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Abstract 

Retinal Image Processing for Blood VesseL Segmentation 

by Nancy Salem 

The main objective of the work described in this thesis is to segment retinal blood 

vessels from digital colour fundus images with the ultimate purpose of early detection 

and diagnosis of many eye diseases. Ocular fundus images. which are acquired by taking 

photographs of the back of the eye using a fundus camera, are used in this study. In this 

context. to overcome the non-uniform illumination in retinal images, a pre-processing step 

is proposed to generate a binary mask and to enhance the retinal image in addition to the 

proposed segmentation methods. 

As a first step. to segment the retinal field of view. differences between standard devia

tion values of successive regions followed by region growing are used to generate a binary 

mask. Histogram matching is proposed to enhance the visual appearance of retinal im

ages by utilising the intensity information from red and green channels in order to comhine 

advantages of both channels. The histogram of the red channel is used to modify the his

togram of the green channel of the same retinal image. The performance of segmentation 

methods will be improved as a result of reducing the contrast between abnormalities and 

the retinal background. 

Then. three different methods - supervised. unsupervised. and semi-supervised - for 

hlood vessel segmentation are investigated. These methods are based on classifying/clustering 
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image pixels into vessels and non-vessels using a feature vector. In the beginning, a feature 

vector is extracted based on scale-space analysis. Then, the K-ncarcst neighhour classifier 

and two novel clustering algorithms, namely, nearest neighbour and radius-based clustering 

algorithms are applied to segment the retinal blood vessels. 

l"inally, the segmentation process is achieved using a single parameter unsupervised 

mcthod hased on analysis of the Hessian matrix. A novc1 vessel ness measure that com

bines information from blood vessels' centrelines and orientations at multiple scales is 

proposed. Vessel centrelines are extracted from the large eigenvalue of the I lessian matrix, 

while orientation represented by the direction of the eigenvector corresponding to the small 

eigenvalue. The only parameter that needs to be set is a scale value which can be chosen 

reflecting the diameters of blood vessels within the image. 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

OUR EYES represent a unique window through which we can sce the world around 

us. Similarly, they are the windows through which many diseases can he detected 

and diagnosed noninvasively. Eye examination is important in many different fields of 

medicine. In ophthalmology, it is the first step in detection and diagnosis of local ocular 

diseases. While in internal medicinc, it providcs evidence concerning the effect of many 

systemic diseases, which are associated with ocular manifestations. For example in car

diology, it can provide information about risk of cardiovascular diseases. Many discases 

such as hypertension, diabetes, arteriosclerosis, cardiovascular disease, and stroke, may he 

revealed by the examination of the retinal vasculature [1 J. 

At the early stages of many ocular diseases, the vision is not affected. Consequcntly, 

patients do not have their eyes examined which results in the development of diseases 

with more signs that affect the eyesight. At this stage, when the disease is progressed, the 

treatment might not be effective. Eye screening programs aim to detect signs of ocular 

diseases by regular examination of patients. Then, patients with ocular manifestation are 

referred to a consultant for further treatment. In these programs. many images are taken 

for the same person at different times. To compare these images, all the images need to be 

aligned in order to follow the development of existing diseases or detect new signs. This 



1.2. CONTRIBUTIONS 

can be achieved by segmentation of retinal blood vessels to act as landmarks to be used 

in image registration. I;or large numbers of images obtained, manual segmentation is a 

time consuming process and subject to human error. Therefore, it is important to develop 

reliable, automatic, amI computationally effective methods for segmentation. 

Automatic processing of retinal images is a challenging research area that aims to pro

vide automated methods to help in the early detection and diagnosis of many eye diseases 

such as diabetic retinopathy (DR), age-related macular degeneration (AM D), and hyper

tension. In this area, retinal image pre-processing, segmentation, registration, and analysis 

are different forms of contribution from digital image processing techniques. 

Automated segmentation of retinal blood vessels is an important step in screening pro

grams for DR [21. evaluation of the retinopathy of prematurity [3], registration of retinal 

images for treatment evaluation [4,51, generating retinal Illap for the diagnosis and treat

ment of AMD [6 J, or locating other anatomical structures such as the optic disc [7, g I or 

the fovea [9]. 

In this research, the main interest is in the automatic segmentation of blood vessels from 

colour retinal images. The colour fundus image is the prefen·ed type of image because it is 

widely used in clinics and suitable for screening programs. Hgure 1.1 shows an example 

of a colour fundus retinal image of a normal human eye. A medical background about 

different imaging techniques and objects of interest in retinal images will be presented in 

the next chapter. 

1.2 Contributions 

The following is a summary of the original contributions of this research in the field of 

retinal image processing: 

• A novel contribution of the red channel in pre-processing of colour fundus images. 

The red channel is used to generate a binary mask in order to avoid processing the 

dark region around the retinal field of view. Moreover, the intensity information 

from the red channel histogram is used to modify the histogram of the green channel 



1.2. CON,]R1BUTlONS 

Figure 1.1: Ocuh.lr fundus image rtaken from littp : // www. p liys . ufl.edu/ 
-aver y / cour se/ 3 4 0 0 / v ision / r eti n a-p i c t ur e_li ve . JpgJ. 

image - of the same retinal image - to enhance the visual appearance and t correct 

the non-un i rorm ilIum ination or reti nal images. 

• Proposing a new feature vector, which cons ists of three features, to segment retinal 

images in conj uncti on with supervised and semi-superv ised methods. As a result or 

the small size of this feature vector, the proce. sing time i . ignificantJy decrea. cd. 

• Modifying an ex isting semi -supervised radius-based clustering algorithm (RA C'A f- ) 

to act as a class ifier. In this context, train ing and testing phases are proposed. The 

training phase rollows the same concept as the original RACAL with an additi onal 

fea ture extraction step to extract features for thc re L1ltant clu tel' . The training phase 

sta rts by applying RA CAL to cluster image pixels into dilTerent clusters based on 

a feature vector and a u er defined parameter. Then, a feature extraction step is 

proposed to calcu late features for each cluster. In the test ing phase, unseen image 

pixel s can be classified to the clas of the neare t cluster from the training. 

• Using the direction or vessels in retinal blood vessel segmentation, where a new vcs-

selness measure is proposed . This mea. ure is based on vessels' centrelines and the 

orientation at multiple scales. Vessel centrelines are detected from the large ei gen

va lue of the Hessian matrix, while the orientation is estimated from the eigenvectors 

that COrre pond to the small eigenva lue. 
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1.3 Outline of the Thesis 

This thesis is organised as follows: 

Chapter 2 presents the necessary hackground which is divided into two parts. The 

first part is the medical background, which includes introduction to the anatomy of the eye, 

the main retinal image components and feasible contrihutions of digital image processing 

in automated processing of retinal images. The second p.llt is a review of supervised and 

unsupcrvised scgmcntation mcthods in the Iitcrature, additionally an introduction about 

rcceiver opcrating curves to evaluate the pelformance of scgmcntation mcthods is given. 

Chapter 3 proposes two pre-processing stcps applied to retinal images that utilisc in

tensity information from the red channel image. A hinary mask is generated using the 

standard deviation of successive rows and columns in conjunction with a region growing 

step. Then the retinal image is enhanced by using histogram matching to modify the his

togram of the green channel image using the histogram of the red channel image. As a 

result, the contrast between bright abnormalities and retinal background is reduced and 

therefore, the pcrformance of blood vessel segmentation is improved. 

Chapter 4 investigates segmentation of retinal hlood vessels using supervised, unsu

pervised, and semi-supervised methods. A feature vector of three features is proposed to be 

used in conjunction with the K-ncarest neighbour (KNN) classifier, the nearest neighhour 

clustering algorithm (NNC'A), and the radius-based clustering algorithm (RACAL) with a 

semi-supervised strategy to classify image pixels into vessel and non-vessel pixels. The 

use of the proposed feature vector results in a significant reduction in the processing time. 

Additionally, instead of the use of RACAL as a scmi-supervised mcthod, a modification 

is proposed in order to use RACAL as a classifier. This is achieved through training and 

testing phases. 

Chapter 5 represents a vessel ness measure to be used in a retinal blood vessel segmen

tation method. The proposed vesselness measure is based on analysis of the Hessian matrix, 

in which vessel centrelines and orientations at multiple scales are combined to measure the 

vessclness. 
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Chapter 6 presents an overview or the work done in this research, conclusions and 

avenues for future investigations. 

1.4 Publications 

The following is a list of publications derived from the work described in this thesis. 

1.4.1 Journal papers 

• N. M. Salem and A. K. Nandi, "Novel and adaptive contribution of the red channel in 

pre-processing of colour fundus images," Journal ofT/Ie Fnlllklin Institute. Special 

Issue: Medical Applications of Signal Processing, Part I, vol 344, issues 3-4, pp. 

243-256, May-July 2007. 

• S. A. Salem, N. M. Salem, and A. K. Nandi, "Segmentation of retinal blood vessl'ls 

using a novel clustering algorithm RACAL with a partial supervision strategy." .10/11'

Ila/ o/Mediclil & Biological t;ngilll'erillg & CO/lljJllting, vol 45, pp. 261-273, March 

2007. 

• S. A. Salem, N. M. Salem, and A. K. Nandi. "Augmentation of a nearest neighbour 

clustering algorithm with a partial supervision strategy for biomedical data classifi

cation," Accepted for publication as Invited Paper in the Special Issue on Advances 

in Medical Decision Support Systems of Expert SystclIls. 

• N. M. Salem, S. A. Salem, and A. K. Nandi, "Unsupervised and single parameter 

retinal blood vessels segmentation using a vessel ness measure," submitted to journal 

of Computers in Biology and Medicinc, June 2007. 

1.4.2 Conference papers 

• N. M. Salem and A. K. Nandi, "Enhancement of colour fundus images using his

togram matching," in Proceedings of the lASTED Intemafiol1al Conference, BioMl'd

ica/ Engineering, February 16-18, 2005, Innsbruck, Austria. 
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• N. M. Salem and A. K. Nandi, "Novel pre-pro<:cssing of <:olour fundus images," in 
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Chapter 2 

Medical Background and 

Segmentation Methods 

2.1 Introduction 

THE main focus of this chapter is to give the necessary background about retinal im

ages and to review blood vessel segmentation methods in the literature. The chapter 

begins with the medical background including the eye anatomy and the different imag-

ing techniques used to capture these images. Contributions of digital image processing 

techniques to retinal image processing are also discussed, which include detection of DR, 

AMD, and other ocular diseases. The second part of this chapter reviews supervised and 

unsupervised methods for retinal blood vessel segmentation. 

2.2 Medical Bacl{ground 

2.2.1 Anatomy of the eye 

When comparing a camera to the eye, the camera has lens to focus the incoming light, 

then gather it, and finally transform that light into a picture. In the eye, the incoming 

light is refracted by lens and cornea onto the retina, then turned into nerve impulses by the 

photoreceptors acting as transducer cells. These impulses are sent to the brain along the 

7 
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Figure 2.1: Anatomy of the eye [taken from http://www . health .uab . edu/ 
default.aspx?pid=26471J. 

visual path to provide the vh-ua1 impression [JOj. Figure 2.1 shows the anatomy of the eye. 

The eyebalJ consists of of three Jayess which are the fibrous layer, the vascltlor p;gmmJ~d 

layer. and the nervous layer L ii]: 

L Fibrous Layer (the outer most layer): It is made up of me sclera and the cornea.. 

The cornea is the clear and ~-pareot part and fomtS the froot l/6 of this layeL An 

light must first pass through the cornea when it enteI"S the eye. 1be posterior 5/6 of 
\ 

the eyeball is the opaque. part and called (be sclera. It is usually known as the "white 

of the eye'" seen from the front and it maintains the shape of the eye. 

2. Vascular Pigmented Layer (the middle layer): It consists of the dWIVid, the ciliary 

body, and the iris. The choroid is a thin and soft coat lining the inner surface of the 

sclera It i. extremely vascular and contains the blood vessels that nourish the outer 

layers of the retina and the anterior regions of the eye. Tbe ciliary body is a muscular 

area that is attached to the leos, it contracts and relaxes to control the size of the lens 

for focusing. The iris js the coloured part of the eye, it has two muscles to control 

the amount of light passing into the eye. 
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3. Nervous Layer - Thc Rctina (the inner most layer): It is a delicate Illulti-layered 

tissue lining the interior of the eyehall. It contains photoreccptor cells (rods and 

cones), which are the transducer cells. Rods are mainly responsible for vision in very 

poor lighting condition, while cones are adapted to hright light and responsible for 

daylight and colour vision. The density of the rods and the cones varies in different 

parts of the retina. In the centre of the retina, is the /I/{/CII/a, which is darker than the 

surrounding retina. A depression area present in the centre of the macula is known 

as the j(JV('a. At the fovea, the rods are absent while the cones are most dense. As a 

result, the fovea is responsible for seeing fine details clearly, which is necessary in 

activities that require sharp central vision sllch as reading and driving. 

The retina is connected to the brain by the optic nerve, which conducts the electrical im

pulses from photoreceptor cells to the lateral geniculate nucleus in hrain. The optic nerve 

head is the focus from which retinal arteries enter and retinal veins leave the eye. The optic 

nerve is comprised ofaxons from the retinal gangl ion cells. 

2.2.2 Retinal images 

2.2.2.1 Imaging techni(IUCs 

Ib determine the health of the eye, the internal structures of the eye, especially the retina, 

should be examined. The ophthalmoscope is used in the eye examination to detect changes 

in the eye due to ocular or systemic diseases. Tt) keep a permanent record or the rdina, 

there are two commonly used imaging techniques known as fluorescein angiographs and 

fundus images. Fluorescein angiography involves an intravenous injection of a fluorescein 

dye, and then a series of photographs of the fundus are taken using a fundus camera with 

appropriate filters allowing visualisation of the retinal blood vessels as the dye circulates. 

Fundus images are acquired by taking photographs of the back of the eye lIsing a fundus 

camera. This technique is widely lIsed in clinics as it is noninvasive and suitable for screen

ing. Retinal images are used for diagnosis, treatment evaluation, and to follow up patients 

with ocular pathology [l2l. 
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2.2.2.2 Ohjects of'interest 

The ohjects of interest in the ocular fundus are: anatomical structures, lesions, ahl1ormali-

ties of anatomical structures. Hgure 2.2 shows the main normal components. These ohjects 

can he organised as in [13] into three suh-c1asses (1-3) of ohjects and two specific (4-5) oh-

jects: 

I. curvilinear ohjects (including hlood vessels), 

2. blohs brighter than blood vessels, 

3. blobs darker than blood vessels, 

4. the optic nerve, 

5. the fovea. 

Thcse objects can be segmented or localised by using characteristics of these objects, such 

as texture, colour, size, and shape. Problems with retinal image processing are the poor 

quality and non-uniform illumination associated with these images. Typical retinal images 

are shown in Figure 2.3 which gives examples or different normal and ahnormal images. 

Figure 2.3 (a) is an example of a normal retinal image, without any sign of ocular diseases, 

in which retinal blood vessels, optic disc, macula, and the fovea are clearly shown. Ex-

amples of abnormal images are shown in Figure 2.3 (b-f). Abnormalities in these figures 

are shown as a formation of new blood vessels, white or yellow spots, changes in vessel 

diameter and tortuosity. Figure 2.3 (f) gives an example of a poor quality image, where 

image components or abnormalities are not clearly shown. 

2.2.3 Retinal blood vessels 

The earliest representations of the retinal vessels in the human eye were drawn shortly 
,).I'~I 

after the advent of the ophthalmoscope in 1850, then the first illustration of the fundus 

drawn from life was first published in 1853 [141. .As a result of systemic or ocular disease, 

blood vessels can have measurable abnormalities in diameter, colour, and tortuosity, where 
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Figure 2.2: M ain components 0 [" the ocular fundus. 
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vessels become curved, dilated, and having many turns. Inrormati on about blood vessels 

can be used in automated methods for diagnos i of various ocular disea e , and in image 

analys is and understanding to relate changes to disease severity. Furthermore, retinal blood 

vessels can be considered as landmarks in image registration to compnre images taken over 

the years. Convergence or the blood vessel network is used to locali se the optic disc as 

another reg ion of interest in the retinal image. 

2.2.4 Contributions of digital image processing 

Recently, there ha been a strong 111 dical motivation to apply automatic processes in the 

fi eld or retinal images. Digital image processing techniques can be used in image enhance-

ment, segmentation, registration, ana ly is and understanding. Enhancement of retinal im-

ages can be used either to improvc the visual appearance or retinal image in cases or poor 

quality and non-uniform illumination or as a pre-praces ' ing step to help in the detection of 

different anatomica l structures or abnormalities, 1n image segmentation the main objecti ve 

is the detection process to divide the image into meaningrul regions each representing one 

object. Therc are two main areas where image segmentation techniques are applied to reti-

nal images which are detection and loca li sat ion of anatomical structures (i.e. blood vessels, 

opt ic di . c, and fovea) and det ct ion of abnormaliti es ( i. e. microancurysms, hcmorrhagcs. 
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(3) 'onnaJ 

c) Drusen 

(0 poor quality image 

Figure 23: Typical retinal images Ltaken from http : / h.""'~Lpa.rLclernsmL edu/ 
stare/ anifes a ions . htmlJ-



2.2. MEDICAL BACKGROUND 13 

and hard exudates). Image registration is used to align a set of images (or one image to 

another) before examination. which is helpful when comparing images taken for the same 

patient at different times. Registration of retinal images is used to follow the evaluation 

of some lesions over the years or to compare images ohtained under different conditions. 

The focus in image analysis and understanding is on the analysis of image contents to get 

a relation hetween the changes of anatomical structures and different diseases and grading 

disease severity. 

2.2.4.1 Automatic retinal image processing 

Diabetic retinopathy 

Diahctes is a major health problcm in industrialised countries and a rapidly emerging prob

lem in urban areas in developing countries [15. 16 J. The implications for the provision 

of eye care are evident as everyone with diabetes will eventually develop DR if they live 

long enough lI5]. Studies have shown that people who suffer from diahetes benefit from 

regularly attending a screening session [17, 18], where retinas of both eyes are examined 

by an ophthalmologist and if DR is detected the patient can be treated or monitored further. 

DR remains the commonest cause of new blindness in the working age population in thc 

UK [19 J. DR meets all the criteria for a disease that warrants screening. it has a long latent 

period before visual loss and is eminently treatable. As well. screening for retinopathy is 

noninvasive, cost-effective, highly sensitive and specific [201. Timely treatment can prevent 

up to 98% of visual loss from DR [211. 

Automated methods for DR detection start with quality assessmcnt of retinal images 

[22, 23J. In [22], image clarity and field definition are used to define the quality of the 

image. Macular blood vessel visibility is used as an indicator for image clarity. The full 

rOY, optic disk. and a visible retinal region aro~nd the macula are used to define the field 

definition. In [23]. a set of good quality images are used to train a statistical classifier 

to distinguish between good and low quality images. Anatomical structures detection is 

another important step in order to distinguish between responses from anatomical structures 
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and DR ahnormalities. Retinal blood vessels, optic disk and the fovea are the important 

structures to be detected in DR screening programs [2,24,25,26]. 

Methods for detection the signs of DR are based on retinal image segmentation, then 

generating a set of features for candidate regions followed by a classifier to classify these 

regions into exudates [27, 28, 29], microaneurysms [30], and red lesions [311. In r27, 

29], a fuzzy C-means clustering algorithm is used to segment retinal images into regions. 

Then neural networks are used to classify these segmented regions into exudates and non

exudates based on colour, size, texture, and edge strength. In [31 j, a pixel classi ficalion 

method is proposed to segment red lesions and blood vessel pixels from retinal images, 

followed by removing connected pixels which are considered as vessels. The remaining 

pixels are considered candidate pixels which are classified as lesions or not by using the 

KNN classifier in conjunction with a set of features (shape features and pixel intensity 

features). 

Age-related macular degeneration 

Age-related macular degeneration (AMD) is now the leading cause of blindness in the de

veloped countries [15] and the most common cause of of vision loss in people over 50 

years of age [32J. Over the last two decades, there has been continued interest in the use 

of digital techniques for quantification of macular pathology, particularly drusen. Drusen 

identification and measurement playa key role in clinical studies of this disease. CUiTent 

manual methods of drusen measurements are laborious and suhjective, and there is a poten

tial for the use of automated techniques [33, 34] for detection and quantification of drusen 

in retinal images which will help in early detection and treatment of AMD. 

Otner ocular diseases 

As a result of ocular diseases, the optic disc and the fovea can have a measurable abnor

malities in size and shape. This also can affect the blood vessels in the form of diameter, 

colour, and tortuosity. Automated methods to detect these features can be used in computer 

aided diagnosis systems to give the specialist a second opinion. 
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In hypertension, commonly refelTed to as high blood pressure, the blood pressure is 

chronically elevated. Hypertension may result in focal constriction of retinal arteries in 

addition to an increase in length diameter ratio and decrease in branching angles r351. 

Features sLich as bifurcation angle, artery-to-vein diameter ratio l36], mean artery and vein 

diameters are considered when analysing retinal images for hypertension detection r37, 38, 

39J. 

Another common ocular condition is glaucoma, which is a disorder associated with 

pressure in the eye, and is characterised by damage to the optic nerve, with consequent 

visual loss. The cup-to-disc ratio is used in the automatic detection of glaucoma [40,411. 

2.2.4.2 I>atasets 

In this research, two publicly available datasets; STARE [42] and DRIVE [431 datasets are 

used for performance evaluation. The ground truth (GT) images are provided for all images 

in both datasets, i.e. retinal blood vessels segmented by human observers. These data sets 

have been widely used for performance evaluation of many segmentation methods. 

STARE dataset 

The STARE dataset consists of 20 images (ten images contain pathology and the other ten 

are normal) which are digitised slides captured by a TopCon TRY-50 fundus camera at 

35° FOY. Each slide was digitised to produce a G05 x 700 pixels image, standard RGB, 8 

bits per colour channel. Every image has been manually segmented by two observers to 

produce GT vessels segmentation. 

The first observer segmented 615,726 pixels as vessel and 5,293,034 as background 

(10.4% vessel), the second observer marked 879,695 pixels as vessel and 5,029,065 as 

background (14.9% vessel). Subsequent review indicated that the first person took a more 

conservative view of the boundaries of vessels and in the identification of small vessels 

than the second observer [12]. The manual segmentation by the first observer is chosen as 

the GT for vessel segmentation verification. Typical images from the STARE dataset are 

shown in Figure 2.4. 
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(a) 

(b) 

(e) 

Figure _4: .. ormal (left) and abnormal (ri~t) iJnages from the STARE datasel (a) RGB. 
(b) Mt. and (e) second manually segmented i.n:J3g . 
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DRIVE dataset 

The DRIYE database consists of 40 images captured by a Canon CR5 nonmydriatic ]CCD 

camera at 4}:i° FOY. These images were captured in a digital form of size G8J x 7G8 pixels, 

standard RGB, 8 bits per colour channel. Seven of these images contain pathology whik 

the other 33 are normal. The images are in compressed JPEG format, which is unfortunate 

for image processing but is commonly used in screening practice [44]. 

The 40 images have been divided into a training and test set, each containing 20 images 

(the training set has three images with pathology). They have been manually segmcnted 

by three observers trained by an ophthalmologist. The images in the training set were 

segmented once, while images in the test set were segmented twice, resulting in sets i\ and 

B. The observers of set A marked 577,649 pixels as vessel and 3,960,494 as background 

(12.7% vessel), for set B these numbers are 556,532 and 3,981,611, respectively (12.3% 

vessel). Performance is measured on the test set using the segmentations of set A as GT. 

Typical images from the DRIVE dataset are shown in Figure 2.5. 

Images from both datasets are available as RGB images, 8 bits per colour channel. The 

RGB model is used to describe colour objects based on their primary spectral components 

of red, green, and blue. In this thesis, each component is referred to as a colour channel, 

i.e. red channel, green channel, and blue channel, with intensity values from 0 to 2t< - 1. 

Another way to describe a colour object is by using hue, saturation, and intensity (IISI) 

colour model. Hue describes the colour attribute (pure red or green). While saturation 

measures the degree to which the colour is diluted by white. The intensity describcs the 

intensity of the colour [45]. Figure 2.6 shows the three channels for a normal retinal image 

using the RGB and HSI colour models. In the RGB, the red channel is the brightest, 

green channel has the highest contrast, while the blue channel is the darkest channel. The 

HSI is not suitable for image visualisation, but the intensity channel can be used in other 

applications. 

Field of view (FOY) is the region of interest in the retinal image which contains all 

anatomical structures. In all retinal images that are available from both datasels, the FOY 
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(a) 

(b) 

(c) 

Figure 25: • 'ormal (left) and abnormal (right) images from the DRI E dataset (a) RGB. 
b fir.i[, and (c) second manualJ)' ~g:menred iImg.~. 



2.2. MEDICAL BACKGROUND 19 

RGB image HSI image 

Red channel Hue channel 

Green channel Saturation channel 

Blue channel Intensity channel 

Figure 2.6: RGB and HSI colour models. 
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is surrounded by a black region, which does not provide any useful information. In retinal 

image processing, it is required to reduce the processing time, in other words, it is required 

to segment/extract the retinal FOY. This can be achieved by producing a binary Illask for 

each image, to limit the processing within the FOY. This binary mask can be generated 

by thresholding the image using a threshold value. This method is very simple, hut the 

threshold value is not constant for all images, which require an automatic selection for the 

threshold value. 

Figure 2.7 illustrates different application of image processing techniques in the field 

of retinal images, such as illumination equalisation, vessel detection, and drusen detection 

Images from these datasets have been used for performance evaluation of vessel seg

mentation methods [12,44,46,47,48,49,50,51,52,53,541, centreline detection [53], 

optic disc localisation and detection [7, 55, 56, 57, 58], and image analysis to ohtain a de

scription of the global vascular structure [59]. Some of these given references use only one 

dataset for performance evaluation, in other cases both datasets were used. 

The STARE dataset is used for performance evaluation for proposed blood vessel seg

mentation methods, as it has ten images with pathology and ten normal images, giving 

a good opportunity to test proposed methods in both normal and abnormal retinas. The 

DRIYE dataset, where images are in a compressed JPEG format, is only used for the per

formance evaluation of the binary mask generation step as it provides the binary masks for 

each image in the dataset. 

2.2.4.3 Perf()rmance measure 

Receiver Operating Characteristic (ROC) curves are used for performance visualisation and 

to compare between classifiers based on their performance [60,61]. 

For hard classification, when the output of the classifier is either positive (P) or neg

ative (N), there are four possible scenarios as summarised in Table 2.1 (which is known 

as confusion matrix or contingency table). If a sample is P and is classified as P, then it 

is counted a true positive (TP), while counted as a false negative (FN) if it is classified as 

N. On the other hand, if a sample is N and is classified as N, then it is counted as a true 
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(c) Vo..~ segmetlUIioo 

Figure 2.7: Different proces...ro \'efSions of a retinal image from the STARE datao;et Ltaken 
from http : //www .parL c l S Ofl . ed /sfI:.are/i.mages Lh ]. 
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Table 2.1: Confusion matrix for a two chss classifier , 
GT 

P N 

I Classifier I P TP FP 
output I N FN TN 

negative (TN), while counted as a false positive (FP) if it is classified as P. Accuracy, true 

positive rate (TPR), and false positive rate (FPR) are three measures that are colllmonly 

used in performance evaluation, which are given by: 

. ,_ 7'P+1'N 
aCCUl ac'y - 7']'+F]'+FN+7'N 

, ']']' 
'1 PR = 11'+FN 

, Fl' 
]< PR = FJ'+TN 

The accuracy is the percentage of the cOlTectly classified samples. The TPR or sensi

tivity is the proportion of the positive GT that classified as positive. The specificity is the 

proportion of the negative GT that classified as negative which is equal to 1-FPR. 

In case of classifiers with soft output, which allow the output to belong to all classes 

with different degrees of membership, a threshold is needed to produce a binary output. 

For each threshold value, there will be a different point and tracking these points will result 

in a curve. An ROC curve plots the false positive rates against the true positive rates as 

the discrimination threshold is varied. An example of an ROC curve is given in Figure 

2.8. The ideal case, when the classification result is 100%, is shown at the point in the 

top left corner. Random classifiers give a straight line at an angle 45° (i.e. :1; = 11). Some 

implementation notes are given in Appendix A.l. 

In this thesis, the performance of segmentation methods is measured using ROC curves, 

where TPR and FPR are defined in the same way as in [12). The true (false) positive is any 

pixel which was hand-labelled as a vessel (not vessel), whose intensity after segmentation 

is above a given threshold. The true (false) positive rate is established by dividing the 

number of true (false) positives by the total number of pixels hand-labelled as vessels (not 

vessels). 
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Figure 2.8: ROC curves. 

2.3 Vessel Segmentation Metfiods 

Blood vessel segmentation methods can be di vided into pa tte rn recognition, model-based, 

tracki ng-based, arti ficia l intelligence-based, neural network-based, and tube- like object de-

tect ion approaches [62]. 1n the fi eld of retinal images, approaches for segmenting blood 

vesse ls can be class i fi ed according to di ffe rent criteria: 

• 1n [ 12], segmentation methods are di vided into three categories: kernel-based, class itier-

based, and tracking-based methods, 

• Tn [5 1], these approaches are class if-ied as pi xel processing-based and track ing-based 

methods, 

• In r 441, segmentation methods are divided into ru le-ba.-ed and supervised methods. 
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In this research, the last category for classifying vessel segmentation methods into unsuper

vised and supervised methods is adopted. Unsupervised methods in the literature comprise 

the matched filter response [12,49,50,53,63,64,65,66], grouping of edge pixels 16], 

adaptive thresholding [12, 46], vessel tracking [54, 67, 68, 69 J, topology adaptive snakes 

[70], morphology based [51, 71, 72], and multi-scale based methods [44, 49, 5 J, 52, 53, 

73, 74]. 

Supervised methods, which require feature vectors for each pixel and manually la

belled images for training, use neural networks (NN) [751. the K-nearest neighbour (KNN) 

classifier [44, 73], or the Bayesian classifier [521 for classifying image pixels as vessel or 

non-vessel pixels. These methods depend on generating a feature vector for every pixel in 

the image and then using training samples (with known classes) to design a classilier to 

classify these training samples into their cOlTesponding classes. 

!\. radius-based clustering algorithm with a partial supervised strategy - RAL'AL - was 

proposed by Salem and Nandi [76] to classify data objects according to a feature vector, 

using a fraction from the OT. The authors applied RACAL to classify breast cancer tumors 

to either benign or malignant. Similarly, RACAL can be applied to segment the retinal blood 

vessels, where only a fraction of the image pixels are required to be manually labelled (not 

all the entire image pixels). In Chapter 4, Section 4.5, this algorithm is used to segment 

blood vessels from colour fundus images and is modified in order to be used as a c1assitler. 

2.3.1 Unsupervised metliods 

Matched filters based metliods 

Segmentation methods that are based on matched filters start with convolving the image 

with a kernel specially designed to extract objects of interest - blood vessels - then followed 

by other image processing steps to get the final results. Chaudhuri et al. [63] proposed a 

two dimensional matched filter for segmenting retinal blood vessels assuming that a vessel 

has a Gaussian profile, fixed width, and a fixed piecewise linear orientation. Profile across 

one row from a retinal images is shown in Figure 2.9 (a), the region defined by the rect-
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angle is enlarged in Figure 2.9 (b) where three blood vessels give responses that can hy 

approximated by a Gaussian function. The convolution kernel is mathematically expressed 

as: 

for l'ljl < ~ . - 2 (2.1 ) 

where L is the length of the segment for which the vessel is assullled to have a fixt:d 

orientation, a defines the spread of the intensity profile, and the direction of the vessel 

is assumed to be aligned along the y-axis. 

As a result of having difTerent orientations, 12 different kernels are used to search for 

vessel segments along all possible directions over 1800
• Figure 2.10 shows two kernels at 

different angles using a = 2 and L = D. Each convolution kernel is modified by subtracting 

its mean value, so the expected filter output is - ideally - zero in the background. First 

the green channel is smoothed with 5 x 5 mean fi Iter to reduce the effect of noise. then 

convolved with all 12 kernels with the output at each pixel being the maximum for the 12 

orientations. Result of applying the matched filter for an abnormal image from the STARE 

dataset is shown in Figure 2.11. The main advantage of this method is that it results in a 

good initial estimate of the vessels in the image. On the other hand it gives some responses 

which do not resemble any blood vessels and vessels of small widths are missed. 

Equation 2.1 was used as a first step then followed by thresholding strategies r 12, 64, 

66 J to segment retinal blood vessels. Hart et at. [64 J described an automated tortuos

ity mea"urement technique for blood vessel segments in retinal images. They segmented 

retinal blood vessels using the 20 matched filter, followed by applying thresholding and 

thinning processes to get the binary image containing the vessel segments. In the piecewise 

threshold probing method proposed in [12], the matched filter response (MfR) image, rc

suiting from convolution with matched filter, is probed. During each probing, the threshold 

of the probed region is determined according to testing a set of criteria, and ultimately it is 

decided if the area being probed was a blood vessel or not. Figure 2.12 shows results of the 

piece-wise threshold probing method for two images from the S·IARE dataset which arc 



2.3. VESSEL SEGME TAllON METHODS 

on 
Qi 
> 
.!!! 
>-
~ 
~ 

�5o,---,----,--....,----.----.-----r----, 

100 

50 

O~--~--~-~~-~--~--~--~ o 100 200 300 400 500 GOO 100 
Pixels 

(a) 

1I0r--.---...-----.-----.----.----r----r---.,..----,-----, 

100 

90 

80 

300L--1~0--~~-3O~-~40-~50-~~~-7~0--8~O--90~~,00 

Pixels 

(b) 

26 

Figure 2.9: (a) Profile across a horizontal line through one row in an image, and (b) the 

region defined by the rectangle in (a). 
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Figure 2.10: Two different kernels at (a) e = 0°, and (b) e = 45°. 
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(a) (b) 

Figure 2.11: Result from the two dimensional matched fi Iter for an abnormal image (a) 
RGB image, and (b) MFR image. 

(a) (b) 

Figure 2.12: Result from the Hoover method for (a) normal, and (b) abnormal images 
[taken from http : //www . parl . clemson . edu/ stare/p r obi ng/ ]. 
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available at [421. 

To extract anatomical structures from retinal images, the matched ti Iter is used in con

junction with entropy thresholding and connected component analysis in [nn]. 

Equation 2.1 assumes that blood vessels are of constant width and different orienta

tions, so it uses fixed values for parameters which improved in [50], where the parameters 

for the matched filter are varied and chosen according to an optimisation procedure. While 

in [49,531, the MFR is calculated at different scale values to extract vessels of varying 

widths by introducing a multi-scale matched filter. 

Adaptive thresholding based methods 

Thresholding is the simplest segmentation method for dividing an image to a set of regions 

or objects. The only parameter that needs to be set is the threshold value which can he 

determined from the image histogram. In retinal images, segmentation can not be achieved 

using the gray-level threshold with a single threshold value. This is because of the non

uniform illumination and poor quality in addition to the sharing of the same gray-level 

intensities by different objects. Adaptive threshold methods are used to solve this problem, 

in which different threshold values are applied to different regions in the retinal image. 

The method proposed by Hoover et al. [12J is one of the adaptive threshold based 

methods where different image regions were thresholded at different threshold values based 

on a probing technique. The work in [46] is based on a verification based multi-threshold 

probing scheme, in which a binary image is obtained at different threshold values and each 

time vessels were selected based on verification steps. 

Tracking based methods 

Vessel tracking approaches start from an initial point, detect vessel centrelines or houllu

aries guided by local information, then analyse the pixels orthogonal to the tracking di

rection. Zhou et at. [67] developed a method to detect and quantify retinopathy in digital 

retinal angiograms. This algorithm relies on a matched filtering approach coupled with 

a priori knowledge ahout retinal vessel properties. The tracking algorithm is an adaptive 
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iterating procedure and models the vessel profile using Gaussian function. This method 

requires the user to identify starting and ending search points manually, while junctions are 

not taken into account. 

To overcome the problem of initialisation, the optic nerve in fundus images is detected 

and used as the starting point in [68, 69]. Tolias et ai. [69] proposed a fuzzy C-Illcans 

(FCM) clustering algorithm that is based on the intensity information to track vessels in 

fundus images. This algorithm is initialised by defining the optic nerve as a very hright 

region to be the starting point to track image vessels. However, it ignores the possihility of 

locating abnormalities that have the same properties as the optic nerve. Moreover. vessels 

of small diameter and low contrast were missed. The scheme proposed by Wu et al. r541 

is based on adaptive contrast enhancement and feature extraction steps to find candidate 

points for the tracking algorithm. Tracking of vessels was done via forward detection, 

bifurcation identification, and backward verification. 

IncOiTectly identified initial points is the most important issue in tracking algorithms 

which affects the performance of these algorithms. In addition, vessel-tracking techniques 

may be confused by vessel crossing and bifurcations. However, it can provide very accurate 

measurements of vessel width and tortuosity [77]. The ideal vessel tracking algorithm 

should have the following characteristics [69]: 

• automatic initialisation and termination, 

• automatic definition of centreline and vessel edges, 

• efficient handling of junctions and forks. 

Morphology based metliods 

Linearity and connectivity are two main features of blood vessels' shape that are known 

a priori and used by morphological image processing. Morphological operators such as 

dilation and erosion are used to add or subtract a structuring element (SE) of certain inten

sity to the image. Objects in an image can be separated by opening (erosion followed by 
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dilation) with certain SE of certain shape, while holes within an image can be fil1ed using 

closing (dilation followed by erosion). 

Morphological filters were proposed by Zana and Klein in [721 to segment vessel-like 

patterns from retinal images, where vessel was defined as a bright pattern, piece-wise con

nected, and locally linear. In order to differentiate vessels from analogous backgroulld 

patterns, a cross-curvature evaluation was performed. Another mathematical morphology 

approach was proposed by Walter and Klein in [71] which uses the top-hat transform cal

culated from the supremum of openings with large linear SE in different directions. 

Mendon~a and Campilho [51] combined the centrelines detection with multi-scale mor

phological reconstruction to segment retinal blood vessels. A modi tied top-hat transform 

with variable size SE followed by a binary morphological reconstruction method was used 

to obtain binary maps of the vessels at different scales. Finally, a region growing step was 

used to obtain the fi.nal segmentation results. 

Multi-scale based methods 

As blood vessels in retinal images are of different widths, so it is useful to segment these 

vessels at different scales, i.e. wider vessels are segmented at large scale values, while thin 

vessels are segmented at smaller values of scales. Segmentation methods that are based on 

multi-scale analysis interact with other approaches such as matched filters, morphological 

operators, and region growing. For example, responses of the matched filter l63] are de

rived at multiple scales in [49, 53], while multi-scale morphological operators are used in 

[51]. In the work proposed in l74], gradient magnitude and the ridge strength, which are 

extracted at multiple scales, are combined with a two-stage region growing procedure to 

segment the blood vessels from red-free images and fluorescein angiographs. 

Moreover, features derived at multiple scales are used in conjunction with supervised 

classifiers to segment retinal blood vessels [52, 73]. The first and second derivatives - of 

the green channel image, in .7.:- and y- directions [73], or with respect to other image 

coordinates [44] at different scales - are used as features for every pixel in the retinal im

age. Other features are extracted from calculations of the Gabor wavelet transformation al 
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multiple scales [521 as will be explained in the following section. 

2.3.2 Supervised methods 

Ncural networks (NN) were proposed for use in retinal images for blood vesscl segmenta

tion by Sinthanayothin et al. [75]. Contrast enhancement and intensity normalisation were 

achieved via a local adaptive contrast enhancement step which applied to the intensity hand 

of the retinal image. Plincipal component transformation was applied to the colour image 

to rotate the axes from RGB to three other orthogonal axes (principal axes of correlation). 

The first principal component was chosen from the three components as values along the 

first axis exhibited the maximum correlated variation of the data, i.e. contains the main 

structural features. A feature vector (of size 200 which are the first principal component 

and its edge strength values from a sub-image of 10 x 10 pixels) was generated for each 

pixel and then used as input to the NN. A post-processing step was required to reclassify 

small isolated regions of pixels that were misclassificd as blood vessels. 

Niemeijer et al. [73] proposed a pixel classification method hased on a feature vector, 

which consists of 31 features (these features are the green channel image intensity, and the 

filtered image using the Gaussian and its derivatives at different scale values). The KNN 

is then used to classify image pixels into vessel or non-vessel pixels. Staal et al. [44] 

proposed a primitive-based method which is based on extraction of ridges that coincide 

approximately with vessel centrelines. Ridges were used as primitives for descrihing line 

elements, then each pixel was assigned to the nearest line element to form image patches. 

For every pixel, feature vectors that make use of the properties of the patches and the line 

elements were computed and then classified using the KNN classifier. As there are many 

features, a feature selection scheme was used to select features which provide the best 

classi fication results. 

Another supervised method based on Gabor wavelet was proposed by Soares et al. [521. 

The FOY border was extended in a pre-processing step in order to reduce false detection by 

the wavelet transform at the borders of the FOY. The two-dimensional Gabor wavelet trans-

form was computed (because of its capability for detecting oriented features) at different 

1 : 
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orientations and the maximum modulus over all possible orientations was taken. Feature 

vectors were composed of the pixel's intensity and the maximum modulus of the wavelet 

transform over all angles (from 00 to 170° at steps of TOO) for multiple scales. Finally, 

the segmentation was achieved using a Bayesian classifier in which each class-conditional 

probability density function was described as a linear combination of Gaussian functions. 

2.4 Sunlmary 

In this chapter, the necessary medical background about retinal images is introduced and 

different contributions of digital image processing in the field of retinal image process

ing are given. The second pmt of this chapter presents a survey on the main supervised 

and unsupervised segmentation methods used to extract blood vessels from colour fundus 

images. 

Automatic processing of retinal images is a demanding research area, where many 

aspects should be considered such as sensitivity, specificity, reliability, and complexity. 

Supervised methods require generating a feature vector for each pixel in the image, and 

then training a classifier using a set of manually labeled images. These methods provide 

high sensitivity and specificity values. Performance of supervised methods depends on the 

generated set of features and the training set. Complexity of these methods is proportional 

to the size of the feature vector and the training set. On the other hand, unsupervised 

methods have the advantage of being more computationally effective and there is no need 

for manually labeled images or feature extraction. Performance of 1lI1supervised method 

is lower than that of supervised methods. There is a trade-off between performance and 

complexity, in addition to the availability of manually labeled images. 

In this research, one of the considered issues is the processing time which is reduced by 

using a binary mask to segment the retinal FaY and generating a feature vector of a small 

size. Performance is another important issue, where high sensitivity and specificity values 

are obtained from supervised classification. For this reason supervised and semi-supervised 

segmentation methods are investigated, and a modification to the KAeAL is proposed to act 
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as a classifier. This modification is very important for automated purposes and results in a 

higher sensitivity and specificity values than those obtained by the KNN classifier. 



Chapter 3 

Pre-processing of Colour Fundus 

Images 

3.1 Introduction 

D IGITAL colour fundus images are available as true colour images, i.e. RGB im

ages. In order to segment retinal blood vessels from colour fundus images, only 

one channel is used from the three colour channels (red, green, and blue). The green chan-

nel is widely used in segmentation methods as it has the highest contrast. In general, results 

from using the green channel to segment retinal blood vesscJs are heller than results oh-

tained when using the red channel. This statement is true for normal images with uniform 

illumination. For abnormal images, the green channel has a high contrast hetween ahnor-

mali ties and the retinal background. Consequently, these abnormalities will give responses 

similar to those obtained for blood vessels, which results in high rate of false positives. In 

case of non-uniform illuminated images, the red channel is brighter than the green channel, 

resulting in better visualisation/segmentation of blood vessels. In addition to the fact that 

the region of interest in retinal images is the retinal FOY (which is shown in colour fundus 

images surrounded by a black background). The red channel has the highest contrast bc-

tween the retinal FOY and the background region, as it is the brightest channel, therefore it 

is used to segment the FOY. 

35 
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In this chapter, a novel contribution of the red channel is presented. where two steps 

for pre-processing colour retinal images are proposed. The first step is to generate a bi

nary mask in order to avoid processing the dark region around the retinal FOY. The second 

step is to enhance the retinal image by combining intensity information from red and green 

channels to get advantages from both channels. 

Pre-processing of retinal images in the literature is used in reducing the errect of noise 

[63], the detection of anatomical structures [75.78] or abnormalities [241. automatic mask 

gencration [791, colour normalisation [27, 80], and visual image quality assessment I X II. 

Retinal images were smoothed by a 5 x 5 mean filter to reduce the effect of spurious noise 

in [63] and transformed using wavelet transform in [7R]. where the optic nerve hcad Vias 

enhanced by modifying the wavelet coeff1.cients by suppressing the small scale coeflicients 

and enhancing the larger scale coefficients. To detect the main components of the fun

dus, i.e. the optic disc. fovea. and blood vessels. Sinthanayothin et al. L 75 J presCllted a 

pre-processing step to reduce the effect of changing the contrast in different regions of the 

fundus image and to normalise the mean intensity. This was accomplished by transform

ing the intensities of the three colour hands to an HSI representation. then enhancing the 

contrast or the intensity by a locally adaptive transrormalion. 

3.2 Automatic Masl{ Generation 

3.2.1 Introduction 

Mask generation aims to avoid processing the black region that surrounds the FOY of 

retinal images. As the background region around the FOY occupies roughly about 30% 

of the retinal image. then excluding this dark region will result in decreasing the required 

processing time. To the best of our knowledge. the only published methods for binary 

mask generation are reported in [79, 82]. In the work proposed by Gagnon ef ~11. [791. 

statistical measures were used to label the pixels outside the FOY. In [79 J. statistics were 
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calculated for each colour channel of the image followed by a 4-sigma thresholding with a 

free parameter empirically chosen such that pixels with intensity value above that threshold 

were considered to belong to the FOY. Then, results for all bands were comhined through 

logical operations and region connectivity test in order to identify the largest <.:omlllon mask 

(due to the difference colour response of the camera, and FOY size is not always the same 

for ea<.:h <.:olour <.:hannel). No qualitative results were reported. 

In r82], a mask generation method is proposed, where the red channel of the colour 

retinal images is thresholded. Then a median filler is used to remove the artifacts f'olloweu 

by a manual removal of the fundus notch. Finally. an erosion filter is applied to reduce the 

interior size of the obtained binary mask. This method failed in generating masks ror poor 

quality images, in addition to removing the notch manually. In the automatic processing of 

retinal images, it is required to generate binary masks for retinal images automatically. In 

the next Section, an automated method for binary mask generation is proposed. 

3.2.2 Method 

From the three colour channels (red, green, and blue) of the fundus image, the red chan

nel has the highest brightness which results in high contrast between rOY and the dark 

surrounding region. For this reason, the binary mask for a colour retinal image is gener

ated from the red channel. This is illustrated in Figure 3.1, when plotting a horizontal line 

through the three colour channels, at the start (end) point of the FOY there is a considerable 

variation between gray-level intensities before and after this point whi<.:h is greater in the 

red channel than in other channels. 

Points of large variations in rows and columns are used to define a rectangle that is 

tangential to the rOY of the retinal image. Then pixels outside this rectangle are chosen as 

seeds to be used next in a region growing step. Statistical measures such as mean and stan

dard deviation values are used as criteria for the region growing to find the pixels outside 

the FOY. 
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Figure 3. L: Gray-level intensities across one row from the three cbamrels of a colour retinal 
image. 

3.2.2.1 Surrounding rectangle 

To detennine a rectangle SWTOunding the FOy' maximum changes in standard devjation 

values are calculated for successive regions that contain number of rows (columns) from 

the red channel image. The region that includes the row (coJwnn) from where the FOY 

starts bas the bighest difference between its standard deviation and the region that cootains 

the previous rows (columns), because at this row (column) values of gray-level intensities 

start to increase rapidly. The rectangle that surrounds the FOV is defined by rows (r 1 and 

1·2) and columns (Cj and C2)· 

To find the first row (rt) from where the FOY starts. i.e. look for the first maximum 

in the difference between standard deviation values of the region contains the first (i) rows 

and the region contains the first (i + 1) rows as shown in Figure 3.2 (a). To find the last 

row (r2) where the FOV ends, i.e. look for the first maximnm in the difference between the 
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Figure 3.2: Change in standard deviation values hetween successive regions. 

standard deviation values of the region contains the last (i) rows and the region contains 

the last (i + 1) rows as shown in Figure 3.2 (b). Similarly for the columns (el and ('2) as 

shown in Figure 3.2 (c and d). These procedures are summarised in Figure 3.3. 

3.2.2.2 Region growing 

In the region growing step. pixels outside the previously defined rectangle are used as secd 

pixels. Standard deviation and mean values for a pixel's neighbourhood are used as criteria 

to add new pixels to the background region. There are three parameters: '1 ~nmll' '1 :~Id. and 

'lblock-si:;c' ~Iwan and T.sld define the mean and standard deviation threshold values for 

the intensity in the pixel's neighbourhood. and 'lblock-size defines the number of pixels in 

the neighbourhood. Another parameter that can be added to these paramcters is T1II (l1' to 

define a margin in order to select a number of pixels as seeds and not selecting all pixels 

outside the surrounding rectangle. 
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Algoritlim 1 Rectangle surrounding the FOY 

Input: I,. (red channel image) 
Outputs: 1'1, 1'2, C], and C2 (values for rows and columns of the rectangle) 

"'8 and c~ are number of rows and columns in 11, 

for 'i = 1 : TIj - 1 
8ldi = standard deviation for region contains the first'; rows 
std i + T = standard deviation for region contains the first i + 1 rows 
sldrlif h (i) = slcli+l - std'i 

EndFor 

For j = Ts : - I : 2 
"'td) = standard deviation for region contains the last Ts - j + I rows 
sldj_l = standard deviation for region contains the last 1's - (j - I) + I rows 
stddifh(j) = sldj - 1 - stdj 

EndFor 

Repeat for CI. and C2 

Figure 3.3: Algorithm 1 to define a rectangle sUJT()Unding the FOY. 

The proposed method is summarised as follows: 

I. Determine the rectangle that SLlITounds the FOY. 

40 

2. Initialise a queue of seed pixels (by using all pixels outside the surrounding rectangle 

or use a margi n of 1 ;nu',. pi xels). 

3. For pixel i in the queue [(Til Ci); define a region ~ of N pixels. N = nluck-s-izc. 

centered at (Til (:i). 

4. Find mean. N mcan , and standard deviation. Nsl,d. values for the pixels in the ncigh

bOUl-hood of I(Ti' Ci) as: 

1 
N L l(r,c) 

r,cE'R 
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• add pixels of N to the background region. 

5. Calculate C (the number of new added pixels to the background region) 

IfC > 0 

• update the queue (all new added pixels to the background region). 

• repeat steps 3, 4, and 5. 

Else 

• HALT 

3.2.3 Experimental results 

The method described in Section 3.2.2 was used to generate the binary mask for 60 images 

[rom two datasets [42, 43]. For each image in the STARE dataset, a binary mask was 

generated manually by using different threshold values and finding the hest threshold value 

that produces the best binary mask. These manually generated masks were used as the 

GT for pelformance evaluation. For each image in the DRIVE dataset, a mask image 

was provided that delineates the FOV which will be used as the GT. Each one of these 60 

images was processed using the parameters Tmca.n = 40, Tsld = 2, Tblock-si.zc = 3 x 3, and 

l~n(lT = 5. These values were selected after some exploratory experiments. The effect of 

changing these parameters on the performance of the proposed method is also investigated. 

3.2.3.1 STARE dataset 

Results for mask generation using the STARE dataset images are reported in this section, 

Figure 3.4 shows the rectangle that surrounds the FOV for one image and its binary mask. 

Average true and false positive rate values when using different values for Tb/ock-size and 
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'Hlhle 3 I' STARE d'lt'lset results .. , " 
7;}lr)('~,- .. -iz" 7~'d FPR% TPR% 

3 x 3 I 26.8 100 
:~ x :~ 2 3.41 99.99 
3 x 3 3 2.67 99.99 
3 x 3 if 2.36 99.99 
3x3 .5 2.16 99.99 
.5 x 5 1 3lU)6 100 
.5 x ti 2 4.52 99.99 
5 x 5 3 2.90 99.99 
5 x [) 4 2.35 99.99 

.5 x .5 .5 2.07 99.98 
7x7 1 42.84 100 
7x7 2 5.88 99.99 
7x7 :J 3.94 99.99 
7x7 4 3.21 99.98 
7x7 5 2.75 99.97 

1:,'d are sllmmarised in Table 3.1. For all images in the STARE dataset, when lIsing the 

predefincd valucs for the paramctcrs, avcrage TPR and FPR of 100% and 3.4% respectively 

are achieved. Out 01'20 images, 17 images give TPR of 100% with mean FPR of 2. 72 (,Yr" and 

one imagc gives TPR of 99.96% with FPR of 19.7%. For this particular image, the black 

background region surrounds the FOV can be considered as two regions which results in 

high FP, also it is charactcriscd with high mean and standard dcviation valucs. The result is 

enhanccd to TPR of 99.6% and FPR of 1.5% when incrcasing the parameters 1;1/('11." to 70, 

7:,1<1 to 25, use Tmm' = 0 (bccause this image is tangcntial to one of thc imagc horders), 

3.2.3.2 DRIVE dataset 

For the DRIVE dataset images, Figure 3.5 shows a rectangle surrounds the FOV for one 

image and its binary mask. Average true and false positive rate values when using different 

values for 1'nlock-.,i::.e and T,, 'd are summarised in Table 3.2. Out of 40 images, 39 images 

give TPR of 100% with mean FPR of 2.88%, and one image gives TPR of 99.99% with 

FPR of 5.56%, which result in average TPR and FPR of 100% and 2.95% respectively. 
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(a) (b) 

Figure 3.4: An image from the STARE dataset with: (a) rectangle surrounding the FOY, 
and (b) binary mask . 

(a) (b) 

rigure 3.5: An image fr 111 the DRIYE dataset with: (a) rectangle surrounding the FOY, 
and (b) binary mask. 
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Table 3 2' DRIVE d'lt'lsel results .. < <, 

T/,lo('k-8iu ]' std FPR % TPR% 
3x3 1 10.14 100 
:~ x :~ 2 2.95 lOO 
3x3 3 l.51 100 
3 x 3 ,I O.gO 100 
3 x :3 5 0.59 99.97 
5 x 5 1 12.0H 100 
5 x 5 2 2.74 100 
5 x 5 :~ 1.14 100 
5 x 5 4: 0.62 99.95 
5 x 5 5 0.50 99.88 
7x7 I 13.15 100 
7x7 2 2.30 100 
7x7 3 0.80 99.96 
7x7 4 0.54 99.87 
7x7 5 0.46 99.80 

3.2.4 Discussion 

The red channel of colour fundus images has the advantage of being brighter than the 

green channel, which results in having the highest contrast between the FOV and the black 

surrounding background. Because of this characteristic feature, this channel is used to gen-

erate a binary mask for retinal images. On average, the dark background region occupies 

26.67% and 31.21 % for images from the STARE and DRIVE datasets respectively. Ex-

cluding pixels outside the FOV from processing will result in reducing the processing time 

of the retinal images which is an important issue in retinal image processing. 

It is clear from Tables 3.1 and 3.2, for the two datasets, that for the same Tbluck-s;zc: 

• With the increase in Ts1d ' it is expected to have a decrease in the FPR . 

• There is a large gap in the FPR values achieved between 7~'/(i = I and ]~ld = 2, while 

this gap decreased with increasing 7~~l.d, which indicates that the optimum choice for 

the parameter 1 ~td is 2. 

Given that the above two observations are valid for both datasets, this consistency of obser

vation augers well for the proposed method. Figures 3.6 and 3.7 demonstrate the moust

ness of the proposed method and how it gives high performance for a wide range of the 
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7/,/och'-8iz('. and 7~ld parameters. The two Figures (3.() and 3.7) are plotted at 7'1//(/1' = fi anJ 

7~llc<Ln = 40. 

3.3 Enliancement of Colour J1'undus Images 

3.3.1 Introduction 

Unsupervised methods for segmenting blood vessels from colour fundus images use the 

green channel r 12, 46, 63, 65, 66] because generally it has the highest contrast oct ween 

blood vessels and the retinal background while the red channel is rather saturated and the 

blue channel is rather dark. Gray-level distributions of three (red, green, and blue) channels 

for a colour fundus image are shown in Figure 3.R. For the same reason, the green channel 

is used in supervised methods to detect image ridges [44j or to extract features l73j for 

pixels that will be classified as vessels or not. Experiments show that the red channel has 

the advantage of being brighter and distributed over a wider range of gray-level values, 

than the green channel, which results in less contrast betwecn abnormalities and thc retinal 

background. 

In this section, a novel method of using the red channel gray-Icvel distributions and a 

novel application of the histogram matching approach other than colour normalisation is 

proposed. The intensity information from red and grecn channels of thc same retinal image 

are combined without using a reference image, as it is believed that each image has its 

own gray-level distributions according to the FOY, the location of optic disc, normality, or 

abnormality. Performances of automatic detection of retinal blood vessels using histogram 

matched images that result from the proposed method and using different reference images 

are compared. The red channel is used in pre-processing of colour fundus images for two 

reasons: firstly, to improve the visual appearance of retinal images in cases of non-uniform 

illumination .. Secondly, to improve the performance of unsupervised methods of blood 

vessel segmentation, which will be a helpful step towards the automatic analysis of retinal 

images. As many methods are based on applying the two-dimensional matched filter r631 

before segmenting the retinal blood vessels [12, 65, 66, 67 j, it is used here as an example 
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channel or one fundus image. 
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of unsupervised methods and the effect of using red channel, green channel, and histogram 

matched image (HMI) on the efficiency of blood vessel detection are investigated. Results 

are compared with the piece-wise threshold probing method r 121. 

3.3.2 Histogram matching 

Histogram matching is an approach that is used to generate a processed image that has a 

specified histogram [45], it has the advantage of producing more realistic looking images 

than those generated by equalisation. Histogram matching was proven to he a good nor-

malisation method for making colour images invariant with respect to background pigmen-

tation variation between individuals. By selecting a particular retinal image as a reference 

image and using histogram matching to modify the three channels of each colour image, 

the problem of wide variations in colour of the fundus from different patients is solved 

in [27) while clustering results of different lesion types are improved in [80]. Histogram 

matching is also used in visual image quality assessment [811, where model histograms for 

pixel and edge value distributions are used. These models were defined using a set of good 

quality images. 

In the proposed method, the concept of histogram matching is used to modify the his

togram of the green channel image to match that of the red channel image in oreler to com-

bine the distributions of gray-levels in both images [83]. The procedures are summarised 

as follows: 

I. Obtain histograms of both images (green and red channels), 

2. Perform a mapping from the levels in the green channel image flk into corresponding 

levels Sk based on its histogram 

k 

Sk = T(.qk) = L ~g(.qj) 
j=O 

k 

= '"""" 11j L...J n 
j=O 

k = 0, I, 2, ... , (L - I) (3.1) 
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where J~(lq) is the PDF for the green channel image, n is the total number of pixels 

in the image, 11.1 is the number of pixels with gray-level .'/.1' and L is the number of 

discrete gray-levels, 

3. From PI' (r), the histogram of the red channel image, obtain a transformation function 

G such that: 

k 

C(rA:) = LF~.(rj) = Sk 

j=O 

4. By using the inverse transform, 

or 

J..: = 0, 1,2, ... , (IJ - I) 

k = 0, 1,2, ... , (L - I) 

'/'k = C- 1 (sA:) h: = 0, 1,2, "" (/- - I) 

theoretically, wc are seeking values of l' that satisfy Equation 3.4, 

(3.2) 

(3.3) 

(3.4) 

5, Practically, for each gray-level g/,:, map this value to its cOlTesponuing level 8k; then 

map level 8k into the final level 1'k. This is shown in Figure 3.9, 

3.3.3 Saturation condition 

Figure 3.10 shows results of applying thc proposed method in cascs of saturated images 
~ . 

(the histogram of the red channel in used to modify the histogram of the green channel 

to obtain the histogram matched image which is shown in Figure 3.10 (d». As the red 

channel image is very bright, then combining information from both channels results in a 

a histogram matched image (HM!) with contrast mllch lower than the contrast in the green 

channel image. In these cases (of saturated images), the use of green channel images is 

preferrcd over the use of histogram matched images. For this reason, a criterion to test thc 

saturation of the red channel image of the test image is necessary to establish whcther the 

green channel image or the histogram matched image should be used. 
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(a) 

(b) 

(c) 

Cd) 

Figure 3.10: Two examples of saturated images and their (a) RGB, (b) red channel, (c) 
green channel. and (d) histogram matched image. 
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Figure 3. 11 : Histogram of red channels of saturated images in Figure 3. 10. 

It has been observed that the hi stogram of very bright images is characteri sed by tI larg , 

gap in the gray- level distribu tions, (see Figure 3. 11 ). T here are many ways to dctcc t thi s 

characteri sti c. Having ex perimented w ith dilTerent criteri a, a computationally simple yet 

an effecti ve criterion is a. follows: ca lculate the cumulati ve summati on of the gray-level 

PDF in the red channel up to the mean value: 

£ - 1 

/-i1' = I: Tj . P,.(1·j ) 
j=O 

k 

CA: = L P,.('ri) 
j =O 

(3.5) 

(3 .6) 

where Pr e,. ) is the PDF for the red channel image, k i . the bin containing the mean value, 

ILl' , and L is the number of discrete gray-levels. The condition which used to test thc 

saturati on of a tes t i mage is: 

Thi s va lue ha been determined experimentally. The propo ed method is prc enlcd in 

Figure 3.1 2. 
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Algodtlim 2 Enhancement of colour fundus images using histogram matching 

Input: Colour fundus image I. 
Output: Histogram matched image or green channel image 10 • 

Let II' red channel, and I,} green channel. 
Calculate the mean value fir and the cumulative summation G/ir of the gray-levels PDF up 
to the bin contains 11,. for the red channel image 11'. 

IF (C/1r ::::: O.:n 
Perform histogram matching procedures using II' and If}' i.e. 

10 = hisLmotch (In Ig) 
Else 

10 = Ig 
EndIF 

Figure 3.12: Algorithm 2 enhancement of colour fundus images using histogram matching. 

3.3.4 Experiments 

The improvement in visual appearance of a retinal image as a whole will be investigated 

by processing the histogram of the green channel in conjunction with the histogram of 

the red channel as describcd earlier. Then, to test the effect of this enhancement on the 

appearance of blood vessels, the algorithm in [63] is implemented to test the ability of 

the two-dimensional matched filter to segment blood vessels from retinal images. The red 

channel, green channel, and the histogram matched images are used to obtain the MFR 

images for every test image in the dataset. 

For the purposes of comparison, three normal images (from the dataset) are selectcd as 

reference imagcs, where the green channel histograms of these images are used as reference 

model histograms. The histogram matching is used to modify the green channel of test 

images using these reference histograms. 

To evaluate the performance of the proposed method, a set of 20 images publicly avail

able [42] is used and the pelformance is measured with ROC curves. 
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3.3.5 Results and Discussion 

For efficient segmentation of retinal blood vessels, it is desirable to have high contrast 

hetween the retinal blood vessels and retinal background whilst there should he low contrast 

hetween retinal hackground and retinal abnormalities. Comhining the advantages of hoth 

channels, brightness in red channel and high contrast in green channel, results in decreasing 

the contrast hetween the abnormalities and the retinal hackground. This helps to reduce 

some responses, which do not resemble any blood vessels and which would otherwise 

decrease the performance of blood vessel segmentation methods. 

The first application of the proposed method is to correct the non-uniform illumination, 

which is a common problem, in retinal images. Figure 3.13 shows results of matching the 

green channel histogram with the red channel histogram for two test images. The HMI 

is now a combination of the green channel image (which is less bright but with higher 

contrast) and the red channel image (which is more unirormly illuminated). 

The second application is to improve the performance of unsupervised blood vessel 

detection methods. The retinal blood vessels are segmented using the method in [631. 

where the red channel, green channel. the histogram matched images are used. Two types 

of histogram matched images are used; the result of combining red and green histograms as 

well as the result of combining the green channel with three different reference histograms 

as shown in Figure 3.14, ROC curves for these images are plotted in Figure 3.15. 

Figures 3.13, 3.14 and 3.15 show that the proposed combination of gray-level distribu

tions from red and green channels is a useful pre-processing step in cases of non-uniform 

illumination and in improving the performance of blood vessel segmentation. 

Average ROC curves for all twenty (normal and abnormal) images were considered for 

sensitivity and specificity analysis at some specified points and results are summarised in 

Table 3.3. It is clear from Table 3.3 that the red channel (MFRr) has the least sensitivity 

while the reference 3 (MFR.,.:!) offers the next least sensitivity followed by the green chan

nel. The reference I (MFR"I) and reference 2 (MFR,.2) are similar to each other and offer 

better sensitivity. The best sensitivity is achieved by the proposed HMI (MFR hm ) where 
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(a) 

(b) 

(c) 

(d) 

Figure 3.13: Application of the proposed method for non-uniform illumination (a) RGB 
images, (b) red channel, (c) green channel, and Cd) HM images. 
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(a) (b) 

(c) (d) 

(~ (0 

Figure 3. 14 : MFR images using (a) red channel, (b) green channel, and HMI when ( ) 
combining red and green, (d, e, t) using three di ffe rent reference model . 
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'I~lble 3.3: Sensitivity and specificity values for MFR images (using red. green. IIMI, lind 
3 normal reference images) 

~ 

Specificity Image Sensitivity % 
% type MFRr MFRg MFRhm MFRrT MFR,.2 Mf·'R1·;\ 

Normal 53.16 71.38 73.45 72.42 72.58 58.82 
95% Abnormal 28.56 50.45 60.83 57.24 58.19 36.17 

All images 40.86 60.92 67.14 64.83 65.38 47.50 
Normal 69.54 87.05 86.66 87.09 80.t) I 77.3lJ 

90% Abnormal 48.15 76.46 79.83 78.40 78.15 59.85 
All images 58.85 81.75 83.41 82.74 82.53 68.62 

Normal 75.64 91.08 t)O.67 91.37 91. I I 85.4lJ 
85% Abnormal 58.21 85.44 86.08 86.00 85.29 74.00 

All images 66.92 88.26 88.37 88.69 88.20 79.74 
Normal 72.56 93.02 92.54 93.36 93.09 89.98 

80% Abnormal 65.16 89.67 89.37 89.94 89.13 ~Q.2<) 

All images 72.37 91.35 90.96 91.65 91.11 86.14 

the histogram of the red channel is used to modify that of the green channel. 

As described earlier. a condition is defined to test the saturation of the test image, so the 

information from the red and green channels will be used as long as C/ I.,. ~ O.~~. otherwise 

the green channel image will be used in the segmentation of the blood vessels, I :igurc 

3.16 shows the average ROC for all images in the dataset after applying this condition. 

Table 3.4 compares results using the green channel image (MFRg), the proposed histogram 

matched image when combining red and green channels (MFR hm), when using referellcc 

1 histogram «MFRd), the better of the reference histograms), and results of applying the 

Hoover method [12]. Histogram matching using reference histogram was useful in cascs 

of normal images and very bright abnormal images; also results are affected by different 

choices of the reference histograms (as seen in Table 3.3) which required an expert to selee! 

a suitable reference histogram. On the other hand. histogram matching using red and green 

histograms of the same image was useful in most of the abnormal images. and to overcome 

the problem caused by very bright images (normal or abnormal). a saturation condition is 

set which improved the perrormance (as in Table 3.4). 

To evaluate the performance of the proposed method, results are compared with results 

of Hoover et al. [121 which require more post-processing. Results show that the lise of 
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Figure 3.16: Average ROC curves (after testing image saturation) foc (a) nonnat. and (b) 

abnormal images. 
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Table 3.4: Sensitivity and specificity after applying the saturation condition 
Speci ticity Image Sensitivity % 

% type MFR" MFR"711 MFR"l Hoover 
Normal 71.38 73.83 72.42 83.85 

95% Abnormal 50.45 62.53 57.24 70.35 
All images 60.92 68.18 64.83 77.tO 

Normal 87.05 87.36 87.09 88.43 
90% Abnormal 76.46 81.64 78.40 81.08 

All images 81.75 84.50 82.74 84.76 
Normal 91.08 91.03 91.37 90.62 

85% Abnormal 85.44 87.79 86.00 86.06 
All images 88.26 89.41 88.69 88.34 

Normal 93.02 92.87 93.36 92.00 
80% Abnormal 89.67 90.81 89.94 88.96 

All images 91.35 91.84 91.65 90.48 

the proposed histogram matched image instead of the green channel image improve the 

pelformance of the two-dimensional matched filler. At specificity of 90% in case of abnor-

mal images, sensitivity increased from 76% when using the green channel image to 82% 

when using the histogram matched image compared with 81 % when using the piece-wise 

threshold probing method. In case of normal images, at the same specificity, the sensitivity 

obtained when using green channel image or histogram matched image was 87% compared 

with 88% for the Hoover method. 

3.4 Summary and Conclusions 

The green channel is the widely used channel in processing of colour retinal images. A 

new pre-processing method for retinal images is proposed in which useful information is 

extracted from the red channel image. First, the binary mask is generated using region 

growing and statistical measures. Then, enhancement of colour retinal images is achievcd, 

where 2/3 of the data (red and green channels) contained in colour digital fundus images 

are used instead of 1/3 of the available data (green channel only). In the process, a ncw 

criterion is set to test whether the test image is saturated or not. Applying the proposed 

method, a visual enhancement for retinal images in cases of non-uniform illumination is 

achieved and the pelformance of the two-dimensional matched filter is improved. This 
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method can be used to pre-process retinal images before applying unsupervised blood ves

sel segmentation methods as it results in decreasing the contrast between the abnormalities 

and the retinal background, and therefore can improve the performance of blood vessel 

segmentation methods. 

In supcrvised and semi-supervised methods which are investigated in thc ncxt chap

ter, image pixels are classified into vessel and non-vessel pixels, which is a pixel hased 

classification. In these cases, the processing time depends on thc total number of pixels 

to he processed. The dark black background region around the FOY, which contains no 

information, occupies more than 25% of the image. Consequently, using a binary mask to 

segment the retinal FOY will avoid processing this region and this will results in reducing 

the processing time. 



Chapter 4 

Vessel Segmentation using 

Scale-Space Features 

4.1 Introduction 

I N this chapter, a feature vector of three features is proposed to be used in conjunction 

with supervised and semi-supervised classification of pixels in retinal images. Using 

this feature vector results in a significant reduction in the processing time required for 

the K-nearest neighbour (KNN) classifier compared with the feature vector proposed in 

[73 J. Classification and clustering methods share the same concept of generating a feature 

vector for each image pixel, then classify or cluster pixels that are similar or share similar 

features to belong to the same class or cluster. The proposed feature vector consists of the 

green channel image intensity, the local maximum of the gradient magnitude, and the local 

maximum of the large eigenvalue of the Hessian matrix (both over scales). Then. three 

different vessel segmentation methods - supervised. unsupervised. and semi-supervised are 

investigated. These methods stal1 by generating a feature vector for each pixel in the retinal 

image, then a classifier or a clustering algorithm is applied. In cases where GT images me 

available, the use of supervised methods is recommended. But when these GT are not 

available. then ullSupervised methods are the most suitable ones. In other cases where the 

GT images are available but incomplete or for part of the image only, a semi-supervised 

62 
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method can be used to take advantage of the percentage of the availahle GT. The KNN 

classifier is used as an example of supervised classification methods. whi Ie the ncarcst 

neighbour clustering algorithm (NNCA) is used as an example of unsupervised mcthods. 

As a semi-supervised method. a radius based Clustering Algorithm (RACAL) is used to 

segment retinal blood vessel pixels using a fraction of the available GT pixels for each 

image in the dataset. In Section 4.5.3.2. a modification is proposed to RACAL. to use it as 

a classifier which results in an improvement in segmentation results. 

4.2 Feature Extraction 

The two characterising attributes of any vessel. i.e. piecewise linearity and parallel edges 

[I]. are considered when choosing the set of features for every pixel in retinal images. The 

piecewise linear property of a blood vessel can he recognised by extracting centrelincs of 

blood vessels, simply by extracting the image ridges. The parallel edges propCl1y is wcll 

recognised by calculating the gradient magnitude of the image intensity. Because vessels 

are of different diameters. so these features are extracted at different scales and then the 

local maxima over all scales is calculated for both features. In addition to the property 

that the blood vessel can be seen in the colour retinal image as a dark objcct on a brighter 

background. from the three colour channels (red. green and blue) the green channel is 

chosen to represent this characteristic as it has the highest contrast between the blood vessel 

and the retinal background. 

Scale-space features such as the gradient magnitude of the image intensity and the ridge 

strength, at different scales are proposed in [741. Also. the first and second order derivatives 
I 

of the green channel in x- and y- directions [73] or with respect to other image coonJinatc5 

at different scales are used as features for every pixel in the retinal images r44l In 173 

a set of 31 feature are generated for each pixel in the retinal image. these 31 features are 

the green channel image intensity as well as the filtered image using the Gaussian and its 

derivatives in ;1:- and y- directions up to order 2 at scales s = 1,2,4,8, lG. In l52J. a 

feature vector that consists of the pixel intensity and the maximum response of the two-
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dimensional Gabor wavelet transform - at different orientations - for multiple scales was 

proposed. 

In [841, the large eigenvalue of the Hessian matrix was proposed to be used as an 

indicator of the vessel centreline (the eigenvalues are sorted in an increasing order) which 

is different from the work done in [85,86] (which SOlt the eigenvalues using the absolute 

values). As vessels are of different diameters, then different scales are used to calculate the 

eigenvalues and then keeping the maximum response at each image pixel over scales. 

Figure 4.1 shows a sub-image with the intensity information for a blood vessel section 

plotted along with the gradient magnitude, the ridge strength and the largest eigcnvaluc. 

From the graphs, it is clear that the green channel has a higher contrast than the red channel 

image, gradient magnitude gives two peaks at the parallel edges of the blood vessels, and 

tinally the large eigenvalue is better than the ridge strength in determining the centrelines 

of the blood vessels when processing colour fundus images. Figure 4.2 shows the three 

features; green, gradient magnitude, and the large eigenvalue for a sub-image. 

4.2.1 Gradient magnitude 

The gradient magnitude is calculated as: 

where Lx and Ly are the tirst derivative of the intensity image J(x, y) in ;];- and lJ

directions. Image derivatives can be taken by convolving the image with derivatives of 

Gaussian using the Gaussian scale-space techniques [87]. 

')L( ) _ -.!.-1 (:le-
lIx- x'1I

2
/2,,2 I I ( x,'<; J L ( ).1 

Lx = -. 2 !-l -' X ux 
. ;)x lIT.'; x'EIR~ U.C 

(4.1 ) 

where L(x.s) = J(x) ® G(x,s), x = (x,y)" and L:I' is the image derivative with respect 

to .7:- direction. Mixed and higher order derivatives are computed by taking mixed and 

higher order derivatives of the Gaussian kernel G(x, s). Calculations for image derivatives 

are given in Appendix B. First derivatives are calculated as [74]: 
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Figure 4.1: Sub-image with colour and scale-space features along a horizontal line 
crossing a blood vessel (a) sub-image, (b) intensity, (c) gradient magnitude, (d) ridge 
strength. and (e) large eigenvalue from a red channel linage (top row) and a green channel 
image (bottom row). 

(a) (b) (c) (d) 

Figure 4.2: (a) RGB, (b) green channel, (c) gradient magnitude, and (d) large eigenvalue 

for a sub-image. 
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J(.r, y) I6l sC.T, (4.2) 

(4.3) 

where Gx and GlI are the Gaussian derivatives in :1:- and y- directions, and,'; is the scale 

parameter. 

The gradient magnitude of the image intensity is calculated at different scales [74j, then 

the local maxima over scales is calculated as: 

4.2.2 Large eigenvalue 

I' = ma:r 
s 

(4.4 ) 

The appropriate local coordinate system in the case of line structures is defined by the 

eigenvectors of the Hessian matrix, matrix of the second order derivatives of the intensity 

image J(x, V). Eigenvalues (the large eigenvalue, A+, and the small eigenvalue, .. L, where 

A+ > A_) of the Hessian matrix of the intensity image J(x, y) are calculated in Appendix 

C.2: 

(4.5 ) 

1.,'l.'X + L",,, - 0' A = ' - 2 (4.6) 

where Lu , Lyy are the second derivatives of the intensity image in x- and y- directions, 

and (t = )(LJ.:.L: - Lyy)2 + 4L7'Y" Then, the local maxima over scales is calculated as : 

Amax = 7na.r 
s 

[ A~~( s)] (4.7) 
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In order to obtain dimensionless features, the normal transformation to the feature space 

l88] is used: 

f~. - ./'; -I'; 
1-

rr /. 

where it is the 'ith feature assumed by each pixel, I'i is the average value of the ith feature, 

and ai is the associated standard deviation. The normal transformation is applied scparatl'ly 

to each feature space, i.e., every image's feature space is normalised hy its own Illeans and 

standard deviations, which help to compensate for intrinsic variation hetween images 1521. 

4.3 K-Ncarcst Nciglibour Classifier 

4.3.1 Introduction 

The nearest neighbour classifier is one of the simplest and oldest methods for performing 

general, non-parametric classi fication [89]. To c1assi fy an unknown pi xel ;r '1' choo~c the 

class of the nearest example in the training set as measured by a distance metric. A COl1llllon 

extension is to choose the most comlllon class in the TO; nearest neighbours. Let an arbitrary 

pixel :/.: be described by the feature vector: 

< (I!(;/:).od:r:), .. ·,on(:r:) > 

where 11.,. (.r) is used to denote values of the dh attribute of pi xel :r:. Consider two pi xels ;t: i 

and x:j' then the distance between these pixels is defined as d(:ri' ;):.1) which is expressed in 

Equation 4.9: 

11 

L(lLJri) - a,.(J:j))2 (4.9) 
1'=1 

for hard classification. the KNN output is the most cOlllmon value among ]\' training 

examples nearest to ;r'J' while the mean value of the 1\ nearest neighhour examples IS 

calculated, instead of the most common value, for soft classification. 
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4.3.2 Experiments 

For supervised classifiers, two sets of images are required; one for training and the other fur 

testing. In our experiments - the STARE dataset is used - the dataset is randomly divided 

into two sets of images, each contains 5 normal and 5 abnormal images. The training 

set contains large number of training samples, which is the main problem with this type of 

classifier. To overcome such a problem, a random numbcr of pixels is choscn fro III the HlV 

of each image in the training set. Targets for these training samples are avai lahle from the 

manually segmented images. The testing set contains 10 images to test the performance 

of the classifier. For every pixel in each retinal image in the dataset. a feature vector is 

generated, which contains three values - the pixel intensity from thc green channcl image, 

the local maxima of the gradient magnitude, and the local maxima of the large eigenvaille. 

Having experimented with different values of 1\, thc value of 1\ = GO offered the best 

results; hence this value was chosen for the experiments. 

4.3.3 Results and Discussion 

Results 

Figure 4.3 shows two examples, normal (left) and abnormal (right) images, ancr blood 

vessel segmentation using KNN classifier with the proposed set of features (green channcl. 

and the maximum over scales for the gradient magnitude and the large eigenvalUe) and thc 

31 fcatures in [73] while the corresponding ROC curves are plotted in Figure 4.4. For thc 

normal image, the two sets of features gives approximately the same results. but in ease 

of abnormal image, the three features give higher sensitivity at the same spccificity val lies. 

Table 4.1 sllmmarics the hard classification results. Average ROC curves are consilkred 

for specificity and sensitivity analysis and thc results for segmentation of retinal blood 

vessels is summarised in Table 4.2, where the average sensitivity is calculated at ccrtain 

specificity values for normal and abnormal imagcs in the tcsting set. Thc processing time 

is significantly decreased when using three features instead of 31 features. 

Results obtained from the KNN classifier show that there is a need for a post-processing 
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(a) 

(b) 

(c) 

Figure 4.3 : (a) RGB images, output of the KNN clas ifier using (b) 3 features, and (c) 
features for normal (left) and abnormal (right) images. 

69 
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Figure 4.4: ROC curves for (a) normal. and (b) abnonnal images in Figure 4.3. 
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Table 4.1: KNN "hard decision results" using 3 and 31 features (average from 10 images 
(testing set» 

Features 3 Features 31 Features 
Image Specificity Sensitivity Specificity Sensitivity 
Type % % % % 
NOfmal 93.56% 88.59% 95.52% 88.09% 
Abnormal 91.92% 82.36% 92.50% 80.84% 
All images 92.74% 85.47% 94.01% 84.46% 

Table 4.2: Average sensitivity at certain specificity values and processing time fOf 3 and 31 fealures ., 
Image Specificity Sensitivity % 
type % 3 Features 31 Feature 
Normal 86.60% 89.24% 
Abnormal 95% 76.24% 77.91% 
All images 81.42% 83.58% 

Normal 92.56% 94.32% 
Abnormal 90% 86.13% 86.19% 
All images 89.35% 90.26% 

Normal 95.03% 96.40% 

Abnormal 85% 90.89% 90.18% 

All images 92.96% 93.29% 

Normal 96.51% 97.45% 
Abnormal 80% 93.65% 92.67% 
All images 95.08% 95.06% 

Processing time 33% 100% 
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(a) (b) 

Figure 4.5: Effect of post-proce ing (a) before, and (b) after post-processing nonnal (top) 
and abnormal (bottom) image . 

step to remove orne connected component that are not blood vessel in order to improve 

the performance of the classifier. In this tep, an iterative thresholding strategy to remove 

small segment i applied. The proce ed image (output image from the classifier) is thresh

olded and segment of ize Ie than 15 pixel are removed, then the threshold value is 

incremented and mall egment are removed and thi process is repeated until no more 

pixels are removed. Figure 4.5 how the effect of removing the small segments on the 

images in Figure 4.3. 
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Figure 4.6: Effect of number of features on processing time. 
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As demonstrated in Table 4.2, at specificity of 90%, the proposed three features gIve 

promising results of 93% and 86% sensitivity for normal and abnormal images re~pec

tively compared with the pixel classification method that uses a set of 31 features and gives 

94% and 86% sensitivity for normal and abnormal images. Furthermore, at spet'ificity or 
95%, the sensitivity of the proposed method is 87% and 76% compared with 89% and 7W/i, 

sensitivity of the pixel classification method for normal and abnormal images respectively. 

One of the factors that should be considered when using supervised classificrs is the si/.e 

of feature vector. As the size of the feature vector is increased, the processing time is in-

creased, as shown in Figure 4.6. Another factor that affects directly the complexity of the 

KNN classifier is the size of the training set. Let N1'r and N1'e he the numher of training 

and testing samples respectively. The KNN calculates distance betwecn each pair of sam

ples in the training set, then finds the sample with the smallest distance. The complexity of 
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the KNN is given by: NJ'e X O(N]'1')' As a result or high computational requircments for 

the KNN, another method is investigated, (the NNCA) in the next section. 

4.4 Nearest Neiglibour Clustering Algoritlim 

In this section, retinal blood vessels are segmented using the NNCA. This ulgorilhlll is 

based on the nearest neighbours concept that is used in the KNN classifier with one lIlain 

difference that this clustering algorithm does not need a training set f90]. 

4.4.1 Introduction 

NNCA algorithm has the same analogy of the KNN classifier. This algorithm is completely 

unsupervised and there is no need for training set as in KNN classifier. Four parameters arc 

used to control the clustering process of NNCA. These parameters are: 

• N is number of pixels to be clustered, 

• !\init is the nearest neighbour pixels from N, 

• Nc is the number of required clusters, 

• J\ is the number of nearest clustered pixels. 

Initially, the clustering process is stmied by constructing non-overlapped clusters from ran

domly selected pixels. By increasing the neighbourhood of each pixel, one or more clusters 

can be combined which in turn reduce the number of clusters. This process is repealed until 

Nc clusters are obtained. Apart from the randomly selected pixels, each unsckctcd pixel 

(unclustered pixel) is clustered to the most cluster of the nearest f{ clustered pixels from 

N. Finally, the degree of membership can be measured by obtaining thc mean of the /\' 

nearest neighbours for each pixel in retinal image [90]. A Ilow chart to describe the NNCA 

is shown in Figure 4.7. Figure 4.8 shows the result for clustering blood vessels from a 

colour retinal sub-image. 
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Figure 4.7: The Nearest neighbour clustering algorithm. 
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Figure 4.8: Colour sub-image with blood vessels clustered using NNCA. 

(a) (b) 

Figure 4.9: (a) RGB images, and (b) output from the NNCA (hard deci ion) for normal 
(top) and abnomlal (bottom) images. 
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Table 4.1' NNC'A results (averaoe from 20 illl'loes) [901 .. I:- 'I:' 

Image Specificity Sensitivity 
type % % 

Normal 92.3<Ylc, 81.421,!f1 

Abnormal 87.61% 72.1371.· 
All images X0.95% 76.7Y/o 

Tablc 4.4: NNCA results when usin<T one feature (averanc from 20 images) 1901 I:' I:' 

Imagc Specificity Scnsitivity 
type ly(l % 

Normal 94.97% XI.02°,1J 
Abnormal 93.53% 71.77% 
A II images 93.11% 76.39% 

4.4.2 Experimental results 

In Ihese experiments, retinal blood vessels - from STARE dataset - arc segmented using 

the NNCA in conJ· unction with the predefined set of features (green channel "radient mao. .... , C> C> 

nitude, and large eigenvalue). Figure 4.9 (a and b) shows two examples; normal (top) 

and abnormal (bollol11) images and their results after blood vessel segmenlalion llsing Ihe 

NNCA. On the whole, when using 20 images, average sensitivity of 77% is achicved at 

average specilicily of 9Wk as summarised in Table 4.3. These values are calculated lIsing 

the retinal rOY only. 

Table 4.4 shows results when lIsing the maximum eigenvalue as thc only featurc to 

cluster pixels which indicate an improvement in the specificity values compan.'d to llsing 

the previolls set of three features (green channel, gradient magnitude, and large eigcnvaluc). 

4.4.3 Discussion 

Two of the advantageous aspects of NNCA are thaI there is no need for a Iraining sl'l and 

it achieves results as a hard decision which can be directly used in further analysis of 
\ 

the blood vessel network. For sort c!assilication or soft segmentation, r;PR and TPR arc 

calculated when the image is thresholded using different threshold values which gives the 

ROC curve. In this case, there is a need 10 dccide the optillluill Ihreshold value to he 

lIsed for each image. On the other hand, hard segmentation, gives a 1 or 0 value to caeh 
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image pixd to d~cid~ if it is a blood \essel or not. and in this casc thcre is only onc rrR 

corresponding 10 a singl~ TPR !l1 d~scribc the p~lforl11ancc of the method. 

In segmentation of retinal blood \'essclusing the NNCA: 

• Concl'pts of SUra\ iSl'd and unsupl'nised methods arc combined. whl're a fl'ature 

\~ctor is gen~rat~d for l'ach pixel in the image, then image pixels are cJusll'red d~-

pending on the"e features \\ ithout lIsing a training set. 

• r'or thc t\\enty illlag~" in th~ data"et. :.I\cragc scnsitivity and speciticity of 77<;;, and 

()(}',:( arc achic\cJ rcspecti,e1y \\ hen using three features. and 76% and 93% respcc-

tively wh~n using only one feature (the large eigl'nvalue). 

The complexity of the NSeA depenJs on the numher of randomly selected pixels, N,., and 

the number of iterations. J. to achil'\e the required numher of clusters. NNCA complexity 

is gi\t~n by: .J.\", x 0(.\7). 'I\.) reduce the complexity of the NNCA, Salem and Nandi 

r91] proposl'd a parallel illlpklllentation of the NNCA with a fast strategy to find thc J{ 

nearest neighbour (I'KJV;\,) clusters. The FKNN strategy reduces the time required to find 

thc nearest K clusters. which results in rl'ducing the NNCA to J 1\'.,. X O( J N,. x k~ 1) 

"hich can be approximall'd to .IS,. x O( ViS,.). 

4.5 Radius-hased Clustering Algorithm 

Clustering is an example of unsupen'ised classification, where there are no predefined 

classes Oahels). Clu ... tering prO\ ides groups of ohjects (pi"els) that have not yet heen la-

helled "vessel" or "non-\e-;sel"'. Lahelling clusters effectively segments the pixels of the 

underlying rdinal image. The process of lahelling cluster objects "pixels" is always an ex

pensive and elTor-prone task that requires time and human intervention. In many situations, 

ohjects are neither perkctly nor completely labelled, Therefore, the main idea or clustering 

with a partial supervision strategy is to take the advantage of the manually labelled objects 

to guide the clu ... tning pnx:css of the unlabelled objl'cts. 
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RACAL has been proposed to classify hreast cancer tumors to hl'nign and lllaJigll:lllt 

[76]. This algorithm is a radius-based clustering algorithm which achievcs clmtering with

out the knowledge of the number of clusters using a distance paralllclcr 8". In this sectioll. 

RAL'AL is used to segment retinal blood vessels from colour fundus images. II is demoll

strated from exploratory experiments that this algorithm is able to scgment hlood wssL'ls of 

small diameters and low contrasts. In Section 4.5.3.2, a modification is propo!'.cd in NACAI, 

to be used as a classifier. 

4.5.1 J ntroduction 

The main concept of KACAL is to discover the most ccntraliscd objects, prototypl'S, lilal 

can describe the distributions in the underlying dataset. These prototypes an~ dctermilll'd 

through a user defined input parameter o,,«l ~ 60 ~ 1) [761. Each prototype is considcrL'd 

as a cluster representative in such away that any object assigned to a cluster falls witilin the 

present distance parameter 6". It should be noted that small Hnd tight clusters are aciliL'wd 

through small values of 00 , while large values create large and loose clusters. 

The partial supervision strategy for RACAL is used to guide the clustering process to a 

better search space [76]. In the supervised strategy, a small proportion of lahL'lkd ohjects 

(pixels) are used to supervise the clustering of the unlabelled pixels. Two steps arc ddined 

to perform the partial supervision. The first step is to achieve the clustering process u!'.ing 

RACAL algorithm. i.e. cluster the entire pixels (all pixels in an image) into 1\' c1uslL'rs 

according to the input parameter 0o, while the second step is to classify each duster to 

either vessel or non-vessel classes. This is achieved by randomly select NI' pixels from the 

GT to be labelled pixels (vessel or non vessel), these labelled pixels arc used to l'ategorise 

clusters to either vessel or non vessel clusters. Then an iterative control strategy is applil'd 

to assign each misclassified pixel to the nearest cluster that belongs to the same dass. i\ fter 

that, prototypes are updated and then the process is repeated until convergence. rinally. the 

class of each pixel is considered to be the class label of its cluster. A flow chart to descrihe 

the RACAL with partial supervision is shown in Figure 4.10. 
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Figure 4.10: The Radius-based clustering algorithm with partial supervision. 
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Table 4.5: Specificity and sensitivity of a segmented sub-image from a retinal image hy 
RACAL with partial supervision strategy at different 8n values 

8" Specificity % Sensitivity % 
0.0~5 97.90% 90.0~% 

0.100 98.19% 89.04% 

0.250 98.43% 81.73% 
0.450 99.67% 70.90% 

4.5.2 Experiments 

In the experiments can-ied out, retinal blood vessels are segmented using RACAL with par-

tial supervised strategy. Figure 4.11 shows a colour retinal sub-image and its GT, while 

Figures 4.12, 4.13, and 4.14 show the clustered sub-images by MCAL algorithm at dilTcr

ent On values and their corresponding segmented sub-images after applying RACAL with 

partial supervision strategy using 20% of the GT pixels. At 0" = 0.015 , O.1()O, 0.2:)0 ano 

OASO, all pixels are being clustered to 245, 46, 10, and 4 clusters respectively. As shown 

in Table 4.5, smaller values for 80 offer better sensitivity as a result of producing higher 

number of small and tight clusters which help in detection of vessels of small diameter and 

low contrast. 

4.5.3 Experimental results 

4.5.3.1 R~\CAL witll partial supervision strategy 

Hard decision 

Results for retinal blood vessel segmentation using KAC"'AL when applied to the 20 images 

in the STARE dataset are presented in this section. A binary mask is generated for each 

image in the dataset to segment the retinal FOY. Figure 4.15 (b and c) shows two examples; 

normal (left) and abnormal (right) images and their results after blood vessel segmentation 
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Figure 4.11: Colour retinal sub-image (top) and its GT (bottom) in (a) image pace and 
(b) feature space. 
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Figure 4.14: RACAL c1u tering re ults: (a) before, and (b) after applying the partial uper
vi ion trategy at different <50 alue (in the image space). 
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(a) 

(b) 

(c) 

Figure 4.15: (a) RGB image, output as hard decision from RACAL when using (b) 3 
features, and (c) 31 feature for normal (left) and abnormal (right) image. 
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Table 4.6: RACAL "hard decision results" using 3 and 31 features (average from 20 images) 

Features 3 Features 31 Features 

Image Specificity Sensitivity Specificity Sensitivity 
type % % % % 

Normal 97.02% 85.01% 97.64% 86.03(}'c) 

Abnormal 96.39% 77.67% 97.36% 78.27% 
All images 96.70% 81.34% 97.50% 82. 15(Yr, 

using RACAL with partial supervision strategy. On the whole, using 20 images, aVl'ragl' 

sensitivity of 81.34% and 82.15% are achieved at average specificity of 96.70% and 97.5()% 

using the 3 and 31 features respectively, these values are calculatcd for the rOY Ollly, us 

summarised in Table 4.6. 

Soft decision 

For soft classification, the pelformance of RACAL in terms of scnsitivity and specificity 

along with the effect of the fuzziness exponent are obtained. As shown in Figure 4.16, the 

choice of the fuzziness exponent value q affects on pixels' memhership degrees. '(;Ihk 4.7 

shows the soft decision results of RACAL in conjunction with 3 features to segmcllt the 

retinal images (normal and abnormal). As shown, the fuzziness exponent value, q = 1.2\ 

achieves better sensitivity with the corresponding specificity values for normal and ahllor-

mal images respectively. For 31 features, the fuzziness exponent value, q = 1.GO, achieves 

better sensitivity with the corresponding specificity values for normal and ahnormal imagcs 

respectively as summarised in Table 4.8. 

4.5.3.2 RACAL as a classifier 

In this section, a modification to RACAL to be used as a classifier is proposed. It wus 

shown, in the previous Sections, that RAC"'A.L with partial supervision strategy n:quirl's thc 

knowledge of some labelled pixels from the GT. This knowledge is not always availahk. To 

overcomc such a problem, two phases are required to modify RACAL to act as a classifier. 

A flow chaIt to describe these two phases is shown in Figure 4.17. Thc fi rst phase is a 

training phase; where there is a training set of images. In this phase RACAL is applicd to 
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(a) 

(b) 

(c) 

(d) 

Figure 4 .16: Effect of the choice of fuzziness exponent (q) on the s gment d n rmal I rt 
and abnormal image (right) at (a) q = 1.25, (b) q = 1.50, (c) q = 2.00 and d) q - 2.1':0. 
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Figure 4.17: RACAL a a cIa ifier (a) training pha e, and (b) te ling phase. 
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Table 4.7: Th~ efkl:l of lh~ fuzzin~ss expon~nl q on RAeAL results (average for normal 
and ahnormal ima!!es (testin!:! s~l with 3 features)) , , 

Image Specificity Sensitivity % 
type c;;- q = 1.25 1.50 1.75 2.00 2.50 
I'\ormal 85.31 % 85.52';0 86.19% 86.23% 86.117() 
Ahnollnal 95r;f- 81.04% 77.30% 77.68% 77.77% 77.19% 
1'\0n11al 92.89% 91.3 1 % 91.67% 91.9S% 92.13% 
Abnormal 9W} 93.53% 85.86% 86.52% 86.26% 86.23% 
I'\ormal 94.08<70 93.58% 93.78% 94.00% 93.93% 
Abnormal 85r;f- 97.70% 90.58% 90.17% 90.39% 90.37% 
I'\ormal 98.07% 95.07% 94.92% 95.28% 95.48% 
Ahnormal 80C;;- 96.64% 91.49% 92.41 % 92.66% 93.27% 

Table 4.8: The effect of th~ fuzziness exponent q on RACAL results (average for normal 
and abnormal ima!!es (t~sting set with 31 features)) , , 

Image Specificity Sensitivity % 
t)pe 17,(' q = 1.15 1.50 1.75 2.00 2.50 
Nomlal 89.52% 90.53% 89.77% 89.45% 87.28% 
Ahnormal 95t;r 79.77'7(' 80.35';0 78.47% 75.74% 71.05% 

Nonnal 94.04% 95.18% 95.05% 93.87% 92.83% 
Ahnormal 90r;( 86.84'7(' 88.05% 87.49% 84.57% 82.30% 

Normal 95.9OC/c 96.89% 96.58% 96.00% 95.85% 

Abnormal 85t;(, 90.22'7c 92.25% 92.00% 90.01% 85.58% 

Normal 96.66'1c 97.95% 97.75% 97.52% 95.75% 

A hnormal SOt;(, 92.24% 94.06% 93.83% 92.37% 88.38% 

c1ust~r each image into 1\· clusters based on flo and the knowledge of the GT (of the training 

set images). i.e. each cluster is known as vessel or non-vessel cluster, Therefore, for the 

entire training images. one can have a pool of clusters with known class labels. Then, for 

each cluster in the resultant clusters. statistical and geometrical features are extracted to 

describe the characteristics of each cluster, these features are: 

I. mean \ alue fnr each feature of pixels in each cluster, 

" c1u .. ter compactness. 

3. maximulll diamder of the cluster. 

4. minimum diameter of the cluster. 
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Table .. LlJ: RACAL as a classifier "hard decision results" using 3 alld 31 features (avcrage 
from 10 ima!!es (testin!! set) 

~ .. 
reatures 3 Features 31 Features 
Image Specificity Sensitivity Specificity Sensitivity 
type % % % % 
Normal 98.6.t% 91.33'7c} 99.57% X6.91% 
Ahnormal 9X.32% X9.52% lJX.71 % X6.Mi% 
All images 98.48% 90.43% 99.14% X6.7lJ% 

The second phase is the tesling phase; where there is a testing set of images (unseen illl-

ages). In this phase, RACAL is applied to cluster each image to achieve g clusters accord-

ing to the input parameter 50' These clusters are achieved in an unsupervised manncr, i.e. 

without the knowledge of the GT. As in the training phase, a set of features are generated 

for each cluster in a testing image. Then, each cluster in the testing set is classified to the 

class of the closest cluster in the training set. In the experiments carried out, 10 images (5 

normal and 5 ahnormal) from the STARE data are used as a training set while the other I () 

images are used as a testing set. Figure 4.18 (b and c) shows two examples; normal (kft) 

and ahnormal (right) images and their results after blood vessel segmentation using RACAL 

as a classifier. Table 4.9 shows the classification performance (using the I·'OV only). 

For 3 features. on average. 90.43% sensitivity is achieved at specificity of lJXAXrj" 

while in 31 features, average sensitivity of 86.79% is achieved at average specificity of 

99.14%. These results vindicate the robustness of the extracted features which are proposl'd 

in Section 4.2. 

4.5.4 Discussion 

1-'or the hard classification, as demonstrated in Table 4.6 for 20 images in the STARE 

dataset. the RACAL with partial supervision strategy gives promising results of l\ I % and 

82'/(, average sensitivity at average specificity of 97rlcl and 9Srki when using a set of 3 and 31 

features respecti\ely. These results are improved when Llsing RACAL as a classifier, where 

it learned from I () images and was then tested on the other 10 images. 



4.5. RADIUS-BASED CLUSTERING ALGORITHM 92 

(a) 

(b) 

(c) 

Figure 4.18: (a) RGB images, output from RACAL as a classifier when using (b) 3 feature, 
and (c) 31 features for nonnal (left) and abnonnal (right) images. 
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Table 4.10: NNCA results (average from 10 images (testing set» 
Image Specificity Sensitivity 

type % % 

Normal 91.70% S3.43";i) 
Abnormal 87.21% 77.66% 
All images 89.45% 80.54% 

4.6 Comparative Results 

In this section, results from the NNCA and RACAL algorithms are compared with reslilts 

from the KNN classifier. When comparing with the KNN classifier, the same sets of images 

are used for training and testing (each set of 10 images). 

4.6.1 NNCA \'ersus KNN 

Table 4. I 0 shows results from the NNCA using the same testing set of 10 images in order 

to compare with the KNN results in Section 4.3. Average sensitivity of 80.54% is achieved 

at average specificity of 89.45% from NNCA compared with average sensitivity of 85.47(/t, 

at average specificity of 92.72% from the KNN classifier. 

On average. the KNN classifier performs better than the NNCA because of the lise of 

a training set that helps in the classification of pixels to vessels and non-vessel pixels. 

Results from NNCA are 5% less than the KNN classifier as it is completely unsupervisl'll. 

For supervised classitiers, generating a training set required manually segmented images 

provided by an ophthalmologist or a trained person at least and the classifier needs to be 

trained for each and every dataset (as images were captured using different camera types. 

FOV's degree. and resolution). However, the performance of the clustering algorithm can 

be enhanced by adding new features that allow more accurate clustering for image pixels, 

such as: colour features. texture features, or directional features. Also the performance can 

be enhanced when clustering pixels to more than 2 clusters, i.e. to extend the non-vessels 

cluster to background, bright abnormal regions, and dark abnormal regions. 
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Table 4.11: RAeAL "hard decision results" using 3 and 31 features (average from 10 images 
(testing set)) 

Features 3 Features 31 I;eatures 

Image Specificity Sensitivity Specificity Sensitivity 
type % % % % 

Normal 97.18% 85.96% 98.2W7c) 86.66% 
Abnormal 96.90% 80.32% 96.X6% 79.90/fr, 

All images 97.04% 83.14% 97.57% 83.28% 

Table 4.12: Average sensitivity at certain specificity values for 3 and 31 features 
~ 

. 
Image Specificity 3 Features 31 Feature 
type % Sensitivity ('if) 

Normal 85.31% 90.53% 
Abnormal 95% 81.04% 80.35% 
All images 83.18% 85.44% 

Normal 92.89% 95.1WYri 
Abnormal 90% 93.53% 88'()5% 
All images 93.21% 91.62% 
Normal 94.08% 96.89(}'c) 

Abnormal 85% 97.70% 92.25% 
All images 95.89% 94.57% 

Normal 98.07% 97.95% 
Abnonnal 80% 96.64% 94.06% 
All images 97.36% 96.00% 

4.6.2 RACAL versus KNN 

Hard decision results from RACAL are comparable with the KNN classifier as demonstrated 

in Tables 4.1 and 4.11. R:4CAL achieves average specificity of 97% and 9W'/c, at average 

sensitivity of 83% compared with average specificity of 93% and 94% at average sensitivity 

of 85% and 84% when using the KNN classifier in conjunction with 3 and 31 features 

respectively. On average. R:4CAL algorithm achieves better specificity than KNN c1assificr 

with comparable sensitivity. 

Soft results obtained from RACAL - using same features and samc testing set of images 

_ are summarised in Table 4.12. When compared with KNN classifier Crable 4.2), it is clear 

that R:4CAL offers better results for abnormal images, and comparable results for normal 

images. 

In the casc of normal images, the RACAL gives comparable results with the KNN c1assi-
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fier. on the other hand it gives better results for the abnormal images which can he explained 

as follows: 

• For the KNN classifier: one training set is generated for the whole dataset and used 

to find the nearest K-neighbours for each sample in the testing set. 

• For the RACAL: training samples are for each image individually which can rclkct 

each image characteristics (such as: background colour, intensity Icvels for vessel 

and non-vessel pixels, contrast between vessels and background, ... etc). 

• The property of multiple object classes of varying colour/reflectance r 461 and - sOl11e

times - there is a similarity between feature vectors for vessel and non-vessel pixels 

from different images. RACAL is a radius-bascd algorithm which means hettcr seg

mentation for small and low contrast vessels. 

• For nomlal images there are no abnormalities and the background is uniformly illu

minated, so the results were comparable. 

• For abnormal images, there are signs for abnormalities which are misclassified as 

vessels in the KNN. In addition to the small blood vessels (of low contrast) that are 

missed in the KNN classifier and picked by RACAL. 

When using RACAL as a classifier, the performance is better than the KNN for both normal 

and abnormal images. 

4.7 Summary and Conclusions 

In this chapter, three methods - supervised. unsupervised, and semi-supervised methods -

to segment retinal blood vessels from colour fundus images were investigated. A feature 

vector of three features in conjunction with the KNN classifier is proposed to classify pixels 

of retinal images as vessel pixels or non-vessel pixels. The local maxima of the large 

eigenvalue has been proposed to be used as a feature in addition to the green channel and 

the local maxima of the gradient magnitude of the intensity image. Resulls have shown 
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that using these three features significantly reduces the processing time with colllparabk 

sensitivity to the pixel classification method that uses 31 features. 

The NNCA is used to cluster pixels of retinal images into those hclonging to hlood 

vessels and others not belonging to blood vessels. hased on reature vectors. Experimental 

results show that the NNCA gives promising results with the advantage that it is completely 

unsupervised and needs no training set. 

RACAL with pal1ial supervision has been used in segmentation of retinal hlood vessels 

which is helprul in cases where GT images are not completely availahle. The perrormance 

is enhanced when using RACAL as a classifier (by learning from a set of images. then 

classifying unseen images). The RACAL has been used as classifier to classiry imagc pixels 

as vessels and non-vessel pixels and its results were comparable with thc KNN classilicr 

in normal cases. On the other hand. for the abnomlal images, results wcre heller thal1 the 

KNN classifier which has been demonstrated in Section 4.6.2. An interesting obsl'rvatiol1 

about partial supervised methods is that it gives comparable results with the KNN classilier. 

This will lead to another question: can we use an algorithm to segment the retinal image 

and then choose a trusted set of pixels to act as GT for a semi-supervised method? 

As discussed. there was a trade off between performance, complexity, and thc availahil

ity of GT. In cases where GT images are availahle, hest results were ohtained using KNN 

or RACAL as a classifier. On the other hand, when using the NNC'A - as an unsupervised 

method - performance was 5% less than that obtained from the KNN. 

Unsupervised methods have the advantage of not using a training set, so there is no 

need for the manually labelled images, or generating features for each pixel in the image 

which directly afrects the performance and complexity of supervised methods. Unsuper

vised methods, in the literature, require a number of parameters that need to he set, which 

limit their applicahility. Motivated by these prerequisites, an unsupervised method is pro

posed in the next chapter to segment retinal blood vessels based on eigenvalue analysis of 

the fkssian matrix that requires the setting of one parameter only. 



Chapter 5 

Vesselness Measure 

5.1 Introduction 

I N this chapter, a novel vesselness measure is proposed which is based on ei~envailles 

and eigenvectors of the Hessian matrix, the matrix of the second order derivatives of 

the intensity image. Blood vessel centrelines and orientations are used to measure the ves-

selness. Vessel centrelines are detected from the large eigenvalue of the Hessian matrix 

while the orientation is estimated from eigenvectors that correspond to the slllall eigenval-

ues. Based on this vessel ness measure, an unsupervised method for segmentation of retinal 

blood vessels from colour fundus images is proposed. The main advantage of the proposed 

method is that it is completely unsupervised, so there is no need for manually lahclkd 

images which are time consuming and require an expert. 

5.2 Related 'VorK 

I n the literature, the term "vessel ness" is used to refer to the degree of being a vessel for a 

certain pixel in an image. Different measures have been proposed for many applications in 

2D and 3D images, such as vessel enhancement [85,92,86], identifying vessel cenlrl'lines 

f53], and vessel segmentation [49]. In [85, 92] multi-scale line filters are proposed for 

segmenting line-like structures based on eigenvalues of the Hessian matrix. The similarity 

97 
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measure. fl. proposed by Lorenze et af. [85] (assuming (IAI 1 > IA21 > IA:1I). for 2D and 

3D images. is as follows: 

(5.1 ) 

(5.2) 

where, > O. and (J is the width of the Gaussian Kernel. 

Sato et al. 192] propose another similarity measure to discriminate line structures from 

other structures in 3D images. they sort the eigenvalues in increasing values (not absolute 

ones). i.e. Al > A2 > A3)· The similarity measure for line-like structures is given hy: 

(5.3) 

(5.4 ) 

o 

frangi et of. [86] propose a vesselness measure taking into account respollses from 

blob-, plate-, and line-like structures, this measure considers responses from background 

pixels. Frangi's vessel ness measure for 3D images is given by: 

(5.5) 

This measure is given in 2D images by: 

VQ(S} = { 
o if A2 > 0, 

_~ s2 
e 2)3- (1 - e-~) 

(5.6) 
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where (), /J, and S are thresholds to control the filter sensitivity, and the other ratios arc: 

• R:.s. = I~~I to distinguish between plate- and line-like structures. 

• RB = ~ to account for the deviation from a blob-like structurcs, 
IA2 A31 

• S = J2:, A; to differentiate between vessel and background pixels. 
J":'U 

It is imp0l1ant to note that in 20 images. the term that dilTcrentiates hetween plak- and 

line-like structures is removed which makes this measure not effective in distinguishing 

between vessel and edge pixels. 

The vessel ness measure proposed by Sofka et al. [53] is based on six responses for 

vessel and edge pixels. These responses are the multi-scale matchcd filter Tv. multi-scale 

edge detection (results in two edges Tes. and 1"ClO). and confidence measures for wssl'lll" 

and edge (Ilr .. and Ilr,,') pixels. Then. a six dimensional vector, (0. is mapped into a single 

likelihood ratio to produce a vessel ness measure LRV. 

LRV(8) = P(8jon)P(on) 
P(8joff)P(off) 

(5.7) 

where 8(x) = (rv(x), l"t·'-(X) , TclO (X), 'I/v(X), T/es(X), ew(x)). P(on) is the prior prohabil

ity of a pixel bcing on the centreline of a vessel. P(8jon) is the conditional probability 

density function, and P(otT) = 1 - P(on). This vessel ness measure is mainly concerned 

with vessel centrelines rather than retinal blood vessel extraction. 

In [.t9], a hybrid multi-scale filter is proposed to segment retinal blood vessels which 

combines eigenvalues of the Hessian matrix Vii' the response of matchcd fillers VIII. and 

edge constrains \~. all calculated at different scale values 8. 

l'it is produced using the ratio of the eigenvalues( IAll > IA21) of the Hessian matrix liS 

follows: 

I,.(x; s) ~ { 
_1'\"/\1!2 _~ 

e 2d~ (I-e 2"() ifAr<O 

o otherwise 

I.ry 
1=--

(tj~ 

(S,H) 
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where, = ,,~x:rs, I.ryis the image intensity at pixel (x, 1I), s is the scale value, (J and (\' arc 

constants. 

The matched filter response is obtained by convolving the the pixels in the cross section 

with a vector Tn and given by: 

( ) 
p.m 

v,n. x; S = -I -11-1 
]> tTl, 

(5.9) 

- 1. and p represents the 

intensities of pixels in a cross section of length 48. 

Edge responses are obtained by convolving the pixels with a step edge filter to produce V"l 

and \-:,2, both values should be positive. The final vesselness measure is given hy: 

(5.10) 
otherwise 

Results in [49] are reported when defining TP as any pixel marked hy the filter as a 

vessel and is located within a 3 x 3 neighbourhood from a GT pixel. While H) is defined 

as any pixel marked by the filter as a vessel and not included in any GT vessel. These 

definitions are different from the definition used in this thesis for performance evaluation 

in Section 2.2.4.3. 

5.3 Proposed Vesselness l\'leasure 

Blood vessels can be considered as dark elongated line structures - of different diameters 

and orientations - on a brighter background. The proposed vessel ness measure is hased on 

detecting vessels centrelines and orientations over scales. 

5.3.1 Vessel centrelines 

In Section 4.2, the large eigenvalue of the Hessian matrix was used as an indicator of the 

vessel centreline (without using the absolute value). As vessels are of different diameters, 

then different scales are used to calculate the eigenvalues, keeping the maximum response 

at each image pixel over scales. Eigenvalues (the large eigenvalue, A+, and the small 
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eigenvalue. A_. where A+ > A_) of the Hessian matrix of the intensity image 1(:1', y) arc 

calculated as in Equations 4.5 and 4.6. The local maximum of the large eiocnvaluc \ 
..... C "',lIiI.r, 

over scales. is calculated as : 

Ama.x = max [A+(8)] 
s 

(5.11 ) 

What has been observed from the experiments is that as the scale paramctcr value 

increases so does the apparent diameter of the detected blood vessel. This can he clearly 

appreciated from Figure 5.1 which displays a sub-image and the corresponding suh-images 

containing the large eigenvalue at every pixel at six different scales. Figure 5.2 shows 

the large eigenvalue at different scales for a sub-image. as the scale parameter ilH.:rcascs. 

vessels of different diameters can be detected. In this Figure. thin vessels (as in hottom of 

the sub-image) can be detected at small values of 8 (8 = 1), while wider vessels (in the 

middle) can be detected at bigger values of S (8 = 2 or 8 = 3). Very wide vessels nccds 

larger values for ~. 

It is important to note that in Equation 5.11, the scale value s is not used in the denomi

nator as in Equation 4.7. In Equation 4.7. the vessel centrelines were extracted and then the 

gradient magnitude (Equation 4.4) is used to compensate the remaining part of the vessel. 

But in the proposed vesselness measure, most of the vessel is needed as a /irst stage, thcn 

the orientation will be used to remove responses outside the vessel. 

Figure 5.3 shows the maximum over scales. for the large eigenvalues. when using Equa-

tions 4.7 and 5.11. It is clear that most of the vessel can be extracted when using Equation 

5.11 compared to using Equation 4.7 (which results in centreline detection rather than the 

fuJI vessel). In the next step. the orientation will be used to decide which part of the rc-

sponse does not resemhle to a blood vessel. 

5.3.2 Vessel orientation 

Vessel orientation in degrees, e, are calculated from the eigenvectors of the Hessian matrix • 

in Appendix C.3. as: 
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sub image s=2 s = 3 

5 = 4 s = 5 s=6 maximum over scales 

Figure 5.1: The large eigenvalue for a retinal blood vessel at different cale . 
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sub image s = 1 s=2 s=3 

s =4 s =5 5=6 maximum over scales 

Figure 5.2: Large eigen alue at different scales for a sub-image. 

(3) (b) 

Figure 5.3: Large eigen alu , maximum 0 er cale, when u ing (a) Equation 4.7, and (b) 

Equation 5.11 . 
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Lyy - Lxx + n 

-2Lxy 

()+ = tan-I 1111 :r.T 
[
L -L +rr] 

2L:J:Y 

-1 [ -2L,/,,, ] 
f)_ = tan L _ L . 0' 

yy .r-x + 
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(5.12) 

(5.13) 

(5.14) 

(5.15) 

where F + and F _ are eigenvectors, and f} + and f)_are orientations of the corresponding A + 

and A_, and N = V(L yy - L.r.I: + 0-)2 + 4L;:y' 

Figure 5.4 shows eigenvectors cOITesponding to large and small eigenvalues at different 

scales. Orientation from the eigenvector that corresponds to the small eigenvalue shows the 

direction of the vessel, while the orientation from the eigenvector that corresponds to the 

large eigenvalue shows the direction of the large changes in the intensity values which 

represents the perpendicular direction to the vessel. AS explained earlier, when the scale 

parameter increases, the vessel diameter increases, while the vessel orientation remains the 

same over scales. 

Directions of eigenvectors corresponding to the small eigenvalue at each pixel are de-

picled in the sub-image for six different scales in Figure 5.5. It has also heen observed 

that the variation of the directions of the eigenvectors in a pixel over six different scales 

i-; smaller for hlood vessel pixels compared with non-hlood vessel pixels. Therefore to 

quantify this variation. the standard deviation of eigenvectors corresponding to smaller 

eigenvalues O\er scales is used. At vessel centres, the standard deviation of O_(angle with 

respect to .1'- axis calculated from the eigenvector that corresponds to small eigenvalue 

A_) mer scales tends towards zero, or a very small value, compared with higher values 
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Figure 5.4: Eigenvectors corresponding to large (top), and smalJ (bottom) eigenvalues at. 

different seal . 
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5 = 1 5=2 5 = 3 

5 = 4 5 = 5 5=6 

Figure 5.5 : Eigen ector correspond ing to small eigenvalues at different scales. 
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Figure 5.6: pical PDF of the standard dev iati on values of e_ over scales for vessel and 

non-ve~~el pixel!-.. 

outside blood es 'cis. F igure 5.6 shows the PD F of the standard dev iation values of () -

over cale alcu lated for e e l and non-ve e l pixel in a ub-image. 

The :tandard de ialion of e_ 0 er 'ca le' is calculated a ': 

5.3.3 Ve elne m a ure 

The propo ed \e :elne mea ur V i calculated a : 

\ = Amax 

1+ ao_ 

(5. 16) 

(5. 17) 

where AwaI i. the I al ma imum of the large e igenvalue over scale. , ao_ i. th standard 

de iation of the () ,er . ale. aJue of Am m , and ao_ are normalised to be between 0 

and I . 
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Equation 5.17 shows that in the proposed measure, the information from vessels ccn

trelines is weighted using their orientations. In cases where 0"0_ is a minimum valuc (eqllal 

to 0). then V = A,,/(/;1:' While when aiL is a maximum value (equal to I) which indicatcs 

no blood vessels, V = A11IfI.r /2. In this way, information from 0"0_ is used to modify thc 

A/Ill/.r without losing any information captured by AU/a.l·' Typically, the vessel ness measure. 

~', can be rewritten as follows: 

V= 

5.4 Experimental Results 

olltside vessels 

with-in vessels 

In the experimcnts performed, each image was pre-processed by using histogram matching. 

as proposed in Chapter 3, to reduce the contrast between abnormalities and the retinal 

background as well as to correct the non-uniform illumination in retinal images. Then the 

vessel ness measure is used for vessel segmentation by finding the local maximulll of the 

large eigenvalue and the standard deviation of vessel orientations over scales, as in Equat inn 

5.17. 

In the experiments conducted. the maximum over scales were calculated up to scale 

4, which was chosen after some exploratory experiments (different values for the scale ..., 

are used). Table 5.1 shows the effect of changing the scale value s on the sensitivity at 

certain specificity values. It is clear that sensitivity values increased with the increase in 

s, till reaching its maximum value, then a decrease in the sensitivity is occurred. The best 

performance was obtained whcre the maximum sensitivity was achieved, i.e. at.<; "'" .1. 

This value for.'> is then used in the experiments carried out in the chapter. 

From ROC curves, sensitivity at certain specificity values was used to compare the 

proposed algorithm and other methods in the literature. Also the A z (area under the ROC 

curve) is used as a single measure for peIformance. 
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Table 5.1: Results from exploratory experiments (ror one im'\ne) 
'b 

Specificity Sensitivity 

8=2 8=3 8=4 8=5 8=(i 8=7 
9Y7c, 73.67% 78.13% 78.26% 76.49% 74.31% n.16'Yc) 
9017(' XO.55% 85.32% 86.23% 85.55% 84.32% X2.X9',t, 
8S'7r 84.29'7cJ 88.81% 89.98% 89.66% 89.01"/n 88.11 'Yr) 
SO'7r 87.01% 91.13% 92.19% 92.14% 91.63% 91.01% 

Table 5.2: Results for vesselness measure (averaged over 20 images) .. 
Image Specificity Sensitivity 

Normal 87.43% 
Abnormal 95% 77.31% 
All images 82.37% 

Normal 92.69% 
Abnormal 90% 85.90% 
All images 89.29% 

Nonnal 94.89% 
Abnormal 85% 90.11% 
All images 92.50% 

Normal 96.18% 

Abnormal 80% 92.88% 

All images 94.53% 

Figure 5.7 shows two images with their results using the piecewise threshold prohing 

method [12J and the vessel ness measure. ROC curves are also plotted ror these two meth-

ods in Figure 5.8. For the normal image. the improvement is from FPR > 0.05. while for 

the abnormal image. improvement starts at very low values of FPR. This can be explained 

as a re-;ult of the pre-processing step. where the responses cOiTesponding to abnormalities 

around the fovea have lower contrast in the HMI. 

On average. when using 20 images from the STARE dataset. at specificity of 95%. a 

sensitivity of 87.43% and 77.31 % are achieved for nonnal and abnormal images respcc-

tively. These sensitivity values increased to 92.69% and 85.90% respectively at specificity 

of 90'7r. Tahle 5.2 summarises results obtained when using the vessel ness measure. 

For purposes of comparison. the TPR are calculated at FPR of 4.4% for all images. to 

compare with r 12.46.63]. The algorithm in [63] is implemented and images of the Iloovcr 

et al. method [12] are used to find these TPR. Results for Jiang et al. were reported in 
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(a) 

(b) 

(c) 

Figure 5.7: (a) RGB image, (b) Hoover method, and (c) vesselness measure for normal 
(left) and abnormal (right) images. 
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Table 5.3: TPR at 4 4% FPR (averaged over 20 im'lges, No mask) < 

Method TPR 
2nd Human observer 89.50% 

Chaudhuri r 63] 55.01% 
Hoover [12J 75.48% 
Jiang [46] 83.50% 

Mendonca [51] 84.2% 
vesselness measure 80.93% 

Table 5.4: A. (averaged over 20 images) . 
Method Az 

Chaudhuri [631 0.8987 
Hoover [12] 0.9112 
Jiang [46] 0.9298 

AI-Rawi[50J 0.9090 
Vessel ness measure 0.9450 

Staal [44] 0.9671 
Soares [52] 0.9614 

[461. In addition to the TPR, the :.fz is used to compare results obtained from the proposed 

method and those reported by [12,44,46,50,52,631· These results are summarised in 

Tables 5.3 and 5.4. 

5.5 Discussions and Conclusions 

It is imp0l1ant to note that in [12, 46], there are five parameters required for these two 

algorithms, and the reported results are for processing al120 images using ten and eight sets 

of \alucs for these parametcrs respectively. In [50], it depends on optimisation procedure to 

select the optimum \alue for the filter parameters. Significantly, for the proposed algorithm, 

only (Jill' parameter. the scale s, needs to be set. 

The \alue of the scale ... can be chosen when considering the diameter of blood vessels 

\\ ithin a sub-image. It is clear from Figure 5.2 that values 8 = 301'4 give more realistic 

\essels than the blurred ones at s = [) or G. Results using different values of s are sum-

mari ... ed in 'Iable 5.5. 
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Tahl~ 5.5: S~n~iti\ ity at 95% specificity and the Az using dirfer~nt scal~ value (averaged 
from ~O images) 

scale sensitivity Az 
3 81.76% 0.9395 
4 82.37% 0.9"50 
5 81.32% 0.9439 
6 79.62% 0.9407 

Rcsults from [+to 5~] are bettcr than results obtained using the proposed method as 

the~e are supcnised methods which has some advantages over the unsupervised ones, as 

highcr performance. On the other hand, the need for GT (manually segmented images) in 

order to e.\tract training set and the necessity of a good feature vector in order to classify 

image pixels to thcir corresponding classes presents some drawbacks. There is no doubt 

that thc performance of the classifier is affected by the choice of the feature vector and 

thc training sct. :-'llm,?over. in this application, where retinal blood vessel segmentation is 

thc main ta ... k. generating a training set is not an easy job to do. First, there are 423,500 

ri\eb/imagc \\ ith more than 25% dark background pixels and the dataset consists of 20 

i mages ,orne of them of baJ qual ity (very bright or saturated images). Second, the property 

of multiple ()hjcct classes of varying colour/reflectance [46] and - sometimes - there is a 

!--imilarity bd\\CCn feature vectors for vessel and non-vessel pixels from different images. 

A nO\ d unsupt.'n ised method for retinal blood vessel segmentation is proposed. This 

mcthod is ha,cJ on a proposed \esselness measure, which depends on vessel centrclines 

and oril'n\;ltillOS. One of the main advantages of the proposed method, is that it is COI11-

rktdy un,upcn i ... ed, so there is no need for manually labelled images - segmented by a 

human Oh"'l'f\l'!" - \\ hil:h is timt: consuming and subject to observer bias. Another major ad-

\ antJfc i, that a minimum number of parameters are used (only one parameter is needed), 

in aJJltilln III it-. ~il11rlidty amI easy implementation. 

Onfl)ing \\ ()r\... \\ ill use results from the vesselness measure in conjunction with classi-

tiero; or ~ellli-~lII'\.'f\ i,cd clustering algorithms. This is by generating a binary image to be 

u-.l'J in-.tl';IJ (If the manually !--cgmented images to train a classifier or as labelled samples 



Chapter 6 

Conclusions and Future Work 

6.1 Summar), and Conclusions 

A
U1 0\1.\1 ED segmentation of retinal blood vessels is important for vessel measure

ments abn it i, a prcrcljui,ile in many other applications including localisation of 

otha anahllllical ,tructures and ahn0ll11ality detection. This research is motivated hy the 

l'halknging rrohkm of hlood \cssel scgmcntation from colour fundus images. In this con-

te,t. a pre-rf(lCt'~'lng slep has heen proposed and different segmentation methods have 

Chapter ~ pre,ented a pre-processing step that utilises the intensity information from 

the reJ channd of "llour fundus images. Inspection of the three colour channels of the 

retinal image ... h\l\\ s that the red channel is brighter than the green one. Therefore. the 

red dlannl'1 i, u-.cd to ,egmt'nt the retinal FOV. i.e. to generate a binary mask. Differences 

nc:t" een ,land.H·d de\ iation yalues for regions contain successive rows (columns) are calcu-

lated. '1 he ma\imul11 \alue of these differences is located at the row (column) from where 

the retinallO\" ~tarts llr ends. A rectangle that sUITounds the FOV is formed by rows and 

Cllluml1' that tktine !'>tart and end points of the roy. Pixels outside this rectangle are used 

AJJiti\lnall~. a no\ eI enhancement method for colour retinal images has been devel-

('lX'd ~~ l'llll1hining inlen,ity information from rcd and grcen channels. Histogram match-

114 
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ing has ~en used to modify the histogram of the green channel using the histogram of 

thl.! rl.!J channd of the same retinal image which is different from the previously proposed 

applications of histogram matching in the literature. This step results in enhancement of 

the \ i,uaJ appearance of the retinal image, decreasing the contrast belween bright abnor

malities and the retinal background in abnormal cases. also correcting the non-uniform 

illumination in many nomlal cases. An imporlant observation thal should he mentioned 

ahout thl.! pre-processing step is that it is not applicahle for all retinal images. For example. 

in case of \er)' bright images. comhining red and green channels will result in a HMI with 

much 10\\ er contrast than the green channel alone. To detect these cases. a saturation con

dition criterion \\ as proposed to define the very bright red channels and therefore usc the 

grl.!en channd image without modifying its histogram. 

Chapter 4 ha, explored different methods - supervised, unsupervised, and semi-supervised 

mdlwds - to segment retinal blood vessels from colour fundus images. In this chapter, a 

feature \ ector was first extracted for each pixel in the retinal image based on three main 

characteristics of the bltxxl vessel - darker than the background. piecewise linear. and has 

parallel edges. Thl.!'e features are the large eigenvalue and the gradient magnitude extracted 

at multiple 'leaks in addition to the green channel image. 

I he KS.V c1a",ifier has heen used to classify image pixels into vessel and non-vessel 

pi\el s taking intn a~~:()unt these three features for each image pixels. Significant reduction 

in Ihl' pr~l('e,sing time i-; the major outcome of the use of this feature vector compared with 

arHIlher feature \t'l'I~)r of 31 katures proposed by Niemeijer et (II. [73] with comparable 

c1assili~a(i(ln results. 

I n,k'all (If u,ing a feature \ ector with a supervised method. it has been used with an Ull

SUrX'f\ iseJ one, "here supcn ised and unsupervised concepts were combined in the NNCA, 

in "hil:h pi\els are ~luslered hased on this feature vector without generating a training set 

(Ir using a 1;lhclkd sampks. Experimental results show that the NNCA gives 5% lower 

pcrfllrrnan~c than the }.:.\'.\' classifier. however this is a result of it being unsupervised. 

In rast" \\ here the GT image is not completely available, semi-supervised methods, 

such ;1\ R. \CAI. "ith partial supervision appears to be the best possible solution. The 
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RACAL have heen u,ect as a classifier to classify image pixels as vessel and non-vessel pix

el'\. In lh~ ,upcn ision slral~gy. a percentage of the GT pixels are used as labelled samples. 

In normal ca,e'. RACAL gives comparable results with the KNN classifier. Additionally. 

for the ahnorrnal images. results were better than the KNN classifier. An interesting ohser

\ation anoul pal1ial supcr\ ised methods. is that it give comparable results with the KNN 

clas,ifier. 

Chapter 5 ha, introduced a no\el unsupervised method for vessels segmentation. which 

utili,e, \t~"e1 centreline and orientation variations at multiple scales. Blood vessel cen-

trelines are deh.'(teJ as the local maximum of large eigenvalues of the Hessian matrix at 

difkrent scales. While \ariation in orientations is calculated from the standard deviation 

het\, een angks of the eigcmectors at different scales. Completely unsupervised nature and 

u,e of a ,ingk raramch.'r. its simplicity and easy implementation are advantages which 

ma\...e this J1leth,xl rn.·krat"lk mer other segmentation methods. 

In clllll·lu,i'1I1. thi,thl',is has provided an extensive study orretinal vessel segmentation 

Ilh:lh'l\.l, ;lI1d h;I' rrllpo,eJ no\ eI \\ ays towards the automatic segmentation of retinal blood 

\l",,-eJ.; from l"oillur functus images. This research aims to provide a reliable method for 

nil I\. III \I.'"d '~:gmt'ntation. and hopefully the findings of this work contribute a step forward 

h)\\arJ, the autllmati~ ddection and diagnosis of ocular diseases. 

£., ·.·1·1C Road Ahcad 0 .• 

I hi, lh~,is j .. mainly concerned with blood vessel segmentation from colour fundus images. 

I3a,,-,J (111 the \\ tlrk pfllposed in this research. f1ll1her investigations are suggested in this 

,\ qllalll~ ;\"e,,,ment step could be introduced to decide the suitability of a retinal image 

fllr autlllllali .. · rnx:t', .. ing in ordt'r tn sohI.' problems associated with poor quality images. 

I he \\\ll\... d"lle on the \e ... ,>elness measure could be extended by introducing a scheme 

to ,elt'd l·;lndid.lle pi\('I .. in IlrJ~r to get a binary image (Generated Ground Truth (GGT) 

illla~e .. I hi, GG I image \\oulJ be of great impoJ1ance and could be used to provide la-
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hdkJ ()hj~ch fur supervised methods or to overcome the initialisation problem in tracking 

m~thlld.... The initial points for a tracking algorithm can be selected from the GGT im

age. In thi, ca'e. pixels from the GGT image are stored in a qucuc. and each pixel in the 

queue a~h as a starting point to trace part of the vessel network. In case of semi-supervised 

methods su~h as in the RACAL algorithm which has been proposed as a classifier. this 

GGT l"llldJ he u ... eJ ttl pnl\ ide initial protntypes for the clustering step. or considered as 

the Iahdkd ohjccts. instead of selecting random pixels from the GT images, to classify the 

nIlIH)\ erlarred c1u,ters into their cOITesponding classes. 

On the imagc analysis side. skeletons from the GGT image could be used to detect and 

mca ... un~ many impm1ant features of the vascular network. One of these measurcmcnts is 

the h· ... ,c1 1\111110'ity. \\ hi~'h is the result of accumulation of curvature along blood vessel 

kngth. Branching angks are another feature, which could indicate the presence of hyper

tension. AI ... o 11100d \esse! width can be measured by using these skeletons along with the 

~igcl1\ cell)rs (coITc"'ponding to the large eigenvalues). 

One \\ ay to reduce the false positi\'es is the detection of retinal abnom1alities such as 

J11icrllal1cur~ ... 111'. hCJ11on·hages. exudates and cotton-wool spots. Other avenues for possible 

extcn ... ion of this \\wk is the analysis of the blood vessel network in order to get more 

infl)rmatilln \\ hi~'h \\ ill he \aluahle in ddection and diagnosis of many ocular diseases. 



Appendix A 

ROC Curves 

A.I Eflicient Generation of ROC Curves 

Gi\ en a ~ray s,-,ale ima~e (If size n x 11/ and it is required to generate an ROC curve, a 

.. traight fon\ ard algorithm will st'1I1 by setting threshold values. For each threshold value 

optain the hinary image. then cakulate the FPR and TPR which represent a single point on 

the ROC ,-,urw. Thi, algorithm is not practical as the threshold values need to be set based 

on the maximum and minilllulll intensities in the image and the required increment value. 

In 161 J. rpm Fa\\(ctl proposed an efticient algorithm based on the monotonicity of 

thre,h(lldeJ c\.I"itil.'atiI1ns. \\ here any pixel that is classified positive with respect to a given 

thn.',h(lIJ \\ ill ~ da .... itil.'d po,itiw for all higher thresholds as well. Therefore, this algo

rithm .. ill1l'l~ ,\)11, image pixels in descending order, moves down the list, processes one 

pi \d at a tillll.'. and updates 'I P and FP as moving down the list. In this way, an ROC graph 

(an ~ l·re;I!l.'d fnml a linear ,,-,an. 

A.2 AreH Under an ROC Cun'e 

I he .Irea unda an ROC curve (1:l is uSl.'d as a single scalar value to represent the perfor

m;HKe (If a cla ...... itkr. r\' the perfect classification results produces a point at the top left 

( .. rner \\ hidl fi\I." :-{: = 1. \\ hik the random classifier produces a straight line (;7: = y), 

118 
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th~ ar~a und~r this line :-tz = 0.5. This implies that A:; values should be bctween D.G and 1. 

-I he .-1= has an impOl1ant statistical property: the :4:; of a classier is equivalent to the prob

ahility that the classifier assigns a higher rank to a randomly chosen positive sample than 

that a-.-.igneJ to a randomly chosen negative samples which is equivalent to the Wilcoxon 

1I:"t of ranks [931. 

To calculate the :-t z. a method which based on constructing trapezoids under the curve 

a" an approximation of area is used. The area of a trapezoid can be computed as thc length 

or the mid-segment. multiplied by the distance along a perpendicular line between the 

parallel ,ides. If a and b are the two pal·allel sides and h is the distance (height) between the 

I\Hl paralkl sides. the area of a trapezoid = (atb)h, the lI:; is the summation of successive 

arcas of trapezoids that approximated the ROC curve. 



Appendix B 

Image Derivatives 

I·or a gi\\.~n intl.'n .. ity image. I(.r, V). the observed image, L(.r, V). is defined as the COIlVO-

lution of the l)utsiJe world image with the aperture function. It is obtained by convolution 

"ith thl.' Gau .... ian kl.'rnd: 

L(.I'. y) = 1(1.', y) 0 G(x, y) 

To take dl.'ri\ ati\ es of the ob .. erved image. taking into account the linearity of the differen-

tial anJ the cOl1\olution operators. these two operators can be commuted. Therefore image 

dl.'ri\;Iti\e' can ~ taken by convolving the intensity image with derivatives of the Gaussian 

S <5 8 
-:- I. ( .r. y) = -:- (I (.r • y) ~ G ( :r, !J)) = 1 (:r, y) ® "£ G (:r, y) 
(\.1' ('-I' u.r 

.• he GalNian kernel is considered as the unique scale-space operator to change the scale 

19-1 J. ·1 hen. to represent image information at different scales, the convolution is thell 

pt.'rfllrll1l.'d 1I,ing a Gaus..ian kernel. G(.l'. y:.<;), of variance ,<;2: 

L(.l'.,lj: s) = I(.r, y) @G(.l',y: s) 

" hl.'rt.' .~ i, the .. cale factor and G(.r. !I: 8) is: 

IIll;tfe dl'ri\ali\e .. 'Ire l'Ol11puteJ by convolution with derivatives of the Gaussian kernel as: 

I~O 
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o 0 
~L(.r, y: 8) = I(:r, y) @ --:--C(:I;, y; 8) 
vI 6x 

l he sca1e-noIlllalised Gaussian derivative operators are used in order to make all mcasllre-

Illcnts rdati\e to the scale. In this context, let 

the Gaussian derivatives will be: 

_ :r 
;J:~ -

S 

eSllc n eSc 
--=8 -
6.r" oxn 

First and second derivatives of the intensity image in the x- and y- directions can he 

expressed as: 

L.r: = I(:r, y) 6) sCr 

L" = I(:r, y) C) sG" 

~1i\ed and higher order derivatives are computed hy taking mixed and higher order deriva-



Appendix C 

Eigenvalue Analysis of the Hessian 

Matrix 

C.I Lincar Algcbra 

}lc"i'ln Illatri \. th~ matrix of th~ second order derivative of the intensity image, is ex-

\\ hl."fl." 1'1'1-- 1"1 r \\ hidl implil."s that the Hessian matrix is symmetrical with real eigcn-

\allll."' ;lnJ l111hllflln;11 eifl."ll\cctlirs. AI is an eigenvalue of H if there is a non-zero vector 

1'1 'll~:h th;lt: 111'1 =--: '\1 1'1 (\\hl."re VI is the eigenvector corresponding to Ad. To tind 

Ci,:!l'l1\ altl\.·, .111.1 their l."lIITl:'plinding eigenvectors. let us start with 

1111 = All 

IIV=AIII 

1111 - AlII = 0 

(II - AI)/I = 0 



C2. LlGL'\J\:\LUES 

I (l ~(lh~ this Equation: 

• if (If - ).I) is invertible; 

then th~ only solution will he 1/ = (H - ).1)-10 = 0 which is not accepted, 

• if (If - ).I) is not invertibk; 

thcn tI( t(iI - )..I) = 0 is the solution to find the eigenvalues of ll. 

C.2 Eigcll\alucs 

Til tind eigel1\ allies of the Hessian matrix: 

!JI-)..J!=O 

Lrl - .\ L"" 

,,"'" I. !I.I/ - ,\ 

I hen. l'igl'l1\aluc~ of the I k~sian matrix ar~: 

L.I'.!' + L"" + (l /'+= ----"-"---
2 

).. = L.r .r + L!J.'! - U 

- 2 

I I I OJ') TL') \\ hl'rc II c:-: \/ t -./".I' - •. '/'/ - + -I. ;'" 

C.3 Ei~cn,cctors 
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(C.2.1) 

(C.2.2) 
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! I ~.l) ==.'..'..r 
• rJ .r· . : '. '1-

(/'ll - I",., - n I.r + '21 .. / vy = II 

LeI .r = k. I hI.' 11 .11 = -l.II+f.Y;J-+() k 
~LJ'IJ 

1'.,..,,,,,.,11 = .~. ( 2L,.!J ) 
-L.l.e + L!I!J + n 

~il11i1.lrI~ fllr I' _,,,.,."/. Ihl.' I111rmalisl.'d cigcl1\'cclor cOITesponding to A_: 
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(C.3.3) 

(C.3.4) 

(C.3.5) 
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(C.3.6) 
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