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Abstract

The Control of Helicopters with
Underslung External Loads

By

K. K. T. Thanapalan

This thesis addresses some of the issues associated with the dynamics of helicopters with

an external underslung load, and development of robust control strategies to ensure the

positioning of the underslung load, whilst the helicopter maintains the hover condition.

The helicopter dynamics are studied with reference to a general dynamical model of a

generic helicopter which is then adapted to model a UH-60 helicopter. Validation of the

model has been performed by comparison with flight test data for a UH-60 helicopter for

small perturbations about the hover condition. The dynamics of that helicopter with an

external underslung load are investigated by developing an underslung load model as a

driven pendulum with the helicopter motion as the input. First, the influence of the motion

of the helicopter on the dynamics of the underslung load is analysed, then the influence of

the load on the dynamics of the helicopter is investigated.

An overview of flight control design techniques that have been applied to helicopter control

has been undertaken. An experimental study has been conducted to demonstrate the

application of fuzzy logic control as an example of an intelligent flight control method. For

the experimental study a twin rotor MIMO system has been used, which is an experimental

system with complex nonlinearities, similar to a helicopter.

For the control of a helicopter with an underslung load, a nonlinear stabilizing feedback

control for uncertain dynamical systems has been applied to a helicopter and its load

treated as a composite system. In general, two main approaches are often adopted for the

control of an uncertain dynamical system. If the uncertainty in the system model is

assumed to have statistical characterization and the desired behaviour of the system is

described in a statistical sense, a stochastic approach is feasible. Otherwise, if structural

properties and bounds relating to the uncertainties are known, then a deterministic approach

is appropriate. Considering the control of a helicopter and its load the dynamic models of

both helicopter and load have some terms that are uncertain. The uncertainties may arise
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from the unknown parameters in the dynamical models or from inadequate modelling of

aspects such as the aerodynamics of the load. Therefore, for a realistic model, uncertainties

must be taken into account during the controller design. There are always some restrictions

on the control input limits, so- called bounds on the control inputs levels. Hence the

deterministic control approach has been chosen. Using the deterministic control law design

method, a nonlinear state stabilizing feedback control law has been designed.
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Chapter 1

Introduction

Helicopters have the ability to carry large and bulky loads externally on a sling. This

capability is important in many applications, ranging from lifting heavy load to saving

life. Importantly, when lives are under risk and rapid rescue operations are needed this

operation is vital. The stability of the helicopter will be disturbed by the underslung

load, which slows or even prevents an accurate pick up or placement of the loads. The

goal of this work is to study the dynamics of helicopters with an external underslung

load, in particular, at a hover condition and to develop a robust control strategy to

ensure the positioning of the load at the hover condition.

1.1 General description of the problem

Helicopter operators over the world gain benefits such as large freight transportation,

fire fighting and life saving missions by carrying payloads externally, underslung

beneath the helicopter. Furthermore the load weight limit is often greater than the load

carried internally when it is carried externally on a sling. The bulky loads can be

carried and the process of picking up and droping off is relatively straightforward.

Once the load is on the ground, these benefits are offset by the piloting difficulties,

the increased workload, and the attendant reduction in flight safety arising from

carrying underslung loads. Piloting problems arise from the adverse coupling between

the helicopter and the load. The nature of this problem can be easily appreciated by

trying to place a weight hanging from a piece of string accurately on the squares of a

chequer-board. As the pivot point is accelerated away from rest, the weight begins to

swing, the precision is degraded and the control becomes more difficult. Similarly, if

the pilot of a helicopter manoeuvres the helicopter too quickly while trying to place an

underslung load precisely on a spot, the load will start to swing. Moreover, the

swinging load can couple with the helicopter motion and pilot control so that there is

the potential for instability. This is all exacerbated by the fact that the pilot cannot see

the load under the helicopter and often has to rely on a second crew member to call

out positioning instructions. If weather conditions are poor and/or visibility degraded,
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the task difficulty is further increased. The way in which the operators typically cope

with these piloting problems is to restrict operations to be taken under good

conditions.

A second problem arises when a pilot tries to manoeuvre the helicopter when flying in

forward flight. Generally high speed is not allowed because of the potential hazards

associated with the load flying. At mid speeds the pilot still needs to manoeuvre the

aircraft to climb/descent and tum. Here again, the pilot needs to manoeuvre the

helicopter gently to avoid exciting the oscillatory aircraft/load mode.

The dynamics of a helicopter with an external suspended load received considerable

attention since the late 70's and early 90's. This interest has been renewed recently,

prompted by the re-evaluation and extension of the ADS-33 [Anonymous, 1996]

helicopter handling qualities specification to compact helicopters, and in the

expectation of new cargo helicopter procurements [Fusato et ai, 1999]. Gubbles

[Gubbles, 2001] investigated the effect of an external slung load on helicopter

dynamics and handling qualities. The objective of that work was to compare

helicopter dynamics and handling qualities for two cases. The first case involved an

externally carried load on a single sling. The second case consisted of the same

aircraft mass, with the load carried internally. Through this investigation the dynamic

problems of carrying an external load on a sling were addressed.

The challenges of control of dynamics of a helicopter with an underslung external

load are traditionally studied by means of simulations. The essence of flight

simulation is in creating an illusion of reality for the pilot to experience. The quality

or fidelity of this illusion will ultimately determine the boundary for what can and

cannot be accomplished in terms of read-across to the real world. To demonstrate this

fact, NASA has conducted both simulation and flight trials using UH-60 helicopter

with an instrumented 8-by-6-by-6-ft cargo container [Cicolani et ai, 2001, Sahai, et ai,

1999, Tyson, et at, 1999, McCoy, 1998].

A variety of literature has been published concerning various aspects of underslung

load operations. Broader details of the subject can be found in various reports, which

summarise the problems experienced in helicopters. These reports also suggest some
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technical solutions and analysis methods for some of the problems [e.g. Shaughnessy,

et a11979, Sheldon, 1977, Watkins, et aI1974].

Previous research considered mainly single point suspensions, where the load is

connected to the helicopter at only one point. The single point suspension restrains the

motion of the load to pendulous oscillations in the longitudinal (pitch) plane and in

the lateral (roll) plane. But it gives no restoring moment in the yaw plane, and the load

motion in that plane is governed only by the aerodynamic forces and moments that act

on the load [Fusato et al. 1999].

Many of the dynamic models for a single-point suspension approximate the load as a

point mass, sometime with aerodynamics drag force acting on it. The helicopter is

usually treated as a rigid body with various degrees of complexity [Dukes, 1973,

Gupta, et al 1976]. In many cases, the model is simplified by de-coupling the

longitudinal modes from the lateral modes, especially near hover [e.g. Dukes, 1973].

Early research shows that approximating the helicopter as a rigid body and neglecting

rotor dynamics is accurate enough for the slung load problem analysis [Nagabhushan,

1977].

The emphasis in most of the recent research has shifted to the study of multiple point

suspensions see for example, [Cicolani, et al 1995, Cicolani, et al 1990, Prabhakar

1978]. The shift is motivated by the need to stabilise the yaw motion of the load. In

multiple point suspensions the load is attached to the helicopter at two or more points

thereby providing some restraint in yaw.

The dynamic models for multiple point suspensions are usually more rigorous than

models for a single point suspension. They usually account for six degrees of freedom

of the helicopter motion, and account for rigid body motion of the load. The

suspension cables are usually assumed extensible and modelled as springs. However

the multiple point suspensions do not necessarily solve the problems of yaw

instabilities. First, they give only static restoring moment, and cannot eliminate

problems due to dynamic yaw instabilities. Second and even more important, their

usage is limited since these suspensions may create large variations in the longitudinal

centre of gravity of the helicopter, which most of the helicopters cannot handle.
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Hence most helicopters have only a single rotor, and must continue to use single point

suspensions. So it is necessary to continue to study the yaw instabilities and single

point suspensions, which have appeared to be neglected in the 80's and the interest

has been renewed recently. Now there is considerable interest in this problem.

In this thesis, a study of dynamics of helicopters and the dynamics extended to

helicopter with underslung external loads are carried out in order to gain insight into

the dynamic characteristics of a helicopter with an underslung load. The analysis

begins with the study of helicopter mathematical model, and then the development of

a mathematical model of an underslung load, by considering the helicopter dynamics

are the input to the load model is carried out in order to investigate the load dynamics.

The work then proceeds to investigate the flight stability of the helicopter with an

underslung load attached. Simulation studies have been performed using the

simulation software FLIGHTLAB. The results reveal how the stability of the

helicopter is degraded by the influences of the load. The stability deceases as both the

load weight and sling length are increased. Secondly, the stability problem is

addressed. A good controller is vital for maintaining the stability of the system while

performing the underslung load operation. Controller development is addressed

starting from an overview of flight control design techniques applied to develop a

control law for helicopter. For the control of helicopter with underslung load problem,

a nonlinear stabilizing feedback control for uncertain dynamical systems is studied

and initial investigation for the possibility of applying this method to helicopter

control with underslung load composite system is carried out.

1.2 Control of helicopters with an underslung load

A helicopter with an underslung load is a complex dynamic system in which its

subsystems and components are interact each other dynamically and exhibit great deal

of nonlinearities. The adequate system dynamic performance is highly depending on

the proper performance of controller of the system. Today's aviation industry offers a

range of flight control design techniques to develop control laws for helicopters.

These methods are ranging from linear quadratic regulator control (LQR),

eigenstructure assignment to H-infinity optimisation etc. For example, linear

quadratic regulator (LQR) control theory has provided an important tool for helicopter
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control law design [Gribble, 1993]. The design freedoms in the LQR method are two

matrices which penalise excursions of states and input vectors from desired values.

Innocenti [Innocenti et aI, 1984] gives an example of classical SISO methods

application to a flight control design. The use of eigenstructure assignment for

helicopter control system design has been considered by several researchers; see for

instance [Manness et al, 1990]. Turner [Turner, 2000] gives an account of success of

H-infinity method and shows the successful application of H-infinity approach to

helicopter control.

The use of intelligent control methods for helicopter control system design has also

been considered by several researchers; especially some form of fuzzy control

development is widely considered, for example see [Kadmiry et aI, 2001], [Steinberg,

1992]. Recently, Ledin [Ledin et al. 2003] presents a PID (Proportional-Integral-

Derivative) controller to drive the helicopter to a specified point in a space by

considering that the helicopter possesses a navigation system that tracks the vehicle's

position, velocity and angular orientation without error. However, it should be noted

that in reality such error -free navigation systems are difficult to realise. Furthermore,

Enns [Enns, et al. 1986] used the MIMO generalization PI technique to design a

MIMO PI control law for YAH-64 helicopter. Many researchers have applied PID or

some form of PID control law to scaled size helicopter control (for example see

[Sanders et al. 1998, Woodley, et al. 1997]). But tuning the PID controller is one of

the most common problems for a control Engineer.

The design of flight control systems for actively controlled helicopters presents

problems, which are associated not only with the complex nature of the dynamics of

the helicopter itself, but also with the range of design objectives which must be

satisfied. Usually, the military rotorcraft handling qualities specification ADS-33D

[Anonymous, 1996] is used to assess the capability of the control law. Generally

speaking what is required from the control law, it should be able to stabilize the

aircraft while controlling.

Linear or nonlinear control methods can be adapted to design a control law for a

helicopter system. A brief introduction to the linear and nonlinar control systems and

control methods are presented in the following subsections.
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1.2.1 Linear control systems

Linear control system theories provide the fundamental background needed for

controller design of dynamical systems. Linear control system theories are widely

used for the analysis and synthesis of feedback control systems. Linear control is a

subject with a variety of powerful methods and a long history of successful

applications [Slotine et al, 1991].

Linear systems are often described in the form of linear differential equations. If the

coefficients of the differential equations are constants then the system is linear time

invariant. If the coefficients of differential equations governing the system are

functions of time then the system is linear time varying. The differential equations of

a linear time invariant system can be transformed into different mathematical

descriptions, such as state space representation for the convenience of analysis. For

example, in the case of single input single output system analysis, transfer function (s-

domain equation) can be obtained by taking Laplace transform of the differential

equations governing the system with zero initial conditions and rearranging the

resulting algebraic equations to get the ratio of output to input.

In the early days, the classical Bode, Nyquist, and Nichols frequency response plots

has been of immense use in frequency domain analysis and synthesis of linear control

systems. Bhattacharyya [Bhattacharyya et al. 1995] gave details exposition of these

tools. Many important applications found in practice involve stability problems. Gain

and phase margins are popularly used as stability specifications in classical methods

of analysis and synthesis of linear control systems. These specifications basically

related to the maximum allowable variation in the open loop gain or phase of the

system to conserve closed loop stability. The system models found in classical

approaches to linear systems usually have fixed parameters values. However, for most

real life system some uncertainty is present in the model parameters due to the

modelling error etc. The uncertainty can be included in the model and then the

stability analysis, such as gain and phase margin analysis must be carried out by

considering the uncertainty, leading to the concept of robust stability of the system

[Barve, 2003].
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Time domain approach is also used for analyses of responses and designing control

systems. Analysis of response means to see the variation of output with respect to

time. The evaluation of system is based on the analysis of such responses. This output

behaviour with respect to time should be within specified limits to have satisfactory

performance of the system. The complete base of stability analysis lies in the time

response analysis. The system stability, system accuracy and complete evaluation is

always based on the time response analysis and corresponding results.

Classical control theory, which deals with techniques developed before 1950, and

embodies such methods as root locus, etc. These methods have in common the use of

transfer functions in the complex frequency domain, emphasis on the use of graphical

techniques, the use of feedback, and the use of simplifying assumptions to

approximate the time response. The essence of classical design is successive loop

closure technique, Such a one-loop at a time design approach become increasingly

difficult as more loops are added and do not guarantee success when the dynamics are

multivariable.

Modem control refers to state space based methods developed in the early 1960s (e.g.

LQ, LQR etc.), In modem control theory, system models are directly written in the

time domain. Analysis and design are also based in the time domain. Modem control

methods provided a lot of insight into system structure and properties; however, the

row back of most modern control methods is that they inherently require a precise

model of the system. To overcome this difficulty during the late 1970s a methods so-

called robust control is emerged that tried to provide answers to the system

uncertainty problem. Robust controls are a combination of modem state space and

classical frequency domain techniques [Bhattacharyya et al. 1995].

In this work, for the investigation of the stability characteristics of a helicopter with

underslung load system, linear control system theory is applied. The linearised system

is expressed in the state space description form and the system stability was assessed

by reference to the location of the system poles on a root locus diagram. However, it

should be noted that the linear model is only an approximation to the true system

dynamics. Thus, in this thesis considerable attention is paid into the nonlinear system

and analysis.

7



1.2.2 Nonlinear control systems

Nonlinear systems have been shown to exhibit surprising and complex effects that

would never be anticipated by a scientist trained only in linear techniques for example

chaos, and bifurcation etc. Nonlinearity has its most profound effects on dynamical

systems. There are essentially nonlinear phenomena that can take place in the

presence of nonlinearity, hence they can not be described or predicted by linear

models. For example, nonlinear systems may exhibit autonomous constant amplitude

closed loop oscillations, known as limit cycles. The describing function approach

[Atherton, 1975] is traditionally employed to predict the existence of the limit cycles.

If limit cycles are predicted, it is also of interest to know the number of limit cycles,

their frequencies and amplitudes, and key characteristics such as stability or

instability. Describing function analysis occasionally fails to predict the limit cycles,

particularly when the system under consideration does not satisfy the assumption of

filtering out the higher order harmonics. It is also possible for describing function

analysis to predict no limit cycles, even when a limit cycle actually exists. Despite

these limitations, describing function analysis has been successfully used in many

practical applications [Newman, 1995, Anthony, et al, 1990].

Many other nonlinear phenomena that may exhibit in the presence of nonlinearities

such as finite escape time and multiple equilibria etc. these problems can be dealt with

system analyses and controller development. The effect of nonlinearities on a

dynamical system can be studied by employing modem dynamical system techniques

such as global bifurcation theory. The global bifurcation theory is useful to detect

large scale phenomena such as deterministic chaos etc. however, usually the primary

concern in the analysis of nonlinear dynamical system is that the determination and

predication of steady states or stationary motions and stability of the system. Stability

analyses of a nonlinear system can be carried out using input-output (frequency)

method, such as deriving the gain of the system and analyse the stability propriety of

the system using passivity techniques etc, whereas the passivity idea is that the

increase in stored energy is less than or equal to added energy. On the other hand

Lyapunov's methods can be used for stability analysis, whereas storage function is a

generalisation of Lyapunov function and the idea of Lyapunov's method is that the
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energy is decreasing. Lyapunov was interested in showing how to discover if a

solution to a dynamical system is stable or not for all time. Since the linear stability

theory was not good enough for long time response analysis, because the small errors

due to linearization would pile up and make the approximation invalid. Lyapunov

developed concepts (now called Lyapunov stability) to over come these difficulties. In

this work, Lyapunov function based control design method is developed for helicopter

with underslung load system i.e., for the control system analyses, in this thesis the

development of a nonlinear stabilisation feedback control via deterministic approach

is studied and initial investigation for the possibility of applying this method to

helicopter control with an external slung load is addressed. Firstly, stabilisations of

uncertain dynamical systems are introduced. Then the case of deterministic control of

cascade connection of uncertain nonlinear systems is investigated with application to

control of helicopter with underslung load system.

1.3 Outline of the thesis
The thesis is organised as follows.

Chapter 2: Study of helicopter mathematical model

In chapter 2, firstly the fundamental concept of helicopter dynamics and modelling

aspects of helicopters are discussed. Then a study of general models of a helicopter is

presented, which started from a nonlinear dynamic model to a simplified linear model.

Finally a simulation model of a UH-60 alike helicopter model (FGR model) is

realised to be used to validate flight test data for the UH-60 helicopters at hover.

Chapter 3: Study on the influences of the undreslung load dynamics to the stability of

helicopter.

This chapter, investigate the influences of an underslung load on flight handling

performance and stability of the system. Stability of the helicopter is investigated with

the presence of an underslung load, using FGR model. To conduct the combined

system (helicopter with load) stability analysis a simulation model of an underslung

load is implemented in FLIGHTLAB software and attached to the UH-60 alike FGR

model. Linear and nonlinear analyses are conducted. The analysis shows how the

stability of the helicopter is affected by the influences of the addition of the

underslung load.
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Chapter 4: Influence of helicopter dynamics to the dynamics of the underslung load.

In this chapter, an investigation of the dynamic behaviour of helicopter with

underslung load is presented. A mathematical model of an underslung load is

developed and applied to study the behaviour of the suspended load in response to in-

flight helicopter manoeuvres. The simulation results show the importance of pilot

control actions in positioning the load.

Chapter 5: Helicopter control methods and application of fuzzy control.

In chapter 5, an overview of flight control design techniques applied to develop a

control law for helicopters are discussed. A review of the use of some popular

methods such as PID control, LQ methods, nonlinear feedback linearization,

eigenstructure assignment, classical SISO techniques, H-infinity optimisation and

intelligent control methods for helicopter control system design are presented for

example purpose, to show the wider scope of the topic. An experimental study is

conducted to the development of a Fuzzy set point weighting PlO control for the twin

rotor MIMO system is also presented.

Chapter 6: Nonlinear deterministic control of a helicopter with an underslung load.

This chapter addresses a development of a nonlinear stabilization feedback control,

using deterministic control approach. Firstly, deterministic control of uncertain

dynamical system is introduced. Then for the control of helicopter with underslung

load problem, the system is considered as a cascade connection of uncertain nonlinear

systems and initial investigation for the possibility of applying the deterministic

control method to helicopter control with underslung load composite system is carried

out.

Chapter 7: Concluding remarks

The last chapter includes concluding remarks and some suggestions for further

research work.

10



Chapter 2

Study of Helicopter Mathematical Model

2.1 Introduction

A helicopter has six degrees of freedom in its motions: up/down, fore/aft (longitudinal

motion), left/right (lateral motion), pitching, rolling, and yawing. The motions of a

helicopter are achieved by I) collectively changing the pitch of all the main rotor blades,

thus increasing rotor thrust (collective pitch); 2) cyclically changing the pitch as a

sinusoidal function of azimuth which tilts the tip-path-plane fore/aft or left/right and

changes the thrust vector direction (cyclic pitch); and 3) collectively changing the tail

rotor pitch, which changes tail rotor thrust and thus the yaw moment. A helicopter pilot

must simultaneously control three forces and moments, hence, control of a helicopter, is a

difficult task indeed. A helicopter pilot typically has at his disposal a cyclic stick to

control both fore/aft motions (pitch control) and left/right motion (roll control), a

collective lever to control up and down motions (vertical control), and pedals to control

left and right yawing motions (yaw control). Lift, thrust, pitching, and rolling control

comes from the main rotor while yawing control comes from the tail rotor [Bramwell et

al, 2001].

To analyse the dynamic problems of controlling a helicopter and develop control schemes

for alleviating these problems, it is necessary to have a dynamic model for helicopters.

The dynamic model should be well suited to stability and control analysis, which may

involve linearised equations of motion about possible equilibrium positions.

In this chapter, the fundamental concept of helicopter dynamics, such as the principles of

rotary flight and controls are studied, and also a mathematical model of a single main

rotor helicopter is presented. The forces and moments from the different elements of

helicopter are discussed in details. Then this generic model is bridging to a UH-60 like

Flightlab Generic Rotorcraft Model (FGR), which is available in the University of

Liverpool, Flight Simulation Laboratory. Simulation studies have been conducted using
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FGR model with flight test data for UH-60 helicopters, simulations that illustrate the

validity of the FGR model.

2.2 Fundamental concept of helicopter dynamics

2.2.1 Principles of rotary flight

The essential requirements for any flying machines are:

1. The lift force must be equal or exceed the aircraft's weight and be capable of being

controlled.

2. The propulsive thrust in a forward flight direction must equal or exceed the aircraft's

drag and be capable of being controlled.

3. There must be control forces and moments, which are capable of altering the

aircraft's attitude in pitch, roll and yaw.

Rotorcrafts produce their lift force by means of rotors, which are rotating wings, and

consequently these rotors must be able to supply the above three requirements. The single

main rotor provides that vertical thrust necessary for the aircraft to leave the ground and

control it in vertical direction [Leishman, 2000, Newman, 1994].

Considering the complexity of a helicopter in relation to fixed wing aircraft, there are two

fundamental differences. Firstly, the helicopter possesses the ability to fly at low speeds

and even to hover. As a result of these unique abilities, the helicopter is able to precisely

follow a planned trajectory. This low speed and hover capability can only be achieved at

the expense of payload and operating cost [Thomson et al, 1998] as low speed flight

implies that there is less lift from the aerodynamics surfaces, hence the maximum

payload is considerably less than that of a fixed wing aircraft. Secondly, the helicopter is

controlled in a manner very different from that of the fixed wing aircraft, due not just to

the vehicle configuration, but also because of the complex cross-coupling between the

longitudinal and lateral states [Cameron, 2002].

A helicopter is equipped with one or more power-driven rotors (horizontal propellers) in

lieu of fixed wings. It is able to take off and land vertically, to move in any direction, or

to remain stationary in the air. The lift developed by a conventional aircraft wing depends
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on two factors: the angle of attack of the wing and the velocity of the air in relation to the

wing. To obtain the necessary lift the aircraft must have a forward movement. In the case

of the helicopter, the (relative) air velocity is produced by the rotation of the rotor blades

when the angle of attack attains a certain value, the lift overcomes the weight of the

aircraft. Then the aircraft takes off vertically. To achieve horizontal flight, the pilot tilts

the rotor forward at a certain angle, which is achieved by what is known as cycle pitch

change, i.e., changing the pitch of each blade once per revolution. More particularly, the

angle of attack of each blade is increased every time when it sweeps over the tail of the

machine, thereby temporarily developing a greater amount of thrust then the other blades.

The thrust developed by the rotor can be resolved into a vertical component (the actual

lift that keeps the machine in the air) and a forward component (which propels the

machine horizontally). Each blade can swivel about its longitudinal axis and its pitch is

changed cyclically, through a linkage system, by a so-called swash-plate, which performs

a sort of wobbling rotary motion around the shaft and swivels the blades to and from as

they rotate. The tilt of the swash plate can be varied by the pilot, and the tilt of the rotor

follows the tilt of the plate.

The blade root hinges are called as lag hinges. Ifthere were no hinges, tilting of the plane

of rotation of the rotor blades relative to the helicopter causes a periodic change in the

speed of the blades. This would produce severe stresses in the blades; which are relieved

and cancelled by the hinge. Motion about the hinge enables the blade to rotate at a

constant speed irrespective of how much the rotor is tilted. In forward movement of the

helicopter, the velocity due to blade rotation and due to forward speed are added together,

i.e., they intensify each other, on the advancing side of the rotor; on the retreating side,

however, they are subtracted from each other. If the rotor blades were rigidly fixed to the

shaft, the lift would vary cyclically and cause the helicopter to roll. This is prevented by

the hinge. Instead, the blade flaps cyclically as it rotates.

The rotation of the rotor tends to cause the fuselage of the aircraft to rotate in the opposite

direction (on the principle that any action calls forth a reaction). To prevent this, the

single-rotor helicopter is provided at its tail with a small propeller producing a

counteracting sideways thrust. Alternatively, the helicopter may have two rotors, which

revolve in opposite directions and thus counterbalance each other.
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2.2.2 Controls of a helicopter

To control completely the position and attitude of a helicopter (body) requires control of

the forces and moments about all three axes. This involves six independent controls thus,

if the body drifts to the side, a force may be exerted to return it to its original position. If

it rolls over, a moment may be exerted to right it again. Itwould be exceedingly difficult,

however, for a man to co-ordinate the controls of any machine having six independent

control systems. Fortunately, it is possible to reduce this number by coupling together

independent controls [Bramwell, 1976, Stepniewski, et ai, 1984]. Actually, four

independent controls are adequate for the helicopter, which are:

1) Vertical control: This is necessary to fix the position of the helicopter in the vertical

direction. It is achieved by increasing or decreasing the pitch of the rotor so as to

increase or decrease the thrust.

2) Directional control: Directional control fixes the attitude of the helicopter in rotation

about the vertical axis, permitting the pilot to point the ship in any horizontal

direction.

3) Lateral control: Lateral control involves the application of both moments and forces.

When the pilot applies lateral control a rolling moment is produced about the aircraft

centre of gravity which tilts the helicopter. As a consequence of the tilt, a component

of the rotor thrust vector acts in the direction of tilt. The application of lateral control

has therefore resulted in a tilt and sideward motion of the helicopter.

4) Longitudinal control: Longitudinal control is identical in nature to lateral control.

Pitching moments are coupled with longitudinal forces.

In order to maintain these controls, while the helicopter flying, there are three main

controls required to fly a helicopter, which are collective pitch control, cyclic pitch

control, and Rudder pedals, which are briefly described below.

Collective pitch control can only be found in helicopters. Moving the collective pitch up

and down changes the pitch of the main rotors and moves the helicopter up and down.

This is linked to the engine power. As the pitch is increased, and more power is required

from the engine so the rotor speed is kept at the same level.
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Cyclic pitch control is the central control column. When it is moved forward or backward

it will point the nose of the helicopter up or down. It does this by varying the angle of the

rotor blades as they go round, tilting the rotor back and forth. When it is moved left or

right, the rotor tilts in that direction and the helicopter banks and rolls.

Rudder pedals control the tail rotor. Moving the left pedal makes the helicopter to go left

and moving the right pedal makes it to go right. This action is achieved actually by

changing the pitch ofthe tail rotor.

Rotor blades are the helicopter's equivalent to the wings of an aeroplane. Like any wings,

the shape of the blades is very important. It is designed so that the air passing over the

upper surface moves faster, causing a difference in pressure between the upper and lower

surfaces, creating an upwards force known as lift.

Most helicopters have a single main rotor on the top and a smaller tail rotor at the back,

controlling the direction of the helicopter flies. The tail rotor is very important, when spin

a rotor using an engine, the rotor will rotate, but the engine and the helicopter will try to

rotate in the opposite direction. This is called torque reaction. The tail rotor is used like a

small propeller, to pull against torque reaction and hold the helicopter straight. By

applying more or less pitch (angle) to the tail rotor blades it can be used to make the

helicopter turn left or right, becoming a rudder. The tail rotor is connected to the main

rotor through a gearbox.

2.3 Study of helicopter models

The six rigid body degrees of freedom are the basic motion involved in the analysis of

flight dynamics. The rotor is also a major factor in the dynamic response characteristics

of helicopters; therefore the dynamic model of helicopter must take account of these facts

for the adequate replicate of the system and its behaviour.

2.3.1 Dynamic model of a helicopter

The forces and moments from the different elements of a helicopter, such as main rotor,

tail rotor, fuselage and empennage, are considered. The helicopter has six degree of
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freedom in its motion and it has nine state variables in general, which are u ~v, w the

aircraft velocity components at centre of gravity, p, q, r the aircraft roll, pitch and yaw

rates about body reference axes, and fJ, rp, If the Euler angles. The Euler angles define the

orientation of the fuselage with respect to earth axes system [Padfield, 1996]. To derive

the equations of the translational and rotational motions of a helicopter, the helicopter is

assumed to be a rigid body referred to an axes system fixed at the centre of mass of the

aircraft, as shown in Figure 2.1, so the axes move with time varying velocity components

under the action of the applied forces. Firstly, a structure block diagram of a helicopter

system from control point of view is shown in Figure 2.2. In Figure 2.2, downward

arrows are used to indicate the flow of the system functionality. The flow of functions

starts with the four control inputs, which are, longitudinal cyc1ic(~.\) lateral cycliC(Olc),

collective (8,,) and pedal (BoT), which control the basic nine states of the system such as

p,q,r,tjJ,B,IjI,u,v,and w. The block diagram shows how the helicopter motion is

achieved through the overall external forces X, Y and Z along x, y, z axes and moments

L,M,N about x,y,z axes. It can be noted that the main contributions to helicopter

motion are from the rotors, especially from the main rotor.

Fig.2.1 Helicopter elements with defined x, y, z axes coordinate system [Padfield, 1981]
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Blade cyclic pitch components (Hub-wind axes)

,..----- /30 , /3lcw , /31.<1"

Harmonic components of integrated
blade aerodynamic loads

Main rotor force coefficients
(Hub-wind axes)

CxlV,Cyw

Main rotor force coefficients (shaft axes)

Tail rotor thrust coefficient

r-------- C1T

L,M,N

_. p.q,r

r----p,q,r

.. t/J,B,f/I

¢,8,f//

u,v,w

Fig 2.2 Structure block diagram of a helicopter system

The mathematical model of helicopter motion can be derived which is a set of

complicated nonlinear differential equations. Initially the basic nine state equations are

written which involves the overall external forces and moments. It follows the overall

forces and moment's equation, in which individual element's (e.g. main rotor)

contribution to produce the overall forces and moments for the helicopter motion is

expressed then details description of their contribution is discussed.

it = rv-qw- gstne=X / M,

The equations govern the translational motions are given below [Padfield, 1996]

(2.la)
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v = pw-ru +g cos Osino+Y / M',

w=qu= pv+ gcosBcos¢J+Z/ M;

The equations describe the rotational motion are as follows:

. (IVY -Izzkr Ix:(p~Ixx-IvJ+rq+Iyy -IJ+I~pq Ixz(N -L) L
P = . + .( 2) + pq + ( 2 ) +t; t;+Ix/:: Ixx -t.).zz

q =f-[{!;z -Ixx)pr-Ix;(p2 -r2)]+f-M
W W

r = Ixz~q-Iyy -IJ-I::pq+ pc/../xx-IJ + N -Ix:L
(I:: +Ixl .. ) V::+u.)

The resulted Euler angles from the motion can be obtained from

~ = p + qsin¢JtanB + rcos¢JtanB

B = qcosrj>-rsin¢

If = qsin¢JsecB + rcos¢JsecB

(2.1b)

(2.1c)

(2.2a)

(2.2b)

(2.2c)

(2.3a)

(2.3b)

(2.3c)

The mathematical symbols used in above equations can be found in the list of notions.

Ma and g are the mass of the helicopter and acceleration due to gravity, I xx, I yy, I zz are

the moment of inertia of the helicopter about x, y and z axes, and Ixz the aircraft product

of inertia.

The overall external forces X ,Y and Z along x, y, z axes can be written as

x = .!._p(nRYnR2aoscos r , 2ex _ .!._p(nRYnR2aossin r, 2Cz
2 aos 2 aos

+ ~ p(nRY7rR2aosSpV/CxF(aF)

1 ( )2 2 ( 2C y J 1 ( )2 -2 (13 )y = -p OR 7rR aos -- + -p OR VVNSfNCYFN JoN

2 aos 2

+ ..!...P(OTRTYao7TsT(7rRry(2C1T JFT2 aOsT

+ ~ p(ORY SsV/CyS ~A

F

(2.4)

(2.5)
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(2.6)

The moments L,M,N about x,y,: axes can be written as

L = - b KpPlS + hR(_!_ptrR2(nRYaos(2Cy JJ
2 2 aos

+ hr._!_P(OrRrJaorSr(trRrJ( 2Cn JFr2 aorsr

+ hFN.]_ P (0.R J VF~SFNC YFN(PFN)
2

(2.7)

+ ~rp +XcJ~ p(ORJV/SrpCzrp(arp)

+ 2. penRY SpIFV/CMF (aF)
2

(2.8)

- Q FN + X cg ) ~ (0. R Y V F~ S FN C YFN (f3 r» )

+ ~ P (0. R Y Ss IF V/ C NF (f3 I' )

(2.9)

where P is air density, R and n are the main rotor blade radius and speed, ao and s the

main rotor blade lift curve slope and solidity, and Cx,CpC, are the main rotor force

coefficients in shaft axes. They can be obtained by
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(2.10)

(2.11)

where '1'.. is the side-slip angle and c, is the main rotor thrust coefficient given by
TC - ---,;--=_-

T - p(nR J 7rR2 (2.12)

The main rotor force coefficients in the hub-wind axes c"'" and c, are can be obtained

through equations (2.13) and (2.14) in terms of harmonic components of integrated blade

aerodynamic loads and harmonics of flapping.

(
2C J [F(I) F (I) J F (I) F (I) F (2)
~ = _o_+_2<_ f3 +_Ic_R +~fJ +_Is_

2 4 Icw 2 Po 4 lsw 2aos (2.13)

(
2C ] (F (1) F (I) J F (I) F (I) F (2)

__ YH_' = _0 _ +_2c_ f3 __ Is _ j3 __ 2' _ f3 +_1c_
2 4 Isw 2 ° 4 lew 2aos (2.14)

where Po is the coning angle and A., PI~ are the first harmonic cyclic flapping angles.

The harmonic components of integrated blade aerodynamic loads are given by the

following expressions

F(I) = 0 (_!_ + L] + J.l (0 + Pw J + (J.lz - .10 J + _!_ ft + ,,2h° 0 3 2 2 Isw 2 2 4 ~ r P,W (2.15)

a +0 { 2 Jsw Isw + e +" - ~ +- e3 0 rz ""0 3 tw (2.16)

(2.17)

F(I) - J.l {e _ j3 + qw - AICW _ 'R}
2, - 2 lew Isw 2 J.lPo (2.18)
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F(I) = -f:!_{e + p + Pw - Alsw + ,,(e + elw)}
2c 2 Isw lew 2 r: 0 2

F(2) - -2P 11(11 -A -~ liP )+(11 -A -~p IIJak - or r1. 0 3 r kw r:« 0 4 kw'- ell'

f.lp B(a, .•. f.I(p +f.lp 1)+B (a ...._ (Po+f.lp 1)-"4 .,«, + I) 3-2 0 2 I.,",) "4 f.I 3 8 I.,",)

+B (f.I' -AD +!:!:..(Pw -AI." - P .))),.. 2 4 2 le_

(
- A )f.I q H' - ),.

+4" B'<K 2 P". - f.lPo

The flapping is written in the form, such as

fl = flo + fllcw cos If/ + fJlsw sin If/

and the flapping angles are given by

~ [JLZ - ~J !,wnfJ 4 2 4 Btw 4 - 2 2 qw[4]=,2 [l+jl,-+-Ji,-J1,o] +[_,_J1,ol A,sw +[0,0,-J1,0]_
AfJ 5 3 3 ~sw 3 3 'j 3 Pw

~ A,~ -
"1ew qw

(2.19)

(2.20)

(2.21 )

(2.22)

(2.23)
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(2.24)

where B" is the main rotor collective pitch and 8" ... 8, ... blade cyclic pitch components in

hub-wind axes are defined by

[B
lsw] = [ co.s'l'w sin 'l'w ][Bls.]
Blew - sm 'l'w cos \f w BIC '

(2.25)

where BI." Bk are the longitudinal and lateral cyclic pitch.

The tail rotor provides control for the yaw, whose only responsibility is to provide a

sideways thrust force and thereby produce a yawing moment about the main rotor shaft

[Newman, 1994, Leishman, 2000] i.e. contributes the external force Y, moments L, and

M (see equations (2.5), (2.7) and (2.9». Tail rotor contribution can be determined by

(
nfJ] 4{u )() +K - - -OT 3 A,2 3 zT AuT

( 2eTT J =..!.. fJ T .(1+~.u:)+ (JI=r - AuT)
aOTsr 3 (nfJ J ~) 2 2I-K _ + 1/2 ,

J A,2 rrr
fJ T

(2.26)

where B", is a tail rotor pitch (control input).

The detailed description and explanation to the complete helicopter mathematical model

can be found in [Padfield, 1981, Prouty, 1986 Padfield, 1996]. From the above

description, it can be seen that the mathematical model is very complicated and

nonlinear. Apart from simulation study, it is difficult to conduct any theoretic analysis
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based on this version of system model. In some cases, the simplified linear model may

provide a helpful description to the helicopter to reveal some aspects of helicopter

dynamics. So a linearised version of helicopter model is discussed in next section.

2.3.2 Linear approximation to a helicopter model

The mathematical model presented in section 2.3.1 may be too complicated for analysis.

Sometime it is necessary to make use of the well developed theory of linearisation to

learn more about the behaviour of a nonlinear system [Khalil, 1992]. Linearisation is an

approximation in the neighbourhood of an operating point; it can only predict the local

behaviour of the nonlinear system in the vicinity of that point. In this study, the behaviour

of the helicopter system at hover condition (operating point) is considered thus the linear

model may be suitable for the analysis of a helicopter at a hover condition.

The helicopter equations of motion described in Section 2.3.1 can be written as follows

x = P(x, il,t) , (2.27)

where [ r]Tx=¢ B 'f/ U v w p q is the state variable vector,

il = [Ble BI• Bo BOT Y IS the control vector, and P represents the nonlinear

relationship of the system state variables. To derive the linearised equations of motion

using small perturbation theory, the helicopter behaviour can be described as a

perturbation from the trim, written in the form

x = xe +OX (2.28)
For linearization, it IS assumed that the external forces X, Yand Z and moments

L, M and N can be represented as analytic functions of the disturbed motion variables

and their derivatives. Thus the forces and moments can then be written in the Taylor's

expansion form. Then, the linearized equations of motion about a general trim condition

can be written as in the state space form x = Ax + Bii and the system matrix A and

control matrix B are derived from the partial derivatives of the nonlinear function P , i.e.

A=(aPJ
ax x=x

e

(2.29)

and
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B =(aFJ
au X=X .

(2.30)

So the fully expanded form of the linear helicopter mathematical model has the following

structure:

¢ 0 0 0 0 0 0 1 0 0 ¢

B 0 0 0 0 0 0 0 1 0 B

Ij/ 0 0 0 0 0 0 0 0 1 'If

U 0 - g eost), 0 Xu Xv Xw Xp (Xq -wJ (Xr -vJ U

V = g 0 0 Yu Yv Yw (rp +wJ Yq (Yr -uJ v
W 0 - gsinBe 0 Zu Zv Zw (Zp-vJ (zq +uJ Zr w
p 0 0 0 Lu Lv Lw Lp Lq Lr p

q 0 0 0 Mu Mv Mw Mp Mq Mr q

r 0 0 0 Nu N" Nw Np Nq NT r

0 0 0 0
0 0 0 0

0 0 0 0
X X X{} X o;

Oh Oh 0 001'
Bh+ y y Y90 Y

£lIe °1, £lor BoZ Z Zo Z°1, °1, 0 £lOT
BOTL L LBo L

Bh· 8" BOT
M M Me MBle BI, 0 BOT
N N Ne NBle BI., 0 BOT

(2.31)

In order to investigate the longitudinal and lateral stability, the linear model can be

reduced to longitudinal and lateral motion, by assuming that at hover trim condition,

position, attitude and velocities are zero and longitudinal and lateral motion can be

decoupled.

Decoupling longitudinal and lateral modes are common practices in the fixed wing

aircraft, the cross coupling derivatives would be zero. However, this is not the case for

the helicopter as these cross-coupling terms influence the vehicle modes, and the

handling qualities. But this decoupling or weakly coupled assumption leads to investigate

the longitudinal and lateral modes separately as two distinctive sets. Phugoid, pitch and

heave modes are identified as longitudinal modes and spiral, roll and dutch roll modes are

identified as lateral modes [Padfield, 1996].
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Equation of longitudinal motion

iJ 0 0 0 1 (J 0 0

u - gcos(Je Xu Xw (rq - wJ u X XU [~JBl,v 0 (2.32)= (zq+uJ + Zoow -gsin(Je Zu Zw w ZOb

q 0 Mu Mw Mq q M Moo01.,

where, longitudinal motion of the helicopter is uncoupled from lateral dynamics and

described by four vector elements. It is assumed that the collective and (longitudinal)

cyclic controls are mainly influence the longitudinal motion.

Equation of lateral motion

¢ 0 0 0 I 0 rp 0 0

Ij! 0 0 0 0 1 If/ 0 0

g 0 r;. (yp+w.) (r, - uJ v + Y Y [e" ] (2.33)v = 0" BOT
(JOT

0 0 Lv Lp L, p L Lp 0" BOT

r 0 0 Nv Np N, r N N
0" 001'

Similarly, where lateral motion of the helicopter is uncoupled from longitudinal dynamics

and described by five vector elements. It is assumed that the pedal (tail rotor collective)

and (lateral) cyclic controls are mainly influence the lateral motion. Usually the heading

angle If/ is omitted from the matrices, as the direction of flight in horizontal plane has no

bearing on the aerodynamic forces and moments [Fletcher, 1995]. Detailed discussion of

state, control and stability derivatives of the matrices can be found in Padfield [Padfield,

1996] who discusses in detail some of their characteristics.

The stability and control derivatives contained in the linear equations of motion aid in the

understanding of helicopter flight dynamics. Analysis of the model takes place by

considering that for small deviations from trim, the helicopter model can be determined

from the system eigenvalues which are calculated from the stability matrix A.

To investigate the influences of a control input for a particular mission task, the state

space representation can be transformed into a transfer function relationship between the

states and controls. This is achieved simply by taking the state space representation.

(2.34)
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and transforming it to the frequency domain to give

sX(s) = AX(s) + RV (s) (2.35)

Finally, rearranging to relate the state variables to the control inputs gives

(sI - A)X(s) = RV (s)

Xes) = (sI - Art RV (s) (2.36)

The helicopter handling qualities are strongly influenced by the stability of the normal

modes, where stability of the mode is determined by whether or not the real part of the

eigenvalue is positive or negative (stable modes having a negative real eigenvalue).

Emphasis will be placed 011 the stability assessment in the following chapter.

2.4 UH-60 helicopter model (FGR model) and simulation study

The generic mathematical model is bridging to a simulation model, which is available in

the University of Liverpool, Flight Simulation Laboratory. Simulation studies have been

conducted using the simulation model with flight test data for UH-60 helicopters to

examine the validity of the simulation model. The helicopter simulation model used in

this study is implemented in FLIGHTLAB software [Padfield et al, 2001]. The aircraft

model employed, as a basis to this study is the FLIGHTLAB Generic Rotorcraft model

(FGR) configured approximately as a UH-60 Black Hawk helicopter. The UH-60

helicopter is a multi-mission helicopter and has been utilised in various missions such as

air assault, air cavalry, command and control, electronic warfare and medical evacuations

etc., so the UH-60 model is chosen for this study.

An approach similar to the mathematical model presented in section 2.3.1 has been taken

for modelling the FGR model. However, in FLIGHTLAB, tail rotor components

implemented is based on a simplified theoretical method of determining the

characteristics of a lifting rotor in forward flight which is called Bailey rotor. The

coordinate system of the Bailey rotor has X forward into the free-stream airflow and Z in

the direction of thrust. Rotor thrust and torque are calculated as a function of a blade tip

loss factor by making the following assumptions:
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Uniform induced flow over the rotor

Unsteady aerodynamic effects are neglected

Compressibility effects are ignored

Linear lift with constant lift curve slope

Constant chord and linear twist

Bailey derived rotor thrust and torque by analytically integrating the air-loads over the

rotor blade span and averaging them over the azimuth. For the main rotor, in Flightlab

model aerodynamics effect has been taken into account in more details. It considered that

the aerodynamic components are numeric components that allow the computation of

airloads, inflow, and interference. Airloads are computed to give the motion of the

attached structural component and inflow is computed based on the airloads.

Additionally, interference between the aerodynamic components can be computed.

Fuselage and empennage components are implemented in Flightlab model, by using

aerodynamics laws, in which the forces and moments from these elements are given by

functions of incident and sideslip angles. In the process of modelling due to the complex

flow field around helicopter fuselages and the interaction of the main rotor wake with the

fuselage, some difficulties are caused to construct the forces and moments equations. So

the direct results from wind tunnel test data gathered from various sources are used. The

model also has a basic control system with mixing unit and actuators plus limited

authority stability augmentation system (SAS).

In summary, the model is modelled with four rigid blades with offset flap hinge and the

blade element rotor with look-up tables of quasi-steady, nonlinear lift, drag and pitching

moment as functions of incidence and Mach number.

Validation of the model is an important issue and, to this end, comparisons are made with

flight test data for UH-60 helicopter at hover [Fletcher, 1993], [Fletcher, 1995]. FGR

model is set to hover condition with the model parameters values (UH-60 helicopter data)

tabulated in Tables 2.1~2.4 and the control input responses are applied to the FGR model

from the flight test data and the outputs are compared with the flight test data responses.

Comparisons are made for all four control inputs, which are lateral, longitudinal,

collective and pedal. The results are presented below.
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Table 2.1: Parameters for aircraft mass and inertia

Description Symbol UH-60 value Units

mass of the helicopter u, 15350 lb

aircraft roll inertia lxx 5629 slug ft2

aircraft pitch inertia l.vy 40000 slug ft2

aircraft yaw inertia ., 37200 slug ft2

product of inertia lxz 1670 slug ft2

c.g. location - (36.0 0 24.7) ft

Fuselage reference pt. - (34.6023.4) ft

Table 2.2: Parameters for main rotor group

Description Symbol UH-60 Units
value

main rotor ~eed Q 27.0 rad /sec
main rotor blade radius R 26.83 ft
blade lift curve slope ao 5.73 rad "
main rotor solidity s 0.08210 -
rotor shaft forward tilt Ys 0.05236 rad
rotor thrust coefficient er 0.1846 -
number of blades b 4 -
blade lock number Y(Yo) 8.1936 -
rotor inertia number 17p 1.0242 -
flap frequency ratio Ap 1 -
linear blade twist Btw

-0.3142 rad
z co-ordinate of rotor hub hR 31.5 ft
mixing angle f/lF 0.175 rad
blade chord c 1.73 ft
flapping spring const. Kp 0 -
c.g. location fwd. of Xcg 1.4 ft
fuselage ref. Point
Stiffness number Sp 0 -
Blade profile drag 80 -0.0216 -
coefficient
air density p 0.002473 slug / ft3
blade flapping moment of lp 3.10 slug ft2
inertia
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Table 2.3: Parameters for empennage

Description Symbol UH-60 Units
value

tail plane area STP 45.0 ft

lift curve slope at zero incident QOTP 4 -
Location aft of fuselage iTP' IFN 70.0 ft
reference point

fin area Sm 32.3 ft2

Table 2.4: Parameters for tail rotor group

Description Symbol UH-60 Units
value

tail rotor blade radius RT 5.5 ft
tail rotor speed aT 124.62 rad /sec
blade lift curve slope aOT 5.73 rad "
tail rotor solidity ST 0.1875 -
fin blockage factor FT -0.402 -
tail rotor inertia number (np)r 0.4223 -
flap frequency ratio (Ap)T 1.0 -
tail rotor location aft of fuselage IT 73.2 ft
reference point
Negative z co-ordinate of hub hr 32.5 ft
linear blade twist (}/W -18.0 deg
Number of rotor blade b 4 -
blade profile drag coefficient iJOT -0.0216 -
blade lift dependent drag iJ2T 0.40 -
coefficient
pitch/flap coupling (15, ) k3 0.700 -
blade lock number (Y)r 3.378 -

With the helicopter parameters shown in Table 2.1-2.4, the simulation studies have been

carried out and the simulation results are summarised in Figures 2.3-2.6. The discussion

of the simulation results are followed by the results for different input cases
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lateral Stick Flight data ------. Flightlab model

time(sec) time(sec)

Comparison of model time response at hover

Figure 2.3 Comparison of helicopter dynamic responses at hover between flight test data
and FGR model for lateral stick input

In Figure 2 .3 the pilot's lateral stick input was used to drive the model in hover condition

and the time responses to the lateral control input have been compared. The responses

show quite reasonable agreement. In Figure 2.3 the model response for the lateral

translational velocity (v) initially follows the flight data response but in the long term it

tends to be stable while the flight data has variation in its response. Furthermore the yaw

rate (r) from the simulation was almost stable and steady throughout the motion while the

flight data response has some variation, which might indicate that the model has been
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--- Flight data ------- Flightlab model

simulated in an ideal environment while the flight test data is generated from the real

environment.

Longitudinal Stick
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Comparison of model time responses at hover

Figure 2.4 Comparison of helicopter dynamic responses at hover between flight test data
and FOR model for longitudinal stick input

In Figure 2.4 the pilot's longitudinal stick input was used to drive the model in hover

condition again there exists reasonably acceptable correlation with the flight data

responses. However some discrepancies are evident in the pitch rate (q), and so the pitch

angle (0), initially it was a good agreement but tends to differ in the long term. The

simulation curve seems to follow the changes in input faster than the flight test results in

q. This result is reasonable because it should have some unknown resistance in reality but
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Collective
--- Flight data ------- Flightlab model

not being included into the flightlab model. This reason may explain the discrepancy in

pitch angle () as well.

time(sec) time(sec)

Comparison of model time responses at hover

Figure 2.5 Comparison of helicopter dynamic responses at hover between flight test data
and FGR model for collective input

Figure 2.5 shows the responses to a collective liver input. This input should influence the

variations in vertical velocity w the most. In forward velocity (u) and acceleration (a.) it

Can be seen that the initial condition is differ, this is due to the model has been set to the

hover condition and hence the velocity and acceleration are zero but in real hover

condition it is impossible to keep the aircraft in absolute zero velocity and acceleration,

this is the case for the flight test data. From the figure, the results still give us confidence
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--- Flight data ---~--- Flightlab model

about the flightlab model since the dynamic variation trends agreed well between the

flight test and simulation results.

Pedal

time(sec) time(sec)

Comparison of model time responses at hover

Figure 2.6 Comparison of helicopter dynamic responses at hover between flight test data
and FGR model for pedal input

Finally Figure 2.6 shows the responses to a pedal input. The results do not give the good

agreement as Figures 2.3 - 2.5. Further analysis about the flightlab model and the test

conditions are carried out but it is difficult to find a good version to explain the

discrepancies. Correlation with the hover dynamic manoeuvres is shown in Figures 2.3 -

2.5. The model response was computed using the actual flight measured control

positions. Both the flight data and the simulation data ware plotted in same scale, which

enables an easier comparison of the parameters of interest, such as translational velocities
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(u, v, w), rotational velocities (p, q ,r), Euler angles C¢, e, If), and body axes

accelerations Cax' ay, az)·

In summary, comparison results show that there is a general agreement between the flight

test data and the FGR model responses but discrepancies occurred. The differences may

be caused by the following reasons: estimated parameters used in the model may be the

causes of the differences; smallest error in initial condition will propagate to large

divergences in the long term; and the environmental conditions the flight test conducted

are not identical to ideal FGR model simulation environment.

Although the differences of simulation results between the flight test data and the FOR

model responses appear, the model follows the same trend as the flight test data. Thus

this FOR model can be considered as an acceptable helicopter model for the simulation

study during hover in this thesis.

2.5 Summary

A study of general models of a helicopter is presented in this chapter, which started from

a nonlinear dynamic model to a simplified linear model. The linear helicopter model is

then introduced which is in the state space form, which enables the vehicle dynamic

modes to be assessed by determining the eigenvalues of the state matrix. Finally a

simulation model of a UH-60 alike helicopter is realised to be used to validate flight test

data for the UH-60 helicopter at hover. This FGR model can be use to investigate the

influences of an underslung load on flight handling performance and stability of the

system. Modelling study of a helicopter allowed gaining insight knowledge of dynamics

of helicopters, its leads to further study on dynamics of a helicopter with an underslung

load. Simulation study of a UH-60 alike helicopter offered the opportunity to get familiar

with FLIOHTLAB software, which is used as a tool in the next Chapter to study how the

load influences the helicopter dynamics.

34



Chapter 3

Study on the influences of underslung load dynamics to the
stability of helicopter

3.1 Introduction

The mechanics of helicopter flight can be described in terms of three aspects- trim,

stability and response. The trim problem concerns the control positions required to

hold the helicopter in equilibrium. The aircraft may be climbing, turning and at large

angles of incidence and sideslip, but if the three translational velocity components are

constant with the controls fixed, then the aircraft is in trim. Strictly speaking, climbing

and diving flight cannot be described as trim conditions, because the changing air

density will require continual corrections to the controls. Provided the rates of climb

or descent are relatively small, the helicopter will be, practically speaking, in trim.

Stability is concerned with the behaviour of the aircraft following a disturbance from

trim. Classically, static stability is determined by the initial tendency (i.e. will the

aircraft tend to return to, or depart from, the initial trim), while dynamic stability

concerns longer-term effects. Responses refer to the helicopter's dynamic changes

pilot control inputs and to atmospheric disturbances which is essentially a nonlinear

problem [Padfield, 1996].

In the case of that an underslung load is attached to a helicopter, the helicopter

dynamics will be seriously affected by the addition of further rigid body modes and

aerodynamic forces, which, in turn can seriously degrade the helicopter's flight

handling performance and reduce the operating envelop and the stability of the system

[Cicolani et al. 1998].

In this chapter, the influence of the load to the stability of helicopter is investigated

via simulation studies. A simulation model of an underslung load is developed in

FLIGHTLAB simulation software and attached to the FGR model. The model is then

used to perform simulation studies to reveal how the stability of the helicopter is

degraded by the influences of the load.
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3.2 Simulation model formulation for an underslung load in

FLIGHTLAB

To investigate the influences of the underslung load on the flight handling

performance of the helicopter, an underslung load was included into the FOR model

using a single suspension point. FLIOHTLAB software provides a tool to perform the

task of system analysis and to build extra component blocks to be added to the

system, whereby a library of predefined modelling components are incorporated in the

software and can be used to alter the design. An underslung load block is created

using hinge, cable, and mass etc. which is then attached to the FOR model using a

single suspension point located beneath the fuselage with a distance of 4.35ft below

the centre of gravity of the helicopter. With this configuration, the load is connected

to a non-linear helicopter system. The schematic diagram of the underslung load

block is shown in Figure 3.l

I
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(S ~adblXllll)

.....~~~.......,
! BDAIN •
, (H'jucle) !l.._ .••.._ ........_ .....-.....-
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x and y axes degree of
freedom for cable
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Figure 3.1: Schematic diagram for implementation of an underslung load block
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The TRANSLATE3 a component in Figure 3.1 models a general linear translation. It

is used to model the link between the subsystems. In this case, it is used to connect the

underslung load (subsystem) to the helicopter (suspension point). TORSPDM is a

component that models a hinge with both a torsional spring and damper about a single

axis. It is used with a simplified control block BGAIN which handle the inputs and

outputs to produce the suspension angles. For the second block, PMASS models the

effective forces produced by a mass due to gravitational acceleration and inertial

translational motion and TRANSLA TEZ component models a static translation along

Z axis. Using these two components by bringing them together with the use of

STRUCNODE a sling (or cable) is modelled. At the other end, STRUCNODE is

connected to the previous block developed to ensure the degree of freedom to the

cable. Finally, the load is connected to the cable which is modelled by using PMASS

together with AER02D3D component which models a two dimensional aerodynamic

panel (that produces airloads as a nonlinear function of dynamic pressure, angle of

attack, and mach number) with three dimensional resolution of the forces and

moments. It computes the lift, drag, and pitching moments. Details explanations of

each of the block components can be found in the FLIGHT LAB user manuals

[FLIGHTLAB user manuals, 2000].

For the simulation studies, the UH-60 helicopter parameters which were presented in

Chapter 2 in Tables 2.1 - 2.4 are used to configure the helicopter system in

FLIGHTLAB. Table 3.1 shows the load-sling parameters used for the underslung load

subsystem.

37



Table 3.1: Load-sling parameters

Descriptions Values Units

sling hook attachment point (354.0,0.0, 199.8) inch

hook! rigger device mass 50 Ibm

sling! tow cable damping coefficient 10.0 lbf - sec! ft
sling / tow cable spring coefficient 10.0 Ihl / ft

sling / tow cable offset (0.0, 0.0, -48.0) inch

airload offset (0,0,0) ft

airload reference area 1.0 ft2

airload reference length 1.0 ft

sling / tow cable length 15 (20) ft

sling / tow load mass 500 (1000 / 2000) Ibm

3.3 Simulation study and results

Simulation model of a helicopter with an underslung load described in Section 3.2 is

employed to conduct the simulation studies to investigate the stability of the

combined system. The behaviour of the system in hover as control deflection varies

(hover performances) is investigated by applying a step control input. The output

responses are obtained for different control inputs and parameters. Simulation results

are obtained for all four control inputs (longitudinal, lateral, collective and pedal)

without and with underslung load at hover by applying a step control input (1 inch).

Two cases have been considered, that is, the system dynamic responses with a

constant sling length and different load weights and a constant load weight with

different sling lengths.

Case I: The underslung load with a constant sling length and different load weights

The dynamic responses of the helicopter with an underslung load to different inputs

are shown in Figures 3.2 - 3.5.
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Figure 3.2 Helicopter dynamic responses for lateral input with a constant sling length

(15ft) and three different load weights

LongitudinalStick 150
1'2 100t.>

c: ......
'=- ;S 50E 0.5 ~E 00
(.)

00 25 50 75 100
40

r 20 ...... 100.,
i t]! 0 0.... :...oae!~~ 'tI'

-20 -100 5 10 15 20 0
20

I 0 r
"lIr

~ -20 11 -20....

75 100

10 15 20 -400 25 50 75
time{sec) time{sec)

Figure 3.3 Helicopter dynamic responses for longitudinal input with a constant sling

5 100

length (15ft) and three different load weights
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Figure 3.4 Helicopter dynamic responses for collective with a constant sling length

(1Sft) and three different load weights

Pedal
5

....... 1 -s:
u
c:: 'iii
~0.5 ... 0
E ;;.-
0
t,)

0 -5
0 5 10 15 20 0 5 10 15 20

20
OJ 10
Q) ~ 10'0:r 5 <!!
l'Il Cl
Qi Q) 0s: "0
I- 't::" _01':: ZXI) 00

-10
5 10 15 20 0 5 10 15 20

10 100
OJ 5 OiQ)
'0 Q)....... "0
d 0

:>::<' 0.c: ~n,

-5 -1000 5 10 15 20 0 5 10 15 20
time(sec) tJme(sec)

Figure 3.5 Helicopter dynamic responses for pedal with a constant sling length (l Sft)

and three different load weights
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From Figures 3.2 and 3.3 it can be seen that at hover condition, load dynamic

responses (load suspension angles) are greatly influenced by longitudinal and lateral

control inputs compare to collective and pedal inputs. This is due to the primary

responses of longitudinal and lateral control inputs, in the handling of helicopter

dynamics and control. The simulation results revealed that the helicopter itself tried to

maintain the stability for the long run, but it becomes unstable while it carries a load

externally. Itmay indicate that the stability of the whole helicopter system (helicopter

with load) is reduced as the load weight increases. It should be noted that due to the

divergence of the system responses, simulation runtime are restricted to 20 sec in the

cases of having an external load. Simulations are conducted using typical values of

sling length and load weights. Whereas 15 ft and 20 ft sling lengths are used for

simulation because these are the general values suggested by US military for safe

slung load operations through the experimental flight trials findings [Cicolani, et al,

1998]. However, the load weight limit can be vary with respect to the capacity of the

load carrying hooks and aircraft weight etc. For the above simulation the values of

500 Ibm, 1000 Ibm, and 2000 Ibm are used as load weights.

Case II: Constant load weight with different sling lengths.
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Figure 3.6 Helicopter dynamic responses for lateral input with constant load weight

(1000 Ibm) and two different sling lengths
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Figure 3.7 Helicopter dynamic responses for longitudinal input with constant load

weight (1000 Ibm) and two different sling lengths
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Figure 3.9 Helicopter dynamic responses for pedal with constant load weight

(1000 Ibm) and two different sling lengths

Again from the simulation results, it is revealed that the helicopter is less stable when

it carries an underslung load. The increasing load weight has greater influence of the

stability of the system then the sling length does. Again it can be noted that at hover

condition helicopter dynamic responses with sling load are greatly influenced by

longitudinal and lateral control inputs comparing with the collective and pedal inputs.

3.4 Stability analysis using a linearised model

Linearisation of a nonlinear system and a linear model of helicopter are discussed in

Chapter 2. In this section, the helicopter model is linearised with reference to a

standard nine state linear helicopter mathematical model [Fletcher, 1995].

FLIGHTLAB software provides a tool to perform the task of system linearization.

This is achieved by applying small perturbation to the state of the system, executing

the simulation model, and then averaging the resulting partial derivatives over one

revolution of the helicopter rotor. This procedure was performed for the cases both

with and without an underslung load. The linearised system is expressed in the state
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space description form, x = Ax + Bu and the system stability was assessed by

examining the location of the system poles on a root-locus diagram [Prouty, 1986].

Using FLIGHTLAB, the linearised model is obtained with the following state and

input matrices.

- 0.0000 0.0003 - 0.0000 - 0.0000 0.0000 - 0.0000 1.0000 - 0.0023 0.0503
- 0.0003 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 0.9989 0.0463
- 0.0001 0.0000 - 0.0000 - 0.0000 0.0000 0.0000 - 0.0000 - 0.0464 1.0002
-1.9386 -28.593 -0.0030 -0.0195 -0.0126 0.0168 -1.2000 5.7076 0.2683

A= 32.8694 -0.3640 0.0027 0.0126 -0.0311 -0.0013 -4.1348 -2.2350 0.3713
0.3138 -1.4034 0.0004 0.0150 0.0034 -0.3340 0.2866 0.6307 2.3410
- 0.9144 - 0.4783 0.0017 0.0226 - 0.0246 0.0007 - 6.5893 - 2.1301 - 0.0598
0.0631 - 0.6744 0.0008 0.0029 0.0046 0.0025 0.2059 -1.4255 - 0.1636

-0.7549 -0.0119 -0.0002 0.0009 0.0028 0.0006 -0.0749 -0.1032 -0.2214

- 0.0000 0.0000 - 0.0000 0.0000
0.0000 0.0000 - 0.0000 - 0.0000

- 0.0000 0.0000 - 0.0000 - 0.0000

- 2.2190 0.5734 0.3170 - 0.0019
B = 3.5381 - 0.0453 - 0.0963 0.2007

-1.5629 0.0237 - 6.0740 - 0.1014
1.9943 - 0.0714 - 0.0541 0.0731
0.0446 - 0.1097 0.0553 - 0.0281

- 0.8197 - 0.0082 0.1573 - 0.0635

In the case of with an underslung load, the simulation model contains four more state

variables which are, the longitudinal and lateral suspension angle position and the

movement of angle position due to the two degree of freedom of suspension angles.

The numerical values vary with respect to the sling- load configuration. It may

represent the system dynamic variations. To investigate the stability characteristics of

dynamic variations two series of simulation studies were carried out. Firstly, the sling

length was kept at a constant and the load varied between the limits SOO-2000lb. The

resulted system poles are listed in Table 3.2 - 3.6. The corresponding root loci are

sketched in Figure 3.10. Secondly, the load was kept at a constant and the sling length

varied between the limits 10-20ft. to see the effect of varying the sling length.
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Case I: The underslung load with a constant sling length and different load weights

Five sets of parameters are tested and the system poles are tabulated in the following

tables for different weights.

Table 3.2: System pole locations as sling length I =10 ft

Helicopter 500 Ibm 750 Ibm 1000 Ibm 1500 Ibm 2000 Ibm
-1.0919 -1.1191 -1.1261 -1.0560 -1.1054 -1.1341
-6.3938 -6.4194 -6.4123 -9.9252 -6.7207 -6.3224
-0.0032 -0.0100 -0.0106 -0.0061 -0.0135 -0.0314
-0.0977 -0.0751 -0.0728 -0.2012 -0.0804 -0.0497
-0.3045 -0.3016 -0.2990 -0.2606 -0.3867 -0.3426
-0.3159 -0.3220 -0.3200 -0.1809 -0.3541 -0.3102

± ± ± ± ± ±
0.4363i 0.4621i 0.4694i 0.6219i 0.4532i 0.4695i
-0.0489 -0.0180 -0.0157 0.0643 0.0369 0.0172

± ± ± ± ± ±
0.3898i 0.3955i 0.3981i 0.4577i 0.3821i 0.4073i

- -0.0393 -0.0527 -0.1055 0.0833 0.1282
± ± ± ± ±

1.8376i 1.8574i 1.9883i 2.4535i 1.9577i
- -0.0148 -0.0170 -0.8847 0.0263 0.0324

± ± ± ± ±
I.8407i 1.8615i 1.2464i 1.9215i 1.9660i

Table 3.3: System pole locations as sling length I =12 ft
Helicopter 500 Ibm 750 Ibm 1000 Ibm 1500 Ibm 2000 Ibm
-1.0919 - 1.1179 - 1.1201 -0.8852 -1.0997 -1.1297
-6.3938 -6.4212 -6.4201 -9.5586 -6.7151 -6.3301
-0.0032 -0.0100 -0.0106 -0.0108 -0.0136 -0.0314
-0.0977 -0.0751 -0.0728 -0.1194 -0.0800 -0.0497
-0.3045 -0.3016 -0.2990 -0.2895 -0.3867 -0.3425
-0.3159 -0.3214 -0.3161 -0.1941 -0.3532 -0.3079

± ± ± ± ± ±
0.4363i 0.4624i 0.4715i 0.6167i 0.4545i 0.4703i
-0.0489 -0.0178 -0.0145 0.0723 0.0366 0.0165

± ± ± ± ± ±
0.3898i 0.3955i 0.3983i 0.4599i 0.3821i 0.4074i

- -0.0378 -0.0488 -0.1043 0.0809 0.1242
± ± ± ± ±

1.6766i 1.3827i 1.8663i 2.3077i 1.7852i
- -0.0157 -0.0246 -0.9112 0.0297 0.0374

± ± ± ± ±
1.6809i 1.3906i 1.2077i 1.7567i I.7993i
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Table 3.4: System pole locations as sling length I =15 ft

Helicopter 5001bm 750 Ibm 1000 Ibm 15001bm 20001bm

-1.0919 -1.1 159 -1.1216 -0.7848 -0.6221 -0.9369

-6.3938 -6.4301 -6.4181 -9.2203 -7.9848 -7.5613

-0.0032 -0.0048 -0.0107 -0.0034 -0.0052 -0.0052

-0.0977 -0.0818 -0.0723 -0.0888 -0.0972 -0.0694

-0.3045 -0.3036 -0.2994 -0.3394 -0.3318 -0.3333

-0.3159 -0.3199 -0.3177 -0.2295 -0.2366 -0.1834
± ± ± ± ± ±

0.4363i 0.4628i 0.4701i 0.5050i 0.5974i 0.4968i
-0.0489 -0.0211 -0.0150 0.0074 0.0119 0.0264

± ± ± ± ± ±
0.3898i 0.3868i 0.3986i 0.3445i 0.4406i 0.3199i

- -0.0316 -0.0217 -0.1020 -0.0368 -0.1160
± ± ± ± ±

1.5043i 1.5224i 1.7380i 1.8753i 2.0003i
- -0.0736 ·0.0494 -0.7662 -0.7349 -1.2367

± ± ± ± ±
1.5019i 1.5150i I.1680i 1.9064i 0.8995i

Table 3.5: System pole locations as sling length 1=18 ft

Helicopter 500 Ibm 750 Ibm 1000 Ibm 1500 Ibm 2000 Ibm
-1.0919 -1.1159 -1.1201 -0.7715 -0.9645 -0.9300
-6.3938 -6.4301 -6.4201 -8.8828 -7.8716 -7.4020
-0.0032 -0.0048 -0.0106 -0.0036 -0.0355 -0.0049
-0.0977 -0.0818 -0.0728 -0.0869 -0.0556 -0.0753
-0.3045 -0.3036 -0.2990 -0.3400 -0.2968 -0.3326
-0.3159 -0.3199 -0.3161 -0.2262 -0.1481 -0.1779

± ± ± ± ± ±
0.4363i 0.4628i 0.4715i 0.5041i 0.6810i 0.4921i
-0.0489 -0.0211 -0.0145 0.0065 0.0998 0.0294

± ± ± ± ± ±
0.3898i 0.3868i 0.3983i 0.3422i 0.4702i 0.3190;

- -0.0316 -0.0246 -0.1101 -0.1171 -0.1238
± ± ± ± ±

1.5043i 1.3906i 1.5992i 1.7848i 1.8539i
- -0.0736 -0.0488 -0.6747 -1.0833 -1.0826

± ± ± ± ±
1.5019i 1.3827i 1.1132i 0.9037i 0.8996i
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Table 3.6: System pole locations as sling length I =20 ft

Helicopter 500 Ibm 750 Ibm 1000 Ibm 1500 Ibm 2000 Ibm

-1.0919 -1.1140 -1.1189 -0.8687 -1.1820 -0.8234

-6.3938 -6.4251 -6.4212 -8.5565 -7.4519 -7.2841

-0.0032 -0.0100 -0.0106 -0.0114 -0.0075 -0.0036

-0.0977 -0.0751 -0.0728 -0.0953 -0.2120 -0.0182

-0.3045 -0.3016 -0.2990 -0.3479 -0.3313 -0.3590

-0.3159 -0.3189 -0.3152 -0.1636 -0.2146 -0.0306
± ± ± ± ± ±

0.4363i 0.4640i 0.4722i 0.6092i 0.5892i 0.8253i
-0.0489 -0.0169 -0.0141 0.0799 0.1613 0.2158

± ± ± ± ± ±
0.3898i 0.3956i 0.3984i 0.4594i 04096i 0.2819i

- -0.0369 -0.0266 -0.1247 -0.1103 -0.0993
± ± ± ± ±

1.2974i l.3194i 1.4470i 1.6710i 1.0002i
- -0.0213 -00487 -06352 -1.1169 -1.5168

± ± ± ± ±
1.3031 i l.3117i 1.0384i 1.3222i 1.0002i
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Figure 3.10 System root-locus diagram showing pole locus for constant sling length
as load weight is increased.

Each of the diagrams shown in the Figure 3.10 can be enlarged to view the pole locus

near to Re(pole)=O axis to demonstrate the variation ofthe system poles and to show

that the positions of the system poles crossed the imaginary axis as the load weight

increased and the whole helicopter system becomes less stable. For example

considering the case of fixed sling length of 10ft and 15ft with different load weights,

the enlarged view of poles locus near to Re(pole )=0 axis are shown as in Figure 3.11
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and Figure 3.12. It is clear from the figures that the whole helicopter system becomes

less stable when the load increases.
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Figure 3.11 Enlarged view of the case of fixed sling length of 10 ft of Figure 3.10

showing poles locus near to Re(poles)=O axis
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Figure 3.12 Enlarged view of the case of fixed sling length of 15 ft of Figure 3.10

showing poles locus near to Re(poles)=O axis

The linearised helicopter model without carrying a load has system poles located on

the left hand side of s-plane but near to the imaginary axis, which indicates that the

system is stable but it may have strong oscillations in its dynamic responses and it is

not very robust. The pole locus also indicates that the system (helicopter with load)
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poles have the variation trends of moving further towards to right direction on the s-

plane with increase of load weights.

For Case II the load weight was kept at a constant and the sling length varied between

the limit of 10 ~ 20 ft. Five cases are tested and Tables 3.7 ~ 3.11 summarise the

results of variation of the system poles and the corresponding root loci are illustrated

in Figure 3.13.

Case I:The underslung load with a constant weight and different sling lengths

Five sets of different parameters are adopted for the simulation tests and the system

pole locations are tabulated in the following tables.

Table 3.7: System pole locations as load weight ML = 500 Ibm

Helicopter 10 ft 12 tl IS ft 18 ft 20 ft
-1.0919 -1.1191 -1.1179 -1.1159 -1.1159 -1.1140

-6.3938 -6.4194 -6.4212 -6.4301 -6.4301 -6.4251

-0.0032 -0.0100 -0.0100 -0.0048 -0.0048 -0.0100

-0.0977 -0.0751 -0.0751 -0.0818 -0.0818 -0.0751

-0.3045 -0.3016 -0.3016 -0.3036 -0.3036 -0.3016

-0.31 S9 -0.3220 -0.3214 -0.3199 -0.3199 -0.3189
± ± ± ± ± ±

0.4363i 0.462li 0.4624i 0.4628i 0.4628i 0.4640i
-0.0489 -0.0180 -0.0178 -0.0211 -0.0211 -0.0169

± ± ± ± ± ±
0.3898i 0.395Si 0.395Si 0.3868i 0,3868i 0.39S6i

- -0.0393 -0.0378 -0.0316 -0.0316 -0.0369
± ± ± ± ±

1.8376i 1.6766i 1.5043i I.S043i 1.2974i
- -0.0148 -0.0157 -0.0736 -0.0736 -0.0213

± ± ± ± ±
1.8407i 1.6809i 1.5019i I.S019i 1.3031i
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Table 3.8: System pole locations as load weight ML = 750 Ibm

Helicopter 10 ft 12 ft 15 ft 18ft 20 ft

-1.0919 -1.1261 - 1.1201 -1.1216 -1.1201 - 1.1189

-6.3938 -6.4123 -6.4201 -6.4181 -6.4201 -6.4212

-0.0032 -0.0106 -0.0106 -0.0107 -0.0106 -0.0106

-0.0977 -0.0728 -0.0728 -0.0723 -0.0728 -0.0728

-0.3045 -0.2990 -0.2990 -0.2994 -0.2990 -0.2990

-0.3159 -0.3200 -0.3161 -0.3177 -0.3161 -0.3152
± ± ± ± ± ±

0.4363i 0.4694i 0.4715i 0.4701i 0.4715i 0.4722i
-0.0489 -0.0157 -0.0145 -0.0150 -0.0145 -0.0141

± ± ± ± ± ±
0.3898i 0.3981i 0.3983i 0.3986i 0.3983i 0.3984i

- -0.0527 -0.0488 -0.0217 -0.0246 -0.0266
± ± ± ± ±

1.8574i 1.3827i 1.5224i 1.3906i 1.3194i
- -0.0170 -0.0246 -0.0494 -0.0488 -0.0487

± ± ± ± ±
1.8615i 1.3906i 1.5150i 1.3827i 1.3117i

Table 3.9: System pole locations as load weight ML = 1000 Ibm

Helicopter 10 ft 12ft 15 ft 18 ft 20 ft

-1.0919 -1.0560 -0.8852 -0.7848 -0.7715 -0.8687

-6.3938 -9.9252 -9.5586 -9.2203 -8.8828 -8.5565

-0.0032 -0.0061 -0.0108 -0.0034 -0.0036 -0.0114

-0.0977 -0.2012 -0.1194 -0.0888 -0.0869 -0.0953

-0.3045 -0.2606 -0.2895 -0.3394 -0.3400 -0.3479

-0.3159 -0.1809 -0.1941 -0.2295 -0.2262 -0.1636
± ± ± ± ± ±

0.4363i 0.6219i 0.6167i 0.5050i 0.5041i 0.6092i
-0.0489 0.0643 0.0723 0.0074 0.0065 0.0799

± ± ± ± ± ±
0.3898i 0.4577i 0.4599i 0.3445i 0.3422i 0.4594i

- -0.1055 -0.1043 -0.1020 -0.1101 -0.1247
± ± ± ± ±

1.9883i 1.8663i 1.7380i 1.5992i 1.4470i
- -0.8847 -0.9112 -0.7662 -0.6747 -0.6352

± ± ± ± ±
1.2464i 1.2077i J.1680i 1.1132i 1.0384i
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Table 3.10: System pole locations as load weight ML = 1500 Ibm

Helicopter 10 [t 12 ft 15ft 18ft 20 ft

- 1.0919 -1.1054 -1.0997 -0.6221 -0.9645 -1.1820

-6.3938 -6.7207 -6.7151 -7.9848 -7.8716 -7.4519

-0.0032 -0.0135 -0.0136 -0.0052 -0.0355 -0.0075

-0.0977 -0.0804 -0.0800 -0.0972 -0.0556 -0.2120

-0.3045 -0.3867 -0.3867 -0.3318 -0.2968 -0.3313

-0.3159 -0.3541 -0.3532 -0.2366 -0.1481 -0.2146
± ± ± ± ± ±

0.4363i OA532i 0.4545i 0.5974i 0.6810i 0.5892i

-0.0489 0.0369 0.0366 0.0119 0.0998 0.1613
± ± ± ± ±

0.3898i 0.3821i 0.3821i 0.4406i 0.4702i OA096i

- 0.0833 0.0809 -0.0368 -0.1171 -0.1103
± ± ± ± ±

2.4535i 2.3077i 1.8753i 1.7848i 1.67 IOi

- 0.0263 0.0297 -0.7349 -1.0833 -1.1169
± ± ± ± ±

1.9215i 1.7S67i 1.9064i 0.9037i 1.3222i

Table 3.11: System pole locations as load weight ML = 2000 Ibm

Helicopter 10 ft 12ft 15 ft 18 ft 20 ft

-1.0919 -1.1341 -1.1297 -0.9369 -0.9300 -0.8234

-6.3938 -6.3224 -6.3301 -7.5613 -7.4020 -7.2841

-0.0032 -0.0314 -0.0314 -0.0052 -0.0049 -0.0036

-0.0977 -0.0497 -0.0497 -0.0694 -0.0753 -0.0182

-0.3045 -0.3426 -0.3425 -0.3333 -0.3326 -0.3590

-0.3159 -0.3102 -0.3079 -0.1834 -0.1779 -0.0306
± ± ± ± ± ±

0.4363i OA695i 0.4703i 0.4968i 0.4921i 0.8253i
-0.0489 -0.0172 -0.0165 0.0264 0.0294 0.2158

± ± ± ± ± ±
0.3898i OA073i 0.4074i 0.3199i 0.3190i 0.2819i

- -0.1282 -0.1242 -0.1160 -0.1238 -0.0993
± ± ± ± ±

1.9577i 1.7852i 2.0003i 1.8539i 1.0002i
- -0.0324 -0.0374 -1.2367 -1.0826 -1.5168

± ± ± ± ±
1.9660i 1.7993i 0.8995i 0.8996i J.0002i

In Case 2, each of the diagrams shown in Figure 3.13 can be enlarged to view the pole

locus near to Re(pole)=O axis to demonstrate the variation of the system poles and to

show that the positions of the system poles crossed the imaginary axis as the sling

length increased and the whole helicopter system becomes less stable. For example

considering the case of fixed load weight of 500 Ibm and 1000 Ibm with different
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sling lengths then the enlarged VIew of poles locus near to Re(pole)=O axis can be

shown as in Figure 3.14 and Figure 3.15.
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Figure 3.13 System root· locus diagram showing pole locus for constant load weight
as sling length is increased.
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3.13 showing poles locus near to Re(poles )=0 axis
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Figure 3.15 Enlarged view of the case of fixed load weight of 1000 Ibm of Figure

3.13 showing poles locus near to Re(poles )=0 axis

3.5 Summary and discussion

From the simulation results, it is evident that the stability of the helicopter can be

significantly affected due to the presence of an underslung load. Analysis using a

linearised system model shows that the helicopter-load combination becomes
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increasingly unstable as the load weight or sling length increases, which are revealed

by the migration of the system poles towards to the right hand side of the complex s-

plane. The analysis shows how the stability of helicopter is affected by the influences

of the addition of the underslung load. However, It is important to point out that the

linearised helicopter model is only an approximation to the true system, furthermore

in the process of linearisation rotor dynamics are ignored and only the six degree of

freedom ridged body dynamics are considered. These results could be improvable, if

rotor dynamic and other factors affect the helicopter dynamic such as unsteady

aerodynamic are taken into account. Thus, this analysis provides the basis for a

further analysis of stability ofthe system.

55



Chapter 4

Influence of helicopter dynamics to the dynamics of the
underslung load

To investigate the dynamic behaviour of a helicopter with an underslung external

load, an underslung load mathematical model is developed and combined to the

original helicopter model, which results in a complicated cascade connection

nonlinear system description. The underslung load is attached to the helicopter by a

single point and can swing freely. The load dynamic has no direct external control

input. The external control input exerts the influences on the underslung load through

manoeuvring the helicopter's dynamics. Thus the whole system can be considered as

a cascade connection of two subsystems and the helicopter dynamics can be

considered as the input to the underslung load subsystem.

The analysis begins with developing a mathematical model of the underslung load,

accounting for two-dimensional motion of the suspension point. The model is then

extended to three dimensions and applied to some example flight manoeuvres to study

the resulting three-dimensional motion of the load.

4.1 Mathematical model of an underslung load

In this section, the underslung load is considered to be suspended from a single

suspension point that is subject to motion and therefore modelled as a driven spherical

pendulum. The equations that describe the load dynamics are obtained by first

considering motion with reference to the longitudinal suspension angle BL in the x-z

plane. This is then repeated for the lateral case involving 'PL and the y-z plane (Figure

4.1). These are then combined to simulate three-dimensional motion of the load. The

underslung load system has six inputs, longitudinal, lateral, and vertical velocities

together with the corresponding accelerations of the helicopter, whilst the outputs are

the longitudinal and lateral directional suspension angles. The load is subject to an

isotropic aerodynamic force (proportional to the square of its airspeed) such as would

be experienced by a spherical shaped load. Aerodynamic interaction with the
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helicopter that may occur for example due to rotor downwash has been ignored.

Finally, the sling itself is assumed to be rigid and contribute zero aerodynamic force

of its own. We use a co-ordinate system shown in Figure 4.1., whereas x, y, z are

position axes, i.e., for example z represent the vertical axis in relation to the

translation of earth axis. The rotational freedom of the load motion is ignored. With

these assumptions, the equations governing the load motion can be derived as follows.

•"1 •·~.'.·.'.• •.' .., ... .'.' .'I"•..•..,..
•.

•••,0

y

... .....
• ..... .....·••·•••••

x

(X,t.f:..Z.:';

z

Figure 4.1 Geometry of a spherical pendulum with defined x, y, z position axes and
load angles

Considering the motion in the x-z plane, the load position with respect to the

coordinate system in Figure 4.1 can be written as follows.

XL = Xo =l, sin BLxz

ZL = Z, + Ix cos f)Lxz

(4.1 a)

(4.lb)

where Xo and 20 are the horizontal and vertical displacements of the suspension point

and Ix' BLr. represents the sling length and suspension angle in the x-z plane

respectively. The resolved load velocities in the x-z plane are therefore given by:

. . .
XL = Xo -lxBLxz =«; (4.2a)

(4.2b)
. . .

ZL =Zo -lxf)Lxz sinBLX%

and the resolved accelerations of the load are
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XL = Xo + liJZxz sinBLxz -1/jLxz COSBLxz

z, = z, -ljJixz COS{}Lxz -ljJLxz sin{}Lxz

(4.3a)

(4.3b)

The forces acting on the load in the horizontal direction can be described by

where Fx is the resultant force acting on the load in the horizontal direction of

motion. TL is the tension in the sling, so the horizontal directional tension component

is represented by TL sin ()Lxz and the last term represents the aerodynamic drag and

always opposes motion. kD represents the aerodynamic force darg constant.

Resolving forces in the vertical direction gives

Fz =Mj'L =MLg-TL cosOL:c:-kvsigr(ZL)zi

Similarly, where Fz is the resultant force acting on the load in the vertical direction of

motion. MLg is the load weight. The vertical directional tension component is

represented by TL cos ()Lxz and the last term represents the aerodynamic drag and

always opposes motion. Substituting for x, and z, from Equations (4.2a) and (4.2b),

XL and 2L from (4.3a) and (4.3b) into F, and Fz to eliminate Tt and its gives:

.. g . COS()L" sinaL ..() A XIX x:z
L = --sm L + 0 + 0
xz I r XZ I I

• X X

(4.4a)

where M L' and kD are the mass of suspended load and aerodynamic drag force

coefficient respectively. The aerodynamic drag force constant kD is given by:

(4.4b)
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where p, s and CD are the air density, the load area presented to the airflow and the

drag coefficient for the load respectively. The term Ki)l in (4.4a) represents the.,

friction of hinge which has an unknown value to be determined.

A similar procedure for motion in the y-z plane leads to an equation with the

appropriate parameters:

.. g . COSIPLy-.. sinIPL ..
IPL = --SlnIPL + * Yo + yz Zo

yz I yz I I
y y y

kDsign(Ydcos IPL . 2 kDsign(ZL)sin IPLyz . 2
+ ~~+ ~

MJy ML~

(4.4c)

where, similarly, KeePl describes the hinge friction force. Equations (4.4a)
>"

and (4.4c) may be used to derive the load angle 'l'Lxy in the x-y plane, if

required, from:

-I( tan 'Plyz 1IJI L = tan
xy tan Blxz

and hence Vtlxy and ViLxy.

(4.5)

4.2 Simulation studies of the load dynamics

In this section an investigation of the influences of helicopter dynamics to the

dynamics of the underslung load is considered. Simulations were conducted to study

the behavior of the suspended load in response to different flight maneuvering

conditions. Bl is the longitudinal suspension angle, so the variation of load angle
.<Z

(longitudinal) depend upon the angle movement Bl . The angle movement Bl is
., JU

influenced by the value of frication force coefficient ke. Similarly, for lateral motion,

cPt. represent the lateral directional suspension angle, so the variation of the lateral
yz

suspension angle movement CPl is influenced by the value of lateral frication force
yz

coefficient k",. The mathematical model is implemented in MATLAB*SIMULINK
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software and the outline of schematic block diagram of the simulation model is shown

in Figure 4.2.
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Figure 4.2: Schematic block diagram of an underslung load simulation model
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4.2.1 Simulation study with a certain range imposed inputs

The mathematical model presented the previous section has been applied to

investigate the effect of helicopter motion on the load behaviour. Three cases have

been considered. Firstly, an idealised forward acceleration/deceleration profile is

applied in which the helicopter accelerates at a constant rate from rest up to a constant

speed. A brief sidestep is then performed, followed by a constant deceleration to rest

(Figure 4.3). Three forward acceleration/deceleration rates have been considered,

corresponding to three levels of aggressiveness, resulting in three different forward

velocities - ul, u2, and u3. In each case the vertical speed w was kept at zero.

Secondly, the effect of forward acceleration/deceleration is investigated in more detail

(Figure 4.4). The underslung load in each of these tests was 500lbm suspended on a

sling of length 15ft with the value of ko = Sib/ft. The values of forward velocities,

forward acceleration/deceleration and the hinge friction used for these example

simulation tests, are shown in Table 4.1 which are chosen with consideration of

maximum safe operational values and typical flying speed. It is also important to

point out that, if the hinge friction value is zero then the load movement (oscillation)

continues for ever and it may not represent the real life situation.

Table 4.1: Simulation parameters for the designed motion profiles

Description Symbol value Units
Forward velocity Ut 65 ft / s

u2
40 ft / S

u3 25 ft / s

Forward accel./ decal. dUI / dt 2.6 ft / S2

dU2 / dt 1.6 ft / S2

dU3 / dt 1.0 ft / S2
Sideslip velocity v 12.0 ft / s
Hinge friction coefficient k()(krp) 0.001 -
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Figure 4.3 Underslung load suspension angle transients in response to the prescribed
helicopter motion.
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Figure 4.4 Underslung load suspension angle transient in the x-z plane in response to
the prescribed helicopter motion.

From Figure 4.3, it can be seen that the levels of accelerations of helicopter motion

do not affect the load oscillations very much. The simulation results also indicate that

the different patterns of acceleration/deceleration of the helicopter motion result in

different load dynamic behaviour. A typical example is shown in Figures 4.4. The

deceleration profile shown as a dashed line in Figure 4.4 leads to more stable load

dynamics, which shows that the pilot should apply appropriate velocity profiles for

helicopter manoeuvring in positioning a load.
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The dynamic response of the load depends on the value of ko, load weight and sling

length. From the simulation results obtained in Chapter 3, the effects of the load

weight and sling length are addressed. To investigate the effects of the aerodynamic

drag force constant ko, tests were conducted for the underslung load suspension angle

transient in the x-z plane in response to the prescribed helicopter motion with a

constant sling length (15ft) and load weight (500 lb) for three different aerodynamic

force drag constants (kD) and the responses are shown in Figure 4.5.
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Figure 4.5 Underslung load suspension angle transient in the x-z plane in response to

the prescribed helicopter motion with a constant sling length (15ft) and load weight

(500 lb) for three different aerodynamic force drag constants (~).

From the simulation results (Figure 4.5 ) it is evident that the influence of the

aerodynamic force drag constant change the system dynamic behaviour. It can be

seen that the small value of ko causes a periodic oscillation (see the response of the

case kD = 0.5 lb/ft) and smaller deflection from the initial position of the load.

Increasing the value of ko also increase the load angle deflection from its initial
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position. Thus, its may suggest that bad operational weather condition such as high

wind will enforcing difficulty in the process of positing a load.

4.2.2 Simulation study with the helicopter simulated inputs

In this case, an actual forward acceleration/deceleration data pattern obtained from the

measurements recorded during a flight test conducted on a UH60 helicopter (without

an under-slung load) [Fletcher, 1993] has been used as the load inputs to investigate

the combined effect of u, v , and w velocities as the load may be experienced during

the actual flight conditions. For this test, three load weights at a constant sling length

and three different sling lengths at a constant load weight have been chosen as load

parameters. Figures 4.6 and 4.7 show the simulation results for an actual forward

acceleration/deceleration manoeuvre derived from measurements recorded during a

flight test on a UH60 helicopter involving motion in all three dimensions.

---- Load 600 Ibm
.-- Load 1000 Ibm

Figure 4.6 acceleration/deceleration manoeuvres with a constant sling length 15 ft

and three different load weights.

NASA's underslung load experimental flight trials findings suggest that the limits of

maximum external load can be carried by a UH-60 helicopter is about 8000 lbs with a
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maximum sling length of 35 ft [Cicolani et al. 1998]. However, for safe slung load

operation 20ft sling length is recommended by US military, but the load weight limit

can vary within the allowable maximum load weight limit, which depends on the

capacity of load carrying hooks. For operational safety, the underslung load weight is

generally selected as up to 50% of the hook capacity and a hook with a capacity of

28% of helicopter weight is usually used for underslung load flight trials [Cicolani et

aI, 1998].

Figure 4.7 Expanded scale of the acceleration/deceleration manoeuvres shown in

Figure 4.6 with a constant load weight of 500 Ibm and three different sling lengths.

The results shown in Figure 4.6 reveal that heavier loads produce smaller deflections

from the vertical as expected and that for this flight manoeuvre, relatively little

oscillatory motion was apparent. From Figure 4.7, the sling length does not influence

the load stability very much under the particular helicopter manoeuvre shown in

Figures 4.6 and 4.7. However, it is clear that the frequency of load oscillation reduces

as the sling length increases.
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Figure 4.8 Underslung load suspension angle transient in the x-z plane in response to

the helicopter motion with a constant sling length (15ft) and load weight (500 lb) for

three different aerodynamic force drag constants (Kj).

Tests were conducted by varying the value of drag constant k» to investigate the effect

of aerodynamic drag forces that may involve in the load dynamic. However it should

be noted that due to the symmetrical nature of the longitudinal and lateral motion in

hover dynamic, the suspension angles relating to them have similar dynamic

behaviour (see Figure 4.6). Thus, for this test only the longitudinal suspension angle

dynamic behaviour is considered (Figure 4.8) and the value of 0.01 is used as a hinge

frication coefficient. The simulation results suggest that the changing the value of kD

represents different air conditions and flying environment. For example, the large

value of ko case (kD = 50 Ib/ft) may represent the windy weather condition. It can be

noted that the results from the prescribed motion also lead to the same conclusion (see

Figure 4.5).
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4.3 Summary and discussion

An investigation of the dynamic behaviour of a helicopter with an underslung external

load is presented in this chapter. A mathematical model of an underslung load is

developed and applied to study the behaviour of the suspended load in response to in-

flight helicopter manoeuvres. The simulation studies for two different types of inputs

from the helicopter dynamics were conducted. Firstly, different patterns of prescribed

helicopter motion profiles were applied to the underslung load model. Secondly, an

actual forward acceleration/deceleration manoeuvre derived from measurements

recorded during a flight test conducted on a UH60 helicopter has been inputted to the

load model. Simulation results reveal the importance of pilot control actions in

positioning a load and the effect of system parameters such as aerodynamic drag force

constant on the load dynamics.
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Chapter 5

Helicopter control methods and application of Fuzzy

Control

5.1 Introduction

The design of flight control systems for actively controlled helicopters is not an easy

topic which is associated not only with the complex nature of the dynamics of the

helicopter itself, but also with the range of design objectives which must be satisfied.

Usually, the military rotorcraft handling qualities specification ADS-33D

[Anonymous, 1996] is used to assess the capability of the control law. The

requirement for the control law should be to stabilize the aircraft while controlling.

This chapter aims to get an overview of control design techniques applied to develop

a control law for helicopters and an application example of fuzzy control is

demonstrated via an experimental study for a twin rotor MIMO system.

5.2 Helicopter control methods

Variety of literature has been published concerning various aspects of helicopter

controls. The content of this section is limited to the existing control methods to be

successfully applied to helicopter control problems. Broader details of the subject can

be found in various reports, which summarise the problems experienced in helicopter

control design and suggest some technical solutions for those problems (see for

example [Skogestad et al. 1996], [Prasad et al, 1988], [Mayajima, 1979]).

A review of reported methods for flight control law design shows that many

approaches used to design the control law have involved the application of SISO

techniques to each control loop individually [Manness et ai, 1990]. The controller

design methods such as linear quadratic regular (LQR) or linear quadratic gaussian

(LQG) method (commonly referred to LQ methods [Gribble et al, 1990]), sliding
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mode control (SMC) and eigenstructure assignment are used to evaluate multivariable

control law design for helicopter flight [Garrard et ai, 1987]. In the case of

eigenstructure assignment method, the designer attempt to find optimum pole

positions [Manness et al, 1990]. The main idea of SMC is to maintain the system

sliding on a surface in the state space despite the uncertainties or perturbations. This is

done by means of a discontinuous control law that switches between two structures,

when the system passes through that surface [Shtessel et al, 1999], [Edwards et al,

1998]. Many researchers using the idea of SMC to develop flight control laws, for

example see [Dorling et al, 1986], [Shkolnikov et al, 2001], [Shtessel et al, 2002],

[Shtessel et al. 2003]. Sliding mode control is a technique for the design of nonlinear

regulators [Dorling et al, 1986]. The first step in the two part synthesis procedure is to

specify a desired sliding subspace. This involves using regulation techniques such as

LQR or eigenstructure assignment to stabilise a reduced order system. A nonlinear

controller is then developed in the second step to asymptotically drive the system

towards the regulated subsystem so-called sliding subspace. However, designing the

sliding subspace is very difficult job indeed, since there appears to be little guidance

on how to design a sliding subspace, which may be limited this design method to

helicopter control applications.

The method like H co optimisation used to design a flight control law can be

considered as a frequency domain method, since this technique is similar to that the

design of the control law is based on a transfer function matrix representation of the

system and it involves frequency domain performance specifications. For example, in

the case of designing a control law for a helicopter, Vue [Vue et al, 1989] has

described the application of H <Xl optimisation techniques to the determination of

feedback control laws for improving the handling qualities of a combat helicopter.

Quantitative feedback control technique is a control synthesis technique which

involves shaping the loop transmission to meet bounds placed upon it by performance

specifications in terms of desired system responses and disturbance rejection levels

[Houpis, 1999]. A survey of quantitative feedback control technique can be found in

Horowitz [Horowitz, 1991]. The possibility of applying Quantitative feedback control

technique to helicopter flight control design is considered by several researches see

for example [Thompson et al. 1999], [Snell et al, 1998], [Cheng, 1995]. However, due

to the requirements of conservative and sequential design for each of the multivariable
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sub-systems it is difficult to obtain best closed loop performance under practical

constraints. Moreover, manual bound computation and trial and error loop shaping

design procedures makes difficult to realise a stabilising feedback control law for

helicopter system using quantitative feedback control technique.

Model reference techniques are those synthesis procedures which can be used to

design feedforward controllers. For instance, integral inverse model following

technique and controllers using nonlinear system inverses [Snell et al. 1992] are can

be considered as model reference techniques [Ghosh et al. 2000]. In the case of

integral inverse model following technique a regulator is designed to minimise the

error transients between the responses of the system being controlled and a model

which describes dynamics. The controller using nonlinear system inverses is

essentially a procedure for the inversion of the system such that each input is linked

with an output [Lane et al. 1988]. Jun [Jun et al. 1999] presented an investigation of

state estimation of an autonomous flying helicopter. State estimator techniques such

as Kalman filter and state observer and loop transfer techniques can be classified as

output feedback methods. State estimator techniques provide a means of generating

estimated state variables for feedback from available measurements [Saripalli et al.

2003]. However, the use of this method has a row back is that the use of estimated

state feedback can create problems for the designer in that the resulting control laws

are not, in most cases, robust to uncertainties or variations in the plant [Bryson, 1985].

The use of intelligent control methods for helicopter control system design such as

fuzzy control and Neural Network (NN) has also been addressed by several

researchers for example see [Kadmiry et ai, 2001], [Steinberg, 1992].

Among all the design methods, PID control and linear feedback control are the most

popularly accepted methods. A further discussion on PID control, LQ methods,

nonlinear feedback linearization, eigenstructure assignment, classical SISO

techniques, H eo optimisation and intelligent control methods for helicopter control

system design is given in the following subsections.
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5.2.1 PID control

r 11-...;;.e~~IConnl~ U ',-_P_Ia_nt__ .... y

Figure 5.1 Closed loop system

PID (Proportional - Integral - Derivative) control is widely used in industry to control

many different systems, including guidance, navigation and control system (GN-C).

The PID controller works in the following manner, the variable (e) represents the

tracking error, the difference between the desired input value (r) and the actual output

(y) (see Figure 5.1). This error signal (e) will be sent to the PID controller, and the

controller computes both the derivative and the integral of this error signal. The signal

(u) just past the controller is now equal to the proportional gain (K p) times the

magnitude of the error plus the integral gain (K I) times the integral of the error plus

the derivative gain (K D) times the derivative of the error. i.e.,

u = K pe + K I Ie dt + K D de this signal (u) will be sent to the plant, and the new
dt

output (y) will be obtained. This new output (y) will be sent back to the sensor again

to find the new error signal (e). The controller takes this new error signal and

computes its derivative and it's integral again. This process goes on and on.

Ledin [Ledin et al. 2003] presents a PID controller to drive the helicopter to a

specified point in a space by considering that the helicopter possesses a navigation

system that tracks the vehicle's position, velocity and angular orientation without

error [Ledin et al. 2003]. PID control is often used in applications where the plant is

high order and its dynamic behaviour is not well understood. The PI type control is

used to give high loop gain at low frequencies for good command tracking. Enns

[Enns, et al. 1986] used the MIM:O generalization PI technique and designed a MIMO

PI control law for YAH-64 helicopter. Many researchers have applied PID or some

form ofPID control law to scaled size helicopter control (for example, see Sanders et

ai, 1998, Woodley, et al, 1997). But tuning the parameters of a PID controller is one
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of the most common problems for a control engineer. Trial and error techniques (on-

line tuning) are thus inadequate to derive a good compromise between controller

performance and robustness. Chen [Chen et ai, 1995] and Musch [Musch et ai, 1997]

presents some different approaches for better tuning of PID control. In particular,

Musch [Musch et ai, 1997] discusses the parameterization of PID control structures

with a direct minimization of the H-infinity norm. In this work, the design of position

controller for a model helicopter at hover via PID controller tuning is considered to

address the tuning problems. PID control law design is still the most popular method

in practices within the control community.

5.2.2 Linear Quadratic (LQ) control methods

The LQ methods, in particular, linear quadratic regulators (LQR) lead to a full state

feedback law for the system and results excellent robustness properties and

multi variable stability margins [Doyle, et al 1981]. However, in most applications,

only part of the system states can be measured, so a state estimator is required in the

feedback loop. For example, in the more realistic situation of output feedback a state

estimator may be used or the design may be based on a reduced order model. In these

cases, the original robustness properties do not apply and it may be appropriate to use

loop transfer recovery (LTR) procedure, which can be used in conjunction with LQR

design to recover the closed loop feedback properties of the LQR. The LQ

methodology has provided an important tool for control law design [Gribble, 1993]

and is commonly used in the design of flight control law, especially for fixed wing

aircraft [Wendel et ai, 1989]. The design freedoms in the LQR method are two

matrices which penalise excursions of states and input vectors from the desired

values. But it also generates the difficulties in determination of those two matrices.

The LQR method has been considered as lacking visibility in the sense that it is not

obvious how to choose these matrices to achieve desired loop properties [Manness et

ai, 1990]. In fact, LQR design can now be guided by eigenstructure assignment

[Harvey, 1978, Garrard, et al 1989] or loop shaping [Doyle, 1981]. Although LQR

theories guarantee stability robustness, these theories do not provide a direct means to

obtain the desired responses types. Response types are obtained indirectly through

choice of state and control weighting matrices. As indicated above the LQR method

requires full state feedback, but which is usually not feasible. However stability
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margins can be maintains without full state feedback but requires an estimator in the

feedback loop. This estimator can seriously degrade the stability margins of the closed

loop system [Rubio, et al 1997]. Recently the LQR based control design for

commercial aircraft control application was studied by Blight [Blight et al. 1996] to

redesign an autopilot control law in order to improve stability and reduce sensitivity

to plant parameter variations. This controller was flight tested and implemented in the

autopilot of Boeing 767 commercial transport airplane. In the autonomous flight

control study of unmanned aerial vehicles (UAV), LQR is used as baseline inner loop

controller [Boyle et al, 1999]. LQR has also been adopted for an autopilot design for a

high-altitude, supersonic air-to-air bank-to-tum (BTT) missile [Bossi et al 1988]. One

of the design requirements for such systems is a high level of robustness to parameter

variations, which is difficult to meet with classical methods.

5.2.3 Nonlinear feedback linearization

The idea of nonlinear feedback linearization is that using feedback to cancel the

nonlinear terms and then the design of the linearized system can be accomplished

using standard linear controller synthesis procedures. For this method, the exact

knowledge of the nonlinear terms is required for the exact cancellation and,

linearization can not be obtained if any of the control actuators are saturated. So the

method is not realistic in many cases. Smith [Smith et al 1987] states the success of

the application of this control system concept to aircraft control. For example a

controller using a nonlinear dynamic inversion controller has been flown by NASA on

UH -1H helicopter [Meyer et al. 1983]. Despite these successes, there are some issues

which can affect the use of this method to helicopter control. There are always some

inaccuracies in mathematical models of a helicopter and the exact cancellation is very

difficult to achieve.

5.2.4 Eigenstructure Assignment

This method uses feedback control to place a closed loop eigenvalues and shape

closed loop eigenvectors to achieve performance specifications. The key to successful

eigenstructure assignment is an appropriate manipulation of the closed-loop
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eigenvectors [Manness et al. 1990]. The use of eigenstructure assignment for

rotorcraft control system design has been considered by several researchers. An

excellent review of the research in the area of eigenstructure assignment techniques

applied to helicopter flight control system design is given in Garrard, et a11989. This

technique is useful when performance specifications can be expressed in terms of

closed loop eigenvalues and eigenvectors. As far as the design of helicopter flight

control system concerns, Garrard [Garrard, et al 1989] shows that eigenstructure

assignment provides a straightforward methodology which results in control law. The

control law is relatively simple for the implementation and do not require high order

dynamic compensators in the feedback loops. However, even though this technique

provides a direct simple method for achieving desired performance they do not

provide guarantee to performance robustness. Generally, the eigenstructure

assignment is always associated with a chosen design method in applications.

5.2.5 Classical SISO techniques

Classical single input single output (SIS0) techniques concentrate on achieving a

maximal loop gain over a specified frequency range consistent with specified gain

and phase margins [Garrard, et al 1989]. Classical SlS0 techniques applied to each

control loop individually. Review of publication of helicopter flight control law

design, shows that SISO techniques are more widely used to design a helicopter flight

control system. Innocenti [Innocenti et al. 1984] gives an example of classical S1S0

methods application to a flight control design. Enns [Enns, 1987] provides an

interesting account of this classical type approach for the Apache AV05 YAH-64

flight control system.

Although classical SISO design methods are of very great practical value, and has

proven to be a very reliable and successful technique, the row-back for the use of

these methods is that, the classical SISO design techniques treat each control loop

separately and do not explicitly include coupling between loops. Since this coupling

can not be ignored in helicopters this method is not sufficient and a variety of other

techniques need to be studied helicopter control systems.
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5.2.6 H ec optimisation

This method can be considered as a multi input multi output (MIMO) generalization

of classical S1S0 frequency response techniques [Skogestad et ai, 1996]. This method

is based on the use of H <Xl norm which is defined, for a transfer function matrix, as the

maximum over all frequencies of the largest singular value of that matrix. Singular

values provide information concerning guaranteed bounds on system performance and

the H eo norm can place an upper bound on the uncertainty level in a given system

which is to be controlled [Manness et ai, 1990]. Problems of control system design

can be formulated in terms of the minimisation of the H <$J norm of an appropriately

weighted closed loop transfer function matrix. Vue [Vue et al, 1990] has described

the application of H <Xl method to the determination of feedback control law for

improving the handling qualities of a helicopter. In that work a controller design is

described which is able to give accurate control of pitch and roll attitude, yaw rate and

heave velocity for a typical helicopter. Performance and robustness are achieved by

the two-degree of freedom control system structure. A feedback compensator was

designed to have suitable robustness properties against model uncertainty and

disturbances and a pre-compensator was found to achieve desired performance

objectives in terms of tracking accuracy and speed of responses. Since the desired

response types for helicopters are given in terms of frequency response relationship

between pilot inputs and helicopter outputs, the H eo approach appears to provide a

suitable method for design of helicopter flight control laws [Skogestad et ai, 1996].

Turner [Turner, 2000] gives an account of success of H eo method and shows the

successful application of Hoc approach to helicopter control. Furthermore,

Postlethwaite [Postlethwaite et al, 2002] and Walker [Walker, 2003] show the

applicability of Hoc control law via means of flight test. These H eo controllers have

been flight tested on Bell-20S helicopter at the NRC flight research lab, Ottawa.

However, despite of these successes there is some row-back to this method such as,

the underlying mathematical theory of Hoc design is sophisticated. Dilemma of

selecting the weighting function, which is critical to the success of the design, causes

the repeated design iterations, and also, the order of the controller designed through

Hoc technique is very high which in tum increases the complexity of controllers.
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5.2.7 Intelligent Control methods

The increasing demand of a controller design method, which is able to achieve high

performance in uncertain and adverse conditions, has led to the development of

intelligent control methods. The intelligent control systems are classically constituted

by three basic levels. 1) the organisation level which organises sequences of complex

actions in a long term memory, 2) the co-ordination level which coordinates decision

making and learning in a short term memory to generate subtask sequences to execute

simple commends on the basis of real time information of the world, 3) the execution

level which performs the continuous-time control of the system [Antsakil et al. 1993].

The high degree of uncertainty and complex structure of the aircraft have leads to the

intelligent flight control system development. Intelligent flight control systems learn

knowledge of the aircraft and its mission and adapt to changes in the flight

environment [Stengel 1994]. Usually the intelligent flight control laws are design to

make the aircraft less dependent on proper pilot command for mission completion and

enhance the mission capability of aircraft. Mission tasks performances are improved

by learning from experience. Generally Intelligent flight control designs are low cost

and reliably. Thus unmanned air vehicle (VAV) tests are usually carried out with the

intelligent flight controller employed. The work described in Buskey [Buskey et al.

2001] emphasised the use of an artificial neural network (ANN) to have the helicopter

achieve stable hover. Wan [Wan et al. 2001] present a control method for a MIMO

nonlinear systems based on a combination of a neural network feedback controller

and state-dependent Riccati equation controller. The resulting technique is applied to

a six degree of freedom helicopter model. Recently an autonomous helicopter was

flight tested with the learning control algorithm employed in the controller design

[Bagnell et ai, 2001]. The use of intelligent control methods for helicopter control

system design has been considered by several researchers especially, some forms of

fuzzy control development are widely considered. (for example, see [Kadmiry et al.

2001, Steinberg, 1992]). Fuzzy logic control has been applied to control, an intelligent

unmanned helicopter [Sugeno et ai, 1995]. Shim [Shim et ai, 1998] compared the

fuzzy logic controller performance with linear robust multi-variable control and non
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linear tracking control methodologies for helicopter autopilot design and shows the

fuzzy controller's capabilities of handling uncertainties and disturbances.

5.3 An application example of fuzzy control

To strengthen the discussion presented relating to intelligent control, in particular

fuzzy control and its capabilities, this section is devoted to fuzzy controller

development for a nonlinear twin rotor MIMO system, which is a helicopter alike

experimental system that is available in the Control Engineering Laboratory at the

University of Liverpool.

5.3.1 Introduction to the twin rotor MIMO system

The Twin Rotor MIMO System (TRMS) can be considered as a cut-down version ofa

helicopter system as shown in Figure 5.2. It consists of a beam pivoted on its base so

it can rotate freely both in the horizontal and vertical planes [TRMS Reference

manual 1997]. Two rotors, main and tail, are mounted at the two ends of the beam

horizontally and vertically, which are controlled by a PC-based control system. The

system has two inputs and multi-outputs so there exist coupling effects between the

vertical and horizontal motions.

DC·Jllcnor

DC-motor

mouur.men1
pouwomettll

Figure 5.2. Twin Rotor MIMO system [Feedback Instruments Ltd, 1997]
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The TRMS is intrinsically unstable and there is a time delay between the input and

output operations. The current control algorithms provided by the manufacturer

include PID and linear feedback controls. Those controllers were developed on the

basis of the linear TRMS model so they may work well around the equilibrium point

of the system but resulting in operational difficulties in the states that deviate far from

the equilibrium [Khalil et aI, 1996]. The experimental studies revealed that, under the

current control strategy, the system is not robust enough and easily becomes unstable

when it encounters the external disturbances. It is necessary to develop new control

schemes to improve the system's robustness. Generally speaking, many possible

directions could be explored for development of new control strategies. For this

particular system, the new control strategy needs to be implemented in real-time.

Therefore, it should have a simple structure and should not require any extra sensors

to be added onto the system. The fuzzy logic control takes the factors of nonlinearities

into account and can realise the human's knowledge in system stabilisation by only

adding the 'if-then' rules to address the system environmental changes. Fuzzy logic

control is customisable since the rules are easy to be understood and modified by the

designers or users. All the above leads the fuzzy controller to have simple and flexible

structure.

From the control point of view, the TRMS exemplifies a high order non-linear system

with significant cross coupling terms. From Figure 5.2, there are two propellers driven

by DC-motors at both ends of the beam. The propellers are perpendicularly positioned

to each other such that only one propeller can affect the movement in the vertical

plane (pitch angle av) or in the horizontal plane (azimuth angle all)' There is a

counter-weight fixed to the beam which determines the stable equilibrium position.

By varying the supply voltages, the angular velocities of the motors are changed and

will result in changes of the propulsive force on the beam perpendicular to the

propellers, which in tum result in a movement of the beam.
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Figure 5.3. Block diagram of the TRMS model [Feedback Instruments Ltd, 1997]

The structure of the TRMS can be modelled by a block diagram shown in Figure 5.3.

The control voltages Uh and U v are inputs to the DC-motors, which drive the rotors.

The model of the DC motor with the propeller is composed of a linear dynamic

component. The linear part is in the form of the first order transfer functions:

The non-linear functions Ph and P, are static characteristics of the DC-motors with

propellers. The input voltage is limited to the range +/- 10 volts. The nonlinear

relations between the rotor's velocity and the resulting aerodynamic force can be

approximated by the quadratic functions:

where k, and k, are positive constants.

It is important that the geometrical shape of the propellers is not symmetric, so that

the behaviour in one direction is different from that in the other direction. Rotation of
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a propeller produces an angular momentum, which, according to the law of

conservation of angular momentum, must be compensated by the remaining body of

the TRMS beam. This results in the interaction between two transfer functions

represented by the moment of inertia of the motors with propellers which are

represented by Jhv and Jvh as shown in Figure 5.3. This interaction directly

influences the velocities of the beam in both planes. The forces F, and F; are

multiplied by the arm length lh(aJ and l; which are equal to the torques acting on

the arm.

In order to simplify the design of the controller, if neglecting the coupling effect

between the main rotor and tail rotor subsystems, the block diagrams can be

simplified into two individual axis diagrams as shown in Figures 5.4 and 5.5.

u, 9.1

9.8(,4 - B)cosa, - Csina,.) I

Figure 5.4. Block diagram of the main rotor subsystem [Xie et al. 2003]

Figure 5.5. Block diagram of the tail rotor subsystem [Xie et al. 2003]

The components shown in the figure are described by

1 5
G = S = I - 0 236

v 1.432s + l' f 2.895 x 2048' m -. ,
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K; = 0.00545371 , A = 0.0217, B = 0.0119, C = 0.01678

P =90.99u6 +599.73us -129.26up
4

..v pv pv •

-1238.64u3 +63.45u2 +1283.41up'" 'pv pv •

F, = -3.48 X 10-12u~ +1.09 x 10-9u;v + 4.123 x 10~u~

-1.633 x 10-4u:v + 9.5455 x 10-2u fv

G = 1 S = 5 I = 0.25
h 0.3842s + l' f 2.895 x 2048' I ,

x; =0.0095,

Ph = 2020 U ~h -194 .69u;h - 4283 .15u ~h

+262.27u~h +3796.83uph'

and

r, =-3xlO-14u~ +1.595xl0-lIu~ +2.511xlO-?u~

-1.808xl0-4u~ +0.801xl0-2ujh

where upv represents the input to the block of ~, Ufo to F"

Uph to p", and U fh to F, .

5.3.2 Fuzzy control development

This section describes fuzzy set point weighting PID controller and its application to

twin rotor MIMO system, which was partly reported in [Xie et aI2003]. It is always a

problem in practice to determine a suitable set of parameters for a conventional PID

controller. In general, it is not easy to satisfy different design specifications at the

same time. A method to cope with this problem proposed by some researchers is to

weight the set-point for the proportional action by a coefficient 0 < b < 1 ([Astrom et al

1995], [Leva et aI1999]). In this way, the control law becomes:
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(5.1)

where eh (t) = b . Yd(t) - yet) . From previous study ([Aracil et ai, 2000], [Driankov et

al, 1998], [Driankov et ai, 1996]), with this modification, the overshoot in system

responses can be greatly reduced, but this increases the value of the rising time. It is

desired to have a low overshoot and fast responses. So the fuzzy set-point weighting

method is proposed and appears to be very effective. The method consists of two

steps: 1) setting the PID control gains based on experiences of operators; 2)

determining, through a fuzzy inference system, the value of the set-point weight. The

expression of the modified PID controller can be written as:
r

de(t) fu(t) = K p (b(t)y d (t) - yet»~+ Kd -- + K, e(r)dr
dt 0

(5.2)

bet) = OJ + f(t) (5.3)

where OJ is a positive constant less than or equal to one and fU) is the output of the

fuzzy mechanism which consists of five triangular membership functions for the two

inputs e(t) (see Figure 5.6) and e(t) and nine triangular membership functions for the

output (see Figure 5.7). Note that e(t) and e(t) are normalized to the range of [-1, + I]

using two constant parameters Ki", and K,n2 respectively. Furthermore, the de-

fuzzified output will be multiplied by another scalar constant KO"" There are different

ways for assigning the values of the scaling coefficients and defining the shapes of the

membership functions, such as, the Ziegler-Nichols method to tune the parameters

[Visioli 2000].

Figure 5.6. Membership functions for the two inputs e and e
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Figure 5.7. Membership functions for the output

The fuzzy rules are shown in Table 5.1 and the definitions of the linguistic variables

are described in Table 5.2.

PB PS Z NS NB
PB
PS

PVB PB PM PS Z

PB PM PS Z NS
PM PS Z NS NM

PS Z NS NM NB
Z NS NM NB NVB

e Z
NS

NB

Table 5.1. Basic rules table of the fuzzy inference

Linguistic variables Linguistic meanings

NVB Nezative Very Big:
NB Negative Big
NM Negative Medium
NS Negative Small
Z Zero
PS Positive Small
PM Positive Medium
PB Positive Big
PVB Positive Very Big

Table 5.2 Linguistic variables in the fuzzy inference system

The structure of the fuzzy controller is shown in Figure 5.8.
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Figure s.s. Control scheme with the fuzzy set point
weighting (FSW) methodology

In the real process of the system, e and lle can be positive or negative. A linguistic

value of' Zero' for e means that the measured current output is near to the set-point of

system output. A 'Zero' for M means that the changes in output is very small, i.e.

Ae(t) = e(t) - e(t -1) "" O. The sign and the magnitude for Au constitute the value of the

control signal. In Table 5.3, the top row of the table shows the change-of-error ~e and

the left column is the error e. the cells of the table at the intersection of rows and

columns contain the linguistic value for the output corresponding to the value of the

first input written at the beginning of the row and to the value of the second input

written on the top of the column.

#
PB PS .. NZ 11:'•c:

FE PVD pr. J>lI4 PS Z

PS

f' -
HZ PS

Hi' Z

! I)rn:lp (I

Table 5.3. Basic rules table of the fuzzy inference
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Table 5.3 includes 25 rules, which take into account not only the errors but also the

changes-of-errors as well. It describes the dynamics of the controller. The rules are

organised into five groups:

• Group 0: For this group of rules, both e and D.e are (positive or negative) near to

zero which indicates the steady-state behaviour of the process.

• Group 1: e(t} is Positive Big or Small which implies that output y(t) is

significantly below the set-point. At the same time since ~t) is negative, so y(t}

is moving towards the set-point.

• Group 2: yet) is either close to the set-point (e(t) is Zero and Negative Small) or

significantly above it (Negative Big). At the same time, since ~e(t) is negative,

y(t) is moving away from the set-point. The control here is intended to reverse this

trend and make y(t} start moving back to the set-point.

• Group 3: y(t) is Negative Big or Negative Small, which means that y(t) is below

the set-point. At the same time, y(t) is moving towards the set-point since 6.e(t) is

positive.

• Group 4: For this group of rules, e(t} is either close to the set-point (Positive Small,

Zero) or significantly below it (Positive Big). At the same time since M(t} is

positive, y(t) is moving away from the set-point.

5.3.3 Simulation and experimental results and analysis

The nonlinearities in the system is investigated via experimental studies. Through

these studies, it has been found that the system is suffered many different forms of

nonlinearities [Xie, 2002], for example the dead zone nonlinearity is observed and is

shown in Figure 5.9.
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Figure 5.9. Dead-zone nonlinearity of the system

The extensive experimental studies have been conducted to evaluate the effects of the

FSPW PID controller. Test results have been compared with the results obtained

using conventional PID controllers. The gains for FSPW PID controller are illustrated

in Table 5.4. All of these studies reveal the fuzzy controller is more robust with

respect to disturbances.

Table 5 4 Gains of FSPW PID controller..
Kp «, KJ Kin I «: Kou, OJ

Vertical 0.85 0.75 0.65 1.2 1 1 0.85
Horizontal 0.85 0.2 1.45 1 1 1.303 1

Running the system online, the reference signal is a step input, the actual outputs of

av is measured and shown in Figure 5.10 for using PID and FSPW PID controllers

respectively. The performance features are summarized in Table 5.5. The actual

outputs of a, is measured and shown in Figure 5.11 for using PID controller

FSPWPID controller respectively. The performance features are summarized in Table

5.6.

Table 5.5. The performances with PID and FSPW PID controllers (vertical
dimension)

Overshoot Rising Settling IAEtime time (sec)
PlO

15.65% 2.52 9.51 2.063controller
FSPW PID 6.46% 1.74 3.6 1.332controller

87



1.2r------....-----........-----,
1\

",-P,,-
II'
~

o.B I

0.4
0.2
OL-------~------~--------~o 20 40 60

time [s]
Figure 5.10. The step input response of pitch angle av using PID and FSPW PID
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Figure 5.11 The step input response of azimuth angle a,
using PID and FSPW PID controller respectively.

Table 5.6. The performances with PID and FSPW PID controllers (horizontal
dimension)

Overshoot
Rising Settling IAEtime (sec) time (sec)

PlO 11.98% 2.07 7.11 2.0
controller
FSPW PlO 6.5% 1.89 4.89 1.582controller

Figures 5.10 & 5.11 and Tables 5.5 & 5.6 indicated that the system with a FSPW PID

controller has smaller overshoot and taking a shorter period of time to settle down to

the desired values. Similarly, external disturbances are exerted onto the system to
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investigate the responses of the system to the disturbances using different controllers.

The results are shown in Figures 5.12 and 5.13.
1.6.-----.----.----.----r----r---r---r---r---r-----,

o 10 20 30 40 50 Ell 70 80 90 100
time [s]

(a) Using the conventional PID controller

o 10 20 30 40 50 60 70 80 90 100
time [s]

(b) Using FSPW PID controller
Figure 5.12. Dynamic responses ofTRMS to the external disturbances in vertical

direction

:0'

~1~1/__ ~A~~A~.,.~~~~~----
OL---~-~-~--~--~-~--~--~--~~o 10 20 30 40 50 60 70 80 90 100

time [5]
(a) Using the conventional PID controller

3

~A II

II v-- 'V'--'
ti 1

10 20 30 40 50 60 70 80 9J 100
time [s]

(b) Using FSPW PID controller
Figure 5.13. Dynamic responses ofTRMS to the external disturbances in horizontal

direction
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From Figure 5.12, it can be seen that the system with FSPW PID controller takes

much shorter time period to recover from the disturbances in comparing with the

system with a PID controller. Figure 5.13 reveals that the system with FSPW PID

controller takes a similar length of time period to recover when the system has

suffered bigger external disturbances comparing with the system using a conventional

PID controller only. Therefore, TRMS using the FSPW PID controllers are more

robust with respect to disturbances. The more detailed description about FSPWPID

controller can be found in Xie [Xie, 2002].

Further studies about Fuzzy control of the MIMO Twin Rotor system are still on-

going at the University of Liverpool through an MSc project. To test the robustness

propriety of the system extensively, different disturbances will be introduced to the

system. If it is practically possible, then the underslung load will be considered which

can be attached to the test system beam. The attached underslung load can be

considered as an external disturbance to the helicopter system which can be used to

study the helicopter dynamics with an underslung load.

5.4 Summary and discussion

Form the review of popular helicopter control methods, it is clear that in the past

years, considerable attention has been paid to the design of controller to obtain a

satisfactory helicopter handling quality. The control problem has been tackled using

different approaches ranging from linear quadratic control, feedback linearization,

eigenstructure assignment, classical SISO techniques and H", robust control. Apart

from the methods emphasised above there are many other techniques are reported for

complex modem control system design ranging from sliding mode control,

quantitative feedback theory and singular perturbation method. An experimental study

conducted to development of a fuzzy set point weighting PID control for the twin

rotor MIMO system is discussed.

The extensive studies of the reported controller design methods evidenced that the

helicopter control and the control of a helicopter with an external underslung load is

still a very active research area. The research in this area is mainly motivated by the
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factor: current control methods can not provide the full satisfactory to the desired

design requirements on flight handling quality, stability, robustness, etc. Lyapunov

stability based deterministic control method used for helicopter control has been

recently reported [Mahony et ai, 1999]. The key advantage of Lyapunov control

method is that the controller design takes the system uncertainty into account. The

designed controller can give a guaranteed stability region for the systems considered.

This method should have potential for solving some problems arising in helicopter

control and is worth further investigation. The Next chapter will explore the possible

application of the method to the control of a helicopter with an underslung load.
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Chapter 6

Nonlinear deterministic control of a helicopter with an

underslung load

6.1 Introduction

The interest of designing feedback controller for helicopter by means of nonlinear

control strategy is nowadays gained a considerable attention by several researchers

(see for example, Avila-Vilchis, et al, 2003, Isidori et al. 2003). Avila-Vilchis [Avila-

Vilchis, et al, 2003] presents a nonlinear control strategy for a reduced order model of

a helicopter. Due to the complexity of the helicopter model and dynamics, it is very

difficult to develop a nonlinear control strategy if a complete nonlinear helicopter

model is used. For instance, Isidori [Isidori et al, 2003] addressed the problem of

controlling the motion of a helicopter described by a nonlinear mathematical model.

To simplify the nonlinearity of the dynamics and the strong coupling effects in the

model the unavoidability of the simplification of the system model is applied.

In general there are two main approaches for control of uncertain dynamical systems,

that is, deterministic and stochastic control. If the uncertainty in the system model is

assumed to have statistical characterization and the desired behaviour of the system is

described in a statistical sense a stochastic approach is feasible; otherwise, if

structural properties and bounding conditions relating to the uncertainties are known,

a deterministic approach is appropriate [Wang, 1995]. Deterministic feedback control

of uncertain dynamical systems proposes the use of determined linear or nonlinear

feedback control functions, which operate effectively over a specified magnitude

range of system parameter variations and disturbances, without anyon-line

identification of the system parameters. Benefit of such an approach is that no

statistical information of the system variations is required to yield the desired

dynamical behaviour and, hence, the controller may have a simple structure for

implementation in practical systems. However the deterministic control design

methodology requires the system state vector is available for measurements, and the
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bounding knowledge of uncertainties are known, which may put restrictions on the

applications of this method.

This chapter describes the work on the development of state feedback control. using

deterministic control approach to ensure the stabilisation of the helicopter system and

the positioning of the underslung load at hover.

6.2 Introduction to deterministic control of uncertain dynamical
systems

In this section deterministic control of uncertain dynamical systems is introduced. The

use of deterministic control approach based on Lyapunov techniques have been

discussed by Rayn et al, 1984, Goodall et al, 1988, Qu, 1993, Wang, 1995 and among

others. The basic notations and concepts required for the analysis are described in this

section.

6.2.1 Basic notations

The state space IS denoted by X:= P" and the control space by ~:= pm,

where I::;m ::;n . The Euclidean inner product (on X or ii as appropriate) and

induced norm are denoted by <.,.> and 11.11 respectively. Let C(PP;pq) and

C (P P; p q) denote the space of all continuous functions and, the space of continuous

functions with continuous first order partial derivatives respectively, and

Coo (P P; p q) denote the space of functions whose partial derivatives of any order exist

and are continuous, mapping P P ~ P q • For a real-valued continuous scalar

function x ~ vex) , defined on P n, V: v ~ Vv E P n denotes the gradient map. The

Lie derivative of v along a vector field j": P n ~ P n, is denoted by Lfv: P n ~ p IS

defined by

(Ljv)(x) = (Vv(x),!(x»)
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The Lie bracket of vector fields f,g e C<Z>(P",P") is the vector field

[j,g]eC<Z>(P",P") defined by [j,g]=(Dg)J-(Df)g, where (DJ) denotes the

Jacobian matrix of J and (Dg) denotes the Jacobian matrix of g .

In this chapter, nonlinear systems with the following format are considered:

x(t) = f(x(t»)+ G(x(t»)u(t) (6.1)

where x{t )e P " , u eP m • In general mathematical models of dynamical systems are

usually imprecise due to modelling errors and exogeneous disturbances [Goodall,

1994], [Goodall, et a/200l]. (6.1) can be considered as the nominal part of the system

model and the uncertainty can be modelled by as an additive perturbation to the

nominal system model, more specifically, the structure of the system has the form:

x(t) = J(x(t)) +G{x(t) )li(t) + S(x(t), u{t)) (6.2)

where .9{x(t), U{/)) models the uncertainty in the system.

The system (6.2) is globally asymptotically stable to the zero state if the system

exhibits the following properties [e.g.,Goodall, 1994];

(1) Existence and Continuation of solutions:

For each x E P" , there exists a local solution x : [0, t] ) ~ P n (i.e. an absolutely

continuous function satisfying (6.2) almost everywhere (a.e) and x{O)=xo) and

every such solution can be extended into a solution on [0,(0).
(ii) Boundedness of solutions:

For each h» 0, there exists r{li) > 0 such that X{/) Er(Ii)B", for all I ~ 0 on

every solution x: [0,(0) ~ P" with XO E liBn , where B, denote the open unit

ball centred at the origin in P" .

(iii) Stability of the state origin

For each 8> 0, there exists d (8) > 0 such that X(/) E 8Bn for all t ;:::0 on every

solution x : [0,(0) ~ P n with XO e d(8)Bn
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(iv) Global attractivity of the state origin.

For each Ii >0 and G > 0, there exists T{Ii,G)~O such that x{t)e B; for all

t ~ T{Ii, G) on every solution x : [0,00) ~ p n with XO E liB n •

6.2.2 Concept of invariant manifold

Consider a nonlinear system described by the ordinary differential equations below

x{t)= /(t,x{t)),

x{to) = x",

where f: P x X ~ X and /(t,O)= 0 for all t. To analyse the stability of (6.3),

(6.3)

Lyapunov's second stability analysis method is applicable. The Lyapunov approach is

to show that a candidate 'Lyapunov function' is nonincreasing along all solution to

(6.3) by means that do not require explicit knowledge of solutions to (6.3). From this,

appropriate conclusion can be drawn regarding stability concepts relating to solutions

of the differentiate equation (6.3). An essential part of Lyapunov's method is the

detennination of the time derivative of the candidate 'Lyapunov function' along all

solution of the dynamical system.

Consider a Lyapunov candidate (t, x) ~ v{t, x]: P x X ~ P which satisfies the

condition v E Cl (p X X) , in which case its time derivative along solutions to (6.3) is

given by

v{t,x{t ))= av(t,x(t)) + (Vv{t,x{t ))/{t,x{t))at
for almost all t E P

Let W{x{t ))denote a positive definite function. If v{t, x(t)) satisfies

i) v(t,O)=O for all t~O;

ii) W(x(t)) s v(t, x{t ))for all x(t) e <1>, {O}c <1> c X and all t ~ 0;

iii) v{t, x(t)) < 0 in <1>;

then v{t, x{t)) is said to be a Lyapunov function in <1>. If ~(t, x(t)) ~ 0 in <1>, then

v(t, x{t ))is said to be a weak Lyapunov function.
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A set E is said to be an invariant set with respect to the dynamical system x = f{x) if

x(O) E E 1-7 x(/) E E for all IE P +

In other words E is the set of points such that if a solution of x = f{x) belongs to E

at some instant initialized points at 1= 0, and then it belongs to E for all future time.

Further details of the concept of invariant set can be found in Carr [Carr, 1981] and

Marquez [Marquez, 2003].

Now, a set E c x is said to be a local invariant manifold for (6.3) if, for any XO E E,

x(t)with x(O) = XO is in E for I t 1< Z'where Z'c-O. If T = 00, then E is said to be an

invariant manifold.

6.3 Deterministic control of a helicopter with an underslung load

Considering the control of a helicopter with an underslung load, the dynamical

models of both the helicopter and load have some terms which are uncertain. The

uncertainties may arise from the helicopter to carry an unknown load or the

immeasurable parameters in the dynamical models. The uncertainties may also arise

from computational errors of the dynamical effects such as aerodynamics. Therefore

for a realistic model uncertainties must be taken into account during the controller

design.

6.3.1 Model of the helicopter system

A mathematical model of the helicopter has been described in Chapter 2 and Chapter

4 presented an underslung load model. Considering the two models, a mathematical

model for a helicopter carrying an underslung load can be obtained. From Chapters 2

and 4, if the velocities and accelerations of the helicopter are considered as the inputs

to the load, the combined system model will have a structure of cascade connection of

two subsystems.

Recall the work described in Chapter 4, for the load model, the coordinate system

used is described in Figure 6.1. For the case of the longitudinal motion in the X-Z

plane, the mathematical model is described below.
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z
Figure 6.1: Coordinate system for the longitudinal motion in the X-Z plane.

Define~, = [eJ. BLr = [eLl (JL2Y then the load model can be rewritten as follows:

(6.4a)

(6.4b)
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The helicopter model is considered as the second subsystem. To simplify the analysis,

we only consider the linear helicopter model which is expressed in the state space

form :iH (t) = AxH (t) +Bu(t) . Recall the Equation (2.32) which describes the

longitudinal helicopter motion. Whereas, the longitudinal rotational motion is

described by the pitch angle () and pitch rate q. Thus, the following equation

represents the longitudinal rotational motion.

(6.5)

Thus with the addition of the translation motion components u,w and rearranging the

order of the states, the equation oflongitudinal motion can be written as follows.

B 0 1 0 0 () 0 0
q 0 Mq Mu Mw q M M()o [~:J~ s (6.6)=

(Xq -wJ +u - g cos()e Xu Xw u X X()o()I,

W - gsin(}e (zq -uJ Zu Zw w Z~. z;

The forces and moments that the load exerts on the helicopter are neglected. This

situation corresponding to the case, where the load mass is much less then the

helicopter mass. The moment due to the load is zero because of the assumption that

the suspension point is the centre of gravity of the helicopter. This assumption is

adopted for the simplicity of the application.

By applying a linear transformation f (see appendix B) and f is defined by

1 0 0 0

T= 0 1 all al2

0 0 1 0
0 0 0 1

Z M -Z Mwhere a = - ().. ()o ()o~, d
II

'
anX Z -Z X

()I. ()o ()I. ()o

a =_ X80M()I' -X~,Meo
12 X Z _ Z X : Applying the

()IJ ()o ()I, 80

linear transformation T and let q = (q - allu - al2w), then the system Equation (6.6)

is transformed into the following form
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iJ XII XI2 XI3 XI4 e 0 0

q X21 X22 X23 X24 q B21 B22 [~l (6.7)= +xU X31 X32 X33 X34 U 0., X~
W X41 X42 X43 X44 w Ze., Z~

where

XJ2 = 1,

X41 = (- gsinOJ,

Using the equation (6.7) the system model can be rearranged to include the variables

O and q into the load model. For feedback control development purpose, an extra

term is introduced into the system model, which is zero with the expression:

K1kDsign(kJcosBL,u + K2kDsign(kJcosBLI w _ K,kDsign(kJcosBL,u _ K2kDsign(kJcosBLI w
MLlx u), MLlx MJ,

where x, > 0 (i = 1, 2) are small positive constants.
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With this rearrangement, the helicopter with underslung load combined system model

can be rewritten as follows:

~ (t)= J; (eL(t))+ G) (~{t )lp(xH (t))+ q(BL (t )XH (t))]+ H(t, s, 'XH (t)) (6.8a)

xH(t) = 12(eL(t), xH(t)) +G2u(t} (6.8b)

where BL (t) = [BLI B0_ () q]T,

and p(XH)=[U2+K1U W2+K2WY.

-g . () kDlx L, .fv \_ 3 () . .f-'7 \_. J () \n2 k ()-sm L +-~'lg'¥L~oS z, +Slg'¥L,PJn L, PJ... - o L.
j;(eL(t))= Ix I ML . .

q

0 0

GI (~(t))=
kDsign(¥L}osBLI k Dsign ~ L)inBLI

«: u),

0 0
0 0
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q(~(t),XH(t»)

=fCOSOL . sinO, . 2k ( .j' ) . (.) 0, \-, .,k"si.,(iJcos8,u .,k,'i.,(X.)COSB".]
__ I U+--'I W__ D Slg",XL coi' 0LIU+S1g",ZL SIn 0LtWPL, - M I - M I
" I. ML L. ,.•

H(t,BL (t),XH (t» =
o

o

It is assumed that the longitudinal motion is primarily controlled by longitudinal

cyclic commands (BI..) and main rotor collective 00 •

y... ...
... ...... ... ... ..

•
•
•
•
•
I

· ',., "',,,"
"to'
"

Z

Figure 6.2: Coordinate system for the lateral motion in the Y-Z plane.

For the case of the lateral motion in the Y-Z plane, with the coordinate system

described in Figure 6.3, the load model is:
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g . COSfPL" sinfPL ..
ip = - - sm m + )'I Y. + ,. Z
i; I ri; 1 0 1 0

y y y

- :D {sign(yJcos2 Cl'L.. YO + sign(ZJsin2 Cl'L,.ZOtpL - k",rpL
L

Define (PL = [fPL ¢L Y = [fPLt fPLzr then the model can be written as follows:

(6.9a)

cos fPL" sin fPL ..+ Iy'+ IZ
I 0 1 0
y y

(6.9b)

For the lateral motion of helicopter model recall the equation (2.33) which describes

the lateral helicopter motion. Whereas the lateral rotational motion can be describe by

the following equation.

(6.10)

Thus the model for lateral motion can be rewritten as follows:

¢ 0 1 0 0 ¢ 0 0
p 0 Lp t; Lw P L L80r [8.]= Qrp-wJ >: + ~c (6.11)v g Yw V Y~r Y80r BOT

W 0 (Zp-vJ z, Zw w -; Z80r

now using a linear transformation ~ such that x H (t) = ~ z(t) and ~ is defined by
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1 0 0 0

~=
0 1 bll bl2

0 0 1 0
0 0 0 1

2 L -2 L Y L -Y Lwhere b = _ 81e 80T 80T o.e d b = _ 80T 81e o.e 80T

II Y 2 _ 2 Y an 12 Y 2 - 2 Y
81e 80T o.c 80T o.e eOT elr 80T

Let p = (p - b
ll

V - bIZ w) then the equation (6.11) can be written in the following form

¢ ~I ~z ~3 ~4 ¢ 0 0

P 1';1 YZ2 1';3 1';4 P NZI NZ2 [Ok] (6.12)= + Y.
V 1';1 1';2 1';3 1';4 V o.r Y~T (JOT

W ~I Y42 ~3 Y44 w 2o.e Z~T

where

1';1 = 0, 1';z = 1, ~3 = bll , ~4 = b12,

Y21 = -(bllg), Y22 = (z, -bll(rp +WJ-b12{Zp -vJ),

Y23 = (z, -bll (Yp +w.)- b12 (Zp - v.))bll + (Lp - bIIY,. - bI2Z.),
Y24 = (z, -bJl(Yp +w.)-b12(Zp -V.))bI2 +(Lp -bllYw -blzZJ,

Y31 = g , Y32 = (r, +we)'
Y34 = ((Yp + We )b12 + Yw)'

Using the equation (6.12) the helicopter with underslung load for lateral motion in the

Y-Z plane can be described by
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~L (t) = 1; {qJL(t))+G1(qJL{t )xP{XH (t ))+ q{1ifL (t~ XH (1»)]+ H(t,1ifL' XH (I») (6.13a)

XH (t) == 12 CifiL (t), XH(t)) + G2U{t) (6.13b)

where

15

(- b11g; + V:,p - bll Qrp +WJ- bl2{f p - v,»))

(
kDSjgn~L):osCPL'l (kDSign~L)in(PLI 1

G1(mL(t» = M I M I." L Y L Y

o o

o
o

o
o

o

o

o

(~- p)

and
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It is assumed that the lateral motion is primarily controlled by lateral cyclic

commands (BIJ and the tail rotor collective BOT'

6.3.2 Analysis of the first subsystem

The goal is to develop a nonlinear deterministic control law for the helicopter with

underslung load modelled by equations (6.8) - (6.13). The analysis for the

longitudinal motion is discussed first. The system equations can be considered to have

two main parts, that is, known and unknown (or partly known). The known terms

formed the nominal part of the system model. The unknown or partly known part can

be considered as the uncertainty to the system. The whole system is then modelled by

a nominal part with the addition of uncertainty. In fact, the known elements in the

subsystem (6.8a) are characterised by the prescribed triple (f.., Gp p) and it is desired

that the nominal part of the system is stable.

To analyse the nominal part of the system, Lyapunov Second method is applied.

Choose a Lyapunov function candidate for the first subsystem VI as

(6.14)

where t;; (i = I, 2, 3, 4, 5) are design parameters to be determined. Then

l\(B;.) = (Vvl(OL1 1.(OL )+GI(~(I }Y(XH {I}}+ q(~ (I),XH(I»)]+ H(t,~,XH (I»))
=(Lf•vl)(B;.)+ (VVI (~) GI(~ ~ )]F(xH ~»+ q(O;_ ~ )XH (1»)]+ Ht,~ 'XH (I»)

From (6.14), VVI(~) can be obtained as

vvl(BL)=[r;A
1

t;2B~ t;3(r;3B-t;4q) -t;4{r;3B-t;4Q)+t;sq]T.

Substituting Vvl(~) and J; (OL ) into the derivative of (LI. VI )(0;.), we have
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· . 2
Checkmg the term of -sin(eL,)e~ , it can be seen that -SiD(BL,)B~S --eL,B~

1r

when BL, and BL2 are both positive or negative. The situation of eL, and BL2 having

different signs will help with the system stability. Then,

If the design parameter ~l is chosen as ~l = :!~2' (LII VI )(OL) satisfies the following
x

(L r. VI )(iJL)
< k ()2 kDlx [. Iv \_ 3 () • I,.; \_. 3 f} '1.3
-- et;2 L, +Mt;2~',gnV1L~os L, +Slgn\£'LJitn L,PL:

L

+~J;/~- t;4qR + (- t;3~4e+~; + t;s)q XX21f} + X22Q]

(6.15)

Further analysis on (6.15) will start from examining the first two terms. Rewrite these

two terms, we have

< k 82 kDlx I c. Y_. r; \.. 3Ll • {7 \.. 38 )Ll2- - e ~2 L2+Mt;2 max'VL, _RlgnV" L~os uL, + slgn~L jim L, v.;
L
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If the hinge friction is big enough to satisfy the following

ke > ~/x Imax~L2~ign~L~os3 81, +Sign~L}in3 81.J
I.

(6.16)

then

A., = {k. - ~: Imax~"~ign(¥,}os'lJ, +Sign{i,}in'IJ_)};' 0

d k (}2 kDlx [. (v \. 38 . (7 \_. )8 1,.) ~ (J2]
an - e r;2 L2+Mr;2 ~lgn~ L..,..;05 t; + Slg"~ I. ~m t; Pc, ~ -r;2 L, /1.1.'

L

On the other hand, the following analysis has been conducted for (6.15). form

Chapter 4, the load movement for the longitudinal motion is described by

XL = X'o -1/)L2 cos0L,

z, = to -lx(}L2 sin (}L,

Around the hover condition Xo = 0 and Zo = O. then the signs for ..YLand z, are
opposite to the one of (}1.

2
provided that 81, is positive. Considering the

term (sign(XJcos3 BL., +sign(tJsin) (}I., )9:2 for all possible combinations of the

signs of BL, and BL" the analysis follows below:

(i) If BL, > 0 and 8~ > 0 then sign(XJ= -1 • sign(tL)= -1 • cos) BI, > 0 • and

sin 3 BI., > O. Therefore, we have

(sign(X L )cos 3 BL., + sign(t t. )sin 3 8'1 YtL < 0 .

(ii) If (}L, < 0 and ()~ > 0 then sign(XJ= -1 , sign(t,.)= +1 • cos' OJ., > 0 and

• 3 £Jsin Ul, < O. So we have

(sign(XL )cos3 811 + sign(t t. )sin 38'1 Ytt2 < O.

(iii) If Bl, > 0 and BI.2 < 0 then sign(XJ= +1 and s;gn(tJ= +1, cos' 0l, > 0, and

sin ' (Jll > o. So the following is true

(sign(X t. )cos 3 8LI + sign(t t. )sin 3 81, Yt~ < 0 .

107



(iv) If B~ < 0 and BL2 < 0 then sign(X,.)= +1 and s;gn(tJ= -1. cos) Br. > O. and

• 3 B 0 Ssin LI < . 0

(sign(X L )cos 3 BLI + sign(t L )sin 3 B",)9L < 0 .

Therefore

Now examining the rest terms of (L IIVI )(~.) then

= q;Bif - q 3q 4q2 - q 3q4X 21B2 - q 3q 4X 220ij
+ (q: +qS)X2IBq+(t;; +qS)X22q2

=-[q3q4 -(q; +qS)X21]q2 -q3q4X21B2 +[q; -q)q.X22 +(q; +t;s)X1111l/
(6.17)

For the system, Band BL always have different signs. 0 and q always have
I

different signs, and q and BLI have the same signs. So

if (6.18)

Therefore

q3 k3B - q4q]q + (- q)q4B + (q; + qs)q )[X21(J + X22q]

s -[q3q4 -(q; +qS)X21]q2 -Q3Q4X21{}2
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Choose the design parameters to satisfy

[~3~4 - (~; + ~S)X2)] > O.

If X21 > 0, then

- [~3;4 - (~i+ ~s )X2dq2 - ;3Q4X2102 < O.

If X21 < 0, then

-[;3;4 -(~; +;S)X21]2t -;3q.X2102 < 0

(6.19)

(6.20)

in the region of -[~3~4 -(~; +qs)X2)]q2 < Q3Q4X2)()2. Since 0 is caused by the

load motion here the value of 0 should be much smaller than q. The inequality (6.20)

is easy to be satisfied.

In summary of the above analysis and by defining

'PlifL)=ke~2()i2 + [Q3~4 -(Q; +QS)X21]q2 +Q3Q4X2102

and

'P2(~) = [~3~4- (~; + ~s )X21 ]q2 + ~3Q4X21()2 ,

the following Lemma can be derived

Lemma 6.1. Defining a Lyapunov function (6.14) and choosing the design

. 'h' 2g '] dparameters to satisjy q, = -Q2 ' [Q3Q4 - (q; + QS)X21 > O. an
Ix1i

[~; - ~3~4X22 + (~; + Qs)X21] ~ 0, then within the region specified by

(i) VI (D) = D andv/ifL»o, veL * D

(ii) VI (eL)~ 00 as IWLII~ 00

(iii) (LJivJ(eJs -'PI (BL), VBL around the hover condition

or (z;VI )(eJs -'P2 (BL), vBL if(6.16) holds.

Both functions \fl and '£12 are non-negative.
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Recall the control term P(XH(t») in the first subsystem of (6.8), it can be seen that

[(Dp XXH )]-1 exists for all xH (t).

The unknown vector fields, q(llL(t),XH) and H~,llr(t),XH)' model the uncertainties

imposed onto the system. Since q(llL (t),xH ) is directly mapped into the "control"

space of X H (t) it can be considered as a matched uncertainty [Goodall, et 01 2001].

HV,~ (t),xH) is unknown and it does belong to the control space of xH (t) so it

represents the mismatched uncertainty in the system [Goodall, et 0/2001].

Generally, the range of the (longitudinal) load suspension angle is within

- ; <OL <; .The helicopter velocities and load suspension angle have maximum

operational values, therefore the uncertainties in the system are bounded. With the

Lyapunov function defined in (6.14),

(Lgl vllBL)= (Vv, (BL) g,) = _!P_q20~ .
ML/x

In 0, (Br) the column gl and g 2 are same, therefore

(rg2 vJ~)= ~Dl Q20L2'

Lx

By considering the maximum values of cos( . ) and sin( .) functions, the bounding

values relating to the uncertainty q(OL(t),XH) can be estimated as follows:

(6.21)
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For the mismatched uncertainty H(t,liL (t),xH) the following analysis are conducted

to obtain its bounding function. The mismatched uncertainty can be rewritten as

0 0 0

H~,Br(t),XH )= 0 0 0 [:l(a11u + al2 w)
=

all al2

(x23U +X24w) X23 X24

Let A =[ all a12
] then

X23 X24

(6.22)

With the Lyapunov function defined in (6.14),

In G1(eL) the column gl and g 2 are same, therefore

(L 1_)= kv e __ D_ e
g, I L M I q2 L,

L x

Define a positive function as

where 8 is a very small positive constant. Choosing PI = M'./Jt IIAII then the
kDq2

mismatched uncertainty H~,liL (t),xH ) is bouneded by the following inequality:

"H~,Br,XH )1~B-I(Br)Pltij{Lgl vI1Br))lpi(xH) (6.23)
ial

where gi denotes the i th column of the matrix function GI(liL) and Pi is the ; th

component of P(XH) respectively. As PI has a design parameter q2 involved it is

easy to have PI to lead (6.23) to be true. For the matched uncertainty, we have

IIq(OL,XH )11::; ~B IO~1+ a11Ip(xH)II + a2(t),
x
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kM
where J.il = zszu., Following above analysis, the following lemma can be derived:

kD~2

Lemma 6.2. The uncertainties are bounded and satisfy

Ilq(Br,xH )11s ko 1'\1 + a11lp(xH )11 + a2(t)
Ix

and IIH~,~,XH ):S;B-I(~)PI±~(L,_ VI leL))Ip, (xH)'
i-I

(6.21 )

(6.23)

For the feedback control design in the later part of the section, it is expected that the

and

PI = MLlx IIA II. The desired condition al +PI < I can be verified by considering a
kD~2

typical case that the UH-60 helicopter carrying a load weight 10001hhy a 15 ft sling

length and let k D = 75lb 1ft. For the UH-60 helicopter model. with reference to the

general mathematical model presented in Chapter 2. we have X I~. = 0.5734 .

X 0 = 0.3170, Z(J = 0.0237 , ZQ = -6.0740, M .. = -0.1097 • and AI" = 0.0553 .
o I, VO "'-1' Cl

So the following parameters can be calculated to have the values (III =: -0.2 and Cll2 ""'

-0.02. For Xu = -0.0195 , Zu = 0.0150 , M II = 0.0029 . M q = -1.4255 .

(Xq - We)= 5.7076, (z, + Uc)= 0.6307 •we have X'1 = 0.06 . And also. for

X w = 0.0168, Zw = -0.3340. M M' = 0.0025, we have X 24 = 0.0 I. Based on all the

(-) Ir. "'.above parameters, CTmax A = 0.0041. In this case, let K:: 0.0), a, = .\;-.(2 + ,) -. 0.15.
l _

and M Lf (-)PI = __ x CTmax A =0.82.
kD

satisfies al +PI < 1. Another example considers that the UH-60 helicopter carries a

Therefore, al + PI = 0.15 + 0.82 = 0.97 which

load weight 500lb by a 15 fl sling length and let k D = 50 lb I ft then al = 0.2 and

PI = 0.62 therefore (al + PI) = 0.82. Therefore. this assumption al + p) < I is

realistic for the system discussed in the thesis.
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6.3.3 Development of state feedback control

The purpose of controller design in this section is to position the load at or as close as

to a specified location. A deterministic feedback control is developed which can be

continuous and discontinuous.

Let liL ~ h(liL ) where h(liL) = [h. (liL ~ h2(OLW be defined by

h,(liJ= -(I-a. - ,B.tr.(L"v.x~), (i = 1,2) (6.24)

where r. is a positive design parameter.

Suppose p(XH(l»)=h(~(I») (where XH(/)=(p-· oh)(liJ) to be considered as a

feedback control for the first subsystem (6.8a) and apply Lemma 6.1 and 6.2. then

VI (0,.) = \ (~V,X1fL ~ 01.)

=(~VltOJ J;(oJ+- tg,(OL)~,(OL)tq,~ I olrloJ)t 1I~.jjl'~' I o,,~
s -'P(OL>- ~I - P, ~~" VI )OLY + a2 (t)I~" "1 XiJ~)

-(- >-[ ~I{r )'-\ a.(t) j: a3 (r)
s -'P\BL "Y, - P, ~" V, }/JL r: 2Jr~ _ P, -+- 4('y,' _ PI)

where lJ1 represents either '1'1 or '112' That is, the solutions for the first subsystem

will tend to a compact set if p(xH(I»)=h("'-(r)). Therefore. the next step of the

controller design is to find a control law which will drive the second subsystem stale

variables to lead p(XH(I»)~ h(OL(I») while I increases. To measure how close

P(XH (I») and h(Br (t)), a new state variable vector is defined by

(6.25)

So we have

with the initial condition
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Substituting the original system equations, we can obtain

e(t) = A(t,~,e(t))e(t)
=(Dp xp)(j;(~,p)+ G2F~,~,p))

- (DhX~)(ft(e;_)+ G1(o;Je(t) + h(O;_)+ q(o;.(I~p))+ H(t.OL,'P )).

where p = p-I o(e(t)+h(~J).

Then the system with the newly defined state variable of (OL ' e) can be modelled by

(6.26)

Choose A~, Q2 such that Ci(A2) c C- and Q2 is a symmetric positive definite matrix.

i.e., Q2 > O. Let P2 > 0 denote the unique symmetric solution of the Lyapunov

equation

(6.27)

The continues state feedback control F(t,OL' XII) is designed to have the following

structure:

(t,BL ,X H) H F(t, Br ,X /I )= G;I (uI (~., XII )+ lIgaln (/.8/ .. XI/ )). (6.28)

where

UAOL'XH)

:=-f2(BL,XH}r [(DP~H ):tl (42 ~(¥H )-J/...8L )}r(Phj8,. ~(8L )rG1(8L X"II »))
and

In UN' Pc is defined as any continuous function satisfying the following inequality
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PC(t,~,XH )

~±~II~g,Vl)~~ + adp;(xH)I+a2(t») [(DPJxH)t'(Dh)/jL kill (6.29)
1=1

+ max~I[(DP JXH )t'(DhJeL lIH(eL,XH )11)

and

{

II zr z; if IIz II > '7
Z ~ n(z)=:

z / '7, otherwise

where '7 is a positive design parameter to be determined. The feedback control in

(6.30)

(6.28) can be considered to have two parts. The first part is a nonlinear feedback

which is to stabilise the known part of the system and the second part is a variable

gain which is to address the uncertainty in the system.

For system (6.26), a Lyapunov function is chosen as

(6.31 )

where ~>O is a design parameter to be specified and "z(e) =: k(e. P~c:). Then

for Ilpc (r, BL, X H X(Dp Xx H )f'Pz(P(x H) - h(jjL )ll < '7 •we have

for IIpc (t, BL, XH l(Dp XxH )Y ~ (p(x H) - h(BL )ll ~ '7. we have
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v,; - 'I'(iO-(1+a, +p,)t,(tl V:.,VJOL~-le,I)'
- [.u,(y, -1) - !(1+a, +P,)lt,(1 V:.VJOL~- 4p,(y, _ll

2
_
a
;1+ a, +pl,l)'

1 1 11112 a;
- ['2;O"min(Q2) - 4"(1 + al + PI)] e + [4,uI(YI -1) - (l + al + PI)]

For both cases, the following is true:

v s - '¥(BL)- (1 + al + PI):t (~I(£" V.lBL ~ -Ie, 1)2
I-I

Therefore

,a·+ + 2".;. (6.32)
[4,uI(YI -1) - (1+al + PI)] .

where

1 o

and guarantees that

[
~(/)]

a.e., V E P 4, );.~" )
e(/)

where
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a2

~ k"; k" := 2 + 21]';
[4,uI(rl -I)-(l+al +PI)]

From the above analysis, the following theorem results:

Theorem 6.1. Following Lemma 6.J and 6.2 with the feedback control defined ill

(6.28), if the design parameters satisfy 4PJ(YI -I) > (I + al + PI)' YI > 1,and

.; ~ (1 + al + PI) , the compact set X(k'7) is globally asymptotically stable for the
20' min (Q2)

helicopter dynamic system.

Theorem 6.1 indicates that the feedback control (6.28) can position the load at the

specified location or to a small region around the specified location. The size of the

region can be reduced by choosing proper design parameters.

The procedure for the development of a control law for the lateral motion is similar to

the longitudinal motion. Therefore the stabilizing feedback control law for lateral

motion can be written as with the appropriate parameter:

(t,qJL'XH) ~ F(t,qJL,XH)=G;I(UL(WL,X/I)+IIN(t.Q'/ .• x,,)) (6.33)

whereas,

Uf.(fA ,XH ):=-.t;(qiL ,xH)+ [(DPXxH )]-I(A2(P{XIf )-~qi I.)) + (DJ~qif. XJ;(qiJ + G,(q;, )P(.\'I/ )))

UN (t,qJL'XH) = -Pc (tJPL,XH )n (Pc (t,WL'XH X(Dp Xx,,)Y ~(P(x,,) - h(iP, )))

P~ is a gain function which is introduced to address the uncertainties in the system.

6.4. Illustration example

In this section, the feedback control developed in Section 6.3 is applied to a helicopter

model in its linearised model with an underslung load. Only longitudinal case is

studied here. The load model adopted in this section is same as the model in Chapter 4
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which has a weight ML = 1000lb with sl, = 15ft sling length, kD = 75 and k(l = 2.S.

From the above analysis, the general format of the helicopter model is represented by

~ ~)= ~(~ ~))+GI(~~){P{xH~))+ q(~~)XH(t))]+ H~,~,XH(t))

xH(t) = flBr_ (t), xH(t)) +G2u{t)

(6.8a)

(6.8b)

System model:

In this example, a linear model of helicopter [Garrard 1989] is adopted, which has the

system parameters below:

u -0.0199 -0.0058 -0.0058 -0.0151 0.0232 0.0006 0 -0.066521 141
Ii - 0.0452 -0.526 -0.0061 -0.026 -0.0155 0.0148 0.6648 - 0.0003 v

W -0.0788 -0.0747 -0.3803 0.0008 -0.0048 0.042 0.0228 0.0102 '"P 0.4557 - 2.5943 -0.1787 - 2.9979 -0.5943 0.4155 0 0 "q = 0.3688 0.1931 -0.1753 0.071 - 0.5943 0.0013 0 0 !"r 1.0939 0.731 -0.0358 0.4058 0.4069 -0.4940 0 0 lr

¢J 0 0 0 1 0.0005 - 0.0154 0 0 1:]iJ 0 0 0 0 0.9994 0.0343 0 0

-0.0456 -0.083 0.4735 -0.0016
-0.0369 0.2785 0.0086 0.3600
-3.1126 -0.0032 0.0076 0.0002 0"
-2.4241 20.8327 1.0196 9.1903 0"+ -0.03205 0.02538 -6.3329 - 0.0648 Ok
5.7889 -2.6208 2.3832 -11.0904 Our

0 0 0 0
0 0 0 0

If only the longitudinal motion is considered, then we have

o 0 0.9994 0 0 B 0 0 1

q 0 -0.5943 0.3688 -0.1753 q 0.02538 - O.03205r 0,,]= +u -0.06652 0.0232 -0.0199 -0.0058 u -0.083 -O.O456l0,
w 0.0102 -0.0048 -0.0788 -0.3803 ", - 0.0032 -3.1126

From the above system parameters, the following can be obtained:

all = -0.30635 and a22 = 0.014785.
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0

Let T= 0 1
0 0
0 0

o o oo o
-0.30635 0.014785 hT-I = 0

1 0 ,ten 00

o 1 0 0

0.30635 -0.01478
1 0
o

So the original system model can be transformed into the following format

B
[ 0

0.9994 0

- O'~7S3]TT-flT"-I q -I 0 - 0.5943 0.3688- T-
u - 0.06652 0.0232 - 0.0199 - 0.0058 u
W 0.0102 - 0.0048 - 0.0788 - 0.3803 w

d--[ O.O~538 - O.!20S ][8"]
- 0.083 - 0.0456 00

- 0.0032 - 3.1126

That is,

[
::~.' = [- 0.0~053

- 0.06652
0.0102 - 0.0048

+ [ - O~083 - O'~561 [~I:J
-0.0032 -3.1126

0.014696 [0
- 0.18013 q
-0.0058 II

-0.3803 M'

0.9994
- 0.58712
0.0232

- 0.3045119
0.54373
- 0.02701
- 0.0788

The system transformed has the following structure:

O~ 1
-2.133 sinO!., +1.125 ~ig4'L~O~OL, +s;~L)inlOL,)J~ -2.50/~ .

f/eL(I»=

- 0.020530+ -0.58712 if j
0 0

0 0

G, (OL(/»)=
k Dsign<r L}os8L• kDsign<r L)in 81.,

= 0.OO5sign<r L }os8L, O.OOSsig,,~L )m 8"MLI, MLI.
0 0

0 0 0 0
0 0
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o

o [-0.083
H(t,~(t),xAt» = , Gl =

-0.3045119u+0.014696w - 0.0032

- 0.0456]

- 3.1126

0.54373u - 0.18013w

- [(- 0.066528+ 0.0232q - 0.0280lu - 0.0058W)]
and f2(eL(t),XH(t»= .

(0.0102e - 0.0048q - 0.0788u - 0.3803w)

Verification of the conditions required for feedback control design:

The next step is to check if the system satisfies all the conditions required for

application of the method developed in Section 6.3. With the given system

parameters, we can calculate the following:

II-II =t r r: 1[-0.3045119 0.0149629]T[-0.3045119 0.0149629]1A = max(CT(A A» = max( )
0.54373 -0.180135 0.54373 -0.IK0135)

= maX(CT([ 0.38837 -0.10242]) = 0.6447
- 0.10242 0.03266 )

If c, is chosen to be 200, then PI = 128.8/;1 = 0.644. Hence, al + PI = 0.794 < I is

true. And also, we can obtain /-II = kgM,. = 0.1667. From Section 6.3, the design
kD;l

parameter ;1 can be chosen as ;1= 2g ;l = 271.62.
1.1r
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The following is to check if (6.16) holds with the given parameters. For the given

system parameters, we have

In general, it can not imagine that the load can swing over 4S degrees of angle within

1 second. Therefore, it is realistic to assume that Imax(8L,)1 s 1, which leads to

;:x Imax{BL, ~ignC¥L ~OS3 BL., +Sign~L )in) BLt ~:s; 2.2Slmax(OL
1
)1 < ko,

L

that is, (6.16) holds.

If the design parameters ;3' ;., and ;5 are chosen to be ;) = 1. ;. = 0, and ;, = I, the

inequalities [;3;4 - (;; + ;s)X2,] > 0 and [;; - ;);4X:: + (;; +;1 )X:,] 2: 0 hold. If r, is

chosen to be 3.8, 4,uI(YI -1) > (1+ al + PI) and r, > 1are true. For the purpose of

simplifying analysis, it is preferred to choose A: :: -3/ , P; = j / so Q: :':2I. In this

case, the design parameter ~ is given a value of 0.5 and ~ 2: (1 + a, fif/ holds.
20'_ :

With all the above analysis, the suitable Lyapunov function for the system may be

v([~]J= ~~71.620i, +2008i,+0' + q'H(e, e)

Remark: Using the word "may" above is because the Lyapunov function is subject 10

changes with respect to the size of the compact set of ~(k'l).

For the chosen Lyapunov function, we have that 't',(OL)=5000:'
1

+ O.304Sif and

- [;3;4 - (;; + ;s)X 21]'12 < ;3;4X 2102 holds for all situations, which implies that the

solution is applicable to the whole variable range.

Design of feedback control:

Based on the above system and design parameters,
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hI(OJ= -(1 - al - pJI Y1(LgiVJOJ = -18.447O~

and h2(O;_)= -(1- al - pJIyl(Lg2vJe;J= -18.4470~ as well.

[

- 0.083
With G2 =

- 0.0032

- 0.0456] -I [-12.055
• we have G2 =

-3.1126 0.0124

0.1766 ].

- 0.3215

For the specified system, we can derive the following:

[(DpXxH)11 = [2U ~ 1('1 I
2w ~ 1('2

and

. I ,,-\[0 -18.447 0 0]WIth \Dh"OLF ' we haveo -18.447 0 0

= [39.354sinOLI + -20.753~ign(¥L):os3 8LI + sign~L)in3 0LI)Z2 - 2.58L2]

39.354sin8LI + -20.753~ign(¥L ):OS3 8LI + sign~ L )in3 8LI )Z2 - 2.58L2

_[-18.447[O.005Sign~ JosO, (u' + K,U l+O.005Sign~, )inO" (W: +K,-»
-18.447[0.005sign(¥L ):os8LI (u

2 + 1('1U) + 0.005sign~ L)in8Lt (w + K2 w)]

Therefore. we can obtain the first part of the feedback control by substituting all the

above derived functions:

To derive the part addressing the uncertainties of the feedback control. the gain

function needs to be examined. which is described below:
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:t(uII~glvJBL~+ a1Ipi(xH)1 + a2(t))1 [(Dp ):XH )r(DhXo;.},11
i=1

+ max~I[(DP):XH):t1 (DhXBL11IH(BL,xH)1O

+ 340.29~( -O.3045u + O.0147w)2 + (-0.54373u - O.1803w)2 I

I
U+W+K

s {O.03334I BLz I+O.015(u2 +w2)+64.06(lul+lwl}}(2 )(2 )
U+K1 W+K2

So we can choose

From all the above analysis, Ugajn(t,~,XH) can be derived:

Therefore, all the terms in the feedback control are obtained and the feedback control

is F(t,~,XH)= G;I[uA~,XH)+ Ugain~,~,XH )].

6.5 Discussion

In this chapter, a generalised state feedback control is introduced, which has been

proved to be able to locate the load at the specified position or its neighbourhood. An

illustration example is given in the chapter. The advantages of the method are 1) the

system uncertainties are taken into account priory to the controller design which leads
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to a robust feedback control; 2) the method results in a guaranteed load positioning

accuracy which depends on the design parameters; 3) the controller can he further

simplified with the analysis to individual helicopter system. The main disadvantage is

that the controller requires the full state feedback which may leads to implementation

difficulties.

Only the longitudinal case is discussed for the controller design but the lateral case

can be followed easily. In the analysis, a linearised helicopter model is adopted which

has simplified the design procedure but the quality of the feedback control is limited

by the accuracy of the system model. Due to the complexity of nonlinear helicopter

model, the compromise between the control quality and simplicity has to be made in

most situations. The work described in this chapter is only an initial trial of using the

deterministic Lyapunov control method to the problem of stability of helicopter and a

lot of open challenging topics remained to be explored.
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7. Concluding Remarks

A summary of the work is presented in this chapter and the main contributions are

highlighted. The further study may be continued in a number of different areas and

directions. Suggestions for some possible future research work are given at the end of

this chapter.

7.1 Summary

The main objectives of the project are to study the dynamics of helicopter with an

external underslung load and to develop a robust control strategy to ensure the

stability of the combined system. The achievement of the thesis is summarised

below.

The helicopter dynamics is studied with reference to general dynamical model of

helicopter and then the general model is bridged to UH-60 helicopter model.

Validation of the model is accounted by comparisons with flight test data for UH-60

helicopter at hover condition. Dynamics of helicopter with an underslung load is

investigated by developing an underslung load mathematical model, by considering

the helicopter dynamics as the input to the load model. The results are presented in

Chapters 3 and 4. In Chapter 3, influence of the underslung load dynamics to the

stability of helicopter is analysed using the UH-60 helicopter model. In Chapter 4, the

influences of helicopter dynamics to the dynamics of the underslung load are

investigated. The results obtained in Chapter 3 provides an insight knowledge of the

stability of the combined system while the results in Chapter 4 revealed the

importance of pilot control action in positioning a load and the effects of system

parameters on the load dynamics. The control problem is addressed from an overview

of flight control design techniques which are applied to develop control laws for

helicopter. An experimental study is conducted to demonstrate the intelligent flight

control methods, such as the fuzzy control. For the experimental study the twin rotor

MIMO system is used, and the results are presented in Chapter 5. In Chapter 6, the

control of helicopter with underslung load problem is addressed. In this chapter a

generalised state feedback control is introduced and a nonlinear feedback control law
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is developed using a deterministic control approach. For the control law development

the helicopter with underslung load system is considered as a cascade connection of

uncertain nonlinear system. Considering the control of a helicopter with an

undreslung load, the dynamical models of both helicopter and load have some

uncertainties. The uncertainties may arise from the helicopter to carry an unknown

underslung load or the immeasurable parameters in the dynamical models. The

uncertainties also arise from computational errors of the dynamical effects such as

aerodynamics. Therefore, for a realistic model uncertainties must be taken into

account during the controller design.

7.2 Recommendations for further study

The work developed in this thesis may be extended in many directions. Suggestions

for some possible future investigations are given below.

i) Experimental study of flight simulation

Control system analysis confirmed that the applicability of the nonlinear stabilizing

feedback control law for the helicopter with underslung load system. However, these

analysis alone will not guarantee the practical implementation. Thus the use of flight

simulator is recommended to gain an insight into the experimental difficulties of the

underslung load operation. Comparison of online flight simulation result with the

offline simulation results will allow further investigation and improvement of the

control law. Once an agreement is achieved, the control law can be implementable or

in the more realistic sense the controller employed is ready to use to conduct some

flight trials.

ii) Nonlinear optimal control design

Recalling the design procedure for the nonlinear deterministic control law, one of the

main requirements is a full state measurement which is difficult to realise. However,

if all the states are not measurable, state observers for unmeasurable states can be

constructed to obtain the control law. Therefore, for example in the case of all the
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states are not measurable then a condition can be identified in which states observers

can be constructed and investigated.
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A Linear helicopter models

The linearised helicopter model is expressed in the state space description form,

i(t) = Ax(t) + Bii(t)

A. I (a) UH-60 like FGR linear helicopter model.

The UH -60 like FGR model presented in Chapter 3 was obtained with the stability

augmentation system (SAS) is turned on. Thus, the model is stable. An unstable

model is also obtained by turning off the SAS and is presented below.

-0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 1.000 -0.0023 0.0503
-0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.9989 0.0462
-0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0462 1.0002
0.0001 -28.623 -0.0018 -0.0185 0.0122 0,0172 -1,6650 3.0335 -0.2607

A= 32.1225 -0.3207 0.0017 0.0124 -0.0316 -0.0003 -1.7901 -1.7648 0.3538
1.4863 -1.4259 0.0007 0.0153 -0.0024 -0.3341 -0.1352 0.3937 2.3529
-0.0002 -0.4553 0.0013 0.0223 0.0249 0,0006 -4.2805 -1.7132 - 0.0107
-0.0001 -0.6729 0.0007 0.0028 0.0045 0,0024 0.2113 0.9317 -0.0473
-0.0000 -0.0222 0.0001 0.0010 0.0030 0.0007 -0.1861 -0.1337 -0.1889

0.0000 0.0000 -0.0000 -0.0000
0.0000 0.0000 -0.0000 0.0000
0.0000 0.0000 -0.0000 -0.0000
0.0452 0.5795 0.3181 -0.0010

B= 0.5703 -0.0621 - 0.1039 0.1974
-0.0050 0.0315 -6.0698 -0.1001
0.7074 - 0.0747 -0.0575 0.0721
-0.0039 -0.1100 0.0558 -0.0277
0.0371 -0.0036 0.1596 -0.0624

Where definitions of the states input vectors are x = [¢ B If/ U v w p q ry and

u(t) = [Ble BIS Bo BOTY .The helicopter is trimmed at hover condition.
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B Linear transformation

Consider the linear state space representation of a system

x(t) = Ax(t) + Bii(t)

Apply to it a linear transformation x(t) = T z(t)

where T is a non-singular (n x n) constant matrix. This defines a new states

vector z(t) .

Thus,

Z(t) = T-1 x(t)

where the non-singularity of T guarantees the existence of T-1
, so the states variables

Xi (t) and Zi(t) are linear combinations of each others.

Therefore,
n n

xi(t)_LT"Zj(t) and Zi(t)= _LTij-1xj(t)
j=1

where 1';jl are the elements of the matrix of T-1 .

Substituting into the state equation the following can be obtained

d _
-(Tz) = ATz(t) + Bu(t)
dt

i(t) = T-1 ATz(t) + T-1 Bu(t)

the system (A,B)with state vector x(t)has been transformed into the system

(T-1AT, T-1B)
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Appendix C

Notations

T

R

s

Ys

80

82

Btw

b
83

P

Y (Yo)

CQ

Cr

CX,Cy.Cz
Cxw ,CYW , Czw

LR,M R,NR
LH,MH,NH
QR

UH,VH,WH

uwg' vwg' wwg

rotor thrust (N, lbf)
blade lift curve slope (l/rad)
blade chord (m, it)
negative z co-ordinate of rotor hub (m, it)
blade flapping moment of inertia (kg m 2, slug it 2 )

blade flapping stiffuess-spring constant

(N mlrad, it lb/rad)
blade radius (m, it)

I'd' berotor so 1 ity = _
trR

centre of gravity location forward of fuselage reference

point. (m, it)
rotor shaft forward tilt. (positive forward, rad)
blade profile drag coefficient
blade lift dependent drag coefficient
linear blade twist (rad)
number of main rotor blades
blade pitch/cone coupling angle (rad)

air density (kg/m3 .slug] it3)
pea R4

blade Lock number = 0
Ip

main rotor torque coefficient

main rotor thrust coefficient
main rotor force coefficients in shaft axes
main rotor force coefficients in the hub-wind axes

harmonic components of integrated blade aerodynamic
loads
rotor moments in body references axes (N m, it lb)
rotor moments in shaft references axes (N m, it lb)
main rotor torque (N m, it lb)

(A? -1)
stiffuess number = ...;",,_:_p_...:..

np

rotor hub velocity components (m/ s, it /s )
wind velocity components (m/ s, it /s )
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u,v,w

aircraft aerodynamic velocities at Centre of gravity
(mis, fils)
aircraft velocity components at Centre of gravity (CG)
(mis, fils)
rotor forces in body reference axes (N,lbl)
blade incidence functions (rad)
blade flapping angle (rad)
harmonics of flapping (rad)
cyclic flapping in hub-wind axes (rad)
transformation matrix from hub-wind system
aircraft normal acceleration increment
main rotor blade drag coefficient
rotor loading parameter

blade pitch angles (rad)
main rotor collective pitch at root (rad)
blade cyclic pitch components (rad)
blade cyclic pitch components before phasing (rad)
blade cyclic pitch components in hub-wind axes (rad)
rotor downwash component
harmonic downwash components

harmonic downwash components in hub-wind axes
rotor blade flap frequency ratio

normalised rotor velocity in x-y plane (~)

normalised rotor velocity components (normalised by
OR)
wake angle (rad)
blade azimuth angle (rad)
rotor sideslip angle (rad)
rotor speed (rad/ s)
roll, pitch and yaw rates of rotor in hub-wind axes

(rad/s)
tail rotor blade lift curve slope {l/rad}
fin blockage factor
negative z co-ordinate of hub
pitch/flap coupling (83angle)

tail rotor location aft of fuselage reference point (m, fi)

t 'I t inertia number
ai ro or (n 2

v,ap frequency)

XR,YR,ZR
asw,acw

170
B,Bp
Ba
«.,Bls

BI:,BI:
Blew' Bisw

Aa
-, ,Als

x

aOT

FT
hT
k3
IT

(:~l
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ST

bOT
b2T

bT

Crr
CQT

LT,MT,NT

QT
XpYpZr

eOT(e~r )

..tor

tail rotor blade radius (m, ft)
tail rotor solidity
blade profile drag coefficient
blade lift dependent drag coefficient
tail rotor blade drag coefficient
tail rotor thrust coefficient
tail rotor torque coefficient

tail rotor moments (N m, ft Ib)
tail rotor torque (N m, ft Ib)
tail rotor forces (N,lbf)
tail rotor pitch (with 63 correction) (rad)
tail rotor uniform downwash
normalised tail rotor velocities
tail rotor speed (rad/ s)
lift curve slop at zero incidences
maximum normal force coefficient
main rotor downwash factor at tail rotor

tail plane area (m2, ft2 )
location aft of fuselage reference point (rn, fi)
tail plane setting (positive nose up relative to fuselage x
axis) (rad)
tail plane moments (N m , fi Ib )

tail plane total velocity (m/ s, fi / s )
tail rotor forces (N,lbf)
tail plane incidence angle (rad)
negative z component of fin centre of pressure
location aft of fuselage reference point (rn, ft)
fin area (m2, fi2 )
fin setting (positive nose starboard)

fin side-force function

fin aerodynamic rolling, pitching and yawing moments

(Nrn, ftlb)
fin total velocity (m/ s, ft /s )
fin sideslip angle (rad)
aerodynamic side-force coefficient
main rotor downwash factor
fuselage reference length (m, fi)
fuselage plan area (m2, ft2)
fuselage side area (m 2 , fi 2 )

aOTP
CZTP

k).T

STP
ITP
eT

LTP,M TP,NTP

~
XpYpZr
aTP

hFN

IFN

SFN

eFN

CYFN

LFN,MFN,NFN

VFN

PFN

Crs
k).F

IF

Sp

Ss
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CMF

CNF ,CNAF,CNBF
CXF,CZF

LF,MF,NF

fuselage pitching moment function
fuselage yawing moment functions
fuselage force functions
fuselage aerodynamic rolling, pitching and yawing
moments (N m, ft lb )
fuselage total velocity (m/ s, ft /s)
fuselage normal velocity incorporating rotor downwash
fuselage aerodynamic forces (N m, ft lb)
fuselage incidence angle (rad)
fuselage sideslip angle (rad)
euler roll angle (rad)
moment of inertia (kg m 2 , slug ft 2 )

product of inertia (kg m 2 , slug ft 2 )

mass of the helicopter (kg, lb)
gravitational constant
overall aircraft rolling, pitching and yawing moments
(Nm, ftlb)
aircraft roll, pitch and yaw rates about body reference
axes. (rad / s)
overall aircraft force components (N,lbl)

VF

WA-t

XF,YF,ZF
aF

fJF
¢
Ixx,Iyy,Izz
Ixz
Ma
g
L,M,N

p,q,r

X,Y,Z
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