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Abstract

The problem of extracting association rules from databases is well known. The most

demanding part of the problem is the determination of the supportfor all those sets of

items which occur often enough to be of possible interest. All methods of association

rule mining require the frequent sets of items to be first computed. The cost of this

increases in proportion to the database size, and also with its density. Densely-

populated databases can give rise to very large numbers of candidates that must be

counted. Both these factors cause performance problems, especially when the data

structures involved become too large for primary memory. The research described

within this thesis investigated strategies for partitioning the data in these cases. New

methods are presented that partition data using a tree structure within which

candidates are enumerated. It is shown that the new methods scale well for

increasing dimensions of data, and perform significantly better than alternatives,

especially when dealing with dense data and low support thresholds.
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Chapter 1

Introd uction

1.1 Introduction

The information revolution is generating huge volumes of data in diverse areas including

sales, financial transactions, services, and scientific and engineering activities. For example

the earth observation satellites of the National Aeronautics and Space Administration (NASA)

generate a terabyte (1015 bytes) of remote sensing data every day [Frawely et et, 1992]

[Zomaya et st, 1999] [Bramer, 1999]. Very large databases may now contain billions of

records and thousands of features [Fayyad etal., 1996b].

However, the very large databases themselves in raw form have limited value. What

is of value is the knowledge that can be gathered from the data and put to use. But, as the

technology for storing and retrieving large volumes of data has developed, and increasingly

larger databases are built, the technology for analysing the data has not kept pace [Agrawal

et et, 1993b]. Most traditional data analysis methods are designed to analyse smaller data

sets and often do not scale up well to analyse these larger database [Fayyad et et, 1996c].

There is an urgent need for a new generation of computational techniques and tools to assist

humans in extracting useful information (knowledge) from the rapidly growing volumes of data

[Fayyad et et, 1996a]. Collectively techniques that intelligently and automatically assist in

transforming these large volumes of data into useful knowledge are part of the process of

Knowledge Discovery in Databases (KDlJ).

KDD can be defined as "the automatic and non-trivial process of identifying valid,

novel; potentially useful and ultimately understandable patterns in data"[Fayyad et sl, 1996a]

[Fayyad et et, 1996b]. It is the nontrivial extraction of implicit, previously unknown and



1 Introduction

potentially useful information from data [Frawely et aI., 1992]. By knowledge discovery in

databases, "interesting" knowledge, regularities, or high-level information can be extracted

from the relevant sets of data in databases and be investigated from different angles, and

large databases thereby serve as rich and reliable sources for knowledge generation and

verification [Chen et aI., 1996]. Here "interesting" means an overall measure of pattern value,

combining validity, novelty, usefulness and simplicity [Fayyad et al., 1996a]. The key

challenge in KDD is the extraction of interesting knowledge and insight from massive

databases.

Data mining, viewed as a major step in the KDD process, is the discovery of valuable

information from large data volumes using computationally "efficient" techniques [Fayyad et

al., 1996d] [Chen et al., 1996] [Zomaya et aI., 1999]. It consists of applying data analysis and

discovery algorithms that produce a particular enumeration of patterns over the data [Fayyad

et al., 1996a]. The choice of data mining algorithm will depend on the type of data that is

being analysed and the nature of the data-mining task. Almost always, what is being sought is

some relationship which can be observed between categories of information in the data. A

particular way to describe such a relationship is in the form of an association rule which

relates attributes within the database.

Association rules are statements of the form "90 percent of customers who purchase

bread and butter also purchase milK'. These are probabilistic relationships, of the form A ::::> B,

between disjoint sets of database attributes, which is obtained from examination of records in

the database. In the simplest case, the attributes of a database are Boolean, and the

database takes the form of a set of records (transactions) each of which reports the presence

or absence of each of the attributes (items) in the record. A rule is usually only of potential

interest if the items it associates (the member of the itemset A uS) occur together relatively

frequently in the data being examined. These frequent sets are defined to be those which

exceed some defined threshold level of support. The support of an itemset is the number (or

proportion) of database records in which that item set occurs as a subset.

2



1 Introduction

Association Rule Mining (ARM) obtains, from a binary valued dataset, a set of rules

which indicate that the consequent of a rule is likely (with a certain degree of probability) to

apply if the antecedent applies [Agrawal et al., 1993b]. Mining association rules is one of the

core data mining tasks [Park et et, 1995]] [Agrawal et al., 1996]. The challenge is to identify a

set of relations in a binary valued attribute set which describe the likely coexistence of groups

of attributes. The ARM problem can be decomposed into two sub-problems: (1) to find the set

of all subsets of attributes that frequently occur in database records, and additionally, (2) to

extract rules on how a subset of attributes influences the presence of another subset [Agrawal

et al., 1993a][Zaki, 1999]. Having obtained the frequent sets of attributes that occur together

sufficiently often, the solution of extracting rules that are likely to be of interest is rather

straightforward [Agrawal et al., 1993a]. Identifying the frequent sets is thus the most

computationally demanding aspect of ARM.

1.2 Problem Statements

The biggest problem in deriving association rules is the task of computing support counts for

all possible combinations of items into itemsets. The problem arises because the number of

possible item sets is exponential in the number of possible attribute-values of the binary

dataset. For most real data, the number n of such items is likely to be such that counting the

support of all 2" sets of items (itemsets) is infeasible. Most ARM algorithms, including Apriori

[Agrawal and Sri kant, 1994], thus make use of the "downward closure property of the set of all

itemsets" to find the frequent sets. The observation is that if an itemset is adequately

supported, then all the subsets of the itemset will also be adequately supported.

Consequently if an itemset is not supported, any effort to calculate the support for its

supersets will be wasted. These algorithms proceed in general by attempting to count the

support only for those candidate itemsets which the algorithm identifies as possible frequent

sets, rather than all combinations of items. The performance of these methods, clearly,

3
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depends both on the size of the original database, typically millions or billions of records, and

on the number of candidate itemsets being considered.

Of course, it cannot be known in advance whether a candidate itemset will be

frequent, and it will therefore be necessary to consider many itemsets that are not in fact

frequent. The number of possible candidates increases with increasing density (greater

number of items present in a record) of data and with decreasing support thresholds. The

task, therefore, increases in difficulty with the scale of the data including density and also with

low support threshold. The greatest challenge is posed by data that is too large to be

contained in primary memory, especially when high data density and/or a low support

threshold give rise to very large numbers of candidates that must be counted. In applications

such as medical epidemiology, we may be searching for rules that associate rather rare items

within quite densely-populated data, and in these cases the low support-thresholds required

may lead to very large candidate sets. These factors motivate a continuing search for efficient

algorithms.

Performance will be affected, especially, if the magnitudes involved make it

impossible for the algorithm to proceed entirely within primary memory. In this case, assuming

that parallelisation or distributed data mining is not an option, some strategy for partitioning

the data will be required to enable algorithmic stages to be carried out on primary-memory-

resident data. In demanding cases local candidate sets of partitioned data will also be

required to store in secondary memory. Effective partitioning and storing will be required to

reduce the number of accesses to secondary memory. Not all methods can be readily

adapted to deal with non-stare-resident data, and performance in these cases may not scale

linearly with the database size and density.

The final concern, when implementing ARM algorithms using partitioning, is the

nature of data structures used to store itemsets as the algorithm progresses; this must be

concise and suitable for non-stare-resident data while at the same time offering fast access

times. Whatever hardware is being used, there comes a point where the data to be mined can

4
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no longer be stored in primary memory. In this event, part of the data/structure must be

"dumped" to secondary storage in applications involving a single-processor implementation or

must be "distributed" over a given number of processors in applications involving multiple-

processor implementation. Not all data structures are suitable or readily adaptable for this

non-stare-resident data. The challenge is to develop methods that will find all the frequent

sets using suitable data structures and effective partitioning in cases where the data is much

too large to be contained in primary memory.

1.3 Thesis Contributions

In this thesis various methods of partitioning are examined to limit the total primary memory

requirement in Association Rule Mining, including that required both for the source data and

for the candidate sets. Both 'horizontal' partitioning, which divides the source data into sets of

records, and 'vertical' partitioning, which partitions records into sets of items are considered.

The goal is to research and evaluate methods that will find all the frequent sets efficiently in

cases where the data is much too large to be contained in primary memory and demonstrate

solutions that will scale effectively as the database size and density increases.

The most well known algorithm, Apriori [Agrawal and Srikant, 1994], originally used a

Hash Tree to store sets of items. But, of course, Apriori can be implemented using other data

structures. More recently researchers have focused on the use of Set Enumeration Trees

[Ryman, 1992] for association rule mining. The set enumeration tree imposes an ordering on

the set of items and then enumerates the sets according to this ordering. Not all methods and

data structures can be readily adapted to deal with partitioning source data and candidate

sets when the data is much too large to be contained in primary memory. For example, the

otherwise very efficient DepthProject [Agarwal et et, 2000] algorithm is explicitly targeted at

memory-resident data, while the multiply-linked structure of the FP-tree [Han et al., 2000]

5
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causes problems for non-store-resident implementation. The CA TS tree [Cheung and Zaiane,

2003], an extension of the FP.{ree, also assumes no limitation on main memory capacity.

Figure 1.1: Example of a P-tree

Two forms of set enumeration tree have been developed by Coenen and Leng and

used in the Apriori-TFP algorithm [Coenen et et, 2001]: (1) the P-tree that enumerates sets in

a partial ordering, in which sibling nodes are placed in lexicographic order and subtrees are

lexicographically-following supersets of their root node, (2) the T-tree has a similar form to the

P-tree, differing only in that subtrees are in this case supersets that lexicographically precede

their root node. After its construction, the P-tree [Goulbourne et et, 2000] can be easily

converted into a pointer-free form. In this form it is readily adaptable to implementations in

which the data is divided into store-resident concise partitions that are then stored in

secondary memory. Figure 1.1 illustrates a P-tree for the attribute-set {A,B,C,D,E}. The T-

tree, in turn, is a very versatile structure which can be used effectively in conjunction with

many established methods to store candidate sets. These structures, which are central to the

methods discussed in this thesis, will be described in detail in Chapter 3. The Apriori-TFP

algorithm, essentially a form of Apriori, demonstrates significant performance gains (reported

in [Coenen et al., 2001]) in comparison with Apriori, and also some improvements over the

6
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FP-growth [Han et et; 2000] algorithm, which uses somewhat similar structures and has

some similar properties. The Apriori- TFP method begins by performing a single pass of the

database to perform a partial summation of the support totals. These partial counts are stored

in a P-tree which contains all the sets of items present as distinct records in the database,

plus some additional sets that are lexicographically preceding subsets of these. This tree

structure is then used in the Apriori-TFP algorithm to complete the summation of the final

support counts, storing the results in the T-tree. On completion of the algorithm, the T-tree will

contain all frequent sets with their complete support-counts.

In this thesis implementations of Apriori-TFP are considered in cases when it will be

impossible to contain all the data required in main memory thus requiring some strategy for

partitioning the data. From these approaches, different methods of partitioning are examined

to limit the total primary memory requirement, including that required both for the source data

and for the candidate sets, for carrying out the counting of support totals needed for

applications involving a single processor system. For applications involving multiple

processors, different methods are examined where the input data is distributed among

processors. Our hypothesis is that the P-tree and T-tree structures form a basis for an

effective partitioning of the data. Our aim is to demonstrate performance that will scale

effectively for large, dense databases.

1.4 Thesis Outline

The thesis begins by presenting major algorithms for mining association rules and examining

their dealing with non-store-resident data in Chapter 2. The P-tree and T-tree structures used

for the new methods are described with associated algorithms in Chapter 3. Chapter 4

presents the strategies for partitioning source data and candidate sets when the data is much

too large to be contained in primary memory for applications involving single processor

implementations. Experiments and results of these are presented in Chapter 5. For

7
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applications involving multiple processors, the strategies for distributing data among

processors are presented in Chapter 6. And finally, Chapter 7 summarizes the main

contribution of the thesis and suggests avenues for future work.

8



Chapter 2

Background on Knowledge Discovery in Databases

2.1 Introduction

In this chapter a summary is presented to review the literature on Knowledge Discovery in

Databases (KDD). The organisation of the chapter is as follows: major stages of the KDD

process are outlined in section 2.2, and techniques of data mining are classified in section

2.3. The problems of mining association rules are described in detail in section 2.4. Sections

2.5 then presents major sequential algorithms for mining association rules and observes their

dealing with non-store-resident data. Distributed/parallel algorithms for mining association

rules are outlined in section 2.6, and finally a summary in section 2.7.

2.2 The KDD Process

KDD (Knowledge Discovery in Databases) refers to the overall process of discovering useful

knowledge in data. The KDD process has been analysed by many researchers [Debuse et al.,

2000] [Weiss and Indurkhya, 1998] [Fayyad et al., 1996a] [Brachman and Anand, 1996]. The

problem of knowledge extraction from large databases involves many stages and a unique

scheme has not yet been agreed upon. However, the stages of the KDD process can be

categorized as: Problem Specification, Resourcing, Data Cleansing, Pre-processing, Data

Mining, Evaluation of Results, and Interpretation of Results.

9



2 Background on Know/edge Discovery in Databases

2.2.1 Problem Specification

This first stage of the KDD process aims to develop an understanding of the application

domain and identify the goal of the application. The resources necessary to carry out the

project should be determined at this stage. It is necessary to undertake some preliminary

database examinations in order to determine factors such as the size of the database and the

number of attributes. At this stage the data itself may not be available so a description of the

data might be used. However, the user requires a solid understanding of the domain in order

to select the correct subsets of data, suitable classes of patterns and good criteria for

interestingness [8ayardo and Agrawal, 1999] [Silberschatz and Tuzhillin, 1995] [Klemettinen

et al., 1994] of the pattern.

2.2.2 Resourcing

The purpose of this stage is to create a target dataset on which discovery is to be performed.

This stage comprises the collection of the resources required to carry out the project. Often

the most time consuming resource required to collect is the data itself. The data may not be

readily available. For example, it may come from different sources and require consistent

combining and formatting.

2.2.3 Data Cleansing

The purpose of this stage is to ensure that the data is correct, Le. errors or noise in the data

are removed. The problem of outliers and missing values might also be handled at this stage

although they could also be dealt with in the pre-processing or data mining stages. The

distinction between data cleansing and pre-processing is that no learning or knowledge

discovery takes place when data cleansing take place. Data cleansing is usually carried out

only once for each database.

10



2 Background on Knowledge Discovery in Databases

2.2.4 Pre-processing

Pre-processing is undertaken to prepare the data so that it is ready for input into the data

mining stage. A number of operations may be undertaken at this stage that can improve the

performance of data mining, including deciding on strategies for handling missing data fields

and reordering attributes of the databases. Pre-processing may be repeated as the process

continues.

2.2.5 Data Mining

Data Mining is the discovery of valuable information from large data volumes, using

computationally efficient techniques [Zomaya et el, 1999] [Fayyad et et, 1996d] [Chen et st,

1996]. It consists of applying data analysis and discovery algorithms that, under acceptable

computational efficiency limitations, produce a particular enumeration of patterns over the

data [Fayyad et et, 1996a]. The data-mining component of the KDD process often involves

repeated iterative application of particular data mining methods. The explosive growth of

databases makes the scalability of data mining techniques increasingly important. Data

mining gives organizations the tools to search through these large data sets to find the trends,

patterns, and correlations that can guide strategic decision-making. This research focuses on

the data mining stage of the KDD process, the data mining process is therefore considered in

more detail in section 2.3.

2.2.6 Evaluation of Results

This stage is used to determine if the discovered patterns are valid. Apparently interesting

patterns may simply be discovered due to random variation in the data rather than some real

world phenomenon. A common method used to validate results is to use separate training

and test sets of data. The training data is used to discover patterns, which are then tested on

the 'unseen' test data. The performance of the patterns on the test data gives an indication of

11



2 Background on Knowledge Discovery in Databases

the strength of the patterns on other 'unseen' data. Another validation method, that is often

used when limited volumes of data are available, is cross validation [Fayyad et al., 1996c].

2.2.7 Interpretation of Results

Presenting the data mining results to the users is extremely important because the usefulness

of the results is dependent on it. As in the evaluation stage, it would be expected that new

knowledge would tend to match existing knowledge and would be explainable by the domain

experts. Obviously, some difference between known and discovered knowledge is required

for patterns to be novel. However, if the differences are very great it may be because errors

have been made in the KDD process.

2.3 Data Mining

Finding useful patterns in data has been given a variety of names including data mining,

knowledge extraction, information discovery, information harvesting, data archaeology, and

data pattern processing [Fayyad et al., 1996a]. Two major goals of data mining are: prediction

and description. Prediction involves using some variables or fields in the database to predict

unknown or future values of other variables of interest, and description focuses on finding

human-interpretable patterns describing the data [Fayyad et al., 1996c]. The distinction

between prediction and description is useful for understanding the overall discovery goal

although the boundaries between them are not sharp. Some of the predictive models can be

descriptive and vice versa. The task of data mining can be classified according to the kind of

knowledge to be mined. Three major data mining problems are: Classification, Clustering, and

Association Rule Mining (ARM).

12



2 Background on Knowledge Discovery in Databases

2.3.1 Classification

Classification is learning a function that classifies a data item into one of several predefined

classes [Fayyad et al., 1996a] [Fayyad et et, 1996c] [Weiss and Kulikowski, 1991] [Hand,

1981]. It is a predictive model and often referred to as supervised learning because the

classes are determined before examining the data [Dunham, 2003]. Classification often

describes these classes by looking at the characteristics of data already known to belong to

the classes.

To construct the classification model a sample dataset is treated as the training set,

and the remainder is used as the test set. One designated attribute in the training set is called

the dependent attribute and the others the predictor attributes. The goal is to build a model

that takes the predictor attributes as inputs and produces a value for the dependent attribute.

If the dependent attribute is numerical the problem is a regression problem otherwise it is

called a classification problem [Ganti et al., 1999]. Researchers have proposed many

classification models such as: neural networks [Bishop, 1995], genetic algorithms [Goldberg,

1989], decision tables [Kirk, 1965], and classification trees [Breiman, 1984].

2.3.2 Clustering

Clustering is a descriptive model that identifies a finite set of categories or clusters to describe

the data [Fayyad et al., 1996a] [Fayyad et al., 1996c) [Jain and Dubes, 1988) [Titterington et

al., 1985). It distributes data into several groups so that similar objects fall into the same

group or cluster. Clustering is similar to classification except that the groups are not

predefined, but rather defined by the data alone [Dunham, 2003]. Clusters are defined by

finding natural groupings of data items based on similarity metrics or probability density

models [Fayyad et et, 1996b). Clustering is alternatively referred to as unsupervised learning.

Clustering analysis helps to construct meaningful partitioning of large data sets based

on a "divide and conquer methodology". The clustering problem has been studied in many
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fields, including statistics, machine learning, and biology. However, scalability was not a

design goal in these applications; researchers always assumed the complete data set would

fit in main memory, and the focus was on improving the clustering quality [Ganti et al., 1999].

With the application of clustering to very large data sets involved in data mining the issue of

scalability has assumed increasing importance.

2.3.3 Association Rule Mining

Association Rule Mining (ARM) is one of the core data mining tasks [Agrawal et al., 1996]

[Park et al., 1995]. ARM, a descriptive model, refers to the data-mining task of uncovering

relationships among data. An association rule is an implication of the form A => B, relating

disjoint sets of database attributes, which is interpreted to mean "if the set of attribute-values

A is found together in a database record, then it is likely that the set B will be present also".

These rules are often used in the retail sales community to identify items that are frequently

purchased together. The research objective which is the focus of this thesis is concerned with

association rule mining; a much more detailed description is therefore given in the following

sections.

2.4 Association Rule Mining Problem

ARM (Association Rule Mining) involves the extraction of association rules from a binary

database [Agrawal et al., 1993a]. In a database of this kind, each attribute simply records the

presence or absence of some property in the record. In other kinds of database, continuously-

valued attributes can be dealt with by discretization, and, for convenience of processing, most

methods convert multiple-valued attributes into a number of binary attributes, or items, each

of which can be said to be present or absent in each record. The paradigmatic example is in

supermarket shopping-basket analysis. In this case, each record in the database is a

representation of a single shopping transaction, recording the set of all items purchased in
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that transaction. With respect to binary valued data sets an association rule is a relationship

between disjoint sets of these items, obtained from examination of the data. The task is to

discover important associations among items such that the presence of some items in a

transaction will imply the likely presence of other items in the same transaction; that is, rules

that associate one set of attributes of a relation to another. A formal statement of the problem

can be found in [Agrawal eta!., 1993a] [Cheung eta!., 1996a]:

Definition 2.1: Let I = {11,12, ... , In} be a set of n distinct attributes, also called items. Let D be

a database, where each record or transaction T is a set of items such that T c !. An

association rule is a relationship between disjoint sets of the form A => B, where A c /,Bc/,

and An B = 0. Here, A is called antecedent, and B consequent.

A rule is usually only of potential interest if the set of items (the itemsef) it associates

occurs together relatively frequently in the data being examined. These frequent sets are

defined to be those which exceed some defined level of support (s). The support of an itemset

A, denoted as $ (A), is the number of records in which that itemset occurs as a subset. An

itemset is frequent or large if its support is more than a user specified minimum support. A

frequent itemset is maximal if it is not a subset of any other frequent itemset. Support of an

association rule can be defined as follows.

Definition 2.2: The support ($) for the rule A => B is the number of database records which

contain A uB.

Therefore, if we say that the support for the rule A => B is 10% then it means that 10% of the

total records contain A u B. The support represents the statistical significance of an

association rule. A high support is often desirable for association rule mining although this is

not always the case. In applications such as medical epidemiology, we may be searching for
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rules that associate rather rare items, and thus a low support-threshold is required. Another

important parameter which can be related to each association rule is its confidence (9). It can

be defined as follows.

Definition 2.3: For a given number of records, the confidence (9) of the rule A ~ B is the ratio

of the number of records that contain Au Bto the number of records that contain A; Le.

9 (A ~ a, = $ (A u a, / $ (A)

Thus, if we say that the rule A ~ B has a confidence of 80%, it means that 80% of the

records containing A also contain B. The confidence of the rule indicates the degree of

correlation in the dataset between A and B. Confidence is a measure of a rule's strength. In

many applications, a high confidence (80-90%) will be required for a rule to be regarded as

interesting. However, this will depend very much on the nature of the data.

Mining of association rules from a database consists of finding all rules that meet the

user-specified thresholds of support and confidence. A rule is frequent if its support is greater

than minimum support and strong if its confidence is more than the user-specified minimum

confidence. The problem of mining association rules can be decomposed into two sub-

problems [Agrawal et et, 1993a] as stated in Algorithm 2.1.

Algorithm 2.1. Basic

Input:

Itemset (I), Database (0). Support threshold ($) and Confidence threshold (9)

output:

Association rules satisfying $and 9,

Algorithm:

1) Find all sets of items which occur with a frequency that is greater than or equal to the

user-specified support threshold $.
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2) Using the frequent itemsets, generate rules which meet the threshold of confidence ¢.

The first step in Algorithm 2.1 finds all frequent or large itemsets. Itemsets other than

frequent itemsets are referred as infrequent or small itemsets. The second step in Algorithm

2.1 generates strong and interesting rules from the frequent itemsets obtained in the first step.

The identification of the frequent itemsets is computationally expensive [Agrawal and

Sri kant, 1994]. The problem arises because the number of possible sets is exponential in the

number of possible attribute-values. For most real data, the number n of such items is likely to

be such that counting the support of all 2n itemsets is infeasible. For this reason, almost all

methods attempt to count the support only of candidate itemsets that are identified as

possible frequent sets. It is, of course, not possible to completely determine the candidate

itemsets in advance, and it will therefore be necessary to consider many item sets that are not

in fact frequent. Once these frequent sets have been found, it is relatively straightforward to

identify the rules that are likely to be of interest [Agrawal et a/., 1993a]. The algorithm for

finding association rules is stated in Algorithm 2.2.

Algorithm 2.2. Find Association Rules from Frequent Itemsets

Input:

Frequent Itemsets (F) and Confidence threshold (¢)

Output:

Association rules satisfying ¢

Algorithm:

1) Find all nonempty subsets, X, of each frequent itemset, f

3) For every subset, obtain a rule of the form x=> (f- x) if $ (f) I $ (x) ~ ¢

Since finding frequent itemsets in a substantial database is very expensive and

dominates the overall cost of mining association rules, most research has been focused on
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developing efficient algorithms to solve step 1 in Algorithm 2.1 [Agrawal and Srikant, 1994]

[Cheung et al., 1996a] [Klemettinen et al., 1994]. In general, algorithms for finding frequent

sets involve one or (usually) several passes of the source data, in each of which the support

for some set of candidate itemsets is counted. The performance of these methods, clearly,

depends both on the size of the original database, typically millions or billions of records, and

on the number of candidate itemsets being considered. The number of possible candidates

increases with increasing density of data (greater number of items present in a record) and

with decreasing support thresholds. For this reason, efficient algorithms for finding frequent

sets remain a major area of research. The following section provides an overview of the major

sequential algorithms.

2.5 Sequential Algorithms for Finding Frequent Sets

Most algorithms developed for finding frequent sets are sequential, or derived from sequential

algorithms. Sequential algorithms use a single processor system of limited memory. In most

cases, they attempt to find all frequent sets by reducing the number of database passes

andlor the search space. Most sequential ARM algorithms, including Apriori [Agrawal and

Sri kant, 1994], make use of the "downward closure" property to reduce the search space. The

observation is that if an itemset is adequately supported, then all the subsets of the itemset

will also be adequately supported. Consequently if an itemset is not supported, any effort to

calculate the support for its supersets will be wasted. These algorithms proceed in general by

attempting to count the support only for those candidate item sets which are identified as

possible frequent sets, rather than all possible combinations of items. To assist in identifying

these candidate sets it is helpful to observe that the subsets of a set of items may be

represented as a lattice. A lattice of this form is shown in Figure 2.1. The notation ABCwili be

used to represent the set {A, B, C}.
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Figure 2.1: Lattice of subsets of {A, B, C, D}

For any set of items to be frequent, it is required that all its subsets to be frequent.

For example, an essential condition for the set ABC to be considered as interesting is that AB,

AC, and BC are all frequent which in turn requires that each of A, B, and C exceeds the

required threshold of support. This observation provides a basis for pruning the lattice of

subsets to reduce the search space. If it is known that 0 is not supported then it is no longer

necessary to consider AD, BD, CD, ABO, ACD, BCD or ABCD. Algorithms that proceed on

this basis reduce their requirement for storage and computation by eliminating infrequent

candidates as soon as they are able to do so. Major sequential algorithms discussed in the

following subsections are: (1) AIS, (2) Apriori, (3) Apriori-TID and Apriori-Hybrid, (4)

Partitioning, (5) Sampling, (6) Dynamic Itemset Counting (DIC), (7) Methods that find Maximal

Frequent Sets, (8) Depth-Project, and (9) FP-Growth.

2.5.1 AIS

AIS is the first published algorithm developed in 1993 to find all frequent itemsets in a

transaction database [Agrawal et al., 1993a). It focused on processing databases for decision

support by discovering qualitative association rules. This technique is limited to only one item

in the consequent. In the notation used in [Agrawal et al., 1993a), an association rule is
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expressed in the form A ~ lj I 9, where A is a set of some items in a domain I, lj is a single

item in Ithat is not present in A, and 9 is the confidence of the rule.

The AIS algorithm makes multiple passes over the database. In the first pass, it

counts the support of individual items and determines which of them are frequent in the

database. Subsequent passes examine itemsets of size 2,3,4, ... successively. Frequent

itemsets of each pass are extended to generate candidate itemsets in the following pass.

Candidate itemsets are generated "on the fly" during the pass as data is being read. After

reading a transaction, the common itemsets between frequent itemsets of the previous pass

and items of this transaction are determined. These common itemsets are extended with

other individual items in the transaction to generate new candidate itemsets. A frequent

itemset A is extended with only those items in the transaction that are frequent and occur in

the lexicographic ordering of items later than any of the items in A [Agrawal and Srikant,

1994]. Items are kept in lexicographic order to avoid duplication of an itemset. The

candidates generated from a transaction are added to the set of candidate itemsets

maintained for the pass, or the counts of the corresponding entries are increased if the

candidate already exists in the set. This process terminates when no more frequent itemsets

are found in a pass.

The major shortcoming of this algorithm is that it generates too many candidate

itemsets which cannot be frequent, wasting too much effort. For example, if XYZis frequent

and P, an item of a transaction, is frequent then the itemset XYZPwili be included in the set

of candidates even if, for example, XP is not frequent. However, XYZP cannot be frequent if

XP is infrequent. Generation of a huge number of candidate sets might cause the memory

buffer to overflow. Therefore, it may become necessary to store the candidate sets in

secondary memory.

A similar scheme was proposed in [Houtsma and Swami, 1995]. The algorithm,

SETM, used standard SQl to calculate frequent itemsets. Like AIS, it also generates

candidates based on transactions read from the database. However, it separates candidate
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generation from counting. Like AIS, the major shortcoming of this algorithm is that it

generates too many candidate itemsets that later turn out to be infrequent [Agrawal and

Srikant, 1994]. A further disadvantage in that it used TIDs (Transaction IDs) to generate

candidates, which required more space to store as many entries as the number of

transactions in which the candidate itemset is present. Moreover, at the end of each pass

repeated sorting of itemsets is needed.

2.5.2 Apriori

The Apriori algorithm [Agrawal and Srikant, 1994] has been the basis of very many

subsequent association rule algorithms. This algorithm introduces the "downward closure"

property that any subset of a frequent itemset must be frequent. Also, it is again assumed

that items within an itemset are kept in lexicographic order. The fundamental difference of

this algorithm from the AIS and SETM algorithms is the way of generating candidate itemsets.

The Apriori algorithm generates the candidate itemsets using only the itemsets found frequent

in the previous pass - without considering the transactions in the database [Agrawal and

Srikant, 1994]. It generates candidate itemsets only when all the subsets of these are found

frequent. By only considering frequent itemsets of the previous pass, the number of candidate

itemsets is significantly reduced.

Apriori performs repeated passes of the database, successively computing support-

counts for sets of single items, pairs, triplets, and so on. At the end of each pass, sets that fail

to reach the required support threshold are eliminated, and candidates for the next pass are

constructed as supersets of the remaining (frequent) sets. The iterative process terminates

when no new frequent itemsets are found. Since no set can be frequent which has an

infrequent subset, this procedure guarantees that all frequent sets will be found.

The first pass of the algorithm simply counts item occurrences to determine the

frequent 1-itemsets (Ft). A subsequent pass, say pass k, consists of two phases. First. the
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frequent itemsets of size (k-1), fk-1, is joined with itself to obtain candidates of size k, a Next

it scans all transactions to obtain supports of candidates in a. An overview of the algorithm is

shown below:

Algorithm 2.3. Apriori [Agrawal and Srikant, 1994]

Input

Itemset (I), Database (0), and Support threshold ($)

Output:

Frequent Itemsets (F)

Algorithm:

1) FT = {frequent 1-itemsets};

2) for (k= 2; Fk-1 ;;f. 0; k++) do begin II krepresents the pass number

Ck = apriori-gen(Fk-1); 1/ New candidates of size k generated from fk-13)

4)

5)

6)

7)

8) end

forall transactions /E 0 do begin

CI=subset(Ck, ~; II Candidates contained in t

forall candidates CE Cl do

c.count++; II Increment the count of all candidates

9) II Candidates in Ck with minimum support $.

10) end

11) F:= u, Fk;

Candidate generation

The Apriori candidate generation function, apriori-genO [Agrawal and Srikant, 1994], has two

steps. In the first step, Fk-1 is joined with itself to obtain Ck. In the second step (prune), it

deletes all itemsets from the join result, which have some (k-1)-subset that is not in FM.

Then, it returns the remaining frequent k-itemsets.
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Consider the following example for candidate generation: Let FJ be {ABC, ABO, ACD,

ACE, BCOj. The set of candidate itemsets, C4, is generated from F3 as follows. From F3, two

itemsets with common initial items, such as ABC and ABO, are identified first and then joined

using the last two disjoint items, producing ABCD. After the join step, C! will be {ABCD,

ACDE}. The prune step will delete the itemset ACDE because not all of its subsets, e.g. ADE,

are in FJ. It will then be left with only ABCD in C! to be counted. Apriori stores these candidate

itemsets in a hash tree [Agrawal and Srikant, 1994] structure.

Evaluation of Apriori

Two aspects of the performance of this algorithm are of concern. The first is the number of

database passes that are required and the second is the number of candidates which may be

generated, especially in the early cycles of the algorithm. One of the inherent performance

weaknesses of Apriori is that it requires the source data to be scanned repeatedly; in

principle, the number of passes required is one greater than the size of the largest frequent

set. This is computationally expensive if, as is likely to be the case in many applications, the

source data cannot be contained in primary memory and many passes of the data may also

be required. Apriori also generates very many candidates in the early cycles [Agrawal and

Srikant, 1994]. This is a problem, especially for low support thresholds and when the

database is very densely populated, as in these cases the number of candidates to be

considered may become too large to be contained in primary memory. A large number of

candidates also leads to slow counting (steps 5-7 of Algorithm 2.3), including the time to

locate candidates in the hash tree.
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2.5.3 Apriori- TID and -Hybrid

As mentioned earlier, Apriori scans the entire database in each pass to count support.

Scanning of the entire database may not be needed in all passes. Based on this conjecture,

[Agrawal and Srikant, 1994] proposed another algorithm called Apriori-TID (TID for

transaction identifier). Apriori-TID uses the Apriori's candidate generating function to

determine candidate itemsets before a pass. The main difference from Apriori is that it does

not use the original database for counting support after the first pass. Rather, it uses an

encoding of the candidate itemsets used in the previous pass denoted by G. As with SETM,

each member of the set C, is of the form <TID, {Xk}> where each Xk is a potentially frequent

k-itemset present in the transaction with the identifier TID. Cl is essentially the original set of

database transactions, each in the form of a TID with a list of items contained in the

transaction. Subsequently, the member of Ci corresponding to transaction I is <I.TID, {c E

Ck I c contained in I}>. If a transaction does not contain any candidate k-itemset, then C« will

not have an entry for this transaction. Thus the number of entries in C« may be smaller than

the number of transactions in the database, especially for larger values of k. In addition, for

large values of k, each entry may be smaller than the corresponding transaction because very

few candidates may be contained in the transaction.

Since Apriori-TID uses C« rather than the entire database after the first pass, it is

effective in later passes when Ci becomes smaller. However, for small values of k, each

entry may be larger than the corresponding transaction because an entry in Ck includes all

candidate k-itemsets contained in the transaction. This means that the size of G generated

in the early passes of the algorithm may generally exceed the size of the original dataset. This

problem is at its worst if a large number of 2-itemsets are supported.

As mentioned on page 496 [Agrawal and Srikant, 1994], Apriori has better

performance in early passes, and Apriori-TID outperforms Apriori in later passes in cases

when its C« sets can fit in the memory. Based on this observations, the Apriori-Hybrid
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technique was developed. In the early stages of the algorithm Apriori is used when the

number of candidates is high. Apriori-TID is activated when the number of candidate sets is

deemed small enough to allow the C« to fit into main memory. Therefore, an estimation of

C) at the end of each pass is necessary. Also, there is a cost involvement of switching from

Apriori to Apriori-TID. The switching point between the two algorithms is critical to the

performance because once the switch is made all the subsequent C« sets generated in each

pass must fit in main memory which may not always be possible.

2.5.4 Partitioning

The major drawback of Apriori (and Apriori-TID) is that in dealing with databases that

are much too large to hold in main memory, repeated passes of the database are required to

compute the support for single items, pairs etc., in turn. The Partition algorithm [Savasere et

et, 1995] reduces the number of database passes from backing store to two. It divides the

database into a number of non-overlapping segments of equal size that are small enough to

be handled in main memory. The algorithm applies the Apriori level-wise procedure to each

data segment in turn; retaining the segment in primary storage throughout its repeated

passes. Hence the passes through the in-memory data segments are quicker. After loading a

segment into the main memory there is no additional disk 110 for the segment. For each

segment, thus, a set of locally frequent itemsets is determined, each of which reaches the

proportionate threshold of support in that segment. This method uses the property that a

frequent itemset in the whole database must be locally frequent in at least one partition of the

database. The union of the local frequent itemsets are used to generate global candidates. A

second pass of the complete database is required to establish which of the locally frequent

sets are (globally) frequent. To efficiently generate the candidates, the Partition method

stores the itemsets in 'sorted' order. It also stores references to the itemsets in a hash table

data structure. An overview of the Partition algorithm is given below:
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Algorithm 2.4. Partition [Savasere et al, 1995)

Input:

Itemset (~, Database (0), Number of partitions (N) and Support threshold ($)

Output:

Frequent Itemsets (F)

Algorithm:

1) for i = 1 to N do

2) read_in_partition(Di E 0);

3) Fi= gen_frequent_itemsets(Di); /I Locally frequent item sets

/I Global candidates4)C:= UiFi;

5) for i = 1 to N do

6) read_in_partition(Di E 0);

7) for all candidates CE C gen_count(c, Di);

8)F={CE Clc.count~$}

The advantage gained by this method is that by working with a subset of the

database which can be contained in main memory, repeated access of database records

becomes acceptable. The Partition algorithm, however, favours a homogeneous (have similar

frequent itemset distribution) data. That is, if the count of an item set is evenly distributed in

each partition, then most of the itemsets to be counted in the second pass will be frequent.

However, for a skewed data distribution, many of the itemsets in the second pass may turn

out to be infrequent, thus wasting a lot of CPU time counting false itemsets. AS-CPA (Anti-

Skew Counting Partition Algorithm) [Lin and Dunham, 1998] is a family of anti-skew

algorithms, which were proposed to improve the Partition algorithm when data distribution is

skewed. In the first pass, the counts of the itemsets found in the previous partitions will be

accumulated and incremented in the later partitions.
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The drawback of these approaches, however, highlights the second weakness of

Apriori that the number of candidates whose support is to be counted may become very large,

especially when the data is such that the frequent sets may contain many items (the "long

pattern" problem [8ayardo et et; 1999] [Agarwal et al., 2000]). If, for example, there is just

one set of 20 items that reaches the threshold of support, then the methods inescapably

require the support for all the 220 subsets of this set to be counted. In the Partition algorithm,

this is exacerbated because there may be many more sets that are locally frequent in some

partition, even though they are not globally frequent. These methods require all candidates to

be retained in primary memory (for efficient processing) during the final database pass which

may not always be possible. The Partitioning method also chooses partitions such that all

data structures can be accommodated in the main memory although in some situations it may

be necessary to store the temporary data on disk [Savasere et al., 1995].

2.5.5 Sampling

The aim of reducing database passes also motivated the strategy introduced in the sampling

algorithm of [Toivonen, 1996]. Here, the idea is to pick a random sample of the data, use it to

determine all frequent sets that probably hold in the whole database, and then verify the

results with the rest of the database. A random sample of the source data, small enough to fit

in primary memory, is first processed using the Apriori procedure, with a modified support

threshold and other modifications designed to make it likely that all the globally frequent sets

will be identified in the sample. The sets thus found become candidates for a single full pass

of the source data to verify this.

It is necessary for the initial processing of the sample to identify an enlarged

candidate set, to give a reasonable probability that all the actual frequent sets will be

included. To do this, first, the support threshold is lowered so much that it is very unlikely that

any frequent sets are missed. Then, after finding all the locally frequent sets in the sample
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being examined, this collection is augmented by adding its 'negative border' [Toivonen, 1996]

to produce global candidates. The intuition behind the concept of negative border is that given

a collection of sets that are frequent in the sample, the negative border contains the "closest"

itemsets that could be frequent, too. The negative border (Bd-) is the collection of all itemsets

that are not frequent in the sample but all of whose subsets are.

Figure 2.2: Example of a negative border

Figure 2.2 shows an example of a negative border. Itemsets CD and ABD are not frequent in

the sample but all their subsets are. These itemsets on the negative border are marked after

the initial processing of the sample. The significance of the negative border is that it defines a

boundary between the frequent and non-frequent sets in the sample. A single full database

pass is then carried out to count final supports of all itemsets including that of negative

border. If no set on the negative border is finally found to be frequent, then no sets 'outside'

the border can be frequent either. The approach of Toivonen's method is probabilistic and in

some cases it may happen that all frequent itemsets are not found in one pass; that means a

failure [Toivonen, 1996]. The approach of Toivonen's method is probabilistic and in some

cases it may happen that all frequent itemsets are not found in one pass; that means a failure

[Toivonen, 1996]. A failure is identified by checking the negative border. If no set on the

negative border meets the support threshold, then no frequent set has been missed. If,

however, it is possible to construct a superset from frequent sets in the negative border, then
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this superset has been missed and may be a frequent set. In this case a further pass is

required to check this. For example, if the itemset CD in Figure 2.2 is found to be frequent,

then its supersets ACD and BCD may also be frequent (because AC, AD, BC, and BD are

frequent). An overview of the algorithm is shown below:

Algorithm 2.5. Sampling [Toivonen, 1996]

Input:

Itemset (~, Database (0), Support threshold ($), and Lowered support threshold (/$)

Output:

Frequent Itemsets (F), or its subsets and a failure report

Algorithm:

1) Ds = a random sample drawn from D,

2) Fs= Apriori(!, Os, 1$);

3) C= r» U Bd- (Fs);

4) fora II transactions t e 0 do begin

II Frequent sets in the sample

II Candidate set

5) Ct=subset(C, t); II Candidates contained in t

6) forall candidates c E Ct do

7)

8) end

9)F={CE Clc.count~$}

c.count++; II Increment the count of all candidates

10) Report if failure II if any CE Bd- (Fs) I c.count > $

The candidate set generated from the sample includes all sets that are frequent,

using the lowered support threshold, in the sample together with their negative border. This

candidate set is likely to be much larger than the actual frequent itemsets. This method also

requires all the enlarged candidate sets to be retained in primary memory (for efficient

processing) during the final database pass, which may not always be possible.
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2.5.6 Dynamic Itemset Counting

The DIC (Dynamic Itemset Counting) algorithm [Brin et al., 1997] tries to generate and count

the itemsets earlier so that the number of database passes can be reduced. DIC is also a

variant of Apriori that differs in how the candidate itemsets are generated. It starts checking

itemsets after an interval, rather than waiting until the database pass is completed. The

intuition behind DIC is that it works like a train running over the data with stops at several

intervals. When the train reaches the end of the transaction file, it has made one pass over

the data and it starts over at the beginning for the next pass. The "passengers" on the train

are itemsets and their occurrence on the train is counted in the transactions.

While scanning the first interval, the 1-itemsets are generated and counted. At the

end of the first interval frequent 1-itemsets are determined and candidate 2-itemsets are

generated as supersets of the frequent sets. These 2-itemsets are counted together with 1-

itemsets while scanning the second interval. At the end of the second interval, candidate 3-

itemsets are generated and counted during the third interval with the 1-itemsets and 2-

itemsets. In general, at the end of the ~h interval, the candidate (k+1)-itemsets are generated

as supersets of the frequent k-itemsets and counted in the later interval together with the

previous candidate itemsets. After reaching the end of the database, it starts over at the

beginning for the next pass and counts the item sets which are not fully counted. The DIC

algorithm works as follows:

Algorithm 2.6. DIC [Brin et ai, 1997]

Input

Itemset (I), Database (1J), Range (R), and Support threshold (~)

Output:

Frequent Itemsets (F)

Algorithm:
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1) The empty itemset is marked with a solid box. All the 1-itemsets are marked with

dashed circles. All other itemsets are unmarked.

2) Read Rtransactions. For each transaction, increment the respective counters for the

itemsets marked with dashes.

3) If a dashed circle has a count that exceeds $, turn it into a dashed square. If any

immediate superset of it has all of its subsets as solid or dashed squares, add a new

counter for it and make it a dashed circle.

4) If a dashed itemset has been counted through all the transactions, make it solid and

stop countin it.

5) If we are at the end of the transaction file, rewind to the beginning.

6) If any dashed item sets remain, go to step 2.

This method favours homogeneous data, as does the Partition algorithm. If data is

not homogeneous, DIC might generate many itemsets that are locally frequent but not

globally (false positives) [Zaki, 1999]. If the data is very correlated, it may not realize that an

itemset is actually frequent until most of the intervals have been counted. The data structure

used in DIC is similar to a hash tree and it needs to store extra information at each node.

2.5.7 Methods that find Maximal Frequent Sets

Apriori-like algorithms, such as those described above, employ a bottom-up search that

enumerates every single frequent itemset. This implies that in order to produce a frequent

itemset of size n; it must produce all 2n subsets since they must be frequent too. This

exponential complexity fundamentally restricts Apriori-like algorithms to discovering only short

patterns [Bayardo, 1998]. The long pattern problem is so difficult to solve computationally,

that even for databases of relatively smaller sizes, it is very difficult to find long patterns. For

problems in which the patterns are longer than 15-20 items, and the database is too large to
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fit into primary memory, most of the algorithms which require the generation of all subsets of

frequent item sets are impractical anyway [Agarwal et et., 2000]. It is tempting, consequently,

to look for methods which seek to identify maximal interesting sets without first examining all

their smaller subsets.

Instead of generating all subsets of frequent itemsets the Max-Miner algorithm

[Bayardo, 1998] extracts only the 'maximal' frequent itemsets. An itemset is maximal frequent

if it is frequent and has no frequent superset. This algorithm searches for maximal sets, using

Rymon's generic set-enumeration tree [Ryman, 1992]. The intention of using this framework

was to expand sets over an ordered and finite search space as a tree. Note that the tree

could be traversed depth-first, breadth first, or even best first as directed by some heuristic.

This tree is central to the methods which are the basis of the thesis, and will be described fully

in the next chapter. Max-Miner employs a purely breath-first search of the set-enumeration

tree in order to limit the number of passes made over the data. However, like Apriori, the

number of passes over the data made by Max-Miner is bounded by the size of the longest

frequent itemset [8ayardo, 1998]. An overview of the Max-Miner algorithm is shown below:

Algorithm 2.7. Max-Miner [Bayardo, 1998]

Input

Itemset (I), Database (0), and Support threshold ($)

Output:

Maximal Frequent Itemsets (Fm)

Algorithm:

1) C= 0;

2) F= gen_initial_groups(D, C);

3) C= F;

4) while C ~0 do

5) Scan Dto count the support of all candidates in C;

/I Candidate set
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6) for each c E C such that h( c) u t( c) is frequent do

7) F= F u {h(c) u t(c)}; /1h = head or parent, t = tailor child

8) Cnew = 0; II New candidate set

9) for each c E C such that h( c) u t( c) is infrequent do

10) F= F u {gen_sub_nodes(c, Cnew)};

11) C= Cnew;

12) Remove from F any itemset with a proper superset in F;

13) Remove from C any candidate csuch that h(c) u t(c) has a superset in F;

14) Fm= F;

Max-Miner always attempts to "look ahead" in order to quickly identify maximal

frequent itemsets. For this, this algorithm not only uses subset infrequency based pruning, as

does Apriori, but also uses pruning based on superset frequency. These strategies are used

to prune entire branches of the data structure from consideration. Itemset (re)ordering is also

used to increase the effectiveness of superset frequency pruning. In a development from

Max-Miner, the Dense-Miner algorithm [8ayardo et al., 1999] imposes additional constraints

on the rules being sought to reduce further the search space.

MaxEciat and MaxClique algorithms [Zaki et et, 1997] also try to identify maximal

frequent itemsets. These algorithms are similar to Max-Miner in that they also attempt to look

ahead and identify maximal frequent itemsets early on to help prune the candidate itemsets

considered. The important difference is that Max-Miner attempts to look ahead throughout the

search, whereas MaxEclat and MaxClique look ahead only during an initialization phase prior

to a purely bottom-up Apriori-like search with exponential scaling. The initialization phase of

MaxClique is also prone to problems with maximal frequent itemsets since it uses a dynamic

programming algorithm for finding maximal cliques in a graph whose largest clique is at least

the size of the longest frequent item set [8ayardo, 1998]. However, the method is of interest,

as it introduces a different kind of partitioning. In this, candidate sets are partitioned into
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clusters which can be processed independently. The problem with the method is that,

especially when dealing with dense data and low support thresholds, expensive pre-

processing is required before effective clustering can be identified. The partitioning by

equivalence class, however, is relevant to the methods which will be described later.

The described long pattern mining algorithms may cope better with dense and store-

resident data than the other algorithms described, but again usually involve multiple database

passes. However, all association rules cannot be efficiently extracted from maximal frequent

itemsets alone, as this would require performing the intractable task of enumerating and

computing support of all their subsets [Bayardo et st, 1999]. Therefore, these algorithms may

not be convenient for finding all frequent sets with their support counts as required for mining

all association rules.

2.5.8 Depth-Project

The DepthProject algorithm [Agarwal et et., 2000] also generates 'maximal' frequent itemsets.

The main difference from Max-Miner is that it uses depth-first search instead of breath-first

search. A similar lexicographic set enumeration tree is also used to store maximal frequent

itemsets. The root of the tree corresponds to the null itemset and points to the entire

transaction database.

The DepthProject algorithm is recursive in nature, so that the call from each node is

an independent itemset generation problem, which finds all frequent itemsets that are

descendants of a node. The first call of the algorithm is from the root (null) node. The first step

of the algorithm generates all the candidate extensions of the itemset node N. For the case of

the null node, this call returns all the Single items in the database. For other nodes, the

procedure returns frequent extensions of Nwhich are lexicographically larger than any item in

N. This set of items occurs lexicographically after the node and are considered to be the

possible lexicographic frequent extension of the node. Then it counts the support of each of

34



2 Background on Know/edge Discovery in Databases

these candidate extensions. This method also uses the 'look ahead' [8ayardo, 1998] pruning

technique. An overview of the algorithm is shown below:

The DepthProject algorithm is explicitly targeted for finding maximal frequent sets in

cases when the database patterns are very wide in memory-resident data. This technique

may not be useful for applications where the number of records in the database is large.

However, like other maximal frequent mining methods (see sub-section 2.5.7), this algorithm

also does not perform the intractable task of enumerating and computing support of all the

subsets of maximal sets that are required for mining all association rules, which cannot be

efficiently extracted from maximal frequent itemsets alone. Therefore, this algorithm may also

not be convenient for counting the required supports of all frequent itemsets.

2.5.9 FP-Growth

Apriori-like algorithms count supports for maximal frequent itemsets as well as all their

subsets by generating and testing candidates. The generation of candidates can, however, be

costly in terms of efficiency. It is also tedious to repeatedly pass the entire database and

check a large set of candidates. The FP-growth method [Han et al., 2000] is an alternative

method that aims to avoid these problems.

A frequent pattern tree (FP-tree) structure is used for storing the database in a

compressed form. The FP-tree is an extended prefix-tree structure for storing quantitative

information about frequent patterns. The FP-tree stores only a frequent single item at each

node, and includes additional links to facilitate processing. Additional links are included in the

FP-tree so that the tree can be processed from the leaf nodes as well as from the root node.

These links start from a header table and link together all nodes in the FP-tree which store the

same 'label'. i.e. item. To construct a FP-tree it needs two passes of the database. The

construction process begins with an initial pass of the database to count support for the single

items. Those that fail to meet the threshold support are eliminated. and the others ordered by
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decreasing frequency. The database is then passed through a second time to construct an

initial FP-tree. If multiple transactions within the database share an identical frequent set they

are merged. If two transactions share a common prefix, the shared parts are merged. The FP-

tree contained in primary memory is then used, instead of the original data, to find the

complete set of frequent sets. The FP-tree algorithm works as follows:

Algorithm 2.8. FP-tree [Han et al, 2000]

Input

Itemset (I), Database (0), and Support threshold ($)

Output:

FP-tree (T)

Algorithm:

1) Scan D and collect the set of frequent 1-itemsest, F1.

2) Sort F1 in descending order.

3) C = F1; 1/ Candidate set

4) forall transactions lED do begin

5) c= In C; 1/ Frequent itemset in I

6) Sort c according to the order of C.

7) T= insert_tree(c, T);

8) end

For example, given the data set {{A,C,D}, {B,D,E}, {B,D,FH, the FP-tree construction process

begins by identifying the frequent 1-itemsets in the data. It is assumed, for the illustration, that

all single items are frequent. Note that the new ordering of the items, according to decreasing

frequency, will be {D,B,A,C,E,F}. The data set is required to be passed again to construct an

initial FP-tree. Record 1 in the data set ({A,C,D}) is read first and placed in the FP-tree,

creating from the root node, as shown in Figure 2.3 (a) (note the links for the header table).
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The second record ({B,D,E}), the first element of which is common with an existing node, is

then added in the FP-tree as shown in Figure 2.3 (b). The last record ({B,D,F}) is then added

to complete the initial FP-tree as shown in Figure 2.3 (c).

(a) (b)

Figure 2.3: FP-tree

'-----
(c)

/'
/'

The algorithm, FP-growth, for mining the FP-tree structure is a recursive procedure

during which many sub FP-trees and header tables are created. The process commences by

examining each item in the header table, starting with the least frequent. For each entry the

support value for the item is produced by following the links connecting all occurrences of the

current item in the FP-tree. If the item is adequately supported, then for each leaf node a set

of ancestor labels is produced (stored in a prefix tree), each of which has a support equivalent

of that of the leaf node from which it is generated. If the set of ancestor labels is not null, a

new tree is generated with the set of ancestor labels as the dataset, and the process

repeated.

The advantage offered by the Fp-growth algorithm is partly gained from the ordering

process, which reduces the overall size of the input dataset (because unsupported single

items are eliminated), and reduces processing time by allowing the most common items to be

processed most efficiently. However, although an FP-tree is rather compact, its construction

needs two passes of the data. Also, one cannot assume that an FP-tree can always fit in main
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memory for any large databases [Han et a/., 2000]. The multiply linked structure of the FP-

tree causes problems for non-store-resident implementation. The CATS tree [Cheung and

Zaiane, 2003], an extension of the FP-tree, also assumes no limitation on main memory

capacity.

2.6 Parallel Algorithms

The space and time complexity of ARM has led some researchers to propose parallel

processing [Cheung et al., 1996a]. Parallel algorithms, to confront the problem, use multiple

processors instead of a single processor. Most parallel/distributed ARM algorithms are

adaptations of existing sequential (serial) algorithms. These algorithms focus on how to

parallelize the task of finding frequent itemsets between multiprocessor systems.

Two dominant approaches for using multiple processors are distributed memory and

shared memory systems. In a distributed memory system, the approach to multiprocessing is

to build a system from many units, each containing a processor and memory. Here each

processor has its own private or local memory, which only that processor can access directly.

For a processor to access data in the local memory of another processor, a copy of the

desired data elements must be passed from one processor to another. A different approach to

multiprocessing is to build a system from many units where all processors share common

memory. In a shared memory system, each processor has direct and equal access to all the

system's memory.

The multiple-processor paradigm can be categorised into data parallelism and task

parallelism [Chattratichat et et; 1997]. In data parallelism, the database is partitioned among

processors. Each processor works on its local partition of the database and performs the

computation of counting the local support for the global candidate itemsets, exchanging

counts as required with other processors. In the task parallelism paradigm, the candidate set

is partitioned and distributed across the processors. Each processor has access to the entire
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database but is responsible for some disjoint subset of the candidates. Every processor

performs its different computation independently and exchanges its local candidate counts

with all the other processors.

Neither method necessarily provides a complete solution to the problems of dealing

with very large databases. Data parallelism requires that all the candidates fit into the main

memory of each processor. Conversely, task parallelism requires that each processor has

complete access to the full database. Both methods, details of which are given below, require

processes to exchange information to maintain global counts, involving a significant

communication overhead. Thus, strategies for effective data partitioning are very relevant for

parallel implementations also. However, both methods are discussed in more detail in the

following subsections.

2.6.1 Data Parallelism

In data parallelism architecture, each processor has its own local memory, which only that

processor can access directly. For a processor to access data in the local memory of another

processor, "message passing" must take place between processors. Thus, the data

parallelism corresponds to the case where the data is apportioned among the processes,

typically by "horizontally" segmenting the dataset into sets of records. Each process then

mines its allocated segment (exchanging information on-route as necessary).

The "count distribution algorithm" [Agrawal and Shafer, 1996] is an example of the

data parallelisation approach. The algorithm attempted to minimize communication by

duplicating the candidate sets with counts in each processor's memory. The algorithm

operates as follows:

1. Divide the dataset among the available processors so that each processor is

responsible for a particular horizontal segment.

39



2 Background on Knowledge Discovery in Databases

2. Determine the local support counts for the candidate 1-itemsets.

3. Exchange the local counts with other processors so that each processor obtains the

global support count for all 1-itemsets (a process which Agrawal refers to as global

reduction).

4. Each processor then prunes the 1-itemsets and generates a set of candidate 2-

itemsets from the supported 1-itemsets and then determines the local support for

each of these candidate sets, and so on.

A disadvantage of the count distribution algorithm is that each processor generates the same

number of candidates as the serial corresponding algorithm. Both [Park et al., 1995] and

[Cheung et al., 1996b] suggest modifications to the above algorithm. [Park et al. 1995] make

use of their "direct hashing technique" to prune candidate sets. [Cheung et al., 1996b] also

suggest more advanced candidate pruning and global reduction techniques. The Data

Allocation Algorithm (OM) [Manning and Keane, 2001] uses a data preprocessing tool,

Principal Component Analysis (PCA) [Joliffe, 1994], to improve the distribution of data and

then uses the algorithm Fast Parallel Mining (FPM) [Cheung and Xiao, 1998]. OM improves

the performance of FPM for data of high sparsity though may not work well for very large and

dense data. The first parallel algorithm considered in this thesis in chapter 6, Data Distribution

(DO), is an adaptation of the count distribution algorithm.

2.6.2 Task Parallelism

Task Parallelism corresponds to the case where the processors perform different

computations independently, such as counting disjoint sets of candidates, but have or need

access to the entire data. Each process may have a direct and equal access to all system's

memory or the process of accessing the database can involve explicit communication of the

local portions.
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The "data distribution algorithm" [Agrawal and Shafer, 1996] is an example of the task

parallelisation approach. The algorithm takes the approach where each processor works with

the entire data but only a portion of the candidate set. Each process thus requires access to

the set of candidate itemsets generated at each level. Broadly the algorithm operates as

follows (Agrawal and Shafer actually also horizontally segment and distribute the dataset):

1. Equally distribute the candidate 1-itemsets among the processors.

2. Each processor generates support counts for its local candidate sets using both local

data and data received from other processors. Then the resulting frequent 1-itemsets

are pruned.

3. Each processor exchanges its frequent-1 set with those associated with other

processors.

4. Generate the next level candidate sets, distribute these sets equally among the

processors and repeat until there are no more candidate item sets.

A disadvantage associated with the above task parallel algorithm is the amount of messaging

that will be involved, especially in step 2. During this step, every processor sends its local

data to all other processors as well as receiving the local data of other processors.

Consequently a number of authors (for example Han et al. 1997, Shitani et al. 1996, Zaki et

al. 1997) have described alternatives to improve on this. The second parallel algorithm

considered in this thesis (in chapter 6), Task Distribution (TKD), is a variation of the task

parallelism concept using different mechanism for dividing the candidate itemsets between

the available processes.
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2.7 Summary

The problem of finding association rules falls within the purview of data mining or knowledge

discovery in databases. Mining all frequent item sets in a large and dense (greater number of

items present in a record) dataset is the most demanding ARM problem. Most algorithms

developed for finding frequent itemsets are sequential, or based on sequential algorithms.

These basic algorithms have already been discussed in this chapter. As mentioned earlier,

most algorithms use the frequent item sets found on the previous pass(es) to generate

candidate sets. The algorithms assume that candidate itemsets are held in the main memory

to obtain their support counts. All algorithms also require that all or part of the original data to

be held in the main memory. In general, performance of all methods suffers if extensive disk

access is required during processing. Thus most algorithms assume that there is enough

memory to handle these problems.

Databases continue to increase in dimensions; consequently even a single scan of

this type of data is considered expensive. Performance is even more badly affected if multiple

passes of disk resident data are required. Most sequential algorithms scan data multiple times

hence they are not really scalable. All current methods require, for efficiency, the candidate

sets to be contained in primary memory. Data mining is really targeted at extremely large

databases, far too large to be contained in main memory. This thesis seeks to address these

disadvantages by considering various strategies for partitioning data (including candidate

sets) so that the current "partition" can be stored in primary memory. This approach will be

expanded upon in the following chapters.
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Chapter 3

Review of Computing Support via Partial Totals

3.1 Introduction

For reason of computational efficiency ARM requires efficient mechanisms for storing the

candidate sets under consideration together with their support. When the density of data is

high, and/or the support threshold is low, the number of candidate sets may become very

large. In these cases, especially, a data structure that enables effective linking between

candidate nodes is an important aspect of performance. This chapter describes two suitable

data structures, and associated algorithms, both developed at Liverpool University for this

purpose. The P-tree structure, which computes partial supports, is described in section 3.2.

The concept of computing total support, using the T-tree structure, from the partial supports is

described in section 3.3.

3.2 Partial Support

Most of the methods described in the previous chapter proceed essentially by defining some

candidate set and then examining each record to identify all the members of the candidate set

that are subsets of the record. The computational cost of this increases with the density of the

database which leads to an exponential increase in the number of subsets or candidates to

be counted. In principle, however, it is possible to reduce this cost of subset-counting by

exploiting the relationships between sets of attributes illustrated in Figure 3.1. For example, in

the simplest case, a record containing the attribute set BCDwill increase the support-counts

for each of its subsets BCD, BC, BD, CD, B, C and D. Strictly, however, only
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the first of these is necessary, since minimum support values of all the subsets of BCD can be

inferred subsequently from the support-count of BCD.

Figure 3.1: Relationship between subsets of {A,B,C,D}

Let us see, however, how the total support of a set can be computed from the support

counted for its supersets. Let i be a subset of the set I (where I is the set of n attributes

represented by the database). The partial support for the set i, Pi" is defined to be the

number of records whose contents are identical with the set': Then Ti the total support for the

set i, can be determined as [Goulbourne et aI., 2000]:

Thus, the total support of any set can easily be counted from the partial support of its

supersets. The algorithms to count the support of sets of attributes can thus be defined in two

phases.

Phase 1: Count the partial support of all the sets that appear as distinct records in the

data. If there are m records, there will be at most m sets to be counted (fewer if some

records are identical).

Phase 2: Use these partial counts to determine the total support of the candidate sets

whose support we need to determine.
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Computing partial supports, in phase 1, allows capturing all the relevant information

of the database in a single pass and in a form that enables efficient computation of the

support totals. The initial counting will also improve overall performance if there are duplicated

records in the data. There are other advantages, however, which will become apparent. A

form of Ryman's set enumeration framework [Ryman, 1992] is used for storing the partial

supports. In a set enumeration tree, each subtree contains all the supersets of the root node

which follow the root node in lexicographic order. Figure 3.2 shows the complete P-tree

(Partial support Tree) for all the subsets of Iwith their partial support counts, for 1= {A,B,C,D}.

The dataset used to build the tree is: {{A}, {A,B}, {A,C}, {A,D}, {A,B,C}, {A,B,D}, {A,C,D},

{A,B,C,D}, {B}, {B,C}, {B,D}, {B,C,D}, {Cl, {C,D}, {OH.

Figure 3.2: Complete P-tree for all the subsets of {A,B,C,D}

As can be seen in the Figure, the tree consists of subtrees rooted at attributes A, B, C

and D. All these subtrees contain lexicographically-following supersets of their root node. For

example, the subtree rooted at B includes only sets BC, BD and BCD. Note that all these sets

are headed by the root node B and follow B in lexicographic order. Using this tree as a

storage structure for partial support-counts is straightforward and computationally efficient:

locating the required position on the tree for any set of attributes starts directly from the root of

a subtree and requires at most n steps. Also, when locating a node on the tree, the traversal

may pass through a number of nodes which are subsets of the target node. This advantage of
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the structural relationship is taken to accumulate interim support-counts at these nodes. The

interim support counts will include the partial support of the sets and of the succeeding

supersets. The algorithm for constructing the P-tree proceeds as follows:

1. ForK=1.2 .....

2. Read record K of the data.

3. Traverse the tree to find the location of the record. starting at the node

representing the first attribute of K

4. Create a new node in the tree for the record if it is not already present.

5. Increment the count for all parent nodes traversed in the course of finding the

location.

6. Repeat steps (2). (3). (4) and (5); until Kis the final record of the data.

The algorithm proceeds by comparing the record R to be inserted with node B on the tree

built so far. starting with the root node. The actions that follow (step 3-5 of the algorithm

above) apply 5 rules [Gaul bourne et et, 2000]. Note the < and> operators are used to define

lexicographic not numeric ordering. thus:

Rule 1 (R= B, Le. an identical node is found):

Simply increment the support associated with the current node and return.

Rule 2 (R< Band Rc B, i.e. new record is a parent of current node):

1. Create a new node for R and place the existing node associated with B on the

new node's child branch.

2. Place the new node either as a new root node. or add it to the child or sibling

branch of the previously investigated node.

3. If necessary move one or more of the younger siblings of the previously existent

node up to become younger siblings of the newly created node.
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Rule 3 (R< Band Ret. B, i.e. new record is an elder sibling of existing node):

1. If Rand B have a leading sub string Sand S is not equal to the code associated

with the parent node of the current node representing Bthen:

• Create a dummy node for S with support equivalent to that associated with

the node for B.

• Place the new dummy node either as a new root node, or add it to the child or

sibling branch of the previously investigated node.

• Then create a new node for R and place this so that it is a child of the newly

created dummy node.

• Finally place the previously existent node for B as a younger sibling of the

node for R.

2. Else create a new node for R and place the existing node associated with B on

the new node's sibling branch. The new node is then placed either as a new root

node, or is added to the child or sibling branch of the previously investigated

node.

Rule 4 (R >Band Rc B, i.e. new record is a child of current node):

Increment the support for the current node (8) by one and:

1. If node associated with B has no child node, create a new node for R and add

this to the existing node's child branch.

2. Otherwise proceed down child branch and apply the rules to the next node

encountered.

Rule 5 (R>Band Ret.B, i.e. new record is a younger sibling of current node):

1. If node associated with B has no sibling node, and:

• If current node (node for B) does not have a parent node and Rand B have a

leading sub string Sthen:

Create a dummy node for S with support equivalent to that

associated with the node for B.
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Place the new dummy node either as a new root node, or add it to

the child or sibling branch of the previously investigated node.

Create a new node for R and place this so that it is a younger sibling

of the newly created dummy node.

Place the previously existent node for B as a child of the node for R.

• Otherwise proceed down sibling branch and apply the rules to the next node

encountered.

To find the proper location of a record, the algorithm passes through a number of nodes

which are subsets of the target node, incrementing the support count of each en route. For

example, to locate the set BCD in the tree, the algorithm passes through its subset Band

then BC, incrementing the count of each of these.

This algorithm will compute interim support-counts Qi for each subset i of /, where Oi

is defined thus:

Qi= L P; (Vj, j :! i, jfollows i in lexicographic order)

It then becomes possible to compute total support using the equation:

7i= Qi+ LP; (Vj, j :::> i, j precedes i in lexicographic order)

The counts stored at each node of Figure 3.2 are interim support-totals, representing

support derived from the set and its succeeding supersets in the tree. The numbers

associated with the nodes in this illustration would arise if every combination of the attributes

were present exactly once in the database; thus, for example, Q (BC) = 2, derived from one

instance of BCand one of BCD. The total support of BCcan then be computed by adding this

interim support with the partial supports of its supersets which precedes BC in lexicographic

order. Thus:

T(BC) = O(BC) + P(ABC) + P(ABCD)

= O(BC) + O(ABC)

= 2+2=4
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The term P-tree (Partial support Tree) is used to refer to this incomplete set-

enumeration tree of interim support-counts. To store counts for a complete P-tree, as in

Figure 3.2, of course implies a storage requirement of order 2n. This can be avoided,

however, from the observation that for large n it is likely that most of the subsets i will be

unrepresented in the database and will therefore not contribute to the partial-count

summation. A version of the algorithm to exploit this builds the tree dynamically as records

are processed, storing partial totals only for records which appear in the database. Nodes are

created only when a new subset iis encountered in the database, or when two siblings iandj

share a leading subset which is not already represented. The latter provision of creating

"dummy" nodes is necessary to maintain the structure of the tree as it grows. To maintain the

lexicographic order of the tree it may also be necessary to "move up" siblings from a current

node to become siblings of a new parent node. The formulae for computing total supports still

apply, and it needs only to sum interim supports that are present in the tree. Building the tree

dynamically implies a storage requirement of order m (the number of records in the database)

rather than 2n. The P-tree, thus, contains all the sets of items present as distinct records in the

database, plus some additional sets that are leading subsets of these. A detailed description

of the algorithm for building the P-tree can be found in [Gaul bourne et al., 2000]. An example

illustrating the generation of a P-tree is given below.

Example 3.1: p~ generation

Consider the sample dataset as shown in Figure 3.3. The number of attributes of the

database, n = 6 and number of records, m = 6.

ACE
AD
ACE F
ACD
D
ACE

Figure3.3:A sample dataset
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The P-tree generation algorithm begins by reading the first record and creating the

node ACE with support 1 (fig 3.4 a), then reads the second record AD. Since AD and the

node ACE have a common leading subset, A, a "dummy" parent node is created with the

nodes ACEand AOas children (fig 3.4 b). A "dummy" node when created gets the sum of the

support of its children, but subsequently is treated as a normal node. Record ACEF is added

as a child of ACE incrementing the support for A and ACE by one en route (fig 3.4 c). ACD is

added by creating the "dummy" node AC, with ACO and ACE as its children, incrementing the

support for A en route (fig 3.4 d).

(ACE)
1 ~t~J(AD)

1 1

(a)Additionof tst recordACE (b)Additionof 2nd recordAD (c)Additionof 3rd recordACEF

(d)Additionof 4th recordACD (e)Additionof 5th recordD (f)Additionof 6th recordACE

Figure 3.4:P-treegenerationexample

ACEF still remains as a child of ACE Record D is added creating a new node as a sibling of

A with support 1 (fig 3.4 e). The last record ACEis then included as shown in fig 3.4 (f). Note

that because this last record already exists in the tree (duplicate record) its support is

incremented by one. incrementing the supports of its parent nodes A and AC en route.

From inspection of the final P-tree of the above example (fig 3.4 f). it is apparent that

it is unnecessary to store any particular itemset which is duplicated in its child. say for
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example ACE is duplicated in its child ACEF, so the actual implementation omits this. Thus

the itemset ACEF is stored as F The tree in its final form can be represented as shown in

Figure 3.5 and this form of petree will be used in the remaining chapters.

Figure3.5:petreeinitsfinalform

3.3 Computing Total Supports

The construction of the petree essentially performs, in a single database pass, a

reorganisation of the data into a structured set of attribute sets which appear as distinct

records in the database (plus the dummy nodes) with their partial summation. For any

candidate set S of subsets of /, the calculation of total supports can be completed by walking

this tree, adding interim supports as required according to the formulae above.

Consider again the set BCwith reference to Figure 3.2. The phase 1 computation has

already added into the interim support-count, the contribution from the supersets which follow

BC in the tree-ordering, Le. the contribution from BCD. To complete the summation of total

support, any contribution from preceding supersets, Le. ABC and ABCD, must be added. But

any contribution from ABCD has already been accumulated in ABC, so addition of the latter is

only needed. Now consider the converse of this. The partial total accumulated at ABCD

makes a contribution to the total support for all the subsets of ABCD. However, the

contribution in respect of the subset ABC is already included in the interim total for ABC, so,

when considering the node ABCD, only those subsets which include the attribute D need to
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be considered. In general, for any node j, it is necessary to consider only those subsets of j

which are not also subsets of its parent.

Thus, the following algorithm completes the summation of total supports for a

candidate set S [Coenen et et, 2004a]:

Algorithm 3.1.

Input:

P-tree (P), Candidate set (S)

output:

Counts T; for all sets i in S

Algorithm:

V sets i in S do T; = 0

V nodes j in Pdo

begin k = j - parent u);

It i in S, i ~ j, in knot empty, do

begin add OJ to T;

end

end

This algorithm is essentially generic and can be applied in different ways depending on how

the candidate set is defined. In general, methods like Apriori which involve multiple database

passes should gain, from using the P-tree to replace the original database, for two reasons:

firstly, because any duplicated records are merged in the P-tree structure, and secondly,

because the partial computation incorporated in the P-tree is carried out only once, when the

tree is constructed; thus reducing the computation required on each subsequent pass.

Therefore, in the second pass of Apriori, using the P-tree would in the best case require only r

_ 1 subsets of a record of r attributes to be considered (Le. those not covered by its parent)
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rather than the r (r - 1) I 2 required by the original Apriori. For example, consider the case of

a set ABCD that is present in the P-tree as a child of ABC. When the parent node ABC is

processed in the course of algorithm 3.1, its interim support will be added to the total support

of all its subsets. But, this interim support incorporates the support for its child ABCD. So,

when ABCD is processed, its support count is only needed to determine the total support for

the sets AD, BD and CD. This advantage becomes greater, of course, the larger the sets

being considered. It is this property that gives the major performance advantage gained from

using the P-tree: although the candidate set being considered is not reduced, the number of

candidates within the set that need to be examined at each step is reduced, reducing the

overall time required to search the candidate set.

Figure 3.6: Complete T-tree for all the subsets of {A,B,C,D}

Figure 3.6 illustrates a complete T-tree (Total support Tree) for all the subsets of I

with their final support counts. As can be seen, the T-tree also consists of subtrees rooted at

attributes A, B, C and D. But, unlike the P-tree, each sub-tree includes only supersets of its

root node which contain attributes that lexicographically precede or are equal to the root

node. For example, the subtree rooted at C includes its supersets AG, BC and ABC. Note

also that all these supersets terminate with the subtree root C. Here node C is the parent of

nods AC and BC This structure is called a T-tree, representing the target sets for which the

total support is to be calculated. Here, for any node t in the T-tree, all the subsets of t which

include an attribute i will be located in that segment of the tree found by a depth-first traversal
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starting at node i and finishing at node t. This allows the T-tree to be used as a structure to

effect an implementation of algorithm 3.1 [Coenen et al., 2001]:

Algorithm 3.2. TFP (Compute Total- from Partial- support)

Input:

P.f..ree(P), T-tree (T)

Output:

Total support counts for T

Algorithm:

V nodes j in Pdo

begin k = j - parent u);

i= first attribute in K;

starting at node iof Tdo

begin if i c j then add OJ to t..

if i = j then exit

else recurse to child node;

proceed to sibling node;

end

end

In any practical method, however. it is necessary to create a subset of the T.f..ree

using only the current frequent sets and to remove all the infrequent sets. Thus, a version of

the Apriori algorithm using this structure is used to construct candidates of Singletons. pairs.

triplets. etc., in successive passes. This algorithm is known as the Apriori-TFP (Total-from-

Partial) algorithm and essentially uses the P-tree rather than the original database. The

algorithm has the following form [Coenen et sl, 2001] [Coenen et al., 2004a]:
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1. K= 1

2. Build level Kin the T-tree.

3. "Walk" the P-tree, applying algorithm TFP to add interim support associated with

individual P-tree nodes to the level Knodes established in (2).

4. Remove any level K T-tree nodes that do not have an adequate level of support.

5. Increase Kby 1.

6. Repeat steps (2), (3), (4) and (5); until a level K is reached where no nodes are

adequately supported.

The detailed Apriori-TFP algorithm is described in [Coenen et al., 2001] [Coenen et

al., 2004a]. On completion of the algorithm, the T-tree finally contains all frequent sets with

their complete support-counts. An example illustrating the generation of a T-tree using the

algorithm is given below.

Example 3.2: T-tree generation

To build a T-tree for a user specified support threshold, the P-tree of Figure 3.5 is used

instead of the original data set. Let us see the level wise building of a T-tree for a support

threshold of 50% (equivalent to 3 records in this case). The generation process of the T-tree

is shown in Figure 3.7.

T-tree Level 1

Initially the top level of the T-tree is created for all 6 candidates (fig 3.7 a). The P-tree is then

traversed to add interim supports associated with individual P-tree nodes to the candidate

nodes. After adding supports from the P-tree, the set of singletons with their final support

totals are obtained (fig 3.7 b). As can be seen in fig 3.7 (b), support of attributes Band Fare

less than the support threshold (50% or 3). So these Singletons are pruned to get the final top

level or the frequent singletons (fig 3.7 c).
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CD---CTI
o 0 o o o

(a) Top level candidates

5 o 4 3 3
(b) After adding supports of P-tree

(c) Top level, after pruning

o 0
(d) Generation of second level candidates

(e) After adding supports of P-tree

4 3 3
(f) After pruning level two

(g) Generation of third level candidate

3
(h) After adding supports of P-tree

Figure 3.7: T-tree generation example
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T-tree Level 2

The supported singletons are used to generate candidate set pairs or T-tree level-2. As can

be seen in fig 3.7 (d), all the subsets of T-tree level-2 candidates are contained in the tree

built so far, i.e. they have the necessary threshold of support. To determine the total supports

for these level 2 T-tree nodes the P-tree is traversed a second time, and for each P-tree node,

interim supports associated with individual P-tree nodes are added to the appropriate

candidate pairs (fig 3.7 e). As can be seen in fig 3.7 (e), pairs AD, CD and DEare infrequent

so they are pruned to get frequent pairs. Figure 3.7 (f) shows pairs AC, AE and CE as

frequent with their support totals.

T-tree Level 3

These pairs are use to generate candidate triplets. Only one candidate triplet, ACE is

generated (fig 3.7 g) in level 3, as ACE is the only triplet all of whose subsets (AC, AE, CE)

are supported. After another P-tree pass (fig 3.7 h), we see triplet ACE is supported and we

get the final T-tree since there is no way to grow the tree.

Again, from inspection of the final T-tree of the above example (fig 3.7 h), it is

apparent that duplication of parent to child is unnecessary and can easily be avoided; say for

example CE is duplicated in its child ACE, so the actual implementation omits this. Thus the

itemset ACE is stored in level 3 as A. The tree in its final form can be represented as shown

in Figure 3.8 and we will use this form of T-tree.

3

Figure 3.8: I-tree in its final form
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3.4 Summary

The P-tree and T-tree structures and Apriori-TFP algorithm described in this chapter offer

significant advantages, in terms of storage and execution time with respect to existing ARM

techniques. Results demonstrating these advantages are given in [Coenen et al., 2001]. More

detailed algorithms of the P-tree and T-tree generation can be found in our paper published in

[Coenen et al., 2004b]. A rather similar structure to the P-tree, the FP-tree [Han et al., 2000]

has been described in the previous chapter. This structure has a different form but quite

similar properties to the P-tree, but is built in two database passes, the first of which

eliminates attributes that fail to reach the support threshold, and orders the others by

frequency of occurrence. Each node in the FP-tree stores a single attribute, so that each path

in the tree represents and counts one or more records in the database. The FP-tree also

includes more structural information, including all the nodes representing anyone attribute

being linked into a list. This structure facilitates the implementation of the "FP-Growth"

algorithm which generates subtrees from the FP-tree corresponding to each frequent

attribute, to represent all sets in which the attribute is associated with its predecessor in the

tree ordering. Recursive application of the algorithm generates all frequent sets.

However, unlike the P-tree which is essentially a generic structure that can

subsequently be used as a basis for many algorithms to complete the count-summation, the

FP-tree is closely tied to the FP-Growth algorithm. Results presented for FP-Growth

demonstrate its effectiveness in cases when the tree is memory-resident, but the linkage

between nodes of the tree makes it difficult to effect a comparable implementation when this

is not the case. The problem is worsened because of the additional storage overheads of the

FP-tree, which in general store many more nodes than P-tree, and needs more

references/pointers to be stored at each node.

The simple P-tree structure, however, requires only that each node be linked to its

parent. P-tree, thus, can only be processed in a "top down" manner. In fact, on completion the
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P-tree is converted to a table form (array of arrays) which can be processed in any order. This

is possible because the Apriori-TFP algorithm does not require the linkage between nodes in

the tree to be maintained. Thus, it is possible to store the "tree" in secondary storage, and

consequently the implementation may efficiently scale to deal with non-store-resident data.

The major advantages of the P-tree in respect of a large and dense database can be

summarized thus:

(1) It merges duplicated records and records with leading sub-strings, thus reducing

the storage and processing requirements for these.

(2) It allows partial counts of the support for individual nodes within the tree to be

accumulated effectively as the tree is constructed.

(3) It uses minimum and effective referencing which will also be capable of dealing

with non-store resident data.

(3) Finally, and most importantly, the tree can easily be partitioned into subtrees and

stored into secondary storage as a composite structure if required.

The T-tree, with its computationally efficient referencing mechanism, is a very

versatile structure that can be used in conjunction with many established ARM methods. A

major advantage offered by the T-tree structure is that branches of it can also be partitioned

and processed independently if the candidate set is very large. Also, the structure can readily

be adapted for non store-resident data. In the remaining chapters we will examine ways of

using these structures in implementations that assume data is much too large to reside in

primary memory.

59



Chapter 4

Strategies for Partitioning Data

4.1 Introduction

The challenge of ARM is to find all frequent sets in a computationally effective manner. This

in turn will require use of a suitable data structure. Where the data is too large to be

contained in primary memory some effective partitioning mechanism will also be required.

Many of the ARM methods described in the literature cannot readily be adapted to deal with

non-stare-resident data. Where algorithms can be adapted to handle non-stare-resident data

performance often does not scale linearly with the database size and density. This thesis

investigates ways in which Apriori-TFP can be adapted to deal with non-stare-resident data

given an appropriate division of the data, especially when high data density and/or a low

support threshold give rise to very large numbers of candidates. The hypothesis presented

here is that the P-tree and T-tree structures, and consequently Apriori-TFP, can support an

effective partitioning of the data and/or candidate sets. In this chapter a number of strategies,

most of which are already published in our papers [Ahmed et et., 2003] [Ahmed et al., 2004].

are presented for partitioning source data and candidate sets, when the data is much too

large to be contained in primary memory.

The organisation of this chapter is as follows: 'horizontal' partitioning, which divides

the source data into sets of records, is presented in section 4.2 (Data Partitioning). Section

4.3 describes an approach based on the "Negative Border" concept of [Toivonen, 1996], to

find all frequent sets in a single (horizontal) partition of the data. 'Vertical' partitioning, which

partitions records into sets of items, is presented in section 4.4 (Tree Partitioning). Finally, an
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approach that combines horizontal and vertical partitioning is investigated in section 4.5 (Data

and Tree Partitioning).

4.2 Data Partitioning (DP)

When source data cannot be handled as a whole in primary memory one may think of solving

the problem by slicing the data into pieces of a reasonable size. The 'natural' implementation

of Apriori-TFP, in this context, requires a partitioning of the data into segments of manageable

size and to construct a P-tree for each. This form of partitioning, in which each segment

contains a number of complete database records, will be referred as data partitioning (DP), or

segmentation. Here, the database is divided 'horizontally' into a number of non-overlapping

segments each of which is small enough to be handled in primary memory.

Each segment of the data is considered in isolation and a P-tree created for it that is

then stored in secondary memory. The algorithm starts with the first record in the first

segment and the construction of the P-tree commenced. P-tree creation is continued until the

end of the segment. The tree is then stored into secondary storage, and reading of records is

continued to create a P-tree for the next segment, and so on. More formally the algorithm can

be presented as follows.

Algorithm 4.1: Data partitioning to create and store P-trees

Input:

Database (0), Num segments (M)

Output:

M P-trees in secondary storage.

Algorithm:

1) Divide the data set into M segments.

2) For each segment of the data set
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i) Create a P-tree in primary memory

ii) Store the P-tree into secondary storage

In this and the other methods described, each P-tree created enumerates all the sets present

as distinct itemsets in the corresponding segment, recording for each an incomplete

summation of their support-count. The stored P-trees are then treated as a composite

structure from which the final support totals for all the frequent sets are computed, storing

these in aT-tree.

For storing, the P-tree is converted to a table form (array of arrays). The rows of the

P-tree table consist of corresponding levels of the P-tree; so that all 1-itemsets of the P-tree

are included in level 1 of the table, 2-itemsets in level 2, and so on. When this is done, of

course, we lose the access speed advantages of the tree structure, but the algorithm that we

employ require all nodes to be traversed so this aspect is no longer relevant. The Apriori-TFP

algorithm does not require the linkage between nodes in the tree to be maintained, and can

traverse the P-tree table in any order.

The P-trees stored in secondary storage are used, in the second stage, to build a

single T-tree. Instead of passing the database every time, the segmentation process needs to

pass the P-trees to build each level of the T-tree. To build a single T-tree from the P-trees

stored in backing store, a form of the Apriori-TFP algorithm described in the previous chapter

is used (see section 3.3). Here, each pass of the algorithm requires each of the P-trees to be

read in turn from secondary memory. The algorithm is:

Algorithm 4.2: Build a single T-tree from stored P-trees

Input

P-trees (P), Num segments (M), Support threshold ($),

Output:

T-tree satisfying $
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Algorithm:

1) For K= 1, 2 ....

2) Build level Kin the T-tree.

3) Read all the stored P-trees in turn, adding interim supports associated with individual

P-tree nodes to the level Knodes established in (2).

4) Remove any level K T-tree nodes that do not have an adequate level of support s.

5) Repeat steps (2), (3), and (4); until a level K is reached where no nodes are

adequately supported.

The method creates a final single T-tree in primary memory that contains all the frequent

sets and their support-counts. Note that the primary memory requirement is for storage to

contain the P-tree for a single segment of the data, plus the whole of the T-tree. Here is an

example of the method.

Example4.1

Suppose that a data set of 6 attributes and 6 records, as shown in fig 4.1 (a), cannot be

handled as a whole in primary memory but a smaller set of, say, two records can be handled.

So the data set is divided into three segments of equal size as shown in fig 4.1 (b).

ACE
AD
ACE F
ACD
D
ACE

ACE
A D Segment1

ACE F
A C D Segment2

(a)Dataset

D
ACE Segment3

(b) SegmentedDataset

Figure4.1: OriginalandHorizontallySegmentedDataset
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The algorithm starts reading from the first record (ACE) of the data set and creates P-

trees independently for one segment after another. After creating a P-tree, the tree is stored

into secondary storage and the memory is cleaned for reuse. Creation of P-tree 1 (fig 4.2 a) is

completed after reading the last record (AD) of segment 1. Then continue reading from the

first record (ACEF) of the second segment. Creation of P-tree 2 (fig 4.2 b) is completed after

reading the last record (ACD) of segment 2. Reading is continued and P-tree 3 is created with

records Dand ACE, as shown in fig 4.2 (c), for the last segment of data. These stored P-trees

are used later to build a T-tree for a user specified support threshold.

(a) P-tree 1
1

(b) P-tree 2 (c) P-tree 3

Figure 4.2: P-trees from segmented dataset

T-tree Level 1

Let us see the level wise building of a T-tree for a support threshold of 50% Le. 3 records in

the above example. The generation process of level 1 is shown in Figure 4.3. First the top

level of T-tree (fig 4.3 a) is created for all 6 attributes. Then the P-trees are read from

secondary storage in turn to add interim supports associated with individual P-tree nodes to

the candidate nodes. The P-trees are read in succession to update top-level nodes (shown in

fig 4.3 b-d). After adding supports for all the P-trees, nodes whose supports are less than the

user specified threshold are pruned. It can be seen in fig 4.3 (d) that attributes Band Fare

not supported (less than 50% or 3), so they are pruned leaving only supported attributes in

the top level (fig 4.3 e).
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(a) T-tree level1 candidates

2 o
(b) After adding supports of P-tree1

o

(c) After adding supports of P-tree2

(d) After adding supports of P-tree3

(e) T-tree level1, after pruning

Figure 4.3: Building T-tree level1

T-tree Level 2

The supported top-level attributes are used to generate candidate set for pairs or T-tree level-

2. T-tree level-2 candidates are shown in fig 4.4 (a). The first P-tree is read to update

supports for pairs (fig 4.4 b), then the second P-tree (fig 4.4 c), and then the third P-tree (fig

4.4 d). After pruning level 2 for supports less than the user specified threshold we get CA. EA

and ECas supported pairs (fig 4.4 e).
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(a) T-tree level 2 candidates

0-
5

o o
(b) After adding supports of P-tree1

3 2 2 2 o
(c) After adding supports of P-tree2

(d) After adding supports of P-tree3

4 3 3

(e) T-tree level 2, after pruning

Figure 4.4: Building T-tree level 2

T-tree Level 3

The pairs are used to generate candidate triplets. Only one candidate triplet, EGA is

generated (fig 4.5 a) in level 3, as EGA is the only triplet all of whose subsets are supported.

The first P-tree is read (fig 4.5 b), then the second P-tree (fig 4.5 c) and then the third (fig 4.5

d). It can now be seen that triplet EGA is supported. There are no more candidate sets and

thus the complete T-tree has been obtained.
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(a)T-treelevel3 candidate

(b)Afteraddingsupportsof P-tree1

2
(c)Afteraddingsupportsof P-tree2

3

(d)Afteraddingsupportsof P-tree3

Figure 4.5:BuildingT-treelevel3

4.3 Negative Border (NB)

The segmentation method described above is the most obvious and simplest way of

transforming the Apriori-TFP algorithm into a form applicable when data is not resident in

primary memory. The drawback. of course. is that the basic Apriori methodology requires

repeated passes to be made of the database to compute the support for single items. pairs
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etc., in turn. For Apriori-TFP, the P-tree is used instead of the database, but it is still

necessary to read each P-tree segment repeatedly from backing store. The only, relatively

small advantage to be gained from using the P-tree rather than the original data is that, in its

tabular form, levels of the tree can be discarded at the end of each pass. So, for example,

after pass 1 is completed, it is no longer necessary to read the rows of tabulated P-tree that

represent single items, since these have now been fully counted.

The concept of the negative border [Toivonen, 1996] tries to avoid repeated passes

of the P-tree (dataset) by obtaining an early estimate of the possible frequent sets, which can

then be counted in one pass. To do this, it needs to take a single sample or segment of data,

find all the sets that are frequent in this segment, then verify the results with the rest of the

database. Because there may be sets that are frequent in the entire database but not in our

chosen segment, the set of candidates to be considered must be enlarged. First, when

examining the sample, the support threshold is lowered to decrease the likelihood that

frequent sets are missed. Then, after finding all the locally frequent sets in the segment being

examined, this collection is augmented by adding its 'negative border'. The negative border is

the collection of all itemsets that are not frequent in the segment but all of whose subsets are.

The significance of the negative border is that it defines a boundary between the frequent and

non-frequent sets. If no set on the negative border is finally found to be frequent, then no sets

'outside' the border can be frequent either.

The application of this method in our case can be divided into three stages:

1. First. build and store P-trees for each segment of data, as for the segmentation

method.

2. Build a T-tree with its negative border for the first segment of data (for simplicity,

it will be assumed that the data is randomly distributed, so that the first segment

can be taken as an accurate sample of the whole).

3. Update the T-tree for the other segments of data.
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An initial T-tree with negative border is built, using a lowered support threshold, from

the first stored P-tree segment, using a slightly modified Apriori-TFP algorithm. Although this

will again require repeated passes of the P-tree segment, if this can be contained in primary

memory then it will be read once only. The negative border is easily obtained. In Apriori-TFP,

a candidate set is added to the tree when its subsets are all frequent. If after counting its

support, the set is found to be infrequent, it is deleted from the tree. In this variant, these sets

on the tree are retained but not used to construct further (superset) candidates. Thus, these

sets are not themselves frequent, but have only frequent subsets, and have no supersets in

the final tree. The algorithm for building the initial T-tree, with negative border from the first

stored P-tree segment, is as follows:

Algorithm 4.3: Build initial Tftewith its negative border

Input

P-tree 1 (PT), Support threshold ($)

Output

Initial T-tree with its negative border satisfying lower support threshold

Algorithm:

1) Read the first P-tree into memory.

2) For K= 1, 2, ...

3) Build level Kin the T-tree.

4) Pass the P-tree (in memory), adding interim supports associated with individual P-

tree nodes to the level Knodes established in (3).

5) Mark any level K T-tree nodes, not to be considered to build next level, that do not

have an adequate level of lower support threshold.

6) Repeat steps (3), (4), and (5); until a level K is reached where no nodes are

adequately supported.
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For each of the other segments of data, the P-tree is read into primary memory, and a

single traversal is performed to count the support of all the sets in the T-tree, adding these to

the totals already stored. The final T-tree contains the final support-counts for all the

candidate sets identified in the first section, including those on their negative border.

Sometimes, unfortunately, it may happen that all necessary sets have not been evaluated.

There has been a failure in the generation process if all frequent sets are not found in one

pass. If there are no misses, then the method is guaranteed to have found all frequent sets.

Misses indicate a potential failure; if there is a miss of any set, then some superset of the

missed set might be frequent but not evaluated. A miss is identified by checking the negative

border. If any superset can be constructed from a set, all of whose subsets are frequent, then

it will be necessary to perform another pass to count its support.

Algorithm 4.4: Update the T-tree with its negative border

Input

P-trees (P), Num segments (M). Support threshold ($),

Output:

T-tree with negative border satisfying ~

Algorithm:

1) For all P-trees other than the first

a. Read the P-tree into memory.

b. Pass the P-tree (in memory), adding interim supports associated with

individual P-tree nodes to all the T-lree nodes.

2) Check the negative border to confirm that there is no failure.

Note that the primary memory requirement for storage, in this method, is to contain the P-

tree for a single segment of the data, plus the whole of the T-tree with its negative border.

Here is an example of the method.
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Example4.2

Let us consider the same data set used in Example 4.1. Assume again that the data set is

divided into three equal segments and each segment can be processed in main memory. In

the first stage P-trees are created and stored independently for each segment as described in

Example 4.1.

In the second stage the first P-tree is read once from secondary storage and an initial

T-tree with negative border is built, using a lowered support threshold. Let us assume the

support threshold for the dataset is 50% (i.e. 3 records, which translate to 1 record per

segment). This threshold will be lowered by 1/3, to 33%, for the algorithm. Thus, the required

threshold for the first segment is 0.66 records. Generation of the initial T-tree with negative

border is shown in Figure 4.6. As usual, the top level of the T-tree (fig 4.6 a) is created for all

6 items. Then the P-tree (in memory) is passed to update the top-level nodes (fig 4.6 b). After

adding supports for the P-tree unlike Apriori- TFP we do not prune nodes whose supports are

less than the lower threshold but mark those not to be considered to build the next level. As

can be seen attributes Band F are not supported (less than 0.66) and they are not

considered when generating candidate set for pairs. These nodes, which are part of the

negative border, are shadowed in Figure 4.6. The candidate set of pairs (level-2) is then built,

as shown in fig 4.6 (c), using only the supported attributes. The P-tree is passed to update

supports for the pairs (fig 4.6 d). It can be seen that the support of pairs CA, DA, EA, and EC

exceeds the threshold thus the next level (the set of triples) can be generated from these

pairs. Only one candidate triple, ECA is generated (fig 4.6 e) in level 3, as ECA is the only

triple all of whose subsets (EC, EA, CA) are supported. The P-tree is passed again to update

supports for triples (fig 4.6 f). And at the end of this pass, it can be seen that triplet ECA is

supported and the final T-tree with B, F, DCand EDas negative border is produced.
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ffi--CD-ill---ffi-ill-----o 000 0 0
(a)T-treelevel 1candidates

2 o
(b)Afteraddingsupportsof P-tree1

o

o o o o o o
(c)T-treelevel2 candidates

o
(d)Afteraddingsupportsof P-tree1

o

(e)T-treelevel3 candidate o

(f)Afteraddingsupportsof P-tree1

Figure 4.6:BuildingT-treewith NegativeBorder

In stage three, the other P-trees are read in turn into primary memory and passes are

performed to update supports of all the T-tree nodes including those in the negative border.

Figure 4.7 shows the updated T-tree with P-tree 2. After passing P-tree 3, the final T-tree

(Figure 4.8) is obtained that contains the final support-counts for all the candidate sets

identified in the first section, including those on their negative border. It can be seen that

negative border candidates B, F, DC and ED are still not supported (less than 3) in the whole
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database. So all frequent sets with their final support count have been obtained. Note,

however, that the tree of Figure 4.8 is larger than that of fig 4.5 (d) because of the inclusion of

the negative border.

2
Figure 4.7:Updatethe initialT-treewith P-tree2

3
Figure 4.8: Updatethe initialT-treewith P-tree3

4.4 Tree Partitioning (TP)

Both methods described above require primary memory sufficient to contain the P-tree for a

single segment of data together with the whole of the T-tree. Because there is no partitioning

of the T-tree, which finally contains all the frequent sets, there may be problems in dealing

with very large candidate sets. This is especially the case for the negative border method

because of the larger T-tree to be produced. To address this problem, a method will be

considered that partitions both the P-tree and the T-tree into subtrees that can be processed

separately, Le. tree partitioning( Tp).

A possible way of partitioning the data is to divide the set of attributes under

consideration into subsets, each of which defines a vertical partitioning of the data set. The
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problem with this is that the sets for which support is to be counted contain attributes from

several partitions so that the linkage between attributes of a long pattern will be lost while

building individual P-trees (as well as T-trees). The P-tree structure, however, offers another

form of partitioning, into subtrees that represent lexicographically-following supersets of their

root node. The problem with this vertical partitioning strategy is that, although subtrees of the

T-tree properly represent subsets of the candidate set, the subtrees of the P-tree do not map

directly on to this. In this case, again, it is still not possible to compute the support for a set by

considering only the subtree of the P-tree in which it is located. Although succeeding

supersets of a set S are located in the subtree rooted at S, predecessor supersets are

scattered throughout the preceding part of the P-tree, which must therefore be traversed in

order to compute the support for S.

Figure 4.9: Example of a P·tree

To illustrate this, let us consider a dataset the records of which are {A,D,E},

{A,C,D,E}, {A,C,E}, {A,B,D}, {A,B,E}, {A,B,D,E}, {A,B,C,D,E}, {A,B,C,E}, {B}, {B,D}, {B,E},

{B,D,E}, {B,C,D,E}, {B,C,E}, {C,D}, {C,E}, {C,D,E}, {D}, {D,E}, and {E}. Figure 4.9 shows the P-

tree that would be constructed. Now, consider the support for the set BD in the data used for

Figure 4.9. In the subtree rooted at B, we find a partial support total for BD, which includes the

74



4 Strategies for Partitioning Data

total for its superset BDE To complete the support count for BD, however, we must add in the

counts recorded for its preceding supersets BGD£, ABO (incorporating ABO£) and ABGD£,

the latter two of which are in the subtree headed by A.

The problem can be overcome by a different partitioning of the P-tree structure where

subtrees properly represent subsets of the candidate set. The Tree Partitioning (TP) method

begins by dividing the ordered attribute-set into n subsequences. Then it proceeds to

construct separate Partition-P-trees (PP-trees), which will be labelled as PP1, PP2, ... ,PPn,

for these attribute-sets. For example, for the data used in Figure 4.9, the attribute-set might

be divided into 3 sequences of attributes, {A,B}, {C,D} and {E}, labelled 1,2,3 respectively. A

PP-tree is defined for each sequence, labelled PP1, PP2 and PP3. The construction of these

is a slight modification of the original P-tree construction method. The first partition-tree, PP1,

is a proper P-tree that counts the partial support for the power set of {A,B}. PP2, however,

counts all those sets that include at least a member of {C,D} in a tree that includes just these

attributes and their predecessors. The third tree, PP3, will count all sets that include {E}. The

three PP-trees obtained are illustrated in Figure 4.10. The PP-trees are, in effect, overlapping

partitions of the P-tree of Figure 4.9, with some restructuring resulting from the omission of

nodes when they are not needed.

The effect of this is that the total support for any set S can now be obtained from the

PP-tree corresponding to the last attribute within S. for example, all the counts contributing to

the support of BD can now be found in PP2 The apparent drawback is that the later trees in

the sequence are of increasing size; in particular considering the total number of nodes, PP3

is almost as large as the original P-tree. This can be overcome, however, by a suitable

reordering of the attributes. In descending order of their frequency in the data, the ordering of

the attributes in the example will be E,D,B,C,A. Using the same data as for Figures 4.9 and

4.10, PP-trees will be constructed using this descending ordering, for the sets of attributes

{E,D}, {B,C} and {A} respectively.
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PP3

Figure 4.10: Partttion-P-trees from figure 4.9

The results are shown in Figure 4.11. Now, because the less frequent attributes

appear later in the sequence, the trees become successively more sparse, so that PP3 now

has only 13 nodes, compared with the 23 of PP3 in Figure 4.10. In fact, results presented in

[Coenen and Leng, 2001] demonstrate that ordering attributes in this way leads to a smaller

P-tree and faster operation of Apriori-TFP. The additional advantage for partitioning is that the

PP-trees become more compact and more equal in size. The total support-count for BD (now

ordered as DB) is again to be found within PP2, but now requires the addition of only 2 counts

(DB+EDB).
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Figure 4.11: PP-trees after reordering of attributes

The form of vertical partitioning described here offers a way of dividing the source

data into a number of PP-trees each of which may then be processed independently. A single

database pass is required to build each PP-tree. The algorithm to build and store these PP-

trees is as follows:

Algorithm 4.5: Vertical partitioning to create and store PP-trees

Input

Database (D), Itemset (S), Num partitions (N)

Output:

N PP-trees in secondary storage.

Algorithm:

1) Divide the itemset into N partitions.
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2) For each partition

a) Pass the database to create a PP-{ree in primary memory

- For each record of the database

- If it contains an item of the partition then include just the set of these

items and their predecessors (if any) to the tree.

b) Store the PP-{ree into secondary storage

The stored trees are than processed independently to build a T-tree for each. This

tree will be referred as the Partition-T-tree (PT-tree). A form of the Apriori-TFP algorithm is

used to build a PT-{ree from the PP-{ree stored on backing store. To generate candidate sets

(other than for the top level) any subsets outside the partition are assumed. if necessary. to

be frequent. The algorithm to build these T-trees is as follows:

Algorithm 4.6: Build PT4rees from stored PP~s

Input

PP-{rees (P). Num partitions (N). Support threshold (s )

Output:

N PT-{rees satisfying $

Algorithm:

1) For each partition of the attribute set

a. Read a PP-tree.

b. For K= 1. 2•...

c. Build level Kin the T-{ree with the attribute-set of the partition and assuming.

where necessary. that any (K-1)-itemsets outside the partition are frequent.

d. Pass the PP-{ree (in memory). adding interim supports associated with

individual tree nodes to the level Knodes established in (c).
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e. Remove any level K T-tree nodes that do not have an adequate level of

support $.

f. Repeat steps (c). (d). and (e); until a level Kis reached where no nodes are

adequately supported.

This form of tree partitioning offers a way of dividing the source data into a number of

PP-trees each of which is then processed independently and the trees stored for each

partition need be read once only. The method may be summarized thus:

1. Choose an appropriate partitioning of the attribute-set into sequences 1. 2....n.

2. Perform n passes of the database to build Partition-P-trees PP1, PP2 ...PPn.

3. Read PP1 into memory. and build a T-tree to count the total support for all

frequent sets formed from members of set 1 only.

4. Read PP2 into memory, and build a T-tree counting the support for frequent sets

formed from members of set 2 with its predecessors.

5. Repeat step 4 for PP3, PP4, etc.

The method, therefore. creates T-trees,which finally contain all the frequent itemsets

for a partition of the attribute-set. Thus, the candidate sets are distributed into several T-trees.

The primary memory requirement for storage, thus, is to contain the PP-tree for a single

partition of the data, plus the corresponding PT-tree. Here is an example of the method.

Example4.3

Consider the same data set as used in Example 4.1 (fig 4.12 a). The set of attributes

{A,B,C,D,E,F} is divided into three subsets {A,B}, {C,D} and {E,F} as shown in fig 4.12 (b). In

the first partition, subsets of records containing at least one item from the subset {A,B} are

included. In the second partition all those subsets of records that contain at least one item
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from the subset {C,D} with its predecessors are included. Similarly records that contain at

least one item from the subset {E,F} are included in the last partition. A record comprising

(say) the first record, ACE, would thus be included in subsets {A,B} as A, {C,D} as AC and

{E,F} as ACE.

ABI CDI EF

ACE
AD
ACE F
ACD
D
ACE

A lAC lACE
A I A D I
A lAC IACEF
A I A C Dl

I D I
A lAC lACE

(a)Dataset (b) PartitionedDataset

Figure4.12:OriginalandVerticallyPartitionedDataset

Stage 1:

In stage 1 PP-trees, as shown in Figure 4.13, are created and stored for one partition after

another. After storing a PP-tree into secondary storage, the memory is cleaned for reuse. The

first partition-tree, PP1 (fig 4.13 a), is a proper P-tree that counts the partial support for the

power set of {A,B}. PP2 (fig 4.13 b), counts all those sets that include a member of {C,D} in a

tree that includes just these items and their predecessors. The third tree, PP3 (fig 4.13 c),

counts all sets that include any member of {E,F}.

IT)
5

(a)PP-tree1 (b) PP-tree2
1

(c) PP-tree3

Figure 4.13:PP-treesfromverticallypartitionrddataset

Stage2:

In stage 2 PP-trees are read in turn and used to build T-trees for the corresponding partitions.

Let us see the level wise building of Partition T-trees for a threshold of 50% (3 records). PP-

tree 1 (fig 4.13 a) has only one attribute so an identical T-tree of attribute A with support 5 is
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built for the first partition. Figure 4.14 shows the building of the T-tree for subset {C,O}. Only

attributes C and D are considered to build the top level of tree (fig 4.14 a). After passing the

PP-tree 2 (in memory) to add interim supports for singles, as can be seen in fig 4.14 (b) all the

candidate nodes are supported. These supported top-level attributes with their predecessors

(A, 8) are used to generate the candidate set for pairs as shown in fig 4.14 (c). Note that here

it is assumed that A and B both reach the required support threshold (although in fact this is

not the case for 8). After passing the PP-tree 2 to add interim supports for pairs, it can be

seen only pair CA is supported (fig 4.14 d) and all other pairs are pruned to get the final tree

(fig 4.14 e) for the second partition.

CD-----ITJ
o 0

(a) PT-tree2 level 1 candidates

CD-----ITJ
4 3

(b) After adding supports of PP-tree2

o o o o o
(c) PT-tree2 level2 candidates

4 o o
(d) After adding supports of PP-tree2

ra

4

(e) PT-tree2 level 2, after pruning

Figure 4.14: Building PT-tree 2 from PP-tree 2
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CD----CD
o 0

(a) PT-tree3 level 1 candidates

CD----CD
3 1

(b) After adding supports of PP-tree3

CD
3

(c) PT-tree3 level1 , after pruning

o o o o
(d) PT-tree3 level 2 candidates

3 o 3 o
(e) After adding supports of PP-tree3

L
3 3

(f) PT-tree3 level 2, after pruning

o
(g) PT-tree3 level 3 candidate

3

(h) After adding supports of PP-tree3

Figure 4.15: Building PT-tree 3 from PP-tree 3
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Figure 4.15 shows the building of the T-tree for subset {E,F}. The top level of the tree

(fig 4.15 a) is built for attributes E and F After passing the PP-tree 3 (in memory) to add

interim supports, it can be seen that only candidate node E is supported (fig 4.15 b), the other

node is pruned (fig 4.15 c). The supported top-level attribute E, with its predecessors, is used

to generate candidate pairs as shown in fig 4.15 (d). After passing the PP-tree 3 to add

interim supports for pairs, it can be seen from fig 4.15 (e) that pairs EA and EG are supported

so that the other pairs are pruned (fig 4.15 f). These pairs are use to generate candidate

triples. Only one candidate triple, EGA is generated (fig 4.15 g), as EGA is the only triple all of

whose subsets within the partition (EG and EA) are supported - the predecessor subset GA

which is not contained in the current partition is assumed to be frequent. At the end of another

pass of PP-tree 3, to add interim supports for the triples, the triple EGA is supported (fig 4.15

h) and the final T-tree for the last partition is produced (there is no way to grow the tree

further).

[1]
5

(a) PT-tree1 (b) PT-tree2 (c) PT-tree3 3

Figure 4.16:FinalPT-trees

Figure 4.16 shows the three final PT-trees that have been constructed. Notice that

the nodes and their counts are exactly the same as for the T-tree of fig 4.5 (d). The tree

partitioning method has produced the same result as the original DPmethod, but has reduced

the primary memory requirement by partitioning the T-tree.
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4.5 Data and Tree Partitioning (DTP)

The tree partitioning, described above, reduces the maximum primary memory requirement,

as only a PP-tree together with the subtree of the T-tree corresponding to that partition needs

to be contained in memory. Further advantages of the method are that more of the counting

is done by the relatively efficient procedures used when constructing the P-tree, and T-tree

traversal works are reduced because of the use of smaller T-tree partitions. The chief

drawback, however, is that repeated passes of the database are now required to construct

the PP-trees. With a sufficiently large data set it will of course not be possible to construct all

the PP-trees within primary memory in a single database pass. To overcome this, the TP

approach can be combined with a (horizontal) segmentation of the original data, as described

in DP, into segments small enough to allow the corresponding PP-trees to be contained in

primary store.

In this case (DT?), PP-trees will be built first, in a single database pass, for each

segment of the database (choosing a segment size which allows this to be done entirely in

primary memory). Then, the stored PP-trees are processed in the order of the vertical

partitioning, to construct the complete T-trees for partition 1, 2 ... in turn. The overall method is

as follows. For clarity, the term segment will be used to refer to the horizontal division of the

data into sets of records, and partition will be used to refer to the vertical division into sets of

attributes and the corresponding tree structures:

1. Choose an appropriate partitioning of the items into n sequences 1, 2, 3, ..etc.

2. Divide the source data into m segments.

3. For each segment of data, construct n PP-trees in primary memory, storing each tree

finally to disk. This construction phase involves just one pass of the source data.

4. For partition 1, read the PP1 trees for all segments into memory, and apply the

Apriori-TFP algorithm to build a T-tree that finds the final frequent sets in the
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partition. This stage requires the PP1 trees for each segment of data to be read once

only. The T-tree remains in memory throughout, finally being stored to disk.

5. Repeat step 4 for partitions 2, 3, ..n.

The method offers two speed advantages over simple horizontal segmentation. First,

the number of disk passes has now been effectively reduced to 2: one (step 3) to construct

the PP-trees, and a second pass (of the stored trees) to complete the counting (steps 4 and

5) since the PP-trees stored for each segment need be read once only. The second

advantage is that now it needs, at each stage, to deal with smaller tree structures, leading to

faster traversal and counting. In this method the maximum memory requirement is for the PP-

trees for one partition, plus the corresponding T-tree partition. Below is an example of the

method.

Example 4.4: Again consider the same data set used previously (fig 4.17 a). Here the data set

is first divided into three equal segments and then each segment is further divided into three

subsets {A,B}, {C,D} and {E,F} as shown in fig 4.17 (b).

ABI CDI EF

ACE
AD
ACEF
ACD
D
ACE

A I A C
A I A D

I ACE
I

A lAC IACEF
A I A CD I

ID
A I A C

I
I ACE

(a) Dataset (b) HSVP dataset

Figure4.17:OriginalandHSVP dataset

In stage 1 each segment of data set is taken in turn to create and store all the pp_

trees for the segment as shown in Figure 4.18. After storing the trees into secondary storage,
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the memory is cleaned for reuse. PP-trees for partition 1, 2, and 3 of segment 1 are shown in

fig 4.18 (a), (b) and (c) respectively. Similarly PP-trees for the second segment are shown in

fig 4.18 (d), (e) and (f) and third segment are in fig 4.18 (g), (h) and (i).

0 L ~

2

(a) PP-tree 1 (b) PP-tree 2 (c) PP-tree 3

m
~~~~:2

1

(d) PP-tree 4 (e) PP-tree 5 (f) PP-tree 6

m r ~

1
C

1

1

(g) PP-tree 7 (h) PP-tree 8 (i) PP-tree 9

Figure 4.18: PP-trees from HSVP dataset

m
5

3
(a) PT-tree 1 (b) PT-tree 2 (c) PT-tree 3

Figure 4.19: PT-trees from PP-trees

In stage 2, PP-{rees are read for a partition and the T-tree for the corresponding

partition is built. The algorithm needs to read these PP-{rees from backing store only once

instead of reading for each level. Figure 4.19 shows the PT-trees for the support threshold of
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50%. PT-tree 1 (fig 4.19 a) is built using the first partition P-trees shown in fig 4.18 (a), (d),

and (g). PT-tree 2 (fig 4.19 b) is built using the second partition P-trees in fig 4.18 (b), (e), and

(h). And PT-tree 3 (fig 4.19 c) is built using the last partition P-trees in fig 4.18 (c), (f), and (i).

4.6 Summary

Different strategies for partitioning the data and data-structure have been considered in cases

when it will be impossible to contain all the data required in primary memory for implementing

Apriori-TFP. Different methods of partitioning to limit the total primary memory requirement

are examined, including that required both for the source data and for the candidate sets. The

methods are: (1) DP (Data Partitioning), (2) NB (Negative Border), (3) TP (Tree Partitioning),

and (4) DTP(Data and Tree Partitioning).

In the DP and NB methods, it is necessary to divide the database horizontally and

read the entire database only once to create P-trees. These methods produce a single T-tree.

The DP method, however, requires repeated passes of the disk-resident data, and the NB

method involves an enlarged T-tee. The TP method uses a form of vertical partitioning to

build partitioned P-trees that can be processed independently to build T-trees. The TP

method leads to a partitioning that is essentially similar to that obtained by the construction of

conditional databases described in [Han et et, 2000] and [Pei et al., 2000], and the COFI-

trees proposed in [EI-Hajj and Zaiane, 2003]. The latter method also creates subtrees that

can be processed independently, but requires an initial construction of an FP-tree that must

be retained in primary memory for efficient processing. The partitioning strategy proposed in

[Pei et et, 2000] for dealing with an FP-tree too large for primary storage, would first construct

the a-conditional database corresponding to the PP-tree, and after building the FP-tree for

this, would copy relevant transactions (e.g. EDBCA), into the next (c-conamonas database, as
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EDBC. The DTPmethod, however, avoids this multiple copying by constructing all the trees in

memory in a single database pass, during which partial support totals are also counted.
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Chapter 5

Experiments and Results

5.1 Introduction

To investigate the performance of different methods (strategies) described in the previous

chapter, a number of experiments for extracting association rules from databases in cases

where the data is too large to be contained in main memory have been carried out. These

experiments for finding the performance characteristics in various circumstances are

described in this chapter. Synthetic data sets used in the experiments were constructed using

the QUEST generator described in [Agrawal and Srikant, 1994]. This uses parameters: T,

which defines the average number of attributes found in a set; and I, the average size of the

maximal supported set. Higher values of Tand lin relation to the number of items (attributes)

N correspond to a more densely-populated database. All the programs were written in

standard C++ and run under the Linux operating system. Time and memory were measured

using the C++ standard library functions and operators. The experiments were performed on

an AMD Athlon workstation with a clock rate of 1.3 GHz, 256 Kb of cache, and 512 Mb of

RAM. The data was stored on an NFS server (1 Gb filestore). Detailed results of the

experiments, some of which are already presented in our papers published in [Ahmed et a!.,

2003] and [Ahmed et a!., 2004], are presented in this chapter.

The organisation of the chapter is as follows:

(1) Section 5.2 (Size of Database) examines scalability of the methods for increasing

size of databases.
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(2) The effect of applying a different degree of 'horizontal' segmentation, which is used

to evaluate Data Partitioning (O?), Negative Border (NB), and Data and Tree

Partitioning (OT?) methods. is examined in section 5.3 - Degree of Segmentation.

(3) Next the methods are examined for databases of increasing number of attributes

(section 5.4 - Number of Attributes).

(4) Different degree of 'vertical' partitioning. used in Tree Partitioning (T?) and Data and

Tree Partitioning (OT?) methods, are investigated in section 5.5 - Degree of

Partitioning. In most of these experiments. the partitioning divides the attribute-set

equally.

(5) The performance of the methods is then compared for increasing density of

databases in section 5.6 - Density of Database.

(6) Finally. performance comparisons of the methods for different support thresholds are

presented in section 5.7 - Performance Comparison.

(7) Section 5.8 summarises the results of the experiments.

5.2 Size of Database

First it is essential to establish that the methods scale acceptably with increasing size of

databases; that is. the different partitioning strategies successfully constrain the maximum

requirement for primary memory. without leading to unacceptable execution times. For this

purpose data sets were generated with parameters T10.15.N500: Le. 500 items. with an

average record-length of 10 items and an expected maximal frequent pattern size of 5. The

data sets were increased in size by 50.000 records. For the (horizontal) segmentation used in

the DP(or NB) and OTPmethods, the dataset was divided into segments of 50,000 records.

For the (vertical) partitioning used in the TP and OTP methods, the dataset was divided into

500 partitions. Le. a partition P-tree for each item. In fact, it will be apparent from the

experiments that increasing the degree of (vertical) partitioning always reduces the primary
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memory requirement (as would be expected). The experiments are set up to measure (1) time

to construct P/PP-trees for increasing size of databases, (2) memory requirements for largest

P-treel Partition (T10.15.N500), (3) time to find frequent sets for increasing size of databases

(0.01% support), and (4) memory requirements for T-treel largest PT-tree (T10.15.N500).

The results for these experiments, and for all other experiments described in this

chapter, are tabulated in Appendix A. In this chapter selected results will be presented in

graphical form to illustrate the significant features.
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Figure 5.1: Time to construct P/PP-trees for increasing size of databases
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Figure 5.2: Memory requirements for largest P-treel Partition (T10.15.N500)

Figure 5.1 shows the time in seconds to construct and store P-trees in method DP (or

NB) and partition P-trees in methods TP and DTP for the databases of increasing size; i.e.
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1,2,3,4 and 5 segments. It can be seen that the time to construct and store these trees

increases linearly with the size of databases. Figure 5.2 shows the maximum memory

requirements, in megabytes, for the methods. This will be the size of the largest P-tree (in

method DP or NB), or the largest vertical partition in methods TP and DTP. As mentioned in

the previous chapter, the vertical partition contains a single PP-tree in method T?, but the

number of PP-trees increases, in method DT?, with the number of segments. As can be

seen, the memory requirement for the method DP (or NB) is constant for the databases. This

is what we would expect in the case of a database of homogeneous density. For methods TP

and DT?, memory requirements increase linearly with the size of the database since the

increased number of records in each partition adds new sets with a corresponding increase in

tree size. In general, larger data sets, requiring greater horizontal segmentation, lead to some

increase in the combined size of the PP-trees, but this is relatively slight for the DTPmethod.

Num records ( x 50,000)

Figure 5.3: Time to find frequent sets for increasing size of databases (0.01% support)

Figure 5.3 compares the performance of the methods (times in seconds) in using the

stored trees to compute final support totals or frequent sets, for the support threshold of

0.01 %. For the 'Negative Border' method, the actual support thresholds were reduced in each

case to 2/3 of the chosen Figure when constructing the initial T-tree with the aim of avoiding

failure to find all frequent sets in one pass. To find frequent sets a T-tree was built in method
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DP (or NB) and partition T-trees were built in methods TP and DTP. It can be seen that the

time to build these trees increases linearly with the size of databases. The reason for this is

that the number of P-trees or PP-trees required to be read from secondary storage is higher

for larger databases.
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Figure 5.4: Memory requirements for T-treel largest PT-tree (T10.15.NSOO)

Figure S.4 shows memory requirements in Mb for the T-tree (in methods DPand NB)

and the largest PT-tree (in method TP or DTp). Memory requirements for all the methods are

nearly constant because the number of frequent sets produced does not depend to any great

degree on the database size. In fact, there is a small reduction in memory requirement

because the number of frequent sets found in the database of size 50,000 was slightly greater

than in the larger database.
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Figure S.5: Execution times for T10.IS.NSOO (0.01 % support)
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Figure 5.5 shows the overall time, which is the time to construct P/PP-trees plus time

to find frequent sets, with a support threshold of 0.01 %, for datasets of increasing size. The

times illustrated include both the time to construct the P-trees (DP or NB method) or PP-trees

(TP and DT?) and to execute the Apriori-TFP algorithm. It can be seen that the performance

of all methods scales linearly with the size of the dataset, and that the DTP method offers

substantially better performance for the databases.
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Figure 5.6: Memory requirements for T10.15.N500

Importantly, this performance is achieved within conservative requirements for

primary storage. The maximum memory requirement for the DP(as well as NB) method is the

sum of the memory requirement for the largest P-tree segment and that for the whole of the

T-tree. For the TP and DTP methods, the maximum memory requirement is defined by the

size of the largest vertical partition and the corresponding T-tree containing the frequent sets

in that partition. Figure 5.6 shows maximal memory requirements (in Mb), which is the sum of

the memory requirements for the largest P-treel Partition and for the T-treel largest PT-tree,

for the methods. It can be seen that memory requirements for the methods are nearly

constant for the databases.

The combined sizes of the PP-trees for anyone segment are, of course, greater than

the size of a corresponding P-tree. While constructing the P/PP-trees, the sum of the sizes of
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the 500 PP-trees for anyone segment is about 15.56 Mb (varying little between segments),

compared to a P-tree size of about 1.85 Mb (Figure 5.2). This size of the PP-trees was not the

dominant store requirement in the illustrated case (Figure 5.6), but in other cases could be a

constraint during the construction of the PP-trees. If this is so, the problem can easily be

overcome by imposing a greater degree of horizontal segmentation. It will be apparent that

increasing the number of segments has little effect on execution times, while reducing

memory requirements during the PP-tree construction.

It can be said from the above experiments that the TP and OTP methods strongly

outperform other methods in terms of primary memory requirement and the OTP method

outperforms other methods in execution time also. However, the performance difference of

the methods is very similar for the databases of increasing number of records. This suggests

that the methods will scale well for larger datasets, requiring more segments.

S.3 Degree of Segmentation

The effect of horizontal segmentation, used in methods Op, NB and OTp, was further

examined on a database divided into an increasing number of segments. The data set was

generated with parameters T =10, I =5, N =500 and 0 =50,000. In this case a vertical

partitioning of 50 items per partition (10 partitions in all) was imposed for the OTP method,

while varying the number of segments for the methods. The dataset was investigated for

divisions into 1, 2. 5. 10 and 50 equal segments; Le. 50,000, 25,000, 10,000, 5,000 and 1,000

records/segment respectively. The small database of 50,000 records, in this and the

remaining experiments, was chosen for convenience, but in all cases a requirement has been

imposed that only one segment can be retained in primary store at one time. The experiments

was designed to measure: (1) time to construct P/PP-trees for increasing number of

segments, (2) memory requirements of largest P-treel Partition (T10.15.N500.D50000), (3)
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time to find frequent sets for increasing number of segments (0.01 % support), and (4)

memory requirements for T-tree/ largest PT-tree (T10.15.N500.D50000).
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Figure 5.7: Time to construct P/PP-trees for increasing number of segments
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Figure 5.8: Memory requirements of largest P-tree/ Partition (T10.15.N500.D50000)

Figure 5.7 shows the time in seconds to construct and store P-trees in method DP(or

NB) and PP-trees in method DTPfor increasing numbers of segments. It should be noted that

the time to build these trees decreases slightly as the number of segments is increased. The

reason for this is that, although the number of trees increases with the number of segments,

the size of each tree becomes successively less, reducing tree-traversal time as each is

constructed. It can be seen in Figure 5.8, which shows the memory requirement for the

largest P-tree or partition, that this decreases significantly for increasing number of segments.
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The total memory requirement to contain all the PP-trees for anyone segment also

decreases, as one would expect, from 7.8 Mb (1 segment) to a maximum of 0.22 Mb (50

segments). Table 5.1 summarize the memory requirement in Mb for a segment during PP-

tree construction.

Memory requirements for PP-trees

Partition 1 2 3 4 5 6 7 8 9 10

1 segment 0.67 1.15 1.21 1.14 1.02 0.88 0.73 0.57 0.34 0.09

2segments 0.38 0.61 0.64 0.59 0.53 0.46 0.38 0.29 0.17 0.05

5segments 0.18 0.26 0.27 0.25 0.22 0.19 0.16 0.12 0.07 0.02

10segments 0.10 0.14 0.14 0.13 0.11 0.10 0.08 0.06 0.04 0.01

50 segments 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01

Table 5.1: Memory requirements for different partitions of a segment.

Figure 5.9: Time to find frequent sets for increasing number of segments (0.01 % support)

Figure 5.9 shows the time in seconds to compute final support totals or find frequent

sets for a support threshold of 0.01 %. As can be seen, this time increases slightly with the

number of segments. This is to be expected since a higher number of segments requires

more trees to be read from secondary storage. Figure 5.10 shows the memory requirement

for the T-tree or the largest pr-tree. It can be seen that the memory requirement for methods

OP and orp are constant, which is expected; but not for method NB. In method NB, trees

could not be built for smaller segments of the dataset because of memory overflow. Recall
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that in this method, with the aim of avoiding failure to find all frequent sets in one pass, the

actual support thresholds is reduced to 2/3 of the chosen Figure when constructing the initial

T-tree and thus the tree is likely to become larger as segmentation is increased.
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Figure 5.10: Memory requirements for T-tree/largest PT-tree (T10.15.N500.D50000)

The overall time to find frequent sets, for the support threshold of 0.01 %, is shown in

Figure 5.11. As can be seen, the overall execution time to find frequent sets increase slightly

with the number of segments. although the rate of increase is reduced due to the decreasing

P-tree construction times. Figure 5.12 shows the maximal memory requirement for the

methods. From the Figure it can be seen that the memory requirement for methods DP and

DTP is almost constant since the memory requirement for the largest P-tree or partition is

negligible in comparison with the memory requirement of the T-tree or the PT-tree.
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Figure 5.11: Effect of increasing segmentation on overall execution time (0.01 % support)
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Figure 5.12: Overall memory requirement for increasing number of segments

Thus, although method DTP outperforms other methods in both execution time and

primary memory requirement, the segmentation technique, in most cases, has very little effect

on their performance. This suggests that the methods will scale well for larger datasets,

requiring more partitions.

5.4 Number of Attributes

In this section a number of experiments are described to establish whether the methods scale

acceptably with increasing number of attributes. For this purpose data sets were generated

with parameters T10.15.D50000: i.e. 50,000 records, with an average record-length of 10

items and an expected maximal frequent pattern size of 5. The number of attributes used in

the data sets was increased in steps of 500. For the horizontal segmentation used in the DP,

NB, and DTP methods, the dataset was divided into segments of 10,000 records, i.e. the

dataset was divided into 5 equal segments. For the TP and DTP methods, the dataset was

also vertically divided into 10 items per partition (items/partition).

Figure 5.13 shows the time in seconds to construct and store P-trees in method DP

(or NB) and PP-trees in methods TP and DTP for databases with increasing numbers of

attributes. From the Figure it can be seen that for method DP, times to construct P-trees are

nearly constant. So it can be said that, in this case the number of attributes in the database
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has virtually no effect on P-tree construction time. In method TP, time to construct and store

partition P- trees increases linearly with the number of attributes. This is expected since in this

method the database needs to be read for each partition and the number of partitions

increases, there being a fixed number of items per partition, with the number of attributes.

Conversely in method DTP, this time increase very slightly since the database needs to be

read only once.
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Figure 5.13: Time to construct P/PP-trees for increasing number of attributes
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Figure 5.14: Memory requirements for largest P-tree/ Partition (T1 0.15.050000)

Figure 5.14 shows the memory requirement, in megabytes, for the largest P-tree in

method DP (or NB), and for the largest vertical partition in methods TP and DTP. Memory

requirement for method DP increases very slightly with the number of attributes. For methods
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TP and DTP it decreases with increasing number of attributes, since for sparser databases

each vertical partition contains a smaller number of attributes resulting in smaller trees.

80

- 60 - ~-o
Q)
UI- 40Q)

E
i= 20

0
21 3 4 5

Num attributes ( x 500)

Figure 5.15: Time to find frequent sets for increasing number of attributes (0.01 % support)

Figure 5.15 compares the performance of the methods (times in seconds) when using

the stored trees to compute final support totals for frequent sets, for the support threshold of

0.01 %. As can be seen from the Figure, the time to build the T-tree in method DP varies

slightly with the number of attributes. This is a result of the variation in the number of frequent

sets found in each case. For higher numbers of attributes the tree could not be built because

of memory overflow. Also in method NB, trees could not be built because of the excessive

size of the candidate sets that are produced by lowering the support threshold. The time for

building trees in methods TP and DTP appears to increase linearly with the number of

attributes.
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Figure 5.16: Memory requirements for T-tree/ largest PT-tree (T10.15.D50000)
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Figure 5.16 shows memory requirements in Mb for the T-tree (in method DP) and the

largest PT-tree (in method TP or DTp). As can be seen, the memory requirements for

methods TP and DTP are identical and very low because of the much smaller size of the

partitioned T-tree. Conversely, the simple DP method has a rapidly increasing memory

requirement, in this case because of the greater size of the unpartitioned T-tree.
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Figure 5.17: Execution times for T1 0.15.050000 (0.01 % support)

Figure 5.17 shows the overall execution times, with a support threshold of 0.01 %, for

datasets of increasing number of attributes. The times illustrated include both the time to

construct the P-trees (DP or NB method) or PP-trees (TP and DTP; and to execute the

Apriori-TFP algorithm. As can be seen, the overall time to find frequent sets increases linearly

for methods TPand DTP, although the rate of increase for method DTPis slow.
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Figure 5.18: Memory requirements for T1 0.15.050000
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Figure 5.18 shows maximal memory requirements (in Mb) for the datasets with

increasing numbers of attributes. As can be seen, the memory requirement in method DP

increases linearly and the rate of increase is very high, but for methods TP and DTP it is

identical, very low, and nearly constant.

From these experiments for increasing number of attributes it is possible to conclude

that DTP scales better than other methods in both execution time and primary memory

requirement. For higher numbers of attributes, the performance of method DTP seems to be

much better than methods DPand NB.

5.5 Degree of Partitioning

It is also important to find out the optimal vertical partitioning for methods TP and DTP For

this, the experiment was carried out on a database of T1 0.15.NSOO.DSOOOO.For the vertical

partitioning the database was investigated with 1, 2, 3, 4, and S items/partition i.e. the

database was divided vertically into SOO,2S0, 166, 12S, and 100 partitions respectively. In the

case of 3 items/partition, the last item was added to the last partition but in other cases items

were distributed equally. For the horizontal segmentation of method DTP, it was also

assumed that the memory was big enough to handle 10,000 records at a time, so the

database was divided into S equal segments.

1 2 3 4 S

200 !- 1S0 ~"" --~o
Cl ___ 11:11'1III- 100Cl
E ~ ___ --I ---OTP;:: SO -It. i• • • • • I0

Items/Partition

Figure S.19: Time to construct PP-trees for increasing items/partition
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Figure 5.19 shows time in seconds to create and store PP-trees for increasing

items/partition of the database. As can be seen, the time to build these trees in method TP

decreases with the number of partitions, but the time in method DTP is nearly constant. This

is expected since in method TP the database needs to be read for each partition; whereas in

method DT?, although the number of PP-trees increases with the number of partitions, the

database needs to be read only once. Figure 5.20 shows the memory requirement for the

largest PP-tree in method TP, and partition in method DTP Memory requirements for the

methods increase linearly with items/partition. This is to be expected since more items leads

to a larger tree.
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Figure 5.20: Memory requirements for largest partition (T10.15.N500.D50000)
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Figure 5.21: Time to find frequent sets for increasing items/partition (0.01 % support)
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Figure 5.21 shows time in seconds to find frequent sets (build PT-trees) for the

support threshold of 0.01 %. It is interesting to see that the time to build trees, for these

methods, increases with items/partition. The reason for this is likely to be that for a smaller

number of items/partition it builds smaller PT-trees, thus reducing "tree-walk" time. This can

be seen in Figure 5.22 which shows the memory requirement for the largest PT-tree, which

increase with items/partition. Note that the memory requirement for methods TP and DTP are

identical since they build identical PT-trees.
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Figure 5.22: Memory requirements for largest partition (T10.15.N500.0S0000)
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Figure 5.23: Execution times for T10.IS.N500.0S0000 (0.01 % support)

The total time to find frequent sets, for the support threshold of 0.01 %, is shown in

Figure 5.23. From the Figure it can be seen that the overall time in method TP decreases
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significantly with the number of partitions although in method DTP it increase slightly with

items/partition. The latter, less obvious result, arises because the increased time taken to

construct a greater number of PP-trees is usually more than compensated for by the faster

processing of smaller PT-trees. Figure 5.24 shows maximal memory requirements, which

increase with items/partition for the dataset. As can be seen, the maximal memory

requirement is very similar for both methods TPand DTP
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Figure 5.24: Memory requirements for T10.15.N500.050000

It can be seen from the above experiments that the TP (tree partitioning) method

performs less well as the number of partitions increases. Conversely, the performance of

method DTP (data and tree partitioning) is best, in both execution time and primary memory

requirement, for 1 item per partition.

5.6 Density of Database

In this section the performance of the methods is examined with respect to databases of

increasing density i.e., for increasing values of T and I. The fixed parameters used for this

experiment were N=500 and 0=50,000 and data sets were generated with increasing density

T10.i5, T14.f1, T18.,9, and 722.111. For the horizontal segmentation used in the DP(or NB)

106



5 Experiments and Results

and DTP methods, the dataset was divided into 5 equal segments. For the TP and DTP

methods, the dataset was vertically divided into 50 equal partitions (10 items/partition).
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Figure 5.25: Time to construct P/PP-trees for increasing density
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Figure 5.26: Memory requirements for largest P-tree/ Partition (N500.D50000)

Figure 5.25 shows the time in seconds to construct and store P-trees, in method DP

(or N8). and PP-trees, in methods TP and DT?, for databases of increasing density. As can

be seen, the time to build these trees increases linearly with the density although the rate of

increase in method DP is very low. Figure 5.26 shows the memory requirement. in Mb, for the

largest P-tree in method DP, and the vertical partition in methods TP and DTP. Memory

requirements, In all methods. also increase linearly with density, as would be expected.
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Figure 5.27: Time to find frequent sets for increasing density (0.1% support)

Figure 5.27 then compares the performance of the methods (times in seconds) when

using the stored trees to compute final support totals for frequent sets, using a support

threshold of 0.1%. From the Figure it is clear that the time to build trees, in all methods,

increase exponentially with the density of the database, this is primarily because the number

of candidate sets increase exponentially with density. The rate of increase for methods TP

and DTP, however, is much less than for the DPand NBmethods.
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Figure 5.28: Memory requirements for T-tree/ largest PT-tree (N500.D50000)

Figure 5.28 shows memory requirements in Mb for the T-tree (in methods DP and

NB) and the largest PT-tree (in method TP or DTp). As can be seen, memory requirements

for the methods also increase exponentially with the density. The problem is particularly acute
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with the 'Negative Border' method. This works well with relatively sparse data, but at high

density the reduced support threshold and the inclusion of the negative border lead to very

large candidate sets.
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Figure 5.29: Execution times for N500.D50000 (0.1 % support)

The overall time to generate frequent sets, with a support threshold of 0.1%, for the

databases is shown in Figure 5.29. The Figure demonstrates that the overall time to find

frequent sets increases with the increasing density of databases. Interestingly, the

performance of method DP (as well as NB) is better then methods TP and DTP for a sparse

dataset at this support threshold, although for the denser datasets methods TP and DTP

outperformed methods DP and NB. For sparse datasets, the faster computation of the

frequent sets by the methods that use tree partitioning is offset by the longer time taken to

construct the partition P-trees. With more dense data, however, the latter factor becomes

decreasingly significant, and the advantage of the methods that use tree partitioning becomes

increasingly apparent. This is principally because of the much smaller candidate sets that are

involved. This becomes more apparent from the comparison of maximal memory

requirements, shown in Figure 5.30. This reflects the growing size of the candidate sets (and

hence the T-tree) as the data density increases, leading to larger memory requirements and

to longer times to find candidates.
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Figure 5.30: Memory requirements for N500.050000

From this experiment, it can be said that both methods TPand DTPoutperform other

methods in both execution time and primary memory requirement, as the density of the

dataset increases.

5.7 Performance Comparison

The final set of experiments compare the performance of the four methods for different

support thresholds. The experiments again relate to the T10.15.N500.050000 data set, for

support thresholds decreasing from 1.0 through to 0.01. In these experiments, the data was

again divided into 5 segments for the DP (or NB) and DTP methods. In addition, for the

vertical partitioning of methods TP and DTP, the database was also divided into 500 partitions

(1 item/partition).

For methods DP (or NB), TP and DTP, times to construct and store PIPP-trees are

1.97, 143.69. and 15.48 seconds and memory requirement for the largest P-tree/ PP-tree/

Partition are 0.408174,0.06315. and 0.088026 Mb respectively.
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Figure 5.31: Time to find frequent sets for decreasing support thresholds
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Figure 5.32: Memory requirements for largest T-tree/Partition (T10.15.N500.D50000)

Figure 5.31 shows time in seconds to compute final support totals for frequent sets

for varying support thresholds. As expected, the time to find these frequent sets, in all

methods, increases for decreasing support thresholds although the rate of increase is low for

methods TP and DTP. In method NB, the initial tree could not be built for the lowest support

thresholds because of memory overflow. This can be seen in Figure 5.32, which shows the

memory requirement for the largest T-tree or partition. This shows a significant increase for

methods, NB and DP, for decreasing support thresholds but is nearly constant for methods

TP and DTP. Note that the memory requirements for methods TP and DTP are identical and

negligible at lower thresholds.
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Figure 5.33: Performance of the methods for decreasing support thresholds

The total time to find frequent sets, for decreasing support thresholds, is shown in

Figure 5.33. Here the time taken to construct the P/PP.{rees is taken into account. As can be

seen, the overall time to find frequent sets in all methods increases for decreasing support

thresholds. Here again, as can be seen from Figure 5.33 (a), the performance of method TP

is worst because of the PP-trees building time, which is very high for 1 item/partition. For

higher support thresholds the NB method is fastest, this can clearly be seen in Figure 5.33

(b). As the support threshold is reduced, however, method DTP scales better and for

thresholds below 0.05 is the best method.
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Figure 5.34: Memory requirements for T10.15.NSOO.050000

Figure 5.34 shows the maximal memory requirement, which also increases for

decreasing support thresholds of the dataset. The Figure shows that the maximal memory

requirement is very similar for both TP and DTP methods. As can be seen, the overhead of

constructing the multiple PP-trees for the DTP method leads to relatively poor execution times

when the support threshold is high. Method NB performs better for higher support thresholds,

but declines rapidly for lower thresholds. Performance of method DPwas also failing for lower

thresholds. As the support threshold is reduced, the increasing cost of servicing a growing set

of candidates in the NB (as well as DP) methods lead to rapidly increasing memory

requirements and execution times. At the lower support thresholds, however, method DTP

strongly outperforms all other methods and is clearly the best in both execution time and

primary memory requirement for this data set.

S.8 Summary

In this chapter the results of a number of experiments, carried out to investigate the

performance of the methods for extracting association rules from databases where the data is

too large to be contained in main memory, has been described. For the experiments the

databases were reordered so that attributes appeared in decreasing frequency. This

reordering offers significant performance advantages to Apriori-based algorithms [Coenen
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and Leng. 2001]. and the aim here was to examine how best to apply the approach to non-

store-resident data. Two of the methods (DP and NB) examined are established methods,

modified slightly to make use of the P-tree and T-tree data structures, and two others are new

methods ( TP and DTP). using the tree structures to produce a vertical partitioning of the data.

The first method (Data Partitioning) examined is, essentially, a straightforward

adaptation of Apriori in this context, involving a simple partitioning of the data into segments.

It has been shown that the method scales well for increasing numbers of segments, but, like

the original Apriori, its performance drawback is the repeated passes of disk-resident data

that it involves. especially when low support thresholds andlor high-density data is involved.

The sampling method, NB (Negative Border), of [Toivonen, 1996] was developed specifically

to avoid the cost of multiple database passes when data is non-stare-resident. The results

confirm its effectiveness for relatively high support thresholds; but, at very low support

thresholds, as candidate sets become very large, the additional memory requirement of the

method becomes an increasing overhead, and in the extreme the method requires an

additional database pass to find all the frequent sets.

The new, TP and DTP, methods have been introduced with the aim of reducing the

memory requirement by a partitioning of the attribute set, and a corresponding construction of

trees so that each contain some subset of the candidates to be counted. The results show

these methods to be extremely effective in limiting the maximal primary memory requirement,

even at very low support thresholds, because they enable both the original data (as

represented by PP-trees) and the candidate set to be partitioned for memory management.

For the most computationally demanding cases, at low support thresholds, a high degree of

partitioning appears to work best, and in these cases these methods are significantly faster

than the others we have considered. With a very high degree of partitioning, the increased

cost of preprocessing the data to produce PP-trees may become a problem. This is evident

from the results for method TP. It has been shown, however, that this problem can be

overcome by applying a horizontal segmentation of the data together with the vertical
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partitioning (method DTp). In the experiments, this substantially reduced the preprocessing

time with little effect on performance in generating the frequent sets. At low support

thresholds, this method significantly outperforms all others in both time and space

requirements.
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Chapter 6

Distributed Association Rule Mining

6.1 Introduction

The work described so far has examined ways of partitioning data for applications involving a

single processor implementation. The tree partition (vertical partition) strategy has been

shown to be extremely effective in limiting the maximal primary memory requirement while

finding frequent sets. As a result of increasing the degree of partitioning, the cost of

preprocessing the data to produce partition P-trees increases for a single processor. A

solution to the problem has been demonstrated using a single processor and applying a

horizontal segmentation of the data together with the vertical partitioning. Although this

method has been shown to improve performance significantly, it is clear that a substantial

cost is still incurred as the size of the database to be processed is increased. The problem

may, however, be overcome using multiple processors by distributing the input data among

processors. Using multiple processors has another notable advantage: all frequent sets may

easily be found without costly data preprocessing for producing partition P-trees.

The TP (Tree Partitioning) technique can be applied to "distributed" and "parallel"

Association Rule Mining to distribute the input data among multiple processors. Using this

approach each partition can be mined in isolation while at the same time taking into account

the possibility of the existence of frequent itemsets distributed across two or more partitions.

The partitioning is facilitated by the novel T-tree data structure (no P-tree), and association

rule mining algorithm (Apriori-T), that allows for computationally effective distributed/parallel

ARM. The partitioning approach offers significant advantages with respect to computational

efficiency when compared to alternative mechanisms for (a) dividing the input data between
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processors and/or (b) achieving distributed/parallel ARM. Distributed ARM that makes use of

the TP technique was introduced in our paper published in [Coenen et et., 2003]. A

substantial portion of this chapter has been taken from the text of that paper.

The organisation of the chapter is as follows: in section 6.2 the Apriori-T algorithm

which uses only the T-tree data structure is described. In section 6.3 some technical aspects

of the architecture/network configuration that is assumed are considered, then three distinct

distributed/parallel algorithms are compared (sections 6.4, 6.5 and 6.6) that make use of the

T-tree structure, namely: (1) Data Distribution (DO), (2) Task Distribution (TKO) and Tree

Distribution (TO). Some performance comparisons are then presented in section 6.7, and a

summary in section 6.8.

6.2 The Apriori- T algorithm

The T-tree data structure described in Chapter 3: (a) readily lends itself to

distributionlparallelisation, and (b) facilitates vertical distribution of the input dataset.

Moreover, the cost of producing the partition P-trees, which is significant for single processor

system, is avoided. An algorithm Apriori-T has thus been developed, for parallel ARM,

combining the classic Apriori ARM algorithm [Agrawal and Srikant, 1994] with only the T-tree

data structure (Apriori-TFP described in the previous chapters uses both the T-tree and P-tree

structures). Apriori-T uses the original data set (not P-trees) to find ali frequent itemsets. As

each level is processed, candidates are added as a new level of the T-tree, their support is

counted, and those that do not reach the required support threshold pruned. When the

algorithm terminates, the T-tree contains only frequent itemsets. At each level, new candidate

itemsets of size K are generated from identified K-1 itemsets, using the downward closure

property of itemsets, which in turn may necessitate the examination of neighbouring branches

in the T-tree to determine if a particular K-1 subset is supported. We refer to this process as

X-checking. Note that X-checking adds a computational overhead; offset against the
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additional effort required to establish whether a candidate Kitemset, all of whose K-1 itemsets

may not necessarily be supported, is or is not a frequent itemset. In a distributed

implementation X-checking may have a greater cost.

The number of candidate nodes generated during the construction of a T-tree, and

consequently the computational effort required, is very much dependent on the distribution of

items within the input data. Best results are produced by reordering the dataset, according to

the support counts for the 1-itemserts, so that the most frequent 1-itemsets occur first

([Coenen and Leng, 2001]).

Unlike Apriori-TFP, Apriori-T uses only the T-tree data structure, and so does not

exploit the performance advantages offered by the P-tree structure. The use of only the T-tree

is focused here, because this allows the original data to be distributed freely between

processors, and there will be no additional communication costs involved in preprocessing the

data. In some contexts, of course, a distributed implementation of the P-tree structure would

offer advantages. However, making the simplifying assumption that the data will not be

processed into P-tree allows us to consider only the cost effective means of partitioning the T-

tree, and to compare three methods on this basis.

6.3 Architecture and network configuration

The DD, TKD and TD algorithms described here assume the availability of at least two

processors (preferably more), one Master and one or more Workers operating across a

network. Naturally, the approaches described here perform better as the number of available

processors is increased. Most of the experiments have used five processors, one master and

four workers. The significant distinction between the master and the worker processors is that

synchronisation, where required, is the responsibility of the master. Processors are identified

by a unique ID number: 0 for the Master, and 1 to N for the Workers. The algorithms also

assume that all processors have access, across a network, to a central data warehouse.
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The parallel/distributed ARM algorithms described here have all been implemented

using JavaSpaces [Arnold et al., 1999]. which in turn was inspired by Linda [Carreiro and

Galernter, 1989]. The philosophical base of both JavaSpaces and Linda is the existence of a

central store of objects (called a tuple space) which can be accessed using a small number of

operations (three in the case of JavaSpaces - write, read and take), this in turn greatly

simplifies the implementation of both parallel and distributed applications. The exchange of

information (messagin{/) using JavaSpaces takes the form of sending serialized objects (Le.

converted into a stream of bytes) to and from the space.

Although JavaSpaces have been used, the ARM algorithms/techniques described

here could equally have been implemented using many other appropriate platforms, including

agent platforms such as Java agents and the JADE message passing environment.

6.4 Data Distribution

The Data Distribution (DD) algorithm uses horizontal segmentation to divide the dataset into

segments each comprising an equal number of records. ARM in this case comprises the

generation of a number of T-trees, one for each segment, which must then be accumulated

on completion of each level. The approach is therefore similar to the "count distribution

algorithm" described in section 2.6.

The algorithm comprises the following steps:

1. Start all processes, Master plus a number of Workers.

2. Master determines horizontal segmentation according to the total number of available

processes and transmits this information, via the JavaSpace, to the Worker

processes.

3. Each process generates a level1 local T-tree for its allocated segment.
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4. Each process serialises and sends its level 1 local T-tree to each other process so

that ali processes can coliect their own and the other level 1 local T-trees into a single

global T-tree.

5. Each process then prunes its level 1 global T-tree according to the support threshold,

and generates and counts the next level local candidates for its allocated segment.

6. Steps 4 and 5 are repeated, for levels 2,3 ... until there are no more candidate sets to

be counted.

Note that the DD algorithm requires the transmission of a local (component) T-tree at each

level on behalf of each process. This is necessary because pruning of the current level and

construction of the next level requires knowledge of the global support counts. Messaging in

both parallel and distributed systems represents a significant computational overhead (in

some cases be more important than any other advantage gained). By serializing a single level

of nodes in a T-tree and wrapping the serialisation up as a single message this overhead is

significantly reduced, but remains a significant factor in the performance of this method.

6.5 Task Distribution

In the Task Distribution (TKO) algorithm each processor interacts with the entire data set (as

opposed to a horizontal segment or a vertical partition). However, the candidate sets

generated at each level (as the Apriori-T algorithm proceeds) are equally distributed among

the available processors so that each process determines the support counts only for its

allocated candidates. The approach is therefore similar to the "data distribution algorithm"

(described in chapter 2 section 2.6). As mentioned earlier TKD, unlike "data distribution

algorithm", has access to a central data warehouse.

The algorithm comprises the following steps:
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1. Start all processes, Master plus a number of Workers.

2. Each process has an identification number and is aware of the number of processes

(Workers plus Master) that are running.

3. Each process determines the set of 1-itemset candidates, and then (using knowledge

of the number of available processes) identifies its allocation of candidate items.

4. Processes then generate and count local "top-level" T-trees for their allocation,

serialise these trees and transmit them to each other process.

5. Each process accumulates its local top-level T-tree with those received from the other

processes and produces a global top-level T-tree.

6. Processes then generate the next level of candidate item sets, determine their own

allocation of candidates, and then each generates and counts a new level in their

copy of the global T-tree "so far" with respect to their allocation.

7. Each process serialises and transmits the newly counted T-tree level for its allocation

to the other processes; after which it will collect the serialisation received from the

other processors into its copy of the global T-tree "so far".

8. Steps 6 and 7 are repeated for levels 2,3, ... until there are no more candidate sets.

Again, as with the DD approach, TKD includes a significant amount of messaging at the end

of each level, though in this case the quantity of information exchange is less.

6.6 Tree Distribution

The Tree Distribution (TO) algorithm commences with distributing the input dataset over the

available number of processors using only a tree partition (vertical partition) strategy. Initially

the set of single items (columns) is split equally between the available processes so that an

allocationltemSet (a sequence of single items) is defined for each process in terms of a

startCo/Num and endCo/Num
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al/ocation/temSet = { n I startCo/Num < n :::::endCo/Num}

Each process will have its own al/ocation/temSet which is then used to determine the subset

of the input dataset to be considered by the process. Using its allocationltemSet each process

will proceed as follows:

1. Remove all records in the input dataset that do not intersect with the

allocationltemSet.

2. From the remaining records remove those items whose column number is greater

than endColNum. We cannot remove those items whose identifiers are less than

startColNum because these may represent the "leading sub-string" of frequent

itemset to be included in the sub T-tree counted by the process.

The input dataset distribution procedure, given an allocationltemSet, can be summarised as

follows:

V records E input data

i((record n a/locationltemSet == true)

record = { n I n e record ns; endCo/Num}

else delete record.

For example, given the data set {{A,C,F}, {B}, {A,C,E}, {B,D}, {A,E}, {A,B,C}, {D}, {A,B}, {C},

{A,B,D}}, and assuming three processes, the above partitioning process will result in three

dataset partitions:

Process 1 (a to b): {{A}, {B}, {A}, {B}, {A}, {A,B}, { }, {A,B}, { }, {A,B}}

Process 2 (c to d): {{A,C}, { }, {A,C}, {B,D}, { }, {A,B,C}, {D}, { }, {C}, {A,B,D}}

Process 3 (e to f): {{A,C,F}, { }, {A,C,E}, {}, {A,E}, { }, { }, { }, { }, { }}
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Figure 6.1 shows the resulting sub T-trees assuming all combinations represented by each

partition are supported.

Partition1
(a to b)

Partition2
(c to d)

Partition3
(e to n

Figure 6.1. Distributed T-tree representing the vertical partitioning presented in the example

Note that because the input dataset is ordered according to the frequency of 1-

itemsets the size of the individual partitioned sets does not necessarily increase as the

endeo/Num approaches N (the number of items in the input dataset); in the later partitions,

the lower frequency leads to more records being eliminated. Thus the overall result of the

vertical partitioning is that the overall size of the dataset (applicable to the process in

question) is reduced. Once partitioning is complete each partition can be mined, using the

Apriori-T algorithm, in isolation.

The TD algorithm can thus be summarised as follows:

1. Start all processes, Master plus a number of Workers.

2. Master determines the division of al/ocation/temSet according to the total number of

available processes and transmits this information to the Workers.

3. Each process then generates a T-tree for its allocated partition (a sub tree of the final

T-tree).
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4. On completion each process transmits its partition of the T-treeto all other processes

which are then merged into a single T-tree (so that each process has a copy of he

final T-treeready for the next stage in the ARM process - rule generation).

The process begins with a top-level "tree" comprising only those 1-itemsets included

in its allocationltemSet. The process will then generate the candidate 2-itemsets that belong

in its sub T-tree. These will comprise all the possible pairings between each element in the

allocationltemSet and the lexicographically preceding attributes of those elements (see

Figure 6.1). The support values for the candidate 2-itemsets are then determined and the sets

pruned to leave only frequent 2-itemsets. Candidate sets for the third level are then

generated. Again, no items from succeeding allocationltemSet are considered, but, the

possible candidates will, in general, have subsets which are contained in preceding

allocationltemSet and which, therefore, are being counted by some other process. Checking

to find whether subsets in a different partition are frequent would involve a significant

message-passing overhead, so in this case, this X-checking is not considered. Instead, the

process will generate its candidates assuming, where necessary, that any subsets outside its

local T-tree are frequent.

6.7 Evaluation

The evaluation presented here uses five processes and the data set T20.110.N500.D500K

(generated using the IBM Quest generator used in [Agrawal and Srikant, 1994]), although

similar results have been obtained using other data sets. In all cases the dataset has been

preprocessed so that it is in descending order. The experiments were run in a network of 1.2

GHz Intel Celeron CPUs each with 512 Mb of RAM and running under Red Hat Linux 7.3.
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6.7.1 Number of T-tree Messages

The most significant overhead of any distributed/parallel ARM algorithm is the number of

messages sent and received between processes. For DD (data distribution) and TKD (task

distribution) processes are required to exchange information as each level of the T-tree is

constructed; the number of levels will equal the size of the largest supported set. For TD (tree

distribution) the number of messages sent is independent of the number of levels in the T-

tree; communication takes place only at the end of the tree construction. TD therefore has a

clear advantage in terms of the number of messages sent.

6.7.2 Amount of Data Sent and Received

Figure 6.2 shows the average amount of data sent and received by each process for each of

the Apriori- T algorithms under consideration assuming five processes. Note that:

• With respect to DD, for each generated T-tree level, un-pruned levels of the T-tree

are passed from one process to another (and then pruned).

• In the case of TKD pruned sections of levels in the T-tree are passed from one

process to another.

• TD passes entire pruned sub T-trees (pruned T-tree branches, not entire levels).

Consequently the amount of data passed between processes when using TD is

significantly less than that associated with the other approaches.

• In the case of DD adding more processes probably increases the amount of

communication, because all processes send data to all others. In the case of TKO

and TO, however, each process sends only the set of candidates it is counting or has

counted, which becomes proportionately smaller as the number of processes is

increased; Le. for these methods the messaging overhead remains approximately

constant.
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Figure 6.2.Average Total size (Kbytes) of messages sent and read/taken per process

6.7.3 Number of Updates

The number of support value updates/incrementations per process is a good indication of the

amount of work done by each process. Figure 6.3 gives the number of updates for each of the

algorithms under consideration for a range of support thresholds and using five processes.

Note that:

• Figure 6.3 includes, for comparison, values for the serial form of the Apriori-T

algorithm without X-checking.

• DD, TKD and TD all have the same average number of updates (as would be

expected).
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Figure 6.3. Average number of updates ( x 10A6)to generate a final T-tree per process
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6.7.4 Execution Time

The overall execution time for each algorithm is arguably the most significant performance

parameter. A set of times (seconds) is presented is Figure 6.4. The Figure includes execution

times using the Apriori-T serial algorithm (without X-checking).
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Figure 6.4. Average execution time (seconds) per process

In terms of execution time the task distribution algorithms, TKD, and (especially) the

tree distribution algorithm TD, perform much better than the data distribution algorithm (DD)

because of the messaging overhead. Note also that, for DD, as further processes are added,

the increasing overhead of messaging more than out-weighs any gain from using additional

processes, so that distribution/parallelisation becomes counter productive. TKD shows some

gain from the addition of further processes, however TD gives the best results and the best

scaling.

6.8 Summary

Various approaches of distributed/parallel ARM using the T-tree data structure and the

associated Apriori-T algorithm have been described. The tree distribution approach has been

evaluated against established data and task distribution approaches. The principal

advantages offered by TD are: (1) minimal amount of message passing compared to DD and

127



6 Distributed Association Rule Mining

TKD, (2) minimal message size, especially with respect to DD but also when compared to

TKD, and (3) enhanced efficiency as the number of processes increases, unlike DD.

The experimental evaluation of tree distribution clearly demonstrates that the

approach performs much better than those methods that use data and task distributed

approaches. This is largely due to the vertical partition technique of the T-tree data structure.
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Chapter 7

Overall Conclusion

7.1 Introduction

Detailed conclusions have been presented at the end of individual chapters. This chapter is

presented to summarise the overall conclusions drawn from the research carried out for this

thesis.

The problems of ARM and the goal of the research have been described in Chapter

1. The greatest challenge of ARM is posed by data that is too large to be contained in primary

memory, especially when high data density and/or a low support threshold give rise to very

large numbers of candidates that must be counted. The number of the candidate sets for

which support counts are required may make it impossible for the algorithm to proceed

entirely within primary memory. In this thesis, Association Rule Mining Algorithms for very

large datasets which cannot be contained in main memory (thus requiring some strategy for

partitioning the data) has been considered.

7.2 P-tree and T-tree data structures

For effective partitioning of a large and dense database, it is important to use suitable data

structures. Two data structures, P-tree and T-tree, were used for the experiments. Detailed

descriptions of these structures have been given in Chapter 3.

The major advantages offered by the P-tree structure in respect to a large and dense

database are: (1) it allows partial counts of the support for individual nodes within the tree to

be accumulated effectively as the tree ;5 constructed, (2) it merges duplicated records and
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records with leading sub-strings, thus reducing the storage and processing requirements for

these, (3) it uses minimum and effective referencing which is thus capable of dealing with

non-store resident data, and most importantly, (4) it can easily be partitioned into subtrees

and stored into secondary storage as a composite structure.

The T-tree offers great advantages in respect to a large and dense database: (1) it

contains all frequent sets with their complete support-counts, (2) it is a very versatile data

structure that can easily be used in conjunction with many established ARM methods, (3) it

also uses effective referencing which can readily be adaptable for non store-residence data,

and most importantly, (4) branches of it can easily be partitioned into subtrees and processed

independently.

Thus, the P-tree and T-tree structures can easily form the basis for an effective

partitioning of the data.

7.3 Strategies for Partitioning Data

In the research, various partitioning strategies have been examined to limit the total primary

memory requirement, including that required both for the source data and for the candidate

sets, for carrying out the counting of the required support totals.

Partitioning of the source data has been examined in the both DP (Data Partitioning)

and NB (Negative Border) methods. In these methods, the database was horizontally divided

into segments of equal number of records and each segment was then considered in isolation

to create a P-tree for each. The entire database was read only once while creating P-trees.

These trees were stored into backing store to reduce the primary memory requirement for a

single processor system. Using the disk-resident data (as represented by P-trees), these

methods finally create a single T-tree.

A range of experiments have been carried out to investigate the performance of the

methods for finding frequent sets in cases where the data is too large to be contained in main
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memory. The DP method examined is an adaptation of Apriori [Agrawal and Srikant, 1994),

involving horizontal partitioning of the data into segments. It has been shown that the method

scales well for increasing number of segments, but, like the original Apriori, its performance

drawback is the repeated passes of disk-resident data, especially when low support

thresholds and/or high-density data is involved. The sampling method of [Toivonen, 1996], NB

in this thesis, was developed specifically to avoid the cost of multiple database passes when

data is non-stare-resident. The results confirm its effectiveness for relatively high support

thresholds, but, at very low support thresholds, as candidate sets become very large, the

additional memory requirement of the negative border method becomes an increasing

overhead.

The tree partitioning, a form of vertical partitioning of the data, has been examined in

the TP (Tree Partitioning) method. The TP method builds partitioned P-trees that can be

processed independently to build T-trees. The tree partitioning has been introduced to reduce

the memory requirement by a partitioning of the attribute set, and a corresponding

construction of trees such that each contains some subset of the candidates to be counted. It

has been shown that this method is extremely effective in limiting the maximal primary

memory requirement, even at very low support thresholds, because it enables both the

original data (as represented by PP-trees) and the candidate set to be partitioned for memory

management. With a very high degree of partitioning, the increased cost of preprocessing the

data to produce PP-trees becomes a problem since repeated passes of the database are

required for single processor implementation.

It has been shown, however, that this problem can be overcome by applying a

horizontal segmentation of the data together with the vertical partitioning. The DTP(Data and

Tree Partitioning) method constructs all the PP-{rees in a single database pass, during which

partial supports are also counted. It has been shown that this substantially reduced the

preprocessing time with little effect on performance in generating the frequent sets. It has also

been shown that this method is extremely effective in limiting the maximal primary memory
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requirement. For the most computationally demanding cases, at low support thresholds, a

high degree of partitioning appears to work best, and in these cases this method is

significantly faster than the other considered methods.

7.4 Distributed ARM

The work described has concentrated on the examination of ways of partitioning data for

applications involving a single processor implementation. Even in this type of implementation,

the tree partition strategy has become extremely effective in limiting the maximal primary

memory requirement while finding frequent sets. It has been shown that the tree partition is

also effective in applications involving multiple processors where the input data is distributed

among processors.

The TD (tree distribution) approach has been evaluated against established DD (data

distribution) and TKD (task distribution) approaches. In the DD method, the dataset is

horizontally divided into segments each comprising an equal number of records and each

process then generates a T-tree using its allocated segment (exchanging information on-route

as necessary). The major drawback of the DD method is that it requires the transmission of a

local T-tree at each level on behalf of each process. In the TKD method, each processor

interacts with the entire data set. However, the candidate sets generated at each level are

equally distributed among the available processors so that each process determines the

support counts only for its allocated candidates. Again, as with the DD approach, TKD

includes a significant amount of messaging at the end of each level. In the Tree Distribution

(TO) method, the input dataset is divided using only the tree partition (vertical partition)

strategy and then distributed over the available number of processes. Each process then

generates a T-tree for its allocated partition. The exchanging information is therefore not

required at the end of each level. On completion each process transmits its partition of the T-

tree to all other processes which are then merged into a single T-tree.

132



7 Overall Conclusion

It has been shown that the tree distribution approach performs much better than

those methods that use data and task distribution approaches.

7.5 Summary

This thesis has examined ways of partitioning data for Association Rule Mining. The aim has

been to identify methods that will enable efficient counting of frequent sets in cases where the

data is too large to be contained in primary memory, and also where the density of the data

means that the number of candidates to be considered becomes very large. The starting point

was a method which makes use of an initial preprocessing of the data into a tree structure

(the P-tree) which incorporates a partial counting of support totals and offer significant

performance advantages. Here, ways of applying the approach in cases that require the data

to be partitioned for primary memory use have been investigated. Methods have been

described, in particular, that involve a partitioning of the tree structures to enable separate

subtrees to be processed independently. The advantage of this approach is that it allows both

the original data to be partitioned into more manageable subsets, and also partitions the

candidate sets to be counted. The latter results in both lower memory requirements and also

faster counting in a single processor application.

The experimental results reported in the thesis show that the DTP (Data and Tree

Partitioning) method described is extremely effective in limiting the maximal memory

requirements of the algorithm, while its execution time scales only slowly and linearly with

increasing data dimensions. Its overall performance, both in execution time and especially in

memory requirements, is significantly better than that obtained from either simple data

segmentation or a method that aims to find frequent sets from a sample of the data. The

advantage increases with increasing density of data and with reduced thresholds of support -

Le. for the cases that are in general most challenging for association rule mining.

Furthermore, a relatively high proportion of the time required by the method is taken up in the
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7 Overall Conclusion

preprocessing stage during which the P-trees are constructed. Because this stage is

independent of the later stages, in many single processor applications it could be accepted as

a one-off data preparation cost. In this case, the gain over other methods becomes even

more marked.

The evaluations of different distribution approaches demonstrate that the approach

that distributes the T-tree (TO) performs much better than the approach that distributes data

(DO) or tasks (TOK). This is because of the high message-passing overheads associated with

the latter approaches. In the experiments, the best results were obtained using the TO

method (i.e. vertical partitioning), which exploits the structure of the T-tree most effectively.

The advantages offered by the TO approach result from the limited number of messages sent

and the relatively small content of the messages. These advantages result, in turn, entirely

from the vertical partitioning of the T-tree data structure described.

For future work, there are a few avenues that can be pursued:

• A variety of variables were required to be set for various experiments of this thesis.

Future work can investigate finding the optimal degree of segmentation and

partitioning in different cases.

• Performance comparisons of the methods have been shown using synthetic datasets.

Performance of different methods can also be compared using real very large and

dense datasets.

• It would be interesting to compare OP (Data Partitioning) method with Partition

[Savasere et et, 1995] algorithm using secondary storage for storing frequent sets of

each partition.

• The distribution approaches evaluated in this thesis have been implemented without

using the P-tree data structure. Further research can be carried out implementing

parallel methods using the P-tree with T-tree, in order to investigate the most effective

strategies for distributed implementation.
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7 Overall Conclusion

• Comparisons of methods using P-tree and T-tree with those using T-tree only (serial

and parallel) can be performed.

• Furthermore, the distribution approaches are evaluated only for a fixed number of

processors. Experiments can be carried out to investigate how things scale-up for

increasing number of processors.
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Appendix A

The following tables detail the results for the experiments described in the Chapter 5.

A,1 Results for increasing Size of Databases

Number of records ( x 50,000)

1 2 3 4 5

DP/NB 2.02 4.35 6.56 8.89 10.95

TP 151.77 302.85 457.95 613.18 770.4

DTP 13.65 28.05 41.26 54.44 67.46

Table A.1: Time (seconds) to construct P/PP-trees for increasing size of databases

Number of records ( x 50,000)

1 2 3 4 5

DP/NB 1.85666 1.85712 1.85695 1.85703 1.85714

TP 0.06315 0.11657 0.16871 0.22073 0.27107

DTP 0.06315 0.12749 0.19276 0.25681 0.32078

Table A.2: Memory requirements (Mb) for largest P-treel Partition (T10.15.N500)
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Number of records ( x 50,000)

1 2 3 4 5

DP 56.98 87.12 120.14 153.43 182.41

NB 88.61 129.2 166.09 202.33 230.98

TP 14.98 22.14 29.07 36.62 43.46

DTP 15.03 22.35 30.16 38.56 46.38

Table A.3: Time (seconds) to find frequent sets for increasing size of databases

(0.01% support)

Number of records ( x 50,000)

1 2 3 4 5

DP 126.965 117.143 115.029 114.606 114.151

NB 239.871 239.828 239.601 239.653 239.578

TP 1.31474 1.3105 1.30422 1.27952 1.27618

DTP 1.31474 1.3105 1.30422 1.27952 1.27618

Table A.4: Memory requirements (Mb) for T-tree/largest PT-tree (T10.15.N500)
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Number of records ( x 50,000)

1 2 3 4 5

DP 59 91.47 126.7 162.32 193.36

NB 90.63 133.55 172.65 211.22 241.93

TP 166.75 324.99 487.02 649.8 813.86

DTP 28.68 50.4 71.42 93 113.84

Table A5: Execution times (seconds) for T10.15.N500 (0.01 % support)

Number of records ( x 50,000)

1 2 3 4 5

DP 128.822 119 116.886 116.463 116.008

NB 241.728 241.685 241.458 241.51 241.435

TP 1.37789 1.42707 1.47293 1.50025 1.54725

DTP 1.37789 1.43799 1.49698 1.53633 1.59696

Table A6: Memory requirements (Mb) forT10.15.N500
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A.2 Results for increasing Number of Segments

Number of horizontal segments

1 2 5 10 50

OP/NB 2.02 1.99 1.91 1.7 1.61

OTP 8.39 7.66 7.05 6.8 6.5

Table A.7: Time (seconds) to construct P/PP-trees for increasing number of segments

Number of horizontal segments

1 2 5 10 50

OP/NB 1.85666 0.96884 0.40817 0.21013 0.04673

OTP 1.21409 0.63561 0.26907 0.14139 0.03271

Table A.8: Memory requirements (Mb) of largest P-treel Partition (T10.15.N500.050000)

Number of horizontal segments

1 2 5 10 50

OP 56.98 58.71 61.33 62.55 65.7

NB 88.61 overflow overflow overflow overflow

OTP 31.25 32.12 33.34 33.99 35.2

Table A.9: Time (seconds) to find frequent sets for increasing number of segments

(0.01 % support)
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Number of horizontal segments

1 2 5 10 50

DP 126.965 126.965 126.965 126.965 126.96

NB 239.871 overflow overflow overflow overflow

DTP 23.4591 23.4591 23.4591 23.4591 23.4591

Table A.10: Memory requirements (Mb) for T-tree/largest PT-tree (T10.15.N500.D50000)

Number of horizontal segments

1 2 5 10 50

DP 59 60.7 63.24 64.25 67.31

NB 90.63 overflow overflow overflow overflow

DTP 39.64 39.78 40.39 40.79 41.7

Table A.11: Effect on time (seconds) for increasing segmentation (0.01 % support)

Number of horizontal segments

1 2 5 10 50

DP 128.822 127.934 127.373 127.175 127.011

NB 241.728 overflow overflow overflow overflow

DTP 24.6732 24.0947 23.7282 23.6005 23.4918

Table A.12: Effect on memory (Mb) for increasing number of segments
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A,3 Results for increasing Number of Attributes

Number of attributes ( x 500)

1 2 3 4 5

DP/NB 1.85 1.93 1.72 1.82 1.88

TP 24.73 40.33 55.15 69.94 85.25

DTP 10.15 11 11.65 12.13 13.51

Table A.13: Time (seconds) to construct P/PP-trees for increasing number of attributes

Number of attributes ( x 500)

1 2 3 4 5

DP/NB 0.40817 0.41311 0.41902 0.42149 0.42521

TP 0.45856 0.27934 0.20347 0.16151 0.14419

DTP 0.53255 0.34443 0.26976 0.24164 0.23413

Table A.14: Memory requirements (Mb) for largest P-treel Partition (T10.15.D50000)

Number of attributes ( x 500)

1 2 3 4 5

DP 61.59 58.37 66.87 overflow overflow

TP 26.09 29.21 35.62 40.93 44.31

DTP 27.79 30.29 36.11 41.28 45.09

Table A.15: Time (seconds) to find frequent sets for increasing number of attributes

(0.01 % support)
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Number of attributes ( x 500)

1 2 3 4 5

OP 126.965 238.729 366.677 overflow overflow

TP 6.03513 6.17467 7.58429 13.7864 8.32238

OTP 6.03513 6.17467 7.58429 13.7864 8.32238

Table A.16: Memory requirements (Mb) for T-tree/ largest PT-tree (T10.15.050000)

Number of attributes ( x 500)

1 2 3 4 5

OP 63.44 60.3 68.59 overflow overflow

TP 50.82 69.54 90.77 110.87 129.56

OTP 37.94 41.29 47.76 53.41 58.6

Table A.17: Execution times (seconds) for T10.15.050000 (0.01 % support)

Number of attributes ( x 500)

1 2 3 4 5

OP 127.373 239.142 367.096 overflow overflow

TP 6.49369 6.45401 7.78776 13.9479 8.46657

OTP 6.56768 6.5191 7.85405 14.028 8.55651

Table A.18: Memory requirements (Mb) for T10.l5.050000
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A.4 Results for increasing Items/Partition

Items/Partition

1 2 3 4 5

TP 143.69 77.28 55.51 44.2 37.87

DTP 15.48 13.39 12.2 12.16 11.6

Table A.19: Time (seconds) to construct PP-trees for increasing itemslpartition

Items/Partition

1 2 3 4 5

TP 0.06315 0.117376 0.167728 0.218036 0.263818

DTP 0.088026 0.14973 0.208206 0.262288 0.31481

Table A.20: Memory requirements (Mb) for largest partition (T10.15.N500.D50000)

Items/Partition

1 2 3 4 5

TP 15.14 18.99 21.2 22.41 23.54

DTP 15.8 19.83 21.86 23.36 24.65

Table A.21: Time (seconds) to find frequent sets for increasing itemslpartition (0.01 % support)
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Items/Partition

1 2 3 4 5

TP 1.31474 1.61194 2.11278 2.S0216 3.26811

OTP 1.31474 1.61194 2.11278 2.S0216 3.26811

Table A.22: Memory requirements (Mb) for largest partition (T10.IS.NSOO.OSOOOO)

Items/Partition

1 2 3 4 5

TP 1S8.83 96.27 76.71 66.61 61.41

OTP 31.28 33.22 34.06 3S.S2 36.2S

Table A.23: Execution times (seconds) for T10.IS.NSOO.OSOOOO(0.01 % support)

Items/Partition

1 2 3 4 5

TP 1.37789 1.729316 2.280S08 2.720196 3.S31928

OTP 1.402766 1.76167 2.320986 2.764448 3.S8292

Table A.24: Memory requirements (Mb) for T10.IS.NSOO.050000
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A.5 Results for increasing Density of Database

Density of database

T10.lS T14.17 T18./9 T22.111

OP/NB 1.85 2.23 2.38 2.65

TP 24.73 33.42 42.87 51.73

OTP 10.15 16.86 23.1 28.72

Table A.25: Time (seconds) to construct P/PP-trees for increasing density

Density of database

T10.lS T14.17 T18.19 T22.111

OP/NB 0.40817 0.48732 0.56254 0.6367

TP 0.45856 0.69009 0.90295 1.14112

OTP 0.53255 0.76749 0.9969 1.23048

Table A.26: Memory requirements (Mb) for largest P-treel Partition (N500.050000)

Density of database

T10.lS T14.17 T18.19 T22.111

OP 8.73 20.71 61.75 241.32

NB 10.87 63.36 241.99 overflow

TP 4.16 8.55 24.28 130.9

OTP 4.55 8.95 25.85 139.3

Table A.27: Time (seconds) to find frequent sets for increasing density (0.1% support)
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Density of database

T10.l5 T14.17 T18.19 T22.111

DP 1.72479 5.13111 18.0669 96.7207

NB 19.0834 98.1602 357.289 overflow

TP 0.11697 0.28505 1.15173 10.6531

DTP 0.11697 0.28505 1.15173 10.6531

Table A28: Memory requirements (Mb) for T-tree/largest PT-tree (N500.D50000)

Density of database

T10.l5 T14.17 T18.19 T22.111

DP 10.58 22.94 64.13 243.97

NB 12.72 65.59 244.37 overflow

TP 28.89 41.97 67.15 182.63

DTP 14.7 25.81 48.95 168.02

Table A.29: Execution times (seconds) for N500.D50000 (0.1 % support)

Density of database

T10.l5 T14.17 T18.19 T22.111

DP 2.13296 7.36111 20.4469 99.3707

NB 19.4916 100.39 359.669 overflow

TP 0.57553 0.97514 2.05468 11.7942

DTP 0.64952 1.05254 2.14863 11.8836

Table A30: Memory requirements (Mb) for N500.D50000
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A.6 Results for decreasing Support Thresholds

Support threshold (%)

1.0 0.5 o. 1 0.05 0.01

DP 1.91 2.04 8.62 18.19 54.03

NB 0.71 0.76 10.79 25.25

TP 4.25 4.17 4.61 5.77 15.14

DTP 5.05 4.85 5.23 6.59 15.8

Table A.31: Time (seconds) to find frequent sets for decreasing support thresholds

Support threshold (%)

1.0 0.5 o. 1 0.05 0.01

DP 0.004104 0.032704 1.72479 16.5055 126.965

NB 0.019392 0.218112 19.0834 62.1182 overflow

TP 0.004104 0.005064 0.088144 0.601584 1.31474

DTP 0.004104 0.005064 0.088144 0.601584 1.31474

Table A.32: Memory requirements (Mb) for largest T-tree/Partition (T10.15.N500.D50000)
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Support threshold (%)

1.0 0.5 o. 1 0.05 0.01

DP 3.88 4.01 10.59 20.16 56

NB 2.68 2.73 12.76 27.22 overflow

TP 147.94 147.86 148.3 149.46 158.83

DTP 20.53 20.33 20.71 22.07 31.28

Table A.33: Performance of the methods (seconds) for decreasing support thresholds

Support threshold (%)

1.0 0.5 O.1 0.05 0.01

DP 0.412278 0.440878 2.132964 16.91367 127.3732

NB 0.427566 0.626286 19.49157 62.52637 overflow

TP 0.067254 0.068214 0.151294 0.664734 1.37789

DTP 0.09213 0.09309 0.17617 0.68961 1.402766

Table A.34: Memory requirements (Mb) for T10.15.N500.D50000
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The following tables detail the results for the experiments described in the Chapter 6.

B.1 Amount of Data Sent and Received

Support threshold (%)

2.0 1.5 1.0

00 3472 4621 8855

TKO 695 924 1771

TO 11 21 60

Table B.1: Average Total size (Kbytes) of messages sent and read/taken per process

B.2 Number of Updates

Support threshold (%)

2.0 1.5 1.0

Apriori-T 99 111 148

IrO/OOffKO 20 22 30

Table B.2: Average number of updates (x 10"6) to generate a final T-tree per process
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B.3 Execution Time

Support threshold (%)

2.0 1.5 1.0

Apriori-T 15 19 31

DD 13 16 25

TKO 9 9 16

TD 3 4 10

Table B.3: Average execution time (seconds) per process

AppendixB
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IBM Quest Synthetic Data Generation Code

IBM Quest synthetic Data Generation Code can be used to find frequent itemsets with/without

taxonomies. It can also be used to obtain sequential patterns. There are two possible output

formats for the data file: 1) Binary <CustlD, TranslD, Numltems, List-Of-Items.> and 2) Ascii

< CustJD, TranslD, and Item>.

Functionality: Finding Frequent Itemsets as well as sequential pattern

Vendor: IBM Almaden Research Center

Cost: Free to download

Language: C++

Platform: UNIX

URL: http://www.almaden.ibm.com/software/guestlResources/index.shtml

Contact Info: srikant@almaden.ibm.com
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