ease of auditing. For example
provision of traces and diagnostics. The extent to
which knowledge of the program actions can be
determined. c.f. Analysability.

44. Analysability: capable of analysis.
control flow predictable. (c.t.

pointer variables being used? Is
performed on pointers?

e.g. is
Cobol). Are

arithmetic

45. Completeness: complete with respect to some criteria
or some requirement. Is something missing?

46. Conformance: satisfies standards.

47. Correctness: correct with respect to some criteria
c.t. consistency.

TWARE QUALITIES page H-7

48. Feasibility: the extent to which the software can be
developed within a specific timescale, within
specific resource limits and by the personnel
available the extent to which inputs can be supplied
to execute particular components., c.f.
readability, conciseness.

efficiency,

49. Functionality: the extent to which the functions are
present. The nature of the functions.

50. Integrity: trustworthy, predictable, correctness,
the ability of the system to prevent unwanted access
to internal items, see Security.

51. Measureability: capable of being measured.

52. Sensitivity: the stability of programs outputs with
respect to internal software errors.

53. Testability: the extent to which the software is
capable of being tested.

54. Unambiguity: the extent to which the software is
free of interpretation.

55. Uniformity: the extent to which the software is
constructed by a common method, technique or style.

56. veracity: c.f. Correctness, Trustworthy Reliability
of outputs.

~ARE QUALITIES Page H-8

57. Friendly: easily understandable.

58. Learnability: the difficulty associated with
learning how to use the software.

59. Operability: the extent to which the software can be
operated.

60. Usability: the effort required to learn, operate,
prepare input and interpret output of a program.

61. Safety: the extent to which the software causes
danger either to humans or to other systems or data
repositories.

62. Security the protection of the code against
corruption, the protection of the internal data from
unauthorised users, the protection of the code from
additions.

63. Trustworthy: capable of performing its tasks without
unwanted side-effects.

64. Flexibility: capable of being expanded, elastic,
portable, generality.

65. Generality: capable of being used on more complex
problems, extensible, expandable, flexible, portable.
solving a wider class of problem than the current
one.

·J.·WAREQUALITIES Page H-9

66. Independent: device independent, language
independent, o/s independent, machine independent.

67. Portability: the ability to move between:
a) dialects (of language or notation),
b) machines,
c) environments,
d) people.

68. Reusability: the extent to which entities can be
re-used.
structures,

These may be; declarations, data
operators, procedures, modules,

sub-systems, programs, systems.

69. Robustness: the ability to function correctly when
supplied with erroneous data or if its operating
environment is changed. Planned to cope.

70. Durability: the deterioration of the product with
respect to time.

71. Responsive:
events.

the ability to cope with external

72. Timeliness: the availability of features at a

particular time.

73. up-to-datedness:
in the document
Timeliness.

the extent to which the information
reflects the current state. c.f.

•••••••• I

APPENDIX I
REFERENCES

1 Curtis B.,
"Research on Software Complexity, in
Proceedings of The Work Shop on Quantitative
Software Models for Reliability, Complexity,
and Cost", New-York, IEEE, 1980, PP. 1-12.

2 Halstead M.H.,
"Elements of Software Science",
New-York, Elsevier North-Holland INC, 1977.

3 Curtis B., Sheppard S.B., Milliman P.M.,
Third Time Charm, "Stronger Prediction
of Programmer Performance by Software
Complexity Metrics", Proceeding of 4th
International Conference on Software
Engineering, PP. 356-360, 1979.

4 Fitzsimmons A.B. and Love L.T.,
"A Review and Evaluation of
Software Science, ACM Computing Surveys, 10,
PP. 3-18, 1978.

t;RENCES

5 McCabe T.J.,
"A Complexity Measure ",
IEEE Transaction on Software Engineering,
SE-2, PP. 308-320, 1976',

6 Henry S.M. and Kafura D.,
"Structure Metrics Based on Information Flow",
IEEE Transaction on Software Engineering,
Vol. SE-7, No.5, PP.510-S18, Sep. 1981.

7 Yourdon E.,
"Structure Design", Fundamentals of
a Discipline of Computer Program
and System Design", 1978.

8 Woodward M.R., Hennel M.A. and Hedly D.,
"A Measure of C t I Ion ro F ow Complexity
in Program Text", IEEE Transaction on
Software Engineering PP. 45-50, 1979.

9 Kafura D. and Canning J.,
"A Validation of Software Metrics Using Many
Metrics and Two Resources",
Proceding of 8th International Conference on
Software Engineering, August, PP. 378-385,1985

10 Jackson M.,
"Principles of Program Design",
Academic Press, London, 1975.

Page 1-2

~RENCES Page 1-4

17 Parnas D.L.,

"A Technique on the Criteria to be Used

in Decomposing System into Modules",

Comm. of the ACM, 15, PP. 1053-1058, 1972.

18 Parnas D.L.,

"A Technique for Software Module Specification
with Examples", Comm. of ACM, 15, 5, PP. 330-336, 1972.

19 Myers G.J. Stevens N.P. and Constantine L.L.,

"Structured Design, IBM System Journal,

Vol. 13, PP. 115-139, 1974.

20 Meiler P.J.,

"The Practical Guide to Structured

Systems Design", 1980.

21 Emerson T.J.,

"A Discriminant Metric for Module Cohesion",

Proceeding of 7th International Conference

on Software Engineering",

PP. 294-303,

22 Harner P. G and Frewin G. D.,

"M. A. Halstead's Software Science

A Critical Examination", Proceeding of

6th International Conference on Software

Engineering, September, 1982, PP, 197-206, 1982.

23 Baker A.L. and Zweben S.H.,

"A Comparison of Measures of Control Flow Complexity"

IEEE Transaction on Software Engineering,

Page I-5

Vol. SE-6, no.6 ,Nov. 1980, PP. 506 -512.

24 Ruck J.,

"The Structure of Computers and Computation",
Vol. 1, New-York, 1978.

25 Bo rn G.,

"Controlling Software Quality",

Special Issue on Controlling Software Project",
"Software Engineering Journal",

Vol. 1 No.1 Jan. 1986.

26 Frewin G.D. and Hatton B.J.,

"Quality Management Procedures and Practices"
Software Engineering Journal, Vol. 1 PP. 29-38,
Jan. 1986,

27 Jones T.C.,

"Measuring programming Quality and

Productivity", I.B.M. System Journal,

Vol. 17 No.1, PP. 9-64, 1978.

28 Boehom B.W.,

"Software Engineering Economics",

IEEE Transaction on Software Engineering, 1984,

SE-I0(1) PP. 4-21.

29 Boehom B.W., et al.,

"Characteristics of Software Quality",

TRW Series on Software Technology,

Vol. 1 North-Holland, 1978.

ERENCES Page I-7

Conference, PP. 326-368, May 1986.

36 Brooks F.P.,
"The My tical Man Month, Essay in
Software Engin. Reading",
MA: Addison wesley, 1975.

37 McClure C.L.,
"A Model for Program Complexity Analysis",
Proceding of 3rd International Conference
on Software Engineering, Atlanta, GA, May,
PP. 149-157, 1978.

38 Sinha P.K., Jayaprakash S. and Lakshmanan K.B.,
"A New Look at the Control Flow Complexity
of Computer Programs",
IEE Computing Series 6, software Engineering,
SE/86, PP. 88-102, 1986.

39 Harrison W.,Mogel K., Kuxzny R. and Dekock A.,
"Applying Software Complexity Metrics
to Program Maintenance",
Computer. 15(9), Pp. 65-79. 1982.

40 Chen E.T.,
"Program Complexity and Program Productivity",
IEEE Transaction on Software Engineering,
SE-4, 1978, PP. 187-194.

41 Myers G.J.,
"A Software Reliability, Principle
and Practices", A WileY-Interscience publication,

'ERENCES Page I-8

John Wiley and Sons, 1976.

42 Rafura D. and Henry 5.,
"Software Quality Metrics Based on
Interconnentivity", the Journal of
System and Software, 2, PP. 121-131, 1981.

43 Canning J.T.,
"The Application of Software Metric
to Large-Scale System",
Ph.D. Thesis, Computer Science Department,
Virginian Polytechnic Institute, April 1985.

44 Myers G.J.,
"An Extension to Cyclomatic Measure of
Program Complexity", ACM Sigplan Notices,
Vol. 12, No. 10, Oct. PP. 61-64, 1977.

45 Yau 5.5. and Collofello J.,
"Some Stability Measure for Software Engineering
Maintenance", IEEE Transaction on Software
Engineering, Vol. SE-6, NO.6, PP. 545-552,
NOV. 1980.

46 McCall J.A. , Richard P.R. and
Walters G.F.,
"Factors in Software Quality",
Technical Report 77 CIS02, Vol. 1, 2, and 3,
Sunnyvale, CA.,
General Electric Command and
Information Systems, 1977.

;!RENCES page I-9

47 Haney F.M.,

"Module Connection Analysis",

A Tool for Scheduling Software Debugging

Activities, Proceeding Fall Joint Computer
Conference, PP. 173-179, 1972.

48 Chapin N.,

"A Measure of Software Complexity",

AFIPS. Conference Proceedings,

Vol.48, INC 1979, PP. 995-1002.

49 Curtis S.,

"Measurement and Experimentation in Software

Engineering", Proceeding of the IEEE, Vol. 68

No.9, PP. 1144-1157, september, 1980.

50 Shaikh M.U.,

"Analysis and Comparison of System development

Methodologies in Software Engineering",

Ph. D. Thesis, 1986, University of

Liverpool, U.K.

51 Cramford S. Mcintosh A. and Pregibon D.

"An Analysis of Static Metrics and

Faults in C. Software",

The Journal of system and Software

Vol. 5 No.1, Feb. 1985.

52 Lehman M.M.,

"Programs, Life Cycle, and Laws of

Software Evolution"

Page 1-10

Proceeding of IEEE, Vol. 68, No.9,

September, PP.1060-1076, 1980.
53 Halstead M.H.,

"Natural Laws Controling Algorithm Structure",
ACM sigplan Notice Vol. 7 NO. 2,Feb. 1972.

54 Elshof J.L.,
"An Investigation Into the Effects of the
Counting Method on Software Science Measurement",

ACM. SIGPLAN Notice Vol. 13, No.2, PP. 30-45,

Feb. 1978.

55 Baker A.C. and Zweben S.H."

"The Use of Software Science
in Evaluating Modularity",

Concepts", IEEE Transaction on

Software Enginnering Vol. SE-5,

No.2 March 1979, PP. 110-120.

56 Oviedo E.I.,

"Control Flow, Data Flow and

Program Complexity", Proceeding

of Compsac 80, Chicago, ILL, PP. 146-152.

57 Boffey T.B.,

"The Linearisation of Flow Charts",

BIT, Vol.1s PP. 341-350, 1975.

rERENCES Page I-II

58 Curtis B., Sheppard S.B., Milliman P.M.,

Borts M.A. and and T. Love,

"Measuring the PsychologicaL Complexity

of Software, Maintenance Tasks with
Halstead and MCcabe Metrics"

IEEE. Trans. Software Engineering 5(2),

1979, PP. 95-104.

59 Prather R.E.,

"An Axiomatic Theory of Software

Complexity Measure", The Computer Journal,

Vol. 27, No.4, PP. 40-347, 1984.

60 Oul snam G.,

"Cyclomatic Number do not Measure

Complexity of Unstructured program",

Information Processing Letters,

Vol. 9, No.5, PP. 207-211, Dec. 1979.

61 Tausworthe R.C.,

"Standarized Development of Computer Software",

Prentice-Hall, Englewood Cliffs, NI, 1977.

62 Lunderberg M., Goran Goldkunl, and Nilsson, N.,

" Information systems development a Systematic

Approach", University of Stockholm, Prentice-Hall,

INC., Englewood Cliffs, New-Jersey 07632, 1981.

63 Gilb T.G.,

"Software Metrics",

Cambridge, MA:, Winthrop, 1977.

'ERENCES Page I-12

64 Yourdon E.,

"structured Design",
Workshop, Edition 2.1, Yourdon Inc.,

N.Y., 1980.

65 Enger N.L.,
"Classical and Structured Systems Life
and Documentation",

Systems Analysis and Design a Formulation

for 1986, PP. 1-24, Elsevier North Holland INC.,

U.S.A, 1981.

66 Hennel M.A.,

"Metric Evaluation",

Syntax-Oriented Programme Handling and
Instrumentation for ADA"

Document: LDRA/009, Version 2,

October, 1986.

67 Kearney J.K., Sedlmeyer R.L., Thompson W.B.,

Gray M.A. and Adler M.A.

"Software Complexity Measurement"

Communication of ACM Vol. 29,

No. 11, November, 1986.

68 Boehom B.W.

"Software Engineering Economics",

Prentice Hall,EngleWood Cliffs, NJ, 1981.

69 Ishikawa K.,

Translate by Lu J.D.,

CI:ORENCES Page I-13

"What is Total Quality Control?",
the Japanese Way, Prentice-Hall, INC.
Englewood Cliffs, N.J. 1985.

70 Kitchenham B.A. and Walker J.G.,
"The Meaning of Quality"
Proceeding of the BCS/lEE,
Software Engineering 1986, PP. 393-406, 1986.

71 Naur P.,
"A Model and the World",
Proceeding of the BCS / lEE,
Conference SE 86, September, 1986.

72 Drummond 5.,
"Measuring Applications Development
Performance",
Datamation Feb. 1985, PP. 102-108.

73 Albrecht A.J.,
"Function Points Helps Managers, Assess Applications,

Maintainence Value"
Computer World (special report),
August 26, 1985, PP. 20-21.

74 Behrens C.A.,
"Measuring the Productivity of Computer systems
Development Activities with Function points".
IEEE Transaction on Software Engineering,
Vol. SE-9, No.6, Nov. 1983, PP. 648-652.

tRENCES Page 1-14

75 Albrecht A.J., John E., and Gaffeny JR.,

"Software Function, Source Line of Code and

Development Effort Prediction: A Source Science

Validation", IEEE Transaction on Software

Engineering, Vol. SE-9, No.6, Nov. 1983,

PP. 639-648.

76 Albrecht A.J.,

"Measuring Application Development Productivity "

in Proc. IBM Application Develop. Sympsium,

Montery, CA, 14-17th Oct.1979., PP. 83

77 Hennel M.A.,

"Software Qualities",

Project, Test Specification and Quality

Management, UOL/023, Version 1, August, 1986.

78 Kitchenham B.A. and Walker J.G.,

"The Place of Checking and Testing in the

Software Life Cycle",

Working Paper for Project Review and Comments,

ICL 021, Version 1, Feb. 1987.

79 Bowen, Wigle, and Tsai,

"Specification of Software Quality Attribute

Final report"

0182-11678-1,

0182-11678-2,

0182-11678-3,

Final report, Boeing Aerospace Co.

Seattle, WA. October, 1984.

~NCES page 1-1S

80 Hedley D. and Hennel M.A.,

"Definition and Meaning of Quality",

Project, Test Specification and Quality
Management, UOL/OOS, Version 2, August, 1986.

81 Woodward M.R.,

"The Application of Halstead's software Science

Theory to ALGOL 68 Program", Software-Practice

and experience, Vol. 14(3), PP. 263-276, March,

1984.

82 Lloyed S.M.,

"Roget's Thesaurus of English Words and

Phrases", 1982.

83 G and C Merriam Company,

Longman New Universal Dictionary, 1982.

84 Kitchenham B.A. and Walker J.G.,

"Test Specification and Quality Management, the
Meaning of Quality", Deliverable A2l, Alvey

Project SE/031, Report to the Alvey Directorate,
27th, May, 1986.

85 Fagan M.E.,

"Design and Code Inspections to

Reduce Errors in Program Development",

IBM System Journal, 15(3), PP.182-212, 1976.

~ENCES Page 1-16

86 Yeh R.T.,
"Guest Editorial on Software Science",

IEEE Transactions on Software Engineering,

Vol. SE-5, No.2, March, PP. 74-75, 1979 ..

87 Kitchenham B.A.,
"Measuring of Programming Complexity",
ICL Technical Journal, PP. 298-316, May, 1981.

88 Myers G.J.,

"Reliable Software Through Composite Design",

N.V. Van-Nostrand, R. Heinhold 1975.

89 Troy D.A. and Zweben S.H.,

"Measuring the Quality of Structured Designs",
the Journal of Systems d S ftan 0 ware, 2 ,
PP. 113-120, 1981.

90 Ho~cker H., Itzfeldt M. and Timm M.,

"Comparative Description of Software Quality
Measurement", GMD-Studien, March, 1984.

91 Freigenbaum A. V.,

"Total Quality Control", Third Edition, 1983,

McGraw-Hill Book Company.

92 Garvin D.A.,

"What Does Product Quality Realy Means",

Sloan Management Review Fall 1984, PP. 25-43,

1984.

'~RENCES Page 1-17

93 Christesen K., Fitsos G.P. and Smith C.P,

A perspectiv on Software Science", I.B.M. System

Journal, Volume 20, Number 4, PP. 372-387, 1981.

94 Stroud J.M.,

"The Fine Structure of Psychological Time",
Information Theory in Psychology, the Free Press,
Chicago, ILL., 1956.

95 Shaikh M.U.,

" Private Communication at Special Meeting of the

ALVEY Directorate, in Malvern, U.K., february, 1987.

96 Monro D. M.,

" FORTRAN 77", Imperial College of Science and

Technology University of London, Donald M. Monro,
1982.

97 Hecht, M.,
"Flow Analysis of Computer Program",

New York, North-Holland, 1978.

98 Allen F.E.,

"Interprocedural Analysis and the Information Derived

by it", in Lecture Notes in Computer Science, Vol 23,

Wildbad, Germany: Springer, PP. 291-321, 1974.

99 Ejiogu, L.O.,

"The Critical Issues of Software Metrics",
sigplan Notice, Volume 22,Number 3, PP. 59-64,
March, 1987.

'ERENCES Page 1-18

100 Ryde r B. G.,
"The PFORT Verifier", Software-Practice and
Experience, Volume 4, PP. 359-374, 1974.

101 Van Verth P. B.,
"A System for Automation Grading Program Quality,
Suny (Buffalo), Technical Report Number 85-05 (1985).

102 Scheidewind N. F,
"Software Metrics for Aiding Program Development
and Debugging", National Computer Conference,

pP. 989-994, 1979.

103 Gilb T.,

"Design by Objective", North-Holand, Planned 1985.

104 ISO/TC 176(1984),

Resolution adopted at March 1984, meeting of
TC 176 for inclusion in Submission DP 8402 as a
Draft International Standard.

105 Kitchenham B.,
"Personal Communication".

106 Hennell M. A.,
"Personal Communication".

107 woodward P. M., Wetherall, P. R. and Gorman B.,
Official Definition of Coral 66, HMSO. London,
1970.

