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Abstract 

This Ph.D thesis consists of two studies in the panel stationarity and cointegration 

tests. Three main chapters have been developed. The first two refer to the panel sta­

tionarity study. In the first chapter, a residual-based LM panel stationarity test with 

structural breaks is proposed, in which four models based on different break patterns 

are specified. For two of the models, a modified test which does not asymptotically 

depend on break location is also proposed. It is shown that both statistics after 

standardization have standard normal limiting distribution that is free of nuisance 

parameters. We derived the asymptotic moments of both statistics in closed form via 

characteristic functions. Monte Carlo simulations are conducted and the results show 

that the LM test has a good performance in finite samples but the modified test in 

the presence of auto correlated residuals performs less satisfactory. We then provide, 

in the second chapter, an empirical applic~tion to 14 macroeconomic and financial 

variables of OECD countries for the LM test. To select the appropriate break type 

for each variable, we applied the BIC and AIC criteria for each country, therefore, 

different models are allowed across countries . A bootstrap procedure is employed to 

control for the existence of cross-sectional dependence in the data. We found strong 

evidence of stationarity once a structural break and cross-sectional dependence are 

accommodated. 

In the third chapter, we move to the panel cointegration study. A panel cointegra­

tion test with the null hypothesis of cointegration is considered. This is an extension 
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of Harris, Leybourne and McCabe (2005) (HLM thereafter) stationarity test. We 

distinguish three models depending on the specifications of the integrated variables. 

The test is advantageous to control for the cross-sectional dependence and serial cor­

relation of unrestricted structure in the panel. Although the statistic is shown to 

have asymptotic standard normal null distribution, the simulation results indicate a 

size distortion when the panel dimension is relatively large due to the finite-sample 

estimation errors. To correct for this, the bias correction factors proposed in HLM 

(2005) are used in the test and the validity of bias correction factors is assessed in 

the panel cointegration context. Monte Carlo simulations suggest the test provides a 

good approximation in finite samples. 
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Chapter 1 

General Introduction 

This Ph.D thesis is organized in 6 chapters. 

Chapter 2 begins with a detailed literature review about various panel stationarity 

or unit root tests as well as panel cointegration tests, at the same time, focusing on 

some of the tests that mainly motivated the work in this thesis. 

Chapter 3 continues with a contribution of this work to the literature by proposing 

a panel residual-based Lagrange Multiplier (LM thereafter) stationarity test allow­

ing for possible structural breaks. Four models based on different break effects are 

developed. For two of the models, a modified test of which the asymptotic distrib­

ution does not depend on break location is also proposed. The tests with both i.i.d 

and serial correlated residuals are discussed. We allow for different breaking dates 

in each individual unit. Both tests are shown to have standard normal distributions 

after standardizing using the appropriate moments and applying for Central Limit 
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Theorem. The asymptotic distributions are derived using sequential limits, wherein 

T -t 00 followed by N -t 00. The exact moments of all corresponding models for 

both tests are derived via the characteristic function technique. We also analyze the 

case when the break location is unknown, in which the least-square method is used 

to estimate the break. The good performance of the LM test in finite-sample are con­

firmed through Monte Carlo simulations. Simulations of the modified test indicate 

less satisfactory results in the presence of serially correlated residuals. 

In Chapter 4, as an illustration, we apply the LM test to the annual data of 14 

macroeconomic and financial variables of OECD countries. Instead of following a 

visual inspection procedure or imposing the most general model specifications, we 

use BIC and AIC criteria to select the appropriate break type. Different types of 

models are allowed for across countries for each variable. It is found that different 

combinations of all the models rather than any single particular model are selected for 

13 out of 14 variables. For the determination of the autoregressive lag length, a general 

to specific recursive procedure tsig where the lag length is determined as the last lag 

in the autoregression that has a significant t statistic at the 10% significance level 

and the procedure based on BIC criterion are applied for comparison. The bootstrap 

method is used to correct for the existence of cross-sectional dependence in the data 

and the bootstrap critical values are obtained from the empirical distributions. The 

reported results indicate strong evidence of stationarity for all the variables when a 

structural break and cross-sectional dependence is accommodated. 
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Chapter 5 of the thesis is concerned with a panel cointegration test with the null 

hypothesis of cointegration. This is an extension of the panel stationarity test of 

Harris, Leybourne and McCabe (2005) (HLM thereafter) which has the advantage of 

allowing for general form of cross-sectional dependence as well as serial correlations in 

the panel. We consider three models based on different components of the integrated 

variables. The statistic is shown to have the standard normal distribution under 

the null. However, the finite-sample results evaluated by simulations show large size 

distortions when the panel dimension is relatively large. To avoid this problem, which 

is due to the accumulated individual finite-sample estimation errors, we include the 

bias correction factors proposed in HLM in our cointegration test. It is assessed that 

the bias correction factors are still valid in the panel cointegration context. We also 

show that the asymptotic normality properties still hold for the statistic. Monte 

Carlo simulations suggest that the finite-sample performance improves significantly. 

Therefore, the test proves to be an adequate approximation for the finite-sample 

distri bution. 

Finally, Chapter 6 concludes with the main findings in the thesis. 
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Chapter 2 

Literature Review 

In this chapter we provide a literature review of nonstationary panel tests. This 

review is not intended to be exhaustive but concentrated on the recent panel unit 

root tests, stationarity tests and cointegration tests which are the main motivations 

of the contributions in Chapter 3, 4 and 5. This chapter is organized as follows. 

We begin with a background introduction to recent developments in panel unit root 

and cointegration analysis, and then, move to discuss some important panel unit and 

stationarity tests in Section 2.2. The review of panel cointegration tests is considered 

in Section 2.3. 

2.1 Introduction 

With the growing availability of cross-country data over time, a variety of impor­

tant panel data sets have been constructed and widely used. Some of these panel data 
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sets, like the Penn-World tables, cover different individuals, industries, and countries 

over long time periods and have been useful in assessing and comparing economic 

growth characteristics such as real per capita GDP growth. The analysis of unit 

roots and cointegration in panel data has been a fruitful area of study in recent years, 

with Levin and Lin (1992, 1993), Quah (1994), Breitung and Meyer (1994), 1m et 

al. (1997, 2003), O'Connell (1998), Maddala and Wu (1999), Kao (1999), McCoskey 

and Kao (1998) and Pedroni (1999, 2004) being the most noticeable studies in this 

field. The motivation of using panel data in unit roots and cointegration tests is 

with the hope that combing information from both the time series and cross-sectional 

dimensions would increase the statistical power of the tests and provide more reliable 

empirical evidence than their univariate counterpart, especially in situations where 

the time series for the data may not be very long but very similar data may be avail­

able across a cross section of units such as countries, regions, firms or industries. 

This was supported by the application of, for example, panel unit root tests to real 

exchange rates, output and inflation. For the example of real exchange rates, the 

hypothesis that the real exchange rate is nonstationary cannot typically be rejected 

by the augmented Dickey-Fuller test based on the single time series. In contrast, 

panel unit root tests applied to a collection of industrialized countries generally find 

that real exchange rates are stationary, therefore suggesting empirical support to the 

purchasing power parity hypothesis. 

Among the studies mentioned above, the unit root is the null hypothesis to be 
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tested. Since the classical hypothesis is carried out in the way that ensures the 

null hypothesis is accepted unless there is strong evidence to the contrary, hence, 

acceptance of the null of a unit root does not necessarily imply the existence of a unit 

root. On the other hand, when the null of a unit root is rejected, we cannot conclude 

that the process is trend stationary, as the unit root tests considered may have power 

not only against a stationary process with a break but also against more general 

alternatives. Therefore, in order to decide by classical methods whether economic 

data are stationary or integrated, it would be useful to perform tests of the null 

hypothesis of stationarity, as well as tests of the null hypothesis of unit root. Recent 

panel stationarity tests have been proposed by, inter alia, Hadri (2000), Shin and 

Snell (2002, 2006). 

Another line of research that has paralleled developments in nonstationarity analy­

sis relates to the tests in the presence of structural changes. A large literature has 

addressed the interplay between structural changes and unit roots due to the fact that 

both classes of processes contain similar qualitative features. Most tests that attempt 

to distinguish between a unit root and a (trend) stationary process will favor the unit 

root model when the true process is subject to structural changes but is otherwise 

(trend) stationary within regimes specified by the break dates. Also, most tests try­

ing to assess whether structural change is present will reject the null hypothesis of 

no structural change when the process has a unit root component but with constant 

model parameters. Since the pioneering work of Perron (1989), the importance of 
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allowing for possible structural changes in testing for a unit root has attracted at­

tention in the literature. It is now well accepted that ignoring the existing structural 

breaks is likely to cause misleading inferences, that is, a significant loss of power in 

the unit root tests and severe size distortion in stationarity tests. This problem exists 

in both panel and time series tests. 

Recent developments in panel data analysis have focused attention on unit root 

and cointegration properties of variables observed over a relatively long span of time 

across a large number of cross section units. Such macro panels with large cross 

sectional dimension (N) and large time series dimension (T) have different character­

istics and implications for theoretical and empirical analysis from the large N small 

T micro panels. For example, when T is large, there is an obvious need also to con­

sider serial correlation patterns in the panel, more generally, including both short 

memory and persistent components. Also, with large T, a proper limit theory for the 

asymptotic analysis rather than the conventional methods for just large N is needed. 

2.2 Panel Unit Root and Stationarity Tests 

According to whether unit root or stationarity tests allow for potential correlations 

across the residuals of panel units , two generations of tests can be distinguished. 

The first generation is based on the cross-sectional independence hypothesis while 

the second generation of the tests relax this assumption and aim to exploit the co­

movements in order to define new test statistics. We overview these two generations 
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of tests in turn in the Subsection 2.2.1 and 2.2.2. As another important parallel 

development in panel nonstationarity tests, the panel stationarity tests allowing for 

structural breaks are discussed in Subsection 2.2.3. 

2.2.1 The First Generation Tests 

This subsection reviews the contributions of Levin and Lin (1992, 1993), 1m et al. 

(1997, 2003), Maddala and Wu (1999), Choi (2001) and Hadri (2000). These are the 

most noteworthy studies in the first generation of panel unit root and stationarity 

tests where cross-sectional dependence is not accounted for. 

Levin, Lin and Chu tests 

Being one of the seminal contributions in the field of panel unit root test, Levin 

and Lin (1992, 1993) and later Levin, Lin and Chu (2002) suggest a panel unit root 

test with the null hypothesis of a unit root in each individual time series against the 

alternative that each individual is stationary. This was motivated by the problem 

that individual unit root tests have limited power against the alternative hypothesis. 

The structure of Levin, Lin and Chu test (LLC hereafter) can be summarized as 

follows: 
Pi 

D..Yit = PYit - l + L (JiLD..Yit-L + amidmt + cit, m = 1,2,3, (2.1) 
L=l 

where d mt are the deterministic variables and ami are the corresponding vector of 

coefficients for model m = 1, 2, 3. In particular, dlt = 0, d2t = 1, d3t = (1, t)' . 
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To determine the lag order Pi for each unit, first choose a maximum lag order Pmax 

then use the t-statistic of BiL to decide if a smaller lag is preferred. After this , the 

regression of (2.1) is estimated by regressing first b.Yit and then Yit-1 on the remaining 

variables in (2.1), obtaining the residuals eit and Vit-1 respectively, and standardizing 

them by eit = eit!o-ci and Vit- 1 = Vit-!/o-ci. LLC then estimate the ratio of long-run 

to short-run standard deviations. Under the null hypothesis, the long-run variance of 

(2.1) can be estimated by 

where R is a truncation lag and W R L = 1- (L / (R + 1)) for a Bartlett kernel. For each 

i, the ratio of the long-run standard deviation to the innovation standard deviation 

is estimated by Si = 0-yi/ 0-ci and the average standard deviation is calculated by 
N 

SN = N - 1 L h Finally, estimate the pooled regression 
i= 1 

and compute the t-statistic tp=o = p/o-(p) where 

N TNT 

P = L L Vit-1 eit! L L 
i=1 t=2+Pi i=1 t= 2+Pi 

N T 

-2 
vit- 1 ' 

o-(p) = o-t:/lL L VL1l1/2, 

i= 1 t= 2+Pi 

N T 

, 2 1 '" '" (- , - )2 (J l; = --- L L eit - PVit- 1 , 
NT i=1 t= 2+Pi 

N 

p = N - 1 LPi' t = T - P - 1. 
i=1 
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The LLC statistic is an adjusted version of tp=o above, which is given by 

where the mean adjustments I-L:nt and standard deviation adjustment a-:nt are pro-

vided by LLC via simulations. LLC show that t; is asymptotically distributed as 

N(O, 1) . The Monte Carlo simulations indicate that the normal distribution provides 

a good approximation to the empirical distribution of the test statistic, even in rela-

tively small samples . In addition, the panel unit root test provides dramatic improve-

ments in power over separate unit root tests for each unit. 

1m, Pesaran and Shin tests 

The Levin, Lin and Chu test is restrictive in the sense that it requires P to be 

homogeneous across individual. As pointed out by Maddala and Wu (1999) , this 

restriction is too strong to be upheld in some empirical cases . For instance, in testing 

the convergence in growth among countries, it does not make any sense to restrict 

every country to converge at the same rate if they do converge. To solve this problem, 

1m et al. (1997, 2003) (IPS) propose an alternative testing procedure based on aver-

aging individual uni t root test statistics which allows for a heterogeneous coefficient 

of Yit - I' IPS consider the model (2.1) and substitute Pi for p, 

p; 

tlYit = PiYit - 1 + ~ eiLtlYit-L + Olmidmt + cit· 
L= 1 

(2.2) 

The null hypothesis is defined that each series in the panel contains a unit root, i.e., 

Ho : Pi = 0 for all i, and the alternative hypothesis HI : Pi < 0 for i = 1, .. . , NI and 
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Pi = 0 for i = Nl + 1, .. , N.(O < Nl < N), which allows for some (but not all) of 

the individual series to have unit roots. Thus, instead of pooling the data, IPS use 

separate unit root tests for the N individuals. Their test is based on the augmented 

Dickey-Fuller statistics averaged across groups as 

where tp; is the individual t-statistic for testing Ho : Pi = 0 for all i. In case the 

lag order is always zero (Pi = 0 for all i), IPS provide simulated critical values for 

[ for different Nand T. For the general case where the lag order Pi is nonzero for 

some individuals , IPS show that a properly standardized [has an asymptotic N(O, 1) 

distribution. Hence 

N 

VN([ - N - 1 2:= E [tiT IPi = OJ) 

tIPS = i=l =} N(O, 1) 
N 

N - l 2:= var[tiTlpi = 0] 
i = l 

as T ---t 00 followed by N ---t 00 sequentially. Here, tpi is the individual t-statistic 

for testing Ho : Pi = 0 for all i . IPS have computed the values of E[tiTlpi = 0] and 

var[tiT lpi = 0] for different T and P~s via simulations. The Monte Carlo simulations 

show that if a large enough lag order is selected for the underlying ADF regressions, 

then the small sample performance of the f test is generally better than LLC test. 
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Fisher-Type tests 

As mentioned above, IPS use an average unit root based statistic test to overcome 

the homogeneity problem in the LLC test. As an alternative testing strategy, Maddala 

and Wu (1999) and Choi (2001) proposed a Fisher-type test which combines the 

p-values from unit root tests for each individual i to test for unit root in panel data. 

The heterogeneous model (2.2) is still considered, and the hypothesis remains the 

same as IPS. The idea of Fisher-type test is that if the pure time series unit root test 

statistics, e.g. ADF, are continuous, the corresponding p-values Pi are uniform (0,1) 

variables. Consequently, the statistic proposed by Maddala and Wu (1999) is defined 

as 
N 

PMW = -2 I)n(Pi) 
i=l 

and has a Chi-square distribution with 2N degree of freedom as Ti -7 00 and N is 

fixed. The attraction of the Fisher test over the IPS test is that it does not require 

a balanced panel; that is, the time series dimension (Ti) can be different for each i. 

Also, the Fisher test can use different lag lengths in the individual ADF regressions 

and can be applied to any other unit root test. For large N samples, Choi (2001) 

proposes a standardized statisticl corresponding to the standardized cross sectional 

average of individual p-values, 

lSince E[-21np,d = 2 and Va7'[-21npd = 4, 
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It is shown that Pm converges to a standard normal distribution by applying the 

Lindberg-Levy central limit theorem. 

Hadri LM test 

Contrary to the above tests, the main focus of Hadri (2000) is testing the null 

hypothesis of stationarity. As mentioned in 2.1, testing for the null of stationarity is 

more natural than the null of a unit root. It is also useful to perform a stationarity test 

to complement the unit root test. The fact that the stationarity tests are relatively 

few in the literature, motivated the work in Chapter 3 of this thesis. The Hadri (2000) 

test is an extension of the stationarity test developed by Kwiatkowski et al. (1992) 

(KPSS hereafter) in the time series context. A residual-based LM test is proposed for 

testing under the null that the time series for each cross section unit i, are stationary 

around a level or around a deterministic time trend, against the alternative that at 

least one unit has a unit root. Hadri (2000) considers the following two models: 

(2.3) 

and 

(2.4) 

where rit is a random walk, 

cit and Uit are mutually independent normal distributions. Also, Cit and Uit are i.i.d 

across i and over t, with E[citl = 0, E[dtl = a; > 0, E[uitl = 0, E[uftl = a~ ~ 0, 
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t = 1, ... , T and i = 1, ... , N. The null hypothesis of stationarity is simply O'~ = O. Since 

the C:~tS are assumed i .i.d, then under the null hypothesis Yit is stationary around a 

level in model (2 .3) and trend stationary in model (2.4). More specifically, Hadri 

(2000) tests the null >. = 0 against the alternative>. > 0 where>. = § . Thus>. = 0 
CI£ 

(O'~ = 0) means that Y is stationary whereas >. = 00 entails that y comprises a random 

walk. 

Let Eit,u and Eit,T be the estimated OLS residuals from the regression of Yit on an 

intercept (for model (2.3)) and on an intercept and a linear trend (for model (2.4)), 

then the consistent estimators of the error variance for the appropriate regression, 

0-; u and 0-; T' after the correction for degrees of freedom, are given by , , 

The partial sum process of the residuals, Sit,k,Can be written as 

t 

Sit ,k = L E;t,k, k = U, T. 

j = l 

The Lagrange MUltiplier (LM) statistic is 

(2.5) 

Under the null of stationarity around a level or t ime trend, and using a sequential 

asymptotic limit theory in which T ---t 00 followed by N ---t 00, the statistic 

IN { LMu - E[,fol V(r)2drJ} 
Zu = ---'--r========---=-- (2.6) 
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-IN { LM-r - E[11 

V2(r)2 dr]} 
Z-r = --..!....-========-~ (2.7) 

Var[.ll V2(r)2dr] 

follow standard normal distribution. Here V(r) is standard Brownian bridge and V2(r) 

is the second level Brownian bridge. The cumulants of the characteristic function of 

/"1 V(r)2 and 11 V2(r)2 give, respectively, the mean and variance of 11 V(r)2 and 

. /- 1 V2(r)2 in (2.:) and (2.7). Hadri (2000) derived the mean and varianceOwhich are ~ 

.fa 

and -is for model (2.3) and 115 and 6~~O for model (2.4) respectively. In a Monte Carlo 

study, Hadri (2000) demonstrate good finite sample performances of both statistics 

2.2.2 The Second Generation Tests 

It is important to note that one crucial assumption in t he tests mentioned above 

is cross-sectional independence. However, in many macroeconomic applications using 

country or regional data, cross-sectional dependence is often found . Cross section 

dependence can arise due to a variety of factors, such as omitted observed common 

factors, spatial spillover effects, unobserved common factors, or general residual inter-

dependence that could remain even when all the observed and unobserved common 

effects are taken into account. It is found that tests of the first generation suffer from 

size distortion and power loss when ignoring the existence of cross-sectional depen-

dence, thereby causing deceptive inferences. In particular, O'Connell (1998) showed 

that the pooled tests will over reject the null hypothesis when the independence is 
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violated, whether the null hypothesis is a unit root or stationarity. This is due to 

the fact that the total amount of independent information contained in the panel is 

reduced. 

In response to the need for panel unit root tests allowing for cross-sectional de­

pendence, various tests have been proposed including the works of Bai and Ng (2001, 

2004), Phillips and SuI (2003a), Moon and Perron (2004a), Choi (2002), Moon, Perron 

and Phillips (2003), Chang (2002, 2004), Pesaran (2003) and more recently, Harris 

et al. (2005). These are the second generation of nonstationary panel tests and 

this category of tests is still under development given the diversity of the potential 

cross-sectional correlations. The main approaches dealing with the cross-sectional 

dependence in these tests include the factor structure approach, which is suggested 

in Bai and Ng (2001, 2004), Phillips and SuI (2003a), Moon and Perron (2004a), 

Choi (2002) and Pesaran (2003) and a second approach, which consists in imposing 

few or no restrictions on the residuals covariance matrix, was adopted by O'Connell 

(1998), Maddala and Wu (1999), Chang (2002, 2004) and Harris et at. (2005). In 

this subsection, we concentrate on tests using the second approach which constitute 

the main motivations of Chapter 4 and 5 of this thesis. 

Tests Based on GLS Regressions 

Consider a panel series {Yid that is generated by a simple AR(1) process, 
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(2.8) 

where b.Yi,t = Yit - Yit-1 and p = (3 - 1. The residual vector Ut = [Ult, ... , UNt]' is i.i.d 

with E(Ut) = 0, and the cross-sectional dependence is represented by a non-diagonal 

matrix n = E(UtU~), for all t . Since the model (2.8) can be written as a seemingly 

unrelated regression (SUR) system of, 

b.Yt = a + PYt-1 + Ut, 

where b.Yt , Yt - 1, Ut and a are N x 1 vectors, O'Connell (1998) suggested to estimate the 

system by using a generalized least squares (GLS) estimator. Let 0 = T - 1 'L.'{=1 UtU~ 

denote the sample covariance matrix of the residual vector. The test of null hypothesis 

of unit root can be based on the GLS estimator of P given by 

",T I 0-1 A 
A L..Jt=1 Yt-1 uYt 
P = ",T I A 1 

Dt=1 Yt _1H - Yt-1 

O'Connell (1998) assumes cross-sectional dependence with the form 

1 w w 

w 1 w 
n = with w < 1, 

w w 1 

that is, all the off-diagonal elements of the error covariance matrix are the same. 

Such a specification seems overly restrictive in many applications such as using re-

gional data, where it is usually assumed that co-movements of economic variables 
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between one region and another are usually observed because of various spillover ef­

fects. Another restriction in this study is that the G LS approach cannot be used if 

T < N, in which case the estimated covariance matrix n is singular. Furthermore, 

Monte Carlo simulations suggest that for reasonable size properties of the GLS test, 

T must be substantially larger than N (e.g. Breitung and Das, 2005a). 

Tests Using Bootstrap Methods 

As pointed out by Maddala and Wu (1999), when the cross-sectional independence 

asssumption is violated, the derived distributions for the first generation panel unit 

root tests are no longer valid. One way out of this problem is to use the bootstrap 

method to obtain the empirical distributions of the test statistics to make inferences. 

Maddala and Wu (1999) and Chang (2004) have suggested a bootstrap procedure 

that attempts to allow for a more general specification of the contemporaneous co­

variance matrix of the errors . By using the bootstrap method, Maddala and Wu 

(1999) obtained the empirical distributions of LL, IPS and Fisher-type tests. Chang 

(2004) considers a general framework in which each panel is driven by a heterogeneous 

linear process, approximated by a finite order autoregressive process. In order to take 

into account the dependence among the innovations, Chang suggests a unit root test 

based on the estimation on the entire system of N equations . The critical values 

are computed by a bootstrap method and the validity of using bootstrap method is 

assessed. 
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HLM (2005) Test 

One recent paper worthy of particular mention is HLM (2005), which motivated 

the work in Chapter 5. As none of the approaches so far discussed attempt to deal 

with the problem of testing for stationarity when the structure of cross-sectional 

dependence and time series dynamics are both unknown, HLM (2005) constructed a 

panel stationarity test to overcome both problems. The statistic is flexible enough to 

allow for arbitrary unknown cross-sectional dependence according to which the series 

may be contemporaneously or cross-serially dependent, and also permits a wide range 

of heterogeneous stationary time series dynamics which including the ARMA class. 

The statistic is, in essence, the sum of the lag-k sample autocovariances across the 

panel, suitably studentized, where k is allowed to be a simple increasing function of 

the time dimension. By controlling k in such a way, they remove the need to explicitly 

model the time series dynamics of each series in the panel and, at the same time, the 

studentization automatically robustifies the statistic to the presence of any form of 

cross-sectional dependence. A more detailed review is provided in Chapter 5. 

2.2.3 Tests with Structural Breaks 

Since the appearance of Perron (1989), the literature of unit root and stationarity 

tests has shown a special attention to the possible presence of structural breaks. This 

development stimulated the tremendous parallel developments focusing on dealing 

with structural changes. In the time series context, Perron (1989), Zivot and Andrews 
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(1992), Banerjee et al. (1992), Perron and Vogelsang (1992), Schmidt and Phillips 

(1992), Amsler and Lee (1995) and Perron (1997) have contributed by providing unit 

root tests in the presence of structural breaks, whereas Lee et al. (1997), Kurozumi 

(2002), Busetti and Harvey (2001, 2003) focused on stationarity tests with structural 

breaks. It is suggested that unit root tests not considering the structural breaks 

are biased towards accepting the false unit root null hypothesis and stationarity tests 

ignoring the existing break are biased toward rejecting the null of stationarity in favor 

of the false alternative unit root hypothesis. However, to our knowledge so far, there 

is relatively few concern about the structural changes in panel data field, except 1m et 

al. (2005) in panel unit root test and Carrion-i-Silvestre et al. (2005) (CBL hereafter) 

in panel stationarity context. In the following paragraphs, we provide a brief review 

of CBL (2005) tests as an example for panel stationarity tests with structural breaks. 

CBL (2005) Test 

Within the panel data framework, CBL proposed a test statistic for the null 

of panel stationarity with multiple structural breaks. Two models, each based on 

different break effects, were specified; these being level breaks in non-trend function 

(model 1) and both level and slope breaks in trend function (model 2). The general 

model considered is given by: 

m i m i 

ai,t = 2:= ei,kDUi,k,t + 2:= 'Yi ,kD(T;,k)t + a i,t - l + Vi ,t , 
k=l k=l 
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where Vit ,...., i.i.d(O 0'2 .), Cit is allowed to be serially correlated. In particular, an 
, 'V,t I 

AR(l) process is specified in the data-generating process of simulations. {Vi,t} and 

{ci,d are assumed to be mutually independent across i and over t. D(T;,k)t and 

DUi,k,t are defined as D(T;,k )t = 1 for t = T;,k + 1 and 0 elsewhere, and DUi,k,t = 1 

for t > T;,k and 0 elsewhere with T;,k denoting the kth date of break for the it h 

individual, k = 1, ... , mi . The null hypothesis is specified as 0'2 . = 0 for all i, under 
11,t 

which the CBL analysis can be summarized by the following equation, 

m i mi 

Yi,t = ai + L ei,kDUi,k,t + f3i t + L 'Yi,kD(T;,k)t + Vi,t, (2.9) 
k=1 k=l 

Hence, model 1 is obtained when f3 i = 'Yi k = 0, and model 2 is defined if f3i i= 0 and , 

'Yi k i= 0, ai is the initial value of ai t· , , 

The proposed statistic, which is based on Hadri (2000) LM test, is expressed as: 

N T 

LM(A) = N - I L(w;2T-2 L stt), (2.10) 
i=1 t=1 

t 

where Sr.t = L €i,t denotes the partial sum of OLS estimated residuals €i,t . For each 
j=1 

i, Ai = (Ai, l , ... , Aim.)' = (T;IIT, .. , T,bi .IT)' indicates the locations of the breaks 
J 11m,. 

over T . Since autocorrelation is allowed in the residuals, w; is a consistent long-run 

variance (LRV) estimate of €i,t for each i . To obtain a consistent w;, CBL (2005) uses 

a parametric method jointly with the boundary condition rule suggested by SuI et al. 

(2003) which is shown to be effective in avoiding inconsistency problems of the KPSS-

type test. Using appropriate moments and applying for the Central Limit Theorem 

(CLT), the limiting distribution of the statistic (2 .10) is shown to be standard normal, 
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that is, 

with 
N N 

~ = N-1 L(i, ~2 = N-1 L~r 
i=l i=l 

The asymptotic mean and variances for each individual have been provided in CBL 

(2005) as follows: 

mi+l mi+l 
(i = A L (Ai,k - Ai,k_l)2; ~: = B L (Ai,k - Ai,k_l)4. 

k=l k=l 

The values of A and B equal the values of moments in Hadri (2000), that is, for model 

1 A -l B-Lf dl2 A - l.. B--1L , - 6' - 45' or mo e , - 15' - 6300 · 

In the situation where break dates are unknown, the SSR procedure is employed 

to estimate the break point, that is, the estimated break dates are obtained by mini-

mizing the sum of squared residuals. To estimate multiple break dates, CBL (2005) 

proposed the method of Bai and Perron (1998) that computes the global minimiza-

tion of the S S R, so all the break dates are estimated via minimizing the sequence of 

individual SSR(T~,l' ... , T~,mJ computed from (2.9) 

After all the possible break dates have been estimated, the suitable number of breaks 

is decided by sequential computation with pseudo F-type test for model 1 and in-

formation criteria for model 2. It is shown that the standard normal distribution 
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property of LM()") still holds when the estimated break locations are used to calcu­

late the statistic LM(~). 

2.3 Panel Cointegration Tests 

Like the panel unit root tests, panel cointegration tests can be motivated by the 

search for more powerful tests than those obtained by applying individual time series 

cointegration tests. The literature on testing for cointegration in panels has so far 

taken two broad directions. The first consists of taking as the null hypothesis that 

of no cointegration and using residuals derived from the panel analogue of an Engle 

and Granger (1987) static regression to construct the test statistics and tabulate 

the distributions. The most general statement of this problem may be taken from 

Pedroni (1999, 2004). A related paper by Kao (1999) contains very similar and related 

analysis. The second route is to take as the null that of cointegration. This is the 

basis of the test proposed by McCoskey and Kao (1998). This too is a residual-based 

test and has as its analogue in the time series literature the tests of Harris and Inder 

(1994), Shin (1994), Leybourne and McCabe (1994) and Kwiatowski et al. (1992). 

More recently, Westerlund (2005b) extended the CUSUM test proposed in time series 

context by Xiao and Phillips (2002), and Xiao (1999) to test of the null of panel 

cointegration that allows for mixtures of cointegrated and spurious alternatives. We 

discuss both approaches in turn. As a preface, it should be noted that the asymptotic 

analysis of both approaches involves the use of sequential limit arguments. This 
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involves allowing the time series dimension T to grow large first and then letting N --> 

00. Other tests include Larsson, Lyhagen and Ll)thgren (2001), which presented a 

likelihood-based (LR) panel test of cointegrating rank in heterogeneous panel methods 

based on an average of the individual rank trace statistics developed by Johansen 

(1995). 

2.3.1 Tests without Cross-Sectional Dependence 

As in the panel unit root tests, the early versions of panel cointegration test are also 

based on the assumptions of cross-sectional independence in the panel. These tests 

are constructed taking either cointegration or no cointegration as the null hypothesis. 

We review these tests using Kao (1999) as our starting point. 

Kao (1999) Test 

Kao (1999) proposed a DF and an ADF-type of panel cointegration test based on 

the null hypothesis of no cointegration. For the panel regression model 

where Yit and Xit are /(1) and noncointegrated, the DF-type test can be calculated 

from residuals 
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with eit = Yit-X~t~ and Yit = Yit-fk The null hypothesis can be written as Ho : p = 1. 

The OLS estimate of p and the t-statistic are given as 

Kao proposed four DF-type tests. DFt, one of the tests for the cointegration with 

endogeneity between regressors and errors, is as follows 

t + ,j6N&" 
DFt* = p 2&0" 

-2 3-2 

~+ "" 
2&" 10&5" 

(2.11) 

where o-ov and o-v are defined in Kao (1999). The ADF test can be estimated by 

running 
p 

eit = peit-l + L 'ljJj6.eit_j + Vit, 
j=l 

(2.12) 

and the ADF test statistic can be constructed as (2.11) with tp replaced by tADF which 

is the t-statistic of p in (2.12). It is shown that all the statistics have a standard 

normal distribution by the sequential limit theory. 

McCoskey and Kao (1998) Test 

Instead of testing for the null of no cointegration in panels, McCoskey and Kao 

(1998) is the first study which derived a residual-based test for the null of cointegra-

tion. It was pointed out that testing the null of cointegration rather than the null 

of no cointegration can be very appealing in applications where cointegration is pre-

dicted a priori by economic theory. McCoskey and Kao (1998)'s test is an extension 
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of the Lagrange Multiplier (LM) test and a locally best invariant (LEI) test for an 

MA unit root in the time series literature. The model considered allows for varying 

slopes and intercepts, 

eit = "lit + Uit, 

"lit = "Iit-l + {)Uit. 

where {Uit} are i.i.d.N(O, (]'~), and the correlation is allowed for in the error processes 

( Uit, E'~t). The long-run variance-covariance matrix of Wt = (Uit, E'~t)' is defined as 

W12 
]. 

The null hypothesis of cointegration is equivalent to () = O. The test statistic proposed 

by McCoskey and Kao (1998) is defined as follows: 

with 6~.2 is a consistent estimator of 

(2.13) 

and 
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73:' is the fully-modified estimator (F M) of (3i' The asymptotic result for the test is 

the values of the mean J-lv == E(J V2) and the variance a~ == Var(J V2) are com-

puted through simulations. The limiting distribution of LM is then free of nuisance 

parameters and robust to heteroskedasticity. 

Westerlund (2005b) Test 

The model in this test is given by 

deterministic components such that Zt = 0, Zt = 1 and Zt = (1, t)' are distinguished in 

three models. The error vector Wt = (Uit, V~t)' also allows for serial correlation. Hence, 

to obtain efficient estimation, both FMOLS and DOLS estimator are employed. The 

hypothesis maintained in Westerlund (2005b) is the null that all the individuals of 

the panel are cointegrated which is specified as Ho : 'l/J = 0 2and the alternative is that 

a non-empty subset is not cointegrated, that is, HI : 'l/J > 0 . The statistic proposed 

is 

2'IjJ is defined as the ratio of Nl individuals which possessing a unit root to the whole N individuals 
in the panel, formally, NdN -> 'IjJ as N -> 00. 
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where Sit = 2:~=1 uij is the partial sum of the FOLS (or DOLS) residuals uit, and 

ro~.2 is defined in (2.13). After applying the Lindberg-Levy central limit theorem, it 

is shown that the standardized CSNT has a limiting normal distribution under the 

null that is free of nuisance parameters and it is robust to heteroskedasticity, that is, 

under the sequential limit theorem. The values of J.L and 0"2 are obtained by means of 

simulations and provided in Table 1 in Westerlund (2005b). Monte Carlo simulation 

results suggest that the test has small-size distortions and reasonable size-adjusted 

power (See Westerlund (2005b)). 

2.3.2 Tests with Cross-Sectional Dependence 

Like in panel unit root and stationarity tests, the cross-sectional dependence is 

also an important feature in panel cointegration analysis. Although this problem has 

not been paid as much attention as in unit root tests discussed so far, some solutions 

have recently been obtained in the literature. We summarize in the following, the 

main panel cointegration tests dealing with cross-sectional dependece. 

Tests using the Common Factor Approach 

Bai and Kao (2005) study panel cointegration under cross-sectional dependence, 

which is characterized by a structural factor. It is indicated that a common factor 

approach to panel models with cross-sectional dependence is useful when both the 
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time series and cross-sectional dimensions are large. The limiting distributions for the 

OLS and FM estimators have been derived and a continuous updated fully modified 

(CUP-FM) estimator is proposed. Banerjee and Carrion-i-Silvestre (2006) carried out 

a common factor structure approach to allow for dependence among the units in the 

panel. They adopted the factor model approach of Bai and Ng (2004) to generalize 

the degree of permissible cross-section dependency in order to allow for idiosyncratic 

responses to multiple common factors. An ADF-type test statistic is proposed. In 

Banerjee and Carrion-i-Silvestre's framework the usual single-equation definition of 

cointegration (stationary residuals in the cointegrating equation) is accepted if the 

null of non-stationarity is rejected both for the estimated common factor and the 

idiosyncratic residuals. 

It is noted that one drawback that applies to all these approaches is that the lim­

iting test distributions depend critically on the nuisance parameters associated with 

both the number of regressors and the deterministic specification of the cointegrated 

regression. Thus, there is not just one set of critical values, but one for each combi­

nation of regressors and deterministic specification. Moreover, since the asymptotic 

distribution is often a poor approximation in small samples, a new set of critical 

values is usually needed for each sample size. 

In response to this problem, Westerlund and Edgerton (2006b) propose two sta­

tistics (t-test and coefficient test) to test the null of no cointegration and again use 

common factor approach to model the cross-sectional dependence. Their model is gen-
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eral to accommodate heteroskedastic and serially correlated errors, individual specific 

intercepts and time trends, cross-sectional dependence and an unknown break in both 

the intercept and slope of the cointegrated regression, which may be located different 

dates for different units. By using sequential limit arguments, they show that the 

tests have limiting normal distributions that are free of nuisance parameters under 

the null hypothesis. In particular, it is shown that the asymptotic null distributions 

are independent of both the structural break and the common factors. Moreover, 

since the null distributions are also independent of the regressors, there is only one 

set of critical values for all testing situations considered. The small-sample perfor­

mance of the tests results suggest that the tests generally perform well with small size 

distortions and good power even in small samples. The t-test seems to have better 

size and power properties than the coefficient test. 

Tests using Other Approaches 

We noticed that based on the factor structure approach, all the above studies have 

to make some restrictive assumptions on the form of cross-sectional dependence. To 

allow for more general structure of this dependence, Westerlund (2006b) proposes a 

bootstrap procedure in a panel cointegration test which takes breaks into account in 

the deterministic components of the cointegration regression. Groen and Kleibergen 

(2003) made an attempt to relax the cross-sectional independence assumption and de­

veloped tests based on seemingly unrelated regressions. To allow for an instantaneous 
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feedback between the different individuals in the panel, they used a maximum likeli­

hood framework in which an unrestricted disturbance covariance matrix is allowed for 

within the panel. These related issues are addressed in Chapter 5 where we propose 

a residual-based panel cointegration test in which arbitrary forms of cross-sectional 

dependence can be controlled for. 
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Chapter 3 

Panel Stationarity Tests with 

Structural Breaks 

This chapter constitutes the first contribution of this thesis to the econometrics 

literature. As failure to consider potential structural breaks in panel unit root or sta­

tionarity test can cause misleading inferences, we develop two panel stationarity tests 

that allows for structural breaks; that is, an LM residual-based test and a modified 

test. The LM test can be used for all the models proposed whereas the modified test 

is only applicable to two models. The break date is allowed to be different across 

units in the panel. We derive the limiting distribution of both tests and provide the 

appropriate asymptotic moments that are used to standardize the statistics. We also 

discuss how to use the tests when the break location is unknown. Finally, we exam­

ine the finite sample properties of both tests via Monte Carlo simulations. The main 



33 

results of this chapter of the thesis appear in Hadri and Rao (2006a). 

3.1 Introduction 

An upsurge of interest in nonstationary panel data models has been witnessed in 

the recent econometric literature. Since the seminal papers by Breitung and Meyer 

(1994), Quah (1994), Maddala and Wu (1999), Phillips and Moon (1999), Levin, 

Lin and Chu (2002), 1m, Pesaran and Shin (2003), Hadri (2000) and Hadri and 

Larsson (2005), panel unit root and stationarity tests have been applied to a variety 

of key economic issues with the hope that the increased power of these tests, due 

to the exploitation of the cross-section dimension, would provide more compelling 

evidence. Banerjee (1999), Baltagi and Kao (2000), Baltagi (2001) and Breitung and 

Pesaran (2005) provide comprehensive surveys of the subject. Additionally, since the 

pioneering work of Perron (1989), which illustrates the need to allow for a structural 

break when testing for a unit root in economic time series, the problem of structural 

breaks in the level/slope of a series has proved to be of considerable interest in the 

unit root testing literature. Perron (1989) and Amsler and Lee (1995) have found 

that unit root tests are biased toward accepting the false unit root null hypothesis 

in the presence of a structural break. It is widely accepted that the failure to take 

structural breaks into account is likely to lead to a significant loss of power in unit 

root tests. Similarly, stationarity tests ignoring the existence of breaks diverge and 

thus are biased toward rejecting the null hypothesis of stationarity in favour of the 



34 

false alternative of a unit root. This is due to severe size distortion caused by the 

presence of breaks (see, inter alia, Lee et al. (1997)). Kurozumi (2002), Lee and 

Strazicich (2001) and Busetti and Harvey (2001, 2003) have considered testing the 

, null hypothesis of stationarity in the presence of a single break versus the alternative 

of a unit root in time series. 

To our knowledge, hardly any attention has been paid to the presence of structural 

changes in panel data unit root and stationarity tests. The only exceptions are rm, Lee 

and Tieslau (2005) for unit root tests and Carrion-i-Silvestre, Del Barrio and L6pez­

Bazo (2005) (CBL thereafter) in the stationarity tests context. rm et al. (2005) have 

shown that the power loss problem still exists for panel unit root tests when ignoring 

the existence of a break. Our work in this chapter considers panel stationarity tests 

in the presence of a break. The differences between our panel tests and CBL are: 

(a) we propose tests for models with a break in the level and no time trend (Model 

0), with break in the level and a time trend without a break (Modell), with a level 

without a break and a time trend with a break (Model 2), with a level and a time 

trend, both with a break (Model 3). CBL deal only with Model 0 and 3. 

(b) CBL propose tests for the case where the break fraction vector is known and 

unknown; in this chapter we propose tests for all the four models for a known break 

point, an unknown break point and a modified statistic that does not depend on the 

location of the break point for all the four models. 

(c) CBL use Hadri (2000) moments to evaluate the moments for their statistics cor-
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responding to our Model 0 and 3; in this chapter we derive from first principles the 

moments for all four models via the characteristic functions. CBL were able to allow 

for multiple structural breaks by exploiting the structure of the asymptotic distrib­

utions of Model 0 and 3. However, the structure of the asymptotic distributions for 

Model 1 and 2 proposed here does not permit more than one structural break. 

Hadri (2000) proposed a residual-based panel stationarity test based on the KPSS 

(Kwiatkowiski et al. (1992)) stationarity test. After standardizing this statistic by 

appropriate moments, a panel statistic with standard normal limiting distribution is 

obtained. Since the standard normal distribution is much easier to work with than 

nonconventional distributions encountered in the literature on testing for unit root or 

stationarity, this framework becomes very attractive in this respect. Here, we extend 

Hadri (2000) to the case where a structural break is considered. 

In this chapter of the thesis, we focus mainly on testing the null hypothesis of 

stationarity, allowing for one structural break. We also allow for different breaking 

dates in each time series. This is attractive for practitioners when the individuals in 

the cross-section are affected by similar shocks while responding differently to them. 

The asymptotic distributions of the tests are derived under the null and are shown to 

be normally distributed. The asymptotic distributions are derived using sequential 

limits, wherein T ---+ 00 followed by N ---+ 00. Under the rate condition NIT ---+ 0, it 

can be shown following Phillips and Moon (1999) that the sequential results obtained 

imply joint convergence. In the joint limit theory, T and N are allowed to pass to 
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infinity simultaneously. The drawback of sequential limits is that in certain cases, 

they can give asymptotic results which are misleading. This is not the case for joint 

limit. As noted by Phillips and Moon (1999), the rate condition indicates that the 

joint limit theory is going to be applicable to cases when N is moderate and T is 

allowed to be large. 

The plan of this chapter is as follows. In Section 3.2, we outline panel data models 

that accommodate a structural break. Section 3.3 describes the LM statistics and 

their limiting distributions when a structural break is present. A modified test that 

does not depend on the location of the break point under the null hypothesis is also 

proposed in this Section. These tests are investigated when the break date is known. 

The cases where the break date is unknown are dealt with in Section 3.4. Section 

3.5 presents simulation results. which suggest that most of our asymptotic results 

are good approximations to the finite sample distributions. Section 3.6 concludes the 

chapter. Formal proofs are presented in the Appendix. 

We use standard notation E. to indicate convergence in probability and =} for 

convergence in distribution. 

3.2 Models and Assumptions 

We consider the following four models: 

(3.1) 
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(3.2) 

(3.3) 

(3:4) 

with 

rit = rit-l + Uit, (3.5) 

where Yit, i = 1, ... , Nand t = 1, ... , T are the observed series for which we wish to test 

stationarity. For all i, a~s, j3~s, 8~s and 'Y~s are unknown parameters, rit is a random 

walk with initial values riO = 0 'Vi without loss of generality, as constant terms are 

already included as defined above. (See Abadir (1993) and Abadir and Hadri (2000) 

for the importance of initial values in autoregressive models.) 

Assumption 3.1. The Uit are iid variates with E(uit) = 0, Var(uit) = a~i 2: O. , 

{fit} and {Uit} are mutually independent across the two dimensions of the panel data. 

Assumption 3.2. The disturbance term {fit}, for i 1, ... , Nand t = 1, .. , T, 

satisfies the following assumptions: 

(i) E(fit) = 0 for all i and tj 

(ii) snPt Elfitl'/l+e < 00 for some 'l/J > 2 and € > OJ 

(iii) {fit} is strong mixing with mixing coefficients Ch that satisfy 

",,00 Cl-2N< 
L..Jh=l h 00. 

Assumption 3.2 allows for quite general forms of temporal dependence and het-

erogeneity over t. 
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Assumption 3.3. Suppose that there is a one-time change in the structure that 

occurred at time TB,i, where TB,i = wiT, Wi E (0,1) denotes the fraction of the break 

point to the sample for the ith individual. The dummy variables Dit and DTit are 

defined as Dit = 1 if t > TB,i, and 0 otherwise; DTit = t - TB,i if t > TB,i, and 

o otherwise. 

The above four models specify different effects that the break may cause on the 

deterministic parts of the models. Model 0 has a break in the level and no time trend, 

Model 3 allows for a break in the level and slope. Model 1 has a shift in the intercept 

and no break in the time trend. Model 2 considers no break in the level but a break 

in the slope. 

The null hypothesis is given by 

Ho: 0-
2

1= 0-
2

2= ... = 0-
2 

N= 0, u, u, u, (3.6) 

against the alternative 

(3.7) 

This alternative hypothesis allows for o-~,i to be heterogeneous across units and in-

eludes the homogeneous alternative, i.e., o-~,i = o-~ > 0 for all i. It also permits some 

of the individual series to be stationary under the alternative. The consistency of the 

present panel stationarity tests is guaranteed as shown by Hadri and Larsson (2005) 

if the fraction of the individual processes possessing a unit root is different from zero 

under the alternative. 
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3.3 Test Statistics and Limiting Distributions 

3.3.1 LM test 

In this Section, we extend Hadri (2000) to allow for a structural break under the 

null against the alternative of a unit root. The statistic for individual time series is 

(3.8) 

with k = 0, 1, 2, 3 indicating the statistics for the four models considered in this 

chapter. Sit = 2:~=1 Eij is the partial sum process, and a;,i is an estimator of the 

long-run variance (LRV) of Eit where 

(3.9) 

The procedure of computing the LRV will be discussed later. It was pointed out by 

Hadri (2000) that when there is heterogeneity across individuals in panel, the statistic 

of interest is the average of individual univariate KPSS stationarity tests. Hence, the 

panel statistic is given by 

(3.10) 

The Wi denotes that the statistic has been constructed for a specific value of the break 

point location and this value is allowed to be different across individuals. The test is 

dearly not invariant to the presence of a break even asymptotically. Under the null, 

Eij are OLS residuals from regressing Yit on the appropriate set of regressors from 
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(3.1) to (3.4) excluding the random walk. For example, the regressors in (3.4) are the 

intercept, dummy for the level, the time trend and the time trend dummy. 

The next theorem states the asymptotic distributions of 'rJi T k(Wi) statistic under , , 

the null hypothesis. See Kurozumi (2002) for the proof. 

Theorem 3.1 Let {Yit} be generated by Model k, k = 0, 1, 2, 3, then, under the null 

hypothesis, for the ith individual in the panel, as T -+ 00, 

(3.11) 

where 

Gi,k(B) = w;(1
1 

B 1(r2 )dr - X(Bl)' A-I X(B1)) 

+(1 - W;)(.fo
1 

B 2 (r2 )dr - X(B2 )' A -1 X(B2 )), (3.12) 

When k = 0 and 3. 

When k = 1 and 2, Gi,k(B) is given by 

(3.13) 

B(.) is standard Brownian motion, Bl(.)' B 2(.) are independent Brownian motions 

and X(B) denotes a functional of B(.), where 

for Model 0, 

X(B) = 11 B(r)dr and A = 1, 



for Model 3, 

X (B) = and A = , 
[ 

.fol B(r)dr J [1 ~ J 
.fo

l 
rB(r)dr ~ ~ 

for Model 1, 

.fo
l 

B(r)dr 

X(B) = .f~i B(r)dr 

.f~l rB(r)dr 

for Model 2, 

.f~l B(r)dr 

X(B) = 

and A= 

and A = 

1 

1- Wi 

1 
2 

1 

1 
2 

1- Wi 

1- Wi 

l-w2 
--l.. 

2 

1 
2 

1 
3 

.f~l rB(r)dr 

.Ci(r - wi)B(r)dr 
l-w2 
-' 2 

~l-Wi)2{Wi+2) 
6 

The characteristic function for Model 0 and 3 can be expressed as 

For Model 1 and 2 the characteristic function is given by 

1 
2 

l-w~ 
2 

1 
3 

l-w2 
--l.. 

2 

(l-Wi)2{Wi+2) 
6 

(l-w;)3 
3 

The Dk(') functionals corresponding to the four models are given in the Appendix 1. 

41 

The asymptotic distributions of TJi,T,k(Wi) depend on which model has generated 

{Yit} and on the location of the break point. The panel stationarity test given in 

equation (3.10) is the average of TJi,T,k(Wi)' We denote 

~i,k = E(Gi,k(B)) 
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(~,k = Var(Gi,k(B)) 

Theorem 3.2 Under Assumption 3.1, 3.2 and 3.3, as T ---? 00 followed by N ---? 00 

and for k = 0, 1, 2, 3, the statistic defined by equation (3.10) under the null of 

stationarity with a break has the following limiting distribution: 

(3.14) 

Proof. See Hadri (2000). • 

To find the mean ~i,k and variance (~,k' we use the characteristic functions given 

above. These moments are provided in the following theorem. The derivations are 

given in Appendix 1. 

Theorem 3.3 Let {Yi,t} be given by (3.1), (3.2), (3.3), (3.4). Under Assumption 3.1, 

3.2 and 3.3 for the ith individual unit as T ---? 00, we have, 

for Model 0, 

1 2 ) ~i,O = 6(2wi - 2Wi + 1 , 

;-~o = 2. (2wt - 4w~ + 6w~ - 4Wi + 1) , 
"', 45 

for Modell, 

15~-3~f+~~-10~+2 
~i,l = 30 (3w~ - 3Wi + 1) , 

2 315w~ - 1260wI + 2415w~ - 2835wf + 2275wt - 1295wf + 495w~ - 110wi + 11 
(i,l = 6300(3w~ - 3Wi + 1)2 , 



43 

for Model 2, 

1 2 ) ~i 2 = - (3Wi - 3Wi + 2 , , 30 

(~2 = _1_(3wt - 6w~ + 36w~ - 33wi + 11), 
, 6300 

for Model 3, 

1 2 ) ~i 3 = -(2Wi - 2Wi + 1 , , 15 

2
11
(432 ) (i,3 = 6300 2wi - 4wi + 6wi - 4Wi + 1 . 

Remark 3.1 We observe that these moments are functions of the break fraction pa-

rameters. In addition, the corresponding asymptotic mean and variance when w = 0 

or 1, as T ~ 00 are 1/6 and 1/45, respectively for Model O. While for Modell, 2 and 

3, they are 1/15 and 11/6300. These values coincide with the moments suggested by 

Hadri (2000) when no break exists. 

Remark 3.2 We note that for Model 0 and Model 3, our moments are the same as 

the ones derived in eBL when one structural break is specified. However, the method 

of derivation is different. We included Model 0 and Model 3 for completeness and 

coherency of our use of the characteristic functions for deriving moments of all the 

statistics. 

Remark 3.3 After replacing the asymptotic moments of LMT,N,k(W) by their numer-

ical values in the appropriate model, the statistic Z k (w) can be used to test the null 

hypothesis. This is a one-sided test and the inference is performed on the upper tail 
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of the distribution. The null is rejected when the value of Zk(W) exceeds the critical 

value of the standard normal distribution. 

3.3.2 A Modified Test 

We propose a modified test for Model 0 and 3, which avoids the dependence of the 

limiting distributions under the null hypothesis on the nuisance parameters. From 

Theorem 3.1, we note that, the limiting distributions for Model 0 and 3 are expressed 

as the weighted sum of two independent functionals, G(Bt} and G(B2). As noticed 

by Busetti and Harvey (2001), this allows the test statistic TJ;,T,k(Wi) to be presented 

as the sum of two functions, one depending on the residuals for the period before the 

break point and the other on the residuals after the break point: 

(3.15) 

where k = 0 and 3, O=~,i is defined by (3.9) which is the estimator of LRV of {Eit}, t = 

1,2, .. , T. The asymptotic distribution of the statistic is given by 

TJ:,T,k(Wi) ==} Gi,k(B1) + Gi,k(B2) = 11 B1(r2)dr - X (Bd'A -IX(B1) 

+ 11 B2(r2)dr - X(B2)'A-1X(B2), (3.16) 

where G(Bl) and G(B2) are two independent functionals of Brownian motions. These 

two functionals do not depend on the break parameter. Note that the modified test 

is not applicable to Model 1 and 2 because their test statistics cannot be expressed 

as the sum of independent functionals of Brownian motions (see Busetti and Harvey 
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(2001), Kurozumi (2002)). The characteristic function corresponding to the modified 

test of Model 0 and 3 is given by 

</J(()) = [Dk ,M(2i())tl, k = 0 and 3. 

The expressions of Dk,M(.) for these models are provided in the Appendix. The lim-

iting distribution in Theorem 3.2 still holds except that the asymptotic moments are 

derived via the characteristic functions corresponding to the statistic 'T};,T,k(Wi) which 

are different from the those corresponding to the statistic 'T}i,T,k(Wi). The asymptotic 

distribution and moments of the modified test are given by the following theorem: 

Theorem 3.4 Let {Yi,t} be given by (3.1) and (3·4)· For the modified test, under 

Assumption 3.1,3.2 and 3.3, as T ~ 00 followed by N ~ 00 and for k = 0,3, the 

statistic defined by equation (3.15) under the null has the following distribution: 

(3.17) 

T ~ 00, we have 

for Model 0, C,O = ~ and C,~ = is 

and 

C* 2 d ,.2 11 for Model 3, <'i,3 = 15 an ':.i,3 = 3150· 

Proof. Given in Appendix 1. • 
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Remark 3.4 It should be noted that under the null hypothesis, although the limiting 

distribution of the modified statistic is free of break point location, the statistic itself 

still depends on it. 

Remark 3.5 As will be shown in our Monte Carlo experiments in Section 3.5, the 

modified test in the presence of autocorrelated errors is found to be more distorted and 

less powerful than the LM test. 

3.4 Testing for Stationarity with an Unknown Break 

Date 

The statistics in previous sections are based on the assumption that the break 

point is exogenous and known. However, in many empirical applications, we rarely 

know the break date a priori, with the consequences that the break date has to be 

estimated. In this Section, we deal with the case which allows for a structural break 

at an unknown date. 

Several procedures have been proposed in the literature to determine an unknown 

break point endogenously. One practice is to choose the break date that gives the 

most favorable result for the null of stationarity with a break, as in Lee and Strazicich 

(2001) and Busetti and Harvey (2001). This means that the estimate of Wi is obtained 
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as the value that minimizes the statistic under the null, 

where S(Wi) denotes the corresponding test statistic. Under their assumptions, they 

argue that the minimum functional will provide a consistent estimation of the true 

break fraction and therefore that the test statistic will converge to the same asymp-

totic distribution as the one derived when the break point is known. However it , 

was shown that the distribution also depends on the magnitude of the break. Hence, 

shrinking structural change has to be assumed. 

Another approach was suggested by Bai (1994, 1997) and Kurozumi (2002). They 

consider using the estimate of the break date that minimizes the sum of squared 

residuals (SSR) from the relevant regression under the null hypothesis, that is, 

Wi = arg min (SSR(Wi)). 
O<wi<l 

It is shown that this method provides consistent estimates of the break point without 

having to impose any shrinking break assumption. In this chapter, we apply this 

proposal to our panel stationarity test. Since we allow for different break locations 

across individuals in panels, we need to detect the break in each one of the individual 

time series. Therefore, after Wi, i = 1, ... , N are obtained, we only need to replace Wi 

by Wi in (3.14) or (3.17) and hence obtain 

(3.18) 
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where ~k and (k follow the same definition as in Theorem (3.3) or (3.4). Since w !!... w 

as T - 00, we obtain the same limiting distribution for our statistics as in Theorem 

(3.3) or (3.4). Thus, we perform the hypothesis testing as if the estimated break point 

were known. 

Remark 3.6 As in CBL, for Model 0 and 3, we can allow for the number of breaks 

and their positions to differ across individuals for models with known and unknown 

breaks. This can be extended to the modified test. 

Finally, we can state the following general remarks: 

Remark 3.7 As in Hadri and Larsson (2005), it is easy to show, using simulations, 

that the power of the tests increases as the proportion of unit roots increases under 

the alternative. 

Remark 3.8 In the likely case where there is cross-sectional dependency, one readily 

available method to be used to correct for it is the bootstrap as shown, inter alia, by 

Maddala and Wu (1999), Wu and Wu (2001) and Chang (2004). 

Remark 3.9 Following Phillips and Moon (1999), under the rate condition NjT _ 

0, the sequential results obtained above imply joint convergence. 

3.5 Finite Sample Properties 

In this section, we conducted Monte Carlo simulations to investigate the finite 

sample properties of our proposed statistics. All simulation results are based on 10000 
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replications (See Hadri and Phillips (1999) for the importance of the number of repli-

cations in simulations) and we use the critical value of 1.645 (5% significance level). It 

is evident that the distributions of our statistics under the null do not depend on Q.S . , 
8i s, f3i S , liS and (J~,iS, The data-generating processes (DGP) under the null hypoth-

esis are given by equation (3.1)-(3.4) with Qi '" U[0,10], 8i '" U[O, 10], f3 i '" U[O, 2] 

and Ii '" U[O, 5], where U[.] denotes the uniform distributions. Sample size is given 

as the combination of different Nand T. For each sample size, the parameters of 

the DGP are generated once and fixed in all the replications. The break fraction is 

randomly generated as Wi '" U[0.10, 0.90] with a 10% trimming at both ends of the 

time series. The results for both i.i.d and autocorrelated errors are investigated. 

3.5.1 Results of Models with i.i.d Errors 

In the case of i.i.d errors in the models, we assume (J~,i = 1 for simplicity. The 

simulations are carried out for the sample size ofT = {50, 100, 150, 200} and N = {15, 

25, 50, lOa}. We first focus on the situation when the break date is known. Under 

the assumption of i.i.d errors, the size of the test depends on T, N. It is shown in 

Table 3.1 that the empirical size of the LM test proposed is quite close to the nominal 

one. When the sample size increases, it becomes more accurate when T is relatively 

larger than N as expected. This is also true for the modified test, the results are 

summarized in Table 3.2. 
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Table 3.1: Size of LM Test with Known Break Date (i.i.d Errors) 

Model 0 
N = 15 N=25 N=50 N= 100 

T=50 0.0613 0.0566 0.0507 0.0528 
T = 100 0.0635 0.0544 0.0589 0.0553 
T = 150 0.0592 0.0594 0.0599 0.0508 
T= 200 0.0593 0.0642 0.0595 0.0545 

Modell 
N= 15 N=25 N=50 N= 100 

T= 50 0.0491 0.0508 0.0451 0.0429 
T = 100 0.0523 0.0513 0.0558 0.0547 
T = 150 0.0598 0.0562 0.0512 0.0497 
T = 200 0.0600 0.0588 0.0537 0.0541 

Model 2 
N = 15 N=25 N=50 N= 100 

T= 50 0.0580 0.0479 0.0428 0.0487 
T = 100 0.0535 0.0508 0.0558 0.0496 
T = 150 0.0606 0.0549 0.0561 0.0487 
T = 200 0.0556 0.0553 0.0505 0.0532 

Model 3 
N = 15 N =25 N=50 N = 100 

T=50 0.0514 0.0487 0.0394 0.0411 
T = 100 0.0535 0.0527 0.0534 0.0510 
T = 150 0.0584 0.0544 0.0569 0.0504 
T=200 0.0590 0.0608 0.0521 0.0527 
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Table 3.2: Size of the Modified Test with Known Break Date (LLd Errors) 

Model 0 
N= 15 N=25 N=50 N= 100 

T =50 0.0523 0.0487 0.0471 0.0450 
T = 100 0.0562 0.0549 0.0501 0.0461 
T = 150 0.0588 0.0545 0.0546 0.0515 
T=200 0.0573 0.0586 0.0552 0.0495 

Model 3 
N= 15 N=25 N=50 N= 100 

T= 50 0.0342 0.0248 0.0216 0.0166 
T = 100 0.0420 0.0437 0.0382 0.0359 
T = 150 0.0556 0.0513 0.0484 0.0458 
T = 200 0.0562 0.0520 0.0534 0.0494 

Table 3.3 shows the power results of both test statistics with a known break. Under 

the alternative hypothesis, we allow for different proportions of unit root processes 

(M = Nd N) in the panel. To save space, we only report the simulations under the 

condition that all the cross sections follow a unit root; that is, M = 1. As a function 

of T and N, the power also changes with different>. (>. = ;;). We recall that>. = 0 
• 

(O'~ = 0) means that y is stationary whereas >. = 00 implies that y comprises a random 

walk. By varying the value of >. we can see how the power of the test changes as we 

approach the two polar cases (stationary versus nonstationary V). We set>. = 0.001 

and 0.003 in our simulations. In general, the power of the test increase monotonically 

as T or N, or both, get larger and increases with >. for all T and N. The power of 

the modified test is presented in Table 3.4. For Model 0 and Model 3, the modified 

test is relatively less powerful than the corresponding LM test when the sample size 

is small. 
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Table 3.3: Power of LM Test with Known Break Date (LLd Errors) 

Model 0 
A N= 15 N=25 N=50 N = 100 

T= 50 0.1179 0.1467 0.1822 0.2330 
0.001 T= 100 0.4186 0.5219 0.7638 0.9373 

T = 150 0.7577 0.8984 0.9921 1.0000 
T= 200 0.9580 0.9944 1.0000 1.0000 
T=50 0.3001 0.4135 0.5774 0.7624 

0.003 T = 100 0.8830 0.9646 0.9990 1.0000 
T = 150 0.9935 0.9998 1.0000 1.0000 
T = 200 1.0000 1.0000 1.0000 1.0000 

Model 1 
A N= 15 N -25 N=50 N = 100 

T=50 0.0666 0.0745 0.0823 0.0984 
0.001 T = 100 0.3037 0.2375 0.3043 0.3180 

T = 150 0.4400 0.4383 0.6780 0.9396 
T= 200 0.6274 0.8807 0.9856 0.9994 
T=50 0.1139 0.1634 0.2011 0.3308 

0.003 T = 100 0.8362 0.7603 0.8956 0.9374 
T = 150 0.9603 0.9715 0.9998 1.0000 
T = 200 0.9977 1.0000 1.0000 1.0000 

Model 2 
A N= 15 N= 25 N=50 N = 100 

0.001 T=50 0.0704 0.0904 0.0746 0.0864 
T = 100 0.2156 0.1748 0.1955 0.2444 
T = 150 0.3739 0.2489 0.6103 0.8641 
T= 200 0.6110 0.7590 0.9824 0.9971 
T= 50 0.1253 0.2103 0.1610 0.2172 

0.003 T = 100 0.6398 0.5804 0.6580 0.8334 
T = 150 0.9214 0.7792 0.9988 1.0000 
T = 200 0.9951 0.9999 1.0000 1.0000 

Model 3 
A N = 15 N=25 N=50 N = 100 

T=50 0.0670 0.0763 0.0598 0.0708 
0.001 T = 100 0.1874 0.1700 0.1729 0.1712 

T = 150 0.2622 0.2098 0.5371 0.7945 
T=200 0.5306 0.6198 0.9494 0.9805 
T=50 0.1149 0.1661 0.1163 0.1666 

0.003 T = 100 0.5504 0.5547 0.5864 0.6385 
T = 150 0.7728 0.6870 0.9955 0.9999 
T = 200 0.9865 0.9977 1.0000 1.0000 



53 

Table 3.4: Power of the Modified Test with Known Break Date (LLd Er-

rors) 

Model 0 
A N= 15 N=25 N=50 N = 100 

T= 50 0.0925 0.1088 0.1028 0.2108 
0.001 T = 100 0.4986 0.3751 0.5347 0.8329 

T = 150 0.5585 0.9666 0.9575 1.0000 
T=200 0.9649 0.9945 1.0000 1.0000 
T=50 0.2119 0.3223 0.3145 0.7921 

0.003 T = 100 0.9859 0.9519 0.9962 1.0000 
T = 150 0.9943 1.0000 1.0000 1.0000 
T= 200 1.0000 1.0000 1.0000 1.0000 

Model 3 
A N= 15 N=25 N=50 N = 100 

T=50 0.0465 0.0397 0.0318 0.0274 
0.001 T= 100 0.1187 0.1211 0.1174 0.1242 

T = 150 0.2060 0.1666 0.3698 0.5903 
T = 200 0.4155 0.4193 0.8317 0.9307 
T=50 0.0685 0.0775 0.0560 0.0587 

0.003 T = 100 0.3626 0.4111 0.4275 0.5012 
T = 150 0.6587 0.5871 0.9669 0.9989 
T = 200 0.9644 0.9770 1.0000 1.0000 

We now move forward to investigate the performance of the statistics with an 

unknown break point. Tables 3.5 and 3.6 report the size results of the two tests 

respectively. Overall, in both tests there is a size distortion in small samples although 

this distortion disappears as T grows. It suggests that the LM test has relatively 

better performance especially when the sample size is small. However, for a fixed T, 

the size distortions appear to increase with N, this is due to the accumulation of errors 

in the estimation of break fractions, and any small-size distortion in each univariate 

series can cummlate in a panel setting. The size of models with an estimated break 
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date is found to be more distorted than that when break point is assumed to be 

known. 

Table 3.5: Size of LM Test with Unknown Break Date (i.i.d Errors) 

Model 0 
N= 15 N=25 N=50 N= 100 

T= 50 0.0475 0.0394 0.0394 0.0318 
T = 100 0.0617 0.0392 0.0393 0.0368 
T= 150 0.0563 0.0471 0.0524 0.0363 
T=200 0.0526 0.0602 0.0442 0.0396 

Modell 
N= 15 N=25 N=50 N= 100 

T=50 0.0243 0.0322 0.0176 0.0087 
T = 100 0.0411 0.0257 0.0252 0.0206 
T = 150 0.0432 0.0416 0.0303 0.0174 
T = 200 0.0456 0.0501 0.0437 0.0217 

Model 2 
N = 15 N =25 N=50 N = 100 

T= 50 0.0258 0.0187 0.0089 0.0054 
T = 100 0.0326 0.0264 0.0196 0.0231 
T = 150 0.0492 0.0278 0.0251 0.0162 
T = 200 0.0533 0.0398 0.0314 0.0287 

Model 3 
N= 15 N=25 N=50 N= 100 

T= 50 0.0465 0.0373 0.0327 0.0298 
T = 100 0.0518 0.0486 0.0445 0.0484 
T = 150 0.0514 0.0509 0.0544 0.0481 
T = 200 0.0587 0.0606 0.0549 0.0466 
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Table 3.6: Size of the Modified Test with Unknown Break Date (i.i.d 

Errors) 

Model 0 
N= 15 N=25 N=50 N= 100 

T= 50 0.0313 0.0317 0.0287 0.0237 
T= 100 0.0517 0.0384 0.0356 0.0285 
T= 150 0.0497 0.0418 0.0440 0.0344 
T=200 0.0498 0.0517 0.0439 0.0310 

Model 3 
N= 15 N=25 N=50 N= 100 

T=50 0.0285 0.0202 0.0135 0.0096 
T= 100 0.0448 0.0397 0.0304 0.0341 
T= 150 0.0463 0.0410 0.0421 0.0373 
T=200 0.0495 0.0570 0.0481 0.0438 

The power results of the tests with an estimated break date is shown in Tables 3.7 

and 3.8. It is also true that the power increases when the sample size becomes larger 

for both tests and, additionally, that the power increases with A for all T and N. 

Compared with Tables 3.3 and 3.4, we found that when the break date is estimated, 

the power decreases relatively in certain cases. This applies to both the LM and the 

modified test. This is due to the fact that the estimation of the break point induces 

power losses. Again, the modified test is less powerful than the corresponding LM 

test, as in the known break case. 
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Table 3.7: Power of LM Test with Unknown Break Date (LLd Errors) 

Model 0 
A N= 15 N=25 N=50 N= 100 

T= 50 0.0891 0.0999 0.0871 0.2200 
0.001 T = 100 0.4391 0.5982 0.6634 0.7834 

T = 150 0.5708 0.8805 0.9587 1.0000 
T= 200 0.9287 0.9668 1.0000 1.0000 
T= 50 0.2275 0.3466 0.3155 0.8211 

0.003 T = 100 0.9586 0.9962 0.9996 1.0000 
T = 150 0.9952 1.0000 1.0000 1.0000 
T = 200 1.0000 1.0000 1.0000 1.0000 

Modell 
A N= 15 N=25 N=50 N= 100 

T=50 0.0490 0.0388 0.0507 0.0252 
0.001 T = 100 0.3151 0.1671 0.1626 0.1875 

T = 150 0.4283 0.2560 0.4685 0.6389 
T= 200 0.4773 0.8264 0.9894 0.9867 
T=50 0.0747 0.0879 0.1477 0.1185 

0.003 T = 100 0.8860 0.6208 0.6417 0.8703 
T = 150 0.9671 0.8253 0.9937 0.9999 
T = 200 0.9888 1.0000 1.0000 1.0000 

Model 2 
A N= 15 N -25 N -50 N = 100 

T =50 0.0320 0.0342 0.0228 0.0131 
0.001 T = 100 0.0867 0.1042 0.0977 0.1036 

T = 150 0.2342 0.2036 0.3549 0.6011 
T = 200 0.5814 0.7334 0.8898 0.9511 
T=50 0.0521 0.0897 0.0469 0.0550 

0.003 T = 100 0.3457 0.4465 0.4517 0.6541 
T = 150 0.7632 0.7535 0.9728 1.0000 
T = 200 0.9944 0.9998 1.0000 1.0000 

Model 3 
A N= 15 N -25 N -50 N = 100 

T=50 0.0510 0.0564 0.0600 0.0530 
0.001 T = 100 0.1193 0.2238 0.5740 0.1866 

T = 150 0.2690 0.2297 0.4301 0.8370 
T = 200 0.4950 0.6422 0.9337 0.9699 
T =50 0.0777 0.1203 0.1256 0.1275 

0.003 T= 100 0.3187 0.7121 0.5231 0.7144 
T = 150 0.8022 0.7385 0.9804 1.0000 
T = 200 0.9764 0.9986 1.0000 1.0000 
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Table 3.8: Power of the Modified Test with Unknown Break Date (Li.d 

Errors) 

Model 0 
A N= 15 N=25 N=50 N= 100 

T=50 0.0744 0.0659 0.0586 0.1127 
0.001 T= 100 0.4183 0.2955 0.5521 0.5243 

T = 150 0.7190 0.9043 0.9371 0.9997 
T= 200 0.7014 0.9990 1.0000 1.0000 

T=50 0.1810 0.1945 0.2467 0.6601 
0.003 T = 100 0.9669 0.9262 0.9976 0.9989 

T = 150 0.9998 1.0000 1.0000 1.0000 
T= 200 0.9992 1.0000 1.0000 1.0000 

Model 3 
A N= 15 N=25 N=50 N= 100 

T=50 0.0274 0.0288 0.0193 0.0154 
0.001 T= 100 0.0806 0.0879 0.0829 0.1682 

T = 150 0.1994 0.2433 0.3203 0.6073 
T= 200 0.2261 0.4364 0.7229 0.9019 

T=50 0.0404 0.0399 0.0364 0.0348 
0.003 T= 100 0.1881 0.2767 0.2928 0.7265 

T= 150 0.6769 0.8204 0.9569 0.9999 
T=200 0.7509 0.9846 1.0000 1.0000 

3.5.2 Results of Models with Autocorrelated Errors 

We consider a stationary AR(l) process, where 

(3.19) 

with Vit '" i.i.d N(O, 1) and Pi '" U[O.I, 0.9]. Note that the autoregressive parameter 

is assumed to differ across individuals both under the null and the alternative hy-
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pothesis. The statistical procedures now require that T should be sufficiently large to 

estimate adequately the long-run variance. We increase the sample size T up to 500. 

The long-run variance of Eit can be parametrically estimated by a~i = a~J(l - Pi)2, 

where Pi and a~i are least squares estimates of the coefficient and the error variances 

respectively in equation (3.19). a~i denotes the LRV of the estimated residuals in 

(3.19) which can be estimated using the Quadratic Spectral window Heteroskedas-

ticity and Autocorrelation Consistent (HAC) estimator. To avoid the problem of 

inconsistency of the statistics, we use the boundary condition rule which has been 

suggested by SuI et al. (2005) to obtain the long-run variance estimate: 

The size and power results with autocorrelated errors are presented in Tables 3.9-

3.16. In general, the empirical size of LM test is close to the nominal one as T and 

N increases (but with T larger than N as expected) with both known break and 

unknown break. For the power of the test, ). is set to be 0.01 and 1. The power of the 

LM test appear to grow monotonically as T or N, or both get larger and increases 

with), for all T and N. However, the modified test shows severe size distortions and 

suffer from loss of power in the presence of serially correlated errors. Lastly, it should 

be noted that in general Model 0 and 3 perform relatively better than Model 1 and 

2. 
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Table 3.9: Size of LM Test with Known Break Date (AR(l) Errors) 

Model 0 
N= 15 N=25 N=50 N= 100 

T=50 0.0340 0.0313 0.0403 0.0561 
T= 100 0.0460 0.0411 0.0420 0.0223 
T = 200 0.0590 0.0471 0.0451 0.0363 
T = 500 0.0588 0.0596 0.0512 0.0501 

Modell 
N= 15 N=25 N=50 N= 100 

T=50 0.0556 0.0625 0.0867 0.1991 
T= 100 0.0433 0.0350 0.0598 0.0396 
T=200 0.0524 0.0477 0.0418 0.0327 
T= 500 0.0575 0.0536 0.0486 0.0427 

Model 2 
N= 15 N=25 N=50 N= 100 

T= 50 0.0493 0.0438 0.0745 0.1973 
T = 100 0.0514 0.0457 0.0602 0.0316 
T=200 0.0582 0.0512 0.0477 0.0418 
T=500 0.0547 0.0549 0.0452 0.0524 

Model 3 
N= 15 N=25 N=50 N= 100 

T=50 0.1581 0.2602 0.4395 0.6570 
T= 100 0.0940 0.1050 0.0932 0.1685 
T= 200 0.0611 0.0563 0.0673 0.0843 
T = 500 0.0622 0.0641 0.0614 0.0562 
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Table 3.10: Size of the Modified Test with Known Break Date (AR(l) 

Errors) 

Model 0 
N= 15 N=25 N=50 N= 100 

T= 50 0.0040 0.0022 0.0009 0.0001 
T= 100 0.0151 0.0097 0.0016 0.0003 
T = 200 0.0197 0.0111 0.0086 0.0063 
T=500 0.0405 0.0261 0.0304 0.0170 

Model 3 
N= 15 N= 25 N=50 N= 100 

T= 50 0.0083 0.0060 0.0079 0.0005 
T= 100 0.0099 0.0062 0.0006 0.0000 
T = 200 0.0125 0.0038 0.0029 0.0023 
T = 500 0.0324 0.0122 0.0243 0.0097 
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Table 3.11: Power of LM Test with Known Break Date (AR(l) Errors) 

Model 0 
). N= 15 N=25 N=50 N = 100 

T=50 0.1222 0.3936 0.3738 0.6916 
0.01 T = 100 0.7662 0.8173 0.9655 1.0000 

T = 200 0.9999 0.9999 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
T=50 0.6466 0.8968 0.9957 1.0000 

1 T = 100 0.9706 0.9986 1.0000 1.0000 
T = 200 0.9994 1.0000 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 

Model 1 
). N= 15 N=25 N=50 N = 100 

T= 50 0.1158 0.2295 0.2488 0.4638 
0.01 T = 100 0.3646 0.4169 0.5836 0.9528 

T = 200 0.9753 0.9891 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
T=50 0.4235 0.6972 0.8240 0.9961 

1 T = 100 0.8599 0.9256 0.9968 1.0000 
T = 200 0.9904 0.9992 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 

Model 2 
). N = 15 N=25 N=50 N= 100 

T=50 0.0719 0.2023 0.1884 0.3946 
0.01 T = 100 0.3104 0.3064 0.4616 0.8731 

T = 200 0.9699 0.9704 0.9999 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
T=50 0.1975 0.3976 0.5714 0.9435 

1 T = 100 0.7146 0.8629 0.9770 1.0000 
T = 200 0.9905 0.9969 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 

Model 3 
N= 15 N=25 N=50 N= 100 

T= 50 0.1876 0.4201 0.5360 0.8602 
0.01 T = 100 0.3249 0.3546 0.5616 0.9053 

T = 200 0.9554 0.9387 0.9998 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
T =50 0.4822 0.7590 0.9566 1.0000 

1 T = 100 0.8484 0.9676 0.9987 1.0000 
T = 200 0.9974 0.9994 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
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Table 3.12: Power of the Modified Test with Known Break Date (AR(1) 

Errors) 

Model 0 
A N= 15 N=25 N=50 N= 100 

T =50 0.0179 0.0259 0.0142 0.0022 
0.01 T= 100 0.7182 0.6693 0.9455 0.9748 

T = 200 0.9757 1.0000 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
T=50 0.0962 0.1774 0.2706 0.3052 

1 T= 100 0.6886 0.8010 0.9956 1.0000 
T = 200 0.9954 0.9996 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 

Model 3 
A N= 15 N=25 N=50 N = 100 

T= 50 0.0105 0.0208 0.0273 0.0119 
0.01 T = 100 0.1555 0.0508 0.0204 0.0942 

T=200 0.4418 0.4719 0.9864 0.9996 
T = 500 1.0000 1.0000 1.0000 1.0000 
T= 50 0.0049 0.0029 0.0010 0.0000 

1 T = 100 0.0989 0.0212 0.2414 0.0693 
T = 200 0.2210 0.8143 0.7793 0.9948 
T = 500 0.9799 1.0000 1.0000 1.0000 
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Table 3.13: Size of LM Test with Unknown Break Date (AR(l) Errors) 

Model 0 
N= 15 N=25 N=50 N= 100 

T=50 0.0307 0.0465 0.0231 0.0310 
T= 100 0.0310 0.0208 0.0254 0.0363 
T = 150 0.0435 0.0437 0.0362 0.0222 
T = 200 0.0530 0.0640 0.0558 0.0411 

Modell 
N= 15 N=25 N=50 N = 100 

T=50 0.0342 0.0967 0.0597 0.0796 
T= 100 0.0286 0.0295 0.0153 0.0080 
T = 150 0.0473 0.0191 0.0168 0.0183 
T = 200 0.0270 0.0298 0.0286 0.0135 

Model 2 
N = 15 N =25 N=50 N = 100 

T=50 0.0108 0.0409 0.0090 0.0074 
T = 100 0.0105 0.0071 0.0051 0.0029 
T = 200 0.0201 0.0172 0.0071 0.0071 
T = 500 0.0331 0.0188 0.0230 0.0082 

Model 3 
N = 15 N =25 N = 50 N = 100 

T =50 0.1578 0.2021 0.4301 0.6234 
T = 100 0.0786 0.0974 0.1266 0.1537 
T = 200 0.0679 0.0793 0.0754 0.0950 
T = 500 0.0621 0.0562 0.0660 0.0642 
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Table 3.14: Size of the Modified Test with Unknown Break Date (AR(1) 

Errors) 

Model 0 
N = 15 N=25 N=50 N = 100 

T =50 0,0038 0,0010 0,0024 0,0002 
T = 100 0,0054 0,0056 0,0002 0,0000 
T=200 0,0118 0,0138 0,0022 0,0018 
T=500 0,0244 0,0358 0,0164 0,0190 

Model 3 
N= 15 N=25 N=50 N= 100 

T=50 0,0109 0,0216 0,0203 0,0033 
T = 100 0,0086 0,0047 0,0007 0,0001 
T = 200 0,0180 0,0085 0,0074 0,0016 
T = 500 0,0257 0,0217 0,0216 0,0120 
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Table 3.15: Power of LM Test with Unknown Break Date (AR(l) Errors) 

Model 0 
oX N= 15 N=25 N=50 N = 100 

T= 50 0.1048 0.1565 0.3116 0.5516 
0.01 T = 100 0.5922 0.6594 0.9794 0.9972 

T = 200 0.9989 0.9998 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
T= 50 0.2910 0.6100 0.6294 0.8831 

1 T = 100 0.4678 0.7486 0.9607 0.9995 
T = 200 0.8114 0.9669 0.9987 1.0000 
T = 500 0.9915 0.9999 1.0000 1.0000 

Modell 
oX N= 15 N=25 N=50 N = 100 

T= 50 0.0597 0.0533 0.0960 0.1476 
0.01 T = 100 0.1476 0.2843 0.4444 0.8894 

T = 200 0.9456 0.9880 1.0000 0.9999 
T = 500 1.0000 1.0000 1.0000 1.0000 
T= 50 0.1565 0.1931 0.3849 0.7979 

1 T= 100 0.2501 0.5308 0.8917 0.9566 
T = 200 0.8083 0.9180 0.9975 1.0000 
T = 500 0.9830 0.9930 1.0000 1.0000 

Model 2 
oX N= 15 N=25 N=50 N = 100 

T= 50 0.0154 0.0300 0.0152 0.0320 
0.01 T = 100 0.0915 0.1269 0.1932 0.5374 

T = 200 0.9268 0.9758 0.9998 0.9991 
T = 500 1.0000 1.0000 1.0000 1.0000 
T=50 0.0210 0.0322 0.0546 0.0386 

1 T = 100 0.1524 0.1606 0.3276 0.8614 
T = 200 0.7420 0.7352 0.9788 1.0000 
T = 500 0.9812 0.999 1.0000 1.0000 

Model 3 
oX N= 15 N=25 N=50 N = 100 

T=50 0.1967 0.2947 0.4843 0.7708 
0.01 T = 100 0.2445 0.3963 0.6859 0.9112 

T = 200 0.7856 0.9861 0.9995 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
T=50 0.3714 0.6742 0.8670 0.9812 

1 T = 100 0.8054 0.9280 0.9982 1.0000 
T = 200 0.9956 0.9946 1.0000 1.0000 
T = 500 0.9998 1.0000 1.0000 1.0000 
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Table 3.16: Power of the Modified Test with Unknown Break Date (AR(l) 

Errors) 

Model 0 
A N= 15 N=25 N=50 N= 100 

T=50 0.0206 0.0182 0.0046 0.0050 
0.01 T = 100 0.4930 0.3100 0.7240 0.7748 

T=200 0.9586 0.9996 1.0000 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 
T=50 0.0648 0.0468 0.0474 0.1048 

1 T = 100 0.2140 0.2698 0.3674 0.6404 
T=200 0.6338 0.7866 0.9838 1.0000 
T = 500 1.0000 1.0000 1.0000 1.0000 

Model 3 
A N= 15 N=25 N=50 N= 100 

T= 50 0.0144 0.0073 0.0169 0.0071 
0.01 T = 100 0.0175 0.0384 0.0504 0.0469 

T = 200 0.4344 0.8709 0.9614 0.9939 
T = 500 1.0000 1.0000 1.0000 1.0000 
T=50 0.0142 0.0180 0.0080 0.0086 

1 T= 100 0.1418 0.0296 0.5846 0.5520 
T = 200 0.6780 0.7668 0.9520 0.9936 
T = 500 0.9816 0.9966 1.0000 1.0000 

3.6 Conclusion 

This chapter extends the panel data stationarity test of Hadri (2000) to the case 

where a structural break is taken into account. Four models with different break 

effects under the null hypothesis are specified. We derived analytically the asymptotic 

moments of our proposed statistics for all the models via the characteristic functions. 

We also provide the moments for a modified statistic whose limiting distribution is 
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independent of the break location. The situation where the break location has to be 

estimated is also investigated. CBL have shown that for Model 0 and 3, we can allow 

for the number of breaks and their positions to differ across individuals for models 

with known and unknown breaks; their results can easily be extended to the modified 

statistic. For Modell and 2 it is not possible to allow for more than one break. 

The asymptotic distributions of all the statistics proposed are derived under the null 

hypothesis and are shown to be normally distributed. Finally, we show by simulations 

that our suggested LM test has good performance in finite samples with both i.i.d 

and autocorrelated errors, but we find that the performance of the modified test in 

the presence of auto correlated errors is less satisfactory. 
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Chapter 4 

Application to Nelson and Plosser 

Data for OECD Countries 

The objective of this chapter is to provide an empirical application of the LM 

test described in Chapter 3. For this purpose, we use data of 14 macroeconomic and 

financial variables observed for the OECD countries since 50's. These variables are 

the same as those considered by Nelson and Plosser (1982) for the U.S. We propose to 

use Schwarz Bayesian Information Criterion (BIC) and Akaike Information Criterion 

(AIC) to select the type of break for all the variables. We also show how to correct for 

the cross-sectional dependence by using the Bootstrap procedure. Our results clearly 

support that the null of stationarity with structural break is not rejected for all the 

variables. The main results of this chapter of the thesis appear in Hadri and Rao 

(2006b). 
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4.1 Introduction 

Since the seminal work of Nelson and Plosser (1982), 14 macroeconomic and fi­

nancial variables data have been analyzed in various studies, particularly in relation 

to testing the potential existence of unit roots. Nelson and Plosser (1982) applied 

the ADF test and were unable to reject the unit root hypothesis for 13 out of the 

14 variables examined. They concluded that these series behave more like random 

walks than like transitory deviations from a steadily growing trend. Kwiatkowski et 

al. (1992) developed a test that reverses the null and the alternative hypotheses. The 

application of their test to the Nelson and Plosser data resulted in nonrejection of 

the stationary null hypothesis for 6 out of the 14 series. Perron (1989) questioned the 

ability of unit root tests to distinguish between unit root and stationary processes 

that contain segmented or shifted trends. He was the first to show that not taking 

a break into account causes a significant distortion in the unit root tests. He found , 

when allowing for a break, that the unit root null could be rejected in 10 out of 13 

cases for the Nelson and Plosser (1982) data. Perron (1989) assumed the break date 

to be known. Authors like Christiano (1992), Banerjee et al.(1992), and Zivot and 

Andrews (1992) argued that it is more appropriate to allow for the break point to be 

endogenously determined. Zivot and Andrews (1992), applying an extension of the 

Perron model in which the break point is endogenously determined, rejected the unit 

root null at the 5% significance level for only 4 out of 13 series. Sen (2003a) applied 

unit root test to the mixed break model which allowed for a simultaneous break in 
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both the intercept and slope of the trend function, and found the evidence for the 

original Nelson-Plosser series that the unit root null is rejected for all series except 

the GNP deflator, consumer prices, velocity and the interest rate. Followed this, Sen 

(2004) uses the extended Nelson-Plosser data which was first analyzed by Schotman 

and van Dijk (1991) to test the presence of a unit root in each time series. He also 

used the mixed break model and found that the unit root null is rejected for 9 out 

of 14 variables including real GNP, nominal GNP, real per capita GNP, industrial 

production, employment, GNP deflator, nominal wages, interest rate and common 

stock prices. These results are less evident against the unit root hypothesis compared 

to those using the original Nelson and Plosser data in Sen (2003a). The test results 

also suggested that the slope break should be included in above 9 variables except 

industrial production, employment and GNP deflator. Chang et al. (2001) applied 

a bootstrap procedure for the covariates augmented Dickey-Fuller (CADF) unit root 

test to the 14 macroeconomic time series in the extended Nelson-Plosser data set for 

the post-1929 samples. The results obtained in this study showed that the unit root 

null hypothesis is rejected for all the series in the data set. 

It is often argued that single time series unit root tests have low power with short 

spans of data and therefore failure to reject the unit root null should be treated with 

caution. One response to this criticism has been the development of panel unit root 

and stationarity tests, such as Levin, Lin, and Chu (2002); 1m, Pesaran and Shin 

(2003); Maddala and Wu (1999); Hadri (2000); Hadri and Larsson (2005). They 
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demonstrated that even for relatively short panels the power of the tests can be 

greatly improved. Hurlin (2004) applies the first three of the aforementioned panel 

unit root techniques to the data of 14 macroeconomic and financial variables observed 

for OECD countries. These variables are the same as those considered by Nelson and 

Plosser (1982) for the United States except that GDP related variables rather than 

GNP related are used. Hurlin (2004) was unable to reject the null hypothesis of unit 

root for most of the variables. Rapach (2002) applied four different panel unit root 

tests and found strong evidence for the nonstationarity of real GDP and real GDP per 

capita. Different from this result, Hegwood and Papell (2006) used both univariate 

and panel methods to the same data set and concluded that there is strong evidence 

against the unit root null in favor of stationarity with structural changes in either the 

slope or in both the intercept and the slope of both the variables. 

This chapter contributes to the existing unit root literature by applying a panel 

stationarity test incorporating structural break and cross-sectional dependence, to a 

set of Nelson-Plosser-type data. Perron (1989) used visual inspection to decide which 

break model to adopt. For 11 variables he considered that the "crash model" (cor­

responds to Modell in Chapter 3) is the appropriate model and only common stock 

prices and real wages are specified by the most general model. Following Perron's 

(1989) lead, most papers, including Zivot and Andrews (1992), Lumsdaine and Papell 

(1997) and Sen (2003a) tended to accept this classification. However, Montanes,.et 

at. (2005) argued that although some of these strategies may well lead us to a proper 
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inference, it can nevertheless be argued that the selection of the most general model 

might not lead to such an inference, or even to an accurate estimation of the time of 

the break. Therefore, there is a need to find the most appropriate type of break to be 

used in the sense of being congruent to the data. In this chapter, we follow Montanes 

et at. (2005) and use AIC and BIC criteria to choose the appropriate break type. We 

found that the null of stationarity with a break cannot be rejected for 4 out of 14 

variables when cross-sectional dependence is not accounted for. We then correct for 

cross-sectional dependence using the bootstrap method. In this last case, our results 

indicate the nonrejection of the null of stationarity for all the variables. We also 

conduct a small Monte Carlo simulation to evaluate the small-sample performance of 

the bootstrap test. The results suggest that the test is undersized in small samples. 

Therefore, the empirical inferences based on the bootstrap test have to be treated 

with caution and need further research. 

The rest of the chapter is structured as follows. Section 4.2 gives some descriptions 

of the data. The test results of the 14 panel variables are presented in Section 4.3. 

Section 4.4 concludes this chapter. 
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4.2 Data 

To illustrate how to apply the proposed LM panel test in real world 1, we consider 

the data of 14 macroeconomic and financial series used by Rurlin (2004) which include 

measures of output spending, money, prices and interest rates. The variables are real 

GDP, nominal GDP, industrial production, the unemployment rate, GDP deflator , 

consumer prices, wages, real wages, employment, common stock prices, money stock, 

velocity, bond yield and real per capita GDP. These are the same series considered 

in Nelson and Plosser (1982) for the U.S., with the only difference being that GDP 

(and GDP per capita, real GDP) rather than GNP (and GNP per capita, real GNP) 

are considered in this chapter due to the data availability. These annual data start 

from 1952 to 1971 and end from 2000 to 2003. Except for bond yield and common 

stock prices, the number of countries ranges from 18 to 25. The lists of countries and 

d~ta sources are presented in Appendix 2. All the series have been transformed to 

natural logs except bond yield which is analyzed in level form. 

4.3 Panel LM Test Results 

In this section, we show how to implement the LM test based on the following 

main steps. 

lSince it has been shown that the modified test does not perform well in finite samples when the 
model residuals are autocorrelated, we only discuss the LM test here. 
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4.3.1 Selecting Break Type 

For each variable, the first step is to find which model to use. Perron (1989) used 

mainly visual inspection to choose a model. Subsequent authors followed his lead. 

In this chapter, we follow the idea of Montaiies et al. (2005) and use the Akaike 

Information Criterion (AIC) and Schwarz Bayesian Information Criterion (BIC) to 

find the appropriate break type model for the series. The criteria are given by 

where o-~ k = SSIl?,k/T , with SSRi,k being the sum of squared residuals of the ith , 

individual and the kth model. ri,k is the number of regressors used to model the ith 

individual and k indicates the break model used. T is the sample size. It is noted 

that in order to compute the values of BICi,k and AICi,k, we need firstly to estimate 

break locations for each unit and for each model, the break date TB,i,k, i = 1, ... , N 

and k = 0,1,2,3, by minimizing SSR, as described in Chapter 3. We then, for each 

unit, choose the break type model which minimizes the BICi,k and AICi,k for the four 

models2 • Then the model with the lowest value of BICi,k and AICi,k is preferred. 

Hence, we allow for the break dates and the models to be different across countries. 

The results obtained show that for each variable different break models are chosen 

2We also compute the AIGi,k and BIGi,k values for another two models, i.e, the level and time 
trend models proposed in Hadri (2000) without any break. This can allow for the possibilities that it 
might be the case that no break exists at all in some of the series. In our data, only for the variable 
of real GDP per capita in the country of U.S., the time trend ~odel has been selected as being the 
most suitable by BIG. Others all tend to choose the model wlth break. 
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within each panel, except for the wages variable, in which the only model selected is 

Model 2 across all the countries. For the variables GDP deflator, consumer prices, 

wages and money stock, both selection criteria select consistent models for all the 

countries, while for the other variables, the model selected for some countries differ 

between using BIC and AIC. Table 4.1 gives, in column 2 and 6, the index of selected 

model using BIC and AIC criteria respectively for the variable of velocity in each 

country. The corresponding estimated break dates are presented in column 3 of the 

Table. The model selection results for other variables are presented in Appendix 3. 

It seems that the break type selection carried out in Perron's (1989) is not supported 

by our data using either of the two criteria for most of the countries. The estimated 

break points vary between 1970's and 1990's. Since each country can correspond 

differently to the similar shocks, the breaks could be caused by the oil price shocks 

that occurred during the 1970's. 

4.3.2 Correcting for Serial Correlations 

The following step is to correct for possible serial correlation via the estimation 

and use of the long run variance. This has been described in Chapter 3. First we 

specify an AR(p) autoregressive process for the prewhitening: 

( 4.1) 

where fit are obtained after estimation of the chosen break type model. Then, the 

long-run variance estimate of O'~i is obtained as in SuI et al. (2005) together with 
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Table 4.1: Model Selection Results for Velocity 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 2 1983 0 1 2 1983 0 1 
Austria 2 1987 3 1 2 1987 3 1 
Belgium 1 1987 1 1 1 1987 1 1 
Canada 3 1990 4 1 3 1990 4 1 
Switzerland 1 1971 2 2 1 1971 2 2 
Spain 3 1977 1 3 3 1977 1 3 
Finland 0 1985 1 1 0 1985 1 1 
U.K. 1 1976 1 1 1 1976 1 1 
Greece 2 1990 1 4 2 1990 1 4 
Ireland 3 1990 1 1 3 1990 1 1 
Iceland 2 1977 3 1 3 1979 1 1 
Japan 1 1992 3 4 3 1987 3 4 
Netherlands 3 1983 4 1 3 1983 4 1 
Norway 0 1987 2 2 0 1987 2 2 
New Zealand 2 1978 3 3 2 1978 3 3 
Portugal 0 1971 4 4 0 1971 4 4 
Sweden 1 1985 3 2 1 1985 4 2 
US 1 1993 1 1 1 1993 1 1 
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the boundary condition rule in order to avoid inconsistent estimation of the long run 

. ~2 vanance (j fi: 

where Pi(l) = Pi,l + Pi,2 + '" + Pi,Pi is the sum of all the autoregressive coefficient 

estimates from the fitted regression (4.1). 

For the determination of the lag length of the autoregression Pi, two methods are 

applied because the results may be sensitive to the criterion employed. The first is a 

general to specific recursive procedure where the lag length is determined as the last 

lag in the autoregression that has a significant t statistic at the 10% significance level. 

This procedure, denoted as tsig, has been proposed by Campbell and Perron (1991). 

We denote the lag length of the autoregressions resulting from this procedure as 

tsig _po Starting with an upper bound pmax which we prespecify to be 4 considering 

our short panels, if the last included lag is significant, choose p = pmax, if not, reduce 

p by one until the last lag becomes significant. If no lag is significant, set p = O. We 

use a two-sided 10% test based on the asymptotic normal distribution to assess the 

significance of the last lags. The second method is based on the BIC criterion with 

BIG _p is used to indicate the lag length decided by this method. The pmax is 

also set to 4. The autoregressive lag length results obtained by both methods for 

each country in the velocity panel are shown in column 4, 5, 8 and 9 of Table 4.1. 

Generally, it seems the tsig procedure tends to choose larger lag length than BIC 

criterion does for most of the countries. Then we proceed to compute the panel LM 
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test statistic for each variable, the statistic values of using BIC and AIC break type 

selection methods are reported in column 4 and 7 of Table 4.2 and 4.3. For each table , 

Panel I shows the results obtained from using BIC lag length BIG _p, while Panel 

II reports the results with tsig lag length tsig _po It is found that with lag length 

BIG p, the null of stationarity with a break is rejected for 10 out of 14 variables 

using either the BIC or AIC criterion in selecting the model. The exceptions are the 

variables of real GDP, industrial production, consumer prices and real wages, in that 

the null hypothesis cannot be rejected at 5% significance level. In contrast, when the 

lag length is decided by tsig, the null of stationarity with a break is rejected for all 

the variables if the model is selected by BIC and we Can reject the null for 13 out of 

14 variables when AIC is employed. 

4.3.3 Controlling for Cross-Sectional Dependence 

It is widely known that for many macroeconomic and financial variables, it is 

inappropriate to assume that the cross section units are independent due to the exis­

tence of strong inter-economy linkages. O'Connell (1998) showed that the pooled tests 

will over reject the null hypothesis when the cross-sectional independence is violated, 

whether the null hypothesis is a unit root or stationarity. Banerjee, Marcellino and 

Osbat (2001, 2004) argued against the use of panel unit root tests because of potential 

cross-country cointegration realationships. Therefore, it is imperative in applications 

involving panels to account for the possibility of cross-sectional dependence. This 



Table 4.2: Panel LM Test Results with Models Selected by BIC 

Panel I. BIG p Panel II. tsig y 
Series N T statistic value Bootstrap critical values statistic value Bootstrap critical values 

10% 5% 10% 5% 
Real GDP 25 41 0.8069 9.2775 10.2960 4.4951 14.5165 15.6496 
Nominal GDP 25 41 14.5507 18.9118 20.2010 17.0089 22.9950 24.7330 
Industrial production 24 43 0.7675 7.4556 8.2684 3.8926 11.9057 12.8734 
Unemployment rate 23 39 3.4007 8.3987 9.2509 6.1478 11.2573 12.1278 
GDP deflator 24 41 9.9205 29.9090 35.0720 11.4330 32.2021 37.0624 
consumer prices 21 52 1.5181 4.8312 6.0229 1.6744 8.2853 10.1732 
Wages 20 33 9.2450 19.2640 21.0339 10.5856 21.2065 22.8012 
Real wages 20 33 1.4054 8.3639 9.3098 4.6552 12.2300 13.2460 
Employment 23 39 1.8249 9.6469 10.5817 4.5749 13.7457 14.7699 
Common stock prices 11 36 5.1937 20.3801 22.9987 6.8292 24.9544 27.9798 
Money stock 19 30 11.1681 24.1045 26.5873 13.5167 26.9725 29.2902 
Velocity 18 30 1.9005 8.7801 9.9989 2.9948 11.4211 12.6881 
Bond yield 13 47 1.8970 7.2038 8.4475 4.5140 11.7152 12.7329 
Real per capita GDP 25 36 1.7287 10.5462 11.4832 7.2665 16.2731 17.6862 

""'I 
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Table 4.3: Panel LM Test Results with Models Selected by Ale 

Panel I. BIG p Panel II. tsig p 
Series N T statistic value Bootstrap critical values statistic value Bootstrap critical values 

10% 5% 10% 5% 
Real GDP 25 41 1.5187 9.7414 10.8979 4.9803 15.0324 16.2387 
Nominal GDP 25 41 12.1994 17.9656 19.4199 14.9900 22.4700 24.0810 
Industrial production 24 43 1.0405 7.8332 8.7389 4.2167 12.6047 13.5534 
Unemployment rate 23 39 4.1070 10.3925 11.4359 6.8598 13.8238 14.9521 
GDP deflator 24 41 9.4189 29.2424 34.8569 10.4712 31.7382 36.8721 
consumer prices 21 52 1.5209 3.8635 4.8692 1.5834 5.6669 6.7166 
Wages 20 33 9.2453 19.2640 21.0339 10.5856 21.2065 22.8013 
Real wages 20 33 1.0420 8.1785 9.1274 3.8208 11.9130 12.9689 
Employment 23 39 1.9754 9.5741 10.4725 4.5077 13.4516 14.4826 
Common stock prices 11 36 6.3912 22.6963 25.4480 8.4423 27.7762 31.0812 
Money stock 19 30 11.1682 24.1045 26.5873 13.5167 26.9710 29.2901 
Velocity 18 30 2.1861 9.2025 10.4863 2.9012 11.5617 12.8206 
Bond yield 13 47 1.7859 7.2001 8.5132 4.4913 11.9764 13.0924 
Real per capita GDP 25 36 1.9212 10.6413 11.6526 7.2929 17.3261 18.6768 

00 
o 
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correlation is indicated by examining the covariance correlations between the Coun­

tries' variables. Table 4.4 presents the cross-sectional correlations of the different 

countries for variable of velocity. It clearly indicates the existence of cross-sectional 

dependence3 . It should be noted that the asymptotic distribution of the LM statis­

tics proposed in Hadri and Rao (2006a) holds under the assumption of cross-sectional 

independence. If this assumption is violated, the panel LM test depends on various 

nuisance parameters associated with the cross-sectional dependence and therefore the 

normal limiting distribution result is no longer valid. 

To account for the possible presence of cross-sectional dependence, we use the 

bootstrap approach, which makes inference viable even under very general forms of 

cross-sectional dependence. The bootstrap method used here proceeds as follows: 

1. Compute the residuals fitS from the regression of the appropriate break model. 

2. Obtain the ~tS from (4.1) which are grouped in a N x T matrix. This is to 

correct for the serial correlation. After this, the ~tS are not serially correlated 

over time but are potentially cross-sectionally dependent. We let 

V= 

3The cross-sectional correlations for other variables are available upon request. 



Table 4.4: Cross-Sectional Correlation of the Disturbances in Velocity 

AUS AUT BEL CAN SWI SPA FIN U.K GRE IRE ICE JPN NET NOR NZL PTG SWE U.S. 

AUS 1 
AUT -0.08 1 
BEL 0.34 -0.35 1 
CAN 0.12 0.27 0.14 1 
SWI -0.33 0.18 -0.04 0.13 1 
SPA 0.30 -0.20 -0.02 0.21 -0.25 1 
FIN 0.19 0.17 0.05 0.47 -0.22 0.42 1 
U.K 0.26 -0.21 0.02 -0.06 -0.10 0.54 0.14 1 
GRE -0.31 0.26 -0.13 -0.15 0.11 0.25 -0.06 0.25 1 
IRE 0.04 -0.03 0.10 0.07 0.11 -0.31 -0.01 -0.47 -0.57 1 
ICE 0.15 -0.21 -0.033 0.08 -0.33 0.67 0.18 0.67 0.29 -0.43 1 
JPN 0.30 -0.13 0.209 0.06 -0.13 0.52 0.21 0.54 0.57 -0.48 0.53 1 
NET 0.36 -0.30 0.294 -0.09 -0.27 0.06 0.01 0.56 -0.25 0.04 0.35 0.05 1 
NOR 0.03 -0.25 0.159 0.33 -0.01 0.20 0.36 0.12 -0.26 -0.12 0.20 -0.08 -0.03 1 

NZL -0.11 -0.26 0.328 -0.02 0.12 -0.45 -0.26 -0.28 -0.38 0.24 -0.23 -0.35 -0.08 0.25 1 

PTG -0.11 0.200 -0.246 0.19 -0.17 -0.13 -0.05 -0.53 -0.14 0.22 -0.04 -0.21 -0.47 -0.13 0.21 1 

SWE -0.07 om 0.086 0.09 -0.26 0.013 -0.24 -0.37 0.06 0.20 0.01 0.01 -0.29 -0.24 0.34 0.62 1 
U.S. -0.02 -0.17 0.352 -0.24 -0.02 0.27 -0.18 0.28 0.46 -0.56 0.42 0.47 0.14 -0.08 -0.14 -0.20 -0.12 1 

Notes: AUS=Australia, AUT=Austria, BEL=BeIgium, CAN=Canada, S\\T=SwitzerJand, SPA=Spain, FIN=Finland, GRE=Greece. IRE=Ireland, ICE=Icelalld, JPN=Japan, 

NET=NetherLa.nds, NOR=Norway. NZL=New Zeala.nd, PTG=Purtugal, SWE=Sweden 

00 
tv 
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After obtaining V, we compute the matrix of centered residuals 

[£1itl = [Vit - T-
l t Vitj. 

t=l 

3. Generate the bootstrap innovations £1* by resampling from ii with replace-

ment. In order to preserve the contemporaneous cross-sectional dependence, 

we randomly select T columns from v with replacement. (See Maddala and 

Wu (1999)). Note that in order for the columns to be interchangeable, it is 

important that the V~tS are not autocor!elated over time. 

4. Generate [f:tl recursively from [Wl as 

(4.2) 

where CA,l' Pi,2' ",Pi,p) are the coefficients estimates from the fitted regression 

(4.1). It is necessary to initialize (4.2) to obtain bootstrap samples for [f:tl. 

Although this is unimportant asymptotically, it may affect the finite sample 

performance of the bootstrap. We follow Chang (2004) by choosing zeros for 

initial values then generate T + 100 values for [f;tl and discard the first 100 

values. This can minimizes the effects of initial values. Finally, obtain Yit by 

adding f:t to the deterministic term with selected break date TB,i in (3.2) to 

(3.4). 

5. Compute the standardized panel statistic Z* for each bootstrap sample [Yitl 

using 5,000 replications in total. This allows us to obtain the empirical distrib-

uti on of the statistic and hence the bootstrap critical values. 
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The bootstrap critical values at 10% and 5% significance level are reported in 

related columns of Table 4.2 and 4.3. We now examine the results in the presence 

of cross-sectional dependence using bootstrap critical values. The strong evidence is 

found that the null of stationarity with a break is rejected for all the variables when 

either BIC or AIC criterion is used to select the break type and either procedure to 

decide the autoregressive lag length. 

4.3.4 Results 

It is concluded that if we do not control for the cross-sectional dependence, evi­

dence implying the rejection of stationarity for the variables of nominal GDP, GDP 

deflator, consumer prices, employment, common stock prices, velocity, bond yield and 

real GDP per capita. is consistent with the findings reported in, for example, Hurlin 

(2004) who used the same panel data set but did not allow for possible structural 

breaks in all the models. However, when the cross-sectional dependence is consid­

ered, our results overwhelmingly indicate that all the variables can be well described as 

stationary with structural breaks. This provides consistent but stronger stationarity 

evidence than those of Sen (2003a) and Sen (2004) which use the original time series 

Nelson-Plosser data and the extended Nelson-Plosser data respectively. In contrast, 

our results differ from those of Hurlin (2004), in which he found a general nonre­

jection of a unit root for most of the variables when the cross-sectional dependence 

is taken into account. Our results therefore illustrate the importance of incorporat-
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ing structural change in panel unit roots and stationarity tests and accounting for 

cross-sectional dependence where it exists. 

4.3.5 Size of the bootstrap test 

The bootstrap methods have been used widely with the attempt to control for 

the cross-sectional dependence with more general form, for example, in Maddala 

and Wu (1999) and Chang (2004). Although bootstrapping often provides better 

finite sample critical values for test statistics than first-order asymptotic theory does, 

bootstrap values are still approximations and are not exact. To assess the finite 

sample performance of the bootstrap test that we proposed, we perform a small set 

Monte Carlo experiment based on the DGP as follows: 

In generating the panel series Yit, we include both intercept and time trend as well 

as structral breaks in the deterministric term Xit· The disturbances Eit is assumed to 

follow a stationary AR(l) process where f3i ,...., U[0.I,0.9]. We also allow for cross­

sectional dependence of general form in Vit, which is generated by 

where Pis Cholesky decomposition of the cross-sectional correlations matrix L:. The 

off diagonal elements in 2: are the pair-wise correlations Pij' Therefore, Eit contains 
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both serial correlation and cross-sectional dependence. We consider the value of 

Pij = {O, 0.1, O.g} in the simulations. 

To analyze the size of the bootstrap tests, we consider the above DGP under the 

null of stationarity with a break. We use different combinations of sample size, that 

is, T = {30, 50,100, 500}, N = {10, 25, 50}. The first two values of T correspond to 

the range of sample size for the data we used in this chapter while the other two 

values are used to examine the performance of the bootstrap test in relatively large 

samples. The first two values of N correspond to the number of coutries inculded in 

our data sets. The nominal significance level a is set to 0.05. 

We present the size of the bootstrap panel test in Table 4.5, based on 1000 replica­

tions. In each replication, we follow the bootstrap procedures described in Subsection 

4.3.3 and repeat 1000 times. The bootstrap critical values are obtained from the em­

pirical distributions. We found that the result is undersized when the sample is small. 

However, it seems that the size results improve as the sample size goes larger. 

The above size results indicated that the bootstrap method in this case needs 

to be used with caution when the sample size is small. Based on this bootstrap 

method, the consequences for the LM test is that one would reject too infrequently 

the stationarity null hypothesis. Therefore, the empirical inferences drawn using this 

bootstrap method needs further investigation in future research. 
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Table 4.5: Size of the Bootstrap Test 

Pii = 0 
N= 10 N=25 N=50 

T=30 0.0050 0.0030 0.0020 
T= 50 0.0160 0.0130 0.0090 
T = 100 0.0320 0.0240 0.0180 
T = 500 0.0480 0.0500 0.0410 

Pii = 0.1 
N=lO N=25 N=50 

T=30 0.0020 0.0010 0.0010 
T=50 0.0190 0.0180 0.0100 
T= 100 0.0310 0.0250 0.0210 
T = 500 0.0480 0.0420 0.0360 

Pii = 0.9 
N= 10 N=25 N=50 

T=30 0.0050 0.0021 0.0032 
T=50 0.0230 0.0270 0.0170 
T = 100 0.0360 0.0390 0.0320 
T = 500 0.0450 0.0450 0.0400 
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4.4 Conclusion 

In this chapter, we applied the LM panel stationarity test which allows for a struc­

tural break as proposed in Chapter 3, to 14 macroeconomic and financial variables of 

OECD countries. We used a model selection procedure based on BIC and AIC criteria 

to choose the appropriate break type for each individual series. Different break types 

are allowed across units for each variable panel. To determine the autoregressive lag 

length, we use both a general to specific recursive procedure (tsig) and the BIC cri­

terion. The results suggest that if we do not control for cross-sectional dependence, 

with lag length BIG _p, the null of stationarity with a break is rejected for 10 out 

of 14 variables. The exceptions are as follows: real GDP, industrial production, con­

sumer prices and real wages. In contrast, when the lag length is decided by tsig, the 

null of stationarity with a break is rejected for all the variables suggested by BIC and 

for 13 out of 14 variables when AIC is employed. We then take the cross-sectional 

dependence into account by using the bootstrap critical values. The results indicated 

strong evidence that the null of stationarity with structural break is not rejected for 

all the variables. However, it is pointed out that the evidence based on the bootstrap 

method needs further investigation since the bootstrap test does not seem to perform 

well when the sample size is small. 
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Chapter 5 

Assessing the Bias Correction 

Factors in Panel Cointegration 

Tests 

In this chapter we are interested in extending the panel stationarity test of HLM 

(2005) to a panel cointegration test. The test is based on the null hypothesis of 

cointegration against the alternative of no cointegration. As simulation results suggest 

that the test is biased in finite samples, we propose a bias correction factors. We also 

show that the bias correction factors is valid in the models containing 1(1) regressors. 

Finally, another Monte Carlo experiment is conducted to investigate the finite sample 

properties of the corrected test. The main results of this chapter of the thesis appear 

in McCabe and Rao (2007). 



90 

5.1 Introduction 

In recent years, a considerable amount of attention has been paid in the literature 

to testing for the presence of cointegrating relationships among integrated variables in 

panel data. Recent surveys of the growing literature on nonstationary panel models 

include Banerjee (1999), Baltagi and Kao (2000), Phillips and Moon (2000), and mOre 

recently Breitung and Pesaran (2006). The literature concerned with the development 

of panel cointegration tests has taken two broad directions. The first one is to take as 

the null hypothesis that of no cointegration. This is based on the cross-sectional aver­

age of time series cointegration test statistics, including DF and ADF tests (see Kao 

(1999) and Pedroni (2004)). Tests within this category are almost exclusively based 

on the methodology of Engle and Granger (1987) whereby a statistic is employed to 

test for the existence of a unit root in the residuals of a static spurious regression. 

The second approach consists of taking as the null hypothesis that of cointegration. 

This is the basis of the panel cointegration tests proposed by McCoskey and Kao 

(1998). As the primary interest usually lies in the cointegration hypothesis, it is often 

argued that the null of cointegration rather than the null of no cointegration would 

be more appealing in empirical applications where cointegration is predicted a priori 

by economic theory. 

Existing panel cointegration analysis often assumes cross-sectional independence 

across units in the panel. This assumption is convenient since it allows the application 

of the Central Limit Theorem over cross sections in order to achieve standard normal-
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ity for the limiting distribution of the relevant statistics. However, this assumption 

is unlikely to be fulfilled by economic variables, which exhibit strong linkages due 

to the inter-connected nature of the global economy. To overcome this limitation , 

the second generation statistics attempt to control for cross-sectional dependence. A 

variety of panel unit root and stationarity tests have been developed to allow for dif­

ferent forms of cross-sectional dependence. For example, Chang (2002) suggested that 

nonlinear instructmental variables estimators should be used to eliminate the effects 

of cross-sectional dependence when testing for unit roots in panel data. Bai and Ng 

(2004), Moon and Perron (2004) and Phillips and SuI (2003a) used factor models for 

nonstationarity data. Harris, Leybourne and McCabe (2005) (HLM thereafter) pro­

posed a new panel-based test of stationarity that allows for arbitrary cross-sectional 

dependence as well as unknown serial correlation in the panel. However, there are few 

studies dealing with cross-sectional dependence in panel cointegration tests. Among 

these, the most widely used approach is that based on the common factor structure, 

for example, in Bai and Kao (2005), Banerjee and Carrion-i-Silvestre (2006), West­

erlund and Edgerton (2006b). It is argued that using the common factor approach 

to correct for the cross-sectional dependence, one has to make some restrictive as­

sumptions regarding the form of cross-sectional dependence. Other approaches, such 

as Westerlund (2006b), adopted bootstrap procedure, while Groen and Kleibergen 

(2003) based their approach on seemingly unrelated regressions (SUR). 

To this end, we propose a very simple residual-based test of the null hypothesis of 
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panel cointegration that allows for arbitrary cross-sectional dependence in the panels. 

This is an extension of HLM (2005) panel stationarity test. The proposed test is shown 

to be straightforward and easy to implement. It has a limiting normal distribution 

under the null hypothesis that is free of nuisance parameters and it is robust to 

heteroskedasticity. 

The remainder of the chapter is organized as follows. Section 5.2 give a brief 

review of the HLM (2005) test. Section 5.3 sets out the model and describes the 

proposed statistic as a panel cointegration test. The validity of the bias correction 

factors in the panel cointegration context is also investigated in this section. Section 

5.4 conducts Monte Carlo simulations to investigate the finite sample properties of 

the test. Section 5.5 concludes. 

5.2 HLM (2005) Test 

HLM (2005) proposed a new panel-based test of stationarity that allows for ar­

bitrary cross-sectional dependence as well as serial correlation. The statistic is in 

essence the sum of the lag-k sample autocovariances across the panel, suitably stu­

dentized, where k is allowed to be a simple increasing function of the time dimension. 

By controlling k in such a way, they remove the need to explicitly model the time 

series dynamics of each series in the panel and, at the same time, the studentization 

automatically robustifies the statistic to the presence of any form of cross-sectional 

dependence. The statistic is found to have a standard normal limiting null distrib-
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ution under quite general linear process assumptions. In order to illustrate this, we 

consider a model given by 

(5.1) 

where Xi,t denotes deterministic terms which allow for a wide range of determinis-

tic regression functions including constants, linear and polynomial trends, structural 

breaks and various other models. The disturbance C;i,t follows the stationary linear 

process assumption of HML (2003) which allows for cross-sectional correlation of any 

form between the series in the panel. When testing for the null hypothesis of joint 

stationarity, it is specified that 

Ho : l<Pil < 1 for all i, 

against the unit root alternative, 

Hi : <Pi = 1 for at least one i, 

the sum of the individual test statistics is considered, 

N 

CA = LCi,k, 
i=i 

where Ci,k is the corresponding kth-order auto covariance of Zi,t, 

T 

Ci,k = (T - k)-1/2 L Ui,tUi,t-k, 
t=k+i 

(5.2) 

(5.3) 

Ui,t = Ui,t/ Si denotes the standardized residuals of Ui,t, which are the OL8 estimated 

residuals from the regression (5.1), Si is the sample standard deviation of Ui,t. It 
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is shown that Ok, when suitably studentized, has an asymptotic standard normal 

distribution under the null and is consistent under the alternative, that is, 

L;i{iik,t} is the long-run variance estimator (LRV) of {iik,t} given by, 

I . 

'YO{iik,t} + 2 I)l - l ~ 1 )'Yj{iik,t}, 
j=l 

T 

'Yj{iik,t} = T-1 L iik,tiik,t-j' 
t=j+k+1 

(5.4) 

(5.5) 

Since Sk depends on Ui,t and Ui,t-k only through the cross-sectional sum, that is, 

iik,t = 2::!1 Ui,tUi,t-k, any valid estimate of the LRV of {iik,t} will automatically 

correct for any pattern of cross-sectional dependence in Ui,t. It is shown that when 

the panel dimension is not relatively small, individual finite-sample errors that arise 

from the estimation of the regression models combine in the construction of (5.2), 

generating significant effect on the finite-sample null distribution of Sk. To correct for 

this problem, a bias correction term has been proposed as follows. For a given i, 

T 

Ci = tr[(T-1 LXi,tX~,t)-10{Xi,tUi,t}], (5.6) 
t=l 

where 
I . 

O{Xi,tUi,t} = fO{Xi,tUi,t} + L(l - l ~ 1 )(fj{Xi,tUi,t} + fj{Xi,tUi,t}'). (5.7) 

and 

j=l 

T 

fj{Xi,tUi,d = T-1 L (Xi,tUi,t)(Xi,t-jUi,t-j)'. 
t=j+1 
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Therefore, the adjusted version of statistic is 

(5.8) 

where C = (T - k)-1/2 2:{:1 Ci, Ci is given by (5.6), and Ck = (T - k)-1/2 2:'{=kH ak,t. 

The null hypothesis of stationarity is rejected if the value of fA is greater than the 

upper-tail critical value of the standard normal distribution. 

5.3 Panel Cointegration Test 

In this section, we extend the HLM (2005) test and propose a statistic that pro-

vides a panel cointegration test dealing with possible cross-sectional dependence of 

an unknown structure. 

5.3.1 Models 

Consider a panel series {Yi,t}, which is observable for i = 1, ... , N cross-sectional 

and t = 1, ... , T time series observations. The data generating process (DGP) for Yi,t 

is given by 

(5.9) 

(5.10) 

where Xi,t = (z~,t' X~,t)' is a vector of regressors and (3i = bi,Oi)' is a conformable 

vector of parameters. The vector Xi,t = Xi,t-l + Vi,t is a k- dimensional vector of 1(1) 

processes, Vi,t f'V i.i.d N(O, 1) and is generated independently from Ui,t, Zit is a vector 
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of deterministic components with Zi,t = (1, t)" so both individual-specific constants 

and time trends are included in the model. The vectors Ii and Oi are conformable 

with respect to Zi,t and Xi,t. Depending on the component of integrated regressors, 

we distinguish between three models in this chapter. Modell refers to the case where 

regressor Xi,t following an independently generated 1 (1) process. Model 2 arises in 

the case where Xi,t = (z~,t' X~i,t' X~i,t)" X~i,t and X~i,t are cointegrated. In Model 3, 

Xi,t = (z~,t,X~,t)', since Xi,t can be written as Xi,t = (x~,t' ... x~,tY, Model 3 imposes 

cointegration relationships among Xi,t across i. 

The regression disturbances Ui,t in (5.9) are assumed to be serially correlated and 

to follow an AR(l) process in (5.10). In addition, the autoregressive coefficients 

cPi is allowed to differ across i. The disturbance term C;i,t is 1(0), C;i,t and C;j,t may 

be correlated for any i and j. Therefore, we allow for both serial correlation and 

cross-sectional dependence in the panel. The series {Ui,t} is stationary when Yi,t and 

Xi,t are cointegrated. Thus, testing for the null hypothesis that {Yi,t} and {Xi,t} are 

cointegrated is equivalent to testing the regression residuals Ui,t for stationarity using 

(5.10). So we wish to test 

Ho: IcPil < 1 for all i = 1, ... ,N, 

against 

HI : cPi = 1 for i = 1, ... , NI and IcPil < 1 for i = NI + 1, ... , N, 

where we require that NdN -t A as N -t 00, A E (0,1]. This alternative hypothesis 
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allows (Pi to differ across the units, and it is assumed that the fraction of spurious 

individuals is non-empty. 

For a single set of residuals Ui,t, from (5.9), it is proved in Theorem 1 of McCabe 

et al. (2006) that when suitably studentized, the statistic 

T 

Ci,k = (T - k)-1/2 L Ui,tUi,t-k 
t=k+l 

is asymptotically normal under the null hypothesis of cointegration and is consistent 

under the no cointegration alternative l
. Therefore, in a panel of N time series u· t 

t, , 

the sum of individual test statistics after suitable studentization will still have the 

property of asymptotic standard normal null distribution. This can be summarized 

in the following theorem. 

Theorem 5.1 Assume (t = ((l,t""',(N,t)' follows the stationary linear process as-

sumption LP of HML (2003), Xi,t defined in (5.9), and k = O(Tl/2), then as T ~ 00 

with N fixed: Under Ho, 

Under H l , the distribution of Sk diverges to +00. Ui,t here is standardized Ui,t. 

Therefore, the asymptotic normality result continues to hold when Sk is calculated 

using residuals from regression models with both deterministic and 1(1) regressors in 

our models. 

lThis null of cointegration includes stationary cointegration and also heteroskedastic cointegra­
tion. It therefore encompasses our setup as a special case, so the proof is omitted. 
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The size results for the statistic in the three models are shown in Tables 5.1-

5.3. The details of DGP are described in Section 5.4. In each model, we distinguish 

between three cases according to the deterministic component of the regression (5.1). 

The cases are: 

(a) no deterministic component, Zi,t = 0; 

(b) individual-specific intercept as the deterministic component, Zi,t = 1; 

( c) both intercepts and time trends in the deterministic term, Zi,t = (1, t)' . 

We found that in all three models, the results are strongly undersized in finite samples, 

although they tend to converge asymptotically with T increases, but with very low 

rates. We also find that the more complicated the deterministic term, the greater 

size distortion of the results. A possible solution to the problem is to include the bias 

correction factors. 
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Table 5.1: Size of fh for Modell-without the Bias Correction Factors 

Results with Zi,t = 0 

N=lO N=20 N=30 N=40 
T=50 0.0060 0.0080 0.0032 0.0046 

T = 100 0.0200 0.0150 0.0160 0.0122 

T = 150 0.0258 0.0208 0.0178 0.0172 

T=300 0.0312 0.0264 0.0258 0.0204 

Results with Zi,t = 1 
N= 10 N=20 N=30 N=40 

T=50 0.0006 0.0004 0.0004 0.0008 

T = 100 0.0048 0.0022 0.0020 0.0008 
T = 150 0.0062 0.0092 0.0042 0.0056 

T=300 0.0144 0.0096 0.0118 0.0084 

Results with Zi,t = (1, ty 
N= 10 N=20 N=30 N=40 

T =50 0.0004 0.0002 0.0006 0.0002 
T = 100 0.0018 0.0008 0.0006 0.0002 

T = 150 0.0004 0.0004 0.0016 0.0026 
T = 300 0.0084 0.0048 0.0078 0.0030 
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Table 5.2: Size of Sk for Model 2-without the Bias Correction Factors 

Results with Zi,t = 0 

N= 10 N=20 N=30 N=40 
T= 50 0.0076 0.0068 0.0066 0.0072 
T= 100 0.0220 0.0138 0.0132 0.0130 
T = 150 0.0242 0.0252 0.0196 0.0144 
T = 300 0.0330 0.0262 0.0212 0.0240 

Results with Zi,t = 1 
N = 10 N=20 N=30 N=40 

T=50 0.0014 0.0014 0.0016 0.0008 
T = 100 0.0074 0.0042 0.0022 0.0012 
T = 150 0.0090 0.0058 0.0042 0.0040 
T=300 0.0180 0.0106 0.0112 0.0090 

Results with Zi,t = (1, t)' 
N= 10 N=20 N=30 N=40 

T= 50 0.0014 0.0008 0.0002 0.0002 
T = 100 0.0032 0.0010 0.0006 0.0004 
T = 150 0.0020 0.0022 0.0012 0.0014 
T =300 0.0118 0.0060 0.0068 0.0034 

5.3.2 Bias Correction Factors 

After some manipulation, the term Ci,k in the numerator of statistic Sk which is 

- )-1/2 ~T - - b d £ defined as Ci,k = (T - k L..Jt=k+1 Ui,tUi,t-k can e expresse as ollows: 

C.'k = " 



Table 5.3: Size of Sk for Model 3-without the Bias Correction Factors 

Results with Zi,t = 0 Results with Zi,t = 1 Results with Zi,t = (1, t)' 
r = O.lN r = 0.5N r = 0.9N r = O.lN r = 0.5N r = 0.9N r = O.lN r = 0.5N r = 0.9N 

T=50 N= 10 0.0072 0.0076 0.0064 0.0010 0.0012 0.0030 0.0012 0.0016 0.0018 
N=20 0.0094 0.0064 0.0054 0.0016 0.0008 0.0012 0.0004 0.0002 0.0004 
N=30 0.0054 0.0076 0.0058 0.0018 0.0020 0.0010 0.0016 0.0010 0.0006 
N=40 0.0034 0.0064 0.0020 0.0002 0.0014 0.0002 0.0000 0.0002 0.0002 

T= 100 N= 10 0.0204 0.0206 0.0176 0.0068 0.0072 0.0040 0.0036 0.0036 0.0018 
N=20 0.0120 0.0156 0.0162 0.0058 0.0032 0.0040 0.0024 0.0006 0.0012 
N=30 0.0166 0.0130 0.0172 0.0024 0.0050 0.0052 0.0006 0.0028 0.0024 
N=40 0.0124 0.0134 0.0112 0.0016 0.0050 0.0018 0.0004 0.0028 0.0008 

T= 150 N=lO 0.0198 0.0216 0.0244 0.0066 0.0070 0.0144 0.0028 0.0018 0.0090 
N=20 0.0168 0.0178 0.0184 0.0036 0.0074 0.0050 0.0008 0.0036 0.0024 
N=30 0.0186 0.0210 0.0142 0.0060 0.0032 0.0046 0.0020 0.0016 0.0024 
N=40 0.0152 0.0206 0.0168 0.0026 0.0048 0.0056 0.0006 0.0006 0.0028 

T=300 N=lO 0.0284 0.0278 0.0274 0.0096 0.0130 0.0124 0.0032 0.0064 0.0050 
N=20 0.0264 0.0254 0.0270 0.0096 0.0098 0.0140 0.0036 0.0044 0.0090 
N=30 0.0234 0.0246 0.0216 0.0064 0.0128 0.0084 0.0026 0.0086 0.0036 
N=40 0.0208 0.0216 0.0250 0.0074 0.0066 0.0114 0.0020 0.0028 0.0060 

t-' 
0 
t-' 
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It is the term in the square brackets that induces finite sample estimation errors into 

each individual statistic and therefore amplifies the finite-sample bias effects for the 

panel statistic. It is clear that this term is also "self scaling"; that is, it is always 

. T. ('\"T I ) -1/2 Op(l) smce the term L:t=l Xi,tUi,t 1S scaled by wt=l Xi,tXi,t . The bias can be 

corrected by adding back an estimate of the term in square brackets, i.e., 

T 

Ci = 12 tr[(T-1 L Xi,tX;,tt10{Xi,tUi,t}]' 
Si t=l 

where the long-run variance O{Xi,tUi,t} is defined the same way as in (5.7) using a 

Bartlett lag window. Note that the component terms in ~ are not Op(l) in the case 

where we have 1(1) regressors, in this case T-1 L:;=1 Xi,tX:,t and O{Xi,tUi,t} diverge; 

the scalings shown are those appropriate for the stationary case and as used in HLM 

(2005). Of course, the components could be rescaled in order to ensure that they are 

o p (1) in any particular model but, in any event, the ratio itself is correctly scaled and 

Op (1). In fact, ~ will converge in distribution to a constant. This can be confirmed 

by the experimental evidence shown in Table 5.4. 

The bias correction factors in the panel are obtained by 

N 

C = (T - k)-1/2L~' 

Therefore, in presence of 1(1) regressors, 

N 

i=l 

Sk = w{iik,tr
1 

X (Ok + L":T-1/2Ci) = W{iik,t} -1 X Ok + Op(T-1/2) => N(O, 1), 
i=l 

so the inclusion of the bias correction factors does not affect the asymptotic normality 

properties of the statistic under the null distribution. 
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Table 5.4: Mean and Standard Deviation of the Replication Values in the 

Bias Correction Factor Ci 

<Pi = 0 <Pi = 0.6 
T 

(T-2 L Xi,tX;,t) mean std mean std 
t-l 

T = 100 1.4773036 1.8450115 1.4773036 1.8450115 
T= 300 0.83719171 0.93143816 0.83719171 0.93143816 
T = 500 0.68770456 0.81752674 0.68770456 0.81752674 

T = 1000 0.61873308 0.69817775 0.61873308 0.69817775 
T = 2000 0.53003425 0.59936319 0.53003425 0.59936319 
T = 5000 0.50551657 0.59097990 0.50551657 0.59097990 
T = 10000 0.47855500 0.54112761 0.47855500 0.54112761 
T = 20000 0.49751576 0.56343655 0.49751576 0.56343655 

T- 1s1{Xi,tUi,t} mean std mean std 
T= 100 1.2433938 1.7285694 6.415871 9.23445 
T =300 0.78223118 0.98948336 4.3055475 5.5386032 
T = 500 0.66042056 0.83986539 3.7259723 4.7998032 

T = 1000 0.59609856 0.72268599 3.4499925 4.2144502 
T = 2000 0.52206243 0.60804253 3.0779064 3.5957363 
T = 5000 0.80352738 0.60211083 3.0156032 3.6138115 
T = 10000 0.47647269 0.55227418 2.8839885 3.3487586 
T - 20000 0.49352083 0.56143118 3.0147288 3.4313817 

Ci mean std mean std 
T= 100 0.08189 0.4138 4.1232 2.3997 
T=300 0.9017 0.3190 4.9233 1.9208 
T=500 0.9422 0.2841 5.2762 1.7316 

T = 1000 0.9515 0.2249 5.4840 1.3928 
T = 2000 0.9804 0.1909 5.7680 1.1980 
T = 5000 0.9924 0.1301 5.9388 0.8210 
T = 10000 0.9921 0.1028 6.0030 0.6490 
T - 20000 0.9917 0.0804 6.0573 0.5101 
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5.4 Monte Carlo Simulations 

In this section, we report simulation results for all the models proposed to evaluate 

the finite-sample properties of the panel cointegration test considered in this chapter. 

We consider N = {1O, 20, 30, 40} and T = {50, 100, 150, 300} for the sample size. The 

number of replications in all cases is set to 5,000 and the nominal size is set at the 

5% level. The random seed is fixed in each simulation. The DGP is as follows: 

Y't = (3',X' t + U't 1., 1. 1., t, , (5.11) 

Under the null of cointegration, the autoregressive coefficients <Pi is generated uni-

formly distributed between 0.1 and 0.9. Since we allow for arbitrary cross-sectional 

dependence in C;t = (C;l,t, ... , C;N,tY, the DGP for C;i,t that is used in simulations is as 

follows: 

where P is Cholesky decomposition of the cross-sectional correlations matrix~. The 

off diagonal elements in ~ are uniformly generated between 0.1 and 0.9. Therefore, 

U' t contains both serial correlation and cross-sectional dependence. The residual 
" 

U' t = y. t-(3A'Xi t is estimated by OLS from the regression (5.11). The regressor x.
t 

= 
1., 1., t, 'l., 

( Z~ x')' includes both an intercept and time trend in Zi,t, as well as a integrated ',t, ',t 

variable Xi t. For Modell, Xi,t is generated as N independent random walks. In , 

Model 2, both Xli,t and X2i,t are integrated of order one. First, Xli,t is generated as 
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N random walk processes, then X2i,t is generated as cointegrated with Xli,t, with the 

cointegration vector of (1, -ai)', where ai '" U(0,5). In Model 3, the cointegration 

relationships exist in Xi,t across units i. We assume there is r cointegration vectors 

so that rank= r. We consider r = {O.lN, 0.5N, 0.9N} throughout all the simulations 

for Model 3. For the choice of k and l, we follow HLM (2005) and use k = [(3T)1/2], 

l = [12(T/100)1/4J. Tables 5.5-5.7 present the size results for all the models using the 

statistic Sk. It is found that the undersize problem has been corrected, and that the 

size results after correction are now close to the nominal level, especially when T is 

large but N is small. 

Table 5.5: Size of Sk for Modell 

Results with Zi t = 0 , 
N= 10 N=20 N=30 N=40 

T=50 0.0994 0.1276 0.1288 0.1280 
T = 100 0.1046 0.1040 0.1084 0.1062 
T = 150 0.0916 0.0694 0.0844 0.0766 
T = 300 0.0692 0.0668 0.0594 0.0664 

Results with Zi,t = 1 
N= 10 N=20 N=30 N=40 

T=50 0.1134 0.1036 0.0932 0.1036 
T = 100 0.0876 0.0972 0.1002 0.0968 
T = 150 0.0852 0.0854 0.0862 0.0834 
T = 300 0.0654 0.0696 0.0648 0.0712 

Results with Zi,t = (1, t)' 
N= 10 N=20 N=30 N=40 

T= 50 0.1252 0.1176 0.1048 0.1152 
T = 100 0.0752 0.0950 0.0954 0.1018 
T = 150 0.0940 0.0836 0.0806 0.0886 
T = 300 0.0690 0.0736 0.0740 0.0720 



106 

Table 5.6: Size of Sk for Model 2 

Results with Zi,t = 0 
N=10 N=20 N=30 N=40 

T= 50 0.1594 0.2162 0.1998 0.2196 
T= 100 0.1158 0.1346 0.1426 0.1468 
T= 150 0.0844 0.1186 0.1054 0.1224 
T=300 0.0954 0.0844 0.0814 0.0924 

Results with Zi,t = 1 
N= 10 N=20 N=30 N=40 

T =50 0.1634 0.1678 0.1836 0.1950 
T = 100 0.1320 0.1428 0.1324 0.1488 
T = 150 0.1036 0.1138 0.1198 0.1210 
T = 300 0.0804 0.0822 0.0850 0.0902 

Results with Zi,t = (1, t)' 
N=lO N=20 N=30 N=40 

T=50 0.1640 0.1434 0.1852 0.1942 
T = 100 0.1472 0.1452 0.1244 0.1498 
T = 150 0.1224 0.1112 0.1310 0.1254 
T = 300 0.0768 0.0830 0.0954 0.0996 

For the power of the test, we set <Pi = 1 for i = 1, ... , AN and <Pi '" U[0.1,0.9J 

for i = AN + 1, ... , N, where A = {0.1, 0.2, 0.5}. Tables 5.8-5.10 report the scaled 

power for all the models and Table 5.11 also shows the non-scaled power for Model 3 

where A = 12. As expected, the power grows with T and N, and also increases with 

the signal to noise ratio A. In particular, in Model 3, the power decreases with the 

cointegration rank r. This pattern is more obvious indicated by the results in Table 

5.11. 

2To save space, we only report the power results with the most general deterministic component 
included, that is, both intercept and time trend. For the other two cases, the results are similar 
although the power is relatively larger. 



Table 5.7: Size of Eh for Model 3 

Results with Zi,t = 0 Results with Zi,t = 1 Results with Zi,t = (1, t)' 
r = O.IN r = 0.5N r = 0.9N r = O.lN r = 0.5N r = 0.9N r = O.IN r = 0.5N r = 0.9N 

--

T=50 N= 10 0.1026 0.1026 0.0924 0.1152 0.1158 0.1120 0.1194 0.1174 0.1164 
N=20 0.1348 0.1382 0.1084 0.1152 0.1244 0.1136 0.1096 0.1164 0.1280 
N=30 0.1140 0.1236 0.1384 0.1306 0.1384 0.1272 0.1468 0.1440 0.1140 
N=40 0.1448 0.1224 0.1272 0.1122 0.1244 0.0972 0.1066 0.1306 0.0878 

T = 100 N= 10 0.0804 0.0762 0.0728 0.0870 0.0964 0.0764 0.0932 0.1076 0.0790 
N=20 0.0794 0.1052 0.0868 0.0944 0.0970 0.0912 0.1006 0.0928 0.0924 
N=30 0.0944 0.0784 0.0892 0.0986 0.0892 0.1006 0.0926 0.1044 0.1128 
N=40 0.0922 0.0814 0.0848 0.0888 0.0968 0.0914 0.0878 0.1074 0.0920 

T= 150 N= 10 0.0678 0.0796 0.0650 0.0752 0.0788 0.0794 0.0804 0.0806 0.0936 
N=20 0.0844 0.0692 0.0754 0.0740 0.0880 0.0786 0.0706 0.1050 0.0828 
N=30 0.0800 0.0884 0.0650 0.0816 0.0862 0.0840 0.0828 0.0834 0.1006 
N=40 0.0864 0.0852 0.0724 0.0806 0.0838 0.0860 0.0764 0.0870 0.0954 

T=300 N=lO 0.0640 0.0636 0.0608 0.0634 0.0660 0.0596 0.0650 0.0668 0.0628 
N=20 0.0620 0.0644 0.0588 0.0630 0.0662 0.0692 0.0662 0.0654 0.0804 
N=30 0.0692 0.0582 0.0634 0.0652 0.0696 0.0592 0.0654 0.0788 0.0654 
N=40 0.0684 0.0616 0.0640 0.0684 0.0606 0.0704 0.0720 0.0672 0.0760 

I-' 
0 
~ 
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Table 5.8: Power of Sk for Model 1 

>. = 0.1 >. - 0.2 >. = 0.5 
T =50 N=10 0.1064 0.0910 0.0652 

N=20 0.0938 0.0720 0.0308 
N=30 0.0670 0.0566 0.0290 
N=40 0.0886 0.0682 0.0280 

T = 100 N = 10 0.0766 0.0834 0.1004 
N=20 0.1026 0.1000 0.1076 
N =30 0.0912 0.0950 0.1026 
N=40 0.0936 0.1036 0.1108 

T = 150 N = 10 0.1068 0.1406 0.2454 
N=20 0.1546 0.2088 0.3106 
N=30 0.1380 0.1920 0.3244 
N=40 0.1466 0.2044 0.3250 

T=300 N=lO 0.1998 0.3284 0.6592 
N=20 0.2262 0.4302 0.8026 
N=30 0.2792 0.5048 0.8702 
N=40 0.2538 0.5064 0.8902 
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Table 5.9: Power of Sk for Model 2 

A = 0.1 A = 0.2 A = 0.5 
T=50 N=10 0.1036 0.1128 0.0774 

N=20 0.0838 0.0824 0.0516 
N=30 0.1110 0.0978 0.0670 
N=40 0.1154 0.0964 0.0628 

T = 100 N = 10 0.1532 0.1910 0.3054 
N=20 0.1596 0.2084 0.3542 
N=30 0.1584 0.2226 0.4170 
N=40 0.1654 0.2170 0.4082 

T = 150 N= 10 0.2008 0.3262 0.5842 
N=20 0.2170 0.3236 0.6666 
N=30 0.2420 0.4140 0.7618 
N=40 0.2398 0.4062 0.7714 

T=300 N = 10 0.2708 0.5326 0.9000 
N=20 0.3436 0.6612 0.9774 
N=30 0.4608 0.8014 0.9920 
N=40 0.4474 0.7854 0.9952 



Table 5.10: Power of Sk for Model 3 

.x = 0.1 .x = 0.2 .x = 0.5 
r = O.lN r = 0.5N r = 0.9N r = O.lN r = 0.5N r = 0.9N r = O.lN r = 0.5N r = 0.9N 

T=50 N=lO 0.0942 0.1012 0.1010 0.0862 0.0848 0.0850 0.0578 0.0612 0.0566 
N=20 0.0890 0.1042 0.1066 0.0698 0.0854 0.0850 0.0310 0.0346 0.0426 
N=30 0.1236 0.1178 0.0776 0.1032 0.0854 0.0730 0.0392 0.0330 0.0310 
N=40 0.0796 0.1104 0.0734 0.0880 0.0922 0.0600 0.0342 0.0360 0.0324 

T= 100 N= 10 0.1008 0.1184 0.0876 0.1266 0.1252 0.0952 0.1342 0.1274 0.1176 
N=20 0.1074 0.0980 0.1106 0.1072 0.0970 0.1146 0.1132 0.1102 0.1330 
N=30 0.1010 0.1208 0.1190 0.1220 0.1186 0.1216 0.1170 0.1260 0.1292 
N=40 0.0942 0.1198 0.0992 0.1022 0.1218 0.1036 0.1116 0.1172 0.1262 

T= 150 N= 10 0.1126 0.1198 0.1328 0.1476 0.1682 0.1758 0.2352 0.2672 0.2600 
N=20 0.1160 0.1540 0.1326 0.1660 0.2014 0.1748 0.2940 0.3052 0.2878 
N=30 0.1346 0.1274 0.1620 0.1934 0.1778 0.1994 0.3086 0.2918 0.3172 
N=40 0.1290 0.1402 0.1502 0.1942 0.1944 0.2108 0.3252 0.3128 0.2990 

T=300 N=lO 0.1732 0.1886 0.1970 0.3058 0.3284 0.3474 0.6258 0.6466 0.6792 
N=20 0.2234 0.2290 0.2660 0.4292 0.4206 0.4600 0.7964 0.7870 0.7864 
N=30 0.2422 0.2896 0.2168 0.5178 0.5294 0.4642 0.8752 0.8522 0.7988 
N=40 0.2442 0.2520 0.2988 0.5214 0.4652 0.5282 0.8874 0.8430 0.8482 

I-' 
I-' 
0 
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Table 5.11: Non-Scaled Power of Sk for Model 3 ('x = 1) 

r = O.lN r = 0.5N r = 0.9N 

T=50 N=lO 0.0196 0.0168 0.0186 
N=20 0.0106 0.0098 0.0110 
N=30 0.0056 0.0070 0.0078 
N=40 0.0052 0.0050 0.0052 

T = 100 N= 10 0.1160 0.1186 0.1142 
N=20 0.0992 0.1174 0.1198 
N=30 0.0934 0.1004 0.1024 
N=40 0.0884 0.0988 0.1118 

T = 150 N= 10 0.3426 0.3488 0.3400 
N=20 0.4038 0.3970 0.3880 
N=30 0.4228 0.4246 0.4104 
N=40 0.4376 0.4256 0.4192 

T=300 N= 10 0.8864 0.8586 0.8450 
N=20 0.9544 0.9474 0.9340 
N=30 0.9710 0.9566 0.9480 
N=40 0.9782 0.9656 0.9686 
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5.5 Conclusion 

In this chapter, we propose a residual-based panel cointegration test with the null 

hypothesis of cointegration against the alternative of no cointegration. It is an ex­

tension of panel stationarity test proposed in HLM (2005). This test is advantageous 

since it can solve the problem of arbitrary cross-sectional dependence in the panel 

disturbances and also can simultaneously correct for the serial correlation. The limit 

of theory of this test is based on large T and N fixed in the panel. We consider 

three models in the chapter. Model 1 contains a regressor which includes one 1(1) 

process as well as intercept and time trend. In Model 2, we include two cointegrated 

1 (1) regressors, and also fit both intercept and time trend in the deterministic term. 

In Model 3, we regress on intercept, time trend and one 1(1) regressor which have 

cross-unit cointegration across i in the panel. The panel cointegration test statistics 

are shown to have standard normal distribution under the null and to be consistent 

under the alternative hypothesis. However, a size distortion problem is found to exist 

in finite samples due to the individual estimation errors accumulated over N. To cor­

rect for the bias, we incorporate the bias correction factors proposed in HLM (2005) 

into the panel cointegration test. The validity of the bias correction factors when the 

model contains 1(1) regressors is assessed in this chapter. It is shown that the factors 

does not affect the asymptotic normality properties of the statistic. Therefore, the 

corrected statistic which includes the bias correction factors can be applied in cases 

with 1(0) and/or 1(1) variables. It is a one-sided test and the null is rejected if the 
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value of the statistic is greater than the appropriate upper-tail standard normal crit­

ical value. Finally, we evaluate the finite sample properties of the corrected statistic 

for all three models through Monte Carlo simulations. Our reported results suggest 

an adequate performance of the test in finite samples. 
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Chapter 6 

Conclusion 

This thesis begins in Chapter 2 with a review of the recent econometric literature 

on the panel unit root, stationarity and cointegration tests. 

Chapter 3 extends Hadri (2000) test to the case where a structural break is taken 

into account by proposing a panel residual-based LM stationarity test allowing for 

possible structural breaks. We set out four models based on different break patterns. 

For two of the models, a modified test of which the asymptotic distribution does 

not depend on break location is also proposed. The tests with both i.i.d and seri­

ally correlated residuals are discussed and we considered an AR(l) process for the 

autocorrelated residuals. Both tests have been shown to have standard normal distri­

butions after standardizing using the appropriate moments and applying the Central 

Limit Theorem. The sequential limits wherein T -t 00 followed by N -t 00 are 

used to derive the asymptotic distributions. The exact moments of all corresponding 
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models for both tests are derived. In the situation where the break location is un­

known, we obtain the estimated break locations by minimizing the sum of squared 

residuals (SSR) from the relevant model regressions under the null hypothesis. We 

have shown how one can allow for the positions of breaks to differ across individuals 

for models with known and unknown breaks. Finally, we showed by simulations that 

our suggested LM test has satisfactory performance in finite samples with both i.i.d 

and autocorrelated errors, but we found that the performance of the modified test in 

the presence of autocorrelated errors is less satisfactory. 

In Chapter 4, we applied the LM test to the data of 14 macroeconomic and 

financial variables observed for the OECD countries since 1950's. These variables are 

the same as those considered in Nelson and Plosser (1982) for the U.S., with the only 

difference that GDP related variables rather than GNP related ones are considered. 

Instead of following the usual visual inspection approach, or imposing the most general 

model specifications, we used a model selection procedure based on the BIC and AIC 

criteria to choose the appropriate break type for each individual. Different break types 

are allowed across units in the panel. It is found that different combinations of all the 

models rather than any single particular model are selected for 13 out of 14 variables. 

Before correcting for serial correlations, two methods are adopted to determine the 

autoregressive lag length; that is, a general to specific recursive procedure (tsig) 

and the application of the BIC criterion. If the cross-sectional dependence is not 

considered, our results suggest that when using the autoregressive lag length suggested 
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by BIG y, the null of stationarity with a break is not rejected for real GDP, industrial 

production, consumer prices and real wages, using either BIC or AIC criteria in 

selecting the model. In contrast, when the lag length is decided by tsig, the null 

of stationarity with a break is rejected for all the variables based on the models 

suggested by BIC, and the rejection is supported for 13 out of 14 variables when 

AIC is employed to select models. We then take the cross-sectional dependence into 

account via the bootstrap method. The results thus obtained strongly indicated that 

the null of stationarity with a structural break is not rejected for all the variables. 

This finding, after we allowed for possible structural changes in panel series, provides 

more convincing evidence of the stationarity than was revealed in the previous studies 

of Hurlin (2004) and Sen (2003a, 2004). However, we pointed out that the evidence 

based on the bootstrap method should be treated with caution and needs further 

research due to the fact that the bootstrap test has size distortions in small samples. 

Chapter 5 of this thesis is focused on the panel cointegration study. In this chap­

ter, we propose a residual-based panel cointegration test with the null hypothesis of 

cointegration against the alternative of no cointegration. This test is an extension of 

the stationarity test proposed in HLM (2005). This test is advantageous since it can 

control for cross-sectional dependence as well as for serial correlation with unknown 

structures. The limiting theory of this test is based on large T and N fixed in the 

panel. We considered three models in this chapter. Model 1 contains one integrated 

regressor, plus an intercept and a time trend. In Model 2, we include two cointe-
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grated 1(1) variables, plus both an intercept and a time trend in the deterministic 

term. In Model 3, we consider an intercept, time trend and one 1(1) regressor which 

has cross-unit cointegration across i in the panel. Although the proposed statistic 

for the panel cointegration test is shown to be standard normally distributed under 

the null and consistent under the alternative hypothesis, simulation results indicate 

size distortion in finite sample due to the individual estimation errors accumulated 

over N and, moreover, that the bias can be severe if the panel dimension is relatively 

large. To overcome this problem, we applied the bias correction factors proposed 

by HLM (2005) in the panel cointegration test. The validity of the bias correction 

factors in the presence of the 1(1) regressors is assessed in this chapter. It is shown 

that the factors do not affect the asymptotic normality properties of the test under 

the null. Therefore, the corrected statistic can be applied for the cases which contain 

either 1(0) and/or 1(1) regressors. It is a one-sided test and the null is rejected if 

the value of the statistic is greater than the appropriate upper-tail standard normal 

critical value. Finally, we report simulation results of the corrected statistic for all 

three models. It is found that the test provides satisfactory finite sample properties. 
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Appendices 

We present now the appendices that correspond to the previous chapters of the 

thesis. 
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Appendix 1: Proofs of Theorems in Chapter 3 

Proof. of Theorem 3.3 for Model O. Under the null hypothesis of stationarity 

with a break, the characteristic function (c.f) of Gi,o(B) for ith individual is given in 

Kurozumi (2002) as 

where Do()..) = SiJf. The cumulants are obtained by the expansion of logd <pi(e)} 

(with k = 0,1,2,3 denotes Model 0, 1, 2 and 3 respectively) as power series in ie. The 

first, second, third and fourth cumulants give, respectively, the mean, the variance, 

the skewness and kurtosis of Gi,k(B). For model ° we obtain 

Therefore, for Model 0, the mean and variance are: 

~i,O = ~ (1 - 2Wi + 2wD , 

(~o = ~ (1- 4wi + 6w~ - 4w~ + 2wt) . , 45 
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• 
Proof. of Theorem 3.3 for ModelL In (3.2), the characteristic function(c.f) of 

with 

.j). sin .;>:W; sin J'x (1 - Wi)2 

= -12,X5/2wi (1 - Wi) {I - 3Wi (1 - Wi)} 

2 (sin .j). - sin .;>:W; - sin V'-,X-( l---w-i )-2 ) 

+ ,X5/2wi (1 - Wi) {I - 3Wi (1 - Wi)} . 

So the power series is described as 

~ x (15wt - 30w~ + 25w~ - 10wi + 2) if) 

30 3w~ - 3Wi + 1 I! 
1 (315W~ - 1260wY + 2415w~ - 2835wf +--x 

6300 (3w~ - 3Wi + 1)2 

+2275wt - 1295w~ + 495w~ -110wi + 11) (iB)2 
(3w~ - 3Wi + 1)2 . 2! 

1 1350w~2 - 8100W~1 + 24300w~o + __ x (t t t 
94500 (3w~ - 3Wi + 1)3 

-47250w~ + 66645w~ - 72180w; + 60775w~ - 39045wf 

(3w~ - 3W i + 1)3 

+18570wt - 6325w~ + 1470w~ - 210wi + 14) (iB)3 

(3w~ - 3W i + 1)3 3! 
+ 1 (509 - 10 180wi + 96 710w~ - 578150w~ + 2430 235wt 

24255000 (3w~ - 3Wi + 1)4 

-7603960wf + 18 288 725w~ - 34420 540w; + 51 201 535w~ 

(3w; - 3Wi + It 
-60 668 300w~ + 57782 725w;o - 44629 200wp + 27933 675w;2 ) 

(3w~ - 3Wi + 1)4 

-13825350w;3 + 5093 550w;4 - 124~ 400w;5 + 155 925w;6 ) (iB)4 

(3w~ - 3Wi + 1) 4! 
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Hence, the mean and variance of Gi ,1 (B) are given by: 

15wt - 30w~ + 25w~ - 10wi + 2 
~i,1 = 30 (3w~ - 3Wi + 1) , 

(2 _ 315w~ - 1260wI + 2415w? - 2835w~ + 2275wt - 1295w~ + 495w~ - 110Wi + 11 
i,1 - 6300 (3w~ - 3Wi + 1)2 

• 
Proof. of Theorem 3.3 for Model 2. Under the null hypothesis of stationarity 

with a break, the c.f of Gi ,2(B) is 

where 

with 

DII (A) = 2{sin J AW~ + sin J A (1 - Wi)2 - sin J:\ 

_A1/2 (Wi cos J AW~ + (1 - Wi) cos J A (1 - Wi)2)}, 

DIll (A) = A 1/2 (cos J:\ + cosJ AW~ cos J A (1 - Wi)2) . 



The expansion as a power series is given by: 

= (3W~ - 3Wi + 2) i8 
30 1! 

1 4 3 2 (i8)2 
+ 6300 (3Wi - 6wi + 36wi - 33wi + 11)21 

+ 94~00 (14 - 6w~ + 18w~ + 36wt - 102w~ 
( "8)3 

+117w~ - 63W")-~- + , '3! 

1 234 
24255000 (509 - 3054wi + 7989wi - 11352wi + 9114wi 

( "8)4 
-3378w~ - 120w~ + 1068w? - 267w~)-~-, , , '4! 

The mean and variance of Gi ,2(B) are therefore: 

3w~ - 3Wi + 2 
~i,2 = 30 ' 

r~ = 3wt - 6w~ + 36w~ - 33wi + 11 
\:H,2 6300 " 

• 
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Proof. of Theorem 3.3 for Model 3. The characteristic function for Model 3 is 

given by 

where D3('x) = ~(2 - v'>: sin v'>: - 2 cos v'>:). The Expansion as power series can be 
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written as follows: 

Hence, the mean and variance of Gi ,3(B) are 

1 2 
('3 = -(1- 2w~ + 2w.) <"t, 15 . t , 

2 11 ( 2 3 4) r. 3 = -- 1 - 4w~ + 6w. - 4w. + 2w· . 
.,,~ 6300 . t t t 

• 

Proof. of Theorem 3.4. In the modified tests, for both Model 0 and 3, the 

characteristic function can be expressed as 

where Dk,M(>')S are defined as in the Proof of Theorem 3.3 for Model 0 and Model 3 

respectively. The expansion of logk (cPi (e)) as a power series of ie gives 
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and 

Therefore, the mean and variance for the Modified Model 0, are ~ and 4
2
5' and for the 

modified Model 3, they are 1
2
5 and 3~~O respectively. _ 
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Appendix 2: Data Details in Chapter 4 

The data lists for the 14 series are: 

1. Real GDP (T = 41, N = 25). Source: Economic Outlook, OECD. Code: GDPVD 

(gross domestic product, volume, at 2000 PPP, US$). Base 100 in 2000. The sample 

is balanced with 25 countries observed over the period 1963-2003. Excluded countries 

are Hungary, Korea, Czech Republic, Poland and the Slovak Republic. 

2. Nominal GDP (T = 41, N = 25). Source: Economic Outlook, OECD. Code: 

GDPV (gross domestic product, volume, market prices). Base 100 in 2000. The 

sample is balanced with 25 countries observed over the period 1963-2003. Excluded 

countries are Hungary, Korea, Czech Republic, Poland and the Slovak Republic. 

3. Real per Capita GDP (T = 36, N = 25). Source: World Development Indicators, 

World Bank. Code: NY.GDP.PCAP.KD (gross domestic product per capita, constant 

1995 US$). Base 100 in 1995. The sample is balanced with 25 countries observed 

over the period 1965-2000. Excluded countries are Turkey, Germany, Czech Republic, 

Poland and the Slovak Republic. 

4. Industrial Production (T = 43, N = 24). Source: International Financial Statis­

tics, IMF, Washington. Code: line 61. Base 100 in 1995. The sample is balanced 

with 24 countries observed over the period 1960-2002. Excluded countries are Turkey, 

New Zealand, Czech Republic, Hungary, Poland and the Slovak Republic. 

5. Employment (T = 39, N = 23). Source: Economic Outlook, OECD. Code: ET 
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(total employment). The sample is balanced with 23 countries observed over the 

period 1965-2003. Excluded countries are: Luxembourg, Mexico, the Netherlands, 

the Czech Republic, Hungary, Poland and the Slovak Republic. 

6. Unemployment rate (T = 39, N = 23). Source: Economic Outlook, OECD. Code: 

UN (unemployment rate). The sample is balanced with 23 countries observed over 

the period 1965-2003. Excluded countries are: Luxembourg, Mexico, the Netherlands, 

the Czech Republic, Hungary, Poland and the Slovak Republic. 

7. GDP Deflator (T = 41, N = 24). Source: World Development Indicators, World 

Bank. Code: Ny'GDP.DEFL.ZS. Base 100 in 1995. The sample is balanced with 

24 countries observed over the period 1960-2003. Excluded countries are: Canada, 

Germany, Turkey, Czech Republic, Poland and the Slovak Republic 

8. Consumer prices (T = 52, N = 22). Source: International Financial Statistics, 

IMF, Washington. Code: line 64. Base 100 in 2000. The sample is balanced with 

22 countries observed over the period 1952-2003. Excluded countries are: Germany, 

Turkey, Mexico, Korea, Czech Republic, Hungary, Poland and the Slovak Republic. 

9. Wages (T = 33, N = 20). Source: Economic Outlook, OECD. Code: WR (wage 

rate of the business sector). Base 100 in 2000. The sample is balanced with 20 

countries observed over the period 1971-2003. Excluded countries are: Switzerland, 

Czech Republic, Hungary, Korea, Luxembourg, Mexico, Norway, Poland, Turkey and 

the Slovak Republic. 
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10. Real Wages (T = 33, N = 20). Source: Economic Outlook, OECD. Code: WSRE 

(real compensation rate of the business sector). Base 100 in 2000. The sample is 

balanced with 20 countries observed over the period 1971-2003. Excluded countries 

are: Switzerland, Czech Republic, Hungary, Korea, Luxembourg, Mexico, Norway, 

Poland, TInkey and the Slovak Republic. 

11. Money Stock (T = 30, N = 19). Source: Economic Outlook, OECD. Code: 

MONEYS (money supply, broad definition, M2 or M3). Base 100 in 1995. The 

sample is balanced with 20 countries observed over the period 1969-1998. Excluded 

countries are: Luxembourg, Italy, France, Denmark, Thrkey, Mexico, Korea, Czech 

Republic, Hungary, Poland and the Slovak Republic. 

12. Velocity (T = 30, N = 18). Source: Economic Outlook, OECD. Code: VLCTY 

(velocity of money). The sample is balanced with 18 countries observed over the 

period 1969-1998. Excluded countries are: Germany, Luxembourg, Italy, France, 

Denmark, Thrkey, Mexico, Korea, Czech Republic, Hungary, Poland and the Slovak 

Republic. 

13. Bond Yield (T = 47, N = 13). Source: International Financial Statistics, IMF, 

Washington. Code: line 61. The sample is balanced with 13 countries observed over 

the period 1952-2002. Excluded countries are: Portugal, Sweden, Ireland, Austria, 

Finland, Greece, Iceland, Japan, Luxembourg, Spain, Thrkey, Mexico, Korea, Czech 

Republic, Hungary, Poland and the Slovak Republic. 
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14. Common stock prices (T = 36, N = 11). Source: Main Economic Indicators, 

OECD. Code: share prices. Base 100 in 2000. The sample is balanced with 11 coun­

tries observed over the period 1968-2003. Excluded countries are: Belgium, Czech 

Republic, Denmark, Finland, Greece, Hungary, Iceland, Italy, Korea, Mexico, Nether­

lands, Norway, Poland, Portugal, Spain, Turkey, Luxembourg, United Kingdom and 

the Slovak Republic. 
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Appendix 3: Model Selection Results in Chapter 4 

Table 6.1: Model Selection Results for Real GDP 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 2 1971 2 1 3 1974 2 2 
Austria 2 1975 4 1 2 1975 4 1 
Belgium 2 1975 1 2 2 1975 1 2 
Canada 2 1977 2 2 2 1977 2 2 
Switzerland 3 1975 1 3 3 1975 1 3 
Germany 3 1991 2 2 3 1991 2 2 
Denmark 2 1970 1 2 2 1970 1 2 
Spain 3 1978 3 1 3 1978 3 1 
Finland 1 1991 1 1 1 1991 1 1 
France 2 1975 4 2 2 1975 4 2 
U.K. 1 1980 2 2 1 1980 2 2 
Greece 2 1974 4 1 2 1974 4 1 
Ireland 2 1995 2 1 2 1995 2 1 
Iceland 2 1982 2 2 2 1982 2 2 
Italy 2 1979 4 1 2 1979 4 1 
Japan 2 1974 4 4 2 1974 4 4 
Luxembourg 3 1981 1 1 3 1981 1 1 
Mexico 3 1983 3 1 3 1983 3 1 
Netherlands 2 1972 2 2 2 1992 2 2 
Norway 2 1980 3 2 2 1980 3 2 
New Zealand 3 1978 1 1 3 1978 1 1 
Portugal 2 1974 4 4 2 1974 4 4 
Sweden 2 1972 2 2 2 1972 2 2 
Turkey 2 1976 1 1 3 1979 1 1 
U.S. 2 1967 2 2 2 1967 2 2 
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Table 6.2: Model Selection Results for Nominal GDP 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 2 1989 2 2 2 1989 2 2 
Austria 2 1982 4 2 2 1982 4 2 
Belgium 2 1983 3 2 2 1983 3 2 
Canada 2 1985 2 2 2 1985 2 2 
Switzerland 2 1975 3 2 2 1975 3 2 
Germany 2 1979 4 2 2 1979 4 2 
Denmark 2 1985 4 4 2 1985 4 4 
Spain 2 1987 4 4 2 1987 4 4 
Finland 2 1986 2 2 2 1986 2 2 
France 2 1987 2 2 2 1987 2 2 
U.K. 2 1987 3 3 2 1987 3 3 
Greece 2 1995 4 4 2 1995 4 4 
Ireland 2 1984 4 4 3 1979 2 1 
Iceland 2 1990 4 4 3 1983 1 1 
Italy 2 1989 4 4 2 1989 4 4 
Japan 2 1981 4 4 2 1981 4 4 
Luxembourg 1 1973 3 3 1 1973 3 3 
Mexico 1 1986 1 1 1 1986 1 1 
Netherlands 2 1978 2 2 3 1978 2 2 
Norway 2 1986 4 2 2 1986 4 2 
New Zealand 2 1989 4 4 2 1989 4 4 
Portugal 2 1993 4 4 2 1993 4 4 
Sweden 2 1990 2 2 2 1990 2 2 
Thrkey 2 1979 3 2 2 1979 3 2 
U.S. 2 1987 4 1 2 1987 4 1 
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Table 6.3: Model Selection Results for Industrial Production 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 3 1975 1 2 3 1975 1 2 
Austria 2 1973 2 2 3 1975 2 2 
Belgium 3 1975 4 1 3 1975 4 1 
Canada 2 1973 2 2 3 1975 2 2 
Finland 2 1974 2 2 2 1974 2 2 
Denmark 3 1974 1 1 3 1974 1 1 
France 2 1974 4 1 2 1974 4 1 
Germany 2 1973 2 2 3 1969 2 1 
Greece 2 1978 4 1 2 1978 4 1 
Iceland 1 1977 2 2 1 1977 2 2 
Ireland 2 1993 1 1 2 1993 1 1 
Italy 2 1974 4 1 2 1974 4 1 
Japan 2 1973 4 1 2 1973 4 1 
Luxembourg 1 1975 2 2 1 1975 2 2 
Netherlands 2 1974 1 1 2 1974 1 1 
Norway 2 1998 2 1 2 1998 2 1 
Portugal 2 1983 2 2 2 1983 2 2 
Spain 2 1974 4 4 2 1974 4 4 
Sweden 2 1971 2 1 3 1976 1 1 
Switzerland 3 1975 2 2 3 1975 2 2 
U.K. 3 1980 2 2 3 1980 2 1 
U.S. 2 1967 2 2 2 1967 2 2 
Mexico 3 1983 3 3 3 1983 3 3 
Korea 2 1980 1 1 3 1977 1 1 
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Table 6.4: Model Selection Results for Unemployment Rate 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 2 1983 4 2 2 1984 4 2 
Austria 3 1982 4 1 3 1982 4 1 
Belgium 2 1976 4 4 2 1984 4 4 
Canada 2 1982 2 2 2 1984 2 2 
Switzerland 3 1975 3 3 3 1975 3 3 
Germany 2 1982 5 5 3 1982 4 4 
Denmark 1 1975 1 1 0 1975 1 1 
Spain 3 1980 4 1 3 1980 4 1 
Finland 3 1992 2 2 3 1992 2 2 
France 2 1984 5 5 2 1986 2 4 
U.K. 3 1981 5 2 3 1981 2 2 
Greece 3 1981 0 1 3 1981 0 1 
Ireland 2 1992 3 3 2 1993 3 3 
Iceland 1 1992 2 5 0 1989 2 2 
Italy 2 1983 2 2 2 1998 2 2 
Japan 3 1989 1 1 3 1989 1 1 
Korea 3 1998 1 1 3 1998 1 1 
Norway 3 1989 4 1 3 1989 4 1 
New Zealand 2 1978 5 4 2 1991 4 4 
Portugal 1 1976 4 4 1 1976 4 4 
Sweden 3 1992 1 1 3 1992 1 1 
TInkey 1 1970 3 1 1 1970 3 1 
US 2 1984 2 2 3 1984 2 2 
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Table 6.5: Model Selection Results for GDP Deflator 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 2 1972 2 2 2 1972 2 2 
Austria 3 1974 1 1 3 1974 1 1 
Belgium 3 1974 1 1 3 1974 1 1 
Finland 2 1972 2 2 2 1972 2 2 
Denmark 2 1971 2 2 2 1971 2 2 
France 3 1981 1 1 3 1981 1 1 
Greece 2 1985 3 3 2 1985 3 3 
Iceland 2 1980 2 2 2 1980 2 2 
Ireland 3 1980 1 1 3 1980 1 1 
Italy 2 1976 2 2 2 1976 2 2 
Japan 2 1987 4 2 2 1987 4 2 
Luxembourg 2 1969 3 1 2 1969 3 1 
Netherlands 1 1976 1 1 1 1976 1 1 
New Zealand 2 1986 1 1 1 1986 1 1 
Norway 2 1972 2 2 2 1972 2 2 
Portugal 2 1981 2 2 2 1981 2 2 
Spain 2 1976 2 2 2 1976 2 2 
Sweden 2 1974 2 2 2 1974 2 2 
Switzerland 3 1991 1 1 3 1991 1 1 
U.K. 2 1973 2 2 2 1973 2 2 
U.S. 2 1971 3 2 3 1979 1 1 
Mexico 2 1990 4 4 2 1990 4 4 
Korea 2 1976 4 4 2 1976 4 4 
Hungry 2 1991 2 2 2 1991 2 2 
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Table 6.6: Model Selection Results for Consumer Prices 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 3 1976 1 1 3 1976 1 1 
Austria 1 1975 1 1 1 1975 1 1 
Belgium 3 1976 1 1 3 1975 1 1 
Canada 1 1979 1 1 1 1979 1 1 
Finland 3 1977 1 1 3 1977 1 1 
Denmark 3 1980 1 1 3 1980 1 1 
France 3 1980 1 1 3 1980 1 1 
Greece 3 1971 4 2 3 1974 4 3 
Ireland 1 1977 1 1 1 1977 1 1 
Italy 1 1980 1 1 1 1980 1 1 
Japan 3 1975 1 1 3 1975 1 1 
Luxembourg 3 1975 1 1 3 1975 1 1 
Netherlands 3 1975 1 1 3 1975 1 1 
New Zealand 1 1979 1 1 1 1979 1 1 
Norway 3 1981 1 1 3 1981 1 1 
Portugal 3 1977 1 1 3 1977 1 1 
Spain 3 1977 1 1 3 1978 1 1 
Sweden 1 1979 1 1 1 1979 1 1 
Switzerland 1 1973 1 1 1 1973 1 1 
U.K. 3 1976 1 1 3 1976 1 1 
U.S. 1 1979 1 1 1 1979 1 1 
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Table 6.7: Model Selection Results for Wages 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 2 1985 2 4 2 1985 2 4 
Austria 2 1982 2 2 2 1982 2 2 
Belgium 2 1982 3 4 2 1982 3 4 
Canada 2 1985 2 2 2 1985 2 2 
Germany 2 1982 1 1 2 1982 1 1 
Denmark 2 1984 2 4 2 1984 2 4 
Spain 2 1984 2 2 2 1984 2 2 
Finland 2 1986 2 2 2 1986 2 2 
France 2 1985 2 2 2 1985 2 2 
U.K. 2 1983 2 2 2 1983 2 2 
Greece 2 1992 4 2 2 1992 4 4 
Ireland 2 1984 1 4 2 1984 1 2 
Iceland 2 1989 2 2 2 1989 2 2 
Italy 2 1986 2 2 2 1986 2 2 
Japan 2 1980 2 4 2 1980 2 4 
Netherlands 2 1979 2 2 2 1979 2 2 
New Zealand 2 1989 2 2 2 1989 2 2 
Portugal 2 1990 2 4 2 1989 2 4 
Sweden 2 1990 2 2 2 1990 2 2 
U.S. 2 1984 3 2 2 1984 3 2 
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Table 6.8: Model Selection Results for Real Wages 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 1 1986 3 4 3 1977 1 1 
Austria 2 1979 2 2 2 1979 2 2 
Belgium 2 1978 3 1 2 1978 3 1 
Canada 3 1978 5 1 3 1978 4 1 
Germany 2 1980 1 1 2 1980 1 1 
Denmark 1 1988 4 1 1 1988 4 1 
Spain 2 1981 2 2 2 1981 2 2 
Finland 2 1991 5 2 2 1991 2 2 
France 2 1980 3 3 2 1980 3 3 
U.K. 2 1976 4 1 2 1976 4 1 
Greece 2 1979 2 4 2 1979 2 4 
Ireland 2 1980 1 1 2 1980 1 1 
Iceland 2 1985 2 2 3 1983 2 2 
Italy 2 1980 5 1 2 1980 2 1 
Japan 2 1976 3 4 2 1976 3 4 
Netherlands 2 1976 2 2 2 1976 2 2 
New Zealand 3 1976 1 1 3 1976 1 1 
Portugal 3 1979 1 1 3 1979 1 1 
Sweden 1 1982 5 1 1 1982 1 1 
U.S. 3 1998 2 2 3 1998 2 2 
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Table 6.9: Model Selection Results for Employment 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 3 1975 2 2 3 1975 2 2 
Austria 1 1982 3 3 1 1982 3 3 
Belgium 3 1982 4 1 3 1982 4 1 
Canada 2 1981 3 2 2 1981 3 2 
Switzerland 1 1975 3 1 1 1975 3 1 
Germany 1 1991 2 3 1 1991 2 3 
Denmark 3 1985 3 3 3 1985 3 3 
Spain 2 1995 2 2 2 1995 2 2 
Finland 3 1992 0 1 3 1992 0 1 
France 3 1993 1 1 3 1993 1 1 
U.K. 2 1984 4 2 3 1987 2 2 
Greece 2 1972 1 1 2 1972 1 1 
Ireland 2 1994 2 2 2 1994 2 2 
Iceland 3 1989 3 1 3 1989 3 1 
Italy 3 1993 4 1 3 1993 4 1 
Japan 3 1991 1 1 3 1991 1 1 
Korea 2 1993 1 1 2 1993 1 1 
Norway 1 1990 1 1 1 1990 1 1 
New Zealand 3 1988 1 1 3 1988 1 1 
Portugal 3 1974 2 2 3 1974 2 2 
Sweden 1 1993 1 1 1 1993 1 1 
Turkey 2 2000 1 1 2 2000 1 1 
U.S. 2 1988 2 2 3 1991 2 2 
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Table 6.10: Model Selection Results for Common Stock Prices 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 3 1979 1 1 3 1979 1 1 
Austria 1 1989 1 1 3 1985 4 2 
Canada 3 1979 4 1 3 1979 4 1 
France 3 1984 4 4 3 1984 4 4 
Germany 3 1984 4 2 3 1984 4 2 
Ireland 1 1974 4 4 1 1974 4 4 
Japan 3 1987 2 2 3 1987 2 2 
New Zealand 1 1983 2 2 1 1983 2 2 
Sweden 3 1983 3 3 3 1983 3 3 
Switzerland 2 1983 5 4 2 1983 4 4 
US 2 1978 2 2 2 1978 2 2 
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Table 6.11: Model Selection Results for Real GDP per Capita 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 1 1982 3 4 3 1991 1 1 
Austria 2 1975 4 4 2 1975 4 4 
Belgium 2 1975 1 1 2 1975 1 1 
Canada 2 1978 2 2 2 1978 2 2 
Finland 1 1991 4 1 1 1991 4 1 
Denmark 3 1974 1 1 3 1974 4 1 
France 2 1975 4 2 2 1975 4 2 
Greece 2 1974 4 1 2 1974 4 1 
Iceland 2 1982 2 4 2 1982 2 4 
Ireland 2 1994 4 2 2 1994 4 2 
Italy 2 1980 4 1 2 1980 4 1 
Japan 2 1972 4 1 2 1972 4 1 
Luxembourg 3 1981 1 1 3 1981 1 1 
Netherlands 3 1981 1 1 3 1981 1 1 
New Zealand 3 1977 4 4 3 1977 4 4 
Norway 3 1988 1 1 3 1988 1 1 
Portugal 3 1975 3 3 3 1975 3 3 
Spain 3 1978 3 1 3 1978 3 1 
Sweden 1 1992 1 1 1 1992 1 1 
Switzerland 3 1975 2 2 3 1975 2 2 
U.K. 1 1980 2 2 1 1980 2 2 
U.s. _1a 1 2 1 1985 2 2 
Mexico 3 1983 3 1 3 1983 3 1 
Korea 1 1998 1 1 1 1998 1 1 
Hungry 2 1981 3 3 2 1981 3 3 

Note: a denotes the time trend model in Hadri (2000) without any break is chosen. 
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Table 6.12: Model Selection Results for Money Stocks 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsigy BIG p 

Australia 3 1989 4 4 3 1989 4 4 
Austria 2 1983 1 1 2 1983 1 1 
Belgium 2 1977 4 1 2 1977 4 1 
Canada 2 1989 4 2 2 1989 4 2 

Switzerland 1 1971 1 4 1 1971 1 4 
Germany 2 1977 2 1 2 1977 2 1 
Spain 2 1987 2 3 2 1987 2 3 
Finland 2 1990 1 1 2 1990 1 1 
U.K. 2 1991 3 4 2 1991 3 4 
Greece 2 1991 4 1 2 1991 4 1 
Ireland 2 1981 2 2 2 1981 2 2 

Iceland 2 1990 3 3 2 1990 3 3 
Japan 2 1980 4 4 2 1980 4 4 
Netherlands 3 1983 4 4 3 1983 4 4 
Norway 2 1988 1 1 2 1988 1 1 
New Zealand 3 1985 0 1 3 1985 0 1 
Portugal 2 1989 2 2 2 1989 2 2 

Sweden 2 1984 4 1 2 1984 2 1 
U.S. 2 1987 4 4 2 1987 4 4 
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Table 6.13: Model Selection Results for Bond Yield 

Countries Model selected by BIC Model selected by AIC 
Model TB tsig p BIG p Model TB tsig p BIG p 

Australia 3 1991 1 1 3 1991 1 1 
Belgium 3 1980 4 2 3 1980 4 2 
Canada 3 1980 4 1 3 1980 4 1 
Denmark 3 1983 1 1 3 1983 1 1 
France 3 1980 1 1 3 1980 1 1 
Germany 2 1982 2 2 2 1982 2 2 
Italy 3 1980 2 2 3 1980 2 2 
Netherlands 3 1983 2 2 3 1983 2 2 
New Zealand 3 1985 2 2 3 1985 2 2 
Norway 3 1981 1 1 3 1981 1 1 
Switzerland 2 1975 2 2 3 1976 1 1 
U.K. 2 1982 2 2 2 1982 2 2 
U.S. 3 1980 4 1 3 1980 4 1 
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